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ABSTRACT 
 

Study of the Variations in Continuous Diesel Particulate Matter  

Size Measurements and Effect of Fuel Properties on DPM Size 

 

Kevin Anthony Chappell Flaim 
 

Heavy-duty diesel engines (HDDE), because of their widespread use and 

reputation of expelling excessive soot, have frequently been held responsible for 

superfluous amounts of overall environmental particulate matter (PM).  PM is a 

considerable contributor to air pollution, and a subject of primary concern to health and 

regulatory agencies worldwide.  The U.S. Environmental Protection Agency (EPA) has 

provided PM emissions regulations and standards of measurement techniques since the 

1980’s.  PM standards set forth by the EPA for HDDEs are based only on total mass, 

instead of size and/or concentration.  The European Union is considering regulating 

particle size, and it may influence the U.S. EPA to adopt particle size limits in the future.  

 

The purpose of this research was to better understand the variations in DPM 

measurements due to fuel alteration or changes in other parameters such as relative 

humidity and dilution ratio.  The Cambustion DMS-500, a fast particle spectrometer, was 

used to continuously sample diesel aerosol from a HDDE test-cell dilution tunnel.  

Samples were taken from the primary dilution tunnel and were further diluted in a 

secondary dilution system.  Various fuels were selected to represent available market 

supplies.  Three engines, a 2004 Cummins ISM 370, a 1992 Detroit Diesel DDC S60, and 

a rebuilt 1992 Detroit Diesel DDC S60, were tested to examine the effects of varying 

engine technology.  Several types of biodiesel and petroleum-based diesel fuels were 

evaluated in these engines with and without additives.  Experiments were performed to 

determine: the minimum detectable variations in PM concentrations, relative humidity 

effects, dilution effects, barometric pressure effects, fuel additive effects, sample line 

temperature effects, and the associations between certain engine operating events and PM 

concentrations. 

 

The smallest significant variation in concentration that was detected during this 

research was a 1.51 % increase in 64 nm particles due to the use of a fuel additive.  The 

effects of relative humidity on particle concentrations were only present during low load 

(less than 50 % of the maximum load) engine operation, and they were generally 

associated with high levels of run-to-run variation.  Nearly doubling the overall dilution 

ratio was shown to greatly increase nanoparticle (<40 nm) concentrations and slightly 

increase the concentrations of other particles during certain operation conditions.  

Barometric pressure change was not directly linked to PM emissions, but it appeared to 

have caused increased run-to-run variation.  In all cases where a fuel additive was used, 

an increase in the amount of the additive led to a 130 % to -90 % change in the resulting 

particle concentrations.  In addition, a technique was developed for the conversion of 

continuous DMS data (particle sizes and concentrations) to brake-specific PM mass-flow.  

According to the gravimetric measurements, the technique was accurate to within 6.24 % 

for the 1992 DDC S60 engines and 26.4 % for the 2004 ISM 370 engine.   



 

 

iii 

ACKNOWLEDGEMENTS 
 

I believe that the challenge of completing this research has prepared me 

sufficiently for the obstacles to come in my professional career.  I will be content with 

my work so long as a single reader finds significance in it.  My goals as a graduate 

student were achieved only because of the support that flowed from the people around 

me.  Therefore, I have many thanks to give. 

I would like to thank: 

Lauren Lambert, John Nuszkowski, Mike Ursic, and the members of my committee for 

helping me with the revisions of my thesis, 

my advisor, Gregory Thompson, for consistently being patient, helpful, and a reliable 

source of guidance, 

the faculty members and employees at the ERC who took time to lend a helping hand, 

Bradley Ralston for teaching me about the test cell and assisting in several projects, 

my parents for giving me every chance to succeed; and specifically,  

my mother, Susan Chappell, for always listening, keeping me on track, and being positive 

and encouraging, 

my father, Dr. Anthony Flaim, for understanding when I said “I just need to get some 

work done this weekend,”   

my brother, Nathan Flaim, for providing motivation by giving me terrific dreams about 

our futures,  

each of my four grandparents for having that gleam in their eyes that says they’re proud, 

my uncle, Gino Flaim, for coming up with inspiringly clever ideas that make me feel like 

my career choice is fun and exciting, 

and my high school English teacher, Benny Mills, for teaching me practically everything  

I know about writing. 

I would also like to thank God for the way things often unfold.  Please pardon the 

lengthiness of this thesis.  There was much to explain.  Besides, you can’t stand on a thin 

book to reach a high shelf.  



 

 

iv 

TABLE OF CONTENTS 

 
ABSTRACT ..........................................................................................................ii 

ACKNOWLEDGEMENTS.......... ..........................................................................iii 

TABLE OF CONTENTS.......................................................................................iv 

LIST OF FIGURES..............................................................................................vii 

LIST OF TABLES       ....................................................................................  ..........xiv 

LIST OF ACRONYMS AND ABBREVIATIONS......................................    ..........,xv 

LIST OF SYMBOLS ..........................................................................................xvii 

1   INTRODUCTION .............................................................................................1 

1.1   PROLOGUE ............................................................................................................................ 1 
1.2   OBJECTIVES .......................................................................................................................... 2 
1.3   GOALS .................................................................................................................................... 3 

2   LITERATURE REVIEW ...................................................................................4 

2.1   BACKGROUND....................................................................................................................... 4 
2.2   EPA STANDARDS AND REGULATIONS............................................................................... 5 

2.2.1   Standards of Measurement ..................................................................................... 5 
2.2.2   Regulations.............................................................................................................. 6 

2.3   PARTICLE TRAITS ................................................................................................................. 7 
2.3.1   Composition............................................................................................................. 7 
2.3.2   Formation .............................................................................................................. 10 
2.3.3   Size and Number................................................................................................... 13 

2.4   BIOLIGICAL CONCERNS..................................................................................................... 16 
2.5   AVAILABLE SAMPLING EQUIPMENT ................................................................................. 17 

2.5.1   Nanometer Aerosol Size Analyzer (n-ASA)........................................................... 17 
2.5.2   Differential Mobility Analyzer (DMA)...................................................................... 18 
2.5.3   Differential Mobility Particle Spectrometer (DMPS) .............................................. 18 
2.5.4   Transmission Electron Microscope (TEM) ............................................................ 19 
2.5.5   Tapered Element Oscillating Microbalance (TEOM)............................................. 19 
2.5.6   Quartz Crystal Microbalance (QCM) ..................................................................... 20 
2.5.7   Thermodesorber (TD)............................................................................................ 20 
2.5.8   Laser-Induced Incandescence (LII)....................................................................... 20 
2.5.9   Photoelectric Aerosol Sensor (PAS) ..................................................................... 21 
2.5.10   DMS-500 Fast Particle Sizer ............................................................................... 21 
2.5.11   Smoke Meter ....................................................................................................... 22 
2.5.12   Faraday Cup Electrometer (FCE)........................................................................ 22 
2.5.13   Condensation Nucleus Counter (CNC) ............................................................... 22 
2.5.14   Cascade Impactor (CI) ........................................................................................ 23 
2.5.15   Parallel Flow Diffusion Battery (PFDB) ............................................................... 23 
2.5.16   Electrical Low Pressure Impactor (ELPI)............................................................. 24 
2.5.17   Scanning Mobility Particle Sizer (SMPS) ............................................................ 25 

2.6   RELATED STUDIES ............................................................................................................. 25 
2.6.1  Particle Size Distribution from a Heavy-Duty Diesel Engine: Steady-State and 
Transient Emission Measurement Using Two Dilution Systems and Two Fuels ............. 25 
2.6.2  Evaluation of Methods for Determining Continuous Particulate Matter from 
Transient Testing of Heavy-Duty Diesel Engines............................................................. 26 
2.6.3  A Fast Response Particulate Spectrometer for Combustion Aerosols .................. 28 
2.6.4  Effective Density of Diesel Exhaust Particles as a Function of Size ...................... 29 



 

 

v 

2.6.5  Evaluation of Methods for the Determination of Diesel-Generated Fine Particulate 
Matter:  Physical Characterization Results....................................................................... 30 
2.6.6  Research on Diesel Exhaust and Other Particulates ............................................. 30 
2.6.7  Particles from Internal Combustion Engines – What We Need to Know ............... 31 
2.6.8  Evaluation and Correction of Moisture Adsorption and Desorption from a Tapered 
Element Oscillating Microbalance .................................................................................... 32 
2.6.9  Significance of Fuel Sulfur Content and Dilution Conditions on Particle Emissions 
from a Heavily-Used Diesel Engine During Transient Operation ..................................... 34 

2.7   PM REDUCTION TECHNOLOGIES ..................................................................................... 35 

3   EXPERIMENTAL SETUP AND PROCEDURES...........................................37 

3.1   OVERTURE........................................................................................................................... 37 
3.2   TEST CYCLES ...................................................................................................................... 38 

3.2.1   Federal Test Procedure......................................................................................... 39 
3.2.2   Supplemental Emissions Test ............................................................................... 41 

3.3   TEST ENGINES .................................................................................................................... 42 
3.3.1   1992 Detroit Diesel Series 60................................................................................ 43 
3.3.2   Rebuilt 1992 Detroit Diesel Series 60 ................................................................... 44 
3.3.3   2004 Cummins ISM 370........................................................................................ 45 

3.4   TEST FUELS......................................................................................................................... 46 
3.5   LABORATORY COMPONENTS ........................................................................................... 46 

3.5.1   Dynamometer ........................................................................................................ 46 
3.5.2   Engine Control and Data Acquisition System........................................................ 47 
3.5.3   Dilution Tunnel....................................................................................................... 49 
3.5.4   Fuel Measurement Systems.................................................................................. 50 
3.5.5   Gas Analyzers ....................................................................................................... 51 

3.5.5.1   Hydrocarbon Analyzer ........................................................................... 51 
3.5.5.2   Oxides of Nitrogen Analyzer.................................................................. 52 
3.5.5.3   Carbon Monoxide Analyzer ................................................................... 52 
3.5.5.4   Carbon Dioxide Analyzer....................................................................... 52 

3.5.6   TEOM .................................................................................................................... 52 
3.5.7   Chiller..................................................................................................................... 53 
3.5.8   DMS-500 ............................................................................................................... 54 
3.5.9   Secondary Dilution System ................................................................................... 56 

3.6   SAMPLING PROCEDURE.................................................................................................... 63 
3.6.1   Procedure for FTP................................................................................................. 63 

3.6.1.1   Day-to-Day Variation Testing ................................................................ 64 
3.6.1.2   Fuel Additives Testing ........................................................................... 64 
3.6.1.3   Unheated Sample Line Testing ............................................................. 65 
3.6.1.4   TEOM and Gravimetric Filters............................................................... 66 

3.6.2   Procedure for SET................................................................................................. 67 
3.6.2.1   Humidity Testing.................................................................................... 68 
3.6.2.2   Fuel Type Testing.................................................................................. 68 
3.6.2.3   Dilution Ratio Testing ............................................................................ 69 

4   RESULTS AND DISCUSSION ......................................................................71 

4.1   INTRODUCTION ................................................................................................................... 71 
4.2   METHODOLOGY .................................................................................................................. 71 
4.3   FTP RESULTS ...................................................................................................................... 72 

4.3.1   Day-to-Day Variation ............................................................................................. 72 
4.3.2   Base Fuels vs. Additized Fuels ............................................................................. 79 
4.3.3   Unheated Sample Line Effects.............................................................................. 91 
4.3.4   Extremes of Run-to-Run Variation ........................................................................ 95 
4.3.5   Comparison of TEOM and DMS Data ................................................................. 102 
4.3.6   Continuous FTP Data .......................................................................................... 118 



 

 

vi 

4.4   SET RESULTS .................................................................................................................... 133 
4.4.1   Humidity Effects................................................................................................... 137 
4.4.2   Fuel A vs. Fuel B ................................................................................................. 153 
4.4.3   Dilution Ratio Effects ........................................................................................... 160 
4.4.4   Secondary Dilution Ratio Validation .................................................................... 169 

5   CONCLUSIONS ..........................................................................................172 

5.1   EXTREMES OF RUN-TO-RUN VARIATION  (objective 1) ................................................ 172 
5.2   HUMIDITY EFFECTS  (objective 2) .................................................................................... 173 
5.3   DILUTION RATIO EFFECTS  (objective 3)......................................................................... 174 
5.4   DAY-TO-DAY VARIATION  (objective 4) ............................................................................ 174 
5.5   BASE FUELS VS. ADDITIZED FUELS  (objective 5) ......................................................... 174 
5.6   COMPARISON OF TEOM AND DMS DATA  (objective 6) ................................................ 175 
5.7   SAMPLE LINE TEMPERATURE EFFECTS  (objective 7) ................................................. 176 
5.8   CONTINUOUS FTP DATA  (objective 8) ............................................................................ 176 

6   RECOMMENDATIONS ...............................................................................178 

REFERENCES .................................................................................................179 

APPENDIX .......................................................................................................182 

A.1   TEST SUMMARY................................................................................................................ 182 
A.2   DAY-TO-DAY VARIATION.................................................................................................. 185 
A.3   BASE FUELS VS. ADDITIZED FUELS .............................................................................. 188 
A.4   EXTREMES OF RUN-TO-RUN VARIATION...................................................................... 192 

A.4.1   Best Repeatability for ISM 370 ........................................................................... 192 
A.4.2   Worst Repeatability for ISM 370 ......................................................................... 193 
A.4.3   Best Repeatability for DDC S60.......................................................................... 194 
A.4.4   Worst Repeatability for DDC S60 ....................................................................... 195 
A.4.5   Best Repeatability for Rebuilt DDC S60 ............................................................. 196 
A.4.6   Worst Repeatability for Rebuilt DDC S60 ........................................................... 197 

A.5   COMPARISON OF TEOM AND DMS DATA...................................................................... 198 
A.6   HUMIDITY EFFECTS ......................................................................................................... 214 
A.7   MATLAB ANOVA CODE..................................................................................................... 222 
A.8   DILUTION RATIO EFFECTS.............................................................................................. 223 

A.8.1   High Dilution........................................................................................................ 226 
A.8.2   Standard Dilution................................................................................................. 227 
A.8.3   Low Dilution......................................................................................................... 228 

 

 

 

 

 

 

 

 

 

 



 

 

vii 

LIST OF FIGURES 
 

Figure 1  Composition of Diesel Particulate Matter........................................................................ 7 

Figure 2  Basic Composition of Nuclei Mode and Accumulation Mode Particles.......................... 8 

Figure 3  Example Dioxin Compound TCDF ................................................................................. 9 

Figure 4  Mass of Bound H2O per Gram of H2SO4 ....................................................................... 11 

Figure 5  Structure of a Primary Elemental Carbon Particle......................................................... 12 

Figure 6  TEM Picture of a Primary Carbon Particle Attached to an Agglomerated Carbon 

Particle........................................................................................................................................... 12 

Figure 7  SOF Fractions at Different Operating Conditions.......................................................... 13 

Figure 8  Nuclei Mode and Accumulation Mode .......................................................................... 14 

Figure 9  Particulate Number Emissions from Diesel and Gasoline Vehicles .............................. 15 

Figure 10  Effect of Residence Time on Particle Number and Size.............................................. 15 

Figure 11  Components of Exhaust Sampling System .................................................................. 38 

Figure 12  Engine Speed vs. Time for a FTP Cycle ...................................................................... 40 

Figure 13  Engine Torque vs. Time for a FTP Cycle .................................................................... 40 

Figure 14  1992 DDC Series 60 .................................................................................................... 43 

Figure 15  1992 DDC Series 60 Engine Map................................................................................ 43 

Figure 16  Rebuilt 1992 DDC Series 60........................................................................................ 44 

Figure 17  Rebuilt 1992 DDC Series 60 Engine Map ................................................................... 44 

Figure 18  2004 Cummins ISM 370.............................................................................................. 45 

Figure 19  2004 Cummins ISM 370 Engine Map ......................................................................... 45 

Figure 20  DYC 243 Dynamometer .............................................................................................. 47 

Figure 21  Test Cell DAQ ............................................................................................................. 48 

Figure 22  Dilution Location of Full-Scale Tunnel ....................................................................... 49 

Figure 23  TEOM Sensor Unit ...................................................................................................... 53 

Figure 24  HG25 Refrigerated Dryer............................................................................................. 54 

Figure 25  Differential Mobility Spectrometer.............................................................................. 54 

Figure 26  Particle Size Spectra..................................................................................................... 55 

Figure 27  DMS-500...................................................................................................................... 56 

Figure 28  Mass-Flow-Controller Dilution System....................................................................... 57 

Figure 29  Secondary Dilution System Design ............................................................................. 58 

Figure 30  Heated Ejector Diluter ................................................................................................. 61 

Figure 31  Pressure Sensor and LFE ............................................................................................. 62 

Figure 32  Run-to-Run Variation of the E01927 Test Sequence................................................... 73 



 

 

viii 

Figure 33  Run-to-Run Variation of the E01928 Test Sequence................................................... 74 

Figure 34  Day-to-Day Variation of the 2004 Cummins ISM 370................................................ 74 

Figure 35  Particle Concentration Comparison of E01927 and E01928 Test Sequences.............. 75 

Figure 36  Particle Concentration Differences between E01927 and E01928 Test Sequences..... 76 

Figure 37  Day-to-Day Variation of the 1992 DDC S60............................................................... 77 

Figure 38  Particle Concentration Differences between E02099 and E02107 Test Sequences..... 78 

Figure 39  Particle Concentration Comparison of E02136 and E02138 Test Sequences.............. 80 

Figure 40  Particle Concentration Comparison of E02136 and E02140 Test Sequences.............. 81 

Figure 41  Differences in Particle Concentrations Due to Mixing of Biodiesel with Low Cetane 

Diesel Fuel..................................................................................................................................... 82 

Figure 42  Particle Concentration Comparison of E02195 and E02198 Test Sequences.............. 83 

Figure 43  Particle Concentration Comparison of E02195 and E02199 Test Sequences.............. 84 

Figure 44 Differences in Particle Concentrations Due to Mixing of Fuel Additives with FEM 

Diesel Fuel..................................................................................................................................... 85 

Figure 45  Percent Differences in Particle Distributions Due to Mixing of Additives with Low 

Cetane Diesel................................................................................................................................. 90 

Figure 46  Run-to-Run Variation Using an Unheated Sample Line.............................................. 92 

Figure 47  Run-to-Run Variation Using a Heated Sample Line.................................................... 92 

Figure 48  Particle Concentration Comparison of E01967 and E01968 Test Sequences.............. 93 

Figure 49  Particle Concentration Differences between Unheated and Heated Sample Line Results

....................................................................................................................................................... 94 

Figure 50  Run-to-Run Variations of Test Sequences E01928 and E01921 ................................. 96 

Figure 51  Run-to-Run Variations of Test Sequences E01977 and E02099 ................................. 97 

Figure 52  Run-to-Run Variations of Test Sequences E02138 and E01959 ................................. 98 

Figure 53  Average Particle Concentrations of Test Sequence E02138........................................ 99 

Figure 54  Average Particle Concentrations of Test Sequence E01921...................................... 100 

Figure 55  Effective Particle Densities........................................................................................ 103 

Figure 56  Particle Volumes Based on Spherical Shape ............................................................. 104 

Figure 57  Approximate Particle Masses..................................................................................... 105 

Figure 58  Continuous Particle Distribution of E02123_02 Measured with the DMS-500 ........ 107 

Figure 59  PM Mass-Rate of E02123_02 as Measured with the TEOM..................................... 107 

Figure 60  Corrected and Uncorrected PM Mass Accumulation of E02123_02 as Measured with 

the TEOM.................................................................................................................................... 109 

Figure 61  PM Mass-Rates of E02123_02 as Measured with the TEOM and the DMS............. 112 

Figure 62  PM Mass Accumulation of E02123_02 Measured with the TEOM and the DMS.... 114 

Figure 63  Run-to-Run Variation of the E01928 Test Sequence................................................. 118 



 

 

ix

Figure 64  Averaged Engine Speed and Torque Curves of E01920............................................ 119 

Figure 65  Continuous Particle Distribution of E01920_02 ........................................................ 123 

Figure 66  Continuous Particle Distribution of E01920_03 ........................................................ 125 

Figure 67  Continuous Particle Distribution of E01920_04 ........................................................ 127 

Figure 68  Averaged Overall Dilution Ratio Curve of E01920................................................... 131 

Figure 69  Engine Speeds and Torques of E01948_01 ............................................................... 134 

Figure 70  PM Concentrations During E01948_01..................................................................... 136 

Figure 71  Speed/Load Domain of SETs..................................................................................... 137 

Figure 72  Run-to-Run Variation for Mode 2 of the E02204, E02205, and E02206 Test Sequences

..................................................................................................................................................... 138 

Figure 73  Run-to-Run Variation for Mode 5 of the E02204, E02205, and E02206 Test Sequences

..................................................................................................................................................... 139 

Figure 74  Run-to-Run Variation for Mode 6 of the E02204, E02205, and E02206 Test Sequences

..................................................................................................................................................... 139 

Figure 75  Run-to-Run Variation for Mode 7 of the E02204, E02205, and E02206 Test Sequences

..................................................................................................................................................... 140 

Figure 76  Run-to-Run Variation for Mode 10 of the E02204, E02205, and E02206 Test 

Sequences .................................................................................................................................... 141 

Figure 77  Run-to-Run Variation for Mode 11 of the E02204, E02205, and E02206 Test 

Sequences .................................................................................................................................... 141 

Figure 78  Differences in Particle Concentrations of Mode 2 Due to Humidity Change............ 144 

Figure 79  Differences in Particle Concentrations of Mode 5 Due to Humidity Change............ 145 

Figure 80  Differences in Particle Concentrations of Mode 6 Due to Humidity Change............ 146 

Figure 81  Differences in Particle Concentrations of Mode 7 Due to Humidity Change............ 147 

Figure 82  Differences in Particle Concentrations of Mode 10 Due to Humidity Change.......... 148 

Figure 83  Differences in Particle Concentrations of Mode 11 Due to Humidity Change.......... 149 

Figure 84  Particle Sizes that Have Significantly Different Average Values for Mode 2 Due to 

Humidity Change (According to ANOVA)................................................................................. 151 

Figure 85  Particle Sizes that Have Significantly Different Average Values for Mode 13 Due to 

Humidity Change (According to ANOVA)................................................................................. 152 

Figure 86  Apparent Fuel Effects of Biodiesel Addition to Low Cetane Diesel for  Mode 2 ..... 155 

Figure 87  Apparent Fuel Effects of Biodiesel Addition to Low Cetane Diesel for  Mode 5 ..... 156 

Figure 88  Apparent Fuel Effects of Biodiesel Addition to Low Cetane Diesel for  Mode 6 ..... 156 

Figure 89  Apparent Fuel Effects of Biodiesel Addition to Low Cetane Diesel for  Mode 7 ..... 157 

Figure 90  Apparent Fuel Effects of Biodiesel Addition to Low Cetane Diesel for  Mode 10 ... 158 

Figure 91  Apparent Fuel Effects of Biodiesel Addition to Low Cetane Diesel for  Mode 11 ... 159 

Figure 92  Apparent Dilution Ratio Effects on Particle Concentrations of Mode 2.................... 162 



 

 

x

Figure 93  Apparent Dilution Ratio Effects on Particle Concentrations of Mode 5.................... 163 

Figure 94  Apparent Dilution Ratio Effects on Particle Concentrations of Mode 6.................... 164 

Figure 95  Apparent Dilution Ratio Effects on Particle Concentrations of Mode 7.................... 165 

Figure 96  Apparent Dilution Ratio Effects on Particle Concentrations of Mode 10.................. 166 

Figure 97  Apparent Dilution Ratio Effects on Particle Concentrations of Mode 11.................. 167 

Figure 98  Calculated Secondary Dilution Ratios of Steady State Test E02206_02................... 169 

Figure 99  NOx and Remote NOx Concentrations of Steady State Test E02206_02................... 170 

Figure 100  Average Secondary Dilution Ratios of Humidity-Specific SETs ............................ 171 

Figure A-1  Particle Concentration Comparison of E01926 and E01929 Test Sequences.......... 185 

Figure A-2  Particle Concentration Comparison of E01972 and E01977 Test Sequences.......... 185 

Figure A-3  Particle Concentration Comparison of E02097 and E02107 Test Sequences.......... 186 

Figure A-4  Particle Concentration Comparison of E02099 and E02107 Test Sequences.......... 186 

Figure A-5  Particle Concentration Comparison of E02101 and E02103 Test Sequences.......... 187 

Figure A-6  Particle Concentration Comparison of E02123 and E02124 Test Sequences.......... 188 

Figure A-7  Particle Concentration Differences between E02123 and E02124 Test Sequences 188 

Figure A-8  Particle Concentration Comparison of E02125 and E02126 Test Sequences.......... 189 

Figure A-9  Particle Concentration Comparison of E02125 and E02127 Test Sequences.......... 189 

Figure A-10  Particle Concentration Differences between E02125, E02126, and E02127 Test 

Sequences .................................................................................................................................... 190 

Figure A-11  Particle Concentration Comparison of E01920 and E01926 Test Sequences........ 190 

Figure A-12  Particle Concentration Comparison of E01920 and E01928 Test Sequences........ 191 

Figure A-13  Particle Concentration Differences between E01920, E01926, and E01928 Test 

Sequences .................................................................................................................................... 191 

Figure A-14  Average Particle Concentrations of Test Sequence E01928.................................. 192 

Figure A-15  Average Particle Concentrations of Test Sequence E01921.................................. 193 

Figure A-16  Average Particle Concentrations of Test Sequence E01977.................................. 194 

Figure A-17  Average Particle Concentrations of Test Sequence E02099.................................. 195 

Figure A-18  Average Particle Concentrations of Test Sequence E02138.................................. 196 

Figure A-19  Average Particle Concentrations of Test Sequence E01959.................................. 197 

Figure A-20  PM Mass-Rate of E1920_02 as Measured with the TEOM................................... 198 

Figure A-21  Corrected and Uncorrected PM Mass Accumulation of E01920_02 as Measured 

with the TEOM............................................................................................................................ 198 

Figure A-22  PM Mass-Rates of E01920_02 as Measured with the TEOM and the DMS......... 199 

Figure A-23  PM Mass Accumulation of E01920_02 as Measured with the TEOM and the DMS

..................................................................................................................................................... 199 

Figure A-24  PM Mass-Rate of E01927_03 as Measured with the TEOM................................. 200 



 

 

xi

Figure A-25  Corrected and Uncorrected PM Mass Accumulation of E01927_03 as Measured 

with the TEOM............................................................................................................................ 200 

Figure A-26  PM Mass-Rates of E01927_03 as Measured with the TEOM and the DMS......... 201 

Figure A-27  PM Mass Accumulation of E01927_03 as Measured with the TEOM and the DMS

..................................................................................................................................................... 201 

Figure A-28  PM Mass-Rate of E01929_04 as Measured with the TEOM................................. 202 

Figure A-29  Corrected and Uncorrected PM Mass Accumulation of E01929_04 as Measured 

with the TEOM............................................................................................................................ 202 

Figure A-30  PM Mass-Rates of E01929_04 as Measured with the TEOM and the DMS......... 203 

Figure A-31  PM Mass Accumulation of E01929_04 as Measured with the TEOM and the DMS

..................................................................................................................................................... 203 

Figure A-32  PM Mass-Rate of E01967_04 as Measured with the TEOM................................. 204 

Figure A-33  Corrected and Uncorrected PM Mass Accumulation of E01967_04 as Measured 

with the TEOM............................................................................................................................ 204 

Figure A-34  PM Mass-Rates of E01967_04 as Measured with the TEOM and the DMS......... 205 

Figure A-35  PM Mass Accumulation of E01967_04 as Measured with the TEOM and the DMS

..................................................................................................................................................... 205 

Figure A-36  PM Mass-Rate of E01968_04 as Measured with the TEOM................................. 206 

Figure A-37  Corrected and Uncorrected PM Mass Accumulation of E01968_04 as Measured 

with the TEOM............................................................................................................................ 206 

Figure A-38  PM Mass-Rates of E01968_04 as Measured with the TEOM and the DMS......... 207 

Figure A-39  PM Mass Accumulation of E01968_04 as Measured with the TEOM and the DMS

..................................................................................................................................................... 207 

Figure A-40  PM Mass-Rate of E01976_04 as Measured with the TEOM................................. 208 

Figure A-41  Corrected and Uncorrected PM Mass Accumulation of E01976_04 as Measured 

with the TEOM............................................................................................................................ 208 

Figure A-42  PM Mass-Rates of E01976_04 as Measured with the TEOM and the DMS......... 209 

Figure A-43  PM Mass Accumulation of E01976_04 as Measured with the TEOM and the DMS

..................................................................................................................................................... 209 

Figure A-44  PM Mass-Rate of E02124_02 as Measured with the TEOM................................. 210 

Figure A-45  Corrected and Uncorrected PM Mass Accumulation of E02124_02 as Measured 

with the TEOM............................................................................................................................ 210 

Figure A-46  PM Mass-Rates of E02124_02 as Measured with the TEOM and the DMS......... 211 

Figure A-47  PM Mass Accumulation of E02124_02 as Measured with the TEOM and the DMS

..................................................................................................................................................... 211 

Figure A-48  PM Mass-Rate of E02125_02 as Measured with the TEOM................................. 212 

Figure A-49  Corrected and Uncorrected PM Mass Accumulation of E02125_02 as Measured 

with the TEOM............................................................................................................................ 212 

Figure A-50  PM Mass-Rates of E02125_02 as Measured with the TEOM and the DMS......... 213 



 

 

xii

Figure A-51  PM Mass Accumulation of E02125_02 as Measured with the TEOM and the DMS

..................................................................................................................................................... 213 

Figure A-52  Particle Concentration Comparison of High, Medium, and Low Humidity Settings 

of Mode 2 .................................................................................................................................... 214 

Figure A-53  Particle Concentration Comparison of High, Medium, and Low Humidity Settings 

of Mode 5 .................................................................................................................................... 214 

Figure A-54  Particle Concentration Comparison of High, Medium, and Low Humidity Settings 

of Mode 6 .................................................................................................................................... 215 

Figure A-55  Particle Concentration Comparison of High, Medium, and Low Humidity Settings 

of Mode 7 .................................................................................................................................... 215 

Figure A-56  Particle Concentration Comparison of High, Medium, and Low Humidity Settings 

of Mode 10 .................................................................................................................................. 216 

Figure A-57  Particle Concentration Comparison of High, Medium, and Low Humidity Settings 

of Mode 11 .................................................................................................................................. 216 

Figure A-58  Particle Sizes that Have Significantly Different Average Values for Mode 3 Due to 

Humidity Change (According to ANOVA)................................................................................. 217 

Figure A-59  Particle Sizes that Have Significantly Different Average Values for Mode 4 Due to 

Humidity Change (According to ANOVA)................................................................................. 217 

Figure A-60  Particle Sizes that Have Significantly Different Average Values for Mode 5 Due to 

Humidity Change (According to ANOVA)................................................................................. 218 

Figure A-61  Particle Sizes that Have Significantly Different Average Values for Mode 6 Due to 

Humidity Change (According to ANOVA)................................................................................. 218 

Figure A-62  Particle Sizes that Have Significantly Different Average Values for Mode 7 Due to 

Humidity Change (According to ANOVA)................................................................................. 219 

Figure A-63  Particle Sizes that Have Significantly Different Average Values for Mode 8 Due to 

Humidity Change (According to ANOVA)................................................................................. 219 

Figure A-64  Particle Sizes that Have Significantly Different Average Values for Mode 9 Due to 

Humidity Change (According to ANOVA)................................................................................. 220 

Figure A-65  Particle Sizes that Have Significantly Different Average Values for Mode 10 Due to 

Humidity Change (According to ANOVA)................................................................................. 220 

Figure A-66  Particle Sizes that Have Significantly Different Average Values for Mode 11 Due to 

Humidity Change (According to ANOVA)................................................................................. 221 

Figure A-67  Particle Sizes that Have Significantly Different Average Values for Mode 12 Due to 

Humidity Change (According to ANOVA)................................................................................. 221 

Figure A-68  Particle Concentration Comparison of High and Low Dilution Settings of Mode 2

..................................................................................................................................................... 223 

Figure A-69  Particle Concentration Comparison of High and Low Dilution Settings of Mode 5

..................................................................................................................................................... 223 

Figure A-70  Particle Concentration Comparison of High and Low Dilution Settings of Mode 6

..................................................................................................................................................... 224 



 

 

xiii 

Figure A-71  Particle Concentration Comparison of High and Low Dilution Settings of Mode 7

..................................................................................................................................................... 224 

Figure A-72  Particle Concentration Comparison of High and Low Dilution Settings of Mode 10

..................................................................................................................................................... 225 

Figure A-73  Particle Concentration Comparison of High and Low Dilution Settings of Mode 11

..................................................................................................................................................... 225 

Figure A-74  Continuous Particle Distribution of E02208_01.................................................... 226 

Figure A-75  Continuous Particle Distribution of E02206_02.................................................... 227 

Figure A-76  Continuous Particle Distribution of E02208_02.................................................... 228 



 

 

xiv

LIST OF TABLES 
 

Table 1  US EPA Emissions Regulations for Heavy Duty Diesel Truck Engines .......................... 6 

Table 2  Composition of Diesel Particulate Ash ............................................................................. 9 

Table 3  Human Exposure to Diesel Particulates .......................................................................... 17 

Table 4  Example SET Cycle ........................................................................................................ 41 

