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Abstract 
 Portable emission measurement systems (PEMS) are taking center stage as in-use 

testing programs are getting underway.  EPA-mandated manufacturer-run in-use testing 

programs require a PEMS, and currently there is one commercially available and widely 

used, the SEMTECH-D built by Sensors, Inc.  The SEMTECH-D was first unveiled in 

2002, and numerous software and hardware upgrades have given way to the SEMTECH-

DS.  The manufacturer claims this system is fully compatible with all new Code of 

Federal Regulations (CFR) including part 1065 subpart J (which addresses field testing 

and PEMS).  Yet, while West Virginia University (WVU) was using the SEMTECH-D 

during the summer of 2005, problems were encountered that prompted further insight 

into its performance.  A ten month study ensued to study SEMTECH-D’s behavior 

compared to an EPA certified engine test cell on the campus of WVU at Morgantown, 

WV.  After multiple test days, exhaust configurations, and comparisons to both the 

heavy-duty engine dynamometer laboratory (compliant with CFR40 Part 86 Subpart N) 

at WVU, and another PEMS, the SEMTECH-D was found to consistently exhibit high 

discrepancies.  Over a twenty minute Federal Test Procedure (FTP) transient test the total 

NOX mass emitted error was as high as 25%, while the CO2 total mass emitted error was 

as high as 15% compared to the engine dynamometer laboratory.
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1 Introduction 
 Heavy-duty diesel emissions have come under increasing scrutiny by 

governmental agencies and the public since 1998.  Since the early 1990s, the United 

States Environmental Protection Agency (US EPA) and the European Union (EU) have 

been placing tougher requirements on both on-road and off-road heavy-duty diesel engine 

emissions.   

 In early June 2005, the EPA signed a rule implementing an in-use regulatory 

testing program for heavy-duty diesel engines [1].  This regulation requires engine 

manufacturers to measure gaseous and particulate matter (PM) emissions in real-world 

driving situations using a portable emissions measurement system (PEMS).  Regulations 

will take full effect in 2007.  However, an EPA mandated pilot program was started for 

the 2005 and 2006 model year engines.  The program required that carbon monoxide 

(CO), hydrocarbons (HC), oxides of nitrogen (NOX) including nitrogen monoxide and 

dioxide (NO and NO2, respectively), and PM emissions be monitored on-board with a 

PEMS.  Compliance for the in-use program will be determined using current 30 second 

window not-to-exceed (NTE) criteria (see Section 2.3).  

 Analyzers used for portable emissions systems are off-shoots of ‘garage grade’ 

analyzers.  These analyzers are considerably smaller, cheaper, and less accurate than 

laboratory grade analyzers.  Given the accuracy, repeatability, and response 

characteristics of analyzers used in PEMS, and the constraints associated with engine 

control unit (ECU) broadcast, it is imperative that a measurement allowance be 

determined to account for limitations associated with in-use testing.  The EPA contracted 

Southwest Research Institute (SwRI) to carry out testing to determine how much error is 

associated with a measurement from a PEMS, specifically Sensors’ SEMTECH-D.  The 

PEMS were to be delivered on August 15, 2005, and the testing was to be done and a 

report delivered by November of 2006 [2]. 

 In early 2005, as manufacturers were ramping up for the pilot program, the only 

system commercially available was Sensors’ SEMTECH-D.  West Virginia University 

(WVU) purchased a SEMTECH-D to conduct in-use tests for a study funded by 

Cummins, Inc.  Later, WVU also later received a second SEMTECH-D from Cummins to 

conduct comparison tests.  Initial flooded probe tests proved the SEMTECH-D to be 
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reliable for steady state sampling.  Throughout the summer of 2005, WVU tested 

numerous vehicles for ‘in-use’ emissions.  Results from these tests were inconsistent and 

warranted an investigation into the system’s performance.  In the fall of 2005, the 

opportunity arose to install WVU’s SEMTECH-D along with the aforementioned 

manufacturer’s unit in the WVU Engine and Emissions Research Laboratory (EERL) test 

cell at WVU, which will be referred to as the laboratory for the remainder of this 

document.  A series of Federal Test Procedure (FTP) tests were conducted, as well as a 

seven-mode steady-state test.  During the testing it was found that discrepancies in total 

NOX mass emissions were greater than 20% when compared to the laboratory.  These 

large errors prompted a ten month investigation, which is reported in this document.        

   

1.1 Objectives 
  
 Given the fact that SEMTECH-D is a widely used commercially available system, 

it is important that measurement errors for mass emissions be determined.  Portable 

systems, probably due to size constraints and operating conditions, have proven to be less 

accurate than laboratory-grade equipment.  The primary objective of this study was to 

evaluate the performance of a commercially available PEMS against the WVU heavy-

duty engine Code of Federal Regulation (CFR) 40 Part 86 compliant FTP test cell.  

Secondly, the goal is to monitor the accuracy and repeatability of the PEMS under 

transient and steady state operation of a heavy-duty diesel engine compared to the WVU 

test cell.  Finally, the objective is to determine a range of error for gaseous emissions 

measurements from the PEMS.        
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2 Literature Review/Background 
 A thorough review of previous portable systems was conducted in order to 

understand different technologies that have been used.  Also, testing procedures and 

guidelines were documented for complete understanding. 

2.1 Previous In-Use Systems 
 In-use emissions testing is not a new concept.  In 1982, Caterpillar built a portable 

bag collection system to measure fuel specific NOX from diesel engines [3].  Ten years 

later in 1992, SwRI created another integrated bag system that could measure undiluted 

CO, NOX, carbon dioxide (CO2), O2, and PM separately with a mini dilution tunnel.  The 

drawbacks to this system were that it could only test vehicles with automatic 

transmissions, and it could not be used for continuous monitoring of emissions, since it 

used an integrated bag for sampling [4].   

