
Graduate Theses, Dissertations, and Problem Reports

2007

State minimization problems in finite state automata State minimization problems in finite state automata

Chris Tauras
West Virginia University

Follow this and additional works at: https://researchrepository.wvu.edu/etd

Recommended Citation Recommended Citation
Tauras, Chris, "State minimization problems in finite state automata" (2007). Graduate Theses,
Dissertations, and Problem Reports. 2541.
https://researchrepository.wvu.edu/etd/2541

This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research
Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license
in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses,
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU.
For more information, please contact researchrepository@mail.wvu.edu.

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F2541&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/2541?utm_source=researchrepository.wvu.edu%2Fetd%2F2541&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu

State Minimization Problems in Finite State

Automata

by

Chris Tauras

Thesis submitted to the
College of Engineering and Mineral Resources

at West Virginia University
in partial fulfillment of the requirements

for the degree of

Master of Science
in

Computer Science

K. Subramani, Ph.D., Chair
A. Ross, Ph.D.
B. Cukic, Ph.D.

Lane Department of Computer Science and Electrical Engineering

Morgantown, West Virginia
2007

Keywords: Finite Automata, State Minimization

Copyright 2007 Chris Tauras

Abstract

State Minimization Problems in Finite State Automata

by

Chris Tauras
Master of Science in Computer Science

West Virginia University

K. Subramani, Ph.D., Chair

In this thesis, we analyze the problem of state minimization in 2-MDFAs. The class of
2-MDFAs is an extension of the class of DFAs, allowing a small amount of nondeterminism;
specifically two start states. Since nondeterminism allows finite automata to be more succinct,
it is worthwhile to investigate the problem of minimizing such finite automata. In the case of
unbounded non- determinism, i.e., NFAs, such automata can be exponentially more succinct
than DFAs [1], but the corresponding minimization problem is PSPACE-complete [2]. Even in
the case of 2-MDFAs, which are only polynomially more succinct than DFAs, the minimization
problem remains non-trivial; indeed, [3] shows that the corresponding decision problem is NP-
complete. We are concerned with the approximability of the 2-MDFA minimization problem.
Our main contribution in the current work is the design of an n-factor approximation algorithm
for state minimization in 2-MDFAs.

1

Chapter 1

Introduction

Finite Automata (FAs) are used in many applications such as lexical analysis, parsing, and

hashing. As acceptance of a particuliar string can be easily tested in polynomial time, it is

desirable to represent the finite automata using the minimum amount of space. A regular lan-

guage can be represented as a Deterministic Finite Automaton (DFA), a Multiple Start State

DFA (MDFA) or as a Non-deterministic Finite Automaton (NFA). While each type of finite

automaton represents exactly the class of regular languages, their relative succinctness and the

complexities of their minimization problems vary greatly. NFAs can be exponentially more

succinct than DFAs [1], but the corresponding minimization problem is PSPACE-complete [2],

in contrast to polynomial-time [4]. MDFAs represent an interesting type of finite automata that

have recently received much attention in the literature. These FAs have a limited amounted of

non-determinism in that there are multiple start states; however, there is precisely one target

state for each state on a given input. Even this small amount of nondeterminism in2-MDFAs is

enough to result in a hard minimiztion problem; in particuliar, the problem of state minimiza-

tion is NP-complete for 2-MDFAs. [3]. Unlike general NFAs, which can be exponentially

more succinct than DFAs [1],2-MDFAs are only quadratically more succinct than DFAs (See

Section 4). Inasmuch as the state minimization problem in2-MDFAs is inNP, it is worthwhile

to ask whether there exists a polynomial time bounded-error approximation algorithm for this

problem. We answer this question in the affirmative, by presenting and analyzing a linear factor

approximation algorithm for the same.

The rest of this thesis is organized as follows: Section 2 contains a formal description of

the state minimization problem in2-MDFAs. Section 3 describes the motivation for our work

as well as related approaches in the literature. Section 4 describes ann-approximation algo-

CHAPTER 1. INTRODUCTION 2

rithm for the state minimization problem in2-MDFAs; as part of the analysis, an algorithm is

described for converting a2-MDFA into a DFA. This section also includes a detailed analy-

sis of the approximation bound. In Section 5, a number of problems are proposed, which are

related to the2-MDFA state minimization problem and provide motivation for the same. Sec-

tion 6 provides a detailed implementation profile of our algorithm over a wide range of inputs.

We conclude in Section 7 by summarizing the main results and detailing problems for future

research.

3

Chapter 2

Statement of Problem

Formally, a2-MDFA M is defined by the6-tuple〈QM , Σ, δM , q0M
s , q1M

s , FM〉, in which:

(a) QM denotes the set of states.|QM | denotes thestate complexityof M .

(b) Σ is the input alphabet. Without loss of generality, it is assumed that the alphabetΣ =

{0, 1} for all the finite automata discussed in the remainder of this thesis.

(c) δM is the transition function that maps each pair〈q, a〉 ∈ QM × Σ to a stateq ∈ QM , i.e.,

δ : QM × Σ → QM .

