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ABSTRACT

Economic Diversity and Regional Development: Geographical Scale,

Structural Measurement, and Modeling Method

Jing Chen

The relationship between economic diversity and regional economic performance has
been a recurrent topic among regional scientists, economic geographers and development
practitioners. However, the empirical understanding of this relationship is often inconsis-
tent with the theoretical assumptions of economic diversity. Thus, to offer suggestions to
evaluate the empirical relationship between economic diversity and regional economic per-
formance so that policymakers and economic planners can better understand, formulate
and undertake economic development policies, this dissertation examines the roles of (1)
geographical scales, (2) structural measurements, and (3) modeling methods in assessing
the diversity-performance relationship in the context of U.S. regional economies.

Geographical scales of regional economic systems can alter the empirical understanding
of economic diversity on regional economic performance. Although scale-related issues can
be study dependent, the diversity-stability relationship is studied among counties, states,
Economic Areas, and Metropolitan Statistical Areas in the lower U.S. Based on the result of
this multi-level analysis, several general concerns in quantifying regional economic structure
are discussed. It is suggested to use functional rather than formal regions as the analytical
units to reflect spatial interactions among regions. These units should also be large enough
to form meaningful economic systems. In addition, possible temporal variations in the
boundaries of functional regions should also be considered.

Structural measurements of economic diversity have long ignored the coexistence of
economic specialization and diversity. As such, a novel measure that allows for the inter-
pretation of economic diversity as the presence of multiple specializations is developed. In
essence, this measure considers the diversity of clusters for a regional economy. The em-
pirical results indicate that industry and cluster diversity demonstrate different effects on
regional economic performance: both industrial and cluster diversity contribute to long-term
economic stability, while only cluster diversity stimulates short-term employment growth.
Regions thus can pursue high and stable growth by developing diversified specializations.

Modeling methods in existing economic structure research have not considered model
uncertainty resulting from the set of control variables and the choice of an appropriate
spatial weight matrix when studying the structure-performance relationship. Empirical
evidence suggests that the model uncertainty can impact the understanding of economic
diversity. A Bayesian Model Average (BMA) method is thus employed to address the
model uncertainty. The result of BMA is used to estimate the effects of economic diversity
on employment growth and economic stability, and comparisons are made between model
estimates with and without model uncertainty.
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Chapter 1

Introduction

“Although basic science is directed at the discovery of general principles, the
ultimate value of such knowledge, apart from simple curiosity, lies in our ability
to apply it to local conditions and, thus, determine specific outcomes. Although
such science may itself be placeless, the application of scientific knowledge in
policy inevitably requires explicit attention to spatial variation, particularly when
the basis of policy is local.”

Goodchild et al. (2000, p. 142)

1.1 Research Context

“Do not put all your eggs in one basket” is an old proverb that reminds us not to dedicate

all of our resources to one project. The origin of this proverb is unclear, but many people

attribute it to the novel Don Quixote, written by Miguel de Cervantes in the 1600s. Nowa-

days, such a proverb continues to be useful in our daily lives as well as be beneficial for

formulating economic development strategies—for instance, it is risky to make the economy

of one region (basket) highly dependent on a limited number of industries (eggs) because it

might suffer severely from potential economic downturns.

Compared to the eggs-in-one-basket analogy, this dissertation focuses on the relationship

between economic diversity and regional economic performance and evaluates the roles

of geographical scales, structural measurements and modeling methods in assessing the

diversity-performance relationship. The research context of this dissertation can be viewed

in such dimensions as (1) growing interest in spatial economics, (2) theoretical perspectives
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of economic structure, and (3) empirical inconsistencies within economic structure research

as follows.

1.1.1 Growing Interest in Spatial Economics

In emphasizing the importance of spatial thinking in social science, Goodchild et al. (2000,

p. 142) stated that “although basic science is directed at the discovery of general principles,

the ultimate value of such knowledge, apart from simple curiosity, lies in our ability to

apply it to local conditions and, thus, determine specific outcomes. Although such science

may itself be placeless, the application of scientific knowledge in policy inevitably requires

explicit attention to spatial variation, particularly when the basis of policy is local.”

More specifically, there is growing interest in considering the spatial variation of eco-

nomic activities both theoretically and empirically. Historically, this interest can find its

imprint in the work of location theory (e.g., Hotelling, 1929; Weber, 1929; Christaller,

1933), Isard’s (1956) location and space economy, Alonso’s (1964) bid rent theory, and oth-

ers. More recently, with the development of the New Economic Geography (e.g., Krugman,

1991b, 1998; Venables, 1996; Fujita et al., 1999), the role of space has been formally intro-

duced in the mainstream economics. Paul Krugman, the 2008 Nobel laureate in economics,

further commented that “in recent years there has been a surge of interest in the geograph-

ical aspects of development, that is, in the question of where economic activities take place.

There is nothing surprising about this interest—or perhaps the surprise is that it took so

long for this interest to become a mainstream concern within economics” (Krugman, 1999,

p. 142).

In addition to the theoretical development, Goodchild et al. (2000) argued that advances

in spatial statistics and spatial econometrics—such as Anselin (1988) and LeSage and Pace

(2009)—allow for the interpretation of spatial externalities, spillovers and agglomeration

economies resulting from imperfect competition, path dependence and increasing returns.

Interestingly, this interpretation also emphasizes two key concepts in spatial data analy-

sis: spatial dependence and spatial heterogeneity (Anselin, 1988). According to Goodchild

(2004), the first concept is in line with Tobler’s (1970, p. 236) First Law of Geography: “All

things are related, but nearby things are more related than distant things.” By compar-
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ison, the second concept stresses variations among the Earth’s surface. For example, the

mean or variance of economic diversity is not stationary and varies from space to space.

Goodchild (2004, p. 711) further differentiated these two concepts by arguing that “het-

erogeneity addresses the properties of places taken at a time (a first-order effect in the

statistical sense), whereas spatial dependence compares the properties of pairs of places (a

second-order effect).”

1.1.2 Theoretical Perspectives on Economic Structure

The theoretical understanding of economic structure and regional economic performance is

often viewed from economic diversity and clusters1. There is a general consensus among

regional scientists that a diverse economy is associated with stable economic performance

because the economy is not dependent on only a few industries and might suffer less from ex-

ternal economic downturns as suggested by Chinitz (1961) and Conroy (1975), for example.

According to Malizia and Ke (1993, p. 222), the concept of diversity refers to “the variety of

economic activity which reflects differences in economic structure” at a specific time, while

economic stability is defined as “the absence of variation in economic activity over time.”

Chinitz (1961, p. 281) further found that “diversified areas exhibit more stability in their

growth because their fortunes are not tied to the fortunes of a few industries.” Similarly,

Conroy (1975) borrowed the concept of portfolio from the finance literature to explain the

diversity-stability relationship. He reasons that, for a given region, every industry can be

seen as an independent investment, and a collection of all regional industries can be seen to

be an industry portfolio. Accordingly, portfolio risk is greater for a regional economy that

has invested in only a few industries.

Moreover, the relationship between regional economic structure and economic growth

can be explained by two competing theoretical perspectives2. On the one hand, conven-

tional wisdom and much of the previous literature3, such as the Marshall-Arrow-Romer

1The terms of “clusters” and “specializations” are used interchangeably in this dissertation even though
specialized establishments may not be spatially clustered.

2Because agglomeration economies are necessary but not sufficient for clusters (Jackson, 2015), these
two perspectives are often discussed with agglomeration economies (e.g., localization and urbanization
economies). For a comprehensive review of agglomeration concepts, see Parr (2002).

3For a more comprehensive review of these theories, see Rocha (2004).
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(MAR) model and Porter (1990, 1998), hold that intra-industry specialization is preferred

for economic growth. As originally proposed by Marshall (1890), Arrow (1962), and Romer

(1986), and later formalized by Glaeser et al. (1992), the MAR model hypothesizes that

knowledge spillovers tend to be industry specific and that concentrations of similar indus-

tries facilitate growth. These knowledge spillovers are known as MAR externalities. As with

MAR, Porter (1990, 1998) has suggested that specialization can promote economic growth.

On the other hand, Jacobs (1969) suggested that diversity is more conducive to economic

growth than specialization. Specifically, knowledge spillovers can arise among diverse firms

and economic agents and thus stimulate innovation and growth; these spillovers are referred

to as Jacobs’ externalities.

1.1.3 Empirical Inconsistencies within Economic Structure Research

Based on the above theoretical assumptions, the role of economic structure in regional

economic development has been studied empirically for a long time, with a recurrent focus

on its relationship to regional economic stability (See Conroy, 1975; Jackson, 1984; Malizia

and Ke, 1993; Trendle, 2006; Deller and Watson, 2016a,b). The empirical relationship

between industrial diversity and economic stability at the regional level has been tested, yet

the results are often mixed and sometimes conflicting. For instance, a number of authors

(e.g., Conroy, 1975; Kort, 1981; Wagner and Deller, 1998; Trendle, 2006) confirmed the

negative relationship between diversity and instability, whereas others like Jackson (1984),

Attaran (1986), and Deller and Watson (2016b) claimed that this relationship is not always

significant.

Similarly, a closely related topic in the literature is the effect of economic diversity on

regional unemployment. This topic can be viewed from two seemingly compelling theoreti-

cal perspectives, the portfolio theory (Conroy, 1975) and the search theory (Simon, 1988).

The portfolio theory suggests that diversity can reduce risk in unemployment and that

the positive or negative relationship between economic diversity and stability depends on

business cycles. Chiang (2009, p. 952) further explained that “in a prosperous period, a

specialized region experiences relatively lower unemployment than a diverse region,” while

“a specialized region suffers relatively higher unemployment than a diverse region.” In con-
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trast, the search theory claims that economic diversity can reduce unemployment because of

greater employment opportunities within diversified economies. Based on these theoretical

understandings, Malizia and Ke (1993) and Izraeli and Murphy (2003) verified the negative

relationship between diversity and unemployment, while Mizuno et al. (2006) found that

the relationship is weak and even non-existent in the case of metropolitan areas in Japan.

1.2 Research Questions

Many authors (e.g., Conroy, 1975; Kort, 1981; Siegel et al., 1995; Wagner and Deller, 1998)

consider that the principal factors of the inconsistency between theoretical assumptions and

empirical evidence of economic structure include (1) the use of highly-aggregated data sets,

(2) inadequate or inappropriate measures of regional economic structure, and (3) overly

simplistic statistical modeling methods. Table 1.1 further summarizes previous literature

on the economic diversity research in terms of these factors.

This dissertation research aims at answering the following three research questions of

geographical scales, structural measurements, and modeling methods in studying the em-

pirical relationship between economic diversity and regional economic performance:

1. What is the most appropriate geographical scale for quantifying regional economic

structure? And how do we make that determination for economic development?

2. Has regional economic structure been effectively defined and measured for studying

their effects on economic performance? If not, how can these measures be improved?

3. What modeling techniques have been used to study the relationship between economic

structure and economic performance? At a time when spatial regression models have

been widely accepted in the regional economics literature, have these models been

fully used?

These three research questions are situated within a much broader field of literature on

economic structure research. Although these questions can be answered independently in

Figure 1.1 using the traditional Problem-Plan-Data-Analysis-Conclusion (PPDAC) proce-

dure suggested by MacKay and Ordford (2000), their focuses are not mutually exclusive in
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Table 1.1: Selective overview of economic diversity research

Article Spatial unit Diversity measure
Modeling
technique

Study region
Significant

or not

Conroy
(1975)

MSA Portfolio variance
Bivariate

correlation
MSAs in the

U.S.
Yes

Kort (1981) MSA
Entropy, national average,
ogive, and percentage of

durable goods

Bivariate
correlation

106 MSAs in
the U.S.

Yes

Jackson
(1984)

County
group

National average, ogive,
portfolio variance and
percentage of durable

goods

Bivariate
correlation

Illinois, U.S. No

Keinath
(1985)

EA
Tress Index, Shear Index

and coefficient of
specialization

Bivariate
correlation

U.S. No

Attaran
(1986)

State Entropy
Bivariate

correlation
U.S. No

Malizia and
Ke (1993)

MSA Entropy
Multivariate
regression

All U.S. MSAs Yes

Wagner and
Deller
(1998)

State
An input-output based

measure
Multivariate
regression

U.S. Yes

Mizuno
et al. (2006)

MSA Herfindahl index
Multivariate
regression

118 MSAs in
Japan

No

Trendle
(2006)

Local
Government

Area
Entropy

Spatial lag and
error models

Queensland,
Australia

Yes

Deller and
Watson
(2016a)

County
Herfindahl, national

average, ogive and entropy
Spatial Durbin

model
U.S. Yes

Deller and
Watson
(2016b)

County Herfindahl
Geographical

weighted
regression

U.S.
Not

always

Hong and
Xiao (2016)

MSA
A multiple specializations

indicator and entropy
Spatial lag

model
All U.S. MSAs Yes

Watson and
Deller
(2017)

County Herfindahl index
Spatial Durbin

model
U.S. Yes

Notes: MSA = Metropolitan Statistical Area; EA = Economic Area.
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essence. For example, the understanding of geographical scales in the first question can help

answer the other two questions. In doing so, possible errors can be minimized that result

from highly-aggregated data sets. Henceforth, as demonstrated by the nested strategy in

Figure 1.2, the conclusions of the first question are used to answer the other two, and the

conclusions of the second question are used to answer the third one.

Figure 1.1: Independent strategy to solving the research questions

Figure 1.2: Nested strategy to solving the research questions
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1.3 Organization

This introductory chapter focuses on the research context and proposes three interconnected

research questions on geographical scales, structural measurements and modeling methods

in economic structure research. These questions are explored sequentially in Chapters 2-4.

Chapter 2 evaluates the role of geographical scales in assessing the effect of economic

diversity on regional economic performance, while keeping the economic structure measure

and modeling method unchanged. Specifically, the relationship between economic diver-

sity and regional economic stability is studied empirically using four different geographical

units—including counties, states, Metropolitan Statistical Areas (MSAs) and Economic

Areas (EAs)—in the context of the lower U.S. Among these units, counties and states are

formal or administrative regions, while MSAs and EAs are functional regions. Their differ-

ences are further identified and highlighted in such analytical dimensions as full coverage

and region size. In addition, the potential spatial spillover effects in the diversity-stability

relationship are also considered through spatial econometric models.

Chapter 3 examines existing economic diversity measures in the perspective of the re-

lationship between economic diversity and specialization. As most of these measures do

not consider the coexistence of specialization and diversity (Malizia and Ke, 1993; Wagner

and Deller, 1998; Jackson, 2015), this chapter develops an alternative measure that allows

for interpreting economic diversity as the presence of multiple specializations. Future re-

search thus can adopt this measure and gain additional insights beyond simple levels of

employment dispersion between industries.

Chapter 4 overviews previous modeling methods employed in studying the relationship

between economic structure and regional economic performance. It is found that these meth-

ods have not addressed model uncertainty resulting from the choice of control variables. In

that sense, this chapter uses a Bayesian Model Averaging (BMA) method to consider model

uncertainty in a spatial context and then assesses the structure-performance relationship.

Chapter 5 summarizes findings from Chapters 2 to 4, discusses their contributions to

the literature and suggests future research directions.
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Chapter 2

A Geographical Scale Perspective

2.1 Introduction

The role of industrial diversity in regional economic development has been studied for a long

time, with a recurrent interest in its relationship to regional economic stability (e.g., Conroy,

1975; Jackson, 1984; Malizia and Ke, 1993; Trendle, 2006; Deller and Watson, 2016a,b;

Hong and Xiao, 2016). This interest can be dated back as early as the Great Depression

(McLaughlin, 1930; Tress, 1938), and it is hypothesized that industrially diversified regions

are associated with stable economic performance. Since then, this hypothesis has been

studied both theoretically and empirically (Siegel et al., 1995; Wagner and Deller, 1998;

Dissart, 2003; Mack et al., 2007). Likewise, industrial diversity and diversification research

also attracts interests from policy makers and governments because of its impacts on regional

economic development (Wagner and Deller, 1998; Feser et al., 2014; Jackson, 2015). More

recently, scholarly research has focused on the relationship between industrial diversity and

regional economic performance during the Great Recession in the late 2000s (e.g., Deller

and Watson, 2016a,b; Watson and Deller, 2017).

Despite a rich body of literature on various aspects of industrial diversity, structural

change and economic performance, there is little, if any, empirical analysis to compare

the empirical relationship between industrial diversity and regional economic performance

across different geographical scales. That said, variations in scale have not been incorporated

into the literature, and the majority of current studies have used only a single geographical

9



scale in quantifying economic structure. For instance, in the U.S. context, states (Attaran,

1986; Wagner and Deller, 1998), counties (Deller and Watson, 2016a,b; Watson and Deller,

2017), Metropolitan Statistical Areas (MSAs; Conroy, 1975; Malizia and Ke, 1993; Hong

and Xiao, 2016), and Economic Areas (EAs; Keinath, 1985; Porter, 2003) have been used

as the analytical units. Beyond the U.S.-based studies, the corresponding geographical

units include metropolitan areas in Japan (Mizuno et al., 2006), cities in China (Fu et al.,

2010), and Local Government Areas in Australia (Trendle, 2006). Moreover, numerous

scholars (e.g., Harvey, 1968; Watson, 1978; Ruddell and Wentz, 2009; Schaeffer et al., 2011;

Kwan, 2012) have stressed the role of varying geographical scales as a generic issue in

impacting empirical results. Meanwhile, scale-related issues—such as the modifiable areal

unit problem (MAUP; Openshaw and Taylor, 1979; Openshaw, 1984) and the ecological

fallacy (Robinson, 1950)—have been examined in specific research questions in regional

science and economic geography (e.g. Briant et al., 2010; Resende, 2011; Dapena et al.,

2016, 2017, 2018).

Given this, the goal of this chapter is to examine the relationship between industrial

diversity and economic stability in the U.S. at multiple geographical scales (including states,

counties, MSAs, and EAs) and to discuss several scale-related issues like the Modifiable

Areal Unit Problem and functional regions vis-à-vis this relationship. This research is

critical because, from a methodological perspective, it offers a multilevel perspective on the

diversity-stability relationship. Furthermore, this research is also one of the first studies

on geographical scales in economic diversity research. Although the scale-related issues

introduced in this chapter have not been fully addressed, explicit attention should be paid

to their potential effects when researching economic diversity as well as other regional science

topics.

