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Abstract

State Minimization Problems in Finite State Automata

by

Chris Tauras
Master of Science in Computer Science

West Virginia University
K. Subramani, Ph.D., Chair

In this thesis, we analyze the problem of state minimization in 2-MDFAs. The class of
2-MDFAs is an extension of the class of DFAs, allowing a small amount of hondeterminism;
specifically two start states. Since nondeterminism allows finite automata to be more succinct,
it is worthwhile to investigate the problem of minimizing such finite automata. In the case of
unbounded non- determinism, i.e., NFAs, such automata can be exponentially more succinct
than DFAs [1], but the corresponding minimization problem is PSPACE-complete [2]. Even in
the case of 2-MDFAs, which are only polynomially more succinct than DFAs, the minimization
problem remains non-trivial; indeed, [3] shows that the corresponding decision problem is NP-
complete. We are concerned with the approximability of the 2-MDFA minimization problem.
Our main contribution in the current work is the design of an n-factor approximation algorithm
for state minimization in 2-MDFAs.



Chapter 1

Introduction

Finite Automata (FAs) are used in many applications such as lexical analysis, parsing, and
hashing. As acceptance of a particuliar string can be easily tested in polynomial time, it is
desirable to represent the finite automata using the minimum amount of space. A regular lan-
guage can be represented as a Deterministic Finite Automaton (DFA), a Multiple Start State
DFA (MDFA) or as a Non-deterministic Finite Automaton (NFA). While each type of finite
automaton represents exactly the class of regular languages, their relative succinctness and the
complexities of their minimization problems vary greatly. NFAs can be exponentially more
succinct than DFAs [1], but the corresponding minimization problem is PSPACE-complete [2],
in contrast to polynomial-time [4]. MDFASs represent an interesting type of finite automata that
have recently received much attention in the literature. These FAs have a limited amounted of
non-determinism in that there are multiple start states; however, there is precisely one target
state for each state on a given input. Even this small amount of nondetermiridsibirAs is
enough to result in a hard minimiztion problem; in particuliar, the problem of state minimiza-
tion isNP-complete for 2-MDFAs. [3]. Unlike general NFAs, which can be exponentially
more succinct than DFAs [12-MDFAs are only quadratically more succinct than DFAs (See
Section 4). Inasmuch as the state minimization problelaMDFAs is in NP, it is worthwhile
to ask whether there exists a polynomial time bounded-error approximation algorithm for this
problem. We answer this question in the affirmative, by presenting and analyzing a linear factor
approximation algorithm for the same.

The rest of this thesis is organized as follows: Section 2 contains a formal description of
the state minimization problem iIrMDFAs. Section 3 describes the motivation for our work
as well as related approaches in the literature. Section 4 describea@roximation algo-
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rithm for the state minimization problem iIRMDFASs; as part of the analysis, an algorithm is
described for converting 2MDFA into a DFA. This section also includes a detailed analy-

sis of the approximation bound. In Section 5, a number of problems are proposed, which are
related to the-MDFA state minimization problem and provide motivation for the same. Sec-
tion 6 provides a detailed implementation profile of our algorithm over a wide range of inputs.
We conclude in Section 7 by summarizing the main results and detailing problems for future

research.



Chapter 2

Statement of Problem

Formally, a2-MDFA M is defined by thé-tuple (Q,r, X, 0ar, ¢°M, g1, Fy), in which:

S

(a) @y denotes the set of stateg),,| denotes thetate complexitpf M.

(b) X is the input alphabet. Without loss of generality, it is assumed that the alphabet
{0, 1} for all the finite automata discussed in the remainder of this thesis.

(c) &y is the transition function that maps each p@ira) € Q) x X to a state; € Qyy, i.e.,
5IQ]WXE—>Q]\/].

(d) ¢°™ andq!™ are the two start states.

(e) F) is the set of final states.

Figure 2.1 shows an example of2aVIDFA. It accepts the languag@1)*0 U (10)*1 U
(01)*00(01)*.

