
Graduate Theses, Dissertations, and Problem Reports

2019

Automatic Detection of Insecure Codes in Stack Overflow Automatic Detection of Insecure Codes in Stack Overflow

Shifu Hou
West Virginia University, shhou@mix.wvu.edu

Follow this and additional works at: https://researchrepository.wvu.edu/etd

 Part of the Information Security Commons

Recommended Citation Recommended Citation
Hou, Shifu, "Automatic Detection of Insecure Codes in Stack Overflow" (2019). Graduate Theses,
Dissertations, and Problem Reports. 4069.
https://researchrepository.wvu.edu/etd/4069

This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research
Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license
in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses,
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU.
For more information, please contact researchrepository@mail.wvu.edu.

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F4069&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=researchrepository.wvu.edu%2Fetd%2F4069&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/4069?utm_source=researchrepository.wvu.edu%2Fetd%2F4069&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu

Automatic Detection of Insecure Codes in Stack Overflow

Shifu Hou

Thesis submitted to the

Benjamin M. Statler College of Engineering and Mineral Resources

at West Virginia University

in partial fulfillment of the requirements

for the degree of

Master of Science in

Computer Science

Yanfang Ye, Ph.D., Chair of Committee

Xin Li, Ph.D.

Elaine M. Eschen, Ph.D.

Lane Department of Computer Science and Electrical Engineering

Morgantown, West Virginia

2019

Keywords: Social Code platform; LSTM;HIN

Copyright 2019 Shifu Hou

ABSTRACT

Automatic Detection of Insecure Codes in Stack Overflow

Shifu Hou

As the popularity of modern social coding paradigm such as Stack Overflow grows, its
potential security risks increase as well (e.g., insecure codes could be easily embedded
and distributed). To address this largely overlooked issue, we bring a new insight to
exploit social coding properties in addition to code content for automatic detection of
insecure code snippets in Stack Overflow. To determine if the given code snippets are
insecure, we not only analyze the code content, but also utilize various kinds of rela-
tions among users, badges, questions, answers, code snippets and keywords in Stack
Overflow. To model the rich semantic relationships, we first introduce a structured het-
erogeneous information network (HIN) for representation and then use meta-path based
approach to incorporate higher-level semantics to build up relatedness over code snip-
pets. Later, we propose two different novel network embedding models named Snip-
pet2vec and CodeHin2Vec for representation learning in HIN to automate the insecure
code snippet detection in Stack Overflow. More specifically, Snippet2vec learns the low
dimensional representations for the nodes (i.e., code snippets) in the HIN where both
the HIN structures and semantics are maximally preserved, while CodeHin2Vec uti-
lizes HIN to depict relatedness over code snippets to generate code-to-code sequences,
based on which sequence-to-sequence (seq2seq) concept in machine translation is fur-
ther leveraged to learn representations of code snippets. Accordingly, we developed
systems ICSD and iTrustSO which integrate our proposed methods respectively in in-
secure code snippet detection in Stack Overflow. Comprehensive experiments on the
data collections from Stack Overflow are conducted to validate the effectiveness of our
developed systems by comparisons with the state-of-the-art baseline methods.

Acknowledgments

I would first like to express my greatest gratitude to my committee chair and advisor,
Dr. Yanfang Ye, for her guidance and support not only for this thesis but throughout the
time of my whole master study. Her passion, vision, attitude, and love for research is
always an inspiration source and influence to me; her expertise, understanding, generous
guidance, suggestions, valuable comments and revisions make it possible for me to work
on such an exciting topic; her devotion of significant time and efforts on mentoring my
research has resulted in seven publications by the date of this thesis.

I would also like to thank my committee members, Dr. Li and Dr. Eschen, for their
time and help for my research work; I am very fortunate to work with a cheerful group
members, including Lingwei Chen, Yujie Fan, Yiming Zhang, and Aaron Saas, who
exchanged ideas about machine learning related research work and provided useful sug-
gestions on my thesis.

I am highly thankful to be blessed by amazing and talented family members and friends,
who have made such a positive impact on my daily life, study, and research.

This work is partially supported by the NSF under grants OAC-1839909, CNS-1618629,
CNS-1814825, and CNS-1845138, the DoJ/NIJ under grant NIJ 2018-75-CX-0032, the
WV HEPC Grant (HEPC.dsr.18.5), and the WVU RSA grant (R-844).

iii

Table of Contents

Abstract ii
Acknowledgments iii
Table of Contents iv
List of Figures v
List of Tables vi
Chapter 1 Introduction 1

1.1 Background and Motivation . 1
1.2 Research Objective . 2
1.3 Major Contributions . 4
1.4 Thesis Organization . 5

Chapter 2 Related Work 6
2.1 Research on Stack Overflow . 6
2.2 HIN and its Representation Learning 7

Chapter 3 ICSD:HIN Model for Insecure Code Snippet Detection 8
3.1 System Architecture . 8
3.2 Proposed Method . 9
3.3 Experimental Results and Analysis . 19

Chapter 4 iTrustSO: Code-to-code Sequential Model over HIN for Inse-
cure Code Snippet Detection 26

4.1 System Architecture . 26
4.2 Proposed Method . 27
4.3 Experimental Results and Analysis . 34

Chapter 5 Conclusion and Future Work 39
Publications 40
Bibliography 40

iv

List of Figures

1.1 Example of code security attacks in Stack Overflow. 2
1.2 An example of relatedness over code snippets. 3

3.1 System architecture of ICSD. 9
3.2 Network schema for HIN in our application. 12
3.3 Meta-paths built for insecure code snippet detection (The symbols are

the abbreviations shown in Figure 3.2). 13
3.4 Random walk guided by single meta-path vs. random walk guided by

multiple meta-paths. 15
3.5 Parameter sensitivity evaluation. 24
3.6 Scalability evaluation. 24
3.7 Stability evaluation. 25

4.1 System architecture of iTrustSO. 26
4.2 Network schema for HIN in our application. 27
4.3 Different contexts among code snippets. 28
4.4 Architecture of LSTM using hierarchical attention. 30
4.5 Attention evaluation. 35
4.6 Parameter sensitivity evaluation. 37

v

List of Tables

3.1 Performance indices of code snippet detection 20
3.2 Detection Results of different meta-paths 20
3.3 Comparisons with other network representation learning methods in in-

secure code snippet detection . 22
3.4 Comparisons of other machine learning methods 23

4.1 Detection Results of different meta-paths 35
4.2 Comparisons of CodeHin2Vec with other network representation learn-

ing methods in insecure code snippet detection 36
4.3 Comparisons of other machine learning methods 38

vi

Chapter 1

Introduction

1.1 Background and Motivation

Nowadays, as computing devices and Internet become increasingly ubiquitous, software

has played a vital role in modern society covering many corners of our daily lives, such

as Instant Message (IM) tools of WhatsApp and WeChat. In recent years, there has

been an exponential growth in the number of software; it’s estimated that the global

software market reached approximately $406.6 billions in 2017 [1]. Unlike conventional

approaches (e.g., code handbook based), modern software developers heavily engage

in a social coding environment, i.e., they tend to reuse code snippets and libraries or

adapt existing ready-to-use projects during the process of software development [2]. In

particular, Stack Overflow [3], as the largest online programming discussion platform,

has attracted 8.9 million registered developers [4]. The vibrant discussions and ready-

to-use code snippets make it one of the most important information sources to software

developers [5]. Despite the apparent benefits of such social coding environment, its

profound implications into the security of software remain poorly understood [6, 7]. For

example, can one trust code snippets posted in Stack Overflow?

As the popularity of Stack Overflow grows, the incentive of launching a large-scale

security attack by exploiting the vulnerability of posted code snippets increases as well.

According to a recent study [8], collected question-answer samples from Stack Overflow

contain various security-related issues such as encryption with insecure mode, insecure

Application Programming Interface (API) usage and so on. Those innocent-looking yet

insecure code snippets - if not properly handled and directly transplanted to production

1

software - could cause severe damage or even a disaster (e.g., disrupting system opera-

tions, leaking sensitive information) [8, 9]. For example, as shown in Figure 1.1, since

cryptocurrency has grown popular, attackers have injected malicious mining code such

as Coinhive - a cryptocurrency mining service - into Stack Overflow; once innocent de-

velopers reuse or copy-paste such code snippets to generate the production software, the

software users’ devices could be compromised (e.g., processing power would be stolen

to mine bits of cryptocurrency).

Figure 1.1: Example of code security attacks in Stack Overflow.

Stack Overflow has been aware of the negative impacts of insecure code infiltrations;

unfortunately there has been no principled way of dealing with insecure code snippets

included in the posted questions/answers other than labeling the moderator flag, down-

voting those threads or warning in the comments [8]. Given the rich structure and infor-

mation of Stack Overflow with ever-evolving programming languages, there is apparent

and imminent need to develop novel and sound solutions to address the issue of code

snippet security in Stack Overflow.

1.2 Research Objective

To address the above challenge of code security in Stack Overflow, an important new

insight brought by this work is to exploit social coding properties in addition to code

2

content for automatic detection of insecure code snippets. As a social coding environ-

ment, Stack Overflow is characterized by user communication through questions and

answers [10], that is, a rich source of heterogeneous information are available in Stack

Overflow including users, badges, questions, answers, code snippets, and the rich se-

mantic relationships among them. For example, as shown in Figure 1.2, to detect if

a code snippet (Code-2) is insecure, using the code content (e.g., methods, functions,

APIs, etc.) alone may not be sufficient; however, other rich information provided in

Stack Overflow could be valuable for the prediction, such as (1) the same user (User-

1) may be prone to post different insecure code snippets (Code-1 and Code-2) due to

his/her coherent code writing style, or (2) similar insecure code snippets (Code-2 and

Code-3) may be posted by a group of inexperienced users (User-1 and User-2 both only

had the bronze badge of “commentator” that could be gained by leaving 10 comments in

Stack Overflow). To utilize the social coding properties of Stack Overflow data (i.e., in-

Figure 1.2: An example of relatedness over code snippets.

cluding different entities of users, badges, questions, answers and code snippets, as well

as the rich semantic relationships among them) in addition to code content (i.e., key-

words extracted from code snippets such as function names, methods and APIs), in our

research, we propose to introduce a heterogeneous information network (HIN) [11, 12]

as an abstract representation. Then we use meta-path [12] to incorporate higher-level

semantic relationships to build up relatedness over the code snippets. Afterwards, to

reduce the high computation and space cost, we further propose two different novel

network embedding models named snippet2vec and CodeHin2Vec for node (i.e., code

snippet) representation learning in the HIN, where both HIN structure and semantics are

maximally preserved. After that, a classifier is constructed for automatic detection of

insecure code snippets in Stack Overflow.