The remainder of this chapter is organized as follows. In the second section, the inves-

tigation of the role of geographical scale in assessing the effect of economic diversity draws

on two perspectives: (1) the definitions of scale and scale-related problems, and (2) analyt-

ical units in economic diversity research, especially in the U.S. context. The third section

describes the methodology of this analysis. After that, results are presented and discussed.

Finally, the findings from this analysis are summarized.
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2.2 Background

2.2.1 The Definitions of Scale and Scale-Related Problems

The concept of scale has various definitions in spatial, temporal, and other dimensions of

regional research. Even though only spatial scale is focused on here, Goodchild (2011)

suggested that there are three meanings to the concept. First, the term scale may refer

to the cartographic scale or representative fraction, which is calculated as the ratio of a

distance on a map to its corresponding distance in the real world—more generally, this

ratio is displayed as a scale bar in cartography. By comparison, the second use of the term

is the spatial extent of a study region. For example, the spatial extent or scale of West

Virginia is much larger than that of New York City. Third, scale can also be defined as

the spatial resolution or analytical unit of a study; in other words, scale is the smallest

distinguishable part of an object (Tobler, 1988) like pixels in a satellite imagery. For this

analysis, the third meaning of scale is used unless explicitly noted otherwise.

In reference to economic diversity research, the spatial scales can be counties (Deller and

Watson, 2016a), states (Attaran, 1986; Wagner and Deller, 1998), and Metropolitan Statis-

tical Areas (Kort, 1981; Malizia and Ke, 1993; Hong and Xiao, 2016). Jackson and Sonis

(2001) suggested that the choice of spatial resolution or analytical unit is often decided by

data availability and political considerations in the study of regional economic systems. Yet,

data reporting units and political regions are often inconsistent with the boundaries of these

systems. This inconsistency can result in two general scale-related problems, namely (1) the

modifiable areal unit problem (MAUP) as proposed by Openshaw and Taylor (1979) and

Openshaw (1984) and (2) the uncertain geographical context problem (UGCoP) suggested

by Kwan (2012).

The MAUP arises when the analytical units are modifiable in size or spatial arrangement.

According to Openshaw (1984), the MAUP includes two interrelated aspects: the scale

problem and the zoning problem. First, the scale or aggregation problem occurs when

the total number of geographical units changes and causes the statistical properties of

aggregated or disaggregated units to vary. Second, the zoning problem refers to the effects

resulting from different zoning or combinations of contiguous units. This is because there
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are various approaches to aggregating any specified number of zones. The MAUP has been

frequently discussed with the ecological fallacy (Robinson, 1950). In Robinson’s study, the

correlation between the percentage of native born population and the percentage of illiteracy

is positive at the individual level but negative at the census division level, demonstrating

that statistical relationships cannot be transferred from one scale to another. Peeters and

Chasco (2006) further indicated that the concept of ecological fallacy is isomorphic to the

MAUP. Methods to reduce impacts of the MAUP involve identifying the best zoning scheme

or areal division (e.g., Farmer and Fotheringham, 2011; Kropp and Schwengler, 2016).

In relation to empirical analysis, Anselin (1988, p. 26) further suggested that the MAUP

can result in two problems: first, the micro-macro aggregation problem always occurs when

the spatial units are not homogeneous or spatial heterogeneity exists; and second, the

MAUP can also alter the choice of a spatial weight matrix in spatial regression and the cor-

responding parameter of the spatial lag variables. The MAUP has also has been studied for

specific topics in regional science related research (e.g., Resende, 2011; Ouyang et al., 2014;

Dapena et al., 2016, 2017, 2018). For instance, Resende (2011) examined the determinants

of regional economic growth from 1991 to 2000 in Brazil at four spatial scales (including

states, municipalities, micro-regions and spatial clusters) and also indicated that the empir-

ical results vary greatly with the geographical scale. Similarly, when studying labor density

and wages in Spain, Dapena et al. (2018) suggested that agglomeration externalities are

generated on a local scale, such as local labor markets rather than NUTS-2 or NUTS-3

regions.

In contrast to the well-known MAUP, the uncertain geographical context problem or

UGCoP has received much less attention (Kwan, 2012). It is different from the MAUP as it

is not about the modifiable units but about the “true spatial configurations.” The UGCoP

arises when contextual or analytical units that are geographically defined differ from the

true geographical context that are usually unknown in most studies to date. For instance,

neighborhood regions like census tracts and postal code areas are used as contextual units

to detect the geographical distribution of diseases in health research. These regions do not

reflect “the actual areas that exert contextual influences on the health outcome under study”

(Kwan, 2012, p. 959) because the boundaries of people’s activities—such as commuting to
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work and social interactions—usually are larger than neighborhoods. Moving beyond health

research, Kwan (2012) further argued that any study that examines the effects of area-based

attributes on geographical phenomena faces the UGCoP. Of special relevance here is the

boundary issue in spatial analysis (e.g., Anselin, 1988; Burt et al., 1996; O’Sullivan and

Unwin, 2014). For example, Anselin (1988) discussed the consequence of the boundary

value problem within the general frameworks of the spatial autoregressive model (SAR)

and the spatial error model (SEM). In addition, the UGCoP also emphasizes the temporal

uncertainty in a spatial phenomenon. Because economic activities and interactions vary over

space and time, the true spatiotemporal context of these activities becomes uncertain1.

2.2.2 Analytical Units in Economic Structure Research

The geographical units used in the literature of economic diversity include cities (McLaugh-

lin, 1930), MSAs (Conroy, 1975; Kort, 1981; Hong and Xiao, 2016), county groups (Jackson,

1984), states (Attaran, 1986; Wagner and Deller, 1998), counties (Mack et al., 2007; Deller

et al., 2017; Deller and Watson, 2016a,b; Watson and Deller, 2017) and Economic Areas

(Keinath, 1985) and can be divided into two types: formal and functional regions2. Formal

regions like states and counties are defined by government, and the boundaries of these re-

gions are normally stable over time. By comparison, functional regions are defined “based

on a greater magnitude of interactions or connections among spatial units within a region

than with units outside the region” (Brown and Holmes, 1971, p. 58). One familiar exam-

ple of functional regions is the U.S. Metropolitan Statistical Areas that have been regularly

defined based on population density and commuting ties.

While functional regions have been studied for a long time in geography and regional

science (e.g., Philbrick, 1957; Nystuen and Dacey, 1961; Fox and Kumar, 1965; Brown and

Holmes, 1971), with the exception of Jackson (1984), much of the economic diversity lit-

erature prior to the 1990s has not differentiated functional regions with formal regions.

1The temporal variations of geographical scales have also been discussed separately as the ecological
fallacy in a temporal context by Duque et al. (2006) and the modifiable temporal unit problem (MTUP) by
Cheng and Adepeju (2014).

2Although there are other forms of functional economic regions in geographical analysis (e.g., Farmer
and Fotheringham, 2011; Kropp and Schwengler, 2016), these regions have not been used to study industrial
diversity.
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Presumably, the unit of observation in these early studies were determined mainly by avail-

ability of data sets at that time. Specifically, when studying the economic diversity of

Illinois for the 1959-1976 period, Jackson (1984, p. 106) first articulated the use of func-

tional regions as the analytical units: “individual county data were aggregated into fifteen

multicounty regions which exhaust the entire area of the State of Illinois. Each region

centres around a major city so as to approximate functional economic areas.” After that,

Malizia and Ke (1993) reviewed geographical units used in economic diversity research and

further suggested that only function regions should be used.

However, neither Jackson (1984) nor Malizia and Ke (1993) have linked the choice of

geographical units with scale-related problems. From a theoretical point of view, formal

regions (like counties and states) as the unit of analysis can be seriously affected by the

MAUP and the UGCoP. For example, the city of St. Louis in Missouri was built along the

western bank of the Mississippi River and shares its boundaries with the state of Illinois.

Because state boundaries do not generally hinder economic interactions, the citys businesses

might have stronger economic interactions with some businesses in Illinois than with those

in the rest of Missouri. These interactions can be local inter-industry flows, face-to-face

contact in formal business meetings or frequent informal contact, such as lunch meetings,

sports activities, or other social occasions. All of these interactions can bring indirect effects

to regional economic performance but cannot be reflected meaningfully in data sets based

on formal regions.

In addition to the two general scale-related problems mentioned above, there are another

two practical problems regarding county-level data sets. One of these problems is the data

issue of difference between place of work and place of residence and many economic diversity

studies have not paid attention to it. For instance, the demographic data in the Census are

normally measured based on place of residence, whereas the employment data by industry

published by the Census County Business Patterns (CBP), the Bureau of Labor Statistics

(BLS) Census of Employment and Wages (CEW) and the Bureau of Economic Analysis

(BEA) regional data are measured based on place of work3. This inconsistency can greatly

3For more information on these data sets, see U.S. Bureau of Economic Analysis, FAQ: “What is the
difference between BEA employment and wages and BLS and Census employment and wages?” (January
12, 2006), https://www.bea.gov/faq/index.cfm?faq_id=104, accessed May 18, 2018.

14

https://www.bea.gov/faq/index.cfm?faq_id=104


impact empirical analysis. To mitigate this problem, Dapena et al. (2018, p. 61) indicated

that using functional regions that are defined based on population and commuting flows as

the analytical units suffer less from this issue because ones place of residence and place of

work “are in the same spatial unit.”

The other problem for county-level economic diversity research is that the employment

and population of some counties are too small. For example, according to the 2010 Census,

the population of Loving County, Texas, is only 115, while that number is 9,818,605 for

Los Angeles County, California. This enormous difference makes it almost meaningless to

compare their industrial activities and economic performance. More generally, this refers

to the small population problem in spatial analysis (Wang and O’Brien, 2005), where small

population units (1) are not fair representations of the underlying spatial form or process4

and (2) are sensitive to data errors resulting from data collection, data reporting and others.

To address this problem, several strategies have been proposed, including removal of small

population samples and aggregating small regions into larger ones based on some standards.

As for the former, it might exclude valuable samples from the population. By comparison,

the latter, in essence, relates to the use of functional regions as the analytical units, which

is originally suggested by Jackson (1984) and Malizia and Ke (1993) in the literature of

economic diversity.

However, both formal and functional regions have been used in the literature. On

the one hand, following the suggestions of Jackson (1984) and Malizia and Ke (1993),

some studies (e.g., Trendle, 2006; Mizuno et al., 2006; Hong and Xiao, 2016) have used

functional regions—such as MSAs in the U.S. and Local Government Areas in Australia—

as the analytical units. For instance, Trendle (2006) used Local Government Areas5 to study

industrial diversity and also considered the role of spatial spillovers within the diversity-

stability relationship by using spatial econometric models.

On the other hand, other studies (e.g., Wagner and Deller, 1998; Mack et al., 2007;

Deller and Watson, 2016a,b; Watson and Deller, 2017) have used formal regions like states

and counties as the basic units. For example, Wagner and Deller (1998) used states to study

4This is similar to the UGCoP.
5According to Trendle (2006), Local Government Areas are functional regions and include both urban

and rural regions.
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diversity and economic performance because of direct policy relevance and data availability.

For the same reasons, Deller and Watson (2016a,b) and Watson and Deller (2017) recently

used counties as the units of observation. Particularly, Deller and Watson (2016a, p. 1828)

admitted that counties are not functional economic areas, and thus “spillover effects across

county lines” should be expected. As such, spatial econometric models were employed to

account for these spatial spillovers. In addition to the political and data considerations

mentioned above, Mack et al. (2007, p. 481) also indicated that such formal regions as

counties and states are “more stable units for analysis over time” and the boundaries of

these regions are less prone to change than the boundaries of MSAs6.

Taken together, even though previous scholars suggested that functional regions—rather

than formal regions—should be used to measure regional economic structure, no comparison

has been made between these two types of regions in the literature of economic diversity, es-

pecially when spatial spillovers are considered. Moreover, since Jackson (1984) and Malizia

and Ke (1993) originally suggested the preference for functional regions as the units of ob-

servation, this preference, while widely accepted, has not been formally discussed with such

scale-related problems as the MAUP yet or interpreted as an artifact of these problems

within the literature of economic structure. In that sense, this analysis (1) investigates

the relationship between industrial diversity and economic stability in the U.S. context

at multiple geographical scales, (2) compares the role of spillover effects in the relationship

among functional and formal regions, and (3) discusses the scale-related problems7 with the

diversity-stability relationship. The next section introduces the methodology to accomplish

these tasks.

6It should be noted that Mack et al. (2007) first admitted that using counties as analytical units suffers
from the MAUP.

7The UGCoP is not the main focus of this research because it is difficult to include any true contexts of
industrial activities using existing data sets. The UGCoP might be a topic for future research.
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2.3 Methodology

2.3.1 Geographical Units

This analysis uses four geographical units, including counties, states, Economic Areas and

Metropolitan Statistical Areas. To begin with, county-level data are used to explore the

relationship between industrial diversity and economic stability at the most disaggregated

level. There are several technical issues that need to be overcome when using county-level

data. To ensure consistency, for example, it is necessary to combine 50 independent cities

and surrounding counties in Virginia to form 23 county equivalents because of strong eco-

nomic and social connections. Some newly-established counties like Broomfield, Colorado,

were merged with their parent counties. As a result, a total of 3,079 counties or county

equivalents in the lower U.S. were included. Next, these counties or county equivalents were

spatially aggregated into 48 states and the District of Columbia; state is thus utilized as

the second geographical unit.

In addition to counties and states, two functional regions—including EAs and MSAs—

are used. On the one hand, EAs are are defined by the Bureau of Economic Analysis

(BEA) based on county-level population and commuting flows on a regular basis8. However,

because of government funding reasons, the BEA has stopped updating the boundaries of

EAs since 20149. The latest two updates of the Economic Areas were made in 1995 and

2004, and the 1995 version of EAs is used in this analysis. In total, there are 170 EAs

covering the lower U.S. (See Figure 2.1).

On the other hand, the relationship between diversity and economic stability is also

studied among 359 MSAs. As defined by the U.S. Office of Management and Budget (OMB),

the MSAs10 contain at least one core urban area with a population of 50,000 or more and

adjacent counties with at least 25% of the workers living in the county while working in

the core urban area. Based on this definition, the delineation of MSA boundaries updates

regularly, and the latest three updates were made in 2017, 2015, and 2013 respectively.

8For more information about the defining process, see Johnson (1995) and Johnson and Kort (2004).
9See “BEA Economic Areas (EAs),” U.S. Bureau of Economic Analysis, https://www.bea.gov/

regional/docs/econlist.cfm, accessed November 30, 2017.
10Standard Metropolitan Statistical Area and Standard Metropolitan Area were used historically. For

more information about the U.S. metro areas, see Adams et al. (1999).
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Figure 2.1: Economic Areas in the lower U.S.

Figure 2.2: Metropolitan Statistical Areas in the lower U.S.
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For our purpose, the 1999 version of MSAs was used because it was the basis of data

publications in the 2000 Census. As shown in Figure 2.2, MSAs do not cover all the areas

in the contiguous U.S and only include urban regions. In that sense, it is not possible to

observe the diversity-stability relationship in rural areas using MSA data sets.

2.3.2 Measuring Diversity

As reviewed by previous authors (See Siegel et al., 1995; Dissart, 2003; Mack et al., 2007;

Jackson, 2015), there are numerous ways to empirically measure economic diversity like the

entropy index, the Herfindahl-Hirschman Index (HHI), the Ogive and the national average.

In this analysis, economic diversity is measured as regional employment dispersion using

the HHI as follows:

HHIi =
N∑
j=1

(eij/ei)
2 (2.1)

where N is the total number of industries in the ith region; eij is the number of employment

for industry j in the ith region; and ei is the total number of employment in the ith region.

According to Equation 2.1, a higher HHI indicates the regional economic structure is

specialized, while regions with lower HHI values denote that their economies are indus-

trially diversified. HHI ranges from 1/N for a perfectly diversified economy to one if all

employment is concentrated in one industry. Because the regional science literature assumes

that diversified economies are stable in their economic performance, the HHI is expected

to be positively associated with the dependent variable or REI. Although HHI has been

questioned empirically and theoretically in regional science research (Jackson, 1984, 2015;

Wagner and Deller, 1998; Wagner, 2000), this index is still used because it does not require

additional data.

Like previous studies (e.g., Jackson, 1984; Malizia and Ke, 1993; Deller and Watson,

2016a,b), economic diversity is calculated based on employment data obtained from the

County Business Patterns. Compared with other sources of employment data used in eco-

nomic diversity research (Table 2.1), the CBP series are preferred for the following three

reasons. First, the CBP data are measured by place-of-work and thus are better repre-

sentatives of the region’s industrial structure than employment data by place-of-residence.
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Table 2.1: Different data used in U.S.-based economic diversity research

Article
Spatial

unit
Period

Industry data
source

Level of detail in industries

Conroy (1975) MSA 1958-1967 BLS Three-digit SIC manufacturing sectors

Kort (1981) MSA 1967-1976 BLS Two-digit SIC nonagricultural sectors

Jackson (1984)
County
group

1969-1976 CBP 21 nonagricultural sectors

Keinath (1985) EA 1971-1978 BEA 14 sectors

Attaran (1986) State 1972-1981 BLS Eight nonagricultural sectors

Malizia and Ke
(1993)

MSA 1972-1988 CBP Two-digit SIC sectors

Wagner and Deller
(1998)

State 1969-1992
MicroIMPLAN

database
SIC sectors in MicroIMPLAN

Deller and Watson
(2016a,b)

County 2005-2012 CBP Three-digit NAICS sectors

Hong and Xiao
(2016)

MSA 1998-2010 CBP Three-digit NAICS sectors

Watson and Deller
(2017)

County 2007-2014 CBP Three-digit NAICS sectors

Notes: MSA = Metropolitan Statistical Area; EA = Economic Area; BLS = Bureau of Labor Statistics; BEA
= Bureau of Economic Analysis; CBP = County Business Patterns; SIC = Standard Industrial Classification;
NAICS = North American Industry Classification Systems.

Second, the CBP data provide great details on employment for different levels of sectors

and geographical areas. Specifically, these data are published annually by the U.S. Census

Bureau and contain 2-6 digit North American Industry Classification Systems (NAICS)

industrial activities in terms of employment, payroll, and number of establishments at dif-

ferent geographical levels, including the whole country, states, MSAs, counties and zip-code

areas. This analysis uses the 3-digit level non-agricultural industries of NAICS (83 sec-

tors) from the CBP. Third, the CBP data suffer less from missing values and have more

complete records regarding employment than other sources like the BEA estimates of em-

ployment and the BLS data. To protect the confidentiality of its workforce indicators, the

U.S. Census Bureau11 uses a series of suppression flags to represent employment ranges:

Flag A represents 0-19 employees; Flag B, 20 to 99; and Flag C, 100 to 249. In an earlier

study, Deller and Watson (2016a) used data relating to establishments in the CBP where

the disclosure rules do not apply. As the sizes of the establishments are unknown, however,

an establishment with more than 1,000 employees is treated the same as an establishment

with less than ten workers. To circumvent this situation, these employment ranges were

11The BEA and the BLS employment data also have the issue of missing values because of confidential
reasons.
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estimated with the Upjohn Institute’s “WholeData,” a software that uses Isserman and

Westervelt’s (2006) two-stage method to estimate missing values in the CBP. This study

thus makes use of the complete CBP data for the year 2000 for the assessment of regional

industrial diversity.