Figure 2.1: An example-MDFA M, = M,
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As with DFAs, we extend to 4, wheres is a function mapping tuples of states and strings
to states. Formall)ﬁ :Qu X X — Q) is defined recursively as follows:

(@) Vg € Qur, 0(g, €) = q.

(b) V{(g,a,w) € Qy x & x %, (¢, wa) = 8(5(q, w), a).

Definition 2.1 A stringx € >* is said to beacceptedy the2-MDFA M, if and only if
({0(g8M, )} U {o(qs™, 2)}) N Fag # 6.

Definition 2.2 Thelanguagef a2-MDFA M, denoted by.(M), is the set of all strings € ¥*
which are accepted by/.

Given a2-MDFA M = (Qu, 3, 6ar, ¢™M, M| Fyy), we defineL (¢°M) to be the set of of
stringsz € ©*, such that{d,,(¢"™, )} N Fy; # ¢. In other words L (¢?M) is the set of strings
that are accepted hy/, under the provision that the start state®¥. The languagé.(¢}¥) is
analogously defined. It is not hard to see tha¥/) = L(¢°) U L(g!*).

Definition 2.3 Two2-MDFAs M, and M, are equivalentf and only if L(M;) = L(Ms).

Definition 2.4 Ane-NFA is a nondeterministic finite automaton that has the additional ability
to transition without consuming the next input character. These spontaneous transitions are
known ase-transitions. The addition of this ability does not allow acceptance of any non-

regular languages.

Regardless of the type of automatdh under consideration, we udg M) to denote the
language represented by that automaton and the phtatgecomplexityo denote the number
of states) ;.

Now that all the necessary preliminaries are covered, the problem may now be formally
stated:

P;: Given a2-MDFA M, = (Qus,, 3, 0ar,, M1, ¢ Fyy ) and a numbet, is there a

s

2-MDFA My = (Qur,, B, Oay, ¢OM2, M2 Fyy,), such thatl (M) = L(M,) and|Qyy,| < K?

s



Chapter 3

Motivation and Related Work

The motivation for the study of finite automata comes from many applications, including
lexical analysis, hashing, pattern matching, and, of course, the syntax of programming lan-
guages [5]. In the case of lexical analysis, compilers for high-level languages, such as Fortran
or C, often implement a finite automaton for the lexical analysis for their first pass. Such a finite
automaton may possess hundreds or even thousands of states. The large number of states that
are potentially used translates to a large amount of memory required by the compiler. There-
fore, a method for reducing the number of states would be beneficial in saving space, reducing
the cost of implementation. In the case of hashing, the data to be hashed is given as an input
to a hashing DFA. The state that the DFA is in, at the end of the string, is the hash value. One
way to use 2-MDFA instead of a DFA for hashing is to use a pair of states after computation,
say one state for the high bits and one for the low bits, instead of a single state for the complete
value (For instance, see Figure 3.1). The implementation2sM®DFA would allow a more
complex automaton to be implemented while simultaneously reducing the space requirements.
In the case of pattern matching, when strings are concerned, regular expressions are often used
to define the desired pattern to match or to search for. On the account of the connection be-
tween regular expressions and finite automata, algorithms to do this often make use of finite
automata to perform the search or match operation, such as in [6] and [7]. It should be noted
that automata with more states require more space to implement, so it is desirable to reduce the
number of states needed.

