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Abstract 
 

Effects of aging and exercise training on eNOS uncoupling and reactive oxygen species 
signaling in the endothelium of skeletal muscle arterioles 

 
Amy L. Sindler 

 
The purpose of the first study was to determine the effects of aging and exercise training 

on endothelial nitric oxide synthase (eNOS) uncoupling in skeletal muscle arterioles.  The results 
of this study confirmed our previous findings that aging impairs endothelium-dependent, NO-
mediated vasodilation and tetrahydrobiopterin (BH4) levels in rat skeletal muscle arterioles.  
Limited availability of BH4, as observed in old sedentary rats, may contribute to eNOS 
uncoupling, which decreases NO signaling and increases eNOS-derived O2

- generation.  Exercise 
training restored BH4 levels and improved flow-induced NO production in arterioles from aged 
rats.  Furthermore, exercise training increased both NO and reactive oxygen species (ROS)-
mediated signaling in skeletal muscle arterioles, suggesting that exercise training-induced 
enhancement of flow-induced vasodilation in skeletal muscle arterioles involves a balance 
between NO and O2

--derived ROS.   
The second study determined the role of O2

--derived ROS in mediating endothelium-
dependent vasodilation in skeletal muscle arterioles from young and old, sedentary and exercise 
trained rats.  The results of the second study implicated O2

- and O2
--derived ROS (H2O2) as 

necessary signaling molecules required for endothelium-dependent vasodilation in soleus muscle 
arterioles.  The dependence of ACh-induced vasodilation on H2O2 increased with age and 
decreased with exercise training.  Exercise training contributed to appropriate regulation of the 
relative production of O2

- and H2O2, which must be maintained for robust endothelium-dependent 
vasodilation to occur in skeletal muscle arterioles.   
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Preface 
 
This dissertation will begin with an introduction that constitutes the scientific background for 

which these studies were conducted. The two studies that comprise this dissertation work will be 

reported in manuscript form, followed by a general discussion.   This dissertation follows the 

style and format of the Journal of Applied Physiology.  
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Chapter I 

Introduction 
Cardiovascular disease (CVD) is the leading cause of death in the United States claiming 

over 36% of all deaths per year.  In 2005, the Center for Disease Control estimated that over 80 

million people suffered from some form of CVD and the risk for developing CVD increases with 

advancing age (1).  In 2007, the US Census Bureau estimated that over 42 million individuals 

currently living in the US are 65 years of age or older.  This number is estimated to double by the 

year 2030 (2).  As our population ages, the importance of preventing and/or prolonging the 

development of CVD becomes a high priority.  It has been well established that regular physical 

activity improves overall health and reduces risk factors for many chronic diseases (i.e., obesity, 

diabetes, hypertension, and certain cancers).   However, the mechanisms by which exercise 

improve cardiovascular health remains largely unknown.   

Age-related declines in exercise capacity due to cardiovascular adaptations 

Maximal exercise capacity declines with advancing age (47, 104) and this is due, in part, to 

systemic cardiovascular adaptations.  For example, maximal oxygen consumption (VO2 max) 

decreases 5-15% every decade of life after the age of 25 (63).    Factors that contribute to age-

associated declines in VO2 max are decreases in maximal cardiac output and maximal 

arteriovenious O2 difference (A-VO2 Δ) (104, 112, 125).  Other factors that contribute to age-

associated declines in VO2 max include decreases in maximal heart rate and stroke volume, (112, 

125) decreases in skeletal muscle mass, and increases in adiposity (104).   Although systemic 

cardiovascular adaptations markedly influence exercise capacity in older individuals, it is possible 

that age-associated dysregulation of skeletal muscle blood flow limits exercise capacity in older 

individuals.  Work in humans and animals indicates that blood flow to actively contracting 

muscles declines with age (35, 67).  Proctor et al. (109) demonstrated that leg blood flow and 



 

vascular conductance were reduced in older males (55-68 yr) during exercise compared to young 

males (22-30 yr).  More importantly, age alters the distribution of muscle blood flow in rats by 

redistributing blood flow away from highly oxidative muscles and to highly anaerobic muscles 

(98).  Age-associated decrements in skeletal muscle blood flow during exercise may contribute to 

overall diminution in exercise capacity; however, little is known about age-related alterations of 

vascular control mechanisms in skeletal muscle. 

Skeletal muscle blood flow is tightly controlled by the resistance vasculature and is 

dependent on a functioning endothelium.  The endothelium, which lines the interior surface of 

blood vessels, plays an important role in maintenance of vascular tone and control of vascular 

resistance (65).   Endothelial cells produce nitric oxide (NO) synthesized from L-arginine by 

endothelial nitric oxide synthase (eNOS).  NO is a critical signaling molecule in vascular 

homeostasis.  NO acts as an antiatherosclerotic molecule by inhibiting vascular smooth muscle 

proliferation, platelet aggregation, and leukocyte adhesion (65).  Additionally, NO produced by 

endothelial cells rapidly diffuses to vascular smooth muscle (VSM) cells, where it activates cyclic 

guanosine monophosphate (cGMP) and causes vasodilation.   

Age-related declines in NO-mediated endothelial-dependent vasodilation and reversal with 

exercise training 

 Decreased NO bioavailability is a consequence of aging and contributes to impaired 

endothelial function (17).  Impaired NO-mediated endothelial function serves as both a predictor 

and mediator of CVD.  Endothelial dysfunction is thought to be the critical determinant in 

development of atherosclerosis (17, 18, 78).    Many studies have demonstrated the age-associated 

loss of endothelium-dependent vasodilation in skeletal muscle conduit and resistance vasculature 

in humans and animals (38, 54, 97, 136, 145).  Age-associated impairments of both flow-induced 

and receptor-mediated endothelium-dependent vasodilation occur through reduced NO signaling 
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(122, 123).  Aerobic exercise training improves endothelium-dependent, NO-mediated 

vasodilation in humans (38, 130, 138) and animals (36, 56, 113, 122, 123, 147, 149, 151).  

Exercise training not only reverses age-related declines in endothelial function, it also prevents the 

loss of endothelial function in older individuals who remain physically active throughout their 

lives (38, 129).  Although, the benefits of aerobic exercise training on the cardiovascular system 

have been widely acknowledged, the definitive mechanisms by which exercise training improves 

endothelium-dependent vasodilation remain unclear.  Exercise training increases both eNOS 

mRNA (117, 122, 144) and protein content in arterioles and endothelial cells from animals (31, 

68, 117, 122, 144) suggesting that enhanced NO production contributes to improvement of 

endothelial function.   

Exercise training may also increase NO bioactivity in the vessel wall by enhancing the 

sensitivity of vascular smooth muscle to NO.   In exercise-trained rats, increased protein content of 

soluble guanylate cyclase (sGC) may contribute to increased NO sensitivity of the vascular 

smooth muscle (56).  In arterioles from gastrocnemius muscle, exercise training increased 

sensitivity to the NO donor, sodium nitroprusside (87).  Conversely, exercise training has no effect 

on the sensitivity of vascular smooth muscle to NO in pulmonary arteries or in resistance arterioles 

from skeletal muscle (68, 122).    

Age-associated reduction in NO bioavailability 

 Several mechanisms may contribute to the age-associated decrease in NO bioavailability in 

skeletal muscle vasculature.  NO production is regulated by several factors including: 1) eNOS 

enzyme activity or protein content, 2) the formation of calcium/calmodulin complexes (49, 116), 

and 3) availability of the substrate L-arginine and the co-factor tetrahydrobiopterin (BH4).  In the 

skeletal muscle vasculature of aged rats, eNOS protein is elevated, suggesting that decreased 

eNOS protein content does not underlie reduced NO availability (122) .  Acute L-arginine 
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treatment improves endothelium-dependent vasodilation in people with cardiovascular disease; 

however, L-arginine does not enhance flow-induced vasodilation in old rats (122) or humans (11, 

53).  Furthermore, arteriolar L-arginine levels are unaffected by age in both rats and humans (33, 

53).   L-arginine bioavailability may be limited by the endogenous inhibitor, asymmetric 

dimethlyarginine (ADMA) (22), or by increased degradation by arginase (7, 141); however, in 

human vascular endothelial cells and rat skeletal muscle arterioles, both ADMA and arginase 

protein levels (33, 53) do not increase with age.  Furthermore, inhibition of arginase activity by 

Nω-hydroxy-nor-L-arginine (NOHA) does not improve flow-induced vasodilation in skeletal 

muscle arterioles of old rats (33).  The synthesis of NO is dependent on the availability of BH4 (24, 

135).  With sufficient amounts of BH4 available, eNOS accepts and stores an adequate number of 

electrons from nicotinamide adenine dinucleotide phosphate (NADPH) to transform L-arginine 

and O2 into NO and L-citrulline (69).  If the amount of BH4 is insufficient, eNOS is unable to 

catalyze the oxidation of L-arginine.  Instead, eNOS accepts electrons from NADPH, and donates 

the electrons one at a time to O2, resulting in increased O2
- production and decreased NO 

production (69).  It has been reported that BH4 is reduced in skeletal muscle arterioles of old rats 

suggesting that limited arteriolar BH4 contributes to age-related impairment of NO-dependent 

vasodilation (33).  

The synthesis of BH4 is regulated by two known mechanisms:  1) The de novo pathway 

and 2) the salvage pathway.  In the de novo pathway, GTP cyclohydrolase (GTPCH-1) cleaves 

GTP to produce 7,8-dihydroneopterin triphosphate that is converted to 6-pyruvoyl-

tetrahydropterin.  In the final step requiring NADPH, sepiapterin reductase converts 6-pyruvoyl-

tetrahydropterin to BH4 (134).  BH4 is also synthesized by the salvage pathway, which recycles 

BH2 and quinoid-dihydrobiopterin back to BH4 (19).  In the salvage pathway, the BH4 precursor, 

sepiapterin, is converted to BH4 (100).  GTPCH-1 is the rate limiting enzyme in de novo BH4 
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synthesis and stimulation of this enzyme increases BH4 levels in human endothelial cells and in 

resistance mesenteric arteries (16, 43).  H2O2 augments GTPCH-1 protein content and BH4 

synthesis in endothelial cells (118, 119).  Shear stress also stimulates GTPCH activity in human 

endothelial cells (142).  Reports of the effects of age on GTPCH-1 protein are limited.  In carotid 

arteries of mice, GTPCH-1 is unaffected by age (10).  Preliminary data from our lab indicate that 

GTPCH-1 content decreases with age in skeletal muscle resistance arteries (unpublished data).    

Stimulation of BH4 synthesis improves NO production in endothelial cells (119), whereas 

age-induced impairment of endothelial function is accompanied by reduced BH4 in skeletal muscle 

arterioles.  In aged humans, an acute oral supplementation with BH4 improved flow-mediated 

dilation (45).  Moreover, BH4 co-infusion with acetylcholine increased endothelium-dependent 

vasodilation to a greater extent in elderly subjects compared with acetylcholine infusion alone 

(64).  In skeletal muscle arterioles from old rats, the BH4 precursor, sepiapterin improved flow-

induced vasodilation (33).  Together, these reports suggest that limited BH4 availability contributes 

to age-related decrements in endothelial function.   