2.3.3 Empirical Model

The empirical model can be described as:

REIi = f(HHIi, CONTROLi) (2.2)

where REIi stands for regional economic instability (REI) defined by Malizia and Ke (1993);

HHIi is the independent variable of economic diversity; and CONTROLi is a set of control

variables. All the variables on the right hand side of Equation 2.2 reflect the state of the

region’s economy for the base year of 2000, while the dependent variable reveals changes

from 2000 to 2014.

Regional economic instability is measured using county level employment from 2000 to

2014 from the Bureau of Economic Analysis. According to Malizia and Ke (1993), REI is

calculated as the average deviation of total employment from its linear trend (i.e., estimated

employment using linear regression) and divided by the trend and can be expressed as:

REIi = {
N∑
i=1

[(Eit − ETrit )/ETrit ]2/T}1/2 (2.3)

where i denotes the region index; T is the number of time spans; Eit is the actual number

of workers for region i at time t; and ETrit is the predicted number of workers for region i

at time t using a linear trend line. A lower value of REIi indicate a stable economy over

the period of 2000 to 2014.

In addition, based on existing empirical literature (e.g., Malizia and Ke, 1993; Tren-

dle, 2006; Deller and Watson, 2016a; Hong and Xiao, 2016), a set of control variables were

retrieved from the 2000 Census12 and are used to capture the potential demographic, indus-

12Note that most of these data were measured by place of residence.
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trial and economic differences among regions. Overall, Table 2.2 displays the description of

all the variables.

Table 2.2: Description of all the variables
Category Symbol Description Data source

Dependent
variable

REI
Average deviation of total employment from its
trend divided by trend employment, 2000-2014

BEA

Independent
variable

HHI
Indicator of industrial diversity using the
Herfindahl Hirschman Index, 2000

CBP

Control
variables

Popc Absolute value of population change, 2000-2014 Census

Pop Population size, 2000 Census

Edu
Percentage of population 25 years or older with
at least a bachelors degree, 2000

Census

Nonwhite Percentage of non-white population, 2000 Census

NE Dummy variable for Northeast states Census

South Dummy variable for Northeast states Census

MW Dummy variable for Midwest states Census

Notes: BEA = Bureau of Economic Analysis; CBP = County Business Patterns.

2.3.4 Statistical Methods

Exploratory Spatial Data Analysis

Exploratory spatial data analysis (ESDA) offers a set of techniques to describe and visualize

spatial association, identify outliers and clusters (or hot spots) and other forms of spatial

heterogeneity (Anselin, 1999). For this analysis, the methods of ESDA provide global

and local spatial autocorrelation measures that can examine spatial patterns of industrial

diversity and economic instability in the contiguous U.S. at multiple scales13. The global

measure of spatial autocorrelation can be calculated using Morans I index as follows.

I =
n∑

i

∑
j wij

∑
i

∑
j wijzizj∑
i z

2
i

(2.4)

where n is the number of observations; zi and zj are the deviations from the mean; and wij

is the corresponding element (i, j) in a spatial weight matrix. Moran’s I was computed in

GeoDa (Anselin et al., 2006) and ranges from -1 to 1. When it is zero, there is no spatial

13Mack et al. (2007) also examined the spatial patterns of economic diversity among U.S. counties using
global and local spatial autocorrelation measures.
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relationship or a random spatial distribution. When I is greater than zero, there is a positive

spatial autocorrelation and similar values (high or low) tend to cluster. Conversely, when

I is less than zero, there is a negative spatial autocorrelation and dissimilar values have a

tendency to cluster.

Although the global Moran’s I summarizes the overall spatial autocorrelation of vari-

ables or reveals whether values are clustered or not, it fails to tell us where the specific

clusters and outliers are. For this purpose, the local Moran’s I, a Local Indicator of Spatial

Association (LISA; Anselin, 1995), is used to detect localized spatial patterns and can be

written as follows:

Ii = zi
∑
j

wijzj (2.5)

where zi and zj also denote the deviations from the mean and wij stands for the ith row and

jth column in the spatial weight matrix. The local Moran’s I calculated in GeoDa divides

regions into five categories of local spatial association between a region and its neighbors:

1. High-High: a region with a high14 value surrounded by regions with high values;

2. Low-Low: a region with a low value surrounded by regions with low values;

3. Low-High: a region with a low value surrounded by regions with high values;

4. High-Low: a region with a high value surrounded by regions with low values; and

5. Not Significant: a region that is not statistically significant in terms of spatial associ-

ation.

Spatial Regression Analysis

This analysis uses spatial econometric techniques to study the diversity-stability relation-

ship. As from previous literature, this relationship has been studied using various tech-

niques, such as bivariate techniques (Conroy, 1975; Jackson, 1984; Attaran, 1986), ordinary

least squares (OLS) regression (Malizia and Ke, 1993), spatial Durbin model (Deller and

14High and low values are relative to the mean.
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Watson, 2016a), and spatial lag and error models (Trendle, 2006). Because Trendle (2006)

and Deller and Watson (2016a) have confirmed the existence of spatial spillovers in the

diversity-stability relationship, spatial econometric models seem to be preferred. However,

as suggested by previous authors (Anselin, 1988; Duque et al., 2012), the choice of geo-

graphical scales can change the estimates of spatial regression models and even the level of

spatial autocorrelation. In that sense, the standard OLS and three basic spatial regression

models—including the spatial autoregressive model, the spatial error model and the spatial

Durbin model—are used. To avoid ad hoc model specification, Elhorst’s (2014) approach

that includes several Lagrange multiplier (LM) and likelihood ratio (LR) tests is used to

select the most appropriate one among these four models (i.e., OLS, SAR, SEM and SDM).

Traditionally, the standard OLS regression estimates the dependent variable as a linear

combination of industry diversity and a set of controlled variables. To incorporate spatial

dependence effects, the OLS model has been extended into three basic spatial regression

models, namely spatial autoregressive model, spatial error model and spatial Durbin model.

First, the spatial lag model, or spatial autoregressive model, hypothesizes that the depen-

dent variable at a particular location can be explained not only by the independent variables

but also by the dependent variable values of neighbors. Second, the spatial error model as-

sumes that the dependent variable is determined by a set of explanatory variables and that

the error terms are spatially correlated. Finally, the spatial Durbin model posits that the de-

pendent variable can be explained by independent variables, spatially lagged independent,

and dependent variables. The model extends the SAR model by incorporating spatially

lagged independent variables. Overall, Equations 2.6-2.8 present these spatial models and

can be estimated through maximum likelihood (ML) procedures.

y = ρWy +Xβ + ε (2.6)

y = Xβ + ε, ε = ρWε+ µ (2.7)

y = ρWy +Xβ +WXθ + ε (2.8)
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Sensitivity Analysis

A spatial weight matrix is required to model the spatial relationship between regions in

both ESDA and spatial econometric analysis. According to Anselin (1988) and LeSage

and Pace (2009), there are various methods to specify the spatial relationship, including

distance-based (k-nearest neighbors or KNN and threshold distance) and contiguity-based

(queen and rook contiguity). Among these methods, the most commonly used criterion

is queen contiguity, where two regions, i and j, are neighbors if they share at least one

point on their boundaries (e.g., the Four Corners Region between Arizona, Colorado, New

Mexico and Utah). However, for our purpose, a spatial weight matrix based on six nearest

neighbors (k=6) is used because it (1) solves the problem of discontinuity of MSAs in the

contiguous U.S. and (2) allows each region to have the same number of neighbors (Le Gallo

and Ertur, 2003). Although LeSage and Pace (2014) indicated that the choice of spatial

weight matrix is of secondary concern compared to model specification, a sensitive analysis

of the results is still conducted for spatial weight matrices based on queen contiguity, four,

eight and ten nearest neighbors.

2.4 Empirical Results

Basic Statistics

Table 2.3 examines the basic statisticsincluding means, ranges, standard deviations and

correlation coefficientsacross different scales. Particularly, when counties are aggregated

into states and EAs, the corresponding range and standard deviation decrease significantly.

This can be explained by the scale or aggregation effect in the MAUP. Then, as reflected by

the correlation coefficients, diversity and stability are not highly correlated. However, the

diversity index is positive no matter what spatial units are used. This suggests that higher

levels of diversity indicate greater stability in economic performance and is also consistent

with conventional wisdom. Comparatively speaking, the correlation coefficient seems to be

higher in the EA- and state-level analyses than the county-level study, meaning that the

diversity-stability relationship is stronger among these aggregated regions.
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Table 2.3: Basic statistics of the HHI and REI variables

Geographical
scale

County State
Economic

Area

Metropolitan
Statistical

Area

Sample size 3079 49 170 359

HHI mean 0.070 0.035 0.034 0.040

HHI range 0.914 0.057 0.060 0.151

HHI std. dev. 0.061 0.010 0.007 0.016

REI mean 0.035 0.019 0.022 0.024

REI range 0.684 0.053 0.135 0.066

REI std. dev. 0.028 0.009 0.014 0.012

Correlation 0.233 0.357 0.423 0.188

Notes: HHI = Herfindahl Hirschman Index; REI = Regional Economic Instability; Cor-
relation coefficients are significant at 1% level.

ESDA

Table 2.4 shows the global Moran’s I computed based on six nearest neighbors. The geo-

graphical scale can greatly change the extent of spatial autocorrelation in both variables.

For example, the Moran’s I of the state-level HHI is 0.025, while that number for Eco-

nomic Areas is almost ten times (0.222) more. Moreover, given that a value of one indicates

perfect spatial autocorrelation and a value of zero indicates random distribution, these two

variables are not highly clustered. Comparatively, the overall Moran’s I for the REI is more

or less greater than that for the HHI at all geographical scales, indicating that economic

stability appears to be more clustered than industrial diversity.

Table 2.4: Global Moran’s I results (six nearest neighbors)

Geographical
scale

County State
Economic

Area

Metropolitan
Statistical

Area

HHI 0.097 0.025 0.222 0.011

REI 0.299 0.444 0.232 0.433

Notes: HHI = Herfindahl Hirschman Index; REI = Regional Economic Instability; All
statistics are significant at 1% level.

Figures 2.3 and 2.4 display the LISA cluster maps of the two variables15. Two findings

15The projections in these LISA maps are different from the projections in other maps like Figures 2.1
and 2.2 because GeoDa does not contain any tools to set or change projections. Maps in GeoDa also do not
have some cartographic features like direction arrows and scale bars. For more information, see “Answers
to Technical GeoDa Questions,” GeoDa Center for Geospatial Analysis, https://geodacenter.github.io/
questions.html, accessed June 15, 2018
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Figure 2.3: LISA maps of HHI in the contiguous U.S. (six nearest neighbors)
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Figure 2.4: LISA maps of REI in the contiguous U.S. (six nearest neighbors)
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are most evident from these two maps. First, the spatial distributions of economic stability

and industrial diversity vary greatly with the choice of geographical scale. For example,

as shown in Figure 2.4, some regions in Florida are significant local clusters of high values

(i.e., High-High regions) in terms of the REI variable at the county-, EA- and MSA-level

analyses, suggesting that these regions have high levels of economic instability. However,

Florida is not a High-High region at the state level. Second, Low-Low regions in terms

of both diversity and stability tend to be located in the northeast and central parts of

the country at all spatial scales, although the boundaries of these regions differ. The

interpretation here is that these industrially diversified regions or clusters experience stable

economic performance through the 2000-2014 period.

Spatial Regression Analysis

Table 2.5: OLS regression results

Explanatory variables County State
Economic

Area

Metropolitan
Statistical

Area

Diversity
0.194***
(0.000)

0.315
(0.253)

0.673***
(0.000)

0.284***
(0.000)

Popc
0.091***
(0.000)

0.089
(0.189)

0.015***
(0.000)

0.135***
(0.000)

Pop
-0.052***
(0.000)

0.117*
(0.063)

0.063
(0.065)

0.024***
(0.279)

Edu
-0.1518***

(0.000)
-0.576***
(0.065)

-0.155
(0.359)

-0.039***
(0.000)

Nonwhite
-0.001
(0.839)

-0.073
(0.510)

-0.072
(0.190)

-0.008
(0.801)

NE
-0.254***
(0.000)

-0.425**
(0.046)

-0.513***
(0.000)

-0.387***
(0.000)

South
-0.011
(0.632)

-0.519***
(0.000)

-0.206**
(0.004)

-0.214***
(0.000)

MW
-0.190***
(0.000)

-0.545***
(0.003)

-0.370***
(0.000)

-0.314***
(0.000)

Constant
-2.390***
(0.000)

-5.076***
(0.000)

-2.354***
(0.003)

-3.256***
(0.000)

Adjusted R-squared 0.239 0.408 0.412 0.324

Notes: With the exception of the dummy variables, all variables are measured as natu-
ral logs; Numbers in the parentheses represent p-values; Significance levels: * for 10%,
** for 5%; *** for 1%.

To provide an initial baseline of the relationship between industrial diversity and eco-

nomic stability, a normal linear model was estimated using the OLS technique for the four
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geographical scales (See Table 2.5). With the exception of state-level analysis, the co-

efficient of diversity is statistically significant. That is to say, the hypothesized positive

relationship between industrial diversity and economic stability cannot be rejected when

counties, EAs and MSAs are used as the basic units. Moreover, like existing studies on the

diversity-stability relationship, the control variables included in this analysis also play a role

in impacting economic stability. Nevertheless, the choice of scale also alters the coefficient

and significance of these variables. Finally, as reflected by the adjusted R-squared values,

the explanatory power of the model seems to increase when more aggregated units (states

and EAs) are used. More specifically, at the county level, the adjusted R-squared term is

0.239, whereas that number is 0.408 at the state level and 0.412 at the EA level.

Table 2.6: Lagrange multiplier and likelihood ratio tests (six nearest neighbors)

Geographical scale County State
Economic

Area

Metropolitan
Statistical

Area

LM lag
772.805***

(0.000)
13.666***

(0.000)
11.027***

(0.000)
114.813***

(0.000)

Robust LM lag
74.959***

(0.000)
13.450***

(0.000)
6.985***
(0.008)

48.732***
(0.000)

LM error
799.94***

(0.000)
2.263

(0.132)
4.471**
(0.034)

66.455***
(0.000)

Robust LM error
102.102***

(0.000)
2.047

(0.152)
0.429

(0.512)
0.374

(0.540)

LR lag
250.800***

(0.000)
10.798
(0.213)

10.602
(0.225)

35.518***
(0.000)

LR error
254.644***

(0.000)
16.449**
(0.036)

16.469**
(0.036)

94.756***
(0.000)

Notes: Significance levels: * for 10%, ** for 5%; *** for 1%; Numbers in the paren-
theses represent p-values.

Because the OLS estimation can ignore the potential spatial dependence and the choice

of geographical scale can alter the level of spatial dependence, analyzing the diagnostics

for spatial dependence becomes essential. Table 2.6 shows the results of (robust) LM and

LR tests. Following Florax et al. (2003), LeSage and Pace (2009) and Elhorst (2014), the

best model is chosen among OLS, SAR, SDM and SEM. The LM test results suggest that

the non-spatial models are less appropriate than the spatial ones at all geographical scales.

Specifically, when counties are used, the LM tests suggest that the SEM is preferred. To

further investigate which spatial model offers the best fit or whether the SDM model could
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be simplified into the SAR or SEM model, one may perform the likelihood ratio (LR) tests.

The LR tests inform us that the SDM best describes the county-level data. Indeed, Deller

and Watson (2016a,b) and Watson and Deller (2017) used the SDM in their county-level

analysis. By comparison, when states and EAs are used, the LM tests indicate that the

SAR better explains the data than does the SEM model, while the LR tests imply that the

SDM can be simplified into the SAR. Finally, although the LM tests indicate that the SAR

better explains the MSA level data than does the SEM model, the LR tests reject the SAR

model in favor of the SDM one.

Table 2.7: Estimation of direct, indirect and total effects (six nearest neighbors)

Geographical scale County State
Economic

Area

Metropolitan
Statistical

Area

Model type SDM SAR SAR SDM

Direct effect
0.182***
(0.000)

0.533*
(0.056)

0.730***
(0.000)

0.309***
(0.000)

Indirect effect
0.246*
(0.205)

0.824
(0.224)

0.300**
(0.012)

0.818***
(0.003)

Total effect
0.428**
(0.034)

1.357
(0.121)

1.031***
(0.000)

1.127***
(0.000)

Notes: Numbers in the parentheses represent p-values; Significance levels: * for 10%, **
for 5%; *** for 1%.

LeSage and Pace (2009) suggested that the coefficients of spatial models cannot be inter-

preted directly as marginal effects. Following their suggestion, the direct and indirect effects

of industrial diversity on economic instability are estimated (See Table 2.7). The results

show that the estimated direct effect in each model is positive, suggesting that industrial

diversity contributes to economic stability and is consistent with the theoretical assump-

tion. However, the indirect effect of diversity on instability are different across different

geographical scales. To be more specific, for the county-level data, industrial diversity in

general has both a positive local effect and a positive total effect. By comparison, when

it comes to the state-level analysis, only direct effect is significant. This result is contrary

to previous studies on the existence of spatial spillovers in this relationship (Trendle, 2006;

Deller and Watson, 2016a,b). Finally, for the functional regions, both direct, indirect and

total effects are significant. Particularly, when EAs are used as the analytical units, most

of the economic contribution is achieved through local rather than spatial spillovers.
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Sensitivity Analysis

Table 2.8: Global Moran’s I results across different spatial weight matrices

Geographical
scale

Spatial weight
matrix

County State
Economic

Area

Metropolitan
Statistical

Area

HHI KNN4 0.103 0.032 0.265 -0.015

KNN8 0.094 0.015 0.198 0.001

KNN10 0.087 0.011 0.159 -0.003

Queen contiguity 0.089 0.080 0.266 0.005

REI KNN4 0.299 0.496 0.279 0.443

KNN8 0.278 0.402 0.187 0.416

KNN10 0.253 0.372 0.177 0.422

Queen contiguity 0.282 0.483 0.252 0.530

Notes: HHI = Herfindahl Hirschman Index; REI = Regional Economic Instability; All statistics are significant
at 1% level; When the queen contiguity spatial weight matrix is used, isolates in weights are removed.

