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ABSTRACT

A New Compactification for Celestial Mechanics

Daniel Solomon

This is an exposition of a new compactification of Euclidean space enabling the study of trajectories at
and approaching spatial infinity, as well as results obtained for polynomial differential systems and Celestial
Mechanics. The Lorenz system has an attractor for all real values of its parameters, and almost all of the
complete quadratic systems share an interesting feature with the Lorenz system.

Informed by these results, the main theorem is established via a contraction mapping arising from an
integral equation derived from the Celestial Mechanics equations of motion. We establish the existence of an
open set of initial conditions through which pass solutions without singularities, to Newton’s gravitational
equations in R3 on a semi-infinite interval in forward time, for which every pair of particles separates like
At, A > 0, as t → ∞ . The solutions are constructible as series with rapid uniform convergence and
their asymptotic behavior to any order is prescribed. We show that this family of solutions depends on
6N parameters subject to certain constraints. This confirms the logical converse of Chazy’s 100-year old
result assuming solutions exist for all time, they take the form given by Bohlin: solutions of Bohlin’s form
do exist for all time. An easy consequence not found elsewhere is that the asymptotic directions of many
configurations exiting the universe depend solely on the initial velocities and not on their initial positions.

The N-body problem is fundamental to astrodynamics, since it is an idealization to point masses of the
general problem of the motion of gravitating bodies, such as spacecraft motion within the Solar System.
These new trajectories model paths of real particles escaping to infinity. A particle escaping its primary on
a hyperbolic trajectory in the Kepler problem is the simplest example. This work may have relevance to
new interplanetary trajectories or insight into known trajectories for potential space missions.

I know that the tide is not an independent force, but merely the submission of the water
to the movement of the moon in its orbit. And this in turn is subject to other orbits
which are mightier far than it. And so the whole universe is held fast in the clinging grip
of strong hands, the forces of Earth and Sun, planets and comets, and galaxies, blindly
erupting forces ceaselessly stirring in ripples of silence to the very depth of black space.

— Amos Oz
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CHAPTER 1

Introduction

The differential equation governing the position 3-vectors qi of N point-masses mi, i = 1, . . . , N moving
in R3 under the influence of their mutual gravitation is

(1.0.1) q̈i =
∑
j 6=i

mj(qj − qi)
‖qi − qj‖3

=
1

mi

∂U

∂qi
,

where conventionally U =
∑
j<k

mjmk
‖qj−qk‖ > 0 is the negative of the potential energy, and the units are

chosen so that the universal gravitational constant is 1. We demonstrate the existence of a multi-parameter
continuum of trajectories escaping to infinity as t→∞ in many possible sets of directions in R3. Moreover,
they take the form suggested by Chazy [17], which he credits to Bohlin [13]

(1.0.2) qi = ait+ bi log t+ ci + δi,

where each ai, bi and ci is a constant 3-vector, the ai and ci are nearly arbitrary, bi depends on the ai, and
each 3-vector δi is shown to tend to 0. We provide asymptotic approximations and rapidly-converging series
for δi. Chazy [17] showed that if there are solutions that exist for all time, and if the energy h is positive,
the solutions must take the form (1.0.2). Until now, no one had proved that such solutions actually exist.

Under the compactification described in Section 1.2, a set of particles approaching infinity in a given set
of directions becomes a trajectory in the unit ball of R6N , approaching a critical point of the compactified
flow on its boundary, the unit sphere S6N−1. As we will see, the critical point set is degenerate, a 3N -
1-sphere, contained within the boundary. The flow on the boundary is quite simple, and we describe it
in Chapter 3. We will see how the flow on the boundary gives insight into the flow of the uncompactified
system for large ‖qi‖ or ‖q̇i‖. In many cases the Jacobian at critical points at infinity can provide information
on the completeness of the uncompactified problem. However, for Celestial Mechanics the Jacobian of the
compactified flow is nilpotent at every critical point. Thus all eigenvalues are 0, and the Jacobian does not
tell us whether the critical points attract. Despite the lack of information from the Jacobian, we are able
to show that many critical points within the boundary do in fact attract a multi-dimensional continuum of
points. Moreover, the flow on the boundary tends to the same critical point set, and boundary trajectories
provide asymptotic information about escaping trajectories in celestial mechanics.

This Chapter provides the background and context for this work; we discuss escape to infinity in celestial
mechanics, introduce the compactification published for polynomial systems, and summarize results obtained
for polynomial systems. As we will show, our compactification of Euclidean space Rn is its open unit ball
Bn, the pre-image of whose boundary sphere Sn−1 (under the compactification) may be viewed is an ideal
set at infinity in an extended Rn, represented by all possible directions of the sphere. The compactification
of a differential equation defined on the interior of unit ball extends to its boundary, which can prove fruitful.
The behavior of the system on the boundary sphere is simpler and often illuminates asymptotic analysis.
Indeed, these ideal solutions provide a wealth of information on the solutions of ẏ = f(y) for ‖y‖ large. This
Chapter includes a survey of relevant literature and concludes with notation conventions.

This compactification method was proposed by Gingold in [38] and was applied to polynomial systems
by Elias and Gingold in [35]. It provides a better understanding of the behavior of solutions of dynamical
systems when the norm of the solutions is large and becomes unbounded. It augments the arsenal of methods
like Lyapunov functions, the Poincaré compactification, and the Poincaré map that are used to prove global
existence of solutions and completeness of dynamical systems.

The compactification described and used here has advantages over the more commonly used stereographic
projection of Bendixson [10], as well as that of Poincaré [85] (see also the Perko text [83] for an exposition):
our compactification distinguishes directions at ∞ and transforms rational ordinary differential equations

1



1. INTRODUCTION 2

to rational ordinary differential equations. The development of the compactification in [38] and [35] was
influenced by the work of Gingold and Gingold [39], where the stereographic projection is obtained as a
degenerate limit of a family of compactifications that account for “all directions at infinity.” However, that
compactification is akin to the Poincaré compactification and possesses radicals that prevent it being a tool
for rational approximations.

Chapter 2 presents some results obtained on compactifying certain polynomial systems. I compactified
the Lorenz system for a wider set of parameters σ, ρ, β than is usually treated and proved that it has a
global repeller at infinity. I calculated the asymptotic behavior of the vector fields T, N, B of differential
geometry for a class of quadratic systems in R3 including the Lorenz system for all values of its parameters
and its compactification, showing that they coincide to lowest order. On compactifying quadratic systems
in general, I gave a characterization of completeness. This work was published in three papers with Gingold
[40, 41, 42]. Here as well, despite a Jacobian whose eigenvalues are all 0 at the critical points, we are able
to show that the boundary sphere for the Lorenz system repels trajectories that start near the boundary.

In Chapter 3, we extend the compactification of Section 1.2 beyond polynomial systems to the equations
of celestial mechanics, analyze the behavior of the compactified system in the boundary, and investigate
solutions to some approximate systems near the boundary. The compactified system can be extended to the
non-collision boundary points, and and we show in fact that all critical points and singular points of the
system are on the boundary sphere. Next we study the system restricted to the boundary sphere, where the
behavior is so much simpler that exact solutions can be given in closed form. These solutions represent new
objects in Celestial Mechanics, as the compactification of trajectories at∞. In the absence of collisions, these
solutions on the boundary approach the critical point set, which is the unit 3N − 1-sphere where xN+i = 0.
These solutions offer insight into solutions near the boundary, in particular suggesting a set of approximating
systems near the boundary. We determine properties of solutions to two approximating systems, both of
which can be solved exactly, and one of these solutions is asymptotic to solutions of the compactified system.
The uncompactification of the second approximate solution will be shown to be asymptotic to the new
solutions we give in Chapter 5 to Celestial Mechanics equation.

Given a solution x and an approximation x̄, we develop in Chapter 4 the differential equation satisfied
by the difference ∆ = x− x̄. We will be interested in decaying solutions ∆, whose existence guarantees that

x and x̄ are asymptotic to the same point
(
x∗† 0†3N

)†
as t → ∞, and we can interpret the unit 3N -vector

x∗ as the N limiting directions x∗i of the particles. To better understand the problem for ∆, which has an
irregular singular point at t = ∞, we begin with efforts to solve approximating versions of the problem,
seeking solutions to the linear problem that decay to 0. After a very helpful coordinate transformation,
we solve several approximate problems and find solutions tending to 0. This work with the linear system
inspires our search for solutions to the full problem in the next Chapter, returning to the uncompactified
problem and the selection of a specific form of solution to pursue.

Chapter 5 establishes the main theorem of the dissertation, that solutions of Bohlin’s form (1.0.2) do
indeed exist for all time. We demonstrate the existence of an open set of initial conditions through which
pass solutions without singularities, to Newton’s gravitational equations in R3 on a semi-infinite interval
in forward time, for which every pair of particles separates like At, A > 0, as t → ∞ . The solutions
are constructible as series with rapid uniform convergence and their asymptotic behavior to any order is
prescribed. This family of solutions depends on 6N parameters subject to certain constraints. The key to
the result is converting the differential equation for q into an integral equation for δ and showing that integral
equation has a solution. The results of this Chapter were published in 2017 [43].

In Chapter 6, we provide some ideas of directions that this research could be extended. These include

• How and why one might rescale time for the Celestial Mechanics problem, as is done for polynomial
systems in Section 1.2 and Chapter 2

• Compactifying the Celestial Mechanics problem in position only, rather than in y =

(
q
q̇

)
• Studying the behavior of 1−R2 near the boundary as a Bernoulli problem
• Considering the forced Celestial Mechanics problem

as well as compactifying the ambient R3, rather than phase space; extending the concept to the motion of
charged particles subject to their mutual electromagnetic attraction/repulsion; application of the Conley
Index [21] to study orbits that connect to the invariant set on the boundary; applications of compactification
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to partial differential equations; and applications of the methods and results to astronomy and aerospace
engineering.

1.1. Celestial Mechanics, Singularities, and Infinity

In this Section, we describe the state of knowledge of completeness, escape to infinity, and singularities
in Celestial Mechanics.

We will view (1.0.1) as an equation for q =
(
q†1, . . . , q

†
N

)†
∈ R3N . The equations of motion (1.0.1)

are real analytic everywhere except where two or more of the particles occupy the same point in R3. More
precisely, for j 6= k, let

∆jk = {q|qj = qk}

∆ =
⋃

1≤j<k≤N

∆jk.

∆ is called the collision set; it is the union of N2 (N − 1) codimension-3 subspaces of R3N . U is real analytic
on R3N\∆.

The standard existence and uniqueness theorems tell us that through a given starting position q(0) and
velocity q̇(0), there is a unique solution q(t), defined for all 0 ≤ t < σ, for some maximal σ. It remains a
challenge to determine the maximal interval of existence when σ is finite; the more so with σ =∞.

Definition. If σ <∞, then q(t) is said to experience a singularity at σ.

A familiar example in a much simpler setting is the one-dimensional problem: ẋ = − 1
x , x(0) = 1. Here

x = 0 is a singular point for the differential equation, and there is a solution x =
√

1− 2t, for which x
(

1
2

)
= 0,

and ẋ
(

1
2

)
= −∞, so σ = 1/2. We have a result of Painlevé from 1897 [80] that even if the singularity at σ

isn’t a collision, q must nevertheless approach the collision set:

Fact. [Painlevé] If q(t) is singular at σ, then q(t)→ ∆, as t→ σ−.

Proof. First, if q(t) is singular at σ, then U →∞ as t→ σ−, since otherwise U is bounded and every
particle separation is bounded from below, so the right hand side of (1.0.1) is continuous at t = σ, and
the existence theorem says that the solution continues beyond σ, contradicting the singularity. Since U is
unbounded, one of its terms must be, and the minimum of the mutual distances must tend to 0 as t→ σ−,
and thus q(t) must approach ∆. �

Moreover, if q(t) is singular at σ, then since U →∞ as t→ σ− as in the proof above, by the conservation
of energy, we must have that the kinetic energy T =

∑N
i=1mi ‖q̇i‖2 is also unbounded, so one of its terms

must be, so some particle velocity becomes unbounded as t→ σ−.
If q(t) approaches a specific point q̂ ∈ ∆, then the singularity is a collision, say q̂j = q̂k for some j 6= k.

Definition. If q experiences a singularity at σ, but q(t) does not approach a specific point q̂ ∈ ∆, then
q has a non-collision singularity.

The question of non-collision singularities has been studied for 120 years. Von Zeipel [112] showed in
1908 that

Fact. [Von Zeipel] A non-collision singularity can only occur if the system of particles becomes un-
bounded in finite time.

Having appeared in an obscure journal, von Zeipel’s result went practically unnoticed until 1941, when
Wintner [116] claimed the proof had gaps. In 1986, McGehee [73] filled in the details, showing that the
initial argument had been correct.

Xia gave in 1992 the first example of a non-collision singularity for the N -body problem where N ≥ 5
[117].

Definition. q is an escape trajectory if one or more ‖qi‖ tends to ∞ as t→ σ−, where σ ≤ ∞.

Our study is concerned with the problem of an expanding universe as defined below.
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Definition. The universe is expanding if the system of equations (1.0.1) possess solutions qi(t), i =
1, . . . , N that exist on a semi-infinite interval [t0,∞) with limt→∞ ‖qi(t)− qj(t)‖ =∞, i 6= j.

Solutions to an expanding universe beg numerous questions, including: How large is the family of
solutions to an expanding universe? Is it possible to associate with them a series representation that is
absolutely and uniformly convergent on a semi-infinite interval? How fast is the convergence? Is it possible
to obtain approximations as well as asymptotic approximations to any order of accuracy? This dissertation
will provide some answers to these questions.

The existence question of solutions for all forward time has received much attention. In Birkhoff’s
text [12] page 291 on long-term behavior for N > 3, “We shall entirely put to one side the question of
collisions.” I don’t think this means he wasn’t interested in that the existence of solutions (1.0.1) on a
semi-infinite interval without singularities. Pollard’s seminal 1967 paper [86], which was a major inspiration
for the present work, includes a paragraph

“Two assumptions are made throughout. The first is a matter of convenience; the second
is forced upon us by the total ignorance concerning the possible singularities which can
occur. We assume first that the center of mass 0 is fixed. ... Secondly, we suppose
that the coordinates of the particles in some rectangular coordinate system centered at 0
encounter no singularity for positive time t.”

Hence for his work, he proves properties of solutions that he assumes exist for all positive time. The present
work addresses the second assumption of Pollard, which same assumption is made by many authors, as is
summarized here.

Pollard [87] provides a detailed description of the Kepler problem; the only singularities are collisions,
and a collision only happens in the linear problem. So there is an open set in the space of initial conditions
whose solutions exist for all forward time. The same is of course true for the N = 2 problem. It was shown
by Painlevé [80] that the only singularities for the 3-body problem are collisions and by Saari [95] that
CS the set of initial conditions of (1.0.1) leading to collisions is of measure 0 and of Baire first category (a
countable union of nowhere dense sets). An immediate consequence is the existence result for N = 3: The
solution through almost all initial conditions exists for all positive time. Note that the complement of CS is
a countable intersection of open sets, so it need not be an open set, so this is not as strong as the result for
N = 2.

In 1976 Saari announced [96] for N = 4 that Sing, the set of initial conditions leading to singularity, is
of measure 0 and first category, and the proof was published in 1977 [97]. This is the same existence result
as for N = 3. It is not known whether NC is empty for N = 4.

There appears to be no comparable result for N > 4. Saari has also shown in several papers in the
early 70s, summarized in [95] for all N that CS is of measure 0 and first category. It is expected, but not
known, that NC, the set of initial conditions leading to non-collision singularity, is also small in some sense,
which would similarly imply existence for all positive time for most (in the same sense) initial conditions.
Thanks to Xia [117] we know that NC is not empty for N ≥ 5. Saari and Xia have a 1996 paper [100] on
singularities including a conjecture that the set NC is the same as a certain set derived from CS. However,
their conjecture would not imply that Sing is small.

To be sure, there are known solutions in the literature, chiefly central configurations, which Moeckel
[76] notes in an accessible summary are the only explicitly known solutions. We offer by means of our
construction a multi-parameter set of initial conditions through which solutions exist for all positive time.
The Mingarelli’s [75] have provided a study of bounded solutions that exist for all time.

The present work provides a construction of solutions and asymptotic approximations to any order for
our positive energy solutions. Moreover, these solutions do not depend on regularizing after double collisions;
we have found an open set of initial conditions through which singularity-free solutions escape to infinity. We
also have a multi-parameter set of singularity-free solutions, in which all particles but one escape to infinity
as t→∞.

Assuming solutions that exist for all time, there has been much asymptotic information published. The
asymptotic behavior for the Kepler problem and the N = 2 problem is well known [87], depending on the
sign of the total energy h, bounded for h < 0 and unbounded otherwise. In the unbounded case, the particle
separation grows like a multiple of time, asymptotically. For collisions, Pollard’s text [87] notes that near a
collision in the 2-body problem, the particle separation shrinks as (|t− σ|)2/3, so their relative velocity tends
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to infinity like (|t− σ|)−1/3. Chazy [17] devoted a substantial amount of effort and space, providing a detailed
analysis for the three types of motion for N = 3: hyperbolic h > 0, parabolic h = 0, and elliptic h < 0. All
three cases required a substantial amount of sophisticated transformations of the dependent and independent
variables that are not easy to extend to the N > 3 case. It is evident from Chazy and later analysis that for
N = 3, the elliptic case h < 0 has far richer dynamics than h ≥ 0, as the former involves oscillatory motion.
It goes without saying that the complications are compounded for N > 3. Noteworthy and remarkable is
also the “Psi Series,” an unconventional type of approximation and/or asymptotic expansion. An expansion
and representation of solutions for N = 3 and h > 0 is provided utilizing a polynomial of the variables 1/t
and log t/t.

In Chapter 5, we obtain a representation of solutions for the relatively simple case of h > 0 and arbitrary
N > 3 and also obtain an asymptotic expansion for the solutions as t→∞ via integral equations. This work
is also influenced by Chazy who used the leading terms ait+ bi log t+ ci, and this work should be considered
from the point of view of goals and techniques an extension of his work to N > 3 using integral equations.

Let the maximum and minimum particle separations be

R(t) = max ‖qi − qj‖ and r(t) = min
i6=j
‖qi − qj‖ .

Then, Chazy [17] on page 40 shows that for all N , assuming that solutions exist for all positive time and
that the energy is positive, the limit

L = lim
t→∞

r

R
exists; the limit is obviously finite. Moreover, for L 6= 0 (which holds for all of our solutions), he shows that
the potential energy U ∼ A/t for some A > 0, and that the positions qi take the form (1.0.2), where each
δi is a series in powers of log t

t and 1
t . In a footnote, Chazy credits Bohlin [13] for the form of qi in the case

of two and three bodies, and notes that Bohlin did not prove that the series converge. Chazy didn’t prove
convergence either, but Chapter 5 does, so we have confirmed Bohlin’s form of the equations and proven
that those solutions do exist for all time.

Chazy’s result was refined and related to escape in a series of papers [70, 86, 90, 94] starting in the late
60s, wherein under the assumption that solutions exist for all forward time, Pollard, Saari, and collaborators
gave additional conditions on solutions under which particles escape as t→∞, as well as growth estimates
of the particles’ position vectors and their mutual separation distances. These references include an analysis
of the asymptotic behavior of solutions of equation (1.0.1) for an expanding universe. Common to all these
articles characterizing such solutions is the assumption that the solution exists on [0,∞). Also common to all
these studies is the use of the Sundman inequality and the Lagrange-Jacobi identity; in addition, Tauberian
theorems play a vital role. In retrospect, it is remarkable how much asymptotic information they succeeded
in obtaining given the tools they had to work with. It is noteworthy how far the theory of an expanding
universe for N > 3 was advanced based on a few scalar relations.

While we have in common with the references mentioned above the desire to study solutions of an
expanding universe and obtain asymptotic relations for them as t → ∞, several differences exist and are
now being elaborated upon. First we notice the differences in the methods of construction and proof. Our
technique is based on integral equations and the method of successive approximations for the vector solutions
of (1.0.1) utilizing a vector formulation. The differences in techniques also explain one of the the differences
in the nature of the results obtained. As seen from Theorem 29 and comparing with prior references on
an expanding universe, rather than making the assumption that solutions free of singularities exist on a
semi-infinite interval we prove this result while providing a construction of the vector solutions and their
asymptotic expansions.

We construct a series solution representation on a semi-infinite interval that induces an asymptotic
expansion for the solution to any order of accuracy. It turns out that the rate of convergence is very fast,
which could render the series representation and the asymptotic representation a useful tool for numerical
approximations. In particular, as pointed out by Diacu [26], the global series solutions of the 3-body problem
as provided by Sundman [108] (with non-zero angular momentum) and the series solution provided by Wang
[113] for the N > 3 converge extremely slowly, so slowly in fact that the series provides no useful information
[26]. It is also noteworthy that these series solutions do not identify the singularities; that is, one cannot
determine from the series whether a given initial condition leads to a singularity. We also note the 1994
work of Saari and Diacu [99] on faster than At expansion.
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1.2. Compactifications, Old and New

This Section is dedicated to the review to the exposition and to the promotion of the study of solutions
of differential systems and dynamical systems in the “neighborhood of infinity”. This study promotes and
utilizes a certain non-traditional compactification. We describe the theoretical background necessary to
define neighborhoods and critical points at infinity of solutions of differential systems. We develop an explicit
formula for the leading asymptotic term of diverging solutions to critical points at infinity. Applications to
problems of completeness and incompleteness of dynamical systems are also brought to the fore. A simple
bijection, y = (1 − x†x)−1x, x, y ∈ Rk, with ‖x‖ < 1, that has a rich geometrical interpretation, plays a
major role in our study.

In Chapter 2, we will describe some results obtained on compactifying some polynomial systems in Rk,
including the celebrated Lorenz system, and in Chapter 3 apply this compactification to Celestial Mechanics,
where k = 6N .

The projection of the real line onto a circle with a point removed is a form of compactification that was
known to Greek mathematicians more than two thousand years ago. In 1881 Poincaré [85], studied limit
cycles “at infinity” of two-dimensional polynomial differential equations via compactification. Although the
paper contained errors that were addressed more than a hundred years later by Roeder [92], the original
ideas had lasting impact. An early study of differential equations via compactification was carried out by
Bendixson [10]; see Andronov et al [3], p. 216. Bendixson used the stereographic projection that does not
account for all directions at infinity. See e.g. Ahlfors [2] and Hille [52], for versions of the stereographic
projection. The Poincare compactification is adopted in various textbooks on differential equations [60, 66,
83, 101]. It is widely used to study critical points at infinity; for example, the studies of Chicone and
Sotomayor [18], Cima and Llibre [19], Schlomiuk and Vulpe [102], and their references. It is noteworthy
that the stereographic projection is obtained by Gingold and Gingold [39] as a degenerate limit of a family
of compactifications that account for all directions at infinity. However, that compactification is akin to the
Poincaré compactification [85] and possesses radicals that prevent it being a tool for rational approximations.
The parabolic compactification used here was proposed by Gingold [38] in 2004, and first made use of in
ODEs by Elias and Gingold [35] in 2006. Moreover, they extended and generalized this compactification to
a family of radial compactifications. Compactification is an excellent means to obtain global phase portraits
of vector fields of dynamical systems that include the neighborhood of infinity. The work of Cima and Llibre
[19] is a welcome global analysis and supplement to that of Chen and Liang [15]. Numerous applications of
the Poincare compactification were applied to polynomial systems [3, 18, 19, 60, 83, 85]. See e.g. Willard
[115] for topics of compactification in general topology.

Our unconventional compactification y = x
1−x†x has advantages over the stereographic projection uti-

lized by Bendixson [10] because ours distinguishes directions at infinity. Our compactification has also an
advantage over the widely used Poincaré compactification (see e.g. [3, 60] for an exposition), because it
transforms a polynomial differential system into a rational system, whereas the Poincaré compactification
introduces radicals. Compactification offers a natural and systematic approach to study solutions of ẏ = dy

dt
for ‖y(t)‖ large or unbounded. In addition, compactification facilitates the manipulation of unbounded
quantities and can provide us with a priori bounds, which are not obvious otherwise [38].

The usual meaning that a sequence of points z(n) ∈ Rk, n = 1, 2,. . . diverges to infinity in Rk, that
limn→∞ ‖z(n)‖ = ∞, loses any sense of the asymptotic direction of z. The definition is compatible with a
common one in stereographic projection in complex analysis that is associated with the extended complex
plane. Just one geometrical point corresponding to the symbol ∞ augments R2; see e.g. [2, 52]. However,
This definition ignores the distinction between the different directions at infinity.

Definition. We say that the unbounded sequence z(n), n = 0, 1, 2, ... diverges in the direction p to
infinity or diverges to ∞p, ‖p‖ = 1, if

(1.2.1) lim
n→∞

‖z(n)‖ =∞ and lim
n→∞

z(n)

‖z(n)‖
= p.

Denote by (tmin, tmax), where −∞ ≤ tmin < 0 < tmax ≤ ∞, the maximal interval of existence of a
solution of a differential system

(1.2.2) ẏ =
dy

dt
= f(y), y(0) = y0.
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One reason that tmin or tmax could be finite is that the solution or its derivative become unbounded near an
endpoint. The continuous analog of diverging in the direction p to infinity in Rk p is given by

Definition. We say that the vector function y(t) ∈ C (tmin, tmax) diverges in the direction p to infinity,
or diverges to ∞p, denoted

lim
t→t+min

y(t) =∞p or lim
t→t−max

y(t) =∞p,

if

(1.2.3) lim
t→t−max

‖y(t)‖ =∞ and lim
t→t−max

y(t)

‖y(t)‖
= p,

or

(1.2.4) lim
t→t+min

‖y(t)‖ =∞ and lim
t→t+min

y(t)

‖y(t)‖
= p.

Analogous to Gingold and Gingold [39], we define an Ultra Extended Rk and produce an induced metric.

Definition. the Ultra Extended Rk, UERk is the union of Rk and a certain ideal set ID, where

(1.2.5) ID := {∞p | ‖p‖ = 1}, UERk := Rk ∪ ID.

As seen in the sequel there is good reason to introduce nonlinear transformations that will allow us to
reduce the investigation of differential systems with unbounded solutions to the investigation of differential
systems with a priori bounded solutions.

In preparation to transforming the equation ẏ = f(y) we need a diffeomorphism that will facilitate
computations and will take the space UERk into a bounded set. We sketch the main ideas. For more details
see Gingold [38]. We project the point y = (y1, . . . , yk, 0) ∈ Rk+1 through the point (0, . . . , 0, 1) on the
surface (1.2.6)

(1.2.6) xk+1 = (x2
1 + . . .+ x2

k)1/2

and single out Z = (x1, x2, . . . , xk, xk+1) as one of the two points of intersection of the parabolic surface
(1.2.6) and the straight line connecting (y1, . . . , yk, 0) and (0, . . . , 0, 1) . The determination of Z will be
done by the determination of a certain branch of a multi-valued function as given below. Then, all the
points y = (y1, . . . , yk, 0) map onto a parabolic bowl with coordinate xk+1 = (x2

1 + . . . + x2
k)1/2 < 1,

(x1, . . . , xk, xk+1)∈ Rk+1 and all the points ∞p, ‖p‖ = 1, map onto the “circle” with xk+1 = (x2
1 + . . . +

x2
k)1/2 = 1 . Denote by U the open unit ball and by ∂U its boundary, the unit sphere.

(1.2.7) U := {x ∈ Rk | ‖x‖ < 1}, ∂U := {x ∈ Rk | ‖x‖ = 1}.

Denote the magnitudes r = ‖y‖ , R = ‖x‖. Then the transformation

(1.2.8) y =
x

1−R2
, r =

R

1−R2

illustrated in Figure 1.2 is shown in [38] to be a bijection from Rk onto U . It extends to a bijection from
the ideal set ID onto ∂U. The inverse of y = x

1−R2 in R < 1 is defined by the branch

(1.2.9) x =
2y

1 +
√

1 + 4r2
, R =

2r

1 +
√

1 + 4r2
.

The compactification (1.2.8) induces a metric in UERk in a natural manner. We consider two points
y, ŷ ∈ UERk. Denote their images under the above bijection by x, x̂ respectively. Define a positive definite
function M(y, ŷ) by the Euclidean distance between the compactified points

(1.2.10) M(y, ŷ) := ‖x− x̂‖ .
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(y1,y2)

(x1,x2)

Figure 1.2.1. Compactification of R2

If y /∈ Rk, then y =∞p; similarly, either ŷ ∈ Rk or ŷ =∞p̂. Let r̂ = ‖ŷ‖ , θ = 2
1+
√

1+4r2
, θ̂ = 2

1+
√

1+4r̂2
. It

is shown by Gingold [38] that UERk is a complete metric space. For the different cases, the chordal metric
is given by the following for y, ŷ ∈ Rk

M(y, ŷ) =

√√√√
θθ̂ ‖y − ŷ‖2 −

(
θ − θ̂

)2 (
1− θθ̂

)
θθ̂

M(∞p, ŷ) =

√
1− 2θ̂p†ŷ + θ̂2r̂2 +

(
1− θ̂2r̂2

)2

M(∞p,∞p̂) =
√

2 (1− p†p̂).

This allows divergence (in a direction) of solutions of dynamical systems to be dealt with as convergence to
the boundary of the compactified system. It is easy to see that if y(t) diverges to ∞p, then θr → 1 and
θy → p, so M(y,∞p)→ 0.

We turn now to the compactification of a polynomial differential system. Let y be a column vector in
Rk. Let y† = (y1, y2, ..., yk) denote a row vector that is the transpose of y. In particular let 0̂† = (0, ..., 0)
be the transpose of the zero vector. Let f†(y) := (f(y)1, f(y)2,...,f(y)k) be a vector field in Rk where
f(y)j , j = 1, 2, ..., k are scalar polynomial functions. We say that dy

dt = f(y) is a polynomial differential
system of degree L if the vector function f(y) is given by

(1.2.11) f(y) = f0(y) + f1(y) + . . . fL−1(y) + fL(y),

where fj(y), j = 0, 1, 2, ..., L are homogeneous polynomial column vectors of degree j and fL(y) 6= −→0 for
some y ∈ Rk. [Note the difference between f(y)j and fj(y)]. Now, for f a polynomial of degree L, let

f̃(x) :=
(
1−R2

)L
f

(
x

1−R2

)
(1.2.12) =

(
1−R2

)L
f0 +

(
1−R2

)L−1
f1(x) + . . .+

(
1−R2

)2
fL−2(x) +

(
1−R2

)
fL−1(x) + fL(x).

Then the compactification (1.2.8) takes the differential system (1.2.2) into the differential system

(1.2.13)
dx

dt
=

[(
1 +R2

)
I − 2xx†

]
f̃(x)

(1 +R2) (1−R2)
L−1

,
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from which we have

(1.2.14)
d(1−R2)

dt
= 2x†ẋ = −2x†

[(
1 +R2

)
I − 2xx†

]
f̃(x)

(1 +R2) (1−R2)
L−1

= − 2x†f̃(x)

(1 +R2) (1−R2)
L−2

.

Definition. A point y0 is a critical point of the differential equation ẏ = f(y), if f(y0) = 0.

Note that a critical point can only be reached along a trajectory as time goes to infinity. Our system has
no critical points, because if every q̈i = 0 at a point q, then every ∂U

∂qi
= 0, and trivially,

∑
i qi

∂U
∂qi

= 0, but
since U is homogeneous of degree −1, the sum is equal to −U by a theorem of Euler. So U(q) = 0, which is
impossible. The following important result is from [35]

Lemma 1. The transformation (1.2.8) maps critical points of (1.2.2) in Rk into critical points of (1.2.13)
in U , and vice versa.

Proof. If y is a critical point of (1.2.2); i.e., f(y) = 0, then the right-hand side of (1.2.13) obviously
vanishes at the corresponding x. Conversely, suppose that the right-hand side of (1.2.13) vanishes for some
x ∈ U ; then we must have

(1.2.15) f̃(x)− 2

1 +R2
xx†f̃(x) = 0.

Applying x† to this equation we get

x†f̃(x)

(
1− 2R2

1 +R2

)
= x†f̃(x)

1−R2

1 +R2
= 0.

The fraction is positive, since x is an interior point, so x†f̃(x) must be 0, and by (1.2.15), f̃(x) = 0, so
f(y) =

(
1−R2

)−L
f̃(x) = 0, and y is a critical point. �

1.3. The Flow on the Boundary and at ∞

This Section is about the compactified flow on the boundary and its critical points, as well as insights
into the system for large ‖y‖ to be gained from trajectories in and near the boundary. The flow in the
boundary is in many cases comparatively simple to analyze. As we will see in Chapter 2, for the Lorenz
system and some other systems, the boundary sphere is an invariant set. We show in Chapter 2 that the
boundary repels, and is in fact the dual repeller to the compactification of the well-known Lorenz attractor.

For polynomial systems, the right side of (1.2.13) is singular on the boundary, preventing us from
extending the compactified system to the boundary. We rescale time as developed in [35] and [38] by
considering x and t as functions of a new independent variable τ ∈ (−∞, ∞), where

(1.3.1)
dt

dτ
=
(
1 +R2

) (
1−R2

)L−1
, t(0) = t0 ∈ (tmin, tmax)

(1.3.2)
dx

dτ
=
(
1 +R2

)
f̃(x)− 2x†f̃(x)x, x(0) = x0.

As before, we have

(1.3.3)
d
(
1−R2

)
dτ

= −2x†
[(

1 +R2
)
f̃(x)− 2x†f̃(x)x

]
= −2

(
1−R2

)
x†f̃(x), 1−R(0)2 = 1− x†0x0.

The rescaled system (1.3.2) on the open unit ball can be continuously extended to the boundary; we view
(1.3.2) as being defined on the closed unit ball. If R(0) = ‖x0‖ = 1, the right hand side of (1.3.3) vanishes,
so x(τ) stays in the boundary for all time τ , which means the boundary is invariant under (1.3.2). Moreover,
since 1−R2 = 0 is a critical point of (1.3.3), it can only be approached as τ → ±∞. For any x0 in the closed
unit ball, the initial value problems (1.3.2),(1.3.1),(1.3.3) possess unique solutions on −∞ < τ < ∞. The
approach of a trajectory x(τ) to the boundary is the compactification of a trajectory y diverging to infinity,
so we have shown

Proposition 2. If a trajectory y(t) diverges to infinity in the direction p, then p is a critical point of
(1.3.2) in the boundary.
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Since dt
dτ > 0, (1.3.1) generates a one-to-one mapping between the variable τ on −∞ < τ < ∞ and the

variable t on (tmin, tmax). We have then

(1.3.4) t− t0 =

∫ τ

0

(1 +R2)(1−R2)L−1dτ.

If it is possible to estimate the rate of decay of 1−R2, the following can be used to estimate tmin and tmax

(1.3.5) tmax − t0 =

∫ ∞
0

(1 +R2)(1−R2)L−1dτ, t0 − tmin =

∫ 0

−∞
(1 +R2)(1−R2)L−1dτ ;

in particular, if both integrals diverge, the solution y(t) exists for all time t. More generally, we have the
qualitative information that the larger L is, the smaller

(
1−R2

)L−1 could become and therefore the smaller
tmax − t0 and t0 − tmin may become.

Next we give a rigorous footing to the notion of a critical point ∞p of a dynamical system using the
compactification.

Definition. We say that ∞p is a critical (equilibrium) point or that p is a critical direction of (1.2.2)
at infinity if p is a critical point of (1.3.2).

If p is a critical point at infinity, then from (1.3.2), we must have

f̃(p) = p†f̃(p)p

or, since for any point p on the boundary, f̃(p) = fL(p)

(1.3.6) fL(p) = p†fL(p)p = pp†fL(p).

If in addition we have p†fL(p) 6= 0 then

(1.3.7) p =
fL(p)

p†fL(p)
,

which implies, on taking magnitudes, that ‖fL(p)‖ =
∣∣p†fL(p)

∣∣. So
p = ± fL(p)

‖fL(p)‖
,

and we call ∞p a generic critical point at infinity, and we call p a generic critical direction at infinity. The
more interesting critical points at infinity are the points ∞p that are limits of y as t tends to tmin or tmax.

The set of initial points y0 ∈ Rk such that the unbounded solutions of the initial value problem ẏ =
f(y), y(t0) = y0, satisfies (1.2.3) or (1.2.4), is called the basin of divergence of∞p or the basin of divergence
in the p direction. Notice that by this definition at least one value of x0 6= p must be included in the basin
of divergence of p.

Remark 3. The set of critical points at infinity of a compactified and parametrized equation are not
well defined without a certain normalization that needs to be introduced or is implicitly assumed. In the
above treatment we “naturally” but arbitrarily defined a parametrization (1.3.1). This determination causes
the remaining equations (1.3.2) and (1.3.3) to be uniquely determined. However, one may introduce spurious
critical points as follows. Consider

(1.3.8)
dx

ds
= g(x)[(1 +R2)f̃(x)− 2x†f̃(x)x]

with

g(x) =

k∏
j=1

(xj − xj,0)2mj , mj ∈ N,
k∑
j=1

x2
j,0 = 1.

Then the equation pertaining to t would be

(1.3.9)
dt

ds
= g(x)(1 +R2)(1−R2)L−1,



1.3. THE FLOW ON THE BOUNDARY AND AT ∞ 11

and then the point (x1,0, x2,0, . . . , xk,0) can be made to be a spurious critical point at infinity. It is noteworthy
that the case k = 1 differs from the case k > 1. For k = 1, (1.3.2) becomes

(1.3.10)
dx

dτ
= [(1 +R2)I − 2xx†]f̃(x) =

(
1−R2

)
f̃(x).

Then x = (±1) are the only two critical points of (1.3.10) so that ∞(±1) are the only two critical points
at infinity of a scalar polynomial differential equation. However, it seems desirable to choose for k = 1 a
different parametrization with

g(x) =
(
1−R2

)−1
,

dx

ds
= 2f̃(x),

dt

ds
=
(
1 +R2

) (
1−R2

)L−2
.

This will eliminate the common factor of the right hand sides of
dx

dτ
= 2f̃(x)

(
1−R2

)
and

dt

dτ
=
(
1 +R2

) (
1−R2

)L−1
.

Then, if L > 0, x = (±1) will not be critical points of dxds = 2f̃(x).
The compactification shows that every polynomial differential system possess at least one critical point

in the Ultra Extended Rk.

Proposition 4. A polynomial differential system with L > 0 possesses at least one critical point in the
UERk.

Proof. If f(y) = 0̂ for some y ∈ Rk then we are done. Assume now without loss of generality that
there does not exist y ∈ Rk such that f(y) = 0̂. By Lemma 1, x(τ) has no critical points in the interior, and
in particular by (1.3.2), for every point x in the interior, f̃(x) 6= 0̂. If there is a point x on the boundary
with f̃(x) = 0, then we are done. If not, then the mapping

(1.3.11) w(x) :=
f̃(x)∥∥∥f̃(x)

∥∥∥
is a continuous mapping from Ū into ∂U ⊂ Ū . By Brower’s fixed point theorem there exists x ∈ ∂U such
that

x = w(x) =
f̃(x)∥∥∥f̃(x)

∥∥∥ ,
or

(1.3.12) f̃(x) =
∥∥∥f̃(x)

∥∥∥x,
which we substitute into

(1.3.13)
dx

dτ
= 2

[
I − xx†

]
f̃(x),

which is what (1.3.2) reduces to on the boundary, to obtain

dx

dτ
= 2

[
I − xx†

] ∥∥∥f̃(x)
∥∥∥x = 2

∥∥∥f̃(x)
∥∥∥ [x−R2x

]
= 0̂,

since R2 = 1, and the result follows. �

In Chapter 2, we will consider the flow of (1.3.2) restricted to the boundary for its insight into behavior
of y for large ‖y‖. Recall that the system on the boundary is much simplified, in particular because on the
boundary, f̃(x) = fL(x); that is, the flow on the boundary depends only on the highest order terms in f .
The Jacobian at a critical point is a familiar tool for analysis of trajectories near a critical point, and this is
available here, as well. The following is proven in [35]

Proposition 5. The Jacobian of (1.3.2) at a critical point x ∈ ∂U is determined by the components
fL(x) and fL−1(x) and is given by

(1.3.14) Jij =
∂fL,i
∂xj

− xix†
∂fL
∂xj
− x†fLδij − 2

(
fL−1,i − x†fL−1xi

)
xj .
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As an example of the usefulness of these approaches, the following result proven in [35] gives the rate of
blow up of a solution y with a critical point in the direction p

Proposition 6. Suppose the eigenvalues λ1, . . . λk of the Jacobian (1.3.14) have negative real parts.
Then there is a k-parameter family of solutions of (1.2.2), with f(y) a polynomial of degree L, that each tend
to infinity in the direction p so that

‖y‖ ∼ c (tmax − t)−1/(L−1)
as t→ tmax.

In particular, y(t) is not defined for all time, so (1.2.2) is not complete.

For the Celestial Mechanics problem, the boundary is not an invariant set; nevertheless, critical points
and trajectories in the boundary will be shown in Chapter 3 to attract near-by trajectories; this corresponds
after uncompactifying to trajectories escaping to infinity. The flow on the boundary is very simple, and
trajectories can be given in closed form. The critical point set in U = B6N is given by

CP =

x
∣∣∣∣∣∣
N∑
j=1

x†jxj = 1, xN+j = 0

 ,

which is the compactification of the subset

yi =∞ai, yN+i = ai

of the ultra extended R6N , where the ai are constant 3-vectors.

1.4. Notation Glossary and Key Definitions

For any positive integer m, Om will denote the m by m matrix with all entries being zero, and Im is the
m by m identity matrix.