3

1.3 Major Contributions

The major contributions of our work can be summerized as follows:

• Novel feature representation of Stack Overflow data. Security risks arising from

the new paradigm of social coding are more sophisticated than those from con-

ventional wisdom, which requires a deeper understanding and a greater modeling

effort. In addition to code content, a rich source of heterogeneous information in

Stack Overflow including users, badges, questions, answers, code snippets, and

the semantic relations among them is also available. To utilize such social cod-

ing properties (e.g., question-code, answer-code, code-keywords, user-question,

user-answer, question-answer, and user-badge relations), we propose to intro-

duce HIN as an abstract representation of Stack Overflow data. Then a meta-path

based approach is exploited to characterize the relatedness over code snippets.

The proposed solution provides a natural way of expressing complex relationships

in social coding platforms such as Stack Overflow, which has not been studied in

the open literature to our best knowledge.

• snippet2vec: an effective representation learning integrating node content and
HIN-based relations Based on a set of built meta-path schemes, to reduce the high

computation and space cost, a new network embedding model named snippet2vec

is proposed to learn the low-dimensional representations for the nodes (i.e., code

snippets) in the HIN, which are capable to preserve both the semantics and struc-

tural correlations between different types of nodes. Then, given different sets of

meta-path schemes, different kinds of node (i.e., code snippet) representations

will be learned by using snippet2vec. To aggregate these different learned node

representations, we propose a multi-view fusion classifier to learn importance of

them and thus to make predictions (i.e., a given code snippet will be labeled as

either insecure or not).

• CodeHin2Vec: a code-to-code sequence modeling with LSTM for node embed-
ding. More specifically, a new model CodeHin2Vec is proposed to seamlessly

combine code content and HIN-based relations to learn representations of code

snippets, in which code sequences are first generated based on the walk paths

4

guided by different meta-paths; in each code sequence, its elements are repre-

sented by the code content feature vectors; then, LSTM using hierarchical at-

tention mechanism is leveraged for code sequence modeling. CodeHin2Vec is a

generic framework which can also be applicable for other representation learning

task.

• Two practical systems for automatic detection of insecure code snippets. Based

on the collected and annotated data from Stack Overflow, we develop Two prac-

tical systems named ICSD and iTrustSO integrating our proposed methods for

automatic detection of insecure code snippets. We provide comprehensive exper-

imental studies to validate the performance of our developed systems in compar-

isons with alternative approaches. This work is the first attempt utilizing both

code content and social coding properties for automatic analysis of code security

in Stack Overflow. The proposed method and developed system can also be eas-

ily expanded to code security analysis in other social coding platforms, such as

GitHub and Stack Exchange.

1.4 Thesis Organization

The remainder of this paper is organized as follows. Chapter 2 discusses the related

work. Chapter 3 presents our developed systems ICSD in detail. Chapter 4 presents our

developed systems iTrustSO in detail. Finally, Chapter 5 prensents the concludes and

our future work.

5

Chapter 2

Related Work

2.1 Research on Stack Overflow

There have been many works on knowledge discovery from Stack Overflow data [13,

14, 15, 16, 17, 18, 19, 20, 2, 21] - from gamification motivation for voluntary contri-

butions [19], discussion interest trend [14, 15], patterns of questions/answers [17] and

project-specific language differences [18], to developer interaction [20], dynamics of

the participation [21], repair patterns from extracted code samples [16] and interplay

between platform activities and development process [2]. However, most of these works

have focused in Stack Overflow semantics and users behavior but rarely addressed the

issue of code security analysis. The only exceptions appear to be [6] and [7] which

both exploited Android app codes as a case study to evaluate the security of informa-

tion source in Stack Overflow. Though those research results are promising, [6] only

performed empirical studies while [7] merely analyzed the code snippet itself without

considering any relationship to other Stack Overflow data (i.e., without utilizing the so-

cial coding properties in this platform). Different from the existing works, in this paper,

to detect the insecure code snippets in Stack Overflow, we propose to utilize not only

the code content, but also various kinds of relationships among users, badges, questions,

answers, and code snippets. Based on the extracted relation features, the code snippets

are depicted by a structured HIN.

6

2.2 HIN and its Representation Learning

HIN is used to model different types of entities and relations [22], which has been inten-

sively deployed to various applications, such as scientific publication network analysis

[11, 12], document analysis based on knowledge graph [23], social network analysis

[24, 25], and malware detection [26, 27]. To reduce the high computation and space

cost in network mining, many efficient network embedding methods have been pro-

posed, including homogeneous network representationn learning (e.g., DeepWalk [28],

node2vec [29], PTE [30], and LINE [31]) and HIN representation learning (e.g., ESim

[32], metapath2vec [33] and HIN2vec [34]). Unfortunately, these methods cannot be

directly employed in our application, which is to exploit social coding properties in ad-

dition to code content for automatic detection of insecure code snippets. To tackle this

challenge, in this paper, we propose a novel learning model named snippet2vec for node

(i.e., code snippet) representation learning in HIN where both the HIN structures and se-

mantics are maximally preserved; after that, a multi-view fusion classifier is constructed

for insecure code snippet detection.

7

Chapter 3

ICSD:HIN Model for Insecure Code
Snippet Detection

3.1 System Architecture

The system architecture of ICSD is shown in Figure 3.1, which is developed for insecure

code snippet detection in Stack Overflow. It consists of the following major components:

• Data collector. A set of crawling tools are developed to collect the data from

Stack Overflow. The collected data includes users’ profiles, their posted questions

and answers, and the code snippets embedded in the questions/answers.

• Feature extractor. Resting on the data collected from the previous module, to

depict the code snippets, it first extracts the content-based features from the col-

lected code snippets (i.e., keywords such as function names, methods and APIs),

and then analyzes various relationships among different types of entities (i.e.,

user, badge, question, answer, code snippet, keyword), including i) question-have-

code, ii) answer-include-code, iii) code-contain-keyword, iv) user-post-question,

v) user-supply-answer, vi) answer-echo-question, and vii) user-gain-badge rela-

tions. (See Section 3.2 for details.)

• HIN constructor. In this module, based on the features extracted from the pre-

vious component, a structured HIN is first presented to model the relationships

among different types of entities; and then different meta-paths are built from the

8

Figure 3.1: System architecture of ICSD.

HIN to capture the relatedness over code snippets from different views (i.e., with

different semantic meanings). (See Section 3.2 for details.)

• snippet2vec. Based on the built meta-path schemes, to reduce the high computa-

tion and space cost, a new network embedding model snippet2vec is proposed to

learn the low-dimensional representations for the nodes in HIN, which are capable

to preserve both the semantics and structural correlations between different types

of nodes. In snippet2vec, given a set of different meta-path schemes, a meta-path

guided random walk strategy is first proposed to map the word-context concept

in a text corpus into a HIN; then skip-gram is leveraged to learn effective node

representation for a HIN. (See Section 4.2 for details.)

• Multi-view fusion classifier. Given different sets of meta-path schemes, different

kinds of node (i.e., code snippet) representations will be learned by using snip-

pet2vec. To aggregate these different representations, a multi-view fusion classi-

fier is constructed to learn importance of them and thus to make predictions (i.e.,

the unlabeled code snippets will be predicted if they are insecure or not). (See

Section 3.2 for details.)

3.2 Proposed Method

In this section, we present the detailed approaches of how we represent the code snip-

pets in Stack Overflow utilizing both code content and social coding properties simul-

taneously, and how we solve the insecure code snippet detection problem based on the

representation.

9

Feature Extraction

Code snippets. Stack Overflow provides the discussion platform for software developers

to post their questions and answers about ever-evolving programming languages includ-

ing Java, JavaScript, C/C++/C#, Python, PHP, perl, etc. In this paper, we will focus on

Java programming language for Android application (app) development as a showcase

for the following reasons: (1) Java is one of the most popular programming languages

in Stack Overflow [17]. (2) Due to the mobility and ever expanding capabilities, mobile

devices have recently surpassed desktop and other media - it is estimated that 77.7% of

all devices connected to the Internet will be smart phones in 2019 [35, 36] (leaving PCs

falling behind at 4.8%). Android, as an open source and customizable operating system

for mobile devices, is currently dominating the smart phone market by 82.8% [37]. (3)

Billions of mobile device users with millions of Android apps installed have attracted

more and more developers; however, most of these Android mobile apps have poorly

implemented security mechanisms partially because developers are inexperienced, dis-

tracted or overwhelmed [38, 6]. Indeed developers tend to request more permissions

than what are actually needed, often use insecure options for Inter Component Com-

munication (ICC), and fail to store sensitive information in private areas [17]. Code

snippets in Stack Overflow are surrounded by 〈code〉 〈/code〉 tags, and they can thus

easily be separated from accompanying texts before being extracted. Then, content-

based features will be further extracted from the collected code snippets: we will first

remove all the punctuations and stopwords; and then we will extract the keywords in-

cluding function names, methods, APIs and parameters to represent the content of code

snippets.

Social coding properties. To depict a code snippet in Stack Overflow, we not only utilize

its above extracted content-based features, but also consider its social coding properties

including followings.

• R1: To describe the relation that a question thread has a code snippet included,

we generate the question-have-code matrix H where each element hi,j ∈ {0, 1}
indicates whether question i has code snippet j.

• R2: To denote the relation that an answer thread includes a code snippet, we gen-

erate the answer-include-code matrix I where each element ii,j ∈ {0, 1} means if

answer i includes code snippet j.

10

• R3: To represent the relation that a code snippet contains a specific keyword

(e.g., function name of “Coinhive”), we build the code-contain-keyword matrix

C whose element ci,j ∈ {0, 1} denotes whether code snippet i contains keyword

j.

• R4: To describe the relation between a user and a question he/she posts, we gen-

erate the user-post-question matrix P where each element pi,j ∈ {0, 1} denotes

if user i posts question j.

• R5: To represent the relation of a user and an answer he/she supplies, we gen-

erate the user-supply-answer matrix S where each element si,j ∈ {0, 1} denotes

whether the user i supplies answer j.

• R6: To denote the Q&A relationship, we build the answer-echo-question ma-

trix E whose element ei,j ∈ {0, 1} denotes whether answer i echoes/responds to

question j.