Sensitivity analysis of the results were conducted using queen contiguity and four, eight

and ten nearest neighbor (k = 4, 8, 10) spatial weight matrices. For brevity, the global

Moran’s I and effect estimation results across different spatial weight matrices are shown

in Tables 2.8 and 2.9. No matter what method is used to specify the spatial relationship,

similar results to those discussed above are arrived at in the analyses of counties, EAs and

states—this is in line with LeSage and Pace’s (2014) finding that the choice of a spatial

weight matrix is of secondary concern.

Conversely, the MSA-level analysis tells a much different story. Covering only urbanized

areas, MSAs in the contiguous U.S. are not always contiguous. As such, some regions have

zero neighbors in the queen spatial weight matrix. To illustrate this, Figure 2.5 demonstrates

the connectivity map16 based on the queen contiguity spatial weight matrix for MSAs, where

edges between nodes (i.e., MSAs) indicate nodes are neighbors. A total of 51 MSAs have

no neighbors and become isolated in this map. Particularly, these MSAs are excluded when

calculating the global Moran’s I in GeoDa but are included in spatial regression analysis.

By comparison, k-nearest neighbor spatial weight matrices enable each MSA to have the

same number of neighbors (See Figure 2.6). To this end, the issue of discontinuity in

MSAs results in the difference in model estimation between k nearest neighbor and queen

contiguity spatial weight matrices in Tables 2.7 and 2.9. However, other functional regions,

16Figures 2.5 and 2.6 were made in GeoDa.
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Figure 2.5: Connectivity map of MSAs (queen contiguity)

Figure 2.6: Connectivity map of MSAs (six nearest neighbors)
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Table 2.9: Estimation of effects across different spatial weight matrices

Spatial Weight
Matrix

Estimation County State
Economic

Area

Metropolitan
Statistical

Area

KNN4 Model type SDM SAR SAR SDM

Direct effect
0.188***
(0.000)

0.584**
(0.029)

0.741***
(0.000)

0.317***
(0.000)

Indirect effect
0.183

(0.217)
0.723

(0.369)
0.265***
(0.008)

0.630***
(0.001)

Total effect
0.371**
(0.017)

1.307
(0.172)

1.007***
(0.000)

0.947***
(0.000)

KNN8 Model type SDM SDM SAR SDM

Direct effect
0.182***
(0.000)

0.538**
(0.039)

0.715***
(0.000)

0.283***
(0.000)

Indirect effect
0.340**
(0.020)

2.555
(0.172)

0.358**
(0.015)

1.228***
(0.000)

Total effect
0.522***
(0.001)

3.094
(0.118)

1.074***
(0.000)

1.511***
(0.000)

KNN10 Model type SDM SDM SAR SDM

Direct effect
0.176***
(0.000)

0.579**
(0.042)

0.738***
(0.000)

0.265***
(0.000)

Indirect effect
0.406***
(0.001)

4.481
(0.544)

0.377**
(0.029)

1.128***
(0.000)

Total effect
0.582***
(0.000)

5.061
(0.502)

1.115***
(0.000)

1.394***
(0.000)

Queen
contiguity

Model type SDM SAR SAR SDM

Direct effect
0.185***
(0.000)

0.538**
(0.049)

0.719***
(0.000)

0.514***
(0.000)

Indirect effect
0.276*
(0.076)

0.660
(0.145)

0.331***
(0.004)

0.354**
(0.012)

Total effect
0.462***
(0.007)

1.198*
(0.076)

1.051***
(0.000)

0.869***
(0.000)

Notes: Significance levels: * for 10%, ** for 5%; *** for 1%; Numbers in the parentheses represent p-
values.

such as EAs in the U.S., metro areas in Japan (Mizuno et al., 2006) and Local Government

Areas in Australia (Trendle, 2006), do cover the whole country, and these regions do not

suffer from the discontinuity issue. In that sense, the coverage problem can be different

across different studies.

2.5 Discussion

The results of this analysis generally confirm not only that economic diversity is positively

associated with employment stability in the U.S. context during the period of 2000-2014 but

also that spatial dependence exists in the diversity-stability relationship, no matter what
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geographical unit is used. However, the magnitude and significance of the effect of diversity

on economic stability vary when different geographical units are used. This variation can

possibly impact our understanding of economic structures as well as development policies. In

the remainder of this section, some concerns about the choice of spatial units are discussed.

First, to effectively measure regional industry structure, highly disaggregated geograph-

ical units are not recommended. Because of the small population problem (Wang and

O’Brien, 2005), the data issue of measurement by place-of-residence and place-of-job (Dapena

et al., 2018), and the UGCoP (Kwan, 2012), it sometimes can be meaningless to study the

economic diversity of a region with a small population and low employment. As illustrated

by the ranges and standard deviations in Table 2.3, when county-level data are aggregated,

the impact of some extreme values or outliers are excluded. This is known as the scale prob-

lem in the MAUP, where aggregated data normally hide much intra-regional heterogeneity.

However, in modeling the diversity-stability relationship (See Tables 2.3, 2.5 and 2.7), the

county-level model seems not to be better than others. By comparison, aggregated units

like EAs and states seem to suffer less from scale-related problems. This result is similar

to Resende’s (2011) observation that the explanatory power of a municipal model may not

be as good as a model that uses states as analytical units when studying economic growth

in Brazil. Altogether, data based on highly disaggregated units may not yield intuitive

inferences on the effect of economic diversity.

Second, functional regions rather than formal regions are suggested as the analytical

units. Although this suggestion has already been advocated by Jackson (1984), Malizia

and Ke (1993) and Trendle (2006), several recent studies like Deller and Watson (2016a,b)

and Watson and Deller (2017) used formal regions as the analytical units and then spatial

econometric techniques to account for spatial spillovers. By comparison, this study uses both

formal and functional regions as the basic units and also spatial regression models. As shown

in Tables 2.7 and and 2.9, the proportion of direct diversity effect is higher for functional

regions (EAs) than for formal regions (states), and the diversity-stability relationship in

the state-level analysis is not as significant as it is among EAs. In that sense, when formal

regions are used as the analytical unit, the diversity-stability relationship might not be fully

revealed. From a broader perspective, both EA and state data are spatially aggregated
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based on county-level data but with different aggregation schemes. These schemes relate

to the zoning problem in the MAUP, and regions aggregated based on functional schemes

seems to be preferred to formal schemes.

Third, when functional regions (e.g., MSAs and EAs) are used, potential temporal

variations17 in the boundaries of these regions should also be considered. Due to possible

changes in population and commuting flows, the boundaries of MSAs may vary from year

to year, and the U.S. Office of Management and Budget regularly updates the boundaries

of MSAs. Likewise, the BEA redefined the boundaries of Economic Areas on a regular basis

until 2014 when the process was no longer supported because of reductions in government

funding. Hence, these outdated EA boundaries might not be used to delimit regional

economic systems for recent years. Moreover, Mack et al. (2007) suggested that functional

regions are suffered from definitional changes and thus are not suitable for panel and time-

series analysis. Attention should be paid to this for future economic diversity research.

Finally, based on all the discussions above, is it possible to choose an appropriate spatial

unit for quantifying regional economic structure? It seems that there is not a clear-cut

answer to this question, and the spatial scale problem can be study dependent. Particularly,

this analysis examines the relationship between industrial diversity and economic stability

for the period of 2000-2014 in the contiguous U.S. across different geographical scales. Based

on what has been discussed, EAs appear to be good candidates. However, when studying the

economic diversity of U.S. urban areas, EAs are no longer the preferred units because they

include rural areas. Instead, MSAs are good representatives of the U.S. urban economies.

More generally, the choice of spatial scales in delineating regional economic structure varies

greatly by study region and period, data availability, and policy relevance among others. In

this regard, understanding these scale-related problems and all the potential spatial units

of a specific study is an important step in determining the spatial scale(s).

17These variations also relate to the temporal uncertainty in the UGCoP.
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2.6 Chapter Summary

In this chapter, the empirical relationship between industrial diversity and regional economic

stability is analyzed at multiple geographical scales in the contiguous U.S. from 2000 to 2014.

These scales have been demonstrated here to greatly alter the diversity-stability relationship.

Importantly, this analysis confirms the advantages of functional regions over formal regions

in modeling economic systems as suggested by Jackson (1984), Malizia and Ke (1993),

Trendle (2006) and others. It further stresses the possible changes in the boundaries of

functional regions, such as Economic Areas and MSAs (Mack et al., 2007). In addition to

these existing understandings, it also suggests not using highly disaggregated geographical

units to measure regional economic structure.

Broadly speaking, this analysis introduces several scale-related problems in spatial anal-

ysis to the literature of economic diversity, although these problems have not been fully ad-

dressed. Other scale-related problems that have not been mentioned here may also impact

the empirical understanding of industrial diversity and economic stability. Scale-related

problems thus can be study dependent, and the choice of an appropriate geographical unit

varies significantly in different research contexts. When quantifying regional economic struc-

tures, future researchers and practitioners should have a deep knowledge about all the pos-

sible spatial units in the study region and should pay explicit attention to the scale-related

problems that are not limited to those mentioned in this analysis.

There are a few potential research directions. While this analysis is based on U.S.

regional economies because of data availability, its focus on geographical scale can be applied

to other countries as well. For example, extending the study region into developing countries

like China might provide additional insights into the role of geographical scale issues both

in the analytical and the policy aspects of regional economic development. Moreover, as

the disaggregated geographical units or lower level units (counties) are often nested within

the upper level units (states and EAs), future research should also consider using spatial

hierarchical models, such as Dong et al. (2015) and Lacombe and McIntyre (2017), to study

the scale and scope issues in the diversity-stability relationship.
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Chapter 3

A Structural Measurement

Motivation

3.1 Introduction

Economic structure is often understood through economic specialization and diversity con-

structs where economic diversity is defined as, “the variety of economic activity which

reflects differences in economic structure at a specific time” Malizia and Ke (1993, p. 222).

Most regional economies—such as Detroit and New York—lie on a continuum between

pure specialization and complete diversity. In contrast, economic clustering and diversity

are assumed to be mutually exclusive (Wagner and Deller, 1998; Wagner, 2000; Deller and

Watson, 2016a). This assumption of mutual exclusivity becomes more apparent in the ex-

amination of economic diversity measures, such as the Herfindahl Hirschman Index (HHI),

where economic diversity is measured as the sum of the squared regional shares of em-

ployment for each industry (Wagner, 2000; Trendle, 2006; Chiang, 2009; Hong and Xiao,

2016). In this commonly used metric, higher values for the HHI indicate greater economic

specialization or conversely, lower diversity.

However, the dichotomy of economic specialization and diversity has been challenged

as regional scientists have reconsidered the definition of economic diversity as the presence

of—rather than the absence of—specialization to stress that regional economic systems
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can be specialized and diversified simultaneously (See Malizia and Ke, 1993; Wagner and

Deller, 1998; Dissart, 2003; Desrochers and Sautet, 2008; Jackson, 2015; Hong and Xiao,

2016). Nevertheless, with the exception of Hong and Xiao (2016), these authors have only

established the basic conceptual framework of diversified specializations but have not applied

this framework to empirical studies. Specifically, Hong and Xiao (2016) proposed a Multiple

Specialization Index (MSI) that allows for the measurement of multiple specializations in

economic activities. In Hong and Xiao’s study, the MSI is calculated as the ratio of the

number of specialized industries to the number of non-zero employment industries in the

region. In addition to those, specialized industries have a location quotient (LQ) value

greater than a specified cut-off value. However, as suggested by Porter (2003), Spencer

et al. (2010) and Delgado et al. (2016), not all industries are specialized. For example, drug

stores and elementary schools only serve a local market and should not be considered as

candidates for economic specializations.

To address this issue, this chapter develops an alternative measure of economic struc-

ture that enables the interpretation of diversified specializations for empirical analysis. As

economic specialization can contribute to regional economic growth, and a diverse regional

economy is theoretically associated with stable regional economic growth, this measure can

leverage the benefits of specialization and diversity concurrently. This chapter also provides

an overview of the relationship between economic specialization and diversity within cur-

rent economic structure measures, including the HHI and Hong and Xiao’s (2016) MSI. In

addition, policy implications are offered when economic development strategies shift from

pure specialization and complete diversification to developing diversified specializations.

Accordingly, Section 3.2 provides a theoretical background on economic specialization

and diversity. Methodology is described in Section 3.3, followed by the results and discus-

sion. The final section concludes with the findings of this chapter.
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3.2 Background

3.2.1 Specialization and Diversity: Two Sides of the Same Coin?

When it comes to the relationship between specialization and diversity, the traditional view

holds that diversity can be interpreted as the absence of specialization; in other words,

specialization and diversity are two sides of the same coin. In relation to regional eco-

nomic performance, regions have to choose between a stable yet slow growth and a high

yet risky growth. The traditional view, however, has been challenged by Malizia and Ke

(1993), Wagner and Deller (1998), and others. Malizia and Ke (1993) were among the first

researchers to consider their coexistence. In their words, “specializations can be the source

of competitiveness as well as compensate for one another when business cycles or external

shocks occur” (Malizia and Ke, 1993, p. 223). Despite their conceptual advances, Malizia

and Ke (1993) still acknowledged that a trade-off exists between growth and instability.

In contrast, Wagner and Deller (1998) suggested that short-term economic development

strategies can focus on specialization to promote growth, while long-term policy can aim at

stability through diversification, indicating that the trade-off no longer exists.

However, the concept of diversified specializations has not been widely applied to mea-

sures of economic structure—such as the national average, the ogive, the entropy and the

Herfindahl-Hirschman Index (HHI)—for empirical analysis1. Among these measures, the

HHI and the entropy measures have been used more extensively than others in empirical

studies. This preference is not only because of computational ease and limited data re-

quirements, as suggested by Wagner (2000), Trendle (2006) and Jackson (2015), but also

because the traditional view of the specialization-diversity dichotomy is embedded in these

two measures. Specifically, the HHI ranges from 1/N for a perfectly diversied economy to 1

if all employment is concentrated in one industry. Similarly, the entropy index reaches its

maximum for a one-industry economy, whereas for its minimum, all employment is evenly

distributed across sectors. By comparison, other structure measures, such as durable goods

percentage and location quotient, decouple economic specialization and diversity; that is to

1For comparative reviews of these structure measures, see Jackson (1984, 2015), Wagner (2000), and
Dissart (2003).
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say, unlike the entropy and HHI measures, one cannot simultaneously determine the levels

of economic specialization and diversity.

As noted earlier, the only metric that addresses the coexistence of specialization and

diversity is Hong and Xiao’s (2016) Multiple Specialization Index, which is calculated as:

MSIi =

∑N
n=1 SPn
N

(3.1)

where N is the number of sectors in region i; n is the sector index; and SPn equals 1 if the

location quotient of sector n is greater than the cut-off value; otherwise, it equals 0. The

cut-off value was set as the 80th percentile LQ values for each three-digit NAICS (North

American Industry Classification Systems) sector, and sectors with large LQs were identified

as specializations. The MSI approaches a value of 1 for highly specialized economies and 0 if

no sector is specialized. In essence, this index measures the number of specialized industries

in a regional economy but is divorced conceptually from any notions of competitiveness,

co-location, or interindustry linkages as suggested by Porter (1990, 1998). As such, the

remainder of this section visits criteria to identify economic clusters for empirical analysis.

3.2.2 Identifying Economic Clusters

In Hong and Xiao’s (2016) study, the MSI considers industries with non-zero employment as

potential economic specializations, whereas, in reality, it is not meaningful to treat sectors

that only serve local demand as candidates for economic clusters. As such, the definition of

economic clusters is open to discussion. Originally, Porter (1998, p. 226) defined economic

clusters as, “a form of network that occurs within a geographical location, in which the

proximity of firms and institutions ensures certain forms of commonality and increases the

frequency and impact of interactions.” This definition might be useful for case studies of

economic clusters like Silicon Valley and Route 126 outside of Boston, but it appears to

provide little operational guidance on measuring regional economic clusters for empirical

analysis because of its ambiguity (Martin and Sunley, 2003; Yu and Jackson, 2011). As

such, a more formal and operational definition of economic clusters is required.

Developing such a definition, of course, is a common step in quantitative analysis on
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economic clusters. For example, Porter (2003) classified all industries into three categories:

• traded industries that sell goods and services across regions and to other countries;

• resource-based industries that are located where the needed resources are found; and

• local industries that are industries present in most areas and sell locally.

In this classification, Porter (2003) argued that only traded industries can be economic

clusters, although Spencer et al. (2010) suggested that resource-based industries can also be

economically specialized. Methodologically, Porter (2003) identified economic clusters based

on the geographical correlation of employment between traded industries. In Porter’s (2003,

p. 562) words, “if computer hardware employment is nearly always associated geographically

with software employment, this provides a strong indication of locational linkages.” The

result of Porter’s (2003) method is 29 traded clusters identified in the U.S. More recently,

Delgado et al. (2016) extended Porter’s (2003) method by considering co-location patterns of

employment and establishments, input-output linkages, and similarity in labor occupation.

As a result, they identified 51 traded clusters in the U.S. context, and each cluster is

composed of several six-digit NAICS sectors. Additionally, based on Spencer et al. (2010),

resource-based industries like coal mining can also be economic clusters in Delgado et al.’s

(2016) result.

3.3 Methodology

3.3.1 Empirical Frameworks

To study the effects of economic structure on short-term employment growth and long-term

stability in the contiguous U.S., MSAs are used as the basic analytical units because they

meaningfully constitute functional economic systems (Jackson, 1984; Malizia and Ke, 1993;

Trendle, 2006). The following empirical models are used:

REIi = f(DIVi, CONTROLi) (3.2)

GROWTHi = g(DIVi, CONTROLi) (3.3)
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where the dependent variables are economic performance indicators, including regional eco-

nomic instability index (REI) and employment growth rate; and the independent variables

are diversity measures and a set of control variables. In both Equations 3.2 and 3.3, the

independent variables reveal the state of the regional economy in 2000, while the depen-

dent variables capture short- (2000-2002) and long-term (2000-2014) changes in regional

economic performance. All the variables used in this analysis are summarized in Table 3.1.

