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ABSTRACT 

A Detailed Sequential Extraction Study of Selenium in Coal and Coal-Associated 
Strata from a Coal Mine in West Virginia 

 
Mimi Roy 

 
This study of the mode of occurrence and distribution of selenium in a rock core from 
southcentral West Virginia reveals that total selenium concentration varies by rock type.   
Rocks with total selenium >1 mg/kg were of circum-neutral pH based on acid base 
accounting data.  No direct correlation was found between selenium concentration in the 
rocks and that of sulfur and/or total organic carbon.  The distribution of total selenium 
was also controlled by stratigraphy.  The amount of total selenium extracted from various 
rock types like coal, shale, sandstone, mudstone and “carbolith” materials ranged from  
<1 % to >50 %.  Selenium extracted from coal was mostly from the sulfide fraction.  
Selenium extracted from shales averages approximately 40 % by mass, mainly in the 
organic fraction.  More selenium was extracted from shales in coal-proximate zones 
averaging about 50 % by mass.  Extraction conditions are rarely encountered in natural 
geochemical settings and are thus likely an overestimate of field conditions. 
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Chapter 1 Introduction 

 

1.1 Statement of problem 

 

Selenium (Se) is an environmentally important Clean Air Act, Title III Hazardous Air 

Pollutant of considerable environmental concern.  However, it is also a required 

micronutrient for biota.  Depending on its concentration, Se can be either essential or 

toxic to living beings (Butterman and Brown, 2004).  Problems associated with Se first 

came to public attention in the 1930’s, when studies in the western and great plains 

regions of the United States showed many areas with elevated levels of Se in plants like 

milk vetches and poison vetches that were sufficiently high to be toxic to animals 

(Bernhard and Bock, 1996).  In the early 1980’s, Se problems from agricultural waters 

that drained into Kesterson National Wildlife Refuge in California’s San Joaquin Valley 

led to investigations in other parts of the United States and to increased regulations from 

federal and state governments (Presser, 1994).  Surface mining activities have been 

characterized as being potentially harmful because of serious issues such as those 

associated with the Kesterson Wildlife Refuge in California (Sharmasarkar and Vance, 

2002).   

 

Se occurs naturally in the environment and can be released by both natural and human-

caused processes.  Rocks are one of the primary sources of Se that may eventually 

accumulate in soil, water and plants.  Se is released in the environment through 

weathering, coal combustion, mining and incineration of municipal wastes.  The most 

widespread causes of Se mobilization and introduction into the aquatic ecosystem in the 

U.S. today are the extraction and utilization of coal for generation of electric power and 

the irrigation of high Se soils for agricultural production (Nelson and Bundy, 1980).   

 

Se in water may be a byproduct of mining as Se bearing overburden is exposed to 

weathering.  An environmental impact study was done by the Environmental Protection 

Agency (USEPA) to characterize and compare impacts to stream chemistry from 
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mountaintop mines and associated valley fills (MTM/VF) of West Virginia.  High Se 

concentrations were found in streams impacted by mountaintop removal (USEPA, 2002).  

All violations of the stream concentration limit of 5 ug/L occurred in reaches downstream 

from the valley fills.   

 

West Virginia Geological and Economic Survey (WVGES) and USEPA data report Se 

concentration in some coal beds of West Virginia (WVGES, 2002a, b) as well as in 

streams (USEPA, 2002).  Se concentrations as high as 20 mg/kg are present in coals of 

some southern West Virginia counties (WVGES, 2002b).  To date, most of the research 

on Se has been conducted in western United States.  These assessments might not be the 

same in case of eastern US states where different stratigraphic units, rock types and coal 

beds are encountered (Neuzil et al., 2005).  A better understanding of the distribution of 

Se by rock type and formation as well as an understanding of its extraction potential can 

be used to better prevent future impacts on surface water.   

 

 

1.2 Purpose and objectives 

 

The present research is designed to understand how Se is chemically bound in coals and 

coal-related lithologies.  The present study evaluated Se binding in different rock types 

and their effect on extraction.  The specific research objectives that were addressed 

include: 

 

• to evaluate total Se concentration in relation to rock type, stratigraphy and other 

chemical parameters for a single rock core, 

• to determine pattern of distribution of Se through a rock core, 

• to identify Se modes of occurrence in different lithologies, and 

• to determine relative Se extracted from different fractions of a rock. 
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Chapter 2  Literature review 

 

2.1 Environmental geochemistry of selenium 

 

The narrow gap of dietary intake between necessary and toxic concentrations of Se (0.04-

4 mg/kg) (McNeal and Balistrieri, 1989) makes it imperative to understand the 

mechanisms controlling the distribution of this element in the environment.  Because of 

its similar ionic radius to sulfur (S), Se can readily substitute for S in both organic and 

inorganic compounds.  In spite of having similar biogeochemical properties, Se and S 

follow distinct geochemical pathways near or at the surface during weathering (Lakin and 

Davidson, 1973).  After weathering, Se commonly is fixed in insoluble basic ferric 

selenites, whereas S oxidizes to highly soluble sulfates that can be removed by surface 

and groundwater.   

 

Se can exist in the 2-, 0, 4+, and 6+ oxidation states.  The concentration, speciation, and 

association of Se depend on pH, oxidation-reduction (redox) potential, chemical and 

mineralogical composition, biological interactions, dissociation constants and reaction 

kinetics (Lussier et al., 2003).  Selenide (Se2-) and elemental Se (Se0) are generally 

favored in reducing environments, selenite (SeO3
2-) in mildly oxidizing environments, 

and selenate (SeO4
2-) in well-oxidized environments (Figure 2-1).  The toxicity of Se 

varies with valence state and water solubility of the compound in which it occurs 

(Opresko, 1993).  Generally the more oxidized forms of Se are more mobile and less 

toxic than the reduced forms.  Therefore, the selenite and selenate species of Se are 

transported easily and pose less toxicity compared to the selenide and elemental Se.  

Solubility of Se has been shown to increase with the presence of organic acids, 

polysulfide ions, and increasing pH (Weres et al., 1989). 
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Figure 2-1 pH-Eh diagram for selenium (Drever, 1998) 
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2.2 Distribution and prediction of total selenium in rocks 

 

2.2.1 Selenium sources and distribution by location and rock type 

 

Se is found in soils and rocks at concentrations up to several hundred parts per million 

(ppm) by way of igneous intrusions and by volcanism (Dreher and Finkelman, 1992).  

Seleniferous sedimentary materials are generally the greatest geological source of Se 

(Coleman and Delevaux, 1957).  The Se content can vary from one rock type to another 

(Table 2-1).   

 

Coal and highly organic rich sediments tend to have higher concentrations of Se than 

other rock types, presumably due to adsorption or organic matter complexation of Se and 

sulfides (Kunli et al., 2004).  Se can be found in coal up to 82 times its concentration in 

the crust (US National Committee for Geochemistry, 1980).  Coal on average contains 

from 5 to 300 times the amount of Se as other rocks.  Se occurs in coal primarily within 

host minerals, most commonly associated with pyrite (FeS2).  Limestone and sandstone 

tend to have low concentrations of Se (<0.1 mg/kg).  Shales usually tend to have higher 

Se concentration than limestone and sandstone (0.6 mg/kg) (McNeal and Balistrieri, 

1989).   

 

The highest Se concentrations in the US Chemical Database (US National Committee for 

Geochemistry, 1980) are 75 mg/kg from a sample in Iowa and 52 mg/kg from a coal 

sample in West Virginia (Coleman et al., 1993).  A study on the distribution of Se 

throughout the major provinces in the US reports that the average Se value for the eastern 

part of US is 4 mg/kg compared to 2 mg/kg for the western states and 3.6 mg/kg for the 

entire nation (Table 2-2).  Se association in rocks (Dreher and Finkelman, 1992) and/or 

soils can be broadly attributed to the following modes of occurrence: 

• in water soluble salts, 

• adsorbed to clay surface, 
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Table 2-1 Selenium concentration in major rock types based on 9000 samples 
collected from US coal regions and provinces (Coleman et al., 1993) 

 

Rock Type Se (mg/kg) 

US coal 1.7 
soil 0.4 

shale 0.6 
argillaceous sediments 0.4-0.6 

sandstones 0.05-0.08 
limestones, dolomites 0.03-0.10 

ultramafic rocks 0.02-0.05 
mafic rocks 0.01-0.05 

intermediate rocks 0.02-0.05 
acid rocks (intrusive) 0.01-0.05 
acid rocks (extrusive) 0.01-1.4 
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Table 2-2 Average, maximum and minimum concentrations of selenium in US 
coal regions and provinces (modified from Coleman et al., 1993) 

 

Geographic areas 
no. of 

samples average maximum minimum 
    (mg/kg) (mg/kg) (mg/kg) 

United States 8695 3.6 75 0.02 
Provinces:     

Eastern 4711 4.2 75 0.02 
Gulf 214 5.6 16 0.50 

Interior 705 3.1 36 0.20 
Northern Great Plains 1154 0.99 13 0.10 

Rocky Mountain 1615 1.6 13 0.10 
Alaska 258 1.1 43 0.10 

Pacific Coast  38 1.9 7.3 0.20 
Note: All samples are coal 
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• association with sulfides like galena (PbS), 

• in fine grained selenides such as clausthalite (PbSe), 

• in organic association, and 

• bounded with hydrous ferrous and manganese oxides (HFMO). 

 

 

2.2.2 Total selenium in West Virginia rocks 

 

West Virginia Geological and Economic Survey (WVGES, 2002a) data suggest that the 

distribution of Se depends on stratigraphy and formation, rock type and where the rock is 

placed in the overall sequence.  For rocks associated with coal bearing horizons, the 

partings, seat earth, roof shales and the bone coal are considered to be the formations that 

are referred to as the “toxic units” by Renton et al. (1989).  These units are acidic and are 

more prone to extraction of metals and trace (Figure 2-2).   

 

The average Se concentration in West Virginia coals (WVGES, 2002a) is 4.20 mg/kg, 

having a maximum measured concentration of 21.30 mg/kg (Table 2-3).  The coal seams 

of West Virginia belong to the Pennsylvanian Period.  The geological units of this period 

are the Dunkard Group, Monongahela Group, Conemaugh Group, Allegheny Group, 

Kanawha Formation, New River Formation and the Pocahontas Formation.  Of all these 

stratigraphic units, the middle Pennsylvanian Period comprising of the Allegheny Group, 

Kanawha Formation, and the Conemaugh Group have significant amount of Se in their 

coal beds (WVGES, 2002a) (Figure 2-3).  These formations are often mined in 

southcentral West Virginia (WVGES, 2002a) (Figure 2-4). 

 

Se concentration is reported for about 950 samples in the WVGES database in which  

95 % of the samples are coals (WVGES, 2002b).  The highest Se concentration reported 

for coal is 21 mg/kg from the Stockton coal beds of the Kanawha Formation in Boone  
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Figure 2-2 Potentially “toxic” or acidic units associated with coal (modified from 

Renton et al., 1989) 
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Table 2-3 Summary statistics for selenium in West Virginia coals (WVGES, 
2002a) 

 

average 
(mg/kg) 

standard 
deviation 
(mg/kg) 

maximum 
(mg/kg) 

minimum 
(mg/kg) 

no. of 
analyses 

4.20 2.83 21.30 0.00 845 
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Figure 2-3 Stratigraphy and selenium content of coal beds in West Virginia 

(WVGES, 2002a) 
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Figure 2-4 Geographic distribution of selenium in West Virginia coals (WVGES, 

2002a) 

 12



 

County of southcentral West Virginia.  The lowest Se concentration in coal is from the 

Pittsburgh coal bed of the Monongahela Formation in Wetzel County.  From this 

database it is also apparent that <10 % of the coal samples have total Se concentration 

>10 mg/kg (Figure 2-5a).  The highest Se concentration for mudstone is 14 mg/kg from 

Bens Creek coal bed of the Kanawha Formation in McDowell County, West Virginia and 

the lowest concentration is <0.5 mg/kg from Little Chilton coal bed of the Kanawha 

Formation in Raleigh County (Figure 2-5b).  In case of mudstone however, less than  

15 % of the samples have total Se concentration >10 mg/kg. 

 

Mullennex (2005) studied the distribution and occurrence of Se in rock cores from a mine 

in southwestern West Virginia.  According to his report, from over 400 rock samples, the 

highest total Se concentrations are found in coals and shales (Figure 2-6).  All the high 

concentration non-coal lithotypes are situated in close proximity (within 5 ft) of the coal 

beds.  The non-coal lithotypes include shale, sandstone and other rocks associated with 

coal units in a coal bed formation.  His data are focused on the No. 5 and No. 6 Block 

coals of the Allegheny Formation and the Stockton and Coalburg coal beds of the 

Kanawha Formation.  Sandstones have the lowest total Se concentration.   