(d) q0M
s andq1M

s are the two start states.

(e) FM is the set of final states.

Figure 2.1 shows an example of a2-MDFA. It accepts the language(01)∗0 ∪ (10)∗1 ∪
(01)∗00(01)∗.

0

0

0

1

1

Figure 2.1: An example2-MDFA M0 = Ms

CHAPTER 2. STATEMENT OF PROBLEM 4

As with DFAs, we extendδ to δ̂, whereδ̂ is a function mapping tuples of states and strings

to states. Formally,̂δ : QM × Σ∗ → QM is defined recursively as follows:

(a) ∀q ∈ QM , δ̂(q, ε) = q.

(b) ∀〈q, a, w〉 ∈ QM × Σ × Σ∗, δ̂(q, wa) = δ(δ̂(q, w), a).

Definition 2.1 A stringx ∈ Σ∗ is said to beacceptedby the2-MDFA M , if and only if

({δ̂(q0M
s , x)} ∪ {δ̂(q1M

s , x)}) ∩ FM 6= φ.

Definition 2.2 Thelanguageof a2-MDFAM , denoted byL(M), is the set of all stringsx ∈ Σ∗

which are accepted byM .

Given a2-MDFA M = 〈QM , Σ, δM , q0M
s , q1M

s , FM〉, we defineL(q0M
s) to be the set of of

stringsx ∈ Σ∗, such that{δ̂M(q0M
s , x)} ∩FM 6= φ. In other words,L(q0M

s) is the set of strings

that are accepted byM , under the provision that the start state isq0M
s . The languageL(q1M

s) is

analogously defined. It is not hard to see thatL(M) = L(q0M
s) ∪ L(q1M

s).

Definition 2.3 Two2-MDFAsM1 andM2 areequivalentif and only ifL(M1) = L(M2).

Definition 2.4 An ε-NFA is a nondeterministic finite automaton that has the additional ability

to transition without consuming the next input character. These spontaneous transitions are

known asε-transitions. The addition of this ability does not allow acceptance of any non-

regular languages.

Regardless of the type of automatonM under consideration, we useL(M) to denote the

language represented by that automaton and the phrasestate complexityto denote the number

of statesQM .

Now that all the necessary preliminaries are covered, the problem may now be formally

stated:

P1: Given a2-MDFA M1 = 〈QM1 , Σ, δM1 , q
0M1
s , q1M1

s , FM1〉 and a numberK, is there a

2-MDFA M2 = 〈QM2 , Σ, δM2 , q
0M2
s , q1M2

s , FM2〉, such thatL(M1) = L(M2) and|QM2| ≤ K?

5

Chapter 3

Motivation and Related Work

The motivation for the study of finite automata comes from many applications, including

lexical analysis, hashing, pattern matching, and, of course, the syntax of programming lan-

guages [5]. In the case of lexical analysis, compilers for high-level languages, such as Fortran

or C, often implement a finite automaton for the lexical analysis for their first pass. Such a finite

automaton may possess hundreds or even thousands of states. The large number of states that

are potentially used translates to a large amount of memory required by the compiler. There-

fore, a method for reducing the number of states would be beneficial in saving space, reducing

the cost of implementation. In the case of hashing, the data to be hashed is given as an input

to a hashing DFA. The state that the DFA is in, at the end of the string, is the hash value. One

way to use a2-MDFA instead of a DFA for hashing is to use a pair of states after computation,

say one state for the high bits and one for the low bits, instead of a single state for the complete

value (For instance, see Figure 3.1). The implementation of a2-MDFA would allow a more

complex automaton to be implemented while simultaneously reducing the space requirements.

In the case of pattern matching, when strings are concerned, regular expressions are often used

to define the desired pattern to match or to search for. On the account of the connection be-

tween regular expressions and finite automata, algorithms to do this often make use of finite

automata to perform the search or match operation, such as in [6] and [7]. It should be noted

that automata with more states require more space to implement, so it is desirable to reduce the

number of states needed.

The problem of state minimization has been studied extensively in a number of different

types of finite automata. It is well-known that the problem of minimizing DFAs is solvable in

polynomial time [4], whereas the problem of minimizing NFAs isPSPACE-complete [2].

CHAPTER 3. MOTIVATION AND RELATED WORK 6

1
110

101

001

111

011

100

010

0, 1

0 1

0, 1

0, 1

1

0
0, 1

Figure 3.1: Using finite automata in hashing

In an effort to determine how much nondeterminism can be permitted in finite automata while

keeping the state minimization problem easy, several classes of finite automata with limited

nondeterminism have been studied. Unambiguous Finite State Automata (UFAs) form one

such class; for any input string, there is never more than one accepting path. The problem of

minimizing the number of states in a UFA has been shown to beNP-complete [1], as well as

converting a DFA to a minimal UFA [8]. In [3], the complexity of state minimization problems

in k-MDFAs was investigated and shown to beNP-complete for k ≥ 2, wherek denotes

the number of distinct start states in the MDFA. We focus on the problem on minimizing

the number of states in a2-MDFA, with a view towards obtaining non-trivial approximation

bounds; additionally, the the degree of succinctness of2-MDFAs is explored. The complexity

inherent in representing regular languages succinctly has been studied in [9, 10] and [11]. [12]

relates the type of ambiguity of finite automata to the succinctness of their representation.