Table 3.1: Description of all the variables
Category Symbol Description Data source

Dependent
variable

REI Economic instability, 2000-2014 BEA

GROWTH Employment growth rate, 2000-2002 BEA

Independent
variable

HHIS HHI of 3-digit NAICS sectors, 2000 CBP

HHIC HHI of specialized clusters, 2000 CBP

MHHI MHHI=(1+HHIS)×(1+HHIC) CBP

Control
variables

POP Logged population size, 2000 Census

EDU Percentage of the population over 25 with at least
a bachelor degree, 2000

Census

NONWHITE Percentage of the population non-white, 2000 Census

INCOME Per capita income relative to U.S. average, 2000 BEA

GOODS Percentage of employment in goods production
industries (minus agriculture), 2000

BLS, CEW

Notes: CBP = County Business Patterns; BEA = Bureau of Economic Analysis; BLS = Bureau of Labor
Statistics; NAICS = North American Industry Classification Systems; CEW = Census of Employment and
Wages; HHI = Herfindahl Hirschman Index

3.3.2 Economic Performance Indicators

Previous research assesses economic performance through many measures like growth rates

of per capita income (Wagner and Deller, 1998; Izraeli and Murphy, 2003), unemployment

rate (Mizuno et al., 2006; Chiang, 2009), and employment instability index (Conroy, 1975;

Kort, 1981; Jackson, 1984). Rather than adopt these measures, however, this analysis uses

short-term employment growth and long-term regional economic instability as indicators of

economic performance. This is not only because of their popularity in previous literature

(Kort, 1981; Malizia and Ke, 1993; Trendle, 2006) and economic development policy discus-

sion (Wagner and Deller, 1998; Deller and Watson, 2016a), but also because they leverage

the benefits of economic specialization and diversity at the same time.
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Based on Malizia and Ke (1993), regional economic instability (REI) is calculated as:

REIi = {
N∑
i=1

[(Eit − ETrit )× 100/ETrit ]2/T}1/2 (3.4)

where i denotes the region index; Eit is the actual number of workers for region i at time

t; T is the number of observed time spans; and ETrit is the predicted number of workers for

region i at time t using a linear trend line. REI is measured using employment data from

the Bureau of Economic Analysis (BEA) during the long-run study period from 2000 to

2014.

Employment growth for region i at time t is calculated as the percent rate of increase

in total employment from t− 1 to t.

GROWTHi =
(Eit − Eit−1)× 100

Eit−1
(3.5)

where Eit is the actual number of workers for region i at time t and Eit−1 is the number of

workers at time t − 1. Like REI, the growth variable is also calculated based on the BEA

data sets but for the short term studying period from 2000 to 2002.

3.3.3 Measuring Economic Diversity

Similar to Jackson (1984), Malizia and Ke (1993) and Hong and Xiao (2016), the diversity

variable is measured based on data from County Business Patterns (CBP). CBP is published

annually by the U.S. Census Bureau and contains employment by the two to six-digit NAICS

sectors for different levels of geographical regions like states, counties and zip-code areas.

For confidentiality reasons, the U.S. Census Bureau uses data ranges for the number of

employment for some sectors. Values to replace these ranges, however, were estimated in the

Upjohn Institute’s “WholeData” version of CBP, derived using Isserman and Westervelt’s

(2006) method. The complete data of 2000 were accessed and used to assess regional

economic diversity.

In this analysis, three HHI-based diversity measures of economic activities are used. The

first measure quantifies the level of employment dispersion between 87 three-digit NAICS

44



sectors, and this is the traditional measure of economic diversity used in Chiang (2009),

Mizuno et al. (2006) and others. The HHI of sectors (HHIS) are defined as:

HHISi =
N∑
j=1

(eij/ei)
2 (3.6)

where eij is the employment of industry j in region i; Ei is the total number of people

employed in the ith region; and N stands for the number of industries. In Equation 3.6, the

value of HHIS is between 1/N and 1. Smaller values of the index suggest greater dispersion

or diversity in economic activities (i.e., employment).

To interpret economic diversity as the presence of multiple specializations, the second

measure of economic diversity, based on Delgado et al.’s (2016) cluster template2, revises

the commonly used HHI in Equation 3.6 as follows3:

HHICi =
M∑
j=1

(eij/ei)
2 (3.7)

where eij denotes the employment of cluster j in MSA i; Ei is the total employment of

traded industries; and M is the number of clusters in the same region. Similarly, the HHI

of clusters (HHIC) ranges from 1/M to 1, and smaller values of HHIC suggest a greater

level of diversity within clusters. Unlike the first diversity measure (i.e., HHIS), and Hong

and Xiao’s (2016) MSI, this measure of economic diversity is calculated using the cluster

definition of Delgado et al. (2016) and also excludes the impact of local industries. In

addition, these clusters also should be concentrated relative to the nation; namely, the LQ

of these clusters are greater than 14. The LQ for cluster j in region i is defined as:

LQij =
eij/Ei
eNj/EN

(3.8)

where eij stands for employment for cluster j in region i; Ei is the total employment of

2Purdue Center for Regional Development (2007) also developed a cluster template for regional analysis,
but the emphasis of this template is mainly rural regions; for example, compared to Porter (2003) and
Delgado et al. (2016), jewelry clusters were excluded.

3Slaper et al. (2018) also developed an empirical measure of cluster diversity but did not emphasize the
coexistence of specialization and diversity.

4The cut-off value of 1 has been criticized by numerous scholars (e.g., Ellison and Glaeser, 1997; Carroll
et al., 2008; Tian, 2013). Future research might consider other cut-off values or the revised versions of LQ.
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traded industries in region i; eNj represents the national total employment of cluster j; and

EN is the total employment of traded industries for the whole study region. For a given

cluster, an LQ greater than 1 indicates that the region has a higher concentration than the

nation.

The mean of HHIS for U.S. MSAs is 0.049 (range, 0.030 to 0.179), while the mean

of HHIC is 0.140 (range, 0.043 to 0.680). Figures 3.1 and 3.2 present the geographical

distributions of industry and cluster diversity, where MSAs with greater than the average

diversity values are differentiated from those with less than average diversity values. Com-

paring these two figures, 182 of the 359 MSAs have high levels of both industry and cluster

diversity, while 92 MSAs have low levels of industry and cluster diversity. In contrast,

49 MSAs are industrially diversified with limited cluster diversity, whereas 36 MSAs have

strong cluster diversity but with low levels of industrial diversity. To further assess the

relationship between industry and cluster diversity, Figure 3.3 displays the scatterplot of

the HHIC and the HHIS with the fitted linear trend line. As reflected by the R2 value,

the industry diversity measure only explains 36.7% of variation in the diversity index of

clusters. This weak correlation is understandable, as a higher degree of industry diversity

might not necessarily display greater diversity within clusters.

Third, to consider the joint effect of both HHIC and HHIS, a multiplicative HHI (MHHI)

is defined as:

MHHIi = (1 +HHICi)× (1 +HHISi) (3.9)

where HHIS measures the economic diversity of sectors; and HHIC quantifies the diversity

of economic clusters for a given region. Ideally, if the base economy is most diversified at

both sector and cluster levels, then MHHI reaches its minimum; conversely, if the economy

has a single industry that forms only one cluster, the value of MHHI is 4.

3.3.4 Modeling Methods

As suggested and confirmed by Trendle (2006), Deller and Watson (2016a), and others,

spatial dependence does exist in the way in which economic structure itself impacts regional

economic performance, whereas the ordinary least squares (OLS) model would ignore this
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Figure 3.1: Industry diversity in the lower U.S.

Figure 3.2: Cluster diversity in the lower U.S.

Figure 3.3: Correlation between industry and cluster diversity.
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dependence and thus result in inaccurate estimates. The spatial Durbin model (SDM) is

such an approach that incorporates spatial dependence in both dependent and independent

variables when compared to the spatial autoregressive model and the spatial error model.

Moreover, LeSage and Pace (2009) suggested that the SDM should be used when one believes

that there might exist omitted variables that demonstrate spatial autocorrelation.

The SDM can be described as:

y = ρWy +Xβ +WXγ + ε (3.10)

where y is the dependent variable for region i (i=1, , N); X is a matrix of independent

variables; β is a vector of estimated coefficients of the independent variable; ρ is a coefficient

that describes the strength of the spatial autocorrelation in the dependent variable; γ5 is a

vector of estimated coefficients of the spatially lagged, independent variables WX; and ε is

the error term. The term W denotes the spatial weight matrix and reflects the geographic

relationship that can be specified using various methods like distance- and contiguity-based

ones. In this analysis, queen contiguity is used, where two regions i and j are neighbors if

they share at least one point or side on their boundaries. The corresponding element in the

spatial weight matrix Wij is 1, and Wij equals 0 otherwise.

Bayesian spatial econometric techniques rather than maximum likelihood methods are

used. LeSage and Pace (2009, p. 150) indicated that Bayesian spatial econometric techniques

outperform maximum likelihood methods as “in small samples parameters may exhibit

asymmetry or heavy tailed distributions that deviate from normality.” For this reason,

Equation 3.10 is estimated using the Bayesian Markov Chain Monte Carlo (MCMC) method.

Generally, let y denote the whole data and θ represent a vector of parameters of interest.

The posterior distribution of the parameters, π(θ | y), is expressed as:

π(θ | y) =
π(y | θ)π(θ)

π(y)
(3.11)

where π(θ) is the prior probability density function for θ; π(y | θ) is the density function for

5To differentiate in Equation 3.11, γ is used here.
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y when the parameter value is θ; and π(y) is a constant term and normalizes the posterior

distribution. Because π(y) is free from the parameter vector θ, Equation 3.11 is summarized

as the Bayesian phrase, “the posterior is proportional to the likelihood times the prior” and

can also be rewritten as:

π(θ | y) ∝ π(y | θ)π(θ) (3.12)

Markov chain Monte Carlo (MCMC) methods are used to draw inferences regarding the

parameters. Specifically, the Gibbs sampling procedure is used to generate samples of θ6 and

ρ, whereas the Metropolis-Hasting algorithm is used to generate ρ7. The prior distribution of

the β parameter is a multivariate normal distribution with a mean of zero and a covariance of

10,000Ik: The prior values for σ come from an inverse gamma distribution with both shape

and scale parameter as 0. The prior values for the ρ parameter come from a univariate

normal distribution with a mean of 0 and a standard deviation of 10,000. Each model

was run for 56,000 iterations with the initial 6,000 discarded as burn-in iterations. The

removal of these iterations is useful because the initialized values of the parameters might

be unstable.

3.4 Empirical Results

Instability Models

Table 3.2 presents the estimation results of three instability models that use three different

diversity measures (HHIS, HHIC and MHHI). As the coefficient of the spatially lagged

dependent variable, ρ, is statistically significant in each model, the economic stability of an

MSA can be impacted by the instability of neighboring MSAs. Unlike the OLS regressions,

the estimated βs in Equation 3.10 cannot be directly interpreted as marginal effects because

of potential spatial dependence in the variables (LeSage and Pace, 2009). Instead, following

LeSage and Pace (2009), the direct, indirect, and total effects were estimated. Note that

the direct and indirect effects here can possibly move in opposite directions.

6Strictly speaking, the β term here stands for the coefficients of the independent variables as well as the
spatially lagged independent variables.

7For more information about these algorithms, see Lacombe (2008) and LeSage and Pace (2009).
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Table 3.2: Effect estimates of instability models

(a) Model 1 Direct effect t-statistic Indirect effect t-statistic Total effect t-statistic

HHIS 9.605*** 3.088 5.191 0.962 14.796** 1.987

POP 0.101*** 2.765 0.097 1.649 0.198*** 2.629

EDU -0.021** -2.071 -0.017 -1.009 -0.038* -1.696

NONWHITE -0.006 -1.098 0.012 1.521 0.005 0.615

INCOME 0.009** 2.063 -0.006 -0.850 0.003 0.372

GOODS 0.014* 1.878 -0.037*** -3.076 -0.023 -1.570

ρ 0.402*** 9.643

(b) Model 2 Direct effect t-statistic Indirect effect t-statistic Total effect t-statistic

HHIC 5.197*** 5.749 4.500*** 2.995 9.697*** 4.949

POP 0.085** 2.424 0.070 1.322 0.155** 2.352

EDU -0.021** -2.187 -0.014 -0.966 -0.036* -1.783

NONWHITE -0.006 -1.001 0.010 1.297 0.004 0.475

INCOME 0.009** 2.031 -0.006 -0.935 0.003 0.383

GOODS 0.012 1.615 -0.037*** -3.365 -0.025* -1.889

ρ 0.351*** 8.085

(c) Model 3 Direct effect t-statistic Indirect effect t-statistic Total effect t-statistic

MHHI 2.128*** 5.175 1.438** 2.183 3.566*** 3.926

POP -0.063 -1.224 -0.018 -0.236 -0.081 -0.759

EDU -0.024** -2.442 -0.021 -1.317 -0.045** -2.130

NONWHITE -0.003 -0.604 0.010 1.334 0.007 0.794

INCOME 0.011** 2.459 -0.004 -0.572 0.007 0.850

GOODS 0.006 0.832 -0.039*** -3.271 -0.033** -2.283

ρ 0.373*** 8.920

Notes: HHIS=Herfindahl Hirschman Index of Sectors; HHIC=Herfindahl Hirschman Index of Clusters;
MHHI=Multiplicative Herfindahl Hirschman Index; Significance levels: * for 10%, ** for 5%; *** for 1%.

Focusing on the control variables, the population size in Models 1 and 2 is found to con-

tribute to regional economic instability as reflected in the estimated direct and total effects.

An MSA with a larger population appears to increase the economic instability of the MSA

and its neighbors. By comparison, the population size is statistically insignificant in Model

3. Meanwhile, the estimated direct and total effects of the education attainment variable

are negative and significant in Models 1-3, indicating that a better educated population in

an MSA seems to reduce its economic instability. Conversely, the indirect effect estimate is

insignificant. Furthermore, the nonwhite variable seems to be insignificant and the direct

of the income variable is significant in Models 1-3. Finally, the effect of employment in

goods-producing sectors on economic stability is mixed when different diversity measures

are used.
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Turning to the diversity variable, the estimated direct and total effects of economic

diversity are positive and statistically significant in Model 1. This result is in line with the

portfolio theory that a region’s economic diversity contributes to its stability in economic

activities. Conversely, the positive indirect effect is not significant as reflected in the t

statistics. This, however, is in conflict with previous studies on the spatial spillover effects

of economic diversity as suggested by Trendle (2006) and Deller and Watson (2016a). In

Model 2, the estimated direct, indirect and total effects of economic diversity are significant.

Similarly, the positive and significant direct, indirect and total effects in Model 3 suggest

that the economic instability of an MSA can be influenced by its own industry mix as well as

its neighbors’ economic structures. Overall, after controlling for industrial, demographic and

economic variables, diversity is still positively associated with economic stability, although

different measures of diversity can alter the impact and statistical significance of diversity.

Growth Models

Similar to the case of instability models, the direct, indirect, and total effects of economic

diversity on employment growth were estimated in Models 4-6 in Table 3.3. The spatially

lagged dependent variable is statistically significant in each model, indicating that MSAs

with high employment growth can encourage the employment growth of their neighbors.

In Models 4-6, the estimated direct effects of all the control variables (population size,

education attainment, nonwhite, income and goods) are significant, although there are

variations in the statistical significance of the indirect and total effects. Population size is

positively and significantly associated with employment growth in terms of direct and total

effects, indicating that population size contributes to employment growth in MSAs during

the study period from 2000 to 2002. As the population variable was logged, these estimated

effects can be directly interpreted as elasticity. For example, in Model 4, an increase of

10 percent in population size would have a direct effect of a six percent employment in-

crease and the total effect of a five percent increase in employment growth, ceteris paribus.

Similarly, the MSAs with a higher education attainment usually have greater employment

growth. Moreover, counteracting effects occur in the nonwhite variable and the income

variable. The direct effect of these two variables seems to reduce job creation, while their
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Table 3.3: Effect estimates of growth models

(a) Model 4 Direct effect t-statistic Indirect effect t-statistic Total effect t-statistic

HHIS 7.117 0.811 -21.411 -1.504 -14.294 -0.742

POP 0.616*** 5.646 -0.099 -0.623 0.516*** 2.596

EDU 0.106*** 3.527 -0.051 -1.144 0.055 0.932

NONWHITE -0.072*** -4.039 0.077*** 3.470 0.005 0.210

INCOME -0.069*** -5.202 0.039** 2.068 -0.030 -1.324

GOODS -0.151*** -6.645 -0.062** -1.914 -0.213*** -5.625

ρ 0.301*** 15.407

(b) Model 5 Direct effect t-statistic Indirect effect t-statistic Total effect t-statistic

HHIC 6.361** 2.309 -3.512 -0.807 2.849 0.503

POP 0.581*** 5.481 -0.153 -0.980 0.428** 2.263

EDU 0.105*** 3.567 -0.053 -1.218 0.052 0.892

NONWHITE -0.070*** -4.007 0.074*** 3.407 0.004 0.180

INCOME -0.069*** -5.311 0.042** 2.284 -0.027 -1.193

GOODS -0.157*** -6.954 -0.066** -2.096 -0.223*** -5.891

ρ 0.306*** 14.503

(c) Model 6 Direct effect t-statistic Indirect effect t-statistic Total effect t-statistic

MHHI 3.296*** 2.689 -2.344 -1.271 0.952 0.376

POP 0.343** 2.240 -0.003 -0.013 0.340 1.133

EDU 0.106*** 3.564 -0.051 -1.137 0.055 0.910

NONWHITE -0.065*** -3.674 0.074*** 3.336 0.008 0.345

INCOME -0.068*** -5.144 0.042** 2.189 -0.026 -1.113

GOODS -0.169*** -7.397 -0.048 -1.428 -0.218*** -5.593

ρ 0.319*** 13.154

Notes: HHIS=Herfindahl Hirschman Index of Sectors; HHIC=Herfindahl Hirschman Index of Clusters;
MHHI=Multiplicative Herfindahl Hirschman Index; Significance levels: * for 10%, ** for 5%; *** for 1%.

indirect or spatial spillover effects appear to stimulate employment growth. Finally, employ-

ment in goods-producing sectors is likely to reduce employment growth as demonstrated by

the negative and significant direct and total effects in all models.