 Over the next few years General Motors (GM) and Ford each came out with 

emissions systems for gasoline engines.  The GM system used a Horiba infrared-based 

analyzer for CO2, HC, CO, and NO.  Exhaust flow measurements were made with a Kurz 

flow meter [5].  The Ford system measured CO2, HC, CO, and NOX.  An infrared 

analyzer was used to measure concentrations of CO2, HC, CO, and O2, while a non-

dispersive ultraviolet detector was used for NOX.  The Ford system was within 3% 

difference for CO2, while the NOX measurement was 10% off of a laboratory grade 

analyzer [6].             

 Marine emissions were tested by the Coast Guard in 1997 using a system capable 

of measuring CO2, HC, CO, NO, NO2, and SO2.  A Shortridge Instruments Electronic 

Flowhood provided airflow measurements [7,8].   

 In 1997 the University of Pittsburgh used an analyzer from OTC SPX to measure 

CO2, HC, CO, NOX, and O2 from natural gas-fueled vans [9].  Exhaust flowrate came 

from ECM fuel and intake air flows.  The same year, the Flemish Institute for 

Technological Research created a system to measure diluted emissions from gasoline and 

diesel-fueled vehicles.  The system incorporated a non-dispersive infrared (NDIR) for CO 

and CO2, a heated flame ionization detector (HFID) for HC, and a chemiluminescent 

analyzer for NOX.  NOX and CO2 results were reported to be within 10% of a laboratory 
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grade analyzer.   A calculated exhaust flowrate came from ECM fuel, engine speed, and 

lambda values [9].    

 The Northeast States for Coordinated Air Use Management (NESCAUM), the 

U.S. Generating Co., US EPA, the Manufacturers of Emission Control Association, and 

the Massachusetts Department of Environmental Protection used an onboard system to 

test CO2, HC, CO, and NOX on diesel-fueled off-road vehicles.  Results compared to an 

engine laboratory found NOX to be 12% off, and the carbon balance calculation was 9% 

off [10].     

 The US EPA created a system called ROVER (Real-Time On-Road Emissions 

Recorder) in 1999.  The system was capable of measuring CO2, HC, CO, NO using an 

Andros microbench.  The exhaust flowrate was measured using an Annubar differential 

pressure device [11].    

 Ford along with WPI-Microprocessor, Inc. created a new portable system called 

PREVIEW (Portable Real-Time Emission Vehicular Integrated Engineering 

Workstation).  Ultraviolet and infrared-based analyzers were used to measure CO2, HC, 

CO, NOX.  Comparisons to lab grade analyzers were very good for CO2 and NOX (both 

less than 2% difference) [12].   

 In 2000, Horiba, Ltd. and NGK Insulators, Ltd. created an on-board system to 

measure NOX for diesel engines.  The system used zirconium oxide sensors to measure 

NOX concentrations.  Intake air was measured using a Karman vortex volumetric 

flowmeter.  Results were favorable with NOX mass measurements within 4% agreement 

of the laboaratory [13].      

 Clean Air Technologies International, Inc. (CATI) released an on-board mass 

exhaust measurement emissions monitoring system with NOX, CO2, and qualitative PM 

abilities in 2001 [14].  Exhaust flowrate was indirectly calculated using intake air and 

mass balance equations.  An NDIR analyzer was used for HC, CO, and CO2.  

Electrochemical cells were used for NO and O2.  NO2 was estimated from NO 

measurements, knowing that NO2 comprises less than 5% of total NOX in non-

aftertreatment equipped diesel engines.  Flow and concentration alignment problems 

caused errors to be as high as 25% for NO and CO2.  Authors concluded that the use of a 

‘minimized’ system sacrificed the accuracy.      
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 In 2001, Engine, Fuel, and Emissions Engineering, Inc. created a “Ride-Along 

Vehicle Emission Measurement” (RAVEM) system.  The system utilizes a partial flow 

dilution system capable of measuring CO, CO2, NOX, and PM.  NDIR detection was used 

for CO and CO2, while chemiluminesence was used for NOX.  Particulate matter was 

collected on a 37mm filter.  The system diluted a portion of the exhaust stream, as 

compared to a typical laboratory tunnel.  Results for CO2 and NOX have been presented 

as system repeatability over a driving cycle within 6% and within 10% for PM [15].       

 In 2002, Horiba Instruments Inc. created an onboard system capable of measuring 

CO, CO2, HC, and NOX.  It utilized a static Pitot tube to provide a real-time measurement 

of the exhaust mass flowrate, which was related to mileage.  A heated NDIR was used for 

HC, CO, and CO2, while NOX was measured with a zirconium oxide (ZrO2) sensor.  In 

2004, the Horiba On-Board Measurement System (OBS 1000) was compared to the 

WVU MEMS system and the WVU engine laboratory.  The conclusions were that the 

NOX measurements were up to 11% different, and CO2 concentrations were within 3%.  

[16],[ 17].   

 In 2002 Sensors Inc. also unveiled their on-board emission system, the first 

generation SEMTECH (see Section 4.3) [18].  The following year, Sensors, Inc. 

announced a five year cooperative agreement with Ford to develop the next generation 

SEMTECH-G and SEMTECH-D [19].    

 In 2005, Horiba Instruments Inc. released a paper discussing the latest on-board 

system; the OBS 2200.  The system used partial-vacuum FID, chemiluminescence 

detection, and NDIR analyzers [20].  All analyzers were heated and placed upstream of 

the sample pump.  The heated NDIR also measures water to quantify water interference 

with other analyzers.  Exhaust flowrate measurement was achieved with a dual pressure 

transducer pitot tube system [20].  It was concluded that this PEMS analyzers and flow 

meter meet the linearity check requirements [20].       