We thus see that determining succinct (minimal) representations of languages is of enormous

interest to the Automata Theory community.

The difficulty of dealing withNP-Hard optimization problems can be mitigated to some

extent by devising efficient approximation algorithms [13]. Basically, a polynomial time ap-

proximation algorithm for an optimization (minimization) problem delivers an output in poly-

nomial time, but with a certain loss of accuracy. Such algorithms are useful in applications

in which accuracy can be sacrificed to some extent, if the output is computed quickly. The

relevance of these algorithms and their practical impact are discussed at length in [13].

Definition 3.1 Let Π denote a minimization problem, and letOPT denote an optimal algo-

rithm for the same. For an arbitrary instanceI ∈ Π, OPT (I) refers to the output of OPT. Let

CHAPTER 3. MOTIVATION AND RELATED WORK 7

A denote an algorithm forΠ, withA(I) denoting the output of algorithmA on an arbitrary

instanceI ∈ Π. A is said to be a polynomial time approximation algorithm forΠ, if:

(a) A runs in polynomial time.

(b) For all instancesI ∈ Π,A(I) ≤ c ·OPT (I), wherec is called the factor of approximation.

Provided that the above conditions are met, algorithmA is said to be ac-factor approxima-

tion algorithmfor the problemΠ.

The analysis of an approximation algorithm typically proceeds in two steps. First it is

shown that for all instancesI ∈ Π, A(I) ≤ c1; then it is shown that for all instancesI ∈
Π, OPT (I) ≥ c2. From these two proofs, we can conclude that for all instancesI ∈ Π,

A(I) ≤ c1
c2
·OPT (I). It is important to note that our analysis is significantly different from the

traditional analyses of approximation algorithms.

Within the field of Automata theory, there has been no active effort to study approximation

algorithms as a tool; indeed we could find only one result [14], and that result was concerned

with the inapproximabilityof the Minimum Consistent Finite Automaton problem [15].

Our work establishes that there exists ann-factor approximation algorithm for problemP1,

wheren denotes the minimum number of states required to represent the input language as a

2-MDFA.

8

Chapter 4

Algorithm and Analysis

We shall now present our algorithm for approximating the minimum number of states re-

quired to represent the input language as a2-MDFA. At the heart of our algorithm is a proce-

dure that converts a2-MDFA into a DFA. We shall argue that the conversion results in only a

quadratic increase in the number of states; this is in contrast to the procedure which converts

an NFA into a DFA, in which the state blowup could be exponential.

Our algorithm proceeds as follows: First, the input2-MDFA M0 is pruned; the pruning

procedure consists of eliminating redundant and unreachable states. The details of the proce-

dure are described in SHRINK-2MDFA() (Algorithm 4.3). The resultant2-MDFA Ms is then

converted into anε-NFA M ′
1. Subsequently,M ′

1 is converted into an NFAM2 and then into a

DFA M3. This is followed byM3 being minimized to obtainM4. Finally, we return eitherMs

or M4, depending on which of the two has smaller state complexity.

0

0

0

1

1

ε

ε

Figure 4.1:M ′
1

CHAPTER 4. ALGORITHM AND ANALYSIS 9

0

0

0

1

1

0

1

Figure 4.2:M2 = M3 = M4

Function M INIMIZE (M0 = 〈QM0 , Σ, δM0 , q
0M0
s , q1M0

s , FM0〉)
1: Let Ms (〈QMs , Σ, δMs , q

0Ms
s , q

1Ms,FMs
s 〉) = SHRINK-2MDFA(M0).

2: Let M ′
1 (〈QM ′

1
, Σ, δM ′

1
, q

M ′
1

s , FM ′
1
〉) = MAKE-ε-NFA(Ms)

3: Compute theε-closure ofq
M ′

1
s to convertM ′

1 into an NFAM2 (〈QM2 , Σ, δM2 , q
M2
s , FM2〉).

4: ConvertM2 into a DFAM3 (〈QM3 , Σ, δM3 , q
M3
s , FM3〉).

5: MinimizeM3 to getM4 (〈QM4 , Σ, δM4 , q
M4
s , FM4〉), using the DFA minimization algorithm

in [16].
6: if (|QM4| ≤ |QMs |) then
7: return Mout (〈QMout , Σ, δMout , q

Mout
s , FMout〉) = M4.

