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ABSTRACT

Synchronization of Spatiotemporal Patterns and Modeling

Disease Spreading Using Excitable Media

Jianxia Cui

Studies of the photosensitive Belousov-Zhabotinsky (BZ) reaction are reviewed and

the essential features of excitable media are described. The synchronization of two

distributed Belousov-Zhabotinsky systems is experimentally and theoretically inves-

tigated. Symmetric local coupling of the systems is made possible with the use of a

video camera-projector scheme. The spatial disorder of the coupled systems, with ran-

dom initial configurations of spirals, gradually decreases until a final state is attained,

which corresponds to a synchronized state with a single spiral in each system. The

experimental observations are compared with numerical simulations of two identical

Oregonator models with symmetric local coupling, and a systematic study reveals

generalized synchronization of spiral waves. Modeling studies on disease spreading

have been reviewed. The excitable medium of the photosensitive BZ reaction is used

to model disease spreading, with static networks, dynamic networks, and a domain

model. The spatiotemporal dynamics of disease spreading in these complex networks

with diffusive and non-diffusive connections is characterized. The experimental and

numerical studies reveal that disease spreading in these model systems is highly de-

pendent on the non-diffusive connections.
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Chapter 1

Introduction. The Light-Sensitive

Belousov-Zhabotinsky Reaction

The Belousov-Zhabotinsky (BZ) reaction [1, 2] consists of the oxidation of mal-

onic acid by bromate catalyzed by metal ion or metallo-complexes in acidic aqueous

solution. The light-sensitive BZ reaction, in which a light-sensitive catalyst is em-

ployed, has attracted increasing attention in recent years. Numerous studies have

been carried out in this field that can broadly be classified into four main topics: (a)

the influence of light on temporal oscillations in well-stirred homogeneous systems

under batch or continuous flow conditions [3–10]; (b) novel spatiotemporal patterns

induced by light irradiation in a thin layer of solution or gel [11–24] (c) dynamics

features of spatiotemporal patterns under the influence of illumination [25–54]; and

(d) the chemical mechanism of the light-sensitivity [55–62] and kinetic model [63]

allowing prediction of experimental observations by numerical simulations. In this

Chapter, we briefly review representative studies of these four topics in chronological

order.

The first studies on the effect of light on the temporal oscillations of the BZ reaction

were in 1968, when Vavilin et al. [3] first reported that irradiation of ultraviolet

(UV) light completely inhibited or strongly modified the oscillations in the cerium-

1



catalyzed system. The currently widely used photosensitive BZ catalyst, tris(2,2’-

bipyridine)ruthenium(II), Ru(bpy)3
2+, was first adapted as a luminescent indicator

for the demonstration of the BZ oscillatory reaction by Demas and Diemente in

1973 [4]. Since then, γ-irradiation [6], visible light [7], and laser light [8] have been

used to study light effects on the oscillations of the BZ reaction, catalyzed by either

Ce3+ [6,7], Mn2+ [6], iron-phenantroline (also known as ferroin or Fe(phen)3
2+) [6–8],

Ru(bpy)3
2+ [6, 7, 9, 10], potassium ferrioxalate (K3Fe(C2O4)) with dipyridyl [5], or

ruthenium-dipyridile (Ru(dipy)2+
3 ) [6].

The earlier studies were focused on the light effect on the oscillatory behavior, such

as the shape, amplitude, frequency, initiation or inhibition of oscillations. Kuhnert

and Linde [5] found in 1979 a proportional, differential, or proportional-differential

response behavior in the potassium ferrioxalate (K3Fe(C2O4)) and dipyridyl catalyzed

system followed the interrupting of a square-wave UV-light pulse. Körös et al. [6]

found that γ-irradiation could quench or considerably decrease the frequency of os-

cillation if Ce4+ or Mn2+ was the catalyst; whereas it had no effect on the system

catalyzed by metal complexes such as Fe(phen)3
2+ or Ru(dipy)3

2+. Gáspár et al. [7]

in 1983 studied the influence of visible light on BZ oscillating systems using different

catalysts in a batch reactor. They found that light has no effect on the Ce4+ system.

However, the oscillating systems using the complexes Fe(phen)3
2+ or Ru(bpy)3

2+ as

catalyst were affected. Not only were the amplitude and frequency of oscillations

changed by the illumination, but also the initiation and inhibition of oscillations were

observed as a response to the illumination. In 1987, Bodet et al. [8] studied inhomo-

geneous perturbations of the BZ reaction catalyzed by ferroin with a focused laser

beam and observed diffusion-phase waves in the oscillating medium. In 1992, Weigt

[9] reported chemicluminescence oscillations in the Ru(bpy)3
2+ catalyzed BZ reaction

in a flow-through reactor, with three separate emission peaks. In 1993, Mori et al.

[10] reported a bifurcation study in the Ru(bpy)3
2+ catalyzed BZ system in a con-

tinuous stirred flow tank reactor (CSTR) as a function of bromate concentration and

2



the light intensity.

As early as 1973, Busse and Hess [11] first demonstrated the initialization of a

propagating wave by UV radiation in a thin layer of cerium-ferroin catalyzed BZ

solution. Kuhnert [12] studied the transformation of phase waves into trigger waves

by illuminating the Ru(bpy)3
2+ catalyzed BZ reaction system. The exposure to light

releases an inhibitor that stops the production of phase waves and converts them to

trigger waves. Kuhnert [13] suggested a new kind of optical photochemical memory

device based on his studies in 1986. Kuhnert and co-workers [14] also demonstrated

image processing in this reaction system three years later.

During the 1990s, many more complex spatiotemporal patterns were observed in

the Ru(bpy)3
2+ catalyzed BZ reaction. Jinguji et al. [15] studied the photoinduced

waves in square, triangular, star and circular shapes. Waves were initiated at the

boundaries of the corresponding opaque masks and the wave fronts propagated inward

into the illuminated field, contrary to the usual direction of wave motion. Müller and

co-workers [16, 17] used an argon laser beam to produce an unexcitable disk in a

BZ medium, which erased the core structure of two adjacent spirals, generating an

autonomous pacemaker for target patterns [16] and constructing multi-armed spirals

[17] with spiral tips at equal distances around the disk boundary. Wave splitting

following a short, high-intensity inhibitory light pulse was observed by Krug et al. [18]

and Muñuzuri et al. [19]. Petrov et al. [20] reported that a spiral wave transforms into

a labyrinthine standing wave with periodic optical forcing and they found a sequence

of frequency-locked resonant patterns as the forcing frequency was varied. Amemiya

et al. [21, 22] studied the formation and evolution of three-dimensional scroll waves

in the Ru(bpy)3
2+ catalyzed BZ reaction by perturbing traveling waves transverse to

their directions of prorogation. Vanag et al. [23] reported oscillatory cluster patterns

generated by a global feedback. Hildebrand et al. [24] found complex behavior of

colliding and splitting wave fragments with light-induced remote communication.

Trigger waves and spiral waves are characteristic of reaction-diffusion systems and
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they are observed in many biological and chemical media [25,26]. The photosensitive

BZ reaction is the most widely studied chemical laboratory system for the dynamics

of chemical waves, as the excitability of the medium can be efficiently controlled by

either globally or locally altering the illumination. In the following, we present studies

on the velocity of trigger waves and the tip motion of spiral waves.

The velocity of a trigger wave is a characteristic property of a reaction-diffusion

system. Its systematic study provides a key to understanding the properties of the

system. Kuhnert and Krug [27] first quantitatively studied the wave propagation

in the non-illuminated Ru(bpy)3
2+ catalyzed systems and compared the results with

ferroin system [64]. Reddy et al. [28] systematically studied the influence of visible

light on wave velocities in the Ru(bpy)3
2+ catalyzed BZ reaction in a thin film of so-

lution. Light was found to decrease the velocity and even completely inhibit the wave

propagation for the concentration conditions studied. The velocity of wave propaga-

tion increases with increasing concentration of Ru(bpy)3
2+ and is proportional to the

square root of the product of the concentrations of H2SO4 and NaBrO3, which was

first shown by Field and Noyes for the ferroin catalyzed system [64]. Meanwhile, Krug

et al. [18] studied the tris(4,4’-dimethyl-2,2’-bipyridyl)ruthenium(II) (Ru(dmpy)3
2+)

catalyzed BZ system in a continuously fed gel reactor and also found that trigger wave

velocity decreased with increasing light intensity until the waves were completely ex-

tinguished.

The excitability of the medium affects not only the velocity of the wave but also

the other characteristics of wave propagation. Sendiña-Nadal et al. [29] studied wave

propagation in a medium with disordered excitability. They found that wave speed

in one dimension was smaller than that corresponding to a homogenous medium,

while in two dimensions, wave velocity increased due to the roughening of the front.

Agladze et al. [30] studied the propagation of chemical waves in a photosensitive BZ

system at the boundary of excitable and inhibitory fields. Depending on the degree of

excitability of the two areas, waves were found to either penetrate into the inhibitory
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region or collapse in the excitable zone. Kádár et al. [31] reported stochastic resonance

in a subexcitable medium, where wave propagation was significantly improved by

spatiotemporal noise in a medium unable to support sustained wave propagation.

Noise driven avalanche behavior was also studied [32] and sustained wave propagation

by periodic modulation of a homogeneous illumination was studied [33]. A negative-

feedback control algorithm was used to stabilize the propagating wave segments [34].

Recently, wave propagation in intricate patterns controlled by feedback-regulated

excitability gradients in excitable media has been reported [35], which may one day

lead to controlling abnormal electrical waves in the heart or brain to ward off a heart

attack or epileptic seizure.

Markus et al. [36] studied in 1992 the phototaxis of spiral waves, which drift to-

ward regions of higher light intensity. Steinbock and Müller [37] found the rotation

period, wavelength and velocity of spirals increased monotonically when an argon

laser beam radius was increased, which served as the core of the spiral. Agladze et

al. [38] found that the spiral wave could completely disappear under a rapid increase

of illumination or survive and reshape its core under a slow increase of illumination;

they found multiple wave breaks at the periphery of the spiral wave when the illu-

mination changed at a moderate speed. Petrov et al. [39] examined the behavior of

spirals for a wide range of bromate concentrations and presented the primary bifur-

cations in frequency and wavelength of the spirals as a function of malonic acid and

bromate concentrations and the illumination intensity in the Ru(bpy)3
2+ catalyzed

BZ reaction. They used a continuous fed unstirred reactor (CFUR).

The trajectory of the tip of a spiral wave, which is an important characteristic of

the spiral wave motion, is very sensitive to changes of external illumination. Braune

and Engel [40] investigated the compound rotation of the tip of spiral waves under

constant illumination. They found the tip motion transformed from nearly rigid ro-

tation into various meandering regimes and again into rigid rotation when the light

intensity gradually increased. Brandtstädter et al. [41] studied the tip trajectory as
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well by using Ru(dmbpy)3
2+ instead of Ru(bpy)3

2+ as the catalyst. The tip trajec-

tory undergoes a compound rotation to form an outward hypocycloid and an inward

epicycloid-like trajectory as the light intensity increases. If a spiral wave is subjected

to spatiotemporal structured noise, the tip trajectory exhibits a Brownian motion, as

reported by Sendiña-Nadal et al. [42]. All of the above studies have used an excitable

medium. The spiral wave in an oscillatory medium has also been studied [43]. It

was found that irradiation with visible light in the core region of the vortex in an

oscillatory medium results in a bifurcation of the vortex shape from an Archimedian

spiral wave to a phase rotor.

Under time-dependent harmonic modulation of the uniform illumination, a syn-

chronization of the movement of the spiral tip with the external frequency within

entrainment bands, a resonance drift of the spiral core, and irregular motion of the

tip have been observed by several authors [44–47]. If the spiral wave was disturbed

by a sequence of short light pulses at a particular detection point, two new dynamic

regimes for spiral tip behavior, named entrainment and resonance attractors, were

found and studied in detail [48–51]. If the intensity of the time-dependent uniform

modulation is changed proportional to the average wave activity in a confined circular

domain, the stabilization and destabilization of the rigid rotation tip of a spiral wave

will occur according to the control parameter [52].

The dynamics of a pair of spiral waves has also been studied. Agladze [53] stud-

ied the light-induced collapse of a pair of counter-rotating spiral waves in an active

medium based on the Ru(bpy)3
2+ catalyzed BZ reaction. Spiral waves annihilate

only if the light intensity is increased in proper phase relative to the rotation of the

spiral waves, otherwise the distance between spiral wave cores increases and the pair

survives. Brandtstädter et al. [41] used Ru(dmbpy)3
2+ as a catalyst to study the in-

teraction of spiral pairs in an open-gel reactor. They found a small, initially symmet-

ric pair of counter-rotating spiral waves underwent a symmetry-breaking instability

after several rotation periods. They studied a pseudo-spiral pair by constructing a
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plane boundary impermeable to diffusion and they measured the spiral drift along

the boundary as a function of the applied light intensity in repulsive and attractive

interactions.

All of the above studies are carried out on the ruthenium(II) catalyzed BZ reac-

tion. Guderian et al. [54] demonstrated resonant chaos controlled by light in the

chemiluminescent BZ reaction, which is catalyzed by a mixture of Ce2(SO4)3 and

Ru(bpy)3
2+. Tóth et al. [65] recently reported wave initiated in the ferroin-catalyzed

BZ reaction on a polysulfone membrane by visible light of 632.8 nm wavelength from

a He-Ne laser. Their observations are in contrast to the inhibitory effect of visible

light in the Ru(bpy)3
2+ catalyzed BZ system.

Among the light-sensitive BZ reactions, the Ru(bpy)3
2+ catalyzed reactions have

received much attention due to the specific photosensitive properties of the Ru(bpy)3
2+

complex [66]. Light at 452 nm produces an excited state of the ruthenium catalyst,

Ru(bpy)3
2+∗, which is an extremely strong reducing agent. Both inhibition [6] and in-

duction [10] of oscillation caused by light has been reported, and wave initiation [15],

induction [18, 19], inhibition [28] and elimination [18, 28, 38] has been demonstrated.

We can summarize that light acts both as an inhibitor and as an accelerator in this

system. It is well known that in the BZ reaction bromide (Br−) is the inhibitor

and bromous acid (HBrO2) is the autocatalyst [67]. Studies on the mechanism of

the photosensitive BZ reaction have revealed how these two intermediates are gen-

erated in this complex system. Most studies are focused on the Br− generation by

monitoring its concentration using a bromide ion selective electrode. Some authors

found that bromide was produced by an excited state of Ru(bpy)3
2+ in its reaction

with bromomalonic acid (BrMA) [59,60,62], which is used very commonly to explain

studies of spatiotemporal pattern. Although bromide was thought to be a product of

the reaction of the excited state of Ru(bpy)3
2+ with bromate [13, 56], other studies

excluded this mechanism [57, 60, 62]. It has also been found that the excited state

of Ru(bpy)3
2+ reacts with HBrO2 to generate Br− [55]. As for the generation of
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HBrO2, there are not so many arguments. Bromate reacting with the excited state of

Ru(bpy)3
2+ in the absence of BrMA to produce HBrO2 has been reported [56,60–62].

Although quenching methods revealed that the amount of HBrO2 produced is much

more than that of Br− from the photochemical reaction [58], these results conflict with

more recent studies. Kádár et al. [60] have found that light affects the Ru(bpy)3
2+

catalyzed BZ reaction via two separate photochemical pathways. The predominant

effect is the production of Br− from the reduction of bromomalonic acid by the pho-

toexcited catalyst. A secondary effect is the generation of HBrO2 from the reduction

of BrO−
3 by the excited catalyst. The production of Br− has been adopted in the

kinetic model [63] which has qualitatively described a variety of dynamical behaviors

observed in the photosensitive BZ system [24, 30–35, 41, 42, 47]. We will present the

mechanism and the kinetic model in detail in the next Chapter.
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[19] A. P. Muñuzuri, V. Pérez-Villar, and M. Markus, “Splitting of Autowaves in an

Active Medium,” Phys. Rev. Lett. 79, 1941-1944 (1997).

10



[20] V. Petrov, Q. Ouyang, and H. L. Swinney, “Resonant Pattern Formation in a

Chemical System,” Nature 388, 655-657 (1997).

[21] T. Amemiya, S. Kádár, P. Kettunen, and K. Showalter, “Spiral Wave Formation

in Three-Dimensional Excitable Media,” Phys. Rev. Lett. 77, 3244-3247 (1996).

[22] T. Amemiya, P. Kettunen, S. Kádár, T. Yamaguchi, and K. Showalter, “Forma-

tion and Evolution of Scroll Waves in Photosensitive Excitable Media,” Chaos

8, 872-878 (1998).

[23] V. K. Vanag, L. Yang, M. Dolnik, A. M. Zhabotinsky, and I. R. Epstein, “Oscil-

latory Cluster Patterns in a Homogeneous Chemical System with Global Feed-

back,” Nature 406, 389-391 (2000).

[24] M. Hildebrand, H. Skødt, and K. Showalter, “Spatial Symmetry Breaking in the

Belousov-Zhabotinsky Reaction with Light-Induced Remote Communication,”

Phys. Rev. Lett. 87, 088303(1-4) (2001).

[25] R. Kapral and K. Showalter, Eds, Chemical Waves and Patterns (Kluwer, Dor-

drecht, 1995).

[26] I. R. Epstein and K. Showalter, “Nonlinear Chemical Dynamics: Oscillations,

Patterns, and Chaos,”J. Phys. Chem. 100, 13132-13147 (1996).

[27] L. Kuhnert and H.-J. Krug, “Kinetics of Chemical Waves in the Acidic Bromate-

Malonic Acid-Ru(bpy)3
2+ System in Comparison with the Ferroin System,” J.

Phys. Chem. 91, 730-733 (1987).

[28] M. K. Ram Reddy, Zs. Nagy-Ungvarai, and S. C. Müller, “Effect of Visible

Light on Wave Propagation in the Ruthenium-Catalyzed Belousov-Zhabotinsky

Reaction,” J. Phys. Chem. 98, 12255-12259 (1994).

11
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[41] H. Brandtstädter, M. Braune, I. Schebesch, and H. Engel, “Experimental Study

of the Dynamics of Spiral Pairs in Light-Sensitive Belousov-Zhabotinsky Media

Using an Open-Gel Reactor,” Chem. Phys. Lett. 323, 145-154 (2000).

[42] I. Sendiña-Nadal, S. Alonso, A. Pérez-Muñuzuri, M. Gómez-Gesteira, A. Pérez-
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Chapter 2

The Mechanism and Kinetic Model of the

Belousov-Zhabotinsky Reaction

The widely studied Belousov-Zhabotinsky (BZ) [1,2] reaction was discovered by B.

P. Belousov in 1951 and was extensively studied by A. M. Zhabotinsky as early as 1961

[3]. Belousov observed oscillations of the solution color during the cerium-catalyzed

oxidation of citric acid by bromate. Later, Zhabotinsky replaced the original citric

acid with malonic acid to improve the optical contrast of the color oscillations [3].

In a stirred sulfuric acid solution, initially containing potassium bromate, cerium

sulfate, and malonic acid, the concentrations of bromide ion and cerium(IV) undergo

repeated oscillations of large amplitude, with the reaction mixture changing from

colorless to yellow and back at regular intervals. In 1972, Field, Körös and Noyes [4]

presented a detailed chemical mechanism of the BZ reaction involving ten elementary

steps, which became known as the FKN mechanism. In 1974, Field and Noyes [5]

proposed a distillation of the FKN mechanism, a three variable scheme known as the

Oregonator. Since then, the BZ reaction has become one of the most widely studied

chemical reactions and is extensively used as a model for non-equilibrium systems

[6, 7].

In this chapter, we present the FKN mechanism [4], the mechanism of the pho-
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tosensitive ruthenium(II) catalyzed BZ reaction proposed by Kádár et al. [8], the

Oregonator [5] scaled by Tyson and Fife [9] for modeling temporal oscillations and

spatiotemporal behaviors of the BZ reaction, and the modified complete Oregonator

(MCO) for photosensitive BZ reaction presented by Kruhernt et al. [10]. Finally, we

present the kinetic model used in the numerical simulations in this dissertation.

2.1 The FKN Mechanism

The primary overall reaction of the BZ reaction is,

2BrO−
3 + 3CH2(COOH)2 + 2H+ → 2BrCH(COOH)2 + 3CO2 + 4H2O. (2.1)

Field, Körös and Noyes elucidated the detailed chemical mechanism in 1972. Table

2.1 shows the elementary reactions of the detailed mechanism numbered as in the

original manuscript. Three processes were proposed as essential components of the

reaction: Process A, the reduction of BrO−
3 to Br2 by a series of oxygen atom transfers,

and the subsequent bromination of malonic acid by Br2; Process B, the reduction of

BrO−
3 by the autocatalytic species HBrO2, involving one-electron transfers among free

radical oxybrominine intermediates in which the electron is supplied by Ce3+. The

Br2 generated combines with malonic acid as in process A. Process C is the oxidation

of organic and bromo-organic compounds by Ce4+ to regenerate Ce3+ and Br−. The

three processes take place successively to constitute one oscillation, and the sequence

is then repeated to generate successive oscillations. When Br− is consumed to a

critical concentration in process A, the autocatalysis in process B takes place. The

Br− regeneration in process C effectively “resets the clock” by returning the system

to process A.

In process A, when the solution contains a sufficient concentration of bromide ion

(Br−), BrO−
3 is reduced to Br2 by successive oxygen atom transfers (the two-equivalent

redox processes (R1) and (R2)), and the malonic acid is brominated by an enolization

18



mechanism, (R8):

(R3) Br− + BrO−
3 + 2H+ → HOBr + HBrO2

(R1) Br− + HOBr + H+ 
 Br2 + H2O

(R2) Br− + HBrO2 + H+ → 2HOBr

(R8) Br2 + CH2(COOH)2 → BrCH(COOH)2 + Br− + H+

2Br− + BrO−
3 + 3CH2(COOH)2 + 3H+ → 3BrCH(COOH)2 + 3H2O. (2.2)

When the concentration of bromide ion becomes very low and consequently the

rate of its reaction with BrO−
3 in (R3) becomes very small, an alternative pathway

for the reaction of BrO−
3 with HBrO2, (R5), becomes dominant. The BrO2· radical is

generated, which oxidizes cerium(III) by the one-equivalent redox process (R6). The

net reaction (2.3) represents an autocatalytic production of HBrO2:

(R5) HBrO2 + BrO−
3 + H+ 
 2 BrO2· + H2O

(R6) 2(BrO2· + Ce3+ + H+ 
 Ce4+ + HBrO2)

HBrO2 + BrO−
3 + 2Ce3+ + 3H+ 
 2Ce4+ + 2HBrO2 + H2O. (2.3)

An indefinite buildup of HBrO2 concentration is prevented by its second-order dis-

proportionation in (R4):

(R4) 2HBrO2 → HOBr + BrO−
3 + H+.

Combining reaction (2.3) with reactions (R1), (R4), and (R8), (i.e., 2(2.3)+(R1)+(R4)

+(R8)), we obtain the overall reaction for process B:

BrO−
3 + 4Ce3+ + CH2(COOH)2 + 5H+ → BrCH(COOH)2 + 4Ce4+ + 3H2O. (2.4)

In process C, cerium(IV) oxidizes bromomalonic acid and malonic acid with the

generation of cerium(III) (R9, R10) and liberation of bromide ion (R10, R11), which

ultimately terminates the autocatalytic production of HBrO2 and resets the reaction.

(R9) CH2(COOH)2 + 6Ce4+ + 2H2O → 6Ce3+ + HCOOH + 2CO2 + 6H+

(R10) BrCH(COOH)2 +4Ce4+ +2H2O→Br− +4Ce3+ +HCOOH+ 2CO2 +5H+

(R11) Br2 + HCOOH → CO2 + 2Br− + 2H+

Reaction (R11) is not included in the original FKN mechanism [4], but is included
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in process C in Refs. [9] and [11]. The most important characteristic of process C is

the number of bromide ions produced per ceric ion consumed in the oxidation of the

mixture of malonic and bromomalonic acids.

2.2 The Mechanism of Light Sensitivity in the

Ru(bpy)3
2+ Catalyzed BZ Reaction

The Ru(bpy)3
2+ catalyzed photosensitive BZ reaction plays a prominent role in the

study of nonlinear phenomena in chemical dynamics. Here, we outline its chemical

mechanism elucidated by Kádár et al. [8]. These authors separately investigated

the inorganic reaction subset, consisting of Ru(II), bromate, and sulfuric acid, and

the organic reaction subset, consisting of Ru(II), bromomalonic acid, and sulfuric

acid. They found that light affects the Ru(bpy)3
2+ catalyzed BZ reaction via two

separate photochemical pathways. The first is the production of bromide ion from

the reduction of bromomalonic acid by the photocatalyst, Ru(bpy)3
2+*. The second

is the generation of bromous acid (HBrO2) from the reduction of bromate (BrO−
3 ) by

the excited catalyst Ru(bpy)3
2+*.

The primary photochemical process is the absorption of visible light by the Ru(bpy)3
2+

complex. The excited state of the complex, Ru(II)*, is an extremely strong reducing

agent, as evidenced by the low reduction potential compared to the unexcited com-

plex [12]:

Ru(III) + e− = Ru(II) E0 = 1.26 V (2.5)

Ru(III) + e− = Ru(II)* E0 = -0.86 V (2.6)

Photoinduced bromide production in acidic solution containing bromomalonic acid

(BrMA) and Ru(II) comprises the first pathway acting through the organic subset:

Ru(II) + hv → Ru(II)* (2.7)

Ru(II)* + BrMA → Ru(III) + Br− + org. prod. (2.8)
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Ru(III) + BrMA → Ru(II) + Br− + org. prod. (2.9)

The reaction (2.9) is similar to (R10) of the FKN mechanism.

The second pathway occurs at low-intensity illumination when Ru(II)* reduces

bromate in the reaction associated with the inorganic subset:

Ru(II)* + BrO−
3 + 2H+ →BrO2· + H2O + Ru(III), (2.10)

followed by the autocatalytic cycle (2.11, 2.12) similar to the reactions (R5) and (R6)

of the FKN mechanism:

BrO2· + H+ + Ru(II) → HBrO2 + Ru(III), (2.11)

HBrO2 + BrO−
3 + H+ → 2BrO2· + H2O. (2.12)

From their studies, the authors concluded that the production of the inhibitor, Br−,

is the predominant effect, while the production of the autocatalyst, HBrO2, is of

secondary importance. These results provide an explanation of the dependence of

light sensitivity on the initial concentration of bromomalonic acid.
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Table 2.1. The FKN mechanism [4]

Reaction number Reaction

(R1) Br− + HOBr + H+ 
 Br2 + H2O

(R2) Br− + HBrO2 + H+ → 2HOBr

(R3) Br− + BrO−
3 + 2H+ → HOBr + HBrO2

(R4) 2HBrO2 → HOBr + BrO−
3 + H+

(R5) HBrO2 + BrO−
3 + H+ 
 2BrO2· + H2O

(R6) BrO2· + Ce3+ + H+ 
 Ce4+ + HBrO2

(R7) BrO2· + Ce4+ + H2O → Ce3+ + BrO−
3 + 2H+

(R8) Br2 + CH2(COOH)2 → BrCH(COOH)2 + Br− + H+

(R9) CH2(COOH)2 + 6Ce4+ + 2H2O → 6Ce3+ + HCOOH + 2CO2 + 6H+

(R10) BrCH(COOH)2 + 4Ce4+ + 2H2O → Br− + 4Ce3+ + HCOOH + 2CO2 + 5H+



2.3 The Kinetic Model

In 1974, Field and Noyes [5] reduced the FKN mechanism [4] to five essential steps,

involving three independent chemical intermediates. The resulting model is known

as the Oregonator. Here, we use the model as it appeared in [9], which is different

from the original Oregonator model proposed by Field and Noyes [5] in the products

of each step and the definitions of A and B, but has identical mass-action kinetic

equations describing the three intermediates.

A + W → U + P (M1)

U + W → 2P (M2)

A + U → 2U + 2V (M3)

2U → A + P (M4)

B + V → hW (M5)

Where A = BrO−
3 , B = BrMA [9] (or B = BrMA + MA [13, 14]), P = HOBr, U =

HBrO2, V = Ce4+ (or Me(ox)), and W = Br−. The reactions are numbered as in Ref.

[9].

If the steps of the model are all assumed to be irreversible, the kinetic behavior of

the Oregonator can be described by the following differential equations:

dU/dT = k1AW − k2UW + k3AU − 2k4U
2 (2.13a)

dV/dT = 2k3AU − k5BV (2.13b)

dW/dT = −k1AW − k2UW + hk5BV. (2.13c)

where k1, . . . , k5 are the rate constants for the five steps, A and B are assumed to be

time independent, U, V, W are concentrations in moles liter−1 (M L−1) and T is time

in seconds. These equations have been considerably simplified by Tyson and Fife [9]

by introducing dimensionless variables u, v, w, and t, scaling parameters ε, ε’ and q,

and the adjustable stoichiometry parameter f:

u = (2k4/k3A)U , v = [k4k5B/(k3A)2]V , w = (k2/k3A)W , t = k5BT , ε = k5B/k3A,

ε′ = 2k4k5B/k2k3A, q = 2k1k4/k2k3, f = 2h.
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The resulting kinetic equations in dimensionless form are:

εdu/dt = qw − uw + u− u2, (2.14a)

dv/dt = u− v, (2.14b)

ε′dw/dt = −qw − uw + fv. (2.14c)

Equations (2.14) are known as the 3-variable Oregonator model. This model can

be further reduced to a 2-variable model by using the order relations ε′ � ε � 1,

and ε′ < q �1, which can be deduced form the measured rate constants for steps

(R1)-(R10). Since w changes on a fast time scale, it is in quasi-equilibrium, so that

w = fv/(u + q). Substituting this expression into the original system (2.14), we have

εdu/dt = u− u2 − fv[(u− q)/(u + q)], (2.15a)

dv/dt = u− v. (2.15b)

The two-variable model allows the excitability of the system to be easily analyzed

using the nullclines of equations (2.15).