BH4 and eNOS uncoupling 

Uncoupled eNOS has the potential to generate considerable O2
- based on the availability of 

L-arginine and BH4 (8, 69).  O2
- reacts with NO to form cytotoxic peroxynitrite, ONOO-.  ONOO- 

can reduce BH4 to the inactive trihydrobiopterin radical (BH3) (75). Thus, a vicious cycle ensues in 

which BH4 levels are further reduced, and eNOS uncoupling is exacerbated.    

One possible mechanism proposed to increase NO bioavailability is to use eNOS gene 

transfer to increase eNOS protein content and thus eNOS activity.  However, in prehypertensive 

(spontaneously hypertensive) rats, elevation of eNOS protein was accompanied by decreased NO 

bioavailability and increased O2
- production (25).  When elevated levels of eNOS protein are 

sustained, it is the loss of BH4, not L-arginine, that exacerbates eNOS uncoupling (8).   Similarly, 
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in skeletal muscle arterioles from aged rats, increased eNOS protein abundance is accompanied by 

reduced BH4 levels and diminished NO-mediated vasodilation suggesting that eNOS uncoupling 

reduces NO bioavailability with age (33, 122).   

Role of oxidant stress on NO bioavailability 

O2
- reacts readily with NO to form ONOO- (29).  O2

- is generated in the vasculature by 

NADPH oxidase, by xanthine oxidase, and by eNOS (14, 29, 57).  Age-associated O2
- production 

increases in vascular tissue with age and this increase is thought to be a major factor in the loss of 

NO bioavailability.  Antioxidant defense mechanisms are present in vascular cells to sequester and 

buffer O2
- and other ROS.  Superoxide dismutase (SOD) dismutates O2

- to H2O2 (91, 132).  There 

are three known isoforms of the enzyme (SOD-1, SOD-2, and SOD-3); two of which are Cu/Zn-

dependent.  SOD-1 is primarily located in the cytosol and nucleus and SOD-3 is abundant in the 

extracullar matrix (29, 94).  SOD-2 is Mn-dependent and is most abundant in the mitochondria 

(143).  Other ROS defense mechanisms present in the vascular cells include catalase and 

glutathione peroxidase (GPx), which reduce H2O2 to H2O and O2.  Together, these defense 

systems regulate ROS levels in the cell.  The balance of superoxide production and antioxidant 

regulation is thought to be critical for preservation of bioavailable NO (29, 70). 

Effects of age and exercise training on regulation of vascular ROS  

The primary free radicals generated by endothelial cells are O2
- and NO.  Free radicals are 

defined as an atom or molecule that contains one or more unpaired electrons and is capable of 

independent existence (59).  O2
- is generated as an intermediate in many biochemical reactions by 

the incomplete reduction of O2 during electron transport (59).  NO is generated by three known 

isoforms of nitric oxide synthase (NOS).  O2
- and NO are both highly reactive and quickly form 

other ROS (107).  In the vascular wall, O2
- is generated by NADPH oxidase, by xanthine oxidase, 

and by eNOS (14, 29, 70, 92).  Of these, NADPH oxidases are the major source of O2
- production 

 6



 

in the vasculature (57).  Thus, greater O2
- production is accompanied by decreased NO 

bioavailability because O2
- readily inactivates NO.     

SOD serves as a cellular antioxidant by dismutating O2
- to H2O2; however, in the presence 

of catalytic transition metals, SOD can produce hydroxyl radials (OH-) (107).  In compartments 

containing both NO and SOD, a reaction between O2
- and NO occurs more readily than a reaction 

between O2
- and SOD (55).  Thus some reactivity between O2

- and NO is likely to be present in 

endothelial cells, even under normal physiological conditions.  Basally, O2
- is required for normal 

function, serving as a signaling molecule, involved in regulation of gene expression, and force 

generation in skeletal muscle (41, 108, 110, 111, 120).  Low to moderate levels of ROS may also 

function in vascular signaling.  In fact, many ROS, including NO, H2O2, ONOO-, and OH- exhibit 

vasoactive properties that alter vascular tone and regulate blood flow (27, 85, 102, 103, 115, 131).  

The idea that all ROS are detrimental to the vasculature appears to be a misconception.  For 

example, H2O2 is an important vasoactive substance and has been labeled as an endothelium-

derived hyperpolarizing factor (EDHF) in certain vasculature beds (84, 85, 91).  Additionally, 

H2O2 is an important regulator of eNOS protein expression and activity (133, 152).  eNOS-

dependent O2
- generation is required to provide the substrate (O2

-) to produce H2O2 in the cerebral 

circulation (42).  Thus, support exists for a physiological role of superoxide generation through 

eNOS “uncoupling”. 

There are numerous antioxidants that regulate free radicals and ROS including vitamin E, 

vitamin C, and carotenoids.  However, SOD appears to be the primary regulator of ROS in 

vascular cells.  GPx and catalase also function as an important anti-oxidant in vascular cells.  

There are five isoforms of GPx, and all of them catalyze the reduction of H2O2 to H2O using 

glutathione as the electron donor (9).   Similar to GPx, catalase catalyzes the breakdown of H2O2; 

however, GPx has a higher affinity for H2O2 at low concentrations (Km = 1 μM) than catalase (Km 
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= 1 mM), indicating that GPx is a less effective antioxidant at higher concentrations of H2O2 (90).  

Together, these antioxidants regulate O2
- -derived ROS, primarily H2O2.   

SOD-1, located in the cytosol and nucleus and to a lesser extent in the mitochondria, is the 

predominant isoform of SOD in the vasculature (105, 106).  The effects of age on SOD-1 

expression and activity are inconclusive.  For example, SOD-1 is reduced with age in skeletal 

muscle arterioles (145); however, SOD-1 activity increases with age in mouse aorta (58).  In 

coronary arterioles, SOD-1 is unaffected by age (28).   Exercise training increases SOD-1 protein 

content in coronary arterioles, aortic endothelial cells, and mouse aorta (50, 113, 114).  Elevations 

in shear stress induce SOD-1 mRNA and protein content in skeletal muscle arteries (66, 146).   

Although, SOD-1 content declines with age in resistance arteries from skeletal muscle (145) and 

mesentery (127), the interactive effects of age and exercise training on the expression of anti-

oxidant proteins have not been thoroughly investigated in the skeletal muscle resistance 

vasculature. 

 Tempol, which is an SOD mimetic, is widely used to assess the effect of O2
- on vascular 

reactivity.   Many studies report a beneficial effect of scavenging excess O2
- with Tempol on 

endothelial function; however, most of these studies have been conducted in diseased animals (3, 

46, 95, 153, 154).  In contrast, SOD treatment diminished acetylcholine-induced vasodilation in 

cerebral arteries from healthy mice (42).  Furthermore, Tempol had no effect on endothelium-

dependent vasodilation in cerebral arteries from young rats, but improved endothelium-dependent 

vasodilation in arterioles from old rats (86).    The differences in these reports are probably due to 

the complexity of pathologies, vasculature beds, and species examined; however, these discrepant 

results of SOD treatment indicate that the effects of O2
- on endothelial function remain unresolved.      

It is well established that exercise training delays and/or reverses the development of many 

pathologies including cardiovascular disease and endothelial dysfunction.   Ironically, a paradox 
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emerges as these exercise-induced improvements in overall health observed are accompanied by 

increases in ROS generation.   However, the mechanisms by which exercise training improves 

endothelium-dependent vasodilation remain unknown.  It is plausible that the improvement in 

endothelial function observed with exercise training is linked to elevations of ROS that 

accompany exercise.  Low to moderate O2
- and ROS are required as modulators of normal cell 

function and serve as critical signaling molecules in the vasculature (20, 73).  eNOS “uncoupling” 

may contribute to normal vascular function.  The interactive effects of age and exercise training on 

regulation of vascular ROS remain unclear.  Furthermore, the role of ROS in mediating age-and 

exercise training-induced adaptations of endothelial function has not been determined.  Therefore, 

the overall aims of this dissertation were as follows:  

• To determine the effects of O2
- and ROS on endothelium-dependent vasodilation in 

skeletal muscle arterioles from young and old, sedentary and exercise trained rats.   

• To directly measure flow-induced production of NO and O2
- in skeletal muscle 

arterioles from young and old, sedentary and exercise trained rats.   

• To determine the effects of age and exercise training on protein content of enzymes 

involved in regulation of ROS in skeletal muscle arterioles from young and old, 

sedentary and exercise trained rats.   
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Chapter II 

Effect of aging and exercise training on eNOS uncoupling in skeletal muscle arterioles 

Overview 

Reduced availability of tetrahydrobiopterin (BH4) contributes to the age-related decline of nitric 

oxide (NO)-mediated dilation in soleus muscle arterioles.   Depending on the availability of 

substrate and/or necessary co-factors, endothelial nitric oxide synthase (eNOS) can generate NO 

and/or superoxide (O2
-).  We evaluated the effects of age and exercise on flow-induced 

vasodilation and production of NO and O2
- in soleus muscle arterioles.  Young (3 mo) and old (22 

mo) male rats were exercise trained (ET) or remained sedentary (SED) for 10 wks.  Flow-induced 

NO and O2
- production, as well as BH4 and L-arginine content, were determined in soleus muscle 

arterioles.  Flow-induced vasodilation was assessed under control conditions and during the 

blockade of O2
- and/or hydrogen peroxide.  Exercise training enhanced flow-induced vasodilation 

in arterioles from young and old rats.  Old age reduced BH4 levels and flow-induced NO 

production in SED rats; however, exercise training restored BH4 and flow-induced production of 

NO.  Flow-induced eNOS-dependent O2
- production was higher in arterioles from old SED 

compared to those from young SED rats.  Exercise training increased flow-induced eNOS-

dependent O2
- production in arterioles from young but not old rats.  O2

- scavenging with Tempol 

reduced flow-induced vasodilation in arterioles from all groups except young SED rats.  The 

addition of catalase to Tempol-treated arterioles eliminated flow-induced vasodilation in arterioles 

from all groups of rats.  Catalase alone reduced flow-induced vasodilation in arterioles from all 

groups except old SED rats.  In Tempol-treated arterioles, flow-induced vasodilation was restored 

by deferoxamine, an iron chelator.  These data indicate that uncoupling of eNOS contributes to the 

age-related decline in flow-induced vasodilation; however, reactive oxygen species are required 

for flow-induced vasodilation in soleus muscle arterioles from young and old rats.   
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Introduction 

Maximal exercise capacity declines with advancing age (47, 104) and, although part of this 

decline is associated with a reduction of maximal cardiac output (76), alterations in the local 

control of skeletal muscle blood flow also contribute to this abatement.  Local regulatory factors 

that contribute to the age-associated decrement in skeletal muscle blood flow capacity include 

declines in vascular conductance (39).  Numerous studies have demonstrated that age impairs 

endothelial function in skeletal muscle conduit and resistance arteries in humans and animals (38, 

54, 97, 145).  Age-associated reductions in endothelium-dependent dilation of skeletal muscle 

resistance arterioles occur in part, through reduced nitric oxide (NO) signaling (122).  Mechanisms 

that may underlie this age-associated impairment in NO signaling may include reduced availability 

of substrate (L-arginine) (93) or cofactors (e.g., tetrahydrobiopterin [BH4]) (23, 135),  reduced 

endothelial NO synthase (eNOS) protein levels and/or activity, and increased superoxide 

production (29).  Depending on the availability of L-arginine and/or BH4, eNOS can become 

uncoupled resulting in the generation of NO and superoxide (O2
-) (24, 137).  Aging-induced 

diminution of BH4 contributes to the decline of NO-mediated dilation to flow, and sepiapterin, a 

precursor to BH4 synthesis (6), improves flow-induced vasodilation in soleus muscle arterioles of 

aged rats (33).  BH4 supplementation ameliorates endothelium-dependent dilation in humans with 

cardiovascular diseases or elevated risk factors (80, 126); however, the impact of reduced BH4 

availability on eNOS function has not been directly evaluated in the skeletal muscle resistance 

vasculature.    