8: else
9: return Mout (〈QMout , Σ, δMout , q

0Mout
s , q1Mout

s , FMout〉) = Ms.
10: end if

Algorithm 4.1: 2-MDFA Minimization

Function MAKE-ε-NFA (Ms = 〈QMs , Σ, δMs , q
0Ms
s , q1Ms

s , FMs〉)
1: Insert a new start stateqMs

s into Ms.
2: Insertε-transitions fromqMs

s to q0Ms
s andq1Ms

s .
3: {q0Ms

s andq1Ms
s are no longer start states.}

4: return Ms

Algorithm 4.2: Conversion toε-NFA

CHAPTER 4. ALGORITHM AND ANALYSIS 10

The purpose of the SHRINK-2MDFA() function is to eliminate useless states from the

input2-MDFA.

Definition 4.1 Two statesp andq are said to be equivalent in a finite automatonM , if, for all

stringsw ∈ Σ∗, δ̂M(p, w) leads to an accepting state inM if and only if δ̂M(q, w) does.

Any pair of equivalent statesp andq may be merged without affecting the language of the

finite automatonM in question. This is because the remainder of the input stringw will either

be accepted by both states or be rejected by both states.

Definition 4.2 A statep in a 2-MDFA M0 is said to bereachableif there is a directed path from

eitherq0M0
s or q1M0

s to p in the directed graph representingM0.

A state which is not reachable from either start state is calledunreachable. Clearly, such

states cannot possibly be part of the computational path for any input string, so the language of

the2-MDFA in question will not change if such states are removed.

Function SHRINK-2MDFA (M0 = 〈QM0 , Σ, δM0 , q
0M0
s , q1M0

s , FM0〉)
1: Let M1 denote a copy ofM0

2: Replace each block of equivalent states with a single state, using the algorithm in [16].
3: Delete all unreachable states fromM1.
4: return M1.

Algorithm 4.3: Shrinking a2-MDFA

For instance, let the2-MDFA represented by Figure 2.1 be the inputM0 to Algorithm 4.2.

SinceM0 has no pairs of equivalent states and no unreachable states, the pruning procedure

does not alter it andMs = M0. Figure 4.1 displays the2-MDFA after it has been converted

to anε-NFA M ′
1. M ′

1 is then converted to the NFAM2 as shown in Figure 4.2. It so happens

thatM2 is already in minimized DFA form, and, therefore, no further work needs to be done.

Finally, Ms has fewer states thanM4 and, hence,Ms is returned by Algorithm 4.2.

Observation 4.1Consider the NFAM2 = 〈QM2 , Σ, δM2 , q
M2
s FM2〉 in Line 4 of Algorithm 4.1.

Observe that converting theε-NFA M ′
1 to an NFAM2 involves the following steps: Compute

theε-closureS of q
M ′

1
s ; observe thatS containsq

M ′
1

s and the two states, sayqr andqt, to which

M ′
1 can move fromq

M ′
1

s on ε-transitions. Thus, it is clear that|S| = 3. q
M ′

1
s is replaced with

a new start stateqM2
s . For each symbola ∈ Σ, we setδ(qM2

s , a) = δ(q
M ′

1
r , a) ∪ δ(q

M ′
1

t , a).

CHAPTER 4. ALGORITHM AND ANALYSIS 11

The remaining states and transitions are identical inM ′
1 andM2. Note that this construction

exploits the special structure ofM ′
1. For any symbola ∈ Σ, we observe that|δM2(q

M2
s , a)| ≤ 2,

whereas, for all other statesq ∈ QM2, |δM2(q, a)| ≤ 1. In other words, the non-determinism of

M2 is limited to the first move.

Observation 4.2There does not exist a directed path from any state in theε-NFA M ′
1 to the

start stateq
M ′

1
s . Therefore, it follows that the start stateqM2

s of M2 is not reachable from any

other state inM2.

Lemma 4.1For any stringx ∈ Σ∗, |δ̂M2(q
M2
s , x)| ≤ 2.

Proof. We prove Lemma 4.1 by using induction on the length of the input stringx.

BASE CASE: |x| = 0 and, hence,x = ε. Sincex = ε, it follows thatM2 does not make any

move and stays in the start state. In other words,|δ̂M2(q
M2
s , x)| = 1 ≤ 2.

INDUCTIVE STEP: Assume that|δ̂M2(q
M2
s , y)| ≤ 2 wheneverM2 is presented with a string

y such that|y| ≤ n − 1. Now consider a string,x = wa, with |x| = n, |w| = n − 1 and

a ∈ Σ. Let us defineQδ = δ̂M2(q
M2
s , w). As per the inductive hypothesis,|Qδ| ≤ 2. Without

loss of generality, let us assume thatQδ consists of exactly two states, sayqu andqv. Note

that transitions out ofqu andqv are deterministic, i.e.|δ̂M2(qu, a)| = 1 and|δ̂M2(qv, a)| = 1.

Therefore,|δ̂M2(q
M2
s , x)| = |Qδ| ≤ 2, and the claim follows.2

Lemma 4.2The number of states inM3 is O(|QMs |2).