 

 

2.2.3 Relationship between total selenium concentration and other chemical 

parameters 

 

Total Se concentrations might have some relationship to acid base accounting (ABA) 

parameters.  The data generated from ABA might help to determine factors that control 

the distribution of total Se in different rock types.  This method is designed to measure 

neutralization potential (NP) and sulfur content of individual overburden strata (Skousen 

et al., 2002).   
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Figure 2-5 Distribution of selenium concentration in West Virginia (a) coals and 

(b) mudstones.  Graphs generated using data from WVGES (2002b). 
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Figure 2-6 Distribution of selenium in various rock types from a mine in south 

western West Virginia (modified from Mullennex, 2005) 
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From these measurements, maximum potential acidity (MPA) and net neutralization 

potential (NNP) are calculated for each geologic layer from the surface of the land down 

to, including, and immediately underlying the coal seam.  A positive NNP indicates 

potentially alkaline producing strata in the overburden whereas a negative NNP indicates 

that the rock strata gives rise to potentially acidic overburden thus enhancing its ability to 

leach out metals and trace metals from the rock surface.   

 

Sulfur generally occurs in one of three forms in rock strata associated with coals: pyritic 

sulfur, organic sulfur and sulfate sulfur (Rait et al., 2005).  Pyritic sulfur is that sulfur that 

reacts with oxygen and water to produce acidity.  Organic sulfur is that sulfur which 

occurs in carbon based molecules in coal and other rocks with significant carbon content.  

Sulfate sulfur occurs in partially weathered samples as a reaction by product of sulfide 

mineral oxidation.  All these forms of sulfur contribute towards the calculation of the 

MPA factor in ABA.   

 

 

2.3 Weathering of selenium-containing rocks 

 

The primary source for Se is the weathering of rocks containing Se.  Numerous factors 

can lead to the dissolution of these rocks thus increasing the chance of Se contamination.   

 

Dreher and Finkelman (1992) suggested the source, occurrence and fate of Se in 

overburden deposits and backfill water are important in understanding Se chemistry in 

coal-mine environments.  During surface coal mining, rock materials overlying the coal 

are redistributed from their original stratigraphic position and are often placed in 

oxygenated environments.  The stability of Se-containing sulfides and organic matter can 

be substantially decreased by exposing buried horizons to surface oxidizing conditions 

which in turn can increase the potential solubility of Se species (Vance et al., 1995).  

Natural organic solutes in coal mine backfill groundwater systems have the potential to 
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compete for adsorption sites on metal oxides, thus increasing the solubility of Se; though 

in case of extraction studies hydrous oxides do not play a significant role.  Studies 

involving backfill and overburden materials indicate that organic solutes are important to 

Se chemistry because of the accompanying redox effects (Naftz and Rice, 1989; Dreher 

and Finkelman, 1992; Sharmasarkar and Vance, 1997).   

 

To date, most studies on Se extraction have focused on soils and sediments (Chao and 

Sanzolone 1989, Wright et al., 2003).  Lussier et al. (2003) observed that extraction of Se 

from coal bearing horizons is most pronounced from the sulfide and organic fractions.  

The Se concentration in these two fractions is controlled by depositional environment or 

by redox conditions.  Se extracted from the sulfide fraction has been considered of 

special concern as it can be mobilized through exposure to air and water.   

 

Various experiments can be used to study extraction mechanisms.  Among these, the use 

of sequential extraction techniques to fractionate metals in solid materials into several 

groups of different leachability and evaluate their potential effects has become widely 

used and well recognized (Tessier et al., 1979; Chao and Sanzolone, 1989; Chao, 1984).  

The results furnish detailed information about the origin, mode of occurrence, 

bioavailability, potential mobility, and transport of the metals in natural environments 

(Shiowatana et al., 2001a).   

 

The process of sequential extraction is used for metal and trace metal extraction and 

speciation and involves the use of chemical extractants that selectively dissolve the 

different chemical constituents of the sample material (Tessier et al., 1979; Chao, 1984).  

The method operationally defines the different major carriers of metals and trace metals 

and provides information on the metal-particle bonding mechanisms.  The chemistry of 

redox labile elements such as As, Hg and Se may be productively probed using sequential 

extraction procedures because the variation in oxidation number gives rise to more 

discrete and often nonlabile geochemical phases that might be selectively dissolved or 

extracted if the extracting reagents are judiciously chosen (Wright et al., 2003).  Being 

operationally defined procedures, sequential procedures give results that are dependent 
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on the extraction parameters such as type, concentration, pH of each reagent, sample 

weight to extractant volume ratios, extraction times and temperature, methods of shaking 

and phase separation, etc. (La Force and Fendorf, 2000).   

 

For extracting conditions, it has been shown (Shiowatana et al., 2001b) that reagent 

concentration can affect extractability for some elements, especially trace elements, and 

should be selected carefully.  Davidson et al. (1999) indicated that differences in 

extraction pH are an important source of variation in analytical results. 

 

Chemical fractionation (operationally defined chemical speciation by sequential 

extraction) has been widely accepted and applied.  However this technique has several 

limitations because of poor selectivity of reagents toward the targeted solid materials 

(Shiowatana et al., 2001a) or other artifacts that fail to preserve the insitu chemistry of 

the sample (Wright et al., 2003).  Sequential extraction can also suffer from inaccuracy 

due to operational inconsistency during extraction and solid-liquid phase separation 

procedures.  Errors resulting from readsorption during extraction have also been reported 

(Kheboian and Bauer, 1987).  Despite these drawbacks, partial extractions have been 

used with considerable success to obtain information on the bioavailability and the 

geochemistry of trace metals (Tessier et al., 1979).  Conditions and reagents used in 

chemical fractionation procedures are rarely encountered in real life conditions and are 

thus not always applicable to natural geological settings.  The purpose of the extractions 

is to evaluate the chemical mode of occurrence and is not meant to directly estimate 

mobility in nature. 

 

Chemical fractionation through sequential extraction operationally defines the soluble, 

adsorbed, oxide, organic and sulfide fractions but all these fractions are derived from 

different original sources.  Se may be present in the organic or sulfide fractions due to 

original depositional or diagenetic processes.  However, Se in the exchangeable, oxide 

and sorbed fractions are likely to be present due to later weathering processes (Figure 2-

7).   
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Figure 2-7 Mode of selenium binding in rocks 
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Chapter 3 Materials and methods 

 

3.1 Nature and source of samples 

 

The samples for the present study were sedimentary rocks including coal, shale, 

sandstone, mudstone, and “carbolith” materials.  “Carbolith” materials include dark 

colored sedimentary rocks with very high carbon (C) content.  Rocks under this name 

include coal not scheduled for mining, bone coal, siltstones, and high C shales.  The 

samples were analyzed from a donated rock core from Boone County, West Virginia.  

The rock core was used in this research to compare how Se extraction varies by rock type 

and stratigraphic location.  Ground rock samples as well as some existing preliminary 

chemical data were made available by Research Environmental and Industrial 

Consultants, Inc. (REIC) Laboratory in Beaver, West Virginia (Table 3-1).   

 

Discrete samples were collected from each lithologic unit (Keeney, 2005).  For lithologic 

units that were less than 6-inch thick, the entire content was ground and composited.  For 

lithologic unit up to 2-ft thick, three one-inch subsamples were collected from the top, 

middle and bottom on the unit.  These subsamples were then ground and composited.  

For lithologic units greater than 2-ft in thickness, each 2-ft interval was sampled, ground 

and composited using 3 subsamples as per the 2-ft units.  This sampling strategy was 

chosen so that the analytical samples represented individual lithologic units.  From each 

composite, a subsample was taken and pulverized to less than 60 mesh in size.  All of the 

sampling and grinding was conducted by REIC Laboratory before the samples were 

given to the research team.  The major reasons for crushing samples were: 

• to reduce the bulk (amount) of geological sample, 

• to provide an unbiased, statistically representative sample of small quantity which 

can be used for analysis, and 

• to reduce samples to a small size fraction that maximizes surface area and 

minimizes the analytical time 
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Table 3-1 Sample description by rock type and available existing bulk data 
 

Rock description Available data 

no. of 
samples lithology ABA Paste 

pH TOC Pyritic S Organic S Total Se 

11 Coal ● ● ● o o ● 
25 Shale ● ● ● o o ● 
9 Mudstone ● ● ● o o ● 
12 Sandstone ● ● ● o o ● 
6 Carbolith ● ● ● □ □ ● 

Notes: ABA: Sobek Method (EPA-600/2-78-05); Pyritic S/Organic S: American Standard Testing Method 
(ASTM) D2492; Total Organic Carbon (TOC): EPA 9060A; ●: Available for all; O: Available for 
some; □: Available for none 

 
 

 21



 

The crushed samples were weighed and stored in air tight containers until further 

analysis.  The samples were from the Kanawha Formation and belonged to the Coalburg, 

Winifrede Rider, Upper Winifrede and Winifrede coal beds.   

 

 

3.2 Existing chemical data provided with samples 

 

The samples were analyzed for some chemical parameters by REIC Laboratory and the 

data were made available for the purpose of this research.  One of these chemical 

parameters was ABA (Appendix 1: Table A-1).  This method gives an account of the S 

content, NP and MPA of the individual overburden strata encountered in the studied rock 

core.   

 

Sulfur fractionation data were made available primarily for coal and its overburden 

(Table 3-2).  S fractionation was done at REIC Laboratory using American Society for 

Testing and Materials (ASTM) D2492.  This test method applies to the determination of 

sulfate sulfur and pyritic sulfur in coal and calculates organic sulfur by difference.   

 

 

3.3 Additional laboratory analysis of solid samples 

 

The total Se in the solid rock samples was analyzed at REIC Laboratory using the 

graphite furnace atomic absorption spectroscopy (GFAAS) according to EPA Method 

270.2.  The analysis followed a total rock digestion with nitric acid (HNO3) and hydrogen 

peroxide (H2O2) according to EPA Method 3050B.   

 

TOC was analyzed at REIC Laboratory by the combustion process according to EPA 

Method 9060A.   
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Table 3-2 Sulfur fractionation data 
 

Sample No. Rock Type Total S Pyritic S Organic S Sulfate S 
    (%) (%) (%) (%) 

9 Sandstone/Coal 0.20 0.08 0.12 <0.01 
16 Shale 0.85 0.52 0.15 0.18 

16A Coal 6.22 2.70 2.65 0.87 
17 Mudstone 1.22 0.70 0.14 0.38 
18 Sandstone 0.88 0.53 0.13 0.22 
33 Sandstone 0.54 0.23 0.19 0.12 

37A Coal 0.44 0.06 0.36 0.02 
37B Coal 0.76 0.02 0.68 0.06 
50A Coal 1.80 0.50 1.14 0.16 
51 Shale 1.34 0.57 0.45 0.32 
54 Coal 0.69 0.10 0.49 0.10 
57 Carbolith/Shale 0.37 0.05 0.22 0.10 

57A Coal 0.88 0.06 0.75 0.07 
62A Coal 0.60 0.06 0.46 0.08 
63A Coal 0.95 0.07 0.82 0.06 
73A Coal 0.68 0.05 0.63 <0.01 
73B Coal 1.75 0.55 0.75 0.45 
74 Shale 0.37 0.06 0.19 0.12 

76A Coal 0.68 0.04 0.63 0.01 
Data from REIC Laboratory 
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3.4 Sequential extraction procedure 

 

The sequential extraction process for extracting Se is an “operationally defined” 

mechanism for monitoring the association of Se in rock cores, soils and sediments.  The 

five-step sequential extraction procedure (Table 3-3) in this study was adapted from 

Martens and Suarez. (1997), Chao and Sanzolone (1989), Bascomb and Thanigasalam 

(1978) and Lynch (1970).   

 

This method operationally measures six fractions of Se: 

 

Fraction 1-Deionized Water:   The most soluble Se in the rock core samples were 

extracted using deionized water.  Five grams of the sample was placed in 50 mL 

centrifuge tubes followed by 25 mL of deionized water.  The centrifuge tubes were 

tightly capped and shaken for 1 hour at 25oC.  Then the tubes were centrifuged at 10000 g 

for 15 minutes.  The centrifugate was stored in a clean bottle.  Then 5 mL of 0.25M KCl 

was added to the centrifuge tube with the solid sample and it was centrifuged again.  The 

KCl centrifugate was combined with the first centrifuged extraction solution.   

 

Fraction 2-0.1M K2HPO4:    The residue from Fraction 1 was mixed with 25 mL of 0.1M 

K2HPO4 at pH 7 and shaken for 1 hour at 25oC in a shaker.  The centrifugate was treated 

identically as in Fraction 1.  This step is interpreted to extract the adsorbed and 

exchangeable Se from the samples. 

 

Fraction 3-0.1M NH2OH.HCl:   Hydrated ferrous and manganese oxides (HFMO) 

associated with the samples are interpreted to be extracted using hydroxylamine 

hydrochloride.  The residue from Fraction 2 was mixed with 25 mL of NH2OH.HCl in a 

centrifuge tube and heated to 90oC followed by shaking for 2 hours in a shaker.  The 

centrifugate was treated identically as the other fractions. 



 

 

 

 

Table 3-3 Sequential extraction procedure used in the study 
 

step 
no. extraction solution type of reaction fraction targeted 

1 
Deionized water (H2O) Dissolution 

Soluble 
Martens and Suarez. 