2.2 SEMTECH-D Studies 

2.2.1 On-Road Emissions Testing of 18 Tier 1 Passenger Cars and 17 Diesel-
Powered Public Transport Buses 

 In 2001, the US EPA awarded Sensors, Inc. with a contract to conduct on-road 

tests of gasoline powered passenger vehicles and heavy-duty diesel equipped vehicles 
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[21].  SEMTECH-G was used for the gasoline vehicles, and the SEMTECH-D tested the 

diesel engines.  The difference between the two systems was the measurement of HC and 

the exclusion of an NO2 measurement with the SEMTECH-G.  The SEMTECH-G 

measures HC with NDIR, while the SEMTECH-D uses a HFID.  The buses were 

equipped with Detroit Diesel Corporation (DDC) Series 50 engines, and one had a Series 

40 engine.  The exhaust flowrate was not measured; hence mass emissions were 

computed from ECM fuel flowrate data.  CO2 results were consistent with a 4.4% 

difference on average and a standard deviation of 20.2 g/bhp-hr for the family of engines.  

NOX data resulted in a standard deviation of 0.89 g/bhp-hr and a 17% difference for the 

DDC Series 50 family [21].  This data does not provide any comparisons to a trusted 

machine, but it shows SEMTECH to be consistent.   

 Correlation testing was also performed at three different locations, including 

Caterpillar and two unnamed Sensors, Inc. customer locations.  Both steady-state and 

transient FTP correlation tests were captured.  Steady-state correlations were very good 

and standard errors were well within acceptable limits (i.e. CO:17 parts per million 

(ppm), NOX:7 ppm, THC: 3 ppm).  Transient mass results were within 2.5% for all 

constituents when compared to a Horiba MEXA 7100 stationary laboratory analyzer.  

The NOX mass emission result was reported to exactly match the MEXA [21].   

 In order to validate the performance of the complete system, the authors 

suggested using a root mean square equation [21].  The three quantities needed for a 

complete picture are: 1) gas concentration, 2) exhaust mass flowrate, and 3) ECM torque.  

With these errors, one can insert them into the following equation to understand the 

overall system performance. 

( ) ( ) ( )2 2 2System Error concentration error flow error ECM torque error= + +     

  

2.2.2 Ford SEMTECH-D Evaluation 
 In 2005, Ford Motor Company addressed the accuracy of SEMTECH-D analyzers 

[22].  Raw concentrations were compared to modal measurements from the chassis 

dynamometer test facility at Ford.  The test vehicles were light-duty passenger cars with 

1.8 and 2.0 liter turbocharged engines with oxidation catalysts.  The test cycle comprised 
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of phase one through three of the heavy-duty Federal Test Procedure (FTP) Urban 

Driving Dynamometer Schedule (UDDS) test cycle.   

 

Table 2.1 Ford SEMTECH-D Span Gas Concentrations 

Gaseous Species Concentration Used Concentration Recommended 
Propane 1000 ppm 200-300ppm 
CO 20,000 ppm 1200-1400ppm 
CO2 15.0% 12-14% 
NO 1500 ppm 1500-2000ppm 
NO2 500 ppm 200-300ppm 

*Italics signifies span gas out of limits 

 

 Table 2.1 lists the span gas concentrations, which were used for the testing, and 

manufacturer recommended concentrations.  Concentrations in Italics denote that the gas 

concentration recommendation by Sensors, Inc. was exceeded [23].    

 The authors concluded that the measurement of CO2, THC, and NOX were well 

within +/- 5% of the concentrations reported by the test cell analyzers.  Also, transient 

CO emissions were possible above the 200ppm level.  This paper did not address the 

performance of the electronic flow meter for exhaust flowrate measurements.         

2.2.3 SEMTECH-D Fuel Consumption Comparison 
 The US EPA and SwRI collaborated to conduct fuel consumption testing on 

heavy-duty road tractors [24].  The scope of the testing was to study fuel saving strategies 

such as fuel efficient tires and aerodynamic fairings.  At the same time Sensors, Inc. 

installed a SEMTECH-D on the test vehicles to collect emissions data for the comparison 

of gravimetric fuel measurements versus carbon balance calculations.  Two vehicles were 

tested with modifications and compared to a control vehicle.  The carbon balance using 

SEMTECH-D emissions measurements was calculated using SAE Standard J1094a [25].  

 Results from this study found that the variability of SEMTECH-D fuel usage 

measurements was similar to gravimetric measurements with a coefficient of variance of 

3.26% versus 2.98%.  The authors concluded that PEMS can be used for J1321 test 

procedures.    
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2.2.4 PEMS Measurement Allowance 
 In June 2003, the US EPA and Engine Manufacturers Association (EMA) agreed 

to an outline of a manufacturer operated in-use heavy-duty vehicle NTE testing program.  

This program was a result of a law suit filed by the EMA and other individual engine 

manufacturers against the EPA [2].  The suit targeted the not-to-exceed (NTE) emissions 

standards [2].  The outline stated that the EPA, CARB, and EMA were to determine an 

emission accuracy margin for in-use PEMS.  The need for this error band was expressed 

by the engine manufacturers before the in-use program becomes fully enforceable [2] in 

2007.   

 “Test Plan to Determine PEMS Measurement Allowances for the Gaseous 

Emissions Regulated under the Manufacturer-Run Heavy-Duty Diesel Engine In-Use 

Testing Program” [26] states the following: 

 

 The computer model statistically combines many sources of PEMS and lab 

error, which are nearly impossible to capture simultaneously in a single test. The 

model will use statistics to apply the errors in a way that simulates actual running 

of a PEMS in-use. The model will also consider only the portion of error that is 

attributable to PEMS, and it will subtract the error that is already tolerated in an 

emissions lab today. The model will also calculate and validate results according 

to 40 CFR Part 1065.  

 

The errors refer to the way that the laboratory and the PEMS react to varying conditions, 

such as environmental changes or vibrations.       