Table 5  Test Engine Specifications .............................................................................................. 42 

Table 6  Mass-Flow Meter Calibration Results............................................................................. 62 

Table 7  Hot-Start FTPs - Examined Fuels for Each Test Engine................................................. 67 

Table 8  SET:  Examined Fuels..................................................................................................... 70 

Table 9  Low Cetane Diesel Fuel Properties ................................................................................. 86 

Table 10  Cetane Numbers and Additive Amounts of Low Cetane Fuels..................................... 87 

Table 11  Differences in Average Particle Concentrations Due to Mixing of Additives with Low 

Cetane Diesel................................................................................................................................. 88 

Table 12  COVs of Laboratory Measurements and DMS COV Scores ...................................... 101 

Table 13  Water Absorption and Effective Density Coefficients ................................................ 102 

Table 14  Total PM Mass Results of TEOM, DMS, and DPF .................................................... 116 

Table A-1  Summary of Testing.................................................................................................. 182 



 

 

xv

LIST OF ACROYMNS AND ABBREVIATIONS 
 

AFEF    Apparent Fuel Effect Factor  

ADEF    Apparent Dilution Effect Factor  

CAFEE    Center for Alternative Fuels, Engines, and Emissions  

CFR     Code of Federal Regulations  

CFV     Critical Flow Venturi  

CNC     Condensation Nucleus Counter  

CO     Carbon Monoxide  

CO2     Carbon Dioxide  

COV     Coefficient of Variation  

CPC     Condensation Particle Counter  

CVS     Constant Volume Sampler  

CVS-EP    CVS combined with an Ejector Pump  

DAQ    Data Acquisition System  

DEMDT    Double-Ejector Micro-Dilution Tunnel  

DMA     Differential Mobility Analyzer  

DMPS     Differential Mobility Particle Spectrometer  

DPF     Diesel Particulate Filter  

DPM    Diesel Particulate Matter 

DR    Dilution Ratio 

ECU     Engine Control Unit  

EGR     Exhaust Gas Recirculation  

ELPI     Electrical Low Pressure Impactor  

EMA     Electrical Mobility Analyzer  

EPA     Environmental Protection Agency  

FCE     Faraday Cup Electrometer 

FTP     Federal Test Procedure  

GC/MS    Gas Chromatograph / Mass Spectrometer  

GVWR    Gross Vehicle Weight Rating  

HDDE    Heavy-Duty Diesel Engines 

HEI     Health Effects Institute  

HEPA     High Efficiency Particulate Air  

HFID     Heated Flame Ionization Detector  

HVAC    Heating, Ventilating, and Air Conditioning  

LAFY     Los Angeles Freeway  



 

 

xvi

LANF     Los Angeles Non-Freeway  

LC     Low-Cetane Reference Fuel  

LDDE     Light Duty Diesel Engine  

LFE     Laminar Flow Element  

LII     Laser Induced Incandescence  

LPI     Low Pressure Impactors  

LRRI     Lovelace Respiratory Research Institute  

MOUDI    Micro-Orifice Uniform Deposit Impactors  

MPS     Micro Proportional Diluter    

Nano-DMA    Nanometer Differential Mobility Analyzer  

Nano-MOUDI   Nano-Micro-Orifice Uniform Deposit Impactors   

n-ASA    Nanometer Aerosol Size Analyzer  

NDIR     Non-Dispersive Infrared  

NOx     Oxides of Nitrogen  

NYNF     New York Non-Freeway  

O3     Ozone   

PAH     Polynuclear Aromatic Hydrocarbons  

PAS     Photoelectric Aerosol Sensor  

PFDB     Parallel Flow Diffusion Battery  

PID     Proportional-Integral-Derivative  

PM    Particulate Matter  

PTL     Particle Technology Laboratory  

QCM     Quartz Crystal Microbalance  

SET     Supplemental Emissions Test  

SMPS     Scanning Mobility Particle Sizer   

SO4    Sulfate Particulates  

SOF     Soluble Organic Fraction   

SOL     Solid Fraction   

TD     Thermodesorber  

TEM     Transmission Electron Microscope  

TEOM    Tapered Element Oscillation Microbalance  

THC     Total Hydrocarbons  

TPM     Total Particulate Matter  

VOC     Volatile Organic Compounds  

VGT     Variable Geometry Turbocharger  

WOT     Wide Open Throttle  



 

 

xvii

LIST OF SYMBOLS 
 

•

filterOH 2    Deposition Rate of Moisture onto the TEOM Filter  

1C      Mass Transfer Coefficient 

2C      Unitless Equilibrium Constant  

airOH 2     Moisture Mass in the Air  

filterOH 2    Moisture Mass on the TEOM Filter  

•

tunnelQ      Volumetric Flow Rate through the Primary Dilution Tunnel 

•

tunnelCO ,2    Mass Flow Rate of CO2 through the Primary Dilution Tunnel 

TEOMPM    Total PM Mass Measured by the TEOM 

filterPM    Total PM Mass Measured by a Gravimetric Filter 

•

TEOM    Mass Flow Rate of PM and H2O given by the TEOM 

•

filterPM    Mass Flow Rate of PM given by the TEOM 

filterOH 2∆    Change in Moisture Mass on the TEOM Filter 

t∆      Change in Time 

filterω      Humidity Ratio for the TEOM Filter 

OH2
Μ      Filter Moisture Mass 

filterΜ      Net Filter Mass 

airω      Humidity Ratio for Air 

airΜ      Mass of Air for a given Volume 

φ      Relative Humidity 

gp      Saturation Vapor Pressure 

p     Barometric Pressure 

pR      Primary Dilution Ratio 

oR      Overall Dilution Ratio 

sR      Secondary Dilution Ratio 

totalQ      Standardized Flow Rate in the Dilution Tunnel 



 

 

xviii 

rawQ      Standardized Flow Rate in the Exhaust Pipe 

venturiC     Venturi Calibration Constant 

absp      Absolute Pressure 

absT      Absolute Temperature 

e      Magnitude of Error Bar 

1e      Standard Deviation of Original Testing 

2e      Standard Deviation of Comparative Testing 

1a      Average Value of Original Testing 

COVscore    Weighted Sum of COV Values 

95−COV    Sum of COV Values between 5 nm and 9 nm 

1910−COV    Sum of COV Values between 10 nm and 19 nm 

24920−COV    Sum of COV Values between 20 nm and 249 nm 

499250−COV    Sum of COV Values between 250 nm and 499 nm 

1000500−COV    Sum of COV Values between 500 nm and 1000 nm 

effρ      Effective Particle Density 

1b      Effective Density Coefficient 

2b      Effective Density Coefficient 

d     Equivalent Momentum Particle Diameter  
•

m      Mass Flow Rate for Particles of a given Diameter 

C      Measured Particle Concentration 

m      Particle Mass 
•

M      Total Mass Flow Rate of PM 

Q      Volumetric Flow Rate 

r      Radius 

π    Pi 

l      Length 

aC      Particle Concentrations of Additized Fuel 

bC     Particle Concentrations of Base Fuel 



 

 

1 

1   INTRODUCTION 
 

1.1   PROLOGUE 
 

After over 30 years of emissions regulations, tailpipe pollution from fossil fuel 

combustion is still threatening the environment and human health in the United States of 

America.  The Environmental Protection Agency (EPA) claims that at least half of all 

Americans reside in areas that do not meet the basic standards of air quality.  In major 

cities, vehicles are responsible for at least 50 % of the total pollution and an even larger 

portion of the air pollution.  Around 80 % of the air-related cancer risk in some cities can 

be attributed to tailpipe emissions [6].   

Particulate matter (PM) from heavy-duty diesel engines (HDDE) is one of several 

emissions that are considered harmful by the EPA.  The wide variety of organic 

compounds, temperatures, and pressures that a diesel combustion mixture undergoes 

causes diesel engines, by nature, to emit greater amounts of particulates (on a mass per 

energy basis) than gasoline engines [2].  EPA regulations and the general need for greater 

combustion efficiency have forced diesel engine manufacturers to decrease total PM 

emission levels drastically.  Since 1988, PM emission standards have decreased from 0.6 

g/bhp-hr (1988) to the present standard of 0.01 g/bhp-hr.  Federal regulations currently do 

not consider particle size, and there are no set standards for size measurement of particles 

emitted from internal combustion engines.  Little is known about the direct effects of 

diesel particulate matter (DPM) on human health, but studies suggest that particles 

smaller than 50 nm have adverse effects if inhaled [3].   
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Due to physical changes that diesel particulates continuously undergo, DPM is not 

a well-defined chemical species [3].  In the existing literature, there is much uncertainty 

concerning the measurement results of DPM.  For the underlying studies, DPM is the 

non-gaseous component emitted from raw diesel exhaust that has been diluted and 

cooled. 

1.2   OBJECTIVES 
 

This research was conducted in order to ascertain the minimum detectable 

variations in PM number concentrations for various conditions (objective 1).  

Specifically, emphasis was placed on varying the engine type, fuel type, relative humidity 

within the dilution tunnel, and primary dilution ratio.  It was also aspired to determine the 

direct effects that humidity (objective 2) and dilution levels (objective 3) have on particle 

formation throughout various steady state operating conditions.  In addition, it was 

elected to explore barometric pressure effects (objective 4); mainly because it was 

suspected that changes in barometric pressure could cause increased run-to-run or day-to-

day variability in engine-out DPM.  Beyond determining minimum significant 

differences, it was necessary to discover the overall effects that fuel type has on particle 

size distribution (objective 5).  Another key focus was to relate continuous PM mass data 

from a Tapered Element Oscillating Microbalance (TEOM) to real-time particle size 

distribution data from a Cambustion DMS-500 (objective 6).  Additionally, it was 

intended to study the effect of aerosol sample line temperature on nanoparticle formation 

(objective 7).  The observable relationships between transient engine operating events 

and particle concentrations were also of interest (objective 8).   
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1.3   GOALS 
   

To accomplish the preceding objectives, there was a need to create and follow a 

multitude of exhaust sampling standards.  To achieve a broad spectrum of results, it was 

decided to test three heavy-duty diesel engines and about 30 fuels on an engine 

dynamometer with a full scale dilution tunnel.  To learn about the variations in particle 

size; having the ability to independently vary parameters such as engine type, fuel type, 

test type, humidity, sample line temperature, and dilution ratio was essential.  The 

transient Federal Test Procedure (FTP) was used in order to simulate on-road operating 

conditions; but use of the Supplemental Emissions Test (SET) was also necessary for 

discriminating subtle differences in test repeatability and particle size distribution due to 

changes in relative humidity or dilution ratio during steady-state operation.  To obtain a 

rounded understanding of variation, it was required to examine residence time, sampling 

position, and equipment used.  To use the selected PM sampling instrument, the DMS-

500, it became evident that it was essential to build a suitable secondary dilution system.  

The secondary system had to be capable of diluting the primary aerosol sample at a ratio 

of about 25 to 1 and maintaining an internal temperature of about 47 deg C.     
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2   LITERATURE REVIEW 
 

2.1   BACKGROUND 
 

Early DPM research, in 1976, was conducted at Michigan Technological 

University by Vuk et al.   The goal of the research was a better understanding of particle 

size and concentration, and the research was done by passing exhaust through multiple 

metal plates, each with hundreds of small holes ranging from 6.05 µm to 0.53 µm.  When 

a test was over, the number of plugged holes on a given plate was estimated to be the 

total number of a single sized particle for the entirety of the test.  The total number 

divided by the total test flow resulted in a concentration value [4].  Since 1976, much 

technical advancement has been made toward the accuracy and reliability of DPM size 

and concentration measurements.  Today, there are many available types of equipment 

used to measure DPM.  They are designed to measure total mass, total concentration, 

concentration of a specific size, and concentrations of sizes in a particular range.  DPM 

sampling instruments include, but are not limited to, the: fast-scanning nanometer 

Aerosol Size Analyzer (n-ASA), Differential Mobility Analyzer (DMA), Differential 

Mobility Particle Spectrometer (DMPS), Transmission Electron Microscope (TEM), 

Tapered Element Oscillating Microbalance (TEOM), Quartz Crystal Microbalance 

(QCM), Thermodesorber (TD), Laser Induced Incandescence (LII), Photoelectric Aerosol 

Sensor (PAS), Gravimetric Particulate Filter, DMS-500 fast particle sizer, smoke meter, 

Faraday Cup Electrometer (FCE), Condensation Nucleus Counter (CNC), Cascade 

Impactor (CI), Electrical Low Pressure Impactor (ELPI), and the Scanning Mobility 

Particle Sizer (SMPS).  Each instrument has certain advantages and disadvantages that 

involve applicability, accuracy, precision, response time, size, and weight.  With the 
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assortment of manufacturing companies come different particle size equivalence 

definitions.  Many diesel particulates are agglomerates of carbon and other solid material, 

and they are more chainlike in shape than spherical [5].  Particle sizing instruments 

convert readings into equivalent aerodynamic diameter or equivalent momentum 

diameter.  Conversion techniques are tailored, causing results between sampling 

instruments to vary. 

Many areas of research on DPM are available.  DPM can be sampled from 

endless combinations of fuels, engines, after treatment devices, and locations.  DPM can 

also be compared to particulate matter from other combustion equipment that can be used 

in similar applications as diesel engines.  Some studies have even compared DPM to 

particulate matter formed by burning wood [2]. 

2.2   EPA STANDARDS AND REGULATIONS 
 

2.2.1   Standards of Measurement 
 

For 2007 and newer HDDE dynamometer certification, the Code of Federal 

Regulations (CFR) states that a proportional sample is to be taken from the primary 

dilution tunnel and further diluted by means of a secondary dilution tunnel.  The 

primary/secondary dilution proportion must be maintained within ± 5 %, excluding start-

up.  The double-diluted sample is to be passed through a fibrous collection filter, or 

gravimetric filter.  The secondary dilution air must be greater than or equal to 15 ºC, and 

the final sample must be maintained at 47 ºC ± 5 ºC.  The face velocity into the sample 

filter is not to exceed 100 cm/s.  Specific filters, such as polytetraflouroethylene coated 

borosilicate glass fiber high-efficiency filters or polytetraflouroethylene high-efficiency 

membrane filters with polymethylpentene integral support rings are required.  The filters 
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must have a diameter of 46.5 mm ± 0.6 mm and a clean filter efficiency of at least 99 % 

as measured by the ASTM D2986-95a DOP test.  The filter holder assembly is to be 

made of 302, 303, or 304 stainless steel.  Sampling standards can be found in greater 

detail in the CFR (Title 40, Part 86, Subpart N) [1].                 

2.2.2   Regulations 
 

Until 1988, particulate matter was not regulated in the United States.  Since 1988, 

on-road HDDE PM regulations have become dramatically more stringent.  The first 

regulation on PM, set by the EPA, was 0.60 g/bhp-hr.  In 1991, the standard was updated 

to 0.25 g/bhp-hr.  In 1994, it was changed to 0.10 g/bhp-hr.  The most recent change was 

made in 2007, which was from 0.10 g/bhp-hr to 0.01 g/bhp-hr [1].  Below in Table 1 are 

the United States EPA emissions regulations for on-road Heavy-Duty Diesel Engines. 

Table 1  US EPA Emissions Regulations for  

Heavy Duty Diesel Truck Engines (g/bhp-hr)  

Year HC CO NOx PM NMHX + NOx NMHC 

1988 1.3 15.5 10.7 0.6 n/a n/a 

1990 1.3 15.5 6 0.6 n/a n/a 

1991 1.3 15.5 5 0.25 n/a n/a 

1994 1.3 15.5 5 0.1 n/a n/a 

1998 1.3 15.5 4 0.1 n/a n/a 

2004* (1) 1.3 15.5 n/a 0.1 2.4 n/a 

2004 (2) 1.3 15.5 n/a 0.1 2.5 0.5 

2007
# 

1.3 15.5 0.2 0.01 n/a 0.14 

* 2004 standards in effect October 2002 
#
 Phase in period to 2010    

 

PM is not the only constituent that has been targeted for reduction.  The 

regulation for oxides of nitrogen, or NOx, has been reduced from 10.7 g/bhp-hr (1988) to 

the current standard of 0.2 g/bhp-hr.  Regulations are becoming increasingly strict for 

several reasons.  For example, NOx is a key ingredient for smog, and PM has been linked 

to several pollution problems, such as acid rain.  The regulation for NOx is not shown in 



 

 

7 

Table 1, because in 2004, the regulation was for the brake-specific summation of non-

methane hydrocarbons (NMHC) and NOx. 

2.3   PARTICLE TRAITS 
 

2.3.1   Composition 
 

DPM is a complex diesel emission that consists of solids and liquid material that 

condenses during dilution.  DPM is composed of three fundamental fractions:  solid 

fraction (SOL), soluble organic fraction (SOF), and sulfate particulates (SO4).  SOL 

particles consist of elemental carbon and ash.  SOF particles include organic material 

derived from engine oil and organic components derived from fuel, and SO4 particles are 

mainly a combination of sulfuric acid and water.  The sum of SOF and SO4 particles can 

be referred to as the volatile organic compounds (VOC).  Figure 1 illustrates the 

composition of DPM from a HDDE engine during a US FTP transient cycle.  Note that 

the fractions of each constituent generally vary with engine type and load [2]. 

 
Figure 1  Composition of Diesel Particulate Matter [2] 

 

Total particulate matter (TPM) can be defined as: 

 

.4SOSOFSOLTPM ++=    Equation 1 

 

There are two major size ranges, known as nuclei mode and accumulation mode, 

used to describe DPM.  Nuclei mode is between 0.007 µm and 0.04 µm, and it consist 

primarily of volatile particles that are very unstable.  Volatile particles are hydrocarbon 
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and hydrated sulfuric acid condensates that depend on dilution conditions.  A small 

fraction of nuclei mode particles can include elemental carbon or metallic ash.  Nuclei 

mode particles usually make up at least 90 % of the total particle count, but only a few 

percent of the total mass.  Accumulation mode particles range from 0.04 µm to 1 µm, and 

are composed primarily of solid carbon particles mixed with condensed heavy 

hydrocarbons.  Accumulation mode can also include metallic ash, sulfur compounds, and 

cylinder wear metals.  Over 95 % of total DPM mass is generally attributed to 

accumulation mode particles.  Figure 2, below, provides a graphical representation of the 

composition of nuclei mode and accumulation mode particles.  Accumulation mode 

consists mostly of solid particles formed during combustion, while nuclei mode consists 

of volatile particles formed during cooling and dilution. 

 
Figure 2  Basic Composition of Nuclei Mode and  

Accumulation Mode Particles [2] 

 

A large portion of the polynuclear aromatic hydrocarbons (PAH) found in diesel 

exhaust is carried by DPM.  Most PAHs exist in the SO4 fraction.  Dioxins are 

chlorinated polynuclear hydrocarbon compounds that are classified as SO4 PAHs and are 

characterized by their toxicity, carcinogenicity, and resistance to breakdown.  Shown in 

Figure 3, TCDF is a dioxin found in DPM that is considered highly toxic.  Diesel engines 

create TCDFs by breaking down motor oil.  There are certain types of catalytic 
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combustion additives that increase the emissions of dioxins by orders of magnitude [2].  

With TCDFs, traces of chlorine derived from engine oil form sturdy symmetrical bonds 

with oxygen atoms. 

 
Figure 3  Example Dioxin Compound TCDF [2] 

 

Engine ash is made up of sulfates, phosphates, and metal oxides.  Ash particles 

can agglomerate to form primary particles of up to 500 nm in size.  Some examples of 

engine ash composition are represented in Table 2.  

Table 2  Composition of Diesel Particulate Ash [2] 

Ash A Ash B Ash C Ash D 
Material 

Weight percent of oxide in ash 

CaO 29.6 20.7 10.4 27.6 

ZnO 9.9 6.9 3.5 8.22 

MgO 5.5 3.9 1.9 1.66 

SO3 38.8 27.2 13.6 - 

P2O5 15.8 11.1 5.5 10.4 

Al2O3 - - - 1.28 

SiO2 - - - 3.81 

Cr2O3 - - - 0.14 

CuO - - - 0.22 

Fe2O3 0.41 30.3 0.14 1.57 

CeO2 0.0 0.0 65.0 - 

 

The data was collected using a diesel particulate filter (DPF) over a 100,000 km 

HDDE experiment.  Ashes A, B, C, and D were created by combining different fuel 

additives and after treatment devices.  Generally, if a metal-based fuel additive is used, 

engine ash contains oxides of the metal from within the additive.  Metals often used in 
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additives are strontium, iron, and cerium.  Composition of DPM varies and depends 

greatly upon engine technology, test conditions, and sulfur content in the fuel [2].  There 

is much literature where in-depth research was performed on these topics.       

2.3.2   Formation 
 

The US EPA specifies that DPM mass is to be sampled at exhaust temperatures 

no higher than 52 ºC.  Laboratory systems known as dilution tunnels are used to achieve 

such temperatures, as well as dilution ratios generally ranging from 2 to 20.  The purpose 

of cooling and diluting raw exhaust is to simulate the formation of DPM in the 

atmosphere.  Since atmospheric dilution ratios of DPM are often in the hundreds or 

thousands near the exit of the exhaust, it is extremely complicated to precisely simulate 

natural dilution.  The formation of nuclei mode particles depends strongly on dilution 

conditions such as temperature, humidity, dilution ratio, and residence time.  In 

accumulation mode, the formation of agglomeration particles is also related to dilution 

conditions.  Nuclei mode and agglomeration particles are affected by dilution conditions 

because of the absorption of gases and condensation of vapors.   

Depending on temperature, particles undergo specific amounts of oxidation and 

agglomeration.  Some particles are deposited on the inside of an exhaust pipe because of 

thermophoretic forces (mass transfer driven by a temperature gradient).  Initially present 

as hot gases, exhaust constituents involved in latter agglomeration are hydrocarbons, 

sulfur oxides, and water.  Solid ash is derived from lubrication oil, fuel additives, and 

normal engine wear.  Volatile ash is formed from nucleation of ash constituents during 

the expansion stroke.  Heavy hydrocarbons are derived from oil and unburned fuel.  The 

organic portion of SOF is formed when the surfaces of carbon particles absorb heavy 
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hydrocarbons.  If the available sponge-like carbon particles are insufficient, hydrocarbons 

may nucleate to form increased numbers of volatile nuclei mode particles.  In theory, 

total hydrocarbon material from the combustion chamber is proportional to particulate 

SOF and gas phase hydrocarbons.  Sulfuric acid in DPM is derived from the sulfur 

content of fuel and oil.  Water can react with SO3 to produce sulfuric acid, or H2SO4.  

SO3, or sulfur trioxide, is formed in the combustion chamber by the oxidation of sulfur.  

Only a small portion of sulfur in the combustion mixture forms SO3, because SO2, or 

sulfur dioxide, ties up about 95 % of the available sulfur.  A heteronucleation process 

between sulfuric acid and water is responsible for the formation of SO4 particulates.  

Sulfuric acid may also form SOL sulfate salts, depending on the availability of metal 

based compounds.  Figure 4 illustrates how relative humidity in the surrounding 

atmosphere is largely responsible for the formation of sulfuric acid.  

 
Figure 4  Mass of Bound H2O per Gram of H2SO4 [3] 

 

Elemental carbon, or inorganic carbon, makes up the majority of SOL particles.  

Not chemically bound with other emissions, inorganic carbon is responsible for black 

smoke emissions.  Figure 5 shows how carbon atoms form hexagonal arrays, or platelet 

shaped structures that are arranged in two to five layer deep graphite crystallites.  The 

crystallites generally pack themselves parallel to the surface of a primary particle. 
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Figure 5  Structure of a Primary Elemental Carbon Particle [3] 

 

Primary carbon particles agglomerate in the cylinder and change little until they 

are discharged into the atmosphere.  The final form of part of an agglomerated particle is 

shown below in Figure 6.  A nuclei mode primary particle usually agglomerates with 

hundreds of others to form a much larger accumulation mode particle that is grape-like in 

structure.  Since the final elemental carbon particle is shaped rather like a chain, a sphere 

is a poor approximation of shape.        

 
Figure 6  TEM Picture of a Primary Carbon Particle Attached to  

an Agglomerated Carbon Particle [3] 

 

The SOL mass fraction is generally about 54 % of DPM.  In cases where the SOF 

fraction is greater than 50 %, DPM is called “wet” particulate.  In wet particulates, multi-

layer hydrocarbon absorption on the surface of carbon particles takes place.  Dry 

particulates, on the other hand, can have SOF content as low as 10%.  As seen in Figure 

7, engine loads and exhaust temperatures are prominent variables that impact the 

formation of SOF particulates.       
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Figure 7  SOF Fractions at Different Operating Conditions [3] 

 

2.3.3   Size and Number 
 

The medical community has sparked an interest in the size distribution of DPM.  

Indications have been made that adverse health effects increase when particle size 

decreases, even for toxicologically inert material.  The increased interest of particle size 

was triggered by a study funded by the Health Effects Institute (HEI) [3].  The study, 

involving two HDDEs, showed that there was an increased number of nanoparticles from 

a newer engine; possibly due to higher injection pressures.  PM is generally divided into 

four categories based on equivalent aerodynamic diameter.  PM10 includes all particulates 

of aerodynamic diameter less than 10 µm.  The D50 cut size is considered to be 10 µm, 

meaning that about 50 % of the respirable particles are smaller than 10 µm.  Fine 

particles are of aerodynamic diameter less than 2.5 µm.  Ultrafine particles are of 

diameters less than 100 nm, and nanoparticles are characterized by diameters less than 50 

nm.  There are also modal size classifications that are used to describe typical PM mass 

and number distributions.  Coarse mode includes any particle with a diameter greater than 

1 µm.  Coarse mode typically contains 5 % to 20 % of the total mass, and practically 0 % 

of the total particle count.  Extending through fine, ultrafine, and part of the nanometer 

range, accumulation mode contains sub-micron particles ranging from 40 nm to 1000 nm.  
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Nuclei mode includes all particles between 7 nm and 40 nm.  A typical shift from an 

accumulation mode distribution to a nuclei mode distribution, as measured by a DMS-

500, is shown below by Figure 8. 
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Figure 8  Nuclei Mode and Accumulation Mode 

 

A study to compare the particle number emissions between diesel and gasoline 

engines was conducted by CONCAWE [3].  Using a matrix of diesel and gasoline fuels, 

four diesel vehicles and three gasoline vehicles were tested under different constant speed 

conditions using the ECE+EUDC test cycle.  PM number results are shown in Figure 9.  

Note that under most circumstances, the number of diesel particles was one to three 

orders of magnitude higher than the number of gasoline particles. 
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Figure 9  Particulate Number Emissions from Diesel and  

Gasoline Vehicles [3] 

 

Residence time is the amount of time that particles spend in the dilution 

environment.  Residence time’s effect on DPM number and size has to do with the 

amount of time that it takes for condensation and particle nucleation to take place.  Figure 

10, below, illustrates a typical DPM number and size distribution when residence time is 

taken into account.  It is clear that residence time only affects particle numbers and sizes 

for particles that are smaller than about 50 nm.  As illustrated in this figure, the nuclei 

mode particles are strongly influenced by residence time. 

  
Figure 10  Effect of Residence Time on Particle Number and Size [3] 
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2.4   BIOLIGICAL CONCERNS 
 

Laboratory studies suggest that DPM includes several carcinogens, but the only 

proven health problems associated with DPM occur in the respiratory system [8].  

Breathing air that contains diesel exhaust is the most common way in which people are 

affected by DPM.  The level of penetration of DPM into the human body is dictated by 

particle size and residence time in the air.  Particles larger than 100 µm are deposited 

only in the nose and throat, while fine particles can be deposited in the alveoli or even 

pass through the lungs into the bloodstream and be transported to all parts of the body 

[8].  DPM affects health in different ways depending on levels of exposure.     

Acute exposure (short term) to DPM can cause irritation to the eyes, nose, throat, 

and lungs.  It can also exacerbate asthma, initiate coughing fits, or cause neurological 

effects such as nausea and lightheadedness.  Symptoms of acute exposure are similar to 

those of seasonal allergies.  Chronic exposure (occupational) causes lung inflammation 

and may have immunological effects [8].   

Concentration of DPM in the ambient air varies significantly with location.  

Exposure can be measured in terms of concentration, and is generally given in units of 

µg/m
3
.  People are exposed in both leisure and occupational settings.  An example of a 

low risk area is a rural area of low population and minimal traffic density.  Some of the 

highest levels of occupational exposure are found in dieselized underground mines.  

Table 3 gives approximate ranges of exposure to DPM in several environments [9].  

Concentrations in the urban areas were calculated from a monthly average, and 

concentrations in the occupational locations were measured.   
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Table 3  Human Exposure to Diesel Particulates [9] 

Environment Range of Exposure 

Urban areas 

Less polluted (monthly average) 1 - 4 µg/m
3
 

Heavily polluted (monthly average) 10 µg/m
3
 

Occupational groups 

Truck drivers 4 - 6 µg/m
3
 

Bus garage workers, forklift operators, ... 20 - 100 µg/m
3
 

Underground miners 100 - 1,700 µg/m
3
 

 

To decrease risk, a driver or operator can avoid excessive idling by turning the 

engine off at long pauses.  Retrofitting a diesel engine with pollution control devices and 

keeping the engine well tuned and maintained can help to decrease DPM concentration in 

the immediate environment.  In areas of very high concentration, wearing a mask is a 

practical method of reducing exposure [9]. 

2.5   AVAILABLE SAMPLING EQUIPMENT 
 

There are numerous sampling methods for DPM size and distribution.  In order to 

acquire comparable and conclusive data, sampling parameters must be consistent or 

analogously varied from test to test.  Important sampling parameters such as:  

temperature, dilution ratio, residence time, relative humidity, and location can alter the 

formation of volatile particulates.  Sampling location and dilution ratios are parameters 

that must be matched with their respective instruments.  Listed below are some, but not 

all, of the available types of aerosol sampling equipment. 

2.5.1   Nanometer Aerosol Size Analyzer (n-ASA) 
 

The nanometer Aerosol Size Analyzer combines a bipolar charger (Po
210

), an 

extended-length Nanometer Differential Mobility Analyzer (Nano-DMA), and an 
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electrometer [10].  The result is an instrument that has a fast response and is capable of 

scanning 30 size channels between 3 nm and 100 nm in less than 3 seconds.  The n-ASA 

is applicable where high concentrations exist and a broad range of temperatures and 

pressures is unavoidable.  Transient nanoparticle analysis can be achieved with the n-

ASA for dilution ratios between 5 and 30 [10]. 

2.5.2   Differential Mobility Analyzer (DMA)  
 

The Differential Mobility Analyzer uses bipolar diffusion charging [11].  Particles 

are charged to an equilibrium energy level and passed through an Electrical Mobility 

Analyzer (EMA).  The EMA only allows particles of a user-specified charge to pass 

through and be measured downstream.  The electrical mobility, or charge, of a particle is 

directly proportional to the particle’s mass.  The DMA can be combined with other types 

of instruments in order to measure concentrations of more than one particle size 

simultaneously.  If a sample is measured by a DMA and a Photoelectric Aerosol Sensor 

(PAS), results can be manipulated in order to approximate particle concentration and 

actual surface area.  This is possible because the PAS gives particle diameter based on 

size, while the DMA gives diameter based on mass and aerodynamic drag [11]. 

2.5.3   Differential Mobility Particle Spectrometer (DMPS)     
              
The Differential Mobility Particle Spectrometer operates by applying a stepwise 

voltage increase to a Differential Mobility Analyzer (DMA).  At each voltage level, a 

specific interval of electric mobility particles can pass through the instrument and be 

measured.  It takes a considerable amount of time to scan through particle intervals.  To 

accomplish a full size distribution, at least 20 minutes of steady-state engine operation is 

required.  More than one DMPS may be used during a single test to provide a greater 
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coverage of particle distribution.  The DMPS can be used with overall dilution ratios of 

between 5 and 30 [12]. 

2.5.4   Transmission Electron Microscope (TEM) 
 

Much like a slide projector, the Transmission Electron Microscope shines a beam 

of electrons (instead of light) through a specimen.  Electrons that pass through the 

specimen are transmitted onto a phosphor screen.  Light is generated when electrons 

strike the phosphor, and three to five projector lenses are used to enlarge the image.  

Lighter areas of the final image represent thinner or less dense parts of the specimen, and 

dark areas represent thick or dense portions.  TEMs can be used to determine the size and 

morphology of individual diesel exhaust particles.  Particles can be taken from different 

points along the exhaust system in order to study the evolution of DPM along the exhaust 

stream [13].  

2.5.5   Tapered Element Oscillating Microbalance (TEOM)    
 

The Tapered Element Oscillating Microbalance is capable of measuring 

instantaneous mass flow of DPM.  Particle mass is determined by the change in 

frequency of an oscillating tapered element as exhaust gases pass through it and onto an 

attached filter.  The TEOM can be used to measure ambient air PM with a detection limit 

of 2 µg/m
3
 for a 24 hour integrated sample.  It can also be used with diluted exhaust to 

give a continuous reading of DPM total mass flow [14].  The TEOM is not normally used 

in on-road emissions testing because of its sensitivity to condensation and vibration.   
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2.5.6   Quartz Crystal Microbalance (QCM) 
 

Unlike the TEOM, the Quartz Crystal Microbalance is not sensitive to 

condensation and external vibration.  The QCM operates under the same principle as the 

TEOM, except instead of using a vibrating tapered element with a filter; it uses an 

oscillating quartz crystal and electrostatic precipitation.  The QCM can be used for in-use 

emissions testing because of its compact size and resilience to vibration.  It measures 

instantaneous DPM mass flow, and is generally used in unison with a Micro Proportional 

Diluter (MPS).  Valid dilution ratios are between 2 and 15 [14]. 