• R7: In order to encourage engagement, Stack Overflow has adopted a strategy

of gamification [10] - users will be rewarded for their valued contributions to the

forum. For example, “illuminator” badge (gold level in answer badges) will be

awarded to the users who edit and answer 500 questions (both actions within 12

hours, answer score > 0). This can be seen as a measure of a user’s expertise by

potential recruiters [39]. In Stack Overflow, there are different kinds of badges

(e.g., question badges, answer badges, etc.) with different levels (i.e., gold, silver,

and bronze). To describe the relationship between a user and a specific badge

he/she gains, we build the user-gain-badge matrix G whose element gi,j ∈ {0, 1}
denotes if user i gain badge j.

HIN Constructor

In order to depict users, badges, questions, answers, code snippets, keywords as well

as the rich relationships among them (i.e., R1-R7), it is important to model them in

a proper way so that different kinds of relations can be better and easier handled. We

introduce how to use HIN, which is capable to be composed of different types of entities

and relations, to represent the code snippets in Stack Overflow by using the features

extracted above. We first present the concepts related to HIN as follows.

11

Definition 1. Heterogeneous information network (HIN) [40]. A HIN is defined as a

graph G = (V , E) with an entity type mapping φ: V → A and a relation type mapping

ψ: E → R, where V denotes the entity set and E is the relation set, A denotes the entity

type set and R is the relation type set, and the number of entity types |A| > 1 or the

number of relation types |R| > 1. The network schema [40] for a HIN G, denoted as

TG = (A,R), is a graph with nodes as entity types from A and edges as relation types

fromR.

HIN not only provides the network structure of the data associations, but also pro-

vides a high-level abstraction of the categorical association. For our case, i.e., the de-

tection of insecure code snippets in Stack Overflow, we have six entity types (i.e., user,

badge, question, answer, code snippet, keyword) and seven types of relations among

them (i.e., R1-R7). Based on the definitions above, the network schema for HIN in our

application is shown in Figure 3.2, which enables the code snippets in Stack Overflow to

be represented in a comprehensive way that utilizes both their content-based information

and social coding properties.

Figure 3.2: Network schema for HIN in our application.

The different types of entities and relations motivate us to use a machine-readable

representation to enrich the semantics of relatedness among code snippets in Stack Over-

flow. To handle this, the concept of meta-path has been proposed [12] to formulate the

higher-order relationships among entities in HIN. Here, we follow this concept and ex-

tend it to our application of insecure code snippet detection in Stack Overflow.

Definition 2. Meta-path [12]. A meta-path P is a path defined on the graph of network

schema TG = (A,R), and is denoted in the form of A1
R1−→ A2

R2−→ ...
RL−→ AL+1, which

defines a composite relation R = R1 ·R2 · . . . ·RL between types A1 and AL+1, where ·
denotes relation composition operator, and L is the length of P .

12

Figure 3.3: Meta-paths built for insecure code snippet detection (The symbols are the
abbreviations shown in Figure 3.2).

Given a network schema with different types of entities and relations, we can enu-

merate a lot of meta-paths. In our application, based on the collected data, resting on the

seven different kinds of relationships, we design nine meaningful meta-paths for charac-

terizing relatedness over code snippets in Stack Overflow, i.e., PID1-PID9 shown in Fig-

ure 3.3. Different meta-paths depict the relatedness between two code snippets at differ-

ent views. For example, the meta-path PID2 formulates the relatedness over code snip-

pets in Stack Overflow: code Include−1

−−−−−−→ answer
Supply−1

−−−−−→ user
Supply−−−−→ answer

Include−−−−→
code which means that two code snippets can be connected as they are included in the

answers supplied by the same user; while another meta-path PID6: code
Include−1

−−−−−−→
answer

Supply−1

−−−−−→ user
Gain−−−→ reputation

Gain−1

−−−−→ user
Supply−−−−→ answer

Include−−−−→ code

denotes that two code snippets are related as they are included in the answers supplied

by the users with the same kind of badge (e.g., “illuminator” badge) indicating similar

expertise or contribution. In our application, meta-path is a straightforward method to

connect code snippets via different relationships among different entities in HIN, and

enables us to depict the relatedness over code snippets in Stack Overflow utilizing both

their content-based information and social coding properties in a comprehensive way.

13

snippet2vec: HIN Representation Learning

To measure the relatedness over HIN entities (e.g., code snippets), traditional represen-

tation learning for HIN [41, 42, 12, 43] mainly focuses on factorizing the matrix (e.g.,

adjacency matrix) of a HIN to generate latent-dimension features for the nodes (e.g.,

code snippets) in the HIN. However, the computational cost of decomposing a large-

scale matrix is usually very expensive, and also suffers from its statistical performance

drawback [29]. To reduce the high computation and space cost, it calls for scalable rep-

resentation learning method for HIN. Given a HIN G = (V , E), the HIN representation
learning task [34, 33] is to learn a function f : V → Rd that maps each node v ∈ V to a

vector in a d-dimensional space Rd, d � |V| that are capable to preserve the structural

and semantic relations among them.

To solve the problem of HIN representation learning, due to the heterogeneous prop-

erty of HIN (i.e., network consisting of multi-typed entities and relations), it is difficult

to directly apply the conventional homogeneous network embedding techniques (e.g.,

DeepWalk [28], LINE [31], node2vec [29]) to learn the latent representations for HIN.

To address this issue, HIN embedding methods such as metapath2vec [33] was pro-

posed. In metapath2vec, given a meta-path scheme, it employs meta-path based random

walk and heterogeneous skip-gram to learn the latent representations for HIN such that

the semantic and structural correlations between different types of nodes could be per-

severed. The metapath2vec was proposed to support one meta-path scheme to guide the

walker traversing HIN; however, in our application, the code snippets in Stack Overflow

can be connected through nine different meta-path schemes. It may not be feasible to

directly employ metapath2vec in our case for insecure code snippet detection. To put

this into perspective, as shown in Figure 3.4, we gain further insight into Stack Overflow

data and have following interesting findings:

• Finding 1: Both insecure Code-1 and Code-2 (i.e., they can both cause poten-

tial confidential information leakage) are posted by User-1 “Ke***a” (we here

anonymize his user name) answering the questions about string access for An-

droid app. Actually, Code-1 and Code-2 can be connected by the Path-A guided

by the designed meta-path PID2.

• Finding 2: The insecure codes of Code-3 (i.e., it may allow users to remotely

execute the malicious code) and Code-4 (i.e., it can cause potential data breach)

14

Figure 3.4: Random walk guided by single meta-path vs. random walk guided by mul-
tiple meta-paths.

are connected in the way that (1) Code-3 and Code-5 are related as they were

posted by User-2 and User-3 who only had the bronze badge of “student” (i.e.,

first question with score of 1 or more); and then (2) User-4 copied and pasted

Code-5 while also provided Code-4 to answer another user’s posted question. In

this way, Code-3 and Code-4 can be connected by the Path-B guided by meta-

paths of PID6 and PID2.

Based on the above observations, metapath2vec [33] fails to generate the path such

as Path-B to represent the relatedness between code snippets like Code-3 and Code-

4. To address this issue, we design a new network embedding model snippet2vec to

learn desirable node representations in HIN: first, a new random walk method guided by

different meta-paths is proposed to map the word-context concept in a text corpus into

a HIN; then skip-gram is leveraged to learn effective node representation for a HIN.

Random walk guided by different meta-paths. Given a source node vj in a ho-

mogeneous network, the traditional random walk is a stochastic process with random

variables v1j , v
2
j , ..., v

k
j such that vk+1

j is a node chosen at random from the neighbors

of node vk. The transition probability p(vi+1
j |vij) at step i is the normalized probabil-

15

ity distributed over the neighbors of vij by ignoring their node types. However, this

mechanism is unable to capture the semantic and structural correlations among differ-

ent types of nodes in a HIN. Here, we show how we use different built meta-paths to

guide the random walker in a HIN to generate the paths of multiple types of nodes.

Given a HIN G = (V , E) with schema TG = (A,R), and a set of different meta-paths

S = {Pj}nj=1 (e.g., in Finding2, S = {PID6, P ID2}), each of which is in the form of

A1 → ...At → At+1...→ Al, we put a random walker to traverse the HIN. The random

walker will first randomly choose a meta-path Pk from S and the transition probabilities

at step i are defined as follows:

p(vi+1|viAt
,S) =



λ
|S|

1
|NAt+1

(viAt
)|

if (vi+1, viAt
) ∈ E , φ(viAt

) = Ac, φ(v
i+1) = At+1

1
|NAt+1

(viAt
)|

if (vi+1, viAt
) ∈ E , φ(viAt

) 6= Ac,

φ(vi+1) = At+1, (At, At+1) ∈ Pk
0 otherwise,

(3.1)

where φ is the node type mapping function, NAt+1(v
i
At
) denotes the At+1 type of neigh-

borhood of node viAt
, Ac is entity type of Code, and λ is the number of meta-paths

starting with Ac → At+1 in the given meta-path set S. The walk paths generated by the

above strategy are able to preserve both the semantic and structural relations between

different types of nodes in the HIN, and thus will facilitate the transformation of HIN

structures into skip-gram.

Skip-gram. After mapping the word-context concept in a text corpus into a HIN via

meta-path guided random walk strategy (i.e., a sentence in the corpus corresponds to a

sampled path and a word corresponds to a node), skip-gram [44, 28] is then applied on

the paths to minimize the loss of observing a node’s neighbourhood (within a window

w) conditioned on its current representation. The objective function of skip-gram is:

argmin
Y

∑
−w≤k≤w,j 6=k

− log p(vj+k|Y (vj)), (3.2)

where Y (vj) is the current representation vector of vj , p(vj+k|Y (vj)) is defined using

16

the softmax function:

p(vj+k|Y (vj)) =
exp(Y (vj+k) · Y (vj))∑|V|
q=1 exp(Y (vq) · Y (vj))

. (3.3)

Due to its efficiency, we first apply hierarchical softmax technique [45] to solve Eq. 3.3;

then the stochastic gradient descent [46] is employed to train the skip-gram.

Multi-view Fusion Classifier

Given a set of different meta-path schemes, by using the above proposed snippet2vec,

the node (i.e., code snippet) representations will be learned in the HIN. In our ap-

plication, as described in Section 3.2, we have nine meta-paths (i.e., PID1–MID9)

which characterize the relatednesses over code snippets at different views (i.e., with

different semantic meanings). Based on our observations on the Stack Overflow data

and leveraging the domain expertise, we generate m sets of meta-path schemes S =

{Si}mi=1 for snippet2vec to learn the node representations in the HIN, where m = 4

and S = {(PID1, P ID2, P ID6), (PID1, P ID3, P ID7), (PID1, P ID4, P ID8),

(PID1, P ID5, P ID9)}. Given these different sets of meta-paths, using snippet2vec,

different node representations will be learned in the HIN. Here, we propose to use multi-

view fusion to aggregate these different learned node representations for code snippet

classification.