The problem of state minimization has been studied extensively in a number of different
types of finite automata. It is well-known that the problem of minimizing DFAs is solvable in
polynomial time [4], whereas the problem of minimizing NFAPSPACE-complete [2].
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Figure 3.1: Using finite automata in hashing

In an effort to determine how much nondeterminism can be permitted in finite automata while
keeping the state minimization problem easy, several classes of finite automata with limited
nondeterminism have been studied. Unambiguous Finite State Automata (UFAs) form one
such class; for any input string, there is never more than one accepting path. The problem of
minimizing the number of states in a UFA has been shown td®&omplete [1], as well as
converting a DFA to a minimal UFA [8]. In [3], the complexity of state minimization problems

in k-MDFAs was investigated and shown to N@-complete for k£ > 2, wherek denotes

the number of distinct start states in the MDFA. We focus on the problem on minimizing
the number of states in ZMDFA, with a view towards obtaining non-trivial approximation
bounds; additionally, the the degree of succinctnessMDFAs is explored. The complexity
inherent in representing regular languages succinctly has been studied in [9, 10] and [11]. [12]
relates the type of ambiguity of finite automata to the succinctness of their representation.
We thus see that determining succinct (minimal) representations of languages is of enormous
interest to the Automata Theory community.

The difficulty of dealing withNP-Hard optimization problems can be mitigated to some
extent by devising efficient approximation algorithms [13]. Basically, a polynomial time ap-
proximation algorithm for an optimization (minimization) problem delivers an output in poly-
nomial time, but with a certain loss of accuracy. Such algorithms are useful in applications
in which accuracy can be sacrificed to some extent, if the output is computed quickly. The
relevance of these algorithms and their practical impact are discussed at length in [13].

Definition 3.1 Let I denote a minimization problem, and I8tPT" denote an optimal algo-

rithm for the same. For an arbitrary instandec 11, OPT(I) refers to the output of OPT. Let
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A denote an algorithm fofl, with A(7) denoting the output of algorithid on an arbitrary

instancel € II. A is said to be a polynomial time approximation algorithm forif:
(a) A runs in polynomial time.
(b) Forallinstanced € 11, A(/) < ¢c-:OPT(I), wherec s called the factor of approximation.

Provided that the above conditions are met, algorithm said to be a-factor approxima-
tion algorithmfor the problemil.

The analysis of an approximation algorithm typically proceeds in two steps. First it is
shown that for all instances € 11, A(I) < ¢;; then it is shown that for all instancds €
II, OPT(I) > co. From these two proofs, we can conclude that for all instardcesII,

A(I) < &-OPT(I). Itis important to note that our analysis is significantly different from the
traditional analyses of approximation algorithms.

Within the field of Automata theory, there has been no active effort to study approximation
algorithms as a tool; indeed we could find only one result [14], and that result was concerned
with theinapproximabilityof the Minimum Consistent Finite Automaton problem [15].

Our work establishes that there existgafactor approximation algorithm for probleRy,
wheren denotes the minimum number of states required to represent the input language as a
2-MDFA.



Chapter 4

Algorithm and Analysis

We shall now present our algorithm for approximating the minimum number of states re-
quired to represent the input language @MDFA. At the heart of our algorithm is a proce-
dure that converts 2MDFA into a DFA. We shall argue that the conversion results in only a
guadratic increase in the number of states; this is in contrast to the procedure which converts
an NFA into a DFA, in which the state blowup could be exponential.

Our algorithm proceeds as follows: First, the inpeMDFA M, is pruned; the pruning
procedure consists of eliminating redundant and unreachable states. The details of the proce-
dure are described inHRINK-2MDFA() (Algorithm 4.3). The resultari-MDFA M, is then
converted into ar-NFA M. Subsequently)/; is converted into an NFA/, and then into a
DFA Mjs. This is followed byM/; being minimized to obtaid/,. Finally, we return eithei/,
or M,, depending on which of the two has smaller state complexity.

Figure 4.1:M]
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Figure 4.2:My = M3 = M,y

Function MINIMIZE (M = Qs 2, Oagy» ¢2M0, 1Mo Fyy))

1

10:

Let M, ((Qar., S, 6., @M=, gs™""™)) = SHRINK-2MDFA(Mj).

Let M{ ((Qur, %, 0arr, g0 L, Fary)) = MAKE-e-NFA(M,)

Compute the-closure ofqﬁﬁ to convert)M] into an NFAM, ((Qas, 2, Oary, M2, Fir,))-
ConvertM, into a DFAM;3 ((Qas,, 2, Oass, 22, Figy)).