Focusing on the diversity variable, in Models 5 and 6, the direct effect seems to con-

tribute to short-term employment growth and is in line with conventional wisdom, the MAR

externalities, as well as the theories of Porter (1990, 1998) that specialization can promote

economic growth. In comparison, the indirect or spatial spillover effect in Models 4-6 is

negative but insignificant. Finally, although the total effect is insignificant in Models 4-6,

there appears to be a trade-off between direct and indirect effects as these two effects move

in the opposite direction.
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3.5 Discussion

In this analysis, the effects of economic structure on economic stability and growth are stud-

ied using three HHI-based economic structure measures. The first two measures quantify

the level of employment dispersion among (1) three-digit NAICS sectors (HHIS) and (2)

specialized clusters (HHIC). To consider the interplay of these two measures, the MHHI is

also used. Based on the empirical results, there are several interesting points for discussion.

First, both industry and cluster diversity seem to contribute to economic stability. In

Models 1-2, the estimated direct and total effects of the diversity variable (HHIS or HHIC)

is positive and significant. When the diversity of both sectors and clusters are considered in

Model 3, the estimated direct, indirect and total effects of economic diversity on economic

stability are positive and significant. As such, this analysis confirms that not only industrial

diversity but also the diversity of specialized clusters are positively associated with economic

stability. In short, for a given region, both industry and cluster portfolios can contribute to

economic stability.

Second, unlike the instability models, the effect of industrial diversity on economic

growth differs from that effect of cluster diversity. In Model 4, the effect of industrial

diversity is statistically insignificant and in line with Hong and Xiao (2016), suggesting

that the overall industry diversity hardly impacts employment growth. By comparison, as

demonstrated in the estimated direct effect in Model 5, the diversity of clusters is positively

and significantly associated with employment growth. Perhaps, this result can be explained

be the MAR externalities and theories of Porter (1990, 1998) rather than Jacobs’ (1969)

externalities. Similarly, the direct effect of the diversity variable in Model 6 is positive and

significant.

Third, as reflected in both instability and growth models, measuring the economic diver-

sity of specialized clusters and industrial diversity simultaneously contributes to revealing

more effects more revealed effects of diversity on economic stability and growth than measur-

ing industrial diversity alone. Many authors (Conroy, 1975; Kort, 1981; Siegel et al., 1995;

Wagner and Deller, 1998) have considered inappropriate measures of economic diversity as

one of the factors that contribute to the inconsistency between theoretical assumption and
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empirical evidence of the relationship between economic structure and regional economic

performance. Interpreting economic diversity as both industry and cluster diversity could

improve existing economic diversity measures. Although only HHI is used here, these im-

provements can also be applied to other diversity measures, such as the national average

and the entropy index.

Finally, of special relevance here is research on related and unrelated variety8 in economic

geography, such as Frenken et al. (2007) and Boschma et al. (2011), where the entropy

index is used to measure different types of variety. Specifically, based on the Standard

Industrial Classification (SIC) scheme9, Frenken et al. (2007) measured unrelated variety as

the average employment entropy across two-digit industries and total variety as the average

employment entropy between five-digit industries. The corresponding related variety equals

the difference between the total entropy and the unrelated entropy. Similarly, Boschma et al.

(2011) indicated that related and unrelated variety can also be defined based on Porter’s

(2003) definition of clusters; namely, unrelated variety can be measured among clusters

and total variety can be calculated among sectors. As such, the unrelated variety measure

of Boschma et al. (2011) displays technical similarities with the cluster diversity measure

(HHIC). However, these studies neither explicitly emphasize that economic clusters should

be specialized relative to the nation (LQ ≥ 1), nor aimed at interpreting economic diversity

as the presence of multiple specializations, which is the course pursued in this chapter.

3.6 Chapter Summary

This chapter develops a measure to interpret the diversity of economic specializations and

emphasizes the coexistence of economic diversity and specialization. It also studies the

effects of industry and cluster diversity on regional economic performance. The empirical

evidence confirms that both industry and cluster diversity can contribute to economic sta-

bility, yet also suggests that only cluster diversity promotes employment growth. Together

with Hong and Xiao (2016), this analysis empirically confirms that one region can simulta-

8 For a comprehensive review of recent research on related variety, see Content and Frenken (2016).
9 In the U.S., the SIC has been replaced by the North American Industry Classification Systems (NAICS)

since 1998.
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neously pursue economic growth and stability by promoting diversified specializations.

Table 3.4: A typology of specialization and diversification in terms of sectors and clusters
Specialize sector(s) Diversify sector(s)

Specialize cluster(s)
Type 1:

Reinforcement
Type 2:

Supplement

Diversify cluster(s)
Type 3:

Replication
Type 4:

Transplantation

The findings of this analysis also remind economic development researchers and practi-

tioners to consider the underlying relationship between targeted sectors and their linked

clusters in industrial recruitment activities. Based on Martin and Sunley (2006) and

Boschma et al. (2017), Table 3.4 enumerates four possible types of economic structure-based

development policies that consider this relationship. Reinforcement (Type 1) represents

pure specialization at both sector and cluster levels. After adopting economic development

policies of this type, regions would experience faster economic growth in the short term.

Yet, it is not recommended to specialize only in these clusters in the long run, because a

limited number of specializations might be severely impacted by external economic down-

turns, or “do not place a region’s employment eggs in one industry or cluster basket.” By

comparison, Supplement (Type 2) illustrates a case that the targeted sectors improve the

diversity of sectors while reducing the diversity of clusters. Development polices of this type

are common nowadays. For example, Jackson’s (2015) clusters and diversification strategy

(CADS) can be used to identify sectors that fail to support existing economic clusters in

terms of supply deficits. Economic development policies focusing on these sectors can pro-

mote sector-level economic diversity while decreasing cluster-level diversity; in other words,

existing economic clusters would be supplemented in terms of supply. Replication (Type 3)

demonstrates a situation where the targeted sectors enhance the economic diversity of clus-

ters while reducing the diversity of sectors. Frenken et al. (2007) indicated to import sectors

that are closely related to existing economic structure to be potential clusters. Transplan-

tation (Type 4) indicates complete diversification in the lens of both sectors and clusters.

This diversification process can be referred to as importing popular or advanced sectors

without fully considering existing regional economic structures when comparing it to Type
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3 development policies. Although theoretically feasible in industry targeting and recruiting

procedures, it is not suggested as “one should take existing regional competences as building

blocks to broaden the economic base of the region” (Frenken et al., 2007, p. 696).

There are several potential directions for future research. The relationship between

cluster and industry diversity should be studied. For example, which one has the priority

in regional economic development? Although Desrochers and Sautet (2008) and Hong and

Xiao (2016) suggested that overly specialized economies should enhance industry diversity

first and then promote specializations as a diversified economy is the prerequisite for the

emergence of diverse specializations, this preference has not been examined empirically.

Apart from the HHIC—a cross-fertilization of the cluster template of Delgado et al. (2016),

location quotient, and the Herfindahl Hirschman Index—developed in this chapter, it is

also interesting to develop other measures to meaningfully quantify cluster diversity (e.g.,

Slaper et al., 2018). In addition, based on the identified typology of structure-based devel-

opment strategies in Table 3.4, future research could further develop this typology in such

analytical dimensions as key actors, industry targeting methods and risks. With a deeper

understanding of economic structures, both specialization and diversity can better benefit

regional economic development.
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Chapter 4

A Modeling Method Concern

4.1 Introduction

Regional scientists, economic geographers and planners have studied the relationship be-

tween economic diversity and regional economic performance for many decades, both the-

oretically and empirically (e.g., Conroy, 1975; Kort, 1981; Jackson, 1984; Malizia and Ke,

1993; Trendle, 2006; Hong and Xiao, 2016). Within the literature of regional economic di-

versity, the portfolio theory hypothesizes that diversified economies usually display greater

stability in their economic performance and less volatility from external downturns (Con-

roy, 1975). On the other hand, conventional wisdom and previous theories—such as the

MAR externalities (Glaeser et al., 1992) and Porter’s (1990; 1998) economic clusters—hold

that economic specialization can promote economic growth. In contrast, Jacobs (1969) has

argued that it is diversity that contributes to growth.

Many empirical studies have tested these theoretical assumptions, while the results are

often mixed (Jackson, 1984; Attaran, 1986; Mizuno et al., 2006). Malizia and Ke (1993),

Wagner and Deller (1998) and others stated that the primary causes of this empirical incon-

sistency include (1) the use of inappropriate use of geographical units, (2) poorly defined

measures of economic diversity, and (3) overly simplistic modeling methods. Specifically,

numerous geographical units have been used to quantify regional economic structures, such

as counties (Deller and Watson, 2016a; Watson and Deller, 2017), states (Attaran, 1986;

Wagner and Deller, 1998), Metropolitan Statistical Areas or MSAs in the U.S. (Malizia and

57



Ke, 1993; Hong and Xiao, 2016), and Local Government Areas in Queensland, Australia

(Trendle, 2006). However, Jackson (1984) and Malizia and Ke (1993) suggested that only

functional economic regions (e.g., MSAs) should be used to define these economic structures

because of such issues as the Modifiable Areal Unit Problem (Openshaw and Taylor, 1979;

Openshaw, 1984) and the uncertain geographical context problem (Kwan, 2012). Mean-

while, numerous studies have improved existing measures of economic diversity, including

input-output based measures in Wagner and Deller (1998) and Siegel et al. (1995) and met-

rics that consider the diversity of economic specializations and industries (e.g., Hong and

Xiao, 2016).

Another cause of the inconsistency between theoretical assumptions and empirical ev-

idence is the use of simplistic statistical techniques. Although the modeling methods in

the literature of regional economic structure have advanced greatly from bivariate statistics

through multivariate regression to spatial regression techniques, there is little research on

model uncertainty, especially in a spatial context. LeSage and Pace (2009) suggested that

model uncertainty can result from at least two sources. Given the variety of methods to

specify spatial relationships, one source is the choice of an appropriate spatial weight ma-

trix that describes the spatial interactions between two regions. However, LeSage and Pace

(2014) recently suggested that the model estimates are insensitive to the spatial weight ma-

trix as long as the model is specified correctly. By comparison, the second aspect of model

uncertainty still bothers economic structure researchers and concerns how to determine the

set of control variables to be used to model the diversity-performance relationship. To date,

the only study that deals with model uncertainty is Watson and Deller (2017) who used a

Spatial Bayesian Model Averaging (SBMA) method to determine the set of control variables

in studying the effect of industrial diversity on unemployment. Nevertheless, Watson and

Deller (2017) still used counties (i.e., administrative regions) rather than functional regions

as the analytical units and ignored the effect of cluster diversity in studying regional eco-

nomic structure, both of which can impact severely our understanding of the relationship

between economic structure and economic performance.

This chapter then contributes to the literature on regional economic structure research

in several aspects. First, it utilizes a Bayesian Model Averaging (BMA) method that is
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different from Watson and Deller’s (2017) in order to address model uncertainty in study-

ing the influences of economic diversity on economic stability and employment growth in

the context of U.S. This method simultaneously addresses model uncertainty and spatial

spillovers. To further evaluate the role of model uncertainty in studying the relationship

between economic diversity and regional economic performance, comparisons are made be-

tween model estimates with and without addressed model uncertainty. Second, based on

recent studies like Hong and Xiao (2016) and findings of Chapters 2 and 3 in the disserta-

tion, this analysis uses MSAs as the basic units to approach regional economic systems and

considers both industry and cluster diversity. Finally, this chapter also provides a review

of previous modeling methods employed in economic structure research, mainly after the

1970s, to compare and contrast their usages and limitations.

The remainder of this chapter is organized as follows. Section 4.2 reviews previous

methods used to study the effect of economic diversity on regional economic performance.

Following the description of methodology in Section 4.3, results are presented and discussed.

The final section closes with the findings of this chapter.

4.2 Background

Based on previous studies of regional economic structure in the last five decades, three

broad groups of modeling methods can be identified, including (1) bivariate statistics, (2)

multivariate regression, and (3) spatial econometric models. These methods, along with

several examples of each, are displayed in Figure 4.1. The rest of this section reviews these

methods as follows.

Figure 4.1: Three broad groups of modeling methods in economic diversity research
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4.2.1 Bivariate Statistics

The first group of empirical studies (e.g., Conroy, 1975; Kort, 1981; Jackson, 1984; Attaran,

1986) has employed bivariate statistics to study the impact of economic diversity on regional

economic performance. For example, Conroy (1975) used several bivariate techniques—such

as the Person correlation coefficients and bivariate regression—to study the relationship

between economic diversity and stability. Using data from 52 MSAs during the period

of 1958-1967, Conroy found that economic diversity contributes to stability. Kort (1981)

also examined the extent to which industrial diversity affects economic stability among

106 MSAs in the U.S. using bivariate regression; he further considered the possibility of

heteroscedasticity as a matter of city size and used a weighted linear regression to study

diversity and stability. Kort concluded that economic diversity explains the differences in

regional economic instability. Conversely, Jackson (1984) studied the relationship between

economic diversity and stability in the case of Illinois counties using simple correlations

and found that this relationship is insignificant. Similarly, Attaran (1986) also assessed the

impacts of economic diversity on unemployment, economic instability, and economic growth

among the 50 states plus Washington, D.C. Using correlation indices, Attaran found that

these impacts are insignificant or even non-existent.

The dependent variables in these four studies are economic performance indicators, such

as employment growth and unemployment rate, while the only explanatory variable is indus-

trial diversity. As such, other factors that might influence regional economic performance

have not been controlled for; region size, for instance, may affect economic stability and

large regions tend to demonstrate greater stability in their economic performance than do

small ones. In an econometrics textbook, Stock and Watson (2007, p. 478) used the term

control variable to “describe a variable that is included in a regression model to control for

a factor that, if omitted from the regression, would lead to omitted variable bias for the

coefficient of interest.” In the literature on regional economic structure, Malizia and Ke

(1993, p. 226) argued that “control variables are needed to reduce estimation bias” result-

ing from the use of bivariate techniques. To this end, including control variables becomes

necessary to understand the effect of economic diversity on regional economic performance.
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4.2.2 The Inclusion of Control Variables

The second group of studies has used multivariate statistics to consider the impact of control

variables; examples are Malizia and Ke (1993) and Wagner and Deller (1998). Particularly,

Malizia and Ke (1993) used multiple linear regression to study the influence of economic

diversity on unemployment and economic stability among 282 MSAs in the U.S. In addi-

tion to the diversity variable, Malizia and Ke included several control variables—such as

population size, labor force characteristics, and industry employment percentages—in their

cross-sectional models. The control variables to include in the final estimation were deter-

mined through partial correlation both individually and in combination. The problem of

heteroscedasticity was also considered, but Malizia and Ke found that this was not a prob-

lem in their analysis. Additionally, the employment growth rate was included in Malizia

and Ke’s work to test the hypothesized negative relationship between economic growth and

stability. As a result, their analysis confirmed that industrially diversified regions experience

low unemployment rates and high economic stability.

Wagner and Deller (1998) studied state-level diversity in the U.S. and its impact on

economic stability and growth. Their control variables were selected based on Duffy’s (1994)

five broad factors that influence regional economic performance and a series of principal

component analyses. Compared to Malizia and Ke (1993), Wagner and Deller proposed

that long-term development goals should focus on diversification while short-term goals

should focus on growth; in other words, the trade-off between stability and growth no

longer exists. Thus, growth rate was excluded from the control variables in Wagner and

Deller’s analysis.

Taken together, the dependent variables in these two studies are indicators of regional

economic performance, whereas the independent variables include a diversity measure and

a set of control variables that capture the demographic, economic and industrial differences

among regions. Although studies in this group include the impact of control variables, they

have not considered the effect of spatial dependence. Ignoring this dependence might result

in the misspecification of economic diversity and thus result in inappropriate economic

development policies. As such, spatial econometric techniques might be more appropriate.
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4.2.3 The Role of Spatial Spillovers

Table 4.1: Summary of the economic diversity research that considers spatial effects

Article
Spatial regression

models
Spatial

dependence
Spatial

heterogeneity
Model

uncertainty

Trendle (2006) SAR and SEM 4

Hong and Xiao
(2016)

SAR 4

Deller and
Watson (2016a)

SDM 4

Deller and
Watson (2016b)

GWR 4 4

Watson and
Deller (2017)

SDM with a
heteroscedastic error

4 4 4

Notes: 4=Yes; SAR = Spatial autoregressive model; SEM = Spatial error model; SDM = Spatial
Durbin model; GWR = geographical weighted regression.

Spatial econometric models1 have been used to assess the spatial dependence of regional

economic diversity and economic performance by regional scientists, such as Trendle (2006),

Hong and Xiao (2016), Deller and Watson (2016a,b), and Watson and Deller (2017) in Table

4.1. According to Anselin (1988), geographical data sets display two general properties that

should be addressed in spatial data analysis: spatial dependence and spatial heterogeneity2.

One of the early works that used spatial regression models to study the relationship between

industrial diversity and economic stability is Trendle (2006). He specifically used the spa-

tial autoregressive model (SAR) and the spatial error model (SEM). The result of Trendle’s

(2006) analysis confirmed the existence of spatial dependence within the diversity-stability

relationship. Compared to Trendle (2006), Hong and Xiao (2016) used the SAR model to

evaluate the performance of industrial diversity on regional economic performance and also

proposed a Multiple Specialization Index (MSI) that considers the diversity of economic

specializations to emphasize the coexistence of economic diversity and specialization. Fur-

thermore, Deller and Watson (2016a) used the spatial Durbin model (SDM) that captures

the spatial dependence in both dependent and independent variables to assess the effect of

economic diversity on economic stability among U.S. counties during the Great Recession

from 2007 to 2014. Similarly, Deller and Watson (2016b) used the method of Geographi-

1For an overview of spatial regression models, see Anselin (1988) and LeSage and Pace (2009).
2Chapter 1 provides a formal introduction of these two concepts.
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cal Weighted Regression, or GWR3, to study the relationship between economic diversity

and stability and found that the relationship is not stable across space. In that sense,

apart from spatial dependence, spatial heterogeneity with the underlying diversity-stability

relationship is also considered.

Although the traditional approach is to select a single “best” model for model spec-

ification based on various metrics, such as the Akaike Information Criterion (AIC), the

Bayesian Information Criterion (BIC), the adjusted R-squared value, and log likelihood,

there is little concern about model uncertainty within economic structure research. For ex-

ample, the classic trade-off between the inclusion of sufficient independent variables and the

inclusion of redundant variables affects the empirical understanding of economic diversity.

Fernández et al. (2001a,b) suggested using Bayesian Model Averaging (BMA) methods to

address the model uncertainty issue. Given this, Watson and Deller (2017) applied a Spatial

Bayesian Model Averaging method to specify the combination of control variables and used

specified control variables to model the diversity-unemployment relationship with a spatial

Durbin model. In addition, because Deller and Watson (2016b) indicated that the impact

of industrial diversity on regional economic performance varied significantly across space,

Watson and Deller (2017) also included a heteroscedastic error structure in their estimation

to account for the spatial heterogeneity within the diversity-performance relationship.