Proof. Note that the general algorithm for converting an NFA to a DFA enumerates all possible

subsets of states in which the NFA can exist. In general, there is an exponential number of

subsets to enumerate. However, in this case, the NFAM2 can exist in at most two states after

reading an input string; consequently, the conversion algorithm need only enumerate those

subsets that contain no more than two states. Hence, the number of states that need to be

enumerated isO(|Qs|2), which also represents the state complexity ofM3. 2

Theorem 4.1Algorithm 4.1 runs in time polynomial in the size of its input.

Proof. Each step of Function MINIMIZE () can be implemented to run in time that is polynomial

in the size of the input. It is resonable to consider the number of states of the input2-MDFA

the “size”n of the input. Although the representation of each state technically needsO(log n)

CHAPTER 4. ALGORITHM AND ANALYSIS 12

bits, and although the transition function needs to be included in the input, these things would

only result in an input size ofO(n2 log n) bits, so, for simplicity, these things may be ignored.

Line 1 involves eliminating blocks of equivalent states and can be implemented inO(n3)

time, as per the algorithm in [16]. The conversion ofMs into anε-NFA M ′
1 is a constant time

operation with the addition of one state; likewise, as discussed above, the conversion ofM ′
1

into an NFAM2 is a constant time operation. Line4 involves the conversion of the NFAM2

into a DFAM3; since we have to enumerate state pairs only, this operation can be implemented

in O(n3) time. Note thatM3 hasO(n2) states; it follows that the DFA minimization procedure

in Line 5 can be implemented in timeO(n6) time [16].

Thus, Algorithm 4.1 can be implemented in time that is polynomial in the size of its input.

2

Theorem 4.2Let L(M0) denote the regular language represented by the input2-MDFA M0

and letn = |QM4| denote the number of states in the minimized2-MDFA M4 (See Algorithm

4.1). The optimal2-MDFA for M1, i.e., the2-MDFA with the fewest number of states repre-

sentingL(M0), must haveΩ(n
1
2) states.

Proof. Let SEM0 denote the set of all2-MDFAs that are equivalent to the input2-MDFA M0.

The minimum state DFA corresponding to a given languageL(M0) is unique [16]; accordingly,

regardless of the2-MDFA in SEM0 that is presented as input to Algorithm 4.1, the number of

states in the minimized DFAM4 is the same. LetMopt = 〈QMopt , Σ, δMopt , q
0Mopt
s , q1Mopt

s , FMopt〉
denote the optimal2-MDFA corresponding toL(M0) Clearly,Mopt ∈ SEM0; further,|Qopt| ≤
|QMr |, ∀Mr ∈ SEM0. Let us focus on the situation in whichMopt is presented to Algorithm

4.1. The correspondingM4 would be no larger thanO(|QMopt|2) as per the discussion above.

ButM4 and, therefore,|QM4| are the same for all2-MDFAs Mr ∈ SEM0 ; note that this includes

M0. Therefore, it follows that the output of Algorithm 4.1 on inputM0 has at mostO(|QMopt|2)
states. In other words, if the output of Algorithm 4.1 on an input hasn states, then the optimal

2-MDFA for this instance hasΩ(n
1
2) states.2

Corollary 4.1 Algorithm 4.1 is a linear factor approximation algorithm, where the linear fac-

tor refers to the size of the optimal2-MDFA.

Proof. From Theorem 4.2 and the discussion in Section 3, it is clear that the output produced

by Algorithm 4.1 is off by at most a linear factor from the optimum; in other words, if the state

CHAPTER 4. ALGORITHM AND ANALYSIS 13

complexity ofMopt is p, then the state complexity ofMopt, i.e., the automaton that is output by

Algorithm 4.1, is at mostp2. The claim follows.2

The following theorem will show that the linear factor bound is tight for Algorithm 4.1; thus

any improvement in the approximation bound will require the development of new techniques.

Theorem 4.3There exists a2-MDFA M0 such that the optimal2-MDFA for L(M0) has state

complexityp, while the output of Algorithm 4.1 onM0 has state complexityp2.

Proof. Let Md1 = 〈QMd1
, Σ, δMd1

, qMd1
s , FMd1

〉 andMd2 = 〈QMd2
, Σ, δMd2

, qMd2
s , FMd2

〉 denote

two minimal DFAs representing the languagesL(Md1) andL(Md2) respectively, such that:

(a) The minimal DFAMd3 = 〈QMd3
, Σ, δMd3

, qMd3
s , FMd3

〉 representing the language

L(Md1) ∪ L(Md2) has state complexityΘ(|QMd1
| · |QMd2

|).

(b) |QMd1
| = Θ(|QMd2

|).

It is well-known that such languages exist; for instance, see [9], where the properties of such

languages are discussed. The minimal2-MDFA for the languageL(Md3) clearly has state com-

plexityO(|QMd1
|). However, we can construct a2-MDFA M0 = 〈QM0 , Σ, δM0 , q

0M0
s , q1M0

s , FM0〉
with the following properties:

(i) L(q0M0
s) = L(Md3).

(ii) L(q1M0
s) = ε.