Equations (2.15) describe the chemical reaction in a well-stirred vessel. When the

chemical species are allowed to diffuse freely, we must augment equations (2.15) with

diffusion terms so that it becomes:

∂u

∂t
= Du∇2u +

1

ε
(u− u2 − fv

u− q

u + q
), (2.16a)

∂v

∂t
= Dv∇2v + u− v. (2.16b)

Here, Du and Dv are the dimensionless diffusion constants of u and v, respectively, and

∇2 is the Laplacian operator. The space scaling is L = (Duδ/D1)
1/2 = (Dvδ/D2)

1/2

(see 2.4 of this chapter). D1, D2 are the diffusion coefficients for U and V respectively,

in units of cm2 s−1. In the experiment, where the catalyst is immobilized in gel, the

diffusion of v is absent, and Dv is equal to 0.

In 1990, Krug, Pohlmann, and Kuhnert [10] modified the Oregonator model by

introduction of the bromide production corresponding to the influences of oxygen
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and/or light on BZ systems. They named their model the “modified complete Oreg-

onator” (MCO). The MCO model does not include B in reaction M5, and introduces

the reaction

Φ−→ W. (2.17)

Here Φ is the velocity of bromide release that takes into account the additional Br−

production induced by external illumination. If we add this reaction to the Oregonator

and use Tyson-Fife scaling [9], equation (2.13.c) becomes:

dW/dT = Φ− k1AW − k2UW + fk5BV. (2.18)

If φ = [2k4/(k3A)2]Φ, as scaled in the MCO model [10], equation (2.14.c) will become

ε′dw/dt = φ− qw − uw + fv. (2.19)

And the kinetics of w can be adiabatically eliminated by the relation

w =
fv + φ

u + q
. (2.20)

If we consider the photosensitive BZ reaction, in which the catalyst is immobilized in a

gel, and use Tyson-Fife scaling combined with reaction (2.17), the modified 2-variable

Oregonator model becomes:

∂u

∂t
= Du∇2u +

1

ε
(u− u2 − (fv + φ)

u− q

u + q
), (2.21a)

∂v

∂t
= u− v. (2.21b)

Depending on the choice of the parameters f , q, ε, and φ, the chemical medium

described by this equation can be characterized as bistable, oscillatory or excitable

[15].

25



2.4 Dimensionless Equations of the Oregonator Model

We start with the kinetic equations (2.13):

dU/dT = k1AW − k2UW + k3AU − 2k4U
2, (2.13a)

dV/dT = 2k3AU − k5BV, (2.13b)

dW/dT = −k1AW − k2UW + hk5BV. (2.13c)

Let U = u/α, V = v/γ, W = w/β, T = t/δ, then (2.13.a), (2.13.b), and (2.13.c) will

be

du

dt
=

α

δ
(k1A

w

β
− k2

u

α

w

β
+ k3A

u

α
− 2k4

u2

α2
), (2.22a)

dw

dt
=

β

δ
(−k1A

w

β
− k2

u

α

w

β
+ +hk5B

v

γ
), (2.22b)

dv

dt
=

γ

δ
(−k5B

v

γ
+ 2k3A

u

α
). (2.22c)

We organize equations (2.22) as:

du

dt
= k1A

α

δ

1

β
w − k2

1

δ

1

β
uw + k3A

1

δ
u− 2k4

1

δ

1

α
u2, (2.23a)

dw

dt
= −k1A

1

δ
w − k2

1

δ

1

α
uw + hk5B

β

γ

1

δ
v, (2.23b)

dv

dt
= −k5B

1

δ
v + 2k3A

γ

δ

1

α
u. (2.23c)

Now let

k5B
1

δ
= 1, 2k3A

γ

δ

1

α
= 1,

and then

δ = k5B, (2.24)

γ

α
=

k5B

2k3A
. (2.25)

We now introduce ε, ε’ to (2.23.a) and (2.23.b), respectively:

ε
du

dt
= εk1A

α

δ

1

β
w − εk2

1

δ

1

β
uw + εk3A

1

δ
u− ε2k4

1

δ

1

α
u2, (2.26a)

ε′
dw

dt
= −ε′k1A

1

δ
w − ε′k2

1

δ

1

α
uw + ε′hk5B

β

γ

1

δ
v. (2.26b)
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and setting the following terms in equations (2.26) equal to unity

k2
1

δ

1

β
= 1, (2.27)

ε′k2
1

δ

1

α
= 1, (2.28)

εk3A
1

δ
= 1, (2.29)

2εk4
1

δ

1

α
= 1, (2.30)

allows the parameters to be identified in terms of the rate constants and constant

concentrations.

Combining equations (2.28) and (2.24) yields ε =
k5B

k3A
; (2.31)

equations(2.20) and (2.24) yield α =
2k4

k3A
; (2.32)

equations(2.27) and (2.24) yield β =
k2

k3A
; (2.33)

equations(2.27) and (2.28) yield ε′ = ε
α

β
=

2k4k5B

k2k3A
; (2.34)

and equations(2.25) and (2.32) yield γ =
k4k5B

(k3A)2
; (2.35)

The coeffecient of the last term of (2.26.b) becomes f = 2h. (2.36)

Finally, we let q = εk1A
α

δ

1

β
= ε′k1A

1

δ
=

2k1k4

k2k3

. (2.37)

With the parameters as defined above, the dimensionless Oregonator can be written

as equations (2.14) or (2.38):

du/dt = (qw − uw + u− u2)/ε, (2.38a)

dv/dt = u− v, (2.38b)

dw/dt = (−qw − uw + fv)/ε′. (2.38c)
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In the following, we derive dimensionless equations for the Oregonator with diffu-

sion of the autocatalyst u and inhibitor v. We first write the kinetic equations:

dU/dT = k1AW − k2UW + k3AU − 2k4U
2 = F (U,W ), (2.39a)

dV/dT = 2k3AU − k5BV = G(U, V ). (2.39b)

Defining D1 and D2 as the diffusion coefficients for U and V , the reaction-diffusion

equations can be written as:

dU

dT
= F (U,W ) + D1∇2U, (2.40a)

dV

dT
= G(U, V ) + D2∇2V. (2.40b)

With the dimensionless variables defined above, Eqs. (2.40) become:

∂u

∂t
=

α

δ
F (U,W ) +

α

δ
D1∇2U, (2.41a)

∂v

∂t
=

γ

δ
G(U, V ) +

γ

δ
D2∇2V. (2.41b)

We now consider Eq. (2.41.a) for one spatial dimension, introducing ε as in (2.26.a):

ε
∂u

∂t
= f(u, w, q) + ε

α

δ
D1

∂2U

∂X2
. (2.42)

Letting X =
x

L
and U =

u

α
, we have

∂2U

∂X2
=

∂

∂X
(
∂U

∂X
) =

1

α

∂

∂X

∂u

∂X

=
L

α

∂

∂X
(
∂u

∂x
) =

L2

α

∂

∂x
(
∂u

∂x
) =

L2

α

∂2u

∂x2
.

Equation (2.42) can now be written as:

ε
∂u

∂t
= f(u, w, q) + ε

α

δ

L2

α
D1

∂2u

∂x2

∂u

∂t
=

1

ε
f(u, w, q) +

L2

δ
D1

∂2u

∂x2
=

1

ε
f(u, w, q) + Du

∂2u

∂x2
.

so the dimensionless diffusion coefficient for u is:

Du =
L2

δ
D1 (2.43)
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For equation (2.41.b), using the same arguments as above, we obtain:

∂v

∂t
=

γ

δ
G(U, V ) +

γ

δ
D2∇2V = g(u, v) +

γ

δ

L2

γ
D2

∂2v

∂x2

= g(u, v) + Dv
∂2v

∂x2
.

and the dimensionless diffusion coefficient for u is:

Dv =
L2

δ
D2. (2.44)

The equations (2.43) and (2.44) provide a relationship between the parameters

δ,Du(or Dv), D1 (or D2), and the space scaling parameter L.

In summary, the two-variable reaction-diffusion Oregonator is given by

∂u

∂t
= Du∇2u +

1

ε
(u− u2 − fv

u− q

u + q
), (2.16a)

∂v

∂t
= Dv∇2v + u− v. (2.16b)

For the photosensitive BZ reaction with the catalyst immobilized in a gel, the Oreg-

onator model becomes:

∂u

∂t
= Du∇2u +

1

ε
(u− u2 − (fv + φ)

u− q

u + q
), (2.21a)

∂v

∂t
= u− v. (2.21b)

Equation (2.21) comprises the model used in the numerical simulations in this

dissertation. Here, we give an example for the parameters. Choosing the rate constant

as in refc. [13, 14]:

k1 = 2 M−3s−1[H+]2,

k2 = 106 M−2s−1[H+],

k3 = 40 M−2s−1[H+] ,

k4 = 2 × 103 M−1s−1,

k5 = 0.4 M−1s−1,
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and with the reactant concentrations:

B = [BrMA]+[MA] = 0.12 M,

A = [BrO−
3 ] = 0.33 M,

[H+] = 0.36 M,

we determines the following values of the parameters:

ε = k5B / k3A = 10−2,

ε’ = 2 k4k5B / k2k3A = 10−4,

q = 2k1k4/ k2k3 = 2 × 10−4,

δ = k5B s−1 = 0.05 s−1,

L = [k5B /(k3AD1)
1/2] cm−1 = 5.88 cm−1. (if Du = ε, D1 = 1.5×10−5 cm2s−1.)
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Chapter 3

Dynamic Media

A great deal of effort has been devoted to the study of complex spatiotemporal

patterns during the last few years, which appear when a nonlinear system is driven

away from the thermal equilibrium. A variety of systems have been studied, in such

diverse contexts as classical mechanics, hydrodynamics, chemistry, material science,

biophysics and solid state physics [1–5]. All these systems are referred to as active

media, among which excitable media are particularly important for describing many

spatiotemporal patterns in biological systems. In this Chapter, we introduce a clas-

sification of active media and the generic features of excitable media, using the BZ

reaction as an example system.

3.1 Classification of Dynamic Media

In general, dynamical systems are defined by a time evolution equation for the

system variables. A typical example is a chemical system represented by a set of

nonlinear ordinary differential equations

dU

dt
= F (U,R) , (3.1)
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for the n components of the state vector,

U(t) = {ui(t)} = u1(t), ..., un(t), (3.2)

where F (U,R) is a set of nonlinear functions of all variables and depends on a set

of control parameters, R = R1, ..., Rp. The instantaneous state of the system at

fixed values of R can be represented by a point in the n-dimensional phase space,

with coordinates given by (3.2) and the time evolution by a trajectory in that space.

In chemical systems, the element ui(t) is the local concentration of the chemical

species i , and F (U ,R) is the kinetic rate equation. A natural extension of (3.1) is a

set of partial differential equations (3.3), which incorporates the notion of a spatial

coordinate (x),

∂U(x, t)

∂t
= G

[
U,

∂U

∂x
, ..., R

]
, (3.3)

where the right-hand side of (3.3) depends on the gradients and higher spatial deriva-

tives of U .

The partial differential equations (3.3) describe reaction-diffusion active media,

which can be further classified as bistable, excitable, or oscillatory, depending on

their stationary states [6]. In bistable media, every component has two stationary

states that are stable under small perturbations. Large enough perturbation can,

however, trigger transitions between these two steady states. In excitable media,

each component typically has a single stationary state that is stable under small per-

turbations. If the perturbation exceeds a certain threshold, however, this component

produces a strong burst of activity. It undergoes a sequence of transitions and later

returns to the initial state of rest. An oscillatory medium consists of elements that

typically have one unstable steady state and perform stable limit-cycle oscillations.

A special class of active media is a two-variable system, where one of the compo-

nents is called as an activator (u) and the other as an inhibitor (v) [6]. Generally, an
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activator-inhibitor system is described by the equations

τu
∂u

∂t
= f(u, v) + Du∇2u, (3.4a)

τv
∂v

∂t
= g(u, v) + Dv∇2v, (3.4b)

where τu and τ v are the characteristic times for the activator and the inhibitor,

respectively. The activator and the inhibitor typically evolve on markedly different

characteristic timescales. The fast variable, the activator, is also called a “propagator”

or “trigger” variable, while the slow variable, the inhibitor, is called a “controller” or

“recovery” variable.

Figures 3.1(a) and (b) present the typical structure and the contour of f (u, v) and

g(u, v) in three dimensional space, respectively. At a fixed value of the inhibitor,

the function f (u, v) is shown in Fig. 3.1(c). Within a certain range of values of u,

it has a positive derivative df/du, which represents an autocatalytic production of

the activator u. In the regions where the derivative df/du is negative, v inhibits any

production of u. Figure 3.1(d) shows the contours of f (u, v) and g(u, v) in u,v phase

plane. The parallel straight lines belong to g(u, v), whereas the curved lines belong

to f (u, v). The numbers on the contour lines are the values of f (u, v) and g(u, v),

and the lines having the value of zero are the nullclines. The two nullclines divide

the phase plane into four regions in which the signs of du/dt and dv/dt vary between

positive and negative, indicating the slope of any trajectory in that region.

As shown in Fig. 3.1(d), an isolated element of an active medium described by

Eqs. (3.4) has the nullclines f (u, v) = 0 and g(u, v) = 0. Depending on how these

two nullclines intersect, the medium can be bistable, oscillatory or excitable. Figure

3.2 shows the three different possibilities defined by the intersections of the nullclines.

Simple stability analysis reveals that if an intersection point lies on the left or on

the right branch of the nullcline du/dt = 0, where df/du < 0, this stationary state is

stable with respect to small perturbations. The stationary state is always unstable if

it lies on the middle branch of the nullcline du/dt = 0 and if the slope of the nullcline
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Figure 3.1(a). Typical structure of f (u, v). The contour lines of f (u, v) are in the u,v
plane. The color bar indicates the value of f (u, v).
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oscillatory element, (c) and (d) an excitable element. The cubic curve is the u nullcline and
the straight line is the v nullcline. “S” indicates a stable steady state and “U” indicates an
unstable steady state.
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du/dt = 0 is larger than that of the nullcline dv/dt = 0 at the intersection point. Thus,

the element shown in Fig. 3.2(a) is bistable, with two stable steady states and one

unstable steady state. When the nullclines intersect as in Fig. 3.2(b), the slope of the

nullcline du/dt = 0 at the intersection point is less than the slope of the nullcline dv/dt

= 0, the behavior of the stationary state will depend on the ratio ε = τu/τ v of the

characteristic times. If ε � 1, the only stationary state of such an element is unstable

and the element is oscillatory. For larger values of ε, however, the stationary state

may become stable and the element is called Turing-Hopf element [6]. The element

shown in Figs. 3.2(c) and (d) has only one stable steady state and is excitable.

3.2 Excitable Dynamics

All excitable systems share certain characteristic features. They possess a single

stable steady state, also called the rest state, and respond to perturbations in a

characteristic manner. Initial states corresponding to small perturbations of the rest

state give rise to trajectories that return directly to the rest state in a short time.

Perturbations that exceed a certain threshold give rise to trajectories that make a

large excursion in the phase space before returning to the rest state. The system is

refractory and insensitive to perturbations during theses long excursions. The phase-

plane diagram of the two-variable Oregonator model, as shown in Fig. 3.3, illustrates

this sequence of events. The subthreshold perturbation A relaxes rapidly to the rest

state (see blowup in Fig. 3.3(b)), but the suprathreshold perturbation B undergoes

a long excursion before returning to rest, Fig. 3.3(a). First, there is a phase of rapid

excitation, BC, during which species u is produced autocatalytically, followed by a

period, CD, when the system remains in the excited state. After the excitation phase

comes to an end at E, the system is initially absolutely refractory to further excitation

and then gradually recovers excitability as it returns to the rest state. In other words,

the excitable system is characterized by three states: the rest state (the stable steady
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Figure 3.3(a). Typical phase plane for an excitable system, with u and v as the activator
and inhibitor of the Oregonator model, Eqs. (3.9). The dashed lines are the nullclines. The
short red dotted line is a subthreshold trajectory, and the green dotted line is a suprathresh-
old trajectory. The red and green circles indicate the initial positions of the trajectories.
The region inside the dash-dotted square is magnified in Fig. 3.3(b). The parameters used
for simulating the trajectories are f = 1, q = 0.02, φ = 0.10, ε = 0.001. See text for
explanation of the trajectories in terms of the points indicated by the letters.

42



0.02 0.04 0.06 0.08 0.1 0.12 0.14
0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

u

v

f(u,v)=0g(u,v)=0

A B

Figure 3.3(b). Magnified region marked by dash-dotted square in Fig. 3.3(a).

43



state, also called the quiescent state), the excited state, and the refractory state (also

called the recovery state) [7]. Once the system is excited by suprathreshold stimulus,

it must go through the refractory period before it can be excited. Such an “excitation

cycle” in an excitable system is much like the limit cycle in an oscillatory system.

The distance, parallel to u axis, from the rest state to the lower turning point of the

three-fold u nullcline is the excitation threshold for a homogeneous excitable system.

The higher the threshold, the more difficult it is to excite the system, and, therefore,

the lower the excitability of the system. (See Section 3.3 of this Chapter for different

excitabilities of BZ systems).

Figures 3.3 and 3.4 indicate the dynamic features of the three branches of the u

nullcline. The time interval between the dots representing the perturbed trajectories

in Fig. 3.3 is fixed, and, consequently, the distance between the dots represents the

rate with which the state of the system changes. The rates for the two “jumps” (from

B to C and from D to E) are fast, while the rates along the right-hand branch (from C

to D) and the left-hand branch (from E to the rest state) are very slow. The two outer

branches represent the slow manifolds. The arrows in Fig.3.4 represent du/dt and dv/dt

at different values of u and v . The arrows quantitatively indicate the velocity and

the direction of the trajectory at different initial values of u and v in the phase plane

according to their sizes and directions, respectively. The longer an arrow, the faster

the time evolution at the corresponding points. Figures 3.4(b) and (c) show magnified

regions of Fig. 3.4(a). The trajectories converge to the right-hand slow manifold, as

shown in Fig. 3.4(b), indicting its attracting character. The trajectories diverge from

the middle branch of the u nullcline, as shown in Fig. 3.4(c), indicting its unstable

character.

An excitable medium is a spatially distributed system of locally excitable elements.

The interaction of neighboring elements by diffusive coupling can produce a number

of distinctive types of wave propagation. If a local region of space is perturbed beyond

the excitability threshold, then the autocatalytic production of the propagator species
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Figure 3.4(a). Trajectories at different initial values of u and v within the unit time dt
in the Oregonator model, Eqs. (3.9), with dt = 0.001. The other parameters are the same
as in Fig. 3.3. The solid lines are the nullclines.
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u in that region causes its concentration to increase. Diffusing out into neighboring

regions, it will cause the neighboring regions to exceed the threshold and thus cause

the excitation to spread out. In one spatial dimension, one would observe a wave

train of impulses. Two-dimensional excitable media exhibit two topologically distinct

patterns: expanding concentric circular waves, called target patterns, and rotating

spiral waves. In three dimensions, the corresponding spatiotemporal structures are

expanding concentric spherical waves and rotating scroll waves.

There are many examples of excitable media, which support propagating waves of

chemical, physical or biological activity. The most famous is the axonal membrane

[8], which can support propagating electrical signals and was first characterized by

Hodgkin and Huxley [9]. Other examples of biological excitable media include car-

diac muscle [10–14], among which epicardial, ventricular, and atrial muscle are useful

for the study of the mechanism of fibrillation and tachycardia. Neuronal tissue sup-

porting waves of spreading depression, which has been studied in rat cerebral cortex

[15] and chicken retina [16], has provided insights into the mechanism of migraine

disorder [17]. Another example of biochemical media includes the social amoebae

Dictyostelium discoideum [18–20], a slime mold that supports waves of cyclic adeno-

sine 3’,5’-monophosphate (cyclic AMP) activity. Another biological example is the

Xenopus laevis oocyte [21], an intracellular milieu for studying Ca2+ signaling. Exam-

ples of chemical excitable systems including the BZ reaction [1,5,22,23] and the CO

oxidation on single crystal Pt(110) [24,25], which give rise to many kinds of spatiotem-

poral patterns in the excitable media. There are also many examples of macroscopic

excitable media such as epidemic spreading in population biology [26–28] and spi-

ral galaxies in the celestial system, whose rotating arms can be treated as traveling

waves of star formation in an excitable medium of interstellar gas and dust [29, 30].

Table 3.1 shows a comparison of some of the examples of excitable media by iden-

tifying their characteristic state variables, u and v [2, 31]. Among these excitable

media, the chemical systems have been most extensively used to study the properties
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of excitable media. One of the main advantages of chemical systems is their ability

to be controlled and their simplicity in comparison with biological or celestial sys-

tems. Among chemical systems, the BZ reaction is the most widely studied excitable

chemical medium.
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Table 3.1. State variables of some representative excitable media [2, 31]

System Activator Inhibitor

BZ reaction bromous acid oxidized catalyst

CO oxidation coverage of the absorbed CO structural change of the surface

Neuromuscular tissue membrane potential ionic conductance

Dictyostelium discoideum cyclic AMP membrane receptor

Epidemics infectious agent level of immunity

Spiral galaxies density of molecular cloud temperature of molecular cloud



3.3 Excitable Media in the BZ Reaction

An active medium can exhibit different types of spatiotemporal behavior: homoge-

nous oscillations, travelling wave fronts, rotating spirals and target patterns. The BZ

reaction [1–3,5,32] is one of the most thoroughly investigated systems demonstrating

these types of behaviors. In the BZ reaction, the role of activator, u, is played by bro-

mous acid, HBrO2, while the role of inhibitor, v , is played by the oxidized form of the

metal-ion catalyst. The two-variable Oregonator model [33] describes the temporal

dynamics of the BZ reaction:

(ε)du/dt = u− u2 − fv[(u− q)/(u + q)] = f(u, v), (3.5a)

dv/dt = u− v = g(u, v). (3.5b)

The nullclines of u (du/dt=0) and v (dv/dt = 0) are given by

v(u) =
1

f

(
q + u

q − u
(u2 − u)

)
, (3.6a)

v(u) = u. (3.6b)

The values of the parameters ε, q and f determine the dynamic behavior of the

system; however, we will focus on the parameter f . The steady state, which occurs at

the intersection of the nullclines, and the maximum and minimum of the u nullcline

are determined by f . For q � 1, when f falls into the range

1

2
< f < 1 +

√
2, (3.7)

the system is oscillatory. Systems with f only slightly in excess of 1+
√

2 are nonoscil-

latory but excitable [32]. The irreversible Oregonator with flow terms [35,36] modeling

the BZ reaction in a CSTR and a so-called cross-shaped phase diagram have been

used to analyze the temporal dynamics of the BZ reaction.

In the photosensitive BZ reaction, the dynamic features of the system depend not

only on f but also on φ. The modified Oregonator model [34] for the photosensitive
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BZ reaction (Eqs. (2.21) without diffusion term) is:

du

dt
=

1

ε

(
u− u2 − (fv + φ)

u− q

u + q

)
, (3.8a)

dv

dt
= u− v. (3.8b)

The nullclines of u and v in the photosensitive BZ reaction are given by

v(u) =
1

f

(
q + u

q − u
(u2 − u)− φ

)
, (3.9a)

v(u) = u. (3.9b)

When φ = 0, Eqs. (3.9) are the same as Eqs. (3.6). The nullclines are shown in

Fig. 3.5. According to the FKN mechanism, process A occurs when the system is

close to the left-hand branch of the u nullcline; process B occurs near the right-hand

branch, and process C occurs at high values of v . Figures 3.3 and 3.4 demonstrate

the dynamic features of the photosensitive BZ reaction with the parameters f = 1,

q = 0.02, φ = 0.10. Nullclines with different dynamic features can be controlled by

different values of φ for a fixed value of f , as shown in Fig. 3.5. The excitability of

the system can be adjusted through varying the light intensity φ, as seen in panels

(a)-(d). Varying φ shifts the nullcline of u up or down, generating an unstable steady

state and thus the onset of oscillatory behavior. It also can change the excitability of

the excitable system, with the larger the value of φ, the lower the excitability.

In the Chapter “Synchronization of Spatiotemporal Patterns in Locally Coupled

Excitable Media” of this dissertation, we use the following parameters for the numer-

ical simulations: q = 0.0015, f = 1, φ = 0.035 and q = 0.002, f = 3.5, φ = 0.01. The

corresponding excitable media are described by Figs. 3.6 and 3.7, respectively. The

inserts of Fig. 3.6 and Fig. 3.7 show the details of the nullclines when u close to the

origins.
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Figure 3.5. The effect of light intensity on the excitability of the photosensitive BZ
reaction. The nullclines are plotted for Eqs. (3.9) with the parameters q = 0.02, f = 1 and
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Chapter 4

Synchronization of Spatiotemporal

Patterns in Locally Coupled Excitable

Media

4.1 Introduction

The word synchronization has a Greek root “σv̀γ χρóvoς” that means “to share the

common time.” This original meaning has been maintained in the colloquial use of the

word synchronization, as agreement or correlation in time of different processes [1].

The study of synchronization can be dated back to 1673 when Christian Huygens, the

famous Dutch mathematician, astronomer and physicist, observed synchronization

of two pendulum clocks hanging from a common support. The oscillations of the

two pendulums coincided perfectly and they moved always in opposite directions [2].

By the end of last century, the synchronization of periodic oscillators [3] had been

developed as an applied science [4].

The discovery of synchronization of chaos occurred in the 1980s [5,6]; however, the

beginning of systematic studies of synchronization of chaotic systems was from 1990,

when Pecora and Carroll first experimentally demonstrated the synchronization of
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chaos in an electric circuit [7]. Since then, the synchronization of chaotic systems has

been a very active field in nonlinear dynamics [8–11]. Now, the concept of synchro-

nization of chaotic systems has evolved to that of complete or identical synchroniza-

tion (CS or IS) [12], phase synchronization (PS) [13], lag synchronization (LS) [14],

generalized synchronization (GS) [15], intermittent lag synchronization (ILS) [14],

imperfect phase synchronization (IPS) [16], and almost synchronization (AS) [17].

The relationship between these different types of synchronization and the transitions

between them has been studied recently in [14, 18]. In addition to the theoretical

studies, there are many experimental verifications, such as in the cardiorespiratory

system [19], in the human brain [20], and in the cells of paddlefish [21]. Other experi-

mental studies include applications in secure communications with electronic circuits

[22], chaotic lasers [23], semiconductor lasers [24], and experimental control of chaos

in many areas such as, e.g., chemistry [25], laser physics [26], electronic circuits [27]

and mechanical systems [28].

Today, in terms of fundamental science, the basic framework underlying the syn-

chronization of chaos in lower dimensional systems is well understood. The natural

continuation of this work lies in the investigation of the synchronization of space

extended systems exhibiting spatiotemporal chaos. Fluids, optics, coupled electrical

oscillators, chemical reactions, plasmas, and biological systems are just a few examples

of spatially extended systems that can be described by either cellular automata (CA),

coupled map lattices (CMLs), coupled ordinary differential equations (CODEs), or

partial differential equations (PDEs) [29]. In this Section, we review the schemes lead-

ing to synchronization and the studies on synchronization of spatiotemporal chaos.

4.1.1 Category of schemes leading to synchronization

Many different approaches leading to synchronization have been proposed. They

fall into three schemes: coupling, external forcing, and noise. Each scheme allows a
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number of alternative realizations. Unidirectional coupling and bidirectional coupling

represent two different configurations of coupling. The first type is also called driving-

response (or master-slave) coupling. This implies that the drive system evolves freely

and drives the evolution of response system by a driving function, such that external

synchronization is produced. A typical example of this type of synchronization is found

in studies of communication with chaos [7,22]. In bidirectional coupling, both systems

are coupled to each other in such a way that the coupling factor induces an adjustment

of the “rhythms” onto a common synchronized state, and mutual synchronization is

produced. This type of synchronization is often observed in physiology, e.g., between

cardiac and respiratory systems [19] or between interacting neurons [30]. Different

driving functions have been proposed for unidirectional coupling, such as sensor cou-

pling [31], stochastic coupling [32], dissipative coupling [33], sporadic coupling [34],

and vectorial coupling [24]. There are also different ways to realize bidirectional cou-

pling. The differences between the two systems can be superimposed onto each system

symmetrically [35]. Another realization is adding the local values of one of the systems

to corresponding points of its counterpart with an appropriate coefficient [36].

External forcing can lead one or a collection of systems to entrain to the forcing

frequency or to a common frequency other than the forcing frequency, both of which

are called forced synchronization [37]. This scheme is used in the synchronization

of periodic, chaotic and stochastic systems, which are relevant to biological systems,

such as ion channels and sensory neurons. The external forcing can be periodic [38–40]

or stochastic [41].