Minimize M; to getMy ((Qu,, 2, Oar,, ¢, Fay, ), using the DFA minimization algorithr
in [16].

if (|Qar,| < |Qa,|) then

return Mout (<QM0M, 2, 5Mout7 qiwo“t7 FMout>) = M4.
else

return Mous ((Qarnss 25 00,0, @O Mot gt Mowt By V) = M,
end if

Algorithm 4.1: 2-MDFA Minimization

Function MAKE-e-NFA (M, = (Qur., 2, 0ar,, XM, 1M Fyy))

1

2
3
4

s

. Insert a new start statg’s into M,.

. Inserte-transitions fromyM: to ¢* andq!-.
. {¢®™= andq!M: are no longer start statés.

: return M,

Algorithm 4.2: Conversion ta-NFA
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The purpose of the IRINK-2MDFA() function is to eliminate useless states from the
input 2-MDFA.

Definition 4.1 Two state® andg are said to be equivalent in a finite automatdf if, for all

stringsw € ©*, §,;(p, w) leads to an accepting state i1 if and only ifé,,(¢, w) does.

Any pair of equivalent statgsandq may be merged without affecting the language of the
finite automatonV/ in question. This is because the remainder of the input strimgll either
be accepted by both states or be rejected by both states.

Definition 4.2 A statep in a2-MDFA M, is said to baeachabléf there is a directed path from

either o or ¢! to p in the directed graph representing,.

A state which is not reachable from either start state is calfedachable Clearly, such
states cannot possibly be part of the computational path for any input string, so the language of
the2-MDFA in question will not change if such states are removed.

Function SHRINK-2MDFA (Mo = (Q . 2, dnsy, 20, g2, Figy))
1: Let M; denote a copy o/
2. Replace each block of equivalent states with a single state, using the algorithm in [16].
3: Delete all unreachable states fravfy.
4: return M;.

Algorithm 4.3: Shrinking a2-MDFA

For instance, let the-MDFA represented by Figure 2.1 be the ingug to Algorithm 4.2.
Since M, has no pairs of equivalent states and no unreachable states, the pruning procedure
does not alter it and/, = M,. Figure 4.1 displays the-MDFA after it has been converted
to ane-NFA M]. M is then converted to the NFAZ, as shown in Figure 4.2. It so happens
that M, is already in minimized DFA form, and, therefore, no further work needs to be done.
Finally, M, has fewer states thavl, and, hence)/; is returned by Algorithm 4.2.

Observation 4.1Consider the NFAV.; = (Qar,, 3, 0ar,, M2 Fyy,) in Line 4 of Algorithm 4.1,
Observe that converting theNFA M to an NFA M, involves the following steps: Compute
thee-closureS of qi” {; observe thatS containSqéM " and the two states, say andg,, to which
M can move from]iw{ on e-transitions. Thus, it is clear thdtS| = 3. qi”i is replaced with

a new start state/™. For each symbok € %, we sets(¢*2,a) = (¢, a) U d(¢;", a).

S
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The remaining states and transitions are identicalifj and M/,. Note that this construction
exploits the special structure 8f;. For any symbok € X, we observe thdb,, (¢22, a)| < 2,

whereas, for all other statese Q) yy,,

o, (g, a)] < 1. In other words, the non-determinism of

M is limited to the first move.

Observation 4.2There does not exist a directed path from any state incthEA M, to the
start stateqiw I Therefore, it follows that the start staté’ of M, is not reachable from any
other state in\/,.

Lemma 4.1 For any stringz € 2, [0y, (¢, z)| < 2.

Proof. We prove Lemma 4.1 by using induction on the length of the input siring

BASE CASE |z| = 0 and, hencey = ¢. Sincex = ¢, it follows that M/, does not make any
move and stays in the start state. In other woldg, (¢, z)| = 1 < 2.