Note thatL(M0) = L(q0M0
s)∪L(q0M0

s) = L(Md3). Secondly, the DFA with start stateq0M0
s

has a transition function which is identical to the transition function of the DFAMd3, i.e., the

state complexity ofM0 is Θ(|QMd1
| · |QMd2

|) = Θ(|QMd1
|2).

Accordingly, the SHRINK-2MDFA() procedure leavesM0 unaltered, and the DFA mini-

mization procedure returns a DFA withΘ(|QMd1
|2|) states. Since both procedures return a2-

MDFA with Θ(|QMd1
|2|) states, Algorithm 4.1 necessarily returns a2-MDFA with Θ(|QMd1

|2|)
states. However, the optimal2-MDFA for the languageL(Md3) hasO(|QMd1

|) states, and the

theorem follows.2

The next theorem shows that Algorithm 4.1 is optimal in certain cases.

CHAPTER 4. ALGORITHM AND ANALYSIS 14

Theorem 4.4There exists a regular languageL0, such that Algorithm 4.1 computes the opti-

mal

2-MDFA when presented with any input2-MDFA that acceptsL0.

Proof. LetL0 = Σ∗. The optimal DFA forL0 has precisely one state. Since this DFA is unique,

the state complexity of the automaton returned by Algorithm 4.1 is always1, regardless of the

state complexity of the2-MDFA that is used to representL0. 2

We make the following observations about Algorithm 4.1:

(1) The state complexity of the output of Algorithm 4.1 (Mout) is never greater than the state

complexity of its input (M0). Note that the SHRINK-2MDFA() procedure does not in-

crease state complexity and, hence,|Qs| ≤ |Q0|. Algorithm 4.1 returns eitherMs or the

minimized DFAM4 depending on which automaton has smaller state complexity.

(2) It follows that Algorithm 4.1 is optimal when the minimal2-MDFA is given as the input.

From the empirical perspective (see Section 6), it appears that for a given2-MDFA M0, the

SHRINK-2MDFA() procedure returns a better quality of approximation than the DFA min-

imization procedure. This suggests that by merely computingMs, a good approximation is

generally obtained; however, the following lemma proves that this is not true in general.

Lemma 4.3As an approximation to the optimal2-MDFA, the state complexity of the output of

theSHRINK-2MDFA() procedure is arbitrarily bad.

Proof. Let M0 denote a2-MDFA, with L(q0M0
s) representing an arbitrary language with an

arbitrary DFA state complexitym. Let L(q1M0
s) = Σ∗. Note that the minimal2-MDFA for

M0 has only one state that transitions to itself on all stringsx ∈ Σ∗. WhenMs is computed

from M0 using the SHRINK-2MDFA() procedure, the language of the2-MDFA start states

is not redefined, and, hence,L(q0M0
s) andL(q1M0

s) remain the same. Therefore,Ms has state

complexityΘ(m), which is arbitrarily bad as an approximation.2

The principal drawback of the SHRINK-2MDFA() procedure is that it does not alter the lan-

guages of the individual start states.

15

Chapter 5

Related Problems

In this section, we discuss a number of problems related to2-MDFA minimization. While

pertinent to the main problem discussed in this thesis, these state optimization problems are

also interesting in their own right.

We first consider the problem of reducing the states in a DFA by converting it into a2-

MDFA and establish its complexity.

Lemma 5.1There exists no polynomial time algorithm for the problem of converting a DFA

Md to a minimal2-MDFA Mt, unlessP = NP.

Proof. Assume that there exists an algorithmA, that takes as input an arbitrary DFAM0 and

returns the optimal state state2-MDFA, representingL(M0) in polynomial time. We can useA
to obtain a polynomial time algorithm for the2-MDFA state minimization problem as follows:

Given an arbitrary2-MDFA M1, convert it into a DFAMd1 in polynomial time (as discussed in

Section 4), and then provide it as input to AlgorithmA to compute the optimal state2-MDFA

for the same language. However, this would mean thatP = NP, since the2-MDFA minimiza-

tion problem isNP-complete . 2

We now consider the Optimal Splitting and Optimal Merging problems.

(a) Optimal Splitting: Assume that we are given a DFAM0, which is the minimal DFA for

the languageL(M0) and a numberK. TheOptimal Splitting Problemis concerned with

splittingL(M0) into two languagesL(M1) andL(M2), represented by minimal DFAsM1

andM2 respectively, such that|QM1 + |QM2| ≤ K. This problem is neither known to

CHAPTER 5. RELATED PROBLEMS 16

beNP-complete nor known to have a constant factor approximation. The optimal split

numbersplitM0 for a given minimal DFAM0 is the smallest value ofK such thatL(M0)

can be split into two distinct languages,L1 andL2.

(b) Optimal Pairing: Assume that we are given two DFAs,M1 andM2, representing the lan-

guagesL(M1) andL(M2), respectively, and a numberK. In theOptimal Pairing Problem,

the goal is to find two new DFA’sM ′
1 andM ′

2 such that:

(a) L(M1) = L(M ′
1).