If different systems are not coupled (or only weakly coupled) and subject to a

common imposed noise signal, they can be synchronized via the noise. Facilitating

synchronization is another constructive effect of noise, as in stochastic resonance

[42], and the corresponding synchronization is referred to as stochastic synchroniza-

tion [37]. This type of synchronization is of great relevance in biology, especially in

neuroscience and ecology. It has been found that noise can enhance phase synchro-
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nization of weakly coupled chaotic electrochemical oscillators [43] as well as excitable

medium modeled by a discrete network of diffusively coupled Fitzhugh-Nagumo os-

cillators [44]. It has been applied to biological and medical systems, for example, the

noise synchrony found in the human heart-respiratory system [19] and magnetoen-

cephalograms (MEGs) of Parkinsonian patients [20]. Recently, noise-induced synchro-

nization has been reported in pairs of chaotic oscillators [18] and noncoupled sensory

neurons [45].

4.1.2 Review of synchronization of spatiotemporal chaos

Chaotic motion in spatially extended dynamical systems is often referred to as

space-time chaos, with decaying correlations in both space and time. Popular models

of space-time chaos include cellular automata (CA), coupled map lattices (CMLs),

coupled ordinary differential equations (CODEs or lattices of continuous-time oscil-

lators), and partial differential equations (PDEs). Table 4.1 shows the characters of

these four dynamical systems. Cluster and global synchronization behavior in these

types of systems have been studied [30, 32] and reviewed [10, 11]. Here, we review

the synchronization behavior between coupled pairs in these types of systems. These

systems have their own individual properties; however, they also have some universal

properties that make them comparable in synchronization of spatiotemporal chaos.

Kocarev et al. [33] numerically synchronized a pair of unidirectionally coupled CMLs,

CODEs, and PDEs by a similar scheme in which the response system was driven

at a finite number of space points at periodic time intervals by the driving system.

The synchronization transition of coupled CA [46, 47], CMLs, and PDEs [47, 48] has

also been studied. The synchronization transition is either in the universality class

of “bounded KPZ” (the Kardar-Parisi-Zhang equation with a growing limiting term

[48]) or “directed percolation” depending on the local non-linearities. The primary pa-

rameter indicating synchronization of spatiotemporal chaos is synchronization error,

which is the local difference between the variables of the two systems, which vanishes
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Table 4.1. Characters of space-time chaos systems

System Time Space States

CA Discrete Discrete Discrete

CML Discrete Discrete Continuous

CODE Continuous Discrete Continuous

PDE Continuous Continuous Continuous

to zero when synchronization is achieved. When the two spatiotemporal chaotic sys-

tems are synchronized, there are no patterns [33,46,49,50] or regular patterns [10,36]

on the space-time plot of synchronization error.

Space discrete systems

In cellular automata, not only are time and space discrete, but also the field is

allowed to have only discrete values (usually one considers automata with two states

“0” and “1”). Cellular automata [51] have weaker chaotic properties than coupled

map lattices. There are few studies on synchronization of coupled CA, although the

synchronization transition of coupled CA has been studied [46,47]. Most studies have

focused on CMLs, which are idealized systems for spatiotemporal chaos. CMLs are

discrete in time and space and the individual maps are usually diffusively coupled in

space to nearest neighbors (local coupling) [33], to one neighbor (one-way CMLs) [52],

asymmetrically to nearest neighbors (asymmetrically coupled CMLs) [53], or globally

coupled with a mean-field (global coupling) [54]. Kocarev et al. [33] numerically syn-

chronized a pair of unidirectionally coupled CMLs by driving the response system at

spatially periodic points. In order to obtain higher efficiency in synchronizing spa-

tiotemporal chaos, which may perform simultaneously multichannel secure commu-

nication and secure information storage, researchers have sought fewer linking points

between the driving and the response systems in the synchronization schemes. Hu
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et al. [52] proposed that two identical one-dimensional and two-dimensional one-way

CMLs could be synchronized by driving a single site. Jiang and Parmananda [53]

reported synchronization of two asymmetrically coupled CMLs by linking them with

a common signal through one-site connection.

Coupled ordinary differential equations (CODEs) are systems of ODEs with a

discrete spatial structure and are also called lattice differential equations [55]. Chaos

synchronization within an array of coupled CODEs has been studied extensively [34,

41], and the synchronization found in these studies was coherent motions. Kocarev and

Parlitz [34] studied the synchronization of two coupled arrays of CODEs. This was the

first report of synchronization between two coupled chaotic spatiotemporal systems.

In their study, both drive and response systems were arrays of diffusively coupled

Lorenz systems, and the coupling between the two arrays was active at discrete times

only, which is called “sporadic coupling.” The response system oscillated freely and

independently from the drive system except for the moments when all the elements

of the response system were forced to the values of the corresponding elements in the

drive system. Later, Kocarev et al. [33] numerically obtained similar results by using

a “dissipative coupling” scheme in which the response system was fed the information

from the drive system at spatial periodic locations when coupling was introduced.

Space continuous systems

Different PDE models such as the complex Ginzburg-Landau equation (CGLE)

[31, 33, 34, 36, 40, 49, 56–58], Kuramoto-Sivashinsky equation (KSE) [10], Gray-Scott

model [33, 34], and a model describing the CO oxidation on a singel-crystal Pt(110)

surface [59] have been used in studies of the synchronization of spatiotemporal chaos in

coupled PDEs. The CGLE [29,60] describes universal dynamical features of extended

systems close to a Hopf bifurcation, and it has been used to describe many different

dynamical behaviors in laser physics, fluid dynamics, chemical turbulence, and bluff

body wakes [49]. Depending on the range of the parameters, the CGLE displays
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different types of spatiotemporal chaos: phase turbulence (PD), defect turbulence

or amplitude turbulence (DT or AT), and spatiotemporal intermittency (STI). The

Gray-Scott model [61] describes an autocatalytic reaction-diffusion system that can

exhibit mixed-mode spatiotemporal chaos. The Kuramoto-Sivashinsky equation [62,

63] is known to demonstrate spatiotemporal chaos if the spatial domain is sufficiently

large [10].

Synchronization of spatiotemporal chaos in coupled PDEs is the most challenging

to study, since space and time are continuous in PDEs. Time and space are discretized

in numerical simulations of PDEs, which yields “numerical” CMLs. In common CMLs,

however, each space point is explicitly defined, unlike in simulation of PDEs, where a

grid point represents an area of space. Hence, the point to point coupling scheme used

in CMLs can not be directly applied to PDEs. One must also to take into account the

characteristics of the discretization scheme and the effects of point to point coupling

on the neighborhood points, as emphasized in [31]. To realize coupling schemes that

have physical meaning in the context of the original system is of primary importance

in studies of spatiotemporal chaos synchronization described by PDEs. Kocarev et

al. [33,50] introduced a general approach for synchronization pairs of unidirectionally

coupled PDEs with spatiotemporal chaotic dynamics. Their scheme involved applying

the driving signal only at a finite number of periodic space points at periodic time

intervals. They studied synchronized pairs of PDEs described by the Gray-Scott

model [33, 50], the CGLE [50], and the KSE [50].

The first study on complete synchronization of spatiotemporal chaos of coupled

PDEs was carried out by Amengual et al. [36]. They studied the synchronization of

a pair of one-dimensional CGLEs describing STI regimes. Spatiotemporal synchro-

nization of localized structures was achieved by introducing mutual coupling on the

amplitude of the variable (i.e. coupling was added on one of the terms of the CGLE),

unlike other studies, in which coupling was introduced to the field (as an additional

term in the CGLE). Increasing the coupling strength, the dynamics of the coupled
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STI regimes became increasingly correlated, and finally STI disappeared and was

replaced by regular patterns. Recently, Boccaletti et al. [49] and Junge and Parlitz

[31] reported the control and synchronization of AT and PT modeled by CGLEs

in unidirectionally coupled identical systems using “adaptive coupling,” and “sensor

coupling,” respectively. In the former case, a finite number of controllers, which is

determined by the correlation domain, are used in the infinite space and the coupling

strength is adapted to the local dynamics. In the latter case, the coupling signal was

averaged on a local space, and the number of coupling signals was scaled linearly with

the system length.

The advantage of using the CGLE is that it allows the phase and amplitude of

oscillation to be used explicitly to observe phase synchronization or complete synchro-

nization. Boccaletti et al. [56] studied the synchronization of a pair of bidirectionally

coupled nonidentical extended systems described by CGLEs with symmetric coupling

in the AT and PT regimes. They studied changes in the phase differences and am-

plitude differences between these two systems as a function of coupling strength and

found that the transition to complete synchronization or phase synchronization de-

pended on the differences between the systems as well as the coupling strength. Junge

and Parlitz [57] studied the synchronization of unidirectionally coupled nonidentical

CGLEs. They have shown that the transition from frequency synchronization to phase

synchronization and generalized synchronization occurs when the coupling strength

is increased.

The synchronization of a pair of one-dimensional unidirectionally coupled model

systems used for description of the CO oxidation on a single-crystal Pt(110) surface

was studied by Parmananda [59]. In this study, the local difference between the drive

and response systems was superimposed onto the dynamical evolution of the response

system. Synchronization was achieved via this continuous feedback for both identi-

cal and nonidentical systems. The spatiotemporal chaos in the response system was

suppressed, maintained, or the dynamics converged to that of the driving system,
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depending on the characteristics of the driving system.

Synchronization in extended systems is important in studies of dynamical systems.

So far, most of the research in this area has been carried out on one-dimensional sys-

tems. In the next part of this Chapter, we will introduce our study of synchronization

of spatiotemporal patterns between two photosensitive BZ reaction systems by local

coupling. We will demonstrate synchronization behavior in experiments as well as in

numerical simulations.

4.2 Experimental Study

4.2.1 Preparation of stock solutions

All the chemicals except Ru(bpy)3
2+ were of analytical grade (Fisher) and used

without further purification. Stock solutions of sodium bromide (NaBr), sodium bro-

mate (NaBrO3), malonic acid (MA), and sulfuric acid (H2SO4) were prepared with

doubly distilled water and kept in the refrigerator at a temperature of about 3 oC.

Initial concentrations of NaBr, NaBrO3 and MA were 1.0 M; initial concentration of

H2SO4 was 3.0 M.

The stock waterglass solution of SiO2 was prepared with solid sodium silicate

(Fluka), which contained 60% SiO2. The initial concentration of 15% (w/w) sodium

silicate was prepared by dissolving the appropriate amount of sodium silicate in boil-

ing stirred doubly distilled water. It was boiled for a few minutes and kept hot while

vigorously stirring for about 30 minutes until it was transparent. After cooling to

room temperature, water was added to make up for evaporation and the solution was

filtered.

The stock solution of Ru(bpy)3
2+ was prepared by disloving the sulfate salt of

Ru(bpy)3
2+, which was prepared as described in Appendix A, in doubly distilled
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water. The concentration of Ru(bpy)3
2+ was calculated using the extinction coefficient

13400 M−1cm−1 for Ru(bpy)3
2+ at its maxium absorbance 454 nm. The absorption

spectra were measured with a Hewlett-Packard (HP845x UV-Visible ChemStation)

spectrophotometer.

4.2.2 Prepare of the catalyst-free BZ solution

The catalyst-free BZ solution was prepared freshly before each experiment and

was kept in an ice bath from the time of mixing until the end of the experiment.

Solutions of NaBrO3, H2SO4, and MA were mixed together in the given sequence

in a volumetric flask. Bromomalonic acid (BrMA) was prepared in situ by dropwise

addition of a stoichiometric amount of NaBr to the solution according to reaction [64]

BrO−
3 + 2Br− + 3MA + 3H+ = 3BrMA + 3H2O. (4.1)

A computer-controlled syringe pump (HARVARD 33) was used to maintain the

desired rate of 1 ml/min for the addition. The solution was homogenized by vigorous

mechanical stirring until both the color and the smell of bromine disappeared. The

chemical composition of the reaction mixture is shown in Table 4.2, as an example

for making 500 ml of catalyst-free BZ solution from the stock solutions.

Table 4.2. Recipe of the catalyst-free BZ solution

Chemicals Initial concentrations(M) Volume(ml) Final concentrations(M)

NaBrO3 1.0 167.5 0.28

MA 1.0 107.5 0.05

H2SO4 3.0 94.2 0.4

BrMA N/A N/A 0.165

NaBr 1.0 55 0

H2O N/A 75.8 N/A
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4.2.3 Preparation of gel

An appropriate amount of 15% (w/w) sodium silicate solution, Ru(bpy)3
2+ solu-

tion, and doubly distilled water were well mixed in a clean vial, and an appropriate

amount of 1.2 M H2SO4 was added while shaking the solution. After mixing the

solution vigorously for 2-3 seconds, 0.9 ml of the mixture was rapidly removed and

injected under a glass slide which was supported by two pieces of 0.3 mm lead on

a piece of Plexiglas, where it was allowed to cure. The gel with the glass was re-

moved from the Plexiglas and trimmed to the designed size. The gel is transparent,

without any inhomogeneities visible to the naked eye. This preparation of silica gel

is an efficient and convenient procedure. The amounts of water and H2SO4 control

the gelation rate, and the amounts of Na2SiO3 solution and Ru(bpy)3
2+ correspond

to their concentrations in the experiment. In our study, we used 10% (w/w) Na2SiO3

and 2.0 mM Ru(bpy)3
2+ and cast a uniform gel with dimensions of 0.3 mm × 20.0

mm × 25.6 mm.

4.2.4 Experimental setup

The experimental setup is shown as Fig. 4.1. It is composed of two parts: one is

where the BZ reaction takes place; the other is the instrumentation to control and

record the spatiotemporal patterns in the photosensitive BZ reaction.

The microscope slide bearing the gel, in which the catalyst is immobilized, is placed

faceup in a thermostatic reactor and covered by the catalyst-free BZ solution, which is

continuously fed to maintain constant, nonequilibrium conditions [65]. In gel systems

[66,67], there are no hydrodynamic effects that perturb the spatial pattern, which is

essential for the systematic study of chemical waves.

The catalyst-free BZ solution, matintained in an ice bath, was pumped continu-

ously at a flow rate of 2.0 ml/min using a peristaltic pump (Lsmatec) to the reactor
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Figure 4.1. Experimental setup. See text for explanation of each unit.
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through a degaser (Uniflow Degasys Ultimate DV 4010). The reaction mixture was

also pumped out at the same rate such that the thickness of the layer of solution in

the reactor was kept constant during the experiment.

An illumination profile produced by a modified video projector (Proj. in Fig. 4.1),

which is controlled by a computer, is projected onto the gel medium through a 460

nm bandpass filter (Filt. in Fig. 4.1) and a half mirror beam splitter (B.S. in Fig. 4.1).

The light from the projector is scattered from a white membrane filter (Pall Gelman

Laboratory, Super-450, 0.45 µm) positioned between the glass slide and the bottom

of the reactor, and serves as background for observing the chemical patterns. A

charge coupled device (CCD) video camera, the primary camera (Cam. 1 in Fig. 4.1),

fitted with a macro lens is used to record the images of the chemical patterns, which

are analyzed in real time by the computer for performing the feedback profile. Using

another CCD video camera, the reference camera (Cam. 2 in Fig. 4.1), adjustments are

made to the projected image until the actual projected pattern, received by both the

gel and the reference camera, matches the desired distribution before each experiment.

The illumination pattern is established by communication between the projector and

the reference camera such that the inherent spatial non-uniformity and temporal

instability of the projector response are reduced to a minimum level.

The beam splitter combines the illumination and observation optical paths by

matching the illumination and observation angles. The beam from the video projector

is split into two: the reflected beam travels down to the gel, while the beam passing

through the beam splitter forms a reference image on the diffusive screen (Scr. in Fig.

4.1). To reduce the amount of light reflected from the reference screen to the primary

video camera, a pair of crossed polarizers (Pol. 1 and Pol. 2 in Fig. 4.1) are placed

as indicted in Fig. 4.1. Distances along the optical axis from the beam splitter to the

gel and to the reference screen are equal (red lines shown in Fig. 4.1), producing the

same size images. The primary video camera is located above the beam splitter such

that its optical axis coincides with the path of the light between the beam splitter
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and the gel. The reference camera is located at the same distance from the reference

screen as the primary camera from the gel (green lines shown in Fig. 4.1); thus the

projected images are received with the same scale by both cameras. Most of the plane

optical surfaces in the system are tilted by a small angle from perpendicular to avoid

reflections from the optical path, as shown in Fig. 4.1.

When Ru(bpy)3
2+ is oxidized to Ru(bpy)3

3+, its color changes from orange-red to

blue-green. The oxidized state, Ru(bpy)3
3+, absorbs much less light than the reduced

state. The illumination beam passes through the gel to the white membrane filter,

scatters, and travels back, to be observed by the primary camera. Since the distance

between the gel and the diffuser is relatively short (the thickness of the microscope

slide is 1.0 mm), the profile of the wave in the gel may be seen as a “shadow” on

the membrane, as shown in Fig. 4.2. If the observation angle of the camera is chosen

to be the same as the angle of incidence of the illuminating beam, the interference

from the “shadow” is avoided, and the optical path through the gel is effectively

doubled, thus doubling the contrast of the observed pattern. This is possible because

the divergence of the illuminating beam over the distance between the gel and the

diffuser is negligible, and thus the “shadows” are faithful images of the chemical waves.

The lower panel of Fig. 4.2 shows the observations for three different observing angles,

where B is the one we used in our experiments. If the observation angle is A or C, the

image and its profile (“shadow”) will partially overlap, as shown in the lower panel

of Fig. 4.2. The primary camera is mounted at such an angle that the observation

angle of the camera is the same as the angle of incidence of the illuminating beam,

and the reference camera is also mounted at an appropriate angle.

The gray scale between 0 and 255 was calibrated to the illumination intensity in

mW/cm2 as shown in Fig. 4.3. Through an iterative algorithm involving communica-

tion between the projector and the reference camera, the gray level of the reference

camera matched the desired gray level in the experiment very well, as shown in Fig.

4.3. This was accomplished by adjusting the grey level of the projector with the set-
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Figure 4.2. Observation angles and the effects. The three lines A, B, C above represent
three possible observation angles, and the two sets of parallel lines represent the incident
light transitted through gel and glass slide to the white membrane filter. The purple crescent-
shaped curves in the lower panel represent the chemical waves and their “shadows.”
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Figure 4.3. The relationship between light intensity I in mW/cm2 and the gray levels
of the reference camera (circle), the projector (star), and the desired values (square) in
an experiment. Fitting lines reveal the linear relationship between the gray level and the
common logarithm of the light intensity.
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tings of the reference camera shown in Tabel 4.3. Data analysis revealed a linear

relationship between the gray level and the common logarithm of the light intensity.

Table 4.3. Setting of the reference camera

Brightness Contrast Iris Gamma

210 160 between 3.5 and 5.6 0.45

4.2.5 Coupling scheme

We have used the photosensitive Belousov-Zhabotinsky (BZ) reaction [68], which

is particularly convenient for studies on influencing existing patterns or generating

new ones by the application of various types of external forcing [69–72], or by local

[73], nonlocal [74], or global [75] feedback mechanisms.

The nature of the coupling is a distinctive feature of any coupled system. Mass

exchange is the most commonly employed form of coupling in chemical oscillators

[76, 77]. Another type of coupling has been accomplished electrically [78], via the

connection of electrodes in two continuous flow stirred tank reactors (CSTRs). Dif-

fusive coupling of chemical spatiotemporal patterns across a membrane in a spatially

extended system leading to identical synchronization of chemical wave patterns has

been observed in a BZ system [79]. Here, we study two domains of excitable media

that are locally coupled to each other by means of a video camera/projector through

a coupling algorithm, which leads to weaker than identical synchronization.

Prior to each experiment, the projected image was adjusted at each pixel by an

iterative algorithm to ensure a spatially uniform illumination field, upon which all

subsequent projected images were based. The uniform illumination field is the back-

ground intensity. The local concentration of oxidized catalyst was recorded with the

CCD camera, and the recorded image was divided into an array of square cells. In

all experiments, the lateral size of each cell was much smaller than the spiral wave
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length. The corresponding cells in the two regions were locally coupled by an illumi-

nation field projected onto the gel medium. Bromide ions are locally produced in a

photochemical cycle, and, as a result, the local excitability is appropriately modified

[80].

Figure 4.4 shows an example of an image and the corresponding mutual coupling

image projected onto the gel medium in the experiment. In the top panel, the spiral

waves represent elevated concentrations of the oxidized catalyst, Ru(bpy)3
3+, in the

photosensitive BZ reaction. The medium was partitioned into two square regions,

separated and surrounded by an unexcitable boundary generated with high-intensity

light, as shown in the bottom panel of Fig. 4.4. The mutual coupling image is shown

in the bottom panel, which was calculated from the original image in the top panel

as explained in Fig. 4.5.

In Step I of Fig. 4.5, the concentration of oxidized catalyst is recorded as an image

in each system (the patterns represent chemical waves in the two systems). In Step

II, the two images are subtracted. If the difference is zero, the illumination is set to

the background intensity (grey area) in Step III; when the difference is positive, the

system is illuminated with higher intensity (white area); when it is negative, the light

intensity is lowered with respect to the background (black area).

The intensity Ii(r, t) (i = 1, 2) of the projected illumination field was computed as

described above according to the following scheme:

Ii(r, t) = I0 Θi H(Θi), (4.2)

where I0 = 7.84 mW/cm2 is the background light intensity, H(z) is the step function

(with H(z) = 1 for z ≥ 0 and H(z) = 0 for z < 0), and the functions Θi are defined

as

Θ1,2(r, t) = 1± κ (v1(r, t)− v2(r, t)) , (4.3)

where the plus and the minus signs refer to the first and second system, respectively,
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Figure 4.4. Typical example of an image and the mutual coupling image. Top: image
obtained from the primary CCD camera. The total illumination field (13.69 × 6.27 cm2)
was divided into an array of 388 × 178 square cells. Bottom: mutual coupling image with
boundary projected onto the chemical medium, coupling constant κ = 1.0.
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Figure 4.5. Schematic diagram of coupling scheme
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vi(r, t) is the local concentration of the oxidized catalyst in the i-th system, and κ

specifies the strength of the symmetric mutual coupling.

4.2.6 Experimental results I: Relaxation of disordered pat-

tern to a synchronization state

Experiments were carried out with initial conditions consisting of a random con-

figuration of spirals [Fig. 4.6 (a)], generated by an algorithm for light-mediated spa-

tiotemporal noise [81]. In the absence of coupling, the number of spirals in both

systems did not change over the course of the experiment. The number continuously

decreased, however, when the corresponding elements in the two domains were locally

coupled according to Eq. (4.2). In the first stage of the evolution, spirals were removed

from each zone by collisions with counter-rotating spirals or with the boundaries of

the system [Figs. 4.6 (b),(c)] until only a few spirals remained [Fig. 4.6 (d),(e)]. The

coupled system eventually relaxed to one of three possible final states. The most com-

mon outcome was a single spiral in each zone, with both spirals rotating in the same

direction [Fig. 4.6 (f)]. Two other final states were occasionally observed, with one

zone containing a single spiral and the other in the uniform steady state or with both

zones in the uniform steady state.

The robustness of synchronization behavior has been confirmed by carrying out

experiments in the presence of spatiotemporal structured noise. Figure 4.7 shows

a typical example of the relaxation of disordered patterns to a synchronized state

through mutual coupling in the presence of colored noise. The spatiotemporal colored

noise was imposed on the mutual coupling when the experiment started and was

updated with each coupling image. Similar synchronizarion behavior was observed

over a range of values of correlation time and noise dispersion.
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Figure 4.6. Relaxation of an initially disordered array of spirals to a synchronized state in
two locally coupled excitable media. Experimental behavior of locally coupled BZ systems
with I0 = 7.84 mW/cm2, T = 6.5 oC, and κ = 0.31. Snapshots show the distribution of
Ru(bpy)3+

3 (in gray scale increasing from black to white) at t = 2.3 min (a), 12.25 min (b),
30.00 min (c), 67.18 min (d), 69.87 min (e), and 76.52 min (f) after starting the experiment.
The total illumination field (7.59×3.51 cm2) was divided into an array of 362 × 167 square
cells and updated every 2.0 s. White spots in (d), (e), and (f) are bubbles in the reaction
mixture.
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Figure 4.7. Relaxation of an initially disordered array of spirals to a synchronized state
in two locally coupled excitable media in the presence of colored noise. Experimental
behavior of locally coupled BZ systems with I0 = 7.84 mW/cm2, T = 17.9 oC, and κ = 0.5.
Snapshots show the distribution of Ru(bpy)3+3 (in gray scale increasing from black to white)
at t = 0.6 min (a), 94.0 min (b), 170.0 min (c), 240.0 min (d), 282.0 min (e), and 328.0
min (f) after starting the experiment. The total illumination field (7.57 × 4.52 cm2) was
divided into an array of 173 × 103 square cells and updated every 5 s. The parameters for
the spatiotemporal colored noise: cluster of noise = 5 × 5 pixels, correlation time = 30.0 s,
dispersion = 40.0 s.
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4.2.7 Experimental results II: Spatiotemporal synchroniza-

tion of spirals

In this section, we report experimental results on the synchronization of two single

fully developed spirals in each of the systems as shown in the top panel of Fig.

4.4. A spiral is created by a block of high intensity light that breaks the front

of a propagating planar wave bound to the boundary in each domain. The free

end generated evolves into a single, unperturbed spiral wave in the homogeneous

background. The initial distance of the tips of the two spirals is controlled by the

inhibiting blocks of high intensity light in the two domains. However, the initial

distance can be only approximately controlled because of meandering of the spirals.

The sense of rotating is controlled in such a way that the spirals are co-rotating if both

planer waves are broken from left (or right) sides, and they are counter-rotating if they

are broken from different sides. After the two spiral waves are fully developed and the

medium has relaxed to the background setting, the mutual coupling is switched on.

The behavior of the coupled spirals strongly depends on the initial distance di between

the positions of the tips of the spirals. Moreover, the behavior is highly dependent on

whether the two spirals rotate in the same direction or in opposite directions.

The tip position was checked manually in images collected during the experiment.

The tip of the spiral was marked by the center of a cross cursor when they were

matched. The coordinate of the tip of the spiral was defined in units of pixels. Figure

4.8 displays an example of two counter-rotating spirals, with di=53 pixels. The tips

of the spirals drift in the same direction. The tip distance remained almost constant

for counter-rotating spirals, while it oscillated for co-rotating spirals, shown in Figs.

4.9 and 4.10. For the two co-rotating spirals, the tip motion of each spiral is generally

circular with superimposed meandering. The size of the circular depends on the initial

distance of the two tips and the coupling strength.
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Figure 4.8. BZ experiment with two single spirals rotating in opposite directions, one in
each of the two locally coupled zones, with I0 = 7.84 mW/cm2, T = 10.0 oC, κ = 1.0, and
the initial spiral distance di = 53 pixels. The total illumination field (7.62 × 3.68 cm2) was
divided into an array of 363 × 175 square cells and updated every 2 s. (a) Trajectories of
the counter-rotating spiral tips in the left domain (black) and right domain (red) for T =
274.0 s, displayed in superimposed coordinate systems. (b) Time series of the distance dt
between the two spiral tips in (a).
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Figure 4.9. BZ experiment with single spirals rotating in same direction, one in each of
the two locally coupled zones, with I0 = 7.84 mW/cm2, T = 12.0 oC, κ = 1.0, and the
initial spiral distance di = 9 pixels. The total illumination field (7.62 × 3.68 cm2) was
divided into an array of 357 × 173 square cells and updated every 2 s. (a) Trajectories of
the co-rotating spiral tips in the left domain (black) and right domain (red) for T = 423.0
s, displayed in superimposed coordinate systems. (b) Time series of the distance dt between
the two spiral tips in (a).

85



30 40 50 60 70
80

90

100

110

120

130

140

150 a

x(pix)

y(
pi

x)

50 60 70 80 90 100 110 120
0

10

20

30

40

50

60

70

80 b

x(pix)
y(

pi
x)

0 10 20 30 40 50 60 70
−90

−80

−70

−60

−50

−40
c

dx(pix)

dy
(p

ix
)

0 200 400 600 800 1000 1200
50

60

70

80

90

100

110 d

time(s)

td
(p

ix
)

Figure 4.10. BZ experiment with single spirals rotating in same direction, one in each of
the two locally coupled zones, with I0 = 7.84 mW/cm2, T = 12.0 oC, κ = 0.31, and the
initial spiral distance di = 95 pixels. The total illumination field (7.62 × 3.68 cm2) was
divided into an array of 357 × 173 square cells and updated every 2 s. (a), (b) Trajectories
of the counter-rotating spiral tips in the left domain (a) and right domain (b) for T =
1219.0 s, displayed in superimposed coordinate systems. (c) Trajectory of the difference
vector between the two tip positions. (d) Time series of the distance dt between the two
spiral tips in (a) and (b).
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4.3 Numerical Studies

4.3.1 Numerical model

The experimental results shown in Fig. 4.6 (a)-(f) can be qualitatively reproduced

by numerical simulations of two locally coupled Oregonator models [70,71]. The model

includes the additional terms φi(r, t) (i = 1, 2), taking into account the photochemical

bromide production [72,80]:

∂u1

∂t
= ∇2u1 +

1

ε

{
u1 − u2

1 − [fv1 + φ1(r, t)]
u1 − q

u1 + q

}
,

∂v1

∂t
= u1 − v1,

∂u2

∂t
= ∇2u2 +

1

ε

{
u2 − u2

2 − [fv2 + φ2(r, t)]
u2 − q

u2 + q

}
,

∂v2

∂t
= u2 − v2, (4.4)

where the variables ui and vi correspond to the concentrations in the i-th system of the

autocatalytic species HBrO2 and the oxidized catalyst; ε and q are scaling parameters,

and f is an adjustable stoichiometry parameter. The rate of bromide production from

irradiation, φi(r, t), is proportional to the light intensity, Ii(r, t), as given by Eq. (4.2)

(with the proportionality factor φ0/I0). The dynamic characteristics of the system

have been analyzed in Chapter 3. The system was excitable for κ = 0.