(1997) 

2 
Potassium Hydrogen Phosphate 

(K2HPO4) 
Ion Exchange 

Exchangeable 
Martens and Suarez 

(1997) 

3 

Hydroxylamine hydrochloride 
(NH2OH.HCl) Reduction 

Oxide coatings, 
typically iron and 

manganese 
Chao and Sanzolone 

(1989) 

4 
Sodium pyrophosphate (Na4P2O7) 

Oxidation 
(weaker) 

Organic compounds 
Bascomb and 

Thanigasalam (1978) 

5 Ascorbic acid and hydrogen 
peroxide (C6H8O6 and H2O2) 

Oxidation 
(stronger) 

Sulfide minerals 
Lynch (1970) 

6 Nitric acid and hydrogen peroxide 
(HNO3-H2O2) 

Complete 
dissolution of 

solids 

Residual 
Martens and Suarez 

(1997) 
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Fraction 4-0.1M Na4P2O7:   The residue from Fraction 3 was mixed with 25 mL of 0.1M 

Na4P2O7 in a centrifuge tube and shaken for 12 hours at room temperature.  This step is 

interpreted to extract organically associated Se.  The solution was centrifuged at 12000 g 

for 15 minutes.  The centrifugate was treated identically as the other fractions.  Extraction 

with Na4P2O7 should not release sulfides (Bascomb et al., 1978), which was a major 

factor behind choosing this particular chemical.  Because of the highly dispersive state of 

the suspension as a result of adding the sodium pyrophosphate solution at pH 10, a 

stronger centrifugation (12000 g) was necessary to separate the supernatant solution. 

 

Fraction 5-0.1M C6H8O6-30% H2O2:   The residue from Fraction 4 was treated with 25 

mL of a mixture of C6H8O6 and 30% H2O2 and shaken initially for 15 minutes.  The 

solution was allowed to stand for 14 hours after which it was again shaken for 30 

minutes.  The solution was centrifuged at 10000 g for 15 minutes.  The centrifugate was 

treated identically as in other fractions.  The method is interpreted for extracting sulfide 

associated Se. 

 

 

3.5 Extraction solutions and residues 

 

The extraction solutions from the sequential extraction process were kept in a refrigerator 

until laboratory analysis.  The solutions were analyzed for Se at Sturm Environmental 

Services of Bridgeport, West Virginia using the GFAAS method according to EPA 

Method 270.2.  The detection limit for this method is 0.002 mg/L. 

 

The residues from Fraction 5 were also stored in a refrigerator for analyses of residual Se 

by the GFAAS method as per rock samples. 
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3.6 Calculations from raw data 

 

Analysis of extraction solutions from the sequential extraction process are reported in 

concentrations of mass per volume, typically mg/L.  A series of calculations were done 

(Figure 3-1) to compare the findings between samples of slightly different size and also 

to calculate the mass loss.  The calculations were done for the following reasons 

• The initial solid sample masses were not always 5 gms although most of them 

were within 0.01 gms of the initial dry mass.  The data were normalized to the 

initial dry weight to account for the variation of the initial masses. 

• The extraction volumes differed in some of the fractions and so to make the final 

data comparable across all the fractions, concentrations were multiplied by 

solution volumes to obtain the extracted mass. 

• The sum of the fractional concentrations including the residual fraction were 

compared to the total (single extraction) bulk concentration. 

 

 

3.7 Quality discussion of data 

 

For analysis of errors associated with the methods as well as from other sources, data 

quality issues were strictly monitored during the present study.  The quality control 

procedures included the following: 

 

Sample heterogeneity:   All samples from the sequential extraction process were analyzed 

in replicates to consider sample heterogeneity.  Sample compositing could account for 

some of the heterogeneity issues too.  The % difference in the values ranged from less 

than 1 % to greater than 50 % in some cases (Appendix 1: Table A-3).  To account for the 

variations, the mean values were used for interpretation.  The interpretation was based on 

order of magnitude difference between the fractions.   
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Fractions 1 through 5 

Calculate mass extracted 
by multiplying the 
concentration (mg/L) by 
solution volume (L)

Convert mass in mg to 
mass in ug by multiplying 
with 1000 

Normalize the extracted 
mass (ug) by the initial dry 
mass (converted to kg) to 
get ug extracted per kg of 
dry sample 

Calculate mean and 
variability for the extracted 
mass between duplicates and 
triplicates

Calculate total mass extracted 
per sample by summing mass 
across Fractions 1 through 
Fractions 6

Using the total mass 
extracted and the total 
bulk Se, calculate % 
extraction per sample

Calculate mass loss by 
comparing the summed 
mass and residual mass to 
the total bulk Se  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-1 Calculations for the data from sequential extraction 
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Sample contamination:   To address procedure problems and check for sample 

contamination, process blanks and solution blanks were included with some of the 

analytical batches.  The solution blanks were used to determine the background metals in 

the extraction solutions while the process blanks were empty centrifuge tubes subjected 

to similar extraction procedure along with other samples.  Over 90 % of the extraction 

samples had concentrations greater than the maximum concentration found in the 

solution blanks (Table 3-4).  The low concentration of the solution blanks and process 

blanks only impacted samples with low Se concentrations. 

 

Lab precision and accuracy:   Blind standards were included with the analytical batches 

to check for accuracy of the analytical methods.  Blind duplicates of the extraction 

solutions were also included to account for the precision of the analytical method and 

also checked for laboratory reproducibility.  The blind standards matched reasonably well 

with the given concentrations. There was a difference of about 2 to 5 % (Table 3-5) for 

some of the blind duplicates but this could be attributed to the noise within the analytical 

instruments and thus was not an appreciable source of error. 

 

Separation of sulfide and organically bound selenium by fraction:   Total S 

concentrations were measured in all fractions (F1 through F5) for six samples.  This was 

done to determine if the extraction procedure was releasing S as designed by the 

methodology (that is within the S fraction or F5).  Among the six samples that were 

analyzed for this purpose, the fraction with the highest concentration of S was F5 which 

was indeed the fraction intended for that purpose (Figure 3-2).  The next highest mean 

value was for F1 which released the easily oxidizable and soluble S.  The lowest amount 

of S was released from the organic and oxide associated Se fractions (F4 and F3) 

respectively.  This suggests that the organically and sulfide associated fractions of Se are 

being distinguished by this methodology.   
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Table 3-4 Quality of data based on sample contamination issues 

 

Source material no. of samples mean Se 
(mg/L) 

range 
(mg/L) 

Process Blanks 39 0.01 <0.002-0.03 

Reagent Blanks 10 <0.002 <0.002 

Rock Samples 395 0.50 <0.002-1.18 

 

 

 30



 

 

 

 

 

 

 

 

 

 

Table 3-5 Estimated analytical error based on blind replicates 
 

Source no. of samples 
error for Se 

concentration 
(%) 

Blind standards 15 0-3 

Blind duplicates 10 2-5 
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Figure 3-2 Separation of S in different fractions of the extraction solutions (F1 

through F5) 
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Chapter 4 Results 

 

4.1 Total bulk selenium in rock samples 

 

4.1.1 Relationship between total selenium, stratigraphy and lithology 

 

The total bulk Se concentration in the rock core ranged from below detection limit (0.20 

mg/kg) to 9.4 mg/kg (Table 4-1, Appendix 1: Table A-2).  Concentration of total Se was 

not consistent by rock type (Figure 4-1).  The highest concentration of total bulk Se was 

from a carbolith (9.4 mg/kg) while the lowest Se concentrations were from sandstones 

where most of the concentrations were below the detection limit of 0.20 mg/kg 

(Appendix 1: Table A-2).  Shale and mudstones had similar distribution of the mean 

concentrations.  Sandstones had the lowest range of values and the lowest mean.  Overall 

the carboliths had higher mean concentrations and the greatest range of values.   

 

The rocks in this core were from the Pennsylvanian Period and belonged to the Kanawha 

Formation.  The total bulk Se concentration changed with depth in the core.  The highest 

concentrations were found at depths between 210 feet to 226 feet and were from the 

Upper Winifrede coal beds (Figure 4-2).  Most of the rock types that had no detectable Se 

or very low concentration of total Se were from the Coalburg coal beds.  This suggests 

that the stratigraphy of the different rock units play a significant role in the distribution of 

the total bulk Se among the different rock types.   
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Table 4-1 Comparison of total selenium and sum of extracted selenium fractions 

Sample ID Total Se Sum of extracted Se 
and residual Se Rock type 

 (mg/kg) (mg/kg)  
34 0.40 0.39 Shale 
36 0.94 0.90 Sandstone 
35 0.52 0.65 Shale 
33 0.28 0.20 Sandstone 

37A 1.26 1.01 Carbolith 
38A 0.32 0.31 Mudstone 
39A 0.54 0.53 Carbolith 
48 0.30 0.30 Shale 
49 3.38 3.35 Carbolith 
37 3.72 3.23 Sandstone/Carbolith 

37B 0.42 0.43 Coal 
28 0.28 0.24 Mudstone 
27 0.24 0.21 Mudstone/Sandstone 
15 0.30 0.30 Shale 
16 0.42 0.37 Shale 

50A 1.16 1.35 Coal 
50 2.58 2.56 Shale 

57A 0.50 0.48 Coal 
57 7.12 7.07 Carbolith 
52 0.36 0.36 Mudstone 
54 1.00 0.85 Coal 
53 0.28 0.27 Sandstone 
55 0.26 0.26 Shale 
62 9.44 8.52 Carbolith 

62A 5.96 4.70 Coal 
61 1.06 0.95 Shale 
63 5.36 4.35 Shale 
73 1.18 1.11 Coal 
72 0.64 0.62 Shale 

73B 2.02 2.20 Coal 
77 2.08 0.50 Mudstone 

76A 2.06 2.04 Coal 
76 0.76 0.69 Shale 
74 1.00 0.94 Shale 
75 0.34 0.34 Shale 
51 1.16 0.96 Shale 
17 0.20 0.19 Mudstone 
78 0.30 0.42 Mudstone 
56 0.78 0.76 Shale 

63A 1.98 1.67 Coal 
70 0.24 0.17 Shale 

Note: Samples with no detectable total Se are not included here.  See Table A-2 for full details. 
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Figure 4-1 Distribution of total selenium in different rock types.  Values less 

than 0.20 mg/kg are graphed as 0 mg/kg. 
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Figure 4-2 Distribution of total selenium with depth, formation and coal beds.  

Non-detectable values (<0.20 mg/kg) are graphed as 0 mg/kg. 
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4.1.2 Relationship between total selenium and other parameters 

 

Various data were available for comparison to the Se concentration. In this section an 

effort has been made to evaluate the relationship between each of those chemical 

parameters and the Se concentration.  Based on linear regression, it turned out that the 

only statistically significant correlation exists between log Se vs. log TOC where the 

alpha (α) values are less than 0.05 but not less than 0.01.  Log values were used for the 

linear regression because all the data were log normally distributed.  The correlation was 

significant (at this alpha) for shale or the complete rock set, but not for coal.  The 

corresponding R2 values were 0.59 for shale and 0.38 for the entire rock set.  The total Se 

concentrations were not linearly related to the other bulk parameters; however, graphs of 

the dataset suggest that some other relationships may exist.  These are presented in the 

following section. 

 

Total selenium and paste pH:   The paste pH values for the rock core samples ranged 

from 4 to 8.5.  All samples that had a total Se concentration greater than 2 mg/kg had 

paste pH values in the circumneutral range between 7 and 8.5 (Figure 4-3).  Among the 

samples that had total Se concentration between 1 and 2 mg/kg, 75 % had paste pH 

values between 7 and 8.  Concentrations of Se lower than 1 mg/kg were scattered over 

the entire paste pH range.   

 

Total selenium and maximum potential acidity (MPA):   Maximum potential acidity 

values ranged from 0.3 to 17 tons/1000 tons; less than 2 % samples were outside that 

range (Figure 4-4a).  There appeared no clear predictive relationship between these two 

parameters.  MPA however showed a strong correlation with pyritic sulfur, the 

correlation coefficient being 0.99 (Figure 4-4b).  Samples with pyritic sulfur value of 

greater than 0.50 % had MPA values greater than 15 tons/1000 tons.  
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Figure 4-3 Plot of paste pH against total selenium.  Samples with non-detectable 

selenium (<0.20 mg/kg) are graphed as 0 mg/kg. 
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Figure 4-4 Relationship between MPA and total selenium.  (a) Plot of MPA 

against total selenium for all samples.  Samples with non-detectable 

selenium (<0.20 mg/kg) are graphed as 0 mg/kg.  One data value with 

MPA 84 tons/1000 tons not included in graph.  (b) Plot of MPA 

against pyritic S. 
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Total selenium and net neutralization potential (NNP):   Net neutralization potential 

values for the rock core were obtained from the difference between the MPA and NP 

values.  NNP values ranged from -96 to 82 tons/1000 tons. Of all these values 98 % were 

in the range of -30 to 30 tons/1000 tons (Figure 4-5).  Most of the samples with total Se 

greater than 2 mg/kg had a low value of NNP less than 10 tons/1000 tons or just slightly 

negative values.  A neutral paste pH range indicated a balance of acidity and alkalinity 

parameters.  Positive values of NNP indicated overall alkaline rock types (most NNP 

values being less than 10 tons/1000 tons).   