INDUCTIVE STER. Assume thatd,z, (¢2,y)| < 2 whenever/, is presented with a string
y such thatly| < n — 1. Now consider a stringy = wa, with |z| = n, |[w| = n — 1 and
a € . Let us defing; = 0y, (¢M2,w). As per the inductive hypothesii);| < 2. Without
loss of generality, let us assume thia¢ consists of exactly two states, sayandq,. Note
that transitions out of,, andg, are deterministic, i.e|0,s, (qu, a)| = 1 and|dus, (gy, a)| = 1.
Therefore oy, (™2, )| = |Qs] < 2, and the claim followsO

Lemma 4.2 The number of states i3 is O(|Q s, |*)-

Proof. Note that the general algorithm for converting an NFA to a DFA enumerates all possible
subsets of states in which the NFA can exist. In general, there is an exponential number of
subsets to enumerate. However, in this case, the N&an exist in at most two states after
reading an input string; consequently, the conversion algorithm need only enumerate those
subsets that contain no more than two states. Hence, the number of states that need to be
enumerated i®(|Q|*), which also represents the state complexityhf O

Theorem 4.1 Algorithm 4.1 runs in time polynomial in the size of its input.

Proof. Each step of Function MiimizE () can be implemented to run in time that is polynomial
in the size of the input. It is resonable to consider the number of states of the2HyDEA
the “size”n of the input. Although the representation of each state technically ri¢gdsn)
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bits, and although the transition function needs to be included in the input, these things would
only result in an input size ab(n? logn) bits, so, for simplicity, these things may be ignored.
Line 1 involves eliminating blocks of equivalent states and can be implement@drit)
time, as per the algorithm in [16]. The conversionidf into ane-NFA M/] is a constant time
operation with the addition of one state; likewise, as discussed above, the conversign of
into an NFA M is a constant time operation. Lideinvolves the conversion of the NFA/,
into a DFA M3; since we have to enumerate state pairs only, this operation can be implemented
in O(n?) time. Note that\/; hasO(n?) states; it follows that the DFA minimization procedure
in Line 5 can be implemented in tim@(n®) time [16].
Thus, Algorithm 4.1 can be implemented in time that is polynomial in the size of its input.
O

Theorem 4.2Let L(M,) denote the regular language represented by the irpMDFA 1/
and letn = |@,, | denote the number of states in the minimi2ddDFA ), (See Algorithm
4.1). The optimak-MDFA for M;, i.e., the2-MDFA with the fewest number of states repre-

sentingL (M), must have)(nz) states.

Proof. Let Sy, denote the set of all-MDFAs that are equivalent to the inpeHMDFA M.
The minimum state DFA corresponding to a given langua@¥, ) is unique [16]; accordingly,
regardless of the-MDFA in Sg),, that is presented as input to Algorithm 4.1, the number of
states in the minimized DFAZ, is the same. Let/,,; = (Qur,,.» &, Ona, > g0 ort, giMert, Foy, )

denote the optimal-MDFA corresponding td (M) Clearly, M,,: € Sgu,; further,|Qop:| <
|Qu,
4.1. The corresponding/, would be no larger tha®(|Q.y,,,|*) as per the discussion above.
But M, and, thereforg@,,, | are the same for a-MDFAs M, € Sg,,; note that this includes
M. Therefore, it follows that the output of Algorithm 4.1 on inpug has at mosO(|Qay, ., 1)
states. In other words, if the output of Algorithm 4.1 on an input/hatates, then the optimal
2-MDFA for this instance ha€(nz) states O

, YM, € Sgun,. Let us focus on the situation in whicl,,, is presented to Algorithm

Corollary 4.1 Algorithm 4.1 is a linear factor approximation algorithm, where the linear fac-

tor refers to the size of the optim2dMDFA.