We have also performed numerical simulations of coupled Barkley models [85]

87



displaying spiral behavior:

∂u1

∂t
= ∇2u1 +

1

ε
(u1 − u2

1)

[
u1 −

v1 + b + κ(v1 − v2)

a

]
,

∂v1

∂t
= u1 − v1,

∂u2

∂t
= ∇2u2 +

1

ε
(u2 − u2

2)

[
u2 −

v2 + b + κ(v2 − v1)

a

]
,

∂v2

∂t
= u2 − v2, (4.5)

where a is a scaling parameter, ε is the ratio of the time scales of the activator and

the inhibitor, κ is the coupling strength, and b determines the excitability threshold.

The coupling was introduced much the same as in Eqs. 4.4.

4.3.2 Numerical simulations I: Relaxation of disordered pat-

tern to a synchronization state

Figure 4.11 shows the numerical simulations of Eqs. (4.4) for the relaxation of

disordered pattern to a synchronization state, which qualitatively reproduces the

experimental results shown in Fig. 4.6.

4.3.3 Numerical simulations II: Spatiotemporal synchroniza-

tion of spirals

Insights into the complex relaxation behavior shown in Fig. 4.6 can be gleaned

from systematic numerical simulations with a single spiral in each system. The syn-

chronization behavior depends on the kinetic parameters, the coupling strength, the

relative sense of rotation of the two spirals, and their initial separation distance di.
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Figure 4.11. Numerical simulations of relaxation of an initially disordered array of spirals
to a synchronized state in two locally coupled excitable media. Numerical simulations of
Eqs. (4.4) with φ0 = 0.035, κ = 1, ε = 0.03, f = 1, and q = 0.0015 in a system of size
L = 100. The left and right panels of each snapshot show v1(x, y, t) and v2(x, y, t) in gray
scale increasing from black to white. The snapshots (a)-(f) were obtained at t = 91.9
(b), 183.7 (c), 428.7 (d), 612.5 (e), and 918.7 (f) after starting the simulation with the
distribution shown in (a).
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When the two spirals rotate in opposite directions, the coupling leads to a paral-

lel drift of the spiral tips until they are annihilated by a collision with the no-flux

boundary of the system (see Fig. 4.12). This behavior was observed for values of the

coupling strength κ below 2.9 and as low as κ = 5× 10−3 (with the parameter values

as in Fig. 4.11). For stronger coupling, the spirals were destroyed by breakup and

both systems relaxed to the uniform stationary state.

A completely different scenario is observed when the two spirals are co-rotating.

For intermediate values of the coupling strength (2.9 > κ > 0.03), complex synchro-

nization behavior is observed, as shown in Figs. 4.13 and 4.14. If the initial distance

between the spiral tips is chosen sufficiently large (di > dc
i), the tips drift on opposite

sides of an approximately circular trajectory, leading to a nearly circular trajectory

for the difference vector of the two tip positions, shown in Fig. 4.13 (b). The mod-

ulations visible in the trajectory result from the underlying meandering motion of

the tips, as shown in Fig. 4.13 (a). A perfect circle is obtained when the spiral tips

exhibit steady rotation in the uncoupled system. Upon varying the initial distance

di, we find a discrete set of such attractors. For example, for the parameters chosen

in Fig. 4.13, dc
i ≈ 12 and only the average diameters d∞ = 32.5, 72.5, 112.5, 155, ....

of the approximately circular trajectory are exhibited for t → ∞, depending on the

initial distance di. Similar trajectories of a spiral tip have been observed in feedback-

controlled dynamics of meandering spirals, and have been coined “resonance attrac-

tors” [73]. A theory explaining the existence and the stability of these attractors has

been developed in [86,87]. A similar approach may be used to understand the nature

of attractors such as that shown in Fig. 4.13 (b).

For di < dc
i , a different type of synchronized tip motion occurs. The spiral tips now

perform a meandering motion around a common central point. The trajectory of the

difference vector of the two tip positions is still localized but clearly deviates from a

circular shape, as shown in Fig. 4.14 (a). This behavior resembles the “entrainment

attractors” observed in feedback-controlled dynamics of meandering spirals [73]. For
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Figure 4.12. Results from numerical simulations of Eqs. (4.4) for a single spiral in each
system. (a) Trajectories of spiral tips in the coupled systems 1 (left) and 2 (right), where
the spirals rotate in opposite directions; di = 20, T = 235.6, and all other parameters as in
Fig. 4.11. (b) Time series of the horizontal distance δx between the spiral tips shown in (a).
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Figure 4.13. Results from numerical simulations of Eqs. (4.4) for a single spiral in each
system. (a) Trajectories of spiral tips in the coupled systems 1 (black circles) and 2 (red
circles), where the spirals rotate in same direction; di = 20, T = 895.1, and all other
parameters as in Fig. 4.11. (b) Trajectories of the difference vector between the spiral tips
in system 1 and system 2 for di = 20, T = 895.1. The insets show the corresponding time
series of the distance d(t) between the two tips.
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Figure 4.14. Results from numerical simulations of Eqs. (4.4) for a single spiral in each
system. (a) Trajectories of spiral tips in the coupled systems 1 (black circles) and 2 (red
circles), where the spirals rotate in same direction; di = 2.5, T = 706.8, and all other
parameters as in Fig. 4.11. (b) Trajectories of the difference vector between the spiral tips
in system 1 and system 2. The insets show the corresponding time series of the distance
d(t) between the two tips.
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both large and small di, the spirals are destroyed by breakup for κ > 2.9 and both

systems relax to the uniform stationary state.

For other values of the system parameters, e.g., when the spirals perform steady

rotation in the uncoupled system, a different kind of synchronization can be observed.

Figures 4.15 (a) and (b) show tip trajectories with an irregular drift superimposed

on the steady spiral tip rotation. A careful examination of the two trajectories shows

that, at certain moments, the tip in system 1 stops its drift motion and exhibits

a localized rotation for a brief period until the tip in system 2 closely approaches,

whereupon the two spiral tips again begin to separate. The continuous repetition of

this behavior leads to the formation of a complex flower pattern for the difference

vector between the two tip positions, which is centered around (0,0) [Fig. 4.15 (c)].

The weak synchronization of the two spirals is apparent in the time series of the tip

distance shown in Fig. 4.15 (d). Quasi-mixed-mode oscillations are observed, with the

period of the large-scale oscillation corresponding to the time needed for completing

one of the petals shown in Fig. 4.15 (c) and the period of the small-scale oscillation

being determined by the underlying rotational period of a spiral in the uncoupled

system.

To gain further insights, we have systematically varied the coupling strength in

numerical simulations of the coupled Barkley model, Eqs. (4.5), as shown in Fig.

4.16. We again observe a straight drift of counter-rotating spirals [Fig. 4.16 (a)]. In

this case, however, the spirals do not annihilate at the boundary of the medium but

become pinned and start to perform steady rotation. For sufficiently strong coupling,

we find that the tips of co-rotating spirals lock on a nearly perfect circular attractor

[Fig. 4.16 (b)]. As the coupling is decreased, the complex synchronization attractor

appears [Fig. 4.16 (c),(d)]. The detailed behavior depends on the coupling strength κ.

We have, however, performed a simulation for very weak coupling (κ = 10−4), where

we still observe the relaxation to an attractor with similar properties.

94



25 35 45 55
45

55

65

75

x

y
a

28 38 48 58
38

48

58

68

x

y
b

−30 −20 −10 0 10 20
−30

−20

−10

0

10

20

δx

δy c

0 500 1000
0

10

20

t

d
d

Figure 4.15. Results from a numerical simulation of Eqs. (4.4) with clockwise rotating
spirals; φ0 = 0.01, κ = 1, ε = 0.05, f = 3.5, q = 0.002, L = 120, and the initial spiral
distance di = 7. (a), (b) Trajectories of spiral tips in the coupled systems 1 (a) and 2 (b) for
T = 602. The arrows mark the beginning and end points of the trajectories. (c) Trajectory
of the difference vector between the two tip positions. (d) Time series of the distance d(t)
between the two tips. T = 1203.8 in (c) and (d).
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Figure 4.16. Results from a numerical simulation for the coupled Barkley system, Eqs.
(4.5). (a) Trajectories of counter-rotating spiral tips in the coupled systems for a = 0.84,
b = 0.06, ε = κ = 0.03, di = 19.6, L = 100, and T = 137. (b) Trajectory of the difference
vector between the two clockwise corotating spiral tips for b = 0.08, T = 9227, and all
other parameters as in (a). The insets show the corresponding time series of the distance
d(t) between the two tips. (c) Trajectory of the difference vector between the two clockwise
corotating spiral tips for κ = 0.02, T = 7629, and all other parameters as in (a). (d) Time
series of the magnitude of the distance vector shown in (c).

96



4.4 Discussion and Conclusions

We have studied two domains of excitable media that are locally coupled to each

other by means of a video camera/projector through a coupling algorithm, which

leads to weaker than identical synchronization. The coupling scheme is much more

flexible than the diffusive cross-membrane coupling used in studies of identical syn-

chronization of chemical wave patterns in a BZ system [79].

The relaxation of an initially disordered array of spirals to a synchronized state in

two locally coupled excitable media in the photosensitive BZ reaction is qualitatively

reproduced by numerical simulations of two locally coupled Oregonator systems. The

complex synchronization behavior of fully developed single spirals has not allowed a

direct comparison of experimental studies with the computational studies because of

the difficulties in initially orienting the waves in the experiment as well as experimental

fluctuations and parameter drift. Although the experimental behavior is in qualitative

agreement with the numerical simulations, more refined experiments will be required

for a quantitative comparison.

Note that in all of the cases shown in Figs. 4.12-4.15, the coupling induces a drift of

the spiral tips, which is superimposed on the localized motion observed in the absence

of coupling. Thus, for a given spiral in one of the irregular arrays shown in Figs. 4.6

and 4.11, the coupling leads to an increase in the translational motion of this spiral.

Hence, the probability that its tip will meet another tip with opposite charge or that

it will collide with the system boundary and thus be annihilated is increased. The

total number of spirals therefore decreases much more rapidly than in the absence

of coupling, where an initially disordered array of spirals is extremely long-lived as a

result of exponentially weak interactions of the screened spiral tips [88].

The mutual synchronized state achieved from the initially disordered state is still

complex in our study, which is a pervasive feature in biological systems. It has been

pointed out that the mutual engagement of two or more elements with complex in-
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dividual dynamics into a fully synchronized state whose evolution is still complex

is a relevant feature in the behavior of a wide class of natural systems [89], rang-

ing from catalytic chemical reactions on surfaces [90] to biological systems such as

neural networks [91] and insect populations [92]. It has also been emphasized that

mutual synchronization should play a significant role in the operation of the brain.

The brain is essentially a system of interacting neural networks and the activity pat-

terns of different networks may become synchronized while retaining their complex

spatiotemporal dynamics [93]. Moreover, we note that the coupling in our study is

multiplicative and symmetric, which might be anticipated in complex biological sys-

tems.

In summary, we have shown that the local coupling of two excitable media with

complex spiral patterns gives rise to a reduction in spatial disorder, ultimately leading

to a coherent pattern in each system corresponding to either a single spiral wave or

to the uniform stationary state. Numerical simulations with a single spiral in each

system show that instead of identical synchronization, different types of generalized

synchronization attractors are exhibited. To our knowledge, this constitutes the first

example of generalized synchronization in coupled spatially extended systems with

non-chaotic dynamics.

4.5 Appendix A: Synthesis of the Sulfato Salt of

Ru(bpy)3
2+

The following is a representative procedure for the preparation of the sulfato salt

of Ru(bpy)3
2+. 11.4 g of bipyridine and 4.0 g of Ru(III)Cl3 were refluxed in 100

ml ethanol (95%) for 72 hours. The mixture was filtered to remove the unreacted

RuCl3. After drying, the unreacted RuCl3 was 0.6 g. The funnel was washed with

50 ml ethanol which was added to the filtered solution. The solution was distilled
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until it had approximately half of the original volume, 60 ml of 6 M H2SO4 was then

added and the mixture was placed in a freezer overnight. The crystals were filtered,

washed with ether and dried in a vacuum desiccator. The powder is water soluble.

Dissolving about 0.2 g of the powder in about 18 ml water yields a solution of about

0.01 M. The exact concentration is then determined spectrophotometically, using the

literature extinction coefficient of ε = 13400 M−1cm−1 for Ru(bpy)3
2+ at its maximum

absorbance at 454 nm according to the Beer-Lambert law.

4.6 Appendix B: Main Part of the Program in OP-

TIMAS Used for the Experiments

We define:

• bg as the homogeneous background, which is used for saving image;

• κ as the coupling strength, which equal to coupling-setting/255;

• input1, input2 as the gray level of system1, system2 respectively;

• output1, output2 as the output light intensity for system1, system2 respectively;

Here, bg, coupling-setting, input1, input2, output1, and output2 are in the range

of 0-255. The calculation of output is based on the following equations:

output1 = bg + (input1-input2)*κ; (B1.1)

output2 = bg + (input2-input1)*κ; (B1.2)

We set output1 (or output2) to 255 if it is greater than 255 and we set it to 0 if it is

less than 0.

If we think bg as I0, input1/bg as v1, input2/bg as v2, we can rewrite Eqs.(B1) in

a similar way as the equations (1),(2) in [94]:

output1 = bg (1 + (input1-input2)*κ/bg); (B2.1)
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output2 = bg (1 - (input1-input2)*κ/bg); (B2.2)

Here, we give calculation examples for different κ:

If we set κ as 0.31, bg as 100:

• case 1) Input1=255, Input2=0;

output1=100+(255-0)*0.31=179;

output2=100+(0-255)*0.31=21;

• case 2) Input1=50, Input2=170;

output1=100+(50-170)*0.31=63;

output2=100+(170-50)*0.31=137;

• case 3) Input1=100; Input2=100;

output1 = 100+(100-100)*0.31=100;

output2 = 100+(100-100)*0.31=100;

If we set κ as 1, bg as 100

• case 1) Input1=255, Input2=0;

output1=100+(255-0)*1=355;

output1=255; (since it is greater than 255.)

output2=100+(0-255)*1=-155;

output2=0; (since it is less than 0.)

• case 2) Input1=50, Input2=170; output1=100+(50-170)*1=-20;

output1=0;(since it is less than 0.)

output2=100+(170-50)*1=220;

• case 3) Input1=100; Input2=100; output1 = 100+(100-100)*1=100;

output2 = 100+(100-100)*1=100;
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/* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% */

/* program in OPTIMAS */

/* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% */

/* Parameters used */

/* Size control */

INTEGER SYN_W = 200, SYN_H = 200;

/* the size of each system, in unit of pixel on projector */

INTEGER SYN_Projector_width=448, SYN_Projector_height=232;

/* the size of image from the projector in unit of pixel */

/* Image layout */

INTEGER SYN_B=16; /* Border around image */

INTEGER SYN_S=16; /* spacing between system1 and system2 */

/* the relationship is:

SYN_Projector_width=SYN_B+SYN_W+SYN_S+SYN_W+SYN_B

SYN_Projector_height=SYN_H+2*SYN_B

*/

/* camera setting */

INTEGER xBrightness, xBackground, xCoupling;

/* xBrightness=100, xBackground=100, xCoupling=155; */

INTEGER xBrightness_range=0:255:176,

xBackground_range=0:255:100,

xCoupling_range=0:255:80;

/* brightness, background and xCouling are in the range of 0-255*/
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INTEGER xcontrast_range=0:255:160, Xcontrast;//=155;

/* for calculation */

BYTE

SYN_inputbyte[,],

/* store the gray level of image seen from the camera1 */

SYN_input1byte[SYN_H,SYN_W],SYN_input2byte[SYN_H,SYN_W],

/* store the gray level of system1 and system 2 */

SYN_outputbyte[,],

/* store the output light intensity */

SYN_output1byte[SYN_H,SYN_W],SYN_output2byte[SYN_H,SYN_W];

/* store the gray level of output for system1 and system 2 */

REAL

SYN_output1REAL[SYN_H,SYN_W],SYN_output2REAL[SYN_H,SYN_W];

/* store the gray level of output for system1 and system 2 */

SYN_max1 = 255.0, SYN_min1 = 0.0;

/* control the range of output */

SYN_Coupling_Strength=(REAL)xcoupling/255.0;

/* coupling strength of the experiment */

/* following arrays used in the whole process */

BYTE SYN_SaveBackground[SYN_projector_Height,SYN_projector_Width];

BYTE SYN_store_SaveBackground[SYN_projector_Height,SYN_projector_Width];

/* both store the homogeneous backgroud for projector */

BYTE SYN_PerturbationFinal[,];

/* store the output of pertubation for prpjector */
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BYTE SYN_store_homo_array[,];

/* store the homo_array from camera2 */

BYTE SYN_yWhite[SYN_Projector_width, SYN_Projector_height]=180;

/* the boundary setting */

/* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% */

/* open image screens */

/*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/

NewImage ("SoftwareFixed", "Input",

SYN_Projector_width : SYN_Projector_height,

0 : 1 : 8 : 1 : 1 : 3, , ModelImage, );

/* Input will store the input image from camera1 */

NewImage ("SoftwareFixed", "Output",

SYN_Projector_width : SYN_Projector_height,

0 : 1 : 8 : 1 : 1 : 3, , ModelImage, );

/* Output will store the background */

NewImage ("SoftwareFixed", "Output2",

SYN_Projector_width : SYN_Projector_height,

0 : 1 : 8 : 1 : 1 : 3, , ModelImage, );

/* Output 2 resemble the final output

including the boundary */

NewImage ("SoftwareFixed", "Projector",

796 : 558,
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0 : 1 : 8 : 1 : 1 : 3, , ModelImage, );

/* Projector is related to the current projecotor */

PositionWindow ("Projector", -2);

/* projector screen as current */

/* after the getting the homogenous background,

and before the calculation of mutual coupling

the following two commands are executed.*/

Projector.GetPixelRect(Projector.roi, SYN_SaveBackground);

output.arithmeticOp("copy","projector",output.roi,,"Scale X and y",,);

/* Such that the output stored the background gray level */

/* the function defined following is

the main subroutine for the mutual coupling */

Define Calculation()

{

projector.PutPixelRect(projector.roi[0]:projector.roi[1],SYN_SaveBackground);

camera.acquire();

SYN_output1byte[,]=0;

SYN_output2byte[,]=0;

/*output1, output2 assign to 0 each time at the beginning*/
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SYN_SaveFileString =

SYN_RecordFile:"_":ToText(SYN_FrameCounter,"%04d"):".tif";

SYN_SaveFileStringP =

SYN_RecordFile:"P":ToText(SYN_FrameCounter,"%04d"):".tif";

delayms(500);

camera.freeze();

Camera.SaveImage(SYN_SaveFileString,SYN_Camera_save_calibROI,

8, 0, , "", "", "", TRUE, 0, FALSE);

SYN_time = DosTime() - SYN_StartTime;

WriteFile(fh,ToText(SYN_FrameCounter,"%04d"):" ":totext(SYN_time):"\n");

/* save the real time for each image */

input.arithmeticOp("copy","Camera",input.roi,,"Scale X and y",,);

/* copy the image from the camera1 */

Projector.PutPixelRect(projector.ROI[0:1],SYN_PerturbationFinal);

/*put last perturbation while the calculation

is running on the background */

camera.acquire();

delayMS(200);

/* all the following are done in the background,

not affecting the mutual coupling */

input.GetPixelRect(SYN_B:SYN_B,SYN_input1byte);
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input.GetPixelRect((SYN_B+SYN_S+SYN_W):SYN_B,SYN_input2byte);

/* get SYN_input1byte,SYN_input2byte at the defind position */

output.GetPixelRect(SYN_B:SYN_B,SYN_output1byte);

output.GetPixelRect((SYN_B+SYN_S+SYN_W):SYN_B,SYN_output2byte);

/* get SYN_output1byte,SYN_output2byte at the defind position

from its storage of the backgroung */

SYN_output1REAL[,]=(REAL)SYN_output1byte[,];

SYN_output2REAL[,]=(REAL)SYN_output2byte[,];

/* cast value in byte to real */

SYN_output1REAL[,] +=

(((REAL)SYN_input1byte[,]-(REAL)SYN_input2byte[,])*SYN_Coupling_Strength);

SYN_output2REAL[,] +=

(((REAL)SYN_input2byte[,]-(REAL)SYN_input1byte[,])*SYN_Coupling_Strength);

/ *a +=b*c same as a = a+b*c */

/* same as the equation (B2) */

SYN_output1REAl[,] =

(abs(SYN_output1REAL[,]-SYN_min1)+(SYN_output1REAL[,]-SYN_min1))

*0.5+SYN_min1;

SYN_output1REAL[,] =

(-abs(-SYN_output1REAL[,]+SYN_max1)-(-SYN_output1REAL[,]+SYN_max1))

*0.5+SYN_max1;

/* set SYN_output1REAl in the range from SYN_min1 to SYN_max1 */
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SYN_output1byte = (BYTE)SYN_output1REAL;

/* cast real number into byte */

SYN_output2REAL[,] =

abs(SYN_output2REAL[,]-SYN_min1)+(SYN_output2REAL[,]-SYN_min1))

*0.5+SYN_min1;

SYN_output2REAL[,] =

(-abs(-SYN_output2REAL[,]+SYN_max1)-(-SYN_output2REAL[,]+SYN_max1))

*0.5+SYN_max1;

/* set SYN_output2REAl in the range from SYN_min1 to SYN_max1 */

SYN_output2byte = (BYTE)SYN_output2REAL;

/* cast real number into byte */

/* output2 will store the boundary and the output1 output2*/

output2.PutPixelRect(output.roi,SYN_yWhite);

/* whole image set to the value of the boundary */

output2.PutPixelRect(SYN_B:SYN_B,SYN_output1byte);

/* the position of system1 get SYN_output1byte */

output2.PutPixelRect((SYN_B+SYN_S+SYN_W):SYN_B,SYN_output2byte);

/* the position of system2 get SYN_output2byte */

projector.arithmeticOp("copy","output2",projector.roi,,"Scale X and y",,);

/* the updated perturbation final copied from output2 */

/* new perturbation final which is SYN_output1byte and SYN_output2byte */

Projector.GetPixelRect(Projector.ROI,SYN_PerturbationFinal);

/* store the updated SYN_PerturbationFinal,
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used for next loop while calculating */

Projector.SaveImage(SYN_SaveFileStringP,projector.ROI,

8, 0, , "", "", "", TRUE, 0, FALSE);

SYN_FrameCounter++;

}

/* The main function of the macro */

Define Start()

{ SYN_status="start";

SYN_iteration=1;

Keyhit();

SYN_StartTime = DOSTime();

fh = Openfile(SYN_RecordFile:"timing.dat",0x1002);

projector.PutPixelRect(projector.roi[0]:projector.roi[1],

SYN_Store_SaveBackground);

Projector.GetPixelRect(Projector.ROI,SYN_PerturbationFinal);

see_camera1();

while (Keyhit()!=0x02)

{

Calculation();

if(SYN_FrameCounter%30==0)

/* every 30 image do the light correction once */

{
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Correction_homo();

see_camera1();

}

}

SYN_status="done";

closefile(fh);

Prompt("change the name of the timing file,

and move the corresponding files!!!");

Prompt("otherwise you will LOSE the time file");

}
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Chapter 5

Modeling Disease Spreading with

Excitable Media

In this chapter, we review modeling studies on disease spreading and describe how

we use excitable media for such studies. We present both experimental and simulation

results.

5.1 Reviews of Modeling Disease Spreading

5.1.1 A brief history of modeling disease spreading

Epidemics have been occurring since human beings began to form communities.

Often, epidemics reoccur at regular intervals of several years between outbreaks. De-

scriptions of epidemics in ancient and mediaeval times frequently used the term plague

because of a general belief that they were divine retribution for sinful living [1]. Stud-

ies of diseases spreading can be dated back to 1662, when John Graunt carried out

a quantitative study of human diseases and deaths ensuing from them [2]. The first

known result in mathematical epidemiology is a defense of the practice of inocula-
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tion against smallpox in 1760 by Daniel Bernouilli [3], a member of a famous family

of mathematicians (eight spread over three generations) who had been trained as a

physician [1]. William Farr attempted to mathematically characterize the smallpox

death data in 1840 [4] and predict the spread of rinderpest among cattle in 1866

(quoted in [5]). By the beginning of the twentieth century, the idea of passing on a

bacterial disease through contact between susceptible and infective had become famil-

iar. W. H. Hamer adapted the simple ‘mass action’ principle, a principle for chemical

reaction, which is stated as “for a homogeneous system, the rate of a chemical reaction

is proportional to the active masses of the reacting substances,” for a deterministic

epidemic model in discrete time in 1906 [6]. In 1916, R. Ross [7] used continuous

time versions of the epidemic model in his studies of populations subject to infection.

However, the most commonly used models to characterize the typical general epi-

demic is due to W. O. Kermack and A. G. McKendrick [8]. The modeling literature

is now dominated by the influence of the theoretical paper on epidemic models by

Kermack and Mckendrik. One can find detailed descriptions of the development of

mathematical theories for the spread of disease [5, 9, 10].

5.1.2 Mathematical epidemiology models

In 1927, W. O. Kermack and A. G. McKendrick [8] proposed the formulation of

a model for disease spreading, which represented a fundamental milestone of math-

ematical epidemiology. In order to model an epidemic whose victims recovered with

immunity against reinfection, the populations are divided into three classes, labeled

S, I, and R. S denotes the number of individuals who are susceptible to the dis-

ease, that is, who are not yet infected. I denotes the number of infected individuals,

assumed infectious and able to spread the disease by contact with susceptible. R de-

notes the number of individuals who have been infected and then removed from the

possibility of being infected again or of spreading infection through isolation from the

rest of the population or through immunization against infection or through recovery

121



from the disease with full immunity against reinfection or through death caused by

the disease. These characterizations of removed members are very different from an

epidemiological perspective but are equivalent from a modeling point of view which

takes into account only the state of an individual with respect to the disease. It is

described as the SIR model because the transitions are from susceptible to infective

to removed, with the removal coming through recovery with full immunity (as in

measles) or through death from the disease (as in plague, rabies and many other ani-

mal diseases). The model predicted behavior very similar to the behavior observed in

countless epidemics. Here, we present the SIR model in a homogeneous system as an

example. The SIR model can be described in terms of population size of susceptible,

infected, and removed individuals, S, I, and R respectively, where a fixed population

size N is assumed. Often times, S(t), I(t), and R(t) describe the densities of suscep-

tible, infected, and removed individuals as a function of time. These magnitudes are

linked through the normalization condition

S(t) + I(t) + R(t) = 1, (5.1)

and using the homogeneous mixing principle for continuous time (t ≥ 0), they obey

the following system of differential equations:

dS

dt
= −λk̄IS,

dI

dt
= −µI + λk̄IS,

dR

dt
= µI. (5.2)

Here, λ is the infection spreading rate, k̄ is the number of contacts per unit time that

is supposed to be constant for the whole population, and µ is the rate coefficient for

infected individuals to decay into the removed class.

The most significant prediction of this model is the presence of a nonzero epidemic

threshold λc. If the value of λ is larger than λc, the disease spreads and infects a
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finite fraction of the population. On the other hand, when λ is below the threshold

λc, the total number of infected individuals is infinitesimally small in the limit of very

large populations. The typical size of outbreaks of the epidemic and whether or not

epidemics occur are the main topics for the classic mathematic modeling with the

assumption of large population size.

This threshold theorem was established for the first time by Kermack and McK-

endrick in 1927 [8]. In some other contexts, threshold phenomena in epidemiology are

rephrased as the transmission probability to exceed a threshold when the spreading

rate of infection is thought of in terms of a transmission probability [9]. The thresh-

old theorem is important because it implies what proportion of susceptibles need to

be vaccinated in order to prevent an epidemic from occurring. Epidemic behavior

usually shows a phase transition from a regime without epidemics to one with epi-

demics. This transition happens as the “reproductive ratio” of the disease, which is

the fractional increase per unit time in the number of infective individuals, becomes

greater than one [9].

The SIR model is a deterministic model that describes the progress of a disease

determined entirely by the current state and possibly by the past history, but with

no allowance for random effects. When population sizes are large, this is a reasonable

approximation, but for small population sizes individual differences and random ef-

fects are important. Stochastic models are needed to describe the disease spreading in

small populations, in particular those of family size [1]. The evolution of an epidemic

described as a stochastic process can be found in Refs. [5, 11].