 

Total selenium and total organic carbon (TOC):   The concentration of total organic 

carbon in the rock core was as low as 100 to as high as 661,000 mg/kg.  A plot of TOC 

values against total Se values including all rock types (Figure 4-6a) showed no strong 

correlation between these two parameters.  Individual plots for shales and coals against 

TOC showed that the TOC range for shales (Figure 4-6b) was much lower than that for 

coals (Figure 4-6c).  But overall even for shales and coals there was no obvious 

relationship between TOC and total Se.   

 

Total selenium and total sulfur (S):   Total sulfur values for the rock core samples ranged 

from 0.01 to 1.80 %.  A plot for S and total Se value showed that approximately 94 % of 

the samples had total S values less than 1 %.  There was no obvious relationship between 

total S and total Se concentration (Figure 4-7).  The higher values for total S were from 

coal units.   
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Figure 4-5 Plot of NNP against total selenium.  Outliers with values of -96 

tons/1000 tons and 82 tons/1000 tons are not included in graph. 

 41



0

1

2

3

4

5

6

7

8

9

10

0 100000 200000 300000 400000 500000 600000 700000 800000

TOC (mg/kg)

To
ta

l S
e 

(m
g/

kg
)

(a) All Rock Types

 
 

 
 

Figure 4-6 Plot of TOC against total selenium.  (a) For all rock types.  (b) For 

shale.  (c) For coal. 
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Figure 4-7 Plot of S against total selenium 
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4.2 Sequential extraction data 

 

4.2.1 Distribution of data points 

 

The data from the sequential extraction are log-normally distributed.  However, the 

geometric means and arithmetic means for the data match within 5 % and thus the 

arithmetic means are used in the following assessment.   

 

4.2.2 Sum of extracted selenium data 

A comparison was done to see how much of the total Se was obtained through the 

sequential extraction procedure utilized.  For this comparison, the normalized dry weight 

Se concentration for the extraction solutions were added along to the Se concentration in  

the residual fraction to obtain the sum of extracted Se.  This was compared with the total 

bulk Se (Figure 4-8).  The line with a slope of 1 indicates that all of the Se mass present 

was accounted for by the extraction methods.  The extracted Se in the different fractions 

along with the residual solids matched well with the total Se from bulk analysis.  Some 

deviations were noticed at higher Se concentrations above 3000 ug/kg where the summed 

value was slightly less than the total concentration.  The deviation in most cases was less 

than 10 %.  This loss of extracted Se (Table 4-1) might be due to mass loss at various 

stages of the extraction process.  However, overall the good match of the data to the line 

indicates that little mass was lost during the extraction procedures.   

 

Extraction of Se is largely a function of rock type (Figure 4-9).  The mean extracted Se 

from coal, shale and mudstone was between 20 to 50 %.  This value was determined by 

summing the mass of Se extracted and dividing it by the total Se measured in the bulk 

sample.  The highest percentage of extracted Se was from shale where on average nearly  
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Figure 4-8 Comparison of total selenium measured in the bulk sample with the 

sum of the total selenium from the extraction steps and the residual 

fraction.  The line has a slope of 1. 
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Figure 4-9 Comparative analysis of extracted selenium from different rocks. 
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40 % of the total Se was extracted from the five different fractions.  Overall it was seen 

that although shales had a lower mean value of total Se as compared to coal and carbolith 

rocks, a higher proportion of the Se could be extracted from them (Table 4-2).   

 

Almost all samples of shale from which Se was extracted demonstrate total Se 

concentration lower than 1 mg/kg (Figure 4-10a).  In coal, however, the percentage of 

extracted Se varied from 10 % to more than 50 %.  At least half of the coal samples 

having greater than 20 % of extracted Se had total Se concentration greater than 1 mg/kg. 

(Figure 4-10b).  The amount of Se extracted in sandstones was the lowest. 

 

 

4.2.3 Calculation of selenium extracted from different fractions 

 

The amount of Se extracted from different fractions in the sequential extraction process 

varied by individual fractions as well as by different rock types (Figure 4-11 a-g).  Most 

of the samples for the sequential extraction were chosen from below 80 ft of depth.  The 

upper regions of the Coalburg coal beds (above 80 ft) were primarily sandstone with total 

Se concentrations below the detection limit.  There was a 1.4 ft thick zone of mixed 

sandstone and coal at 81 ft below ground surface, but the total Se concentration was still 

below the detection limit.  From below 80 ft, the shales in the Coalburg coal bed had on 

average about 50 % of Se extracted (Figure 4-11a-d).  Shales in this bed had low total Se 

concentrations, average being 0.4 mg/kg (note changing x-axis scale on figures).  The 

percentage of extracted Se in shales increased with increasing depth in the Coalburg coal 

bed and where the shales were located close to the coal units.  The coal units in the 

Coalburg coal beds had total Se concentration from below detection limit to as high as 

3.72 mg/kg.  The highest Se extracted from a coal unit was 36 % which was again from 

low total Se concentration of 0.42 mg/kg.  In the Coalburg coal beds organic Se generally 

dominated over other fractions (Appendix 1: Table A-4). 
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Table 4-2 Comparison of total selenium and percent extraction in different rock 

types 

 

Lithology n Bulk total Se (mg/kg) % of total extracted Se (F1-F5) 

  max 
(mg/kg) 

min 
(mg/kg) 

mean 
(mg/kg) 

max 
(%) 

min 
(%) 

mean 
(%) 

Coal 11 5.96 <0.20 1.81 54 0 25 
Shale 25 5.36 <0.20 0.85 56 0 40 

Mudstone 9 2.08 0.2 0.5 56 11 24 
Sandstone 12 0.96 <0.20 0.13 7 0 1 
Carbolith 6 9.44 1.26 4.24 32 1 15 
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Figure 4-10 Percentage of selenium extracted vs. total selenium in (a) shale and (b) 

coal 
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From the Winifrede rider coal beds, the average Se extracted was 30 %.  The total Se 

concentration in shales was higher in this bed compared to the Coalburg bed, the average 

being 1 mg/kg.  Approximately 50 % Se was extracted from a sample of shale with total 

Se concentration of 0.3 mg/kg.  Among the coal units, on average the highest extracted 

Se was from the Winifrede (Figure 4-11e-f).  Mostly residual Se dominated followed by 

organic Se and sulfide Se (Appendix 1: Table A-4).  Less Se was extracted in this coal 

bed than in the Coalburg on a percent basis; however, given the difference in total 

concentrations the mass extracted was more. 

 

The Upper Winifrede coal bed had the highest total Se concentrations from all the coal 

beds studied in this research.  From shales, about 40 % of Se was extracted from samples 

that were within 2 ft of coal units.  Residual Se was dominant for shale samples followed 

by organic Se.  For most coal units in this bed, <10 % of Se was extracted (Figure 4-11f).  

In Upper Winifrede coals, mostly residual Se was dominant followed by sulfide Se 

(Appendix 1: Table A-4).   

 

From the Winifrede coal beds, a higher amount of Se was extracted from the shale units 

that were found within 2 ft of the coal horizons.  For mudstones too, samples that were 

within 2 ft of the coal units had on average about 45 % Se extracted from low total Se 

concentration.  Otherwise mostly residual Se was dominant (Figure 4-11g).   

 

In all the rock types there was no significant extraction of Se from the oxide fraction.  

Among the different rock types the minimum amount of Se was extracted from the 

sandstones.  With the exception of two or three lithounits, the soluble fraction was not 

significant.  Its presence in one sample suggests that it may be due to sample alteration.  

The samples were collected on March 2002 and ground prior to February 2005. 
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Figure 4-11a Extracted selenium by rock type.  Depths: (a) 0-40 ft, (b) 40-80 ft, 

(c) 80-120 ft, (d) 120-160 ft, (e) 160-200 ft, (f) 200-240 ft, (g) 240-

280 ft.  (Note that scale of x-axis varies by figure to maximize the 

size of the bar charts and aid interpretation). 
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Figure 4-11b Extracted selenium by rock type.  Depth: (a) 0-40 ft, (b) 40-80 ft, 

(c) 80-120 ft, (d) 120-160 ft, (e) 160-200 ft, (f) 200-240 ft, (g) 240-

280 ft.  (Note that scale of x-axis varies by figure to maximize the 

size of the bar charts and aid interpretation). 
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Figure 4-11c Extracted selenium by rock type.  Depth: (a) 0-40 ft, (b) 40-80 ft, (c) 

80-120 ft, (d) 120-160 ft, (e) 160-200 ft, (f) 200-240 ft, (g) 240-280 ft.  

(Note that scale of x-axis varies by figure to maximize the bar charts 

and aid interpretation). 
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Figure 4-11d Extracted selenium by rock type.  Depth: (a) 0-40 ft, (b) 40-80 ft, (c) 

80-120 ft, (d) 120-160 ft, (e) 160-200 ft, (f) 200-240 ft, (g) 240-280 ft.  

(Note that scale of x-axis varies by figure to maximize the size of the 

bar charts and aid interpretation). 
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Figure 4-11e Extracted selenium by rock type.  Depth: (a) 0-40 ft, (b) 40-80 ft, 

(c) 80-120 ft, (d) 120-160 ft, (e) 160-200 ft, (f) 200-240 ft, (g) 240-

280 ft.  (Note that scale of x-axis varies by figure to maximize the 

size of the bar charts and aid interpretation). 
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Figure 4-11f Extracted selenium by rock type.  Depth: (a) 0-40 ft, (b) 40-80 ft, (c) 

80-120 ft, (d) 120-160 ft, (e) 160-200 ft, (f) 200-240 ft, (g) 240-280 ft.  

(Note that scale of x-axis varies by figure to maximize the size of the 

bar charts and aid interpretation).  
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Figure 4-11g Extracted selenium by rock type.  Depth: (a) 0-40 ft, (b) 40-80 ft, (c) 

80-120 ft, (d) 120-160 ft, (e) 160-200 ft, (f) 200-240 ft, (g) 240-280 ft.  

(Note that scale of x-axis varies by figure to maximize the size of the 

bar charts and aid interpretation).  
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Chapter 5 Interpretation 
 

5.1 Predicting total selenium concentration from stratigraphy and lithology 

 

The total Se content and hence its distribution in a rock core appears to depend on 

stratigraphy.  Data from WVGES (2002a) report high total Se concentration for coal beds 

of the Kanawha Formation (Figure 2-4).  According to the WVGES data, coals of the 

Kanawha and Allegheny Formations of the Pennsylvanian Period have the highest total 

Se concentration in West Virginia.  These results indicate that Se enriched strata are not 

randomly distributed.   

 

The studied core for the present research was from the Kanawha Formation and includes 

the Coalburg coal bed, the Winifrede rider coal bed, the Upper Winifrede coal bed and 

the Winifrede coal bed.  Less total Se was associated with the Coalburg coal bed than in 

the lower beds.  The sandstone lithology within the Coalburg bed mostly had total Se 

below the detection limit of 0.20 mg/kg.   Shale and mudstone outcrops within the 

Coalburg had total Se concentration below 1 mg/kg.  Similar observations were found for 

the sandstones within the Winifrede rider; shales within this zone had higher total Se 

concentration than shales in the Coalburg.  With increasing depths in the Upper 

Winifrede and Winifrede Coal beds, shale and coal units became dominant with higher 

total Se concentration.  Sandstone units in other coal beds also mostly had total Se 

concentration below the detection limit. 

 

Data from this study indicate that Se can be found in specific zones in relation to the coal 

units.  Lithologic units located less than 2 ft from the coal unit had higher Se 

concentrations than units which were more than 2 ft away from the coal units (Figure 5-

1).  These 2 ft zones were calculated from the top of the coal units to the bottom of the 

overlying rock units, or from the bottom of the coal unit to the top of the underlying 

units.  The less than 2 ft zones or the “coal proximate layers” had on average about 7 
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times more Se present.  Lithologic units which were more than 5 ft away from the coal 

bed had very low total Se concentrations.  The coal proximate layers correspond to the 

“toxic units” defined by Renton et al. (1989).  The coal proximate relationship holds true 

for all rocks, but is particularly true for shale (Figure 5-2).  Shales had higher Se 

concentrations than other rock types such as mudstone and sandstone; and the shale 

concentration increased if the shale occurred near to a coal unit.  Shale situated less than 

2 ft from a coal unit had a mean Se concentration 8 times higher compared to a shale 

horizon situated more than 2 ft away from a coal unit.  Similar findings by Mullennex 

(2005) interpret that higher Se concentration for shales which are near to the coal beds 

are due to plant material accumulation and corresponding depositional environment.  

Mullennex’s data include the No. 6 Block coal and the No. 5 Block coal of the Allegheny 

Formation and the Stockton and Coalburg coal beds of the Kanawha Formation.  The 

consistency between the data in this study and that reported by Mullennex suggest this 

relationship is not spatially limited.   