2.2.5 EPA PEMS Measurement Allowance Testing Procedure 
 The US EPA, California Air Resources Board (CARB), and EMA agreed on a 

procedure to determine the measurement allowance for PEMS.  The measurement 

allowance establishes the error associated with using a PEMS and adjusts emission 

regulations accordingly [26].  The measurement allowance is only applied to NOX, CO, 

and non-methane hydrocarbons (NMHC).  The actual determination was to be done using 

a computer model.  The model was to capture all sources of error, both from the PEMS 

and the stationary laboratory, then subtract outside errors leaving the PEMS total error.  
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The test plan outlined the following procedure for testing a PEMS for the measurement 

allowance program [26]: 

1) Measure raw as well as CVS-dilute emissions  

2) Measure engine inlet airflow through use of LFE or equivalent  

3) Measure instantaneous fuel consumption and torque  

4) Ensure purging of the DPF system as often as needed in order to ensure negligible 

impact on emissions variability 

5) Capture ECM broadcast channels and other common diagnostic channels, as 

recommended by engine manufacturer(s), to ensure proper engine operation  

6) Do not measure PM.  

7) Stabilization time = 120 seconds. Data acquisition = 30 seconds, after stabilization. 

Dwell time between points = 30 seconds (total time per point = 180 sec. = 3 min)  

8) Zero and span PEMS at beginning of day following manufacturer’s guidelines. Do 

not re-span PEMS analyzers again during the day, unless PEMS manufacturer 

provides a way to do this automatically, so it is realistic with real-life in-use testing 

practices. Re-zeroing should be allowed if and only if done automatically by the 

PEMS for the same reasons.  

9) Zero and spanning of the instrument laboratory analyzer can be repeated as often as 

laboratory common practices.  

10) Perform carbon balance checks on CVS emissions data to ensure data quality  

11) Always power off PEMS equipment at end of each day. Re-start start-up process 

every day. 

The Italics items were followed during the acquisition of the data presented in this 

document.  Zeroing and spanning was performed in between tests on the PEMS, unlike 

the guideline stating this was to be done only once a day.  This ensures repeatable data 

from test to test.     

 

2.3 NTE Discussion 
 Not-to-exceed testing procedures resulted from the Consent Decrees between the 

United States EPA and the engine manufacturers [27],[28].  This testing scheme ensures 

that the engine’s emissions are controlled over the entire range of speeds and loads 
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experienced in use.  The lug curve of the engine determines the NTE zone, and it is 

bounded by the following and represented in Figure 2.1: 

⎯ Torque upper boundary: lug curve  

⎯ Torque lower boundary: 30% of maximum torque 

⎯ Engine speed lower limit: n15=nlo+0.15(nhi-nlo) 

⎯ Engine speed upper limit: nhi= engine speed (above rated speed) at 70% 

of maximum power 

⎯ nlo=engine speed (below rated speed) at 50% of maximum power 

⎯ Power Boundary: 30% maximum power 

When the engine is running in the described region, the emissions are averaged over a 

thirty second period.  Then these values are compared to FTP emission levels that were 

found when the engine was certified.  Engine compliance is determined by the emissions 

not exceeding 1.25 times the respective emission limit. 

 

Figure 2.1 Engine Operation Points for FTP with NTE region 
The previously mentioned heavy-duty transient FTP cycle has three segments where the 

engine is operating continuously, for at least 30 seconds, in the NTE zone.  These three 

periods are the only segments of time where NTE compliance can be determined.  The 
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first segment occurs 625 seconds into the test and provides 28 thirty second windows.  

The second and third windows occur at 723 and 799 seconds, and provide 10 and 23 

windows, respectively.    

 

2.4 Consent Decrees 
 In October of 1998, the US EPA, CARB, and the EMA, which represents the six 

major U.S. diesel engine manufacturers agreed to a one billion dollar settlement resulting 

from over polluting the air.  The government charged the engine manufacturers with 

creating engine control strategies that evaded pollution regulations.  Under certain 

operating conditions the engine controller employed strategies that appeared to defeat the 

emissions control system on the engine. Per example, at highway cruising speeds (steady 

state behavior) the ECU switched from an ‘urban’ setting to a ‘highway’ calibration.  The 

highway calibration resulted in advanced injection timing that led to improved fuel 

economy and increased power, but at the cost of high NOX emissions.  As a result of this 

settlement, the engine manufacturers were required to engage in an increased level of 

emission reduction research, compliance testing on current products, and pay fines to the 

United States.           

2.5 In-Use Challenges 
 There are many places where measurement and operating errors can occur during 

an in-use test.  Presented below is a summary of these situations [29]. 

• Different data sampling frequencies for analyzers 

• Analyzer drift over multi-hour tests. 

• Condensation of water in measurement lines 

• Condensation in the differential pressure lines 

• Soot in differential pressure lines 

• Inertial effects on pressure measurement devices 

• Leaks in sampling lines 

• Sample filter effectiveness over long tests 

• Problems with ambient weather measurement devices 

• ECU communication lapses 
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There are also known factors that effect an engine’s emissions and power output [30] as 

listed below: 

• Fuel composition 

• Fuel temperature 

• Intake air temperature 

• Intercooler temperature 

• Intake restriction and exhaust depression 

• Engine wear 

Fuel composition can have very great effects on emissions.  NOX creation can vary by as 

much as 12% depending on fuel characteristics [31] and PM can vary by as much as 

50%.  CO and HC can also vary by as much as 40% and 17%, respectively.  

Environmental changes can create variances in emissions nearly identical to those 

mentioned for fuel [31].  These contributions will weigh heavily as emission limits 

continue to decrease.      