2.5.7   Thermodesorber (TD)  
 

The thermodesorber collects samples on multi-level sorption tubes.  The tubes are 

connected to a Gas Chromatograph/Mass Spectrometer (GC/MS).  High-resolution 

capillary chromatography separates chemicals.  The chemicals identified as VOCs are 

quantified using toluene as an external standard.  Target compounds are specified by the 

user.  The TD can be used to measure levels of specified VOCs in ambient air.  It can 

also be used along with other DPM instruments to determine the mass fraction of VOCs 

in a given sample [15]. 

2.5.8   Laser-Induced Incandescence (LII) 
 

Laser-Induced Incandescence is a phenomenon that occurs when a laser beam 

encounters particulate matter.  The absorption of energy causes soot particle temperatures 

to increase.  Particles then lose heat energy to immediate surroundings.  Pre and post-

temperature measurements are made to give an indication of energy absorption rate.  

Energy absorption rate of the exhaust flow is converted into soot volume fraction of DPM 

in the exhaust flow.  Careful interpretation leads to primary particle size of soot 
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agglomerates.  Certain LII instruments can be used in the combustion chamber to obtain 

temporally resolved 2-D soot images at various crank angles and spatial locations [16]. 

2.5.9   Photoelectric Aerosol Sensor (PAS)   
 

In the Photoelectric Aerosol Sensor, aerosols enter a quarts tube and are submitted 

to high-intensity UV light.  The UV exposure causes particles to emit electrons which are 

collected in an ion trap.  The resulting positively charged particles are collected on an 

electrically sensitive filter where their charge is measured by an electrometer.  It is 

believed that the photoelectric effect is triggered by PAHs within DPM.  For this reason, 

the PAS signal is generally related to PAH concentration.  It is possible to use the PAS 

with a rotating-disk diluter to provide information on the composition of nanoparticles in 

diesel exhaust [14]. 

2.5.10   DMS-500 Fast Particle Sizer  
 

The DMS-500 is considered to be an “inside-out” DMA.  Aerosol passes through 

a charging chamber that assigns appropriate electrical charges to particles of various 

mass.  A greater mass corresponds to a grater charge.  The charged particles then enter a 

compartment that houses a high-voltage electrode and multiple electrometers.  Each 

electrometer is designed to attract particles of a specific charge/drag ratio.  The charges 

measured by an electrometer at any given time represent the particle concentration of a 

certain DPM size.  The larger particles generally travel farther in the sheath air stream 

and make contact with the latter electrometer rings.  There are over 20 electrodes. This 

allows the DMS-500 to measure size and concentration of DPM in real time.  Through 

interpolation, the DMS-500 approximates the concentrations of 43 DPM sizes within the 

range of 5 nm to 1000 nm.  It can measure multiple sizes simultaneously, which makes it 
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useful in transient HDDE dynamometer testing.  The DMS-500 can also be used to 

determine how particle sizes and concentrations change during steady-state dynamometer 

tests [17].  The DMS-500 is limited to high dilution ratio cases (above 50) because it 

must be taken apart and cleaned when the electrometers become dirty [14]. 

2.5.11   Smoke Meter       
 

By using a light passed through an exhaust stream and a light sensor on the other 

side; smoke meters, or opacity meters, detect the amount of light blocked by diesel 

exhaust.  Smoke meters measure smoke density.  In diesel engines, the amount of soot, or 

light blocking particles, is related to the concentration of DPM. 

2.5.12   Faraday Cup Electrometer (FCE) 
 

Perhaps the simplest type of electrical aerosol instrument, the Faraday cup 

electrometer consists of an electrometer and a filter inside of a Faraday cage.  The 

principle of operation is the same as that for the PAS, except charging is done by a 

Faraday cup instead of a UV light.  The FCE is useful in determining the concentrations 

of particles smaller that 10 nm.  It is used to determine nanoparticle concentrations that 

are undetectable with most PM instruments [18]. 

2.5.13   Condensation Nucleus Counter (CNC) 
 

The condensation nucleus counter, also called the condensation particle counter 

(CPC), is a common instrument used to determine number concentrations of diesel 

particulates [14].  Aerosol enters the CNC and is saturated with alcohol vapor.  The 

mixture is cooled in condenser tubes and the vapor condenses on particles.  This causes 

the particles to grow over 10 µm, making them suitable for optical detection.  A beam of 

light is focused into a fine sample stream and re-focused on the other side into a 
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photodetector.  Pulses of light from individual particles are counted and interpreted.  The 

CNC can be operated in one of two ways, counting mode or total intensity mode.  The 

CNC is the key component in many different aerosol size distribution instruments.  The 

CNC is capable of measuring particles between the sizes of 10 nm and 1000 nm [18].  

There are many practical uses for the CNC including in-use HDDE testing, dynamometer 

HDDE testing, and ambient air testing.  The European PMP program recommended that 

CNC measurements of non-volatile particles should be added to all regulatory PM 

measurement protocols [14]. 

2.5.14   Cascade Impactor (CI) 
 

An impactor is a device that is used to remove relatively large DPM particles 

from an exhaust stream.  The stream is forced through an orifice and around an impaction 

plate.  Particles that are large have excessive momentum and get thrown onto the 

impaction plate.  The CI uses multi-stage impactors to classify particulates of decreasing 

size.  Examples of CIs are micro-orifice uniform deposit impactors (MOUDI), nano-

micro-orifice uniform deposit impactors (Nano-MOUDI), Andersen Mark3 Impactors, 

and low pressure impactors (LPI).  CIs are capable of measuring particles as small as 10 

nm.  CIs have been available much longer than most particle sizing instruments.  They 

were used in the 1990s to study composition and size distributions of DPM from direct 

injected diesel engines [19]. 

2.5.15   Parallel Flow Diffusion Battery (PFDB) 
 

The parallel flow diffusion battery is an instrument capable of measuring particles 

in the size range of 3 nm to 56 nm.  With sponsorship from the United States EPA, and in 

collaboration with the University of Minnesota, the Particle Technology Laboratory 
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(PTL), and the Lovelace Respiratory Research Institute (LRRI), the PFDB was developed 

during a Southwest Research Institute project.  The PFDB consist of a scalper stage, a 

diffusion stage, and a CPC measurement stage.  In the scalper stage, all particles above 

56 nm are removed in order to prevent interference of larger particles during the other 

two stages.  Inside the diffusion battery, there are three cells containing stacks of screens, 

and a fourth cell that contains small chambers.  The screens rest in straight tubes, and 

they are designed to force particles within certain size ranges to diffuse and deposit onto 

their walls.  The first cell contains screens that allow particles from 56 nm to 3 nm to 

pass.  The screens in the second cell allow particles between 56 nm and 11 nm through.  

The third cell allows all particles between 56 nm and 19 nm particles to go through, and 

the fourth cell lets particles in the 56 nm to 35 nm size range to flow through.  Each cell 

is connected to the sample inlet of the CPC, which allows for the number concentration 

measurement of the four size intervals:  3 nm to 11 nm, 11 nm to 19 nm, 19 nm to 35 nm, 

and 35 nm to 56 nm.  Use of the PFDB is advantageous, because it can measure PM sizes 

that many instruments can not. [14]. 

2.5.16   Electrical Low Pressure Impactor (ELPI) 
 

In an electrical low pressure impactor, aerosol particles are charged by a corona 

wire and forced through a multiple staged impactor.  Unlike in a typical cascade 

impactor, each impactor plate is connected to an electrometer.  When particles come in 

contact with a plate, an electrical current is induced and measured.  Usually, an ELPI is 

able to measure particle concentrations and sizes at 12 stages.  A near real-time 

measurement, at 2 seconds per scan, allows an ELPI to be used in transient testing.  Post 
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testing, particles can be analyzed gravimetrically because they are collected on the 

electrical impactor plates.  A typical measuring range is 32 nm to 1000 nm [14]. 

2.5.17   Scanning Mobility Particle Sizer (SMPS) 
 

The scanning mobility particle sizer is a DMA that operates under the same 

principle as a DMPS.  The only difference is that the SMPS scans using an exponential 

ramp instead of a stepwise ramp.  This decreases the total scan time from 20 minutes to 

60 seconds.  The SMPS is more commonly used than the DMPS because of the 

difference in scan time; but the reduction in scan time is accompanied by less accuracy.  

Since the DPM size distribution must remain constant during a scan, the SMPS is 

applicable where steady state conditions are reached.  Diesel engines on heavy-duty 

machinery, boats, and trains operate at steady state most of the time.  Also, the SMPS is 

frequently used as a standard in which to compare data from other instruments [14]. 

2.6   RELATED STUDIES 
 

Findings from relevant research documents are presented below in order to 

supplement the implications made by this thesis.  Some of the following equations in 

these related studies, such as the water adsorption equations, were used for the 

computations of this thesis. 

2.6.1  Particle Size Distribution from a Heavy-Duty Diesel Engine: Steady-

State and Transient Emission Measurement Using Two Dilution Systems and 

Two Fuels 
 

Khalek et al. used a SMPS, an ELPI, and a PFDB to measure the particle size 

distribution and number concentration in the diluted exhaust of a heavy-duty diesel 

engine [21].  Two separate dilution systems were used with all three instruments to 

determine particle formation differences.  In one system, a full flow CVS was combined 
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with an ejector pump (CVS-EP).  In the other, a double-ejector micro-dilution tunnel 

(DEMDT) was connected close to the turbocharger on the exhaust pipe.  Two fuels, a low 

sulfur diesel (385 ppm) and an ultra low sulfur diesel (1 ppm), were examined over both 

steady state and transient engine operation.  The selected engine was a 243 hp 1999 

Navistar B250.  Three identical hot-start FTPs were run, and five modes of the ISO 13 

mode test were performed 3 times.   

It was noted that all steady-state particle size distributions either fit a monomodal 

lognormal distribution or a bimodal lognormal distribution.  In the nanoparticle size 

range, there was good agreement between the PFDB and the SMPS.  The PFDB was 

complimentary to the ELPI in transient conditions, and it provided useful real time data.  

When the CVS-EP was used with the ultra low sulfur fuel, there was at least an order of 

magnitude reduction in nanoparticle emissions.  With nearly no sulfur content, the 1 ppm 

fuel still produced a detectable amount of nanoparticles, which points to significant 

nanoparticle contribution from volatile materials in the lube oil.  Use of the CVS-EP 

resulted in more particle growth than when using the DEMDT.  It was apparent that 

dilution conditions such as dilution ratio, residence time, and dilution temperature can 

have a dominant effect on nanoparticle size and concentration [21]. 

2.6.2  Evaluation of Methods for Determining Continuous Particulate Matter 

from Transient Testing of Heavy-Duty Diesel Engines 
 

Jarrett and Clark worked on determining how to accurately compare integrated 

continuous TEOM data with conventional filter data from heavy-duty diesel engines.  

Part of their goal was to predict PM emissions in real-time.  Water correction equations 

were used for the TEOM data, because moisture collection on the TEOM filter was 

responsible for about 20 percent, on average, of the mass reading.  The use of two 
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equations was necessary to determine the rate of water deposition on the filter.  The water 

mass gain or loss on the filter for any given time period is given by the following 

equation: 

).*(* 22212 filterairfilter OHOHCCOH −=
•

   Equation 2 

 

The expression )*( 222 filterair OHOHC −  has units of (g) and is the driving force of the 

water mass transfer.  The term airOH 2  has units of (g) and is the moisture mass in the air 

that is flowing through the filter throughout a time period, t∆ .  The term filterOH 2  has 

units of (g) and is the moisture mass on the TEOM filter for the duration of time, t∆ .  

Constant 1C  has units of (s
-1

); it describes mass transfer and depends on flow rate through 

the filter.  The constant 2C  is a unitless equilibrium constant for the ratio of moisture 

mass in the air to moisture mass on the TEOM filter.  1C  and 2C  were experimentally 

determined using steam injections at a specified mass rate.  The moisture mass that 

passes through the TEOM filter can be given by the equation below. 
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Q
COOH **3542.0 ,22            Equation 3 

The term 
•

TEOMQ  is the overall volumetric flow rate through the TEOM, and 
•

tunnelQ  is the 

volumetric flow rate through the dilution tunnel.  The symbol 
•

tunnelCO ,2  has units of (g/s) 

and is the CO2 mass flow rate through the dilution tunnel. 
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It was clear that the TEOM collected significantly less mass than the conventional 

PM filters, so a best-fit correlation was determined as being 

,*8188.0 filterTEOM PMPM =       Equation 4 

 

where filterPM  is the total PM mass collected over a complete cycle on a conventional 

filter (g/cycle), and TEOMPM  is the total amount of PM mass as indicated by the TEOM. 

It was concluded that instantaneous TEOM data may be unreliable due to the 

transient moisture mass on the filter, but a water correction approach can be taken in 

order to provide a closer relationship between TEOM mass data integrated over a cycle 

and conventional filter-based PM mass.  It was also found that continuous CO data can be 

used to approximate PM mass on a filter throughout a cycle, but large errors may occur 

on an instantaneous basis [22].  

2.6.3  A Fast Response Particulate Spectrometer for Combustion Aerosols 
 

In 2002, Reavell et al. detailed the functionality of a new fast response particulate 

spectrometer called the DMS-500 [23].  They noted that, because other PM sources only 

become dominant far away from traffic, the greatest contributor to fine particulate matter 

in the urban environment is road transport.  Since traffic sources generate the majority of 

respired particles (which mostly show up in modes falling in the range of 5 nm to 1000 

nm), it was important for an instrument to be capable of real-time PM concentration 

measurement for all particle sizes between 5 nm and 1000 nm.  The DMS was designed 

specifically to measure such particles.  Initial calibration was accomplished using a vane 

pump and mists of oil.  After the electrometer current/particle density coefficients were 

determined and modeled, the system was validated by comparing the DMS aerosol 

response to a spectrum of aerosol responses from an SMPS.  Light Duty Diesel Engine 
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(LDDE) test were run in which the DMS and SMPS sampled directly from a standard 

dilution tunnel.  This limited the total response time to about 500 ms.  The final result 

was a good general agreement between the DMS and the SMPS, where the DMS had 

extra bandwidth and was able to show much greater detail than the SMPS.  The central 

conclusion was that a new instrument was available that could measure the fine particle 

number spectrum with an unmatched frequency response.  The DMS size classification 

resulted in clear resolution of accumulation and nucleation modes.  Even detecting the 

transient effects on particulate matter from engine events such as gear changes and fuel 

cuts was possible [23]. 

2.6.4  Effective Density of Diesel Exhaust Particles as a Function of Size 
 

Lappi et al. developed a method to define effective particle density as a function 

of diesel particle size.  The method was to measure both the aerodynamic and mobility 

size distributions of sample aerosol, obtain an agreement between size dependent 

effective density, and obtain a best-fit line between the distributions.  Aerodynamic size 

distribution was measured with an ELPI, and mobility size distribution was measured 

with a SMPS.  It was realized that a heated ejector diluter helps prevent nucleation and 

condensation, and it is to be used when the structure of agglomerated particles is being 

studied.  The density of primary particles, or particles smaller than 30 nm, was typically 

constant at about 1.1 g/cc, and the particles between 20 nm and 80 nm appeared to be 

almost spherical.  As particle size increased after 30 nm, the effective density decreased 

almost linearly (due to void space) from 1.1 g/cc to about 0.2 g/cc.  Various fuels were 

used in the study, which led to the conclusion that dilution has a stronger relationship 

with effective particle density than does fuel type [24]. 
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2.6.5  Evaluation of Methods for the Determination of Diesel-Generated Fine 

Particulate Matter:  Physical Characterization Results 
 

Kinsey et al. conducted a study at the WVU EERC with two diesel engines and a 

dynamometer to compare common PM measurement techniques.  Secondary dilution was 

done with a 20.3 cm stainless steel tunnel with TSI Model 3708 flow splitters connected 

to each sampling probe.  The experiment was a multi-phase instrument comparison to 

evaluate inter- and intra-method variability.  Included in the evaluation were a TEOM, 

three SMPSs, a CPC, a TSI DustTrak, a MET-One E-BAM, two ELPIs, and two time-

integrated filter samplers.  The SMPSs and the ELPIs generally provided the most 

comparable results for number distribution, but the TEOM proved to have the most 

accurate correlation with the gravimetric filter method.  SMPS and ELPI measurements 

could not be compared to the CPC due to problems with the coupled TSIs capillary 

diluters.  It was recommended that the TSI/CPC diluter combination should not be used 

for future research [25]. 

2.6.6  Research on Diesel Exhaust and Other Particulates 
 

Health Effects Institute (HEI) is committed to understanding human health effects 

due to exposure to diesel exhaust.  As of 2003, HEI had taken part in more than forty 

research projects and published three special reports (HEI Diesel Epidemiology Working 

Group 2002; HEI Diesel Epidemiology Expert Panel 1999; and HEI Diesel Working 

Group 1995) that evaluated the scientific literature concerning diesel health effects.  

Epidemiologic studies of people who were occupationally exposed (truck drivers and 

railroad workers) show a weak but fairly consistent association between exposure to 

DPM and lung cancer [7].  Long-term rat, mice, and hamster bioassays showed an 

increase in lung tumors only in rats with high levels of exposure (greater than three 
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milligrams of DPM per cubic meter).  It was likely that the carcinogenesis in rats was 

related to lung overload of particles rather than the absorption of organic compounds and 

gases.  Still, the possibility of other cancer causing mechanisms at lower levels of 

exposure is possible.  The EPA and the California EPA both concluded that the results of 

animal studies infer human hazard, but there is too much uncertainly for the information 

to be used in QRA for human lung cancer.  Human exposure to low ambient 

concentrations may not even be relevant to the extremely high-dose experiments in 

animal studies.  Exposure of high concentrations of fresh diesel aerosol (300 ug/m
3
 for 1 

hour) to human participants took place in order to evaluate the effects of PM on human 

airways.  Changes in some inflammatory markers, such as neutrophils and interleukin in 

sputum, neutrophils and platelets in blood, and bronchial inflammatory cells were 

exhibited, but there was no change in lung function.  Both healthy participants and 

asthmatic participants took part in the study, and a central conclusion was made that 

healthy individuals may have different responses to DPM than asthmatic individuals.  It 

was previously suggested that diesel exhaust exposure increases specific allergic 

responses to their respective allergens, but no studies have shown such [7]. 

2.6.7  Particles from Internal Combustion Engines – What We Need to Know 
 

In 2000, Collings and Graskow conducted an experiment where they measured 

particle size distributions with an SMPS under dilution tunnel conditions that mimicked 

atmospheric dilution conditions [26].  A sample was taken from a 2.5 L diesel engine’s 

exhaust, kept warm in a short insulated sample line, and diluted in an elementary dilution 

tunnel before being measured by the SMPS.  The use of fuels of various sulfur contents 

showed that fuels that are lower in sulfur yield fewer nanoparticles.  The researchers 
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ultimately suggested that ample knowledge of the relationship between dilution and 

particle formation could precipitate insight that would allow particle emissions to be 

reduced by active on-vehicle manipulation of the atmospheric dilution process [26].   

2.6.8  Evaluation and Correction of Moisture Adsorption and Desorption from 

a Tapered Element Oscillating Microbalance 
  

Jarrett et al. explain how the TEOM shows promise in determining real-time 

continuous PM, but moisture biases TEOM data through its adsorption and desorption 

from the TEOM’s oscillating filter [27].  The purpose of their study was to model the 

moisture effect on the TEOM for transient tests, compensate for the biased data using 

experimentally determined coefficients and other continuous data, and present a much 

more accurate trace of PM.  Results showed that ambient moisture in the air had a strong 

linear correlation with moisture mass on the TEOM filter.  Injecting steam into the 

engine’s exhaust pipe was a method that was used to evaluate the effects of moisture on 

the filter.  Possible bias due to volatile HC from combustion was assumed to be 

negligible, because of its mass rate, on average, being about a thousandth of the moisture 

mass rate through the filter.  Essentially, five equations are needed to correct for water 

loading.  The chief equation that accounts for water adsorption/desorption rate is 

,2

•••

+= filterfilter OHPMTEOM    Equation 5 

where the total mass rate given by the TEOM is ,
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in which filterOH 2∆ is the change in water mass on the filter over the time span, t∆ .  

Since the ambient moisture is related to the moisture mass on the filter, 
•

filterOH 2 can also 

be given by 

),*(* 22212 filterairfilter OHOHCCOH −=
•

                        (same as Equation 2) 

 

where airOH 2  is the moisture mass in the air that passes through the filter over a time 

period, t∆ , and filterOH 2  is the moisture mass in the filter over the same time period, t∆ .  

1C  and 2C  are experimentally determined coefficients that depend on many factors, but 

their values are thought to be mainly attributed to the chemical attraction between water 

molecules and the TEOM filter.  1C  and 2C  were roughly determined from 11 different 

transient tests, resulting in an average 1C  of 0.0723 (51.25 % COV) and an average 2C  of 

0.0119 (75.61 % COV).  The moisture mass on the filter can be calculated from the 

humidity ratio for the filter, ,filterω  the filter moisture mass, ,
2OHΜ  and the net filter 

mass, ,filterΜ in the equation 
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The moisture mass of the air that passes through the filter can be determined from 

the equation 
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where airω  is the humidity ratio for air, airΜ  is the mass of dry air for a given volume, 

0.622 is the ratio for the molecular weight of dry air to water, φ  is the relative humidity 

as a fraction, gp  is water’s saturation vapor pressure at 70 °F, and p is the barometric 
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pressure.  It was pointed out that the inclusion of a term for PM accumulation would 

provide a more accurate and more advanced model for the change in moisture mass on 

the TEOM.  The results showed that the model that was developed yielded a 

representation of instantaneous PM that was much improved in accuracy.  [27]   

2.6.9  Significance of Fuel Sulfur Content and Dilution Conditions on Particle 

Emissions from a Heavily-Used Diesel Engine During Transient Operation 
 

In a 2007 SAE paper by Kittelson et al., the effects of fuel sulfur content and 

dilution ratio on PM concentrations were discussed.  The research was done using a 1992 

International 7.3 L diesel engine, two ejector type micro-diluters, an EEPS, a SMPS, and 

a CFR Subpart N compliant CVS with critical flow orifices.  The dilution ratios of the 

sequential ejector diluters were documented to be 30 and 6.17, which provided a total 

secondary dilution ratio of 185.  The primary dilution ratio ranged from 4.2 to 30.1, 

depending on operating conditions.  For each fuel (309 ppm sulfur and 9.2 ppm sulfur), 

the particle concentrations were measured over an acceleration during an FTP, a 

deceleration during an FTP, and steady state operations of ISO-8178 modes 1, 8, and 11.  

The primary tunnel flow was set to 1500 scfm (0.71 m
3
/s) and 2750 scfm (1.3 m

3
/s), 

which resulted in “low” and “high” dilution ratios, respectively, for each testing 

circumstance.  A conclusion of interest was that “the nuclei mode [was] significantly 

larger in concentration for the 1.3 m
3
/s tunnel.”  The reason described for this was that 

“the higher dilution ratio provides the necessary cooling for optimal nucleation.”  For the 

entirety of the study, the conclusion that nuclei mode particles, specifically the ones 

smaller than 20 nm, were solitarily affected significantly by dilution ratio was the only 

one made that related dilution ratio to particle concentrations.  The other key conclusion, 

which agreed with the conclusions of Khalek et al. in “Particle Size Distribution from a 
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Heavy-Duty Diesel Engine: Steady-State and Transient Emission Measurement Using 

Two Dilution Systems and Two Fuels,” was that the formation of a nuclei mode can be 

reduced by using diesel fuels of lower sulfur content [28].  

2.7   PM REDUCTION TECHNOLOGIES 
  

For diesel engines, there are several means to decrease PM emissions.  As 

discussed above in the Related Studies section, it has been shown that sulfur content in 

diesel fuel affects particle formation.  Fuels that are low in sulfur tend to generate fewer 

nanoparticles.  Note that fuel properties, such as cetane number, greatly affect PM 

emissions.  Mostly due to their oxygenated structure, the use of neat biodiesel fuels over 

petroleum diesel fuels generally leads to about a 75 % decrease in brake-specific PM 

emissions.  The engine control unit (ECU), which directly controls injection timing, can 

be manipulated for a wide variety of operating conditions in order to minimize PM 

emissions.  However, there is a NOx – PM tradeoff.  When an engine is being controlled 

to reduce PM, there is an increase in NOx emissions.  Perhaps the most useful device to 

date for the reduction of PM emissions is the diesel particulate filter (DPF).  There are 

different types of DPFs, none of which provide the same pressure drop, filtration 

efficiency, durability, cost, and production suitability.  Paper filters lack the ability to be 

regenerated and are generally used for short-lived indoor applications.  Metal fiber flow-

through filters have cores that are made from woven metal fibers, and they can be 

repeatedly regenerated by passing electric currents through and heating the internal 

fibers.  Silicon carbide wall-flow filters consist of a single piece or segmented SiC core, 

and they have a high melting temperature (2700 °C) which allows them to be regenerated 

through exhaust temperature increase by engine control.  Cordierite wall-flow filters are 
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similar in geometric structure to silicon carbide filters.  They can be used in the same 

applications and are regenerated in the same fashion; but they have a much lower melting 

temperature (1200 °C) which is responsible for their occasional melt down during the 

regeneration process.  DPFs have PM trapping efficiencies (mass based) of between 50 % 

and 99 %.  A simple and effective way for PM emissions to be reduced is fuel 

conservancy.  With any diesel engine technology, the magnitude of pollution from 

combustion is proportional to the amount of fuel used. 
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3   EXPERIMENTAL SETUP AND PROCEDURES 
 

3.1   OVERTURE 
  

The data from this study was taken from a full-scale critical flow venturi (CFV) 

dilution tunnel at the WVU Center for Alternative Fuels, Engines, and Emissions 

(CAFEE).  The laboratory is compliant with the standards set by ISO 8178 and 40 CFR 

Part 86, Subpart N [29].  Multiple engines were used in this study in order to ensure that 

findings hold for the majority of engine technologies.  The test cell was designed for 

regulated emissions testing, and it contains four essential components.  A dynamometer 

was used to measure and control engine parameters such as speed and torque during test 

cycles.  A CFV dilution tunnel provided an environment that allowed for consistent DPM 

formation and measurement.  Overall fuel consumption was measured with a digital fuel 

scale; and a computer-based data acquisition system (DAQ) was used to record the 

laboratory signals.  Additional emissions sampling equipment included a constant flow 

ejector diluter, a secondary NOx analyzer, and a DMS-500 fast particle sizer.  The 

primary laboratory apparatus is illustrated in Figure 11.  The additional components are 

within the perimeter of the dashed line, and they have an experimental arrangement that 

is unique to this work.   
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Figure 11  Components of Exhaust Sampling System 

 

3.2   TEST CYCLES 
 

Test Cycles are used for emissions certification and fuel economy determination, 

and they are designed for the dynamometer/engine control of both chassis dynamometer 

systems and engine dynamometer systems.  Light-Duty Diesel Engines (LDDE) include 

truck classes 1 through 3, and power trucks with a gross vehicle weight rating (GVWR) 

of up to 14,000 lb.  Heavy-Duty Diesel Engines (HDDE) consist of truck classes 6 

through 8, and power trucks with a GVWR of 19,500 lb and up.  For engine certification 

within the US, LDDEs are tested on chassis dynamometers, and HDDEs are tested on 

engine dynamometers.          

There are many test cycles designed for HDDE dynamometer testing.  Some 

simulate what engines experience during on-road operation, while others are designed to 

test engines at steady-state conditions.  The Federal Test Procedure (FTP), and the 

Supplemental Emissions Test (SET) are two engine dynamometer test cycles that are 

used in the U.S. for on-road HDDE certification.  Engine manufacturers are required to 
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perform both dynamometer and in-use emissions testing before any particular on-road 

HDDE can be sold in the U.S.  The European Union uses the ETC (FIGE transient) and 

the ECE R49 for engine certification.  The ETC is a transient cycle for truck and bus 

engines, and the ECE R49 is a 13 mode steady-state cycle.  In Japan, the government 

uses the JE05, which is a transient cycle used for the certification of HDDEs and gasoline 

engines.  

3.2.1   Federal Test Procedure  
      
The FTP was designed to simulate speeds and loads that an engine would 

experience on the road.  For heavy-duty diesel engines, the FTP simulates stop and go 

city driving and freeway driving for a bus or truck.  To simulate driving conditions as 

accurately as possible, the FTP includes segments of the test where the dynamometer 

motors the engine.  The FTP is composed of four separate sections that, in the following 

order, represent the New York non-freeway (NYNF), the Los Angeles non-freeway 

(LANF), the Los Angeles freeway (LAFY), and a repeat of the NYNF.  The NYNF 

segment simulates the frequent starts and stops of light urban traffic.  The LANF section 

simulates slow-moving heavy urban traffic with few stops, and the LAFY section 

simulates busy freeway traffic [29].  Figure 12 is an engine speed versus time plot for an 

actual FTP cycle.  Below Figure 12, Figure 13 is an engine torque versus time plot for the 

same test.  
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Figure 12  Engine Speed vs. Time for a FTP Cycle 
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Figure 13  Engine Torque vs. Time for a FTP Cycle 

 

The plots in Figures 12 and 13 were generated during an actual dynamometer test 

by a 1992 DDC S60 Engine.  The target speed and torque points were created in 

accordance with a preliminary engine map. 
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3.2.2   Supplemental Emissions Test  
  
Also called the ESC or the OICA/ACEA, the SET is used for HDDE testing in the 

U.S. to supplement the FTP.  It has 13 steady-state modes that cover a matrix of engine 

speeds and loads.  Table 4 is an example of engine set points for the SET. 

Table 4  Example SET Cycle 

Mode 
Engine Speed 

(rpm) 
Load 
(%) 

Set Torque 
(ft-lb) 

Power 
(hp) 

Weight 
Factor (%) 

Duration 
(min) 

1 600 0 0 0 15 4 

2 1199 100 1418 324 8 2 

3 1422 50 668 181 10 2 

4 1422 75 1002 271 10 2 

5 1199 50 709 162 5 2 

6 1199 75 1064 243 5 2 

7 1199 25 355 81 5 2 

8 1422 100 1336 362 9 2 

9 1422 25 334 90 10 2 

10 1644 100 1179 369 8 2 

11 1644 25 295 92 5 2 

12 1644 75 884 277 5 2 

13 1644 50 590 185 5 2 

 

Regulated emissions measurements are taken and a final value for each one is 

found using averaging and weighting factors for each mode.  A SET is valid if the engine 

speed is held to within ± 50 rpm and the torque is held to within ± 2 % of the maximum 

torque value.    
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3.3   TEST ENGINES 
 

The engines tested were all on-road heavy-duty diesel engines.  Several 

modifications were made in order to adapt the engines for a laboratory environment.  

Radiators were replaced with a water/coolant heat exchanger, and all accessories, such as 

fans and air-conditioning units, were removed.  Mufflers were replaced by an exhaust 

backpressure valve, and the CAFEE heating, ventilating, and air conditioning (HVAC) 

system supplied the intake air.  Table 5 displays basic specifications for the engines used 

in this study. 

Table 5  Test Engine Specifications 

Engine Manufacturer Detroit Diesel Corporation Detroit Diesel Corporation Cummins 

Engine Model, Year DDC Series 60, 1992 Rebuilt DDC Series 60, 1992 ISM 370, 2004 

Configuration Inline 6 cylinder Inline 6 cylinder Inline 6 cylinder 

Displacement (L) 12.7 12.7 10.7 

Power Rating (hp) 360 @ 1810 rpm 360 @ 1810 rpm 370 @ 2100 rpm 

Torque Rating (ft-lb) 1450 @ 1200 rpm 1450 @ 1200 rpm 1450 @ 1200 rpm 

Compression Ratio 15:1 15:1 16.5:1 

Bore x Stroke (mm x mm) 135 x 165 135 x 165 125 x 147 

Air Handling Turbocharded, Aftercooled Turbocharded, Aftercooled VGT, Aftercooled 

Exhaust Gas Recirculation (EGR) N/A N/A Cooled EGR 

 

The engines in the table above generate about the same amount of power.  It was 

chosen to use three engines with similar specifications, so that it would be more apparent 

how changes in engine technology from 1992 to 2004 effect DPM formation.    
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3.3.1   1992 Detroit Diesel Series 60 
 

The 1992 DDC was acquired by WVU for use in laboratory emissions testing, and 

it has no available history prior to procurement.  An in-use picture of the engine and a 

speed/torque map are shown below in Figures 14 and 15. 

 

Figure 14  1992 DDC Series 60 [29] 

 

 

Figure 15  1992 DDC Series 60 Engine Map [29] 
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3.3.2   Rebuilt 1992 Detroit Diesel Series 60 
 

The Rebuilt 1992 DDC was taken from a salvage yard by WVU and rebuilt in 

2006.  Like the other 1992 DDC S60, this engine came with no history of use or 

maintenance.  It was entirely rebuilt to meet its original performance and emissions 

specifications, and it was aged for 100 hours on the dynamometer before it was used for 

emissions testing.  Figure 16 shows the engine below, and Figure 17 is an experimentally 

determined performance map used to calculate FTP speed and torque set points. 