Given m kinds of node representations Yi(i = 1, ...,m) learned based on m sets

of meta-path schemes, the incorporated node representations can be denoted as: Y ′ =∑m
i=1(αi×Yi), where αi (i = 1, ...,m) is the weight of Yi. To determine the weight of αi

for each mapped low-dimensional vector space Yi, we measure the geometric distances

among them. The distance measure based on the principal angles between two vector

spaces is significant if and only if the vector spaces have the same dimensions [47]. In

our case, the m mapped vector spaces are all with the same dimensions of d. Therefore,

we apply the geodesic distance based on principal angles [48] to measure the geometric

distances between the mapped vector spaces. The principal angle between space Yi and

Yj is defined as the number 0 ≤ θ ≤ π
2

that satisfies:

cos θ = max
y∈Yi,y′∈Yj

yTy′. (3.4)

17

The angle θ is 0 if and only if Yi
⋂
Yj 6= 0, while θ = π

2
if and only if Yi ⊥ Yj . Let

θ1, θ2, ..., θd be the d principal angles between space Yi and Yj , the geodesic distance

between them is formulated as:

d(Yi, Yj) =
√
θ21 + θ22 + ...+ θ2d. (3.5)

Thus, we compute αi for each mapped vector space Yi as:

αi =

∑m
j=1,i 6=j d(Yi, Yj)∑m

i=1

∑m
j=1,i 6=j d(Yi, Yj)

. (3.6)

To this end, the incorporated node representations Y ′ will be fed to the Support Vec-

tor Machine (SVM) to train the classification model, based on which the unlabeled code

snippets can be predicted if they are insecure or not. Algorithm 2 shows the implemen-

tation of the our developed insecure code snippet detection system ICSD.

Algorithm 1 ICSD – Insecure code snippet detection in Stack Overflow based on struc-
tured HIN

Input: The HIN G = (V , E), network schema TG = (A,R), m sets of meta-path
schemes S = {Si}mi=1, number of walk paths per node r, walk length l, and vector
dimension d, traning data set Dt, testing data set De Output:f : The labels for the
testing code snippets.

1: for i = 1→ m do
2: for j = 1→ r do
3: get l-length random walks using Eq. 3.1 guided by Si
4: end for
5: Generate Yi ∈ R|V|×d using skip-gram in Eq. 3.2
6: end for
7: for i = 1→ m do
8: Calculate αi for Yi using Eq. 3.4–Eq. 3.6
9: end for

10: Get incorporated node representations Y′ =
∑m

i=1(αi × Yi)
11: Train SVM using Y′Dt

12: for k = 1→ |De| do
13: Generate the label fk using trained SVM
14: end for
15: return f

18

3.3 Experimental Results and Analysis

Experimental Setup

We develop a set of crawling tools to collect the data from Stack Overflow. As stated in

Section 3.2, we consider Java programming language for Android app as a case study

to evaluate our developed system. Note that it’s also applicable to other kinds of pro-

gramming languages in Stack Overflow. We use our developed crawling tools to collect

users’ profiles, question threads, answer threads, and code snippets in Stack Overflow in

a period of time. By the date, we have collected 429,523 question threats and 623,746

answer threats posted by 213,560 users including 737,215 code snippets, through March

2010 to May 2018. To obtain the ground truth for the evaluation of different detection

methods, we need to prelabel a fraction of code snippets (i.e., either secure or insecure).

We first categorize code security risks and vulnerabilities for Android apps into six cate-

gories: (1) Android Manifest configuration, (2) WebView component, (3) data security,

(4) file directory traversal, (5) implicit intents, and (6) security checking; and then we

leverage our domain expertise and follow the principles such as least permission request,

correct usage of HTTPS and TLS for networking, secure inter-component communica-

tion, secure storage to manually label a filtered set of 20,137 code snippets (i.e., 9,054

code snippets are labeled as insecure while 11,083 are secure). After feature extraction

and based on the designed network schema, the constructed HIN has 80,405 nodes (i.e.,

20,137 nodes with type of code snippet, 24,286 nodes with type of answer, 13,924 nodes

with type of question, 21,471 with type of user, 94 with type of badges, and 493 with

type of selected keywords) and 592,082 edges including relations of R1-R7. We use the

performance indices shown in Table 3.1 to quantitatively validate the effectiveness of

different methods in insecure code snippet detection.

snippet2vec based on Different Sets of Meta-path Schemes

In this set of experiments, based on the dataset described in Section 3.3, we first evaluate

the performance of different kinds of relatedness over code snippets depicted by differ-

ent sets of meta-path schemes. In the experiments, given a specific set of meta-path

schemes, we use snippet2vec to learn the latent representations of the nodes (i.e., code

snippets) in the HIN, which are then fed to SVM to build the classification model for in-

19

Table 3.1: Performance indices of code snippet detection

Indices Description

TP # of code snippets correctly classified as insecure
TN # of code snippets correctly classified as secure
FP # of code snippets mistakenly classified as insecure
FN # of insecure mistakenly classified as secure
Precision TP/(TP + FP)
Recall/TPR TP/(TP + FN)
ACC (TP + TN)/(TP + TN + FP + FN)
F1 2× Precision× Recall/(Precision + Recall)

secure code snippet detection. For SVM, we use LibSVM and the penalty is empirically

set to be 10 while other parameters are set by default. As described in Section 3.2, we

generate four sets of meta-path schemes (denoted as S1, S2, S3, and S4) for snippet2vec

to learn the node representations in the HIN. We conduct 10-fold cross validations for

evaluation. The performances of four different sets of meta-path schemes (i.e., S1-S4) in

comparison with nine individual meta-paths (i.e., PID1–PID9) in insecure code snippet

detection are shown in Table 4.1.

Table 3.2: Detection Results of different meta-paths

ID Meta-paths included Precision Recall ACC F1

S1 (PID1,PID2,PID6) 0.9065 0.8887 0.8883 0.8975
S2 (PID1,PID3,PID7) 0.8899 0.8678 0.8682 0.8787
S3 (PID1,PID4,PID8) 0.9028 0.8834 0.8834 0.8930
S4 (PID1,PID5,PID9) 0.8922 0.8709 0.8710 0.8814

S ′5 (PID1) 0.8795 0.8561 0.8562 0.8676
S ′6 (PID2) 0.8340 0.7988 0.8018 0.8160
S ′7 (PID3) 0.8017 0.7657 0.7668 0.7833
S ′8 (PID4) 0.8463 0.8179 0.8180 0.8318
S ′9 (PID5) 0.8312 0.8001 0.8006 0.8153
S ′10 (PID6) 0.8449 0.8119 0.8145 0.8281
S ′11 (PID7) 0.8108 0.7708 0.7748 0.7903
S ′12 (PID8) 0.8020 0.7642 0.7664 0.7826
S ′13 (PID9) 0.7897 0.7518 0.7532 0.7703

From Table 4.1, we can see that different sets of meta-path schemes indeed show

20

different performances in insecure code snippet detection, since each of them represents

specific semantics in insecure code snippet detection. From Table 4.1, we can also

observe that: (1) PID1 outperforms the other individual meta-paths (i.e., PID2–PID9),

which indicates that the semantics of this meta-path reflect the problem of insecure code

snippet detection better than the others. (2) The meta-paths of PID2, PID4, PID6, and

PID8 perform better than PID3, PID5, PID7, and PID9 respectively; the reason behind

this is that the code snippets posted in the answer threads are more likely to be reused

by the developers than the ones posted in question threads, and thus they have closer

connections. (3) Obviously, S1, S2, S3, and S4 utilizing different meta-paths built from

HIN are more expressive than each individual meta-path (i.e., PID1–PID9) in depicting

the code snippets in Stack Overflow and thus achieve better detection performance. It

will be interested to see the detection performance if different sets of meta-paths are

further aggregated. This will be evaluated in the next set of experiments.

Comparisons with Different Network Embedding Models

In this set of experiments, we evaluate our developed system ICSD integrating our pro-

posed method described in Section 3.2 by comparisons with several network represen-

tation learning methods: (1) DeepWalk [28] and LINE [31] which are homogeneous

network embedding methods; and (2) metapath2vec [33] which is a HIN embedding

model. For DeepWalk and LINE, we ignore the heterogeneous property of HIN and

directly feed the HIN for representation learning; in metapath2vec, a walk path will be

generated only based on a single meta-path scheme; while in our proposed snippet2vec,

a walk path will be guided by a set of different meta-path schemes. The parameter set-

tings used for snippet2vec are in line with typical values used for the baselines: vector

dimension d = 200 (LINE: 200 for each order (1st- and 2nd-order)), walks per node

r = 10, walk length l = 80, and window size w = 10. To facilitate the comparisons, we

use the experimental procedure as in [28, 31, 33]: we randomly select a portion of la-

beled code snippets described in Section 3.3 (ranging from 10% to 90%) for training and

the remaining ones for testing. For all the baselines, the SVM is used as the classifica-

tion model; for ICSD, based on the four given sets of meta-path schemes, it will generate

four different kinds of node representations using snippet2vec and then use multi-view

fusion classifier proposed in Section 3.2 to train the classification model. Table 3.3 il-

21

Table 3.3: Comparisons with other network representation learning methods in insecure
code snippet detection

Metric Method 10% 30% 50% 70% 90%

ACC

DeepWalk 0.6085 0.6550 0.6810 0.7148 0.7279
LINE 0.6347 0.6847 0.7268 0.7475 0.7732

metapath2vec 0.7772 0.8197 0.8490 0.86632 0.8826
ICSD 0.7973 0.8384 0.8771 0.8953 0.9123

F1

DeepWalk 0.6308 0.6764 0.7006 0.7329 0.7461
LINE 0.6569 0.7047 0.7451 0.7644 0.7892

metapath2vec 0.7932 0.8332 0.8609 0.8765 0.8921
ICSD 0.8121 0.8508 0.8871 0.9036 0.9197

lustrates the detection results of different network representation learning models. From

Table 3.3, we can see that ICSD integrating the proposed snippet2vec model consistently

and significantly outperforms all baselines for insecure code snippet detection in terms

of ACC and F1. That is to say, snippet2vec learns significantly better code snippet rep-

resentation than current state-of-the-art methods. The success of snippet2vec lies in the

proper consideration and accommodation of the heterogeneous property of HIN (i.e.,

the multiple types of nodes and relations), and the advantage of random walk guided

by different meta-paths for sampling the node paths. Furthermore, from Table 4.1 and

Table 3.3, we can also observe that using the multi-view fusion classifier proposed in

Section 3.2 to aggregate different node representations learned based on different sets

of meta-graph schemes can significantly improve the detection performance.