0m is the column m-vector with all entries zero. We can specify a diagonal matrix by listing its diagonal
elements:

diag {a1, a2, . . . , an} =



a1 0 0 . . . 0
0 a2 0 . . . 0

0 0
. . . 0 0

...
... 0

. . . 0
0 0 0 0 an

 .

We will often employ a construct known as a “vector of vectors”; we have defined the 3N -vector q, which

is composed of the N three-vectors q1, q2, . . . , qN , or more formally q =
(
q†1, q

†
2, . . . , q

†
N

)†
. So for example,

the square of the magnitude of q, which is the sum of the squares of the magnitudes of the qi, could be
expressed as

‖q‖2 = q†q =

N∑
i=1

q†i qi.

Because we often combine position and velocity into a state vector, we will sometimes use 6N -vectors and
matrices considered as composed of 3N -blocks. An illustrative example is given below in (4.1.13):

∆̇ = J0∆ + F =

 − 1
t I3N I3N − x∗x∗†

− 24A2
1

t2 G∗x∗† − 1
t

[
I3N + x∗x∗†

]
∆− 8A3

1

 1
t4x
∗x∗†G∗

1
t3G

∗

 .

∆ is a 6N -vector (like q), and the matrix J0 is 6N by 6N , defined in terms of four 3N by 3N blocks. Since x∗
and G∗ are 3N -vectors, x∗x∗† and G∗x∗† are 3N by 3N matrices, and this information defines J0 completely.
Similarly, F is a 6N -vector composed of the two 3N -vectors indicated.

We shall have occasion to use a multi-index, which is very neatly summarized in John’s PDE text [59],
wherein he credits Laurent Schwartz for the notation:

Definition. A multi-index α is a vector of non-negative integers, α = (α1, . . . , αn) , ai ∈ N.
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Given a multi-index α, we define the scalars

|α| = α1 + · · ·+ αn, α! = α1! . . . αn!,

and for a vector x ∈ Rn, the monomial xα = xα1
1 . . . xαnn . We can denote a quantity depending on n

nonnegative integers α1, . . . , αn : Cα = Cα1,...,αn . Each Cα may be numbers or vectors, depending on the
context. This enables us to express the generalm-th degree polynomial in x1, . . . xn as P (x) =

∑
|α|≤m Cαx

α.
Using the symbol Dk = ∂/∂xk, we can express the gradient operator D = (D1, . . . , Dn), so that the

gradient of a function u is given by
Du = (D1u, . . . ,Dnu) ,

and the general partial derivative operator is given by

Dα = Dα1
1 , . . . , Dαn

n =
∂|α|

∂xα1
1 . . . ∂xαnn

.

As an example of the usefulness of this notation, we can express the Taylor polynomial of degree m for a
function f(x) ∈ Cm as ∑

|α|≤m

Dαf(0)

α!
xα.

Definition. We say that a function f(t) is real analytic or simply analytic at a point t0 if for points x
with ‖t− t0‖ sufficiently small, the Taylor series for f converges to f(t).

f(t) =

∞∑
m=0

dmf(t0)

dtm
(t− t0)

m
.

We will be interested in convergent series expansions in 1/t for large t. Let z = 1/t; then a function g(t)
is analytic at ∞ if f(z) = g(1/z) is analytic at z = 0. This means in particular that for sufficiently large t,
g(t) is equal to its convergent series

g(t) =

∞∑
m=0

cm
tm
.

We will follow the conventional usage from asymptotic analysis as given by Olver [79]. Starting with a
known function φ(t), we describe the behavior as t→∞ of a function f(t) as follows:

Definition. The function f is said to be asymptotic to φ, f(t) ∼ φ(t), as t→∞, or φ is an asymptotic
approximation of f if f(t)/φ(t)→ 1. When there is no ambiguity, we will use the shorthand f ∼ φ.

The function f is of order less than φ, f(t) = o (φ(t)) , as t → ∞, or f is little o of φ if f(t)/φ(t) → 0.
When there is no ambiguity, we will use the shorthand f = o (φ).

The function f is of order no more than φ, f(t) = O (φ(t)) , as t→∞, or f is big O of φ if f(t)/φ(t) is
bounded. When there is no ambiguity, we will use the shorthand f = O (φ).

For example,
cos t = O(1), log t = o(t), t2 + t ∼ t2.

Highly desirable in applications are derivations with the symbol ∼ of asymptotic equivalence that provide
much more accurate information than the symbols o and O. Note in particular that the identically 0 function
is both o (tn) and O (tn), as t→∞, for all real n, so o and O provide less information than ∼. A comparison
between the formulas of our Theorem 29 and the formulas cited in Section 5.4 from Saari [94] and Marchal
and Saari [70] show the differences. However, we will have occasion to use the following equivalence relation

Definition. Two positive continuous functions f and g are said to be of the same order, f ≈ g if after
some time there exist constants A and B such that Ag(t) ≤ f(t) ≤ Bg(t). This is the same as saying both
f = O(g) and g = O(f), as t→∞.

For example, if f and g are polynomials of the same degree, then f ≈ g.
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Definition. The open unit ball Bk ⊂ Rk is {x| ‖x‖ < 1} and its boundary sphere Sk−1 is {x| ‖x‖ = 1}.
For our purposes starting in Chapter 3, k will be 6N , x is a vector of vectors as above, and we would express
the unit ball as

B6N =

x
∣∣∣∣∣∣
N∑
j=1

(
x†jxj + x†N+jxN+j

)
< 1

 .

Note also that we follow Pollard [86] in using log t to refer to the natural logarithm of t, rather than the
usual convention, ln t.

We will be dealing with differential equations in the unit ball, some of whose coefficients are given in
powers of 1/t. Since we are interested in long-term behavior, we will study these differential equations near
t =∞. This combination compels us to consider singularities of differential equations at ∞. There are two
legendary sources that use different names for the same characterization: regular or irregular singularities
(Wasow [114]) vs singularities of the first or second kind (Coddington & Levinson [20]).

Definition. If the matrix A(t) has a singularity at t0, then t0 is called a singular point for the system

(1.4.1) ẏ = A(t)y.

Points that are not singular are called ordinary. If A has a pole at t0, but is analytic in a punctured disc
0 < |t− t0| < a, a > 0, then A may be expressed as

A(t) = (t− t0)
−µ−1

Ã(t),

where µ ≥ 0 is an integer, Ã is analytic in the disk |t− t0| < a, and Ã (t0) 6= 0. Singularities are classified as
regular [114] or of the first kind [20] if µ = 0, and irregular or of the second kind if µ ≥ 1. The reason for
the distinction may be seen in the example

ẇ1 = w2

ẇ2 =
1

t
w1,

which has a regular singular point at t = 0. The system is clearly equivalent to the second order system
ẅ1 − w1/t = 0, which has an analytic solution in the disk |t− t0| < a given by the sum of the (obviously
convergent) series

w1 =

∞∑
k=0

tk+1

(k!)
2

(k + 1)
.

In general, linear systems with regular singularities have solutions, whereas the study of irregular singularities
is much more complicated.

In order to study the behavior of a system near t =∞, one makes the substitution t = 1/τ , z(τ) = y(1/τ),
B(τ) = A(1/τ). Starting with (1.4.1), we obtain

(1.4.2)
dz

dτ
= −B(τ)

τ2
z.

Then the character of the singularity of (1.4.1) at t =∞ is defined to be the character of the singularity of
(1.4.2) at τ = 0. Specifically, if A can be expressed in a Laurent series near t =∞,

A(t) =

−∞∑
n=µ−1

ant
n,

where aµ−1 6= 0, then the point t = ∞ is ordinary if µ < 0 and singular otherwise, regular if µ = 0 and
irregular if µ ≥ 1.



CHAPTER 2

Applications to the Lorenz and Other Polynomial Systems

As a warm up before tackling the Celestial Mechanics problem, I applied the compactification to the
celebrated Lorenz system [68]. This led to some results on the Lorenz system and the characterization of a
large class of complete quadratic systems, as well as the notion of a repeller at ∞, dual to the well-known
attractor, for the Lorenz system. The work described in this Chapter has been published as [40, 41, 42].

Among the polynomial systems, quadratic systems have attracted a large amount of attention because of
their important role in the mathematical sciences. These systems model diverse natural phenomenon, from
fluid mechanics to the motion of the constellations [3, 4, 6, 7, 23, 24, 46, 47, 55, 56, 60, 65, 68, 69, 83,
84, 102]. They share similar features with the competing species model and the Lotka-Volterra system; see
e.g., [24, 55, 56, 60, 65, 78, 83, 84]. About eight hundred papers on quadratic systems are mentioned in
[91]. The Lorenz system has been a celebrated quadratic system; see the original work of [68] and compare
with [22], [107], and [109]. It continues in recent years to be a source for simulation and generalizations.

In this Chapter, we specialize the polynomial compactification to the Lorenz system and rescale time
with dt

dτ = (1−R2)(1+R2). The resulting system extends smoothly to the boundary, which is invariant. The
system on the boundary is very simple and readily solved; we introduce a new class of solutions to the Lorenz
system. We then show that the boundary sphere repels inward, meaning that in the uncompactified system,
infinity does, too. The dual attractor to this repeller is the much-studied strange attractor for ρ > 0. In the
second Section we define the space of Lorenz-like quadratic systems and show that they comprise most of the
complete quadratic systems. We improve on the characterization given in Section 1.2 of complete systems
based on the Jacobian at critical boundary points. In the final Section we relate for Lorenz-like systems
the asymptotic behavior of the t-derivatives of y with the τ -derivatives of x. We also provide a bound on
t-derivatives of y in terms of powers of y.

2.1. The Lorenz System has a Global Repeller at Infinity

It is well known that the celebrated Lorenz system has an attractor such that every orbit ends inside a
certain ellipsoid in forward time. We complement this result by a new phenomenon and by a new interpre-
tation. We show that “infinity” is a global repeller for a set of parameters wider than that usually treated.
We construct in a compacted space, a unit sphere that serves as the image of an ideal set at infinity. This
sphere is shown to be the union of a family of periodic solutions. Each periodic solution is viewed as a limit
cycle, or an isolated periodic orbit when restricted to a certain plane. This work was published in [40].

Historically, most studies of the Lorenz system have been for positive values of the parameters. The
Lorenz system arises from a PDE in atmospheric dynamics on keeping three low order terms of a Fourier
series. Lorenz originally reported chaotic behavior for σ, ρ, β = 10, 28, 8/3 respectively. Sparrow extended
this work, cataloging chaotic behavior for many positive values of the parameters, and the monograph [107]
presents a substantial body of knowledge of the Lorenz system and is a testament to its important status.
Numerous studies of the Lorenz system are focused on the (compact) attractor. As noted above, we applied
the compactification to describe spatial infinity as a repeller for the Lorenz system. We observe that Lorenz
systems are very much not typical of nonlinear systems.

By a Lorenz system [68] we mean a system satisfying

(2.1.1)
ẏ1 = σ(y2 − y1)
ẏ2 = ρy1 − y2 − y1y3

ẏ3 = −βy3 + y1y2,

with σ > 0, β > 0, ρ ∈ R. Note that most authors deal only with Lorenz systems with positive parameters,
in which realm there is a global attractor. The existence of an attractor for ρ ≤ 0 is a corollary of the main
result of this Section:

15
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Theorem 7. For the Lorenz system, “infinity” is a global repeller.

To this end we construct in a compact space, a unit sphere that serves as the image of an ideal set at
infinity. This sphere is shown to be the union of a family of periodic solutions. Each periodic solution is
viewed as a limit cycle, or an isolated periodic orbit when restricted to a certain plane. As a by-product
of this work we provide a global picture of the vector field of the flow of the Lorenz system by augmenting
the conventional analysis of its finite critical points with equilibrium points at infinity. Compare e.g. with
[60, 107].

2.1.1. Compactification and Behavior at Infinity. To apply the compactification of Section 1.2,
we will compute a little. From (1.2.9), we have√

1 + 4r2 =
2R

r
− 1.

From (1.2.8), we have

√
1 + 4r2 =

1 +R2

1−R2
,

2

1 +
√

1 + 4r2
=
R

r
= 1−R2.

We also need the derivative

rṙ = y†ẏ = σ(y2 − y1)y1 + ρy1y2 − y2
2 − βy2

3

=
1

(1−R2)2

(
(σ + ρ)x1x2 − σx2

1 − x2
2 − βx2

3

)
= − S

(1−R2)2
,

with the last equality serving to define the quadratic form S. Differentiating both sides of the first equation
in (1.2.9) leads to

ẋ =
2ẏ

1 +
√

1 + 4r2
− 8rṙy
√

1 + 4r2
(
1 +
√

1 + 4r2
)2

= (1−R2)ẏ − 2rṙy(1−R2)2 1−R2

1 +R2

=
1

1−R2

 0
−x1x3

x1x2

+

 σ(x2 − x1)
ρx1 − x2

−βx3

+
2S

1 +R2

 x1

x2

x3

 .

This equation is singular on the boundary ∂U, so as in Section 1.2, we rescale time with

(2.1.2)
dt

dτ
= (1−R2)(1 +R2),

with the resulting equation for x(τ):

(2.1.3)

x′1x′2
x′3

 = (1 +R2)

 0
−x1x3

x1x2

+ (1−R4)

 σ(x2 − x1)
ρx1 − x2

−βx3

+ 2S(1−R2)

 x1

x2

x3

 ,
where ′ means d

dτ . It is easy to show that R satisfies the equation

(2.1.4)
d(1−R2)

dτ
= 2S(1−R2)2

It is shown in [35] that given initial data, the initial value problem (2.1.2-2.1.4) possesses a unique
solution on −∞ < τ < ∞ such that ‖x(τ)‖ ≤ 1. In particular, it is easy to see from (2.1.4) that the
boundary sphere R = 1 is invariant. Thus we may consider the flow on the boundary. Setting R = 1 in
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(2.1.3) reduces it to x′ = 2f2 = 2 (0,−x1x3, x1x2)
†, which is readily solved. There are critical points at

(±1, 0, 0)† and the entire circle x1 = 0. The non-constant solutions are circles in x2 and x3, with x1 fixed:

(2.1.5) x̂(τ) =

 a√
1− a2 cos(2aτ + δ)√
1− a2 sin(2aτ + δ)

 ,

where |a| ≤ 1, and δ is related to the starting point (a,
√

1− a2 cos δ,
√

1− a2 sin δ)†. Note that the critical
points are limiting cases of the circles as a→ ±1 or 0. For ease of visualization let us orient the axes so that
x1 “points up”. Then the periodic orbits on the unit sphere may be viewed as circles of constant latitude.
Note that the period is π/a so the motion is very slow near the equator, and the equator full of critical
points is a limiting case. If viewed looking down (that is, in along the positive x1-axis), orbits in the upper
hemisphere rotate counter-clockwise, and those in the lower hemisphere rotate clockwise.

Since ‖x̂(τ)‖ = 1, x̂ does not correspond under the compactification to anything known in the Lorenz
system. However, these orbits could be interpreted to correspond to ideal solutions y(t) ≡ ∞ that belong to
the ultra extended R3. In fact, to consider large ‖y‖ as ‖y‖ → ∞, we restrict our attention to the highest
order terms and solve the approximate Lorenz system

(2.1.6)
ẏ1 = 0
ẏ2 = −y1y3

ẏ3 = y1y2,

whose solution is easily seen to be (large) circles in y2 and y3, with y1 constant:

(2.1.7) ŷ(t) =

 C1

C2 cos(C1t+ δ)
C2 sin(C1t+ δ)

 ,

where C1, C2, and δ define the starting point ŷ(0) = (C1, C2 cos δ, C2 sin δ)†. The limits of these circles as
‖y‖ → ∞ do not exist in R3, but they can be understood as orbits in the ideal set ID, which “bounds” R3. Let
C2

1 +C2
2 be large. Then these periodic vector solutions pose a certain enigma. They cannot be interpreted as

natural approximations to solutions of the Lorenz system on an infinite time interval, because all solutions
must enter a certain ellipsoid in forward time. We choose C1 = ra and C2 = r

√
1− a2 for 0 < |a| < 1. Then

as r →∞, ŷ transforms under compactification to a circle on the unit sphere with constant first coordinate.
Choosing instead any finite C1 leads to a family of circles, all of which transform to the equator. Similarly,
choosing a finite C2 leads to a family of circles which transform to the poles.

We can compute the Jacobian at any point of the ball for Lorenz systems, and then specialize to the
boundary sphere. We have

Jij =
∂x′i
∂xj

=
∂

∂xj

(
(1 +R2)f2i + (1−R2)

[
(1 +R2)f1i + 2Sxi

])
=

∂R2

∂xj
f2i + (1 +R2)

∂f2i

∂xj
− ∂R2

∂xj

[
(1 +R2)f1i + 2Sxi

]
+(1−R2)

[
∂R2

∂xj
f1i + (1 +R2)

∂f1i

∂xj
+ 2

∂S

∂xj
xi + 2Sδij

]
.(2.1.8)

This will require a few steps:

∂S

∂xj
=

2σx1 − (σ + ρ)x2

2x2 − (σ + ρ)x1

2βx3

 ∂f2i

∂xj
=

 0 0 0
−x3 0 −x1

x2 x1 0

 ∂f1i

∂xj
=

−σ σ 0
ρ −1 0
0 0 −β


Parts of the first terms inside each set of square brackets in (2.1.8) cancel, with the result that the Jacobian
at any point is given by

2

 0 0 0
−x2

1x3 −x1x2x3 −x1x
2
3

x2
1x2 x1x

2
2 x1x2x3

+ (1 +R2)

 0 0 0
−x3 0 −x1

x2 x1 0
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−4R2

σ(x2 − x1)x1 σ(x2 − x1)x2 σ(x2 − x1)x3

(ρx1 − x2)x1 (ρx1 − x2)x2 (ρx1 − x2)x3

−βx1x3 −βx2x3 −βx2
3

− 4S

 x2
1 x1x2 x1x3

x1x2 x2
2 x2x3

x1x3 x2x3 x2
3



+(1−R4)

−σ σ 0
ρ −1 0
0 0 β

+ 2(1−R2)

2σx2
1 − (σ + ρ)x1x2 + S 2x1x2 − (σ + ρ)x2

1 2βx1x3

2σx1x2 − (σ + ρ)x2
2 2x2

2 − (σ + ρ)x1x2 + S 2βx2x3

2σx1x3 − (σ + ρ)x2x3 2x2x3 − (σ + ρ)x1x3 2βx2
3 + S

 ,

whose trace is (1−R2)[(1 +R2)(β − σ − 1) + 10S].
We first show that the system is not quasi-hyperbolic at the isolated critical points at infinity, the poles,

and after that we tackle non-isolated critical points on the equator. Setting x1 = ±1 and x2 = x3 = 0 in the
Jacobian on the sphere yields S = σ and

J(±1, 0, 0) =

 0 0 0
−4ρ 0 ∓2

0 ±2 0

 .

The characteristic polynomial is λ3 + 4λ, and the eigenvalues are {0, 2i,−2i}. So orbits near the pole (to
first order) are circles in the plane x1 = a, for any constant a near ±1. Evidently, the Lorenz system is not
quasi-hyperbolic at the poles. Now set x1 = 0 in the Jacobian on the sphere; S = x2

2 + βx2
3 and x2

2 + x2
3 = 1;

then the Jacobian on the equator is 0 −4σx2
2 −4σx2x3

−2x3 4(1− β)x2
2x

2
3 4(1− β)x2x

3
3

2x2 4(β − 1)x3
2x3 4(β − 1)x2

2x
2
3

 .

The characteristic polynomial is λ3 , which implies that no critical point ∞p , where p is on the equator, is
quasi-hyperbolic.

Definition. We say a surface in R3 is a periodicity surface for the system ẏ = f(y) if it is the union of
periodic orbits including critical points, and it is the maximal such object in some neighborhood of itself.

The discussion above may be summarized by:

Proposition 8. The ideal set ID is the pre-image of the boundary sphere ∂U, which is a periodicity
surface of the compactified Lorenz system (2.1.3). The periodic orbits are circles that are limit cycles when
restricted to any of the planes with x1 fixed, 0 < |x1| < 1.

Remark 9. There is great interest in Hilbert’s 16th problem asking for the number of limit cycles
in planar polynomial differential systems [5, 8, 16, 25, 36, 58, 82, 118]. Poincaré is credited with the
discovery of limit cycles at infinity of planar polynomial systems [85, 92], which are not part of the official
count of total limit cycles in the original Hilbert’s 16th problem. It is natural now to view the set ID as a
periodicity surface of the Lorenz system at infinity and to ask which dynamical systems possess a periodicity
surface at infinity. Much effort is invested in the classification of the finite critical points of autonomous
polynomial differential systems and the classification of the critical points at infinity, as well as their phase
portraits. See e.g. [4, 6] and their references.

2.1.2. Proof of Repulsion. If the circles on the boundary sphere can be shown to attract nearby
orbits (inside the unit ball) in backwards time τ , it should be possible to say something about asymptotic
behavior (in backwards time t) of the Lorenz equation. This suggests limit cycles at infinity. It is easy
enough to show; see e.g., [107], that all trajectories eventually enter a compact set and do not leave it. So
it seems plausible that in some sense ∞ is a global repeller dual to the well-known attractor. On the other
hand, 1

2
d
dt‖y‖

2 = −σy2
1 − y2

2 − βy2
3 + (σ + ρ)y1y2 takes both positive and negative values even for large ‖y‖.

Similarly, if the invariant circles on the boundary sphere are to be seen as repelling, we might hope that R
decreases along orbits, at least near the boundary sphere. It does not in general since S takes both positive
and negative values; however, it is easy to show by rotating the coordinates:

Proposition 10. For the region of parameter space 4σ > (σ+ρ)2, β > 0, S is positive, and R decreases
along trajectories, so the boundary sphere is a global repeller.
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Proposition 10 is interesting and illustrative, but not needed for the main result of this Section, which
we are ready to prove. Even though every eigenvalue of the Jacobian at every critical point on the boundary
sphere of the compactified Lorenz system has real part equal to zero, we will show that the sphere repels
nearby orbits.

Theorem 11. The ideal set at infinity ID is a global repeller in the following sense: If r(t1) = ‖y(t1)‖
is large enough, then there exists a t2 > t1 such that r(t1) > r(t2).

Proof. We show first that the critical points of the sphere (equator and poles) repel point-wise, and
second via the Poincaré map that the circles x̂ on the boundary repel nearby orbits. Observe that in the
plane of the equator, S = x2

2 + βx2
3, which is positive except at the origin, so that (R2)′ is negative. By the

continuity of S, there is a neighborhood of the equator (x1 small and x2
2 + x2

3 near 1) on which S is positive,
and (R2)′ is negative. Thus points near the equator move in forward time toward decreasing R; i.e., away
from the equator. Similarly, along the x1-axis, S = σx2

1, so (R2)′ is negative, and by continuity the poles
have neighborhoods all of whose points move away from the poles.

For large r, points y = (0, r cos θ, r sin θ)† transform to x = (0, R cos θ,R sin θ)† for R ∼ 1, and points
y = (r, 0, 0)† transform to x = (R, 0, 0)† for R ∼ 1. In both cases, we have shown that R′ < 0, so that
the initial point moves away from the boundary sphere. Thus ‖x‖ decreases, and by correspondence, ‖y‖
decreases.

Choose a ∈ (0, 1) (the proof for a < 0 is similar) and start with the circle x̂ in the plane x1 = a.
Choose any point on the circle as the starting point x̂(0). Choose a neighborhood N of x̂(0) in the plane
perpendicular to the circle at x̂(0). We will show that for a trajectory x starting sufficiently close to the
boundary sphere, at the time τ̄ of first return of x to N , we have R(τ̄) < R(0). We can rewrite (2.1.4) in
the convenient form

(2.1.9)
d
dτ (1−R2)

(1−R2)2
= 2S,

which can be integrated from τ = 0, yielding

1

1−R2(0)
− 1

1−R2(τ)
=

∫ τ

0

2S(x(τ))dτ.

We want to show that the left hand side is positive for τ = τ̄ , so it suffices to show that
∫ τ̄

0
S(x(τ))dτ > 0.

Since we can write

(2.1.10)
∫ τ̄

0

S(x)dτ =

∫ π/a

0

S(x̂)dτ +

∫ π/a

0

(
S(x)− S(x̂)

)
dτ +

∫ τ̄

π/a

S(x)dτ,

our result will now follow after we show that the first integral on the right is strictly positive, that S(x(τ))−
S(x̂(τ)) is small enough, and that the difference between τ̄ and π/a is small enough.

It is easy to compute the first integral: from (2.1.5) we have∫ π/a

0

S(x̂(τ))dτ =

∫ π/a

0

[
σa2 + (1− a2)(cos2 2aτ + β sin2 2aτ)− (σ + ρ)a

√
1− a2 cos 2aτ

]
dτ

=
π

a

[
σa2 +

1

2
(1− a2)(1 + β)

]
,

since the integrals of cos2 and sin2 over a period are equal to half the period.
The second integral in (2.1.10) is small by the continuous dependence of x on initial conditions and the

uniform continuity of S: Given any δ > 0 and any finite time T , we can choose η > 0, such that if the initial
points are close together, ‖x(0)− x̂(0)‖ < η, then for all τ ∈ [0, T ], ‖x(τ)− x̂(τ)‖ < δ. Since S is uniformly
continuous on the compact unit ball, given any ε > 0, we can choose δ > 0, such that if ‖x(τ)− x̂(τ)‖ < δ,
then |S(x(τ))− S(x̂(τ))| < ε.

The difference |τ̄−π/a| can be kept as small as desired, since we know again by the continuous dependence
on initial conditions if x(0) is close enough to x̂(0) that x(τ) stays near x̂(τ) for time longer than π/a.
Specifically, given ε > 0 and T > 0, we can choose η > 0, such that if ‖x(0) − x̂(0)‖ < η, we have
‖x(τ) − x̂(τ)‖ stays small for all time τ ∈ [0, T ]. Choosing T > π/a means that we can be sure x(τ) stays
close to x̂(τ) for τ = T > π/a. This forces τ̄ to be near π/a: |τ̄ − π/a| < ε.



2.2. COMPLETENESS OF QUADRATIC SYSTEMS 20

Now we choose T enough larger than π/a (T = 2π/a is plenty) that we are sure to have T > τ̄ , and
ε <

[
σa2 + 1

2 (1− a2)(β + 1)
]
/(π/a+M), where M is a bound for S on the compact unit ball. Now choose

η small enough that |S(x(τ))− S(x̂(τ))| < ε, for all τ ∈ [0, T ] and |τ̄ − π/a| < ε. Then∫ τ̄

0

S(x)dτ ≥
∫ π/a

0

S(x̂)dτ −
∫ π/a

0

|S(x)− S(x̂)|dτ −

∣∣∣∣∣
∫ τ̄

π/a

S(x)dτ

∣∣∣∣∣
≥ π

a

[
σa2 +

1

2
(1− a2)(β + 1)

]
− πε

a
− εM

> 0,

as was to be shown. We must also show that each “circle at infinity” ŷ as ‖ŷ‖ → ∞ repels nearby points.
Since dt

dτ = (1 +R2)(1−R2) > 0 if R2 < 1, τ increases iff t increases, so it suffices to show that a sufficiently
large initial point y(0) transforms under compactification to a point x(0) sufficiently close to the boundary
sphere that the above applies. We have that x(0) is the solution to y(0) = x(0)

1−R(0)2 . Choose x̂(0) = x(0)
‖x(0)‖ ,

then x̂(0)− x(0) = δx̂(0) for some small δ > 0. Then

‖x̂(0)− x(0)‖ = δ = 1−R(0) < 1−R(0)2 ≤ 1−R(0)2

R(0)
=

1

‖y(0)‖
,

so ‖x̂(0)− x(0)‖ may be made small enough by choosing ‖y(0)‖ large enough. �

2.2. Completeness of Quadratic Systems

A dynamical system is called complete if every solution of it exists for all t ∈ R. Let K be the dimension
of the vector space of quadratic systems on some Rn. The subset of complete quadratic systems is shown to
contain a vector subspace of dimension 2K/3. We provide two proofs, one by the Gronwall lemma and the
second by compactification that is capable of showing incompleteness as well. Characterization of a vector
subspace of complete quadratic systems is provided. The celebrated Lorenz system for all real ranges of its
parameters is shown to belong to this subspace. We also provide a sufficient condition that a system be
incomplete. This work was published in [41].

It would be beneficial to modeling if we would have criteria that will inform us which dynamical systems
are complete and which are not. It would be very helpful to know which systems possess global solutions
for all parameters involved for all time and for all initial values. This is so for more reasons than one. On
one hand, a system with solutions that blow up in finite time could be indicative of a break-down of a
model. On the other hand, modeling certain phenomenon by families of differential systems that are known
in advance to possess solutions that exist for all time has an obvious advantage. Criteria for systems that
are not complete are of great importance as well, because it helps to know the rate of blow up.

The purpose of this study is to determine in a sense to be made precise, how large is the subspace of
complete quadratic systems and to some extent to characterize this subspace. To this end we proceed with
some preliminary definition and notations.

Definition. A system of differential equations ẏ = f(y) (as well as the associated vector field f) is
called complete if every solution to the system exists for all t ∈ R.

Compared to the previous Section, we now extend the definition of a “Lorenz system” to mean a system
satisfying

(2.2.1)
ẏ1 = σ(y2 − y1)
ẏ2 = ρy1 − y2 − y1y3

ẏ3 = −βy3 + y1y2

for any real values of the parameters.
Let L = L(Rk) be the set of quadratic systems

(2.2.2) ẏ = f2(y) + f1(y) + f0, with y†f2(y) ≡ 0,

We call the autonomous system (2.2.2) a Lorenz-like system, because it generalizes certain features of the
classical Lorenz system. It is easy to see that all Lorenz systems are in L(R3).
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One of the previously unanswered questions in the literature is whether or not the Lorenz system is
complete for all real values of the parameters.1 We fill this gap and answer this question in the affirmative
for the much larger family of systems, to be named NAL. We have not found in the literature a proof of
global existence for the Lorenz system without restricting the parameters (σ, ρ, β) to be positive, but our
proof works for the much larger class. The earliest known completeness proof for the Lorenz system is by
means of a Lyapunov function, which is not readily available for most of the Lorenz-like systems in L. We
chose as a second method of proof the compactification of Section 1.2, which is able to answer not only
questions of completeness but is also able to address issues of incompleteness.

2.2.1. Completeness and Structure of Lorenz-like Systems. In this section we prove the main
theorem that shows as a corollary that the Lorenz system is complete for all its real parameters. This
completeness property is shared by a larger family of non autonomous quadratic systems that is denoted
below by NAL.

Definition. Let CB(R) be the family of scalar functions continuous and bounded on R. Let f2(t, y) be a
column vector in Rk whose components are quadratic forms: f2(t, y)n = (y†f2n(t)y), with each f2n(t) a lower
triangular matrix with entries in CB(R). Let f1(t, y) = f1(t)y, where f1(t) is a k × k matrix with entries in
CB(R), and let f0 = f0(t) be a column vector in Rk with entries in CB(R). Then NAL (Non-Autonomous
Lorenz-like) is the class of systems

(2.2.3) ẏ = f2(t, y) + f1(t, y) + f0(t), with y†f2(t, y) = 0.

The completeness of NAL is given in the theorem below. It also includes a more detailed description of
the structure of L that could explain the orthogonality property in (2.2.2) as a source of the completeness.

Let N be the linear space of all (at most) quadratic systems on Rk. The main result of our study is the
following.

Theorem 12. i) All systems in NAL are complete. ii) dim(L) = k
3 (k + 1)(k + 2) = 2

3 dim(N ) and for
systems in L the elements f ij2n of the lower triangular matrix f2n satisfy the following relations:

(2.2.4) fnn2n = 0, for n = 1, 2, . . . , k,

for j 6= n, fnn2j + f jn2n + fnj2j = 0(2.2.5)

for j < i < n, f ij2n + fnj2i + fni2j = 0(2.2.6)

Note that in the second equation, either the second or third term is 0 because the matrix is triangular.
Proof. We provide two different proofs. The first proof is by Gronwall’s lemma. By virtue of (2.2.3)

we have d(y†y)
dt = 2[y†f1(t, y) + y†f0(t)]. It is then easily verified that there exist two constants m and M

such that

(2.2.7) my†y ≤ d(y†y)

dt
≤M y†y.

Let y(t0) be an initial value for (2.2.3). Then, by Gronwall’s inequality or by a straightforward integration
we have

(2.2.8) y†(t0)y(t0) em(t−t0) ≤ y†(t)y(t) ≤ y†(t0)y(t0) eM(t−t0),

which implies that (2.2.3) is complete.
A second proof utilizes compactification. The transformation y(t) = x(t)

1−x†(t)x(t)
, takes Rk into the unit

ball with inverse x = 2y

1+
√

1+4y†y
. Let R2 = x†x. It is easily verified [35] that with f̃ = (1 − R2)2f0 + (1 −

R2)f1(x) + f2(x), the system (2.2.3) transforms into

dx

dt
=

(1 +R2)f̃(x, (1−R2))− 2(x†f̃(x, (1−R2)))x

(1 +R2)(1−R2)
(2.2.9)

=
1

1−R2
f2 + f1 −

2x†f1

1 +R2
x+ (1−R2)

(
f0 −

2x†f0

1 +R2
x

)
,

1A proof that the Lorenz system with positive parameters is “complete in forward time” (that is, that all solutions exist
for all time t > 0) can be found in [107] using a Lyapunov function. A proof that it is “complete in backward time” (using the
same Lyapunov function) due to Meisters [74] may also be found in [22].
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from which we have
d(1−R2)

dt
=
−2(x†f̃(x, (1−R2)))

(1 +R2)
.

By virtue of (2.2.3) we have

(2.2.10) x†f̃(x, (1−R2)) = [(1−R2)x†f0 + x†f1(x)](1−R2).

Hence 1−R2(t) = (1−R2(t0)) exp−2
∫ t
t0

[(1−R2)x†f0 + x†f1(x)]ds. It is evident that R2(t) < 1 for t finite
since the integrand is bounded. Thus, ‖y(t)‖ <∞, and completeness follows.

Turning to the second part of the Theorem, let f(y)n be the nth component of f(y). We can expand
each component from (2.2.2),

f(y)n =

k∑
i=1

i∑
j=1

f ij2n yiyj +

k∑
i=1

f i1n yi + f0n.

By counting parameters we see that dim(N ) = K = k
2 (k + 1)(k + 2), and N is naturally isomorphic to RK .

L is the linear subspace defined by the condition y†f2 = 0, which may be written as

(2.2.11)
k∑

n=1

k∑
i=1

i∑
j=1

f ij2n yiyjyn = 0.

We collect terms and count the resulting equations. Clearly each f ii2i = 0, since each y3
i appears only once in

(2.2.11); this is k equations.
There are k(k−1) distinct terms of the form yry

2
s , since there are k choices of r and then k−1 choices of

s, yielding k(k− 1) equations. The constraint equations can be found by noting the values of the subscripts
that cause yiyjyn = yry

2
s (note j < i):

i = r =⇒ j = n = s for s < r

j = r =⇒ i = n = s for r < s

n = r =⇒ i = j = s.

The resulting constraint equations may be written as

fss2r + frs2s (if s < r) + fsr2s (if r < s) = 0.

There are
(
k
3

)
= k

6 (k−1)(k−2) distinct terms of the form yrysyt, yielding
(
k
3

)
equations. We take r < s < t,

and by the analogous analysis we can have yiyjyn = yrysyt as follows:

i = t =⇒ j = s, n = r or j = r, n = s

i = s =⇒ j = r, n = t.

The resulting constraint equations may be written as

f ts2r + f tr2s + fsr2t = 0.

Since there are k + k(k − 1) + k
6 (k − 1)(k − 2) = k

6 (k + 1)(k + 2) constraint equations defining L, we have
dim(L) = k

3 (k + 1)(k + 2), and the ratio is 2
3 . �

Example 13. The case k = 2: N (R2) is 12-dimensional; the general quadratic polynomial vector field
on R2 has the form (

f11
21 y

2
1 + f21

21 y1y2 + f22
21 y

2
2 + f1

11y1 + f2
11y2 + f01

f11
22 y

2
1 + f21

22 y1y2 + f22
22 y

2
2 + f1

12y1 + f2
12y2 + f02

)
.

It is helpful to view f2(y) (the first three summands in each row of the matrix) as the vector of quadratic
forms:

f(y)2 =


(
y1 y2

)( f11
21 0

f21
21 f22

21

)(
y1

y2

)
(
y1 y2

)( f11
22 0

f21
22 f22

22

)(
y1

y2

)
 .
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L(R2) is constrained by the condition y†f2 = 0, which is

f11
21 y

3
1 + f21

21 y
2
1y2 + f22

21 y1y
2
2 + f11

22 y
2
1y2 + f21

22 y1y
2
2 + f22

22 y
3
2 = 0.

On collecting terms, we find four constraint equations on the coefficients:

f11
21 = f22

22 = 0

f22
21 + f21

22 = 0

f11
22 + f21

21 = 0

so the quadratic forms reduce to

f2 =


(
y1 y2

)( 0 0

a b

)(
y1

y2

)
(
y1 y2

)( −a 0

−b 0

)(
y1

y2

)
 ,

and the general system in L has the form:(
ay1y2 + by2

2 + f1
11y1 + f2

11y2 + f01

−ay2
1 − by1y2 + f1

12y1 + f2
12y2 + f02

)
where a and b are the free parameters a = f21

21 = −f11
22 and b = f22

21 = −f21
22 .

2.2.2. Some incomplete systems. It goes without saying that the determination whether a qua-
dratic system is incomplete is also a problem of considerable importance. In the sequel we will make a few
observations regarding such systems and conclude with the formulation of a theorem that will demonstrate
why compactification is central to proving incompleteness.

Under the isomorphism mentioned in the proof of theorem, N inherits an inner product, the Euclidean
inner product on RK , allowing us to define L⊥, the orthogonal complement of L ⊂ N . L(R2)⊥ is four-
dimensional and spanned by the basis elements:(

y2
1

0

)
,

(
0
y2

2

)
,

(
y1y2

y2
1

)
,

(
y2

2

y1y2

)
.

The first two are readily seen to represent the incomplete systems

ẏ1 = y2
1

ẏ2 = 0
and

ẏ1 = 0
ẏ2 = y2

2
.

The linear span of the third basis element is the set of systems of the form

ẏ1 = cy1y2

ẏ2 = cy2
1 ,

for any constant c. If c 6= 0, then the system with initial condition y(0) = (1/c, 1/c)† has a solution
y1(t) = y2(t) = 1

c(1−t) , which cannot be extended to t = 1. The span of the fourth basis element may be
analyzed similarly.

Example 14. The case k = 3: N (R3)⊥ is ten-dimensional and spanned by the basis elements: y2
1

0
0

 ,

 0
y2

2

0

 ,

 0
0
y2

3

 ,

 y1y2

y2
1

0

 ,

 y2
2

y1y2

0

 ,

 y1y3

0
y2

1

 ,

 y2
3

0
y1y3

 ,

 0
y2y3

y2
2

 ,

 0
y2

3

y2y3

 ,

 y2y3

y1y3

y1y2

 .

As for k = 2, the first three are easily seen to represent incomplete systems, and the next six are similar to
the third and fourth elements from the k = 2 example. The linear span of the final basis element is the set
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of systems of the form

ẏ1 = cy2y3

ẏ2 = cy1y3

ẏ3 = cy1y2,

for c any constant. If c 6= 0, then the system with initial condition y(0) = (1/c, 1/c, 1/c)† has a solution
y1(t) = y2(t) = y3(t) = 1

c(1−t) , which cannot be extended to t = 1.
These examples may be generalized as a proposition.

Proposition 15. The linear space L⊥=L(Rk)⊥ has a basis all of whose elements represent incomplete
systems.

Proof. In terms of the quadratic forms f2n, L⊥ is the span of the following:

{fnn2n = 1}n=1, 2, ..., k,

{f ii2n = fni2i = 1}i<n=1, 2, ..., k,

{f ii2n = f in2i = 1}n<i=1, 2, ..., k

{f ij2n = f in2j = f jn2i = 1}n<j<i.

This translates into a basis for L⊥ in terms of systems of equations:

{ẏn = y2
n}n=1, 2, ..., k,

{
ẏi = yiyn
ẏn = y2

i

}
i6=n=1, 2, ..., k

,

{
ẏn = yjyi
ẏj = ynyi
ẏi = ynyj .

}
n<j<i

The specific systems given in the examples for k = 2 and k = 3 above work in the general case. Note as
well that any system in the linear span (excluding the trivial system) of the first k basis elements is not
complete. �

Broadening the focus now to polynomial systems, the fact that compactification is central to under-
standing completeness as well as incompleteness is seen from the following theorem. We cannot see how the
Gronwall lemma can be used to prove incompleteness.

Theorem 16. Given the polynomial system ẏ = f(y), let p be a critical point of the compactified system

(2.2.12)
dx

dτ
= (1 +R2)f̃ − 2

(
x†f̃

)
x

such that p†p = 1. Consider the Jacobian of the compacted system about these critical points. A necessary
condition for a polynomial dynamical system to be complete is that the eigenvalues of the Jacobians about all
these critical points be purely imaginary.