 

Figure 16  Rebuilt 1992 DDC Series 60 [29] 

 

 

Figure 17  Rebuilt 1992 DDC Series 60 Engine Map [29] 
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3.3.3   2004 Cummins ISM 370 
 

The 2004 Cummins was procured directly from Cummins.  It differs significantly 

from the two DDCs in that it incorporates more advanced technologies.  It uses cooled 

exhaust gas recirculation (EGR) and a variable geometry turbocharger (VGT) to 

minimize NOx emissions while maintaining performance and fuel economy.  The 2004 

Cummins can be seen in Figure 18, and one of its maps is shown in Figure 19.   

 

Figure 18  2004 Cummins ISM 370 [29] 

 

 

Figure 19  2004 Cummins ISM 370 Engine Map [29] 
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3.4   TEST FUELS 
 

Apart from the supplemental emissions tests that were run to determine the effects 

of relative humidity or dilution ratio on particle formation, all test cycles were run for 

purposes other than particle sizing research.  Since sampling of aerosol with the DMS 

was opportunistic rather than scheduled, the assortment of fuels that was used in this 

research was not specifically selected for the achievement of the initial goals.  If 

additional laboratory time and resources were available, a more strategic selection of 

fuels would have been implemented.        

Table A-1 in the Appendix provides a summary of the fuels used and their 

respective tests.  Many of the fuels were being tested for certification purposes; and due 

to proprietary issues, it was not possible to include their fuel property information.  

Tables 9 and 10, in the Base Fuels vs. Additized Fuels section of this thesis, display full 

fuel property analyses of the low cetane fuels used in a comparison study between a base 

fuel and nine versions of the same fuel with additives.   

3.5   LABORATORY COMPONENTS 
 

3.5.1   Dynamometer  
 

The dynamometer was always operated and calibrated in accordance to 40 CFR, 

Part 86, Subpart N [29].  The DYC 243 dynamometer implemented in this study is a 

direct current model made by General Electric.  It is a computer-commanded 

dynamometer, and it controlled the engine speed and torque by applying and absorbing 

rotational forces that an in-use drive shaft would present.  A proportional-integral-

derivative (PID) throttle positioning program was used to specify and tune the engine’s 

throttle position in order to supply positive power and meet the FTP regression 
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requirements.  The dynamometer produced an engine speed signal from an attached 

digital encoder.  Engine torque was determined analytically from force measurements 

taken by the dynamometer’s load cells.  The dynamometer was joined to the engine with 

a Vulkan coupling and drive shaft.  It was capable of providing up to 500 hp and 

absorbing as much as 550 hp.  Figure 20 shows the dynamometer as it was when testing 

took place.   

 

Figure 20  DYC 243 Dynamometer 

 

3.5.2   Engine Control and Data Acquisition System 
 

All of the measurements that were continuously taken during testing were 

converted into digital signals by the DAQ’s “3B” modules and recorded in a laboratory 

file.  Some of these continuous measurements were necessary for the computer to 

accurately control the engine, while other measurements, such as the gaseous emissions 

signals and intake air humidity, were taken for test validation or research purposes.  The 

computer took the engine speed signal from the dynamometer, the engine torque signal 
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from the dynamometer’s load cell, and the throttle position signal from the throttle 

positioning sensor; and it used them to continuously control the engine’s throttle in order 

to achieve the FTP or SET set points.  Some indirect engine control was also necessary to 

keep the coolant temperature, the engine oil temperature, the intake-air temperature, and 

the intake air-humidity levels compliant with the 40 CFR, Part 86, Subpart N.  Figure 21 

shows the 3B modules that were used to convert analog sensor signals into the digital 

signals read by the test cell computer.   

 

Figure 21  Test Cell DAQ 

 

The 3B modules were also able to convert voltage signals into 5-20 mA currents 

that carried information such as engine speed and fuel flow rate to secondary data 

acquisitioning systems. 
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3.5.3   Dilution Tunnel 
 

A full-scale dilution tunnel was used, meaning that the entire flow of exhaust gas 

was continuously diluted.  A full-scale dilution tunnel is valuable because it closely 

simulates ambient dilution conditions for the proper formation of DPM, it allows gaseous 

reactions to adequately complete, it provides sufficient mixing so that the diluted blend is 

uniform, and it eliminates the possibility of internal condensation (which can impair 

emissions instruments).  Figure 22 shows where the conditioned air and raw exhaust meet 

at the mixing orifice and enter into the 18 inch dilution tunnel.   

 

Figure 22  Dilution Location of Full-Scale Tunnel 

 

Conditioned dilution air was fed to the dilution tunnel.  Three critical flow 

venturis (CFV) (two 1000 scfm and one 400 scfm) were placed just upstream of the 

blower to essentially create a constant volume sampler (CVS).  The primary dilution 

ratio, given by equation 9, changed according to the raw exhaust flow rate. 

raw

total
p

Q

Q
R =    Equation 9 
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The raw exhaust flow rate, rawQ , which typically ranged from about 120 scfm to 

830 scfm, dictated the primary dilution ratio because the total flow, totalQ , was held 

nearly constant by the CVS.  The primary dilution ratio, pR , was slightly affected by 

flow variance due to temperature effects on the CVS.  The primary dilution ratio ranged 

anywhere from about 22 (at idle) to 2 (at full throttle).  The standardized flow rate in the 

dilution tunnel was calculated using the following equation. 














=

abs

abs
venturitotal

T

p
CQ *    Equation 10 

 

The absolute pressure before the venturis is given by absp , the absolute 

temperature before the venturis is absT , and venturiC  is the calibration constant of the 

venturis.  The flow rate was standardized at 29.92 in Hg and 68 °F. 

3.5.4   Fuel Measurement Systems 
 

To ensure data integrity, three different methods were used to determine fuel 

consumption.  One method involved measuring the amount of carbon in the exhaust and 

using a fuel consumption equation that was based on fuel consumption/exhaust carbon 

proportionality.  The fuel consumption equation method required the oxygen-to-carbon 

ratio of the fuel, the hydrogen-to-carbon ratio of the fuel, the specific gravity of the fuel, 

and the measured HC, CO, and CO2 masses in the exhaust.   

A simple but accurate method to determine total fuel consumption over a test was 

to weigh the fuel before and after the test cycle.  A fuel scale was used to determine the 

weight of the fuel and a 16 gallon stainless steel fuel tank at the start and end of each test.  
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The fuel scale provided measurements accurate to 0.5 % of the total fuel consumption 

over any test. 

To measure continuous fuel flow, a Model 710 Max Machinery fuel conditioning 

system was used.  The system held the fuel temperature at or below 109 °F to meet 40 

CFR, Part 86, Subpart N standards, and it consisted of fuel lines, a fuel meter, a fuel 

pump, and a heat exchanger.  A digital signal of mass flow rate of fuel into the engine 

was sent from the fuel conditioning system to the DAQ.  The specific gravity of each fuel 

was incorporated to report the measured mass. 

3.5.5   Gas Analyzers 
                
Exhaust gas analyzers are used at the CAFEE for engine emissions testing.  The 

exhaust gas analyzers provided quality assurance in this experiment, because they gave 

indications of test repeatability.  The exhaust gases measured during certification testing 

at the CAFEE are THC, NOx, CO, and carbon dioxide (CO2).  A second analyzer was 

used to measure NOx at the outlet of the secondary dilution system.  The purpose of 

having two NOx analyzers was to verify the secondary dilution ratio. 

 3.5.5.1   Hydrocarbon Analyzer 
       
A Rosemount Analytical – Model 402 heated flame ionization detector (HFID) 

was used to measure THC emissions.  A small flame within the analyzer is maintained by 

burning a 40 % hydrogen/60 % helium mixture.  Hydrocarbons are ionized as they pass 

through the flame, and a set of polarized electrodes within the analyzer detect a resulting 

electrostatic field.  An electric current is measured by the electrodes, and it is directly 

proportional to the concentration of THC in the exhaust sample.   
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 3.5.5.2   Oxides of Nitrogen Analyzer 
 

A Rosemount Analytical – Model 955 chemiluminescence analyzer was used to 

measure NOx emissions.  In a chemiluminescence analyzer, NO2 is first converted to NO 

and oxygen, so that all of the oxides of nitrogen are NO.  Then, the NO is forced to react 

with ozone (O3) to form NO2.  About 10 % of the total NO2 forms from O3; and NO is in 

the excited state, so it gives off energy in the form of light to reach its natural state once 

again.  A photon detector within the analyzer continually senses the amount of light given 

off by chemiluminescence, which is proportional to the total amount of NOx in the 

sample. 

 3.5.5.3   Carbon Monoxide Analyzer 
                     
Two Horiba AIA-210 CO analyzers were used in order to measure a broad range 

of concentration.  The Horiba AIA-210 is a non-dispersive infrared (NDIR) type analyzer 

that operates under the principle that the spectrum of infrared light absorbed by a sample 

is related to the sample’s present gases.  One CO analyzer was set to measure from 0 to 

1000 ppm, and the other was set to measure 0 to 5000 ppm.  Using two CO analyzers set 

to different ranges allowed for a more accurate interpretation of the data. 

 3.5.5.4   Carbon Dioxide Analyzer 
   
A Horiba AIA-210 LE CO2 analyzer was used to measure CO2.  The AIA-210 LE 

is a non-dispersive infrared (NDIR) analyzer, and it operates under the same basic 

principles as the AIA-210 CO analyzer.  

3.5.6   TEOM  
  
A Rupprecht and Patashnick series 1105 diesel particulate monitor TEOM sensor 

unit was used to continually measure PM mass rate in the dilution tunnel.  The way in 
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which the TEOM operates is explained in detail in the Literature Review section of this 

report.  The TEOM was used in this study to relate the continuous PM mass flow through 

the tunnel to the approximate PM mass flow through the DMS.  The TEOM can be seen 

in Figure 23. 

 

Figure 23  TEOM Sensor Unit 

 

3.5.7   Chiller 
 

Compressed air was used as the dilution air in the secondary dilution system.  

Since humidity of the diluted mixture affects the formation/destruction of DPM during 

secondary dilution, it was desired for the dilution air to be filtered and dehumidified.  Air 

purity was achieved via a HEPA filter within the secondary dilution system.  To dry the 

air, a Deltech HG25 Refrigerated Dryer was connected to the compressed air system.  

The chiller can be seen in Figure 24 on the following page. 
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Figure 24  HG25 Refrigerated Dryer 

 

3.5.8   DMS-500 
 

A 2000 Cambustion DMS-500 was chosen for this study because of its ability to 

detect transient particle distributions.  Basic operating principles of the DMS-500 are 

mentioned in the Literature Review section.  An illustrated explanation of the key 

operating principle can be seen in Figure 25, below.   

 

Figure 25  Differential Mobility Spectrometer [30] 
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The diluted exhaust sample is drawn through the aerosol charger.  Then the 

charged aerosol enters the classifier, which is surrounded by clean sheath flow.  An 

electric field causes particles to drift toward the electrometers, or electrode rings.  The 

charged particle trajectory and the ring on which a particle will land depend on drag and 

momentum (mass and charge).  The denser the particle is, the farther it will travel within 

the DMS.  The measurements of the DMS are consequently based on equivalent mobility 

diameter.       

A remote impactor was attached to the sample line to remove excessively large 

particles.  The DMS-500 required a vacuum pump, which was used to draw between 7.2 

lpm and 8.8 lpm of aerosol through the DMS and eventually expel sampled gases to the 

environment.  A DAQ system was built into the DMS, so all that was required to log or 

review data was a PC.  Figure 26 illustrates what a typical instantaneous aerosol 

measurement would look like.       

 

Figure 26  Particle Size Spectra [30] 

 

Shown in Figure 27, the DMS-500 used in this study was one of the first beta 

models to be sold in the United States.  Problems were often encountered with sample 
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flow rate and signal noise due to soot build up within the instrument.  After every FTP, it 

was necessary to restart the DMS and “zero” the electrodes’ current signal using the PC, 

so that an accurate reading of zero could be the starting point for the next test.  Cleaning 

the instrument, which consisted of removing the high voltage electrode and wiping off 

electrode rings, was necessary at least once daily (6-12 FTPs).  The frequency of cleaning 

was inversely proportional to the overall dilution ratio. 

 

Figure 27  DMS-500 

 

3.5.9   Secondary Dilution System 
 

Initially, the aerosol sample was taken directly from the primary dilution tunnel.  

This caused the DMS to over range for several minutes during an FTP.  Therefore, it was 

clear that the use of a secondary dilution system for the DMS-500 was essential.  Several 

secondary dilution techniques were implemented in hopes that one would provide 

accurate and repeatable measurements.   
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The first secondary dilution system was very simple and somewhat effective.  It 

consisted of a rotometer that could limit the amount of compressed air being mixed in a 

stainless steel Tee with the cooled aerosol sample.  The rotometer diluter made it nearly 

effortless to find a suitable dilution ratio for the tunnel/DMS combination.  Once a 

dilution ratio was found that seemed to provide the DMS with a measurable range of 

concentrations, data was taken from several FTPs.  The repeat tests with the rotometer 

were poorly comparable, because the dilution ratio was not sufficiently constant.  

Although the volumetric flow rate of compressed air through the rotometer remained 

approximately the same, fluxuations in ambient temperature and air pressure caused the 

mass flow rate of air into the Tee to vary significantly.  From the rotometer experiments, 

an optimal dilution ratio was discovered, and it became apparent that the use of a heated 

and pressure regulated dilution system was necessary. 

The next step was to try a heated dilution box, shown in Figure 28, that used a 

mass flow meter and a mass flow controller to continually adjust the mass flow rate of 

dilution air in order to provide a constant dilution ratio.   

 

Figure 28  Mass-Flow-Controller Dilution System  
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The mass flow controller box was conventionally used for the secondary dilution 

in gravimetric PM filter applications, so the average dilution ratio of each test was within 

a few percent of the user-specified dilution ratio.  A major problem however, was the fact 

that the system was ineffective in maintaining a constant dilution ratio throughout an 

FTP.  The mass flow controller was unable to respond quickly and accurately enough to 

follow the transitions in the FTP, and the resulting DMS data was not generally 

repeatable.   

Finally, a heated ejector diluter was custom built to provide the DMS-500 with an 

aerosol sample from the main dilution tunnel at a constant secondary dilution ratio.  

Figure 29 is a schematic of the heated ejector diluter. 

 

Figure 29  Secondary Dilution System Design 
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The ejector dilution system was designed so that a user can take out and replace 

any single part without having to remove any other components.  With the heater/fan 

units show above, the interior of the dilution box is maintained at 47 +-1.0 °C (the same 

temperature that is used for the 2007 gravimetric filter systems specified in 40CFR86 

Subpart N).  The heated chamber, as labeled above, heats the compressed air to the same 

temperature, 47 +-1.0 °C.  A heated sample line, not shown in the figure above, stretches 

from the main dilution tunnel to the dilution box and maintains the sample temperature at 

47 +-1.0 °C.  The heated sample line and the heated chamber are not precise enough to 

keep the sample and air temperatures exactly the same, so the air side and exhaust side 

coils are there to preserve equilibrium between the two temperatures and the box’s 

interior temperature.  The temperature control box, along with three thermocouples (one 

on the air side of the ejector diluter, one on the sample side of the ejector diluter, and one 

on in the center of the box), controls the heaters for the heated chamber, heated sample 

line, and heater/fan units.  A HEPA capsule filter prevents particles of the compressed air 

supply from entering the system.  The precision regulator uses bleed off valves to keep 

the pressure from the compressed air supply to the ejector diluter constant.  The ejector 

diluter uses the pressure and flow of the compressed air to create a vacuum that draws in 

the aerosol sample.  Once the aerosol and compressed air mix in the ejector diluter, some 

of the diluted sample is sent to the DMS while the rest is evacuated to the ambient.  The 

ejector diluter consists of two parts; an air operated vacuum pump and a critical orifice.  

The air supply pressure is directly proportional to the resulting vacuum pressure.  As long 

as the vacuum pressure is greater than 16 in Hg, the critical orifice ensures a constant 

flow rate of sample through the diluter.  The dilution ratio can be adjusted, to a certain 
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extent, by varying the air supply pressure (which changes the flow rate of dilution air) at 

the precision regulator.  For greater adjustment of the dilution ratio, the critical orifice 

can be substituted with another critical orifice of greater or lesser flow.  With adjustment 

to the regulator and changing of the critical orifice (orifices ranging from 2 lpm to 15 

lpm), a constant dilution ratio can theoretically be set at anywhere from 7.80 to 67.5.  The 

mass flow meter continually monitors air flow and pressure into the ejector diluter for 

quality assurance and data acquisition purposes only.  The U bend, on the sample side of 

the ejector diluter, was designed so that the sample line can easily be disconnected from 

the ejector diluter for changing of the critical orifice.  The box itself is large enough to 

accommodate future accessories, and it has a removable mounting panel so that all parts 

can be easily installed or removed. 

Properly maintaining the temperatures of the aerosol sample and dilution air is 

crucial.  An increase or decrease of 3 °C on either side of the ejector diluter can cause a 

change in dilution ratio of about 2 %.  The ejector dilution system’s ability to maintain a 

constant dilution ratio depends mostly on: the heaters’ ability to maintain constant 

temperature, the regulator’s ability to maintain constant pressure, the orifice’s ability to 

maintain constant sample flow, and the vacuum pump’s ability to maintain sufficient 

vacuum pressure and constant air flow.  As discussed in the Secondary Dilution Ratio 

Validation section of this thesis, the secondary dilution ratio was calculated using two 

NOx analyzers during several SETs.  The combined results yield a secondary dilution 

ratio with an average value of 24.05, a maximum value of 25.32 (5.28 % higher), and a 

minimum value of 23.06 (4.12 % lower).  The ability of the secondary dilution system to 

maintain a constant dilution ratio may actually be better than indicated, because variation 
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in NOx measurements is included in the calculation of the maximum and minimum 

values.  Detailed calculations involving the dilution system’s overall precision can be 

found in the Secondary Dilution Ratio Validation section on page 169.  The final form of 

the ejector dilution system is presented below in Figure 30. 

 

Figure 30  Heated Ejector Diluter 

 

The Alikat Scientific M Series mass flow meter within the dilution system was 

calibrated using the Heise PTE-1 pressure sensor and the Marium Instruments laminar 

flow element (LFE) shown in Figure 31.  The Heise pressure sensor was also used to 

determine the barometric pressure during each engine test cycle.   
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Figure 31  Pressure Sensor and LFE 

 

The results of the mass-flow meter calibration are shown below in Table 6.   

Table 6  Mass-Flow Meter Calibration Results 

Laminar Flow 
Element (slpm) 

Flow Meter 
(slpm) 

Difference 
(%) 

28.49 28.10 1.36 

40.58 40.10 1.18 

53.09 52.40 1.31 

65.44 64.70 1.13 

77.99 77.10 1.14 

90.73 89.50 1.35 

103.29 101.90 1.34 

116.50 114.50 1.72 

128.67 127.10 1.22 

 

For the range of mass-flow rates measured, the maximum difference between the 

Alikat mass-flow meter and the Marium Instruments laminar flow element was 1.72 % at 

116.5 slpm.  The minimum difference was 1.13 % at 65.44 slpm.  None of the calibration 

points were off by more than 2 %, so adjustment to the mass-flow meter was not 

necessary.    
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3.6   SAMPLING PROCEDURE 
 

3.6.1   Procedure for FTP 
 

The procedure in which data was collected was consistent from test to test.  

Before any test, the heated ejector diluter was given at least one hour to stabilize its 

internal temperature.  The precision regulator pressure was always set to 80 psi, which 

resulted in a constant secondary dilution ratio of ~24.  The DMS also required time to 

warm up, and it was given at least forty five minutes before each test session.  The 

electrometer rings within the DMS were “zeroed” about five minutes before the start of 

each FTP so that there would be as little time as possible for drift to occur.  The DMS 

drew its sample via an external vacuum pump, which was turned on about a minute after 

the DMS was powered up.  When necessary, orifice plates within the remote impactor on 

the DMS sampling line were changed in order to maintain a sample flow of 8 lpm +-10 

%.  In the time between FTPs, the DMS was reset and the rings were rezeroed.  Data 

logging on the DMS’s data acquisition system began about one minute before the start of 

each FTP and was over about one minute after the end.  At the end of each day, the 

electrometer rings were cleaned with isopropyl alcohol and “chem wipes.”  The rest of 

the laboratory, which includes the exhaust gas analyzers, the 70 mm PM filters, and the 

TEOM, was run by a test-cell engineer.  The full-scale dilution tunnel maintained an 

average flow of approximately 2400 scfm, which resulted in main-tunnel dilution ratios 

of about 22 at idle and 2 at full throttle.  Therefore, the overall dilution ratio at the intake 

of the DMS ranged from about 480 to 48 during each FTP.  Data was collected from 

FTPs with the DMS in order to study the detectable changes in PM formation due to:  

fuel additives, day-to-day variation, and temperature of the heated sample line.  FTP data 
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was taken with the TEOM in an attempt to relate continuous PM mass data to the 

continuous PM concentration data from the DMS. 

 3.6.1.1   Day-to-Day Variation Testing  
  
To help determine the typical day-to-day variation in PM formation, five nominal 

fuels were tested on multiple days.  The first fuel tested for day-to-day variation was a 

biodiesel fuel named NBB Ref., and it was run over two hot-start FTPs through the 2004 

Cummins ISM 370 engine on two consecutive days.  The second fuel was tested in the 

same engine over the same two days.  It was NBB-B05, and it was used during two hot-

start FTPs on each day.  The third fuel tested on two consecutive days was RF-71, and it 

was run for two hot-start FTPs on the non-rebuilt 1992 Detroit Diesel DDC S60 engine.  

The fourth fuel was TCEQ Tex LED Ref., and it was tested during three hot-start FTPs 

on each day for three non-consecutive days on the 1992 Detroit Diesel DDC S60 engine.  

The fifth fuel tested for day-to-day variation was also run through the 1992 Detroit Diesel 

DDC S60 engine.  It was tested for two consecutive days, over four hot-start FTPs on 

each day.  The fuels and engines tested for day-to-day variation were arbitrarily chosen 

so that a broad range of results could be examined. 

 3.6.1.2   Fuel Additives Testing  
  
Reference fuels were evaluated using FTPs, then one to nine fuel additives were 

used in attempts to find emissions advantages.  To study how fuel additives effect 

continuous PM concentration, six different sets of reference/additive fuel combinations 

were tested and analyzed using the DMS.  The first set of reference/additive tests was run 

on the 2004 Cummins ISM 370 engine, and it consisted of one biodiesel reference fuel 

(NBB Cand.) and two biodiesel additive fuels (NBB Ref. and NBB-B05), where three 
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hot-start FTPs were run on each fuel.  The second set consisted of 30 FTPs, and it was 

run on the rebuilt 1992 Detroit Diesel DDC S60 engine.  It included one low-cetane 

reference fuel (LC) and nine low-cetane additive fuels (LC trt. 2-10), where three hot-

start FTPs were run for each fuel.  The third set of reference/additive tests was run on the 

rebuilt 1992 Detroit Diesel DDC S60 engine, and it was made up of one reference fuel 

(PONCA) and one additive fuel (PONCA trt. 1), where only two hot-start FTPs were run 

on each fuel.  The fourth set was run on the rebuilt 1992 Detroit Diesel DDC S60 engine, 

and it included one reference fuel (Trainer) and two additive fuels (50/50 Trainer Cand. 

and 50/50 Trainer Cand. trt. 1), where two hot-start FTPs were run off of each fuel.  The 

fifth set of tests was run on the rebuilt 1992 Detroit Diesel DDC S60 engine.  It was made 

up of one reference fuel (LC) and two additive/biodiesel blend fuels (LC-B10A and LC-

B20A), and three hot-start FTPs were run on each fuel.  The last set of reference/additive 

tests was also run on the rebuilt 1992 Detroit Diesel DDC S60 engine, and it consisted of 

one reference fuel (FEM) and two additive fuels (FEM trt. 6 and FEM trt. 7), where three 

hot-start FTPs were run with each fuel.  The reference/additive fuel research was done 

during several different predetermined test programs, so the resulting PM data that was 

collected was made up of random sets of fuel/additive combinations. 

 3.6.1.3   Unheated Sample Line Testing 
 

To see what effects on PM formation there might be, the temperature of the 

heated sample line for the secondary ejector dilution system was varied.  During two 

identical hot-start FTPs, the heated sample line was turned off.  During the next three hot-

start FTPs of the same fuel (2007 CP Cert.), the heated sample line was set at 47 °C.  All 

five tests were completed on the same day with the 1992 Detroit Diesel DDC S60 engine. 



 

 

66 

 3.6.1.4   TEOM and Gravimetric Filters   
 

During most of the FTPs that were assessed with the DMS-500, PM mass data 

was being collected with 70 mm PM filters and the TEOM.  The TEOM was located just 

outside of the main dilution tunnel near the gaseous sampling plain, and its oscillating 

filter was changed after each set of tests.  Data from the TEOM was collected using the 

laboratory’s central DAQ.  The sampling technique for the 70 mm PM filters is described 

in depth in the Literature Review of this thesis in the EPA Standards and Regulation 

section.  TEOM, DMS, and filter data was taken simultaneously so that a correlation in 

PM mass between the three instruments could be observed.          

Continuous PM data from over 120 FTPs was collected using the DMS-500.  

Table 7 displays the array of engines and fuels that were tested over numerous hot-start 

FTPs.   
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Table 7  Hot-Start FTPs - Examined Fuels for Each Test Engine 

Engine DDC Series 60 Rebuilt DDC Series 60 Cummins ISM 370 

Grad. Ref.                           [3] 2007 CP Cert.                        [5] NBB Cand.                          [3] 

LC                                       [6] * RF 71                                    [6] * B10                                     [2] 

LC trt. 2                               [3] CF 16 trt. 1                            [3] NBB Ref.                             [5] * 

LC trt. 3                               [3] CF 16 trt. 4                            [3] NBB-B05                             [6] * 

LC trt. 4                               [3] TCEQ Tex LED Ref.              [9] *   

LC trt. 5                               [3] Candidate                              [8] *   

LC trt. 6                               [3]     

LC trt. 7                               [3]     

LC trt. 8                               [3]     

LC trt. 9                               [3]     

LC trt. 10                             [3]     

PONCA                               [2]     

PONCA trt. 1                       [2]     

Trainer                                 [2]     

50/50 Trainer/Cand.             [2]     

50/50 Trainer/Cand. trt. 1     [2]     

LC-B10A                              [3]     

LC-B20A                              [3]     

FEM trt. 3                            [3]     

FEM trt. 6                            [3]     

  Fuel         [Number of Runs] 

FEM trt. 7                            [3]     

*  Indicates an additional FTP test sequence was run to obtain day-to-day variation 

  

3.6.2   Procedure for SET 
 

The only difference in DMS operation requirements for the SETs, as opposed to 

for the FTPs, was the need to clean the DMS more frequently.  Instead of the 

electrometer rings being cleaned once a day, they were cleaned once they accumulated 

too much soot to be properly zeroed.  Continuous PM data was taken from SETs with the 

DMS with hopes to observe the detectable differences in PM formation due to changes in 

relative humidity within the main dilution tunnel, fuel type, and overall dilution ratio. 
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 3.6.2.1   Humidity Testing 
 

It was suspected that slight changes of the relative humidity within the dilution 

tunnel were having an effect on the PM measurements taken by the 70 mm gravimetric 

filters.  To develop supporting evidence, the humidity level within the main dilution 

tunnel was varied for a few sets of tests, and continuous PM distribution measurements 

were taken with the DMS.  Two gate valves were connected to a steam line, and it was 

routed directly to the ambient air intake of the full-scale dilution tunnel.  The use of two 

gate valves (2 in. and 0.5 in.) on the steam line allowed for fine tuning of the relative 

humidity within the dilution tunnel.  For this particular experiment, nine SETs were 

performed at three different humidity levels.  The first three SETs were run at the lowest 

relative humidity level, 37 %.  The second set of three SETs was performed at a medium 

humidity level of 58 %.  The third group of three SETs was run with a humidity level of 

88 %.  On the specific day that the humidity testing was done, 37 % was the lowest 

possible relative humidity value that could be achieved with the available resources.  All 

nine of the humidity specific SETs were run using the Guttman fuel and the rebuilt 1992 

Detroit Diesel DDC S60 engine.  

 3.6.2.2   Fuel Type Testing 
  
For the sake of determining exactly how distinguishable the differences are in PM 

formation due to fuel type, PM data was taken with the DMS from thirteen SETs of 

twelve different fuels.  Some of the tests were performed on the same day, and others 

weren’t.  All of the twelve fuels used for this fuel-type related evaluation were run on the 

rebuilt 1992 Detroit Diesel DDC S60 engine, and they were: LC, LC trt.2-10, LC-B10A, 
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and LC-B20A.  The fuels tested for this were all low cetane fuels, and they were part of 

separate test programs. 

 3.6.2.3   Dilution Ratio Testing 
   
To aid the understanding of the effects that overall dilution ratio has on PM 

formation, measurements were taken with the DMS from various SETs of different 

dilution circumstances.  Orifices within the CVS were strategically changed so that the 

flow rate of the main dilution tunnel would be different for each of three SETs.  There 

was one SET with an average main-tunnel flow of ~1400 scfm, one SET with an average 

flow of ~2400 scfm, and one SET with an average flow of ~3400 scfm.  Since the flow of 

the main dilution tunnel was different for each test, and the engine’s continuous exhaust 

flow was approximately the same for each test; the primary dilution ratio was at three 

significantly different settings.  During the SET that was run at 1400 scfm, the main 

dilution ratio ranged from about 13 at full throttle to about 1.2 at idle.  For the SET that 

was performed with a 2400 scfm tunnel, the main dilution ratio ranged from about 20 at 

idle to about 2 at full throttle.  The SET that incorporated a tunnel flow of 3400 scfm had 

a primary dilution ratio of about 31 at idle and about 2.8 at full throttle.  All three of these 

SETs were completed with the Guttman fuel and the rebuilt 1992 Detroit Diesel DDC 

S60 engine.  The secondary dilution ratio of about 24 was verified with the use of two 

NOx analyzers; one before and one after the secondary dilution system.   
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Data was collected with the DMS from 25 SETs.  Table 8, below, shows the 

engines and fuels that were tested over various SETs. 

Table 8  SET:  Examined Fuels 

Engine Fuel Number of Runs 
Approx. Tunnel 

Flow (scfm) 
Approx. Relative 

Humidity (%) 

DDC Series 60 LC 1 2400 50 

  LC trt. 1 1 2400 50 

  LC trt. 2 1 2400 50 

  LC trt. 3 1 2400 50 

  LC trt. 4 1 2400 50 

  LC trt. 5 1 2400 50 

  LC trt. 6 1 2400 50 

  LC trt. 7 1 2400 50 

  LC trt. 8 1 2400 50 

  LC trt. 9 1 2400 50 

  LC trt. 10 1 2400 50 

  LC-B10A 1 2400 50 

  LC-B20A 1 2400 50 

  Guttman 3 2400 37 

  Guttman 4 2400 88 

  Guttman 3 2400 60 

  Guttman 1 3400 50 

  Guttman 1 1400 50 
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4   RESULTS AND DISCUSSION 

 

4.1   INTRODUCTION 
 

The core objective of this research was to determine the minimum detectable 

differences in particle concentrations that were significant between engine operating 

conditions.  Among several other objectives was to study some of the reasons for these 

differences.  The subsequent results are discussed and presented in a manner that enables 

the objectives of this research to be achieved. 

4.2   METHODOLOGY 
 

The effective density and water adsorption equations used for PM mass 

comparison between the TEOM and the DMS-500 were found through research, and they 

can be reviewed in the Literature Review section of this thesis.  The equations used for 

the rest of the calculations are explained throughout the Results and Discussion section.  

Most of the PM data has been converted to brake-specific information, so that the 

comparisons of operating conditions would be standardized.  Continuous particle 

concentration plots (contour plots) generated by the original DMS software were not 

alterable, so they were provided on a spectral density basis ((dN/dlogdp)/cc).  The 

concentrations given by the contour plots are for the twice-diluted sample.  All brake-

specific particle concentrations presented in the results are lower than their actual values 

by a factor of 1.5 (the secondary dilution ratio of 24 and the factor of 1/16 for the 

conversion of spectral density to particles per cubic centimeter yield 24/16, or 1.5) [30].  

Correction for these values was unnecessary, because they were compared on a 

percentage basis.  Important test-cell data, such as: fuel consumption, exhaust gas 

concentrations, primary tunnel flow, PM mass rate, primary dilution air humidity, engine 
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speed, and brake power were combined in a single excel file with the continuous PM size 

and concentration data from the DMS.  Two methods of time alignment were used for the 

analysis of the data.  To align the test-cell data with the DMS data, engine speed was 

plotted against the continuous concentration of 100 nm particles and the peaks were 

matched.  Engine speed was also used to align the combined test-cell/DMS data from 

separate runs.  With use of the DMS sampling software, a 5 point (1 second) moving 

average was incorporated into the data acquisition process to smooth the 5 Hz DMS data.  

Excluding some of the humidity results, Microsoft Excel was used for the analysis of all 

of the following data.  MATLAB ANOVA was used in some of the humidity results to 

contrast multiple 13-mode SETs.   