 

 

5.2 Predicting total selenium concentration in rock cores from other chemical 

parameters 

 

One potential predictor for total Se concentration in rock cores was the neutrally 

characteristic paste pH range and the NNP obtained from ABA.  Lithologic units having 

pH in the neutral range did not necessarily contain Se, but almost all rocks that have high 

Se concentration were in circum-neutral zones of pH.  For the studied rock core, almost 

all of the samples had a positive NNP thus indicating a dominance of alkaline rock types 

for those samples, a condition that results from a reduced amount of leaching (Rose and 

Cravotta 1998).   
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Figure 5-1 Comparison of selenium concentration from all rocks situated less 

than 2 ft from coal horizons with that of rocks situated more than 2 ft 

from coal horizons.  Non-detectable selenium values (<0.20 mg/kg) are 

not included in graph. 
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Figure 5-2 Comparison of selenium concentration for shales situated more or less 

than 2 ft from coal beds.  Non-detectable selenium values (<0.20 

mg/kg) are not included in graph. 
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In this study no correlation was observed between Se and TOC.  However in case of rock 

types like coal TOC values were much higher than in other rock types like shale (Figure 

4-6).  This might suggest that organic Se associations might be preferable in coals.   

 

In spite of sulfides being important Se bearing minerals, no direct correlation was 

observed between Se and total S concentrations for this study.  Of all the rock types, high 

S values above 0.50 % were particularly noticed in coal bearing horizons (Figure 4-7).  

The Coalburg horizon had the highest value of total S for a coal sample but had a total Se 

concentration below the detection limit.  The S fractionation data for coal indicates that 

most of the S was organically bound (Table 5-1) which might account for preference of 

organic associations for coal.  Mullenex (2005) also reported no positive correlation 

between total Se and S concentrations.  According to his findings high values of total S 

were found in Coalburg coal horizons and did not correlate significantly with total Se 

concentration.  According to Coleman et al., (1993) no correlation was observed between 

Se concentration and S concentration for eastern coals.  The data from this study, 

Mullennex, and Coleman et al. collectively support the conclusion that S concentration is 

not a good predictor of Se concentration in the eastern coal beds.   

 

 

5.3 Predicting relative extraction of selenium from different rock types 

 

The amount of Se extracted from different fractions of a rock was determined by the 

sequential extraction methods and hence provides “relative” extraction predictions.  The 

amount of Se extracted from different rock types varied from less than 1 % to more than 

50 %.  Of all the rock types, sandstones had the least amount of extracted Se 

concentration on both mass and percent basis.  This is justified by the fact that in most 

cases the total Se concentration in sandstones was below the detection limit.   
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Table 5-1 Total sulfur, organic sulfur, and selenium parameters for coal 
 

total Se 
extracted 

Se total S organic S organic % of total S 

(mg/kg) (%) (%) (%) (%) 
<0.2 0 6.2 2.6 42.6 
3.7 22 0.4 0.4 81.8 
0.4 36 0.8 0.7 89.4 
1.2 37 1.8 1.1 63.3 
1.0 29 0.7 0.5 71.0 
0.5 21 0.9 0.7 85.2 
5.9 12 0.6 0.5 76.7 
1.9 54 0.9 0.8 86.3 

<0.2 0 0.7 0.6 92.6 
2.0 10 1.7 0.7 42.9 
2.0 31 0.7 0.6 92.6 
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Mudstone samples that are found within 2 ft of the coal units had a higher percentage Se 

extracted than other mudstone units.  Fewer carbolith and mudstone samples were 

available for this research than coal and shale samples. 

 

Average extracted Se concentration was higher for shale units than for coal units on a 

percent basis.  In shales on average 40 % of Se was extracted compared to 25 % 

extraction for coal.  These data suggest that the relative extraction of Se tends to be 

higher from shales than it does from coals.  In shales the mass of extracted Se had a 

strong relationship with respect to its position from the coal unit.  Shales placed within 2 

ft of the coal unit were more prone to extraction of Se than other shale units (Figure 5-3).  

Thus shale overburden units had a higher mass of Se extracted and this extraction was 

independent of the total Se concentration.  Thus even shales with a low concentration of 

total Se may be sensitive to extraction if they are located within 2 ft of the coal units.   

 

The average extracted Se from coal units was 25 %.  Although it has been seen that the 

total Se concentration is independent of the total S concentration for coals, there might be 

some interdependence between extracted Se and total S concentration.  All coals that had 

more than 20 % of Se extracted have total S concentration lower than 0.9 % (Figure 5-4).  

Higher amount of Se is extracted from coals that on an average had organic S 

concentration more than 80 % (Table 5-1).  However, no statistically significant 

correlation exists between Se concentrations (both bulk and extracted) with total S, 

organic S, and pyritic S.  
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Figure 5-3 Relationship between extracted selenium and distance from coal bed 

for shales. 
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Figure 5-4 Plot of total S against sum of extracted selenium for coal.  Samples 

having extracted selenium below the detection limit (<0.20 mg/kg) are 

not included in graph. 
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5.4 Mode of occurrence of selenium in different rock fractions 

 

The mass of Se extracted from different fractions varied from one rock type to another.  

These data can be useful in predicting the mode of occurrence of Se in different 

lithologies.  From the distribution of Se extracted in different fractions of shale it was 

apparent that in most samples approximately 45 % of the extracted Se was extracted  

from the organic fraction alone (Figure 5-5a).  In some cases the extraction from the 

organic fraction was up to 80 %.  Thus the Se residing within the organic fraction of shale 

was most susceptible to extraction compared to the other fractions.  Se extracted from the 

sulfide fraction in shales approximately account for about 25 % of the total mass of 

extracted Se (Figure 5-5b).  The remaining mass of extracted Se in shale accounts for 

extraction from the soluble and adsorbed phases, the extraction from the oxide fraction 

being negligible. 

 

In coal, Se extracted from the sulfide fraction was dominant over the other fractions.  A 

distribution of the percentage of total Se extracted against the percentage of Se extracted 

only from the sulfide fraction shows that on an average, about 40 % of Se was extracted 

only from the sulfide fraction (Figure 5-6a).  After the sulfide fraction the organic 

fraction played the next important role in coals.  On an average about 20 % of the mass of 

extracted Se came from the organic fraction in coal (Figure 5-6b).  Thus the sulfide and 

to some extent the organic fractions were the dominant phases from where Se can be 

extracted out in coals.  The remaining 40 % of the extracted Se in coals came from the 

soluble and adsorbed phases, the extracted Se from the oxide fraction being negligible.  

Thus for coals, although the organic associations were favorable for them, not much Se 

was extracted from the organic fraction.  This might suggest that the Se is bound strongly 

to the organic fraction in coal and are not easily released.  However, degree of extraction 

was likely to be an overestimation from natural geochemical settings since extraction 

conditions and reagents are not found in the natural environment. 
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For other rock types like mudstone and carbolith, there were insufficient samples for 

interpretation.  These samples were however included to see if overall any relationships 

exist.  Mudstones that were found in the coal proximate layers had higher percentage Se 

extracted from them.  Mudstone samples within 2 ft of the coal beds on an average had 

about 45 % of Se extracted only from the organic fractions.  Thus for mudstones Se 

residing in organic fractions can account for a high amount of extraction.  Sandstones had 

the lowest amount of Se extracted from the different fractions which was again due to 

total Se concentration in sandstones being below the detection limit of the analytical 

method for most cases. 

 

 

5.5 Limitations of the research 

 

This research was focused on a single rock core which might not be representative on a 

bigger scale.  However, many of the conclusions made in this study, particularly related 

to the distribution of Se in coal proximate layers, agree well with recent work by Ron 

Mullennex (2005) suggesting that this interpretation is not limited to the one core.   

 

The sequential extraction was an operationally defined process and therefore the 

designation of the fractions conceptually, and separation of Se into fractions, should be 

reviewed within limits.  However, based on several literature surveys, the particular 

method adopted for this research seemed to work well with all the sequentially extracted 

fractions.  Our extracted sulfate data suggest that the separation of Se into organic and 

sulfide bound forms was reasonable.  In this process the F5 (sulfide) fraction had the 

highest S content with the F4 (organic) fractions having the lowest S concentration.   

 

All the samples for this research were ground to the same size, although the final size 

distribution was not measured.  Thus, parameters like surface area and sample size were 

not included for the overall interpretation.  Consideration of these factors and changing 

these factors might have an effect on the results. 
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Figure 5-5 Plots of the percentage of selenium extracted from (a) organic (F4) 

and (b) sulfide (F5) fractions in shale.  Samples where extracted 

selenium is below the detection limit are not included in the graph. 
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Figure 5-6 Plots of the percentage of selenium extracted from the (a) organic (F4) 

and (b) sulfide (F5) fraction in coal.  Samples where extracted 

selenium is below the detection limit are not considered in the graph. 
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The extraction data were largely an overestimation of the actual field criteria since 

extracting conditions are rarely encountered in natural geochemical settings.  Thus 

extraction results do not resemble real life situations.  Sample alteration after collection 

might affect the results for extraction to some extent.  However, with the exception of 

two or three lithounits the soluble fraction was not that significant.  This implies that 

sample handling might not be a large problem for these samples. 
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Chapter 6 Conclusions 

 

The present research was an effort to understand the occurrence and distribution of Se 

from a rock core in south central West Virginia.  This was based on analysis of individual 

strata including coal units and the associated overburden.  The rock types included coal, 

shale, mudstone, sandstone and carbolith.  This study also looked at the amount of Se that 

could be extracted from various fractions of a rock unit by sequential extraction methods.   

 

Several chemical parameters may be useful to predict total Se concentrations. The ABA 

was one such tool.  The paste pH values also help to form an idea about the nature of 

distribution of rock types and consequently mobility of several elements.  Parameters that 

suggest neutral pH conditions and alkaline rock types were paste pH and NNP.   

 

No statistically significant correlation was found for Se concentration with S 

concentration or TOC.  The high values of TOC for coal as well as high organic S 

concentration might suggest that organic associations were favorable for the coal units. 

 

The extraction of Se from different fractions varied by rock types.  The extracted Se 

varied from less than 1 % to more than 50 % in the different lithounits of the rock core.  

In general more than 10 % of the Se was extracted for most rock types except for 

sandstones.   

 

In coals, approximately 25 % of the total Se was extracted.  Se extraction in coal was 

mostly from the sulfide fractions.  Though organic associations were favorable for the 

coal units, not much of the Se was extracted in the organic fraction.  This suggests that in 

coals the organically associated Se was not present or was not released.  Individual coal 

units of the Winifrede rider coal bed had the highest % of extracted Se among coals.   
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The proximity of non-coal units to coal units is closely linked to Se concentration.  Rock 

units within 2 ft of the coal units had on average about 8 times more Se than rocks 

situated more than 2 ft away from coal units.  Overall, shale had the highest % extraction 

of Se.  On average about 40 % of Se was extracted from shales.  Samples within 2 ft of 

the coal bed had more than 50 % of Se extracted where the total Se concentration was 

below 0.6 mg/kg.  The coal proximate layers were most probably the most active zone for 

Se extraction from shale.  The proximity of the shale to the coal units was particularly 

important in the Coalburg coal beds.  In shale the organic fraction was the most dominant 

fraction for Se extraction.  The coal proximate mudstone units also approximately had 

about 40 % Se extracted.  The purpose of extraction in this research is to predict the 

amount of Se extracted from different modes of occurrence, but such conditions are very 

unlikely to be observed in the geochemical settings of a mine spoil.  Thus the results 

obtained in this research are likely to be an overestimation of what will occur in field 

conditions. 

 

The conclusions of this study suggest that coal proximate layers have a high total Se 

concentration.  Identification of these zones and appropriate handling techniques can help 

in reducing Se mobilization from mines to soils and watersheds.   
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Chapter 7 Future Work 

 

Some of the future work suggested are: 

 

• Consider spatially distributed rock cores to see if the relationships developed in this 

study hold true over wider areas. 

• Compare the sequentially extracted data with leaching tests like acid drainage 

technology initiative (ADTI), humidity cell as well as the extraction columns. 

• Consider other factors like ash yield and coal rank for coal samples to look for 

relationships between Se and these parameters. 

• Determine suitable handling techniques of strata that lie in the coal proximate layers. 