2.5.1 Data Alignment 
 The time aligning of data from the different analyzers, communication devices, 

and flow measurement signals is an important step in the testing process.  As stated in the 

SEMTECH-D user manual, time shifts as small as 2-3 seconds can cause significant 

errors [23].  These errors stem from different exhaust configurations.  Each vehicle’s 

exhaust system varies in length, therefore resulting in longer or shorter travel times for 

the exhaust through the PEMS and flow measurement system.  For instance, improperly 

aligned data will result in electronic flow meter (EFM) flowrates not matching up with 

gas concentrations, and NOX values will be well under or over the actual mass emission 

flowrate.  Time alignment is done by plotting the CO2 measurement with either the fuel 

flowrate or the exhaust flowrate, and visually aligning the signals.  To be more precise, 

the two signals can be multiplied together and summed.  Then, as the signals are aligned 

properly, the sum will reach a maximum. 
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Figure 2.2 Improperly Aligned Data 

 

Figure 2.2 illustrates a set of data that are not properly aligned.  When the second-by-

second data is multiplied together, the highlighted peaks (not being aligned) are not 

multiplied to one another, and this creates a smaller number than if they were.  Once all 

matching points are aligned, multiplied, and summed, the plot in Figure 2.3 will result in 

a total larger than Figure 2.2, signifying proper alignment.  To expedite this process, an 

Excel spreadsheet is used to plot CO2.  Then the exhaust flowrate time stamp is modified 

(either +X seconds or –X seconds) until alignment is achieved.   
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Figure 2.3 Properly Aligned Data 

2.5.2 SEMTECH-D EFM Purging 
 The SEMTECH-D EFM combats condensation and soot in the pressure lines by 

using a ‘purge’ sequence.  The EFM flow box has a port on the side that allows for a high 

pressure zero air line to be connected.  In between tests, the purge button can be pushed 

and a small shot of zero air is blown through the lines and back into the flow tube, 

removing any debris or moisture.   
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3 Calculations 

3.1 Discussion of Calculations 
 Analyzers measure the instantaneous concentration of a certain exhaust gas 

constituent in either parts per million (ppm) or percent of total volume, depending on the 

gas.  With the exception of the emissions standards in 30CFR Part 7 (mining 

applications), a concentration alone is not enough to certify that an engine is meeting the 

emissions standards.   

 There are several ways in which emissions are calculated and expressed.  The 

method primarily used in this thesis is the time-specific mass flowrate of the pollutant or 

the mass-emissions rate.  The industry standard for reporting emissions and certification 

is a work specific value.  Two other widely used methods are fuel-specific and distance 

specific (used for chassis dynamometer tests, and on-road tests).  With the time-specific 

method, the flowrate of the exhaust from the engine must be known to provide the rate at 

which the gases are being emitted.  Mass emissions rate is computed from the measured 

instantaneous gaseous concentration, the exhaust flowrate, and the density of the gas at 

standard conditions.     

3.1.1 Mass Emissions Calculations 
Mass emissions are calculated using the molecular weight (MW) of the specific gaseous 

pollutant. 
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Equation 3.1 Molecular Weight/Density/Humidity Correction 

( )2 2 2 2
1 44.01 32 28.013 18.051

100

, 8314 , 293 , 101.325

%( )
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ρ
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= = × + × + × + ×

×
= = = = =
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= =
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[ ]
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4

2
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10
%( ) %( )

1
W

W condensed

condensed exhaust residual

n ppm
Gas wet Gas dry K
K H O

H O H O H O
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= −
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Equation 3.2 Mass Emissions Exhaust Flowrate 

( ) %( )/
100 std std

Gas wetMass Emissions g s V ρ= × ×  

Final moisture content of the sample depends on the hydrogen/carbon ratio, ambient 

humidity, and measured gaseous concentrations [23].  Gas % (wet) refers to the moisture 

corrected pollutant concentration.  To protect optical sensors, exhaust streams are dried to 

remove moisture before measurement.  By removing moisture, one is also removing 

some of the volume of the exhaust stream.  Before emissions are reported the 

concentration needs to be ‘corrected’ for this loss. 

3.1.2 Brake Specific Emissions (using NOX as an example) 

Equation 3.3 Brake-Specific Mass Emissions 

( ) ( )
/

1 / 3600
X X

X
NO mass NO massNO g bhp hr

work bhp s hr s
Σ Σ

− = =
Σ Σ ×

 

The work specific emissions may be computed by dividing the total mass emissions rate 

by the work done over that same time segment.   

3.1.3 Fuel Specific Emissions (using NO as an example) 

Equation 3.4 Fuel Flowrate Mass Emissions 

[ ]
[ ] [ ] [ ] [ ]2 2

NO
fs

fuelambient

NO MWg NONO
g fuel CO HC CO CO MW

⎛ ⎞ ⎛ ⎞⎛ ⎞
= ×⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟+ + −⎝ ⎠ ⎝ ⎠⎝ ⎠

 

**brackets indicate [mole fraction] 
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Equation 3.5 Fuel Flow Mass Emissions Flowrate 

( ) ( )/ /fs
g NONO g s NO Fuel flow g s
g fuel

⎛ ⎞
= ×⎜ ⎟

⎝ ⎠
 

Another method in use is the fuel specific mass emission, which requires the fuel 

flowrate to the engine for calculations instead of the mass flowrate of the exhaust.  By 

knowing the mole fraction of the product (for example, NO) from a reaction, to the 

reactants (carbon and hydrogen containing constituents) and multiplying by the fuel 

flowrate, the fuel specific emissions are found.    It is important to remember that the 

ambient air contains carbon dioxide that must be accounted for in this calculation.  The 

fuel mass flowrate can come from the ECM or calculated from a carbon balance [See 

3.1.6.2].                      

 

3.1.4 Instantaneous Engine Power 
 

Equation 3.6 Engine Horsepower  

( )

1

5, 252
1 33,000 ( ) min
1 2 ( )
33,000 5,252

2

torque lb ft RPM
hp

hp ft lb force
rotation radiansπ

π

−

⋅ ×
=

= ⋅ ⋅
=

=

 

The power output from the engine is calculated from engine torque and speed and shown 

in Equation 3.6.  These two parameters may be recorded from the ECM broadcast or 

from a load cell and a speed sensor if the engine is operating in a test cell.   