Another model proposed by W. O. Kermack and A. G. McKendrick is an SIS

model [12], in which infectious return to the susceptible class on recovery because the

disease confers no immunity against reinfection. Such models are appropriate for most

diseases transmitted by bacterial or helminth agents, and most sexually transmitted

diseases (including gonorrhea, but not such diseases as AIDS from which there is no

recovery).
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In many diseases, individuals do not pass directly from the susceptible to the

infective class on becoming infected. There may be a latent or exposed stage. If

the exposed period is short, as influenza has an exposed period of 1-3 days, it is

often neglected in modeling, but a longer exposed period could lead to significantly

different model predictions [1,13]. The inclusion of an exposed period would mean an

additional compartment E in the model, thus SEIR or SEIS models are used [1,13].

Fox rabies, for example, has an exposed period (the incubation period) of 28-30 days

considerably longer than the actual infective period [1, 13]. In measles there is an

incubation period of 11-14 days after infection before symptoms of the disease appear

[1, 13].

Some diseases, such as malaria, provide a temporary immunity on recovery, so that

there is a transition from the infective class to a removed class and then a later return

to the susceptible class. This is also true for tuberculosis, Herpes simplex and many

types of influenza. Many sexually transmitted diseases (STD) such as gonorrhea and

chlamydial infections are known to result in little or no acquired immunity following

recovery [14]. This would mean an additional compartment S in the model thus giving

an SIRS model [1, 15]. If recovery period is very short, SIS model will be the case.

Obviously, the cycle of “susceptible→infected→recovery→susceptible” is an excitble

cycle, which goes through “excitable→excited→refractory→excitable.” This is our

motivation for using excitable media to study disease spreading.

In summary, the SIR model is the most important model and all of the other

models are derived from it for particular disease dynamics. The SIR model is used for

the general epidemic [5] , which has perfect immunization, where each individual can

be infected only once. SIS model is for diseases with no immunity at all. SEIR and

SEIS models are for the disease with an exposed time. SIRS model is for the disease

with a temporary immunity on recovery. Among them, the SIR and SIS models are

the most widely used in the literature.

All the models assume the population is homogeneous, i.e., “well mixed,” and thus
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an infective individual is equally likely to spread the disease to any other member of

the population or subpopulation to which it belongs [9, 10]. So the number, size and

level of interaction of the subpopulations of “susceptible,” “infectious,” “removed,”

and/or “exposed,” determine the transmission of disease.

The classic models lack two effects: one is spatial spreading and the other is

network topology. In the following sections, we will review the geographic spreading

of diseases and disease spreading in networks. Although disease spreading in networks

is also related to geographic spreading of diseases, we will separately introduce them.

In the section Geographic Spread of Epidemics, we will focus on the role played by

travel on the disease spreading. In the section Disease Spreading in Networks, we will

focus on the role played by network topology on disease spreading.

5.1.3 Geographic spread of epidemics

The standard epidemic models describe diseases spreading in a large number of well

mixed populations, and the emphasis is on the detailed temporal dynamics of disease

transmission and control of disease. However, the spatial spread of disease is also

very important and the course of infection usually can not be modeled accurately

without some attention to its spatial spread. In 2003, Severe Acute Respiratory

Syndrome (SARS) spread world wide from GuangZhou, a city close to Hong Kong,

in a matter of weeks [16]. Every year flu viruses repeatly spread throughout the

world in relatively short periods of time. In the fourteenth century, the Black Death

(bubonic plague) spread from Asia throughout Europe several times [17]. All of

these examples demonstrate that travel intensifies the circulation of diseases and is

an important factor for the disease spreading.

To account for the geographic spread of epidemics, diffusion terms are often added

to Eqs. (5.2) to generate partial differential equations (PDEs), in which S, I, and

R are functions of space as well as time [18, 19]. Many of these models assume that
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the probability of transmission of a disease from an infective person to a susceptible

person is a function of the distance between them, with the result that the epidemic

diffuses out from the starting point [18,19]. These reaction-diffusion equations describe

the spatial spread of an epidemic wave of infectiousness into a uniform population

with initial homogeneous susceptibility. The conditions for the existence of epidemic

traveling wave and, when it exists, its speed of propagation can be determined. The

PDEs for the SIS and SIR models [18] were used to fit data available from, respectively,

the historic epidemic of the Black Death of 1347-1350 in Europe and the rabies

epidemics that swept through continental Europe from 1939 to 1980. However, this

method treats populations as spatially continuous media, which may be a reasonable

approach for describing disease spreading in situations where people are relatively

stationary, but with the development of rapid forms of transportation it is necessary to

consider travel, especially long-distance travel, between discrete geographical regions

(cities).

Models to describe the spread of disease among several discrete groups have been

presented in the literature as early as 1945, when Wilson and Worester presented

results for a general deterministic epidemic model in the case of two subgroups [20].

Deterministic multiple-site modeling that includes migration as the mechanism of

contact between subpopulations has been carried out by the Soviet School of math-

ematical epidemiology and particularly developed in the applied context of influenza

prediction and control in the USSR (see the review of this work by Bailey in [10] and

[19]).

Based on a model used by the Soviet investigators, Rvachev and Longini [21, 22]

introduced a system of discrete-time difference equations in a continuous state space.

It was formulated as a network of interconnected populations (N cities) connected

by a transportation matrix, with elements mij representing the degree of interaction

between cities i and j. It was assumed that the transportation matrix is symmetrical,

i.e., mij =mji, and some cities were not be directly connected. It was further assumed
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that only the susceptible and the infected that are in the latent period can travel and

those who are infected but isolated do not travel. This model was applied to forecast

the temporal-geographic spread of the Hong Kong influenza of 1968-1969 in 52 major

cities in the world, based on the transportation matrix derived from world airline

statistics data in those cities in a 24-hour period, with each element mij equal to the

average number of individuals who traveled from city i to city j.

Sattenspiel and Dietz [23] introduced a mathematical model that combines a model

for mobility among communities with a standard SIR epidemic model. The popula-

tion is divided into subgroups consisting of individuals who are assumed to be ho-

mogeneous in their mobility patterns. The model keeps track of whether and where

an interaction occurs between people from different places, and it keeps track of the

location of every individual of susceptible, infected, and removed (whether they are

at home or visiting another community). It assumes that a particular traveler returns

home before traveling to another community, and the travel rate and return rate are

different. The model includes the key elements of location of a contact such that

transmission probability can be made a function of location of the contact, as well

as the origins of individuals involved in the interaction. In Ref. [23], a simple model

for disease transmission in a population is given, with two distinct mobility patterns

and a complex model to describe the 1984 measles epidemic on the Caribean island

of Dominica, in which the population was divided into seven districts, each of which

was further divided into three age classes. Sattenspiel et al. [24, 25] considered the

same type of model but applied it to the spread of the 1918-1919 influenza epidemic

in three communities of the Canadian subarctic, which can be thought of as a closed

population, where travel is easily quantified. Four idealized mobility patterns, which

represented idealized trade and travel relationships between different communities,

were simulated and the results showed that variation in patterns of mobility signifi-

cantly influences the timing of epidemic peaks but only minimally alters the number

of cases within a community. The comparison of different mobility patterns indicates
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that a central location in the social and political hierarchy of a region may be more

important in influencing patterns of epidemic spread than a central location with

regard to travel patterns. Moreover, the simulation results showed that the travel of

infected residents is the most important.

Recently, Arino and Driessche [26] formulated an SIS epidemic model with demog-

raphy that described the travels of individuals between discrete geographical regions

(cities), adapted from the model in Ref. [23]. The deterministic model is a system

of 2n2 ordinary differential equations for n cities with terms accounting for disease

transmission, recovery, birth, death, and travel between cities. They derived the basic

reproduction number, which is the average number of new infectives produced by one

infective introduced into a susceptible population, and gave the simulation results for

travel between 2 and 3 cities.

The crucial element, however, that all such models lack is network topology. It is

obvious that a given infective individual does not have equal probability of infecting all

others; in the real world each individual has contact only with a small fraction of the

total population, although the number of contacts that people have can vary greatly

from one person to another. For most diseases, this is not an accurate representation

of real contact patterns. Recently, a network of connections between individuals has

been considered in the research of epidemic spreading, which will be the topic for

next section. We will first review research on the effects of travel in disease spreading

in networks.

A probabilistic automata network for the spread of an infectious disease in a popu-

lation of moving individuals has been studied by Boccara et al. [27–29]. An automata

network is a discrete dynamical system in time and space. It is a graph with a discrete

variable at each vertex, which evolves in discrete time steps according to a definite rule

involving the values of neighboring vertex variables [29]. A vertex is either empty or

occupied by an individual belonging to one of the S, I, or R groups. The motion of a

selected individual occurs either at one of the four closest neighboring vertices (short-
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range motion) or any other vertex (long-range motion) in the graph when the vertex

is empty. The model assumes that the population is closed. The results of Boccara

et al. on models of SIR [27], SIS [28], and SIS with births and deaths [29] emphasized

the effect of motion on the spreading of disease in one- and two-populations [27], the

critical behavior between an endemic state and a disease-free state [28], and the am-

plitude of oscillating densities of the infective and the susceptible [29], respectively.

For SIS with births, both S and I may give birth at a neighboring empty site to an

S, and for SIS with deaths, both S and I may die, and the vertex will be empty [29].

Their results showed that as soon as the individuals start to move, the spread of the

disease increases dramatically in a population. In Ref. [27], two-population models

were considered, in which individuals belonging to one population may be infected

only by individuals belonging to the other population, as in the case for heterosexual

propagation of a venereal disease.

Recently, Miramontes and Luque [30] studied SIS epidemic models, incorporating

the ideas from the dynamical small world (DSW) theory, a system of mobile automata

designed to study the propagation of activity [31]. They studied the spreading of an

infectious disease in a population of N moving individuals, representing S or I, in

a regular lattice of L × L sites (N < L × L). At each time step the individuals

move as random walkers to one of the immediate neighboring empty lattice positions,

and they may move as random walkers to any empty lattice position on the lattice

with probability p. Susceptible individuals become infected if any local neighbor is

infected, and the infected individuals become susceptible after the recovery time. The

numerical simulation showed that varying p could modified the percolation threshold

that determines whether an epidemic will prevail or not. When the system parameters

are set in such a way that the initial infection has spread and the infected population

is kept at a non-zero minimum level, only a small increase in p caused the susceptible

(healthy) population level to drop and the infected population to dominate with

p = 1.
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5.1.4 Disease spreading in networks

All of the classic models reviewed here have assumed that the mixing of the mem-

bers of the population is homogeneous and the number of contacts per member per

unit time is proportional to the total population size. It is more realistic to assume

that the number of contacts per member per unit time grows less rapidly as the pop-

ulation size increase. It is important to look closely at mixing patterns for modeling

STD diseases like AIDS, the plague of modern society, as members may have very

different levels of sexual activity and the mixing may include preferences for contacts

with members having a specific activity level. These aspects are intimately related

to the structure of the populations, which is the focus of modeling disease spreading

in recent studies.

Networks are graphs consisting of vertices (nodes) connected by edges (links, con-

nectivities). Edges may be directed or undirected (leading to directed and undirected

networks, respectively) [32]. Networks of citations of scientific papers are examples of

directed networks, while networks of collaborations are undirected networks. Detailed

reviews of networks can be found in Refs. [32–34]. Here, we introduce some basic

terms of networks, which are helpful in understanding modeling disease spreading.

The degree, k, of a vertex is the total number of connections, which is the same as the

number of nearest neighbors of a vertex. Not all nodes in a network have the same

number of edges (same node degree). The spread in the node degree is characterized

by a distribution function P (k) [35], which gives the probability that a randomly

selected node has exactly k edges, i.e., the probability for a node to be connected to k

other nodes. This is a basic statistical characteristic that often determines important

global characteristics of networks. For example, P (k) is an exponential function for

small-world networks and a power law for scale-free networks. The clustering coeffi-

cient of a vertex is the ratio of existing connections over all possible connections for

undirected networks. Averaging the clustering coefficients of all vertices of a network

yields the clustering coefficient of the network, which reflects the “cliquishness” of
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the extent to which the nearest neighbors of a vertex are the nearest neighbors of

each other [36]. Averaging shortest path length, the shortest length in unit length

between two nodes, over all pairs of nodes yields the path length of the network. This

quantity is often called the “diameter” of a network.

A number of authors have pursued mathematical theories of the spread of disease

on networks [36–59]. All of these studies are based on standard mathematical models

of SIR or SIS. To model disease spreading in networks, each node represents an

individual in the state of S, I, or R, and each link represents a connection along

which the infection can propagate the disease in the network. As early as 1967, Bailey

[19,44] used this idea to investigate disease spreading models of SIS and SIR for spatial

simulations on a square lattice. Bailey considered a population of susceptibles located

at the vertices, and assumed that the epidemic was started off by a single infective

individual at the origin, with the infection spreading in a probabilistic way to the

eight nearest neighbors. In his study, the specific cases of 121 nodes and 441 nodes

were considered. However, in the real world, contact does not occur only at nearest

neighbors, as we reviewed in the last section. In addition, the real world is not in

the order of a regular lattice. The most widely used networks in recent studies are

small-world networks and scale-free networks.

The small-world model was first proposed by Watts and Strogatz (WS) [36] to

mimic properties of social networks. The model is defined as follows: a ring with N

nodes is defined, in which each node is symmetrically connected to its two nearest and

next-nearest neighbors. For every node, each link connected to a clockwise neighbor is

rewired to a randomly chosen node with probability p, and preserved with probability

1 − p. The long range connections generated by this process decrease the distance

between the vertices, leading to the small-world phenomenon [60, 61], often referred

to as six degrees of separation [62]. p characterizes the degree of disorder of the

network, ranging from a regular lattice to a completely random graph, respectively,

with p running from 0 to 1. Figure 5.1 [36] shows a regular ring lattice, a small-world
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Figure 5.1. “Small world” between a regular ring lattice and a random network, with p
changing from 0 to 1, without altering the number of vertices or edges in the graph. Twenty
nodes with a node degree of four are shown here. (Adapted from [35].)
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lattice, and a random network. The WS small-world model has been modified by

Newman and Watts [50] in such a way that a low density of “shortcuts” are added

between randomly chosen pairs of sites while preserving the original connections in a

regular one- and two-dimensional lattice.

Watts and Strogatz [36, 37] used an SIR model to investigate the spread of infec-

tious disease in their small-world model. Initially, one single infective individual is

introduced into the susceptible populations. The infected individual can infect each

of its susceptible neighbors with a infection rate ranging between 0 and 1. They found

that the time for the disease to infect half of the population decreased rapidly for a

small increase in rewiring probability p.

Kuperman and Abramson [39] studied the WS small-world effect in an SIRS model.

The interactions within the population were described by a one-dimensional WS

small-world network. In their simulations, infected populations were initially dis-

tributed randomly and the rest were susceptible. A susceptible would become infected

with a certain probability when any of its neighbors were infected. Each element went

through the cycle of “susceptible→infected→recovery→susceptible.” They observed

that the temporal dynamical behavior of the model changed from an endemic situa-

tion at small p to a spontaneous state of large-amplitude oscillations at large p. Here,

p is the parameter indicting small-world [36] behavior. In Ref. [43], the authors intro-

duced a modified version of the SIRS model by including a ring vaccination program

for the outbreaks of foot-and-mouth disease (FMD) on small-world networks. In this

article, the authors claimed that the small-world network is better than regular or

random lattices in modeling the outbreaks of FMD, since the small-world network

describes both local and non-local interactions.

The behavior of epidemiological percolation models on variants of the WS small-

world model has also been investigated [42,47,48,50]. An epidemiological percolation

model can be described as follows: each site of a lattice represents the location of

an individual. A site can infect its neighbors if itself infected. With the probability,
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p, some sites are immune. This is called the site percolation model. Hence, if bonds

(representing contacts between neighbors) are present with probability p (some trans-

missions possible, some forbidden), then we have a bond percolation model [47]. As

Newmal et al. [48] stated, “bond percolation is equivalent to the standard SIR model

of disease spread with the percolation threshold mapping to the epidemic threshold

of the disease in the SIR model, and cluster sizes mapping to the sizes of disease

outbreaks which start with a single disease carrier.” For the site percolation model,

the same “mapping” should also be valid.

Newman and Watts [50] used a variant of the WS small-world model as a sim-

ple model of disease propagation. They suggested using a site percolation model for

disease spreading in which some fraction of the populations are considered to be sus-

ceptible to the disease. They gave a simple differential equation model for disease

propagation on an infinite graph in which communication of the disease takes place

with 100% efficiency, i.e., all susceptible acquaintances (neighbors) of an infected

person become infected. They obtained an approximate solution for the threshold

fraction of susceptible individuals for epidemics as a function of the density of short-

cuts on the lattice. Moore and Newman [42] used a variant of the one-dimensional

small-world graph, in which transmission between individuals takes place with less

than 100% efficiency, and derived an exact solution of the percolation threshold (i.e.,

the epidemic threshold) for both the site percolation model and the bond percolation

model.

Newman et al. [48] proposed a model of bond percolation on two-dimensional

small-world networks to describe the spread of plant diseases. Their analytical so-

lution of the model gives accurate predictions for quantities such as the position of

the percolation threshold and the typical size of disease outbreaks as a function of

the density of “shortcuts” in the small-world network. Sander et al. [47] studied

bond percolation for the spread of disease with an SIR model that includes varia-

tions in the susceptibility to infection. The variations were realized by changing the
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bond strengths that indicate the efficiency of disease transmission from the infected

to the susceptible. The results show that with strong heterogeneity, patchiness in the

spread of the epidemic is very likely, and the criterion for epidemic outbreak depends

strongly on the heterogeneity. The results of weak heterogeneity do not differ very

much from the case with homogeneity.

In contrast to small-world networks, in which new connections (“shortcuts”) be-

tween vertices are chosen without any preference and the degree distribution is ex-

ponential, scale-free networks exist with preferentially linking, and the degree dis-

tribution follows a power law [63]. Barabàsi and Albert [63] first found a common

property of many large networks in which the vertex connectivities follow a scale-free

power law distribution. They introduced a graph, referred to as the BA graph, as

a model of a growing network in which the successively added nodes establish links

with higher probability, pointing to already highly connected nodes [63]. It is con-

structed using the following algorithm: starting from a small number m0 of nodes,

at every time step a new vertex is added, with m (m < m0) edges that link the new

vertex to m different vertices already present in the system. It was assumed that the

probability that a new vertex will be connected to a vertex (target node) depends on

the connectivity of that vertex in a form of a preference function that was defined.

After iterating t times, a network composed of N = t + m0 nodes and mt edges is

obtained. This network evolves into a scale-invariant state with a connectivity distri-

bution P (k)∼k−γ,(γ = 2.9±0.1). Figure 5.2 [34] shows a scale-free network, consisting

of 200 nodes, where the preference function is that the probability of attachment is

proportional to the degree of the target node. It has been demonstrated that the BA

algorithm is not a unique model generating scale-free networks [64], and a modifi-

cation of the BA model is changing the form of the preference function [32, 51, 65]

and the value of γ, usually 2<γ≤3. SF networks find real examples [32] in several

technological systems such as the Internet [66, 67] (γ = 2.3) and the world-wide-web

(WWW) [68] (γ = 2.1), as well as the web of human sexual contacts (γ = 3.4) [69].
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Figure 5.2. Scale-free graph, grown by attaching new nodes at random to previously
existing nodes. The probability of attachment is proportional to the degree of the target
node; thus richly connected nodes tend to get richer, leading to the formation of hubs and
a skewed degree distribution with a heavy tail. Colours indicate the three nodes with the
most links (red, k=33 links; blue, k=12; green, k=11). (Adapted from [33].)
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An important step in understanding epidemic spreading in SF networks has been

made by Pastor-Satorras and Vespignani [38,52]. They analyzed real data from com-

puter virus infections using the SIS epidemic model defined in BA scale-free graphs.

In striking contrast with the usual models for the spread of infection in human and

other populations, they found no threshold for epidemic spreading. Within the ob-

served topology of the internet and WWW, viruses can spread even when infection

probabilities are vanishingly small. They also found that, in its early phase, the

epidemic spreads relatively slowly and non-exponentially, again in contrast with the

initial exponential behavior in conventional epidemics. May and Lloyd [53] reported

a comprehensive study of the SIR model, which is argued to be a more appropriate

model for computer viruses, in scale-free networks, which extends the preliminary ac-

count provided in [49]. They pointed out that the reason of the absence of a threshold

in the SIS model for the spread of infection is the extreme heterogeneity in the con-

nectivity distribution of a scale-free network, i.e., the infinite size of the network [32].

They demonstrated that networks of finite size do exhibit threshold effects.

Recently, the problem of the absence of an epidemic threshold in SF networks

prompted a number of mathematical studies [51,54–56,58] of the spread of disease on

SF networks. These studies pursued constructing SF networks with different ranges

of values of γ [51, 54] from the BA graph or different preferential functions [55].

Volchenkov et al. [51] showed that the epidemic spreading in scale-free network is

very sensitive to the statistics of degree distribution characterized by γ, the effective

spreading rate, the preferential linking function, and the immunization of infected

nodes.

Moreno and Vàzquez [54] studied the dynamics of SIS and SIR models for infec-

tious disease in structured scale-free networks generated with the deactivation model

algorithm [65], which makes the power law connectivity distribution of the structured

scale-free networks have a quite wide interval of γ (2≤γ≤4), and the graph lacks

small-world properties. They showed that the existence of an epidemic threshold for
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the SIS model in this particular SF network depends on the initial density of infected

individuals when the connectivity fluctuations of the network are unbounded. The epi-

demic threshold for the SIR model exists in the network they constructed. Boguña et

al. [55] analyzed the conditions for the lack of an epidemic threshold in the SIS model

in unstructured, undirected SF networks to establishing the general conditions for the

existence of an epidemic threshold. In unstructured undirected networks all vertices

within a given degree class can be considered statistically equivalent. They are differ-

ent from structured networks in which the distance or time ordering can be defined

[56,58], like small-world networks. They found that an SF network (2 < γ ≤ 3) with a

two-point correlation is a sufficient condition for a null epidemic threshold in unstruc-

tured networks with assortative or disassortative mixing. “Assortative mixing” means

that vertices with a high degree will connect preferably to highly connected vertices,

and “disassortative mixing” means that highly connected vertices are preferably con-

nected to vertices with low degree. These characteristics can be defined in terms of

the conditional probability P (k′|k), where a node of connectivity k is connected to a

node of connectivity k′ [56, 58].

5.2 Modeling Disease Spreading with Excitable Me-

dia

5.2.1 Overview

Our study is a description of epidemic spreading based on excitable media, which is

unique among all the studies we have reviewed. We consider the contagious diseases

that are transmitted exclusively by direct contact. Once people are infected, they

will lose their immunity and after recovery they will be susceptible again. Such kinds

of disease include pertussis (whooping cough or chooping cough), Herpes simplex,

tuberculosis, some STDs such as gonorrhea and chlamydial infections, and many
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types of influenza. These diseases can be modeled by the SIRS model. The three

states of epidemic disease, the susceptible state, the infected state, and the recovery

state, are analogous to the three states, the excitable state, the excited state, and the

refractory state, respectively, of excitable systems such as the BZ reaction.

Reaction-diffusion systems [18] have been used in modeling geographical disease

spreading. A reaction-diffusion chemical system is ideal for modeling disease spread-

ing, as the chemical wave models nearest neighbor contacts. In the real world, some

diseases are transmitted from others who are neither neighbors nor family members

in immediate contact. We can mimic long-distance contact, analogous to a shortcut

in the small-world model, by using a video-projector method for the experiments.

Combining the local contact with long distance contact is the most important part

of our study of modeling disease spreading in excitable media.

In our study, the photosensitive BZ reaction was used to investigate the spatiotem-

poral dynamics of epidemic disease spreading in a spatially extended medium. The

propagation of excitation chemical waves in an excitable BZ system mimic the spread-

ing of disease. We construct a two-dimensional square network (N × N elements) con-

sisting of an array of square cells, each representing a subpopulation of the network. In

addition to the local interactions (diffusive) between cells, a number of long-distance

interactions (non-diffusive, non-local) are added over the network and all the original

local interactions are preserved, as in the modified small-world model [50]. Three dif-

ferent realizations of long-distance interaction have been studied, namely static links,

dynamic links, and the domain model. We now summarize the common aspects of

the experimental and numerical studies before we introduce the three different real-

izations.
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Experimental study

Experiments were carried out with ruthenium(II)-bipyridyl (Ru(bpy)2+
3 ), a light

sensitive catalyst of the BZ reaction, immobilized in a thin slab of silica gel, which was

cast onto a microscope slide and placed in a thermostated reactor that was continu-

ously fed with fresh, catalyst-free BZ solution to maintain constant, non-equilibrium

conditions. The experimental setup is the same as in the study of “Synchronization of

Spatiotemporal Patterns in Locally Coupled Excitable Media,” described in Section

4.2.4 and shown in Fig. 4.1. The reaction was carried out at 20.0oC with catalyst-free

BZ solution maintained at 0oC to prevent decomposition and degassed before pump-

ing into the reactor. Composition of the catalyst-free BZ reaction mixture was 0.552

M NaBrO3, 0.026 M malonic acid, 0.162 M bromomalonic acid, and 0.489 M H2SO4.

The silica gel was prepared by acidifying a solution of 10% (w/w) Na2SiO3 and 2.05

mM Ru(bpy)2+
3 with H2SO4 and casting a uniform 0.3 mm × 37 mm × 37 mm layer

onto a microscope slide. The intensity of the projected image was adjusted at each

pixel by an iterative algorithm to ensure spatial homogeneity of the illumination field.

The medium was illuminated with light (intensity 0.310 mW/cm2) from a modified

video projector passing through a 460 nm bandpass filter and was monitored with a

CCD video camera. A 36 mm × 36 mm image produced by the computer-controlled

video projector was projected onto the face of the gel medium. Bromide ion is pro-

duced in a photochemical cycle when the ruthenium catalyzed BZ reaction is exposed

to 460 nm light, which inhibits the autocatalysis of the reaction. The excitability of

the system can therefore be adjusted by varying the light intensity.

The region in the illumination field consists of 33 × 33 cells, with each cell com-

posed of 12 × 12 pixels, and a total area of 36 × 36 mm2. At the beginning of an

experiment, a circular wave was initiated in the center of the medium to mimic the

initialization of the disease. The presence of the chemical wave in each cell was mon-

itored with the video camera. If the chemical wave occupation area in a cell was over

a coverage threshold, of which 50% was used, the cell was defined as an infected cell.
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In other words, if 50% of the elements in a cell are excited as Ru(bpy)3+
3 , this cell will

be defined as an infected cell. Each infected cell has a probability of interacting with

a cell which is not near it, which mimics long-distance interactions. How the infected

cell “travels” and where it travels to will depend on different strategies, which will

be explained below. The cell where the long distance interaction occurs was main-

tained with a light intensity of zero for a period of time (1.0 min) until it became

oscillatory in order to initiate a new chemical wave. This mimics disease transmission

by long-distance travel. Chemical waves were monitored at equal-time intervals (6.0

s) for every cell. The process of finding infected cells and adding the long-distance

interaction was updated every 6.0 s. The fraction of the medium in the excited state

was calculated in the process of the experiment. The first coverage time τ , which is

defined as the time it takes for each of the cells to be infected at least once, was also

recorded in the process of the experiment.

Numerical simulations

Numerical simulations were carried out using the modified Oregonator model [70–

73], which includes the additional term φ(t), taking into account the photochemical

production of bromide:

∂u

∂t
= Du∇2u +

1

ε

{
u− u2 − [fv + φ(t)]

u− q

u + q

}
,

∂v

∂t
= u− v, (5.3)

where the variables u and v correspond to the dimensionless concentrations of the au-

tocatalytic species HBrO2 and the oxidized catalyst (Ru(bpy)3+
3 ), ε and q are scaling

parameters, and f is an adjustable stoichiometry parameter. The rate of bromide pro-

duction from irradiation, φi(t), is proportional to the light intensity. The parameters

to maintain an excitable media are: ε = 0.01, q = 0.002, f = 1.4, φ = 0.073, Du = 1.0.
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The modified Oregonator was integrated in a two-dimensional lattice of 1000 ×

1000 grid points by an explicit Euler method (unit grid size ∆x = 0.15, time step ∆t

= 0.001) with non-flux boundary conditions and a five-point approximation of the

Laplacian. The medium consists of 50 × 50 cells with each cell of 20 × 20 pixels and

a total area of 150× 150 dimensionless space units. As in the experimental study, if

the chemical wave occupation area in a cell was over a coverage threshold, of which

50% was used, the cell was defined as an infected cell. The time interval was 100 time

steps for maintaining a chosen cell for a non-diffusive interaction at a light intensity

of zero in order to initiate a new chemical wave. The process of monitoring chemical

waves and detecting infected cells as well as adding the long distance interactions

were updated every time step. The fraction of the medium in the excited state and

the first coverage time were calculated in the process of the simulations.

5.2.2 Static networks

In our system, static links between the “source cell” and the “destination cell”

mimic non-diffusive jumps. The non-diffusive interaction is realized in such a way

that once a “source cell” is infected, it will infect its “destination cell.” The number

of static links determines the number of pairs of “source cells” and “destination cells.”

Static links mimic long-distance travel that always occurs to the same place. Work

related travel for adults and school events for students are examples of static links.