Reactive oxygen species (ROS) potentially decrease NO bioavailability by two 

mechanisms.  First, O2
- rapidly interacts with NO to form peroxynitrite, (ONOO-) a potent ROS, 

which elicits cellular damage (14, 29).  Secondly, the presence of ROS, and primarily ONOO-, 

reduces BH4 to the inactive trihydrobiopterin radical (BH3), thereby reducing this necessary co-
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factor and subsequent NO production.  Recent reports indicate that insufficient BH4 is the major 

determinant of whether eNOS produces O2
- or NO (8, 26).   

  Aerobic exercise-training restores age-associated reductions in NO-mediated dilation in 

human and animal models (38, 122, 130).  Exercise training may increase NO bioavailability, in 

part, through enhanced regulation of ROS (113) or through increased expression of eNOS protein 

(122);  however, the effects of age and exercise training on the regulation of eNOS activity have 

not been evaluated.  Eskurza et al., demonstrated that an acute bolus of BH4 augments 

endothelium function in the brachial artery of old sedentary men, but had no effect on endothelial-

dependent dilation in habitually active, age-matched counterparts (45).  These data suggest that 

aerobic exercise training prevents the loss of NO bioavailability by preserving BH4 in aged 

individuals; however, the effect of exercise training on BH4 levels in the resistance vasculature of 

skeletal muscle has not been determined.  Here, we investigate the effects of age and exercise 

training on BH4 availability and eNOS uncoupling in soleus muscle arterioles of male rats.   

Therefore, the purpose of this study was 3-fold.  First, we sought to determine whether age-

induced reductions of arteriolar BH4 are associated with eNOS uncoupling.  Second, we 

investigated the possibility that exercise training restores arteriolar BH4 availability and reverses 

eNOS uncoupling with age.  Third, we determined whether eNOS uncoupling in skeletal muscle 

arterioles is accompanied by significant increases in ROS and a concomitant decrease in NO 

bioavailability.   

Methods 

Animals 

All procedures in this study were approved by the Institutional Animal Care and Use 

Committees at West Virginia University.  All methods complied fully with guidelines set in the 

Guide for the Care and Use of Laboratory Animals (National Institutes of Health, revised 1996).  

 12



 

Young (3 mo) and old (22 mo) male Fischer 344 rats were obtained from Harlan (Indianapolis, 

IN), housed under a 12:12-h light-dark cycle, and given food and water ad libitum.  This particular 

strain was chosen because cardiovascular function decreases with age in these rats, without the 

development of atherosclerosis or hypertension (76).  

Exercise training 

All rats were habituated to treadmill exercise, during which each rat walked on a motor-

driven treadmill at 5 m/min (0° incline), 5 min/day for 3 days. After habituation, young and old 

rats were randomly assigned to either a control sedentary (SED) group (young SED, n = 30, and 

old SED, n = 32) or an exercise-trained (ET) group (young ET, n = 37, and old ET, n = 26). ET 

rats performed treadmill running at 15 m/min (15° incline), 5 days/wk, for 10–12 wk. The duration 

of running was gradually increased in the first 3 wk until a 60-min duration was reached. The rats 

continued to run 5 days/wk for 60 min/day for the remainder of the 10- to 12-wk training period. 

Vascular responses were determined at least 24 h after the last exercise bout in ET rats.  

Muscle oxidative enzyme activity 

To determine the efficacy of the training protocol, sections of soleus muscle were stored at 

–80°C for determination of citrate synthase activity, a measure of muscle oxidative capacity (34, 

124). 

Microvessel preparation  

Rats were anesthetized with isoflurane (5%/O2 balance) and euthanized by decapitation. 

The gastrocnemius-plantaris-soleus muscle group was dissected free from both hind limbs and 

placed in a cold (4°C), filtered physiological saline solution (PSS) containing 145.0 mM NaCl, 4.7 

mM KCl, 2.0 mM CaCl2, 1.17 mM MgSO4, 1.2 mM NaH2PO4, 5.0 mM glucose, 2.0 mM 

pyruvate, 0.02 mM EDTA, 3.0 mM MOPS buffer, and 1 g/100 ml BSA, pH 7.4. With the aid of a 

dissecting microscope (Olympus SVH10), first-order (1A) arterioles were isolated and dissected  

from the soleus muscle, composed primarily of high-oxidative fibers (34), as previously described. 
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The arterioles were then transferred to a Lucite chamber containing PSS with 1% albumin (pH 7.4) 

equilibrated with room air. Each end of the arteriole was cannulated with micropipettes filled with 

PSS-albumin solution and secured with nylon suture. The sizes and resistances of the pipettes were 

matched to within 1%. The chamber was placed on the stage of an inverted microscope (Zeiss 

Axio40), equipped with a video camera (Panasonic BP310), video caliper (Colorado Video), and 

data-acquisition system (Power Lab).  Arterioles were pressurized via two independent reservoirs 

and checked for leaks. If leaks were present, the arterioles were discarded. Vessels that were free 

from leaks were pressurized to 70 cmH2O, gradually warmed to 37°C, and allowed to develop 

spontaneous tone during an initial equilibration period. The bathing solution was changed every 20 

min during the course of the experiment. 

Vasodilator Responses to Intraluminal Flow 
 

Upon displaying a steady level of spontaneous tone, arterioles were exposed to graded 

increases in intraluminal flow in the absence of changes in intraluminal pressure.  This was 

accomplished by altering the heights of independent pressure reservoirs in equal and opposite 

directions so that a pressure difference was created across the vessel without altering mean 

intraluminal pressure.  Diameter measurements were determined in response to incremental 

pressure differences of 2, 4, 10, 20, 40, and 60 cm H2O.  Volumetric flow (Q) was then calculated 

from inner diameter (d) and mean red cell velocity (Vrbc), according the following equation (32, 

74, 97): 

Q = π(Vrbc/1.6)(d/2)2 

At the end of the experiment, arterioles were placed in Ca2+-free PSS with 100 μM of the NO 

donor, sodium nitroprusside for 1 hr to obtain the maximal passive diameter (97, 122).   

Effects of ROS Scavengers on Flow-Induced Vasodilation 
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To determine the role of O2
-, hydrogen peroxide (H2O2), and hydroxyl ion (OH-) in age-

induced reductions of flow-induced vasodilation, responses to flow were evaluated in the presence 

of the following:  (1) superoxide dismutase mimetic, Tempol (100 μM) (21),  (2) H2O2 scavenger, 

catalase (100U) (44), (3) Tempol (100 μM) plus catalase (100U), (5) NADPH oxidase inhibitor, 

apocynin (100μM) (153), and (6) Tempol plus deferoxamine (100μM) (131), an iron chelator, and 

inhibitor of OH- formation (131).     

Detection of Flow-Induced NO Production  

To evaluate flow-induced production of NO, isolated soleus muscle arterioles were 

cannulated as described above. 4,5-diaminofluorescein diacetate (DAF-2DA) (Calbiochem) is a 

non-fluorescent dye until it reacts with NO in the presence of oxygen to form a fluorescent 

compound triazolofluorescein (2DAF-2T) (71).  The intensity of the fluorescent signal is 

proportional to NO levels.  Following intraluminal loading of DAF-2DA (2.5 uM) for 20 minutes, 

soleus muscle arterioles were exposed to a flow rate of 34 nl/sec and fluorescent images were 

acquired every 15 seconds over 2 minutes.  To confirm that production of NO occurred through 

eNOS, flow-induced DAF-2DA fluorescence was evaluated in the presence of N(G)-nitro-l-

arginine methyl ester (L-NAME).  DAF-2DA fluorescence during exposure to 10 uM Dea-

NONOate (DEA), an NO donor, was used as a positive control to ensure that the dye was not 

saturated and to determine maximal fluorescent intensity as a control for loading of dye.  After 

background subtraction, DAF fluorescence was expressed as a ratio of DAF stimulated/DAF at 

baseline for all conditions.  Acquired images were analyzed using ImageJ software (NIH).    

Detection of Flow-Induced O2
- Production  

Dihydroethidium (DHE) fluorescence was used to evaluate flow-induced O2
- production in 

real time (128).  To evaluate O2
- production in response to flow stimulation, soleus muscle 

arterioles were cannulated as described above.  DHE fluorescence was evaluated in arterioles 
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similar to those described by Suzuki et al. (128).  Following intraluminal loading of DHE (40uM) 

for 20 minutes, soleus muscle arterioles were exposed to a flow rate of 34 nl/sec and fluorescent 

images were acquired every 15 seconds over 2 minutes.  To determine whether production of O2
- 

occurred through eNOS, flow-induced DHE fluorescence was evaluated in the presence of L-

NAME.  DHE fluorescence during exposure to 100% ethanol was used as a positive control to 

ensure that the dye was not saturated and to control for equal loading of dye.  After background 

subtraction, DHE fluorescence was expressed as a ratio of DHE stimulated/DHE at baseline for all 

conditions.  Acquired images were analyzed using ImageJ software (NIH).    

Arteriolar L-arginine and BH4 measurements 

Arteriolar L-arginine and BH4 levels were determined using the HPLC method as 

previously described (33, 89, 148).  Briefly, soleus muscle arterioles were dissected from each 

animal and pooled.  For L-arginine analysis, vessels were homogenized with 0.2 ml 1.5 M HClO4, 

then 0.1 ml 2 M K2CO3 was added. The homogenates were centrifuged at 10 000 g for 1 min, and 

an aliquot (0.2 ml) of the supernatant was used for sample determination of L-arginine content 

(148). For BH4 analysis, arterioles were homogenized in 0.1 ml 0.1 M phosphoric acid containing 

5 mM dithioerythritol (an antioxidant), to which 17.5 µl 2 M trichloroacetic acid was added. 