Proof. Suppose p is a critical point of the compactified system (2.2.12) at which the Jacobian has
r > 0 eigenvalues α1, . . . , αr with negative real parts. [If the real parts of the eigenvalues α1, . . . , αr are
positive, then the argument to follow can be made to the time-reversed flow instead]. Then per Chapter IX
of [48], there is an r-parameter family of solutions x(τ) that approach the critical point exponentially; for
every solution in the family there is a τ0 such that for all τ ≥ τ0
(2.2.13) ‖x(τ)− p‖ ≤ b1e−mτ ,

for some constant b1 ≥ 0 and m > 0. Let us turn to the quantity 1−R2. Near p, ‖p‖ = 1,

1−R2(τ) = 1−
n∑
i=1

(xi − pi + pi)
2 = −

n∑
i=1

[2pi(xi − pi) + (xi − pi)2]

≤ 2‖x(τ)− p‖+ ‖x(τ)− p‖2

≤ b2e
−mτ(2.2.14)

for some b2 ≥ 0 and all τ ≥ τ0. Corresponding to the family of solutions of the compactified system, there
is an r-parameter family of solutions of the uncompactified system. Suppose a solution of this family exists
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on [t0, tmax) where the initial point t0 corresponds to τ = 0, and tmax ≤ ∞. We will show that tmax is finite.
Recall that by inverting dτ

dt we have

(2.2.15) tmax − t0 =

∫ ∞
0

(1−R2)L−1(1 +R2) dη = I1 + I2,

where

I1 :=

∫ τ0

0

(1−R2)L−1(1 +R2) dη, I2 :=

∫ ∞
τ0

(1−R2)L−1(1 +R2) dη.

By the continuity of 1−R2(τ) on [0, τ0] we conclude that I1 is bounded. On the interval [τ0,∞) we have by
(2.2.14) that

I2 =

∫ ∞
τ0

(1−R2)L−1(1 +R2) dη ≤
∫ ∞
τ0

2b2e
−(L−1)mτ dη =

2b2
(L− 1)m

e−mτ0 .

This concludes the proof that tmax is finite. �

The completeness property is expected to be the exception rather than the rule in polynomial systems
of high degree. It would be nice to characterize all the nonlinear polynomial differential systems that are
incomplete. The examples above suggest that the “majority” of elements (perhaps all nontrivial elements)
in L(Rk)⊥ are incomplete. See [35] for some incompleteness results for generic polynomial k-dimensional
systems using compactification.

A differential system need not belong to NAL in order to be complete, as the following planar quadratic
example shows. Let p(y2) be a linear function and q(y2) a quadratic function of y2. Let a, b be real numbers.
Then the system

y′1 = p(y2)y1 + q(y2), y′2 = ay1 + b.

is a complete quadratic system, but does not necessarily belong to L or to NAL.

Remark 17. Completeness could be beneficial to the study of singularities of a dynamical system in
the complex plane [106, 109]. In particular, [109] entails the computation of infinitely many coefficients
of a Laurent or ψ-series expansion. Because of the completeness of systems in L, our analysis predicts that
any such expansion for any real parameters must involve complex coefficients. This is corroborated for the
Lorenz system by [109].

2.3. Fields of Lorenz-like Systems Near ∞

We study by differential geometry the neighborhood of the unit sphere at infinity and derive conclusions
on Lorenz-like systems. We study the vector fields dly

dtl
, l = 1, 2, ..., for systems in L when the norm of y is

large and becomes unbounded. We apply this knowledge to differential geometry for trajectories far from
the origin and show that the mutually orthogonal triplet of differential geometry — T, N, B — is near
that of the compactified system, and that both triplets approach that of the strictly second-degree system
ẏ = f2(y). Lastly, we show a similar relationship between higher order derivatives of systems in L and their
compactifications.

A main purpose of our analysis is to show how the behavior of the compactified system on the boundary
sphere indicates behavior of solutions and their derivatives of the original system for large ‖y‖. This is helpful
since the compactified system near R = 1 is usually much simpler than the original system. The asymptotic
behavior of the order of growth of the higher derivatives; dly

dtl
, l = 0, 1, 2, ... follows, under appropriate

conditions, as a bonus from a formula that provides the asymptotic directions of the derivatives. This result
was published in [42] with a sketch of the proof, which is provided here in full.

We first exhibit the relevance of the highest-order system ẏ = f2(y) to the original system through
analysis of the moving triple T, N, B of unit tangent, normal, and binormal vectors. We can show that
Ty, Ny, By for trajectories in L(R3) and those of the compactified trajectories Tx, Nx, Bx approach those
of ẏ = f2 as R→ 1. The continuity properties of the compactified differential equation on the compact unit
ball then imply that for large ‖y‖, y looks a lot like the solutions of ẏ = f2(y). In fact, the relevance of the
compactified system extends to all orders of derivatives. We stress that we do not expect such correspondence
of vector fields for systems not in L.
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We assume that the system ẏ = f(y), f ∈ L is compactified as above, and the time is rescaled via
dt
dτ = (1−R2)(1 +R2), and the compactified, rescaled system is

(2.3.1) x′ = (1 +R2)f2 + (1−R2)
[
(1 +R2)f1 − 2

(
x†f1

)
x
]

+ (1−R2)2
[
(1 +R2)f0 − 2

(
x†f0

)
x
]
.

From (2.3.1), we can write the equation for R2,
1

2
(R2)′ = x†x′ = (1−R2)

(
(1 +R2)x†f1 − 2x†f1R

2
)

+(1−R2)2
(
(1 +R2)x†f0 − 2x†f0R

2
)

= (1−R2)2
(
x†f1 + (1−R2)x†f0

)
(1−R2)′ = 2S(1−R2)2, with S = −x†f1 − (1−R2)x†f0.(2.3.2)

For the strictly second degree polynomial system ẏ = f2(y) in L(R3), a direct calculation shows that

(2.3.3) T2 =
f2

‖f2‖
, N2 =

‖f2‖2[Df2]f2 −
(
f†2 [Df2]f2

)
f2∥∥∥‖f2‖2[Df2]f2 −

(
f†2 [Df2]f2

)
f2

∥∥∥ , B2 =
f2 × ([Df2]f2)

‖f2 × ([Df2]f2)‖
,

where we use the notation [Dfi] for the Jacobian of the vector function fi. The expressions in (2.3.3) are
given as functions of the variable y; however, it is easy to see that the values of the expressions are not
changed if they are expressed in terms of x. Unless otherwise indicated, all subsequent occurrences of fi and
[Dfi] are to be understood as fi(x) and [Dfi(x)].

Theorem 18. Let y ∈ L(R3). Then the triples Ty, Ny, By and Tx, Nx, Bx coincide with T2, N2, B2, plus
terms of order O

(
1−R2

‖f2‖

)
as R2 → 1, away from the zeros of f2.

Proof. To compute the first order terms of the moving triple for x and for y, we will need an expression
for 1/‖x′‖.

(2.3.4) ‖x′‖2 = (1 +R2)2‖f2‖2 + 2(1 +R2)2(1−R2) f†1f2 +O(1−R2)2.

From this we can approximate

1

‖x′‖
∼ 1

(1 +R2)‖f2‖

(
1− (1−R2)

f†1f2

‖f2‖2

)
+O

(
(1−R2)2

‖f2‖2

)
, as R2 → 1.

Now since Tx = x′/‖x′‖ we have

Tx =
f2

‖f2‖
+

(1−R2)

‖f2‖

(
f1 −

2(x†f1)x

1 +R2
− f†1f2

‖f2‖2
f2

)
+O

(
(1−R2)2

‖f2‖2

)
as R2 → 1.

The first term on the right is T2.
To compute Ty, we start with y = (1−R2)−1x and differentiate

ẏ =
dy

dτ

dτ

dt

=

(
(1−R2)−1

)′
x+ (1−R2)−1x′

(1−R2)(1 +R2)

=
−2Sx+ (1−R2)−1

[
(1 +R2)f2 + (1−R2)

(
(1 +R2)f1 − 2(x†f1)x

)]
(1−R2)(1 +R2)

+O(1−R2)

= (1−R2)−2
(
f2 + (1−R2)f1

)
+O(1−R2),(2.3.5)

the third equality follows from (2.3.1) & (2.3.2), and the fourth from the fact that S + x†f1 ∼ O(1 − R2).
The unit tangent vector Ty to a trajectory is ẏ divided by its magnitude:

Ty =
f2 + (1−R2)f1

‖f2 + (1−R2)f1‖
+O(1−R2)2.

Now the square of the denominator is

‖f2‖2 + 2(1−R2) f†1f2 +O(1−R2)2.
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It follows that we can approximate 1/‖f2 + (1−R2)f1‖ as

1

‖f2‖

(
1− (1−R2)

f†1f2

‖f2‖2

)
+O

(
(1−R2)2

‖f2‖2

)
,

so that

Ty ∼
1

‖f2‖

[
f2 + (1−R2)

(
f1 −

f†1f2

‖f2‖2
f2

)]
+O

(
(1−R2)2

‖f2‖2

)
.

Putting it together, we have

Ty = Tx +
2(1−R2)(x†f1)x

(1 +R2)‖f2‖
+O

(
(1−R2)2

‖f2‖2

)
.(2.3.6)

It follows that both Ty and Tx approach T2 as (1−R2)/‖f2‖ → 0.
Now we compute the low order terms of Nx and Ny. First we need

x′′ = (1 +R2)f ′2 + (1−R2)
[
(1 +R2)f ′1 − 2(x†f1)′x− 2(x†f1)x′

]
= (1 +R2)2[Df2]f2 + (1−R2)(1 +R2)[Df2]

(
(1 +R2)f1 − 2(x†f1)x

)
+(1−R2)

[
(1 +R2)2[Df1]f2 − 2(x†f1)′x− 2(1 +R2)(x†f1)f2

]
+O(1−R2)2,

since f ′i = [Dfi]x
′. Now Nx is the unit vector in the direction ‖x′‖2x′′ − x′†x′′ x′. From (2.3.4), using

[Dfi]x = ifi, we can write

‖x′‖2x′′ = (1 +R2)4[Df2]f2 + (1−R2)(1 +R2)3×

{
‖f2‖2

[
(1 +R2) ([Df1]f2 + [Df2]f1)− 6(x†f1)f2 − 2(f†2f1)x− 2

(
x†[Df1]f2

)
x
]

+ 2(f†2f1)[Df2]f2

}

plus higher order terms. The zero order term of x′†x′′ is (1 +R2)3f†2 [Df2]f2 (which vanishes for the Lorenz
system), and the first order term is

(1−R2)(1 +R2)2
(

(1 +R2)
(
f†2 [Df1]f2 + f†2 [Df2]f1

)
− 4‖f2‖2(x†f1) + (1 +R2) f†1 [Df2]f2

)
.

Putting the pieces together, the direction for Nx is

(1 +R2)‖f2‖2[Df2]f2 −
(
f†2 [Df2]f2

)
f2 + (1−R2)×{

‖f2‖2
[
(1 +R2) ([Df1]f2 + [Df2]f1)− 4(x†f1)f2 − 2f†2f1 x− 2

(
x†[Df1]f2

)
x
]

+2(f†2f1)[Df2]f2 − (1 +R2)
(
f†2 [Df1]f2 + f†2 [Df2]f1

)
f2 − (1 +R2)

(
f†1 [Df2]f2

)
f2

}
,

which matches N2 to lowest order.
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Ny is the unit vector in the direction ny = ‖ẏ‖2ÿ − ẏ†ÿ ẏ. From (2.3.5), we have

(1−R2)(1 +R2)ÿ = [f2 + (1−R2)f1]′(1−R2)−2 + [f2 + (1−R2)f1][(1−R2)−2]′

=
(
[Df2]x′ + (1−R2)[Df1]x′ − 2(x†f1)(1−R2)2f1

)
(1−R2)−2

+[f2 − (1−R2)f1]4(x†f1)(1−R2)−1

= [Df2]
[
(1 +R2)f2 + (1−R2)

(
(1 +R2)f1 − 2(x†f1)x

)]
(1−R2)−2 − 2(x†f1)f1

+[Df1][(1 +R2)f2 + (1−R2)((1 +R2)f1 − 2(x†f1)x)](1−R2)−1

+4(x†f1)f2(1−R2)−1 + 4(x†f1)f1

=
1 +R2

(1−R2)2
[Df2]f2 +

1 +R2

1−R2
([Df2]f1 + [Df1]f2)

+
−2(x†f1)[Df2]x

1−R2
+ 2(x†f1)f1 + (1 +R2)[Df1]f1

−2(x†f1)[Df1]x+
4(x†f1)f2

1−R2

(1−R2)3ÿ = [Df2]f2 + (1−R2) ([Df1]f2 + [Df2]f1) +O(1−R2)2(2.3.7)

(1−R2)7‖ẏ‖2ÿ = ‖f2‖2[Df2]f2 + (1−R2)
(

2f†1f2 [Df2]f2 + ‖f2‖2 ([Df1]f2 + [Df2]f1)
)

+O(1−R2)2.

For the other part of ny,

(1−R2)5ẏ†ÿ = f†2 [Df2]f2 + (1−R2)
(
−(x†f1)

(
f†1 [Df2]f2

)
+
(
f†2 [Df1]f2 + f†2 [Df2]f1

))
+O(1−R2)

(1−R2)7ẏ†ÿ ẏ =
(
f†2 [Df2]f2

)
f2 + (1−R2)

(
f†2 [Df1]f2 + f†2 [Df2]f1 + f†1 [Df2]f2

)
f2 +O(1−R2)2,

so that

(1−R2)7ny = ‖f2‖2[Df2]f2 −
(
f†2 [Df2]f2

)
f2 + (1−R2)

×
{

2f†1f2 [Df2]f2 + ‖f2‖2 ([Df1]f2 + [Df2]f1)

−
(
f†2 [Df1]f2 + f†2 [Df2]f1

)
f2 −

(
f†1 [Df2]f2

)
f2

}
+O(1−R2)2

It follows that both Ny and Nx approach N2 as (1−R2)→ 0. Since B = T ×N , we also have that By and
Bx approach B2. �

We develop an interesting relationship between t-derivatives of y for large ‖y‖ and τ -derivatives of x
near the boundary sphere, but away from critical points and zeros of higher derivatives. We show that for
systems in L, the vector fields of higher derivatives of y with respect to t have the same direction as the
corresponding derivatives of x with respect to τ for ‖y‖ large enough. We stress that this property need not
hold for general quadratic systems.

Proposition 19. Let y ∈ L. Then, for all integers n ≥ 0, as ‖y‖ → ∞ or R2 → 1−, we have

(2.3.8) (1−R2)n+1(1 +R2)ndny/dtn = dnx/dτn +O(1−R2).

Moreover, the order of growth of the derivatives dny/dtn is given by

(2.3.9) ‖dny/dtn‖ ≤Mn ‖y‖n+1
, n = 0, 1, 2, ...,

where Mn are certain constants. Furthermore, for each n, let Sn be the set of points in the boundary where
dnx/dτn = 0. Then ∀ε > 0, there is a neighborhood Un of Sn in the closed unit ball, with m(Un) < ε, such
that for x ∈ the complement of Un and ‖y‖ → ∞ or R2 → 1−we have

(2.3.10)
dny/dtn

‖dny/dtn‖
=

dnx/dτn

‖dnx/dτn‖
+O(1−R2).
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Proof. We first prove (2.3.8) by induction. The conclusions in (2.3.9) and (2.3.10) follow from (2.3.8)
and are left as an exercise to the reader. The case n = 0 follows from the definition of x, and we suppose
the formula holds for n− 1. Leibniz’ rule gives

dnx

dtn
=

dn

dtn
[
(1−R2)y

]
=

n∑
i=0

(
n

i

)
dn−i(1−R2)

dtn−i
diy

dti
,

where
(
n
i

)
is the binomial coefficient n!

i!(n−i)! . Separating the two terms for i = n and i = n− 1 from the sum
gives

(2.3.11) (1−R2)
dny

dtn
=
dnx

dtn
− nd(1−R2)

dt

dn−1y

dtn−1
−
n−2∑
i=0

(
n

i

)
dn−i(1−R2)

dtn−i
diy

dti
.

The induction hypothesis allows substitution for all the derivatives of y on the right, but we need two
additional results, both of which are shown by induction.

First, for n ≥ 0, we have

(2.3.12) (1−R2)n(1 +R2)n
dnx

dtn
=
dnx

dτn
+ (1−R2)Dn−1x,

where Dn is an nth degree polynomial in d
dτ , with rational (in x) continuous coefficients in the unit ball.

The cases n = 0 and 1 are trivial; D−1 and D0 are identically zero. Now assume n > 1. Note that

(2.3.13)
d

dτ
(1−R2)n = 2nS(1−R2)n+1.

So we have by the induction hypothesis

dnx

dtn
=

d

dτ

(
dn−1x

dtn−1

)
dτ

dt

=
d

dτ

[
(1−R2)1−n(1 +R2)1−n

(
dn−1x

dτn−1
+ (1−R2)Dn−2x

)]
(1−R2)−1(1 +R2)−1

= (1−R2)−n(1 +R2)−n
[
dnx

dτn
+ 2S(1−R2)2Dn−2x+ (1−R2)

d(Dn−2x)

dτ

]
+2(n− 1)SR2(1−R2)1−n(1 +R2)−n−1

[
dn−1x

dτn−1
+ (1−R2)Dn−2x

]

(1−R2)n(1 +R2)n
dnx

dtn
=

dnx

dτn
+ (1−R2)

[
2S(1−R2)Dn−2x+

d(Dn−2x)

dτ

]
+

2(n− 1)SR2(1−R2)

1 +R2

[
dn−1x

dτn−1
+ (1−R2)Dn−2x

]
=

dnx

dτn
+ (1−R2)Dn−1x,(2.3.14)

where

(2.3.15) Dn−1x = 2S(1−R2)Dn−2x+
d(Dn−2x)

dτ
+

2(n− 1)SR2

1 +R2

[
dn−1x

dτn−1
+ (1−R2)Dn−2x

]
.

It is easy to see that Dn−1 is as claimed.
Second, for n ≥ 1,

(2.3.16) (1−R2)n−2(1 +R2)2n−1 d
n(1−R2)

dtn
= Pn(x),

where Pn(x) is a polynomial in x.
The case n = 1 is easy:

d(1−R2)

dt
=
d(1−R2)

dτ
(1−R2)−1(1 +R2)−1 =

2S(1−R2)

1 +R2
,
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so that

(1−R2)−1(1 +R2)
d(1−R2)

dt
= 2S,

and we take P1 = 2S. Now assume n ≥ 2. Then we have
dn(1−R2)

dtn
=

d

dτ

(
dn−1(1−R2)

dtn−1

)
dτ

dt

=
d

dτ

[
(1−R2)3−n(1 +R2)3−2nPn−1(x)

]
÷ (1−R2)(1 +R2),

by the induction hypothesis. The τ -derivative via the product rule is

(3− n)2S(1−R2)4−n(1 +R2)3−2nPn−1(x)

+(1−R2)3−n(−2S)(3− 2n)(1 +R2)2−2n(1−R2)2Pn−1(x)

+(1−R2)3−n(1 +R2)3−2n dPn−1(x)

dτ

= (1−R2)3−n(1 +R2)2−2nPn(x),

from which the result follows immediately. Note that if n = 3, the first of the three terms in the above sum
(before the =) is not present, but this does not affect the proof.

Returning to (2.3.11), we substitute using the induction hypothesis, as well as (2.3.12 & 2.3.16):

(1−R2)
dny

dtn
=

dnx
dτn + (1−R2)Dn−1x

(1−R2)n(1 +R2)n
− 2S(1−R2)

1 +R2

nd
n−1x
dτn−1 + (1−R2)Dn−2x

(1−R2)n(1 +R2)n−1

−
n−2∑
i=0

(
n

i

)
(1 +R2)1−2n+2i

(1−R2)n−i−2
Pn−i(x)

dix
dτ i + (1−R2)Dix

(1−R2)i+1(1 +R2)i
.

Multiplying through by (1−R2)n(1 +R2)n completes the proof. �

Remark 20. The reason that Lorenz-like systems distinguish themselves from other nonlinear systems
so that the vector fields dlx

dτ l
and dly

dtl
, l = 0, 1, 2, ... are asymptotically parallel to each other for large ‖y‖ can

be traced back to the relation (2.3.13), which again is a result of the orthogonality in (2.2.2). Recall that
orthogonality featured also in the completeness result. It basically says that in a Lorenz-Like system y†f(y)
does not grow faster than ‖y‖2 as ‖y‖ → ∞.

For the Lorenz system or any system with x′ proportional to (0,−x3, x2)†, it is easy to see that

(2.3.17) Tx̂ =
1√

x2
2 + x2

3

 0
−x3

x2

 , Nx̂ =
1√

x2
2 + x2

3

 0
−x2

−x3

 , Bx̂ =

1
0
0

 .

Theorem 18 says that the triple T, N, B for an orbit of the Lorenz system and of its compactified version
approach those of (2.3.17) as R2 → 1 :

Corollary 21. The moving triple T, N, B for the Lorenz system and the compactified version coincide

with those of the circle x̂, plus terms of order O
(

(1−R2)

‖x1‖
√
x2

2+x2
3

)
as R2 → 1.



CHAPTER 3

Celestial Mechanics at ∞ via Compactification

In this Chapter, we extend the compactification of Section 1.2 beyond polynomial systems to the equa-
tions of celestial mechanics, analyze the behavior of the compactified system in the boundary, and investigate
solutions to some approximate systems near the boundary. In Section 3.1, we develop the differential equa-
tion for the compactified version of (1.0.1) and show that the compactification does not introduce any critical
points in the open unit ball, which means, as in the polynomial case, that the topological structures of the
flows on the open ball and on all of Euclidean space should be identical. The compactified system can be
extended to the boundary points, and and we show in fact that all critical points and singular points of the
system are on the boundary sphere.

In Section 3.2, we study the system restricted to the boundary sphere, where the behavior is less com-
plicated, and exact solutions can be given in closed form. These boundary solutions represent new objects in
Celestial Mechanics, as the compactification of trajectories at∞. In the absence of collisions, these solutions
on the boundary approach the critical point set, which is the unit 3N − 1-sphere where xN+i = 0. These
solutions offer insight into solutions near the boundary, in particular suggesting a set of approximating sys-
tems near the boundary. In Section 3.3, we determine properties of solutions to two approximating systems,
both of which can be solved exactly, and one of these solutions is asymptotic to solutions of the compactified
system. The uncompactification of the second approximate solution will be shown to be asymptotic to the
solutions we give in Chapter 5 to Celestial Mechanics equation.

3.1. Compactifying the N-Body Problem

In this Section, we develop the equations of motion for the compactified N-body problem and show
that the compactification does not introduce any critical points in the open unit ball, which means that the
topological structures of the flows on the open ball and on all of Euclidean space should be identical. We
compute time derivatives of interesting quantities and find an expression for the evolution of the distance
of x from the boundary. We show that if a trajectory experiences a singularity as t → σ−, then the
compactified trajectory approaches the boundary sphere. Even though we don’t expect analytic solutions
to the compactified system, it will prove useful to investigate series coefficients as if there were analytic
solutions.

We make the second-order equation for the qi (1.0.1) into a 6N -dimensional system in the usual way:
for i = 1, . . . , N , let yi = qi, and yN+i = q̇i, where for each i, yi and yN+i are vectors in R3. Then we can
express the system as ẏ = f(y), with the right hand side serving to define f(y) :

ẏi = yN+i

ẏN+i =
∑
j 6=i

mj(yj − yi)
‖yi − yj‖3

.(3.1.1)

Our compactified version of the original system of equations will be obtained on substituting y = x
1−x†x .

All of R6N is mapped to the open unit ball B6N , and the pre-image of its boundary S6N−1 is an ideal set
bounding R6N , which may be identified with all directions at infinity. Compactifications in general, and this
one in particular, make it possible to augment the conventional set of solutions of a differential system with
an ideal set of solutions y ≡ ∞. Their geometric realization is given by trajectories on S6N−1 viewed as
the boundary sphere of the unit ball in R6N . These ideal trajectories are solutions to simplified systems of
differential equations. Indeed, these ideal solutions, as shown in this Chapter, provide a wealth of information
on the solutions of ẏ = f(y) for ‖y‖ large.
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As in Chapter 2, we compactify with y = κx, with κ = 1
1−R2 , where R = ‖x‖. Then

(3.1.2) ẋ =
ẏ

κ
− (∇κ)†ẏ

y

κ2
= κ−1

[
f(y)− (∇κ)†f(y)

y

κ

]
,

where the gradient is taken with respect y. Squaring both sides of the transformation equation y = x
1−R2

gives r2 = R2

(1−R2)2 , with r = ‖y‖, or

r2R4 −
(
2r2 + 1

)
R2 + r2 = 0,

which leads to R2 =
(
2r2 + 1±

√
1 + 4r2

)
/2r2. Choosing the negative root ensures R ∈ [0, 1]. Then

(3.1.3) κ =
1

1−R2
=

1

2
(1 +

√
1 + 4r2).

For future reference, we provide the transformation equations between y ∈ R6N and x ∈ B6N based on
y = κx:

(3.1.4) y =
x

1−R2
x =

2y

1 +
√

1 + 4r2
.

It will be useful to solve (3.1.3) for the radical:√
1 + 4r2 =

2

1−R2
− 1 =

1 +R2

1−R2
.

We compute the gradient (with respect to y) from (3.1.3)

(3.1.5) ∇κ =
1

2

1

2

1√
1 + 4r2

4∇r2 =
1√

1 + 4r2
2y =

2y
(
1−R2

)
1 +R2

=
2x

1 +R2
.

Then

(∇κ)†f(y) =
2

1 +R2
x†f(y) =

2

1 +R2

N∑
k=1

x†N+k

 xk
1−R2

+
(
1−R2

)2∑
j 6=k

mj(xj − xk)

‖xk − xj‖3

 ,

so that the evolution of the compactified system in the open unit ball B6N is governed by

ẋi = xN+i −
2

1 +R2

N∑
k=1

x†N+k

xk +
(
1−R2

)3∑
j 6=k

mj(xj − xk)

‖xk − xj‖3

xi

ẋN+i = − 2

1 +R2

N∑
k=1

x†N+k

xk +
(
1−R2

)3∑
j 6=k

mj(xj − xk)

‖xk − xj‖3

xN+i

+
(
1−R2

)3∑
k 6=i

mk(xk − xi)
‖xi − xk‖3

.(3.1.6)

Just as with (3.1.1), the right hand side of this system is analytic on B6N\∆, meaning that given any non-
collision point; i.e., any point ξ ∈ B6N\∆, the right-hand side of (3.1.6) is expandable in a power series in
x−ξ, convergent for ‖x−ξ‖ sufficiently small. This does not of course imply that there are analytic solutions
to this system.

Let us define some short hand formulas:

gij = ‖xi−xj‖, h =

N∑
k=1

x†kxN+k, Gk =
∑
j 6=k

mj(xj − xk)

g3
kj

, L =

N∑
k=1

x†N+kGk, θ = −2
h+

(
1−R2

)3
L

1 +R2
.

These identities follow easily from the definitions:

Gk =
(
1−R2

)2
ẏN+k =

(
1−R2

)2
q̈k

L =
(
1−R2

)3 N∑
k=1

y†N+kẏN+k =
1

2

(
1−R2

)3 d

dt

N∑
k=1

y†N+kyN+k =
1

2

(
1−R2

)3 d

dt
q̇†q̇.
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The short hand allows us to express the system as

ẋi = θxi + xN+i

ẋN+i =
(
1−R2

)3
Gi + θxN+i,(3.1.7)

or

ẋ =

(
θI3N I3N
O3N θI3N

)
x+

(
03N(

1−R2
)3
G

)
,

where G =
(
G†1, . . . , G

†
N

)†
.

We have seen in Section 1.2 that the compactification of a polynomial system does not introduce any
critical points in the interior, and it’s true here as well. If the right hand side of (3.1.2) vanished, we would
have

f(y)− (∇κ)
†
f(y)x = 0,

to which we apply (∇κ)
† yielding

(∇κ)
†
f(y)

[
1− (∇κ)

†
y

κ

]
= 0.

Since ∇κ = 2x
1+R2 , and f(y) 6= 0, since the original problem has no critical points, the quantity in the brackets

must vanish, so
2R2

1 +R2
=

2x†x

1 +R2
=

(∇κ)
†
y

κ
= 1,

which requires R2 = 1, and x must be on the boundary. Thus

Lemma 22. The compactified system (3.1.7) has no critical points in the interior of B6N .

By the existence and uniqueness theorems, the system (3.1.7) has a unique solution through any x(t0) =

x0 ∈ B6N\∆, the non-collision points of the closed ball. If x0 corresponds under the compactification to
y0 = (q(0), q̇(0))

†, then the solution x(t) exists for a maximal interval t ∈ [t0, σ), with σ defined in Section
1.1.

Consider the system (3.1.7) expressed in terms of φi =
(
1−R2

)3
Gi as a further shorthand:

ẋi = θxi + xN+i

ẋN+i = θxN+i + φi,(3.1.8)

or

ẋ =

(
θI3N I3N
O3N θI3N

)
x+

(
03N

φ

)
,

viewing φ =
(
φ†1, . . . , φ

†
N

)†
as a non-homogeneous element. We will now record a formal solution for (3.1.8)

based on the technique of multiplying by the integrating factor

exp

[
−
∫ t

0

(
θ(s)I3N I3N
O3N θ(s)I3N

)
ds

]
.

First note that

exp

[∫ t

0

(
θ(s)I3N I3N
O3N θ(s)I3N

)
ds

]
= exp

[∫ t

0

θ(s)dsI6N +

∫ t

0

(
O3N I3N
O3N O3N

)
ds

]
= exp

∫ t

0

θ(s)dsI6N exp

∫ t

0

(
O3N I3N
O3N O3N

)
ds = e

∫ t
0
θ(s)ds exp

(
O3N tI3N
O3N O3N

)
= e

∫ t
0
θ(s)ds

(
I3N tI3N
O3N I3N

)
.

On multiplying, we have

d

dt

{
exp

[
−
∫ t

0

(
θ(s)I3N I3N
O3N θ(s)I3N

)
ds

]
x

}
= −

(
θI3N I3N
O3N θI3N

)
exp

[
−
∫ t

0

(
θ(s)I3N I3N
O3N θ(s)I3N

)
ds

]
x
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+ exp

[
−
∫ t

0

(
θ(s)I3N I3N
O3N θ(s)I3N

)
ds

]
ẋ

= exp

[
−
∫ t

0

(
θ(s)I3N I3N
O3N θ(s)I3N

)
ds

](
03N

φ

)
,

or
d

dt

{
e−

∫ t
0
θ(s)ds

(
I3N −tI3N
O3N I3N

)
x

}
= e−

∫ t
0
θ(s)ds

(
I3N −tI3N
O3N I3N

)(
03N

φ

)
.

So we have the formal solution

x = e
∫ t
0
θ(s)ds

(
I3N tI3N
O3N I3N

){
x(0) +

∫ t

0

e−
∫ λ
0
θ(ν)dν

(
I3N −λI3N
O3N I3N

)(
03N

φ(λ)

)
dλ

}
= e

∫ t
0
θ(s)ds

{∫ t

0

e−
∫ λ
0
θ(ν)dν

(
(t− λ) I3N

I3N

)
φ(λ)dλ+

(
I3N tI3N
O3N I3N

)
x(0)

}
=

∫ t

0

e
∫ t
λ
θ(s)ds

(
(t− λ) I3N

I3N

)
φ(λ)dλ+ e

∫ t
0
θ(s)ds

(
I3N tI3N
O3N I3N

)
x(0).(3.1.9)

3.1.1. Time derivatives. We evaluate the time derivatives of the short-hand quantities defined just
before (3.1.7) above.

ḣ =

N∑
k=1

{
x†kẋN+k + x†N+kẋk

}
=

N∑
k=1

{
x†k

[
θxN+k +

(
1−R2

)3
Gk

]
+ x†N+k [θxk + xN+k]

}

(3.1.10) = 2θh+A+
(
1−R2

)3 N∑
k=1

x†kGk,

where

A =

N∑
k=1

x†N+kxN+k.

And we have

(3.1.11) Ȧ = 2

N∑
k=1

x†N+k

[
θxN+k +

(
1−R2

)3
Gk

]
= 2θA+ 2

(
1−R2

)3
L.

If we define analogously to L

K =

N∑
k=1

x†kGk,

then we can express

(3.1.12) ḣ = 2θh+A+
(
1−R2

)3
K.

To find L̇ and K̇, we start with
d

dt
g2
jk = 2 (xj − xk)

†
(ẋj − ẋk) = 2 (xj − xk)

†
[θ (xj − xk) + xN+j − xN+k]

= 2θg2
jk + 2 (xj − xk)

†
(xN+j − xN+k) ,

so
d

dt
g−3
jk = −3

2

(
g2
jk

)−5/2 d

dt
g2
jk = − 3

2g5
jk

[
2θg2

jk + 2 (xj − xk)
†

(xN+j − xN+k)
]

= − 3θ

g3
jk

− 3

g5
jk

(xj − xk)
†

(xN+j − xN+k) ,

and we can compute

Ġk =
∑
j 6=k

mj

{
(xj − xk)

d

dt
g−3
jk +

ẋj − ẋk
g3
jk

}
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=
∑
j 6=k

mj

{
−

[
3θ

g3
jk

+
3

g5
jk

(xj − xk)
†

(xN+j − xN+k)

]
(xj − xk) +

θ (xj − xk) + xN+j − xN+k

g3
jk

}

=
∑
j 6=k

mj

{
−

[
2θ

g3
jk

+
3

g5
jk

(xj − xk)
†

(xN+j − xN+k)

]
(xj − xk) +

xN+j − xN+k

g3
jk

}

=
∑
j 6=k

mj

g3
jk

{
−2θ (xj − xk) +

[
I3 −

3

g2
jk

(xj − xk) (xj − xk)
†

]
(xN+j − xN+k)

}

= −2θGk +
∑
j 6=k

mj

g3
jk

[
I3 −

3

g2
jk

(xj − xk) (xj − xk)
†

]
(xN+j − xN+k) .

Now we have

L̇ =

N∑
k=1

{
G†kẋN+k + x†N+kĠk

}
=

N∑
k=1

{
G†k

[
θxN+k +

(
1−R2

)3
Gk

]
+ x†N+kĠk

}

= θL+
(
1−R2

)3
G2 +

N∑
k=1

x†N+kĠk,

= −θL+
(
1−R2

)3
G2 +

N∑
k=1

x†N+k

∑
j 6=k

mj

g3
jk

[
I3 −

3

g2
jk

(xj − xk) (xj − xk)
†

]
(xN+j − xN+k) ,

where

G2 =

N∑
k=1

G†kGk.

Moreover,

K̇ =

N∑
k=1

{
G†kẋk + x†kĠk

}
=

N∑
k=1

{
G†k [θxk + xN+k] + x†kĠk

}
= θK + L+

N∑
k=1

x†kĠk.

The evolution of 1−R2 is governed by

dR2

dt
= 2

N∑
i=1

{
x†kẋk + x†N+kẋN+k

}
= 2

N∑
i=1

{
x†k [θxk + xN+k] + x†N+k

[
θxN+k +

(
1−R2

)3
Gk

]}
= 2θR2 + 2h+ 2

(
1−R2

)3
L = 2θR2 −

(
1 +R2

)
θ = −

(
1−R2

)
θ,

which is more conveniently expressed

(3.1.13)
d
(
1−R2

)
dt

=
(
1−R2

)
θ.

We can integrate this equation formally via

d

dt
log
(
1−R2

)
=

d
dt

(
1−R2

)
1−R2

= θ

1−R2

1−R(0)2
= exp

∫ t

0

θds = exp

(
−2

∫ t

0

h+
(
1−R2

)3
L

1 +R2
ds

)
.(3.1.14)

Lastly, starting with

−θ1 +R2

2
= h+

(
1−R2

)3
L,

we differentiate both sides:

−1 +R2

2
θ̇ − θ1

2

dR2

dt
= −1 +R2

2
θ̇ + θ2 1−R2

2
= ḣ+ 3

(
1−R2

)3
θL+

(
1−R2

)3
L̇
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= 2θh+A+
(
1−R2

)3
K + 3

(
1−R2

)3
θL+

(
1−R2

)3 [
θL+

(
1−R2

)3
G2 +

N∑
k=1

x†N+kĠk

]
,

so that

θ̇ = −1−R2

1 +R2
θ2 − 4θh+ 2A

1 +R2
−

2
(
1−R2

)3
1 +R2

[
4θL+K +

N∑
k=1

x†N+kĠk

]
−

2
(
1−R2

)6
1 +R2

G2.

3.1.2. Including infinity. As in Chapter 2, the system (3.1.7) is well-defined on the non-collision
points of the boundary sphere S6N−1, so the system may be extended to those non-collision points of the
boundary. If one or more of the bodies in the original problem escape to infinity (some ‖qi‖ → ∞) or
one or more of the velocities become infinite (some ‖q̇i‖ → ∞), then the compactification of y =

(
q†, q̇†

)†
is a trajectory x that approaches the boundary. In addition, as will be seen in the next Section, there
are trajectories on the boundary, which as compactifications of trajectories at ∞, represent new objects in
Celestial Mechanics. We will explore the structure of solutions in the boundary and show how these solutions
are relevant to real trajectories.

We will see that the boundary sphere is an interesting set. Even more so because in fact, all singularities
of Celestial Mechanics are experienced on the boundary:

Lemma 23. If a trajectory q experiences a singularity at t = σ <∞, then x approaches the boundary as
t→ σ−. Moreover, if q experiences a singularity at σ, then

(
1−R2

)3
L→∞ at least as fast as 1

σ−t .

Proof. If there is a singularity at t = σ, then we must have U → ∞ as t → σ−. By the conservation
of energy, T →∞, as well, so

N∑
i=1

miq̇
†
i q̇i =

N∑
i=1

mix
†
N+ixN+i

(1−R2)
2 →∞.

Since ‖xN+i‖ ≤ 1, we must have that 1−R2 → 0, which means x tends to the boundary.
From the integral formula (3.1.14), 1−R2 → 0 requires the exponential

exp

(
−2

∫ σ

0

h+
(
1−R2

)3
L

1 +R2
ds

)
= 0,

which means ∫ σ

0

h+
(
1−R2

)3
L

1 +R2
ds =∞,

and since obviously |h| ≤ 1, this is infinite only if
(
1−R2

)3
L→∞ at least as fast as 1

σ−t , as t→ σ−. �

In terms of the uncompactified trajectory q, the first part of the Lemma says that a singularity (σ <∞)
requires some particle’s distance qi and/or velocity q̇i must become unbounded in finite time.

By the Schwarz inequality,

h2 =

(
N∑
i=1

x†N+ixi

)2

≤
N∑
i=1

‖xN+i‖2
N∑
i=1

‖xi‖2 = A2
(
R2 −A2

)
,

where A2 =
∑N
i=1 ‖xN+i‖2, and the symmetry reduces the problem to one variable. It is easy to find the

maximum of the right-hand side by taking the derivative and finding its zero, which is where A = 1√
2
R,

which would make the right hand side equal 1
4R

2. So, in fact |h| ≤ 1/2.
Let us consider the possibilities for a trajectory x that approaches the boundary as t → σ−, starting

with the conservation of energy

1

2

N∑
i=1

miq̇
†
i q̇i −

∑
1≤j<k≤N

mjmk

‖qj − qk‖
= E

(where E is constant), expressed in terms of x
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(3.1.15)
1

2

N∑
i=1

mix
†
N+ixN+i

(1−R2)
2 −

∑
1≤j<k≤N

(
1−R2

)
mjmk

‖xj − xk‖
= E.

The two terms on the left of (3.1.15) must be finite or infinite together. If they are both bounded, then all
the ‖xN+i‖ = O

(
1−R2

)
, and the minimum particle separation is bounded away from 0, and since the limit

point x(σ) /∈ ∆, we must have σ =∞. The trajectory approaches a point in the boundary of the form

p =

(
x∗

03N

)
,

which will be seen in the sequel to be a critical point. Here x∗ is composed of the distinct 3-vectors x∗1, . . . x∗N .
As shown in Section 4.3, this corresponds under compactification to a solution q = at + o(t) of (1.0.1) of
particles escaping to infinity. In the terminology of Section 1.2, an escape trajectory q = at + o(t) diverges
to infinity in the direction x∗ = a

‖a‖ . This case illustrates that the converse of the first part of Lemma 23 is
not true; x tending to the boundary is necessary but not sufficient to insure that q has a singularity.

For example, the compactification of hyperbolic escape in the two-body problem, assuming the form of
solutions to be proven in Chapter 5:

y1 = q1 = a1t+ b1 log t+ c1 + o(1), y2 = q2 = −m1

m2
y1

y3 = q̇1 = a1 + b1
1

t
+ o

(
1

t

)
, y4 = q̇2 = −m1

m2
y3,

in center of mass coordinates. Since the two-body problem is planar, we may assume the motion takes place
in R2. Let M = m1 +m2. Then

a2 = −m1

m2
a1, A = ‖a1‖2+‖a2‖2 =

(
1 +

m2
1

m2
2

)
‖a1‖2 a2−a1 = −M

m2
a1, A12 = ‖a2 − a1‖ =

M

m2
‖a1‖ .

We need the sum of the squares of the magnitudes of the yi:

r2 =

(
1 +

m2
1

m2
2

){
‖a1t+ b1 log t+ c1 + o(1)‖2 +

∥∥∥∥a1 + b1
1

t
+ o

(
1

t

)∥∥∥∥2
}

=

(
1 +

m2
1

m2
2

){
‖a1‖2 t2 + 2a†1b1t log t+ 2a†1c1t+ o(t)

}

=

(
1 +

m2
1

m2
2

)
‖a1‖2 t2

{
1 +

2a†1b1

‖a1‖2
log t

t
+

2a†1c1

‖a1‖2
1

t
+ o

(
1

t

)}
.