Comparisons with Traditional Machine Learning Methods

In this set of experiments, based on the dataset described in Section 3.3, we compare

ICSD which integrates our proposed method with other traditional machine learning

methods by 10-fold cross validations. For these methods, we construct three types of

features: f–1: content-based features (i.e., keywords extracted from code snippets de-

scribed in Section 3.2); f–2: two relation-based features associated with code snippets

(i.e., R1 and R2 introduced in Section 3.2); f–3: augmented features of content-based

features and R1–R2. Based on these features, we consider two typical classification

models, i.e., Naive Bayes (NB) and SVM. The experimental results are illustrated in

22

Table 3.4. From the results we can observe that feature engineering (f-3: concatenation

of different features altogether) helps the performance of machine learning, but ICSD

added the knowledge represented as HIN significantly outperforms other baselines. This

again demonstrates that, to detect the insecure code snippets, ICSD utilizing both code

content and social coding properties represented by the HIN is able to build the higher-

level semantic and structural connection between code snippets with a more expressive

and comprehensive view and thus achieves better detection performance.

Table 3.4: Comparisons of other machine learning methods

Metric
NB SVM

ICSD
f-1 f-2 f-3 f-1 f-2 f-3

ACC 0.7757 0.6597 0.8161 0.8064 0.6904 0.8494 0.9118
F1 0.8002 0.6914 0.8372 0.8278 0.7208 0.8675 0.9190

Evaluation of Parameter Sensitivity, Scalability, and Stability

In this set of experiments, based on the dataset described in Section 3.3, we first conduct

the sensitivity analysis of how different choices of parameters (i.e., walks per node r,

walk length l, vector dimension d, and neighborhood size w) will affect the performance

of ICSD in insecure code snippet detection. From the results shown in Figure 3.5(a)

and 3.5(b), we can observe that the balance between computational cost (number of

walks per node r and walk length l in x-axis) and efficacy (F1 in y-axis) can be achieved

when r = 10 and l = 60 for insecure code snippet detection. We also examine how

vector dimension (d) and neighborhood size (w) affect the performance. As shown in

Figure 3.5(c), we can see that the performance tends to be stable once d reaches around

300; similarly, from Figure 3.5(d) we can find that the performance inclines to be stable

when w increases to around 8. Overall, ICSD is not strictly sensitive to these parameters,

and is able to reach high performance under a cost-effective parameter choice.

We then further evaluate the scalability of ICSD which can be parallelized for opti-

mization. We run the experiments using the default parameters with different number of

threads (i.e., 1, 4, 8, 12, 16), each of which utilizes one CPU core. Figure 3.6(a) shows

the speed-up of ICSD deploying multiple threads over the single-threaded case, which

reveals that the model achieves acceptable sub-linear speed-ups as the line is close to

23

Figure 3.5: Parameter sensitivity evaluation.

Figure 3.6: Scalability evaluation.

the optimal line; while Figure 3.6(b) shows that the performance remains stable when

using multiple threads for model updating. Overall, the proposed system are efficient

and scalable for large-scale HIN with large numbers of nodes. For stability evaluation,

Figure 3.7 shows the receiver operating characteristic (ROC) curves of ICSD based on

the 10-fold cross validations; it achieves an average 0.9094 TP rate (TPR) at the 0.0851

24

Figure 3.7: Stability evaluation.

FP rate (FPR) for insecure code snippet detection.

25

Chapter 4

iTrustSO: Code-to-code Sequential
Model over HIN for Insecure Code
Snippet Detection

4.1 System Architecture

The system architecture of iTrustSO is shown in Figure 4.1, which is developed for

insecure code snippet detection in Stack Overflow. It consists of the following major

components:

• Data collector, Feature extractor and HIN constructor. iTrustSO uses the same

modules with ICSD which are displayed in Figure 3.1, except that iTrustSO do

not consider the keyword entity.

Figure 4.1: System architecture of iTrustSO.

26

• CodeHin2Vec. Based on the built meta-path schemes, to evise a comprehensive

solution to seamlessly combine both node content, a new network embedding

model CodeHin2Vec is proposed to learn the low-dimensional representations for

the nodes in HIN, which are capable to use the content feature vector to represent

each code snippet in the Insecure code snippet detecter. Using CodeHin2vec,

the mapped feature vectors of code snippets, encoding the informaiton of code

content and HIN-based relations, will be fed to a Support Vector Machine (SVM)

to train the classification model, based on which the unlabeled code snippets can

be predicted if they are insecure or not.

4.2 Proposed Method

In this section, we present the detailed approaches of how we represent the code snippets

in Stack Overflow, and how we solve the insecure code snippet detection problem based

on the representation.

Feature Extraction

iTrustSO uses the similar feature extraction module with ICSD(See Section 3.2 or de-

tails). The only different is that in iTrustSO, it do not extract keywords as content feature.

We use a new approach to represent content feature.

HIN Constructor

4.2 HIN Constructor in iTrustSO is very similar with ICSD(See Section 3.2 or details).

Figure 4.2: Network schema for HIN in our application.

27

We do not use keywords in heterogeneous information network. The network schema

for HIN in iTrustSO is shown in Figure

CodeHin2Vec: HIN Representation Learning

To devise a comprehensive solution to seamlessly combine both node (i.e., code snippet)

content and HIN-based relations for insecure code snippet detection in Stack Overflow,

we gain further insight into Stack Overflow data; as observed in our previous work [49],

the HIN-based neighborhood relationships among code snippets can be represented by

the code sequences (denoted as CodeSeq) based on different meta-paths. In this way, the

generated CodeSeqs can preserve both semantic and structure information of HIN. To

further couple CodeSeqs with code content, a straightforward yet novel way is to use the

content feature vector xc to represent each code snippet in the CodeSeq. To this end, the

representation learning of code snippets can be viewed as a sequence modeling task. As

LSTM has shown significant improvement in language modeling [50], we leverage its

power to seamlessly integrate code content and HIN structure into hidden layer vectors

that can be used as the representations of code snippets [51].

Figure 4.3: Different contexts among code snippets.

Although it is promising to comprehensively utilize LSTM to learn the mapping

from the code content sequence to code identity sequence, it still faces the following two

challenges: (1) word2vec assigns each code snippet a static embedding vector based on

code content which is not context-aware to different sequences it interacts with. For ex-

ample, as illustrated in Figure 4.3, guided by the designed meta-paths, we may generate

CodeSeq-A and CodeSeq-B. With function fileProcess defined, Code-1 in CodeSeq-A

28

performs as file encryption for Ransomware while Code-3 in CodeSeq-B implements

the regular file reading and writing; in this respect, even though Code-2 listed in both

sequences calls the same function fileProcess, its embedding vector should be signifi-

cantly different which may demonstrate insecure potential when interacting with Code-

1 and normal aspect when related to Code-3. LSTM is known to learn the sequential

dependencies [52], but strict to align the positions of the input sequence; therefore, con-

textualized code content embeddings may help to refine the hidden-layer information in

the early stage. (2) Since LSTM needs to read the whole input sequence to further gen-

erate the output sequence, its performance using a basic encoder-decoder architecture

may degrade as the length of an input sequence increases [53, 50] which may in turn

degenerate the representations learned from hidden layers, especially in our case that

code sequences are much longer than the sentences.

Attention mechanism has shown remarkable effectiveness in various sequence mod-

eling tasks, allowing models to learn alignments between different modalities [54, 50,

55, 56]. In this work, to address the challenges above, we propose CodeHin2Vec to elab-

orate a hierarchical attention mechanism into LSTM to fully exploit code content and

HIN structure to learn effective representations of code snippets, which first generates

CodeSeqs based on the walk paths guided by different meta-paths; and then leverages

LSTM with hierarchical attention mechanism for CodeSeq modeling.

CodeSeq generation guided by different meta-paths. Given a source node vj in a

homogeneous network, the traditional random walk is a stochastic process with random

variables v1j , v
2
j , ..., v

k
j such that vk+1

j is a node chosen at random from the neighbors

of node vk. The transition probability p(vi+1
j |vij) at step i is the normalized probabil-

ity distributed over the neighbors of vij by ignoring their node types. However, this

mechanism is unable to capture the semantic and structural correlations among differ-

ent types of nodes in a HIN. In our application, given a HIN G = (V , E) with schema

TG = (A,R), and a set of different meta-paths P = {Pj}nj=1, each of which is in the

form of A1 → ...At → At+1... → Al, we put a random walker to traverse the HIN.

The random walker first randomly chooses a meta-path Pk from P and the transition

29

probabilities at step i are defined as follows:

p(vi+1|viAt
,P) =



λ
|P|

1
|NAt+1

(viAt
)|

if (vi+1, viAt
) ∈ E , φ(viAt

) = Ac, φ(v
i+1) = At+1

1
|NAt+1

(viAt
)|

if (vi+1, viAt
) ∈ E , φ(viAt

) 6= Ac,

φ(vi+1) = At+1, (At, At+1) ∈ Pk
0 otherwise

(4.1)

where φ is the node type mapping function, NAt+1(v
i
At
) denotes theAt+1-type neighbor-

hood of node viAt
, Ac is entity type of Code, and λ is the number of meta-paths starting

with Ac → At+1. For each walk path, the nodes whose entity types are not Code will be

removed; then the remaining ones form a CodeSeq, whose element is represented by the

content feature vector xc. In such way, given walk path length l, a CodeSeq is presented

as (xc1 ,xc2 , ...,xcl).

CodeSeq modeling with LSTM. LSTM learns a mapping from an input sequence to an

output sequence. As intermediate states, a hidden vector is generated for each timestep;

we can extract it as the embedding vector for the input at that timestep. In our applica-

tion, we employ an encoder-decoder LSTM architecture [57] for CodeSeq modeling in

which two attention layers are elaborately added to improve the quality of representation

learning (as illustrated in Figure 4.4).

Figure 4.4: Architecture of LSTM using hierarchical attention.

Encoder attention: Resting on all the content vectors in the input sequence, the

encoder attention layer computes the contextualized embedding for each code snippet

30

as a weighted sum where the weight, also called context score, assigned to each content

vector is computed by a dot product of the corresponding pair of content vectors [54].