In all of the following plots and charts where particle size, or particle diameter, is 

considered, the spectrum is not simply binned into size classes.  The concentrations for 

each size were approximated using the trapezium rule (see DMS-500 manual) [30].  The 

line charts below are based on an average concentration spectrum over a specified period 

of time.  The average-based plots in the FTP Results section were created using the 

average number of particles of each size over the entire test.  The average-based plots in 

the SET Results section were produced from the average number of particles of each size 

during the last 10 seconds of each mode. 

4.3   FTP RESULTS 
 

4.3.1   Day-to-Day Variation 
 

The coefficient of variation (COV) line in Figure 32 represents the run-to-run 

variation of three repeat hot-start FTPs, and it is a percentage of the total particle 

concentration of each diameter.  The COV of each particle size was calculated by 
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dividing the standard deviation by the average concentration and multiplying by one 

hundred.  The three repeat tests of Figure 32 are represented by test numbers E01927_02, 

E01927_03, and E01927_04.  The E01927 test sequence was performed using the 2004 

Cummins ISM 370 with the NBB-B05 biodiesel blend fuel.  The highest COV in Figure 

32 was about 30 %, and it occurred in the 9 nm diameter particles.  Particles within the 

range of 25 nm to 520 nm displayed COVs below 5 %.   
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Figure 32  Run-to-Run Variation of the E01927 Test Sequence 

 

Figure 33 is a similar COV plot for three repeat tests on the same engine and the 

same fuel on the following day.  The results are quite different in that the maximum COV 

value occurs at 1000 nm and is about 50 %, the range of particles with a COV below 5 % 

is between 18 nm and 205 nm, and the COV for particles smaller than 18 nm is mostly 

below 10 %.  As quantitatively discussed in the results of the Extremes of Run-to-Run 

Variation section, the ISM 370 typically provides poor test repeatability.  The differences 

in run-to-run variation from day 1 to day 2 might have been due to the ECU’s inability to 

provide consistent engine operation.       
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Figure 33  Run-to-Run Variation of the E01928 Test Sequence  

 

The overall variation for the six tests from the E01927 test sequence and the 

E01928 test sequence is illustrated below in Figure 34.  Since three hot-start FTPs were 

performed on each day, it is evident, but not conclusive, that a similar trend of variation 

would occur if more tests were administered on each day for more days.    
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Figure 34  Day-to-Day Variation of the 2004 Cummins ISM 370 

 

The average concentrations of each particle size are displayed for day 1 and day 2 

in Figure 35.  The dashed blue line represents the average number of particles per unit 

work for the E01927 test sequence, and the dashed green line shows the same for the 

E01928 sequence.  The solid blue and green lines illustrate standard deviations for each 

set of tests.  Anywhere the standard deviation lines from the two sequences do not 

overlap, there is considered to be a significant difference from one day to the next.  This 
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basic form of statistical analysis was chosen to allow comparable results between 

statistically small sets of data.  From inspection of Figure 35, it can be seen that the 

concentration spectrums are similar, and it is difficult to observe any significant 

differences between the results of day 1 and day 2.  The 2004 ISM 370 is the only of the 

three engines that consistently produced a flat line between the average number of 

particles for the nuclei mode and the accumulation mode.  Its unique trend line could 

possibly be attributed to the EGR system’s impact on the formation of particles.        
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Figure 35  Particle Concentration Comparison of  

E01927 and E01928 Test Sequences 

 

Figure 36 displays the differences between day 1 and day 2 on a percent basis.  

Due to rounding, the number 6 appears twice as a particle size.  Dark blue columns 

represent differences that are significant, while light blue columns represent differences 

that are not.  The columns in which the error bars do not cross the x-axis are considered 
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significant.  Differences were calculated using averages from day 1 and day 2, and error 

bars were calculated by adding the COVs from day 1 to the COVs from day 2.  Particle 

sizes that do not have overlapping standard deviations in Figure 35 are the same sizes that 

have dark blue columns in Figure 36.  The differences from 750 nm to 1000 nm are not 

considered significant, because the error bars are greater than 50 %.  The differences 

from day 1 to day 2 for this fuel and engine are significant at around 4 % in the 32 nm to 

75 nm range and 3 % to 10 % in the 115 nm to 316 nm range.  The significant day-to-day 

differences in this case were likely caused by inconsistent control from the ECU and 

particle formation issues with EGR.     
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Figure 36  Particle Concentration Differences between  

E01927 and E01928 Test Sequences 

 

Day-to-day variation was also determined for the 1992 Detroit Diesel DDC S60 

with the TCEQ Tex LED Ref. fuel.  The E02099 and the E02107 test sequences were 
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used for this, and they were conducted two days apart.  Three repeat tests were recorded 

for each sequence.  Figure 37 displays the total COV for all six tests, which was the worst 

day-to-day variation for this research.  Only a small range of particle sizes, 55 nm to 205 

nm, had a COV of less than 5 %.  The fuel used in these six tests caused greater run-to-

run variation than most other fuels that were tested with the DDC S60; meaning that a 

change in fuel properties was responsible for increased day-to-day variation.            
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Figure 37  Day-to-Day Variation of the 1992 DDC S60 

 

Percent differences between the E02099 sequence and the E02107 test sequence 

can be observed in Figure 38.  In Figure 38, the darker columns represent particle sizes 

where significant day-to-day variation occurred.  Similarly to the differences in Figure 

36, day-to-day differences in this case are significant between 32 nm and 487 nm.  In the 

entirety of this research, the largest significant difference from the results of two separate 

days occurred with this fuel and engine, which was about 26 % at 32 nm.   
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Figure 38  Particle Concentration Differences between  

E02099 and E02107 Test Sequences 

 

Error bars on most of the dark blue columns in Figures 36 and 38 nearly cross the 

x-axis, which means that the day-to-day differences in these circumstances may not have 

been significant if more tests had been run on each day.  It is also possible that the 

significant differences were caused by changes in barometric pressure.  Barometric 

pressure had average values of 14.155 psi during testing the E01927 test sequence, 

14.330 during the E01928 test sequence, 14.153 psi during the E02099 test sequence, and 

14.243 psi during the E02107 test sequence.  As discussed in the Extremes of Run-to-Run 

Variation section, the ISM 370 and the DDC S60 produced much greater test-to-test 

variability than the rebuilt DDC S60.  Day-to-day variation results are not presented for 

the rebuilt DDC S60, because there were not enough repeat tests of any fuel from 
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separate days.  Day-to-day variation hindered the certainty of results in the following 

sections, and it was an issue that was discussed in some of the conclusions.   

4.3.2   Base Fuels vs. Additized Fuels 
 

Test sequences E02136, E02138, and E02140 each consisted of three hot-start 

FTPs, and they were performed on the same day with the rebuilt DDC S60 engine.  

E02136 was run on low cetane, E02138 was run on low cetane B10A, and E02140 was 

run on low cetane B20A.  Low cetane B10A was a mixture of 90 % low cetane diesel and 

10 % biodiesel by mass, and low cetane B20A was 80 % low cetane and 20 % biodiesel.  

Figure 39 compares the average particle concentrations of low cetane and low cetane 

B10A.  There appear to be significant differences from 6 nm to 56 nm and 100 nm to 487 

nm, because the standard deviation lines of E02136 and E02138 do not overlap in those 

ranges.  Nuclei mode and accumulation mode can clearly be distinguished here, unlike 

with the “straight line” pattern produced with the ISM 370.  In both cases below, the 

nuclei mode peak is about 4*10
13

 particles/bhp-hr at 21 nm, and the accumulation mode 

peak is close to 2*10
13

 particles/bhp-hr at 140 nm.          
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Figure 39  Particle Concentration Comparison of 

 E02136 and E02138 Test Sequences 

 

A comparison of the particle distributions from low cetane and low cetane B20A 

is represented by Figure 40.  The ranges of particle diameters where significant 

differences can be seen are the same in Figure 39 as they are in Figure 40.  It is clear that 

the mixing of biodiesel with low cetane caused a decrease in particle concentrations over 

these diameters.           
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Figure 40  Particle Concentration Comparison of 

 E02136 and E02140 Test Sequences 

 

From this point on, error bars for the percent differences between particle 

distributions were calculated using the following equation.   








 +
=

1

21*100
a

ee
e    Equation 11 

 

The letter e  stands for the magnitude of the error bar, 1e  represents the standard 

deviation of the base fuel testing (or original testing), 2e  represents the standard 

deviation of the additive testing (or comparative testing), and 1a  corresponds to the 

average value of the base fuel (or original) testing.   

Differences between the average particle distributions of E02136, E02138, and 

E02140 are presented on a percent basis in Figure 41.  The orange and yellow columns 

show differences between low cetane and low cetane B10A, where the orange columns 
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represent significant differences and the yellow columns do not.  The light and dark blue 

columns indicate differences between low cetane and low cetane B20A, where the dark 

blue columns represent significant differences.  Using a 20 % biodiesel blend magnified 

the effect of using a 10 % blend.  They both caused a decrease in average particle 

concentrations from about 6 nm to 49 nm and 100 nm to 487 nm.  The 10 % biodiesel 

blend, or additive 1, caused a 12 % reduction of 8 nm particles and a 17 % reduction of 

316 nm particles.  The 20 % blend, or additive 2, caused a 23 % reduction of 8 nm 

particles and a 36 % reduction of 316 nm particles.  For the most part, the reduction of 

particle concentrations due to mixing of biodiesel with low cetane is proportional to the 

amount of biodiesel in the fuel.        
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Figure 41  Differences in Particle Concentrations Due to  

Mixing of Biodiesel with Low Cetane Diesel Fuel 
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The following comparison between fuels was done using the rebuilt DDC S60 and 

three fuel types.  FEM trt. 3 corresponds to the test sequence E02195, FEM trt. 6 

corresponds to E02198, and FEM trt. 7 corresponds to E02199.  Each test sequence 

consisted of three hot-start FTPs, but the three sequences were not performed on the same 

day.  Figure 42 illustrates the particle concentrations of FEM trt. 3 and FEM trt. 6 on a 

brake-specific basis.  It is clear that the additive in FEM trt. 3 extensively differed in 

effect from the additive in FEM trt. 6.  The nuclei mode from E02195 peaks about an 

order of magnitude higher that the nuclei mode from E02198, but the accumulation mode 

peaks lower.  The additive in FEM trt. 6 demonstrated the greatest effect on particle 

concentration of any additive tested during this research.               
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Figure 42  Particle Concentration Comparison of  

E02195 and E02198 Test Sequences 
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Below, in Figure 43, a comparison between the particle size distributions of FEM 

trt. 3 and FEM trt. 7 is presented.  The trend lines are similar in shape, which suggests 

that FEM trt. 7 consisted of a different amount of the same additive in FEM trt. 3.  There 

were significant differences between FEM trt. 3 and FEM trt. 7, but it is difficult to 

determine by visual inspection of Figure 43.       
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Figure 43  Particle Concentration Comparison of 

 E02195 and E02199 Test Sequences 

 

Significant differences between the average particle distributions of FEM trt. 3, 

FEM trt. 6 (additive 1), and FEM trt. 7 (additive 2) were determined on a percent basis 

and are illustrated in Figure 44.  The orange columns represent the significant differences 

caused by the additives in FEM trt. 6, and the dark blue columns represent the significant 

differences due to the addition of FEM trt. 7.  Considering FEM trt. 3 as the base fuel, 

FEM trt. 6 displayed a 15 % to 88 % decrease in nuclei mode particles between 5 nm and 
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24 nm, a 62 % to 130 % increase in nuclei mode particles between 27 nm and 40 nm, and 

a 10 % to 98 % increase in accumulation mode particles.  FEM trt. 7 had a milder effect, 

in that its use resulted in a 3 % to 8 % decrease in nuclei mode particles and a 3 % to 32 

% increase in accumulation mode particles.  It is probably safe to conclude that there are 

completely different additives in the fuels named FEM trt. 6 and FEM trt. 7.  It is also 

apparent that fuel properties are a determining factor for the ranges and concentrations of 

the nuclei and accumulation modes.                 
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Figure 44 Differences in Particle Concentrations Due to 

 Mixing of Fuel Additives with FEM Diesel Fuel 

 

Another base fuel versus additive comparison was done on the rebuilt DDC S60 

with low cetane as the base fuel and trt. 2-10 as the nine additives.  Trt. 2 corresponds to 

additive 1, trt. 3 to additive 2, and so on.  Testing took place on four consecutive days, 

and each fuel was tested over three hot-start FTPs.  As can be seen in Table A-1 in the 
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Appendix, test sequence E01943 corresponds to low cetane, and the test sequences 

between E01946 and E01964 that end in odd numbers correspond to additives 2 through 

9, respectively.  Fuel properties of the low cetane fuel are provided below in Table 9.       

Table 9  Low Cetane Diesel Fuel Properties 

Fuel Property  ASTM Test Method Unit of Measurement Measurement 

Specific Gravity 60/60 ASTM D 4052 - 0.8598 

API Gravity ASTM D 1250 - 33.1 

Cloud Point ASTM D 2500 °F -20 

Flash Point, PM ASTM D 93 °F 151 

Sulfur ASTM D 5453 ppm 8 

Viscosity @ 40°C ASTM D 445 cSt 2.67 

Hydrogen ASTM D 3343 Wt% 12.56 

Carbon ASTM D 5291 Wt% 85.23 

Cetane Number ASTM D 613 - 46.2 

Cetane Index ASTM D 976 - 43.4 

Distillation - IBP °F 354.1 

Distillation - 5% °F 381.2 

Distillation - 10% °F 414.2 

Distillation - 20% °F 441.8 

Distillation - 30% °F 463.5 

Distillation - 40% °F 482.8 

Distillation - 50% °F 500.8 

Distillation - 60% °F 520.8 

Distillation - 70% °F 542 

Distillation - 80% °F 565.5 

Distillation - 90% °F 595.2 

Distillation - 95% °F 619.3 

Distillation - EP °F 641.7 

Distillation - Loss ml 2.1 

Distillation - Residue ml 1 

Distillation - Recovered 

ASTM D 86 

ml 96.9 

 

The low cetane fuel essentially had the same properties as the nine versions, LC 

trt. 2-10, where additives were present.  The only practical differences were their cetane 

numbers, which are shown in Table 10.  Also shown in Table 10 are the types and 

amounts of each additive.    
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Table 10  Cetane Numbers and Additive Amounts of Low Cetane Fuels 

Low Cetane LC trt. 2 LC trt. 3 LC trt. 4 LC trt. 5 LC trt. 6 LC trt. 7 LC trt. 8 LC trt. 9 LC trt. 10 

46.2 46.7 49.0 49.9 46.3 49.6 49.2 47.8 48.5 49.0 

N/A 
3 -ml 
2EHN 

6 -ml 
2EHN 

8 -ml 
2EHN 

6-ml  
P1 

12-ml 
P1 

16-ml 
P1 

6-ml     
P2 

12-ml   
P2 

18-ml     
P2 

 

The names of the additives in Table 10 named P1 and P2 are proprietary, and the 

amounts of each additive are per gallon of fuel.  All nine low cetane fuels with additives 

had greater cetane numbers than the base fuel.  The fuel with the highest cetane number 

of 49.9 was LC trt. 4.  The rest of the fuels had cetane numbers ranging from 46.2 to 

49.6.  Table 11 and Figure 45, on the following pages, indicate that as the amount of each 

additive increases, there is generally an increase in cetane number and a decrease in 

nuclei mode particles.  The dark gray cells in Table 11 belong to differences that are not 

significant between the base fuel and its additive versions.  Significant decreases in 

concentration are within light blue cells, and significant increases due to the additives are 

in light orange cells.      
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Table 11  Differences in Average Particle Concentrations Due to Mixing of Additives with Low Cetane Diesel 
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The method in which significant difference was determined was the same as in 

the previous base fuel versus additive cases.  On a concentration plot, the standard 

deviation lines would overlap for the same particle sizes which have gray cells.  The 

greatest decrease in concentration caused by the 2EHN additive was a 30.7 % difference 

in 31.6 nm particles.  In this case, 8 ml of 2EHN was added; and there was also a 14.6 % 

decrease in 154 nm particles and an 18.4 % increase in 316 nm particles.  The largest 

amount of P1 that was added was 16 ml.  This amount led to the most significant results 

for the additive, where there was a 35.1 % decrease in 20.5 nm particles, a 15.7 % 

decrease in 154 nm particles, and a 25.9 % increase in 316 nm particles.  Similarly, P2 

demonstrated its most prominent differences when 18 ml was added.  This resulted in the 

most significant overall reduction due to any of the nine additives.  There was a 41.1 % 

decrease in 20.5 nm particles, a 21.7 % decrease in 154 nm particles, and a 23.3 % 

increase in 316 nm particles.  The percent differences discussed in this paragraph were 

the maximum differences in the nuclei, accumulation, and course modes due to the three 

types of additives.  The largest particle diameter in Table 11 is 365.17.  This is because 

there were no significant differences beyond that size.  Figure 45 illustrates all 

differences due to the various amounts of each additive.  The differences in Figure 45 are 

based on average distributions for each fuel, and significance is not specified.  It was 

noted that there was no continuum between additives 4 and 5, nor between additives 6 

and 7; but the plot does show a continuum within the individual additive types (1-3, 4-6, 

and 7-9).  
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Figure 45  Percent Differences in Particle Distributions Due to Mixing of Additives with Low Cetane Diesel 
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It can be deduced from inspection of Figure 45 that average particle distributions 

are more closely related to the amount of the additive rather than the cetane number.  LC 

trt. 7 has a lower cetane number than LC trt. 6, but there was a greater reduction of 

particles due to LC trt. 7.  This is the only case where there was a decrease in cetane 

number and a simultaneous increase in particle reduction.  In all nine additive cases, an 

increase in the additive amount resulted in a reduction of nuclei mode and accumulation 

mode particles.  The massive differences of greater than 90 % in the particles larger than 

650 nm were considered negligible because the COVs from each fuel were greater than 

50 %.  Day-to-day variation may have had an effect on these results, but it was 

impossible to determine because none of the fuels were tested on multiple days. 

4.3.3   Unheated Sample Line Effects 
 

The temperature of the sample line between the primary dilution tunnel and the 

secondary dilution system was varied by enabling and disabling the heating element.  

Test sequence E01967 consisted of two consecutive hot-start FTPs with an unheated 

sample line, and E01968 consisted of three consecutive hot-start FTPs with a heated 

sample line.  The two sequences were completed on the same day with the DDC S60 and 

the 2007 CP Cert. diesel fuel.  Figure 46 presents the COVs of each particle diameter 

over the E01967 test sequence.  When the heating element was off, the average 

temperature at the exit end of the sample line was 32 °C.  E01967 was the only test 

sequence that resulted in COV values of less that 5 % between 5 nm and 12 nm.  Since 

only 2 repeat tests were administered, the COV values were probably higher on average 

than if more tests had been performed.   
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Figure 46  Run-to-Run Variation Using an Unheated Sample Line 

 

The COV results for test sequence E01968, which were mostly lower than those 

of E01967, are shown below in Figure 47.  During E01968, the temperature control box 

within the secondary dilution system maintained a temperature of 47 +-1.0 °C at the exit 

end of the sample line.  The particles between 5 nm and 15 nm had noticeably higher 

COVs when the sample line was heated.   
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Figure 47  Run-to-Run Variation Using a Heated Sample Line 

 

The concentrations of both test sequences can be observed in Figure 48.  

Disabling of the sample line heater resulted in a nearly identical concentration spectrum 

of nanoparticles. 

   



 

 

93 

1.00E+09

1.00E+10

1.00E+11

1.00E+12

1.00E+13

1.00E+14

5 6 9 12 15 21 27 37 49 65 87 11
5

15
4

20
5

27
4

36
5

48
7

64
9

86
6

Particle Size (nm)

B
ra

k
e
-S

p
e

c
if

ic
 P

a
rt

ic
le

 C
o

u
n

t 
(#

/b
h

p
-h

r)
heated avg.

heated+stdev

heated-stdev

unheated avg.

unheated+stdev

unheated-stdev

 
Figure 48  Particle Concentration Comparison of 

 E01967 and E01968 Test Sequences 

 

Numerical differences caused by sampling with an unheated line appear in Figure 

49, where the dark blue columns represent differences that were calculated to be 

significant.  Excluding the 5 nm column, error bars span at least 50 % of all of the dark 

blue columns’ heights.  This means that most of the discrepancies that are shown by dark 

blue columns probably should not be considered significant.  The 5 nm particles, in 

which there was a 15 % decrease in concentration, were the only ones that were 

considerably affected by the temperature of the sample line.   
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Figure 49  Particle Concentration Differences between  

Unheated and Heated Sample Line Results 

 

In the existing literature, it is commonly noted that the temperature within the 

dilution environment is related to the formation of nanoparticles.  The conclusion of this 

study was not the same, probably because the temperature of the DMS sample line 

(between the secondary dilution system and the DMS) always equalized with the 

temperature of the ambient air.  Particles most likely finished mutating in the DMS 

sample line, where the final sample temperature always stabilized at around 22 °C.  The 

average significant difference over the particle spectrum was less than 1 %; which 

suggests that the average amounts of PM produced (on a mass basis) were within a few 

percent.  In fact, the average amount of PM emitted during the E01967 test sequence was 

0.262 g/bhp-hr, and the average amount emitted over the E01968 sequence was 0.267 
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g/bhp-hr.  The mass-based amounts of PM were measured using gravimetric filters, and 

they differed by 1.87 %. 

4.3.4   Extremes of Run-to-Run Variation 
    
Run-to-run COV curves and particle concentration values were unique for each 

fuel.  Test engines were also a factor in the COV and concentration results.  A “COV 

score” was formulated as a means to numerically compare run-to-run variation between 

test conditions.  A COV score of zero represents perfect run-to-run repeatability of PM 

concentrations between 5 nm and 1000 nm.  The COV score can be calculated using 

equation 12 below. 

100050049925024920

191095

*25.0*50.0

*50.0*25.0

−−−

−−

++

++=

COVCOVCOV

COVCOVCOVscore
   Equation 12 

 

The COV score, essentially, is a weighted sum of the COVs from each particle 

size.  95−COV  is the summation of all COV values between 5 nm and 9 nm.  Likewise, 

1910−COV  is the summation of COVs between 10 nm and 20 nm, and so on.  The 

constants 0.25, 0.50, and 1.0 are weighting factors that reduce biases due to excessively 

high variation near the upper and lower bounds of the measured particle spectrum.  Note 

that the weighting factors in equation 12 sum to 2.0.  The COV score would be equally as 

effective if the factors were divided by two, so that they would sum to 1.0.  A bias, for 

instance, might exist between 200 nm and 1000 nm because particle concentrations in 

that size range were continually near or below the lower limit of detection (which is 

about 1000 (dN/dlogdp)/cc).  Another bias generally exists between 5 nm and 30 nm.  

Causes of the biases, or variations within these ranges, are discussed in depth in the 

Continuous FTP Data section.   
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Figure 50 displays the run-to-run variations of two test sequences performed 

using the ISM 370.  E01928 was conducted with the NBB-B05 biodiesel blend.  It 

consisted of three repeat hot-start FTPs, and it was the sequence that had the lowest COV 

score, which was 107, for the Cummins engine.  The COV score of the two hot-start 

FTPs in sequence E01921 was 321, which was the highest COV score found from all of 

the research done for this thesis.  The parabolic shape of the E01928 and E01921 COV 

trend lines was apparent in all of the test sequences executed with the ISM 370.  This 

might be attributed to the use of EGR and/or inconsistency in engine control by the ECU.                        
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Figure 50  Run-to-Run Variations of Test Sequences E01928 and E01921 

 

Test sequence E01977, which consisted of three consecutive hot-start FTPs, was 

performed with RF 71 diesel fuel on the DDC S60.  E02099 also consisted of three hot-

start FTPs, and it was performed using the DDC S60 and TCEQ Tex. LED Ref. diesel.    

As illustrated in Figure 51, the COV curves from E01977 and E02099, which accounted 

for the highest and lowest COV scores from the DDC S60, were similar in shape.  Just as 

every COV trend from the ISM 370 displayed similar profiles; all of the COV plots from 

sequences tested on the DDC S60 were alike.  They each had COV percentage values that 

prominently peaked around 27 nm, were below 5 % between 50 nm and 205 nm, and 

peaked again at about 850 nm.  Test sequence E01977 produced a COV score of 117, and 
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E02099 gave a COV score of 246.  Various fuels were tested on the DDC S60, and the 

run-to-run variations were always similar; meaning that the “double ramp” shape in 

Figure 51 was probably caused by engine control issues. 
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Figure 51  Run-to-Run Variations of Test Sequences E01977 and E02099 

 

The COV curves with the highest and lowest COV scores of the test sequences 

performed on the rebuilt DDC S60 are shown in Figure 52.  Three repeat hot-start FTPs 

were included in the E02138 test sequence.  Low cetane B10A diesel fuel was used in 

E02138, and low cetane trt. 8 corresponds to E01959.  According to a COV score of 41, 

the tests administered in E02138 boasted more precise particle distributions than any 

other tests.  The COV line of E02138 peaked at 20 % around 866 nm; and it was less than 

5 % in the 6 nm to 750 nm diameter range and below 3 % from 12 nm to 700 nm.  

E01959, the test sequence with the greatest run-to-run variation from the rebuilt DDC 

S60, produced a COV score of 156.  The shapes of the COV curves in Figure 52 are the 

same in that they are both within a 5 % range between 6 nm and 487 nm, and they each 

peak at about 866 nm.  This trend was evident in all of the test sequences completed with 

the rebuilt DDC S60.  The DDC S60 and the rebuilt DDC S60 are of the same make and 

model, but they each encompass a distinct COV profile.  This fact implies that there were 

dissimilarities in engine operation, which could include: control algorithms of the engine 



 

 

98 

control unit (ECU), levels of engine wear, ages of fuel injectors, and manufacturing 

imperfections.       
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Figure 52  Run-to-Run Variations of Test Sequences E02138 and E01959 

 

This research resulted in three basic run-to-run variation profiles.  The “parabolic” 

profile of Figure 50 was specific to the ISM 370.  The “double ramp” profile was generic 

for the DDC S60, and the mostly flat profile was common to the rebuilt DDC S60.  

Engine type apparently determines the general trend of run-to-run variation, but the 

magnitudes and COV scores of run-to-run variation are related to fuel properties.  The 

average COV score of the tests completed with the rebuilt DDC S60 was 102.  All COV 

scores from the rebuilt DDC S60 were at least 5 points lower that those of the ISM 370 

and 15 points lower than those from the other DDC S60.  The rebuilt DDC S60 

commonly provided more repeatable results, which signifies that only a portion of the 

variations were caused by laboratory issues.  Differences in engine and fuel properties 

were probably responsible for the remainder.  Since 22 test sequences were completed on 

the rebuilt DDC S60 and none of them belonged to a COV score of higher than 156 

points, it can be deduced that no more than 156 points of the COV scores from any of the 

test sequences during this study were due to laboratory inconsistencies.  It is estimated 

that laboratory issues were generally responsible for 50 COV score points or less. 
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The average particle concentrations and standard deviations of test sequence 

E02138 are presented below in Figure 53.  Again, E02138 was performed on the rebuilt 

DDC S60 with low cetane B10A, and it was the test sequence that demonstrated the least 

run-to-run variation.  The standard deviation lines of Figure 53 are only distinguishable 

from the “average” line in the 5 nm to 6 nm and 700 nm to 1000 nm ranges.  As shown in 

Figures 53 and 43, the concentration pattern of E02138 was similar to those of E02136 

and E02140.  The pattern was unique to the low cetane fuels, and it consisted of a nuclei 

mode that spanned from 5 nm to 70 nm and an accumulation mode that peaked between 

70 nm and 300 nm and rose again in the 300 nm to 800 nm range.  The test sequences 

administered with low cetane fuels provided an average run-to-run COV score of 90.  

Statistically, the use of low cetane-based fuels resulted in the most precise run-to-run 

particle concentration measurements.      
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Figure 53  Average Particle Concentrations of Test Sequence E02138 
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According to the COV scoring technique, the test sequence with the least 

repeatable results was E01921.  The average particle concentrations and standard 

deviations of E01921 can be seen below in Figure 54.  In the three tests of E01921, only 

the range of diameters between 21 nm and 205 nm had COVs of less than 10 %.  With an 

average COV score of 185, the ISM 370 provided the least repeatable run-to-run results.  

Figure 54 illustrates that the E01921 particle concentration trend was of the typical “flat 

line” shape for the ISM 370.  However, the standard deviations of E01921 were 

abnormally high, resulting in a COV score of 321. 
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Figure 54  Average Particle Concentrations of Test Sequence E01921 

 

For the particle concentration measurements taken with the DMS-500, test 

sequences E01928, E01921, E01977, E02099, E02138, and E01959 resulted in the 

highest and lowest run-to-run COV scores for the three engines used.  In order to 

compare run-to-run repeatability between the DMS measurements and the rest of the 
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laboratory data, COV values were calculated for the gaseous and PM mass emissions of 

the same six test sequences.  These COV values, as well as the corresponding DMS 

scores, are listed below in Table 12.   

Table 12  COVs of Laboratory Measurements and DMS COV Scores 

COV (%) Test 
Sequence 

HC HC2 LoCO HiCO CO2 NOx NOx2 NO2 TPM TEOM 

DMS COV 
Score 

E01928 0.44 1.03 0.90 0.80 0.17 0.17 0.20 0.39 - 0.63 107 

E01921 0.08 0.63 2.08 1.34 0.20 0.57 0.02 0.00 2.53 2.08 321 

E01977 0.95 0.97 0.06 0.52 0.09 0.13 0.01 0.07 0.62 0.49 117 

E02099 0.87 2.02 0.24 0.31 0.20 0.32 0.36 - 1.85 1.61 246 

E02138 0.21 0.04 0.47 0.82 0.05 0.12 0.03 - 0.57 0.41 41 

E01959 2.36 3.59 0.08 0.54 0.15 0.31 0.23 0.16 0.47 - 156 

 

As in the particle concentration results described above, E01928 and E01921 

corresponded to the most and least repeatable tests performed on the ISM 370, E01977 

and E02099 were from the most and least repeatable tests on the DDC S60, and E02138 

and E01959 included the most and least repeatable tests completed with the rebuilt DDC 

S60.  Only run-to-run variations from the CO2 and NOx measurements showed any 

relation to the COV scores in Table 12.  For example, between E01928 and E01921, CO2 

showed a COV increase from 0.17 % to 0.20 %, NOx showed a COV increase from 0.17 

% to 0.57 %, and the DMS showed a COV score increase from 107 to 321.  In that CO2 

and NOx COVs were higher where COV scores increased, CO2 and NOx results were 

similar to particle concentration results.  Since NOx and CO2 measurements tend to vary 

as particle concentration data varies, it is evident that NOx, CO2, and PM emissions are 

related.  All other laboratory measurements seemed to display random patterns of 

variation in relationship to the COV scores.    
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4.3.5   Comparison of TEOM and DMS Data  
  
Equations 2 through 8, which were used to correct for water absorption on the 

oscillating TEOM filter, are included and discussed in the Literature Review section of 

this thesis.  Effective particle densities, given by effρ , for the DMS data were calculated 

with Equation 13, which is based on the approximation that particles of each diameter are 

spherical.   









+







+= πρ *

800
sin*2.1 21 b

d
beff    Equation 13   

 

The linear effective density curve of approximately 1.1 g/cc at 5 nm and 0.20 g/cc 

at 1000 nm, as described in Lappi’s research in the Literature Review section, was not 

used in this study.  Instead, the effective particle density equation above was created.  Eq. 

13 was based on the downward sweep of a sine wave, and it generates a density curve 

that also ranges from about 1.1.g/cc to 0.20 g/cc.  The symbol d  stands for the equivalent 

momentum diameter of the particle, and 1b  and 2b are constants.  The constants used in 

Equations 2 and 13 are provided below in Table 13.       

Table 13  Water Absorption and Effective Density Coefficients  

1C  2C  1b  2b  

0.072 0.012 1.04 1.03 

 

The values of 1C  and 2C  originated from Jarrett’s work (which is summarized in 

the Literature Review) in the Evaluation and correction of moisture adsorption and 

desorption from a tapered element oscillating microbalance.  Adjustable coefficients 1b  

and 2b  were used to “fine tune” the effective densities until a best-fit curve was 

determined for the following comparisons.   
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The effective density curve of Equation 13 is apparent below in Figure 55.  These 

effective particle densities were used to convert particulate matter concentration data of 

the DMS into continuous PM mass data.  Although particles that are greater than 50 nm 

are approximated to be more than 99 % carbon, their densities continuously decrease as 

diameter increases [24].  This is because their equivalent diameters result in increasingly 

greater volume differences between the “actual particle” and the “equivalent particle.”  A 

concave shape was chosen for the effective density curve because of the assumption that 

particle density does not go to zero as particle size increases past 1000 nm.   
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Figure 55  Effective Particle Densities 

 

Mass values were calculated from effective particle densities using the spherical 

particle volumes shown in Figure 56.  The particle volumes in Figure 56 increase 

cubically as particle diameters increase.  The reason for approximating particles to be 
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spherical in shape is discussed in the Experimental Setup and Procedures section on page 

55.   
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Figure 56  Particle Volumes Based on Spherical Shape 

 

Particle mass, which is displayed in Figure 57, was calculated by multiplying 

effective density by volume.  The approximated particle masses range from 8*10
-20

 g for 

the particles that are 5 nm in diameter to 1*10
-13

 g for the 1000 nm particles.  This is a 

theoretical fit for the conversion of particle concentration to particle mass.  An actual 

particle mass curve might be dissimilar in shape, especially in the nuclei mode range 

where volatile substances exist within the PM.     
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Figure 57  Approximate Particle Masses 

 

Test E02123_02 was performed on the rebuilt DDC S60 with PONCA diesel fuel.  