Extracts were oxidized with acidic or basic iodine. Acidic oxidation quantitatively converts BH4 

and dihydrobiopterin to biopterin; basic oxidation converts dihydrobiopterin and BH4 to biopterin 

and pterin, respectively. Samples were incubated in the dark for 1 h. Excess iodine was removed 

by adding ascorbic acid (final concentration, 0.1 M). The final solution was analyzed on a C18 

reversed-phase column using fluorescence detection and authentic biopterin as a standard. The 

amount of BH4 in the arteriolar extracts was determined from the difference between acidic and 

basic iodine-generated biopterin (89). The sensitivity of L-arginine and BH4 analyses by HPLC, 

which was assessed using detection limits defined as a signal-to-noise ratio of 3, was 5 and 2 μM, 
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respectively. The reliability of the assays was indicated by the precision (agreement between 

replicate measurements), evaluated by the relative deviation (mean of absolute deviation/mean of 

replicate measurements x 100%), and by the accuracy (the nearness of an experimental value to the 

true value), determined with known amounts of standards and expressed as the relative errors 

((measurement value – true value)/(true value x 100%)). The precision and accuracy for the L-

arginine analysis were 1.4% and 1.6%, respectively, and for the BH4 analysis were 2.0% and 

2.3%, respectively. . The values in fmol • (mg tissue)–1 and pmol • (mg tissue)–1 for BH4 and 

arginine concentrations, respectively, were calculated on the basis of tissue weight. 

Data Analysis 

 
Data are expressed as means ± standard error. Spontaneous tone was calculated as a 

percent constriction in relation to maximal diameter as determined by the following equation:  

Spontaneous Tone (%) = [(D
M 

– D
T
)/D

M
] x 100 

where D
M 

is the maximal diameter recorded at 70 cm H
2
O and D

T 
is the steady-state baseline 

diameter recorded at the same pressure. The vasodilator responses to flow are expressed as percent 

relaxation as calculated by the formula:  

Relaxation (%) = [(D
S 

– D
B
)/(D

M 
– D

B
)] x 100 

where D
S 

is the arteriolar diameter at each respective stage, D
B 

is the diameter recorded 

immediately prior to initiation of the flow- diameter curves, and D
M 

is the maximal diameter for 

the arteriole.  For statistical analyses, changes in diameter in response to flow were expressed as a 

percent of maximal vasodilation as previously described (97).  Flow-diameter curves were 

evaluated by a three-way ANOVA with repeated measures on one factor in order to detect 

differences within (flow rate) and between (animal groups) factors.  Two-way ANOVA was used 

to determine group differences in animal and vessel characteristics, and group differences in L-

 17



 

arginine and BH4 content in soleus muscle arterioles.  Three-way ANOVA was used to determine 

the effect of age, training and L-NAME treatment on DAF fluorescence.  Three-way ANOVA was 

used to determine the effect of age, training and L-NAME treatment on DHE fluorescence, and 

planned contrasts were use as post-hoc analysis to compare treatment combinations of interest. All 

data are presented as mean ± SEM.  In all statistical analyses, n indicates the number of animals in 

each group.  Significance was defined as P ≤ 0.05. 

Results 
Animals  

 Body mass increased with age.  Exercise training reduced body mass in both young and 

old rats (Table 1.1).  Soleus muscle mass increased with age but was unaltered by exercise training 

(Table 1.1).  In contrast, soleus muscle mass to body mass ratio decreased with age and increased 

with exercise training (Table 1.1).  Exercise training increased citrate synthase activity by 18.3% 

in soleus muscles of young rats, and by 20.1% in soleus muscles of old rats, confirming the 

efficacy of the exercise training as previously reported (122).   

Vessel characteristics 
 

Maximal intraluminal diameter in soleus muscle arterioles was not different between 

groups (Table 1.1).  The levels of spontaneous tone were similar between groups (Table 1.1).  

Treatment with Tempol, Tempol plus catalase, catalase alone, apocynin and Tempol plus 

deferoxamine had no effect on spontaneous tone in any group (Table 1.1).    

Vasodilator responses to flow    

Vasodilation to intraluminal flow was diminished in soleus muscle arterioles from old SED 

rats (Fig. 1.1).  Exercise training restored flow-induced vasodilation in soleus muscle arterioles 

from old rats to that of young SED rats and exercise training improved flow-induced dilation in 

soleus muscle arterioles from young rats (Fig. 1.1).   
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Arteriolar BH4 and L-arginine content   

Similar to previous findings, age decreased arteriolar BH4 levels (33).  Exercise training 

restored arteriolar BH4 levels of old rats to that of young rats (Fig. 1.2A).   Exercise training did 

not alter BH4 levels in soleus muscle arterioles from young rats.  As previously reported (33), 

aging had no effect on L-arginine levels and exercise training did not effect arteriolar L-arginine 

levels in either young or old rats (Fig. 1.2B).   

 Flow-induced NO production in soleus muscle arterioles.   

Age reduced flow-induced NO production in soleus muscle arterioles (Fig. 1.3).  Exercise 

training augmented flow-induced NO production in soleus muscle arterioles of old rats to that of 

young SED rats.  Exercise training increased flow-induced NO production in soleus muscle 

arterioles of young rats.  L-NAME eliminated flow-induced increases in NO in arterioles from all 

groups of rats, confirming DAF specificity (Fig. 1.3).   Maximal DAF fluorescence was not 

different between groups (young SED, 2.27 ± 0.30; old SED 2.17 ± 0.23; young ET, 2.17 ± 0.27; 

Old ET, 2.23 ± 0.20 fluorescence units) confirming that similar dye loading in arterioles from all 

groups. 

Flow-induced O2
- production in soleus muscle arterioles  

Flow-induced O2
- generation was elevated in soleus muscle arterioles from old SED rats as 

compared to those from young SED rats (Fig 1.4).  Exercise training increased flow-induced O2
- 

production in arterioles of young rats, but did not alter flow-induced O2
- production in old rats, 

indicating that O2
- signaling contributes to exercise training-induced improvement of flow-induced 

vasodilation in young rats.  Inhibition of eNOS activity with L-NAME reduced flow-induced O2
- 

production in arterioles from all but young SED rats (Fig. 1.4).  L-NAME inhibition of eNOS-

derived O2
- was greater in arterioles from old SED rats as compared to those from young SED rats.  

Exercise training increased eNOS-derived O2
- production in soleus muscle arterioles from young 

 19



 

but not old rats (Fig. 1.4).  Maximal DHE fluorescence was not different between groups (young 

SED, 315 ± 0.50; old SED 290 ± 0.29; young ET, 296 ± 0.41; Old ET, 315 ± 0.35 fluorescence 

units) confirming that similar dye loading in arterioles from all groups.    

Role of O2
- and H2O2 and in flow-induced vasodilation 

 In young SED rats, scavenging of O2
- with Tempol did not alter flow-induced 

vasodilation.  Catalase, and Tempol plus catalase inhibited flow-induced vasodilation indicating 

dependence on H2O2 in young SED rats (Fig 1.5A).   

 Scavenging of O2
- with Tempol inhibited flow-induced vasodilation in arterioles from old 

SED rats (Fig. 1.5B). Scavenging of H2O2 with catalase reduced flow-induced vasodilation 

between flow rates of 5.2 ± 0.75 to 22.8 ± 0.42 nl/sec but not at higher flow rates, and Tempol 

plus catalase eliminated flow-induced vasodilation in the old SED rats, suggesting that even 

though flow-induced vasodilation is reduced in these rats compared to young SED, H2O2 is an 

important vasodilator (Fig. 1.5B).   

 In young and old ET rats, scavenging of O2
- with Tempol reduced flow-induced 

vasodilation (Fig. 1.5C and D).  Scavenging of H2O2 with catalase alone reduced flow-induced 

dilation in arterioles from young ET rat (Fig. 1.5C).  Similarly, simultaneous scavenging of both 

O2
- and H2O2 with Tempol plus catalase inhibited flow-induced vasodilation in arterioles from 

young ET rats (Fig. 1.5C); however, some flow-induced vasodilation remained, suggesting that in 

young ET rats, flow-induced vasodilation depends on both H2O2 and NO.    In old ET rats, H2O2 

scavenging with catalase alone reduced flow-induced vasodilation (Fig. 1.5D) and scavenging of 

O2
- and H2O2 with Tempol plus catalase abolished flow-induced vasodilation (Fig. 1.5D) indicating 

that H2O2 is critical for flow-induced vasodilation in old ET rats. 

 Next, we determined the contribution of NADPH oxidase-derived O2
- to flow-induced 

vasodilation in young and old, SED and ET rats.  The inhibition of NADPH oxidase with 
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apocynin significantly reduced flow-induced vasodilation in young and old SED rats (Fig 1.6A); 

however, apocynin had no effect on flow-induced vasodilation in young and old ET rats (Fig. 

1.6B) suggesting that O2
--derived H2O2 required for flow-induced vasodilation in the ET rats is not 

generated from NADPH oxidase-derived O2
-.    

Role of OH- in flow-induced vasodilation 

SOD has the potential to generate OH- in the presence of iron and OH- may cause 

vasoconstriction (12).  The addition of deferoxamine, an iron chelator, to Tempol-treated arterioles 

had no effect in young SED rats (Fig 1.7A); however, iron chelation restored the Tempol-induced 

loss of flow-induced vasodilation in arterioles from old SED (Fig 1.7B) indicating that OH- 

generated is eliciting a vasoconstriction.  Deferoxamine added to Tempol-treated arterioles 

improved the Tempol-induced loss of flow-induced vasodilation observed in young and old ET 

rats (Fig. 1.7C and D), confirming that O2
- production increases with exercise training and may 

contribute to increased OH--induced vasoconstriction in the presence of exogenous SOD and 

sufficient free iron.   