In a similar vein, this chapter uses a BMA method that seeks to consider model un-

certainty. Comparisons between model estimates with and without addressed model un-

certainty are also made. In addition, when assessing the diversity-performance relationship

using the BMA results, recent research into the geographical units of regional economic

systems and structural measures of economic diversity is also included. The next section

introduces the methodological details.

3For more information about the technical details of the GWR method, see Fotheringham et al. (2002).
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4.3 Methodology

The empirical models are expressed as:

REIi = f(DIVi, CONTROLi) (4.1)

GROWTHi = g(DIVi, CONTROLi) (4.2)

where the dependent variables are the long-term (2000-2014) regional economic instability

(REI) index and the short-term (2000-2002) employment growth rate, and the independent

variables are economic diversity measures and a set of control variables for the base year

2000. These two empirical models are studied among 359 MSAs in the contiguous U.S. As

suggested by previous authors (e.g., Jackson, 1984; Malizia and Ke, 1993; Trendle, 2006) and

Chapter 2 in this dissertation, MSA is used as the analytical unit because MSAs can form

meaningful functional economic systems, and the focus of this chapter is not to investigate

the diversity-performance for the whole U.S. regions.

According to Kort (1981), Jackson (1984), Malizia and Ke (1993) and others, regional

economic instability is measured as:

REIi = {
N∑
i=1

[(Eit − ETrit )/ETrit ]2/T}1/2 (4.3)

where i is the region index; Eit is the observed number of employment for region i at time

t; T is the number of observed time spans; and ETrit is the predicted number of employment

for region i at time t using a linear trend line. By comparison, employment growth at time t

is measured as the growth rate of total employment from t−1 to t. Both the instability and

growth variables were calculated using data from the U.S. Bureau of Economic Analysis.

Although the empirical models and dependent variables are specified, this analysis still

encounters four issues: (1) economic diversity measurement, (2) model uncertainty, (3)

potential control variables, and (4) spatial relationships. The rest of this section discusses

and addresses these issues.
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4.3.1 Measuring Economic Diversity

As reviewed by Wagner (2000), Dissart (2003) and Jackson (2015), economic structure

literature has defined economic diversity through various metrics like the national average,

the ogive, the Herfindahl Hirschman Index (HHI) and the entropy index. Among these

metrics, the entropy index and the HHI have been used more widely than others. As the

focus of this analysis is not to compare different measures of industrial diversity, the HHI

of sectors (HHIS) is used and can be calculated as:

HHISi =
N∑
j=1

(eij/ei)
2 (4.4)

where eij is the employment for industry j in the ith region; Ei is the total employment in

the ith region; and N is the total number of industries in the ith region. This index reaches

its maximum of one for a one-sector economy and approaches to its minimum of 1/N if all

sectors are evenly distributed in terms of employment.

Moreover, many regional scientists (e.g., Malizia and Ke, 1993; Wagner and Deller, 1998;

Jackson, 2015; Hong and Xiao, 2016) reconsidered the relationship between economic di-

versity and specialization and proposed the concept of diversified specializations. Recently,

empirical studies—such as Hong and Xiao (2016) and Chapter 3 in this dissertation—have

applied this concept to stress the coexistence of specialization and diversity. Specifically,

compared with Hong and Xiao (2016), the analysis in Chapter 3 excluded the impact of

local industries in identifying economic clusters; for example, utilities and drug stores that

only serve local needs should not be regarded as potential economic clusters. Therefore,

this analysis uses the method used in Chapter 3 to consider the diversity of clusters (HHIC)

as follows:

HHICi =
M∑
j=1

(eij/ei)
2 (4.5)

where eij is the employment for cluster j in the ith region; Ei is the total employment of

traded industries4 in that region; and M is the total number of clusters in region i. Be-

4For more information about the definition of traded and local industries, see Porter (2003) and Delgado
et al. (2016).
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cause these clusters are specialized relative to the national average, the location quotients

(LQs)5 of these clusters should be greater than one. HHIC ranges from 1/M for a perfectly

diversified economy to one if all employment is concentrated in one cluster. As for the data

sources, the industry diversity variable is calculated using the Upjohn Institute’s “Whole-

Data” version of County Business Patterns, derived using Isserman and Westervelt’s (2006)

method. Based on the same data as well as Delgado et al.’s (2016) cluster classification

method, the cluster diversity variable is also calculated.

4.3.2 Potential Control Variables

Building on Trendle (2006), Deller and Watson (2016a), Watson and Deller (2017), and

Deller et al. (2017), the demographic, economic, and industrial differences between MSAs

are considered as potential control variables in this study. The demographic factors in-

clude (1) population, (2) percentage of the population greater than 25 years of age with at

least a bachelors degree, (3) percentage of the population over 65, and (4) percentage of

the nonwhite population. These data describe the general demographic characteristics of

regions, and no specific hypotheses are offered relative to regional economic performance.

In addition, the demographic data are from the 2000 Census.

Similarly, the economic aspect of control variables includes (1) per capita income rela-

tive to the U.S. average, (2) percent of households with income below $20,000, (3) percent

of households with income above $150,000, (4) Gini coefficient of income inequality, (5)

per capita income from transfer payments, (6) per capita income from dividends, interest

and rent, and (7) per capita income from proprietorship. Deller et al. (2017) introduced

the expected effects of the last three variables for a given region: per capita income from

transfer payments introduces stability; per capita income from dividends, interest and rent

measures wealth and introduces instability; and finally, per capita income from proprietor-

ship indicates economic dependency on small businesses. These economic variables were

collected from the BEA and the Census Bureau for the year 2000.

To capture the industrial differences, the following factors were included: (1) percentage

5As mentioned in Chapter 3, LQ is calculated as the ratio of regional employment share to the national
employment share of the same sector.
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of employment in government sectors, (2) percentage of employment in goods production

sectors (minus farming), and (3) percentage of employment in service production sectors.

These factors are important because Mizuno et al. (2006) suggested that the economic

diversity index does not consider the components of industrial structure. Specifically, Deller

et al. (2017) argued that a high dependency on goods-producing sectors contributes to

instability6, whereas the number for employment in service-related and government sectors

is positively associated with economic stability. These industry data were obtained from

the Bureau of Labor Statistics (BLS), Census of Employment and Wages for the base year

of 2000.

4.3.3 Model Uncertainty

Since the 1990s, Bayesian Model Averaging methods have been introduced in economic

growth literature (e.g., Sala-i-Martin, 1997; Fernández et al., 2001a,b; Sala-i-Martin et al.,

2004) to address the model uncertainty issue regarding the choice of explanatory variables

and model specification. More recently, scholars have considered the role of spatial spillovers

and explored various aspects of model uncertainty at regional levels (See LeSage and Parent,

2007; LeSage and Fischer, 2008; Crespo Cuaresma and Feldkircher, 2013; Crespo Cuaresma

et al., 2014). A growing body of literature in regional science has gone beyond economic

growth research and has used BMA methods to determine the set of control variables to

address model uncertainty (e.g., Parent and LeSage, 2012; Winkler et al., 2015; Watson and

Deller, 2017).

In regional studies that employ BMA methods, two general approaches have been iden-

tified in considering potential spatial dependence and addressing model uncertainty. One

approach uses spatial BMA or SBMA via LeSage and Parents (2007) numerical integra-

tion techniques to obtain posterior model probabilities for model specifications. Examples

of researchers who have employed this approach include LeSage and Fischer (2008), Cre-

spo Cuaresma et al. (2014), Winkler et al. (2015), and Watson and Deller (2017). By

comparison, a second approach applies spatial filtering techniques (Getis and Griffith, 2002;

6This is consistent with the “durable” goods measure of economic diversity. According to Jackson (1984),
durable goods are sensitive to economic fluctuations. During an economic downturn, customers are assumed
to be less likely to purchase such durable goods as automobiles, books and furniture.
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Tiefelsdorf and Griffith, 2016) that remove the spatial effects and then consider model

uncertainty in the framework of standard (non-spatial) BMA methods. For example, Cre-

spo Cuaresma and Feldkircher (2013) used this approach to study factors that influenced

the speed of income convergence in Europe from 1995 to 2005. Crespo Cuaresma and

Feldkircher further mentioned that the model uncertainty that results from the appropri-

ate spatial weight matrix can also be solved with the second approach, although LeSage

and Pace (2014) indicated that the model estimates are insensitive to the choice of spatial

weights7. Furthermore, from a technical point, Crespo Cuaresma and Feldkircher suggested

that the use of spatial filtering overcomes the computational difficulties associated with

LeSage and Parent’s (2007) SBMA. For this reason, this second approach is preferred in

this analysis.

Consider such a spatial autoregressive (SAR) model as:

y = αlN + ρWy +Xkβk + ε (4.6)

where y is the dependent variable for N regions; α is the intercept; lN is an N × 1 vector of

ones; ρ is a scalar that denotes the level of spatial autocorrelation; W is the spatial weight

matrix indicating the geographical relationship between any two regions; Xk is an N × k

matrix that includes k explanatory variables; βk is the estimated coefficient corresponding

to Xk; and ε is the error term. In Equation 4.6, the number and identity of the variables

in Xk are unknown and come from K potential explanatory variables (K ≥ k). Any model

Mk is contained in a larger set of 2K possible models.

According to LeSage and Pace (2009), another model uncertainty arises regarding the

appropriate spatial weight matrix to specify the underlying spatial interactions. Unlike

control variables, there are few theoretical foundations on the construction of spatial weight

matrices, and Anselin (1988) suggested that there are various methods (e.g., continuity,

distance band and k nearest neighbors) to specify spatial relationships. As such, many

7Although the choice of spatial weights (e.g., k nearest neighbors, contiguity and distance-band based
methods) does not matter (LeSage and Pace, 2014), there are differences between spatial weight matrices
and other cross-sectional dependence matrices based on non-geographical factors, such as socio-cultural
indicators. Crespo Cuaresma and Feldkircher’s (2013) approach can also be used among these cross-sectional
dependence matrices.
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empirical analyses use robustness checks based on “the log-likelihood function values” to

identify the appropriate spatial weight matrix (LeSage and Pace, 2009, p. 162). However,

more recently, LeSage and Pace (2014) indicated that estimates and inferences of spatial

econometric models are insensitive to the spatial weight matrix used in the model. Although

this type of model uncertainty does not matter that much, a spatial weight matrix has

to be specified for a particular analysis. Specifically, similar to the control variables, the

“best” spatial weight matrix is chosen based on the probabilities of seven k nearest neighbor

matrices (k = 3, 4, ..., 8, 9). In these matrices, region i regards its k closest regions in terms

of physical distance as neighbors. Region i regards its k closest regions in terms of physical

distance as neighbors. If region j belongs to these k regions, then the corresponding element

in the spatial weight matrix Wij equals one; otherwise, it equals zero. Overall, there are

seven spatial weight matrices and 14 potential control variables considered. The cardinality

of model space is therefore 114,688 (7× 214) in this analysis.

Generally, there are two steps in Crespo Cuaresma and Feldkircher’s (2013) approach8.

First, spatial filtering techniques are used to decompose the data into a purely spatial and a

non-spatial component. Specifically, spatial dependence in Equation 4.6 is removed using an

eigenvector decomposition method proposed by Getis and Griffith (2002) and Tiefelsdorf

and Griffith (2016). The eigenvectors ei are included as extra explanatory variables in

Equation 4.6 with the following form:

y = αlN +
E∑
i=1

γiei +Xkβk + ε (4.7)

where each eigenvectors ei spans one of the spatial dimensions. Moreover, this step can also

reduce the degree of multicollinearity and further “separate spatial effects from the ‘intrinsic’

impact the employed regressors exert on the dependent variable” (Crespo Cuaresma and

Feldkircher, 2013, p. 723).

Second, the results of spatial filtering are then processed with standard BMA methods.

As mentioned earlier, model uncertainty exists in both the spatial weight matrix W and

explanatory variables Xk. Following the Bayesian Model Averaging methodology, inference

8An R Package that carries these two steps is available at https://modelaveraging.wordpress.com/

2010/10/, accessed March 15, 2018.
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on the parameters can be written as:

p(βj |Y ) =
2k∑
k=1

Z∑
z=1

p(βj |Y,M z
j )p(M z

j |Y ) (4.8)

where Y is the whole data. Note that the focus of this research is not the weighted average

but rather the posterior probability of each potential variable. Instead of depending on a

single model, BMA calculates the weighted average of the posterior probability densities,

where the weights are the posterior probabilities of each model and can be given by:

p(M z
j |Y ) =

p(Y |M z
j )p(M z

j )∑2k
k=1

∑Z
z=1 p(Y |M z

j )p(M z
j )

(4.9)

where p(M z
j ) denotes the prior distribution of M z

j . For a given model, a non-informative

prior on α and σ, and a g-prior on β are used as follows:

p(βk|α, ρ, σ,Mj) ∼ N [βk, σ
2(gX ′kXk)] (4.10)

with g = 1/max{N,K2}. Fernández et al. (2001a,b) indicated that using Zellner’s (1986)

g-prior simplifies the computational process. Finally, based on Ley and Steel (2009), a

binominal-beta prior distribution is used for the prior distribution of M z
j .

Following Madigan et al. (1995), Raftery et al. (1997), Fernández et al. (2001a,b), and

Crespo Cuaresma and Feldkircher (2013), a Markov chain Monte Carlo model composite

(MC3) is employed to obtain the posterior distributions of interest over the model space9.

A random-walk step is used in every replication of the MC3 procedure. One can propose an

alternative model M ′ to the current model in each step of the chain by adding (birth step)

or subtracting (death step) a regressor from model M . The chain moves to the proposed

model using the following acceptance probability:

min

[
1,
p(M ′|y)

p(M |y)

]
(4.11)

Otherwise, the chain stays in the current model. In that sense, the posterior probabilities of

9See Crespo Cuaresma and Feldkircher (2013) for a more detailed description of this method.
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explanatory variables and spatial weight matrices are calculated based on the models visited

by the MC3 rather than the whole model space. As detailed later, the explanatory variables

and spatial weight matrix are specified based on these posterior probabilities; in other words,

model uncertainty can be addressed. In addition, the results of this specification are used

to model the relationship between economic diversity and regional economic performance

based on the method introduced in the next subsection.

4.3.4 Spatial Relationships

As suggested by Trendle (2006), Deller and Watson (2016a), Watson and Deller (2017)

and others, the spatial spillover effects cannot be ignored when studying the effect of eco-

nomic diversity on regional economic performance. In this analysis, the spatial Durbin

model is used because it considers the spatial effects in both dependent and independent

variables. More formally, the SDM posits that the variations of the dependent variable

can be explained by the spatially lagged dependent and independent variables and a set of

independent variables with the following form:

y = ρWy +Xβ +WXγ + ε (4.12)

where y is the dependent variable; X is a matrix of independent variables; β is a vector

of estimated coefficients of the independent variable; ρ is a coefficient that describes the

strength of the spatial autocorrelation in the dependent variable; γ is a vector of estimated

coefficients of the spatially lagged independent variables WX; and ε is the error term that

follows a homoscedastic pattern (ε ∼ N(0, σ2 × I)).

The implication of this homoscedasticity suggests that the relationship between eco-

nomic diversity and regional economic performance is stable across space. Yet, Deller and

Watson (2016b) found that the effect of economic diversity was more significant in certain

parts of the U.S.(i.e., spatial heterogeneity) using the GWR method—a local regression

technique that returns a parameter estimate for each observation. As the purpose of this

analysis is not to derive the local estimate but to compare model estimates between with

and without addressed model uncertainty, the GWR model is not preferred here. Rather,
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the SDM with a heteroscedastic error structure (ε ∼ N(0, σ2V ) where V 6= I) in a Bayesian

framework provides the magnitude and significance of an average effect over space (i.e.,

global regression) and thus should be used. Based on LeSage and Pace (2009) and Watson

and Deller (2017), the following prior distributions are specified.

π(β) ∼ N(C,N) (4.13)

π(r/vi) ∼ χ2IID(r) (4.14)

π(1/σ2) ∼ Γ(d, v) (4.15)

π(ρ) ∼ U [0, 1] (4.16)

The parameters β, ρ and γ can be drawn sequentially in a Bayesian framework. This analysis

used 56,000 draws with the first 6,000 as the burn-ins. The removal of these burn-ins is

useful because the initial values of the parameters might be unstable.

Finally, LeSage and Fischer (2008) and LeSage and Pace (2009) suggested that the

coefficients of the variables β in Equation 4.12 cannot be interpreted as marginal effects

directly because of spatial dependence. Instead, following LeSage and Pace (2009), direct,

indirect and total effects can be estimated.

4.4 Empirical Results

For simplicity, three sets of results are presented. The first set is the BMA results (Table

4.2) that provide insights into model uncertainty in the control variables, and the second

set (Table 4.3) is the posterior probabilities for different spatial weight matrices. The third

set (Tables 4.4 and 4.5) is the estimated effects of economic diversity on economic growth

and instability when the control variables are suppressed and the spatial weight matrix is

specified.

The results in Table 4.2 demonstrate significant differences in terms of posterior inclu-

sion probability (PIP). Conceptually, the posterior inclusion probability is calculated as

the sum of probabilities of models including variable Xk. A PIP of a variable approaching
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Table 4.2: Posterior inclusion probability of control variables

Variable
Instability
model

Robustness
category

Growth
model

Robustness
category

Logged population 0.076 0.562 Weak

Percentage of the population greater than 25 years
old with at least a bachelors degree

0.757 Substantial 0.077

Percentage of the population over 65 0.392 0.103

Percentage of nonwhite population 0.035 0.936 Substantial

Per capita income relative to the U.S. average 0.121 0.999 Decisive

Percent of households with income below $20, 000 0.104 0.241

Percent of households with income above $150, 000 0.309 0.987 Strong

Gini coefficient of income inequality 0.044 0.083

Per capita income from transfer payments 0.585 Weak 0.998 Decisive

Per capita income from dividends, interest and
rent

0.771 Substantial 0.995 Decisive

Per capita income from proprietorship 0.048 0.198

Percentage of employment in government sectors 0.044 0.084

Percentage of employment in goods production
sectors (minus farming)

0.711 Weak 0.989 Strong

Percentage of employment in service production
sectors

0.040 0.084

Notes: Calculations are based on standard Markov chain Monte Carlo model composition (MC3)
sampling with 100 thousand burn-ins and 1 million draws; PIP values greater than 0.5 are in bold.

unity suggests the importance of the variable in explaining the dependent variable. Nu-

merous studies (Eicher et al., 2011; Crespo Cuaresma and Feldkircher, 2013) have labeled

covariates with PIP greater than 0.5 as robust and have suggested including them in the

final specification. Hence, robust variables in the instability model are (1) percentage of the

population with at least a bachelors degree; (2) per capita income from transfer payments;

(3) per capita income from dividends, interest and rent; and (4) percentage of employment

in goods production sectors (minus farming). By comparison, in the growth model, the

corresponding robust variables (PIP ≥ 0.5) are (1) percentage of nonwhite population; (2)

per capita income relative to the U.S. average; (3) percent of households with income above

$150,000; (4) per capita income from transfer payments; (5) per capita income from div-

idends, interest and rent; and (6) percentage of employment in goods production sectors

(minus farming). These robust control variables are used to estimate the effects of economic

diversity on regional economic instability and employment growth based on Equations 4.1

and 4.2. Although Watson and Deller (2017) indicated that the set of control variables is

of secondary interest in economic structure research, including these variables is expected
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to avoid redundant variables that decrease precision of the estimation on the one hand, and

overcome potential bias resulting from omitted variables on the other hand.