The uncorrected continuous particle distribution of E02123_02, as measured with the 

DMS, is illustrated on page 107 in Figure 58.  Figure 59, also on page 107, shows the 

continuous mass rate of PM through the TEOM.  It was placed directly below Figure 58 

so that a visual association between particle number and particle mass emissions could be 

made.  Note that the spectral density is the same as the diluted volumetric particle 

concentration multiplied by 16 ((dN/dlogdp)/cc = 16*particles/cc).  The PM mass rate, as 

illustrated by Figure 58, during nanoparticle production is approximately zero.  During 

periods of increased engine loading, such as between 800 seconds and 860 seconds, 100 

nm particle production reaches up to 1*10
7
 (dN/dlogdp)/cc and mass rate measured by 

the TEOM can be as high as 37 mg/s.   

 

 



 

 

106 

The effect of engine speed and load on particle number emissions is discussed in 

the Continuous FTP Data section on pages 120 through 122.  A correlation between 

particle number emissions and PM mass emissions was made for E02123_02, and it is 

discussed throughout the rest of this section.  The production of PM was never negative, 

but moisture evaporation from the oscillating TEOM filter caused readings of negative 

mass deposition.  Therefore, an attempt to find the actual PM mass rate through the 

TEOM was made.  The line titled TEOMorig in Figure 59 represents the original TEOM 

mass data of E02123_02.  TEOMcor1 corresponds to the TEOM mass rate after 

corrections were carried out for the water absorption/desorption on the TEOM filter.  The 

positive portions of the corrected mass-rate line should generally be lower than the 

positive parts of the uncorrected line, because water was being deposited on the filter 

faster than it could evaporate.  Similarly, the negative parts of the corrected line should 

be higher than those of the uncorrected line because water was evaporating more quickly 

than it was being deposited.  The corrected line should be consistently lower in 

magnitude than the uncorrected line, but theoretically, it must provide the same average 

mass rate.  In this case, the corrected mass rate line was more accurate than the 

uncorrected line, but it was not ideal.  This is apparent because there were still negative 

values on portions of the corrected line, but they were usually less negative than values 

on the same portions of the uncorrected line.  In short, the water correction technique that 

was used was not entirely effective.                         
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Figure 58  Continuous Particle Distribution of E02123_02 as Measured with the DMS-500 
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Figure 59  PM Mass-Rate of E02123_02 as Measured with the TEOM 
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In Jarrett and Clark’s Evaluation of Methods for Determining continuous 

Particulate Matter from Transient Testing of Heavy-Duty Diesel Engines, it was 

documented that a TEOM typically accounted for 82 % of the mass measured by 

particulate filters.  In the case of E02123_02, the total PM mass calculated from the 

TEOM data was 5.189 g.  The PM collected on a gravimetric filter indicated that the total 

amount of PM emitted from E02123_02 weighed 5.767 g.  Over this test, the TEOM 

accounted for 90 % of the PM mass.  The corrected and uncorrected mass-rate data from 

the TEOM resulted in the “TEOMorig accum.” and the “TEOM cor1 accum.” lines of 

Figure 60.  The entire curve of TEOMcor1 was divided by 0.90; and it was used to 

calculate the other accumulation curve, “TEOMcor2 accum.,” of Figure 60.  This was 

done so that the PM accumulation of the TEOM shown by TEOM cor2 accum. would 

match the total particulate matter (TPM) of the gravimetric filter.  At any given point, 

TEOMorig accum. and TEOMcor1 accum. are less than 1 % different, and TEOMcor2 

accum. is approximately 10 % greater than TEOMorig accum. and TEOMcor1 accum.  

The total amount of PM accumulated according to TEOMcor2 accum. was 5.775 g, 

which was 0.14 % greater than the TPM of the gravimetric filter.     
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Figure 60  Corrected and Uncorrected PM Mass Accumulation of E02123_02 as Measured with the TEOM 
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The curve, TEOMcor2, in Figure 61 corresponds to TEOMcor2 accum. in Figure 

60; and it is essentially TEOMcor1 from Figure 59 divided by 0.90.  This final version of 

PM mass-rates through the TEOM was compared to the calculated PM mass-rates 

through the DMS.  The “DMS” mass-rates in Figure 61 were calculated using Equations 

14 and 15. 

mCQm total **=
•

   Equation 14 

 

∑
••

= mM    Equation 15 

 

In Equation 14, 
•

m  stands for the mass flow-rate, in grams per second, of particles 

of a single diameter.  The symbol totalQ  represents the flow-rate within the primary 

dilution tunnel in standard cubic centimeters per second.  The concentration of a given 

sized particle is characterized by C , where C  is the measured concentration 

(particles/cc) multiplied by 1.5 to correct for the secondary dilution ratio and the DMS 

data file factor.  The lower case m  stands for the theoretical mass, in grams, of each 

particle of a specific diameter.  Equation 15 is used to calculate the total mass-flow of 

PM at any given time, which is represented by 
•

M  and given in grams per second.  The 

term ∑
•

m  corresponds to the summation of instantaneous mass flow-rates (in grams per 

second) for the particles of each diameter.   

The DMS mass-rate line roughly follows the TEOM line, but it appears to spike 

irregularly.  These spikes were caused by impulses in PM emissions, which were due to 

turbo lag.  For example, the 90 mg/s spike at 230 seconds occurred when the engine 

suddenly switched from 0 ft-lb at idle to approximately 1200 ft-lb at wide open throttle 
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(WOT).  Sudden boosts in PM are also visible in Figure 58 during the first few seconds 

of each span of time where an accumulation mode appears.  Possibly because of a 

moving average within the data analysis or turbulence in the secondary dilution tunnel, 

the TEOM failed to detect spikes in PM due to turbo lag.  Apart from the spikes, the 

DMS line in Figure 61 differs from the TEOM line in that it is generally less positive and 

it is never negative.  It seems that use of the DMS and the preceding technique for 

converting PM concentration to PM mass is a way to measure PM mass-rate without the 

issue of moisture interference.   
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Figure 61  PM Mass-Rates of E02123_02 as Measured with the TEOM and the DMS 
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A curve for the continuous accumulation of PM mass during E02123_02 was 

derived from the DMS mass-rate line of Figure 61.  It is labeled “DMS accum.,” and it is 

shown in Figure 62.  The double corrected TEOM accumulation line of Figure 60 was 

plotted against the DMS accumulation line in Figure 62.  According to the adjusted 

TEOM curve, the effective density technique used for converting original DMS data into 

PM mass accumulation data was accurate to 4 % or less at all points during the test 

E02123_02.  
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Figure 62  PM Mass Accumulation of E02123_02 as Measured with the TEOM and the DMS 
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Over the hot-start FTP E02123_02, there was a -3.85 % difference between the 

calculated total PM mass of the DMS and the total particulate matter (TPM) of the 

gravimetric particulate filter.  The converted DMS data of E02123_02 indicated a total 

PM amount of 5.545 g.  PM mass results between the TEOM, DMS, and gravimetric 

filters were found for eight other hot-start FTP tests using the same techniques as for 

E02123_02.  A summary of the results is presented in Table 14.            
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Table 14  Total PM Mass Results of TEOM, DMS (Converted from Volumetric Concentrations), and Gravimetric Filters  

Test Engine Test No. 
Total Work 

(bhp-hr) 
Average Tunnel 

Flow (scfm) 
TEOM 

(g) 
TEOMcor.1 

(g) 
TEOMcor.2 

(g) 
TPM (g) DMS (g) 

DMS vs TPM 
Difference (%) 

E01920_02 26.43 2186 1.593 1.600 1.968 1.960 1.443 -26.4 

E01927_03 26.44 2184 1.579 1.586 2.205 2.197 1.798 -18.2 ISM 370 

E01929_04 26.41 2184 1.672 1.679 2.418 2.411 1.838 -23.8 

E01967_04 23.65 2210 5.000 5.008 6.191 6.182 6.284 1.66 

E01968_04 23.62 2204 5.073 5.081 6.320 6.312 6.563 3.98 DDC S60 

E01976_04 24.20 2190 4.504 4.513 5.423 5.414 5.531 2.16 

E02123_02 25.00 2187 5.189 5.197 5.775 5.767 5.545 -3.85 

E02124_02 25.01 2184 4.960 4.968 5.449 5.441 5.675 4.30 
Rebuilt DDC 

S60 

E02125_02 25.00 2180 5.112 5.120 5.540 5.532 5.877 6.24 
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The eight tests summarized in Table 14 were chosen so that the DMS mass 

conversion technique could be tested on several different fuel types and engine 

technologies.  Using the ISM 370, E01920_02 and E01929_04 were performed with 

NBB petroleum diesel fuel, and E01927_03 was performed with a 10 % biodiesel/90 % 

petroleum diesel fuel blend.  All of the fuels used for the other six tests were petroleum 

based, and only the fuels used in E01976_04 and E02124_02 were additized.  The fuel 

names can be found in Table A-1 of the Appendix.  TPM indicated by gravimetric filters 

was used as a standard, and the DMS mass conversions resulted in the following errors in 

total PM mass: 1.66 % in E01967_04, 3.98 % in E01968_04, 2.16 % in E01976_04, - 

3.85 % in E02123_02, 4.30 % in E02124_02, and 6.24 % in E02125_02.  These errors 

were all considered to be low, but errors in the DMS mass conversion results were 

between - 18.2 % and - 26.3 % for the ISM 370.  The information in Table 14 implies 

that the DMS mass conversion technique is quite accurate for FTPs of any fuel type on a 

1992 Detroit Diesel DDC S60.  With the 2004 Cummins ISM 370, however, the 

technique consistently provided total mass values with large negative errors, regardless of 

fuel type.  It is possible that the use of EGR on the ISM 370 causes particle geometries to 

change throughout the spectrum.  In such an event, there would be a need for new 

effective particle densities.  The effective particle density curve shown in Figure 55, if 

altered for the ISM 370, would result in much closer correlation between total PM mass 

data of the DMS and TPM data from gravimetric filters. 
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4.3.6   Continuous FTP Data 
                        
The ISM 370 and NBB Cand. fuel were used during the test sequence E01920.  

Continuous data from each of the three hot-start FTPs in E01920 is presented below; and 

relationships of the distributions and concentrations of particles to engine speed, torque, 

overall dilution ratio, and residence time are discussed.  The run-to-run COVs of E01920 

are shown in Figure 63.  Several contributing factors to variation are discussed within this 

section.              
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Figure 63  Run-to-Run Variation of the E01928 Test Sequence 

 

There are many engine operating events that take place during an FTP that have 

unique particle distributions.  Figure 64 illustrates the average engine speed and torque 

curves for test sequence E01920.  In the discussion following Figure 64, six basic particle 

distribution occurrences are matched with their respective engine speeds and torques.  

The six circled speed and torque points in Figure 64 are:  A (1500 rpm and 600 ft-lb @ 

105 seconds), B (760 rpm and -60 ft-lb @ 215 seconds), C (1250 rpm and 1250 ft-lb @ 

270 seconds), D (700 rpm and 0 ft-lb @ 350 seconds), E (1600 rpm and 1250 ft-lb @ 675 

seconds), and F (1800 rpm and -130 ft-lb @ 910 seconds).    
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Figure 64  Averaged Engine Speed and Torque Curves of E01920 
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The particle concentrations and distributions for E01920_02, E01920_03, and 

E01920_04 during these six speed and load points are circled on the following pages in 

Figures 65, 66, and 67 (respectively) and labeled correspondingly as A – F.  The 

maximum speed and torque values during E01920 were 1850 rpm and 1250 ft-lb.  The 

minimum speed of E01920 was 700 rpm, and the minimum torque was -135 ft-lb.  A 

percent scale for speed is used in the following discussion, where 0 % corresponds to 

minimum speed and 100 % corresponds to maximum speed.  A similar scale for load is 

also used, where 0 % corresponds to zero load, 100 % corresponds to maximum load, and 

– 10 % corresponds to minimum load.  The words “high” and “low,” when used to 

describe engine speed or load, refer to 50 % or more and 49 % or less, respectively.   

Point A illustrates that at 70 % speed and 43 % load, there was a distribution of 

particles that ranged from 15 nm to 200 nm and had a 1.2*10
5
 (dN/dlogdp)/cc peak at 50 

nm.  The results at point A indicate that at a high engine speed and low load, there is 

typically a flat accumulation mode with a peak distribution of around 1.0*10
5
 

(dN/dlogdp)/cc.   

Shown by point B is that an operating condition of 5.2 % speed and – 4.3 % load 

led to a particle distribution that had a 1.2*10
6
 (dN/dlogdp)/cc peak at 12 nm and ranged 

from 7 nm to 180 nm.  Point B signifies that under the condition of low engine speed and 

a small negative load, which occurs during light motoring of the engine, there is often a 

wide range of particles emitted; where a dominant nuclei mode is present and there is a 

large number of nanoparticles (over 1.0*10
6
 (dN/dlogdp)/cc) emitted at about 12 nm.   

At point C, 48 % speed and 90 % load resulted in a distribution of particles 

between 20 nm and 200 nm that peaked at 7.5*10
6
 (dN/dlogdp)/cc around 120 nm, and 
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another range of particles between 300 nm and 600 nm that had a 3.3*10
4
 (dN/dlogdp)/cc 

peak at 400 nm.  The information that point C provides is that engine operating 

conditions of low speed and high load generally result in an accumulation mode 

distribution with extremely high particle concentrations in the 100 nm to 130 nm size 

range and relatively high concentrations in the particles larger than 200 nm.  Such an 

event corresponds to the greatest mass-flow rate of PM through the exhaust pipe, and is 

typical when there is a sudden increase in load that leads to turbo lag and a low pitched 

“grumbling” noise of the engine.   

Point D refers to 0 % speed, 0 % load, and a 5 nm to 18 nm particle distribution 

that had a 4.0*10
4
 (dN/dlogdp)/cc peak at 9 nm.  Point D is characterized by engine idle, 

with which there are normally low concentrations (less than 4.0*10
4
 (dN/dlogdp)/cc) of 

nanoparticles.   

Shown by point E, operation at 78 % speed and 90 % load caused a distribution of 

particles between 10 nm and 400 nm that had a 3.0*10
5
 (dN/dlogdp)/cc peak at 40 nm.  

Point E depicts the event of a full-throttle hill climb or acceleration, where there is 

typically a wide accumulation mode that peaks at between 3.0*10
5
 (dN/dlogdp)/cc and 

4.0*10
5
 (dN/dlogdp)/cc.   

There was a 96 % speed and -9.4 % load condition at point F, which yielded a 

particle distribution of 5 nm to 30 nm with a peak of 8.0*10
6
 (dN/dlogdp)/cc at 8 nm.  

The occurrences at and in the 15 seconds after point F are always present during heavy 

motoring of the engine when there is high engine speed and high negative torque.  It was 

noted that after point F, the engine speed and load remained constant for 15 seconds, but 

the particle distribution gradually changed from an 8.0*10
6
 (dN/dlogdp)/cc peak at 8 nm 
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to a 7.0*10
5
 (dN/dlogdp)/cc peak at 5 nm.  The greatest concentrations of nanoparticles 

occur when there is a sudden shift from high power output to great energy absorption of 

the engine.  Directly after such a shift in power, nanoparticle concentrations are high; but 

they decrease during constant motoring of the engine with exhaust temperature as the in-

cylinder temperatures drop.  At point F, the exhaust temperature was recorded at 372 °C.  

The exhaust temperature was recorded to be 240 °C at the end of the 15 second period of 

engine motoring, and the peak particle concentration was more than an order of 

magnitude lower than at point F.  

In Figures 65, 66, and 67, there are two areas of data where subtle differences 

were noticed.  One area is labeled α, and the differences within are illustrated by curved 

black lines.  The other area has a large vertical rectangle around it, and it is labeled ω.  

Specifically, these two areas are marked α1 and ω1 in E01920_02, α2 and ω2 in 

E01920_03, and α3 and ω3 in E01920_04.  The differences within these areas are 

discussed below Figure 67.  Data shown by the three figures below was aligned with 

engine speed.  Since the three sets of data were not time-aligned, the timescales of each 

figure are different.  The white lines labeled “AInput 1” are the raw voltage signals for 

engine speed.   
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Figure 65  Continuous Particle Distribution of E01920_02 

 

 

 

 

 

 

 

 

 

  D 

  C 
  B 

   E 

    A 

    F 
  αααα1111    

 ω ω ω ω1111    



 

 

124 

One distinct difference in the particulate measurements of E01920_02, 

E01920_03, and E01920_04 can bee seen in Figure 66.  A black block-arrow labeled π 

points to a momentary distribution of particles ranging from 50 nm to 500 nm that have 

concentrations of between 1.2*10
3
 (dN/dlogdp)/cc to 5.0*10

3
 (dN/dlogdp)/cc.  This brief 

emission of accumulation mode particles is illustrated by a vertical light blue stripe, and 

it is absent in the same section of E01920_02 and E01920_04.  The sudden spike in 

particles could have been caused by one of many events; such as the detaching of soot 

packages from the walls of the exhaust pipe. 
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Figure 66  Continuous Particle Distribution of E01920_03 
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Particles larger than 500 nm had concentrations that were usually less than, or 

slightly greater than, the lower detection limit of the DMS.  This caused measurement 

errors that resulted in excessively high run-to-run variations for the particles above 500 

nm.  For E01920 and most other test sequences that were performed on the rebuilt DDC 

S60, there were run-to-run COV values of greater than 20 % for the 500 nm to 1000 nm 

size range.  Labeled σ, the horizontal rectangle in Figure 67 encloses a portion of data 

where accumulation mode particles were present but not great enough in concentration to 

be detected.  The concentration at which “under ranging” began to take place was about 

1*10
3
 (dN/dlogdp)/cc.   
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Figure 67  Continuous Particle Distribution of E01920_04 
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Usually caused by control issues such as injection timing, engine “flutter” is an 

inconsistency in engine speed during idling conditions.  Engine idle occurred during a 40 

second time period about a third of the way through the FTPs.  The curved black lines, 

α1, α2, and α3, of the three figures above represent the nuclei mode peaks during the 

same 40 seconds of each test.  The α1 line of E01920_02 is shaped like an “s” curve.  For 

E01920_03, the line labeled α2 is similar in shape to half of a parabola, and the α3 line of 

E01920_04 is shaped like a complete parabola.  Each of these three peak indicating lines 

fell between the diameters of 7 nm and 10 nm, but they were all unique in shape.  The 

curves in the lines illustrate fluctuations in the modal distributions of nanoparticles during 

idle.  It is likely that such fluctuations are caused by non-uniform fueling at idle, but there 

may be other contributing factors.  As a result, run-to-run variation in nanoparticle 

concentration is affected by these fluctuations.   

Within the boxes labeled ω1, ω2, and ω3, there is a light blue tint that indicates 

particle concentrations of between 1.0*10
3
 (dN/dlogdp)/cc and 3.0*10

3
 (dN/dlogdp)/cc.  

It is clear that the light blue color is least dominant in ω1 and most dominant in ω3.  It 

was common for each consecutive test to appear to have greater concentrations within 

this area than the tests before.  As in E01920_02, E01920_03, and E01920_04, the 

accumulation mode particles within the area labeled ω often appear to increase by almost 

an order of magnitude after only two or three tests.  This is because of noise within the 

measurements due to soot accumulation on the electrometer rings of the DMS.  Gradual 

soot buildup on the rings greatly affects accumulation mode particle concentration 

measurements during the test segment marked ω.  The run-to-run variations in 

accumulation mode particles, however, are only slightly affected.  This is because over an 
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FTP, the average accumulation mode concentrations (usually between 7.8*10
4
 

(dN/dlogdp)/cc and 1.3*10
5
 (dN/dlogdp)/cc) are changed by no more than 3.1 % by an 

average increase of 2.5*10
3
 (dN/dlogdp)/cc (due to soot buildup).   

Engine control during the first 300 seconds of an FTP is identical to control 

during the last 300 seconds.  It is apparent in Figures 65, 66, and 67, however, that 

between the two identical test segments, particle concentrations throughout the nuclei 

mode are significantly dissimilar.  In both segments, the particle size with the highest 

average concentration was 7.5 nm.  In the first 300 second segment, the average 7.5 nm 

particle concentration was 7.6*10
4
 (dN/dlogdp)/cc.  During the last 300 second segment, 

the average concentration of 7.5 nm particles was 1.1*10
4
 (dN/dlogdp)/cc.  The engine 

oil temperature during the first segment had an average value of 95.6 °C.  The average oil 

temperature during the other segment was 105 °C.  Since oil temperature was the only 

measured parameter between the two identical segments that was noticeably different, it 

can be deduced that oil temperature is largely responsible for the transformation of lube 

oil into nanoparticles.  There were 86 % fewer nanoparticles during the last 300 second 

segment, and since only oil could be linked to the difference, it is likely that at least 86 % 

of all nanoparticle emissions from this engine and fuel combination can be attributed to 

engine oil. 

All of the relationships between particle concentration measurements and engine 

speed, engine torque, exhaust temperature, engine flutter, under ranging, soot 

accumulation in the DMS, and engine oil temperature were the same for the other fuels 

that were tested on the rebuilt DDC S60.  On both DDC S60 engines, only the 
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magnitudes of these relationships changed from fuel to fuel.  However, not all of the 

same correlations were observed when test sequences were executed with the ISM 370.        

Overall dilution ratio is related to DMS sampling issues such as under ranging 

and soot accumulation.  During idle, mass-flow rate in the exhaust pipe was at a 

minimum, and the overall dilution ratio was normally about 445.  This was the highest 

dilution ratio during each FTP, and it often resulted in some under ranging in the nuclei 

mode particle range.  The lowest dilution ratio during FTPs, which was usually around 

63.6, occurred during full throttle when the mass-flow rate of raw exhaust was greatest.  

Since the mass-flow rate of the primary dilution air was nearly constant, changes in 

exhaust flow resulted in variations of the overall dilution ratio.  For example, an increase 

in raw exhaust flow leads to a decrease in the overall dilution ratio.  The overall dilution 

ratio, which had an average value of 175, was calculated using the following equation.   

s

raw

tunnel
o R

Q

Q
R *








=    Equation 16 

 

From equation 16; oR  is the overall dilution ratio, tunnelQ  is the standardized flow 

rate in the primary dilution tunnel (scfm), rawQ  raw is the standardized flow rate of raw 

exhaust (scfm), and sR  is the secondary dilution ratio.  Calculation of the secondary 

dilution ratio is discussed in the Secondary Dilution Ratio Validation section of this 

thesis.  Average variations in the overall dilution ratios of test sequence E01920 are 

shown in Figure 68.  Overall dilution ratio is directly related to particle mass rate at the 

sample intake of the DMS.  If the overall dilution ratio were somehow forced to be 

constant at 445; PM mass rate into the DMS would be the same during idle, but it would 

be anywhere from 0 % to 85 % lower the rest of the time.  
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Figure 68  Averaged Overall Dilution Ratio Curve of E01920 
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For the same reasons that dilution ratio varied, residence time varied.  Residence 

time is a known factor in nanoparticle formation.  The effects of residence time on 

particle distribution were not studied for this thesis, because with the chosen sampling 

system, it was not possible to control residence time.  In fact, during FTPs, residence time 

for DMS measurements typically varied from 2.66 seconds to 4.38 seconds.  Residence 

time was calculated by adding the amounts of time required for aerosol to go through the 

exhaust pipe, dilution tunnel, secondary dilution system, and DMS sampling line.  The 

residence time from the exhaust pipe to the dilution tunnel ranged from 0.11 seconds 

during full throttle to 1.43 seconds during idle.  In the dilution tunnel, volumetric flow 

rate varied slightly because of internal temperature variation, and residence time was 

consistently between 1.21 seconds and 1.62 seconds.  The combined residence time of the 

heated sample line and secondary dilution system was constant at 0.26 seconds, and the 

residence of the DMS sampling line was 1.07 seconds.  Each of these residence times 

were calculated using equation 17, below. 

lrQt *** 2π=∆    Equation 17 

 

The symbol t∆  represents residence time, Q  denotes volumetric flow rate, and r  

and l  stand for radius and length of the pipe, tunnel, or tube.  The longest overall 

residence time occurred during idle, and the shortest occurred during full throttle. 
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4.4   SET RESULTS 
 

Supplemental emissions tests were used in this study to determine particle 

concentrations during various steady-state engine operating conditions.  Each steady-state 

session during a SET can be identified by its unique operating condition.  Mode 1 is the 

first segment, in which engine torque is zero.  Modes 2 through 13 have equivalent time-

spans, and they transpire in order.  The engine speed and torque curves of E01948_01 are 

shown as an example in Figure 69.  It is apparent in Figure 69 that some of the modes 

share a common engine speed, but they all have unique torques.  Although it appears that 

there is an instantaneous step change from one mode to another, there is actually a ramp 

transition that is not shown by Figure 69.    
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Figure 69  Engine Speeds and Torques of E01948_01 
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The continuous PM data of E01948_01 is provided in Figure 70.  It appears that 

the particle distributions and concentrations remained transient during every mode except 

4, 12, and 13.  For E01948_01 and all other SETs that were executed on the rebuilt DDC 

S60, the highest concentrations of accumulation mode particles occurred during mode 2, 

and the highest concentrations in nuclei mode particles occurred during mode 7.  The 

previously described relationships between PM concentrations and engine operating 

conditions were also present during SETs.  Figure 70 shows continuous SET data, which 

includes the ramp segments that are missing from Figure 69. 
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Figure 70  PM Concentrations During E01948_01 
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The effects of fuel type, relative humidity, and dilution ratio on particle 

concentrations during steady-state conditions are discussed in the following sections.  It 

was elected to study only six of the thirteen modes.  Modes 2, 5, 6, 7, 10, and 11 were 

selected because they represent the boundaries of operating conditions during a SET.  

Mode 1 was ignored because of instability, which can be seen in Figure 70, of the 

nanoparticle concentrations.  Figure 71, below, illustrates the engine speed and load set-

points of the six selected modes.  
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Figure 71  Speed/Load Domain of SETs 

 

4.4.1   Humidity Effects 
 

On the DDC S60, SETs were performed with the Guttman fuel on each relative 

humidity setting.  The E02204 test sequence consisted of three repeat SET tests at ~37 % 

relative humidity (within the primary dilution tunnel).  Also consisting of three repeat 

SETs, the E02205 and E02206 test sequences were assessed at ~88 % and ~60 % relative 

humidity, respectively.  The run-to-run COVs of each humidity-specific test sequence 

were separated by mode.  Figure 72 displays the run-to-run COVs for mode 2 of the 

“high humidity” (E02205), “medium humidity” (E02206), and “low humidity” (E02204) 

test sequences.  The medium humidity setting appears to have had significantly less 
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variation (up to 60 % less) between 649 nm and 866 nm than the high and low settings.  

Otherwise, the level of relative humidity didn’t seem to affect the repeatability of the fuel 

and engine during mode 2.  On behalf of the engine operating parameters of each mode, 

repeatability of the particle concentration measurements was considered acceptable 

wherever the COV was less than 5 % for all three humidity settings.  For mode 2, the set 

points were 1199 rpm and 1418 ft-lb, and the run-to-run repeatability was acceptable 

between 27 nm and 487 nm.         
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Figure 72  Run-to-Run Variation for Mode 2 of  

the E02204, E02205, and E02206 Test Sequences 

 

The high, medium, and low humidity run-to-run COVs of mode 5 are shown in 

Figure 73.  As in mode 2, the COV curves of mode 5 are similar in shape but have 

differences in magnitude (up to 50 %) outside of the “acceptable” range.  The run-to-run 

repeatability for mode 5 was acceptable between 37 nm and 154 nm.  The engine was 

operated at approximately 1199 rpm and 709 ft-lb during mode 5.        
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Mode 5
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Figure 73  Run-to-Run Variation for Mode 5 of 

 the E02204, E02205, and E02206 Test Sequences 

 

Run-to-run variation for the humidity-specific testing of mode 6 can be found 

below in Figure 74.  The engine operating conditions, 1199 rpm and 1064 ft-lb, were very 

close to the operating conditions of mode 2.  As a result, the COV values for the three 

humidity settings of mode 6 were similar to those of mode 2; whereas the acceptable 

range was between 18 nm and 365 nm, and the magnitudes appeared to be randomly 

variable below 15 nm and above 650 nm.   
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Figure 74  Run-to-Run Variation for Mode 6 of 

 the E02204, E02205, and E02206 Test Sequences 

 

Mode 7 was one of relatively low torque (355 ft-lb) for the given speed (1199 

rpm).  The run-to-run COV curves of Mode 7, shown in Figure 75, were very dissimilar 
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among the three humidity settings.  This could be partly due to the differences in 

humidity; but since the variation was normally greater than 20 % and only three repeat 

tests were completed per humidity setting, it is impossible to make a valid claim.  The 

acceptable COV values of mode 7 were in the range of 15 nm and 21 nm.        
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Figure 75  Run-to-Run Variation for Mode 7 of  

the E02204, E02205, and E02206 Test Sequences 

 

Mode 10 indicated the highest power operation (369 hp) of any mode.  It could be 

expected that the highest power mode would produce the least run-to-run variation, since 

more particle sizes would have concentrations above the detectible limit due to the 

overall dilution ratio being at its lowest.  The COV curves of Mode 10 can be seen in 

Figure 76.  Mode 10 did have the least run-to-run variation, and the engine speed and 

torque set points were 1644 rpm and 1179 ft-lb.  The three humidity settings provided 

run-to-run COV curves of a consistent pattern.  The COV curves peaked around 9 nm, 

were acceptable between 24 nm and 487 nm, and peaked again at about 866 nm.     
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Figure 76  Run-to-Run Variation for Mode 10 of 

 the E02204, E02205, and E02206 Test Sequences 

 

The operating parameters of mode 11 were similar to those of mode 7, and as seen 

in Figure 77 below, so were the run-to-run COV values.  Mode 11 consisted of a high 

engine speed (1644 rpm) and a low torque (295 ft-lb).  The acceptable run-to-run 

variations were between 15 nm and 21 nm, as in mode 7.  The variations appeared to be 

random for the particles larger than 87 nm, and the magnitudes of variation were 

excessive (greater than 20 %) below 6 nm and above 37 nm.  The distinct dip in the COV 

curves (between 115 nm and 274 nm) of both mode 7 and mode 11 was either caused by 

consistent noise on the electrometer rings due to soot buildup, artifacts of the previous 

modes, or a steady emission of accumulation mode particles.        
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Figure 77  Run-to-Run Variation for Mode 11 of 

 the E02204, E02205, and E02206 Test Sequences 
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Regardless of the level of humidity, the COV values were basically consistent for 

each mode, meaning that run-to-run repeatability is governed more solidly by engine 

operating conditions than by relative humidity within the primary dilution tunnel.  If 

humidity had any effect on run-to-run repeatability, it was only during periods of high 

speed and low load engine operation.  Most of the steady state particle distributions were 

unimodal, meaning that only one particle size range had detectable aerosol 

concentrations.  Much of the variation between repeat tests was due to low concentrations 

of particles that were smaller or larger than those of the unimodal distributions.  Some 

run-to-run variation was probably caused by the inability of aerosol concentrations to 

stabilize during the two minute window of each mode.  Most likely, the concentrations 

failed to stabilize because the temperatures of the lube oil and crank case were still rising 

or falling.  For the three humidity settings, the average COV scores of modes 2, 5, 6, 7, 

10, and 11 were 210, 331, 221, 613, 206, and 587, respectively.  Characterized by COV 

scores, the run-to-run variation of each mode can be loosely related to overall dilution 

ratio.  The overall dilution ratios, on average, were 97, 149, 115, 186, 64, and 131, 

respectively, for modes 2, 5, 6, 7, 10, and 11.  With the exception of modes 5 and 6, the 

ranking order of average modal COV scores matched the ranking order of overall dilution 

ratio.   

There was no repeat testing for the fuel additive and dilution ratio-specific SETs.  

Since the same fuel and engine were used in the steady state analyses of relative 

humidity, fuel additives, and dilution ratio, the particle size ranges of each mode that had 

acceptable run-to-run COV values (from the humidity-specific results) were applied to 

the analysis of fuel type and dilution ratio.   
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Significant differences were determined between the high, medium, and low 

humidity test results using the same technique (if sum of standard deviations is less than 

difference, difference is significant) as in the FTP Results section.  The particle 

concentrations for high (88 %) and low (37 %) relative humidity were compared to those 

of medium (60 %) relative humidity.  The significant differences between the average 

particle concentrations during the last 10 seconds of mode 2 are illustrated by Figure 78.  