• Determine the degree of deviation between extraction conditions in the laboratory 

against field conditions. 
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Appendix 1 Table A-1: Site and bulk analytical data for the rock core                 (Page 1 of 3) 
Sample 

No. 
Depth 

(Bottom) Thickness Rock Type Coal 
Bed Sulfur MPA** NP** NNP** TOC Paste pH 

 (ft) (ft)   (%)    (mg/kg)  
*1 28 5 Sandstone Coalburg <0.01 0.31 0.3 0.02 1000 5.8 
*2 33 5 Sandstone Coalburg <0.01 0.31 1.7 1.38 100 6.3 
*3 38 5 Sandstone Coalburg <0.01 0.31 0.1 -0.3 200 6.3 
4 43 5 Sandstone Coalburg <0.01 0.31 1 0.71 100 6.4 
5 48 5 Sandstone Coalburg <0.01 0.31 0 -0.3 200 6.4 
6 53 5 Sandstone Coalburg <0.01 0.31 0.9 0.59 20 6.5 
7 58 5 Sandstone Coalburg <0.01 0.31 1.2 0.86 300 7 
*8 63.3 5.35 Sandstone Coalburg <0.01 0.31 1.4 1.11 300 6.5 
*9 64.7 1.4 Sandstone/Coal Coalburg 0.2 2.5 0.3 -2.2 138000 5.8 
*10 70 5.2 Sandstone Coalburg <0.01 0.31 6.1 5.81 2200 6.6 
11 74.9 5 Sandstone Coalburg <0.01 0.31 8.2 7.91 3800 6.3 
*12 80.1 5.15 Sandstone Coalburg <0.01 0.31 10 9.67 4700 7 
*13 80.5 0.4 Sandstone/Coal Coalburg 0.08 2.5 13 10.3 57200 7.4 
*14 83.5 3 Shale Coalburg 0.04 1.25 6.7 5.49 10800 5.4 
*15 86.5 3 Shale Coalburg 0.04 1.25 8.2 6.95 16600 5.8 
*16 88.5 2.05 Shale Coalburg 0.85 16.25 -702 -718 4500 4.5 

*16A 89.2 0.65 Coal Coalburg 6.22 84.38 -12 -96 537000 4.5 
*17 91.7 2.5 Mudstone Coalburg 1.22 21.88 2.4 -20 1600 4.1 
18 96.1 4.45 Sandstone Coalburg 0.88 16.56 -8.8 -25 1000 4.1 
19 101 4.85 Sandstone Coalburg 0.17 5.31 88 82.4 3100 8.4 
20 105.9 4.95 Sandstone Coalburg <0.01 0.31 9.4 9.08 2500 8.2 
21 110.2 4.25 Sandstone Coalburg <0.01 0.31 12 11.9 500 8.3 
22 115 4.8 Sandstone Coalburg 0.01 0.31 15 14.3 2800 8.3 
23 118.9 3.9 Sandstone Coalburg 0.15 4.69 12 7.2 1900 7.7 
24 119.7 0.8 Sandstone Coalburg <0.01 0.31 4.3 4 500 7.8 
25 123.8 4.15 Sandstone Coalburg 0.19 5.94 29 23.5 5000 7.9 
26 127 3.15 Mudstone/Sandstone Coalburg 0.13 4.06 9.7 5.6 11400 7.9 
*27 130 3 Mudstone/Sandstone Coalburg 0.09 2.81 11 8.18 11600 8 
*28 133 3 Mudstone Coalburg 0.14 4.38 11 6.89 17500 8.1 

 

http://www.epa.gov/
http://www.wvgs.wvnet.edu/www.datastat/te
http://www.wvgs.wvnet.edu/www.datastat/te
http://www.wvgs.wvnet.edu/www.datastat/te
http://www.wvgs.wvnet.edu/www.datastat/te
http://www.wvgswvnet.edu/
http://www.wvgswvnet.edu/
http://www.wvgswvnet.edu/
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Appendix 1 Table A-1: Site and bulk analytical data for the rock core                     (Page 2 of 3) 
Sample 

No. 
Depth 

(Bottom) Thickness Rock Type Coal Bed Sulfur MPA** NP** NNP** TOC Paste pH 

 (ft) (ft)   (%)    (mg/kg)  
29 135.5 2.55 Mudstone Coalburg 0.15 4.69 11 6.53 13100 8 
30 140 4.35 Sandstone Coalburg 0.02 0.63 23 22.2 5100 8.5 
31 145 5.1 Sandstone Coalburg 0.06 1.88 8.7 6.84 6300 7.6 
32 149 4 Sandstone Coalburg 0.33 10.31 9.9 -0.4 11000 7.2 
*33 1505 1.55 Sandstone Coalburg 0.54 7.19 9.7 2.54 40000 6.4 
*34 153.5 3 Shale Coalburg 0.19 5.94 8.1 2.18 17800 7.8 
*35 157 3.45 Shale Coalburg 0.01 0.31 5.2 4.87 5200 8.1 
*36 157.3 0.35 Sandstone Coalburg <0.01 0.31 1.8 1.48 3100 7.8 
*37 157.8 0.5 Sandstone/Carbolith Coalburg 0.11 3.44 1.6 -1.9 115000 7.4 
*37A 158.8 1 Coal Coalburg 0.44 1.88 3.6 1.67 406000 7.8 
*37B 161 2.05 Coal Coalburg 0.76 0.63 1.5 0.82 619000 7.7 
*38 163 2.1 Mudstone Winifrede Riders 0.03 0.94 3.5 2.58 5000 8.2 
*39 164.6 1.6 Sandstone/Carbolith Winifrede Riders <0.01 0.31 3.8 3.53 14900 6.2 
*40 16 4.4 Sandstone Winifrede Riders <0.01 0.31 3.1 2.76 800 7.4 
41 174 5 Sandstone Winifrede Riders <0.01 0.31 2.2 1.92 300 7.5 
42 179 5 Sandstone Winifrede Riders <0.01 0.31 1.8 1.53 500 7.5 
43 184 5 Sandstone Winifrede Riders <0.01 0.31 2.7 2.34 500 7.6 
*44 189 5 Sandstone Winifrede Riders <0.01 0.31 3.3 3.01 300 8 
45 191 2 Sandstone Winifrede Riders <0.01 0.31 31 30.4 600 8.2 
46 195 4 Sandstone Winifrede Riders 0.02 0.63 8.5 7.86 5100 8.2 
47 198.5 3.5 Sandstone Winifrede Riders <0.01 0.31 5.8 5.49 2900 8.1 
*48 200.6 2.1 Shale Winifrede Riders 0.3 9.38 8.4 -0.9 15200 8.1 
*49 201.8 1.2 Carbolith Winifrede Riders 0.37 11.56 7.6 -4 138000 8.1 
*50 202.2 0.45 Shale Winifrede Riders 0.15 4.69 3.1 -1.6 368000 8 

*50A 203.2 1 Coal Winifrede Riders 1.8 15.63 -5.1 -21 597000 7.2 
*51 203.3 0.1 Shale Winifrede Riders 1.34 17.81 -4.4 -22 193000 6.3 
*52 206.3 3 Sandstone/Mudstone Winifrede Riders 0.04 1.25 8.8 7.59 16700 8.1 
*53 27.8 1.45 Sandstone Winifrede Riders 0.06 1.88 9.2 7.33 372000 7.9 
*54 208 0.2 Coal Winifrede Riders 0.69 3.13 5.5 2.39 500000 6.7 
*55 211 3 Shale Winifrede Riders 0.05 1.56 16 14.9 21700 8.2 
*56 213.2 2.25 Shale Winifrede Riders 0.01 0.31 4.6 4.25 7400 8.2 
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Appendix 1 Table A-1: Site and bulk analytical data for the rock core                     (Page 3 of 3) 
Sample 

No. Depth Thickness Rock Type Coal Bed Sulfur MPA** NP** NNP** TOC Paste pH 

 (ft) (ft)   (%)    (mg/kg)  
*60 223.4 3 Shale Upper Winifrede 0.04 1.25 13 11.4 18500 8.3 
*57 213.6 0.31 Carbolith Winifrede Riders 0.37 1.56 0.13 -1.43 346000 8.2 

*57A 214.4 0.89 Coal Winifrede Riders 0.88 1.88 0.13 -1.75 661000 7.6 
*61 225.8 2.4 Sandstone/Shale Upper Winifrede 0.03 0.94 13 12.4 14900 8 
*62 226 0.15 Carbolith/Mudstone Upper Winifrede 0.09 2.81 4 1.2 109000 7.1 

*62A 227.1 1.1 Coal Upper Winifrede 0.6 1.88 2 0.1 422000 7.9 
*63 227.7 0.63 Shale Upper Winifrede 0.06 1.88 5.8 3.92 98900 7.7 

*63A 229.5 1.77 Coal Upper Winifrede 0.95 2.19 -0.9 -3.1 692000 7.8 
64 231.6 2.1 Mudstone Upper Winifrede 0.01 0.31 9.6 9.3 6100 7.6 
*65 234.6 3 Shale Upper Winifrede 0.16 5 11 5.99 8300 7.6 
66 237.6 3 Shale Upper Winifrede 0.03 0.94 11 10.2 9400 8 
67 240.6 3 Shale Upper Winifrede 0.04 0.94 13 11.8 9800 8.1 
68 243.6 3 Shale Upper Winifrede 0.04 1.25 14 12.9 10700 8.2 
*69 246.6 3 Shale Upper Winifrede 0.03 0.94 21 20.1 9700 8.3 
*70 249.6 3 Shale Upper Winifrede 0.03 0.94 19 18.2 10400 8.2 
*71 252.4 2.85 Shale Upper Winifrede 0.04 1.25 17 16 13000 8.1 
*72 253.4 1 Shale Upper Winifrede 0.04 1.25 9.4 8.18 10700 7.9 
*73 253.7 0.3 Sandstone/Coal Upper Winifrede 0.05 1.56 7.4 5.87 34100 7.9 

*73A 256.3 2.53 Coal Upper Winifrede 0.68 1.56 0.9 -0.7 643000 7.9 
*73B 257.2 0.92 Coal Upper Winifrede 1.75 17.19 -4.1 -21 247000 7.5 
*74 257.3 0.1 Shale Winifrede  0.37 1.88 4.8 2.95 132000 6.7 
*75 20.7 3.4 Shale Winifrede  0.02 0.63 6.5 5.88 12000 7.6 
*76 262.9 2.2 Sandstone/Shale Winifrede  0.03 0.94 6.5 5.52 9700 7.6 

*76A 264.8 1.95 Coal Winifrede  0.68 1.25 1 -0.3 547000 8.1 
*77 265.4 0.55 Mudstone Winifrede  0.06 1.88 3.6 1.74 67200 7.8 
*78 266.7 1.35 Mudstone Winifrede  0.03 0.94 5.8 4.86 9800 7.9 

* Indicate samples subjected to sequential extraction tests 
** Concentrations for MPA, NP and NNP are in tons/1000 tons of material 
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Appendix 1 Table A-2: Compilation of total Se and extracted Se concentrations                                      (Page 1 of 2) 
Sample 

ID Depth Lithology Total Se Se extracted + residue Sum of extracted Se Se extracted 

 (ft)  (mg/kg) (mg/kg) (mg/kg) (%) 
34 153.55 Shale 0.40 0.39 0.23 56 
36 157.35 Sandstone 0.96 0.90 0.05 5 
35 157.00 Shale 0.52 0.65 0.27 52 
33 150.55 Sandstone 0.28 0.20 0.00 0 
37 158.85 Carbolith 1.26 1.01 0.01 1 

38A 163.00 Mudstone 0.32 0.31 0.10 32 
39A 164.60 Carbolith 0.54 0.53 0.04 8 
40A 169.00 Sandstone <0.20 <0.20 0.00 0 
48 200.60 Shale 0.30 0.30 0.15 51 
49 201.80 Carbolith 3.38 3.35 1.08 32 

37A 157.85 Sandstone/Carbolith 3.72 3.23 0.80 22 
37B 160.90 Coal 0.42 0.43 0.15 36 
28 133.00 Mudstone 0.28 0.24 0.03 11 
27 130.00 Mudstone/Sandstone 0.24 0.21 0.01 3 
15 86.50 Shale 0.30 0.30 0.13 43 
16 88.55 Shale 0.42 0.37 0.17 41 

50A 203.25 Coal 1.16 1.35 0.43 37 
50 202.25 Shale 2.58 2.56 1.08 42 

57A 214.45 Coal 0.50 0.48 0.27 54 
57 213.56 Carbolith 7.12 7.07 0.70 10 
52 206.35 Mudstone 0.36 0.36 0.05 14 
54 208.00 Coal 1.00 0.85 0.29 29 
53 207.80 Sandstone 0.28 0.27 0.02 7 
55 211.00 Shale 0.26 0.26 0.05 21 
62 226.00 Carbolith 9.44 8.52 1.35 16 

62A 227.10 Coal 5.96 4.70 0.71 12 
61 225.85 Shale 1.06 0.95 0.35 33 
63 227.73 Shale 5.36 4.25 2.36 44 
73 253.75 Coal 1.18 1.11 0.10 8 

73A 256.28 Coal <0.20 <0.20 <0.20 <0.20 
72 253.45 Shale 0.64 0.62 0.28 43 
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Appendix1 Table A-2: Compilation of total Se and extracted Se concentrations                             (Page 2 of 2) 

Sample 
ID Depth Lithology Total 

Se Se extracted +residue 
Sum of 

extracted 
Se 

Se extracted 

 (ft)  (mg/kg) (mg/kg) (mg/kg) (%) 
73B 257.20 Coal 2.02 2.20 0.21 10 
77 265.40 Mudstone 2.08 0.50 0.40 19 

76A 264.85 Coal 2.06 2.04 0.44 21 
76 262.90 Shale 0.76 0.69 0.20 26 
74 257.30 Shale 1.00 0.94 0.21 22 
75 260.70 Shale 0.34 0.34 0.03 33 
51 203.35 Shale 1.16 0.96 0.31 27 
17 91.70 Mudstone 0.20 0.19 0.07 35 

16A 89.20 Coal <0.20 <0.20 <0.20 <0.20 
78 266.75 Mudstone 0.30 0.42 0.17 56 
56 213.25 Shale 0.78 0.76 42 42 
2 33.00 Sandstone <0.20 <0.20 <0.20 <0.20 
8 63.35 Sandstone <0.20 <0.20 <0.20 <0.20 
3 38.00 Sandstone <0.20 <0.20 <0.20 <0.20 
1 28.00 Sandstone <0.20 <0.20 <0.20 <0.20 
9 64.75 Sandstone <0.20 <0.20 <0.20 <0.20 

14 83.50 Shale <0.20 <0.20 <0.20 <0.20 
12 80.10 Sandstone <0.20 <0.20 <0.20 <0.20 
13 80.50 Sandstone <0.20 <0.20 <0.20 <0.20 
10 69.95 Sandstone <0.20 <0.20 <0.20 <0.20 

63A 229.50 Coal 1.98 1.67 31 31 
60 223.45 Shale <0.20 <0.20 <0.20 <0.20 
71 252.45 Shale <0.20 <0.20 <0.20 <0.20 
70 249.60 Shale 0.24 0.17 23 23 
69 246.60 Shale <0.20 <0.20 <0.20 <0.20 
59 220.45 Shale <0.20 <0.20 <0.20 <0.20 

Notes: Total Se based on bulk chemical analysis;  Sum of extracted Se + residue includes solution-extracted Se plus analysis of 
residue solids;  Sum of extracted Se includes only the solution-extracted mass;  Se extracted (%) is calculated using the total Se 
concentration.  
 