 

3.1.5 Dilution Ratio 

Equation 3.7 Laboratory Dilution Ratio 

mixVDilution Ratio
Lab Fuel Flow Lab Intake Flow

=
+
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In a CVS-based emissions test cell engine intake air flowrate, fuel flowrate, and the dilute 

exhaust (raw exhaust and dilution air) flowrate are measured.  The raw exhaust flowrate 

out of the engine is not measured.  Therefore, to make comparisons between emissions 

measured with a CVS (dilute exhaust) and a PEMS (raw exhaust) the dilution ratio of the 

exhaust gas must be calculated.  It is understood that, theoretically, mass emissions 

should remain unchanged whether they are measured with raw or dilute exhaust.  Yet, the 

effect on measurements from water interference/displacement and moisture corrections is 

not completely understood.  Also, discrepancies in exhaust flowrate measurements inject 

errors that are unaccounted for.     

3.1.6 Calculating Exhaust Flowrate  
To make comparisons between systems, air flow rates and fuel flow rates must have the 

same conditions (such as pressure and temperature).  This is done by standardizing 

temperature and pressure to certain conditions, as seen below.  The intake air flow to the 

engine along with the fuel flowrate is used to calculate an inferred exhaust flowrate.   

 

3.1.6.1 Calculating Exhaust Flowrate from Laboratory  

Equation 3.8 Standardizing Laboratory Exhaust Flowrate 

( ) 3

3

68 20
29.92 101.3207

STANDARD

STANDARD

MEASURED STANDARDMEASURED
STANDARD

STANDARD MEASURED

temperature F C
pressure inHg kPa

Volume fuel intake air P T standard mVolumetric Flowrate
P T second

standard mSCFM
second

= =
= =

+ × ×
= =

×

= ×

o o

3

3

60 35.315

;Intake Air Fuel

second ft
minute m

Inferred Exhaust Flowrate SCFM SCFM measurements from WVU EERL

×

= +
 

3.1.6.2 Fuel Recovered (Carbon Balance) 
For each test a carbon balance was performed.  Carbon balance is a check for analyzer 

accuracy and quality assurance.  All measured carbon-containing exhaust gas constituents 

are summed together to get the fuel flowrate, which can be compared to a measured fuel 

flowrate.  The WVU EERL laboratory utilizes a positive displacement fuel flow meter for 
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comparisons.    The fuel flowrate is calculated by the carbon balance as expressed below 

[25]. 

 

Equation 3.9 Carbon Balance 

( ) ( ) ( )

( )

( ) ( ) 2( )

2

2

12.011 0.429 0.273
12.011 1.008

12.011
12.011 1.008

1( )
453.6

s mass mass mass

s

G HC CO CO

R

GMass Fuel pounds
R

atomic hydrogen to carbon ratio

α

α

α

⎡ ⎤
= × + +⎢ ⎥

+⎢ ⎥⎣ ⎦

=
+

⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

=

 

⎯ Gs=grams of carbon measured during the hot or cold start test 

⎯ R2=grams of carbon in the fuel per gram of fuel. 

3.1.7 Calculation for Exhaust Flowrate for SEMTECH-D EFM 
The SEMTECH-D calculates flowrate using the Bernoulli principle and the continuity 

equation [23]. 

Equation 3.10 SEMTECH-D Exhaust Flowrate  

( )

( ) ( )

Re

Re Re
Re /

High Low

m K A P
A cross section area
K dischargecoefficient as f

Reynolds Number ratio of Inertial forces Viscous forces of exhaust
density of exhaust gas

P differencebetween P and P

ρ

ρ

= × ×Δ

=

=

= =
=

Δ =

&

  

3.2 Data Reduction Procedure: 
Fuel rate from the ECM, which is recorded by the SEMTECH-D, is reported in gallons 

per second.  The following density of diesel fuel was used far conversion to a mass 

flowrate. 

3.208366 kg
gal

ρ =  
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All comparisons to the laboratory measurement made in this thesis refer to integrated 

totals.  The fact that the majority of the data was collected at 1 Hz frequency reduces 

Equation 9 to merely a sum.  Percent differences are calculated using Equation 10, where 

the WVU EERL is the reference.  

 

3.2.1 Integrated Data and Percent Difference Equations 

The following equations were used for integrating data and calculating errors.  The 

reference system is the laboratory. 

Equation 3.11 Integrated Data and Error 

( )1
1

N

i i i
i

I x t t −
=

= −∑  

% 100%measured reference

reference

Sum Sum
Difference

Sum
−

= ×  

⎯ ti-ti-1 is the time frame between consecutive data points (for 1 Hz. Data 

this value is 1), (seconds) 

⎯ xi is the measured value for that time frame (grams/second) 

 

3.3 Measurements Compared in this Study: 
The following parameters, collected from the SEMTECH-D were used for comparisons 

against the West Virginia University Engine Laboratory and, in many cases, WVU’s 

MEMS: 

• Fuel Flowrate via a carbon balance 

• Exhaust Flowrate 

• Time-specific gaseous emissions on a mass basis (g/s) 

 



 

 21

4 Experimental Procedure and Instrumentation 
A brief description of analyzer technology and PEMS used in this study is given below.   

4.1 Component Description  
The following section describes the various analyzers’ theory of operation, advantages, 

and disadvantages.  

4.1.1 HFID 
 The HFID is capable of measuring total hydrocarbons over the range of 0 to 

10,000ppmC.  After the sample enters the system via the heated sample line, a small 

portion of the sample is sent to the stainless steel heated FID chamber.  The control 

temperature of the chamber is set to 191 degrees Celsius.  The HFID works by passing 

the sample through a flame fueled by a 40/60 ratio of hydrogen/helium.  As the sample 

goes through the flame, the hydrocarbons undergo an ionization process in which 

electrons and positive ions are produced.  Then polarized electrodes inside the instrument 

collect the electrons and ions, causing a small ionization current to pass between the 

electrodes.  The current is proportional to the carbon atoms concentration in the sample, 

and can be measured to give the HC concentration in the sample [32].    