Proof. From Theorem 4.2 and the discussion in Section 3, it is clear that the output produced
by Algorithm 4.1 is off by at most a linear factor from the optimum; in other words, if the state
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complexity of M, is p, then the state complexity af,,,, i.e., the automaton that is output by
Algorithm 4.1, is at mosp®. The claim follows.O

The following theorem will show that the linear factor bound is tight for Algorithm 4.1; thus
any improvement in the approximation bound will require the development of new techniques.

Theorem 4.3There exists @ MDFA M, such that the optimat-MDFA for L(M,) has state
complexityp, while the output of Algorithm 4.1 al/, has state complexity’.

Proof. Let My = <Q]V[d17 >, 5Md17 qéwdl, F]V[d1> ande2 = <QMd27 E, 5Md27 qde, FMd2> denote
two minimal DFAs representing the languadgs\/,;; ) and L( M) respectively, such that:

(@) The minimal DFAM 3 = (Qar,s, 2, Oy, 2142, Fir,,) representing the language
L(Mg) U L(Mg) has state complexit® (|Qar,, | - Qs ])-

(b) |QMd1| = @(lQMdZD

Itis well-known that such languages exist; for instance, see [9], where the properties of such
languages are discussed. The minilx8dDFA for the languagd.(M,3) clearly has state com-
plexity O(|Qus,, |). However, we can construcRaMDFA My = (Qusy, 2, dasy, 420, g20, Figy )

S

with the following properties:
(i) L(g™) = L(Mas).
(i) L(g,") =e.

Note thatlL (M) = L(¢°0)U L(¢*™°) = L(Mys). Secondly, the DFA with start stagé°
has a transition function which is identical to the transition function of the DEA, i.e., the
state complexity oMy is ©(|Qas,, | - [Qars]) = O(IQar )-

Accordingly, the $SIRINK-2MDFA() procedure leaves/, unaltered, and the DFA mini-
mization procedure returns a DFA wifh(|Q,s,, ||) states. Since both procedures retuit a
MDFA with ©(|Qx,, |?|) states, Algorithm 4.1 necessarily returrs®DFA with ©(|Q s, |?])
states. However, the optim2dMDFA for the languagd.(M,3) hasO(|Q v, |) States, and the
theorem follows O

The next theorem shows that Algorithm 4.1 is optimal in certain cases.
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Theorem 4.4There exists a regular languade,, such that Algorithm 4.1 computes the opti-
mal

2-MDFA when presented with any inp2HMDFA that acceptd.,.

Proof. Let Ly = X*. The optimal DFA forL, has precisely one state. Since this DFA is unique,
the state complexity of the automaton returned by Algorithm 4.1 is alwasegardless of the
state complexity of the-MDFA that is used to represent,. O

We make the following observations about Algorithm 4.1:

(1) The state complexity of the output of Algorithm 4 /() is never greater than the state
complexity of its input (/;). Note that the 8RINK-2MDFA() procedure does not in-
crease state complexity and, heng@,| < |Qo|. Algorithm 4.1 returns eithed/; or the
minimized DFA M, depending on which automaton has smaller state complexity.

(2) It follows that Algorithm 4.1 is optimal when the minimzIMDFA is given as the input.

From the empirical perspective (see Section 6), it appears that for alzM&FA M, the
SHRINK-2MDFA() procedure returns a better quality of approximation than the DFA min-
imization procedure. This suggests that by merely computihga good approximation is
generally obtained; however, the following lemma proves that this is not true in general.

Lemma 4.3 As an approximation to the optim2alMDFA, the state complexity of the output of

the SHRINK-2MDFA() procedure is arbitrarily bad.

Proof. Let M, denote &-MDFA, with L(¢°™°) representing an arbitrary language with an
arbitrary DFA state complexityn. Let L(g!*) = 3*. Note that the minima2-MDFA for

M, has only one state that transitions to itself on all strimgs ¥*. When M, is computed
from M, using the SIRINK-2MDFA() procedure, the language of tReMDFA start states
is not redefined, and, henck(¢*™°) and L(¢!*°) remain the same. Therefor&/, has state
complexity©(m), which is arbitrarily bad as an approximatidn.