 84

Appendix 1 Table A-3: Mean values and relative standard deviation of replicate samples 
in sequential extraction                 (Page 1 of 4) 

 
Sample ID Fraction Mean RSD No. of replicates 

  (ug/kg) (%) for extraction 
37 F1 450 6 3 

 F2 42 0 3 
 F3 <2 0 2 
 F4 72 12 3 
  F5 219 14 3 

50A F1 144 18 2 
 F2 81 16 2 
 F3 <2 0 2 
 F4 <2 0 2 
  F5 201 15 2 

57A F1 236 2 2 
 F2 15 14 2 
 F3 <2 0 2 
 F4 <2 0 2 
  F5 17 41 2 

54 F1 <2 0 2 
 F2 <2 0 2 
 F3 <2 0 2 
 F4 144 24 2 
  F5 144 12 2 

62A F1 93 23 2 
 F2 30 28 2 
 F3 123 10 0 
 F4 105 4 2 
  F5 359 7 2 

73A F1 108 0 2 
 F2 18 47 2 
 F3 <2 0 2 
 F4 12 0 2 
  F5 24 0 2 

73B F1 51 8 2 
 F2 <2 0 2 
 F3 <2 0 2 
 F4 78 0 2 
  F5 78 11 2 

76A F1 24 0 2 
 F2 69 18 2 
 F3 <2 0 1 
 F4 168 5 2 
  F5 174 0 2 
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Appendix 1 Table A-3: Mean values and relative standard deviation of replicate samples 
in sequential extraction                  (Page 2 of 4) 

 
Sample ID Fraction Mean RSD No. of replicates 

  (ug/kg) (%) for extraction 
63A F1 72 12 3 

 F2 60 0 3 
 F3 <2 0 2 
 F4 135 16 3 
  F5 344 6 3 

38A F1 <2 0 2 
 F2 48 18 2 
 F3 <2 0 0 
 F4 54 0 2 

  F5 <2 0 2 
28 F1 <2 0 3 

 F2 12 50 3 
 F3 <2 0 2 
 F4 20 17 3 
  F5 <2 0 3 

77 F1 32 11 3 
 F2 40 9 3 
 F3 <2 0 1 
 F4 202 7 3 
  F5 122 3 3 

17 F1 <2 0 3 
 F2 <2 0 3 
 F3 <2 0 0 
 F4 44 8 3 
  F5 26 13 3 

78 F1 18 33 3 
 F2 66 24 3 
 F3 <2 0 0 
 F4 36 33 3 
  F5 46 15 3 

34 F1 36 17 3 
 F2 38 24 3 
 F3 <2 0 2 
 F4 106 9 3 
  F5 44 8 3 

35 F1 21 20 2 
 F2 30 50 2 
 F3 <2 0 1 
 F4 219 10 2 
  F5 <2 0 2 
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Appendix 1 Table A-3: Mean values and relative standard deviation of replicate samples 
in sequential extraction                     (Page 3 of 4) 

Sample ID Fraction Mean RSD No. of replicates 
  (ug/kg) (%) for extraction 

48 F1 8 43 3 
 F2 8 43 3 
 F3 <2 0 1 
 F4 <2 0 3 
  F5 136 7 3 

15 F1 <2 0 3 
 F2 12 0 3 
 F3 <2 0 1 
 F4 96 11 3 
  F5 18 0 3 

16 F1 <2 0 2 
 F2 24 0 2 
 F3 <2 0 0 
 F4 108 0 2 
  F5 39 11 2 

50 F1 212 7 3 
 F2 16 22 3 
 F3 <2 0 1 
 F4 619 6 3 
  F5 230 9 3 

55 F1 6 0 2 
 F2 <2 0 2 
 F3 <2 0 0 
 F4 36 23 2 
  F5 12 0 2 

63 F1 84 10 2 
 F2 27 16 2 
 F3 114 7 0 
 F4 1588 3 2 
  F5 557 3 2 

72 F1 38 24 3 
 F2 44 21 3 
 F3 <2 0 1 
 F4 130 13 3 
  F5 64 5 3 

74 F1 87 15 2 
 F2 72 0 2 
 F3 <2 0 0 
 F4 12 0 2 
  F5 42 40 2 
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Appendix 1 Table A-3: Mean values and relative standard deviation of replicate samples 
in sequential extraction                                (Page 4 of 4) 

Sample ID Fraction Mean RSD No. of replicates 
  (ug/kg) (%) for extraction 

59 F1 <2 0 2 
 F2 21 20 2 
 F3 <2 0 0 
 F4 48 0 2 
  F5 30 28 2 

36 F1 <2 0 3 
 F2 <2 0 3 
 F3 <2 0 2 
 F4 <2 0 3 
  F5 46 37 3 

53 F1 <2 0 3 
 F2 <2 0 3 
 F3 <2 0 0 
 F4 14 25 3 
  F5 6 0 3 
2 F1 <2 0 3 
 F2 30 0 3 
 F3 <2 0 0 

 F4 <2 0 3 
  F5 <2 0 3 

8 F1 <2 0 2 
 F2 27 47 2 
 F3 0 0 0 
 F4 24 35 2 
  F5 <2 0 2 
3 F1 <2 0 2 
 F2 38 33 2 
 F3 0 0 0 
 F4 24 25 2 
  F5 <2 0 2 
1 F1 <2 0 2 
 F2 21 20 2 
 F3 <2 0 1 
 F4 66 39 2 
  F5 0 0 22 
9 F1 <2 0 2 
 F2 18 0 0 
 F3 <2 0 2 
 F4 15 28 2 
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Appendix 1 Table A-4: Sequential extraction data for each individual fraction                  (Page 1 of 2) 
 

Sample 
ID Rock type Depth Thickness

Total 
Bulk 
Se 

Residual F5** F4** F3** F2** F1** 

  (ft) (ft) (mg/kg) (ug/kg) (ug/kg) (ug/kg) (ug/kg) (ug/kg) (ug/kg)
12 Sandstone 80.1 5.15 <0.20 <2 <2 <2 <2 <2 <2 
14 Sandstone 83.5 3 <0.20 <2 <2 <2 <2 <2 <2 
15 Shale 86.5 3 0.3 157 18 96 <2 12 <2 
16 Shale 88.5 2.05 0.42 200 38.9 108 <2 24 <2 

16A Coal 89.2 0.65 <0.20 <2 <2 <2 <2 <2 <2 
17 Mudstone 91.7 2.5 0.2 110 26 44 <2 <2 <2 
27 Mudstone/Sandstone 130 3 0.24 200 <2 <2 <2 <2 <2 
28 Mudstone 133 3 0.28 200 <2 20 <2 12 <2 
33 Sandstone 151 1.55 0.28 200 <2 <2 <2 <2 <2 
34 Shale 154 3 0.4 153 44 106 <2 37.9 16 
35 Shale 157 3.45 0.52 400 <2 219 <2 30 21 
36 Sandstone 158 0.35 0.94 743 45.9 <2 <2 <2 <2 
37 Sandstone/Carbolith 158 0.5 1.26 1000 <2 <2 <2 12 <2 

37A Coal 159 1 3.72 2265 219 72 21 42 450 
37B Coal 161 2.05 0.42 290 41.9 63 <2 26.9 21 
38A Mudstone 163 2.1 0.32 200 <2 54 <2 47.9 <2 
39A Carbolith 165 1.6 0.54 487 41.9 <0.20 <2 <2 <2 
40A Sandstone 169 4.4 <0.20 <2 <2 <2 <2 <2 <2 
48 Shale 201 2.1 0.3 137 136 <2 <2 8 8 
49 Carbolith 202 1.2 3.38 2140 627 12 18 53.9 17 
50 Coal 202 0.45 2.58 1517 230 619 <2 16 212 

50A Coal 203 1 1.16 955 201 0 <2 81 14 
51 Shale 204 0.1 1.16 645 47.9 162 <2 87 36 
52 Mudstone 206 3 0.36 300 35.9 14 <2 <2 <2 
53 Sandstone 208 1.45 0.28 250 6 14 <2 <2 <2 
54 Coal 208 0.2 1 505 144 144 <2 <2 <2 

 Notes: **: Se concentration by fraction from the sequential extraction procedure. 
 



 89

Appendix 1 Table A-4: Sequential extraction data for each individual fraction                      (Page 2 of 2) 
 
Sample 

ID Rock type Depth Thickness Total 
Se Residual F5** F4** F3** F2** F1** 

  (ft) (ft) (mg/kg) (ug/kg) (ug/kg) (ug/kg) (ug/kg) (ug/kg) (ug/kg)
55 Shale 211 3 0.26 200 12 36 <2 <2 6 
56 Shale 213 2.25 0.78 435 105 126 <2 57 39 
57 Carbolith 214 0.31 7.12 6317 178 280 26 16 16 

57A Coal 214 0.89 0.5 210 16.9 <2 <2 14.5 16 
61 Shale 226 2.4 1.06 367 170 116 8 <2 19 
62 Carbolith 226 0.15 9.44 6167 617 126 102 28 75 

62A Coal 227 1.1 5.96 4750 359 105 123 30 92.9 
63 Shale 228 0.63 5.36 1500 557 1588 108 27 83.9 

63A Shale 230 1.77 1.98 1035 344 135 <2 59.9 71.9 
70 Shale 250 3 0.24 100 22 18 <2 20 0 
72 Shale 253 1 0.64 300 70 130 <2 44 38 
73 Coal 254 0.3 1.18 1000 22 40 <2 21 42 

73A Coal 256 2.53 <0.20 <2 <2 <2 <2 <2 <2 
73B Coal 257 0.92 2.02 2000 80 78 <2 <2 51 
74 Shale 257 0.1 1 725 42 12 <2 72 87 
75 Shale 261 3.4 0.34 275 15 48 <2 12 18 
76 Shale 263 2.2 0.76 450 32 72 <2 68 28 

76A Coal 264 1.95 2.06 1625 174 168 <2 69 24 
77 Mudstone 265 0.55 2.08 100 122 202 <2 40 32 
78 Mudstone 267 1.35 0.3 250 45.9 36 <2 65.9 18 

Notes: **: Se concentration by fraction from the sequential extraction procedure 
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Appendix 1 Table A-5: Comparison of arithmetic mean and geometric mean for the 
data 

 

Sample ID Arithmetic Mean Geometric Mean % Diff 
34 55.9 55.8 0.2 
36 4.7 4.5 3.8 
35 51.7 50.4 2.5 
37 0.9 0.9 0 
38 31.8 31.7 0.3 
39 7.7 7.3 5.2 
48 50.6 50.5 0.2 
49 31.9 31.9 0 

37A 16.5 16.3 1.2 
37B 36.3 36.3 0 
28 11.4 11.2 1.7 
27 2.5 2.5 0 
15 42.9 42.8 0.2 
16 40.6 40.6 0 

50A 36.7 36.7 0 
50 41.7 41.7 0 

57A 53.5 53.4 0.2 
57 9.7 9.7 0 
52 13.8 13.7 0.7 
54 28.7 28.7 0 
53 7.1 7.1 0 
55 20.7 20.6 0.5 
62 14.3 14.2 0.7 

62A 11.9 11.9 0 
61 33.4 33.3 0.3 
63 44.1 44.1 0 
73 8.8 8.8 0 
72 43.1 43.0 0.2 

73B 10.2 10.2 0 
77 19.0 19.0 0 

76A 21.1 21.1 0 
76 26.5 26.5 0 
74 21.2 21.2 0 
75 27.3 27.3 0 
51 26.6 26.6 0 
17 34.9 34.9 0 
78 55.2 55.2 0 
56 41.8 41.8 0 

63A 30.8 30.8 0 
70 22.4 22.3 0.4 

 

 

 



 91

Mimi Roy 
e-mail: mroy@geo.wvu.edu; mimi_roy2003@yahoo.com 
  
 
 
Home address                                                       Office address 
1325 Winona Ave.                                                                 West Virginia University                                
Apt#3                                                                                   Dept. of Geology 
Morgantown WV-26505                                                      422, White Hall 
Cell: (304) 319 0774                                                              Morgantown, WV-26506 
 
 
Objective 
 
My research interests revolve around coal geochemistry and contaminant chemistry including 
their fate and transport, chemically and microbiologically reactive transport in groundwater and 
soils, hydrogeology and other environmental issues. 
 