(b) L(M2) = L(M ′
2).

(c) When equivalent states are merged acrossM ′
1 andM ′

2, the total number of states in the

resultant2-MDFA is at mostK.

It is important to note that minimizingM1 andM2 does not necessarily provide the optimal

solution. This is because the sub-optimal DFAs of two languages may have more states in

common than their corresponding minimal versions.

17

Chapter 6

Implementation Results

In this section, we discuss our empirical observations on the effectiveness of Algorithm 4.1

from the perspective of2-MDFA minimization.

6.1 Experimental Setup

2-MDFAs were represented as graph data structures; for instance, see [17]. For the sake of

uniformity in the comparions, all automata had exactly200 states in our experiments. There

were two probabilities associated with each2-MDFA instance:

(i) Thefinality probability, Pf - Attached to each state of the automaton, this measure repre-

sents the probability that the state is a final state.

(ii) The transition probability, Pt - This measure represents the probability that a given tran-

sition from a state exists. For instance, if it is determined that there exists a transition on

input0 from a given state, then the said transition is equally likely to move the automaton

from the given state to any state other than the dead state. If it is determined that no

transition exists from a given state on a given input, then a transition to the dead state is

inserted.

In our experiments, we generated three types of2-MDFA instances: dense automata, sparse

automata, and intermediate automata. Dense automata were generated withPt = 1 andPf =

1
2
; sparse automata were generated withPt = 1

2
andPf = 1

2
; and, finally, intermediate automata

were generated withPt = 4
5

andPf = 1
2
. Random instances of2-MDFAs were generated using

CHAPTER 6. IMPLEMENTATION RESULTS 18

|QM0| (input) |QMs | |QM4| |QMout| (output)

200 154 7533 154

200 170 10178 170

200 161 9152 161

200 164 9396 164

200 152 7670 152

200 148 7866 148

200 168 9895 168

200 163 8440 163

200 158 8613 158

200 159 7090 159

Table 6.1: Implementation profile over dense automata

both a linear congruential generator (LCG) and an inversive congruential generator (ICG). For

each class of2-MDFAs, the first five results were obtained with the LCG, and the remaining

five were obtained using the ICG. The lack of discrepancy between the results from the two

generators allows us to gain confidence that these generators are indeed a good approximation

of true randomness, at least as far as these results are concerned.

6.2 Observations on Dense Automata

For our first test, we generated random instances of dense automata; i.e. automata that have

a high expected number of transitions. In each instance, the pruning procedure was much more

effective than the DFA conversion; in particular, the pruning procedure produced automata

with at most170 states, whereas the DFA minimization can easily produce automata with over

10000 states (see Table 6.1). As opposed to the standard representation of a regular language

(a minimal DFA), Algorithm 4.1 produces a much smaller output.

CHAPTER 6. IMPLEMENTATION RESULTS 19

|QM0| (input) |QMs | |QM4| |QMout| (output)

200 2 2 2

200 25 24 24

200 15 15 15

200 2 2 2

200 2 2 2

200 5 5 5

200 16 16 16

200 40 41 40

200 15 15 15

200 4 3 3

Table 6.2: Implementation profile over sparse automata

6.3 Observations on Sparse Automata

For our second test, we generated random instances of sparse automata; i.e. automata that

have a very low expected number of transitions. In this case, the pruning procedure and the

DFA conversion procedure were almost exactly equal; neither was significantly better than

the other (see Table 6.2). Although, in this case Algorithm 4.1 is no better than the standard

representation of a regular language (a minimal DFA), it is at least no worse.

6.4 Observations on Intermediate Automata

For our third test, we generated random instances of intermediate automata; in this case,

the expected number of transitions was between that of the dense and sparse automata. The

intent of this was to generate some cases in which the pruning procedure is somewhat better but

not strikingly better than the DFA conversion procedure. Instead, a more interesting result was

obtained: either the pruning procedure was much better then the DFA conversion procedure or

it was not significantly better than the DFA minimization procedure (see Table 6.3). It is curious

that the anticipated result of the pruning procedure being somewhat superior was not obtained

in any run. However, the pruning procedure was more effective overall, and Algorithm 4.1,

CHAPTER 6. IMPLEMENTATION RESULTS 20

|QM0| (input) |QMs | |QM4| |QMout| (output)

200 129 2806 129

200 136 137 136

200 97 1132 97

200 104 1692 104

200 122 123 122

200 117 2378 117

200 131 137 131

200 114 2099 114

200 149 6002 149

200 109 1690 109

Table 6.3: Implementation profile over intermediate automata

in many cases, produces a much smaller output than the standard representation of a regular

languge (a minimal DFA).

21

Chapter 7

Conclusions

Our main result is an approximation algorithm to the problem of state minimization for

an arbitrary2-MDFA. This algorithm is bounded by a linear factor and is guaranteed to have

an output no larger than any equivalent DFA. This is the first non-trivial,positiveresult that

we are aware of, insofar as approximation algorithms forNP-Hard optimization problems

in Automata Theory are concerned. As part of our analysis, we showed that2-MDFAs are

only polynomially as succinct as DFAs, with respect to representing a given regular language.