 21



 

 

 
Figure 1.1   Diameter changes in response to increasing intraluminal flow in soleus muscle 
arterioles.  Exercise training restores flow-induced vasodilation in old and improves flow-induced 
vasodilation in young rats.  *P < 0.05 vs. YSED and † P < 0.05 vs. OSED. 
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Figure 1.2.  Arteriolar BH4 and L-arginine content in soleus muscle arterioles from young 
and old, sedentary and exercise-trained rats.  (A) Exercise training restores age-related declines 
in arteriolar BH4 levels in soleus muscle arterioles.  (B) Aging and exercise training had no effect 
on arteriolar L-arginine levels in soleus muscle arterioles.  *P < 0.05 vs. YSED and † P < 0.05 vs. 
OSED. n = 6-8 per group. 
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Figure 1.3.  Flow-stimulated DAF fluorescence in soleus muscle arterioles from young and 
old, sedentary and exercise-trained rats.  (A) DAF fluorescence indicates NO bioavailability in 
soleus muscle arterioles from young and old, sedentary and exercise trained rats at baseline and 
during flow stimulation (34 nl/s).  (B) Summarized data indicate that flow-stimulated DAF 
fluorescence is reduced in soleus muscle arterioles from old SED rats.  Exercise training restored 
flow-stimulated NO availability in arterioles from old rats and increased flow-stimulated NO 
availability in young rats.    L-NAME inhibited DAF fluorescence in soleus muscle arterioles from 
all rats.  * P < 0.05 vs. young SED, † P < 0.05 vs. respective SED group, and ** P < 0.05 control 
vs. L-NAME. n = 8-10 per group. 
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Figure 1.4. Flow-induced DHE fluorescence (an indicator of superoxide production) in soleus 
muscle arterioles of young and old, sedentary and exercise-trained rats.  (A) DHE 
fluorescence indicates O2

- production in soleus muscle arterioles from young and old, sedentary 
and exercise trained rats at baseline and during flow stimulation (34nl/s).   (B) Summarized data 
indicate that flow stimulated an increase in DHE fluorescence in soleus muscle arterioles from old 
SED rats. Exercise training increased DHE fluorescence in young rats; however, had no effect in 
old rats.  L-NAME blocks DHE fluorescence in soleus muscle arterioles from all but young SED 
rats. * P < 0.05 vs. young SED, † P < 0.05 vs. old SED, ** P < 0.05 control vs. L-NAME, and # P 
< 0.05 Δ in DHE fluorescence with L-NAME vs. young SED. n = 9 – 11 per group. 
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Figure 1.5.  Effects of Tempol and catalase on flow-induced vasodilation of soleus muscle 
arterioles from young and old, sedentary and exercise-trained rats.  (A) In young SED rats, 
Tempol had no effect, but catalase alone and Tempol + catalase completely abolished flow 
induced vasodilation, (B) In old SED rats, catalase had no effect but Tempol and Tempol + 
catalase reduced flow induced vasodilation, (C) All treatments reduced flow-induced vasodilation 
in young ET, and (D) old ET rats.  *P < 0.05 vs. control response. 
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Figure 1.6.  Role of NADPH oxidase-derived O2

- production in flow-induced vasodilation in 
soleus muscle arterioles of young and old, sedentary and exercise-trained rats.  (A) NADPH 
oxidase inhibition with Apocynin reduced flow-induced vasodilation in soleus muscle arterioles of 
young and old SED rats, (B) Inhibition of NADPH oxidase with apocynin had no effect on flow-
induced vasodilation in soleus muscle arterioles of young and old ET rats.  *P < 0.05 vs. control 
response. 
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Figure 1.7.  Effects of Tempol and Deferoxamine on flow-induced vasodilation in soleus 
muscle arterioles of young and old, sedentary and exercise-trained rats.  (A) In young SED 
rats, Tempol and Tempol + Deferoxamine, an iron chelator, had no effect on flow-induced 
vasodilation, (B) In old SED rats, Tempol reduced Tempol + Deferoxamine improved flow-
induced vasodilation, (C) In young ET rats, Tempol reduced and Tempol + Deferoxamine restored 
flow-induced vasodilation, (D) In old SED rats, Tempol reduced flow-induced vasodilation; 
however, Tempol + Deferoxamine improved flow-induced vasodilation in the old ET.   * P < 0.05 
vs. control response. 
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Table 1.1.  Soleus muscle and vessel characteristics of young and old, sedentary and exercise-
trained rats.   Maximal diameter was recorded in Ca2+-free physiological saline solution with 
100μM sodium nitroprusside.  Tone (%) = [(maximal diameter – diameter with tone)/maximal 
diameter] × 100.  * P < 0.05 vs. YSED and † P < 0.05 vs. old SED. 
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Discussion 

Several important new findings emerge from this study.  (1) The balance between O2
- and 

NO signaling is altered by age and exercise training in skeletal muscle arterioles.  (2) BH4 content 

is reduced with age and restored with exercise training in skeletal muscle arterioles from old rats.  

The age-related decline in arteriolar BH4 content is concomitant to a decrease in NO signaling and 

an increase in ROS signaling. The exercise-induced restoration of BH4 content potentially 

contributes to increased NO signaling in skeletal muscle arterioles of old ET rats. (3) In conditions 

of limited BH4, such as occurs with age, NO-mediated signaling declines and eNOS-generated 

ROS (O2
-) increases in skeletal muscle arterioles. (4) Exercise training increases both NO- and 

ROS-mediated signaling in skeletal muscle arterioles of young rats, but a balance in these 

signaling systems is maintained, resulting in robust flow-induced vasodilation.   

 Aging is associated with declines in flow-induced NO-dependent vasodilation in conduit 

and resistance arterioles of humans and rats (38, 54, 97, 145).  NO bioavailability may be 

mediated by several possible mechanisms including reduced eNOS protein abundance or activity, 

limited availability of substrate (L-arginine) or co-factor (BH4), or increased degradation of NO by 

ROS.  We recently reported that a deficit in availability of BH4 is associated with an age-

dependent decline of endothelium-dependent vasodilation in skeletal muscle arterioles (33).   

When BH4 is limited, eNOS becomes uncoupled, producing both O2
- and NO (8, 26).  Eskurza et 

al. reported that an acute bolus of BH4 restored flow-mediated dilation in older sedentary humans 

(45) and the BH4 precursor, sepiapterin, augments flow-induced vasodilation in skeletal muscle 

arterioles in aged rats (33).  These findings support the hypothesis that the age-associated 

decrements in BH4 contribute to reduced NO bioavailability.  We tested the hypothesis that eNOS 

uncoupling increases with age in skeletal muscle arterioles due to lack of BH4.  To our knowledge, 

this is the first study to demonstrate that age-related reduction of BH4 (Fig. 1.2A) is accompanied 
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by impaired flow-induced NO signaling (Fig. 1.3) and increased eNOS-derived O2
- production in 

skeletal muscle arterioles.     

Increases in O2
- production, observed with age, scavenge NO and may alter endothelial 

function (40).  In soleus muscle feed arteries, SOD-1 protein content, but not mRNA expression, is 

reduced in aged rats (145); however, SOD-1 activity appears to increase in the aorta of aged rats 

(37).  Additionally, catalase activity declines in aorta from aged rats (37); however, catalase 

protein content does not change with age in human endothelial cells (40).  Exercise training 

potentially improves NO bioavailability by enhanced regulation of O2
- and ROS by inducing 

antioxidant defense systems and reducing O2
- generating systems.  Rush et al. demonstrated in 

aortic endothelial cells (AEC) from young pigs that exercise training increased SOD-1 protein 

abundance and activity but had no effect on catalase content.  In contrast, exercise training 

decreased the NADPH pro-oxidant subunit, p67phox protein (113).  Graham and Rush further 

demonstrated that the cytosolic subunit of NADPH oxidase, gp91phox, is reduced with training in 

aorta homogenates from young pigs (56).   Based on these observations, it appears that exercise 

training improves the management of superoxide (and subsequent ROS) generation by enhancing 

antioxidant mechanisms and reducing pro-oxidant pathways.  However, a paradox emerges as O2
- 

generation and oxidant stress increases with exercise training (4, 5, 30).  Our data suggest that 

exercise training-induced enhancement of flow-induced vasodilation occurs because both NO and 

ROS mediated signaling increase in a balanced fashion. 

Even though high levels of ROS may potentiate the pathology of cardiovascular diseases 

(62), it is becoming increasingly clear that ROS can serve as signaling molecules, which  mediate 

normal cellular functions (41).  H2O2 generated by the dismutation of O2
- is emerging as an 

important vasodilator and signaling molecule in the vasculature.  Endothelium-derived H2O2 

contributes to flow-induced vasodilation in isolated coronary arterioles (72).  Marvar et al. 

demonstrated that H2O2 produced by contracting skeletal muscle elicits a vasodilatory response on 
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nearby skeletal muscle arterioles (82).  Furthermore, exogenous H2O2 is vasodilatory in a variety 

of vascular beds including pulmonary (13), skeletal muscle (27), cerebral (139) and mesenteric 

beds (84).  H2O2
 also indirectly alters vascular reactivity by activating eNOS via phosphoinositide 

3-kinase (PI3K) (133).  Our data indicate that H202 is an important mediator of flow-induced 

vasodilation of skeletal muscle arterioles from young SED rats.  In addition, our data reveal that 

flow-induced H2O2 signaling declines with age, but is restored by exercise training.   

SOD is an important anti-oxidant enzyme that reduces oxidant stress by dismutating O2
- 

into H2O2; however, in the presence of catalytic transition metals, SOD can rapidly form OH- 

(107).  H2O2 generates OH- through metal-catalyzed reactions, such as the Fenton reaction as 

follows:  H2O2 + Fe2+ → Fe3+ + •OH + OH-.  The formation of OH- is further promoted by the 

presence of O2
-, which reacts with Fe3+ to produce Fe2+ through the Haber-Weiss reaction (60, 

108).  The net effect of SOD is the dismutation of O2
- to produce either the vasodilatory H2O2 or 

in the presence of Fe2+, OH-, which is a potent vasoconstrictor.  Iron chelators, such as 

deferoxamine, inhibit the generation of OH- by preventing iron ions from catalyzing redox 

reactions, thereby improving vasodilation in coronary arterioles (101, 131).  Iron accumulation 

increases with age in skeletal muscle, liver, and cardiac muscle, and is associated with increased 

oxidative stress and diminished functional capacity (12, 150).  Age-associated increases in iron 

accompanied by diminished catalase activity (37) can produce excess OH- contributing to 

decreased flow-induced vasodilation in skeletal muscle arterioles of old rats (Fig. 1.2B). Exercise 

training increases iron in skeletal muscle of rats (99) and catalase activity in the vasculature 

remains unchanged with exercise training (113).  In conjunction with increases in O2
- generation 

with exercise training observed in the present study, elevated OH- production may result when 

arterioles are treated with an exogenous SOD.   Increased OH- production is a potential 
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mechanism by which iron chelation improves SOD-associated decrements in flow-induced 

vasodilation in skeletal muscle arterioles.   

In conclusion, the results of the present study confirm previous findings that aging impairs 

endothelium-dependent, NO-mediated vasodilation and BH4 levels in rat skeletal muscle arterioles 

(33, 97).    The present findings further demonstrate that limited availability of BH4, as observed 

in old SED rats, may contribute to eNOS uncoupling, and both a subsequent decrease in NO 

signaling and an increase in eNOS-derived O2
- generation.  Exercise training restores BH4 levels 

and improves flow-induced NO production in arterioles from aged rats.  Furthermore, exercise 

training increases both NO and ROS-mediated signaling in skeletal muscle arterioles, suggesting 

that exercise training-induced enhancement of flow-induced vasodilation in skeletal muscle 

arterioles involves a balance between NO and O2
--derived ROS.   Our results suggest that the 

beneficial effects of exercise training in the skeletal muscle resistance vascular involve much more 

than improvement of NO bioavailability.   
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Chapter III 

Age and exercise training alter signaling through reactive oxygen species in the endothelium 

of skeletal muscle arterioles 

Overview 
 
Exercise training ameliorates age-related impairments in endothelium-dependent vasodilation in 

soleus muscle arterioles.  Additionally, exercise training is associated with increased O2
- 

production.  The purpose of this study was to determine the role of O2
- and O2

- -derived reactive 

oxygen species signaling in mediating endothelium-dependent vasodilation in skeletal muscle 

resistance arterioles from young and old, sedentary and exercise trained rats.  Young (3 mo) and 

old (22 mo) male rats were either exercise trained (ET) or remained sedentary (SED) for 10 wks.  