The rule for choosing “source cells” and their “destination cells” is the following:

the “source cell” was chosen randomly and its “destination cell” was chosen randomly

among the total number of cells in the network. The source cell is not allowed to

be identical to the destination cell, i.e., a source cell can not be the destination cell

for itself. However, a “source cell” can have multiple “destination cells,” and one

“destination cell” can have multiple “source cells,” since a cell is chosen randomly

in the whole network and a cell may be selected more than once. Hence, the more
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static links, the greater the chance to have multiple “destination cells” for one “source

cell” and multiple “source cells” for one “destination cell.” Figures 5.3(a)-5.3(c) show

the “source cells” and “destination cells” for 10, 100, and 500 links respectively, in a

network of 50× 50 cells. All of the possible long-distance travel is represented by the

arrows. The origins of the arrows are the “source cells” and the ends of the arrows

are the “destination cells.”

All elements of the network are initially equally susceptible to the disease. Pairs

of “source cells” and “destination cells” were chosen as described above. A circular

chemical wave was initiated in the center of the medium by a black square. Figure

5.4 shows an example image from an experiment when black initiation zones were

imposed onto the gel at the “destination cells” when the static links were equal to

100. The images in Figs. 5.5(a) and 5.5(b) show the time sequence of chemical

wave propagation with 100 and 300 static links, respectively, in the experiment. The

periodic behavior of wave generation in these figures clearly shows that once a “source

cell” is infected the “destination cell” is infected. Figures 5.6(a)-5.8(a) show the

time series of the fraction of excited elements in the system for different numbers of

static links in the experiment. Figures 5.6(b)-5.8(b) show the power spectra of the

corresponding time series. We see that the frequency at 0.02 is more pronounced

when the number of links is increased.

The first coverage time for different static links were normalized by the first cov-

erage time with the number of static links set to zero. The relationship between the

normalized first coverage time and different probabilities is given by a power law in a

log-log plot, as shown in the Fig. 5.9. Here, the probability is defined as the ratio of

the number of static links over the total number of possible links. For example, in our

experimental study, the total number of cells is 1089 (33× 33) and the total number

of possible links is given by 1089 × (1089 − 1). So the probability is 8.44 × 10−5 for

100 static links.

In the numerical simulations, we obtain similar results as in the experiment. Figure
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Figure 5.3(a). Static networks with 10 links.
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Figure 5.3(b). Static networks with 100 links.
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Figure 5.3(c). Static networks with 500 links.
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Figure 5.4. Chemical wave in the static network system with the imposed long-distance
interactions.
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Figure 5.5(a). Experimental results for 100 static links. Images showing time sequences of
chemical wave propagation with static links in the excitable BZ medium (time increases from
left to right and then to the next row). The time interval between each frame is 6.0 s. The
gray level in each panel is proportional to the concentration of the catalyst, Ru(bpy)3+3 ,
with white and black representing high and low values, respectively. The region in the
illumination field consists of 33 × 33 cells, with each cell of 12 × 12 pixels, and a total
area of 36 mm × 36 mm. Every infected “source cell” jumps to its “destination cell.” The
jump was updated immediately after the wave behavior was monitored every 6.0 s, and
each destination cell was maintained at zero intensity for 1.0 min.
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Figure 5.5(b). Experimental results for 300 links. All other conditions as in Fig. 5.5(a).
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Figure 5.6(a). Time-series of fraction of infected elements in the experiment. Area of
Ru(III), which represents the fraction of the area of the oxidized catalyst, Ru(bpy)3+3 , in
the medium, represents the fraction of infected elements. Time is represented by the frame
number. The time interval between each frame is 6.0 s. The number of static links is 50.
Other conditions as in Fig. 5.5(a).
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Figure 5.6(b). Power spectrum of the time-series of fraction of infected elements in the
experiment for 50 static links.
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Figure 5.7(a). Time-series of fraction of infected elements in the experiment for 100 static
links. Other conditions as in Fig. 5.6(a).
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Figure 5.7(b). Power spectrum of the time-series of fraction of infected elements in the
experiment for 100 static links.
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Figure 5.8(a). Time-series of fraction of infected elements in the experiment for 300 static
links. Other conditions as in Fig. 5.6(a).
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Figure 5.8(b). Power spectrum of the time-series of fraction of infected elements in the
experiment for 300 static links.
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Figure 5.9. Experimental results of normalized coverage time, τ/τ(0), as a function of
probability, p. p is the ratio of staic links over the total possible links. τ is the time for
infecting each cell at least once. τ(0) is the time of one circular wave propagating from the
center to cover the entire medium with 0 links. The solid blue line is given by the power
law τ/τ(0) = 0.156p−0.1847. The red circles show mean values from 5-6 measurements and
bars indicate standard deviations.
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5.10 shows the time series of fraction of excited elements for different numbers of static

links in the numerical simulations. In the range from 10 to 450, we observe sustained

oscillations of infection in the whole medium, and for larger numbers of static links

the sustained oscillations are damped for a long time run. If the number of links is

greater than 500, the disease spreads to the whole medium and then collapses. The

relationship between normalized first coverage time and different probabilities is given

by a power law as shown in the Fig. 5.11.

5.2.3 Dynamic networks

In the real world, people do not always travel to the same places, as in our study of

static links, but to a variety of places. We therefore introduce “dynamic networks,”

where the long-distance interactions between cells change dynamically with time. The

rule for the dynamic links is the following: each infected cell has a jump probability

p to contact with a cell chosen at random in the network.

After the circular wave was initiated in the center of the system, the state of each

cell was detected each iteration. For each of the infected cells, whether it will contact

non-locally with another cell depends on the jump probability p, which determines

the total number of long-distance contacts. For example, if the jump probability

is 0.1, which means that each infected cell has a 10% possibility to jump, then at

least one long-distance contact will occur if there are 10 infected cells. If the jumping

probability is 1, then all of the infected cells will have the chance to jump (contact) to

other cells. The cell in which the long-distance contact occurs is chosen randomly in

the network. To realize the non-diffusive contact, the destination cell was maintained

with a light intensity of zero for a specific period of time. The destination cell could

be an infected cell, in which case no new wave will be initiated. In addition, if the

destination cell is located in the wave back of a wave, no new wave will be initiated,

since the refractory state of the excitable medium is analogue to the recovery state
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Figure 5.10. Numerical simulations of time-series of fraction of infected elements. Area
v, which represents the fraction of the area of the oxidized catalyst, Ru(bpy)3+3 , in the
medium, represents the fraction of infected elements. The number of static links: 10 (red),
50 (blue), and 200 (green). Conditions and other parameters of calculation are given in the
text.
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Figure 5.11. Simulation results of normalized first coverage time, τ/τ(0), as a function of
probability, p. p is the ratio of static links over total possible links. τ is the time for each
cell to be infected at least once. τ(0) is the time of one circular wave propagating from
the center to cover the entire medium with p set to 0. The solid blue line is given by the
power law τ/τ(0) = 0.0117p−0.3348. Conditions and other parameters of calculation as in
Fig. 5.10.
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of a disease. The time period for monitoring the system and imposing non-diffusive

jumps was 6.0 s. The time period for initiating non-diffusive jumps was 1.0 min.

Examples of the spreading of an epidemic in a spatially extended population,

represented by chemical waves propagating in the photosensitive BZ system with

random non-local connections added, are illustrated in Figs. 5.12 (p = 0.1) and 5.13

(p = 0.15). The spatiotemporal behavior of outbreaks of the epidemic, represented

by the fraction of excited elements, changed from irregular to periodic when p was

increased, as shown in Figs. of 5.14(a) - 5.16(a). The changing from irregular to

periodic was demonstrated by the corresponding power spectrum, as shown in Figs.

5.14(a) - 5.16(a). The periodic outbreak reveals the global synchronization of the

outbreak of the epidemic in the entire medium. All of the jumps were randomly

selected such that the new waves generate at a random place; however, the overall

average behavior of the system is synchronized, which implies a phase transition from

a regime without synchronization to one with synchronization. The first coverage

times for various values of p were recorded and normalized by the first coverage time

for p = 0. A power law is obtained for the normalized coverage time vs p in a log-log

plot, as shown in Fig. 5.17.

Figure 5.18 illustrates numerical simulations of disease spreading in a spatially

extended population with non-diffusive connections (p = 0.0004). The spatiotem-

poral dynamics of the disease spreading is shown in the Figs. 5.19(a) and 5.20(a).

These figures illustrate the changing of outbreaks of the disease from irregular to pe-

riodic when the jump probability increases, and Figs. 5.19(b) and 5.20(b) show the

power spectra of the corresponding time series. When the probability is greater than

0.000425, the system collapses, which means that the disease is pervasive throughout

the medium and the populations recovers simultaneously. A power law is obtained

for the normalized first coverage time vs. p in the numerical simulations, as shown in

Fig. 5.21.

The above study was carried out in a homogeneous medium, in which each element
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Figure 5.12. Images showing the time sequences of chemical wave propagation with ran-
dom non-diffusive connections in the excitable BZ medium (time increases from left to right
and then to the next row). The time interval between each frame is 6.0 s. The gray level in
each panel is proportional to the concentration of the catalyst, Ru(bpy)3+3 , with white and
black representing high and low values, respectively. Every infected cell jumps to a random
position in the medium with the probability of 0.1. Other experimental conditions are given
in the text.
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Figure 5.13. Images showing the time sequences of chemical wave propagation with ran-
dom non-diffusive connections in the excitable BZ medium (time increases from left to right
and then to the next row). The jump probability is 0.15. Other conditions as in Fig. 5.12.
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Figure 5.14(a). Time-series of fraction of infected elements in the experiment. Area of
Ru(III), which represents the fraction of the area of the oxidized catalyst, Ru(bpy)3+3 , in
the medium, represents the fraction of infected elements. Time is represented by the frame
number. The probability of jumping for each infected cell is 0.10. Other conditions as in
Fig. 5.12.
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Figure 5.14(b). Power spectrum of the time-series of fraction of infected elements in the
experiment for p = 0.10.
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Figure 5.15(a). Time-series of fraction of infected elements in the experiment for p =
0.15. Area of Ru(III), which represents the fraction of the area of the oxidized catalyst,
Ru(bpy)3+3 , in the medium, represents the fraction of infected elements . Time is represented
by the frame number. Experimental conditions as in Fig. 5.12. The wave evolution in frames
254-269 is shown in Fig. 5.13.
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Figure 5.15(b). Power spectrum of the time-series of fraction of infected elements in the
experiment for p = 0.15.
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Figure 5.16(a). Time-series of fraction of infected elements in the experiment. Area of
Ru(III), which represents the fraction of the area of the oxidized catalyst, Ru(bpy)3+3 , in
the medium, represents the fraction of infected elements. Time is represented by the frame
number. The probability of jump for each infected cell is 0.18. Other conditions as in Fig.
5.12.
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Figure 5.16(b). Power spectrum of the time-series of fraction of infected elements in the
experiment for p = 0.18.
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Figure 5.17. Experimental results of normalized coverage time, τ/τ(0), as a function of
probability, p. p is the probability of randomly jumping for each infected cell. τ is the time
for infecting each cell at least once. τ(0) is the time of one circular wave propagating from
the center to cover the entire medium for p set to 0. The solid blue line is given by the power
law τ/τ(0) = 0.3803p−0.3108. The red circles show mean values from 5-6 measurements and
bars indicate standard deviations.
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Figure 5.18. Images showing the time sequences of chemical wave propagation with
random non-diffusive connections from the numerical integration of the modified Organe-
tor. The time interval between each frame is 500 time steps. The gray level [given by
int(v/vmax× 255)] represents the concentration of the catalyst, Ru(bpy)3+3 , with white and
black representing high and low values, respectively. Infected cells jump to a random po-
sition in the medium with the probability of 0.0004. Other conditions are described in the
text.
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Figure 5.19(a). Numerical simulations of time-series of fraction of infected elements. Area
of v, which represents the fraction of the area of the oxidized catalyst, Ru(bpy)3+3 , in the
medium, represents the fraction of infected elements. The probability of jumping for each
infected cell is 0.00005. Conditions and other parameters of calculation as in Fig. 5.18.
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Figure 5.19(b). Power spectrum of time-series for p = 0.00005. Conditions and other
parameters of calculation as in Fig. 5.18.
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Figure 5.20(a). Numerical simulations of time-series of fraction of infected elements. Area
v, which represents the fraction of the area of the oxidized catalyst, Ru(bpy)3+3 , in the whole
medium, represents the fraction of infected elements. The probability of jumping for each
infected cell is 0.0004. Conditions and other parameters of calculation as in Fig. 5.18. The
wave evolution for 150-175 is shown in Fig. 5.18.
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Figure 5.20(b). Power spectrum of time-series for p = 0.0004. Conditions and other
parameters of calculation as in Fig. 5.18.
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Figure 5.21. Simulation results of normalized coverage time, τ/τ(0), as a function of
probability, p. p is the probability of random jumps for each infected cell. τ is the time for
each cell to be infected at least once. τ(0) is the time of one circular wave propagating from
the center to cover the entire medium with p set to 0. The solid blue line is given by the
power law τ/τ(0) = 0.0332p−0.2851. Conditions and other parameters of calculation as in
Fig. 5.18.
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has the same excitability and is initially equally susceptible to the disease. We also

studied inhomogeneous media in numerical simulations. The heterogeneity was real-

ized by adjusting the light intensity φ in each cell according to φ = φ0[1 + 1
2
G(x, σ)]

with |x| ≤ 2σ, where φ0 is the reference intensity of 0.073, and G(x, σ) is a Gaus-

sian distribution random number with a standard deviation of σ. The heterogeneity is

controlled by σ. The same inhomogeneity was maintained throughout the simulation.

When the heterogeneity was low (0.1 < σ < 0.5), the behavior of the disease spreading

was not affected. This was also found in bond percolation modeling of disease spread-

ing [47], where a weak heterogeneity does not affect the behavior. However, when the

heterogeneity is sufficiently high (σ > 0.6), chemical waves will be initiated at the

low excitability regions, and the disease spreading in the network is not determined

by the long-distance jumps but, rather, by the inhomogeneity itself. After a short

time, the coverage of the excited elements is the same for different jump probabilities

when σ = 0.9. It is understandable if we consider the case of noise driven avalanche

behavior in Ref. [74], where the chemical wave was induced by spatiotemporal noise.

In our case, the noise was fixed and there is no doubt that the chemical wave will be

generated by the heterogeneity itself.

5.2.4 Domain model networks

In this part of our study, we construct different domains that are separated from

each other. The long-distance interactions occur between cells belonging to different

domains. Within one domain, only local connections by diffusion can occur. Put

in the other way, the disease is always initiated by an infected element coming from

outside the domain; it then spreads in the domain by local contacts or to other

domains by long-distance contacts.

The relationship between the number of cells in domains (the population of cities)

and the rank of the domains follows Zipf’s law [75, 76], which is named after the
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linguistic professor George Kinsley Zipf. In our network, there are 40 domains, whose

populations and the number of domains are listed in Table 5.1. The line in Fig. 5.22

shows Zipf’s law of the ranks of domains and their populations, both of which are in

natural logarithm scale. The slope is close to -1, which is the value found for the size

of the large cities in the USA, India, and France [76].

Table 5.1. Population distribution in the domains

number number of cells population rank ln(rank) ln(size)

of domain in domain of domain of domain

1 260 26000 1 0 10.1658

2 190 19000 2 0.6931 9.8522

7 100 1000 3 1.0986 9.2103

30 50 5000 4 1.3863 8.5172

The construction of the domains in the network is taken in the order of decreasing

size. The domain with the largest population is set at the center of the network.

All the centers of the other domains are located randomly and the domains do not

overlap with each other. The gaps between cities, where the disease cannot spread, are

maintained as non-excitable by high intensity of light. Figure 5.23 shows a particular

distribution of the domains in our network with 1000 × 1000 elements. The darker

areas represent domains and each dot represents a cell with 10 × 10 elements. The

white areas represent the gaps between the domains. This network was used in the

numerical simulations. As in the dynamic networks, each infected cell has a fixed

probability to jump to another cell, which cannot be in the same domain.

The first wave was initiated at the center of the largest domain. Each infected cell

has a fixed probability p to jump to another cell chosen randomly in any of the other

domains. In the simulations, the destination cell was maintained at zero light intensity

for 100 time steps. The time period for detecting infected cells and updating the long-

distance interaction cells was one time step. Examples of the spreading of an epidemic
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Figure 5.22. Zipf’s law relationship between the size and the rank of the 4 different sizes
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rank represents the order of the size, largest as 1, then 2 and so on.
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Figure 5.23. Domains distribution used in the numerical simulations of domain model.
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Figure 5.24. Images showing the time sequences of chemical wave propagation for with
random non-diffusive connections in the domain model in Fig. 5.23 from the numerical
integration of the modified Organetor. The time interval between each frame is 500 time
steps. The gray level [given by int(v/vmax × 255)] represents the concentration of the
catalyst, Ru(bpy)3+3 , with white and black representing high and low values, respectively.
Infected cells jump to randomly chosen cells in any other domain with the probability of
0.00008. Other conditions are described in the text.
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in a domain model with dynamic links are illustrated in Figs. 5.24 (p = 0.00008) and

5.25 (p = 0.0008). The time sequence of the fraction of excitation for different jump

probabilities is shown in Fig. 5.26. The time series of the fraction of excitation is

irregular but sustained for small probabilities, and the amplitude increased as the

probability increased. However, the system collapses following a regular sustained

oscillation of the coverage for p = 8.0× 10−4.

5.2.5 Discussion

We have investigated the spatiotemporal dynamics of disease spreading in three

different complex networks, static, dynamic, and domain models. We use the excitable

media of the photosensitive BZ system to mimic the SIRS model in experiments as

well as in numerical simulations. In our networks, the local interactions are considered

as well as the long-distance interactions. Our results have demonstrated the effects

of the long-distance interactions on disease spreading. Variations in the numbers of

static links or in the jump probability significantly influence the outcome of epidemic

spreading. In addition, we find that with more long distance interactions in the

network, the faster the disease spreading to the network.

Models of mobile individuals are interesting because they represent more realistic

situations in social contacts. Infections spreading due to mobility is an important

factor for the spreading of diseases, in contrast with models where diseases spread only

between individuals. In the various models that take into account traveling [21–30], all

of the individuals are allowed to move and the transmission occurs only if a susceptible

individual contacts with an infected individual; otherwise, nothing happens. In our

studies, we consider only travel of infected individuals, which is the most important

travel compared to those of other individuals (susceptible and recovery) as claimed

in [25]. We have considered both static and dynamic models, while in other models

only non-random travel was considered [21–25].
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Figure 5.25. Images showing the time sequences of chemical wave propagation with ran-
dom non-diffusive connections in the domain model in Fig. 5.23 from the numerical integra-
tion of the modified Organetor. Infected cells jump to randomly chosen cells in any other
domains with the probability of 0.0008. Other conditions as in Fig. 5.24.
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Figure 5.26. Numerical simulations of time-series of fraction of infected elements in domain
models. Coverage represents area of v, which is the fraction of the area of the oxidized cat-
alyst, Ru(bpy)3+

3 , in the medium. The jump probabilities are 0.00008 (red), 0.0002 (green)
and 0.0008 (blue). Other conditions as in Fig. 5.24.
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All of the studies of modeling disease spreading in networks are either theoretical

or numerical simulations. These studies are important in controlling diseases and

scientific experiments are needed to obtain information and to test hypotheses. There

are examples of forecasting of flu epidemics, as in Ref. [21,22], which are fittings with

the actual data and can not be thought as experiments. As stated in Ref. [1],

“Experiments in epidemiology with controls are often difficult or impossible to design

and even if it is possible to arrange an experiment there are serious ethical questions

involved in withholding treatment from a control group.” The photosensitive BZ

reaction is an interesting alternative model system, as we show here with numerical

as well as experimental results.

The non-random long-distance interaction studied in the static networks is suitable

to mimic a short-term and daily mobility in relatively isolated populations. In Ref.

[77], the authors found that “travel within the island of Dominica is clearly non-

random” by analyzing the travel data obtained from interviewing 305 individuals

from all parts of the island about their daily travel patterns, their travel off the

island, and the travel of members of their immediate family. Those mobility data

were linked with data on the patterns of measles transmission during a 1984 epidemic.

We can add static links in a domain model network to mimic the non-random travel

in geographically separated regions to compare with the real disease data.

In both dynamic and static networks, we find that the time series of the fraction of

excited elements change from irregular fluctuations with small amplitude to regular

self-sustained oscillations with large amplitude as the jump probability or the num-

ber of static links is increased. A pronounced global synchronization of the excitated

elements, simulating the infected population, was induced as the jump probability

increases in dynamic networks. Similar simulation results were reported in model-

ing disease spreading on one-dimensional small-world networks with the SIRS model

[39]. Epidemiologically, this situation resembles periodic epidemic patterns [78]. For

example, the Black Death reoccurred regularly in various parts of Europe for more
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than 300 years after it arrived from Asia during the fourteenth century [17]. Periodic

epidemic infection is part of the reason of population changes throughout the world

in the eighteenth century [1]. It has been reported that measles epidemics in UK

cities were regular with high spatial synchronization as 2-year outbreak before the

mass vaccination [79] and chooping cough synchronized at 3.5-year outbreaks across

England and Wales after the vaccine era [79].

Domain model networks provide examples of geographic city distributions in the

context of a large country (or even the entire earth) with some cities having different

sizes and a good transportation system between them. The movements from one

city to another are rapid, and the eventual propagation of an epidemic takes place

only at destination locations. The situation is much like that of a directed network

with different sizes nodes, such as the structure of the internet [32]. In this sense, it

might also be suitable to mimic computer viruses spreading in the internet through

emails. As we pointed out, the static links can also be used in domain models. We

can define the “source domain” and “destination domain” as well as the “source cell”

and “destination cell.” An interesting comparison will be with the model in Ref. [23],

with the population divided in seven districts, each of which was further divided into

three age classes.

The results in these three different networks increase our understanding of the role

that long-distance interactions play in infectious disease spreading. The insights that

arise from such studies will aid in our ability to predict the course of future epidemics,

which will allow for better strategies to combat the spread of epidemics in human and

animal populations as well as the spread of computer virus in the Internet.
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5.3 Appendix A: The Program in OPTIMAS Used

for Dynamic Networks in the Experiments

/* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% */
/* program in OPTIMAS */
/* file name: sw_new_03_88 */
/* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% */
/* Size control */
INTEGER projector_width = 396, projector_height = 396;
/* the size of the medium, in pixels */
INTEGER block = 12;
/* the size of the cell, in pixels */
INTEGER block_init =block+25;
/* initiation cell size */
Real cri_threshold = 25;
/* threshold for checking wave, if gray value

greater than it, thought as a wave */
INTEGER Delaytime = 800;//unit is ms
real summer; /* summerize of the wave area */
INTEGER start_time, init_time, real_time;
/* parameters for the light correction */
BOOLEAN carry_light_correction = TRUE;
/ * -1 is false, 0 is true */
INTEGER correction_frequency = 15;
/* every correction_frequency do once correction */
INTEGER capture_period = 60; //[sec]
INTEGER period = 3;//5 //sec
INTEGER initiate_kill_time = 8;//5;//10
INTEGER x_move =20,y_move = 0;
/* x_move decrease ROI move right */
/* y_move decrease ROI move down */
/* boundary condition */
INTEGER img_border = 10;//6
INTEGER Gray_init = 100;
INTEGER Left_top_position, left_gray;
INTEGER Right_bottom_position, right_gray;
INTEGER border_top_x = 50;
INTEGER border_top_y = 50;
INTEGER border_bottom_x = 50;
INTEGER border_bottom_y = 50;
INTEGER border_left;
INTEGER border_right;
INTEGER top_gray = 250;
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INTEGER bottom_gray = 250;
INTEGER left_gray = 250;
INTEGER right_gray = 250;
/* parameters controlling dynamic links */
REAL probability = 0.05; /* jump probability */
INTEGER dark_num = 0, bright_num = 0, count_infected;
INTEGER seed_i, seed_j, jumps_n, block50, count;
INTEGER random_block_num , jump_flow;
REAL area_v = 0, average =0;
define define_var()
{
global BYTE
homo_out_array_proj[projector_height,projector_width],
homo_in_array_proj[projector_height,projector_width],
homo_width1[10,projector_width],homo_width2[10,projector_width],
homo_height1[projector_height,10],homo_height2[projector_height,10],
proj_array_homo[projector_height,projector_width],
proj_array_real[projector_height,projector_width],
Save_background_array[projector_height,projector_width],
store_background_array[projector_height,projector_width];
global INTEGER
pix0[projector_height,projector_width],
pix[projector_height,projector_width],
pix1[projector_height,projector_width],
pix2[projector_height,projector_width],
mark_i[(projector_width/block)*(projector_height/block)+1],
mark_j[(projector_width/block)*(projector_height/block)+1],
block_area[projector_height/block,projector_width/block],
dark_block_i[(projector_width/block)*(projector_height/block)+1],
dark_block_j[(projector_width/block)*(projector_height/block)+1],
bright_block_i[(projector_width/block)*(projector_height/block)+1],
bright_block_j[(projector_width/block)*(projector_height/block)+1],
infected_block[projector_height/block,projector_width/block],
life_time[projector_height/block,projector_width/block],
block_num; //delete(block_num),
mark_block_i[(projector_width/block)*(projector_height/block)+1],
mark_block_j[(projector_width/block)*(projector_height/block)+1];
global REAL
test_gray[projector_height,projector_width];
global BYTE
homo_array[projector_height,projector_width]=Gray_init;
}
/* the above variables are related to the size of the medium, if the size changes, */
/* function of define_var() need to excute once */
define_var();
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//======================================
CHAR Image_file_name;
CHAR Image_file_name_bg;
CHAR Image_file_path="D:/Jianxia/SW/2003/Apr/0407/0407-1/0407-1";
/* camera setting */

/* brightness, background and xContrast are in the range of 0-255*/
/* camera 1 setting */
INTEGER
xBrightness_range = 0 : 255 : 220,
xBrightness=220,
xContrast_range = 0 : 255 : 200,
xContrast=200;
/* camera 2 setting */
INTEGER
xBrightness_range2 = 0 : 255 : 210,
xBrightness2 = 210,
xContrast_range2 = 0 : 255 : 160,
xContrast2 = 160;
INTEGER Frame_counter = 0;
INTEGER Frame_counter_save = 0;
CHAR xStatus = "Initializing";
INTEGER projector_middle;
INTEGER middle_xp, middle_yp;//show(middle_xp);show(proj_roi);
INTEGER camera_roi,camera_roi_2;
INTEGER proj_roi[4], proj_homo_roi[4];
REAL real_proj_homo_roi[4];
//open projector window (image)
NewImage ("SoftwareFixed", "Projector", 796 : 558,
0 : 1 : 8 : 1 : 1 : 3, , ModelImage, );
PositionWindow ("Projector", -2);
define pix_roi(obj)
{
return obj.ConvertCalibToPixels(obj.roi[0]:obj.roi[1])::
obj.ConvertCalibToPixels(obj.roi[2]:obj.roi[3]);
}
define set_pix_roi(obj,r)
{
obj.ROI=obj.ConvertPixelsToCalib(r[0]:r[1])::
obj.ConvertPixelsToCalib(r[2]:r[3]);
}
define draw( INTEGER xl, xt, xr, xb, c)
{ INTEGER Dummyz=0:0:0:0,DummyzX,DummyzY;
Dummyz[0] = xl;
Dummyz[1] = xt;
Dummyz[2] = xr;
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Dummyz[3] = xb;
DummyzX = Dummyz[2] - Dummyz[0];
DummyzY = Dummyz[3] - Dummyz[1];
local BYTE DummyzTemp[DummyzY,DummyzX];
DummyzTemp[0..DummyzY,0..DummyzX] = (BYTE)c;
projector.PutPixelRect(xl:xt,DummyzTemp);
delete(DummyzTemp);
}
define mdraw(INTEGER x, y, w, h, c)
{ draw(x-(w-1)/2,y-(h-1)/2,x+(w-1)/2,y+(h-1)/2,c);
}
define clear( obj )
{ INTEGER Dummyz=0:0:0:0,DummyzX,DummyzY;
obj_pix_roi=pix_roi(obj);
obj_roi=obj.ROI;
Dummyz[0] = obj_pix_roi[0];
Dummyz[1] = obj_pix_roi[1];
Dummyz[2] = obj_pix_roi[2];
Dummyz[3] = obj_pix_roi[3];
DummyzX = Dummyz[2] - Dummyz[0];
DummyzY = Dummyz[3] - Dummyz[1];
local BYTE DummyzTemp[DummyzY,DummyzX];
DummyzTemp[0..DummyzY,0..DummyzX] = (BYTE)0;
obj.PutPixelRect(obj_roi[0]:obj_roi[1],DummyzTemp);
delete(DummyzTemp);
}
define clear_projector()
{ clear(projector);
}
define clear_camera()
{ Camera.ROI=Camera.ROIFullScreen;
}
define Brightness_set()
{ Camera.Brightness(xBrightness);
}
define Contrast_set()
{ Camera.Contrast(xContrast);
}
define Reset_frame_counter()
{ Frame_counter=0;
}
define Select_Camera_1()
{ Camera.SelectInputChannel(1);

Camera.Acquire();
Camera.Brightness(xBrightness);

189



Camera.Contrast(xContrast);
set_pix_roi(Camera, camera_roi);