4.1.2 NDIR Analyzer 
 The non-dispersive infrared detector is a spectrophotometer that is used to detect 

oxides of carbon and hydrocarbons.  The term ‘non-dispersive’ refers to the fact that the 

light is not reflected or scattered, it is absorbed by the gas.  The gas sample passes 

through a cell where it is bombarded with infrared light/energy.  The energized gaseous 

compounds pass through a filter that only allows certain wavelengths of light to pass, 

since every gas absorbs infrared energy at different wavelengths.  At the same time a 

separate cell has the same light passing through a static inert gas, such as nitrogen.  The 

light source is pulsated with a chopper wheel, to allow for a ‘continuous’ measurement.  

After the light travels through the cells, it reaches a solid-state photoconductive detector, 

where the concentration is determined [1,32].  
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4.1.3 Chemiluminescent Analyzer 
 Chemiluminescent detection (CLD) analyzers provide the concentration of NO or 

total NOX if there is a NOX converter (converting NO2 to NO) installed in the sampling 

stream.  The detector relies on the following chemical reaction: 
*

3 2 2 2 2NO O NO O NO O proton+ → + → + +  

The term chemiluminescence refers to the emission of light from an atom or molecule in 

an excited state from a chemical reaction.  The exhaust sample is passed through a 

chamber filled with excess ozone, which reacts with the NO.  The NO2 is in an excited 

state and returns to a normal state and emits red light with photon emissions [33].  

Chemiluminescent detection responds fast and has a wide dynamic measurement range 

[34].  The disadvantages of this instrument are the extra expenses required for a vacuum 

pump, ozonizer, additional operating gases, and converter efficiencies (90%-100%) [34]. 

Water and CO2 existing in the exhaust stream can also adversely affect the CLD due to 

quenching.  Quenching occurs when the above reaction does not produce light emission; 

rather the energy is transferred, via collisions, to other masses in the exhaust stream (i.e. 

H2O and CO2 molecules) [35]. 

4.1.4 NDUV Analyzer 
 The non-dispersive ultraviolet photometer is used to detect oxides of nitrogen.  

The technology is very similar to the NDIR.  Ultraviolet light has a shorter wavelength, 

but has a higher energy than infrared light.  The NDUV analyzer has a single sample cell 

that has two filters and two detectors at the exit, one to measure absorbed energy and the 

other to measure non-absorbed energy.  The ratio of these two measurements is the 

concentration of the nitrogen oxides [1].   

 

4.1.5 Zirconium Oxide NOX Analyzer 
The unit, which is made of a ceramic-like material zirconium oxide, consists of two 

chambers that are in series.  The sample passes into the first chamber where oxygen is 

able to travel through the zirconium oxide, leaving a more concentrated NO sample.  

Then the sample travels into the second chamber, where it is disassociated into nitrogen 
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and oxygen.  Now, as the oxygen is removed, a voltage is created corresponding to the 

concentration of previously bonded nitric oxide molecules [32].   

  

4.2 MEMS Discussion 
 The Mobile Emissions Measurement System (MEMS) was built by West Virginia 

University.   MEMS was built in response to the Consent Decrees which were entered 

into by the six settling heavy duty engine manufacturers and the Department of Justice.  

MEMS provides brake specific measurements of NOX and CO2.  MEMS consists of a 

flow tube, flow box, emissions box, data acquisition box, and an ambient box.  The flow 

box contains a differential pressure device for measuring the exhaust flowrate, and an 

absolute pressure transducer.  The emissions box contains all the emissions measuring 

equipment including a heated filter, analyzers, chillers, and pumps.   

 The MEMS flow measurement device uses an Annubar pitot tube sensor [32].  

The device is mounted perpendicular to the exhaust stream.  The device has an upstream 

and a downstream side both with a series of holes spanning the width of the tube to 

provide an average pressure.  The difference in the two average pressures is proportional 

to the velocity of the exhaust stream.      

 MEMS measures NOX with a Horiba MEXA-720 zirconium oxide sensor.  After 

the sample enters the emission box via a heated line, the particulates are removed with a 

heated filter.  The sample then passes through a heated NOX converter, which converts 

the NO2 to NO.  Housed in the same apparatus is the heated NOX probe.  The sample is 

then dried with a chiller before it passes through the Horiba BE-140 NDIR analyzer.  

       

4.3 SEMTECH-D Discussion 

4.3.1 SEMTECH Introduction 
 The Sensors SEMTECH-D is a commercially available PEMS.  The SEMTECH-

D consists of the following: HFID for THC, NDUV for NO and NO2, NDIR for HC, CO, 

and CO2, and an electrochemical (EC) sensor for O2.  For testing purposes the 

SEMTECH-D also requires a data logger, vehicle interface for engine communication, 
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and a weather probe for ambient condition monitoring.  A drawing of the front panel is 

seen in Figure 4.1 [23].    

 

Figure 4.1 SEMTECH-D Front Panel [23] 

1) Wireless Antennas 
2) System Status LEDs 
3) ON/OFF Button 
4) AUX-1 Connection 
5) AUX-2 Connection 
6) GPS Connection 
7) Analog Connection 
8) Computer Ethernet Connection 
9) Vehicle Network Interface 

Connector 
10) Hub/Switch Ethernet Connector 

11) Heated Line Power Connector 
12) Data Card 
13) System Power Connection 
14) Temperature/Humidity 

Connection 
15) Auxiliary Temperature 

Connection  
16) Heated Filter 
17) Zero Gas Port 
18) Span Gas Port 
19) Heated Line Hookup 

4.3.2 System Power 
 SEMTECH-D is powered in-use by the vehicle’s 12-volt direct current (DC) 

electric system.  Sensors, Inc. sells an alternating current (AC) power supply that will 

provide 80 amperes at 12 volts DC.  During initial warm up, the system draws ~60 

amperes and once warm, the system draws ~30 amperes [23].  Typical voltage drops 
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from SEMTECH-D experienced by heavy-duty vehicles is 0.2-0.3 volts at idle [23].  

From experience, to capture a cold start in-use, a battery charger must be attached to the 

vehicle’s batteries to keep from completely draining them during the sixty minute 

SEMTECH-D warm up process.  