To determine the impact of reactive oxygen species signaling on endothelium-dependent 

vasodilation, responses to acetylcholine were studied under control conditions and during the 

scavenging of O2
- and/or H2O2.  Reactivity to O2

- and H2O2 was also determined.   Exercise 

training reversed the age-related impairment of endothelium-dependent vasodilation.  Tempol, a 

scavenger of O2
-, reduced ACh-induced vasodilation in all groups.  Catalase reduced ACh-induced 

vasodilation in all groups.  Similarly, the addition of catalase to Tempol-treated arterioles reduced 

ACh-induced vasodilation in all groups.  Aging had no effect on protein content of SOD-1, 

catalase, or GPx; however exercise training increased protein content of SOD-1 in young and old 

rats, catalase in young rats, and GPx in old rats.  In summary, exercise training restores 

endothelium-dependent vasodilation in soleus muscle arterioles.  This adaptation is mediated, in 

part, through enhanced O2
-/ H2O2 signaling.   
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Introduction 

 Endothelial dysfunction of skeletal muscle declines with age primarily due to decreased 

nitric oxide (NO) availability (38, 97, 122, 129).    In feed arteries of skeletal muscle, reduction of 

NO-dependent vasodilation is accompanied by reduced expression of endothelial nitric oxide 

synthase (eNOS) (145).  In contrast, we have previously reported that NO-mediated vasodilation 

of soleus muscle resistance arteries declines with advancing age despite an increase in eNOS 

protein levels (122).  Thus, the age related decline in bioavailability of NO may be dependent 

upon numerous factors that regulate both its production and degradation.  eNOS activity, and 

subsequent NO production, is regulated by availability of substrate and co-factors, by protein-

protein interactions, and by coordinated phosphorylation and dephosphorylation of eNOS (48, 51, 

61).  Degradation of NO is dependent upon the presence of cellular superoxide (O2
-), a by-product 

of cellular respiration, which reacts readily with NO, eliminating its vasodilatory action (121). 

Cellular O2
- is regulated by the enzyme superoxide dismutase (SOD), which catalyzes the 

dismutation of O2
- into hydrogen peroxide (H2O2).  Thus, NO bioavailability and maintenance of 

NO-mediated vasodilation is linked to SOD activity.  In addition, both O2
- and O2

--derived 

reactive oxygen species (ROS) exhibit vasoactive properties.  For example, H2O2 has been 

reported to produce hyperpolarization and relaxation of vascular smooth muscle (84, 91).  

Furthermore, H2O2 regulates eNOS protein expression and activity (133, 152).  Thus, tight 

regulation of O2
- and O2

--derived ROS is necessary for maintenance of optimal endothelium-

dependent function, and an age-related increase in vascular O2
- is a likely contributor to age-

induced endothelial dysfunction. 

Exercise training reverses age-related reductions in NO bioavailability, thus improving 

endothelium-dependent vasodilation.  In skeletal muscle arterioles of both young and aged rats, 

exercise training increases eNOS protein expression.  This increase in enzyme expression may 
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contribute to exercise training-induced amelioration of endothelial function in aged rats (122).  

Additionally, exercise training has been reported to increase vascular expression of SOD.  Rush et 

al demonstrated that, in aortic endothelial cells (AEC) from young pigs, SOD-1 protein abundance 

and activity increased with training (113).   Although SOD-1 expression declines with age in 

resistance arteries from skeletal muscle (145) and mesentery (127), the interactive effects of age 

and exercise training on the expression of anti-oxidant proteins have not been thoroughly 

investigated in the skeletal muscle resistance vasculature. 

Therefore, the purpose of this study was to determine the role of O2
--derived ROS in 

mediating endothelium-dependent vasodilation in skeletal muscle resistance arterioles from young 

and old, sedentary and exercise-trained rats.  We tested the hypothesis that age-related increases in 

O2
--derived ROS would contribute to endothelium-dependent vasodilation of skeletal muscle 

arterioles, despite an overall decline in endothelial function.  We further hypothesized that 

exercise training would improve endothelium-dependent dilation, in part, through improved 

regulation of O2
--derived ROS signaling.   

Methods 
Animals 

All procedures in this study were approved by the Institutional Animal Care and Use 

Committees at West Virginia University.  All methods complied fully with guidelines set in the 

Guide for the Care and Use of Laboratory Animals (National Institutes of Health, revised 1996).  

Young (3 mo) and old (22 mo) male Fischer 344 rats were obtained from Harlan (Indianapolis, 

IN), housed under a 12:12-h light-dark cycle, and given food and water ad libitum.  Fischer 344 

rats were chosen because cardiovascular function decreases with age in these rats, without the 

development of atherosclerosis or hypertension (76).   
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Exercise training  

All rats were habituated to treadmill exercise, during which each rat walked on a motor-driven 

treadmill at 5 m/min (0° incline), 5 min/day for 3 days.  After habituation, young and old rats were 

randomly assigned to either a control sedentary (SED) group (young SED, n = 37, and old SED, n 

= 29) or an exercise-trained (ET) group (young ET, n = 25, and old ET, n = 21).  ET rats 

performed treadmill running at 15 m/min (15° incline), 5 days/wk, for 10–12 wk.  The duration of 

running was gradually increased in the first 3 wk until a 60-min duration was reached. The rats 

continued to run 5 days/wk for 60 min/day for the remainder of the 10- to 12-wk training period.  

Vascular responses were determined at least 24 h after the last exercise bout in ET rats.  

Muscle oxidative enzyme activity 

To determine the efficacy of the training protocol, soleus muscle, was stored at –80°C for 

determination of citrate synthase activity, a measure of muscle oxidative capacity (34). 

Microvessel preparation 

Rats were anesthetized with isoflurane (5%/O2 balance) and euthanized by decapitation. 

The gastrocnemius-plantaris-soleus muscle group was dissected free from both hindlimbs and 

placed in a cold (4°C), filtered physiological saline solution (PSS) containing 145.0 mM NaCl, 4.7 

mM KCl, 2.0 mM CaCl2, 1.17 mM MgSO4, 1.2 mM NaH2PO4, 5.0 mM glucose, 2.0 mM 

pyruvate, 0.02 mM EDTA, 3.0 mM MOPS buffer, and 1 g/100 ml BSA, pH 7.4. With the aid of a 

dissecting microscope (Olympus SVH10), first-order (1A) arterioles were dissected free of the 

soleus muscle, composed primarily of high-oxidative fibers (34), as described previously (97).  

The arterioles were then transferred to a Lucite chamber containing PSS with 1% albumin (pH 7.4) 

equilibrated with room air. Each end of the arteriole was cannulated with micropipettes filled with 

PSS-albumin solution and secured with nylon suture.  Size and resistance of the pipettes were 
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matched to within 1%. The chamber was placed on the stage of an inverted microscope (Zeiss 

Axio40), equipped with a video camera (Panasonic BP310), video caliper (Colorado Video), and 

data-acquisition system (Power Lab).  Arterioles were pressurized via two independent reservoirs 

and checked for leaks.  If leaks were present, the arterioles were discarded.  Vessels that were free 

from leaks were pressurized to 70 cmH2O, gradually warmed to 37°C, and allowed to develop 

spontaneous tone during an initial equilibration period.  The bathing solution was changed every 

20 min during the course of the experiment.   

Evaluation of vasodilator responses 

Once a steady level of spontaneous tone was achieved, vasodilator responses to the 

cumulative addition of the endothelium-dependent vasodilator acetylcholine (ACh, 10–9–10–4 M) 

was determined.  To evaluate vascular smooth muscle responsiveness to exogenous NO, a 

concentration-response to diethylamineNONOate (Dea-NONOate, 10–9–10–3 M) was determined.  

At the end of the concentration–response determinations, arterioles were placed in Ca2+-free PSS 

with 100 μM of the NO donor, sodium nitroprusside, for 1 h to obtain the maximal passive 

diameter (88, 96, 97).  

Evaluation of inhibitory effects of Tempol, Catalase, Tempol + Catalase  

To determine the role O2
- and O2

--derived ROS on ACh-induced vasodilatation, responses 

to ACh were evaluated after a 20-min incubation under one of the following conditions: (1) SOD 

mimetic Tempol (100 μM) (21), (2) H2O2 scavenger, catalase (100U) (42, 44),  or (3) Tempol (100 

μM) plus catalase (100U).    To determine the role of O2
- in scavenging of NO, responses to Dea-

NONOate were evaluated after a 20-min incubation with the SOD mimetic, Tempol (100 μM) 

(21).   
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Evaluation of vasoreactivity to H2O2 and O2
-  

To determine the reactivity of soleus muscle arterioles to H2O2 and a O2
- generator, 

concentration response curves were generated using authentic H2O2 (1e-6 – 1e-2 M) and pyrogallol, 

an O2
- generator (1e-8 – 1e-4 M).    

Immunoblot analysis of soleus muscle arteriolar protein 

Differences in SOD-1, catalase, and glutathione peroxidase-1 (GPx1) protein content in 

skeletal muscle resistance arterioles were assessed by immunoblot analysis. Arterioles were 

isolated, snap frozen, and stored at -80ºC until analysis.  Vessels were lysed in 1X sample buffer 

(62.5 mM Tris pH 6.8, 2% SDS, 6 M urea, 160 mM DTT, 0.1% bromophenol blue), followed by 3 

X 2 minute boil, vortex, and quick spin.  After a final 1-minute sonication step, protein 

concentration was determined using the NanoOrange Protein Quantification Kit (Invitrogen).  

Samples (10 µg total protein) were subjected to SDS-polyacrylamide gel electrophoresis (10%) 

and then transferred to nitrocellulose membranes.  Membranes were blocked for 1h at room 

temperature (5% nonfat dry milk in Tris-buffered saline + 0.1% Tween-20) and then incubated 

overnight at 4º with primary antibodies for SOD-1 1:5000 (Stressgen), catalase 1:6000 

(Chemicon), and GPx1 1:4000 (Abcam) or β-actin 1:2000, (Cell Signaling Technologies).  After 

washing, membranes were incubated with respective horseradish peroxide-conjugated secondary 

antibody for 1h at room temperature.  Peroxidase activity was determined using SuperSignal West 

Femto (Pierce), with image analysis performed using ImageJ (NIH).  Loading differences were 

normalized by expressing all data as densitometric units for protein of interest relative to β-actin.   