}
define Select_Camera_2()
{ Camera.SelectInputChannel(2);
Camera.Brightness(xBrightness2);
Camera.Contrast(xContrast2);
Camera.Acquire();

set_pix_roi(Camera, camera_roi_2);
}
define _Align(INTEGER projector_width,INTEGER projector_height)
{ INTEGER tmp[2];
Camera.SelectInputChannel(1);
Camera.Brightness(xBrightness);
Camera.Contrast(xContrast);
Camera.Acquire();
// Project a homogeneous black background
Projector.ROI=Projector.ROIFullScreen;
clear(Projector);
// Wait for the previous action to take effect
DelayMS(100);
// grab the image corresponding to the background
Camera.ROI=Camera.ROIFullScreen;
Camera.ROIToBuffer();
Camera.Acquire();
// calculate the projector roi

tmp=ConvertCalibToPixels(Projector.ROIFullScreen[2:3]);
middle_xp=tmp[0]/2 -x_move;
middle_yp=tmp[1]/2 -y_move;

projector_middle = middle_xp:middle_yp::middle_xp:middle_yp;
proj_roi = projector_middle+(-projector_width/2):

(-projector_height/2)::
(projector_width/2):(projector_height/2);

// draw the alignment anchors
mdraw((middle_xp + projector_width/2 - 1),

(middle_yp + projector_height/2 - 1),20,20,250);
mdraw((middle_xp - projector_width/2),

(middle_yp - projector_height/2),20,20,250);
DelayMS(100);

// grab the image and remove previously aquired background image
Camera.ArithmeticOp("Subtract","BUFFER",,,,FALSE,FALSE);
// find the anchor points
SetExport(PtPoints,1,TRUE);
Camera.CreatePoints (,, TRUE);
Camera.MultipleExtract();
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// make it the camera roi
camera_roi=Camera.ConvertCalibToPixels(PtPoints);
set_pix_roi(camera, camera_roi);
clear(projector);
Camera.Acquire();
global INTEGER camera_w=(camera_roi[2]-camera_roi[0]),

camera_h=(camera_roi[3]-camera_roi[1]);
global REAL camera_array_g[camera_h,camera_w];
global REAL projector_array_g[projector_height,projector_width];
global INTEGER x_middle =(camera_roi[2]+camera_roi[0])/2;
global INTEGER y_middle =(camera_roi[3]+camera_roi[1])/2;
global REAL x1_ratio = (REAL)projector_width/(REAL)camera_w,

y1_ratio = (REAL)projector_height/(REAL)camera_h;
global BYTE homo_in_array_1[camera_h,camera_w];
global BYTE CameraSubtracted[camera_h,camera_w];//save subtrcted image
}
define _Align_2( INTEGER projector_width, INTEGER projector_height )
{ Camera.SelectInputChannel(2);
Camera.Brightness(xBrightness2);
Camera.Contrast(xContrast2);
Camera.Acquire();
// Project a homogeneous black background
Projector.ROI=Projector.ROIFullScreen;
clear(projector);
// Wait for the previous action to take effect
DelayMS(100);
// grab the image corresponding to the background
Camera.ROI=Camera.ROIFullScreen;
Camera.ROIToBuffer();
Camera.Acquire();
// draw the alignment anchors

mdraw((middle_xp + projector_width/2 - 1),
(middle_yp + projector_height/2 - 1),20,20,250);

mdraw((middle_xp - projector_width/2),
(middle_yp - projector_height/2),20,20,250);

DelayMS(100);
// Camera.ArithmeticOp("Add","BUFFER",,,,FALSE,FALSE);
// find the anchor points
SetExport(PtPoints,1,TRUE);
Camera.CreatePoints (,, TRUE);
Camera.MultipleExtract();
// make it the camera roi
Camera_roi_2=Camera.ConvertCalibToPixels(PtPoints);
set_pix_roi(camera, camera_roi_2);

proj_homo_roi = projector_middle+(-projector_width/2-10):
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(-projector_height/2-10)::(projector_width/2+10):
(projector_height/2+10);

set_pix_roi(projector, proj_homo_roi);
real_Proj_homo_roi[] = projector.roi[];
Projector.ROI=Projector.ROIFullScreen;
clear(projector);
global INTEGER camera_w_2=(camera_roi_2[2]-camera_roi_2[0]),

camera_h_2=(camera_roi_2[3]-camera_roi_2[1]);
global REAL x2_ratio = (REAL)projector_width / (REAL)camera_w_2,

y2_ratio = (REAL)Projector_height / (REAL)camera_h_2;
global BYTE homo_in_array_2[camera_h_2,camera_w_2];
Camera.SelectInputChannel(1);
Camera.Brightness(xBrightness);
Camera.Contrast(xContrast);
Camera.Acquire();
set_pix_roi(camera, camera_roi);
}
define Align()
{ _Align(projector_width, projector_height );
}
define Align_2()
{ _Align_2(projector_width, projector_height );
}
define apply_homo()
{ clear_projector();

projector.PutPixelRect(projector_middle+(-projector_width/2):
(-projector_height/2)::(projector_width/2-1):
(projector_height/2-1),store_background_array);

}
define find_homo_2(REAL gray)
{ BYTE homo_out_array_proj[Projector_height,Projector_width];
BYTE homo_in_array_proj[Projector_height,Projector_width];
BYTE homo_width[10,Projector_width];
BYTE homo_height[Projector_height,10];
INTEGER i, j, iter, ii, jj;
REAL al;
REAL test_gray[Projector_height,Projector_width];
BYTE homo_out_array[camera_h_2,camera_w_2];
BYTE homo_in_array[camera_h_2,camera_w_2];
Select_Camera_2();
// gray = 100;
homo_out_array[,] = gray;
x_ratio = (REAL)Projector_width / (REAL)camera_w_2;
y_ratio = (REAL)Projector_height / (REAL)camera_h_2;
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homo_out_array_proj
[0..projector_height,0..projector_width]
= homo_out_array
[(INTEGER)((REAL)(0..projector_height)/y_ratio)
,(INTEGER)((REAL)(0..projector_width)/x_ratio)];

projector.PutPixelRect(projector_middle+(-projector_width/2):
(-projector_height/2)::(projector_width/2-1):
(projector_height/2-1),homo_out_array_proj);

for(iter = 0;iter < 18;iter++){
if(iter < 5){
al = 0.2;
} else if(iter < 10){
if(gray < 140){
al = 0.4;
} else {
al = 0.3;
}
} else {
if(gray < 100.0){
al = 0.5;
} else if(gray < 140){
al = 0.4;
} else {
al =0.3;
}
}
delayMS(200);

Camera.Acquire();
Camera.Convolve(camera.roi,9,9,
1:1:1:1:1:1:1:1:1:1:
1:1:1:1:1:1:1:1:1:1:
1:1:1:1:1:1:1:1:1:1:
1:1:1:1:1:1:1:1:1:1:
1:1:1:1:1:1:1:1:1:1:
1:1:1:1:1:1:1:1:1:1:
1:1:1:1:1:1:1:1:1:1:
1:1:1:1:1:1:1:1:1:1:
1:1:1:1:1:1:1:1:1:1,
81);
// Camera.MedianFilter(camera.roi,15);
camera.GetPixelRect(camera_roi_2,homo_in_array_2);
homo_in_array_proj
[0..projector_height,0..projector_width]
= homo_in_array_2
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[(INTEGER)((REAL)(0..projector_height)/y_ratio)
,(INTEGER)((REAL)(0..projector_width)/x_ratio)];
test_gray
[(img_border)..(projector_height - img_border)
,(img_border)..(projector_width - img_border)]
= (REAL)homo_in_array_proj
[(img_border)..(projector_height - img_border)
,(img_border)..(projector_width - img_border)]
- gray;
homo_out_array_proj
[(img_border)..(projector_height - img_border)
,(img_border)..(projector_width - img_border)]
-= (INTEGER)(test_gray
[(img_border)..(projector_height - img_border)
,(img_border)..(projector_width - img_border)] * al);

for(j=0;j<img_border;j++){
homo_out_array_proj[j,0..projector_width]
= homo_out_array_proj[img_border,0..projector_width];
}
for(j=projector_height-img_border;j<projector_height;j++){
homo_out_array_proj[j,0..projector_width]
= homo_out_array_proj[projector_height-img_border-1,0..projector_width];
}
for(i=0;i<img_border;i++){
homo_out_array_proj[0..projector_height,i]
= homo_out_array_proj[0..projector_height,img_border];
}
for(i=projector_width-img_border;i<projector_width;i++){
homo_out_array_proj[0..projector_height,i]
= homo_out_array_proj[0..projector_height,projector_width-img_border-1];
}
projector.PutPixelRect(projector_middle+(-projector_width/2):

(-projector_height/2)::(projector_width/2-1):
(projector_height/2-1),homo_out_array_proj);

for(i = 0;i < 10;i++){
homo_width[i,0..projector_width] = homo_out_array_proj[0,0..projector_width];
}
projector.PutPixelRect(projector_middle+(-projector_width/2):

(-projector_height/2-9)::(projector_width/2-1):
(-projector_height/2),homo_width);

for(i = 0;i < 10;i++){
homo_width[i,0..projector_width] =

homo_out_array_proj[projector_height-1,0..projector_width];
}
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projector.PutPixelRect(projector_middle+(-projector_width/2):
(projector_height/2)::(projector_width/2-1):
(projector_height/2+9),homo_width);

for(i = 0;i < 10;i++){
homo_height[0..projector_height,i] = homo_out_array_proj[0..projector_height,0];
}
projector.PutPixelRect(projector_middle+(-projector_width/2-9):(-projector_height/2)::
(-projector_width/2):(projector_height/2-1),homo_height);
for(i = 0;i < 10;i++){
homo_height[0..projector_height,i] =

homo_out_array_proj[0..projector_height,projector_width-1];
}
projector.PutPixelRect(projector_middle+(projector_width/2):

(-projector_height/2)::(projector_width/2+9):
(projector_height/2-1), homo_height);

projector.Convolve(REAL_Proj_homo_roi,9,9,
1:1:1:1:1:1:1:1:1:
1:1:1:1:1:1:1:1:1:
1:1:1:1:1:1:1:1:1:
1:1:1:1:1:1:1:1:1:
1:1:1:1:1:1:1:1:1:
1:1:1:1:1:1:1:1:1:
1:1:1:1:1:1:1:1:1:
1:1:1:1:1:1:1:1:1:
1:1:1:1:1:1:1:1:1,
81);
projector.GetPixelRect(projector_middle+(-projector_width/2):

(-projector_height/2)::(projector_width/2-1):
(projector_height/2-1),homo_out_array_proj);

}
projector.GetPixelRect(projector_middle+(-projector_width/2):

(-projector_height/2)::(projector_width/2-1):
(projector_height/2-1), Save_background_array);

projector.GetPixelRect(projector_middle+(-projector_width/2):
(-projector_height/2)::(projector_width/2-1):
(projector_height/2-1),store_background_array);

projector.GetPixelRect(projector_middle+(-projector_width/2):
(-projector_height/2)::(projector_width/2-1):
(projector_height/2-1),proj_array_homo);

Camera.Acquire();
beep();
Camera.Histogram(NULL);
show(ArROIHistogramStats[0],ArROIHistogramStats[1],

ArROIHistogramStats[7],ArROIHistogramStats[8]);
//bg_homo_out_array_proj[(INTEGER)gray,,] = homo_out_array_proj[,];
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clear(Projector);
apply_homo();

}
define Homo()
{ real x_low;
Projector.ROI = Projector.ROIFullscreen;
x_low = Gray_Init;
find_homo_2(x_low);
}
define camera_set(INTEGER B, INTEGER C)
{ Camera.Brightness(B);
Camera.Contrast(C);
}
define re_find_homo()
{ INTEGER i, j;

REAL al=0.2;
select_camera_2();
Camera.Acquire();
DelayMs(50);
Camera.Convolve(camera.roi,7,7,

1:1:1:1:1:1:1:
1:1:1:1:1:1:1:
1:1:1:1:1:1:1:
1:1:1:1:1:1:1:
1:1:1:1:1:1:1:
1:1:1:1:1:1:1:
1:1:1:1:1:1:1,49);

camera.GetPixelRect(camera_roi_2, homo_in_array_2);
homo_in_array_proj[0..projector_height,0..projector_width] =
homo_in_array_2[(INTEGER)((REAL)(0..projector_height)/y2_ratio)

,(INTEGER)((REAL)(0..projector_width)/x2_ratio)];
test_gray[(img_border)..(projector_height - img_border)

,(img_border)..(projector_width - img_border)] =
(REAL)homo_in_array_proj[(img_border)..(projector_height - img_border)

,(img_border)..(projector_width - img_border)] -
(REAL)homo_array[(img_border)..(projector_height - img_border),

(img_border)..(projector_width - img_border)];
proj_array_homo[(img_border)..(projector_height - img_border),

(img_border)..(projector_width - img_border)] -=
(INTEGER)(test_gray[(img_border)..(projector_height - img_border),

(img_border)..(projector_width - img_border)] * al);
for(j=0;j<img_border;j++){

proj_array_homo[j,0..projector_width] =
proj_array_homo[img_border,0..projector_width];

}
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for(j=projector_height-img_border;j<projector_height;j++){
proj_array_homo[j,0..projector_width] =

proj_array_homo[projector_height-img_border-1,0..projector_width];
}

for(i=0;i<img_border;i++){
proj_array_homo[0..projector_height,i] =

proj_array_homo[0..projector_height,img_border];
}

for(i=projector_width-img_border;i<projector_width;i++){
proj_array_homo[0..projector_height,i] =
proj_array_homo[0..projector_height,projector_width-img_border-1];
}
projector.PutPixelRect(projector_middle+(-projector_width/2):

(-projector_height/2)::(projector_width/2-1):(projector_height/2-1),
proj_array_homo);//show(proj_array_homo);

for(i = 0;i < 10;i++){
homo_width1[i,0..projector_width] = proj_array_homo[0,0..projector_width];

homo_width2[i,0..projector_width] =
proj_array_homo[projector_height-1,0..projector_width];

homo_height1[0..projector_height,i] = proj_array_homo[0..projector_height,0];
homo_height2[0..projector_height,i] =

proj_array_homo[0..projector_height,projector_width-1];
}

projector.PutPixelRect(projector_middle+(-projector_width/2):(-projector_height/2-9)::
(projector_width/2-1):(-projector_height/2),
homo_width1);
projector.PutPixelRect(projector_middle+(-projector_width/2):

(projector_height/2)::(projector_width/2-1):(projector_height/2+9),
homo_width2);
projector.PutPixelRect(projector_middle+(-projector_width/2-9):

(-projector_height/2)::(-projector_width/2):(projector_height/2-1),
homo_height1);
projector.PutPixelRect(projector_middle+(projector_width/2):(-projector_height/2)::
(projector_width/2+9):(projector_height/2-1),homo_height2);

projector.Convolve(real_proj_homo_roi,7,7,
1:1:1:1:1:1:1:
1:1:1:1:1:1:1:
1:1:1:1:1:1:1:
1:1:1:1:1:1:1:
1:1:1:1:1:1:1:
1:1:1:1:1:1:1:
1:1:1:1:1:1:1,49);

projector.GetPixelRect(projector_middle+(-projector_width/2):
(-projector_height/2)::(projector_width/2-1):(projector_height/2-1),
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proj_array_homo);
projector.GetPixelRect(projector_middle+(-projector_width/2):

(-projector_height/2)::(projector_width/2-1):(projector_height/2-1),
Save_background_array);
projector.GetPixelRect(projector_middle+(-projector_width/2):

(-projector_height/2)::(projector_width/2-1):(projector_height/2-1),
proj_array_real);
}
define set_border()
{

//apply_homo();
draw((proj_roi[0]-15),(proj_roi[1]-15),(proj_roi[2]+15),

(proj_roi[3]+15),(Gray_init+10));
draw((proj_roi[0]-border_top_x),(proj_roi[1]-border_top_y),

(proj_roi[2]+20),(proj_roi[1]-10),top_gray);//top
draw((proj_roi[0]-border_top_x),(proj_roi[1]-border_top_y),

(proj_roi[0]-10),(proj_roi[3]+30),left_gray);//left
draw((proj_roi[0]-30),(proj_roi[3]+10),(proj_roi[2]+border_bottom_x),

(proj_roi[3]+border_bottom_y),bottom_gray);//bottom
draw((proj_roi[2]+10),(proj_roi[1]-30),(proj_roi[2]+border_bottom_x),

(proj_roi[3]+border_bottom_y),right_gray);//right
projector.PutPixelRect(projector_middle+(-projector_width/2):

(-projector_height/2)::(projector_width/2-1):
(projector_height/2-1),proj_array_homo);

}
define set_border2()
{ draw((proj_roi[0]-border_top_x+30),(proj_roi[1]-border_top_y+30),

(proj_roi[2]+10),(proj_roi[1]-20),top_gray-20);//top
draw((proj_roi[0]-border_top_x+20),(proj_roi[1]-border_top_y+30),

(proj_roi[0]-10),(proj_roi[3]+20),left_gray-20);//left
draw((proj_roi[0]-30),(proj_roi[3]+10),(proj_roi[2]+border_bottom_x-30),

(proj_roi[3]+border_bottom_y-30),bottom_gray-20);//bottom
draw((proj_roi[2]+10),(proj_roi[1]-30),(proj_roi[2]+border_bottom_x-30),

(proj_roi[3]+border_bottom_y-30),right_gray-20);//right
draw((proj_roi[0]-40),(proj_roi[1]-40),(proj_roi[2]+40),

(proj_roi[3]+40),(Gray_init-50));
}
define clear_chemical()
{mdraw(middle_xp,middle_yp,projector_width+90,projector_height+90,250);
}
/********************************/
/* */
/* new functions start here */
/* */
/********************************/

198



define setup_life_time()
{

life_time[0..(projector_height/block),0..(projector_width/block)] = 0;
}
define initiation_killing()
{ INTEGER ni,nj;

for(nj=0;nj<(projector_height/block);nj++){
for(ni=0;ni<(projector_width/block);ni++){
if (proj_array_real[nj*block, ni*block] == 0)

{ dark_num += 1;
dark_block_i[dark_num] = ni;
dark_block_j[dark_num] = nj;
life_time[nj,ni]+= 1;
}

if (life_time[nj,ni] == initiate_kill_time) {
life_time[nj,ni]=0;
proj_array_real[(nj*block)..((nj+1)*block),

(ni*block)..((ni+1)*block)] =
proj_array_homo[(nj*block)..((nj+1)*block),

(ni*block)..((ni+1)*block)];
}

}
}

}
define mark_block()
{ INTEGER i,j;

block_num = 0;//delete(block_num);
for (j=0; j<(projector_height/block); j++){

for (i=0; i<(projector_width/block); i++){
block_num +=1;
mark_block_i[block_num] = i;
mark_block_j[block_num] = j;

}
}

}
//global BYTE camera_array_tmp[camera_h,camera_w];
define get_cam_image()
{ Camera.Acquire();

DelayMS(500);
Camera.Freeze();
Camera.ROIToBuffer ();
Camera.Acquire();
DelayMS(1000);
Camera.Freeze();
Camera.ROIToList (, "Source1");
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Camera.ArithmeticOp ("Subtract", "BUFFER",
Camera.ROI, , "Clip", FALSE, FALSE);

DeleteImage ("BUFFER");
DeleteImage ("Source1");
Camera.GetPixelRect(Camera.ROI,CameraSubtracted);

}
define get_area()
{ INTEGER temp_pix[projector_height,projector_width];

INTEGER pix_try[projector_height,projector_width];
Summer = sum((REAL)camera_array_g[0..(camera_h),0..(camera_w)]);
projector_array_g[0..projector_height,0..projector_width]=

camera_array_g[(INTEGER)((REAL)(0..projector_height)/y1_ratio),
(INTEGER)((REAL)(0..projector_width)/x1_ratio)];

pix = projector_array_g;//show(pix);
//method 4, for subtracted image
average = (INTEGER)(sum((REAL)pix[0..(projector_height),

0..(projector_width)])/((REAL)(projector_height)
*(REAL)(projector_width)));

pix1= pix-cri_threshold;
// pix2 will be the area
pix2 = (abs(pix1)+pix1)/(abs(pix1)+1);
count = sum(pix2);//show(count);
area_v = (REAL)count/((REAL)projector_height*(REAL)projector_width);
WriteFile(fh,ToText(Frame_Counter,"%04d"):" ":totext(DosTime(),

"%04ld"):" ":totext(area_v):" ":totext(summer):"\n");
/* find block in which wave is and

the wave_area is larger than the critical value */
block50=0; //each time before checking area_v, block50 is set to zero
for (j=0; j<(projector_height/block); j++){

for (i=0; i<(projector_width/block); i++){
block_area [j,i]=

sum(pix2[(j*block)..((j+1)*block),(i*block)..((i+1)*block)]);
if ( block_area[j,i]>(INTEGER)((REAL)block*(REAL)block*crit_value))

{ infected_block[j,i] = 1;
}

}
}

}
/* the white masks will randomly go to some of the blocks

among which was selected by block50
no white masks any more in this macro
the black masks will randomly go to
some of the blocks among all the blocks
the jump propobility will depend on the
amount of the lattices in the whole medium */
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Define random_jump()
{ for(i = 1; i <= block50; i++){//begin_for

if (((REAL)rand()/32768.0) <= probability)
{ while(random_block_num == 0)

random_block_num = (INTEGER)(((REAL)projector_width/(REAL)block*
(REAL)projector_height/(REAL)block+1)*(REAL)rand()/32768.0);
seed_i = mark_block_i[random_block_num];
seed_j = mark_block_j[random_block_num];
ii = seed_i*block; jj = seed_j*block;
proj_array_real[jj..(jj+block),ii..(ii+block)] = 0;

}
random_block_num = 0;

}// end_for
}
define count_count()
{ count_infected = sum(infected_block);

WriteFile(fh_c,ToText(Frame_Counter,"%04d"):" ":Totext(Dostime()):
" ":totext(count_infected,"%04d"):"\n");

if(count_infected == projector_height/block*projector_width/block){
WriteFile(fh2,ToText(Frame_Counter,"%04d"):" ":Totext(Dostime()):

" ":totext(count_infected,"%04d"):"\n");
infected_block[0..(projector_height/block),

0..(projector_width/block)] = 0;
}

/* WriteFile(fh,ToText(Frame_Counter,"%04d"):" ":totext(real_time):
" ":totext(area_v):" ":totext(summer):"\n");

move in START function after count_count function */
}
// initiate first circular wave by a dark square
define initiation()
{ REAL camera_array_g0[camera_h,camera_w];

REAL projector_array_g0[projector_height,projector_width];
BYTE camera_array_tmp[camera_h,camera_w];
clear_projector();
projector.PutPixelRect(projector_middle+(-projector_width/2):

(-projector_height/2)::(projector_width/2-1):
(projector_height/2-1),proj_array_homo);

select_camera_1();
camera.Acquire();
delayMS(150);// 50 ms is too short, 100 ms also short
camera.freeze();
Camera.ROIToList(,totext(Frame_counter));
Camera.SaveImage (Image_file_path:"_":"firstzero":".TIF",

Camera.ROI, 8, 0, , "", "", "", TRUE, 0, FALSE, );
//Camera.MedianFilter(camera.roi,7);
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camera.GetPixelRect(camera_roi,camera_array_tmp);
set_border();
//set_border2();
projector.PutPixelRect(projector_middle+(-projector_width/2):
(-projector_height/2)::(projector_width/2-1):

(projector_height/2-1),proj_array_homo);
mdraw(middle_xp,middle_yp,block_init+15,block_init+15,0);
camera.acquire();
camera_array_g0[0..camera_h,0..camera_w] =
(REAL)camera_array_tmp[0..camera_h,0..camera_w];
projector_array_g0[0..projector_height,0..projector_width]=

camera_array_g0[(INTEGER)((REAL)(0..projector_height)/y1_ratio),
(INTEGER)((REAL)(0..projector_width)/x1_ratio)];

pix0 = projector_array_g0;
viewbox(pix0);
mark_block();
setup_life_time();
camera.acquire();

}
define write_Experiment_condition()
{ Exp_condition_file = Image_file_path:"ExpC":".dat";

fh1 = OpenFile(Exp_condition_file,0x1002);
WriteFile(fh1,"Projector_width:":" ":totext(Projector_width):"\n");
WriteFile(fh1,"Projector_height:":" ":totext(Projector_width):"\n");
WriteFile(fh1,"block:":" ":totext(block):"\n");
WriteFile(fh1,"block_init:":" ":totext(block_init):"\n");
WriteFile(fh1,"init_time:":" ":totext(init_time):"\n");
WriteFile(fh1,"period:":" ":totext(period):"\n");
WriteFile(fh1,"probability:":" ":totext(probability):"\n");
WriteFile(fh1,"crit_value:":" ":totext(crit_value):"\n");
WriteFile(fh1,"initiate_kill_time:":" ":totext(initiate_kill_time):"\n");
WriteFile(fh1,"avg_co_eff:":" ":totext(avg_co_eff):"\n");
WriteFile(fh1,"DelayTime:":" ":totext(Delaytime):"\n");
WriteFile(fh1,"cri_threshold:":" ":totext(cri_threshold):"\n");
WriteFile(fh1,"carry_light_correction:":" ":

totext(carry_light_correction):"\n");
WriteFile(fh1,"correction_frequency :":" ":

totext(correction_frequency):"\n");
closeFile(fh1);

}
define Start()
{ INTEGER i,j,ii,jj,iii,jjj,iter,iiii;
BYTE camera_array_tmp[camera_h,camera_w];
block_num = 0,random_block_num = 0,jump_flow =0;
char minus_name;

202



Frame_counter = 1;//1
dark_num = 0;
count_infected = 0;
infected_block[0..(projector_height/block),0..(projector_width/block)] = 0;
proj_array_real = proj_array_homo;//viewbox(proj_array_real);
setup_life_time();
Time_checking = Image_file_path:"timecheck":".txt";
fh0=OpenFile(Time_checking,0x1002);
WriteFile(fh0,"frameCounter Dostime":"\n");
Image_file_name_bg = Image_file_path:"_areav":".dat";
fh = OpenFile(Image_file_name_bg,0x1002);
WriteFile(fh,"frameCounter Dostime area_v summer":"\n");
Image_file_name_bg = Image_file_path:"_time":".dat";
fh2 = OpenFile(Image_file_name_bg,0x1002);
WriteFile(fh2,"Frame_Counter Dostime count_infected":"\n");
Image_file_name_bg = Image_file_path:"cotinf":".dat";
fh_c = OpenFile(Image_file_name_bg,0x1002);
WriteFile(fh_c,"Frame_Counter Dostime count_infected":"\n");
projector.PutPixelRect(projector_middle+(-projector_width/2):

(-projector_height/2)::(projector_width/2-1):
(projector_height/2-1),proj_array_homo);

init_time = Dostime();
start_time = Dostime(); //show(start_time);//show(init_time);
Keyhit();
while(Keyhit()!=0x02)
{ //begin_while

if((start_time+period)<=DOSTime())
{ //begin_if
start_time = start_time + period;
clear(projector);
projector.PutPixelRect(projector_middle+(-projector_width/2):

(-projector_height/2)::(projector_width/2-1):
(projector_height/2-1),proj_array_homo);

select_camera_1();
camera.Acquire();
delayMS(100);
Camera.ROIToList(,totext(frame_counter));
//minusimg will be subtracted from the followed image

Camera.SaveImage (Image_file_path:"_":totext(frame_counter,"%04d"):
".TIF", Camera.ROI, 8, 0, , "", "", "", TRUE, 0, FALSE, );

minus_name=Totext(frame_counter-1);
Camera.ArithmeticOp ("Subtract",minus_name, Camera.ROI, ,

"Clip", FALSE, FALSE);
Camera.GetPixelRect(Camera.ROI,CameraSubtracted);
Camera.SaveImage (Image_file_path:"Sub":totext(frame_counter,"%04d"):
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".TIF", Camera.ROI, 8, 0, , "", "", "", TRUE, 0, FALSE, );
set_border();
//set_border2();
projector.PutPixelRect(projector_middle+(-projector_width/2):

(-projector_height/2)::(projector_width/2-1):
(projector_height/2-1),proj_array_real);

DeleteImage (minus_name);
camera.acquire();
DelayMS(100);
Camera.SaveImage (Image_file_path:"mix":totext(frame_counter,"%04d"):

".TIF", Camera.ROI, 8, 0, , "", "", "", TRUE, 0, FALSE, );
camera.acquire();

// delayMS(500); //1300
// camera_array_g[0..camera_h,0..camera_w]
// =REAL)camera_array_tmp[0..camera_h,0..camera_w];

camera_array_g[0..camera_h,0..camera_w] =
(REAL)CameraSubtracted [0..camera_h,0..camera_w];

//CameraSubtracted will replace the camera_array_tmp
WriteFile(fh0,"BeforeGetArea":" ":ToText(Frame_Counter,"%04d"):

" ":totext(DosTime(),"%04ld"):"\n");
get_area();
WriteFile(fh0,"AfterGetArea":" ":ToText(Frame_Counter,"%04d"):

" ":totext(DosTime(),"%04ld"):"\n");
random_jump();
WriteFile(fh0,"Afterjump":" ":ToText(Frame_Counter,"%04d"):

" ":totext(DosTime(),"%04ld"):"\n");
projector.PutPixelRect(projector_middle+(-projector_width/2):
(-projector_height/2)::(projector_width/2-1):

(projector_height/2-1),proj_array_real);
count_count();
WriteFile(fh0,"Beforekilling":" ":ToText(Frame_Counter,"%04d"):