We established that our approximation algorithm is tight; we have shown there exist regular

languages for which the state complexity of the output automaton is larger by no less than

a linear factor from the state complexity of the optimal2-MDFA. We also proposed some

interesting problems with unknown computational complexity which are related to2-MDFA

minimization.

Hopefully, this result will stimulate more interest in approximation algorithms for hard

minimization problems in automata theory. Towards this end, we propose two open problems

that are good candidates for a further extension of our results.

(a) Is there a fast, constant factor approximation algorithm forP1? - The existence of such

an algorithm has enormous practical significance. An alternative line of research is to

establish that such an algorithm cannot exist unlessP = NP.

(b) How much savings does our algorithm provide on practical instances? - The implemen-

tation profile in Section 6 was derived using random instances; an empirical study over

practical instances would serve as a dependable baseline for future empirical studies.

22

References

[1] A. Meyer and M. Fischer, “Economies of description by automata, grammars, and for-
mal systems,” inProceedings of the 12th SWAT (Annual Symposium on Switching and
Automata Theory), 1971, pp. 188–191.

[2] T. Jiang and B. Ravikumar, “Minimal NFA problems are hard,” inProceedings of the
18th International Colloquium on Automata, Languages and Programming, ICALP’91
(Madrid, Spain, July 8-12, 1991), ser. LNCS, J. L. Albert and M. R. Artalejo, Eds.
Berlin-Göttingen-Heidelberg-New York: Springer-Verlag, 1991, vol. 510, pp. 629–640.

[3] A. Malcher, “Minimizing finite automata is computationally hard,”Theoretical Computer
Science, vol. 327, no. 3, pp. 375–390, Nov. 2004.

[4] J. E. Hopcroft, “Ann log n algorithm for minimizing the states in a finite-automaton,”
in Theory of Machines and Computations, Z. Kohavi, Ed. Academic Press, 1971, pp.
189–196.

[5] K. C. Louden,Programming Languages: Principles and Practice. Brooks/Cole, 2002.

[6] C. L. A. Clarke and G. V. Cormack, “On the use of regular expressions for searching
text,” ACM Trans. Program. Lang. Syst., vol. 19, no. 3, pp. 413–426, 1997.

[7] R. A. Baeza-Yates and G. H. Gonnet, “Fast text searching for regular expressions or
automaton searching on tries,”J. ACM, vol. 43, no. 6, pp. 915–936, 1996.

[8] T. Jiang and B. Ravikumar, “Minimal nfa problems are hard,”SIAM J. Comput., vol. 22,
no. 6, pp. 1117–1141, 1993.

[9] S. Yu, Q. Zhuang, and K. Salomaa, “The state complexities of some basic operations on
regular languages.”Theor. Comput. Sci., vol. 125, no. 2, pp. 315–328, 1994.

[10] E. L. Leiss, “Succint representation of regular languages by boolean automata.”Theor.
Comput. Sci., vol. 13, pp. 323–330, 1981.

[11] Meyer and Fischer, “Economy of description by automata, grammars, and formal sys-
tems,” inFOCS: IEEE Symposium on Foundations of Computer Science (FOCS), 1971.

[12] B. Ravikumar and O. H. Ibarra, “Relating the type of ambiguity of finite automata to the
succinctness of their representation.”SIAM J. Comput., vol. 18, no. 6, pp. 1263–1282,
1989.

REFERENCES 23

[13] D. Hochbaum, Ed.,Approximation Algorithms for NP-Hard Problems. Boston,
Masachusetts: PWS Publishing Company, 1996.

[14] H. U. Simon, “On approximate solution for combinatorial optimization problems,”SIAM
Journal of Discrete Mathematics, vol. 3, pp. 294–310, 1990.

[15] P. Crescenzi and V. Kann, “Approximation compendium,”
http://www.nada.kth.se/˜viggo/wwwcompendium/node242.html.

[16] J. E. Hopcroft, R. Motwani, and J. D. Ullman,“Introduction to Automata Theory, Lan-
guage, and Computation”, 2nd ed. Addison–Wesley, 2001.

[17] T. H. Cormen, C. E. Leiserson, and R. L. Rivest,Introduction to Algorithms, 2nd ed.
Boston, Massachusetts: MIT Press and McGraw-Hill Book Company, 1992.

	State minimization problems in finite state automata
	Recommended Citation

	Title Page
	Abstract
	Chapter 1 - Introduction
	Chapter 2 - Statement of Problem
	Chapter 3 -Motivation and Related Work
	Chapter 4 - Algorithm and Analysis
	Chapter 5 - Related Problems
	Chapter 6 - Implementation Results
	Chapter 7 - Conclusions
	References

		2007-05-18T09:43:05-0400
	John H. Hagen
	I am approving this document