From the formula

b1 =
M

A3
12

a1, so
a†1b1

‖a1‖2
=

M

A3
12

,

so we have

r2 = At2

{
1 +

2M

A3
12

log t

t
+

2a†1c1

‖a1‖2
1

t
+ o

(
1

t

)}
,

and

2

1 +
√

1 + 4r2
=

1√
At

{
1− M

A3
12

log t

t
−

(
a†1c1

‖a1‖2
+

1

2
√
A

)
1

t
+ o

(
1

t

)}
.
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Now the compactified trajectory x to low order

x1 =
1√
At

{
a1t−

M

A3
12

a1 log t−

(
a†1c1

‖a1‖2
+

1

2
√
A

)
a1 + b1 log t+ c1 + o(1)

}

=
1√
A
a1 +

1√
A

[
c1 −

(
a†1c1

‖a1‖2
+

1

2
√
A

)
a1

]
1

t
+ o

(
1

t

)

x3 =
1√
At

{
a1 + b1

1

t
− M

A3
12

a1
log t

t
−

(
a†1c1

‖a1‖2
+

1

2
√
A

)
a1

1

t

}
+ o

(
1

t2

)

=
1√
A
a1

1

t
− M

A3
12

√
A
a1

log t

t2
+

M

A3
12

√
A
a1 −

1√
A

(
a†1c1

‖a1‖2
+

1

2
√
A

)
a1

1

t2
+ o

(
1

t2

)
,

and x2 and x4 are −m1

m2
times x1 and x3, respectively. It is easy to see that the trajectory in the ball

approaches the boundary point

p =

(
x∗

04

)
, x∗ =

(
1√
A
a1

−m1

m2

1√
A
a1

)
.

Note x∗ is the unit 8-vector in the direction
(
a1

a2

)
.

On the other hand, if both terms on the left of (3.1.15) are unbounded, then 1 − R2 = o (‖xN+i‖)1 for
some i, and min ‖xj − xk‖ = o

(
1−R2

)
, which means x and q must approach ∆. For example, a collision

trajectory in the 2-body problem must be linear, so we can assume the particle 1 is on the positive x-axis,
and particle 2 is on the negative x-axis. and we know from Pollard’s text [87] that the separation

(3.1.16) q2 − q1 ∼ c(σ − t)2/3, c3 =
9M

2
,

in center of mass coordinates. So

y1 = q1 = −m2

M
c(σ − t)2/3 + o

(
(σ − t)2/3

)
, y2 = q2 = −m1

m2
y1

y3 = q̇1 =
2

3

m2

M
c(σ − t)−1/3 + o

(
(σ − t)−1/3

)
, y4 = q̇2 = −m1

m2
y3.

The magnitude r is dominated by y3 and y4

r2 =
4

9

m2
1 +m2

2

M2
c2(σ − t)−2/3 + o

(
(σ − t)−2/3

)
2

1 +
√

1 + 4r2
=

3

2

M√
m2

1 +m2
2

1

c
(σ − t)1/3

[
1− 3

4

M√
m2

1 +m2
2

1

c
(σ − t)1/3

]
+ o

(
(σ − t)2/3

)
.

Now the compactified trajectory x to low order

x1 = −3

2

m2√
m2

1 +m2
2

(σ − t) +
9

8

m2M

m2
1 +m2

2

1

c
(σ − t)4/3 + o

(
(σ − t)2/3

)
x3 = − m2√

m2
1 +m2

2

+
3

4

m2M

m2
1 +m2

2

1

c
(σ − t)1/3 + o

(
(σ − t)1/3

)
,

and x2 and x4 are −m1

m2
times x1 and x3, respectively. It is easy to see that the trajectory in the ball

approaches the boundary point

p =


0
0

− m2√
m2

1+m2
2

m1√
m2

1+m2
2

 .

a unit 4-vector.

1That means ‖xN+i‖ either doesn’t tend to 0 or at least decays more slowly than any multiple of 1−R2.
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We know from Lemma 23 that the quantity L is unbounded near ∆. We can use conservation of energy
to constrain the growth of L near a singularity; first, multiply (3.1.15) by

(
1−R2

)2 and rearrange

(
1−R2

)3 ∑
1≤j<k≤N

mjmk

‖xj − xk‖
=

1

2

N∑
i=1

mix
†
N+ixN+i − E

(
1−R2

)2
.

Since every ‖xN+i‖ ≤ 1, the first term on the right is bounded by 1
2

∑N
i=1mi, we have the bound:

0 ≤
(
1−R2

)3 ∑
1≤j<k≤N

m2

gjk
≤
(
1−R2

)3 ∑
1≤j<k≤N

mjmk

gjk
≤ D :=

1

2

N∑
i=1

mi − E
(
1−R2

)2
,

where m is the minimum of the mi. In particular, we must have D ≥ 0, so we have the bound

0 ≤
(
1−R2

)3 ∑
1≤j<k≤N

1

gjk
≤ D

m2
.

Also let M be the maximum of the mi, so that we can express a bound for Gk:

‖Gk‖ ≤
∑
j 6=k

mi‖xj − xk‖
g3
jk

≤ 2M
∑
j 6=k

1

g2
jk

.

Then

|L| ≤
N∑
k=1

‖xN+k‖ ‖Gk‖ ≤ 2MN
∑
j 6=k

1

g2
jk

≤ 4MN
∑

1≤j<k≤N

1

g2
jk

≤ 4MN

∑
j<k

1

gjk

2

,

where the second-last inequality is because
∑
j 6=k

1
g2
jk

counts each 1
g2
jk

twice and
∑

1≤j<k≤N
1
g2
jk

counts them

once, and the last inequality follows from the Schwarz inequality. We have the bound for
(
1−R2

)6
L

(
1−R2

)6 |L| ≤ 4MN
(
1−R2

)6 ∑
1≤j<k≤N

1

gjk

2

≤ 4MN

(1−R2
)3 ∑

1≤j<k≤N

1

gjk

2

≤ 4MND2

m4
.

It also follows that
(
1−R2

)6+ε
L approaches 0 as x approaches the boundary and is identically 0 on the

boundary, for any ε > 0.

3.1.3. Seeking a series expansion. Now let us suppose that a solution to (3.1.7), starting in the
interior, exists for all time and approaches a critical point x∗ in the boundary, and we will seek a series
approximation in 1/t near the critical point, starting with

(3.1.17) x =

 x∗ + a1/t+ a2/t
2 + a3 /t

3 + . . .

b1/t+ b2/t
2 + b3 /t

3 + . . .

 , ẋ =

 −a1/t
2 − 2a2/t

3 + . . .

−b1/t2 − 2b2/t
3 − 3b3/t

4 + . . .


where the ak and bk are column 3N -vectors. In fact, we do not expect analytic solutions x; however, in the
sequel we shall define and develop approximating systems to (3.1.1), which we will see can be solved in closed
form and have analytic solutions. The limited results we obtain here will be valid for the approximating
systems.

For each positive integer m, let

Am = a†mx
∗ and Bm = b†mx

∗.

To compute the right hand side of (3.1.7) through 1/t3, we shall need

h =

N∑
i=1

x†N+ixi =
b†1x
∗

t
+
b†1a1 + b†2x

∗

t2
+
b†1a2 + b†2a1 + b†3x

∗

t3
+O

(
1

t4

)

=
B1

t
+
b†1a1 +B2

t2
+
b†1a2 + b†2a1 +B3

t3
+O

(
1

t4

)
.
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Next
(3.1.18)

1−R2 = 1−

{
x∗†x∗ + 2

a†1x
∗

t
+
b†1b1 + a†1a1 + 2a†2x

∗

t2
+O

(
1

t3

)}
= −2A1

t
− b†1b1 + a†1a1 + 2A2

t2
+O

(
1

t3

)
,

since x∗†x∗ = 1. Now since R2 ≤ 1 , we have the convergent series expansion

2

1 +R2
=

1

1− 1−R2

2

=

∞∑
m=0

(
1−R2

2

)m
,

valid for all R ∈ [0, 1], so we can approximate

2

1 +R2
= 1 +

1−R2

2
+

(
1−R2

2

)2

+O
((

1−R2
)3)

= 1− A1

t
− b†1b1 + a†1a1 + 2A2

2t2
+

4A2
1

4t2
+O

(
1

t3

)

= 1− A1

t
− b†1b1 + a†1a1 + 2A2 − 2A2

1

2t2
+O

(
1

t3

)
,

where we’ve replaced O
((

1−R2
)3) with O

(
1
t3

)
due to (3.1.18). and we will not need the omitted 1/t3

terms for this calculation. Next

θ = − 2

1 +R2

(
h+

(
1−R2

)3
L
)

= −

(
1− A1

t
− b†1b1 + a†1a1 + 2A2 − 2A2

1

2t2
+O

(
1

t3

))(
B1

t
+
b†1a1 +B2

t2
+
b†1a2 + b†2a1 +B3

t3
+O

(
1

t4

))
,

because
(
1−R2

)3
L = O

(
1
t4

)
. So

θ = −B1

t
+
B1A1 − b†1a1 −B2

t2
+
θ3

t3
+O

(
1

t4

)
,

where

θ3 = −
[
b†1a2 + b†2a1 +B3

]
+
(
b†1a1 +B2

)
A1 +

(
1

2
b†1b1 +

1

2
a†1a1 +A2 −A2

1

)
B1.

Next we express (3.1.7) in terms of powers of 1/t and equate terms of like power

−
∞∑
r=2

(r − 1)ar−1

tr
=

(
−B1

t
+
B1A1 − b†1a1 −B2

t2
+
θ3

t3

) ∞∑
r=0

ar
tr

+

∞∑
r=1

br
tr

−
∞∑
r=2

(r − 1)br−1

tr
=

(
−B1

t
+
B1A1 − b†1a1 −B2

t2
+
θ3

t3

) ∞∑
r=1

br
tr
− 8A3

1

t3
G,
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which we can rearrange a little bit
∞∑
r=2

(r − 1)ar−1

tr
= B1

∞∑
r=1

ar−1

tr
+
(
b†1a1 +B2 −A1B1

) ∞∑
r=2

ar−2

tr
− θ3

∞∑
r=3

ar−3

tr
−
∞∑
r=1

br
tr

=
B1x

∗ − b1
t

+
B1a1 +

(
b†1a1 +B2 −A1B1

)
x∗ − b2

t2

+

∞∑
r=3

B1ar−1 +
(
b†1a1 +B2 −A1B1

)
ar−2 − θ3ar−3 − br

tr

∞∑
r=2

(r − 1)br−1

tr
= B1

∞∑
r=2

br−1

tr
+
(
b†1a1 +B2 −A1B1

) ∞∑
r=3

br−2

tr
− θ3

∞∑
r=4

br−3

tr
+

(
8A3

1

t3
+O

(
1

t4

))
G

=
B1b1
t2

+
B1b2 +

(
b†1a1 +B2 −A1B1

)
b1 + 8A3

1G

t3

+
∞∑
r=4

B1br−1 +
(
b†1a1 +B2 −A1B1

)
br−2 − θ3br−3

tr

Our next step is to set corresponding coefficients equal, which yields algebraic equations. The r = 1 equation
for ẋi gives b1 = B1x

∗, and the r = 2 equation for ẋN+i give that B1 = 1. So b1 = x∗. The r = 2 equation
for ẋi is easy to solve:

a1 = B1a1 +
(
b†1a1 +B2 −A1B1

)
x∗ − b2

0 = (x∗a1 +B2 −A1)x∗ − b2
b2 = B2x

∗.

With this information, we can simplify

θ = −1

t
− B2

t2
+
θ3

t3
+O

(
1

t4

)
and

θ3 = −
[
x∗†a2 +B2x

∗†a1 +B3

]
+
(
x∗†a1 +B2

)
A1 +

1

2
x∗†x∗ +

1

2
a†1a1 +A2 −A2

1

= − [A2 +A1B2 +B3] + (A1 +B2)A1 +
1

2
+

1

2
a†1a1 +A2 −A2

1

= −B3 +
1

2
+

1

2
a†1a1

The r = 3 equation for ẋN+i requires an expansion of Gi, which we will not attempt. The 1/t3 equation for
ẋi,

2a2 = B1a2 +
(
b†1a1 +B2 −A1B1

)
a1 − θ3x

∗ − b3,
simplifies to

a2 = (x∗a1 +B2 −A1) a1 − θ3x
∗ − b3,

using the fact that b1 = x∗. Substituting for θ3 yields

a2 = B2a1 − θ3x
∗ − b3 = B2a1 −

(
−B3 +

1

2
+

1

2
a†1a1

)
x∗ − b3,

which we can re-arrange:

b3 −B3x
∗ = B2a1 − a2 −

[
1

2
a†1a1 +

1

2

]
x∗.

Next we apply x∗† to both sides yielding 1
2a
†
1ja1j+ 1

2 = A1B2−A2, which we can use to simplify the previous
equation:

b3 −B3x
∗ = B2 (a1 −A1x

∗)− (a2 −A2x
∗) ,

which relates the components perpendicular to x∗ of some of the coefficients. And if b3 = B3x
∗, then in

particular, the component of a2 perpendicular to x∗ is proportional to the component of a1 perpendicular
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to x∗. Going beyond these terms in the expansion requires expanding Gi and L, and is significantly more
difficult. All we can conclude is that if there is a series expansion in 1/t for a trajectory x approaching a

critical point
(
x∗†, 0†3N

)†
in the boundary, then b1 = x∗, and b2 = B2x

∗.

3.2. The System on the Boundary Sphere

In this Section we study the system restricted to the boundary, deriving its critical points and all
solutions explicitly. We compute the Jacobian at the critical points (none of which are isolated) and find the
eigenvalues are all 0. Thus, the Jacobian does not indicate anything about stability properties of the critical
points. We find analytic solutions in the boundary and give leading terms in 1/t of boundary trajectories,
exhibiting their asymptotic behavior. We also study the Jacobian along a trajectory in the boundary and
note that its eigenvalues are negative (and tend to 0).

From (3.1.13) it appears that the boundary would be an invariant set, and we will see that as long as
there is no collision, a trajectory starting on the boundary stays on the boundary. However, as particles i
and j approach a collision, L = O

(
1/g2

ij

)
, and for n = 1, 2, 3, 4, 5, the quantity (1−R2)nL restricted to the

boundary is similar to a Dirac δ-function: vanishing except at collisions, where it is infinite. We cannot say
that Ṙ = 0 on the boundary, so the boundary is not an invariant set. It is possible that a trajectory in the
open ball could in finite time reach a point of collision on the boundary. For the uncompactified system, such
a trajectory corresponds to two or more particles escaping to ∞ while approaching each other, for example
the solution of Xia [117].

Even though the boundary is not invariant, it will prove useful to study the system on it. Setting R = 1
in (3.1.7), yields the equations of motion on the open set S6N−1\∆, the non-collision points of the boundary:

ẋi = −hxi + xN+i

ẋN+i = −hxN+i.(3.2.1)

In fact, these equations are not singular on ∆ and could be extended to all of the boundary at the potential
cost of diminishing relevance to real trajectories near collisions. It is easy to see that the critical points are
where all xN+i = 03, which correspond to (uncompactified) particles reaching infinity with finite velocity.
These points comprise a 3N − 1-sphere

{
x |
∑
x†ixi = 1, xN+i = 03

}
within the boundary 6N − 1-sphere.

Since the full compactified system (3.1.7) has no interior critical points, this 3N−1-sphere is also the critical
point set for (3.1.7).

Returning to (3.1.7), we can compute its Jacobian at a point on the boundary away from ∆. The terms
cubic in 1−R2 can be ignored, because if N is either Gi or L; then the partial derivative with respect to xi
or xN+i

∂
(
1−R2

)3
N

∂x
= 3

(
1−R2

)2 ∂ (1−R2
)

∂x
N +

(
1−R2

)3 ∂N
∂x

,

which vanishes on the boundary. So the Jacobian of (3.1.7) at a point on the boundary away from ∆ is the
same as the Jacobian of

ẋi = − 2

1 +R2
hxi + xN+i

ẋN+i = − 2

1 +R2
hxN+i.(3.2.2)

We need the following:

∇xR2 = 2x, ∇x
2

1 +R2
= −x, ∇xh =

(
O3N I3N
I3N O3N

)
x.

Then we have the Jacobian on the boundary:

(3.2.3) Jac|∂ = hxx† − xx†
(
O3N I3N
I3N O3N

)
+

(
−hI3N I3N

0 −hI3N

)
,
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where xx† is a 6N -square matrix. At the critical points, all xN+j = 0, so h = 0, and the Jacobian reduces to

O3 O3 . . . O3 I3 − x1x
†
1 −x1x

†
2 . . . −x1x

†
N

O3 O3 . . . O3 −x2x
†
1 I3 − x2x

†
2 . . . −x2x

†
N

...
...

. . .
...

...
...

. . .
...

O3 O3 . . . O3 −xNx†1 −xNx†2 . . . I3 − xNx†N

O3 O3 . . . O3 O3 O3 . . . O3

O3 O3 . . . O3 O3 O3 . . . O3

...
...

. . .
...

...
...

. . .
...

O3 O3 . . . O3 O3 O3 . . . O3


,

where each element of the matrix is a 3x3 block. The Jacobian is nilpotent, with eigenvalues all 0. This
gives us no information about trajectories attracted to the critical points, but as we will see next, the critical
point set does attract trajectories in the boundary. Moreover, in the next Chapter, we will see that the
critical point set and boundary trajectories approaching it also attract nearby (interior) trajectories.

Let us define A =
∑
i x
†
N+ixN+i. Obviously, we will have A ∈ [0, 1]. Then from (3.1.10) and (3.1.11), or

directly from (3.2.1), it is easy to see that in the boundary, h and A satisfy the two scalar equations:

Ȧ = −2hA(3.2.4)

ḣ = A− 2h2,(3.2.5)

and the only critical point is at the origin of the (h,A) plane. Considering the ratio, we have

d

dt

h

A
=
A− 2h2

A
+

2h2A

A2
= 1,

and we can express (3.2.4) as

Ȧ/A = −2h.

The first is easy to integrate:
h/A = h(0)/A(0) + t.

so

−Ȧ/A2 = 2
h

A
= 2

(
h(0)

A(0)
+ t

)
1

A
=

1 + 2h(0)t+A(0)t2

A(0)

A =
A(0)

1 + 2h(0)t+A(0)t2
.(3.2.6)

Substituting for A in the h/A equation yields h in closed form:

(3.2.7) h =
h(0) +A(0)t

1 + 2h(0)t+A(0)t2
.

Note that the quantity h2−A
A2 is a constant of the motion, so the motion is restricted to a conic section in the

(h,A) plane. For motion in the closed ball, the relations

0 ≤ ‖xi ± xN+i‖2 =

N∑
i=1

(xi ± xN+i)
†

(xi ± xN+i) =

N∑
i=1

(
x†ixi ± 2x†ixN+i + x†N+ixN+i

)
= R2 ± 2h

imply that |h| ≤ 1
2R

2 ≤ 1
2 . Note that along a trajectory on the boundary both h and A approach 0 as

t→∞, but h ∼ 1
t , and A ∼

1
t2 , so h/A ∼ t as t→ ±∞.
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Now let

E = exp

[
−
∫ t

0

h(s)ds

]
;

then it is easy to see that

x = E

(
I3N tI3N
O3N I3N

)
x(0)(3.2.8)

solves (3.2.1):
Ė = −hE,

so

ẋ = −hE
(

I3N tI3N
O3N I3N

)
x(0) + E

(
O3N I3N
O3N O3N

)
x(0)

= −hx+

(
O3N I3N
O3N O3N

)
x,

which is (3.2.1). To compute E in closed form, take the square of the magnitude of both sides of (3.2.8),
yielding

1 =

N∑
i=1

(
x†ixi + x†N+ixN+i

)
= E2

N∑
i=1

(
x†i (0)xi(0) + 2tx†i (0)xN+i(0) + t2x†N+i(0)xN+i(0) + x†N+i(0)xN+i(0)

)
= E2

(
1 + 2h(0)t+A(0)t2

)
,

so
E =

1√
1 + 2h(0)t+A(0)t2,

and we have

(3.2.9) xi =
xi(0) + xN+i(0)t√
1 + 2h(0)t+A(0)t2

, xN+i =
xN+i(0)√

1 + 2h(0)t+A(0)t2
,

or

x =
1√

1 + 2h(0)t+A(0)t2

(
I3N tI3N
O3N I3N

)
x(0).

This is an exact solution of the compactified flow on the boundary, and if the trajectory avoids collision, the
trajectory approaches the critical point

(
xN+i(0)†/

√
A(0), 0†3N

)
† as t→∞.

This solution has 6N parameters x(0) constrained only by the ten integrals of the motion and being
restricted to the boundary.

As noted above, the system (3.2.1) viewed independently of its derivation is not singular at points of
collision, so it may be extended to the full boundary sphere, and (3.2.9) is the solution on the whole boundary.

Starting anywhere on the boundary, the trajectory approaches a point
(
x∗†, 0†3N

)†
on the critical 3N − 1

sphere
{∑N

i=1 x
†
ixi = 1, ∀j ≤ N, xN+j = 0

}
in the boundary 6N − 1 sphere. Moreover, each 3-vector xN+i

is for all time parallel to xN+i(0). Every starting point x(0) on the boundary sphere moves under the flow

toward
(
xN+i(0)†√

A(0)
, 0†3N

)†
=
(
x∗†, 0†3N

)†
as t → ∞. So given a critical point

(
x∗†, 0†3N

)†
on the boundary

sphere, its stable manifold consists of the set of points{
(xi(0), ax∗i ) | a ∈ [0, 1],

∑
xi(0)†xi(0) = 1− a2

}
.

For a = 0, this is just the critical point itself, and for a = 1, the point (0, x∗).
As an aid to visualization, we consider a low-dimensional analog in Figure 3.2.1. Rather than the critical

point set S3N−1 within the boundary S6N−1 for the N -body problem, we sketch some boundary trajectories
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Figure 3.2.1. Boundary trajectories tending to the critical point set. The two singular
points {x1 = x2} in the critical set CP = S1 are marked as o.

tending to the critical point set imagined as an S1 within the boundary S3. The third dimension is taken
perpendicular to plane of the page, although there is actually no plane within S3 containing the two unlinked
S1. Each critical point has a two-dimensional stable manifold in the boundary, which is suggested by the
three trajectories illustrated.

Note that the solution is an analytic function for sufficiently large t, so it has a power series in 1/t,
convergent on (T,∞] for some large T . For future reference, we evaluate the asymptotic behavior of this
trajectory as t → ∞, again, so long as there is no collision. We now consider trajectories in the boundary

approaching the critical set and wish to expand in 1/t a solution near a critical point
(
x∗†, 0†3N

)†
. The

denominator of (3.2.9) is the square root of

A(0)t2 + 2h(0)t+ 1 ∼ A(0)t2
(

1 + 2
h(0)

A(0)t
+

1

A(0)t2

)
,

so we expand the denominator using the expansion
1√

1 + r
= 1− 1

2
r +

3

8
r2 +O

(
r3
)

as

1√
A(0)t

(
1 +

2h(0)t+ 1

A(0)t2

)−1/2

=
1√
A(0)t

(
1− 1

2

2h(0)t+ 1

A(0)t2
+

3

8

(
2h(0)t+ 1

A(0)t2

)2
)

+O

(
1

t4

)
=

1√
A(0)

(
1

t
− h(0)

A(0)

1

t2
+

(
3

2

h(0)2

A(0)2
− 1

2A(0)

)
1

t3

)
+O

(
1

t4

)
,

and the asymptotic behavior can be computed

xi(t) = x∗i +

(
xi(0)√
A(0)

− h(0)

A(0)
x∗i

)
1

t
+

(
xi(0)√
A(0)

+

(
3

2

h(0)2

A(0)2
− 1

2A(0)

)
x∗i

)
1

t2
+O

(
1

t3

)
xN+i(t) =

(
1

t
− h(0)

A(0)t2
+

(
3

2

h(0)2

A(0)2
− 1

2A(0)

)
1

t3

)
x∗i +O

(
1

t4

)
h =

1

t
− h(0)

A(0)t2
+

(
3
h(0)2

A(0)2
+
h(0)

A(0)
− 1

A(0)

)
1

t3
+O

(
1

t4

)
,(3.2.10)
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where we have used the fact that the initial velocity is parallel to the critical position. We will next compute
from (3.2.3) the Jacobian along a boundary trajectory near the critical point. For i = 1, . . . , 3N , let
pi(0) = xi(0), the “position” components of x(0). Working to first order, we start with

xx† =

 x∗x∗† + 1
t

(
1√
A(0)

[
p(0)x∗† + x∗p(0)†

]
− 2 h(0)

A(0)x
∗
i x
∗†
)

1
tx
∗x∗†

1
tx
∗x∗† O3N

 .

Multiplying on the right by
(
O3N I3N
I3N O3N

)
interchanges columns, and the Jacobian is

(3.2.11)

 −
1
t I3N I3N − x∗x∗† − 1

t

(
p(0)x∗†+x∗p(0)†√

A(0)
− 2h(0)x∗x∗†

A(0)

)
O3N − 1

t

(
I3N + x∗x∗†

)


to first order. Note that the upper right block doesn’t contribute to the eigenvalues, since the lower right
block vanishes.

The eigenvalues of the Jacobian are the zeroes of the characteristic polynomial, which is the determinant∣∣∣∣ (λ+ 1
t

)
I3N O3N

O3N λI3N + 1
t

(
I3N + x∗x∗†

) ∣∣∣∣ =

(
λ+

1

t

)3N ∣∣∣∣λI3N +
1

t

(
I3N + x∗x∗†

)∣∣∣∣ ,
all of whose zeroes are negative, since the zeroes of

∣∣λI3N + 1
t

(
I3N + x∗x∗†

)∣∣ are negative real numbers:
they are obviously the eigenvalues of the matrix − 1

t

(
I3N + x∗x∗†

)
, which are − 1

t times the eigenvalues of
I3N + x∗x∗†. But the equality

(
I3N + x∗x∗†

)2
= I3N + 3x∗x∗† = 3

(
I3N + x∗x∗†

)
− 2I3N implies that the

eigenvalues of I3N + x∗x∗† are 1 and 2. We conclude that the eigenvalues of the Jacobian along a boundary
trajectory near a critical point are −1/t and −2/t, which are negative along the trajectory and tend to 0.

This gives a sense in which the trajectories in the boundary approaching the critical set attract nearby
trajectories. Then as long as the segment of interest of a trajectory on the boundary does not intersect ∆,
and as long as it starts close enough to the boundary, it approaches the boundary. This means that all the
trajectories in an open set containing the critical point set approach either the critical point set or ∆.

3.3. Approximate Solutions near the Boundary

For a trajectory of (3.1.7) approaching a critical point in the boundary, there are two approximating
systems to consider, both of which can be solved exactly. Those solutions to approximating systems will
be shown to be approximate solutions of (3.1.7) in a sense to be made precise below. Consider a starting
point x(0) near the boundary. If we suppose it’s close enough that we may assume 1− R2 = 0, the system
(3.1.7) reduces to (3.2.1), whose solution in the interior takes exactly the same form as on the boundary
(3.2.9). On the other hand, if we assume only that 1−R2 is small enough that its cube can be ignored, the
system reduces to (3.2.2). As long as a solution to one of these approximate systems avoids collision, it can
be expected to be a reasonable approximation to a trajectory of the full system (3.1.7). In fact, solutions
to the second approximate system are asymptotic to solutions of (3.1.7). We uncompactify both of these
approximate solutions; the first one turns out to be super-hyperbolic, and the second one will be shown to
be asymptotic to the solutions we give in Chapter 5 to Celestial Mechanics equation. We compute series

coefficients in 1/t for both approximate interior trajectories that approach
(
x∗†, 0†3N

)†
. We give necessary

and sufficient conditions that the approximate trajectory avoids a collision and find the minimum particle
separation. We show that the existence of a collision in the approximating trajectory is equivalent to the
existence of an initial velocity difference anti-parallel to the corresponding initial position difference; for
example, for some pair a 6= b

xN+a(0)− xN+b(0) = −σ (xa(0)− xb(0)) ,

for some σ > 0. We show that without a collision, the minimum distance along the approximating trajectory
has a positive infimum.
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We will form two new differential systems as approximations to (3.1.7); these systems are simple enough
that closed-form solutions can be given. We will use the definition of Gingold and Tovbis [44] starting with
the system

(3.3.1) ż = F (z, t), or N z := ż − F (z, t) = 0,

where F ∈ C2 (Bρ)×C[t0,∞), F and its derivatives are bounded on [t0,∞), and Bρ is the open ball of radius
ρ centered at the origin in Rn. For our problem, n is the dimension of the space of x, namely n = 6N , and
the vector field F is given by the right-hand side of (3.1.7).

Definition. For a given m ∈ R a function z(t) is called an m-approximate solution of (3.3.1) if z ∈
C1[t0,∞) and if there exists some δ > 0 such that

N z = O
(
t−m−δ

)
, as t→∞.

We will find solutions to our approximating systems and show that these solutions are m-approximate
solutions to (3.1.7).

3.3.1. An approximating system. We begin by extending the boundary system (3.2.1) to the inte-
rior.

Lemma 24. The approximating system

ẋi = −hxi + xN+i

ẋN+i = −hxN+i(3.3.2)

for 1−R2 << 1 has an analytic solution

(3.3.3) xi =
xi(0) + xN+i(0)t√
1 + 2h(0)t+A(0)t2

, xN+i =
xN+i(0)√

1 + 2h(0)t+A(0)t2
,

whose power series in 1/t is convergent for t ∈ (T,∞), for some finite T .

Proof. The following calculation is similar to that on the boundary in the previous Section and produces
the same solution (3.2.9) to (3.2.1). It is easy to see that

x = E

(
I3N tI3N
O3N I3N

)
x(0)(3.3.4)

is a solution, with E = exp
∫ t

0
hds. Now a straightforward calculation from (3.3.2) gives

(3.3.5)
1

2

dR2

dt
= x†ẋ = −R2h+ h = (1−R2)h,

which leads to

d

dt
log(1−R2) = −

dR2

dt

1−R2
= −2h

1−R2 =
(
1−R(0)2)

)
exp

(
−2

∫ t

0

hds

)
= E2

(
1−R(0)2

)
.

Taking squares of magnitudes of (3.3.4) gives

R2 =

N∑
i=1

(
x†ixi + x†N+ixN+i

)

= E2
N∑
i=1

(
x†i (0)xi(0) + 2tx†i (0)xN+i(0) + t2x†N+i(0)xN+i(0) + x†N+i(0)xN+i(0)

)
= E2

(
R(0)2 + 2h(0)t+A(0)t2

)
,

so
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E2 =
1−R2

1−R(0)2
=

R2

R(0)2 + 2h(0)t+A(0)t2
.

This is an equation we can solve for R2 after cross-multiplying,(
1−R2

) (
R(0)2 + 2h(0)t+A(0)t2

)
= R2

(
1−R(0)2

)
R2 =

R(0)2 + 2h(0)t+A(0)t2

1 + 2h(0)t+A(0)t2
,

so that

(3.3.6) E2 =
1−R2

1−R(0)2
=

1 + 2h(0)t+A(0)t2 −
(
R(0)2 + 2h(0)t+A(0)t2

)
(1−R(0)2) (1 + 2h(0)t+A(0)t2)

=
1

1 + 2h(0)t+A(0)t2
,

confirming (3.3.3). E is clearly analytic for sufficiently large t, so x is, too. �

This solution has 6N parameters x(0) constrained only by the ten integrals of the motion. Note that we

still have x →
(
xN+i(0)†/

√
A(0), 0†3N

)†
as t → ∞, which is a critical point

(
x∗†, 0†3N

)†
on the boundary;

that is, this trajectory approaches the boundary as t→∞. We note that this system also has critical points
in the interior of the ball. The critical point set is {x |xN+i = 03 }; however, as we have seen all trajectories
of this system tend to fixed points on the boundary. We can give closed-form expressions for the quantities
h and A from the formal solution (3.3.4)

h = E2
N∑
i=1

(xi(0) + txN+i(0))
†
xN+i(0) =

h(0) +A(0)t

1 + 2h(0)t+A(0)t2
, A =

A(0)

1 + 2h(0)t+A(0)t2
,

and R2 from (3.3.6)

1−R2 =
1−R(0)2

1 + 2h(0)t+A(0)t2
.

Let us refer to this solution (3.3.3) to the approximate system (3.3.2) as x̃.
Per the definition given at the beginning of this Section, we can now see that x̃ is a m-approximate

solution for m < 3. First, on adding and subtracting h, we have

θ = −h+ h− 2h

1 +R2
−

2
(
1−R2

)3
L

1 +R2
= −h− 1−R2

1 +R2
h−

2
(
1−R2

)3
L

1 +R2
,

so

N x̃ = ˙̃x−
(
θI3N I3N
O3N θI3N

)
x̃−

(
O3N(

1−R2
)3
G

)
=

(
1−R2

1 +R2
h+

2
(
1−R2

)3
L

1 +R2

)
x̃−

(
O3N(

1−R2
)3
G

)
,

where all the quantities (h, R, G, L) are evaluated along x̃. Since
(
1−R2

)
h = O

(
1/t3

)
, we have

N x̃ = O

(
1

t3

)
,

confirming that x̃ is an m-approximate solution for m < 3.
We will now un-compactify x̃.

ỹ =
1

1−R2
x̃ =

E

1−R2

(
I3N tI3N
O3N I3N

)
x(0).

From (3.3.6) we have

E

1−R2
=

1√
1−R2

1√
1−R(0)2

=

√
1−R(0)2

√
1−R2

1

1−R(0)2
=

1

E

1

1−R(0)2
,

so

(3.3.7) ỹ =
1

E

(
I3N tI3N
O3N I3N

)
y(0).

Note
1

E
=
√

1 + 2hx(0)t+Ax(0)t2,
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where the subscript x serves to remind us that these quantities derive from the trajectory x̃. We want to
express this in terms of y(0). We have from (3.1.3) that

1−R2 =
2

1 +
√

1 + 4r2
,

so that (
1−R2

)2
=

2

1 +
√

1 + 4r2 + 2r2
.

Then we have

hx =
2

1 +
√

1 + 4r2 + 2r2
hy and Ax =

2

1 +
√

1 + 4r2 + 2r2
Ay,

where the corresponding quantities for ỹ ∈ R6N are defined

hy =

N∑
i=1

y†i yN+i Ay =

N∑
i=1

y†N+iyN+i.

Returning to the computation of ỹ

(3.3.8) ỹ =

{
1 +

4hy(0)t+ 2Ay(0)t2

1 +
√

1 + 4r(0)2 + 2r(0)2

}1/2(
I3N tI3N
O3N I3N

)
y(0),

which is super-hyperbolic [99], since the particle distances from the origin grow like t2. The trajectory (3.3.8)
must satisfy the uncompactification of (3.3.2)

ẏ =
ẋ

1−R2
−
[
d

dt

(
1−R2

)] x

(1−R2)
2 =

(
−hxI3N I3N
O3N −hxI3N

)
x

1−R2
+ 2hxy

(3.3.9) ẏ =

(
O3N I3N
O3N O3N

)
y +

2

1 +
√

1 + 4r2 + 2r2
hyy,

which is consistent with (3.3.8), as can be seen on differentiating (3.3.7)

˙̃y =
d

dt

(
1

E

)(
I3N tI3N
O3N I3N

)
y(0) +

1

E

(
O3N I3N
O3N O3N

)
y(0)

d

dt

(
1

E

)
=

1

2

2hx(0) + 2Ax(0)t√
1 + 2hx(0)t+Ax(0)t2

= E (hx(0) +Ax(0)t) =
hx
E
,

so

˙̃y =
hx
E

(
I3N tI3N
O3N I3N

)
y(0) +

(
O3N I3N
O3N O3N

)
y = hxy +

(
O3N I3N
O3N O3N

)
y,

which matches (3.3.9).
The asymptotic behavior of this trajectory as t → ∞ can be analyzed just as the trajectory in the

boundary in the previous Section, so long as there is no collision. The denominator of E may be expressed
as

√
A(0)t

√
1 +

2h(0)t+ 1

A(0)t2
,

so expanding E in powers of 1/t

E =
1√
A(0)t

(
1 +

2h(0)t+ 1

A(0)t2

)−1/2

=
1√
A(0)

(
1

t
− h(0)

A(0)

1

t2
+

(
3

2

h(0)2

A(0)2
− 1

2A(0)

)
1

t3

)
+O

(
1

t4

)
,

and the asymptotic behavior has the same lowest terms as (3.2.10):
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xi(t) = x∗i +

(
xi(0)√
A(0)

− h(0)

A(0)
x∗i

)
1

t
+

(
xi(0)√
A(0)

+

(
3

2

h(0)2

A(0)2
− 1

2A(0)

)
x∗i

)
1

t2
+O

(
1

t3

)
xN+i(t) =

(
1

t
− h(0)

A(0)t2
+

(
3

2

h(0)2

A(0)2
− 1

2A(0)

)
1

t3

)
x∗i +O

(
1

t4

)
h =

1

t
− h(0)

A(0)t2
+

(
3
h(0)2

A(0)2
+
h(0)

A(0)
− 1

A(0)

)
1

t3
+O

(
1

t4

)
,(3.3.10)

We will need one additional asymptotic formula:

1−R2

1−R(0)2
=

1

A(0)t2

(
1 +

2h(0)

A(0)t
+

1

A(0)t2

)−1

=
1

A(0)t2

(
1− 2h(0)

A(0)t

)
+O

(
1

t4

)
=

1

A(0)t2
− 2h(0)

A(0)2t3
+O

(
1

t4

)
.

3.3.2. A closer approximation. Next we will approximate (3.1.7) more closely, neglecting terms of
order O

((
1−R2

)3), and we exhibit our second, closer approximate system, which also has a closed-form
solution analytic in 1/t. We will see that solutions to this approximating system, to be called x̄ in the sequel,
approach the boundary as t → ∞, and we will in the next Chapter seek solutions to the full compactified
system (3.1.7) as perturbations of this one.

One justification for describing (3.3.11) as an approximating system to the full compactified system
(3.1.7) is that the two systems have the same Jacobian at critical points on the boundary.

Lemma 25. The approximating system

ẋi = − 2

1 +R2
hxi + xN+i

ẋN+i = − 2

1 +R2
hxN+i.(3.3.11)

for 1−R2 � 1 has an analytic solution given in closed form

x̄i = 2
xi(0) + xN+i(0)t

1−R(0)2 +

√
(1 +R(0)2)

2
+ 8h(0)t+ 4A(0)t2

x̄N+i = 2
xN+i(0)

1−R(0)2 +

√
(1 +R(0)2)

2
+ 8h(0)t+ 4A(0)t2

,(3.3.12)

whose power series in 1/t is convergent for t ∈ (T,∞), for some finite T .

Proof. We can solve (3.3.11) the same way: let

x = E

(
I3N tI3N
O3N I3N

)
x(0),

and differentiate both sides

ẋ = Ė

(
I3N tI3N
O3N I3N

)
x(0) + E

(
O3N I3N
O3N O3N

)
x(0) =

Ė

E
x+

(
O3N I3N
O3N O3N

)
x.

That has to match (3.3.11) so we have

Ė

E
= − 2h

1 +R2
, so E = exp

(
−2

∫ t

0

h

1 +R2
ds

)
.

Taking squares of magnitudes now gives

R2 = E2
N∑
i=1

(
x†i (0)xi(0) + 2tx†i (0)xN+i(0) + t2x†N+i(0)xN+i(0) + x†N+i(0)xN+i(0)

)
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= E2
(
R(0)2 + 2h(0)t+A(0)t2

)
,

or

(3.3.13) E2 =
R2

R(0)2 + 2h(0)t+A(0)t2
.

A straightforward calculation from (3.3.11)

(3.3.14)
1

2

dR2

dt
= x†ẋ = − 2hR2

1 +R2
+ h =

1−R2

1 +R2
h

leads to

(3.3.15)
d

dt
log(1−R2) = −

dR2

dt

1−R2
= −2

h

1 +R2
,

with solution
1−R2

1−R(0)2
= exp

(
−2

∫ t

0

h

1 +R2
dt

)
= E.

Starting with (3.3.13), we add and subtract 1 in the numerator and then multiply the top and bottom by
1−R(0)2

E2 =
R2 − 1

R(0)2 + 2h(0)t+A(0)t2
1−R(0)2

1−R(0)2
+

1

R(0)2 + 2h(0)t+A(0)t2
,

which we can express as a quadratic in E

E2 +
1−R(0)2

R(0)2 + 2h(0)t+A(0)t2
E − 1

R(0)2 + 2h(0)t+A(0)t2
= 0.

For the moment, let d = R(0)2 + 2h(0)t+A(0)t2, then the quadratic formula provides

E =
− 1−R(0)2

d +

√
(1−R(0)2)2

d2 + 4
d

2
=
−
(
1−R(0)2

)
+

√
(1−R(0)2)

2
+ 4d

2d
,

or

E =
−
(
1−R(0)2

)
+

√
(1 +R(0)2)

2
+ 8h(0)t+ 4A(0)t2

2R(0)2 + 4h(0)t+ 2A(0)t2
.

We multiply the numerator and denominator by the conjugate of the numerator to obtain the preferred form

(3.3.16) E =
1−R2

1−R(0)2
=

2

1−R(0)2 +

√
(1 +R(0)2)

2
+ 8h(0)t+ 4A(0)t2

.

This gives the closed form expressions promised. Obviously, for T sufficiently large, the solution is analytic
in 1/t on (T,∞), since |h| ≤ 1/2 and 0 < A(0) < 1. �

This solution has 6N parameters x(0) constrained only by the ten integrals of the motion. Note that we

still have x →
(
xN+i(0)†/

√
A(0), 0†3N

)†
as t → ∞, which is a critical point

(
x∗†, 0†3N

)†
on the boundary;

that is, this trajectory approaches the boundary as t→∞. We note that this system also has critical points
in the interior of the ball. The critical point set is {x |xN+i = 03 }; however, as we have seen all trajectories
of this system tend to fixed points on the boundary. We can express the evolution of h and A, as well:

h = E2 (h(0) + tA(0))

A = E2A(0).