The principal drawback of therRINK-2MDFA() procedure is that it does not alter the lan-
guages of the individual start states.
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Chapter 5

Related Problems

In this section, we discuss a number of problems relatedMFA minimization. While
pertinent to the main problem discussed in this thesis, these state optimization problems are
also interesting in their own right.

We first consider the problem of reducing the states in a DFA by converting it ifto a

MDFA and establish its complexity.

Lemma 5.1 There exists no polynomial time algorithm for the problem of converting a DFA
M, to a minimal2-MDFA M, unlessP = NP.

Proof. Assume that there exists an algorith4n that takes as input an arbitrary DE4, and
returns the optimal state st&teMIDFA, representind.(M,) in polynomial time. We can usd
to obtain a polynomial time algorithm for ttreMDFA state minimization problem as follows:
Given an arbitrar2-MDFA M, convert it into a DFAVM,; in polynomial time (as discussed in
Section 4), and then provide it as input to Algoritbfto compute the optimal staleMDFA
for the same language. However, this would mean BratNP, since the2-MDFA minimiza-

tion problem isNP-complete . O

We now consider the Optimal Splitting and Optimal Merging problems.

(a) Optimal Splitting: Assume that we are given a DREA, which is the minimal DFA for
the languagd.(M,) and a numberf<. The Optimal Splitting Problenis concerned with
splitting L(M,) into two languaged.(M;) and L(M,), represented by minimal DFAR/;
and M, respectively, such that),, + |Q,| < K. This problem is neither known to
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(b)

beNP-complete nor known to have a constant factor approximation. The optimal split
numbersplit ;, for a given minimal DFAM, is the smallest value ok such thatZ (M)
can be split into two distinct languagds, and L.

Optimal Pairing: Assume that we are given two DFAS, and Ms, representing the lan-
guaged.(M;) andL(Ms), respectively, and a numbéf. In theOptimal Pairing Problem
the goal is to find two new DFA4/] and M}, such that:

(8) L(My) = L(Mj).
(b) L(Ms) = L(Ms3).
(c) When equivalent states are merged acidsand M), the total number of states in the

resultan2-MDFA is at mostK.

Itis important to note that minimizing/,; and/, does not necessarily provide the optimal
solution. This is because the sub-optimal DFAs of two languages may have more states in
common than their corresponding minimal versions.
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Chapter 6

Implementation Results

In this section, we discuss our empirical observations on the effectiveness of Algorithm 4.1
from the perspective &f~-MDFA minimization.

6.1 Experimental Setup

2-MDFAs were represented as graph data structures; for instance, see [17]. For the sake of
uniformity in the comparions, all automata had exaethy states in our experiments. There
were two probabilities associated with eacMDFA instance:

(i) Thefinality probability, P; - Attached to each state of the automaton, this measure repre-
sents the probability that the state is a final state.

(i) The transition probability P, - This measure represents the probability that a given tran-
sition from a state exists. For instance, if it is determined that there exists a transition on
input0 from a given state, then the said transition is equally likely to move the automaton
from the given state to any state other than the dead state. If it is determined that no

transition exists from a given state on a given input, then a transition to the dead state is
inserted.

In our experiments, we generated three typelsMIDFA instances: dense automata, sparse
automata, and intermediate automata. Dense automata were generated-withand Py =
%; sparse automata were generated With- % andP; = %; and, finally, intermediate automata
were generated witk, = % andpP; = % Random instances @GfMDFAs were generated using
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|@uso| (input) | [Qnr, | | [@nry] | Q| (OUtPUY)
200 154 | 7533 154
200 170 | 10178 170
200 161 | 9152 161
200 164 | 9396 164
200 152 | 7670 152
200 148 | 7866 148
200 168 | 9895 168
200 163 | 8440 163
200 158 | 8613 158
200 159 | 7090 159

Table 6.1: Implementation profile over dense automata

both a linear congruential generator (LCG) and an inversive congruential generator (ICG). For
each class o2-MDFAs, the first five results were obtained with the LCG, and the remaining

five were obtained using the ICG. The lack of discrepancy between the results from the two
generators allows us to gain confidence that these generators are indeed a good approximation
of true randomness, at least as far as these results are concerned.