Data Analysis 
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Data are expressed as means ± standard error (SE). Spontaneous tone was calculated as a 

percent constriction in relation to maximal diameter as determined by the following equation:  

Spontaneous Tone (%) = [(D
M 

– D
T
)/D

M
] x 100 

where D
M 

is the maximal diameter recorded at 70 cm H
2
O and D

T 
is the steady-state baseline 

diameter recorded at the same pressure. The vasodilator responses are expressed as percent 

relaxation as calculated by the formula:  

Relaxation % = [(D
S 

– D
B
)/(D

M 
– D

B
)] x 100 

where D
S 

is the arteriolar diameter at the respective stage, D
B 

is the diameter recorded immediately 

prior to initiation of the concentration-diameter curves, and D
M 

is the maximal diameter for the 

arteriole.  Concentration-diameter curves were evaluated by a three-way ANOVA with repeated 

measure on one factor, in order to detect differences within concentrations and between 

experimental groups.  Group differences in animal and vessel characteristics and citrate synthase 

activity were compared by a two-way ANOVA.  Group differences in SOD-1, catalase, or GPx1 

protein content were assessed using a two-way ANOVA.  In all experiments, n indicated the 

number of animals studied.  Statistical significance was defined as P ≤ 0.05.   

Results 
Animals 

Body mass increased with age (Table 2.1).  Exercise training resulted in lower body mass 

in both young and old rats.   Soleus muscle mass increased with age, but was unchanged by 

exercise training (Table 2.1).  Soleus muscle mass to body mass ratio decreased with age and 

increased with exercise training (Table 2.1).  Exercise training increased citrate synthase activity 

by approximately 18.3% in soleus muscle of young rats, and by approximately 20.1% in soleus 
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muscles of old rats (Table 2.1), confirming the efficacy of the exercise training as previously 

reported (122).   

Vessel characteristics 

Maximal diameter of soleus muscle arterioles was not different between groups (Table 

2.1).  The levels of spontaneous tone were similar between groups (Table 2.1) and treatment with 

Tempol, catalase or Tempol plus catalase, had no effect on spontaneous tone in any group (Table 

2.1).    

Endothelium-dependent vasodilation to ACh   

ACh-induced vasodilation was impaired in soleus muscle arterioles from old SED rats, 

confirming previous results (122) (Fig. 2.1).  Exercise training restored ACh-induced vasodilation 

in soleus muscle arterioles from old rats to that of young SED rats and improved ACh-induced 

dilation in young rats at ACh concentrations of 1e-5 and 1e-4 M  (Fig. 2.1).   

Effects of Tempol, catalase and Tempol + catalase on ACh-induced vasodilation  

Surprisingly, dismutating O2
- to H2O2 with Tempol, reduced ACh-induced vasodilation in 

young and old, SED and ET rats (Figs. 2.2A and 2.3A).  Furthermore, Tempol eliminated the age-

related differences in SED rats suggesting that alterations of O2
--signaling contribute to the age-

associated impairment in ACh-induced vasodilation.  Additionally, SOD in the presence of 

catalytic transition metals, can rapidly form the vasoconstrictor, hydroxyl radical (OH-) (107, 131).  

Iron increases with age and with exercise training in skeletal muscle and may contribute to 

Tempol-induced OH- production, most prominently in old ET rats (Fig. 2.3A) (99, 150).  Removal 

of H2O2 by catalase reduced ACh-induced vasodilation in all groups of rats (Fig. 2.2B and 2.3B) 

indicating that H2O2 is an important signaling molecule in ACh-induced vasodilation in skeletal 

muscle arterioles.  Simultaneous scavenging of O2
- and H2O2 reduced ACh-induced vasodilation 

all groups (Fig. 2.2C and 2.3C) and eliminated age differences in SED rats (Fig. 2.2C) revealing 
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that a proper balance of O2
- and H2O2 must be maintained for ACh-induced vasodilation in SED 

and ET rats.    

Vasoreactivity to H2O2 and O2
- in soleus muscle arterioles 

At concentrations above 1e-4 M, H2O2 elicited vasodilation in skeletal muscle arterioles, 

and these vasodilatory responses were not affected by age or exercise training status (Fig. 2.4).  

O2
- generated by the auto-oxidation of pyrogallol (79, 81) did not elicit a vasoactive response in 

arterioles from either young or old SED rats (Fig. 2.5). In arterioles from young but not old ET 

rats, pyrogallol elicited a slight vasoconstriction.   

Vasodilation to DEA-NONOATE 

Confirming previous findings (97), endothelial-independent vasodilation to exogenous NO 

was preserved with age.  In contrast, exercise training increased vasodilation of skeletal muscle 

arterioles at concentrations of 1e-7 M Dea-NONOate in both young and old rats (Fig. 2.6A).  

Scavenging of O2
- with Tempol had no effect on endothelium-independent vasodilation in 

arterioles from any group of rats (Fig. 2.6B and 2.C). Thus, the age-related reduction of NO 

bioavailability in skeletal muscle arterioles probably does not result from increased scavenging of 

extracellular NO, demonstrating the specificity of Tempol-induced reductions of vasodilation to 

ACh (Fig 2.2A and 2.2B).  

SOD-1, catalase and GPx1 protein levels  

  SOD-1 protein levels were not different between arterioles from young and old SED rats.  

Exercise training increased SOD-1 protein levels by approximately 130% in arterioles from young 

rats and by approximately 85% in arterioles from old rats (Fig. 2.7A).   Catalase levels were not 

different between arterioles from young and old SED rats.  Exercise training increased catalase 

protein by approximately 81% in arterioles from young rats (Fig. 2.7B).  GPx-1 protein levels in 
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arterioles were unaffected by age; however, exercise training increased GPx-1 protein levels in 

arterioles from old rats by approximately 66% (Fig 2.7C).   
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Figure  2.1.  ACh-induced vasodilation in soleus muscle arterioles from young and old, 
sedentary and exercise-trained rats to acetylcholine (ACh).  Age significantly reduced 
vasodilator responses to ACh in soleus muscle arterioles.  Exercise training restored vasodilator 
responses to ACh in soleus muscle arterioles from old rats.  Diameter changes in response to 
increasing intraluminal pressure in soleus muscle arterioles.  *P < 0.05 vs. YSED and † P < 0.05 
vs. OSED. 
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Figure 2.2.  Effect of Tempol and catalase on ACh-induced vasodilation of soleus muscle 
arterioles from young and old sedentary rats.  (A) Tempol inhibited the vasodilator response to 
ACh in arterioles from all groups and abolished the age differences in ACh-induced vasodilation.  
(B) Catalase inhibited the vasodilator response to ACh-induced in arterioles from all rats, however 
the age difference in ACh-induced vasodilation remained.  (C) Combination of Tempol and 
catalase inhibited vasodilator responses to ACh in arterioles from all rats and abolished the age 
differences in ACh-induced vasodilation.  Data are presented as means ± SE.  # P < 0.05 Inhibitor 
+ ACh vs. ACh alone.  
 

 45



 

 
Figure 2.3.  Effect of Tempol and catalase on ACh-induced vasodilation of soleus muscle 
arterioles from young and old exercise-trained rats.  (A) Tempol inhibited the vasodilator 
response to ACh in arterioles from all groups; however age differences developed in ACh-induced 
vasodilation.  (B) Catalase inhibited the vasodilator response to ACh-induced in arterioles from all 
rats.  (C) Combination of Tempol and catalase inhibited vasodilator responses to ACh in arterioles 
from all rats.  # P < 0.05 Inhibitor + ACh vs. ACh alone.     
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Figure 2.4.  H2O2-induced vasodilation in young and old, sedentary and exercise-trained 
rats.  Vasodilation to exogenous H2O2 was preserved with age and was unchanged by exercise 
training.   
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Figure 2.5.  O2

--induced vasoactive characteristics in young and old, sedentary and exercise-
trained rats.  Pyrogallol induced vasoconstriction in old ET rats.  *P < 0.05 OSED vs. OET. 
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Figure 2.6.  Endothelium-independent vasodilation to Dea-NONOate in soleus muscle 
arterioles from young and old, sedentary and exercise-trained rats.  (A) Vasodilation to Dea-
NONOate was similar in soleus muscle arterioles from young and old SED rats; however, exercise 
training increased vasodilatory responses to Dea-NONOate in both young and old rats.  (B) 
Scavenging of superoxide with Tempol had no effect on vasodilator responses to Dea-NONOate 
in soleus muscle arterioles from young and old SED rats.  (C) Scavenging of superoxide with 
Tempol had no effect on vasodilator responses to Dea-NONOate in soleus muscle arterioles from 
young and old ET rats. *P < 0.05 SED vs. ET.   
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Figure 2.7.  (A) Superoxide dismutase (SOD-1), (B) catalase, and (C) glutathione peroxidase 
(GPx1) protein content in soleus muscle arterioles of young and old, sedentary and exercise-
trained rats.  *P < 0.05 indicates exercise training effect. 
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Table 2.1.  Animal and vessel characteristics of young and old rat, sedentary and exercise 
trained rats.  Maximal diameter was recorded in Ca2+-free physiological saline solution with 
100μM sodium nitroprusside.  Tone (%) = [(maximal diameter – diameter with tone)/maximal 
diameter] × 100.  *P < 0.05 indicates age effect.  † P < 0.05 indicates exercise training effect.  

 51



 

Discussion 
 

This study confirms our previous report that ACh-induced vasodilation declines with age 

and is restored by exercise training (122). Several new findings from this study indicate that ROS 

are important mediators of age- and training-induced adaptations of endothelium-dependent 

vasodilation in skeletal muscle arterioles.  First, H2O2 is necessary for endothelium-dependent 

vasodilation in skeletal muscle arterioles.  Second, the dependence on ACh-induced vasodilation 

on H2O2 increases with age.  Third, exercise training improves endothelium-dependent 

vasodilation in old rats, in part, by decreasing dependence on H2O2.  Fourth, the sensitivity of ACh-

induced vasodilation to exogenous SOD changes with age and by exercise training.  Thus, a tight 

balance between enzymatic production of O2
- and H2O2 must be maintained for robust 

endothelium-dependent vasodilation to occur.   

It is becoming clear that O2
- and O2

--derived ROS are important signaling molecules 

involved in the regulation of physiological function (41).  More specifically, H2O2 generated by 

the dismutation of O2
- is emerging as an important vasodilator and signaling molecule in the 

vasculature (21).  O2
- is derived from several sources in the endothelium including eNOS (42), 

mitochondria (77), xanthine oxidases (52) and NADPH oxidases (15).  Endothelium-derived H2O2 

contributes to vasodilation in isolated coronary arterioles (72).  In skeletal muscle arterioles H2O2 

has been shown to produce biphasic responses; low concentrations of H2O2 (10 
-6 to 3 X 10-5) 

induce vasoconstriction whereas higher concentrations elicit vasodilation (27).  Similarly, in 

pulmonary (13), skeletal muscle (27), cerebral, (139) and mesenteric (84) vascular beds exogenous 

H2O2 causes vasodilation.  Thus, vasodilation elicited by authentic H2O2 was preserved with age 

and was unchanged by exercise training in skeletal muscle arterioles (Fig. 2.4).   H2O2 has been 

labeled as endothelium-derived hyperpolarization factor (EDHF) because it is produced by the 

endothelium and elicits vascular smooth muscle relaxation through activation of Ca2+ dependent 
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K+ (KCa) channel activation (82, 85).  Our results do not indicate the mechanism by which H2O2 

produced vasodilation in skeletal muscle arterioles; however, our findings that neither age or 

exercise training altered responsiveness of soleus muscle arterioles to exogenous H2O2 suggests 

that adaptations in H2O2 signaling are confined to the endothelium and occur due to changes in 

endogenous production and/or generation of H2O2.   