Education 
 
Master of Science (MS)                                                  May 2003 –Dec 2005 
 
Major: Geology 
West Virginia University 
Research Title: A Detailed Sequential Extraction Study of Selenium in Coal and Coal-Associated 
Strata from a Coal Mine in West Virginia. 
Advisor: Dr. Dorothy Vesper 
 
 
Master of Science (MS)                                                              1999 
 
Major: Geology 
Presidency College (India) 
Research Title: A Study of the Structural Evolution and Metamorphic Changes in the Singbhum 
Shear Zone at Bangriposi, Orissa 
Advisor: Dr. Harendra Nath Bhattacharya. 
 
 
Bachelor of Science (BS)                                                           1997 
University of Calcutta (India) 
Major: Geology 
Minor: Chemistry, Mathematics 
 
 



 92

 
 
Professional Experience 
 
Research Assistant                                                                   May 2004 – Dec 2005 
 
West Virginia Water Research Institute 
National Research Center for Coal and Energy 
West Virginia University 
Project Name: OSM 178d Selenium 

• Sequential Extraction of Se from water and rock samples 
 
 
Teaching Assistant                                                                 August 2003 – April 2004 
 
West Virginia University 
Department of Geology 
 
 
Research Assistant                                                                       May 2003 - July 2003 
 
West Virginia Hydrology Research Center 
National Research Center for Coal and Energy 
West Virginia University 
Project Name: Monongahela Basin Mine Pool Project 

• GIS mapping of active and flooded mines 
• Looking at coal mine chemistry 

 
 
Teaching Assistant                                                                 August 2002 – April 2003 
 
University of Texas at Arlington 
Department of Geosciences 
 
 

Awards and Honors 
 
Sigma Xi Research Poster Competition – Basic Sciences: First April 2005

Sigma Xi Research Poster Competition -   Overall: First April 2005

Graduate Scholarship: The University of  Texas at Arlington August 2002 – April 2003

National Merit Scholarship: Govt. of West Bengal, India 1992

mailto:mroy@geo.wvu.edu
mailto:mimi_roy2003@yahoo.com


 93

 
Presentations 
(Mimi Roy first author and presenter) 
 
West Virginia Academy of Sciences Meeting (2005) A sequential extraction study of Selenium 
in coal and coal associated strata from rock cores in West Virginia (Poster) 
 
 
Professional Affiliation 
 
Sigma Xi, The Scientific Research Society 
 
 

Computer Skills 
 
Operating System: UNIX, WINDOWS 
Languages: C, C++, Visual Basic, Oracle 
 
GIS Tools: ArcView 3.x, ArcGIS (ArcMap, Spatial Analyst, 3D Analyst) 
 
Groundwater Modeling Tools: MODFLOW, Groundwater Vistas, Surfer v.7.0 
 
Geochemical Modeling Tools: Visual MINTEQA2 
 
Remote Sensing Tools: Erdas Imagine (8.6) 

 


	A detailed sequential extraction study of selenium in coal and coal-associated strata from a coal mine in West Virginia
	Recommended Citation

	Title Page
	Abstract
	Acknowledgements 
	Table of Contents
	List of Tables
	Table 2-1 Selenium concentration in major rock types based on 9000 samples collected from US coal regions and provinces (Coleman et al., 1993) 
	Table 2-2 Average, maximum and minimum concentrations of selenium in US coal regions and provinces (modified from Coleman et al., 1993) 
	Table 3-1 Sample description by rock type and available existing bulk data 
	Table 3-2 Sulfur fractionation data 
	Table 3-3 Sequential extraction procedure used in the study 
	Table 3-4 Quality of data based on sample contamination issues 
	Table 3-5 Estimated analytical error based on blind replicates 
	Table 4-1 Comparison of total selenium and sum of extracted selenium fractions
	Table 4-2 Comparison of total selenium and percent extraction in different rock types 
	Table 5-1 Total sulfur, organic sulfur, and selenium parameters for coal 

	List of Figures
	Figure 2-1 pH-Eh diagram for selenium (Drever, 1998) 
	Figure 2-2 Potentially “toxic” or acidic units associated with coal (modified from Renton et al., 1989) 
	Figure 2-3 Stratigraphy and selenium content of coal beds in West Virginia (WVGES, 2002a) 
	Figure 2-4 Geographic distribution of selenium in West Virginia coals (WVGES, 2002a) 
	Figure 2-5 Distribution of selenium concentration in West Virginia (a) coals and (b) mudstones.  Graphs generated using data from WVGES (2002b). 
	Figure 2-6 Distribution of selenium in various rock types from a mine in south western West Virginia (modified from Mullennex, 2005) 
	Figure 2-7 Mode of selenium binding in rocks 
	Figure 3-1 Calculations for the data from sequential extraction 
	Figure 3-2 Separation of S in different fractions of the extraction solutions (F1 through F5) 
	Figure 4-1 Distribution of total selenium in different rock types.  Values less than 0.20 mg/kg are graphed as 0 mg/kg. 
	Figure 4-2 Distribution of total selenium with depth, formation and coal beds.  Non-detectable values (<0.20 mg/kg) are graphed as 0 mg/kg. 
	Figure 4-3 Plot of paste pH against total selenium.  Samples with non-detectable selenium (<0.20 mg/kg) are graphed as 0 mg/kg. 
	Figure 4-4 Relationship between MPA and total selenium.  (a) Plot of MPA against total selenium for all samples.  Samples with non-detectable selenium (<0.20 mg/kg) are graphed as 0 mg/kg.  One data value with MPA 84 tons/1000 tons not included in graph.  (b) Plot of MPA against pyritic S. 
	Figure 4-5 Plot of NNP against total selenium.  Outliers with values of -96 tons/1000 tons and 82 tons/1000 tons are not included in graph. 
	Figure 4-6 Plot of TOC against total selenium.  (a) For all rock types.  (b) For shale.  (c) For coal. 
	Figure 4-7 Plot of S against total selenium 
	Figure 4-8 Comparison of total selenium measured in the bulk sample with the sum of the total selenium from the extraction steps and the residual fraction.  The line has a slope of 1. 
	Figure 4-9 Comparative analysis of extracted selenium from different rocks. 
	Figure 4-10 Percentage of selenium extracted vs. total selenium in (a) shale and (b) coal 
	Figure 4-11a Extracted selenium by rock type.  Depths: (a) 0-40 ft, (b) 40-80 ft, (c) 80-120 ft, (d) 120-160 ft, (e) 160-200 ft, (f) 200-240 ft, (g) 240-280 ft.  (Note that scale of x-axis varies by figure to maximize the size of the bar charts and aid interpretation). 
	Figure 4-11b Extracted selenium by rock type.  Depth: (a) 0-40 ft, (b) 40-80 ft, (c) 80-120 ft, (d) 120-160 ft, (e) 160-200 ft, (f) 200-240 ft, (g) 240-280 ft.  (Note that scale of x-axis varies by figure to maximize the size of the bar charts and aid interpretation). 
	Figure 4-11c Extracted selenium by rock type.  Depth: (a) 0-40 ft, (b) 40-80 ft, (c) 80-120 ft, (d) 120-160 ft, (e) 160-200 ft, (f) 200-240 ft, (g) 240-280 ft.  (Note that scale of x-axis varies by figure to maximize the bar charts and aid interpretation). 
	Figure 4-11d Extracted selenium by rock type.  Depth: (a) 0-40 ft, (b) 40-80 ft, (c) 80-120 ft, (d) 120-160 ft, (e) 160-200 ft, (f) 200-240 ft, (g) 240-280 ft.  (Note that scale of x-axis varies by figure to maximize the size of the bar charts and aid interpretation). 
	Figure 4-11e Extracted selenium by rock type.  Depth: (a) 0-40 ft, (b) 40-80 ft, (c) 80-120 ft, (d) 120-160 ft, (e) 160-200 ft, (f) 200-240 ft, (g) 240-280 ft.  (Note that scale of x-axis varies by figure to maximize the size of the bar charts and aid interpretation). 
	Figure 4-11f Extracted selenium by rock type.  Depth: (a) 0-40 ft, (b) 40-80 ft, (c) 80-120 ft, (d) 120-160 ft, (e) 160-200 ft, (f) 200-240 ft, (g) 240-280 ft.  (Note that scale of x-axis varies by figure to maximize the size of the bar charts and aid interpretation).  
	Figure 4-11g Extracted selenium by rock type.  Depth: (a) 0-40 ft, (b) 40-80 ft, (c) 80-120 ft, (d) 120-160 ft, (e) 160-200 ft, (f) 200-240 ft, (g) 240-280 ft.  (Note that scale of x-axis varies by figure to maximize the size of the bar charts and aid interpretation).  
	Figure 5-1 Comparison of selenium concentration from all rocks situated less than 2 ft from coal horizons with that of rocks situated more than 2 ft from coal horizons.  Non-detectable selenium values (<0.20 mg/kg) are not included in graph. 
	Figure 5-2 Comparison of selenium concentration for shales situated more or less than 2 ft from coal beds.  Non-detectable selenium values (<0.20 mg/kg) are not included in graph. 
	Figure 5-3 Relationship between extracted selenium and distance from coal bed for shales. 
	Figure 5-4 Plot of total S against sum of extracted selenium for coal.  Samples having extracted selenium below the detection limit (<0.20 mg/kg) are not included in graph. 
	Figure 5-5 Plots of the percentage of selenium extracted from (a) organic (F4) and (b) sulfide (F5) fractions in shale.  Samples where extracted selenium is below the detection limit are not included in the graph. 
	Figure 5-6 Plots of the percentage of selenium extracted from the (a) organic (F4) and (b) sulfide (F5) fraction in coal.  Samples where extracted selenium is below the detection limit are not considered in the graph. 

	Chapter 1 Introduction 
	1.1 Statement of problem 
	1.2 Purpose and objectives 

	Chapter 2  Literature review 
	2.1 Environmental geochemistry of selenium 
	2.2 Distribution and prediction of total selenium in rocks 
	2.2.1 Selenium sources and distribution by location and rock type 
	2.2.2 Total selenium in West Virginia rocks 
	2.2.3 Relationship between total selenium concentration and other chemical parameters 

	2.3 Weathering of selenium-containing rocks 

	Chapter 3 Materials and methods 
	3.1 Nature and source of samples 
	3.2 Existing chemical data provided with samples 
	3.3 Additional laboratory analysis of solid samples 
	3.4 Sequential extraction procedure 
	3.5 Extraction solutions and residues 
	3.6 Calculations from raw data 
	3.7 Quality discussion of data 

	Chapter 4 Results 
	4.1 Total bulk selenium in rock samples 
	4.1.1 Relationship between total selenium, stratigraphy and lithology 
	4.1.2 Relationship between total selenium and other parameters 

	4.2 Sequential extraction data 
	4.2.1 Distribution of data points 
	4.2.2 Sum of extracted selenium data 
	4.2.3 Calculation of selenium extracted from different fractions 


	Chapter 5 Interpretation 
	5.1 Predicting total selenium concentration from stratigraphy and lithology 
	5.2 Predicting total selenium concentration in rock cores from other chemical parameters 
	5.3 Predicting relative extraction of selenium from different rock types 
	5.4 Mode of occurrence of selenium in different rock fractions 
	5.5 Limitations of the research 

	Chapter 6 Conclusions 
	Chapter 7 Future Work 
	Bibliography 
	Appendix
	Appendix 1 Table A-1: Site and bulk analytical data for the rock core
	Appendix 1 Table A-2: Compilation of total Se and extracted Se concentrations
	Appendix 1 Table A-3: Mean values and relative standard deviation of replicate samples  in sequential extraction
	Appendix 1 Table A-4: Sequential extraction data for each individual fraction
	Appendix 1 Table A-5: Comparison of arithmetic mean and geometric mean for the data

	Vita

		2008-12-18T10:25:06-0500
	John H. Hagen
	Document unencrypted; Originally approved 12-16-05.