6.2 Observations on Dense Automata

For our first test, we generated random instances of dense automata; i.e. automata that have
a high expected number of transitions. In each instance, the pruning procedure was much more
effective than the DFA conversion; in particular, the pruning procedure produced automata
with at mostl 70 states, whereas the DFA minimization can easily produce automata with over
10000 states (see Table 6.1). As opposed to the standard representation of a regular language
(a minimal DFA), Algorithm 4.1 produces a much smaller output.
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|@uso| (input) | [Qur,| | @il | Q| (OULPUL)
200 2 2 2
200 25 | 24 24
200 15 | 15 15
200 2 2 2
200 2 2 2
200 5 5 5
200 16 | 16 16
200 40 | 41 40
200 15 | 15 15
200 4 3 3

Table 6.2: Implementation profile over sparse automata

6.3 Observations on Sparse Automata

For our second test, we generated random instances of sparse automata; i.e. automata that
have a very low expected number of transitions. In this case, the pruning procedure and the
DFA conversion procedure were almost exactly equal; neither was significantly better than
the other (see Table 6.2). Although, in this case Algorithm 4.1 is no better than the standard
representation of a regular language (a minimal DFA), it is at least no worse.

6.4 Observations on Intermediate Automata

For our third test, we generated random instances of intermediate automata; in this case,
the expected number of transitions was between that of the dense and sparse automata. The
intent of this was to generate some cases in which the pruning procedure is somewhat better but
not strikingly better than the DFA conversion procedure. Instead, a more interesting result was
obtained: either the pruning procedure was much better then the DFA conversion procedure or
it was not significantly better than the DFA minimization procedure (see Table 6.3). Itis curious
that the anticipated result of the pruning procedure being somewhat superior was not obtained
in any run. However, the pruning procedure was more effective overall, and Algorithm 4.1,
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|Qaro| (input) | Q| | [Qosa] | Qs | (OUtpUL)

200 129 | 2806 129
200 136 | 137 136
200 97 1132 97

200 104 | 1692 104
200 122 | 123 122
200 117 | 2378 117
200 131 | 137 131
200 114 | 2099 114
200 149 | 6002 149
200 109 | 1690 109

Table 6.3: Implementation profile over intermediate automata

in many cases, produces a much smaller output than the standard representation of a regular
languge (a minimal DFA).
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Chapter 7

Conclusions

Our main result is an approximation algorithm to the problem of state minimization for
an arbitrary2-MDFA. This algorithm is bounded by a linear factor and is guaranteed to have
an output no larger than any equivalent DFA. This is the first non-tripasitiveresult that
we are aware of, insofar as approximation algorithmsNe&+Hard optimization problems
in Automata Theory are concerned. As part of our analysis, we showed-M&tFAs are
only polynomially as succinct as DFAs, with respect to representing a given regular language.
We established that our approximation algorithm is tight; we have shown there exist regular
languages for which the state complexity of the output automaton is larger by no less than
a linear factor from the state complexity of the optiaMDFA. We also proposed some
interesting problems with unknown computational complexity which are relateeMBDFA
minimization.

Hopefully, this result will stimulate more interest in approximation algorithms for hard
minimization problems in automata theory. Towards this end, we propose two open problems
that are good candidates for a further extension of our results.

(a) Is there a fast, constant factor approximation algorithnP¥g? - The existence of such
an algorithm has enormous practical significance. An alternative line of research is to
establish that such an algorithm cannot exist unfesNP.

(b) How much savings does our algorithm provide on practical instances? - The implemen-
tation profile in Section 6 was derived using random instances; an empirical study over
practical instances would serve as a dependable baseline for future empirical studies.
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