In the present study, the dependence of ACh-induced vasodilation on H2O2 was more 

pronounced in old SED rats (Fig. 2.2B).   This increased dependence on H2O2 was reversed by 

exercise training in arterioles from old rats (Fig. 2.3B).  Our previous results suggest that age 

reduces NO-mediated dilation, whereas exercise training promotes endothelial signaling through 

NO (122).  Thus our current results suggest that endothelial H2O2 signaling increases with age as 

NO-mediated dilation declines.  In contrast, exercise training appears to promote reversal to a 

younger vasodilatory system, which requires less dependence on H2O2 signaling, and greater 

dependence on NO signaling.   

Age-related differences in ACh-induced vasodilation were eliminated by scavenging of O2
- 

with the exogenous SOD mimetic, Tempol (Fig. 2.2A) indicating that alterations of O2
- signaling 

contribute to age-associated impairment in ACh-induced vasodilation.  The finding that Tempol 

reduced vasodilation in skeletal muscle arterioles from all groups of rats is surprising; however, 

Marvar et al. reported that locally generated ROS actually contribute to functional dilation (83).   

We propose that scavenging of O2
- in SED rats reduces vasodilation by two possible mechanisms.  

First, O2
- may act as a vasodilatory agent, as reported in cerebral arterioles of mice (140).   

Second, SOD has the capability of producing OH- in the presence of transition catalytic metals 

(i.e., iron), as observed in aged rats (12).  In coronary arterioles, iron chelation with deferoxamine, 

reverses OH--mediated vasoconstriction (131).  If the addition of exogenous SOD increases H2O2 

production dramatically, this could overwhelm the endogenous catalase system, leading to rapid 

production of OH-, and vasoconstriction.   
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In the present study, H2O2-generated by Tempol was catalyzed to H2O with the addition of 

catalase, thus scavenging both O2
- and O2

--derived H2O2.  This simultaneous scavenging of both 

O2
- and H2O2 eliminated ACh-induced vasodilation in old SED rats, supporting our hypothesis 

that even though ACh-induced vasodilation is already diminished with age, O2
--derived ROS are 

necessary for vasodilation in old SED rats.  In young SED and ET rats, some dilation to ACh 

remained during simultaneous scavenging of both O2
- and H2O2 indicating the contribution of 

ROS-independent signaling in arterioles from these young rats.    

The restoration of endothelium-dependent vasodilation observed in old rats subjected to 

exercise training (Fig. 2.1) confirms our previous study (122).   O2
- generation and oxidant stress 

increase with exercise training (4, 5, 30).  This increase in oxidant stress probably contributes to 

enhanced O2
- and O2

--derived ROS signaling in the endothelium of skeletal muscle arterioles of 

exercise trained rats (Fig. 2.3).  The enhanced regulation of O2
- and O2

--derived ROS may depend 

on protein levels and activities of anti-oxidant enzymes.  For example, Rush et al. demonstrated in 

aortic endothelial cells (AEC) from young pigs that SOD-1 protein abundance and activity 

increased with training but had no effect on catalase content (113).  In our present study, exercise 

training increased SOD-1 protein levels in skeletal muscle arterioles from young and old rats (Fig. 

2.7A) indicating that more H2O2 was produced in the vasculature of exercise-trained rats.  

Interestingly, exercise training increased catalase in the young rats only (Fig. 2.7B); however, 

exercise training increased GPx1 in the old rats (Fig 2.7C).  Similar to GPx, catalase catalyzes the 

breakdown of H2O2; however, GPx has a higher affinity for H2O2 at low concentrations (Km = 1 

μM) than catalase (Km = 1 mM), indicating that GPx is a less effective antioxidant (90).   These 

age-specific adaptations to exercise training may contribute to the increased dependence on H2O2 

as a vasodilator in arterioles from old rats.   
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In skeletal muscle arterioles, O2
- may have direct vasoactive effects.  To test this 

hypothesis, we determined the vasoreactivity of skeletal muscle arterioles to increasing 

concentrations of pyrogallol, which produces O2
- by auto-oxidation (81).  Pyrogallol caused slight 

vasoconstriction only in young ET rats (Fig. 2.5).  Addition of exogenous O2
- has no effect in SED 

rats (Fig. 2.5) indicating that O2
- is not acting directly to cause vasodilation of vascular smooth 

muscle, but as a signaling molecule that modulates endothelium-dependent vasodilation.  Removal 

of O2
- using Tempol impairs vasodilation, whereas addition of exogenous O2

- should increase 

dilation.  Pyrogallol did not have any vasodilatory effects; however, it is possible that O2
- 

produced by pyrogallol did not permeate the endothelial cell membrane, and thus, did not alter 

intracellular signaling in the endothelium.  Therefore, the inhibition of vasodilation produced by 

Tempol occurred predominately because of dismutation of O2
- to H2O2; however, direct 

manipulation of intracellular levels of O2
- would be necessary to determine precisely the 

endothelial signaling pathways that are directly modulated by O2
-.  These data confirm our results 

obtained in experiments in which Dea-NONOate and Tempol were applied simultaneously.  

Tempol did not alter responsiveness to Dea-NONOate except in young ET rats, indicating that O2
- 

signaling occurs within the endothelium, possibly through O2
--derived H2O2 and/or OH- 

production, or through scavenging of intracellular NO.  Therefore, the reduced NO bioavailability 

that occurred with age in skeletal muscle arterioles, was not the result of increased scavenging of 

NO by extracellular O2
-.  

A limitation of the present study is that we did not directly measure O2
- and/or H2O2 during 

manipulation of SOD and/or catalase activity.  H2O2 can elicit biphasic responses on skeletal 

muscle arterioles (27), thus the final effect of manipulation of either SOD or catalase activity may 

depend on the concentration of H2O2 generated under these conditions.  However, alterations in 

protein levels measured do correlate with increased reliance on H2O2 signaling with age, and a 

reversal of H2O2 dependence in the endothelium of skeletal muscle arterioles.   
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In conclusion, the current study implicates O2
- and O2

--derived ROS (H2O2) as necessary 

signaling molecules required for endothelium-dependent vasodilation in soleus muscle arterioles.  

The dependence of ACh-induced vasodilation on H2O2 increases with age and decreases with 

exercise training.  Furthermore, exercise training contributes to regulation of the relative 

production of O2
- and H2O2, maintaining endothelium-dependent vasodilation in skeletal muscle 

arterioles.   
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Chapter IV 

General Discussion 
The goal of this project was to better understand the mechanisms by which exercise 

training reverses age-related impairment of endothelium-dependent vasodilation in skeletal muscle 

arterioles.  Both studies presented confirm our previous work, which indicated that endothelium-

dependent vasodilation is reduced in skeletal muscle arterioles from old rats.  Exercise training 

restores endothelium-dependent vasodilation in arterioles from old rats and improves 

endothelium-dependent vasodilation in skeletal muscle arterioles from young rats.   

The first study demonstrated that reductions in flow-induced vasodilation are accompanied 

by decreases in BH4 levels in skeletal muscle arterioles from old rats.  Furthermore, the limited 

availability of BH4 in arterioles from old SED rats occurred concomitantly to a subsequent 

decrease in NO signaling and an increase in eNOS-derived O2
- generation, suggesting a role for 

eNOS uncoupling.  Exercise training restored BH4 levels and improved flow-induced NO 

production in arterioles from old rats.  Exercise training increased both NO and ROS-mediated 

signaling in skeletal muscle arterioles, suggesting that the exercise training-induced enhancement 

of flow-induced vasodilation in skeletal muscle arterioles involves a balance between NO and O2
--

derived ROS.   Thus, the beneficial effects of exercise training in the skeletal muscle resistance 

vasculature involves more than improvement of NO bioavailability. 

In our second study, we found that O2
- and O2

--derived ROS (H2O2) are required for 

endothelium-dependent vasodilation in skeletal muscle arterioles.  The dependence of ACh-

induced vasodilation on H2O2 increases with age and decreases with exercise training.  Thus, 

exercise training contributed to the regulation of the relative production of O2
- and H2O2 and that a 

balance between these ROS must be maintained for robust endothelium-dependent vasodilation to 

occur in skeletal muscle arterioles.   
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Taken together, these studies demonstrate that both NO and H2O2 are important signaling 

molecules necessary for mediating endothelium-dependent vasodilation in skeletal muscle 

arterioles.  With advancing age, the dependence of endothelial function on H2O2 increases as NO 

signaling declines in skeletal muscle arterioles.  The existence of a tight balance between NO and 

H2O2 probably exists and is altered with age and with exercise training.   

H2O2 can potentially modulate NO by a variety of mechanisms to increase NO production.  

For example, H2O2 activates eNOS through a series of coordinated phosphorylation and 

dephosphorylation steps through a phosphoinositide 3-kinase-dependent signaling pathway (133).  

Additionally, H2O2 stimulates GTPCH-1 protein, which is the rate-limiting enzyme for de novo 

synthesis of BH4 and elicits increases in both BH4 synthesis and eNOS activity in endothelial cells 

(118, 119).   

In conclusion, impaired endothelium-dependent vasodilation is a risk factor for 

development of cardiovascular disease in aged individuals.  Exercise training augments 

endothelium-dependent vasodilation, and thus reduces cardiovascular disease risk.  However, the 

underlying mechanisms by which exercise training improves endothelium-dependent vasodilation 

have not been fully elucidated.  The data in this dissertation are the first to demonstrate a potential 

mechanism by which exercise training restores age-associated impairments in endothelium-

dependent vasodilation, by restoring BH4 levels and increasing both NO- and ROS-mediated 

signaling in skeletal muscle microcirculation.   
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Appendix 
 

 
 
 
 
Proposed effects of aging on eNOS uncoupling.  BH4 content is reduced in soleus muscle 
arterioles of aged rats. With limited availability of BH4, eNOS becomes uncoupled and leads to 
generation of O2

- rather than NO.  Peroxynitrite (ONOO-), a product of NO and O2
- generated 

through eNOS uncoupling, NADPH oxidases and other sources, could further reduce BH4 
availability.  Vascular SOD scavenges O2

-, which can produce the vasodilator H2O2.  In the 
presence of catalytic transition metals (i.e., Fe +2), H2O2 can produce the potent vasoconstrictor 
OH-.  H2O2 is converted to H2O and O2 in the presence of catalase. 
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