We can compute E2

4

E2
=
(
1−R(0)2

)2
+ 2

(
1−R(0)2

)√
(1 +R(0)2)

2
+ 8h(0)t+ 4A(0)t2 +

(
1 +R(0)2

)2
+ 8h(0)t+ 4A(0)t2

= 2 + 2R(0)4 + 2
(
1−R(0)2

)√
(1 +R(0)2)

2
+ 8h(0)t+ 4A(0)t2 + 8h(0)t+ 4A(0)t2

E2 =
2

1 +R(0)4 + (1−R(0)2)

√
(1 +R(0)2)

2
+ 8h(0)t+ 4A(0)t2 + 4h(0)t+ 2A(0)t2

.
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We can give closed-form expressions for the quantities h and A from the formal solution (3.3.4)

h =
2h(0) + 2A(0)t

1 +R(0)4 + (1−R(0)2)

√
(1 +R(0)2)

2
+ 8h(0)t+ 4A(0)t2 + 4h(0)t+ 2A(0)t2

A =
2A(0)

1 +R(0)4 + (1−R(0)2)

√
(1 +R(0)2)

2
+ 8h(0)t+ 4A(0)t2 + 4h(0)t+ 2A(0)t2

.

Per the definition given at the beginning of this Section, we can now see that x̄ is a m-approximate
solution for m < 3.

N x̄ = ˙̄x−
(
θI3N I3N
O3N θI3N

)
x̄−

(
O3N(

1−R2
)3
G

)
=

2
(
1−R2

)3
L

1 +R2
x̄−

(
O3N(

1−R2
)3
G

)
,

where again all the quantities (h, R, G, L) are evaluated along x̄. Since
(
1−R2

)3
G = O

(
1/t3

)
, we have

N x̄ = O

(
1

t3

)
,

confirming that x̄ is also an m-approximate solution for m < 3.
We will now un-compactify x̄.

ȳ =
x̄

1−R2
=

1

1−R2
E

(
I3N tI3N
O3N I3N

)
x(0) =

(
I3N tI3N
O3N I3N

)
1

1−R2
x(0) =

(
I3N tI3N
O3N I3N

)
y(0),

or

ȳi = yi(0) + tyN+i(0)

ȳN+i = yN+i(0).(3.3.17)

This trajectory is hyperbolic, since the particle distances from the origin grow like t. The expanding solutions
that we construct in Chapter 5 will be seen to be asymptotic to ȳ. Of course, the trajectory (3.3.17) must
satisfy the uncompactification of (3.3.2)

ẏ =
ẋ

1−R2
−
[
d

dt

(
1−R2

)] x

(1−R2)
2 =

[
−2hx

1 +R2
+

(
O3N I3N
O3N O3N

)]
x

1−R2
+ 2

1−R2

1 +R2
hx

x

(1−R2)
2 ,

or

ẏ =

(
O3N I3N
O3N O3N

)
y,

which is consistent with (3.3.17).
For future reference, we evaluate the asymptotic behavior of this trajectory as t → ∞, again assuming

there is no collision. As long as t is large enough, the radical in (3.3.12) is well defined. Factoring out the
leading term, the denominator of E may be expressed as

2
√
A(0)t

√1 +
2h(0)

A(0)t
+

(1 +R(0)2)
2

4A(0)t2
+

1−R(0)2

2
√
A(0)t

 .

The big square root has a power series, starting with

1 +
1

t

h(0)

A(0)
+

1

t2

[(
1 +R(0)2

)2
8A(0)

− h(0)2

2A(0)2

]
+O

(
1

t3

)
,

convergent for ∣∣∣∣∣2h(0)

A(0)t
+

(
1 +R(0)2

)2
4A(0)t2

∣∣∣∣∣ < 1,

which obviously holds for sufficiently large t.
Including the 1−R(0)2 term, the denominator is

2

E
= 2
√
A(0)t

(
1 +

1

t

[
h(0)

A(0)
+

1−R(0)2

2
√
A(0)

]
+

1

t2

[(
1 +R(0)2

)2
8A(0)

− h(0)2

2A(0)2

]
+O

(
1

t3

))
,
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so we have the first few terms of the series for E, convergent for sufficiently large t:

E =
1√
A(0)t

{
1− 1

t

[
h(0)

A(0)
+

1−R(0)2

2
√
A(0)

]

+
1

t2

[
3h(0)2

2A(0)2
+
h(0)

(
1−R(0)2

)
A(0)3/2

− 1− 6R(0)2 +R(0)4

8A(0)

]}
+O

(
1

t4

)
.

We will also need the first few terms of E2

E2 =
1

A(0)t2

(
1− 2h(0)

A(0)t
− 1−R(0)2√

A(0)t

)
+O

(
1

t4

)
=

1

A(0)t2
−
(

2h(0)

A(0)2
+

1−R(0)2

A(0)3/2

)
1

t3
+O

(
1

t4

)
.

It is easy to see that for this case also, we have that

h =
1

t
−

(
h(0)

A(0)
+

1−R(0)2√
A(0)

)
1

t2
+O

(
1

t3

)
A =

1

t2
−

(
2h(0)

A(0)
+

1−R(0)2√
A(0)

)
1

t3
+O

(
1

t4

)
,

as t→∞.
We can express the first few terms of x using (3.3.12) as

xi = x∗i +
1

t

(
xi(0)√
A(0)

−

[
h(0)

A(0)
+

1−R(0)2

2
√
A(0)

]
x∗i

)
− 1

t2

[
h(0)

A(0)
+

1−R(0)2

2
√
A(0)

]
xi(0)√
A(0)

+
1

t2

[
3h(0)2

2A(0)2
+
h(0)

(
1−R(0)2

)
A(0)3/2

− 1− 6R(0)2 +R(0)4

8A(0)

]
x∗ +O

(
1

t3

)

xN+i =
1

t
x∗i −

1

t2

[
h(0)

A(0)
+

1−R(0)2

2
√
A(0)

]
x∗i

+
1

t3

[
3h(0)2

2A(0)2
+
h(0)

(
1−R(0)2

)
A(0)3/2

− 1− 6R(0)2 +R(0)4

8A(0)

]
x∗i +O

(
1

t4

)
.(3.3.18)

Moreover,

1−R2

1−R(0)2
=

1√
A(0)t

− 1

t2

(
h(0)

A(0)3/2
+

1−R(0)2

2A(0)

)
+O

(
1

t3

)
,

which means that this trajectory approaches the boundary more slowly than x̃ does.
Given that x has a series expansion convergent for sufficiently large t,

x =

 x∗ + a1/t+ a2/t
2 + . . .

x∗
[
B1/t+B2/t

2 +B3 /t
3 + . . .

]
 ,

where the ak are 3N -vectors, let Ak = a†kx
∗. We have computed the first few terms just above, which we

record for later use:
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a1i =
xi(0)√
A(0)

−

(
h(0)

A(0)
+

1−R(0)2

2
√
A(0)

)
x∗i , A1 = −1−R(0)2

2
√
A(0)

< 0(3.3.19)

a2i = −

[
h(0)

A(0)
+

1−R(0)2

2
√
A(0)

]
xi(0)√
A(0)

+

[
3h(0)2

2A(0)2
+
h(0)

(
1−R(0)2

)
A(0)3/2

− 1− 6R(0)2 +R(0)4

8A(0)

]
x∗i(3.3.20)

A2 =
h(0)2

2A(0)2
+
h(0)

(
1−R(0)2

)
2A(0)3/2

− 1− 6R(0)2 +R(0)4

8A(0)

B1 = 1

B2 = − h(0)

A(0)
− 1−R(0)2

2
√
A(0)

; A1 −B2 =
h(0)

A(0)
(3.3.21)

B3 =
3h(0)2

2A(0)2
+
h(0)

(
1−R(0)2

)
A(0)3/2

− 1− 6R(0)2 +R(0)4

8A(0)
.

B3 −A2 =
h(0)2

A(0)2
+
h(0)

(
1−R(0)2

)
2A(0)3/2

= − h(0)

A(0)
B2 = (B2 −A1)B2

Note that 1− 6R(0)2 +R(0)4 < 0 provided R(0)2 >
√

2− 1 ∼ 0.41. So A2 and B3 are both positive.
Note that since each x̄i stays in the linear span of xi(0) and x∗i , and each x̄N+1 is always parallel to x∗i ,

the motion of x̄ in the ball B6N is actually confined to a three-dimensional subspace, the linear span of the
three independent vectors (

x∗

03N

)
,

(
v2

03N

)
,

(
03N

x∗

)
,

where v2 is the vector formed via the Graham-Schmidt process starting with v1 = x∗ and x̄j(t0). We expect
that asymptotically something similar is true for solutions x of the compactified system (3.1.7) that are
asymptotic to x̄. To be explicit

v2j =

√
A(t0)xj(t0)− h(t0)x∗j√

A(t0) (R(t0)2 −A(t0))− h(t0)2
, for 1 ≤ j ≤ 3N

xj(t0) =
h(t0)√
A(t0)

x∗j +

√
R(t0)2 −A(t0)− h(t0)2

A(t0)
v2j .

Next we analyze the initial conditions for this approximation that lead to collision in finite time and
those that don’t.

Definition. Two vectors v1 and v2 are anti-parallel if there is a positive number β such that v1 = −βv2.

If xa(σ) = xb(σ), for some 0 < σ <∞ and some a 6= b, then from (3.3.12), we must have

xa(0) + σxN+a(0) = xb(0) + σxN+b(0).

Then

σ (xN+a(0)− xN+b(0)) = xb(0)− xa(0),

so the ab initial velocity difference is anti-parallel to the initial position difference. The reasoning works in
reverse as well, so for both x̃ and x̄, a collision between particles a and b in the future is equivalent to the
ab initial velocity difference being anti-parallel to the initial position difference.

Now we consider trajectories that approach a collision as t→∞. This means that for some a 6= b,

x∗a = limxa = limxb = x∗b ,

and a collision as t → ∞ is equivalent to x∗ being a point of collision, or equivalently that a pair of initial
velocities are equal.
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Suppose that x̄ does not experience a collision nor approach one, and consider the particle separation

‖xa − xb‖2 = E2 ‖xa(0)− xb(0) + t (xN+a(0)− xN+b(0))‖2 .

= E2
{
‖xa(0)− xb(0)‖2 + 2t (xa(0)− xb(0))

†
(xN+a(0)− xN+b(0))

+t2 ‖xN+a(0)− xN+b(0)‖2
}

= E2A(0) ‖x∗a − x∗b‖
2

{
t2 + 2t

(xa(0)− xb(0))
†

(x∗a − x∗b)√
A(0) ‖x∗a − x∗b‖

2 +
‖xa(0)− xb(0)‖2

A(0) ‖x∗a − x∗b‖
2

}
.

It was noted above that E tends to 0 like 1/
√
A(0)t; in fact, E is eventually monotone decreasing, as can

be seen from

Ė =
1

1−R(0)2

(
− d

dt
R2

)
= − 2

1−R(0)2

(
1−R2

)
h

1 +R2
= −

2
(
1−R2

)
1−R(0)2

h(0) + tA(0)

1 +R2
= −2E

h(0) + tA(0)

1 +R2
,

which is negative provided t > −h(0)/A(0). We can also show that ‖xa − xb‖2 is eventually monotone
decreasing, since

d

dt
‖xa − xb‖2 = 2EĖ

{
t2 + 2t

(xa(0)− xb(0))
†

(x∗a − x∗b)√
A(0) ‖x∗a − x∗b‖

2 +
‖xa(0)− xb(0)‖2

A(0) ‖x∗a − x∗b‖
2

}

+2E2

{
t+

(xa(0)− xb(0))
†

(x∗a − x∗b)√
A(0) ‖x∗a − x∗b‖

2

}
,

which is 2E2 times

−2
h(0) + tA(0)

1 +R2

{
t2 + 2t

(xa(0)− xb(0))
†

(x∗a − x∗b)√
A(0) ‖x∗a − x∗b‖

2 +
‖xa(0)− xb(0)‖2

A(0) ‖x∗a − x∗b‖
2

}
+ t+

(xa(0)− xb(0))
†

(x∗a − x∗b)√
A(0) ‖x∗a − x∗b‖

2 ,

and this is eventually negative. Thus there is a finite t1, such that every particle separation is monotone
decreasing on (t1,∞). Since the limit point is not a collision point, all the particle separations must be
positive, and so must the infimum of the particle separations for , which is equal to

min
a 6=b
‖x∗a − x∗b‖ .

We summarize most of this Section in the Lemma, wherein we have shifted the initial time from t = 0
to t = t0:

Lemma 26. Provided the point ξ in the interior of the unit ball has no velocity difference anti-parallel
to the corresponding position difference, the system (3.2.2) has a unique solution x̄(t) given in closed form
in (3.3.12) for all t ∈ [t0,∞), with x̄(t0) = ξ. Moreover, x̄ has a power series expansion in 1/t, its first
few terms are given in (3.3.18), the series converges for sufficiently large t, and x̄ tends to a point on the
boundary (

x∗

03N

)
= lim
t→∞

x̄(t) =
1√
A(t0),

(
O3N I3N
O3N O3N

)
x̄(t0).

If in addition, none of the initial velocities are equal, then the limit point is a non-collision point, and the
infimum of the particle separations is positive.

The approximate solutions x̃ and x̄ are related to the boundary solution as follows:

Proposition 27. Let x̃(t) be as in (3.3.3), a solution to (3.3.2) starting at x̃(0). Let p(t) be the unit
vector in the direction x̃(t). Then p is the solution to (3.2.1) starting at p(0) = x̃(0)/‖x̃(0)‖. Similarly let
x̄(t) be as in (3.3.12), a solution to (3.3.11) starting at x̄(0). Let p(t) be the unit vector in the direction x̄(t).
Then p is the solution to (3.2.1) starting at p(0) = x̄(0)/‖x̄(0)‖.

Proof. For any trajectory z, let hz denote the function h =
∑N
i=1 z

†
i zN+i along z. Let R = ‖x̃‖; then

from the derivative of R2 given in (3.3.5) we have

Ṙ =
1

2

1

R
2
(
1−R2

)
hx̃ =

hx̃
R

(
1−R2

)
.
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Figure 3.3.1. Illustrating Proposition 27

Let p = x̃/R. Then

ṗ =
˙̃x

R
− Ṙx̃

R2
= −hx̃

R
x̃+

1

R

(
O3N I3N
O3N O3N

)
x̃− hx̃

R3

(
1−R2

)
x̃

=
1

R

(
O3N I3N
O3N O3N

)
x̃− hx̃

R

(
1 +

1−R2

R2

)
x̃ =

1

R

(
O3N I3N
O3N O3N

)
x̃− hx̃

R3
x̃

= −hpp+

(
O3N I3N
O3N O3N

)
p,

which is (3.2.1).
Similarly, let R = ‖x̄‖, then p = x̄/R. From the derivative of R2 given in (3.3.14) we have

Ṙ =
1

2

1

R
2

1−R2

1 +R2
hx̄ =

hx̄
R

1−R2

1 +R2
.

Then

ṗ =
˙̄x

R
− Ṙx̄

R2
=

1

R

(
− 2hx̄

1 +R2
x̄+

(
O3N I3N
O3N O3N

)
x̄

)
− 1−R2

1 +R2

hx̄
R3

x̄

= − 1

R

hx̄
1 +R2

[
2 +

1−R2

R2

]
x̄+

1

R

(
O3N I3N
O3N O3N

)
x̄

= − hx̄
R3

x̄+

(
O3N I3N
O3N O3N

)
p = −hpp+

(
O3N I3N
O3N O3N

)
p,

which is (3.2.1). �

Examples of the trajectories x, x̄, x̃, and p are shown in Figure 3.3.1.
By contrast, if x is a trajectory in the ball; that is, a solution to the compactified system (3.1.7), let

R = ‖x‖, and p = x/R,

ṗ =
ẋ

R
− Ṙ x

R2
=

1

R

((
θI3N I3N
O3N θI3N

)
x+

(
03N(

1−R2
)3
G

))
+

(
1−R2

)
θ

2R

x

R2

=

(
θI3N I3N
O3N θI3N

)
p+

1

R

(
03N(

1−R2
)3
G

)
+

(
1−R2

)
θ

2R2
p
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=

(
O3N I3N
O3N O3N

)
p+

[
1 +

1−R2

2R2

]
θp+

1

R

(
03N(

1−R2
)3
G

)
=

(
O3N I3N
O3N O3N

)
p+

1 +R2

2R2

(
−2

hx +
(
1−R2

)3
L

1 +R2

)
p+

1

R

(
03N(

1−R2
)3
G

)

=

(
O3N I3N
O3N O3N

)
p−

(
hx +

(
1−R2

)3
L

R2

)
p+

1

R

(
03N(

1−R2
)3
G

)

=

(
−hpI3N I3N
O3N −hpI3N

)
p−

(
1−R2

)3
L

R2
p+

1

R

(
03N(

1−R2
)3
G

)
,

which is (3.2.1) +O
((

1−R2
)3).

Also note that if z is any of the above trajectories x̄, x̃, or x, R = ‖z‖, and p = z/R, then

‖z − p‖2 = (z − p)† (z − p) = R2 − p†z − z†p+ 1 = R2 − 2

R
z†z + 1 = 1− 2R+R2 = (1−R)

2
.

If z is x̄ or x̃, or if it is the compactification x of a trajectory q that escapes to ∞, this this quantity decays
to 0, giving a further sense in which trajectories in the boundary attract nearby interior trajectories.



CHAPTER 4

Seeking Trajectories that Expand to the Boundary

Given a solution x and an approximation x̄ from the previous Chapter, we develop in Section 4.1 the
differential equation satisfied by the difference ∆ = x − x̄. This requires expressing the right hand side
of (3.1.7) in terms of ∆ and the known x̄. We will be interested in decaying solutions ∆, whose existence

guarantees that x and x̄ are asymptotic to the same point p =
(
x∗† 0†3N

)†
as t→∞, and we can interpret

the unit 3N -vector x∗ as the N limiting directions x∗i of the particles. We expand all quantities in ẋ as a
series in powers of the components of ∆, and compute all terms through O

(
‖∆‖2

)
. We then establish a

series expansion in 1/t for the linear portion and compute all terms through O(1/t2). To better understand
the problem for ∆, which has an irregular singular point at t = ∞, we begin in Section 4.2 with efforts to
solve approximating versions of the problem, seeking solutions to the linear problem that decay to 0. After a
very helpful coordinate transformation, we solve the J0 problem twice, solve the J− problem, and solve the
J1 problem by finding a convergent series solution tending to 0. This work with the linear system inspires
our search for solutions to the full problem in the next Chapter. We explain in Section 4.3 the motivation
for returning to the uncompactified problem and the selection of a specific form of solution to pursue in the
next Chapter.

4.1. Perturbation near an approximate solution

Given a solution x and an approximation x̄, we develop in this Section the differential equation satisfied
by the difference ∆ = x − x̄. This requires expressing the right hand side of (3.1.7) in terms of ∆ and the
known x̄. We expand all necessary quantities in a series in powers of the components of ∆, and compute all
terms through O

(
‖∆‖2

)
. We then establish a series expansion in 1/t for the linear portion and compute all

terms through O(1/t2).
Let x(t) be a solution to the compactified system (3.1.7) through x0 = x(t0), and let x̄(t) be given by

(3.3.12), a solution to (3.2.2) starting at x̄(t0), which is not assumed to be the same point as x(t0). We
assume that x̄ does not experience a collision for t ≥ t0 and does not approach a collision as t→∞. Recall
from Lemma 26 that this requires of the initial conditions that no initial velocity difference is anti-parallel
to the corresponding initial position difference and that no initial velocities are equal. Then by definition,
∆ = x− x̄ satisfies the differential equation

(4.1.1) ∆̇ = ẋ− ˙̄x =
−2h

1 +R2
x+

2h̄

1 + R̄2
x̄+

(
O3N I3N
O3N O3N

)
∆−

2
(
1−R2

)3
L

1 +R2
x+

(
1−R2

)3( 03N

G

)
with initial condition ∆(t0) = x(t0) − x̄(t0) on the interval [t0, σ), where σ ≤ ∞ is the endpoint of the
maximal interval of existence of x per Section 1.1, and

h̄ =

N∑
i=1

x̄†i x̄N+i R̄2 =

2N∑
i=1

x̄†i x̄i

are the corresponding quantities for x̄, and G is the 3N -vector composed of the Gi

G =

 G1

...
GN

 .

Our goal is to establish conditions on x(t0) and x̄(t0) so that (4.1.1) will have a solution ∆, which decays
to 0. The right-hand side of (4.1.1) is analytic in 1/t and ∆, so we start by expressing the right hand side
of (4.1.1) in terms of x̄ and ∆, including terms of O

(
‖∆‖3

)
. Later, we will express x̄ in terms of its series

58
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expansion in 1/t. While we don’t expect that a solution ∆ will be analytic in 1/t near ∞, it will prove
fruitful to expand to low order in ∆ assuming any solution ∆ is small and tends to 0. From

R2 = ‖x̄+ ∆‖2 = R̄2 + 2x̄†∆ +R2
∆, with R∆ = ‖∆‖ ,

we can express the reciprocal

1

1 +R2
=

1

1 + R̄2

1

1 +
2x̄†∆+R2

∆

1+R̄2

=
1

1 + R̄2

∞∑
n=0

(
(−1)

2x̄†∆ +R2
∆

1 + R̄2

)n

=
1

1 + R̄2

(
1− 2x̄†∆ +R2

∆

1 + R̄2
+

(
2x̄†∆

)2
+ 4x̄†∆R2

∆(
1 + R̄2

)2 −
(

2x̄†∆

1 + R̄2

)3
)

+O
(
‖∆‖4

)
=

1

1 + R̄2

(
1− 2x̄†∆

1 + R̄2
− R2

∆

1 + R̄2
+

(
2x̄†∆

1 + R̄2

)2

+
4x̄†∆R2

∆(
1 + R̄2

)2 − ( 2x̄†∆

1 + R̄2

)3
)

+O
(
‖∆‖4

)
.(4.1.2)

As shown, the first two terms inside the big parentheses are constant and linear in ∆, the next two are
quadratic, and the last two are cubic. The series converges for∣∣∣∣2x̄†∆ +R2

∆

1 + R̄2

∣∣∣∣ < 1,

which we can guarantee if R∆ <
√

2− 1, because then∣∣∣∣2x̄†∆ +R2
∆

1 + R̄2

∣∣∣∣ ≤ ∣∣2x̄†∆ +R2
∆

∣∣ ≤ 2R∆ +R2
∆ < 2

(√
2− 1

)
+
(√

2− 1
)2

= 1.

Since

h = h̄+ x̄†
(
O3N I3N
I3N O3N

)
∆ + h∆, with h∆ =

1

2
∆†
(
O3N I3N
I3N O3N

)
∆,

we have the ratio

h

1 +R2
=

1

1 + R̄2

[
h̄+ x̄†

(
O3N I3N
I3N O3N

)
∆ + h∆

] ∞∑
n=0

(
(−1)

2x̄†∆ +R2
∆

1 + R̄2

)n

=
1

1 + R̄2

[
h̄

(
1− 2x̄†∆ +R2

∆

1 + R̄2
+

(
2x̄†∆

1 + R̄2

)2

+
4x̄†∆R2

∆(
1 + R̄2

)2 − ( 2x̄†∆

1 + R̄2

)3
)

+x̄†
(
O3N I3N
I3N O3N

)
∆

(
1− 2x̄†∆ +R2

∆

1 + R̄2
+

(
2x̄†∆

1 + R̄2

)2
)

+ h∆

(
1− 2x̄†∆

1 + R̄2

)]
+O

(
‖∆‖4

)
.

For convenience we arrange by order in ∆

h

1 +R2
=

h̄

1 + R̄2
− 2h̄x̄†∆(

1 + R̄2
)2 +

1

1 + R̄2
x̄†
(
O3N I3N
I3N O3N

)
∆

+
h̄
(
2x̄†∆

)2(
1 + R̄2

)3 − h̄R2
∆(

1 + R̄2
)2 − x̄†( O3N I3N

I3N O3N

)
∆

2x̄†∆(
1 + R̄2

)2 +
h∆

1 + R̄2

+
4h̄x̄†∆R2

∆(
1 + R̄2

)3 − h̄
(
2x̄†∆

)3(
1 + R̄2

)4 + x̄†
(
O3N I3N
I3N O3N

)
∆

( (
2x̄†∆

)2(
1 + R̄2

)3 − R2
∆(

1 + R̄2
)2
)
− 2h∆x̄

†∆(
1 + R̄2

)2
+O

(
‖∆‖4

)
.
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Now we can form h
1+R2x, which is the above times x̄+ ∆

h

1 +R2
x =

h̄

1 + R̄2
x̄− 2h̄x̄†∆(

1 + R̄2
)2 x̄+

1

1 + R̄2
x̄†
(
O3N I3N
I3N O3N

)
∆x̄+

h̄

1 + R̄2
∆

− 2h̄x̄†∆(
1 + R̄2

)2 ∆ +
1

1 + R̄2
x̄†
(
O3N I3N
I3N O3N

)
∆∆

+
h̄
(
2x̄†∆

)2(
1 + R̄2

)3 x̄− h̄R2
∆(

1 + R̄2
)2 x̄− x̄†( O3N I3N

I3N O3N

)
∆

2x̄†∆(
1 + R̄2

)2 x̄+
h∆

1 + R̄2
x̄

+
h̄
(
2x̄†∆

)2(
1 + R̄2

)3 ∆− h̄R2
∆(

1 + R̄2
)2 ∆− x̄†

(
O3N I3N
I3N O3N

)
∆

2x̄†∆(
1 + R̄2

)2 ∆ +
h∆

1 + R̄2
∆

+
4h̄x̄†∆R2

∆(
1 + R̄2

)3 x̄− h̄
(
2x̄†∆

)3(
1 + R̄2

)4 x̄+ x̄†
(
O3N I3N
I3N O3N

)
∆

( (
2x̄†∆

)2(
1 + R̄2

)3 − R2
∆(

1 + R̄2
)2
)
x̄

− 2h∆x̄
†∆(

1 + R̄2
)2 x̄+O

(
‖∆‖4

)
.

Then the difference

hx− h̄x̄ = h̄∆− h̄ 2x̄†∆

1 + R̄2
x̄+ x̄†

(
O3N I3N
I3N O3N

)
∆x̄− h̄ 2x̄†∆

1 + R̄2
∆− h̄ R2

∆

1 + R̄2
x̄+ h̄

(
2x̄†∆

1 + R̄2

)2

x̄

+x̄†
(
O3N I3N
I3N O3N

)
∆

(
∆− 2x̄†∆

1 + R̄2
x̄

)
+ h∆x̄

+
h̄
(
2x̄†∆

)2(
1 + R̄2

)2 ∆− h̄R2
∆

1 + R̄2
∆− x̄†

(
O3N I3N
I3N O3N

)
∆

2x̄†∆

1 + R̄2
∆ + h∆∆

+
4h̄x̄†∆R2

∆(
1 + R̄2

)2 x̄− h̄
(
2x̄†∆

)3(
1 + R̄2

)3 x̄+ x̄†
(
O3N I3N
I3N O3N

)
∆

( (
2x̄†∆

)2(
1 + R̄2

)2 − R2
∆

1 + R̄2

)
x̄

−2h∆x̄
†∆

1 + R̄2
x̄+O

(
‖∆‖4

)
.(4.1.3)

Since Gi and L appear multiplied by
(
1−R2

)3 and since 1 − R2 = O(1/t), we will only keep terms of

Gi and L to O
(
‖∆‖2

)
. We start with Gi, and first we need

xk − xi = x̄k − x̄i + ∆k −∆i

g2
ik = ḡ2

ik

(
1 +

1

ḡ2
ik

[
2 (x̄k − x̄i)† (∆k −∆i) + ‖∆k −∆i‖2

])
.

Note from Lemma 26 that for sufficiently large t1, the ḡik are bounded away from 0 on t ≥ t1, so this is
meaningful. Let δ be the minimum separation distance of the x̄j , which is mina 6=b ‖x∗a − x∗b‖. Then the set of
reciprocals

{
ḡ−1
ik

}
is uniformly bounded by 1/δ. We need g−3

ik , which we will expand in a series, convergent
if

1

ḡ2
ik

[
2 (x̄k − x̄i)† (∆k −∆i) + ‖∆k −∆i‖2

]
< 1.

Assuming that the solution ∆ goes to 0, we know that for any ε > 0, there is a time t2, such that ‖∆(t)‖ < ε,
for t > t2. Let us choose ε <

√
2−1
2 δ, and restrict our attention to times t ≥ t3 = max {t1, t2}. Then

1

ḡ2
ik

[
2 (x̄k − x̄i)† (∆k −∆i) + ‖∆k −∆i‖2

]
≤ 2 ‖∆k −∆i‖

ḡik
+
‖∆k −∆i‖2

ḡ2
ik

≤ 4ε

δ
+

4ε2

δ2

< 2
(√

2− 1
)

+
(√

2− 1
)2

= 1,
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and the series for g2
ik converges for t ≥ t3. Keeping terms of second order in ∆, we can expand as

g−3
ik = ḡ−3

ik

(
1− 3

2ḡ2
ik

[
2 (x̄k − x̄i)† (∆k −∆i) + ‖∆k −∆i‖2

]
+

15

8ḡ4
ik

[
2 (x̄k − x̄i)† (∆k −∆i)

]2)
+O

(
‖∆‖3

)
.

As a linear combination of terms of the form

xk − xi
g3
ik

=
x̄k − x̄i + ∆k −∆i

ḡ3
ik

− 3

ḡ5
ik

(x̄k − x̄i)† (∆k −∆i) (x̄k − x̄i)

+
15

2ḡ7
ik

[
(x̄k − x̄i)† (∆k −∆i)

]2
(x̄k − x̄i)

− 3

2̄g
5
ik

[
2 (x̄k − x̄i)† (∆k −∆i) (∆k −∆i) + ‖∆k −∆i‖2 (x̄k − x̄i)

]
+O

(
‖∆‖3

)
,

each Gi has a series in ∆, convergent for t ≥ t3. Collecting terms by powers of ∆, we have the first few terms

Gi = Ḡi +G1i(∆) +G2i(∆) +O
(
‖∆‖3

)
,

with

Ḡi =
∑
k 6=i

mk

ḡ3
ik

(x̄k − x̄i)

G1i(∆) =
∑
k 6=i

mk

ḡ3
ik

[
I3 −

3

ḡ2
ik

(x̄k − x̄i) (x̄k − x̄i)†
]

(∆k −∆i)

G2i(∆) =
15

2

∑
k 6=i

mk

ḡ7
ik

[
(x̄k − x̄i)† (∆k −∆i)

]2
(x̄k − x̄i)

−3

2

∑
k 6=i

mk

ḡ5
ik

[
2 (x̄k − x̄i)† (∆k −∆i) (∆k −∆i) + ‖∆k −∆i‖2 (x̄k − x̄i)

]
.

Recall that I3 is the 3×3 identity matrix, and note that for each i 6= k, (x̄k − x̄i) (x̄k − x̄i)† is a 3×3 matrix.
For the contribution from the terms of (4.1.1) cubic in 1−R2, we need

(4.1.4)
(
1−R2

)3
=
(
1− R̄2

)3 − 3
(
1− R̄2

)2 (
2x̄†∆ +R2

∆

)
+ 3

(
1− R̄2

) (
2x̄†∆

)2
+O

(
‖∆‖3

)
.

Now we can put the pieces together,(
1−R2

)3
Gi =

(
1− R̄2

)3 (
Ḡi +G1i(∆) +G2i(∆)

)
− 6

(
1− R̄2

)2
x̄†∆

(
Ḡi +G1i(∆)

)
−3
(
1− R̄2

)2
R2

∆Ḡi + 3
(
1− R̄2

) (
2x̄†∆

)2
Ḡi +O

(
‖∆‖3

)
,

which we can rearrange:(
1−R2

)3
Gi =

(
1− R̄2

)3
Ḡi − 6

(
1− R̄2

)2
x̄†∆Ḡi − 6

(
1− R̄2

)2
x̄†∆G1i(∆)

−3
(
1− R̄2

)2
R2

∆Ḡi + 12
(
1− R̄2

) (
x̄†∆

)2
Ḡi

+
(
1− R̄2

)3
G1i(∆) +

(
1− R̄2

)3
G2i(∆) +O

(
‖∆‖3

)
.(4.1.5)

The last two terms above are linear or quadratic in ‖∆‖, which is decreasing, and O
(
1/t3

)
, since 1− R̄2 =

O (1/t), and they will be neglected going forward. We will see that the first term in (4.1.5) will contribute
to the non-homogeneous term; the next term is linear in ∆, and the rest are quadratic terms.

Based on the expansion of Gi above, we express L through second order in ‖∆‖:

L =

N∑
k=1

(x̄N+k + ∆N+k)
† (
Ḡk +G1k(∆) +G2k(∆)

)
= L̄+ L1(∆) + L2(∆) +O

(
‖∆‖3

)
,
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the first few terms of its power series, convergent for t ≥ t3, where

L̄ =

N∑
k=1

x̄†N+kḠk

L1(∆) =

N∑
k=1

∆†N+kḠk +

N∑
k=1

x̄†N+kG1k(∆)

L2(∆) =

N∑
k=1

∆†N+kG1k(∆) +

N∑
k=1

x̄†N+kG2k(∆).

Combining (4.1.2) and (4.1.4) we have

(
1−R2

)3
1 +R2

=
1− 2x̄†∆+R2

∆

1+R̄2 +
(

2x̄†∆
1+R̄2

)2

1 + R̄2

×
((

1− R̄2
)3 − 3

(
1− R̄2

)2 (
2x̄†∆ +R2

∆

)
+ 3

(
1− R̄2

) (
2x̄†∆

)2)
+O

(
‖∆‖3

)
=

(
1− R̄2

)3
1 + R̄2

−
6
(
1− R̄2

)2
1 + R̄2

x̄†∆−
3
(
1− R̄2

)2
1 + R̄2

R2
∆ +

12
(
1− R̄2

)
1 + R̄2

(
x̄†∆

)2
− 2x̄†∆

1 + R̄2

[(
1− R̄2

)3
1 + R̄2

−
6
(
1− R̄2

)2
1 + R̄2

x̄†∆

]

+

((
2x̄†∆

1 + R̄2

)2

− R2
∆

1 + R̄2

)(
1− R̄2

)3
+O

(
‖∆‖3

)
.

The terms in
(
x̄†∆

)2 can be combined, and multiplying this by Lx, we remove terms in ∆ which are O(1/t3),
leaving (

1−R2
)3

1 +R2
=

(
1− R̄2

)3
1 + R̄2

−
6
(
1− R̄2

)2
1 + R̄2

x̄†∆−
3
(
1− R̄2

)2
1 + R̄2

R2
∆ +

24
(
1− R̄2

)(
1 + R̄2

)2 (
x̄†∆

)2
Then we can put the pieces together

Lx =
(
L̄+ L1(∆) + L2(∆)

)
(x̄+ ∆) +O

(
∆3
)

= L̄x̄+ L̄∆ + L1(∆)x̄+ L1(∆)∆ + L2(∆)x̄+O
(
‖∆‖3

)
,

so that(
1−R2

)3
1 +R2

Lx =

((
1− R̄2

)3
1 + R̄2

−
6
(
1− R̄2

)2
1 + R̄2

x̄†∆−
3
(
1− R̄2

)2
1 + R̄2

R2
∆ +

24
(
1− R̄2

)(
1 + R̄2

)2 (
x̄†∆

)2)
L̄x̄

+

((
1− R̄2

)3
1 + R̄2

−
6
(
1− R̄2

)2
1 + R̄2

x̄†∆

)[
L̄∆ + L1(∆)x̄

]
+

(
1− R̄2

)3
1 + R̄2

[L1(∆)∆ + L2(∆)x̄] +O
(
‖∆‖3

)
.

Since L̄ = O(1/t), the above contains terms in ∆ which are O(1/t3), so we remove them leaving

(4.1.6)
(
1−R2

)3
1 +R2

Lx =

((
1− R̄2

)3
1 + R̄2

+
24
(
1− R̄2

)(
1 + R̄2

)2 (
x̄†∆

)2)
L̄x̄−

6
(
1− R̄2

)2
1 + R̄2

x̄†∆L1(∆)x̄+O
(
‖∆‖3

)
.

The first term in (4.1.6) will contribute to the non-homogeneous term below, and the other two are quadratic
in ∆. Collecting the terms, we have the linear part and the non-homogeneous part in the first two lines,
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followed by the part quadratic in ∆:

∆̇ =

(
−2

1 + R̄2

[
h̄

(
I3N O3N

O3N I3N

)
− 2h̄

1 + R̄2
x̄x̄† + x̄x̄†

(
O3N I3N
I3N O3N

)]
+

(
O3N I3N
O3N O3N

))
∆

−6
(
1− R̄2

)2( 03N

Ḡ

)
x̄†∆−

2
(
1− R̄2

)3
1 + R̄2

L̄x̄+
(
1− R̄2

)3( 03N

Ḡ

)
+

2

1 + R̄2

{
h̄

[
2x̄†∆

1 + R̄2
∆ +

R2
∆

1 + R̄2
x̄−

(
2x̄†∆

1 + R̄2

)2

x̄

]
−

48
(
1− R̄2

)
1 + R̄2

(
x̄†∆

)2
L̄x̄

+
12
(
1− R̄2

)2
1 + R̄2

x̄†∆L1(∆)x̄− x̄†
(
O3N I3N
I3N O3N

)
∆∆

+x̄†
(
O3N I3N
I3N O3N

)
∆

2x̄†∆

1 + R̄2
x̄− h∆x̄

}

−6
(
1− R̄2

)2
x̄†∆

(
03N

G1(∆)

)
− 3

(
1− R̄2

)2
R2

∆

(
03N

Ḡ

)
+12

(
1− R̄2

) (
x̄†∆

)2( 03N

Ḡ

)
+O

(
‖∆‖3

)
.(4.1.7)

Note that the linear and quadratic terms are explicitly shown only through O(1/t2), as we have removed the
linear and quadratic (in ∆) terms of O(1/t3) and above.

Our stability analysis of (4.1.7) begins with the linear terms, which we express in terms of the expansion
of x̄ near the critical point x∗ from (3.3.18):

x̄ =

 x∗ + a1/t+ a2/t
2 + a3 /t

3 + . . .

x∗
(
1/t+B2/t

2 +B3/t
3 + . . .

)
 ,

where the ak are 3N -vectors and the Bk are scalars (since x̄N+i ∝ x∗i ), and we know B1 = 1. Let Ak = a†kx
∗.

We are assuming that we can choose the initial time t0 to be as large as necessary, so in particular, we
we will keep terms through 1/t2 in the linear coefficient matrix and the lowest order for each block of the
non-homogeneous term.

Lemma 28. The coefficient of the linear term on the right side of (4.1.7) is J2 +O(1/t3), where

(4.1.8)

J2 =



I3N − x∗x∗† − 1
t

[
x∗a†1 + a1x

∗† −A1x
∗x∗†

]
− 1
t I3N −

1
t2

[
B2I3N + x∗a†1

]
− 1
t2

[
x∗a†2 + a1a

†
1 + a2x

∗† −A1x
∗a†1 −A1a1x

∗†
]

+ 1
2t2

[
2A2 + a†1a1 + 3− 2A2

1

]
x∗x∗†

− 24A2
1

t2 G∗x∗† − 1
t

[
I3N + x∗x∗†

]
− 1

t2

[
B2I3N + (B2 −A1)x∗x∗† + x∗a†1

]


.

Proof. For the linear part including all terms of order 1/t2, we have

R̄2 = 1 +
2A1

t
+

1

t2

[
2A2 + a†1a1 + 1

]
+O

(
1

t3

)
1− R̄2 = −2A1

t
− 1

t2

[
2A2 + a†1a1 + 1

]
+O

(
1

t3

)
,

(
1− R̄2

)2
=

4A2
1

t2
+O

(
1

t3

)
,

so we can express

(4.1.9)
2

1 + R̄2
=

1

1− 1
2

(
1− R̄2

) = 1− A1

t
− 1

2t2

[
2A2 + a†1a1 + 1− 2A2

1

]
+O

(
1

t3

)
.
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Then with

h̄ =
1

t
+

1

t2
[B2 +A1] +O

(
1

t3

)
,

we have

2h̄

1 + R̄2
=

1

t
+
B2

t2
+O

(
1

t3

)
.

Now we can express the matrix x̄x̄† in terms of the expansion above as
x∗x∗† + 1

t

[
x∗a†1 + a1x

∗†
]

+ 1
t2

[
x∗a†2 + a1a

†
1 + a2x

∗†
]

1
tx
∗x∗† + 1

t2

[
B2x

∗x∗† + a1x
∗†]

1
tx
∗x∗† + 1

t2

[
B2x

∗x∗† + x∗a†1

]
1
t2x
∗x∗†

+O

(
1

t3

)
.

So we can form

2h̄

1 + R̄2
x̄x̄† =


1
tx
∗x∗† + 1

t2

[
x∗a†1 + a1x

∗† +B2x
∗x∗†

]
1
t2x
∗x∗†

1
t2x
∗x∗† O3N

+O

(
1

t3

)
.

Note that multiplying on the right by the matrix
(
O3N I3N
I3N O3N

)
switches the columns, so we have

h̄

(
I3N O3N

O3N I3N

)
+ x̄x̄†

(
O3N I3N
I3N O3N

)
− 2h̄

1 + R̄2
x̄x̄†

(4.1.10) =



1
t I3N + 1

t2

[
(B2 +A1) I3N − x∗a†1

]
x∗x∗† + 1

t

[
x∗a†1 + a1x

∗†
]

+ 1
t2

[
x∗a†2 + a1a

†
1 + a2x

∗† − x∗x∗†
]

O3N
1
t

[
I3N + x∗x∗†

]
+ 1
t2

[
(B2 +A1) I3N +B2x

∗x∗† + x∗a†1

]


.