Raftery et al. (1997), Eicher et al. (2011), and Crespo Cuaresma et al. (2014) further

classified robust variables, according to their PIP values, into four categories: weak (50-

75%), substantial (75-95%), strong (95-99%) and decisive (above 99%) variables. In that

sense, Table 4.2 also denotes the robustness category of these control variables. It seems

that the overall PIP values of robust variables are higher in the growth model than those

values in the instability model. The PIP values of employment in goods producing industries

in both models are greater than 0.50, indicating that this variable is significantly associated

with the dependent variables. By comparison, there are several control variables with low

PIP values, such as Gini coefficient of income inequality. However, this does not undermine

the validity of the theoretical assumptions but implies that this variable does not help us

explain the variations in the dependent variables here.

Table 4.3: Posterior inclusion probability of spatial weight matrices
Variable Instability model Growth model

KNN3 0.000 0.001

KNN4 0.824 0.001

KNN5 0.163 0.425

KNN6 0.000 0.570

KNN7 0.016 0.000

KNN8 0.01 0.000

KNN9 0.000 0.001

Note: For each spatial weight matrix, posterior probability is calculated as the
sum of posterior probabilities of models containing the eigenvectors of that matrix.

Table 4.3 reports the posterior probabilities associated with k nearest neighbor weight

matrices with k = 3, 4, ..., 8, 9. Comparing the results of these two models, the instability

model seems to lend strong support to the four nearest neighbor spatial weight matrix

(KNN4), while the growth model appears to favor the six nearest neighbor spatial weight

matrix (KNN6). As noted earlier, few theoretical perspectives have provided guidance on

the specification of spatial weight matrix, and the matrix with highest posterior probability

is used for each model. That said, KNN4 is used for the instability model and KNN6 for

the growth model.
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Table 4.4: Effect estimates of models that consider industry diversity
Direct Indirect Total

(1) Saturated instability model

Industry diversity (HHIS)
0.051

(1.635)
0.010

(0.158)
0.061

(0.842)

(2) Suppressed instability model

Industry diversity (HHIS)
0.024**
(1.934)

0.067***
(2.765)

0.092***
(3.513)

(3) Saturated growth model

Industry diversity (HHIS)
-0.048

(-0.549)
-0.370

(-1.596)
-0.418

(-1.642)

(4) Suppressed growth model

Industry diversity (HHIS)
-0.023

(-0.256)
-0.200

(-0.903)
-0.224

(-0.952)

Note: Significance levels: * for 10%, ** for 5%; *** for 1%; t statistics in parentheses.

Table 4.4 presents the estimated effects of industrial diversity on economic instability

and employment growth. Besides the suppressed models (Models 2 and 4) that include the

appropriate set of control variables from Table 4.2, a saturated version of both the instability

and growth models is provided in Models 1 and 3. According to LeSage and Pace (2009,

p. 184), saturated models include all variables during estimation. For the instability models,

the results of Models 1 and 2 seem to support the portfolio theory that industrial diversity

is positively associated with economic stability. Specifically, the estimated direct, indirect

and total effects are positive and significant in Model 2, while only the direct effect in Model

1 is significant. By comparison, except for the total effect in Model 3, the effect of diversity

on employment growth is not significant. In other words, the results of the growth models

appear to indicate that industrial diversity only barely stimulates employment growth.

To supplement Table 4.4, Models 5-8 in Table 4.5 consider the impact of both industry

and cluster diversity on economic stability and employment growth. For the instability

models, it seems that only cluster diversity always contributes to economic stability in

Models 5 and 6. Focusing on the t-statistics of its estimated direct, indirect and total

effects, cluster diversity in the suppressed model appears to be more significantly associated

with economic instability than that in the saturated model. By comparison, the signs of

industry diversity in Models 5 and 6 are inconsistent with the theoretical assumption that

industrial diversity enhances regional economic stability. This result seems to suggest the
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Table 4.5: Effect estimates of models that consider both industry and cluster diversity
Direct Indirect Total

(5) Saturated instability model

Industry diversity (HHIS)
-0.007

(-0.202)
-0.179**
(-2.197)

-0.187**
(-2.026)

Cluster diversity (HHIC)
0.026**
(2.069)

0.078
(3.083)

0.104***
(3.955)

(6) Suppressed instability model

Industry diversity (HHIS)
0.022

(0.553)
-0.027

(-0.347)
-0.005

(-0.061)

Cluster diversity (HHIC)
0.036***
(2.758)

0.096***
(3.687)

0.133***
(4.672)

(7) Saturated growth model

Industry diversity (HHIS)
-0.101

(-0.920)
-0.456

(-1.557)
-0.557*
(-1.738)

Cluster diversity (HHIC)
0.026

(0.723)
0.031

(0.058)
0.058

(0.677)

(8) Suppressed growth model

Industry diversity (HHIS)
0.013

(0.365)
-0.096

(-1.266)
-0.082

(-0.952)

Cluster diversity (HHIC)
0.024**
(1.934)

0.067***
(2.765)

0.092***
(3.513)

Note: Significance levels: * for 10%, ** for 5%; *** for 1%; t statistics in parentheses.

use of clusters rather than industries in assessing economic diversity. Similarly, in the growth

models, the diversity of clusters seems to be more associated with employment growth than

the industrial diversity variable.

4.5 Discussion

The empirical results provide several interesting points worthy of note. First, although

closely related to the work of Watson and Deller (2017), who studied the relationship

between industrial diversity and unemployment using a Spatial Bayesian Model Averag-

ing method developed by LeSage and Parent (2007), this analysis differs from Watson and

Deller’s (2017) study in the following aspects: (1) a spatial filtering-based BMA method that

considers model uncertainty in the choice of control variables and spatial weight matrices

is employed; (2) rather than focusing on the relationship between unemployment and eco-

nomic diversity, this analysis concentrates on long-term economic stability and short-term

employment growth to leverage the benefits of both economic diversity and specialization;

and (3) it also uses functional regions as the analytical units and considers both industrial
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and cluster diversity on regional economic performance to minimize the impacts of factors

that lead to the empirical inconsistency with theoretical assumptions of economic structure,

such as highly geographical datasets and inappropriate measure of economic diversity.

Second, building on recent work in economic structure research, such as Jackson (2015),

Hong and Xiao (2016), and findings of Chapter 3, this study includes both industrial and

cluster diversity as indicators of economic diversity to study its effect on regional economic

performance. Historically, numerous studies (Malizia and Ke, 1993; Wagner and Deller,

1998; Watson and Deller, 2017) had viewed economic diversity as the diversity of economic

activities across industries, therefore treating them the same. By comparison, recent studies

(Porter, 2003; Spencer et al., 2010; Delgado et al., 2016) have begun to take a cluster per-

spective of regional economic structure. Particularly, Porter (2003, p. 562) suggested using

clusters rather than industries as the basic units to assess economic diversity because of “the

externalities across related industries within clusters.” In this study, when comparing the

effects of industry and cluster diversity in Tables 4.4 and 4.5, cluster diversity seems to be

more supportive to the theoretical foundations of economic specialization and diversity (See

Conroy, 1975; Glaeser et al., 1992; Porter, 1990, 1998) than industrial diversity. However,

cluster and industrial diversity may overlap but are not identical essentially because indus-

tries may or may not form economic clusters. To this end, both are important elements of

economic diversity and should be considered in studying the relationship between economic

diversity and regional economic performance.

Third, Crespo Cuaresma and Feldkircher’s (2013) BMA approach has been employed

successfully to address simultaneously model uncertainty from choice of control variables

and spatial spillovers. The comparison between saturated and suppressed models in Tables

4.4 and 4.5 suggests that ignoring the model uncertainty can impact our understanding of

the relationship between economic diversity and regional economic performance. Together

with Watson and Deller (2017), this study suggests that future economic structure research

can consider such model uncertainty to better understand economic diversity. In terms

of the modeling method, both Crespo Cuaresma and Feldkircher’s (2013) and LeSage and

Parent’s (2007) approaches provide solid technical foundations to address model uncertainty.

Finally, after the model uncertainty is considered, spatial spillovers still exist within the
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diversity-performance relationship. That is to say, regional economic development should

consider this spatial effect and encourage collaboration between regions. Based on the

empirical results, promoting one regions diversity of economic clusters can encourage long-

term economic stability of the region as well as its neighbors. On the other hand, specializing

economic clusters can also bring spatial spillovers to neighbors and thus promote their

employment growth. As such, neighbor regions might be regarded as a source of economic

development and collaboration policies.

4.6 Chapter Summary

In this chapter, a Bayesian Model Averaging method is employed to address model un-

certainty when studying the effects of economic diversity on long-term economic stability

and short-term employment growth among 359 MSAs in the contiguous U.S. Compared to

previous studies back to the 1970s, this method considers the impacts of control variables,

spatial dependence of the dependent and independent variables, and, more importantly,

addresses model uncertainty resulting from the set of control variables and spatial weight

matrix. Meanwhile, a spatial Durbin model with a heteroscedastic error structure is also

employed to estimate the effect of economic diversity. The methodology used in this chapter

is expected to reduce the extent of misspecification in the modeling process and thus benefit

future empirical research on economic diversity. Building on the work of recent economic

structure research, this analysis also uses functional regions to assess regional economic

systems and considers the diversity of economic clusters.

Significantly, the empirical results of this chapter suggest that ignoring model uncer-

tainty can alter our understanding of economic diversity on regional economic performance

and that after controlling for regional attributes and considering model uncertainty, the

spatial spillovers of both industrial and cluster diversity still exist. Future economic devel-

opment should consider the impact of spatial spillovers. In addition, this analysis confirms

that industrial and cluster diversity exert two different mechanisms on regional economic

performance.

Future research can consider the following three avenues. First, it is interesting to ex-
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ploit other approaches to defining the cross-sectional dependence beyond k nearest neighbor

spatial weight matrices. For example, inter-regional trade flows can be used to construct

the spatial weight matrix, and this should help in understand the nature of spatial in-

teractions within the diversity-performance relationship. Second, future research can also

compare Crespo Cuaresma and Feldkircher’s (2013) and LeSage and Parent’s (2007) ap-

proaches that deal with model uncertainty within a spatial context in such dimensions as

computational costs, usages and limitations. Finally, with more available data sets that

might impact regional economic performance, it is also meaningful to include them as po-

tential explanatory variables, such as women business ownership (Deller et al., 2017), and

expand the economic diversity-performance literature beyond traditional thinking of eco-

nomic diversity for economic development.
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Chapter 5

Conclusions

5.1 Summary and Reflections

This dissertation research has explored geographical scales, structural measurements and

modeling methods in economic structure research in the context of the U.S. regional economies.

Yet, it is not the main purpose of the dissertation to conduct an ad hoc empirical analysis

on the relationship between economic structure and regional economic performance and

provide specific economic development suggestions for the country. Instead, the empirical

inconsistency with the theoretical assumptions of economic structure is focused in the per-

spectives of geographical scales, structural measurements, and modeling methods in Chapter

2-4. The suggestions and improvements regarding these perspectives are expected to assist

our understanding in economic diversity and hence benefit regional development.

More specifically, Chapter 2 evaluates the relationship between economic diversity and

economic instability across four geographical scales—including counties, states, MSAs and

EAs. Based on the empirical results in this chapter, geographical scales are found to greatly

impact our understanding of the empirical relationship between economic diversity and

economic stability. Although scale-related problems can be study dependent, functional re-

gions rather than formal regions are recommended to approach regional economic systems.

Equally important is region size because regions should be large enough in terms of popu-

lation and employment to quantify meaningful economic structures. In addition, possible

temporal variations in the boundaries of functional regions should also be considered.
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Chapter 3 develops an alternative measure of economic structure that can interpret

economic diversity as the presence of multiple specializations. When comparing with other

measures, this measure considers the impact of industries that only serve local demands and

also excludes these industries as the candidates for economic clusters. Moreover, the em-

pirical results in this chapter suggest that both industry and cluster diversity contribute to

long-term economic stability, while only cluster diversity stimulates short-term employment

growth. In that sense, this chapter confirms that one region can simultaneously pursue a

high and stable growth by developing diversified specializations.

Chapter 4 employs a BMA method to consider model certainty resulting from the set of

control variables as well as the choice of an appropriate spatial weight matrix. The results of

the BMA procedure are used to assess the relationship between economic diversity (including

both industrial and cluster diversity introduced in Chapter 3) and economic performance.

The empirical evidence indicates that ignoring model uncertainty can influence the effect of

diversity on regional economic performance. For this reason, considering model uncertainty

can improve our understanding of economic diversity and thus benefit development policies.

Methodologically, although Chapters 2-4 use spatial econometric techniques for model

specification and comparison1, there are nuances among the spatial regression models em-

ployed in these chapters. More specifically, Chapter 2 relies on maximum likelihood meth-

ods, whereas Chapter 3 uses Bayesian spatial economic models. Both of these two chapters

consider the spatial dependence in the diversity-performance relationship. In addition to

this spatial dependence, Chapter 4 further introduces a heteroscedastic error term in its

modeling method; that means, both spatial dependence and spatial heterogeneity (Anselin,

1988) are considered within the diversity-performance relationship.

Taken together, as illustrated in Chapter 4, the improvements of geographical scales,

structural measurements, and modeling methods are not mutually exclusive. Henceforth,

to better understand the effect of economic diversity on regional economic performance,

it is suggested to consider scale-related issues, diversity of clusters, and model uncertainty

simultaneously.

1According to LeSage and Pace (2009, p. 126), spatial econometric modeling can also be used for “esti-
mation and inference about parameters” and “prediction of an out-of-sample set of observations.”
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5.2 Future Research Directions

Moving beyond the empirical inconsistency addressed in this dissertation, future economic

structure research can consider these three directions.

First, given that a large volume of empirical research across multiple branches of social

sciences (including economic structure research) considers spatial dependence and spatial

heterogeneity of economic activities, future economic structure research should consider how

this spatial form takes place from an analytical standpoint and, what we should do with the

spatial spillovers in the perspective of public policy. In this dissertation, it is suggested to

pay explicit attention to the geographical scale issue of economic activities when applying

the cross-fertilization of spatial statistics and spatial economics. Analytically, this issue is

inherent in the area analysis (or regional) tradition in geography (Pattison, 1964) that deals

with such questions as determining the spatial extent and boundaries of regions. The issue

of geographical scales raised in Jackson (1984) and Malizia and Ke (1993) and emphasized

in this dissertation is a step in which to delineate regional economic systems and shed

light on the underlying spatial process of economic activities. This emphasis on process is

expected to continue and will benefit our understanding in economic structure and regional

development policies as well.

Second, future research can explore different aspects of regional economic structure and

thus strengthen our understanding in an eclectic manner2. Historically, economic structure

research has focused on the Growth Pole (Perroux, 1950), economic base theory (Tiebout,

1956), industrial districts (Isard, 1956), key sectors (Schultz, 1977; Hewings, 1982), in-

dustrial complexes (ÓhUallacháin, 1984), industry clusters (Porter, 2003; Delgado et al.,

2016), economic diversity (Conroy, 1975; Jackson, 1984; Malizia and Ke, 1993; Deller and

Watson, 2016a,b), and related and unrelated variety (Frenken et al., 2007; Content and

Frenken, 2016), all of which can diversify our understanding of economic structure and

benefit regional development. Hence, future regional economic development should benefit

from diverse aspects of economic structure with more granularity and nuance being explored

and exploited by both researchers and practitioners.

2Interestingly, analyzing one region’s economic structure can reflect the locational tradition of geography
which relates to in-depth analyses of a place for certain phenomena or activities (Pattison, 1964).
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Third, a major limitation of this dissertation research is that it has not addressed the role

of time and has only focused on cross-sectional data, given a growing interest in the inclusion

of temporal variations of economic structure (e.g. Izraeli and Murphy, 2003; Chiang, 2009;

Neffke et al., 2011; Watson and Deller, 2017). For example, Watson and Deller (2017) found

that the spatial spillover effect of diversity on unemployment is only significant at the height

of the Great Recession using multiple cross-sectional analyses; that is to say, the spatial

effect varies temporally. Likewise, Neffke et al. (2011) suggested that young and mature

industries have different diversity needs (i.e., MAR or Jacob’s externalities).

Broadly speaking, to stress the importance of time and space in social science research,

Goodchild et al. (2000, p. 142) indicated that “space provides the framework for the integra-

tion of different social processes and, hence, different domains of social science. Reductionist

traditions in science have led to our current arrangements in which different classes of pro-

cesses are studied largely in isolation, in distinct disciplines, and often without specific

attention to space and time. In the real world, these separate processes interact in a spa-

tiotemporal context. New tools and data sources now allow treatment of the more general

case.” In the field of economic structure research, Krugman (1991a) also emphasized the

role of path dependence in deciding the process of clustering; that is to say, history matters

in shaping regional economic structure. Empirically, the temporal variations of economic

structures are expected to provide additional insights besides simple cross-sectional analy-

sis. Goodchild (2004, p. 172) further suggested that the spatial “process is much easier to

infer from longitudinal data, with its representation of the sequence of events, than from

cross-sectional data.” Therefore, it is suggested to put economic structure research into a

spatiotemporal context. Nevertheless, from a practical perspective, with the development

of spatial statistics and spatial econometrics, collecting, representing, and analyzing such

a large volume of spatiotemporal data sets at a fine industry level will be a longstanding

research agenda for governments, institutions, and industries.
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