" ":totext(DosTime(),"%04ld"):"\n");
dark_num = 0;
//every time in initiation_killing function calculate the dark_num;
initiation_killing();
WriteFile(fh0,"AfterKilling":" ":ToText(Frame_Counter,"%04d"):

" ":totext(DosTime(),"%04ld"):"\n");
projector.PutPixelRect(projector_middle+(-projector_width/2):

(-projector_height/2)::(projector_width/2-1):
(projector_height/2-1),proj_array_real);

Frame_counter ++;
WriteFile(fh0,"AferCounter+":" ":ToText(Frame_Counter,"%04d"):

" ":totext(DosTime(),"%04ld"):"\n");
} // end_if

else { // to meet time requirment
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projector.PutPixelRect(projector_middle+(-projector_width/2):
(-projector_height/2)::(projector_width/2-1):

(projector_height/2-1),proj_array_real);
}
if (carry_light_correction){

if (Frame_counter%correction_frequency == 0){
clear_projector();
projector.PutPixelRect(projector_middle+(-projector_width/2):

(-projector_height/2)::(projector_width/2-1):
(projector_height/2-1),save_background_array);

select_camera_2();
DelayMs(50);
//set_border2();
re_find_homo();
set_border();
for(i = 1; i <= dark_num; i ++) {
dark_i = dark_block_i[i]*block;
dark_j = dark_block_j[i]*block;
proj_array_real[dark_j..(dark_j+block),dark_i..(dark_i+block)] = 0;

}
projector.PutPixelRect(projector_middle+(-projector_width/2):

(-projector_height/2)::(projector_width/2-1):
(projector_height/2-1),proj_array_real);

select_camera_1();
}

}
}// end_while

CloseFile(fh);
CloseFile(fh2);
CloseFile(fh_c);
write_Experiment_condition();
CloseFile(fh0);

}
OBJECT_ID x_links[,];
x_links =
2 : 0 : 0 : 0 : 0 ::
105 : 0 : ObjectID (Align) : 0 : 0 ::
152 : 0 : ObjectID (Align_2) : 0 : 0 ::
106 : 0 : ObjectID (Start) : 0 : 0 ::
107 : 0 : ObjectID (Homo) : 0 : 0 ::
115 : 0 : ObjectID (reset_frame_counter) : 0 : 0::
124 : 0 : ObjectID (initiation) : 0 : 0 ::
125 : 0 : ObjectID (clear_projector) : 0 : 0 ::
126 : 0 : ObjectID (clear_chemical) : 0 : 0 ::
127 : 0 : ObjectID (set_border) : 0 : 0 ::
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118 : 0 : ObjectID (Select_Camera_1) : 0 : 0 ::
119 : 0 : ObjectID (Select_Camera_2) : 0 : 0 ::
108 : 0 : 0 : ObjectID (Image_file_path) : 0 ::
109 : ObjectID ( xBrightness_range ) : ObjectID ( Brightness_set ) :

ObjectID ( xBrightness ) : 0 ::
110 : ObjectID ( xContrast_range ) : ObjectID ( Contrast_set ) :

ObjectID ( xContrast ) : 0 ::
104 : 0 : 0 : ObjectID (Gray_init) : 0 ::
120 : 0 : 0 : ObjectID (initiate_kill_time) : 0 ::
129 : 0 : 0 : ObjectID (probability) : 0 ::
144 : 0 : 0 : ObjectID (area_v) : 0 ::
143 : 0 : 0 : ObjectID (average) : 0 ::
146 : 0 : 0 : ObjectID (avg_co_eff) : 0 ::
149 : 0 : 0 : ObjectID (Delaytime) : 0 ::
151 : 0 : 0 : ObjectID (Summer) : 0 ::
154 : 0 : 0 : ObjectID (cri_threshold) : 0 ::
135 : 0 : 0 : ObjectID (top_gray) : 0 ::
139 : 0 : 0 : ObjectID (bottom_gray) : 0 ::
156 : 0 : 0 : ObjectID (left_gray) : 0 ::
158 : 0 : 0 : ObjectID (right_gray) : 0 ::
133 : 0 : 0 : ObjectID (border_top_x) : 0 ::
137 : 0 : 0 : ObjectID (border_top_y) : 0 ::
160 : 0 : 0 : ObjectID (border_bottom_x) : 0 ::
162 : 0 : 0 : ObjectID (border_bottom_y) : 0 ::
164 : 0 : 0 : ObjectID (period) : 0 ::
165 : 0 : 0 : ObjectID (carry_light_correction) : 0 ::
167 : 0 : 0 : ObjectID (correction_frequency) : 0 ::
122 : 0 : ObjectID ( Brightness_set ) : ObjectID (xBrightness) : 0 ::
123 : 0 : ObjectID ( Contrast_set ) : ObjectID (xContrast) : 0 ::
117 : 0 : 0 : ObjectID (Frame_counter) : 0 ;
// Open the dialog box
CHAR x_directory = "C:/OPTIMAS5/DIALOGS/Jianxia/small_world/2003/";
//CHAR x_directory =MacroPathAndName[0, ];
define init_macro()
{ Brightness_set();
Contrast_set();

Camera.Acquire();
}
define terminate_macro()
{CloseWindow ("Projector");
}
define on_activate(){}
INTEGER hWndDlg;
OPTCreateDialog (
x_directory : "test3.dlg",
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x_links,
init_macro,
terminate_macro,
hWndVideo,
hWndDlg,
,
,
on_activate );
}

5.4 Appendix B: The Program in OPTIMAS Used

for Static Networks in the Experiments

/******************************************/
/* get from static2 */
/* delete the comment out parts, which were used in
sw_new_03_88 and static, static2, static_real_image

*********************/

BOOLEAN carry_light_correction = TRUE;
//FALSE;//-1 is false, 0 is true

INTEGER correction_frequency = 15;
INTEGER projector_width = 396, projector_height = 396;
INTEGER block = 12;//13;//20;
INTEGER block_init = block+25;
REAL probability = 0.05;
REAL crit_value = 0.25;//0.5; //0.1;
Real cri_threshold = 25;
REAL avg_co_eff = 1.15; //2.25
integer Delaytime = 800;//unit is ms
real summer;
integer start_time, init_time, real_time;

//add init_time Jan 23, 2003
INTEGER capture_period = 60; //[sec]
INTEGER period = 6;//5 //sec
INTEGER initiate_kill_time = 10;//5;//10
//******
// variable for static project
INTEGER links = 10;
//x_move decrease move right
INTEGER x_move =20,y_move = 0;//Jan 31 used,till 2/4
INTEGER img_border = 10;//6
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INTEGER Gray_init = 100;
INTEGER Left_top_position, left_gray;
INTEGER Right_bottom_position, right_gray;
INTEGER dark_num = 0, bright_num = 0, count_infected;
INTEGER seed_i, seed_j, jumps_n, block50, count;
INTEGER random_block_num , jump_flow;
REAL area_v = 0, average =0;
INTEGER border_top_x = 50;
INTEGER border_top_y = 50;
INTEGER border_bottom_x = 50;
INTEGER border_bottom_y = 50;
INTEGER border_left;
INTEGER border_right;
INTEGER top_gray = 250;
INTEGER bottom_gray = 250;
INTEGER left_gray = 250;
INTEGER right_gray = 250;

define define_var()
{
global BYTE homo_out_array_proj[projector_height,projector_width];
global BYTE homo_in_array_proj[projector_height,projector_width];
global BYTE homo_width1[10,projector_width],homo_width2[10,projector_width];
global BYTE homo_height1[projector_height,10],homo_height2[projector_height,10];
global BYTE proj_array_homo[projector_height,projector_width];
global BYTE proj_array_real[projector_height,projector_width];
global BYTE Save_background_array[projector_height,projector_width];
global BYTE store_background_array[projector_height,projector_width];

global INTEGER pix0[projector_height,projector_width];
global INTEGER pix[projector_height,projector_width];
global INTEGER pix1[projector_height,projector_width];
global INTEGER pix2[projector_height,projector_width];//DELETE(PIX2);

global INTEGER mark_i[(projector_width/block)*(projector_height/block)+1];
global INTEGER mark_j[(projector_width/block)*(projector_height/block)+1];
global INTEGER block_area[projector_height/block,projector_width/block];

global INTEGER dark_block_i[(projector_width/block)*(projector_height/block)+1];
global INTEGER dark_block_j[(projector_width/block)*(projector_height/block)+1];
global INTEGER bright_block_i[(projector_width/block)*(projector_height/block)+1];
global INTEGER bright_block_j[(projector_width/block)*(projector_height/block)+1];

global INTEGER infected_block[projector_height/block,projector_width/block];
// store the infected_block, 1 there is wave
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global INTEGER link_infected_block[projector_height/block,projector_width/block];
// check if there is a wave in the sources of links,
// it will be set to 0 after each checking in start function

global INTEGER life_time[projector_height/block,projector_width/block];

global INTEGER block_num; //delete(block_num);
global INTEGER mark_block_i[(projector_width/block)*(projector_height/block)+1];
global INTEGER mark_block_j[(projector_width/block)*(projector_height/block)+1];

global INTEGER block_label[projector_height/block,projector_width/block,multiplicity];
global REAL test_gray[projector_height,projector_width];
global BYTE homo_array[projector_height,projector_width]=Gray_init;
global INTEGER src_x[LINKS], src_y[LINKS], dst_x[LINKS], dst_y[LINKS];
}

define_var();

//======================================
CHAR Image_file_name;
CHAR Image_file_name_bg;
CHAR Image_file_path="D:/Jianxia/SW/static/July/0722/0722-1/0722-1";
INTEGER
xBrightness_range = 0 : 255 : 220,
xBrightness=220,
xContrast_range = 0 : 255 : 200,//170
xContrast=200;
INTEGER
xBrightness_range2 = 0 : 255 : 210,
xBrightness2 = 210,
xContrast_range2 = 0 : 255 : 160,
xContrast2 = 160;
INTEGER Frame_counter = 0;
INTEGER Frame_counter_save = 0;
CHAR xStatus = "Initializing";
INTEGER projector_middle;
INTEGER middle_xp, middle_yp;//show(middle_xp);show(proj_roi);
INTEGER camera_roi,camera_roi_2;
INTEGER proj_roi[4], proj_homo_roi[4];
REAL real_proj_homo_roi[4];

//open projector window (image)
NewImage ("SoftwareFixed", "Projector",
796 : 558,
0 : 1 : 8 : 1 : 1 : 3, , ModelImage, );
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PositionWindow ("Projector", -2);

/************************************************/
/* */
/* see appendix A for the following subroutines */
/* */
/* only the name of the subroutines are given */
/* */
/************************************************/
define pix_roi(obj)
{}
define set_pix_roi(obj,r)
{}
define draw( INTEGER xl, xt, xr, xb, c)
{}
define mdraw(INTEGER x, y, w, h, c)
{}
define clear( obj )
{}
define clear_projector()
{}
define clear_camera()
{}
define Brightness_set()
{}
define Contrast_set()
{}
define Reset_frame_counter()
{}
define Select_Camera_1()
{}
define Select_Camera_2()
{}
define _Align(INTEGER projector_width,INTEGER projector_height)
{}
define Align()
{}
define Align_2()
{}
define apply_homo()
{}
define find_homo_2(REAL gray)
{}
define Homo()
{}
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define camera_set(INTEGER B, INTEGER C)
{}
define re_find_homo()
{}
define set_border()
{}
define set_border2()
{}
define clear_chemical()
{}
/********************************/
/* */
/* new functions start here */
/* */
/********************************/

define setup_life_time()
{

life_time[0..(projector_height/block),0..(projector_width/block)] = 0;
}

define initiation_killing()
{

INTEGER ni,nj;

for(nj=0;nj<(projector_height/block);nj++){
for(ni=0;ni<(projector_width/block);ni++){

if (proj_array_real[nj*block, ni*block] == 0)
{ dark_num += 1;
dark_block_i[dark_num] = ni;
dark_block_j[dark_num] = nj;
life_time[nj,ni]+= 1;
}

if (life_time[nj,ni] == initiate_kill_time) {
life_time[nj,ni]=0;
proj_array_real[(nj*block)..((nj+1)*block),(ni*block)..((ni+1)*block)] =
proj_array_homo[(nj*block)..((nj+1)*block),(ni*block)..((ni+1)*block)];
}

}
}

}

define mark_block()
{ INTEGER i,j;
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block_num = 0;//delete(block_num);
for (j=0; j<(projector_height/block); j++){

for (i=0; i<(projector_width/block); i++){
block_num +=1;
mark_block_i[block_num] = i;
mark_block_j[block_num] = j;

}
}

}

//***********************************
//*
//* new function for the static project
//*
//***************************

define setup_Fixed_Network(INTEGER links)
{

INTEGER i;
Save_block_label_file = Image_file_path:"block_label":".dat";
fh6 = OpenFile(Save_block_label_file,0x1002);
WriteFile(fh6,"links":" ":"src_x":" ":"src_y":" ":"dst_x":" ":"dst_y":"\n");

// call functions for initiation variables
define_var();
setup_life_time();

for (i = 0; i < links; i++) {
do{

src_x[i] = (INTEGER)((((REAL)projector_width)/((REAL)block))*((REAL)rand())/32768.0);
src_y[i] = (INTEGER)((((REAL)projector_height)/((REAL)block))*((REAL)rand())/32768.0);
dst_x[i] = (INTEGER)((((REAL)projector_width)/((REAL)block))*((REAL)rand())/32768.0);
dst_y[i] = (INTEGER)((((REAL)projector_height)/((REAL)block))*((REAL)rand())/32768.0);

}
while (src_x[i]==dst_x[i] && src_y[i]== dst_y[i]);
//show(src_x[i],src_y[i]);
WriteFile(fh6,totext(i):" ":totext(src_x[i]):" ":totext(src_y[i]):" ":

totext(dst_x[i]):" ":totext(dst_y[i]):"\n");

}
closefile(fh6);

}

define my_setup_Fixed_Network()
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{
setup_Fixed_Network(links);
show("done network");

}
//global BYTE camera_array_tmp[camera_h,camera_w];

define get_area()
{ INTEGER temp_pix[projector_height,projector_width];

INTEGER pix_try[projector_height,projector_width];
Summer = sum((REAL)camera_array_g[0..(camera_h),0..(camera_w)]);

projector_array_g[0..projector_height,0..projector_width]=
camera_array_g[(INTEGER)((REAL)(0..projector_height)/y1_ratio),

(INTEGER)((REAL)(0..projector_width)/x1_ratio)];
pix = projector_array_g;//show(pix);

//method 4, for subtracted image
average = (INTEGER)(sum((REAL)pix[0..(projector_height),0..(projector_width)])

/((REAL)(projector_height)*(REAL)(projector_width)));
//pix1= pix-(INTEGER)((REAL)average * avg_co_eff);
pix1= pix-cri_threshold;

// pix2 will be the area

pix2 = (abs(pix1)+pix1)/(abs(pix1)+1);
count = sum(pix2);//show(count);
area_v = (REAL)count/((REAL)projector_height*(REAL)projector_width);
WriteFile(fh,ToText(Frame_Counter,"%04d"):" ":totext(DosTime(),"%04ld"):

" ":totext(area_v):" ":totext(summer):"\n");
// find block in which wave is and the wave_area is larger than the critical value

block50=0; //each time before checking area_v, block50 is set to zero
WriteFile(fh7,totext(frame_counter):"\n");
for (j=0; j<(projector_height/block); j++){

for (i=0; i<(projector_width/block); i++){
block_area[j,i]=

sum(pix2[(j*block)..((j+1)*block),(i*block)..((i+1)*block)]);
if ( block_area[j,i]>(INTEGER)((REAL)block*(REAL)block*crit_value))

{
block50 +=1;
infected_block[j,i] = 1;
link_infected_block[j,i] = 1;
WriteFile(fh7,totext(j):" ":totext(i):"\n");
}
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}
}

}

Define random_jump()
{ for(i = 1; i <= block50; i++){//begin_for

if (((REAL)rand()/32768.0) <= probability) { //begin_if
while(random_block_num == 0)

random_block_num =
(INTEGER)(((REAL)projector_width/(REAL)block*(REAL)projector_height
/(REAL)block+1)*(REAL)rand()/32768.0);
//show(random_block_num);//SHOW(JUMP_FLOW);
seed_i = mark_block_i[random_block_num];
seed_j = mark_block_j[random_block_num];
ii = seed_i*block; jj = seed_j*block;
proj_array_real[jj..(jj+block),ii..(ii+block)] = 0;

}//end_if
random_block_num = 0;

}// end_for
}

define count_count()
{ count_infected = sum(infected_block);

WriteFile(fh_c,ToText(Frame_Counter,"%04d"):" ":
Totext(Dostime()):" ":totext(count_infected,"%04d"):"\n");

if(count_infected == projector_height/block*projector_width/block){
WriteFile(fh2,ToText(Frame_Counter,"%04d"):" ":

Totext(Dostime()):" ":totext(count_infected,"%04d"):"\n");
infected_block[0..(projector_height/block),0..(projector_width/block)] = 0;

}
}

define start_wave(INTEGER x, INTEGER y)
{

INTEGER ii,jj;
ii = x*block; jj = y*block;
proj_array_real[jj..(jj+block),ii..(ii+block)] = 0;

}

define new_jump()
{ INTEGER i;

WriteFile(fh9,totext(frame_counter):"\n");
for (i = 0; i < links; i++) {

if( link_infected_block[src_y[i],src_x[i]] == 1 ) {
WriteFile(fh9,totext(src_y[i]):" ":totext(src_x[i]):"\n");
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start_wave(dst_x[i],dst_y[i]);
}

}
}
// initiate first circular wave by a dark square
define initiation()
{ REAL camera_array_g0[camera_h,camera_w];

REAL projector_array_g0[projector_height,projector_width];
BYTE camera_array_tmp[camera_h,camera_w];
clear_projector();
projector.PutPixelRect(projector_middle+(-projector_width/2):

(-projector_height/2)::projector_width/2-1):
(projector_height/2-1),proj_array_homo);

select_camera_1();
camera.Acquire();
delayMS(150);// 50 ms is too short, 100 ms also short
camera.freeze();
Camera.ROIToList(,totext(Frame_counter));
Camera.SaveImage (Image_file_path:"_":"firstzero":".TIF",

Camera.ROI, 8, 0, , "", "", "", TRUE, 0, FALSE, );
camera.GetPixelRect(camera_roi,camera_array_tmp);
set_border();
projector.PutPixelRect(projector_middle+(-projector_width/2):

(-projector_height/2)::(projector_width/2-1):
(projector_height/2-1),proj_array_homo);

//mdraw(middle_xp,middle_yp,block_init+15,block_init+15,0);
mdraw(middle_xp,middle_yp,block_init,block_init,0);
camera.acquire();
camera_array_g0[0..camera_h,0..camera_w] =

(REAL)camera_array_tmp[0..camera_h,0..camera_w];
projector_array_g0[0..projector_height,0..projector_width]=

camera_array_g0[(INTEGER)((REAL)(0..projector_height)/y1_ratio),
(INTEGER)((REAL)(0..projector_width)/x1_ratio)];

pix0 = projector_array_g0;
//viewbox(pix0);
camera.acquire();

}

define write_Experiment_condition()
{ Exp_condition_file = Image_file_path:"ExpC":".dat";

fh1 = OpenFile(Exp_condition_file,0x1002);
WriteFile(fh1,"Projector_width:":" ":totext(Projector_width):"\n");
WriteFile(fh1,"Projector_height:":" ":totext(Projector_width):"\n");
WriteFile(fh1,"block:":" ":totext(block):"\n");
WriteFile(fh1,"block_init:":" ":totext(block_init):"\n");
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WriteFile(fh1,"init_time:":" ":totext(init_time):"\n");
WriteFile(fh1,"period:":" ":totext(period):"\n");
WriteFile(fh1,"multiplicity:":" ":totext(multiplicity):"\n");
WriteFile(fh1,"links:":" ":totext(links):"\n");
WriteFile(fh1,"crit_value:":" ":totext(crit_value):"\n");
WriteFile(fh1,"initiate_kill_time:":" ":totext(initiate_kill_time):"\n");
WriteFile(fh1,"avg_co_eff:":" ":totext(avg_co_eff):"\n");
WriteFile(fh1,"DelayTime:":" ":totext(Delaytime):"\n");
WriteFile(fh1,"cri_threshold:":" ":totext(cri_threshold):"\n");
WriteFile(fh1,"carry_light_correction:":" ":totext(carry_light_correction):"\n");
WriteFile(fh1,"correction_frequency :":" ":totext(correction_frequency):"\n");
closeFile(fh1);

}

define Start()
{

INTEGER i,j,ii,jj,iii,jjj,iter,iiii;
BYTE camera_array_tmp[camera_h,camera_w];
block_num = 0,random_block_num = 0,jump_flow =0;
char minus_name;
Frame_counter = 1;//1
dark_num = 0;
count_infected = 0;
infected_block[0..(projector_height/block),0..(projector_width/block)] = 0;
proj_array_real = proj_array_homo;//viewbox(proj_array_real);
setup_life_time();
Image_file_name_bg = Image_file_path:"_areav":".dat";
fh = OpenFile(Image_file_name_bg,0x1002);
WriteFile(fh,"frameCounter Dostime area_v summer":"\n");
Image_file_name_bg = Image_file_path:"_time":".dat";
fh2 = OpenFile(Image_file_name_bg,0x1002);
WriteFile(fh2,"Frame_Counter Dostime count_infected":"\n");
Image_file_name_bg = Image_file_path:"cotinf":".dat";
fh_c = OpenFile(Image_file_name_bg,0x1002);
WriteFile(fh_c,"Frame_Counter Dostime count_infected":"\n");
Image_file_name_bg = Image_file_path:"_jump_blocks":".dat";
fh8 = OpenFile(Image_file_name_bg,0x1002);
Save_block_label_file = Image_file_path:"check_block_label":".dat";
fh7 = OpenFile(Save_block_label_file,0x1002);
Save_block_label_file = Image_file_path:"match_block_label":".dat";
fh9 = OpenFile(Save_block_label_file,0x1002);
projector.PutPixelRect(projector_middle+(-projector_width/2):

(-projector_height/2)::(projector_width/2-1):
(projector_height/2-1),proj_array_homo);

init_time = Dostime();
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start_time = Dostime(); //show(start_time);//show(init_time);
Keyhit();

while(Keyhit()!=0x02)
{ //begin_while

if((start_time+period)<=DOSTime())
{ //begin_if
start_time = start_time + period;
clear(projector);
projector.PutPixelRect(projector_middle+(-projector_width/2):

(-projector_height/2)::(projector_width/2-1):
(projector_height/2-1),proj_array_homo);

select_camera_1();
camera.Acquire();
delayMS(100);
camera.freeze();
Camera.ROIToList(,totext(frame_counter));

//minusimg will be subtracted from the followed image
Camera.SaveImage (Image_file_path:"_":totext(frame_counter,"%04d"):

".TIF", Camera.ROI, 8, 0, , "", "", "", TRUE, 0, FALSE, );
minus_name=Totext(frame_counter-1);
Camera.ArithmeticOp ("Subtract",

minus_name, Camera.ROI, , "Clip", FALSE, FALSE);
Camera.GetPixelRect(Camera.ROI,CameraSubtracted);
Camera.SaveImage (Image_file_path:"Sub":totext(frame_counter,"%04d"):

".TIF", Camera.ROI, 8, 0, , "", "", "", TRUE, 0, FALSE, );
set_border();
projector.PutPixelRect(projector_middle+(-projector_width/2):

(-projector_height/2)::(projector_width/2-1):
(projector_height/2-1),proj_array_real);

DeleteImage (minus_name);
camera.acquire();
DelayMS(100);
Camera.SaveImage (Image_file_path:"mix":totext(frame_counter,"%04d"):

".TIF", Camera.ROI, 8, 0, , "", "", "", TRUE, 0, FALSE,);
camera.acquire();

camera_array_g[0..camera_h,0..camera_w] =
(REAL)CameraSubtracted [0..camera_h,0..camera_w];

//CameraSubtracted will replace the camera_array_tmp

get_area();
//random_jump();
new_jump();
projector.PutPixelRect(projector_middle+(-projector_width/2):
(-projector_height/2)::(projector_width/2-1):
(projector_height/2-1),proj_array_real);
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count_count();
link_infected_block[0..(projector_height/block),

0..(projector_width/block)] = 0;
dark_num = 0;
//every time in initiation_killing function calculate the dark_num;
initiation_killing();
projector.PutPixelRect(projector_middle+(-projector_width/2):

(-projector_height/2)::(projector_width/2-1):
(projector_height/2-1),proj_array_real);

Frame_counter ++;
} // end_if

else { // to meet time requirment
projector.PutPixelRect(projector_middle+(-projector_width/2):

(-projector_height/2)::(projector_width/2-1):
(projector_height/2-1),proj_array_real);

}
if (carry_light_correction){

if (Frame_counter%correction_frequency == 0){
clear_projector();
projector.PutPixelRect(projector_middle+(-projector_width/2):

(-projector_height/2)::(projector_width/2-1):
(projector_height/2-1),save_background_array);

select_camera_2();
DelayMs(50);
//set_border2();
re_find_homo();
set_border();
for(i = 1; i <= dark_num; i ++) {
dark_i = dark_block_i[i]*block;
dark_j = dark_block_j[i]*block;
proj_array_real[dark_j..(dark_j+block),dark_i..(dark_i+block)] = 0;

}
projector.PutPixelRect(projector_middle+(-projector_width/2):
(-projector_height/2)::(projector_width/2-1):
(projector_height/2-1),proj_array_real);
select_camera_1();
}

}
}// end_while

CloseFile(fh);
CloseFile(fh2);
CloseFile(fh_c);
write_Experiment_condition();
closefile(fh7);
closeFile(fh8);
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closeFile(fh9);
}

OBJECT_ID x_links[,];
x_links =
2 : 0 : 0 : 0 : 0 ::
105 : 0 : ObjectID (Align) : 0 : 0 ::
152 : 0 : ObjectID (Align_2) : 0 : 0 ::
106 : 0 : ObjectID (Start) : 0 : 0 ::
107 : 0 : ObjectID (Homo) : 0 : 0 ::
115 : 0 : ObjectID (reset_frame_counter) : 0 : 0::
124 : 0 : ObjectID (initiation) : 0 : 0 ::
125 : 0 : ObjectID (clear_projector) : 0 : 0 ::
126 : 0 : ObjectID (clear_chemical) : 0 : 0 ::
127 : 0 : ObjectID (set_border) : 0 : 0 ::
170 : 0 : ObjectID (my_setup_Fixed_Network) : 0 : 0 ::
118 : 0 : ObjectID (Select_Camera_1) : 0 : 0 ::
119 : 0 : ObjectID (Select_Camera_2) : 0 : 0 ::
108 : 0 : 0 : ObjectID (Image_file_path) : 0 ::
109 : ObjectID ( xBrightness_range ) : ObjectID ( Brightness_set )

: ObjectID ( xBrightness ) : 0 ::
110 : ObjectID ( xContrast_range ) : ObjectID ( Contrast_set )

: ObjectID ( xContrast ) : 0 ::
104 : 0 : 0 : ObjectID (Gray_init) : 0 ::
120 : 0 : 0 : ObjectID (initiate_kill_time) : 0 ::
129 : 0 : 0 : ObjectID (links) : 0 ::
144 : 0 : 0 : ObjectID (area_v) : 0 ::
143 : 0 : 0 : ObjectID (average) : 0 ::
146 : 0 : 0 : ObjectID (avg_co_eff) : 0 ::
149 : 0 : 0 : ObjectID (Delaytime) : 0 ::
151 : 0 : 0 : ObjectID (Summer) : 0 ::
154 : 0 : 0 : ObjectID (cri_threshold) : 0 ::
135 : 0 : 0 : ObjectID (top_gray) : 0 ::
139 : 0 : 0 : ObjectID (bottom_gray) : 0 ::
156 : 0 : 0 : ObjectID (left_gray) : 0 ::
158 : 0 : 0 : ObjectID (right_gray) : 0 ::
133 : 0 : 0 : ObjectID (border_top_x) : 0 ::
137 : 0 : 0 : ObjectID (border_top_y) : 0 ::
160 : 0 : 0 : ObjectID (border_bottom_x) : 0 ::
162 : 0 : 0 : ObjectID (border_bottom_y) : 0 ::
164 : 0 : 0 : ObjectID (period) : 0 ::
165 : 0 : 0 : ObjectID (carry_light_correction) : 0 ::
167 : 0 : 0 : ObjectID (correction_frequency) : 0 ::
169 : 0 : 0 : ObjectID (multiplicity) : 0 ::
122 : 0 : ObjectID ( Brightness_set ) : ObjectID (xBrightness) : 0 ::
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123 : 0 : ObjectID ( Contrast_set ) : ObjectID (xContrast) : 0 ::
117 : 0 : 0 : ObjectID (Frame_counter) : 0 ;
//====================
// Open the dialog box
//
CHAR x_directory = "C:/OPTIMAS5/DIALOGS/Jianxia/small_world/2003/";
//CHAR x_directory =MacroPathAndName[0, ];
define init_macro()
{
Brightness_set();
Contrast_set();
Camera.Acquire();
}
define terminate_macro()
{
CloseWindow ("Projector");
}
define on_activate(){}
INTEGER hWndDlg;
//show(x_directory);
OPTCreateDialog (
x_directory : "test3_st.dlg",
x_links,
init_macro,
terminate_macro,
hWndVideo,
hWndDlg,
,
,
on_activate );
}
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