Multiplying (4.1.10) by 2
1+R̄2 = 1− 1

tA1 − 1
2t2

[
2A2 + a†1a1 + 1− 2A2

1

]
has the effect of adding to the right

hand side of (4.1.10): 
− 1
t2A1I3N − 1

tA1x
∗x∗† − 1

t2A1

[
x∗a†1 + a1x

∗†
]

− 1
2t2

[
2A2 + a†1a1 + 1− 2A2

1

]
x∗x∗†

O3N − 1
t2A1

[
I3N + x∗x∗†

]

 .

These two add up to three of the blocks of the claimed J2. The first term in the second line of (4.1.7) is
linear in ∆ and contributes

−6
(
1− R̄2

)2
Ḡx̄† = −24

t2
A2

1G
∗x∗†

to the lower left corner of the matrix J2, which completes the calculation, including all terms of order 1/t2 �

It is reasonable to expect that the lowest order terms in 1/t in each block will be more significant than
the higher order terms. As part of our search for solutions ∆, we will study two lower-order approximations
to J2, namely

(4.1.11) J0 =

 − 1
t I3N I3N − x∗x∗†

− 24A2
1

t2 G∗x∗† − 1
t

[
I3N + x∗x∗†

]
 .
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(4.1.12) J1 =


− 1
t I3N I3N − x∗x∗†

− 1
t

[
x∗a†1 + a1x

∗† −A1x
∗x∗†

]
− 24A2

1

t2 G∗x∗† − 1
t

[
I3N + x∗x∗†

]


J0 is the approximation to J2 including only the lowest order terms in each block—O(1) in the upper right
block, O(1/t) in the diagonal blocks, and O

(
1/t2

)
in the lower left block. J1 is the approximation including

all first order terms and the lowest order terms in the lower left block. We note from the framework of Elias
and Gingold [34] that off-diagonal elements need not be absolutely integrable, which the upper right hand
block certainly isn’t. It is a priori reasonable to consider ignoring the lower left block since it is of higher
order than the other blocks. The resulting system (to be called J−) will be considered in the next Section.

To compute the non-homogenous term from (4.1.7), we express Ḡi and L̄ through lowest order in 1/t:

x̄k − x̄i = x∗k − x∗i +
1

t
(a1k − a1i) +O

(
1/t2

)
Ḡi = G∗i +

1

t
G∗1i +O

(
1/t2

)
L̄ =

(
1

t
+
B2

t2

)
x∗†
(
G∗ +

1

t
G∗1

)
=

1

t
x∗†G∗ +O

(
1/t2

)
,

so we have (
1− R̄2

)3
Ḡ = −8A3

1

t3
G∗ +O

(
1/t4

)
2
(
1− R̄2

)3
1 + R̄2

L̄x̄ = −8A3
1

1

t4
x∗†G∗x∗ +O

(
1/t5

)
.

Now we have the linearized system for ∆, with each block to lowest order in 1/t. We call (4.1.13) the J0

problem

(4.1.13) ∆̇ = J0∆ + F =

 − 1
t I3N I3N − x∗x∗†

− 24A2
1

t2 G∗x∗† − 1
t

[
I3N + x∗x∗†

]
∆− 8A3

1

 1
t4x
∗x∗†G∗

1
t3G

∗

 .

The J1 problem is defined similarly, with the same non-homogenous terms

(4.1.14) ∆̇ = J1∆ + F =


− 1
t I3N I3N − x∗x∗†

− 1
t

[
x∗a†1 + a1x

∗† −A1x
∗x∗†

]
− 24A2

1

t2 G∗x∗† − 1
t

[
I3N + x∗x∗†

]
∆− 8A3

1

 1
t4x
∗x∗†G∗

1
t3G

∗

 .

Just as the approximating system becomes less relevant if the lower left block of J0 or J1 is removed, we
cannot ignore the non-homogenous terms, even though they are O

(
1/t3

)
.

We next consider the nature of the singular point at t = ∞. The substitution t = 1/τ, k(τ) = ∆(1/t)
transforms the singularity from t =∞ to the origin τ = 0 and takes the homogeneous part of (4.1.13) to

dk
dτ

=

 1
τ I3N − 1

τ2

(
I3N − x∗x∗†

)
24A2

1G
∗x∗† 1

τ

(
I3N + x∗x∗†

)
k.

This matrix has a pole of second order at τ = 0, so by classification of singular points given in Wasow [114],
t =∞ is an irregular singular point of (4.1.13), and hence of the full problem (4.1.1).1 Note the same obtains
for the J1 and J2 problems; they also have an irregular singular point at t =∞.

1Note that the under the alternate singularity classification of Coddington and Levinson [20], our singularity is referred
to as “of the second kind.”
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4.2. The Linear System for ∆

In this Section, we seek solutions to the linear problem that decay to 0. After a very helpful coordinate
transformation, we solve the J0 problem exactly twice, solve the J− problem, and solve the J1 problem by
finding a convergent series solution tending to 0. This work with the linear system inspires our search for
solutions to the full problem in the next Chapter.

If y ∈ R3N , then there exist a scalar a and a vector b ∈ R3N , b ⊥ x∗ (specifically a = y†x∗, b = y−ax∗),
such that y = ax∗+b is the decomposition of y into components parallel and perpendicular to x∗. This makes
it easy to compute the image of y under the operator x∗x∗†; namely x∗x∗†y = ax∗. Moreover, G∗x∗†y = aG∗,
and letting y = G∗ in the preceding sentence we see that x∗x∗†G∗ is a vector of length x∗†G∗ in the direction
x∗; in other words, the projection of G∗ onto x∗. These observations suggest changing the basis for R3N so
that the unit vector x∗ is one of the basis vectors. Note that x∗†x∗ = 1, that the matrix x∗x∗† is of rank
one, and consequently that x∗x∗† is an orthogonal projection matrix

(x∗x∗†)2 = x∗x∗†x∗x∗† = x∗x∗†

onto the line through x∗. These facts imply by linear algebra [53] that there exists a 3N by 3N orthogonal
matrix Q3N such that

P := Q†3N
(
x∗x∗†

)
Q3N =


1 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 .
The above is tantamount to choosing a new orthonormal basis {v1 = x∗, v2, . . . v3N} for R3N , whose vectors
form the columns of Q3N , and where v1 = x∗ is the first element in this new basis. As in Section 3.3 the
transformation

(4.2.1) x̄ = Q¯̄x, ∆ = Q∆̄, with Q =

(
Q3N O3N

O3N Q3N

)
simplifies the “velocity” components of the approximation considerably.

¯̄xN+1 = 1/t+B2/t
2 +B3/t

3 + . . .

¯̄xN+j = 0, 2 ≤ j ≤ 3N,

since each “velocity” x̄i is proportional to x∗i , and x∗ takes the form Q†3Nx
∗ = e1 := (1, 0, . . . , 0)

† in the
rotated coordinate system.

4.2.1. Solving the J0 Problem. The transformation (4.2.1) takes the system (4.1.13) into

˙̄∆ = Q†J0Q∆̄ +Q†F =

(
Q†3N O3N

O3N Q†3N

) − 1
t I3N I3N − x∗x∗†

− 24A2
1

t2 G∗x∗† − 1
t

[
I3N + x∗x∗†

]
( Q3N O3N

O3N Q3N

)
∆̄

−8A3
1

(
Q†3N O3N

O3N Q†3N

) 1
t4x
∗x∗†G∗

1
t3G

∗



=

 − 1
t I3N I3N − P

− 24A2
1

t2 Q†3NG
∗e†1 − 1

t [I3N + P ]

 ∆̄− 8A3
1

 1
t4x
∗†G∗e1

1
t3Q

†
3NG

∗

 ,

or
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(4.2.2) ˙̄∆ = J0∆̄ + F =



− 1
t 0 . . . 0 0 0 . . . 0

0 − 1
t . . . 0 0 1 . . . 0

...
...

. . .
...

...
...

. . .
...

0 . . . 0 − 1
t 0 . . . 0 1

−24A2
1

t2 g1 0 . . . 0 − 2
t 0 . . . 0

−24A2
1

t2 g2 0 . . . 0 0 − 1
t . . . 0

...
...

. . .
...

...
...

. . .
...

−24A2
1

t2 g3N 0 . . . 0 0 . . . 0 − 1
t


∆̄− 8A3

1



1
t4 g1

0
...
0

1
t3 g1

...
1
t3 g3N


,

where gj = v†jG
∗ are the coordinates of G∗ in the basis {vj}, since Q†3NG∗ is the vector composed of the

inner products of the basis elements with G∗.
The matrix J0 is sparse and is clearly exhibited as the sum of a diagonal matrix, a strictly upper

triangular matrix, and a strictly lower triangular matrix J = D + U + L. The triangular matrices’ squares
are easily seen to be the O6N matrix, as is their product LU . The elements of the matrix UL are 0, except
for the upper left quadrant, which is zero except most of the first column

0 0 . . . 0
−24A2

1

t2 g2 0 . . . 0
...

...
. . .

...
−24A2

1

t2 g3N 0 . . . 0

 .

We show that L+ U is nilpotent:

(L+ U)
2

= UL

(L+ U)
3

= (L+ U)UL = O6N .

This exhibits the decomposition of J0 into diagonal plus nilpotent matrices. The off-diagonal terms don’t
contribute to its eigenvalues, which are

{
− 1
t ,−

2
t

}
, and the system (4.2.2) resolves into 3N pairs of equations:

˙̄∆1 = −1

t
∆̄1 −

8A3
1

t4
g1

˙̄∆3N+1 = −24A2
1

t2
g1∆̄1 −

2

t
∆̄3N+1 −

8A3
1

t3
g1

˙̄∆j = −1

t
∆̄j + ∆̄3N+j

˙̄∆3N+j = −24A2
1

t2
gj∆̄1 −

1

t
∆̄3N+j −

8A3
1

t3
gj , for 2 ≤ j ≤ 3N.(4.2.3)

The first two equations are coupled, and ∞ is a regular singularity for the pair, improving our chances
for finding solutions. In particular, the first equation can be solved exactly:

∆̄1 =
t0
t

∆̄1(t0) +
1

t

∫ t −8A3
1g1ds

s3
=
t0
t

∆̄1(t0)− 4A3
1g1

t20t
+

4A3
1g1

t3
.

The choice of ∆̄1(t0) =
4A3

1g1

t30
gives

(4.2.4) ∆̄1 =
4A3

1g1

t3
=
t30
t3

∆̄1(t0).

Next we insert this expression for ∆̄1into the equations for the “velocity” components:

˙̄∆3N+1 = −2

t
∆̄3N+1 −

24A2
1g1

t2

(
4A3

1g1

t3

)
− 8A3

1g1

t3
= −2

t
∆̄3N+1 −

8A3
1g1

t3
− 96A5

1g
2
1

t5

˙̄∆3N+j = −1

t
∆̄3N+j −

24A2
1gj
t2

(
4A3

1g1

t3

)
− 8A3

1gj
t3

= −1

t
∆̄3N+j −

8A3
1gj
t3

− 96A5
1g1gj
t5

, for 2 ≤ j ≤ 3N.
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The solutions are

∆̄3N+1 =
t20
t2

∆̄3N+1(t0)− 1

t2

∫ t

t0

[
8A3

1g1

s
+

96A5
1g

2
1

s3

]
ds

=
t20
t2

∆̄3N+1(t0)−
8A3

1g1 log t
t0

t2
+

48A5
1g

2
1

t4
− 48A5

1g
2
1

t20t
2

∆̄3N+j =
t0
t

∆̄3N+j(t0)− 1

t

∫ t

t0

[
8A3

1gj
s2

+
96A5

1g1gj
s4

]
ds

=
t0
t

∆̄3N+j(t0) +
8A3

1gj
t2

− 8A3
1gj
t0t

+
32A5

1g1gj
t4

− 32A5
1g1gj
t30t

The choices

∆̄3N+1(t0) =
48A5

1g
2
1

t40

∆̄3N+j(t0) =
8A3

1gj
t20

+
32A5

1g1gj
t40

lead to

∆̄3N+1 = −8A3
1g1 log t/t0

t2
+

48A5
1g

2
1

t4

∆̄3N+j =
8A3

1gj
t2

+
32A5

1g1gj
t4

.(4.2.5)

Lastly we have

∆̄j =
t0
t

∆̄j(t0) +
1

t

∫ t

t0

[
8A3

1gj
s

+
32A5

1g1gj
s3

]
ds

=
t0
t

∆̄j(t0) +
8A3

1gj log t
t0

t
− 16A5

1g1gj
t3

+
16A5

1g1gj
t20t

.

The choice

∆̄j(t0) =
16A5

1g1gj
t30

gives

(4.2.6) ∆̄j =
8A3

1gj log t
t0

t
− 16A5

1g1gj
t3

.

We summarize the asymptotic behavior of this solution ∆̄ and ∆ as t→∞:
∆̄1

∆̄j

∆̄3N+1

∆̄3N+j

 =


O(1/t3)
O(log t/t)
O
(
log t/t2

)
O(1/t2)

 ,

(
∆j

∆N+j

)
=

(
O(log t/t)
O
(
log t/t2

) ) .
These go to 0 as t→∞, but slowly.

Now we try a different approach and solve the J0 problem by finding a formal series; we suppose

∆̄1 =

∞∑
r=0

cr
tr

∆̄3N+1 =

∞∑
r=0

dr
tr
,

then the first pair of (4.2.3) become

−
∞∑
r=2

(r − 1)cr−1

tr
= −

∞∑
r=1

cr−1

tr
− 8A3

1g1

t4

−
∞∑
r=2

(r − 1)dr−1

tr
= −24A2

1g1

∞∑
r=2

cr−2

tr
− 2

∞∑
r=1

dr−1

tr
− 8A3

1g1

t3
.
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Equating coefficients of like powers yields algebraic equations. For r = 1, we have c0 = d0 = 0. For r = 2,

c1 = c1

d1 = 24A2
1g1c0 + 2d1 = 2d1,

so d1 = 0, but c1 is not yet determined. For r = 3,

2c2 = c2

2d2 = 24A2
1g1c1 + 2d2 + 8A3

1g1,

so c2 = 0 and c1 = −A1/3, but d2 is not yet determined. For r = 4,

3c3 = c3 + 8A3
1g1

3d3 = 24A2
1g1c2 + 2d3 = 2d3,

which imply c3 = 4A3
1g1 and d3 = 0. For r = 5,

4c4 = c4

4d4 = 24A2
1g1c3 + 2d4,

so c4 = 0 and d4 = 12A2
1g1c3 = 48A5

1g
2
1 . So far we have the free parameter, d2. There is a recurrence relation

(for r > 5):

(r − 2)cr−1 = 0

(r − 3)dr−1 = 24A2
1g1cr−2,

so cr = dr = 0 for r > 4, and we have

∆̄1 = −A1

3t
+

4A3
1g1

t3

∆̄3N+1 =
d2

t2
+

48A5
1g

2
1

t4
.

The equations for ∆̄j and ∆̄3N+j can now be solved in terms of the cr:

˙̄∆3N+j = −24A2
1gj
t2

(
−A1

3t
+

4A3
1g1

t3

)
− 1

t
∆̄3N+j −

8A3
1gj
t3

= −1

t
∆̄3N+j −

96A5
1g1gj
t5

∆̄3N+j =
c

t
− 1

t

∫ t 96A5
1g1gj
s4

ds =
32A5

1g1gj
t4

,

where we have chosen c =
32A5

1g1gj
t40

to cancel the integral evaluation at the lower limit. Then

˙̄∆j = −1

t
∆̄j +

32A5
1g1gj
t4

∆̄j =
d

t
+

1

t

∫ t 32A5
1g1gj
s3

= −16A5
1g1gj
t3

,

where we have chosen d = − 16A6
1g1gj
t30

to cancel the evaluation of the integral at the lower limit. This solution
can be rotated back to ∆, and we have(

∆j

∆3N+j

)
=

(
O(1/t)
O
(
1/t2

) ) .
This convergence to 0 is faster than that of the solution exhibited on the previous page.

We pause to consider the simpler J− problem, which seeks the solution to



4.2. THE LINEAR SYSTEM FOR ∆ 70

˙̄∆ = J−∆̄ + F =



− 1
t 0 . . . 0 0 0 . . . 0

0 − 1
t . . . 0 0 1 . . . 0

...
...

. . .
...

...
...

. . .
...

0 . . . 0 − 1
t 0 . . . 0 1

0 0 . . . 0 − 2
t 0 . . . 0

0 0 . . . 0 0 − 1
t . . . 0

...
...

. . .
...

...
...

. . .
...

0 0 . . . 0 0 . . . 0 − 1
t


∆̄− 8A3

1



1
t4 g1

0
...
0

1
t3 g1

...
1
t3 g3N


,

where we have already taken advantage of the coordinate transformation given at the beginning of this
Section. We seek a brute-force solution for comparison with the J0 results. As above, the system resolves
into 3N pairs of equations:

˙̄∆1 = −1

t
∆̄1 −

8A3
1

t4
g1

˙̄∆3N+1 = −2

t
∆̄3N+1 −

8A3
1

t3
g1

˙̄∆j = −1

t
∆̄j + ∆̄3N+j

˙̄∆3N+j = −1

t
∆̄3N+j −

8A3
1

t3
gj , for 2 ≤ j ≤ 3N.

Again, the first two equations have a regular singularity at t = ∞. All but the ∆̄j , 1 < j ≤ 3N equation
can be solved immediately:

∆̄1 =
4A3

1g1

t3

∆̄3N+1 =
t20
t2

∆̄3N+1(t0)−
8A3

1g1 log t
t0

t2

∆̄3N+j =
8A3

1gj
t2

.

Then the ∆̄j , 1 < j ≤ 3N equation becomes

˙̄∆j = −1

t
∆̄j +

8A3
1gj
t2

∆̄j = −
8A3

1gj log t
t0

t
,

with the asymptotic behavior (
∆j

∆N+j

)
=

(
O(log t/t)
O
(
log t/t2

) ) .
4.2.2. The J1 Problem. The next step is to augment the coefficient matrix, adding terms of order

1/t to the upper right block. We replace (4.1.13) with

(4.2.7) ∆̇ = J1∆ +F =


− 1
t I I − x∗x∗†

− 1
t

[
x∗a†1 + a1x

∗† −A1x
∗x∗†

]
− 24A2

1

t2 G∗x∗† − 1
t

(
I + x∗x∗†

)
∆− 8A3

1

 1
t4x
∗x∗†G∗

1
t3G

∗

 .
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Since the vector a1 is within the linear span of v1 = x∗ = x̄N+j(t0)/
√
A(t0) and x̄j(t0), it makes sense to

choose v2, the second basis element of R3N and the second column of the matrix Q3N , via the Graham-
Schmidt process starting with v1 = x∗ and x̄j(t0). Then we have

v2j =

√
A(t0)x̄j(t0)− h(t0)x∗j√

A(t0)
(
R̄(t0)2 −A(t0)

)
− h(t0)2

, for 1 ≤ j ≤ 3N

x̄j(t0) =
h(t0)√
A(t0)

x∗j +

√
R̄(t0)2 −A(t0)− h(t0)2

A(t0)
v2j .

Note that The quantity R̄(t0)2−A(t0)− h(t0)2

A(t0) ≥ 0 by the Schwartz inequality, and is 0 only in the case that
the initial position 3N -vector is parallel to the initial velocity; x̄i(t0) = γx̄N+i(t0), i = 1, . . . 3N , for some
real γ. Assuming it is positive, we can rewrite (3.3.19) as

a1 = A1x
∗ + bv2, where b =

√
R̄(t0)2 −A(t0)− h(t0)2

A(t0)
.

In the {vj} basis, we have near the boundary

¯̄x =



1 +A1/t+A2/t
2 + . . .

b/t+ bB2/t
2 + . . .

0
...
0

1/t+B2/t
2 + . . .

0
...
0


(4.2.8)

and

x∗a†1 =


A1 b 0 . . . 0
0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0

 ,

so the additional term in the upper right block is

−1

t



A1 b 0 . . . 0
b 0 0 . . . 0

0
...

. . .
...

...
...

...
. . .

...
0 0 0 . . . 0

 ,
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and the J1 problem takes the form
(4.2.9)

˙̄∆ = J1∆̄+F =



− 1
t 0 . . . . . . 0 −A1

t − bt 0 . . . 0
0 − 1

t 0 . . . 0 − bt 1 0 . . . 0
... 0

. . . . . .
... 0 0

. . . . . .
...

...
...

. . . . . . 0
...

...
. . . . . . 0

0 0 . . . 0 − 1
t 0 . . . 0 1

−24A2
1

t2 g1 0 . . . 0 − 2
t 0 . . . 0

−24A2
1

t2 g2 0 . . . 0 0 − 1
t . . . 0

...
...

. . .
...

... 0
. . .

...
...

...
. . .

...
...

...
. . . 0

−24A2
1

t2 g3N 0 . . . 0 0 . . . 0 − 1
t



∆̄−8A3
1



1
t4 g1

0
...
0

1
t3 g1

...
1
t3 g3N


.

We have introduced a coupling among ∆̄1, ∆̄2, ∆̄3N+1, and ∆̄3N+2, but doesn’t change the other components
of (4.2.3)

˙̄∆1 = −1

t
∆̄1 −

A1

t
∆̄3N+1 −

b

t
∆̄3N+2 −

8A3
1g1

t4

˙̄∆2 = −1

t
∆̄2 −

b

t
∆̄3N+1 + ∆̄3N+2

˙̄∆3N+1 = −24A2
1g1

t2
∆̄1 −

2

t
∆̄3N+1 −

8A3
1g1

t3

˙̄∆3N+2 = −24A2
1g2

t2
∆̄1 −

1

t
∆̄3N+2 −

8A3
1g2

t3
.(4.2.10)

The other three don’t depend on ∆̄2, so consider the system

(4.2.11)

 ˙̄∆1

˙̄∆3N+1

˙̄∆3N+2

 =


− 1
t −A1

t − bt

− 24A2
1g1

t2 − 2
t 0

− 24A2
1g2

t2 0 − 1
t


 ∆̄1

∆̄3N+1

∆̄3N+2

− 8A3
1


g1

t4

g1

t3

g2

t3

 ,

which is easily seen to have a regular singular point at t = ∞. The eigenvalues of the matrix are the zeros
of the cubic

−24A2
1g2

t2

(
λ+

2

t

)
b

t
+

(
λ+

1

t

)[(
λ+

1

t

)(
λ+

2

t

)
− 24A3

1g1

t3

]
.

Using these substitutions

a1 = 24A2
1g1

a2 = 24A2
1g2

so the formulas fit on the page, Maxima gives the first few terms in 1/t of the eigenvalues:

λ1 = −1

t
+
√
a2b

1

t3/2
+
a1A1

2t2
+
a2

1A
2
1 − 4a1a2A1b

8
√
a2bt5/2

− a2
1A

2
1 − a1a2A1b

2t3
+ o

(
1

t3

)
λ2 = −1

t
−
√
a2b

1

t3/2
+
a1A1

2t2
− a2

1A
2
1 − 4a1a2A1b

8
√
a2bt5/2

− a2
1A

2
1 − a1a2A1b

2t3
+ o

(
1

t3

)
λ3 = −2

t
− a1A1

t2
+
a2

1A
2
1 − a1a2A1b

t3
+ o

(
1

t3

)
.

The eigenvalues are real
(
+o
(
1/t3

))
provided g2 ≥ 0. Finding no way to proceed toward a solution, we next

seek a series solution in 1/t.
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Assuming b 6= 0, which holds unless the 3N -position vector (x̄1(t0), . . . , x̄N (t0))
† is parallel to the 3N -

velocity vector (x̄N+1(t0), . . . , x̄2N (t0))
†, we will show the J1 problem admits a convergent power series

solution. We start by showing the system of three equations (4.2.11) has one, and it will then be straight-
forward to find convergent power series for the rest of the equations, and thus for the whole J1 problem. We
suppose

∆̄1 =

∞∑
r=0

cr
tr

∆̄N+1 =

∞∑
r=0

dr
tr

∆̄N+2 =

∞∑
r=0

er
tr
,

then the equations become
∞∑
r=2

(r − 1)cr−1

tr
=

∞∑
r=1

cr−1

tr
+A1

∞∑
r=1

dr−1

tr
+ b

∞∑
r=1

er−1

tr
+

8A3
1g1

t4

∞∑
r=2

(r − 1)dr−1

tr
= 24A2

1g1

∞∑
r=2

cr−2

tr
+ 2

∞∑
r=1

dr−1

tr
+

8A3
1g1

t3
.

∞∑
r=2

(r − 1)er−1

tr
= 24A2

1g2

∞∑
r=2

cr−2

tr
+

∞∑
r=1

er−1

tr
+

8A3
1g2

t3
.

Again, equating coefficients of like powers yields algebraic equations. For r = 1, we have

0 = c0 +A1d0 + be0

0 = 2d0

0 = e0,

so c0 = d0 = e0 = 0. For r = 2,

c1 = c1 +A1d1 + be1

d1 = 2d1

e1 = e1,

so d1 = 0 by the second equation, then e1 = 0 by the first, but c1 is not yet determined. For r = 3,

2c2 = c2 +A1d2 + be2

2d2 = 24A2
1g1c1 + 2d2 + 8A3

1g1

2e2 = 24A2
1g2c1 + e2 + 8A3

1g2.

The second equation gives c1 = −A1/3, then the third gives e2 = 0, so c2 = A1d2. For r = 4,

3c3 = c3 +A1d3 + be3 + 8A3
1g1

3d3 = 24A2
1g1c2 + 2d3

3e3 = 24A2
1g2c2 + e3.

The second and third equations simplify:

d3 = 24A2
1g1c2 = 24A3

1g1d2

e3 = 12A2
1g2c2 = 12A3

1g2d2,

and then

c3 =
1

2
(A1d3 + be3) + 4A3

1g1 = 6A3
1 (2A1g1 + bg2) d2 + 4A3

1g1,

expressed in terms of the free parameter d2.
There is a recurrence relation for r > 4:

(r − 2)cr−1 = A1dr−1 + ber−1

(r − 3)dr−1 = 24A2
1g1cr−2

(r − 2)er−1 = 24A2
1g2cr−2.
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We shift the index, which gives for r > 3

cr =
A1dr + ber
r − 1

=
24A2

1

(r − 1)

(
A1g1

r − 2
+

bg2

r − 1

)
cr−1

dr =
24A2

1g1cr−1

r − 2

er =
24A2

1g2cr−1

r − 1
.

From the recurrence relation, we can apply the ratio test for convergence of the cr series:∣∣∣∣ crcr−1

∣∣∣∣ =
24A2

1

(r − 1)

∣∣∣∣A1g1

r − 2
+

bg2

r − 1

∣∣∣∣→ 0,

as r →∞, so the power series for ∆̄1 converges for all t. The absolute value of every term in the dr and er
series is less than the absolute value of the corresponding term in the cr series, so they also converge for all
t. All three series are absolutely convergent for all t, and each series represents a real analytic function. We
summarize the results of this calculation:

∆̄1 = −A1

3t
+
A1d2

t2
+

6A3
1 (2A1g1 + bg2) d2 + 4A3

1g1

t3
+

∞∑
r=4

cr
tr

∆̄3N+1 =
d2

t2
+

24A3
1g1d2

t3
+ 24A2

1g1

∞∑
r=4

cr−1

(r − 2) tr

∆̄3N+2 =
12A3

1g2d2

t3
+ 24A2

1g2

∞∑
r=4

cr−1

(r − 1) tr
.

The equations for ∆̄j and ∆̄3N+j can now be solved in terms of the cr. First, for j > 2,

˙̄∆3N+j = −1

t
∆̄3N+j −

24A2
1gj
t2

∞∑
r=1

cr
tr
− 8A3

1gj
t3

= −1

t
∆̄3N+j − 24A2

1gj

∞∑
r=4

cr−2

tr

∆̄3N+j =
d

t
− 1

t

∫ t

24A2
1gj

∞∑
r=4

cr−2

sr−1
ds = 24A2

1gj

∞∑
r=4

cr−2

(r − 2)tr−1

= 24A2
1gj

∞∑
r=3

cr−1

(r − 1)tr
= 24A2

1gj
A1d2

2t3
+

∞∑
r=4

cr−1

(r − 1)tr
,

where we have chosen d to cancel the integral term at the lower limit. The absolute value of every term in
this series is less than the absolute value of |cr−1| so the series converges for all t since the cr series does.
Then

˙̄∆2 = −1

t
∆̄2 −

bd2

t3
− 24bA2

1g1

∞∑
r=4

cr−2

(r − 3) tr
+ 24A2

1g2

∞∑
r=3

cr−1

(r − 2) tr

∆̄2 =
e

t
+

1

t

∫ t
[
−bd2

s2
− 24bA2

1g1

∞∑
r=4

cr−2

(r − 3) sr−1
+ 24A2

1g2

∞∑
r=3

cr−1

(r − 2) sr−1

]
ds

=
bd2

t2
+ 24bA2

1g1

∞∑
r=4

cr−2

(r − 3) (r − 2) tr−1
− 24A2

1g2

∞∑
r=3

cr−1

(r − 2)
2
tr−1

=
b− 24A3

1g2

t2
d2 + 24bA2

1g1

∞∑
r=3

cr−1

(r − 1) (r − 2) tr
− 24A2

1g2

∞∑
r=3

cr

(r − 1)
2
tr
,



4.3. RETURN TO THE UNCOMPACTIFIED PROBLEM 75

and for j > 2,

˙̄∆j = −1

t
∆̄j + 24A2

1gj

∞∑
r=3

cr−1

(r − 1)tr

∆̄j =
f

t
+

1

t

∫ t

24A2
1gj

∞∑
r=3

cr−1

(r − 1)sr−1
= −24A2

1gj

∞∑
r=3

cr−1

(r − 1)(r − 2)tr−1

=
−12A2

1gjd2

t2
− 24A2

1gj

∞∑
r=3

cr
r(r − 1)tr

,

where we have chosen e and f to cancel the integral term at the lower limit. It is easy to see that all the
series converge for all values of t, so the formal series solution is an actual (power series) solution. This
solution can be rotated back to ∆, and we have(

∆j

∆N+j

)
=

(
O(1/t)
O
(
1/t2

) ) .
The choice of d2 = 0 offers an interesting special case:

∆̄1 = −A1

3t
+

3A3
1g1

t3
+

∞∑
r=4

cr
tr

∆̄2 = −24A2
1g1g2

t3
+ 24A2

1

(
bg1

∞∑
r=4

cr−1

(r − 1)(r − 2)tr
− g2

∞∑
r=4

cr
(r − 1)2tr

)

∆̄j = −16A1
1g1gj (b− 1)

t3
− 24A2

1gj (b− 1)

∞∑
r=4

cr
r(r − 1)tr

∆̄N+1 =
48A5

1g
2
1

t4
+

∞∑
r=5

dr
tr

∆̄N+2 =
32A5

1g
2
1

t4
+

∞∑
r=5

er
tr

∆̄3N+j =
4A3

1g1

t4
+

∞∑
r=4

cr−1

(r − 1)tr
,

and we have (
∆j

∆N+j

)
=

(
O(1/t)
O
(
1/t4

) ) .
4.3. Return to the Uncompactified Problem

Inspired by the presence of a log term in the solution (4.2.4 - 4.2.6) for ∆, we suppose there is a solution
x = x̄+ ∆, where x̄ is given in (3.3.12) in closed form as

x̄i = 2
xi(0) + xN+i(0)t

1−R(0)2 +

√
(1 +R(0)2)

2
+ 4 (2h(0)t+A(0)t2)

x̄N+i = 2
xN+i(0)

1−R(0)2 +

√
(1 +R(0)2)

2
+ 4 (2h(0)t+A(0)t2)

and has a power series in 1/t, and ∆ tends to 0 as t→∞, and ∆ =

(
O(log t/t)
O
(
log t/t2

) ). Then we can write

(4.3.1) x =

(
x∗ + e log t/t+ g/t

x∗/t+ f log t/t2 + h/t2

)
+

(
o (1/t)
o
(
1/t2

) ) ,
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where e, f, g, and h are 3N -vectors. If we would compactify y of the form

(4.3.2) y =

(
q
q̇

)
=

(
at+ b log t+ c+ δ

a+ b/t+ δ̇

)
where δ ∈ C2[t0,∞) has certain properties, in particular that δ = o (1) as t → ∞, then the result is of the
form (4.3.1). This can be seen as we compactify (4.3.2)

qi = ait+ bi log t+ ci + δi

q̇i = ai +
bi
t

+ δ̇i

per the instructions in Section 1.2. First let us define the shorthand

A =

√√√√ N∑
i=1

a†iai,

and we proceed as follows:

r2 = A2t2 + 2

N∑
i=1

a†i bit log t+ 2

N∑
i=1

a†i cit+ o(t)

1 + 4r2 = 4A2t2

(
1 + 2

log t
t

∑N
i=1 a

†
i bi + 1

t

∑N
i=1 a

†
i ci

A2
+ o

(
1

t

))
√

1 + 4r2 = 2At

(
1 + 2

log t
t

∑N
i=1 a

†
i bi + 1

t

∑N
i=1 a

†
i ci

A2
+ o

(
1

t

))1/2

= 2At

(
1 +

log t
t

∑N
i=1 a

†
i bi + 1

t

∑N
i=1 a

†
i ci

A2
+ o

(
1

t

))

1 +
√

1 + 4r2 = 2At

(
1 +

log t
t

∑N
i=1 a

†
i bi + 1

t

∑N
i=1 a

†
i ci

A2
+

1

2At
+ o

(
1

t

))

= 2At

(
1 +

log t
t

∑N
i=1 a

†
i bi + 1

t

∑N
i=1 a

†
i ci + 1

2tA

A2
+ o

(
1

t

))
2

1 +
√

1 + 4r2
=

1

At

(
1−

log t
t

∑N
i=1 a

†
i bi + 1

t

∑N
i=1 a

†
i ci + 1

2tA

A2

)
+ o

(
1

t2

)
.

So the compactified trajectory has the asymptotic approximation

x =
2

1 +
√

1 + 4r2

(
q
q̇

)
=

[
1

At

(
1−

log t
t

∑N
i=1 a

†
i bi + 1

t

∑N
i=1 a

†
i ci + 1

2tA

A2

)
+ o

(
1

t2

)](
at+ b log t+ c+ o(1)

a+ b
t + o

(
1
t

) )

=
1

A

(
a+ b log t

t + c 1
t

a 1
t + b 1

t2

)
−
∑N
i=1 a

†
i bi

A3

(
a log t

t

a log t
t2

)
−
∑N
i=1 a

†
i ci + 1

2A

A3

(
a 1
t

a 1
t2

)
+

(
o
(

1
t

)
o
(

1
t2

) )

(4.3.3) x =

 x∗ + 1
A

(
b−

∑N
i=1 x

∗†
i bix

∗
)

log t
t + 1

A

(
c−

[∑N
i=1 x

∗†
i ci + 1

2

]
x∗
)

1
t + o

(
1
t

)
x∗

t −
1
A

∑N
i=1 x

∗†
i bix

∗ log t
t2 + 1

A

(
b−

[∑N
i=1 x

∗†
i ci + 1

2

]
x∗
)

1
t2 + o

(
1
t2

)
 ,

with the 3N -vector x∗ = 1
Aa. Note (4.3.1) has the form of

x = x̄+ ∆,

and x can be seen to approach (
x∗

03N

)
=

1

A

(
ai

03N

)
,
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a critical point on the boundary.
It would be nice if we could identify the decomposition of x into x̄ and ∆; clearly e and f , the second

terms in each part of (4.3.3) present the leading term of ∆, but ∆ can be expected to have terms in 1/t and
1/t2, as well, so it isn’t possible to separate the third term into pieces from x̄ and ∆.

The leading terms of (4.3.3) are

(4.3.4) x =

(
x∗ + log t

t e+ 1
t g + log t

t2 r + 1
t2 s

1
tx
∗ + log t

t2 f + 1
t2h

)
+ o

(
1

t2

)
,

where e, f, g, h, r, and s are 3N -vectors

e =
1

A

(
b−

N∑
i=1

x∗†i bix
∗

)

f = − 1

A

N∑
i=1

x∗†i bix
∗

g =
1

A

(
c−

[
N∑
i=1

x∗†i ci +
1

2

]
x∗

)

h =
1

A

(
b−

[
N∑
i=1

x∗†i ci +
1

2

]
x∗

)
.

Note that x has the form x̄+ ∆, for the choice of ∆ from solving a version of the J0 problem where we found
a term log t

t in Section 4.2. Also note that the 3N -vectors x∗ and e are orthogonal:
N∑
i=1

x∗†i ei =
1

A

(
N∑
i=1

x∗†i bi −
N∑
i=1

x∗†i bi

)
= 0.

On the other hand, g is not orthogonal to x∗

N∑
i=1

x∗†i gi =
1

A

(
N∑
i=1

x∗†i ci −
N∑
i=1

x∗†i ci −
1

2

)
= − 1

2A
.



CHAPTER 5

Solutions That Escape

This Chapter establishes the main theorem of the dissertation, that solutions of Bohlin’s form (5.0.1) do
indeed exist for all time. The existence is demonstrated of an open set of initial conditions through which
pass solutions without singularities, to Newton’s gravitational equations in R3 on a semi-infinite interval
in forward time, for which every pair of particles separates like At, A > 0, as t → ∞ . The solutions
are constructible as series with rapid uniform convergence and their asymptotic behavior to any order is
prescribed. This family of solutions depends on 6N parameters subject to certain constraints. The key to
the result is converting (1.0.1) the differential equation for q into an integral equation for δ and showing that
integral equation has a solution. The main theorem is proven by a chain of lemmas. We substitute for qi in
(1.0.1), obtaining an equation for δ̈i. As we are seeking δi = o(1) as t→∞, we match terms ≥ O(1), yielding
a formula for bi. We will decompose the right hand side of δ̈i into P1i +P2i, where each P1i is independent
of δ. We convert the differential equation into an integral equation for δi. We propose an iterative solution,
the limit of the sequence given by

δi[n+ 1] =

∫ ∫
(P1i + P2i (δ[n]))

We establish estimates for P1i and P2i, and then prove via induction that each {δi[n]}∞n=1 is uniformly
bounded and Cauchy, and thus converges to a solution δi. As will be apparent, the proof is identical for the
planar problem. The results of this Chapter were published in 2017 [43].

Theorem 29. Given any set of masses mi > 0 and constant 3-vectors ai and ci, i = 1, . . . , N , satisfying
‖aj − ai‖ 6= 0, i 6= j, the differential system (1.0.1) possesses unique vector solutions

(5.0.1) qi = ait+ bi log t+ ci + δi(t) i = 1, . . . , N,

on a semi-infinite interval [t5, ∞) where t5 ≥ 1, and qi ∈ C∞[t5,∞). The 3N coefficients bi are uniquely
determined by the 3N coefficients ai as follows

(5.0.2) bi =
∑
j 6=i

mj (ai − aj)
‖ai − aj‖3

, i = 1, . . . , N.

Each vector δi(t) is approximated to any level of accuracy by a sequence δi[n] and computed successively by
certain iterations, and

(5.0.3) δi(t)− δi[n](t) = O

(
Kn

4

[(n+ 1)!]2
log t

tn+1

)
,

uniformly for t ∈ [t5, ∞) as n→∞, where K4 > 0 will be defined in the sequel.
Moreover, the following asymptotic relations hold with ai 6= 03,

(5.0.4) qi = {I3 +4i} [ait+ bi log t+ ci + δi[n](t)], where 4i = O

(
Kn

4

[(n+ 1)!]2
log t

tn+2

)
,

uniformly for t ∈ [t5, ∞) as n → ∞, where each ∆i is a 3-by-3 matrix. If one ai = 03, but bi 6= 03, the
resulting asymptotic formula will be instead

(5.0.5) qi = {I3 +4i} [bi log t+ ci + δi[n](t)], where 4i = O

(
Kn

4

[(n+ 1)!]2
1

tn+2

)
,

uniformly for t ∈ [t5, ∞) as n → ∞. There are also solutions with one ai = 03 and bi = 03, and the
asymptotic formula

78
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(5.0.6) qi = {I3 +4i} [ci + δi[n](t)], where 4i = O

(
Kn

4

[(n+ 1)!]2
1

tn+2

)
,

uniformly for t ∈ [t5, ∞) as n → ∞. In other words, either all particles escape to infinity, or precisely one
particle reaches the rest point ci as t→∞ while the rest of the particles escape to infinity.

The remainder of this Chapter continues as follows. In Section 5.1 we define P1i and P2i and convert our
differential system (1.0.1) into an integral system of equations. In Section 5.2, we obtain certain estimates
on components of the integral equations. In Section 5.3 we obtain a sequence of successive approximations
that converge to the desired solutions. We conclude with Section 5.4, where we obtain robust asymptotic
approximations to various quantities associated with the N -body problem and compare them to results of
Pollard and Saari and their collaborators.

5.1. Seeking solutions with escaping trajectories

Given constant 3-vectors ai, bi, ci, i = 1, . . . , N , for t > 1, let fi = fi(t) be defined

(5.1.1) fi = fi(t) := ait+ bi log t+ ci, so that qi = fi(t) + δi(t) = ait+ bi log t+ ci + δi(t).

Thus, the equation (1.0.1) becomes

(5.1.2) q̈i = −bit−2 + δ̈i(t) =
∑
j 6=i

mj(qj − qi)
‖qi − qj‖3

.