Specifically, given an input CodeSeq (xc1 ,xc2 , ...,xcl), for any two code snippets ct and

ci, the context score can be calculated as

S(xct ,xci) = xct>xci , (4.2)

where > denotes the dot product, and thus the contextualized embedding for code snip-

pet ct can be computed as

x̃ct =
l∑

i=1

exp(S(xct ,xci))∑l
j=1 exp(S(xct ,xcj))

xci . (4.3)

In this sense, a CodeSeq can be refined as (x̃c1 , x̃c2 , ..., x̃cl), which will be used as the

actual input sequence.

Encoder: The encoder reads (x̃c1 , x̃c2 , ..., x̃cl) through the hidden layer function H
so that each hidden layer vector het at timestep t can be denoted as

het = H(x̃ct ,het−1), (4.4)

whereH is implemented using memory cells to store information, which can be formu-

lated as the following composite functions [58]:

it = σ(Wxix̃ct +Whih
e
t−1 +Wcict−1 + bi) (4.5)

ft = σ(Wxf x̃ct +Whfh
e
t−1 +Wcfct−1 + bf) (4.6)

ct = ft ◦ ct−1 + it ◦ tanh(Wxcx̃ct +Whch
e
t−1 + bc) (4.7)

ot = σ(Wxox̃ct +Whoh
e
t−1 +Wcoct−1 + bo) (4.8)

het = ot ◦ tanh(ct) (4.9)

where σ is the logistic sigmoid function, it, ft, ot, ct are the input gate, forget gate,

output gate, and cell activation vectors respectively, Ws are the weight matrices, bs are

the bias vectors, and ◦ is the point-wise product between two vectors. Since the input

sequence has no direction, in order to learn both the forward and backward sequential

dependency information, we utilize bidirectional encoder so that hidden layer vector het

31

at timestep t can be concatenated as het = [
−→
het ;
←−
het]. After forward and backward reading

CodeSeq, the concatenation of the last two hidden states [
−→
hel ;
←−
he1] is used as the summary

vector s of the whole input sequence.

Decoder attention: The decoder attention layer exploits all the hidden states of the

encoder to compute the aligned and joint information as the context vector [50, 55],

which is integrated with the summary vector s to extract the target code identity. Sim-

ilar to the encoder attention, the alignment scores need to be first defined to formulate

such context vector as a weighted sum. Note that, unlike the dot product attention,

decoder attention should allow the gradient of the cost function to be backpropagated

through [50]. We accordingly use a simple feed-forward neural network to compute the

alignment score

αt = W2
αReLU(W

1
αh

e
t + b1

α) + b2
α, (4.10)

where Wαs and bαs denote the weight matrices and the bias vectors, and the align-

ment score vector αt trained by all the other hidden states of the encoder reflects the

importance of het in generating yt. The context vector for het can thus be

h̃et =
l∑

i=1

exp(αt,i)∑l
j=1 exp(αt,j)

hei . (4.11)

Decoder: The decoder takes the summary vector s as input (i.e., hd0 = s) and gen-

erates a sequence of target hidden states; each hidden state hdt at timestep t can be

calculated as

hdt = H(0,hdt−1), (4.12)

where 0 is an all-zero vector. Given the target hidden state hdt and the context vector

h̃et , we concatenate them to formulate an attentional hidden state h̃dt = [h̃et ; hdt] [55].

Accordingly, the output vector yt ∈ R|V| can be generated as follows [58]

yt = σ(Whyh̃
d
t + by). (4.13)

yt is capable to predict the real code snippet ct through a softmax layer. The sequence

32

loss L is adopted to measure the correctness of decoding, which is computed as

L = −
l∑

t=1

log p(ct|yt) = −
l∑

t=1

log
exp(yctt)∑|V|
i=1 exp(y

ci
t)
. (4.14)

The weights can be efficiently calculated with backpropagation through time [59, 58],

and the LSTM model can then be trained using Adam optimization algorithm.

For the generated CodeSeqs guided by different meta-paths, each code snippet may

appear in multiple CodeSeqs. Suppose that code snippet ct exists in |ct| CodeSeqs,

by doing avg pooling over all hei ’s for code snippet ct, ∀i = 1, ..., |ct|, we obtain an

embedding h for each code snippet

h = avgPooling({hei : i = 1, ..., |ct|}). (4.15)

Using CodeHin2Vec, the mapped feature vectors of code snippets, encoding the in-

formaiton of code content and HIN-based relations, can be fed to a classifier to train

the classification model, based on which the unlabeled code snippets can be predicted if

they are insecure or not.

Algorithm 2 iTrustSO – Code-to-code Sequential Model over HIN for Insecure Code
Snippet Detection

Input: The HIN G = (V , E), network schema TG = (A,R), number of meta-paths
schemes m, number of walk paths per node r, walk length l, and vector dimension d,
traning data set Dt, testing data set De Output:f : The labels for the testing code
snippets.

1: for i = 1→ |Dt| do
2: Generate content feature vector xci
3: for j = 1→ r do
4: get l-length random walks using Eq. 4.1
5: end for
6: end for
7: Generate yt ∈ R|V|×d using LSTM in Eq. 4.13
8: Train SVM using yDt

9: for k = 1→ |De| do
10: Generate the label fk using trained SVM
11: end for
12: return f

33

4.3 Experimental Results and Analysis

In this section, we fully evaluate the performance of iTrustSO in insecure code snippet

detection. We consider Java programming language for Android app as a case study.

Based on our prior work ICSD [49], in this paper, we further expand our data collec-

tion and annotation from Stack Overflow: (1) using our developed crawlers, we collect

505,548 question threats and 719,430 answer threats posted by 229,394 users including

821,792 code snippets, through March 2010 to October 2018; (2) we also expand our

annotated data in [49] to finally obtain 21,989 labeled code snippets (10,013 are insecure

while 11,976 are secure) as the ground truth to evaluate different detection methods. To

quantitatively validate the effectiveness of different methods, we use accuracy (ACC)

and F1 measure (F1) as the performance measures.

Evaluation of Different Meta-paths

In this set of experiments, given a specific meta-path scheme, we use a basic LSTM to

learn the latent representations of code snippets in HIN, which is then fed to SVM for

detection. Here we perform 10-fold cross validations for evaluation. The experimental

results are shown in Table 4.1, from which we can see that different meta-paths indeed

show different performances: (1) PID1, PID3, PID5, and PID7 perform better than

PID2, PID4, PID6, and PID8; the reason behind this is that the code snippets posted in

the answer threads are more likely to be reused by the developers than the ones posted

in question threads, and thus they have closer connections. (2) PID3 outperforms the

others, which indicates that its semantics reflecting the insecure code snippet detection

problem is better than the others. (3) PID9 using different meta-paths is more expressive

than individuals in depicting the code snippets and thus achieve better performance.

Evaluation of Attentions

In this set of experiments, we’d like to assess whether the hierarchical attention mech-

anism devised in our model is meaningful for representation learning. To this end, we

explore the performances of basic LSTM without attention (LSTM-b), LSTM with en-

coder attention (LSTM-e), LSTM with decoder attention (LSTM-d), and CodeHin2Vec.

The better detection result implies that the learn representations take better advantage

34

Table 4.1: Detection Results of different meta-paths

ID Meta-paths included Recall Precision ACC F1

PID1 – 0.8481 0.7956 0.8316 0.8210
PID2 – 0.8098 0.7491 0.7899 0.7783
PID3 – 0.8596 0.8119 0.8454 0.8351
PID4 – 0.8344 0.7769 0.8155 0.8046
PID5 – 0.8605 0.8086 0.8437 0.8337
PID6 – 0.8140 0.7588 0.7975 0.7854
PID7 – 0.8042 0.7444 0.7851 0.7731
PID8 – 0.7843 0.7203 0.7631 0.7509
PID9 P = (PID1,..., PID8) 0.8785 0.8415 0.8693 0.8596

of the corresponding sequence learning architecture. From the results illustrated in Fig-

ure 4.5, we have the following observations: (1) LSTM-e and LSTM-d with single

attention layer both outperform LSTM-b without attention; (2) CodeHin2Vec achieves

the most promising performance for fully utilizing the contextualized input embeddings

and the aligned information from the hidden states of the encoder. In other words,

CodeHin2Vec has potential to let LSTM learn better sequential dependencies and code

better with the sequence extraction from the proper context information, which in turn

generates better representations for code snippets.

Evaluation of CodeHin2Vec

Here, CodeHin2Vec is evaluated by comparisons with several representation learning

methods: (1) word2vec [44] is a baseline using code content information; (2) Deep-

Figure 4.5: Attention evaluation.

35

Table 4.2: Comparisons of CodeHin2Vec with other network representation learning
methods in insecure code snippet detection

Metric Method Feature 10% 30% 50% 70% 90%

ACC

word2vec Content 0.6554 0.6989 0.7379 0.7725 0.7753
DeepWalk Relation 0.6263 0.6678 0.7087 0.7349 0.7430

metapath2vec Relation 0.7241 0.7562 0.7898 0.8035 0.8312
TADW Content&Relation 0.7659 0.7902 0.8144 0.8394 0.8537
ICSD Content&Relation 0.8026 0.8487 0.8783 0.8968 0.9107

CodeHin2Vec Content&Relation 0.7983 0.8630 0.8752 0.8975 0.9223

F1

word2vec Content 0.6292 0.6756 0.7166 0.7519 0.7560
DeepWalk Relation 0.6023 0.6439 0.6871 0.7139 0.7233

metapath2vec Relation 0.7005 0.7356 0.7711 0.7853 0.8147
TADW Content&Relation 0.7446 0.7717 0.7977 0.8239 0.8390
ICSD Content&Relation 0.7855 0.8338 0.8662 0.8866 0.9015

CodeHin2Vec Content&Relation 0.7831 0.8502 0.8624 0.8873 0.9160

Walk [60] is a homogeneous network embedding method leveraging relation informa-

tion; (3) metapath2vec [61] is a HIN embedding model utilizing HIN-based relations;

(4) TADW [62] considers both content and relation information for homogeneous net-

work representation learning; (5) ICSD [49] takes content and relation into account in

HIN. For DeepWalk and TADW, we ignore the heterogeneous property of HIN and di-

rectly feed the HIN for embedding; in metapath2vec, a walk path is generated based

on a single meta-path scheme; in ICSD, code content is extracted as keywords to be

devised to HIN. The parameter settings used for CodeHin2Vec are in line with typical

values used for the baselines: content dimension c = 300, vector dimension d = 200,

walks per node r = 10, walk length l = 80 (TADW: walk steps are set to 2), and

window size w = 10. To facilitate the comparisons, we randomly select a portion of

labeled code snippets (ranging from 10% to 90%) for training and the remaining ones

for testing. SVM is used as the classification model for all the methods. Table 4.2 il-

lustrates the detection results: CodeHin2Vec outperforms all baselines in terms of ACC

and F1 in most cases. That is to say, CodeHin2Vec learns significantly better code snip-

pet representation than current state-of-the-art methods. The success of CodeHin2Vec

lies in the seamless integration of code content with HIN-based relations for represen-

tation learning, which leverages the advantage of (1) CodeSeq generation based on the

different meta-paths and (2) the CodeSeq modeling power of LSTM using hierarchical

attentions.