The light and dark blue bars represent the concentration differences between low 

humidity and medium humidity.  The yellow and dark orange bars represent differences 

between high humidity and medium humidity.  The dark colored bars signify that the 

percent differences are significant.  As depicted by Figure 78, the high humidity setting 

resulted in a 2 % to 10 % decrease in particles between 15 nm and 87 nm and a 6 % to 11 

% increase between 422 nm and 562 nm.  The low humidity setting provided a 9 % to 18 

% increase between 422 nm and 487 nm.  No gravimetric PM measurements were made, 

but it is estimated that during mode 2, the humidity setting had little to no effect on the 

mass-based PM emissions. 
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Figure 78  Differences in Particle Concentrations of  

Mode 2 Due to Humidity Change 

 

For the humidity test results of mode 5, the percent differences between particle 

concentrations can be found in Figure 79.  During the engine operating conditions of 

mode 5, the high humidity and low humidity settings provided very similar results.  They 

each resulted in a concentration decrease of less than 10 % from 32 nm to 100 nm, 

although only the high humidity differences were significant.  In the 205 nm to 487 nm 

size range, they both caused reductions in particle concentrations of between 10 % and 67 

%.            
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Figure 79  Differences in Particle Concentrations of  

Mode 5 Due to Humidity Change 

 

During mode 6, the only particle concentrations of the low humidity setting that 

showed significant difference from those of the medium humidity setting were in the 274 

nm to 316 nm size range.  As seen in Figure 80, the maximum significant difference for 

the low humidity particles of mode 6 was a reduction of about 9 %.  There were 

significant concentration reductions, which were anywhere from 4 % to 10 %, caused by 

the high humidity setting between 15 nm and 75 nm.  Of the six modes that were 

analyzed, mode 6 nearly demonstrated the least and lowest significant differences 

between humidity settings.          
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Mode 6
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Figure 80  Differences in Particle Concentrations of  

Mode 6 Due to Humidity Change 

 

Regardless of the fact that the highest run-to-run variation belonged to mode 7, 

significant differences were still present, as illustrated by Figure 81, between the low and 

medium humidity settings.  In the 7 nm to 10 nm range, the low humidity tests resulted in 

particle concentration reductions of 8 % to 24 %.  Some of these reductions were close to 

being considered insignificant, because the error bars were within a few percent of being 

greater in magnitude than the differences.  During mode 7, low relative humidity caused 

the greatest single significant difference in particle concentration (increase of 120 % at 75 

nm) of the humidity test results.  Between 24 nm and 75 nm, the low humidity setting 

was responsible for rises in particle concentrations of 9 % to 120 %.  The average PM 

concentration values of the high humidity setting were not significantly different from 

those of medium humidity because of the amount of run-to-run variation.  It is apparent 
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in Figure 81, however, that the high and low humidity settings resulted in similar 

increases or decreases in concentration.             
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Figure 81  Differences in Particle Concentrations of 

 Mode 7 Due to Humidity Change 

 

Figure 82 illustrates the particle concentration differences due to changes in 

humidity.  Of all analyzed modes, mode 10 provided significant differences for the 

fewest particle sizes.  Furthermore, the greatest significant difference (7 %) of mode 10 is 

the lowest maximum significant difference for the humidity-specific particle 

concentrations of any mode.  While the low humidity testing resulted in no significant 

differences in concentration for mode 10, significant reductions of 4 % to 7 % in the 27 

nm to 75 nm range were attributed to the high humidity setting.       
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Mode 10
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Figure 82  Differences in Particle Concentrations of 

 Mode 10 Due to Humidity Change 

 

Like mode 7, mode 11 was afflicted by high run-to-run variation (average COV 

score of 587), but there were still significant differences between the PM concentrations 

of the high, medium, and low humidity settings.  Figure 83 illustrates that during mode 

11, the low humidity setting was responsible for a 22 % to 70 % decrease in some of the 

nuclei mode particles and a 23 % to 83 % decrease in accumulation mode particles 

between 154 nm and 274 nm.  Increases in particle concentration for the 24 nm to 100 nm 

size range were anywhere from 9 % to 88 %, and they were due to high relative humidity.  

From 133 nm to 154 nm, the high humidity setting caused reductions in concentration of 

12 % to 15 %.  As explained previously, the engine speed and load set points of mode 11 

were similar to those of mode 7.  The significant differences that precipitated from mode 

11, however, were nothing like those described for mode 7.  This is because the run-to-
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run variations of modes 7 and 11 were not exactly the same.  Ignoring error bars, the 

extreme humidity settings of modes 7 and 11 both resulted in increasing particle 

concentration reductions from 15 nm to 6 nm and increasing particle concentration gains 

from 18 nm to 75 nm.  In such a manner, the humidity test results of modes 7 and 11 

were similar.   
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Figure 83  Differences in Particle Concentrations of 

 Mode 11 Due to Humidity Change 

 

In the humidity results of modes 2, 5, 6, 7, 10, and 11, the significant percent 

differences in particle concentration were based on only three repeat tests per humidity 

setting.  For this reason and the fact that run-to-run variation was typically high (COV 

scores of 206 to 613), the accuracy of the differences is statistically unknown.  It is 

impossible, with the collected data, to conclude which humidity-caused differences can 

be repeated and which ones were by chance.  It appears that humidity change probably 
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only altered the particle concentrations enough to have an effect on the brake-specific 

TPM during modes 5, 7, and 11.  This means that relative humidity within the dilution 

tunnel effects PM emissions of the Guttman/rebuilt DDC S60 only during low load (<50 

%) operation.  The average particle concentrations for each mode (2, 5, 6, 7, 10, and 11) 

and each humidity setting (37 %, 88 %, and 60 %) can be found in the Humidity Effects 

section of the Appendix.          

MATLAB ANOVA was explored as an alternate statistical method of 

determining which PM concentration differences were significant.  As examples, all of 

the steady state humidity test results were analyzed with ANOVA.  Figure 84 indicates 

which particle concentrations of mode 2 were significantly different, according to 

ANOVA, between humidity settings.  In Figure 84, there are three circles with lines 

through them (one for each humidity setting) for each particle size.  The circles give a 

rough indication of brake-specific particle count, and the line lengths are related to run-

to-run variation.  The sets of circles with blue horizontal lines represent the particle sizes 

whose concentrations were significantly affected by humidity.  According to ANOVA, 

the range of sizes for mode 2 where differences were determined to be significant was 65 

nm to 205 nm.  The method described above that incorporates equation 11 indicated that 

for mode 2, the changes in humidity resulted in significant differences at 15 nm, from 27 

nm to 87 nm, and between 422 nm and 562 nm.  The ANOVA results of mode 2, as 

opposed to the ANOVA results of modes 3 through 13, indicated the highest number of 

particle sizes that had significant differences.        
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Figure 84  Particle Sizes that Have Significantly Different Average Values for 

Mode 2 Due to Humidity Change (According to ANOVA) 

 

As can be seen in Figure 85, the ANOVA analysis of mode 13 specified that there 

were no particle sizes that had significantly different concentrations due to humidity 

variation.  The ANOVA analysis in MATLAB assumes the variances are equal for all 

particle sizes.  That is, ANOVA only solves for a single variance from all particle sizes, 

and it uses that variance to determine significance.   
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Figure 85  Particle Sizes that Have Significantly Different Average Values for  

Mode 13 Due to Humidity Change (According to ANOVA) 

 

The use of MATLAB ANOVA illustrates which concentrations are significantly 

different and gives an indication of particle concentrations for each humidity setting, but 

fails to provide a means of determining percent differences.  The ANOVA analyses of 

modes 3 through 12 are represented by Figures A-59 through A-67 in the Humidity 

Effects section of the Appendix.  Immediately after Figure A-67, the MATLAB code for 

the ANOVA analyses is also provided in the Appendix.  In every case where significance 

was determined by both methods (equation 11 and ANOVA), ANOVA yielded a fewer 

number of particle sizes with significant differences.  This is because a calculation for 95 

% certainty is incorporated into the ANOVA statistical model.  Perhaps in an application 

where ten or more repeat tests were administered, the 95 % certainty of ANOVA would 

be practical, but for only three repeat tests of each humidity setting, the results of 
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ANOVA are questionable.  In short, the statistics of ANOVA do not normally apply to 

data sets of this size.  Therefore, the conclusions of this research were based on the 

technique developed and described above on page 81.   

4.4.2   Fuel A vs. Fuel B 
              
The effects of fuel additives were studied over steady state conditions, where low 

cetane, low cetane B10A, and low cetane B20A were used with the rebuilt DDC S60.  

Only one SET per fuel was performed, and all three tests were completed on the same 

day.  Test number E02138 corresponds to the low cetane SET, E02139 corresponds to the 

low cetane B10A SET, and E02141 identifies the low cetane B20A SET.  In the 

following illustrations and discussion, low cetane was used as a standard with which to 

compare low cetane B10A and low cetane B20A.  Since only one test per fuel was 

allowed, the exactness of percent difference comparisons was not applicable.  Therefore, 

a general way of comparing results was developed.  The apparent fuel effect factor 

(AFEF) was used to describe the differences in particle concentration that appeared to be 

caused by the use of fuel additives.  The AFEF is given below by equation 18. 

b

a

C

C
AFEF =    Equation 18 

 

The concentration of a given particle size is denoted by C , where aC  symbolizes 

the concentrations of the additized fuel and bC  stands for the concentrations of the base 

fuel.  For example, an AFEF of 1.1 indicates that the fuel additive appeared to be 

responsible for a 10 % increase in particle concentration.  An AFEF of 0.9 suggests a 10 

% decrease in concentration. 
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It was not possible to determine which particle sizes had acceptable run-to-run 

repeatability for each mode, since only one test per fuel was performed.  Therefore, and 

because the rebuilt DDC was used for all SETs, applying the acceptable repeatability (5 

% COV or less) ranges of the humidity test results helped to determine which particle 

sizes to compare for each mode.  In each of the following six figures, the dark blue and 

orange columns indicate the AFEF for particle sizes that were projected to have had 

measurement precisions of +-5 %.  The dark and light blue columns correspond to the 

differences between low cetane and low cetane B10A, and the orange and yellow 

columns signify the differences between low cetane and low cetane B20A.   

The AFEF values for the test results of mode 2 are present in Figure 86.  It 

appears that the use of low cetane B10A over low cetane resulted in particle 

concentration increases of 1 % to 14 % between 13 nm and 27 nm and particle 

concentration reductions of 1 % to 11 % between 37 nm and 649 nm.  The effect of low 

cetane B20A was the same for every particle size, but the AFEF values were greater in 

magnitude.  From 13 nm to 27 nm and 32 nm to 649 nm, low cetane B20A caused PM 

concentration increases of between 8 % and 30 % and reductions of between 6 % and 28 

%, respectively. 
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Figure 86  Apparent Fuel Effects of Biodiesel Addition to  

Low Cetane Diesel for Mode 2     

 

For mode 5, the use of low cetane B20A once again provided concentration 

variations that were similar to but more prominent than those of low cetane B10A.  As 

illustrated by Figure 87, the use of a 10 % biodiesel blend resulted in particle 

concentration reductions of 2 % to 12 % between 27 nm and 316 nm.  In the same 

particle size range, the 20 % biodiesel blend caused reductions of 14 % to 33 %.  The 

engine operating parameters of mode 5 provided unique results in that there were no 

increases in the particle concentrations of any size due to the incorporation of biodiesel. 
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Figure 87  Apparent Fuel Effects of Biodiesel Addition to  

Low Cetane Diesel for Mode 5     

 

The apparent fuel effect results of mode 6 are illustrated below by Figure 88.  The 

use of low cetane B10A over the base fuel resulted in concentration increases of 2 % to 

13 % in the 12 nm to 24 nm range and 1 % to 20 % reductions in the 27 nm to 649 nm 

size range.  Similarly, particle concentration increases of 2 % to 17 % between 12 nm and 

21 nm and concentration reductions of 4 % to 49 % between 27 nm and 649 nm were 

attributed to the use of low cetane B20A over low cetane.      
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Figure 88  Apparent Fuel Effects of Biodiesel Addition to  

Low Cetane Diesel for Mode 6     
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For mode 7, the AFEF values are given below by Figure 89.  The indicated effects 

of fuel properties during mode 7 resembled the effects of altering relative humidity 

within the dilution tunnel.  Both additives caused an increasing reduction of 

concentrations between 15 nm and 7 nm; and both were responsible for an increasing 

gain in particle concentrations between 24 nm and 56 nm.  For both additized fuels, the 

reductions in nuclei mode particles of mode 7 were between 1 % and 14 % and the gains 

in accumulation mode particles were between 3 % and 36 %.   

Mode 7

0.5

0.6

0.7
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

5 6 6 8 9
1
0

1
2

1
3

1
5

1
8

2
1

2
4

2
7

3
2

3
7

4
2

4
9

5
6

6
5

7
5

8
7

1
0
0

1
1
5

1
3
3

1
5
4

1
7
8

2
0
5

2
3
7

2
7
4

3
1
6

3
6
5

4
2
2

4
8
7

5
6
2

6
4
9

7
5
0

8
6
6

1
0
0

Particle Size (nm)

A
F

E
F

            E02139

            E02141

 

Figure 89  Apparent Fuel Effects of Biodiesel Addition to  

Low Cetane Diesel for Mode 7     

 

The differences between fuels are shown for mode 10 by the AFEF values of 

Figure 90.  In the 15 nm to 21 nm particle size range, it was evident that the B10A and 

B20A blends caused concentration increases of 3 % to 6 %, and 1 % to 4 %, respectively.  

Between 37 nm and 487 nm, the effect of low cetane B20A appeared to once again be the 

same as that of low cetane B10A, only greater.  In this range, it was rationalized that the 

use of the 10 % biodiesel blend caused particle concentration reductions of 1 % to 16 %, 

and the use of the 20 % blend resulted in reductions of 2 % to 24 %.   
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Figure 90  Apparent Fuel Effects of Biodiesel Addition to  

Low Cetane Diesel for Mode 10     

 

Mode 11 was the only case in which the AFEF trends of each biodiesel additive 

were not the same.  As illustrated by Figure 91, the AFEF trend of low cetane B10A was 

a continuous decrease from 9 nm to 37 nm.  The AFEF trend of low cetane B20A was a 

continous increase from 9 nm to 37 nm.  Even though the two additives had dissimilar 

AFEF trends during mode 11, they both demonstrated particle concentration reductions 

of 2 % to 18 % between 9 nm and 21 nm.  In the 24 nm to 37 nm range, the use of low 

cetane B10A and low cetane B20A over the base fuel appears to have resulted in 22 % to 

37 % reductions and 3 % to 24 % increases in PM concentration, respectively, during 

mode 11.              
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Figure 91  Apparent Fuel Effects of Biodiesel Addition to  

Low Cetane Diesel for Mode 11     

 

The two AFEF trends of mode 11 may have been similar if repeat testing had 

been performed.  The AFEF curves of modes 2 and 10 were of the same general shape; 

which is probably because the engine operating conditions of modes 2 and 10 were along 

the same boundary, as depicted by Figure 71.  For the same reason, modes 7 and 11 had a 

common AFEF trend for the low cetane B20 fuel.  As a general rule, the effects that fuel 

additives or any other variables have on particle concentrations are specific to certain 

engine operating conditions.  For instance, a fuel additive cannot decrease 500 nm 

particle concentrations for engine operation that already emits practically no 500 nm 

particles.         

The steady state AFEF results were of unknown certainty, because repeat tests 

were not executed.  As a means of validation, however, the AFEF results were related to 

the low cetane, low cetane B10A, and low cetane B20A results of the Base Fuels vs. 

Additized Fuels section.  The FTPs and SETs of these three fuels were performed on the 

same day with the same engine.  For the average engine operating conditions of the 

repeat FTPs, the use of low cetane B10A provided significant reductions of 3 % to 14 % 
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in the nuclei mode particles and 4 % to 16 % in the accumulation mode particles.  The 

use of low cetane B20A in the FTPs resulted in significant reductions of 6 % to 23 % in 

the nuclei mode particles and 5 % to 36 % in the accumulation mode particles.  The 

average nuclei mode particle distribution of the FTP tests was closest to that of mode 7, 

and the average accumulation mode particle distribution was closest to that of mode 5.  

Therefore, the results of modes 7 and 5 were simultaneously compared to the FTP results.  

During the steady state operation of mode 7, the use of low cetane B10A was attributed 

to nuclei mode particle reductions of between 2 % and 10 % (3 % to 14 % for transient 

tests), and the use of low cetane B20A caused nuclei mode reductions of 2 % to 14 % (6 

% to 23 % for transient tests).  For the steady state conditions of mode 5, low cetane 

B10A was responsible for decreases in accumulation mode particles of between 6 % and 

13 % ( 4 % to 16 % for transient tests), and the use of low cetane B20A resulted in 

accumulation mode particle reductions of 14 % to 33 % (5 % to 36 % for transient tests).                         

4.4.3   Dilution Ratio Effects 
 

Effects of dilution ratio on particle concentrations were studied by using the 

Guttman fuel, the rebuilt DDC S60, and the SET.  There were three SETs performed, one 

for each primary tunnel flow setting.  Test E02208_01 was associated with the “high” 

primary dilution caused by a main tunnel flow rate of ~3400 scfm.  With a tunnel flow 

rate of ~2400 scfm, E02206_02 was characterized by what was considered to be the 

standard primary dilution; and E02208_02 was run with the “low” primary dilution that 

was caused by a tunnel flow rate of ~1400 scfm.  More detail on the method used to vary 

the primary dilution ratio can be found on page 69 of the Experimental Setup and 

Procedures section.  A term similar to AFEF, the apparent dilution effect factor (ADEF), 
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was essentially the same as the AFEF, and it was used in the following figures and 

discussion.  It was implemented to allow estimations of differences in particle 

concentrations by comparing the high and low dilution results to the standard dilution 

results.  Since no repeat tests were performed and the same test day, test procedure, fuel, 

and engine were used as in the steady state humidity tests, the size ranges of acceptable 

run-to-run variations (from the humidity results) were applied to these results.  Only 

concentration differences of particles within the acceptable ranges were considered for 

significance.  Figures 92 through 97 represent the dilution dependant results of modes 2, 

5, 6, 7, 10, and 11.  The ADEF values of the high dilution setting are represented by light 

and dark blue columns, where the dark blue columns indicate differences that were 

potentially significant.  The red and light orange columns represent the ADEF values of 

the low dilution setting, where red columns suggest significance.  Note that the y-axis 

scales of Figures 95 and 97 are different from those of Figures 92, 93, 94, and 96.  

Overall dilution ratios of the individual modes are provided by Table 15 below and 

related to the particle concentration and distribution results of the next six figures.  As 

explained previously, the volumetric particle concentrations were converted to brake-

specific concentrations so that the effects of dilution ratio could be studied by visual 

inspection of the figures below.                      

Table 15  Average Overall Dilution Ratios of Modes 2, 5, 6, 7, 10, and 11 

Test Number Mode 2 Mode 5 Mode 6 Mode 7 Mode 10 Mode 11 

E02206_02 95.6 149 115 186 64.0 131 

E02208_01 139 216 167 265 94.8 190 

E02208_02 53.0 82.7 62.8 104 34.5 72.4 
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The dilution ratio values of Table 15 are discussed throughout this section.  

Equation 16 from the Continuous FTP Data section was used to calculate the overall 

dilution ratios.  

During the test with the standard dilution setting, the overall dilution ratio of 

mode 2 was 95.6.  The high and low dilution settings resulted in total dilution ratios of 

139 and 53.0, respectively, during mode 2.  The ADEF values of mode 2 are provided 

below in Figure 92.  The high dilution setting resulted in increases of 5 % to 39 % in 

nuclei mode particle concentrations, differences of less than 3 % between 50 nm and 100 

nm, and increases of 2 % to 22 % between 100 nm and 650 nm.  The low dilution setting 

demonstrated nuclei mode concentration reductions of 28 % to 66 % and accumulation 

mode reductions of 28 % to 7 %.  The red columns in Figure 92 that are between the 487 

nm and 866 nm particle sizes denote concentration increases of 18 % to 45 %, which may 

have been due to noise.       
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Figure 92  Apparent Dilution Ratio Effects on Particle Concentrations of Mode 2 

 

The low, normal (standard), and high dilution settings resulted in overall dilution 

ratios of 82.7, 149, and 216, respectively, in mode 5.  The particle distributions of mode 5 

shared a common range of 5 nm to 250 nm.  The resulting ADEF values are provided 
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below by Figure 93.  In the humidity results of mode 5, the average run-to-run COV 

values were less than 35 % for the particles smaller than 27 nm.  This means that the 

differences between concentrations of the low and normal dilution settings, which were 

reductions as great as 70 %, can be considered significant between 6 nm and 20 nm.  The 

acceptable range may not have been applicable to the dilution results of mode 5, because 

the particle concentrations for sizes greater than 250 nm were below the detectable limit 

of the DMS.  Therefore, it is suggested that the ADEF values of the high dilution setting 

were significant only between 27 nm and 250 nm, and the ADEF values of the low 

dilution setting were only significant for the ranges of 6 nm to 20 nm and 27 nm to 250 

nm.  For the 27 nm to 250 nm particles of mode 5, conclusions were made that the high 

dilution setting caused concentration reductions of up to 10 %, and the low dilution 

setting exhibited reductions of up to 15 %.   
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Figure 93  Apparent Dilution Ratio Effects on Particle Concentrations of Mode 5 

 

The dilution results of mode 6 can be found in Figure 94.  Mode 6 had low, 

normal, and high overall dilution ratios of 62.8, 115, and 167, respectively.  The test with 

the high dilution setting displayed nuclei mode particle concentrations that were 2 % to 

47 % greater than those of the normal dilution test.  Low dilution was associated with 
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nuclei mode reductions of 18 % to 59 %.  The particles of 40 nm to 200 nm were not 

significantly affected (differences were less than 5 %) by use of the high dilution setting, 

and they were reduced by 5 % to 17 % when the low dilution setting was employed.  

Particles of mode 6 that were between 200 nm and 500 nm appear to be affected by 

dilution ratio, but the results were randomly distorted by measurement errors of unknown 

causes. 
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Figure 94  Apparent Dilution Ratio Effects on Particle Concentrations of Mode 6 

 

The maximum total dilution ratios of the low ( oR = 104), normal ( oR  = 186), and 

high ( oR  = 265) dilution tests occurred during mode 7.  Figure 95 shows the ADEF 

values for mode 7 of the steady state dilution test.  The comparisons indicated that raising 

the dilution ratio caused concentration increases of 5 % to more than 100 % (close 

inspection of data indicated a peak increase of 175 %) in the 8 nm to 37 nm size range, 

and lowering the dilution ration led to particle concentration reductions of 20 % to 84 % 

in the 8 nm to 65 nm size range.  The high dilution setting also caused reductions of 

between 31 % and 100 % in some particle concentrations of the accumulation mode. 
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Figure 95  Apparent Dilution Ratio Effects on Particle Concentrations of Mode 7 

 

Mode 10 particle concentration comparisons for the three dilution settings can be 

found in Figure 96.  The low dilution setting yielded an average overall dilution ratio of 

34.5, and the standard and high settings provided ratios of 64.0 and 94.8, respectively.  

The particle concentrations of the high dilution ratio appeared to be 6 % to 16 % higher 

in the 15 nm to 27 nm particles, not significantly affected in the 30 nm to 150 nm 

particles, and 5 % to 27 % lower in the 154 nm to 487 nm particles when compared to the 

concentrations of the standard dilution ratio.  Use of the low dilution ratio setting during 

mode 10 resulted in particle concentration reductions of 57 % to 15 % between 15 nm 

and 50 nm, 7 % to 20 % between 100 nm and 205 nm, and 15 % to 34 % between 315 nm 

and 420 nm.  The low dilution ratio may have also caused concentration gains in the 

particles between 65 nm and 87 nm.          
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Figure 96  Apparent Dilution Ratio Effects on Particle Concentrations of Mode 10 

 

The high, standard, and low overall dilution ratios of mode 11 were 72.4, 131, and 

190, respectively; and the apparent particle concentration differences can be found in 

Figure 97.  Between 9 nm and 65 nm, none of the average run-to-run COV values of the 

humidity tests were greater than 30 %.  Therefore, the acceptable range was once again 

ignored, and the concentration differences of the 9 nm to 65 nm particles (of the dilution-

specific tests) that were greater than 30 % were considered to be significant.  The ADEF 

values of Figure 97 indicate that increasing the primary tunnel flow from ~2400 scfm to 

~3400 scfm caused particle concentrations of mode 11 to increase by anywhere from 10 

% to 328 % in the 9 nm to 65 nm size range.  Mode 11 was the only example where the 

low dilution test emitted more particles (35 % to 150 %) per unit work than the standard 

dilution test between 9 nm and 15 nm.  The particles between 18 nm and 65 nm were 

subject to concentration reductions of 25 % to 90 % when the tunnel flow rate was 

lowered from ~2400 scfm to ~1400 scfm.              
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Figure 97  Apparent Dilution Ratio Effects on Particle Concentrations of Mode 11 

 

Changes in the dilution setting caused variations in residence time of up to 1.88 

seconds.  As discussed on page 15, research has shown that residence time is a prominent 

factor in nanoparticle formation.  The higher dilution settings provided lower tunnel 

temperatures, which are required for the condensation of gaseous compounds into volatile 

particles.  This is one of the mechanisms with which the higher dilution ratios caused 

increases in nuclei mode particle concentrations.  It was found in the literature that only 

nuclei mode particles are affected by dilution ratio [28].  This research provided evidence 

that, for the selected fuel and engine, dilution ratio always affects the nuclei mode; and 

under specific operating conditions, it affects the accumulation mode.  The nuclei mode 

was reduced in all circumstances of the steady state dilution-specific testing in which the 

dilution ratio was lowered.  The increase of 9 nm to 15 nm particle concentrations (shown 

by red columns in Figure 97) during mode 11 appeared to be an exception; but upon 

inspection of Figure A-76 in the Appendix, it was determined that the entire nuclei mode 

was also reduced for mode 11 when the dilution ratio was decreased.  The peak of the 

nuclei mode during mode 11 occurred at 25 nm with the normal dilution setting; and it 

occurred at 15 nm with the low dilution setting.  This means that the nuclei mode was 
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reduced, but it was also shifted.  The increase in concentrations between 9 nm and 15 nm 

were due merely to variation in the span of the nuclei mode distribution.  When the 

dilution ratio was decreased, the brake-specific concentrations of accumulation mode 

particles smaller than 205 nm were either reduced slightly (5 % to 20 %) or were not 

significantly affected (< 5 %).  Above 205 nm, the concentrations seemed to be randomly 

affected by dilution ratio, which could have been due to measurement error.  Once more, 

no repeat tests were executed, so the results were suggestive instead of conclusive.  

Applicability of the acceptable ranges was voided in a few cases, because changes in 

overall dilution ratio caused shifts in the modal distributions of particles.  Continuous 

concentration contour plots (volumetric basis) of the high, standard, and low dilution tests 

are provided on pages 224, 225, and 226, respectively, of the Appendix.  Brake-specific 

concentration plots for the high and low dilution settings of modes 2, 5, 6, 7, 10, and 11 

are provided on pages 221 through 223 of the Appendix.  The shifts in modal 

distributions, such as the one in the nuclei distribution of mode 11, can be visually 

detected from the contour plots (Figures A-74, A-75, and A-76).  It was also apparent 

from the contour plots that the particle distributions of modes 2, 5, 6, 7, 10, and 11 

remained transient.  A longer period of operation for each mode might have resulted in 

greater consistency of the spectral particle concentrations.  The results above and the 

conclusions of this paragraph are specific to the selected fuel, engine, and modes of the 

SET.   
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4.4.4   Secondary Dilution Ratio Validation 
 

The secondary dilution ratio ( sR ), which was needed in equation 16 to calculate 

the overall dilution ratios, was originally set to 25.  Validation of the actual secondary 

dilution ratio was done by measuring the oxides of nitrogen before and after the 

secondary dilution system.  The secondary dilution ratios illustrated below by Figure 98 

were calculated by dividing the gaseous concentration values (NOx ppm) of the analyzer 

that sampled from the primary tunnel by the values (Remote NOx ppm) of the analyzer 

that took measurements from the secondary dilution mixture.  The dilution ratios of 

Figure 98 are those of the E02206_02 SET.  Excluding the ones that are shown for mode 

1 (between 0 seconds and 150 seconds), the calculated secondary dilution ratios of 

E02206_02 were between 23.5 and 24.6.     
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Figure 98  Calculated Secondary Dilution Ratios of Steady State Test E02206_02 

 

Figure 99 indicates the NOx concentrations of the primary and remote NOx 

analyzers during E02206_02.  The concentrations measured by the remote NOx analyzer 

were below the detection limit during mode 1.  This is why the secondary dilution ratios 

of mode 1, which are shown in Figure 98, appear to be scattered.  Some of the other 

variations in the calculated secondary dilution ratios were attributed to measurement 
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errors as well; the remote NOx concentrations were occasionally less than 6 ppm and the 

remote NOx analyzer was mistakenly calibrated to 50 ppm.         

0

50

100

150

200

250

300

350

400

450

0 200 400 600 800 1000

Time (s)

N
O

x
 C

o
n

c
e

n
tr

a
ti

o
n

 (
p

p
m

)

NOx Analyzer

Remote NOx

 

Figure 99  NOx and Remote NOx Concentrations of Steady State Test E02206_02 

 

With NOx measurements of mode 1 ignored, the average secondary dilution ratios 

of nine SETs were calculated.  These average secondary dilution ratios can be found in 

Figure 100.  The light blue columns represent the dilution ratio values that were 

calculated by use of NOx measurements, and the light purple columns show those that 

were calculated with the NOx2 measurements.  The standard deviation bars, or error bars, 

represent the standard deviations between the secondary dilution ratio values of each test.  

The greatest average secondary dilution ratio that was calculated (24.5) was for 

E02204_01, and the lowest (23.6) was for E02205_01.  The average secondary dilution 

ratio for the nine tests was calculated to be 24.0.       
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Figure 100  Average Secondary Dilution Ratios of Humidity-Specific SETs 

 

Consistency of the secondary dilution ratio was essential for measurement 

precision, and the secondary dilution system provided satisfactory performance (the 

calculated precision of the secondary dilution ratio was 24.0 +-2.5 %).  The average 

secondary dilution ratio value of 24.0 was used in all of the overall dilution ratio 

calculations. 
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5   CONCLUSIONS 
 

The research was completed to provide a better understanding of the variability in 

DPM size measurements from HDDEs and to determine how measurements are affected 

by certain parameters.  The independent variables were: fuel type, sample line 

temperature, relative humidity within the dilution tunnel, and overall dilution ratio.  To 

put the testing circumstances in perspective (63.6<DR<445), the dilution conditions of 

this study were similar to what a motorcycle rider would experience if he/she maintained 

several feet of distance behind a moving tractor-trailer.  For PM size and concentration 

measurements to ever be mandatory for HDDE testing, standardization of the sampling 

technique must be declared.  Many scientific establishments, such as HEI, are currently 

investigating human health issues associated with diesel particulates, and spectral particle 

concentration measurements may eventually help to determine the long-term risks of 

certain working environments.   

5.1   EXTREMES OF RUN-TO-RUN VARIATION  (objective 1)  
 

The run-to-run variations, or COV values, were used to determine which 

differences were significant.  The run-to-run variations of the E02138 test sequence were 

as low as 0.08 %, indicating that it would have been possible to detect significant particle 

concentration differences of ~0.16 % if a test sequence of similar variance were 

compared.  The lowest run-to-run variations of the least repeatable test sequence, 

E01921, were 1.08 %.  This means that for all of the FTP testing, minimum significant 

differences of less than 2.2 % could have been determined for certain particle sizes.  The 

COV trend lines, which were dependant on the nature of particle losses for each engine 

model and fuel type, differed in magnitude for each particle size.  The smallest significant 
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difference that was found during this research was a 1.51 % increase in 65 nm particles 

due to the addition of the “trt. 1” additive (test sequence E01947) to the low cetane fuel 

(test sequence E01943).  The largest significant difference that was found was 125 % 

between the 32 nm particles of test fuels FEM trt. 3 (E02195 test sequence) and FEM trt. 

6 (E02198 test sequence).  When either of the 1992 Detroit Diesel DDC S60s were used, 

it was generally possible to detect differences of 4 % or less between 50 nm and 150 nm 

and 10 % or less between 20 nm and 200 nm.  In most cases with the 2004 Cummins ISM 

370, it was possible to detect differences of 6 % or less between 50 nm and 150 nm and 

16 % or less between 20 nm and 200 nm.  Even if standardization of PM size and 

concentration measurements is implemented, the minimum detectable variations will be 

inconsistent between fuel and engine combinations. 

5.2   HUMIDITY EFFECTS  (objective 2)   
 

The humidity results were specific to the rebuilt DDC S60 engine and Guttman 

fuel combination, and it was noted that the run-to-run variations were not affected by 

humidity.  Significant differences in particle concentrations due to changes in relative 

humidity within the dilution tunnel were only noticed for the low load (<50 %) engine 

operation of modes 5, 7, and 11.  During mode 5, the low (~37 %) and high (~88 %) 

humidity settings both showed reductions of between 10 % and 67 % in the 205 nm to 

487 nm size range, when compared to the standard (~60 %) humidity setting.  Compared 

to the standard humidity setting of mode 7, there were concentration reductions of 8 % to 

24 % in the 7 nm to 10 nm particles when the low humidity setting was applied.  For 

mode 11, the high humidity setting resulted in 9 % to 88 % increases between 24 nm and 

100 nm, and the low humidity setting caused reductions of 22 % to 83 % in the 5 nm to 7 
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nm and 154 nm to 275 nm particles.  Since the effects of decreasing the relative humidity 

did not mirror those of increasing the relative humidity, it is suggested that the 

mechanisms by which the different humidity settings altered the particle concentrations 

were not the same.  Perhaps the injection of steam (to raise the humidity levels) caused 

changes in average tunnel temperature (which were typically between 0.2 °C and 3.4 °C) 

that were more influential on particle formation than the humidity variations.   