Our next goal is to substitute qi = ait + bi log t + ci + δi(t) in (5.1.2) and obtain a differential system
for δi(t) free of the symbol q that will guarantee solutions to (5.1.2) with the desired properties mentioned
above. First, the substitution gives us

(5.1.3) −bit−2 + δ̈i =
∑
j 6=i

mj [(aj − ai) t+ (bj − bi) log t+ (cj − ci) + δj(t)− δi(t)]
‖(aj − ai) t+ (bj − bi) log t+ (cj − ci) + δj(t)− δi(t)‖3

.

Our purpose is to bring the second order differential system for δi to the following form

(5.1.4) δ̈i = P1i(t) + P2i(δ, t)

where each P1i is independent of δ and tends to zero as t→∞, and each P2i is dependent on δ. In addition,
we want that if each δi(t) = the zero vector in R3, then so does every P2i.

Since we can express each ‖qi − qj‖2 as

‖(aj − ai)‖2 t2

×

{
1 +

2 (aj − ai)† [(bj − bi) log t+ cj − ci + δj(t)− δi(t)] + ‖(bj − bi) log t+ cj − ci + δj(t)− δi(t)‖2

‖aj − ai‖2 t2

}
,

we can write each summand as
mj

[
(aj − ai) + 1

t [(bj − bi) log t+ (cj − ci) + δj(t)− δi(t)]
]

‖(aj − ai)‖3 t2

×

{
1 +

2 (aj − ai)† [(bj − bi) log t+ cj − ci + δj(t)− δi(t)] + ‖(bj − bi) log t+ cj − ci + δj(t)− δi(t)‖2

‖aj − ai‖2 t2

}−3/2

.

Multiplying t2 times each side of (5.1.3) yields

−bi + δ̈it
2 =

∑
j 6=i

mj

[
(aj − ai) + 1

t [(bj − bi) log t+ (cj − ci) + δj(t)− δi(t)]
]

‖(aj − ai)‖3

×

{
1 +

2 (aj − ai)† [(bj − bi) log t+ cj − ci + δj(t)− δi(t)] + ‖(bj − bi) log t+ cj − ci + δj(t)− δi(t)‖2

‖aj − ai‖2 t2

}−3/2

.

Taking the limit as t→∞, assuming δ̈i = o
(
1/t2

)
as t→∞, we see we must have the N vector identities:
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(5.1.5) bi = −
∑
j 6=i

mj (aj − ai)
‖aj − ai‖3

, i = 1, . . . , N,

where of course we assume that

(5.1.6) ‖aj − ai‖ 6= 0, i 6= j, i, j = 1, . . . , N.

It is evident that with the choice of bi as given in (5.1.5) the equation (5.1.3) becomes

(5.1.7) δ̈i =
∑
j 6=i

mj [fj − fi + δj − δi]
‖fj − fi + δj − δi‖3

− 1

t2

∑
j 6=i

mj (aj − ai)
‖aj − ai‖3

.

While (5.1.7) is a decomposition into components dependent and free of δ, a rearrangement as follows will
give us more useful estimates and better control.

Notice that by adding and subtracting the term
∑
j 6=i

mj [fj−fi]
‖fj−fi‖3

on the right hand side of (5.1.7) we
obtain

(5.1.8) δ̈i =
∑
j 6=i

mj [fj − fi + δj − δi]
‖fj − fi + δj − δi‖3

−
∑
j 6=i

mj [fj − fi]
‖fj − fi‖3

+
∑
j 6=i

mj [fj − fi]
‖fj − fi‖3

− 1

t2

∑
j 6=i

mj (aj − ai)
‖aj − ai‖3

.

We now define

P1i(t) : =
∑
j 6=i

mj

(
fj − fi
‖fj − fi‖3

− aj − ai
t2 ‖aj − ai‖3

)

P2i(δ(t), t) : =
∑
j 6=i

mj

(
fj − fi + δj − δi
‖fj − fi + δj − δi‖3

− fj − fi
‖fj − fi‖3

)
.(5.1.9)

This conforms to (5.1.4). Note that if each δi(t) = the zero vector in R3, then so does every P2i (δ(t), t).
We summarize the above discussion in the following lemma.

Lemma 30. Assume (5.1.6) and (5.1.5). If each δi(t) is a solution of (5.1.4) on an interval [t0,∞)

tending to 0: each δi = o(1) and δ̈i = o
(
1/t2

)
as t→∞, then qi(t) is a solution of (5.1.2).

If P1 and P2 are well enough behaved, the double integral of (5.1.4) will be well-defined:

(5.1.10) δi =

∫ ∞
t

∫ ∞
s

(P1i(u) + P2i(δ(u), u)) duds.

Henceforth, we focus on this integral equation; we will need estimates for P1i and P2i.

5.2. Estimates for P1 and P2

In this Section we give several lemmas to demonstrate that there is an interval (t4, ∞) on which: if
‖δi(t)‖ < 1, then for certain constants K1, K2 ,K3, we have estimates

‖P1i‖ ≤ K1 log t/t3 < 1, and ‖P2i‖ ≤ K2/t
3.

Moreover, if w is an upper bound for all the ‖δi − ηi‖, then in addition ‖P2i(δ)− P2i(η)‖ ≤ K3w/t
3.

Each denominator of (5.1.5) is the cube of

Aij := ‖aj − ai‖ .
Similarly, we define

Fij := ‖fj − fi‖ = ‖(aj − ai) t+ (bj − bi) log t+ cj − ci‖ .
Then

F 2
ij = ‖aj − ai‖2 t2 + 2t (aj − ai)† ((bj − bi) log t+ cj − ci) + ‖(bj − bi) log t+ cj − ci‖2

(5.2.1) = A2
ijt

2 + 2t (aj − ai)† [(bj − bi) log t+ cj − ci] + ‖(bj − bi) log t+ cj − ci‖2 .
We assume that (5.1.6) holds, and we factor out the anticipated leading term in (5.2.1) as follows
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(5.2.2) F 2
ij = A2

ijt
2

{
1 +

2t (aj − ai)† [(bj − bi) log t+ cj − ci] + ‖(bj − bi) log t+ cj − ci‖2

A2
ijt

2

}
.

We can use the following abbreviation for a lengthy expression in (5.2.2)

(5.2.3) Gij =
2

t
(aj − ai)† [(bj − bi) log t+ cj − ci] +

1

t2
‖(bj − bi) log t+ cj − ci‖2 ,

so that

F 2
ij = A2

ijt
2

(
1 +

Gij
A2
ij

)
.

5.2.1. Estimating P1. Our next goal is to provide a simpler representation for P1i(t) as t →∞. To
that end we first determine an approximation for Fij . Notice that (bjl − bil) log t+ cjl− cil appears in (5.2.3)
as a factor in each of the two terms. Also observe that for t > 1

(5.2.4) (bj − bi) log t+ cj − ci = log t

[
(bj − bi) +

cj − ci
log t

]
.

Utilize (5.2.4) in (5.2.3) to obtain

(5.2.5) Gij =
log t

t

{
2 (aj − ai)†

[
(bj − bi) +

cj − ci
log t

]
+

log t

t

∥∥∥∥(bj − bi) +
cj − ci
log t

∥∥∥∥2
}
.

By the Schwarz inequality∣∣∣∣(aj − ai)† [(bj − bi) +
cj − ci
log t

]∣∣∣∣ ≤ Aij ∥∥∥∥(bj − bi) +
cj − ci
log t

∥∥∥∥ ,
so that

|Gij |
A2
ij

≤ log t

Aijt

{
2

∥∥∥∥(bj − bi) +
cj − ci
log t

∥∥∥∥+
log t

Aijt

∥∥∥∥(bj − bi) +
cj − ci
log t

∥∥∥∥2
}
.

Now by the triangle inequality

(5.2.6)
|Gij |
A2
ij

≤ log t

At

{
2

(
2b̂+

2ĉ

log t

)
+

log t

At

(
2b̂+

2ĉ

log t

)2
}
≤ 4 log t

At

{
b̂+

ĉ

log t
+

log t

At

(
b̂+

ĉ

log t

)2
}
,

where b̂ = maxk ‖bk‖ , ĉ = maxk ‖ck‖ , A = mini,j Aij > 0.

Lemma 31. Assume (5.1.6) and let b be given by (5.1.5). Then

(5.2.7) F 2
ij = A2

ijt
2

(
1 +

Gij
A2
ij

)
, Gij → 0,

and for any constant K0 > 4b̂/A and for any ρ, 0 < ρ < 1, there exists t0 = t0(ρ) > 1 independent of i and
j, such that for t ≥ t0

(5.2.8)

∣∣∣∣∣GijA2
ij

∣∣∣∣∣ ≤ K0
log t

t
≤ ρ < 1.

Proof. By elementary calculus (log t)−1 → 0 and t−1 log t→ 0 as t→∞; so for sufficiently large t, the
rest of the terms in the estimate (5.2.6) can be made as small as desired. In particular, for any K0 > 4b̂/A
there exists t̂0, such that for t ≥ t̂0,

4

A

{
b̂+

ĉ

log t
+

log t

At

(
b̂+

ĉ

log t

)2
}
≤ K0.

Moreover, for any ρ < 1 there exists t̄0, such that for t ≥ t̄0, log t
t ≤ ρ

K0
, so (5.2.8) follows with t0 :=

max
{
t̄0, t̂0

}
. �
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We are ready now to estimate the entire term P1(t). We have with the aid of Lemma 2

P1i(t) =
∑
j 6=i

mj

[
fj − fi
F 3
ij

− aj − ai
t2A3

ij

]
=
∑
j 6=i

mj

 (aj − ai) t+ (bj − bi) log t+ cj − ci

A3
ijt

3
(

1 +
Gij
A2
ij

) 3
2

− aj − ai
t2A3

ij



=
∑
j 6=i

mj

(1 +
Gij
A2
ij

)− 3
2

(aj − ai) t+ (bj − bi) log t+ cj − ci
A3
ijt

3
− aj − ai

t2A3
ij


=
∑
j 6=i

mj

(1 +
Gij
A2
ij

)− 3
2

− 1

 (aj − ai) t+ (bj − bi) log t+ cj − ci
A3
ijt

3

+
(aj − ai) t+ (bj − bi) log t+ cj − ci

A3
ijt

3
− aj − ai

t2A3
ij

]
.

Simplifying,
(5.2.9)

P1i(t) =
∑
j 6=i

mj

(1 +
Gij
A2
ij

)− 3
2

− 1

 (aj − ai) t+ (bj − bi) log t+ cj − ci
A3
ijt

3
+

(bj − bi) log t+ cj − ci
A3
ijt

3

 .
We focus on the expression (bj−bi) log t+cj−ci

A3
ijt

3 occurring in P1i(t) and notice that

(5.2.10)
(bj − bi) log t+ cj − ci

A3
ijt

3
=

log t

A3
ijt

3

[
bj − bi +

cj − ci
log t

]
.

Therefore, we have

(aj − ai) t+ (bj − bi) log t+ cj − ci
A3
ijt

3
=
aj − ai
A3
ijt

2
+

(bj − bi) log t+ cj − ci
A3
ijt

3
.

With the aid of (5.2.10) we get

aj − ai
A3
ijt

2
+

(bj − bi) log t+ cj − ci
A3
ijt

3
=
aj − ai
A3
ijt

2
+

log t

A3
ijt

3

[
bj − bi +

cj − ci
log t

]

(5.2.11) =
aj − ai + log t

t

[
bj − bi +

cj−ci
log t

]
A3
ijt

2
.

Finally we rewrite

P1i(t) =
1

t2

∑
j 6=i

mj

A3
ij


(1 +

Gij
A2
ij

)− 3
2

− 1

(aj − ai +
log t

t

[
bj − bi +

cj − ci
log t

])

(5.2.12) +
log t

t

[
bj − bi +

cj − ci
log t

]}
.

We start with the bound

‖P1i(t)‖ ≤
1

t2

∑
j 6=i

mj

A3
ij

(5.2.13) ×


∣∣∣∣∣∣
(

1 +
Gij
A2
ij

)− 3
2

− 1

∣∣∣∣∣∣
∥∥∥∥aj − ai +

log t

t

[
bj − bi +

cj − ci
log t

]∥∥∥∥+
log t

t3

∥∥∥∥bj − bi +
cj − ci
log t

∥∥∥∥
 .
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Estimates for
(

1 +
Gij
A2
ij

)− 3
2 − 1 can be gotten as follows. The Lagrange mean value theorem implies that

(5.2.14)

(
1 +

Gij
A2
ij

)− 3
2

− 1 = −3

2

Gij
A2
ij

(1 + ξij)
− 5

2 ,

for some real number ξij satisfying 0 < |ξij | <
∣∣∣GijA2

ij

∣∣∣. Recall that by Lemma 2, given any ρ < 1 and any

K0 > 4b̂/A, there exists t0 independent of i and j, such that for t ≥ t0 we have

0 < |ξij | <

∣∣∣∣∣GijA2
ij

∣∣∣∣∣ ≤ K0
log t

t
≤ ρ.

Therefore,

(5.2.15)

∣∣∣∣∣∣
(

1 +
Gij
A2
ij

)− 3
2

− 1

∣∣∣∣∣∣ =

∣∣∣∣∣−3

2

Gij
A2
ij

(1 + ξij)
− 5

2

∣∣∣∣∣ ≤ 3

2
(1− ρ)−

5
2K0

log t

t
≤ 3

2

ρ

(1− ρ)
5
2

.

We now collect the estimates on each summand in the representation of P1i(t) in (5.2.13). Invoking
(5.2.15) and the triangle inequality, we have

‖P1i(t)‖ ≤
1

t2

∑
j 6=i

mj

A3

{
3

2
(1− ρ)−

5
2K0

log t

t

(
2â+

log t

t

[
2b̂+

2ĉ

log t

])
+

log t

t3

(
2b̂+

2ĉ

log t

)}

(5.2.16) ‖P1i(t)‖ ≤
3M

A3

log t

t3

{
(1− ρ)−

5
2K0

(
â+

log t

t

[
b̂+

ĉ

log t

])
+

2

3t2

(
b̂+

ĉ

log t

)}
.

where M =
∑
jmj and â = maxk ‖ak‖. Combining the above with arguments analogous to those of Lemma

2, we obtain

Lemma 32. Assume (5.1.6) holds and let b be given by (5.1.5). Then for any ρ, 0 < ρ < 1, any
K0 > 4b̂/A, and any

K1 >
3Mâ

A3 (1− ρ)−
5
2K0

there exists t1 ≥ t0 such that for t ≥ t1

(5.2.17) ‖P1i(t)‖ ≤ K1
log t

t3
,

for all i.

In the sequel we will need the double integral

(5.2.18) Li(t) :=

∫ t

∞

∫ s

∞
P1i(u)duds.

To bound Li, we will estimate the integral

Lemma 33. The double integral

(5.2.19) U(t) :=

∫ ∞
t

∫ ∞
s

u−r log ududs =
log t

(r − 1) (r − 2) tr−2
+

2r − 3

(r − 1)
2

(r − 2)
2
tr−2

≤ log t

(r − 2)
2
tr−2

,

for t ≥ e2.

Proof. ∫ ∞
t

∫ ∞
s

u−r log ududs =

∫ ∞
t

∫ ∞
s

d

du

(
−u
−r+1

r − 1

)
log ududs,

for r > 2. First we calculate the inner integral by parts

V (s) :=

∫ ∞
s

d

du

(
−u
−r+1

r − 1

)
log udu =

s−r+1

r − 1
log s+

∫ ∞
s

u−r

r − 1
du =

s−r+1

r − 1
log s+

s−r+1

(r − 1)
2 .
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Then

U(t) =

∫ ∞
t

V (s)ds =

∫ ∞
t

[
s−r+1

r − 1
log s+

s−r+1

(r − 1)
2
.

]
ds

=
t−r+2

(r − 1) (r − 2)
log t+

t−r+2

(r − 1) (r − 2)
2 +

t−r+2

(r − 1)
2

(r − 2)

=
t−r+2

(r − 1) (r − 2)

(
log t+

1

(r − 2)
+

1

(r − 1)

)
=

t−r+2

(r − 1) (r − 2)

(
log t+

2r − 3

(r − 1) (r − 2)

)
.

We can bound this

U(t) ≤ t−r+2 log t

(r − 2)
2 ,

provided
1

(r − 1) (r − 2)

(
log t+

2r − 3

(r − 1) (r − 2)

)
≤ log t

(r − 2)
2 .

We can determine the restriction imposed on t by cross-multiplying

(r − 2) log t+
2r − 3

r − 1
≤ (r − 1) log t

or
2r − 3

r − 1
≤ log t.

The left-hand side is less than 2, so the inequality certainly holds for all t ≥ e2. �

By the Lemma above on the double integral of log u/ur, we know that

(5.2.20) ‖Li(t)‖ =

∥∥∥∥∫ t

∞

∫ s

∞
P1i(u)duds

∥∥∥∥ ≤ ∫ t

∞

∫ s

∞
‖P1i(u)‖ duds ≤ K1

∫ t

∞

∫ s

∞

log u

u3
duds ≤ K1

log t

t
,

for t ≥ max
{
e2, t1

}
. Note that the integral Li(t)→ 0, as t→∞.

5.2.2. Estimating P2. Much of the calculation leading to a bound for P2i is directly analogous to
that above for P1i. We start with
(5.2.21)

‖qi − qj‖2 = ‖fj − fi + δj − δi‖2 = ‖fj − fi‖2 + 2 (fj − fi)† (δj − δi) + ‖δj − δi‖2 = F 2
ij

(
1 +

Eij
F 2
ij

)
,

where
Eij(δ) := 2 (fj − fi)† (δj − δi) + ‖δj − δi‖2 .

The same calculation that led to (5.2.12) brings us to a useful expression for P2i

P2i =
∑
j 6=i

mj

 fj − fi + δj − δi
F 3
ij

(
1 + Eij/F 2

ij

)3/2 − fj − fi
F 3
ij

 .

=
∑
j 6=i

mj

F 3
ij

{(
1 + Eij/F

2
ij

)−3/2
(fj − fi + δj − δi)− (fj − fi)

}

(5.2.22) =
∑
j 6=i

mj

F 3
ij


[1 +

Eij
F 2
ij

]−3/2

− 1

 [fj − fi + δj − δi] + δj − δi

 .

We seek a bound for

‖P2i‖ ≤
∑
j 6=i

mj

F 2
ij


∣∣∣∣∣∣
[

1 +
Eij
F 2
ij

]−3/2

− 1

∣∣∣∣∣∣ ‖fj − fi‖+ ‖δj − δi‖
Fij

+
‖δj − δi‖
Fij


(5.2.23) =

∑
j 6=i

mj

F 2
ij


∣∣∣∣∣∣
[

1 +
Eij
F 2
ij

]−3/2

− 1

∣∣∣∣∣∣
(

1 +
‖δj − δi‖
Fij

)
+
‖δj − δi‖
Fij

 .
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We now prepare estimates for the individual terms.
We already know from (5.2.15) that(

1 +
Gij
A2
ij

)−3/2

≤ 1 +
3K0

2(1− ρ)
5
2

log t

t
,

so

(5.2.24)
1

F 3
ij

≤ 1

A3t3

(
1 +

3K0

2(1− ρ)
5
2

log t

t

)
.

Similarly, by the Mean Value Theorem(
1 +

Gij
A2
ij

)−1

≤ 1 +
K0

(1− ρ)2

log t

t
≤ 1 +

ρ

(1− ρ)2
,

so that

(5.2.25)
1

F 2
ij

≤ 1

A2t2

(
1 +

K0

(1− ρ)2

log t

t

)
≤ 1

A2t2

(
1 +

ρ

(1− ρ)2

)
and

(5.2.26)
1

Fij
≤ 1

At

√
1 +

K0

(1− ρ)2

log t

t
≤ 1

At

√
1 +

ρ

(1− ρ)2

Next we want an estimate for

Eij = 2 [(aj − ai) t+ (bj − bi) log t+ (cj − ci)]† (δj(t)− δi(t)) + ‖δj(t)− δi(t)‖2

= 2t

[
aj − ai + (bj − bi)

log t

t
+
cj − ci
t

]†
(δj(t)− δi(t)) + ‖δj − δi‖2 .

By the Schwarz inequality∣∣∣∣∣
[
aj − ai + (bj − bi)

log t

t
+
cj − ci
t

]†
(δj(t)− δi(t))

∣∣∣∣∣ ≤
∥∥∥∥aj − ai + (bj − bi)

log t

t
+
cj − ci
t

∥∥∥∥ ‖δj(t)− δi(t)‖ ,
so that

|Eij |
F 2
ij

≤
2
∥∥∥aj − ai + (bj − bi) log t

t +
cj−ci
t

∥∥∥ ‖δj − δi‖+ 1
t ‖δj − δi‖

2

A2
ij

(
1− |Gij |

A2
ij

)
t

.

Assuming δi = o(1) as t→∞ (as will be shown in the main theorem), then for any ε ∈ (0, 1) there is a time
t2 ≥ t1 such that each ‖δi(t)‖ ≤ ε for t ≥ t2. So we have by the triangle inequality,

|Eij |
F 2
ij

≤
2
(

2â+ 2b̂ log t
t + 2ĉ

t

)
2ε+ 4ε2

t

A2
(

1− |Gij |
A2
ij

)
t

≤ 4ε

A2t

â+ b̂ log t
t + ĉ

t + ε
t

1−K0
log t
t

≤ 4

A2t

â+ b̂ log t
t + ĉ+1

t

1−K0
log t
t

.

Given any K2 ≥ 4â
A2 and any ρ1, 0 < ρ1 < 1, there is a time t3 = max {t2, K2/ρ} such that for t ≥ t3, we

have

(5.2.27)
|Eij |
F 2
ij

≤ K2

t
≤ ρ1 < 1.

As before, the Lagrange mean value theorem implies that for some ξij , 0 < |ξij | < |Eij |
F 2
ij(

1 +
Eij
F 2
ij

)− 3
2

− 1 = −3

2

Eij
F 2
ij

(1 + ξij)
− 5

2 ,

so we can bound

(5.2.28)

∣∣∣∣∣∣
(

1 +
Eij
F 2
ij

)− 3
2

− 1

∣∣∣∣∣∣ ≤ 3

2

∣∣∣∣∣EijF 2
ij

(1 + ξij)
− 5

2

∣∣∣∣∣ ≤ 3

2
(1− ρ)−

5
2
K2

t
≤ 3

2

ρ

(1− ρ)
5
2

.
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Note that this can be made as small as desired by making ρ sufficiently small.
Now we put the pieces together to develop a bound for P2i from (5.2.23)

‖P2i‖ ≤
M

A2t2

(
1 +

K0

(1− ρ)2

log t

t

){
3

2
(1− ρ)−

5
2
K2

t

(
1 +

2ε

At

√
1 +

ρ

(1− ρ)2

)
+

2ε

At

√
1 +

ρ

(1− ρ)2

}

≤ M

A2t3

(
1 +

K0

(1− ρ)2

log t

t

){
3

2

K2

(1− ρ)
5
2

(
1 +

2ε

At

√
1 +

ρ

(1− ρ)2

)
+

2ε

A

√
1 +

ρ

(1− ρ)2

}
.

And for any

K3 >
3

2

MK2

A2(1− ρ)
5
2

,

there is a time t4 ≥ t3 such that ‖P2i‖ ≤ K3/t
3 for t ≥ t4.

5.2.3. Estimating P2(δ) − P2(η) in terms of δ − η. For the induction in the next Section, we will
also need to bound P2i(δ, t)−P2i(η, t) for small δ− η. To simplify the formulas, let us define the shorthand

Jij(δ) :=

[
1 +

Eij(δ)

F 2
ij

]−3/2

.

Then
P2i(δ, t)− P2i(η, t)

=
∑
j 6=i

mj

F 3
ij

{(Jij(δ)− 1) [fj − fi + δj − δi]− (Jij(η)− 1) [fj − fi + ηj − ηi] + δj − δi − ηj + ηi}

which simplifies due to cancellation:

(5.2.29) P2i(δ, t)− P2i(η, t) =
∑
j 6=i

mj

F 3
ij

{Jij(δ) [fj − fi + δj − δi]− Jij(η) [fj − fi + ηj − ηi]} .

Suppose that for all i, ‖δi − ηi‖ ≤ w. Because of the bound (5.2.27), we have

(5.2.30) |Jij(δ)| ≤
[
1− K2

t

]−3/2

.

Then we may express the quantity within the brackets of (5.2.29)

Jij(δ) [fj − fi + δj − δi]− Jij(η) [fj − fi + ηj − ηi]

= (Jij(δ)− Jij(η)) [fj − fi] + Jij(δ) [δj − δi]− Jij(η) [ηj − ηi] .
On adding and subtracting Jij(η) (δj − δi), we can rewrite it as

(Jij(δ)− Jij(η)) [fj − fi] + Jij(δ) [δj − δi]− Jij(η) (δj − δi) + Jij(η) (δj − δi)− Jij(η) [ηj − ηi]

= (Jij(δ)− Jij(η)) [fj − fi] + [Jij(δ)− Jij(η)] (δj − δi) + Jij(η) ([δj − δi]− [ηj − ηi])

(5.2.31) = (Jij(δ)− Jij(η)) [fj − fi + δj − δi] + Jij(η) ([δj − ηj ]− [δi − ηi]) .

In summary,

(5.2.32) P2i(δ, t)− P2i(η, t) =
∑
j 6=i

mj

F 3
ij

{(Jij(δ)− Jij(η)) [fj − fi + δj − δi] + Jij(η) ([δj − ηj ]− [δi − ηi])} ,

so we have

‖P2i(δ, t)− P2i(η, t)‖ ≤
∑
j 6=i

mj

F 3
ij

{|Jij(δ)− Jij(η)| (Fij + ‖δj − δi‖) + |Jij(η)| (‖δj − ηj‖+ ‖δi − ηi‖)}

(5.2.33) ‖P2i(δ, t)− P2i(η, t)‖ ≤
∑
j 6=i

mj

F 2
ij

{
|Jij(δ)− Jij(η)|

(
1 +

2ε

Fij

)
+

1

Fij

(
1− K2

t

)−3/2

2w

}
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We start with an estimate of Jij(δ) − Jij(η) for small δ − η. By the mean value theorem, there is a
number ξij between

Eij(δ)

F 2
ij

and Eij(η)

F 2
ij

such that

Jij(δ)− Jij(η) =

(
1 +

Eij(δ)

F 2
ij

)−3/2

−

(
1 +

Eij(η)

F 2
ij

)−3/2

= −3

2

Eij(δ)− Eij(η)

F 2
ij

(1 + ξij)
−5/2

.

Since we have
|Eij |
F 2
ij

≤ K2

t
,

we know that

|Jij(δ)− Jij(η)| ≤ 3

2

|Eij(δ)− Eij(η)|
F 2
ij

(
1− K2

t

)−5/2

.

Next we seek a bound on |Eij(δ)− Eij(η)| in terms of δ and η.

(5.2.34) Eij(δ)− Eij(η) = 2 (fj − fi)† (δj − δi − ηj + ηi) + ‖δj − δi‖2 − ‖ηj − ηi‖2 .
The first term of (5.2.34) is bounded by 2Fij (‖δj − ηj‖+ ‖δi − ηi‖) ≤ 4Fijw. The difference between the
squares in (5.2.34) factors

‖δj − δi‖2 − ‖ηj − ηi‖2 = (δj − δi + ηj − ηi)† (δj − δi − ηj + ηi) ,

which is bounded by

(‖δj − δi‖+ ‖ηj − ηi‖) (‖δj − ηj‖+ ‖δi − ηi‖) ≤ (2ε+ 2ε) 2w = 8εw.

So we have

|Jij(δ)− Jij(η)| ≤ 3

2

4Fijw + 8εw

F 2
ij

(
1− K2

t

)−5/2

=

[
6w

Fij
+

12εw

F 2
ij

](
1− K2

t

)−5/2

.

In summary, we can now bound (5.2.33)

‖P2i(δ, t)− P2i(η, t)‖ ≤
∑
j 6=i

mj

F 2
ij

{([
6w

Fij
+

12εw

F 2
ij

](
1− K2

t

)−5/2
)(

1 +
2ε

Fij

)
+

2w

Fij

[
1− K2

t

]−3/2
}

‖P2i(δ, t)− P2i(η, t)‖ ≤ 2w
∑
j 6=i

mj

F 3
ij

{([
3 +

6ε

Fij

](
1− K2

t

)−5/2
)(

1 +
2ε

Fij

)
+

[
1− K2

t

]−3/2
}
.

Because of the bound (5.2.24), we conclude

Lemma 34. Under the same conditions as Lemma 32, and for any K4 >
8M
A3 , there is a time t4 ≥ t3

independent of i such that for t ≥ t4,
‖P2i(δ, t)− P2i(η, t)‖ ≤ K4w/t

3,

where w is a bound for all ‖δi − ηi‖.

5.3. The integral equation

In this Section we return to the integral equation (5.1.10) at the end of Section 5.1. We propose an
iterative solution

(5.3.1) δi[n+ 1] =

∫ ∞
t

∫ ∞
s

(P1i(u) + P2i(δ[n](u), u)) duds,

starting with each δi[0] = the zero vector. Having developed estimates for P1i and P2i, we can show that
the sequence {δi[n]} converges to a function δi with the requisite properties. With the definition (5.2.18) we
can rewrite (5.3.1) as

δi[n+ 1] = Li(t) +

∫ ∞
t

∫ ∞
s

P2i(δ[n], u)duds.

We give induction arguments to show that for all n and for all i, ‖δi[n]‖ = O (log t/t) and ‖δi[n+ 1]− δi[n]‖ =
O
(
log t/tn+1

)
as t→∞.
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Theorem 35. Under the conditions of Lemma 34, the sequence {δi[n]} converges to a function δi, which
satisfies the integral equation (5.1.10), as well as the differential equation (5.1.7).

Proof. Since each δi[0](t) =
−→
0 , so is every P2i =

−→
0 , and we have

δi[1] = Li(t),

and as noted above (5.2.20) ‖Li‖ ≤ K1
log t
t , for t ≥ t4, so

‖δi[1]− δi[0]‖ = ‖δi[1]‖ = ‖Li‖ ≤ K1
log t

t
.

In general, starting with δi[n] and making the induction hypothesis that for t ≥ t4

(5.3.2) ‖δi[n]− δi[n− 1]‖ ≤ Cn
log t

tn
, i = 1, . . . , N,

where C1 = K1 is defined in Lemma 32 and

Cn+1 =
K4Cn

(n+ 1)
2 ; i.e., Cn =

Kn−1
4

(n!)
2 K1,

We will show that the corresponding statement holds for n+ 1.
First, from the formula

(5.3.3) δ[n] = δ[1] + (δ[2]− δ[1]) + · · ·+ (δ[n]− δ[n− 1])

and using the induction hypothesis, we can bound

‖δi[n]‖ ≤ ‖δi[1]‖+ ‖δi[2]− δi[1]‖+ · · ·+ ‖δi[n]− δi[n− 1]‖

≤ C1
log t

t
+ C2

log t

t2
+ · · ·+ Cn

log t

tn

= K1
log t

t
+
K4

4
K1

log t

t2
+ · · ·+ Kn−1

4

(n!)
2 K1

log t

tn

= K1
log t

t

(
1 +

K4

4t
+ · · ·+ Kn−1

4

(n!)
2
tn−1

)

≤ K1
log t

t

∞∑
k=1

1

(k!)
2 ,

for t ≥ K4. According to the tables in Gradshteyn & Ryzhik [45] Section 0.246, the series sums to the
number I0(2)−1 ∼ 1.2795853 < 1.28. The function log t

t is monotone on the interval (e, ∞), decreasing from
1/e at t = e and approaching 0 as t → ∞. For any ε < 1, there is a time t5 = max {4, t4, K4}, such that,
for all n

(5.3.4) t ≥ t5 =⇒ ‖δi[n]‖ ≤ 1.28K1
log t

t
≤ ε < 1.

This bound is independent of n, so the sequence {δi[n]} is bounded for t ≥ t5, and the bound can in fact be
made as small as desired by choosing sufficiently large t5.

The goal of the induction is to show that the sequence is Cauchy; note that

(5.3.5) δi[n+ 1]− δi[n] =

∫ t

∞

∫ s

∞
(P2i (δ[n])− P2i (δ[n− 1])) .

We have shown in Section 5.2 that if w is a bound on all the ‖δi[n]− δi[n− 1]‖ , i = 1, . . . , N , then

‖P2i (δ[n])− P2i (δ[n− 1])‖ ≤ K4w/t
3

According to (5.3.2), we can choose

w = Cn
log t

tn
.

Then we have

‖δi[n+ 1]− δi[n]‖ ≤ K4Cn

∫ t

∞

∫ s

∞

log u

un+3
duds ≤ K4Cn

(n+ 1)
2

log t

tn+1
= Cn+1

log t

tn+1
,
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which completes the induction.
For convergence considerations, note that the series

∞∑
n=1

Cn
tn

converges for all t > 0 by the ratio test, since the ratio of successive terms
Cn+1

Cnt
=

K4

(n+ 1)
2
t
→ 0,

as n→∞, uniformly for t ≥ t5 > 0. Thus the limit of the sum (5.3.3) serves to define the solution

(5.3.6) δi = lim
n→∞

δi[n] = δi[1] +

∞∑
n=2

(δi[n]− δi[n− 1])

and each
‖δi‖ ≤ ε < 1.

�

To obtain the rate of convergence of the series, we have the error after the nth term:

‖δi(t)− δi[n](t)‖ =

∥∥∥∥∥∥
∞∑

j=n+1

(δi[j](t)− δi[j − 1](t))

∥∥∥∥∥∥ ≤
∞∑

j=n+1

Cj
log t

tj

=

∞∑
j=n+1

Kj−1
4

(j!)
2 K1

log t

tj
= K1

log t

t

∞∑
j=n+1

1

(j!)
2

Kj−1
4

tj−1
=

log t

t

 1

[(n+ 1)!]2

(
K4

t

)n
+

∞∑
j=n+2

1

(j!)
2

(
K4

t

)j−1


= K1
1

[(n+ 1)!]2

(
K4

t

)n
log t

t

1 +

∞∑
j=n+2

[(n+ 1)!]2

(j!)
2

(
K4

t

)j−n−1
 = O

(
1

[(n+ 1)!]2
log t

t

)
.

Notice that for t ≥ t5 ≥ K4, we have

(5.3.7)
∞∑

j=n+2

[(n+ 1)!]2

(j!)
2

(
K4

t

)j−n−1

≤
∞∑

j=n+2

[(n+ 1)!]2

(j!)
2

(
K4

t5

)j−n−1

.

The infinite series
∑∞
j=n+2

[(n+1)!]2

(j!)2

(
K4

t5

)j−n−1

converges very fast as the ratio of two successive terms is
K4

(j+1)2t5
≤ 1

(j+1)2 , j ≥ n+ 2.

We turn to high order asymptotic approximations. By adding and subtracting δi[n](t), we can express
each

qi = ait+ bi log t+ ci + δi[n](t) + δi(t)− δi[n](t) , i = 1, . . . , N.

Let
vin = ait+ bi log t+ ci + δi[n](t)

be the nth approximation to qi. Assume that ai 6= 03; then one of its components aiu 6= 0, where u is one of
x, y, or z. Consequently, there exists a continuous 3-vector win = win(t) on a semi-infinite interval [t5,∞)
such that

(5.3.8) w†invin = 1, ‖win‖ = O(t−1), as t→∞.

For example, let u = x. Then, w†in = ([aixt+bix log t+cix+δix[n](t)]−1, 0, 0) is one of the continuous vectors
that satisfies w†invin = 1. Notice that

δi(t)− δi[n](t) = (δi(t)− δi[n](t))w†invin = (δi(t)− δi[n](t))w†in (ait+ bi log t+ ci + δi[n](t)) .

So we can express
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(5.3.9) qi =
{
I + (δi(t)− δi[n](t))w†in

}
(ait+ bi log t+ ci + δi[n](t)) ,

with

(5.3.10) (δi(t)− δi[n](t))w†in = O

(
Kn

4

[(n+ 1)!]2
log t

tn+2

)
,

uniformly for t ∈ [t5, ∞) as n → ∞, which is (5.0.5). If one of the ai = 03, but bi 6= 03, then the resulting
asymptotic formula will be

(5.3.11) (δi(t)− δi[n](t))w†in = O

(
Kn

4

[(n+ 1)!]2
1

tn+2

)
,

uniformly for t ∈ [t5, ∞) as n→∞.
Now recall from Section 5.2 the notation F 2

ij = ‖fi − fj‖. Starting with qi − qj = fi − fj + δi − δj and
substituting from (5.2.21) and (5.2.7), we have

‖qi − qj‖2 = F 2
ij

(
1 +

Eij
F 2
ij

)
= A2

ijt
2

(
1 +

Gij
A2
ij

)(
1 +

Eij
F 2
ij

)
.

By virtue of the estimates (5.2.8) and (5.2.27), we know that for t ≥ t3,∣∣∣∣∣GijA2
ij

∣∣∣∣∣ ≤ ρ < 1,

∣∣∣∣∣EijF 2
ij

∣∣∣∣∣ ≤ ρ1 < 1,

so that
‖qi − qj‖2 ≥ A2

ijt
2 (1− ρ) (1− ρ1)

is bounded away from 0. Thus for all i 6= j, for t ≥ t5, we have ‖qi − qj‖ > 0, and there is no singularity,
nor does the system approach collision as t→∞. This completes the proof of Theorem 29.

The compactification of q in Section 4.3 shows that q has a critical direction x∗ at infinity. Note also
that if x is the compactification of q, then x ∼ x̄.

We offer the following interpretation of the parameters, as well as a proof of the special case mentioned
in Theorem 29. Each ai is evidently the asymptotic velocity of the ith particle. The bi are coefficients of
the asymptotic acceleration as t goes to infinity. The ci represent asymptotic translation of an individual
particle. Moreover, as seen in the main theorem, ci can be interpreted as the asymptotic limit as t → ∞
of the position of precisely one particle in our configuration for a certain choice of parameters. In Theorem
29, we asserted the existence of the special case where one particle tends to a fixed, finite position, and the
others escape to infinity as t → ∞. This is also especially easy to see for N = 3: take a1 = 0, a2 6= 0, and
a3 = −m2/m3a2. Then b1 = 0, and since each δi → 0, we have q1 → c1, while q2 and q3 escape in opposite
directions. For N > 3, suppose a1 = 0, the a2, . . . , aN−1 are linearly independent, but otherwise arbitrary
vectors, and choose aN so that

(5.3.12)
aN

‖aN‖3
= − 1

mN

N−1∑
j=2

mjaj

‖aj‖3
,

for example aN could be the unit vector in the direction of the right-hand side of (5.3.12). Then b1 = 0, and
we have q1 → c1.

The theorem may be read as the converse of Chazy’s result that if solutions exist for all time, then the
functions δi can be expressed as psi-series; that is, as a series in powers of 1/t and log t/t. Since the functions
δi have been shown here to exist, the solutions qi exist for all time, and we know from Chazy that the δi
can be expressed as psi-series. See Kozlov and Palamodov [62] for information on psi-series. We offer the
conjecture that δi has an even simpler form:

δ ∼
∞∑
n=1

[
gn
tn

+ log t
hn
tn

]
,

where each gn and hn is a 3N -vector.



5.4. COMPARISONS WITH PREVIOUS WORK 91

Note that by the construction of this Chapter, the initial time t5 could be quite large, so the initial
conditions

qi (t5) = ait5 + bi log t5 + ci + δi (t5)

q̇i (t5) = ai + bi/t5 + δ̇i (t5) ,

and the latter is very close to ai. As noted above, the asymptotic direction of particle qi exiting the system
is proportional to ai. This justifies the statement in the Abstract that the asymptotic directions of many
configurations exiting the universe depend solely on the initial velocities and not on their initial positions.

5.4. Comparisons with previous work

In this Section, we compare our approximations and asymptotic approximations (for an open set of
solutions that exist for all forward time) with those of Pollard, Saari, and collaborators. They were able to
obtain some asymptotic approximations under the assumption that solutions exist for all forward time. As
pointed out in Chapter 1 and proven in the previous Section, our result establishes the existence of an open
set of solutions that exist for all forward time, in which all (or all but one) particles escape. As will be seen
our asymptotic approximations for these solutions offer much more precision.

For the sake of this comparison with previous work on this subject matter, we make the customary
assumption that the coordinate system is fixed at the center of mass, so that∑

k

mkqk = 0
∑
k

mkq̇k = 0.

This must hold for all values of t, so we have the same condition on the components of qk:

(5.4.1)
∑
k

mkak = 0
∑
k

mkbk = 0
∑
k

mkck = 0
∑
k

mkδk = 0
∑
k

mk δ̇k = 0.

The special case of N = 2 is illustrative; the two-body problem is well known [87] to transform to the
Kepler problem for a fictitious particle at r = q2 − q1, satisfying

r̈ = (m1 +m2)
r

‖r‖3
,

the constant total energy for which is

H =
1

2
‖ṙ‖2 − m1 +m2

‖r‖
.

Since m1q1 +m2q2 = 0 and m1a1 +m2a2 = 0, we know

r = −m1 +m2

m2
q1 A12 = ‖a2 − a1‖ =

m1 +m2

m2
‖a1‖ ,

so that

2H =

(
m1 +m2

m2

)2

‖q̇1‖2 − 2
m1 +m2
m1+m2

m2
‖q1‖

=

(
m1 +m2

m2

)2

‖q̇1‖2 − 2
m2

‖q1‖
,

which is constant and must equal its limit as t→∞, namely

2H =

(
m1 +m2

m2

)2

‖a1‖2 = A2
12.

Since H > 0, r experiences hyperbolic escape, and [87] gives the result that

(5.4.2) ‖r‖ /t→
√

2H.