36

Figure 4.6: Parameter sensitivity evaluation.

Evaluation of Parameters

In this set of experiments, we first conduct the sensitivity analysis of how different

choices of parameters will affect the performance of CodeHin2Vec. From the results

shown in Figure 4.6(a) and 4.6(b), we can observe that the balance between computa-

tional cost (number of walks per node r and walk length l in x-axis) and efficacy (F1 in

y-axis) can be achieved when r ≥ 10 and l ≥ 80. As shown in Figure 4.6(c), we can see

that the performance tends to be stable once content vector dimension c reaches around

200 to 300; similarly, from Figure 4.6(d) we can find that the performance inclines to be

stable when vector dimensions d increases to around 200 to 400. Overall, CodeHin2Vec

is not strictly sensitive to these parameters, and is able to reach high performance under

a cost-effective parameter choice. We then further evaluate the scalability of Code-

Hin2Vec which can be parallelized for optimization. We run the experiments using the

default parameters with different number of threads (i.e., 1, 4, 8, 12, 16), each of which

utilizes one CPU core. Figure 4.6(e) shows the speed-up of CodeHin2Vec deploying

multiple threads over the single-threaded case, which reveals that the model achieves ac-

ceptable sub-linear speed-ups as the line is close to the optimal line; while Figure 4.6(f)

shows that the performance remains stable when using multiple threads for model up-

37

dating. Overall, the proposed system are efficient and scalable for large-scale HIN with

large numbers of nodes. For stability evaluation, Figure 4.6(g) shows the ROC curves

of CodeHin2Vec based on the 10-fold cross validations; it achieves an average 0.9043

TPR at the 0.1221 FPR for detection.

Comparisons with Traditional Machine Learning Methods

In this set of experiments, iTrustSO is compared with other traditional machine learning

methods. For these methods, we construct three types of features: f–1: content-based

features (i.e., xc); f–2: two original relation-based features (i.e., R1 and R2); f–3: aug-

mented features of content-based features and R1–R2. Based on these features, we

consider two typical classification models, i.e., Naive Bayes (NB) and SVM. The ex-

perimental results shown in Table 4.3 illustrates that feature engineering (f-3) helps the

performance of machine learning, but iTrustSO leveraging the knowledge represented

as HIN and the long-range influence among code snippets learned from LSTM with

attentions significantly outperforms other baselines. This again demonstrates that, to

detect the insecure code snippets, iTrustSO using CodeHin2Vec to seamlessly integrate

node content with HIN relations is able to build the higher-level semantic and structural

connection between code snippets with a more expressive and comprehensive view and

thus achieves better detection performance.

Table 4.3: Comparisons of other machine learning methods

Metric
NB SVM

iTrustSO
f-1 f-2 f-3 f-1 f-2 f-3

ACC 0.7493 0.6854 0.7952 0.7753 0.7034 0.8415 0.9184
F1 0.7284 0.6613 0.7834 0.7560 0.6793 0.8317 0.9098

38

Chapter 5

Conclusion and Future Work

To address the code security issue in modern social coding platforms, in this paper, we

bring an important new insight to exploit social coding properties in addition to code

content for automatic detection of insecure code snippets in Stack Overflow. To de-

pict the code snippets, we not only analyze the code content, but also utilize various

kinds of relations among users, badges, questions, answers and code snippets in Stack

Overflow. To model the rich semantic relationships, we first introduce a structured HIN

for representation and then use meta-path based approach to incorporate higher-level

semantics to build up relatedness over code snippets. Later, we propose two different

novel network embedding models named Snippet2vec and CodeHin2Vec for representa-

tion learning in HIN to automate the insecure code snippet detection in Stack Overflow.

After that, a classifier is built for insecure code snippet detection. Though it’s proposed

for code security analysis, the embedding methods are general framework which are able

to learn desirable node representation in HIN and thus can be further applied to various

network mining tasks, such as node classification, clustering and similarity search. The

experimental results based on the data collections from Stack Overflow demonstrate that

the developed systems ICSD and iTrustSO integrating our proposed methods outperform

alternative approaches in insecure code snippet detection.

In our future work, we will continue to improve our system to automate analysis in

other social coding platform (e.g., Github, Reddit, etc) forinsecure code snippet detec-

tion. On the other hand, the study such as computational cost and incremental learning

over heterogeneous information networks is still worth exploring.

39

Publications

1. Yanfang Ye, Lingwei Chen, Shifu Hou, William Hardy, Xin Li. “DeepAM: a het-
erogeneous deep learning framework for intelligent malware detection” In Knowl-
edge and Information Systems, 2018.

2. Yujie Fan, Shifu Hou, Yiming Zhang, Yanfang Ye, Melih Abdulhayoglu. “Gotcha
- Sly Malware! Scorpion: A Metagraph2vec Based Malware Detection System”,
In ACM SIGKDD, 2018.

3. Yanfang Ye, Shifu Hou, Lingwei Chen, Xin Li, Liang Zhao, Shouhuai Xu, Jiabin
Wang, Qi Xiong. “ICSD: An Automatic System for Insecure Code Snippet De-
tection in Stack Overflow over Heterogeneous Information Network” In ACSAC,
2018.

4. Shifu Hou, Yanfang Ye, Yangqiu Song, Melih Abdulhayoglu. “Make Evasion
Harder: An Intelligent Android Malware Detection System.” In IJCAI, 2018.

5. Shifu Hou, Yanfang Ye, Yangqiu Song, Melih Abdulhayoglu. “Hindroid: An
intelligent android malware detection system based on structured heterogeneous
information network” In SIGKDD, 2017.

6. Lingwei Chen, Shifu Hou,Yanfang Ye. “Securedroid: Enhancing security of
machine learning-based detection against adversarial android malware attacks”
In Proceedings of the 33rd Annual Computer Security Applications Conference,
2017.

7. William Hardy, Lingwei Chen, Shifu Hou, Yanfang Ye, Xin Li. “DL4MD: A
deep learning framework for intelligent malware detection” In DMIN, 2016.

8. Shifu Hou, Aaron Saas, Lifei Chen, Yanfang Ye. “Deep4maldroid: A deep learn-
ing framework for android malware detection based on linux kernel system call
graphs” In WIW, 2016.

9. Shifu Hou, Aaron Saas, Yanfang Ye, Lifei Chen. “Droiddelver: An android mal-
ware detection system using deep belief network based on api call blocks” In
International Conference on Web-Age Information Management , 2016.

10. Shifu Hou, Lifei Chen, Egemen Tas, Igor Demihovskiy, Yanfang Ye. “Cluster-
oriented ensemble classifiers for intelligent malware detection” In IEEE ICSC ,
2015.

40

Bibliography

[1] LUCINTEL (2017) “Growth Opportunities in the Global Software Market,” in
http:// www.lucintel.com/software-market-2017.aspx.

[2] VASILESCU, B., V. FILKOV, and A. SEREBRENIK (2013) “StackOverflow and
GitHub: Associations Between Software Development and Crowdsourced Knowl-
edge,” in International Conference on Social Computing (SocialCom), pp. 188–
195.

[3] OVERFLOW, S. (2018) “Stack Overflow,” in https://stackoverflow.com/.

[4] STACKEXCHANGE (2018) “StackExchange Statistics,” in
https://stackexchange.com/ sites#traffic.

[5] COOGLE, J., J. GAJJAR, and C. GRECO (2017) “StackInTheFlow: StackOverflow
Search Engine,” in VCU Capstone Design Expo Posters.

[6] ACAR, Y., M. BACKES, S. FAHL, D. KIM, M. L. MAZUREK, and C. STRANSKY

(2016) “You Get Where You’re Looking For The Impact of Information Sources on
Code Security,” in IEEE Symposium on Security and Privacy (SP), pp. 289–305.

[7] FISCHER, F., K. BOTTINGER, H. XIAO, C. STRANSKY, Y. ACAR, M. BACKES,
and S. FAHL (2017) “Stack Overflow Considered Harmful? The Impact of Copy
and Paste on Android Application Security,” in IEEE Symposium on Security and
Privacy (SP), pp. 121–136.

[8] ATTACKFLOW (2017) “Watch Out For Insecure StackOverflow Answers,” in
https:// www.attackflow.com/Blog/StackOverflow.

[9] YE, Y., T. LI, D. ADJEROH, and S. S. IYENGAR (2017) “A survey on malware
detection using data mining techniques,” ACM Computing Surveys (CSUR), 50(3),
p. 41.

[10] DETERDING, S. (2012) “Gamification: designing for motivation,” Interactions,
19(4), pp. 14–17.

41

[11] SUN, Y., R. BARBER, M. GUPTA, C. C. AGGARWAL, and J. HAN (2011)
“Co-author relationship prediction in heterogeneous bibliographic networks,” in
ASONAM, IEEE, pp. 121–128.

[12] SUN, Y., J. HAN, X. YAN, P. S. YU, and T. WU (2011) “Pathsim: Meta path-
based top-k similarity search in heterogeneous information networks,” VLDB,
4(11), pp. 992–1003.

[13] CZYCZYN-EGIRD, D. and R. WOJSZCZYK (2016) “Determining the Popularity
of Design Patterns Used by Programmers Based on the Analysis of Questions and
Answers on Stackoverflow.com Social Network,” in Communications in Computer
and Information Science (CCIS), pp. 421–433.

[14] LINARES-VASQUEZ, M., G. BAVOTA, M. D. PENTA, and R. OLIVETO (2014)
“How Do API Changes Trigger Stack Overflow Discussions? A Study on the
Android SDK,” in ICPC, pp. 83–94.

[15] LEE, R. K.-W. and D. LO (2017) “GitHub and Stack Overflow: Analyzing de-
veloper interests across multiple social collaborative platforms,” in International
Conference on Social Informatics, Springer, pp. 245–256.

[16] LIU, X. and H. ZHONG (2018) “Mining StackOverflow for Program Repair,” in
IEEE 25th International Conference on Software Analysis, Evolution and Reengi-
neering (SANER), pp. 118–129.