5.3   DILUTION RATIO EFFECTS  (objective 3)   
 

The dilution results were also specific to the rebuilt DDC S60 engine and 

Guttman fuel combination.  The higher overall dilution ratios provided greater cooling, 

which led to greater amounts of nanoparticles due to increased nucleation.  Consequently, 

the higher dilution settings caused increases in nanoparticle concentrations in every case 

(SET modes 2, 5, 6, 7, 10, and 11).  The accumulation mode particle concentrations 

increased in some cases (SET modes 2, 5, 6, and 10) as the overall dilution ratio was 

elevated, but not by as much as the nuclei mode particles.   

5.4   DAY-TO-DAY VARIATION  (objective 4)   
 

With each fuel and engine combination that was used for day-to-day variation 

testing, the run-to-run COV trends were always different from one day to the next.  It was 

assumed that barometric pressure changes contributed to the day-to-day variations, since 

barometric pressure was the only parameter that was not controlled.  It was suspected that 

a change in barometric pressure from an average value of 14.155 psi during the E01927 

test sequence (day 1) to an average value of 14.330 psi during the E01928 test sequence 

(day 2) caused day-to-day concentration variations of between 3 % and 10 % in the 32 
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nm to 316 nm particles.  It was also likely that hourly changes in barometric pressure 

were responsible for portions of the run-to-run variations. 

5.5   BASE FUELS VS. ADDITIZED FUELS  (objective 5)   
 

Each additive that was studied caused significant differences in particle 

concentrations of higher than 10 %.  In all cases, an increase in the amount of the additive 

led to an increase in the resulting particle concentration differences.  The greatest 

difference due to the use of an additive was a 130 % increase in 32 nm particles.  The use 

of cetane improving additives generally resulted in concentration reductions for all of the 

measured particle sizes that were affected.  The blending of biodiesels with petroleum-

based fuels has been known to reduce PM mass-based emissions; and in this research (for 

the rebuilt 1992 DDC S60), it always reduced the particle concentrations of most sizes 

and did not affect those of the other sizes.   

5.6   COMPARISON OF TEOM AND DMS DATA  (objective 6)   
 

By use of the technique described in the Comparison of TEOM and DMS Data 

section that was developed for the conversion of DMS spectral density data into 

continuous PM mass data, it is possible to use the DMS as a measurement tool for TPM 

and the mass flow of PM.  The use of the DMS instead of the TEOM to measure PM 

mass flow eliminates the need for correction of water absorption onto the TEOM filter.  

Possibly due to averaging within the TEOM, the DMS detected impulses in PM mass 

flow that the TEOM did not.  The effective density technique also provides estimations 

for the contributions of each bin (particle size range) to TPM.  When the rebuilt DDC 

S60 was used, the DMS TPM consistently agreed with the gravimetric filter TPM to 

within 6.25 %.  The DMS TPM of the non-rebuilt DDC S60 was always less than 4 % 
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different than the gravimetric filter TPM.  With the ISM 370, however, the DMS TPM 

was consistently 18.2 % to 26.4 % lower than the gravimetric filter TPM.  This means 

that the effective density constants that were used are not applicable to newer engine 

technologies, such as EGR on the ISM 370.  If the effective density constants were 

determined for a variety of engine types, the accuracy of the DMS PM mass 

measurement technique might approach or surpass the accuracy of the TEOM.           

5.7   SAMPLE LINE TEMPERATURE EFFECTS  (objective 7)   
 

The run-to-run variation was higher for test sequence E01967, which had an 

unheated (32 °C average temperature) sample line, than for test sequence E01968, which 

had a heated (47 +-1.0 °C constant temperature) sample line.  This was probably because 

deviations in the sample line temperature resulted in variations of mass flow through the 

ejector diluter, which caused variations in the secondary dilution ratio.  The only particle 

concentration that seemed to be significantly affected by sample line temperature was 

that of the 5 nm particles.  The 5 nm particles were increased in concentration by 15 % 

when the sample line heater was turned off.  In the existing literature, it is commonly 

reported that the temperature within the dilution environment is related to the formation 

of nanoparticles.  The conclusion of this sample line temperature study was probably not 

the same because particles spent no more than 0.088 seconds in the sample line (between 

the primary tunnel and the secondary dilution system), and the final sample temperature 

at the intake of the DMS was ~25 °C regardless of the sample line temperature.  

5.8   CONTINUOUS FTP DATA  (objective 8) 
 

It was observed that each engine operating event during an FTP was characterized 

by a unique emission of particulate matter.  At high engine speed and low load, there was 
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typically a wide and flat accumulation mode with no distinct peak concentration.  Under 

the condition of low engine speed and a small negative load, which occurs during light 

motoring of the engine, there was a bi-modal distribution; where the nuclei mode had a 

peak concentration at around 12 nm that was generally more than an order of magnitude 

higher than the greatest concentration of the accumulation mode.  An engine operating 

condition of low speed and high load resulted in an accumulation mode distribution with 

very high particle concentrations in the 100 nm to 130 nm size range.  Such an event was 

typical when there was a sudden increase in load that led to turbo lag and a low pitched 

“grumbling” noise of the engine, and it usually corresponded to the greatest instantaneous 

mass flow rate of PM during an FTP.  The equivalence ratio is typically high during turbo 

lag, and it is known that high equivalence ratios lead to high levels of PM.  Engine idle 

was characterized by very low concentrations of nanoparticles and the lowest mass flow 

rate of PM.  Engine “flutter,” or small repetitive fluctuations in engine speed during idle, 

was associated with random shifts in the range of the nanoparticle distribution.  It was 

also noticed that the emission of nanoparticles during idle lessened as the lube oil 

temperature increased.  High engine speed and high load operation, such as during a full-

throttle hill climb or acceleration, resulted in the widest distribution of accumulation 

mode particles with a fairly high peak concentration at about 40 nm.  The greatest 

concentrations of nanoparticles occurred when there was a sudden shift from high power 

output to immense energy absorption of the engine.  Directly after the shift in power, 

nanoparticle concentrations were very high, but they decreased rapidly during the high 

power engine motoring as the exhaust temperature declined.  
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6   RECOMMENDATIONS 
 

This research was used to answer basic questions about how certain laboratory 

variables can affect particle spectrum measurements of diesel particulate matter.  There 

are many extensions of this study that can be explored in order to benefit the scientific 

community.  The following recommendations indicate topics of interest and provide 

information on possible ways to improve upon the aerosol sampling technique that was 

used in this study. 

• If the relationship between a controllable laboratory parameter and size-specific 

PM concentrations is to be studied, use an engine that is known to provide 

optimal repeatability of the gaseous and TPM emissions. 

• Increase the length of time of each steady state mode so that the engine oil 

temperature and particle concentrations will have enough time to stabilize. 

• Execute more than three repeat tests per setting so that a more accurate statistical 

model can be utilized.       

• Determine and tabulate the effective density constants for the available engine 

configurations. 

• Investigate the effects of engine oil temperature and age on PM concentrations. 

• To increase measurement precision, use a sampling location that will provide the 

lowest possible residence time. 

• For newer engine technologies, such as EGR and DPFs, determine the dilution 

ratios that provide an optimal balance for the soot accumulation and under-

ranging of the DMS-500.   

• Study the particle concentrations of a constant overall dilution ratio by drawing a 

constant mass-flow of raw exhaust into the dilution system. 
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APPENDIX 
 

A.1   TEST SUMMARY 

 

Table A-1  Summary of Testing 

Engine Test No.  Test Cycle Fuel 
Tunnel 
Flow 

(scfm) 

Approx. 
Relative 

Humidity (%) 

Barometric 
Pressure 

(psi) 

Secondary 
Dilution 
Ratio  

Test Date 

E01920_02 hot-start FTP NBB Cand. 2400 - - 24 6/6/2007 
Cummins, ISM 370, 2004 

E01920_03 hot-start FTP NBB Cand. 2400 - - 24 6/6/2007 

  E01920_04 hot-start FTP NBB Cand. 2400 - - 24 6/6/2007 

  E01921_03 hot-start FTP B10 2400 - - 24 6/7/2007 

  E01921_04 hot-start FTP B10 2400 - - 24 6/7/2007 

  E01926_03 hot-start FTP NBB Ref. 2400 - - 24 6/11/2007 

  E01926_04 hot-start FTP NBB Ref. 2400 - - 24 6/11/2007 

  E01927_02 hot-start FTP NBB-B05 2400 - - 24 6/11/2007 

  E01927_03 hot-start FTP NBB-B05 2400 - - 24 6/11/2007 

  E01927_04 hot-start FTP NBB-B05 2400 - - 24 6/11/2007 

  E01928_02 hot-start FTP NBB-B05 2400 - - 24 6/12/2007 

  E01928_03 hot-start FTP NBB-B05 2400 - - 24 6/12/2007 

  E01928_04 hot-start FTP NBB-B05 2400 - - 24 6/12/2007 

  E01929_02 hot-start FTP NBB Ref. 2400 - - 24 6/12/2007 

  E01929_03 hot-start FTP NBB Ref. 2400 - - 24 6/12/2007 

  E01929_04 hot-start FTP NBB Ref. 2400 - - 24 6/12/2007 

E01941_02 hot-start FTP Grad. Ref. 2400 - - 24 6/19/2007 
Detriot Diesel, Rebuilt 
DDC Series 60, 1992 

E01941_03 hot-start FTP Grad. Ref. 2400 - - 24 6/19/2007 

  E01941_04 hot-start FTP Grad. Ref. 2400 - - 24 6/19/2007 

  E01943_02 hot-start FTP Low Cetane 2400 - - 24 6/19/2007 

  E01943_03 hot-start FTP Low Cetane 2400 - - 24 6/19/2007 

  E01943_04 hot-start FTP Low Cetane 2400 - - 24 6/19/2007 

  E01944_01 SET Low Cetane 2400 - - 24 6/19/2007 

  E01947_03 hot-start FTP Low Cetane trt. 2 2400 - - 24 6/20/2007 

  E01947_04 hot-start FTP Low Cetane trt. 2 2400 - - 24 6/20/2007 

  E01948_01 SET Low Cetane trt. 2 2400 - - 24 6/20/2007 

  E01949_02 hot-start FTP Low Cetane trt. 3 2400 - - 24 6/20/2007 

  E01949_03 hot-start FTP Low Cetane trt. 3 2400 - - 24 6/20/2007 

  E01949_04 hot-start FTP Low Cetane trt. 3 2400 - - 24 6/20/2007 

  E01950_01 SET Low Cetane trt. 3 2400 - - 24 6/20/2007 

  E01951_02 hot-start FTP Low Cetane trt. 4 2400 - - 24 6/20/2007 

  E01951_03 hot-start FTP Low Cetane trt. 4 2400 - - 24 6/20/2007 

  E01951_04 hot-start FTP Low Cetane trt. 4 2400 - - 24 6/20/2007 

  E01952_01 SET Low Cetane trt. 4 2400 - - 24 6/20/2007 

  E01953_03 hot-start FTP Low Cetane trt. 5 2400 - 14.253 24 6/21/2007 

  E01953_04 hot-start FTP Low Cetane trt. 5 2400 - 14.249 24 6/21/2007 

  E01954_01 SET Low Cetane trt. 5 2400 - 14.242 24 6/21/2007 

  E01955_02 hot-start FTP Low Cetane trt. 6 2400 - 14.232 24 6/21/2007 
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  E01955_03 hot-start FTP Low Cetane trt. 6 2400 - 14.230 24 6/21/2007 

  E01955_04 hot-start FTP Low Cetane trt. 6 2400 - 14.220 24 6/21/2007 

  E01956_01 SET Low Cetane trt. 6 2400 - 14.212 24 6/21/2007 

  E01957_02 hot-start FTP Low Cetane trt. 7 2400 - 14.201 24 6/21/2007 

  E01957_03 hot-start FTP Low Cetane trt. 7 2400 - 14.194 24 6/21/2007 

  E01957_04 hot-start FTP Low Cetane trt. 7 2400 - 14.189 24 6/21/2007 

  E01958_01 SET Low Cetane trt. 7 2400 - 14.180 24 6/21/2007 

  E01959_02 hot-start FTP Low Cetane trt. 8 2400 - 14.218 24 6/22/2007 

  E01959_03 hot-start FTP Low Cetane trt. 8 2400 - 14.218 24 6/22/2007 

  E01959_04 hot-start FTP Low Cetane trt. 8 2400 - 14.220 24 6/22/2007 

  E01960_01 SET Low Cetane trt. 8 2400 - 14.221 24 6/22/2007 

  E01961_02 hot-start FTP Low Cetane trt. 9 2400 - 14.222 24 6/22/2007 

  E01961_03 hot-start FTP Low Cetane trt. 9 2400 - 14.222 24 6/22/2007 

  E01961_04 hot-start FTP Low Cetane trt. 9 2400 - 14.223 24 6/22/2007 

  E01962_01 SET Low Cetane trt. 9 2400 - 14.219 24 6/22/2007 

  E01963_02 hot-start FTP Low Cetane trt. 10 2400 - 14.207 24 6/22/2007 

  E01963_03 hot-start FTP Low Cetane trt. 10 2400 - 14.200 24 6/22/2007 

  E01963_04 hot-start FTP Low Cetane trt. 10 2400 - 14.191 24 6/22/2007 

  E01964_01 SET Low Cetane trt. 10 2400 - 14.184 24 6/22/2007 

E01967_03 hot-start FTP 2007 CP Cert. 2400 - 14.330 24 6/26/2007 
Detriot Diesel, DDC 

Series 60, 1992 

E01967_04 hot-start FTP 2007 CP Cert. 2400 - 14.343 24 6/26/2007 

  E01968_04 hot-start FTP 2007 CP Cert. 2400 - 14.321 24 6/26/2007 

  E01968_05 hot-start FTP 2007 CP Cert. 2400 - 14.315 24 6/26/2007 

  E01968_06 hot-start FTP 2007 CP Cert. 2400 - 14.311 24 6/26/2007 

  E01972_02 hot-start FTP RF 71 2400 - 14.276 24 6/27/2007 

  E01972_03 hot-start FTP RF 71 2400 - 14.272 24 6/27/2007 

  E01972_04 hot-start FTP RF 71 2400 - 14.270 24 6/27/2007 

  E01976_03 hot-start FTP CF 16 trt. 4 2400 - 14.242 24 6/28/2007 

  E01976_04 hot-start FTP CF 16 trt. 4 2400 - 14.226 24 6/28/2007 

  E01976_05 hot-start FTP CF 16 trt. 4 2400 - 14.222 24 6/28/2007 

  E01977_03 hot-start FTP RF 71 2400 - 14.147 24 6/28/2007 

  E01977_04 hot-start FTP RF 71 2400 - 14.182 24 6/28/2007 

  E01977_05 hot-start FTP RF 71 2400 - 14.180 24 6/28/2007 

  E02097_01 warm-start FTP TCEQ Tex LED Ref. 2400 - 14.153 24 8/24/2007 

  E02097_02 hot-start FTP TCEQ Tex LED Ref. 2400 - 14.147 24 8/24/2007 

  E02097_03 hot-start FTP TCEQ Tex LED Ref. 2400 - 14.144 24 8/24/2007 

  E02099_02 hot-start FTP TCEQ Tex LED Ref. 2400 - 14.152 24 8/25/2007 

  E02099_03 hot-start FTP TCEQ Tex LED Ref. 2400 - 14.152 24 8/25/2007 

  E02099_04 hot-start FTP TCEQ Tex LED Ref. 2400 - 14.154 24 8/25/2007 

  E02099_05 hot-start FTP TCEQ Tex LED Ref. 2400 - 14.155 24 8/25/2007 

  E02101_02 hot-start FTP Candidate 2400 - 14.198 24 8/26/2007 

  E02101_03 hot-start FTP Candidate 2400 - 14.207 24 8/26/2007 

  E02101_04 hot-start FTP Candidate 2400 - 14.208 24 8/26/2007 

  E02101_05 hot-start FTP Candidate 2400 - 14.208 24 8/26/2007 

  E02103_04 hot-start FTP Candidate 2400 - 14.254 24 8/27/2007 

  E02103_05 hot-start FTP Candidate 2400 - 14.251 24 8/27/2007 

  E02103_06 hot-start FTP Candidate 2400 - 14.249 24 8/27/2007 

  E02103_07 hot-start FTP Candidate 2400 - 14.247 24 8/27/2007 
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  E02107_01 warm-start FTP TCEQ Tex LED Ref. 2400 - 14.244 24 8/28/2007 

  E02107_02 hot-start FTP TCEQ Tex LED Ref. 2400 - 14.242 24 8/28/2007 

  E02107_03 hot-start FTP TCEQ Tex LED Ref. 2400 - 14.243 24 8/28/2007 

  E02107_04 hot-start FTP TCEQ Tex LED Ref. 2400 - 14.242 24 8/28/2007 

E02123_02 hot-start FTP PONCA 2400 - 14.217 24 9/10/2007 
Detriot Diesel, Rebuilt 
DDC Series 60, 1992 

E02123_03 hot-start FTP PONCA 2400 - 14.222 24 9/10/2007 

  E02124_01 hot-start FTP PONCA trt. 1 2400 - 14.221 24 9/10/2007 

  E02124_02 hot-start FTP PONCA trt. 1 2400 - 14.215 24 9/10/2007 

  E02125_02 hot-start FTP Trainer 2400 - 14.203 24 9/10/2007 

  E02125_03 hot-start FTP Trainer 2400 - 14.198 24 9/10/2007 

  E02126_01 hot-start FTP 50/50 Trainer/Cand. 2400 - 14.193 24 9/10/2007 

  E02126_02 hot-start FTP 50/50 Trainer/Cand. 2400 - 14.181 24 9/10/2007 

  E02127_01 hot-start FTP 50/50 Trainer/Cand. trt. 1 2400 - 14.175 24 9/10/2007 

  E02127_02 hot-start FTP 50/50 Trainer/Cand. trt. 1 2400 - 14.168 24 9/10/2007 

  E02136_02 hot-start FTP Low Cetane 2400 - 14.208 24 9/12/2007 

  E02136_03 hot-start FTP Low Cetane 2400 - 14.215 24 9/12/2007 

  E02136_04 hot-start FTP Low Cetane 2400 - 14.221 24 9/12/2007 

  E02137_01 SET Low Cetane 2400 - 14.225 24 9/12/2007 

  E02138_02 hot-start FTP Low Cetane B10A 2400 - 14.234 24 9/12/2007 

  E02138_03 hot-start FTP Low Cetane B10A 2400 - 14.233 24 9/12/2007 

  E02138_04 hot-start FTP Low Cetane B10A 2400 - 14.231 24 9/12/2007 

  E02139_01 SET Low Cetane B10A 2400 - 14.227 24 9/12/2007 

  E02140_02 hot-start FTP Low Cetane B20A 2400 - 14.225 24 9/12/2007 

  E02140_03 hot-start FTP Low Cetane B20A 2400 - 14.225 24 9/12/2007 

  E02140_04 hot-start FTP Low Cetane B20A 2400 - 14.224 24 9/12/2007 

  E02141_01 SET Low Cetane B20A 2400 - 14.225 24 9/12/2007 

  E02195_03 hot-start FTP FEM trt. 3 2400 - 14.203 24 10/17/2007 

  E02195_04 hot-start FTP FEM trt. 3 2400 - 14.195 24 10/17/2007 

  E02195_05 hot-start FTP FEM trt. 3 2400 - 14.188 24 10/17/2007 

  E02198_05 hot-start FTP FEM trt. 6 2400 - 14.025 24 10/19/2007 

  E02198_06 hot-start FTP FEM trt. 6 2400 - 14.020 24 10/19/2007 

  E02198_07 hot-start FTP FEM trt. 6 2400 - 14.016 24 10/19/2007 

  E02199_03 hot-start FTP FEM trt. 7 2400 - 14.001 24 10/19/2007 

  E02199_04 hot-start FTP FEM trt. 7 2400 - 14.095 24 10/19/2007 

  E02199_05 hot-start FTP FEM trt. 7 2400 - 14.989 24 10/19/2007 

  E02204_01 SET Guttman 2400 37 14.132 24 10/24/2007 

  E02204_02 SET Guttman 2400 37 14.142 24 10/24/2007 

  E02204_03 SET Guttman 2400 37 14.148 24 10/24/2007 

  E02205_01 SET Guttman 2400 88 14.156 24 10/24/2007 

  E02205_02 SET Guttman 2400 88 14.163 24 10/24/2007 

  E02205_03 SET Guttman 2400 88 14.174 24 10/24/2007 

  E02205_04 SET Guttman 2400 88 14.195 24 10/24/2007 

  E02206_01 SET Guttman 2400 60 14.193 24 10/24/2007 

  E02206_02 SET Guttman 2400 60 14.189 24 10/24/2007 

  E02206_03 SET Guttman 2400 60 14.187 24 10/24/2007 

  E02208_01 SET Guttman 3400 50 14.264 24 10/24/2007 

  E02208_02 SET Guttman 1400 50 14.255 24 10/24/2007 
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A.2   DAY-TO-DAY VARIATION 
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Figure A-1  Particle Concentration Comparison of  

E01926 and E01929 Test Sequences 
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Figure A-2  Particle Concentration Comparison of  

E01972 and E01977 Test Sequences 
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Figure A-3  Particle Concentration Comparison of  

E02097 and E02107 Test Sequences 

 

1.00E+09

1.00E+10

1.00E+11

1.00E+12

1.00E+13

1.00E+14

5 6 9 12 15 21 27 37 49 65 87 11
5

15
4

20
5

27
4

36
5

48
7

64
9

86
6

Particle Size (nm)

B
ra

k
e
-S

p
e

c
if

ic
 P

a
rt

ic
le

 C
o

u
n

t 
(#

/b
h

p
-h

r)

E02099 avg.

E02099+stdev

E02099-stdev

E02107 avg.

E02107+stdev

E02107-stdev

 
Figure A-4  Particle Concentration Comparison of  

E02099 and E02107 Test Sequences 
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Figure A-5  Particle Concentration Comparison of  

E02101 and E02103 Test Sequences 
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A.3   BASE FUELS VS. ADDITIZED FUELS 
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Figure A-6  Particle Concentration Comparison of  

E02123 and E02124 Test Sequences 
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Figure A-7  Particle Concentration Differences between  

E02123 and E02124 Test Sequences 
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Figure A-8  Particle Concentration Comparison of  

E02125 and E02126 Test Sequences 
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Figure A-9  Particle Concentration Comparison of  

E02125 and E02127 Test Sequences 



 

 

190 

-50

-40

-30

-20

-10

0

10

20

30

40

50

5 6 6 8 9

1
0

1
2

1
3

1
5

1
8

2
1

2
4

2
7

3
2

3
7

4
2

4
9

5
6

6
5

7
5

8
7

1
0
0

1
1
5

1
3
3

1
5
4

1
7
8

2
0
5

2
3
7

2
7
4

3
1
6

3
6
5

4
2
2

4
8
7

5
6
2

6
4
9

7
5
0

8
6
6

1
0
0
0

Particle Size (nm)

D
if

fe
re

n
c

e
 (

%
)

            Add. 1

            Add. 2

 
Figure A-10  Particle Concentration Differences between  

E02125, E02126, and E02127 Test Sequences 
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Figure A-11  Particle Concentration Comparison of  

E01920 and E01926 Test Sequences 
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Figure A-12  Particle Concentration Comparison of  

E01920 and E01928 Test Sequences 

 

-50

-40

-30

-20

-10

0

10

20

30

40

50

5 6 6 8 9

1
0

1
2

1
3

1
5

1
8

2
1

2
4

2
7

3
2

3
7

4
2

4
9

5
6

6
5

7
5

8
7

1
0
0

1
1
5

1
3
3

1
5
4

1
7
8

2
0
5

2
3
7

2
7
4

3
1
6

3
6
5

4
2
2

4
8
7

5
6
2

6
4
9

7
5
0

8
6
6

1
0
0
0

Particle Size (nm)

D
if

fe
re

n
c

e
 (

%
)

            Add. 1

            Add. 2

 
Figure A-13  Particle Concentration Differences between  

E01920, E01926, and E01928 Test Sequences 
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A.4   EXTREMES OF RUN-TO-RUN VARIATION 

 

A.4.1   Best Repeatability for ISM 370 
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Figure A-14  Average Particle Concentrations of Test Sequence E01928 
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A.4.2   Worst Repeatability for ISM 370 
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Figure A-15  Average Particle Concentrations of Test Sequence E01921 
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A.4.3   Best Repeatability for DDC S60 
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Figure A-16  Average Particle Concentrations of Test Sequence E01977 
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A.4.4   Worst Repeatability for DDC S60 
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Figure A-17  Average Particle Concentrations of Test Sequence E02099 
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A.4.5   Best Repeatability for Rebuilt DDC S60 
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Figure A-18  Average Particle Concentrations of Test Sequence E02138 
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A.4.6   Worst Repeatability for Rebuilt DDC S60 
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Figure A-19  Average Particle Concentrations of Test Sequence E01959 
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A.5   COMPARISON OF TEOM AND DMS DATA 
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Figure A-20  PM Mass-Rate of E01920_02 as Measured with the TEOM 
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Figure A-21  Corrected and Uncorrected PM Mass Accumulation of E01920_02 as Measured with the TEOM 
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Figure A-22  PM Mass-Rates of E01920_02 as Measured with the TEOM and the DMS 
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Figure A-23  PM Mass Accumulation of E01920_02 as Measured with the TEOM and the DMS 
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Figure A-24  PM Mass-Rate of E01927_03 as Measured with the TEOM 
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Figure A-25  Corrected and Uncorrected PM Mass Accumulation of E01927_03 as Measured with the TEOM 
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Figure A-26  PM Mass-Rates of E01927_03 as Measured with the TEOM and the DMS 
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Figure A-27  PM Mass Accumulation of E01927_03 as Measured with the TEOM and the DMS 
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Figure A-28  PM Mass-Rate of E01929_04 as Measured with the TEOM 
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Figure A-29  Corrected and Uncorrected PM Mass Accumulation of E01929_04 as Measured with the TEOM 
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Figure A-30  PM Mass-Rates of E01929_04 as Measured with the TEOM and the DMS 
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Figure A-31  PM Mass Accumulation of E01929_04 as Measured with the TEOM and the DMS 
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Figure A-32  PM Mass-Rate of E01967_04 as Measured with the TEOM 
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Figure A-33  Corrected and Uncorrected PM Mass Accumulation of E01967_04 as Measured with the TEOM 
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Figure A-34  PM Mass-Rates of E01967_04 as Measured with the TEOM and the DMS 
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Figure A-35  PM Mass Accumulation of E01967_04 as Measured with the TEOM and the DMS 
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Figure A-36  PM Mass-Rate of E01968_04 as Measured with the TEOM 
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Figure A-37  Corrected and Uncorrected PM Mass Accumulation of E01968_04 as Measured with the TEOM 

 

 

 



 

 

207 

 

 

 

 

-40

-20

0

20

40

60

80

100

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

Time (s)

M
a

s
s

 R
a

te
 (

m
g

/s
)

TEOMcor2 (mg/s)

DMS (mg/s)

 

Figure A-38  PM Mass-Rates of E01968_04 as Measured with the TEOM and the DMS 

 

0

1

2

3

4

5

6

7

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

Time (s)

A
c

c
u

m
u

la
te

d
 M

a
s

s
 (

g
)

TEOMcor2 accum. (g)

DMS  accum. (g)

 

Figure A-39  PM Mass Accumulation of E01968_04 as Measured with the TEOM and the DMS 
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Figure A-40  PM Mass-Rate of E01976_04 as Measured with the TEOM 
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Figure A-41  Corrected and Uncorrected PM Mass Accumulation of E01976_04 as Measured with the TEOM 
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Figure A-42  PM Mass-Rates of E01976_04 as Measured with the TEOM and the DMS 
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Figure A-43  PM Mass Accumulation of E01976_04 as Measured with the TEOM and the DMS 
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Figure A-44  PM Mass-Rate of E02124_02 as Measured with the TEOM 
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Figure A-45  Corrected and Uncorrected PM Mass Accumulation of E02124_02 as Measured with the TEOM 
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Figure A-46  PM Mass-Rates of E02124_02 as Measured with the TEOM and the DMS 
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Figure A-47  PM Mass Accumulation of E02124_02 as Measured with the TEOM and the DMS 
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Figure A-48  PM Mass-Rate of E02125_02 as Measured with the TEOM 
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Figure A-49  Corrected and Uncorrected PM Mass Accumulation of E02125_02 as Measured with the TEOM 
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Figure A-50  PM Mass-Rates of E02125_02 as Measured with the TEOM and the DMS 
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Figure A-51  PM Mass Accumulation of E02125_02 as Measured with the TEOM and the DMS 
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A.6   HUMIDITY EFFECTS 
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Figure A-52  Particle Concentration Comparison of  

High, Medium, and Low Humidity Settings of Mode 2 
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Figure A-53  Particle Concentration Comparison of  

High, Medium, and Low Humidity Settings of Mode 5 
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Figure A-54  Particle Concentration Comparison of  

High, Medium, and Low Humidity Settings of Mode 6 
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Figure A-55  Particle Concentration Comparison of  

High, Medium, and Low Humidity Settings of Mode 7 
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Mode 10
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Figure A-56  Particle Concentration Comparison of  

High, Medium, and Low Humidity Settings of Mode 10 
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Figure A-57  Particle Concentration Comparison of  

High, Medium, and Low Humidity Settings of Mode 11 
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Figure A-58  Particle Sizes that Have Significantly Different Average Values for 

Mode 3 Due to Humidity Change (According to ANOVA) 
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Figure A-59  Particle Sizes that Have Significantly Different Average Values for 

Mode 4 Due to Humidity Change (According to ANOVA) 
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Figure A-60  Particle Sizes that Have Significantly Different Average Values for 

Mode 5 Due to Humidity Change (According to ANOVA) 
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Figure A-61  Particle Sizes that Have Significantly Different Average Values for 

Mode 6 Due to Humidity Change (According to ANOVA) 
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Figure A-62  Particle Sizes that Have Significantly Different Average Values for 

Mode 7 Due to Humidity Change (According to ANOVA) 
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Figure A-63  Particle Sizes that Have Significantly Different Average Values for 

Mode 8 Due to Humidity Change (According to ANOVA) 
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Figure A-64  Particle Sizes that Have Significantly Different Average Values for 

Mode 9 Due to Humidity Change (According to ANOVA) 
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Figure A-65  Particle Sizes that Have Significantly Different Average Values for 

Mode 10 Due to Humidity Change (According to ANOVA) 
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Figure A-66  Particle Sizes that Have Significantly Different Average Values for 

Mode 11 Due to Humidity Change (According to ANOVA) 
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Figure A-67  Particle Sizes that Have Significantly Different Average Values for 

Mode 12 Due to Humidity Change (According to ANOVA) 
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A.7   MATLAB ANOVA CODE 
 

 

close all 
clc 

  
PartGroups = [5 6   6   8   9   10  12  13  15  18  21  24  27  32  37 

... 
             42 49  56  65  75  87  100 115 133 154 178 205 237 274 316 

... 
             365 422 487 562 649 750 866 1000]; 

  
j = 1; 
for i = 1:1:length(mode1) 
    if ~isnan(mode1(1,i)) 
        nosMode1(:,j) = mode1(:,i); 
        j = j + 1; 
    end 
end 

  
j = 1; 
stitles(1) = cellstr(num2str(j)); 
for i = 1:1:113 
    if ( mod(double(i),3) == 0 )  
        j = j + 1; 
        stitles(i+1) = cellstr(num2str(PartGroups(j))); 
    else 
        stitles(i+1) = cellstr(''); 
    end 
end     
stitles(113) = cellstr(''); 
stitles(114) = cellstr(''); 

  
[p,table,stats] = anova1(nosMode1, stitles, 'on'); 
figure; 
[c,m]           = multcompare(stats); 
xlabel('Brake-Specific Particle Count (#/bhp-hr)'); 
ylabel('Particle Size (nm)'); 
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A.8   DILUTION RATIO EFFECTS 
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Figure A-68  Particle Concentration Comparison of  

High and Low Dilution Settings of Mode 2 
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Figure A-69  Particle Concentration Comparison of  

High and Low Dilution Settings of Mode 5 



 

 

224 

1.00E+09

1.00E+10

1.00E+11

1.00E+12

1.00E+13

4.
87

6.
49

8.
66

11
.5

5
15

.4

20
.5

4

27
.3

8

36
.5

2
48

.7

64
.9

4
86

.6

11
5.

48

15
3.

99

20
5.

35

27
3.

84

36
5.

17

48
6.

97

64
9.

38

86
5.

96

Particle Size (nm)

B
ra

k
e

-S
p

e
c

if
ic

 P
a

rt
ic

le
 C

o
u

n
t 

(#
/b

h
p

-h
r)

high dil.

low dil.

 
Figure A-70  Particle Concentration Comparison of  

High and Low Dilution Settings of Mode 6 
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Figure A-71  Particle Concentration Comparison of  

High and Low Dilution Settings of Mode 7 
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Figure A-72  Particle Concentration Comparison of  

High and Low Dilution Settings of Mode 10 
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Figure A-73  Particle Concentration Comparison of  

High and Low Dilution Settings of Mode 11 
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A.8.1   High Dilution 
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Figure A-74  Continuous Particle Distribution of E02208_01 
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A.8.2   Standard Dilution 
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Figure A-75  Continuous Particle Distribution of E02206_02  
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A.8.3   Low Dilution 
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Figure A-76  Continuous Particle Distribution of E02208_02 
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