Hence we have ‖r‖ /t→ A12, as expected.
Returning to the general case, let us define the kinetic and potential energy and evaluate them for the

expansion
qi = ait+ bi log t+ ci + δi(t) :
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T : =
1

2

∑
mk‖q̇k‖2 =

1

2

∑
mk

∥∥∥∥ak +
bk
t

+ δ̇k

∥∥∥∥2

=
1

2

∑
mk

{
‖ak‖ 2 +

2

t
a†kbk + 2a†k δ̇k +

∥∥∥∥bkt + δ̇k

∥∥∥∥2
}

U : =
∑
j<k

mjmk

‖qj − qk‖
=
∑
j<k

mjmk

‖t (aj − ak) + log t (bj − bk) + cj − ck + δj − δk‖

=
1

t

∑
j<k

mjmk∥∥∥(aj − ak) + log t
t (bj − bk) + 1

t (cj − ck + δj − δk)
∥∥∥ .

The denominator can be expressed as the square root of

‖aj − ak‖2 +
log t

t
(aj − ak)

†
(bj − bk) +

1

t
(aj − ak)

†
(cj − ck + δj − δk) +

1

t2
‖cj − ck + δj − δk‖2 ,

which is equal to

‖aj − ak‖2
1 +

log t

t

(
aj − ak
‖aj − ak‖2

)†
(bj − bk)

+
1

t

(
aj − ak
‖aj − ak‖2

)†
(cj − ck + δj − δk) +

1

t2
‖cj − ck + δj − δk‖2

‖aj − ak‖2

 .

Let

Xjk =
log t

t

(
aj − ak
‖aj − ak‖2

)†
(bj − bk) +

1

t

(
aj − ak
‖aj − ak‖2

)†
(cj − ck + δj − δk) +

1

t2
‖cj − ck + δj − δk‖2

‖aj − ak‖2
,

so that
U =

1

t

∑
j<k

mjmk

‖aj − ak‖
(1 +Xjk)

−1/2
.

We can bound Xjk via the Schwarz inequality, recalling that each ‖δj‖ ≤ ε

|Xjk| ≤
log t

t

‖bj − bk‖
‖aj − ak‖

+
1

t

‖cj − ck‖+ 2ε

‖aj − ak‖
+

1

t2
‖cj − ck‖2 + 4ε ‖cj − ck‖+ 4ε2

‖aj − ak‖2
.

Now for any η > 0, there is a t6 ≥ t5 such that |Xjk| < η for all t ≥ t6. This implies the existence of a
convergent series for (1 +Xjk)

−1/2 in powers of Xjk, which is equivalent to a series in powers of log t
t and

1/t, convergent for t ≥ t6, starting with

1− log t

2t

(
aj − ak
‖aj − ak‖2

)†
(bj − bk)− 1

2t

(
aj − ak
‖aj − ak‖2

)†
(cj − ck) .

So we can express

U =
1

t

∑
j<k

mjmk

‖aj − ak‖
− log t

2t2

∑
j<k

mjmk

‖aj − ak‖3
(aj − ak)

†
(bj − bk)

− 1

2t2

∑
j<k

mjmk

‖aj − ak‖3
(aj − ak)

†
(cj − ck) + o

(
1

t2

)
.

The constant total energy h = T − U must be equal to its limit as t → ∞, namely 1
2

∑
mk‖ak‖2 > 0.

In particular, its 1/t coefficient must vanish; i.e.,∑
k

mka
†
kbk =

∑
j<k

mjmk

‖aj − ak‖
,

which holds due to (5.1.5), as follows:∑
k

mka
†
kbk =

∑
k

mka
†
k

∑
j 6=k

mj (ak − aj)
‖aj − ak‖3

=
∑
j<k

mjmk

‖aj − ak‖3
{
a†k (ak − aj) + a†j (aj − ak)

}
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=
∑
j<k

mjmk

‖aj − ak‖3
{
‖ak‖2 − a†kaj + ‖aj‖2 − a†jak

}
=
∑
j<k

mjmk ‖aj − ak‖2

‖aj − ak‖3
=
∑
j<k

mjmk

‖aj − ak‖
.

Following [86], we define half the moment of inertia

I :=
1

2

∑
mk‖qk‖2 =

1

2

∑
mk ‖akt+ bk log t+ ck + δk‖2

=
1

2

∑
mk

{
‖ak‖2 t2 + 2t log t a†kbk + 2ta†k (ck + δk) + ‖bk log t+ ck + δk‖2

}
= ht2 + t log t

∑
mka

†
kbk + t

∑
mka

†
kck +O(log t).

We are now able to compare our results explicitly with the work of Pollard, Saari, and collaborators.
Under the assumption that a solution has no singularity, Pollard in 1967 [86] shows in Theorem 6.1 that
if h > 0 and U ∼ α/t for some constant α > 0, then I = ht2 + αt log t + o(t log t), as t → ∞. With the
expansion of I given above for our solutions, we see that α =

∑
mka

†
kbk =

∑
j<k

mjmk
‖aj−ak‖ , I has the expected

form, and we feature the next term in the expansion of I. In addition, his Theorem 7.2 says that under the
same assumption and conditions, at least N − 1 of the particles escape to infinity as t → ∞. It is easy to
see for our solutions that every qk escapes, or all escape but one.

In 1970, Pollard and Saari [90] consider the case where h > 0, but U does not decay as quickly as α/t;
that is, tU →∞, and provide a more general condition:∫ ∞

t0

√
U(s)− 1

s2

∫ s
t0
uU(u)du

s
ds <∞,

which assures that at least two particles escape.
In 1971, Saari [94] again starts with the assumption that there is no singularity, and he gives the Lemma

that if there are two particles, say q1 and q2 with lim sup ‖q1 − q2‖ =∞, and two particles qi and qj with

0 < lim inf
‖qi − qj‖
‖q1 − q2‖

< lim sup
‖qi − qj‖
‖q1 − q2‖

<∞,

then either

(5.4.3) qi = Cit+O (log t)

or
‖qi − qj‖ ≈ t2/3,

where for two positive functions f and g, f ≈ g means that after some time there exist constants A and B
such that Ag(t) ≤ f(t) ≤ Bg(t). The meaning of the hypothesis is that q1 and q2 become arbitrarily far
apart, and qi and qj do not get closer to each other nor separate at a higher order than q1 and q2. The
conclusion means that either qi grows linearly (or like log t if Ci = 0) or qi and qj separate like t2/3. Our
solutions meet the hypothesis, since all pairs qi and qj separate like Aijt. In particular, our solutions adhere
to (5.4.3) with at most one Ci = 0.

Saari continues with Theorem 1 (p. 224), which adapted to our restricted setting of particles only, reads
as follows:

Theorem. If solutions to (1.0.1) exist on (0,∞) and if

(5.4.4) lim inf
t→∞

T/U >
1

2
,

then either

(5.4.5) qj = ajt+ bj log t+ o (log t)

or

(5.4.6) ‖qi − qj‖ ≈ t2/3, i 6= j,

where aj , bj are constant vectors, ‖ai − aj‖ 6= 0 for i 6= j.
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This means in particular that in the absence of behavior Saari calls “oscillatory and pulsating” (which
our new solutions do not exhibit), the particles separate into clusters, within which the particle separations
are bounded as t → ∞. The clusters form subsystems wherein the clusters separate like t2/3. Lastly the
subsystems separate from each other as Ct. Our solutions do not have oscillatory or pulsating behavior, and
all the particles separate from each other like Ct; more specifically, particles i and j separate from each other
as Aijt, meaning these solutions do not cluster or form subsystems remaining any more closely together.

A further result, Theorem 8 (p. 236) in [94], again adapted for our case of no clustering improves on
(5.4.5):

(5.4.7) qj = ajt+ bj log t+ ci +O
(
t−1/3

)
.

For our solutions, we note that ai and ci are arbitrary, limited only that the ai must be distinct, and we
have provided bi the coefficient of the the log t term in terms of the aj and improved the error term from
O
(
t−1/3

)
to O (log t/t).

In 1976, Marchal and Saari [70] provide a framework that allow for the study of an expanding universe
of clusters of particles. Their Corollary 1, adapted to our setting of particles only (since our solutions do not
form clusters), may be read as follows:

Corollary. If solutions to (1.0.1) exist on (0,∞) and R(t) = O(t), then

(5.4.8) qj = ajt+O
(
t2/3

)
, j = 1, 2, · · · , N and lim sup r(t) > 0, as t→∞,

where the aj are constant vectors.

They also show that if in addition, the total energy h ≥ 0, then at least two particles escape.
Our assumptions and techniques are radically different from the assumptions and techniques employed

by Pollard, Saari, and collaborators. In particular, we have provided an existence proof of a multi-parameter
set of solutions leading to total escape. We have shown that given any two sets of 3-vectors, ai and ci and
masses mi, i = 1, . . . , N satisfying the conditions in the beginning of this Chapter, there is a set of vector
functions δi(t), i = 1, . . . , N , as found above so that

qi = ait+ bi log t+ ci + δi(t), i = 1, . . . , N,

is a solution to (1.0.1) for t ≥ t5, where the bi are given by (5.1.5). Moreover, each δi = O (log t/t), improving
on (5.4.7) and (5.4.8). There is no singularity, as shown above, since we have bounded every ‖qi − qj‖ away
from 0. Obviously, the total energy is positive, and all the particles escape (or all but one) as t → ∞.
Moreover, δi is approximated by a rapidly-converging series.

It is now evident that our technique can yield an approximation, as well as an asymptotic approximation,
to any level of desired accuracy, of any physical quantity relevant to the evolution of our configurations of
an expanding universe.

In the category of positive energy solutions it might be possible to learn more about how “many” (perhaps
the measure of the set or its Baire category or at least its dimension) solutions there are in some appropriate
space of masses and initial conditions (or maybe just initial conditions) for N > 4 in the following partition
of the set of all positive energy solutions:

• form clusters and subsystems like in Saari [94]
• oscillating and pulsating
• all particles separate like At – contains an open neighborhood of infinity, as described in this

Chapter
• end in collision – a set of measure 0 per Saari [95]
• expand faster than At
• end in non-collision singularity

The new solutions of this Chapter being so numerous might allow us to say that other expanding solutions
form a comparatively small set; e.g., maybe oscillating and pulsating motion or clustering is comparatively
rare. Or maybe one could show that the union of clustering solutions with these new ones form a dense open
set of initial conditions. In addition, it would be interesting to characterize initial conditions according to
whether they lead to clustering or not.
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Lemaître [67] appears to have been the first to notice that the Einstein field equations of General
Relativity admit solutions that expand forever. Hubble’s observation [57] that many galaxies are receding
from us suggests we are living in such a solution. Paraphrasing [94], the asymptotic formula

‖q̇i − q̇j‖
‖qi − qj‖

∼ 1

t

is the Newtonian version of Hubble’s law.



CHAPTER 6

For Further Investigation

There are several directions in which one might extend this work, as well as additional areas where this
compactification might elucidate; for example,

(1) In Celestial Mechanics, one can rescale time in such a way that the singularities are transformed into
critical points of the new system; for example, introducing the rescaled time τ with dt

dτ =
(
1−R2

)4
makes the equations for dx

dτ non-singular everywhere, and the boundary invariant in τ ; singularities
in q translate to boundary points in x, so singularities in q would be approached as τ approaches
∞, but as t → σ− ≤ ∞. In the polynomial setting it has been possible to compute asymptotic
behavior of solutions that blow up in finite time. Here it could provide asymptotic behavior as q
approaches a singularity. Similarly, rescaling with a power of the product of all the gij causes the
collision set to become critical points instead, which leads to a new way to regularize collisions. A
modest start on exploring these ideas is given in Section 1 of this Chapter.

(2) One might also learn something by compactifying in position only, rather than in position and
velocity together. This is discussed briefly in Section 2.

(3) With ν = 1−R2, one may consider (3.1.13) as a Bernoulli equation in ν

(6.0.1) ν̇ = − 2ν

1 +R2
h− 2ν4

1 +R2
L.

Some approaches to this are suggested in Section 3.
(4) If we add a forcing term to the equations of celestial mechanics, assuming that the inhomogeneity

is given as a power series

(6.0.2)
∞∑
m=2

cim
tm

,

convergent for sufficiently large t, the differential equation governing the positions qi of N point-
masses mi, i = 1, . . . , N moving in R3 becomes

(6.0.3) q̈i =
∑
j 6=i

mj(qj − qi)
‖qi − qj‖ 3

+

∞∑
m=2

cim
tm

.

Some calculations about this are given in Section 4.
(5) It might be possible to apply the integral equation and contraction mapping to the compactified

problem and establish the existence of solutions to the compactified system (3.1.7) of the form

x =

(
Ai +Bi

log t
t + Ci

1
t + εi

BN+i
log t
t2 + CN+i

1
t2 + εN+i

)
,

which could be uncompactified to the solution q.
(6) It might be useful to compactify the ambient space R3, rather than the multi-dimensional phase

space, and see what happens when you compactify (1.0.1) that way.
(7) The equations of motion governing the behavior of particles influenced only by each other’s charge

is very similar to (1.0.1), with the additional possibility of repulsive forces. A similar approach
might be useful.

(8) For differential systems of equations where the boundary is or contains an invariant set under the
compactified flow, the Conley Index [21] might be applied to as another tool to study orbits that
connect to the invariant set on the boundary. Hell has explored this in her dissertation and a paper
[49, 50].

96
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(9) Compactifying a partial differential equation is a different kind of situation, because PDE inherently
are infinite dimensional, and when you “compactify” R∞ or L2 and add the boundary sphere, the
result is not compact. In fact, the boundary sphere isn’t even compact, being diffeomorphic to
the whole of R∞ per Bessega [11]. Maybe this could be overcome by compactifying to the Hilbert
Cube or by compactifying the ambient space, rather than phase space. One intuits that behavior
at infinity of PDE problems might be illuminated. In particular, the Einstein equation of general
relativity is a hyperbolic PDE on R4 or some other, presumably non-compact, four-dimensional
manifold. Cosmologists have used other compactifications, as for example in [37]. Moreover, part of
Physics’ grand unification program considers a ten- or eleven-dimensional manifold, some of whose
directions may already be compact; see [14] for a discussion of how a ten-dimensional universe
might be a bundle over our familiar four-dimensional space-time, with a compact six-dimensional
Calabi-Yau manifold as a fiber.

(10) The existence of trajectories that escape to infinity might be applicable to the aerospace engineering
problem of spacecraft mission design. If so, this would be an extension or broadening of hyperbolic
escape in the Kepler problem, which has been used for decades as part of the design of spacecraft
missions away from Earth’s vicinity. The patched-conic method of orbital mechanics “patches”
together the escape hyperbola, the ellipse arc about the Sun, and an arrival hyperbola at a target
body.

6.1. Rescaled time

If we let g =
∏
i<j gij , it is easy to see that g2L is bounded everywhere in the closed unit ball. We

saw in Section 3.1 that
(
1−R2

)6
L is also. These factors can be combined; gm

(
1−R2

)3+3n
L is bounded

provided m + n ≥ 1, and we have options to rescale time in (3.1.7) and remove the singularities from the
compactified system (instead of regularizing the collisions) by rescaling time with

(6.1.1)
dt

dτ
=

1

2
(1 +R2)gm

(
1−R2

)3n
.

The choice of m = 2 and n = 0 makes the rescaled system bounded on the closed unit ball. Letting ′ denote
differentiation with respect to τ , we have the rescaled compactified system for n = 0:

(6.1.2) x′i =
1 +R2

2
gmxN+i −

[
h+ (1−R2)3L

]
gmxi,

(6.1.3) x′N+i =
1 +R2

2
(1−R2)3gmGi −

[
h+ (1−R2)3L

]
gmxN+i.

For m = 3, the resulting system is continuous on the closed unit ball, with continuous first derivatives in the
interior. Thus all solutions exist for all time τ , so critical points are approached only as τ → ±∞. For m = 2
or 3, it is easy to see that the rescaled system has the same critical points as before rescaling (3.1.7), as well
as where the original (uncompactified) system has a collision: if particles a and b coincide, then gab = 0, so
g = 0; g2L is bounded on the ball but discontinuous on ∆, and g3L = 0 on ∆; thus each x′i = 0.

For x′N+i, only the sum term in (6.1.3) need be considered. Now, if i 6= a, i 6= b, then the sum contains
no terms with denominator 0, and g3 = 0. If instead i = a (b is similar), the sum over j includes b, so g3

times that term vanishes; the rest of the terms (j 6= b) are finite, so x′N+i vanishes. In summary, collisions
in the uncompactified system transform to critical points in the rescaled, compactified system.

With either choice, the boundary sphere becomes invariant under the rescaled flow (and consequently
so does the interior), since from (3.1.13), the additional factors of gij give

(6.1.4)
dR2

dτ
=
dt

dτ

dR2

dt
= gm(1−R2)[h+ (1−R2)3L] = 0

on the boundary, since g2L is bounded on the unit ball.
Thus any trajectory in the open ball stays in the ball for all finite time, but may approach the boundary

as τ → ±∞. We consider the system of equations restricted to the boundary sphere:
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x′i = −hgmxi + gmxN+i

x′N+i = −hgmxN+i.

Critical points on the boundary fall into two categories: Type I critical points are when all xN+i = 0, in
other words the set of type I critical points is the 3N − 1 sphere given by the conditions

∑N
i=1 x

†
ixi = 1 and

xN+i = 0. Type II critical points are when any two particles coincide on the boundary, so the set of type II
critical points is the intersection of the boundary sphere with ∆.

Transforming back to the original system, we see that the set of type I critical points at ∞ is where the
velocities are all 0. This suggests the possibility of compactifying only in the positions and not the velocities;
this notion is pursued in the sequel.

We can easily compute the Jacobian at the critical points on the boundary. Because the τ−derivative
of R2 has 1 − R2 as a factor, we can ignore all terms containing a factor of (1 − R2)2. As a result, we can
compute the Jacobian as if the equations of motion were

x′i = −hgmxi +
1 +R2

2
gmxN+i

x′N+i = −hgmxN+i(6.1.5)

The trajectories of the solutions to (6.1.5) look a lot like those of (3.2.9), except for the addition of Type
II critical points, reflecting the fact that collisions can be reached in finite time t, but require infinite time
τ. It is easy to see that A and h satisfy

A′ = −2g2hA

h′ = g2(A− 2h2).(6.1.6)

Then the τ -derivative of h/A is g2. So we have

A′

A2
= −2g2 h

A
= −2

h

A
(
h

A
)′,

which we can integrate with the result again that h2−A
A2 is constant.

6.2. Compactify in Position Only

Given that we start with a second order system containing no terms in ẏ, it may be useful to compactify
only in the position variables and consider the resulting second order equation, or possibly to compactify
position and velocity components separately. Starting again with the force equation (1.0.1), we let q = κx,
where κ = 1

1−R2 as before, except that x is the 3N -dimensional position vector. Then we have ẋ in terms of
x and q̇ :

(6.2.1) ẋ =
q̇

κ
− (∇κ†q̇) q

κ2
= (1−R2) q̇ − 2

1−R2

1 +R2
(x†q̇)x,

which we can differentiate again:

(6.2.2) ẍ = (1−R2)3

[
I − 2

1 +R2
(xx†)

]∑
j 6=i

mj(xj − xi)
g3
ij

− 2ẋ2

1−R2
x− 4

x†ẋ

1 +R2
ẋ,

where we have used the vector identity (z†y) z = (z z†) y, as well as the identity

x†q̇ =
1 +R2

(1−R2)2
x†ẋ,

obtained by taking the inner product of both sides of (6.2.1) with x.
The system (6.2.2) is singular at the boundary and at points of collision, so it might be helpful to rescale

time as above.
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6.3. Analyze 1−R2 as a Bernoulli equation

Multiply (6.0.1) by kνk−1 to obtain

(6.3.1) ν̇k = kνk−1ν̇ = − 2kνk

1 +R2
h− 2kνk+3

1 +R2
L.

Notice that for k+ 3 ≥ 6 we know by Lemma 23 that 2kνk+3

1+R2 L is bounded at a collision or any other singular
point of the system of ode’s. Put νk = pα. Then

ν = pαk
−1

⇐⇒ p = νkα
−1

νk+3 =
[
pαk

−1
]
k+3 = pα(k+3)k−1

.

Substituting these makes (6.3.1) an equation in the dependent variable p, namely,

αpα−1ṗ =
−2kpαh

1 +R2
− 2kpα(k+3)k−1

1 +R2
L

ṗ =
−2hkα−1p

1 +R2
− 2Lα−1kpα(k+3)k−1−α+1

1 +R2
.

We wish to determine the rate of decrease to zero of 1−R2(t) as t→ b−, where b ≤ ∞ is the endpoint
of the maximal interval of existence. To this end we consider the Bernoulli equation and replace the form of
the term

−2Lα−1kpα(k+3)k−1−α+1

1 +R2
.

If we set
α(k + 3)k−1 − α+ 1 = 0 =⇒ α[(k + 3)k−1 − 1] = −1

α[(k + 3)− k] = −k = 3α⇐⇒ α =
−k
3
,

then we can express

p(t) =

(
exp

∫ t

t0

6h(η)

1 +R2(η)
dη

)
p(t0) +

∫ t

t0

[
exp

∫ t

s

−6h(η)

1 +R2(η)
dη

]
6L(s)ds

=

(
exp

∫ t

t0

6h(η)

1 +R2(η)
dη

){
p(t0) +

∫ t

t0

[
exp

∫ t0

s

6h(η)

1 +R2(η)
dη

]
6L(s)ds

}
.

Notice that if as expected and based on the approximate solution h(η) ∼ η−1, as η →∞,(
exp

∫ t

t0

6h(η)

1 +R2(η)
dη

)
∼ t3p(t0),

∫ t

t0

[
exp

∫ t0

s

6h(η)

1 +R2(η)
dη

]
6L(s)ds] = O(1).

Therefore,

p(t) ∼
∫ t

t0

[
exp

∫ t0

s

6h(η)

1 +R2(η)
dη

]
6L(s)ds] ∼ t3p(t0) =⇒ ν(t) ∼ t−1[p(t0)]−

1
3

The above is not the right α. This takes the Bernoulli equation into a linear equation. However, the
inhomogeneous term −2Lα−1k

1+R2 may not be continuous or even bounded on [t0, b) so we change its form as
follows

−2Lα−1kpα(k+3)k−1−α+1

1 +R2
=
−2Lν6ν−6α−1kpα(k+3)k−1−α+1

1 +R2
=
−2Lν6α−1kpα(k+3)k−1−α+1−6αk−1

1 +R2
,

and choosing α such that

α(k + 3)k−1 − α+ 1− 6αk−1 = α[(k + 3)k−1 − 1− 6k−1] + 1 = 0 =⇒

α[(k + 3)− k − 6]k−1 + 1 = −3αk−1 + 1 = 0⇐⇒ α =
k

3
.

The resulting equation for p is linear; therefore a solution p(t) exists on an entire interval [t0, b] on which the
coefficients are continuous functions of t.
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The equation can be integrated and the solution obtained is valid on an interval [t0, b] where b is allowed
to be a singular or any collision point of the N body system of equations with b ≤ ∞. Then

(6.3.2) p(t) =

(
exp

∫ t

t0

−6h(η)

1 +R2(η)
dη

)
p(t0)−

∫ t

t0

[
exp

∫ t

s

−6h(η)

1 +R2(η)
dη

]
6ν6L(s)ds

So if we assume that t0 = b is finite and p(b−) = 0 then we have

p(t) =

∫ b

t

[
exp

∫ t

s

−6h(η)

1 +R2(η)
dη

]
6ν6L(s)ds = ναk

−1

= ν
1
3 .

Notice that
νk(t0) = pα(t0) = [1−R2(t0)]k =⇒ p(t0) = [1−R2(t0)]kα

−1

.

Evidently,

p(t) ≥ 0 =⇒ p(t0) ≥ 2(2 +
3

k
)−1

(∫ t

t0

exp−2(2 +
3

k
)−1

∫ s

t0

h(η)

1 +R2(η)
dη

)
L(s)ds

or

(6.3.3)
p(t0)

2(2 + 3
k )−1

=
[1−R2(t0)]k(2+ 3

k )−1

2(2 + 3
k )−1

≥
(∫ t

t0

exp−2(2 +
3

k
)−1

∫ s

t0

h(η)

1 +R2(η)
dη

)
L(s)ds.

The inequality (6.3.3) says that independent of the singularities manifested in L(s) and/or t = ∞ in the
integral on the right hand side of (6.3.3) is bounded. Moreover, it can be made arbitrarily small if 1−R2(t0)
is small. We can also put t0 = γt, γ ≤ 1.

On the other hand p(t) ≤ 1. Hence, (6.3.2) implies that

p(t) =

(
exp− 2

2 + 3
k

∫ t

t0

h(η)

1 +R2(η)
dη

){
p(t0)− 2

2 + 3
k

∫ t

t0

(
exp− 2

2 + 3
k

∫ s

t0

h(η)

1 +R2(η)
dη

)
L(s)ds

}
≤ 1

or that {
p(t0)− 2

2 + 3
k

∫ t

t0

(
exp− 2

2 + 3
k

∫ s

t0

h(η)

1 +R2(η)
dη

)
L(s)ds

}
≤ exp

2

2 + 3
k

∫ t

t0

h(η)

1 +R2(η)
dη.

What happens if b is infinite, and no collisions at finite points took place? Then, we reconsider

ν̇ = − 2ν

1 +R2
h− 2ν4

1 +R2
L.

ṗ =
−2hα−1p

1 +R2
+
−2Lα−1p4α−α+1

1 +R2
.

In order for the Bernoulli equation to be linearized we need to choose α = − 1
3 . We would hope to prove the

following lemma.

Lemma 36. Let a solution of (3.1.7) exist on [t0, b) with b finite. Then,
i) 1−R2(t) exists and is well defined on [t0, b].
ii) b is a finite singularity iff 1−R2(b) = 0.
iii) If two particles j and k are such that they coalesce for a sequence of points tl → b− then the derivatives

blow up.

6.4. Celestial Mechanics with a Forcing Term

Before considering the full problem, (6.0.3), we start with the simple case of the forced 1-dimensional
Kepler problem

(6.4.1) ÿ = − 1

y2
+

c

t2
,

for c 6= 0, the solution to which we seek in the form

(6.4.2) y = at+ b+

∞∑
m=1

dm
tm

.
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Possibly there is a reason why one of the cases c > 0 or c < 0 can be neglected. Next we multiply (6.4.1) by
y2, so we can write it as

(6.4.3) y2
(
ÿ − c

t2

)
= −1.

We will need the computations:

y2 = a2t2 + 2abt+ b2 + 2at

∞∑
m=1

dm
tm

+ 2b

∞∑
m=1

dm
tm

+

( ∞∑
m=1

dm
tm

)2

= a2t2 + 2abt+ b2 + 2ad1 + 2a

∞∑
m=2

dm
tm−1

+ 2b

∞∑
m=1

dm
tm

+

∞∑
m=2

1

tm

m−1∑
i=1

dm−idi

= a2t2 + 2abt+ b2 + 2ad1 +
2ad2 + 2bd1

t
+ 2a

∞∑
m=2

dm+1

tm
+ 2b

∞∑
m=2

dm
tm

+

∞∑
m=2

1

tm

m−1∑
i=1

dm−idi

(6.4.4) = a2t2 + 2abt+ b2 + 2ad1 +
2ad2 + 2bd1

t
+

∞∑
m=2

1

tm

[
2adm+1 + 2bdm +

m−1∑
i=1

dm−idi

]
.

ÿ − c

t2
= − c

t2
+

∞∑
m=3

(m− 2) (m− 1)
dm−2

tm
.

The left side of (6.4.3) is the product of the last two lines,

−a2c− 2abc

t
−
(
b2 + 2ad1

)
c

t2
− (2ad2 + 2bd1) c

t3
− c

∞∑
m=2

1

tm+2

[
2adm+1 + 2bdm +

m−1∑
i=1

dm−idi

]

+

[
a2t2 + 2abt+ b2 + 2ad1 +

2ad2 + 2bd1

t

] ∞∑
m=3

(m− 2) (m− 1)
dm−2

tm

(6.4.5) +

∞∑
m=5

1

tm

m−3∑
j=2

[
2adj+1 + 2bdj +

j−1∑
i=1

dj−idi

]
(m− j − 2) (m− j − 1) dm−j−2.

The last quantity in the first line above may be expressed

−c
∞∑
m=4

1

tm

[
2adm−1 + 2bdm−2 +

m−3∑
i=1

dm−i−2di

]
.

As can be seen in (6.4.5) the first appearance of each dm; that is, the lowest order term (in t) containing dm
is the coefficient of t−m, which arises in the middle row of (6.4.5) as

m (m+ 1)
a2dm
tm

,

which is linear in dm, and all the dm can be computed. The lowest order terms of the product are

−a2c+
2a2d1 − 2abc

t
+

6a2d2 + 2abd1 −
(
b2 + 2ad1

)
c

t2
+

12a2d3 + 6abd2 + 2
(
b2 + 2ad1

)
d1 − (2ad2 + 2bd1) c

t3
.



6.4. CELESTIAL MECHANICS WITH A FORCING TERM 102

Since this must equal −1 for all values of t, the first term must equal −1, and all the numerators must vanish;
leading to equations for the coefficients of (6.4.2):

a2c = 1

2a2d1 − 2abc = 0

6a2d2 + 2abd1 −
(
b2 + 2ad1

)
c = 0

12a2d3 + 12abd2 + 2
(
b2 + 2ad1

)
d1 − 2 (ad2 + bd1) c = 0

20a2d4 + 24abd3 + 6
(
b2 + 2ad1

)
d2 + 4 (ad2 + bd1) d1 −

(
2ad3 + 2bd2 + d2

1

)
c = 0

m (m+ 1) a2dm + 2m (m− 1) abdm−1 + (m− 1) (m− 2)
(
b2 + 2ad1

)
dm−2

+

m−3∑
j=2

[
2adj+1 + 2bdj +

j−1∑
i=1

dj−idi

]
(m− j − 2) (m− j − 1) dm−j−2

−

[
2adm−1 + 2bdm−2 +

m−3∑
i=1

dm−i−2di

]
c = 0

for m > 4. These simplify

a2 = 1/c

d1 = bc
√
c

d2 =
1

6

(
2bc3 − b2c2

)
d3 =

c

12

(
b3c+

2

3
bc2 − 2b2c2 − 1

3
b2c+

[
2b3c+ 3b2c2

]√
c

)
where b is a free parameter. In general dm can be expressed as a polynomial in dj , j < m:

m (m+ 1) dm =

[
2adm−1 + 2bdm−2 +

m−3∑
i=1

dm−i−2di

]
c2

−2m (m− 1) abcdm−1 − (m− 1) (m− 2)
(
b2 + 2ad1

)
cdm−2

−c
m−3∑
j=2

[
2adj+1 + 2bdj +

j−1∑
i=1

dj−idi

]
(m− j − 2) (m− j − 1) dm−j−2,

where we have used the fact that a2 = 1/c.
Now the case of general N . If we suppose that there is a power series solution

(6.4.6) qi = ait+ bi +

∞∑
m=1

dim
tm

,

where ai, b, and dmi are 3-vectors, then each denominator in (6.0.3) admits a power series. It follows that
the right hand side of (6.0.3) has a power series expansion, which can be compared with that found on
differentiating (6.4.6) term-by-term:

(6.4.7) q̈i =

∞∑
m=3

(m− 1) (m− 2)
dim−2

tm
.

On the other hand, we can attempt to compactify (6.0.3) and see where that goes.

6.4.1. Seeking a Power Series for qi. The goal is to equate the right hand sides of (6.4.7) and (6.0.3)
after (6.4.6) has been used to substitute for q in the latter. The result is to be expressed as a power series
in 1/t, and compared term by term to find the series coefficients in (6.4.6). We will substitute with (6.4.6)
in (6.0.3), starting with the denominators:

‖qi − qj‖ 2 =

∥∥∥∥∥(ai − aj) t+ bi − bj +

∞∑
m=1

dim − djm
tm

∥∥∥∥∥
2
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= A2
ijt

2 + 2t (ai − aj)† (bi − bj) + ‖bi − bj‖2 + 2t (ai − aj)†
∞∑
m=1

dim − djm
tm

+2 (bi − bj)†
∞∑
m=1

dim − djm
tm

+

∥∥∥∥∥
∞∑
m=1

dim − djm
tm

∥∥∥∥∥
2

= A2
ijt

2 + 2t (ai − aj)† (bi − bj) + ‖bi − bj‖2 + 2 (ai − aj)† (di1 − dj1) + 2 (ai − aj)†
∞∑
m=2

dim − djm
tm−1

+2 (bi − bj)†
∞∑
m=1

dim − djm
tm

+

∥∥∥∥∥
∞∑
m=1

dim − djm
tm

∥∥∥∥∥
2

= A2
ijt

2

{
1 +

2

A2
ijt

(ai − aj)† (bi − bj) +
‖bi − bj‖2 + 2 (ai − aj)† (di1 − dj1)

A2
ijt

2
+O

(
1

t3

)}
,

where Aij = ‖ai − aj‖. So that

‖qi − qj‖−3 = A−3
ij t
−3

{
1 +

2

A2
ijt

(ai − aj)† (bi − bj) +
‖bi − bj‖2 + 2 (ai − aj)† (di1 − dj1)

A2
ijt

2
+O

(
1

t3

)}−3/2

= A−3
ij t
−3

{
1− 3

A2
ijt

(ai − aj)† (bi − bj)

}
+O

(
1

t5

)
.

Each term in the first sum of (6.0.3) can be expressed as mj times

A−3
ij t
−3

{
1− 3

A2
ijt

(ai − aj)† (bi − bj)

}[
(aj − ai) t+ bj − bi +

∞∑
m=1

djm − dim
tm

]
+O

(
1

t4

)

= A−3
ij t
−2

{
aj − ai −

3

A2
ijt

(ai − aj)† (bi − bj) (aj − ai) +
bj − bi
t

}
+O

(
1

t4

)

=
aj − ai
A3
ijt

2
+

1

A3
ijt

3

[
I3 −

3

A2
ij

(aj − ai) (ai − aj)†
]

(bj − bi) +O

(
1

t4

)
.

So we set equal the right hand sides of (6.4.7) and (6.0.3)
∞∑
m=3

(m− 1) (m− 2)
dim−2

tm
=
∑
j 6=i

aj − ai
A3
ijt

2

(6.4.8) +
∑
j 6=i

1

A3
ijt

3

[
I3 −

3

A2
ij

(aj − ai) (ai − aj)†
]

(bj − bi) +

∞∑
m=2

cim
tm

+O

(
1

t4

)
.

Since this must be true for all values of t (sufficiently large that the series all converge), the coefficients t2
and t3 must be equal, so we have the equations:

(6.4.9) 0 =
∑
j 6=i

aj − ai
A3
ij

+ ci2

(6.4.10) 2di1 =
∑
j 6=i

1

A3
ij

[
I3 −

3

A2
ij

(aj − ai) (ai − aj)†
]

(bj − bi) + ci3.

Note that if we sum (6.4.9) over i, we find that
∑N
i=1 ci2 = 0, a condition on the forcing term. Moreover, if

we would keep additional terms in the power series, we would have equations for higher degree coefficients,
and could in principle establish an algebraic equation for every degree. The form of the resulting equations
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suggests that if one starts with a convergent series (6.4.6) for qi, it is possible to find cim such that (6.4.6)
is a solution of (6.0.3); one would need to verify that the series (6.0.2) converges.

Here we consider small N cases. For the two-body problem, let q = q2 − q1; then we have

q̈ = (m1 +m2)
q

‖q‖3
+

∞∑
m=2

c2m − c1m
tm

,

which is the forced Kepler problem in R3, with G = m1 + m2, instead of G = 1. Here we repeat equations
(6.4.9) and (6.4.10) for the N = 2 case:

(6.4.11) c12 = −c22 = −a2 − a1

A3
12

(6.4.12) 2d11 =
1

A3
12

[
I3 +

3

A2
12

(a2 − a1) (a2 − a1)
†
]

(b2 − b1) + c13.

The first of these can be met by setting a = −c12/ ‖c12‖3/2, and choosing the pair a1, a2, such that a2 = a1+a,
and the second defines d11, with b1 and b2 as yet undetermined.

Here we repeat equations (6.4.9) and (6.4.10) for the case N = 3:

(6.4.13) 0 =
a2 − a1

A3
12

+
a3 − a1

A3
13

+ c12 0 =
a1 − a2

A3
12

+
a3 − a2

A3
23

+ c22 c32 = −c12 − c22

2d11 =
1

A3
12

[
I3 +

3

A2
12

(a2 − a1) (a2 − a1)
†
]

(b2 − b1) +
1

A3
13

[
I3 +

3

A2
13

(a3 − a1) (a3 − a1)
†
]

(b3 − b1) + c13

2d21 =
1

A3
12

[
I3 +

3

A2
12

(a1 − a2) (a1 − a2)
†
]

(b1 − b2) +
1

A3
23

[
I3 +

3

A2
23

(a3 − a2) (a3 − a2)
†
]

(b3 − b2) + c23

(6.4.14)

2d31 =
1

A3
13

[
I3 +

3

A2
13

(a1 − a3) (a1 − a3)
†
]

(b1 − b3) +
1

A3
23

[
I3 +

3

A2
23

(a2 − a3) (a2 − a3)
†
]

(b2 − b3) + c33.

If we sum the last three equations, we find that

2d11 + 2d21 + 2d31 = c13 + c23 + c33.

We can solve the N = 3 equations, beginning with (6.4.13), which we solve for the differences
a2 − a1

A3
12

=
1

3
(−c12 + c22)

a3 − a1

A3
13

=
1

3
(−c12 + c32)

a3 − a2

A3
23

=
1

3
(−c22 + c32) ,

which works if the numerators on the left are equal to the vectors on the right divided by the 3/2 power of
the magnitude of the vector on the right; e.g.,

a2 − a1 =
√

3
−c12 + c22

‖−c12 + c22‖3/2
.

We only need the differences in the ai to determine the di1 from (6.4.14), with the bi unconstrained.

6.4.2. Compactifying the Forced N-Body Problem. In this Section, we develop the equations of
motion for the compactified N-body problem and show that the compactification does not introduce any
critical points in the open unit ball, which means that the topological structures of the flows on the open
ball and on all of Euclidean space should be identical. We show that if a trajectory experiences a singularity
as t → σ−, then the compactified trajectory approaches the boundary sphere. The Section closes with the
behavior of the magnitude of the compactified 6N -vector, which quantity satisfies a Bernoulli equation.

We make the second-order equation for the qi (1.0.1) into a 6N -dimensional system in the usual way:
for i = 1, . . . , N , let yi = qi, and yN+i = q̇i, where for each i, yi and yN+i are vectors in R3. Then we can
express the system as ẏ = f(y, t), with the right hand side serving to define f(y, t) :

ẏi = yN+i

ẏN+i =
∑
j 6=i

mj(yj − yi)
‖yi − yj‖3

+

∞∑
m=2

cim
tm

.(6.4.15)
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Our compactified version of the original system of equations will be obtained on substituting y = x
1−x†x . All

of R6N is mapped to the open unit ball, and the pre-image of its boundary S6N−1 is an ideal set bounding
R6N , which may be identified with all directions at infinity. Compactifications in general, and this one
in particular, make it possible to augment the conventional set of solutions of a differential system with
an ideal set of solutions y ≡ ∞. Their geometric realization is given by trajectories on S6N−1 viewed as
the boundary sphere of the unit ball in R6N . One should expect these ideal trajectories to be solutions to
simplified systems of differential equations. Indeed, these ideal solutions, as shown in this Chapter, provide
a wealth of information on the solutions of ẏ = f(y) for ‖y‖ large.

As in Chapter 2, we compactify with y = κx, with κ = 1
1−R2 , where R = ‖x‖. Then

(6.4.16) ẋ =
ẏ

κ
− (∇κ)†ẏ

y

κ2
= κ−1

[
f(y)− (∇κ)†f(y)

y

κ

]
.

Squaring both sides of the transformation equation y = x
1−R2 gives r2 = R2

(1−R2)2 , which leads to R2 =(
2r2 + 1±

√
1 + 4r2

)
/2r2, with r = ‖y‖. To ensure R ∈ [0, 1], we choose the negative sign. Then κ =

1
1−R2 = 1

2 (1 +
√

1 + 4r2). The last equation can be solved for the radical:
√

1 + 4r2 = 1+R2

1−R2 , so that

(6.4.17) ∇κ =
2y√

1 + 4r2
=

2y
(
1−R2

)
1 +R2

=
2x

1 +R2
.

Then

(∇κ)†f(y) =
2

1 +R2
x†f(y) =

2

1 +R2

N∑
k=1

x†N+k

 xk
1−R2

+
(
1−R2

)2∑
j 6=k

mj(xj − xk)

‖xk − xj‖3
+

∞∑
m=2

cim
tm

 ,

so that the evolution of the compactified system in the open unit ball B6N in R6N is governed by

ẋi = xN+i −
2

1 +R2

N∑
k=1

x†N+k

xk +
(
1−R2

)3∑
j 6=k

mj(xj − xk)

‖xk − xj‖3
+

∞∑
m=2

cim
tm

xi

ẋN+i =
(
1−R2

)3∑
k 6=i

mk(xk − xi)
‖xi − xk‖3

+
(
1−R2

) ∞∑
m=2

cim
tm

− 2

1 +R2

N∑
k=1

x†N+k

xk +
(
1−R2

)3∑
j 6=k

mj(xj − xk)

‖xk − xj‖3
+

∞∑
m=2

cim
tm

xN+i.

I also looked at the forced problem restricted to the boundary; I get the same critical point set, but not
exact formulas for solutions on the boundary, like we have in the non-forced case.
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