[17] TREUDE, C., O. BARZILAY, and M.-A. STOREY (2011) “How do programmers
ask and answer questions on the web?: Nier track,” in 33rd International Confer-
ence on Software Engineering (ICSE), pp. 804–807.

[18] KAVALER, D., S. SIROVICA, V. HELLENDOORN, R. ARANOVICH, and
V. FILKOV (2017) “Perceived Language Complexity in GitHub Issue Discussions
and Their Effect on Issue Resolution,” in ASE, pp. 72–83.

[19] CAVUSOGLU, H., Z. LI, and K.-W. HUANG (2015) “Can Gamification Moti-
vate Voluntary Contributions? The Case of StackOverflow Q&A Community,” in
Proceedings of the 18th ACM conference companion on computer supported co-
operative work & social computing, pp. 171–174.

[20] AHMED, T. and A. SRIVASTAVA (2017) “Understanding and evaluating the behav-
ior of technical users. A study of developer interaction at StackOverflow,” Hum.
Cent. Comput. Inf. Sci., 7(8).

[21] CALEFATO, F., F. LANUBILE, and N. NOVIELLI (2018) “How to ask for tech-
nical help? Evidence-based guidelines for writing questions on Stack Overflow,”
Information and Software Technology, 94, pp. 186–207.

42

[22] SHI, C., Y. LI, J. ZHANG, Y. SUN, and S. Y. PHILIP (2017) “A survey of hetero-
geneous information network analysis,” TKDE, 29(1), pp. 17–37.

[23] WANG, C., Y. SONG, H. LI, M. ZHANG, and J. HAN (2015) “Knowsim: A doc-
ument similarity measure on structured heterogeneous information networks,” in
ICDM, IEEE, pp. 1015–1020.

[24] FAN, Y., Y. ZHANG, Y. YE, X. LI, and W. ZHENG (2017) “Social Media for
Opioid Addiction Epidemiology: Automatic Detection of Opioid Addicts from
Twitter and Case Studies,” in CIKM, ACM, pp. 1259–1267.

[25] FAN, Y., Y. ZHANG, Y. YE, and X. LI (2018) “Automatic Opioid User Detec-
tion from Twitter: Transductive Ensemble Built on Different Meta-graph Based
Similarities over Heterogeneous Information Network.” in IJCAI, pp. 3357–3363.

[26] HOU, S., Y. YE, Y. SONG, and M. ABDULHAYOGLU (2017) “HinDroid: An In-
telligent Android Malware Detection System Based on Structured Heterogeneous
Information Network,” in KDD, ACM, pp. 1507–1515.

[27] FAN, Y., S. HOU, Y. ZHANG, Y. YE, and M. ABDULHAYOGLU (2018) “Gotcha-
Sly Malware! Scorpion: A Metagraph2vec Based Malware Detection System,” in
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining (KDD), ACM, pp. 253–262.

[28] PEROZZI, B., R. AL-RFOU, and S. SKIENA (2014) “DeepWalk: Online Learning
of Social Representations,” in Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining (KDD), pp. 701–710.

[29] GROVER, A. and J. LESKOVEC (2016) “node2vec: Scalable feature learning for
networks,” in Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining, ACM, pp. 855–864.

[30] TANG, J., M. QU, and Q. MEI (2015) “PTE: Predictive Text Embedding through
Large-scale Heterogeneous Text Networks,” in Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD), pp. 1165–1174.

[31] TANG, J., M. QU, M. WANG, M. ZHANG, J. YAN, and Q. MEI (2015) “Line:
Large-scale information network embedding,” in WWW ’15 Proceedings of the
24th International Conference on World Wide Web, pp. 1067–1077.

[32] SHANG, J., M. QU, J. LIU, L. M. KAPLAN, J. HAN, and J. PENG (2016) “Meta-
Path Guided Embedding for Similarity Search in Large-Scale Heterogeneous In-
formation Networks,” in arXiv:1610.09769.

43

[33] DONG, Y., N. V. CHAWLA, and A. SWAMI (2017) “metapath2vec: Scalable rep-
resentation learning for heterogeneous networks,” in Proceedings of the 23rd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD’2017), pp. 135–144.

[34] FU, T.-Y., W.-C. LEE, and Z. LEI (2017) “HIN2Vec: Explore Meta-paths in
Heterogeneous Information Networks for Representation Learning,” in Proceed-
ings of the 2017 ACM on Conference on Information and Knowledge Management
(CIKM), pp. 1797–1806.

[35] HOU, S., A. SAAS, Y. YE, and L. CHEN (2016) “DroidDelver: An Android Mal-
ware Detection System Using Deep Belief Network Based on API Call Blocks,”
in International Conference on Web-Age Information Management (WAIM), pp.
54–66.

[36] HOU, S., A. SAAS, L. CHEN, and Y. YE (2016) “Deep4MalDroid: A Deep Learn-
ing Framework for Android Malware Detection Based on Linux Kernel System
Call Graphs,” in WIW ’16.

[37] IDC (2018) “International Data Corporation (IDC),” in http://www.idc.com.

[38] POEPLAU, S., Y. FRATANTONIO, A. BIANCHI, C. KRUEGEL, and G. VIGNA

(2014) “Execute This! Analyzing Unsafe and Malicious Dynamic Code Loading
in Android Applications,” in NDSS, pp. 23–26.

[39] CAPILUPPI, A., A. SEREBRENIK, and L. SINGER (2013) “Assessing technical
candidates on the social web,” in IEEE Software, pp. 45–51.

[40] SUN, Y. and J. HAN (2012) “Mining heterogeneous information networks: prin-
ciples and methodologies,” Synthesis Lectures on DMKD, 3(2), pp. 1–159.

[41] HOFF, P. D., A. E. RAFTERY, and M. S. HANDCOCK (2002) “Latent space ap-
proaches to social network analysis,” Journal of the American Statistical Associa-
tion, 97(460), pp. 1090–1098.

[42] YAN, S., D. XU, B. ZHANG, H.-J. ZHANG, Q. YANG, and S. LIN (2007) “Graph
embedding and extensions: A general framework for dimensionality reduction,”
IEEE transactions on pattern analysis and machine intelligence (TPAMI), 29(1),
pp. 40–51.

[43] ZHAO, H., Q. YAO, J. LI, Y. SONG, and D. L. LEE (2017) “Meta-graph based
recommendation fusion over heterogeneous information networks,” in Proceed-
ings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD’2017), pp. 635–644.

44

[44] MIKOLOV, T., K. CHEN, G. CORRADO, and J. DEAN (2013) “Efficient estimation
of word representations in vector space,” in arXiv preprint arXiv:1301.3781.

[45] MIKOLOV, T., I. SUTSKEVER, K. CHEN, G. S. CORRADO, and J. DEAN (2013)
“Distributed representations of words and phrases and their compositionality,” in
NIPS, pp. 3111–3119.

[46] BOTTOU, L. (1991) “Stochastic gradient learning in neural networks,” Proceed-
ings of Neuro-Nımes, 91(EC2).

[47] ZUCCON, G., L. A. AZZOPARDI, and C. VAN RIJSBERGEN (2009) “Seman-
tic spaces: Measuring the distance between different subspaces,” in International
Symposium on Quantum Interaction, Springer, pp. 225–236.

[48] IPSEN, I. C. and C. D. MEYER (1995) “The angle between complementary sub-
spaces,” American Mathematical Monthly, pp. 904–911.

[49] YE, Y., S. HOU, L. CHEN, X. LI, L. ZHAO, S. XU, J. WANG, and Q. XIONG

(2018) “ICSD: An Automatic System for Insecure Code Snippet Detection in Stack
Overflow over Heterogeneous Information Network,” in ACSAC, pp. 542–552.

[50] BAHDANAU, D., K. CHO, and Y. BENGIO (2015) “Neural Machine Translation
by Jointly Learning to Align and Translate,” in ICLR.

[51] LIU, J., Z. HE, L. WEI, and Y. HUANG (2018) “Content to node: Self-translation
network embedding,” in KDD, pp. 1794–1802.

[52] PETERS, M. E., W. AMMAR, C. BHAGAVATULA, and R. POWER (2017) “Semi-
supervised sequence tagging with bidirectional language models,” arXiv preprint
arXiv:1705.00108.

[53] CHO, K., B. VAN MERRIËNBOER, D. BAHDANAU, and Y. BENGIO (2014) “On
the properties of neural machine translation: Encoder-decoder approaches,” arXiv
preprint arXiv:1409.1259.

[54] VASWANI, A., N. SHAZEER, N. PARMAR, J. USZKOREIT, L. JONES, A. N.
GOMEZ, Ł. KAISER, and I. POLOSUKHIN (2017) “Attention is all you need,” in
Advances in Neural Information Processing Systems, pp. 5998–6008.

[55] LUONG, M.-T., H. PHAM, and C. D. MANNING (2015) “Effective approaches to
attention-based neural machine translation,” arXiv preprint arXiv:1508.04025.

[56] KIM, Y., C. DENTON, L. HOANG, and A. M. RUSH (2017) “Structured attention
networks,” arXiv preprint arXiv:1702.00887.

45

[57] CHO, K., B. VAN MERRIENBOER, C. GULCEHRE, D. BAHDANAU,
F. BOUGARES, H. SCHWENK, and Y. BENGIO (2014) “Learning Phrase Rep-
resentations using RNN Encoder-Decoder for Statistical Machine Translation,” in
arXiv:1406.1078.

[58] GRAVES, A. (2013) “Generating sequences with recurrent neural networks,” in
Arxiv preprint arXiv:1308.0850.

[59] WILLIAMS, R. and D. ZIPSER (1995) “Gradient-based learning algorithms for re-
current networks and their computational complexity,” in Back-propagation: The-
ory, Architectures and Applications, pp. 433–486.

[60] PEROZZI, B., R. AL-RFOU, and S. SKIENA (2014) “DeepWalk: Online Learning
of Social Representations,” in KDD ’14, pp. 701–710.

[61] DONG, Y., N. V. CHAWLA, and A. SWAMI (2017) “metapath2vec: Scalable rep-
resentation learning for heterogeneous networks,” in KDD.

[62] YANG, C., Z. LIU, D. ZHAO, M. SUN, and E. Y. CHANG (2015) “Network Rep-
resentation Learning with Rich Text Information,” in IJCAI’15, pp. 2111–2117.

46

	Automatic Detection of Insecure Codes in Stack Overflow
	Recommended Citation

	tmp.1563829140.pdf.Fyi1B