4.3.3 Gaseous Measurement  
 The gaseous measurement through the SEMTECH-D starts with a heated sample 

line.  The sample line is connected to a port on the side of the flow tube and extracts 

exhaust from the edge of the pipe at a flowrate of 8 liters per minute [23].  After the 

sample passes through the heated line and filter (to remove PM) it is split and sent to the 

HFID, and the other portion is sent to the NDIR and NDUV.  The internal temperature of 

the sampling system (i.e. heated line, FID) is held constant to a temperature of 191 

degrees Celsius (C), while the heated filter is set to 200 degrees C.  Before the sample is 

sent to the optical analyzers it is dried first with a coalescing filter, then a thermoelectric 

chiller is used to remove moisture.  Condensation in the sample stream causes 

interference and damage to the optics of the analyzers.  The chiller temperature set point 

is 8 degrees C.  After the sample is analyzed, it is discharged out the back of the unit, 

where tubing is connected to release at a desirable location.   

 The HFID fuel for the SEMTECH-D is available in small (~one liter) bottles that 

are mounted inside the unit.  The bottle contains 105 liters of compressed fuel that will 

last roughly eight hours [23].  A drawing of the rear of the SEMTECH-D, along with the 

FID fuel bottle, is seen in Figure 4.2.   
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Figure 4.2 SEMTECH-D Rear View [23] 

4.3.4 Sampling Frequency/Engine Communication 
 Due to the different technologies involved for the various gas analyzers, different 

sampling frequencies occur.  The NDUV reports a signal every one half seconds, while 

the NDIR reports a reading every 1.2 seconds.  Yet, a post processed SEMTECH-D data 

file has 1Hz data.  This means that the SEMTECH is averaging and interpolating data 

points in order to report at the desired 1Hz frequency [23].   

 The SEMTECH-D communicates with the engine control unit (ECU) via a 

Dearborn Group Technology adapter.  The Dearborn Adapter allows for collection of 

engine parameters such as engine speed, torque, fueling, and various other parameters. 

 

4.3.5 SEMTECH EFM  
 The SEMTECH-D EFM exhaust flow measurement tube is seen in Figure 4.3.  

The tube is made of five inch stainless steel exhaust pipe and is three feet long.   
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Figure 4.3 EFM Flow Tube [36] 

1) Sample Port 
2) Low Pressure Tube 
3) Flow Pressure Sensor 

4) Thermocouple 
5) Mounting Bung 
 

 
 The SEMTECH-D measures the exhaust flowrate with a differential pressure 

device that operates on Bernoulli’s Principle.  SEMTECH’s electronic flow meter (EFM) 

is comprised of four differential pressure transducers that are calibrated to measure a 

different portion of the total flow [36] (see Equation 7).  The design is similar to the 

Annubar of MEMS, having a diamond shape that is oriented with a point upstream and 

downstream as seen in Figure 4.4.  The pressure difference between the leading 

(upstream) and trailing (downstream) edges corresponds to the velocity of the exhaust.        
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Figure 4.4 SEMTECH-D EFM Flow Tube Cross Section [36] 
The EFM electronics are housed in the box seen in Figure 4.5.  This box contains the 

diaphragm that the high and low pressure lines report to.  The system automatically zeros 

the transducers every two minutes without losing data [36], by zeroing two transducers 

every minute.   
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Figure 4.5 SEMTECH EFM Electronics Box [36] 

1) Thermocouple Shield Ground 
2) Thermocouple Connection 
3) Differential Pressure Line 

Conneciton 
4) High Pressure Purge Gas 

5) ON/OFF Switch 
6) Power and Serial Connection 
7) Unit Number 
8) Status LEDs 
9) Function Buttons 

4.3.6 Data Processing 
 SEMTECH-D records data files on a compact flash card located on the front 

panel of the unit.  Raw data files are recorded using a .XML file type, after data 

processing the files are saved as Excel comma separated files.  The SEMTECH-D 

software has a post processor program that is launched from the main screen as seen in 

Figure 4.6 SEMTECH-D Post Processor.  The settings tab on the post processor allows 

the user to set the exhaust transport delays, manually input weather data, specify fuel 

properties, and vary calculation methods.  The transport delay times are critical for 

properly aligning data.  For each individual exhaust configuration, the delay times must 

be determined by aligning CO2 with either the fuel flowrate or the exhaust flowrate, 

depending on which calculation method was chosen.   
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Figure 4.6 SEMTECH-D Post Processor 

4.4 SEMTECH-DS 
 In 2005, Sensors Inc. released the latest version of their PEMS, the SEMTECH-

DS.  The latest system improvements as listed by the manufacturer are [37]: 

⎯ CFR 1065 Subpart J compliant 

⎯ CE Compliant 

⎯ MIL-STD 810F shock and vibration 

⎯ Auto-ranging FID 

⎯ Real-time mass emission NTE calculations 

⎯ Temperature Stabilized emissions analyzers 

⎯ Flow-weighted fuel-specific emissions calculations 

 



 

 31

4.5 WVU EERL Discussion 
 A brief discussion of the WVU EERL is given below.  This section has been 

previously reported elsewhere [38].   

 The testing setup consisted of the engine mounted on an engine skid directly 

coupled to a GE direct current engine dynamometer.  The engine exhaust is routed to a 

full-scale dilution tunnel (18 inches in diameter and 20 feet long) based on the critical 

flow venturi constant volume sampler concept [38].  Three feet from the tunnel entrance 

is a 10-inch diameter orifice.  This ensures that the dilute exhaust is thoroughly mixed by 

the time it reaches the sampling zone, ten diameters downstream of the orifice.  The 

exhaust is mixed with air and the quantity of diluted exhaust is measured precisely using 

critical flow venturis.  These venturis are placed upstream of a blower that pulls the 

diluted exhaust sample at a constant mass flowrate once the venturis were under sonic or 

choked flow conditions at a nominal 2400 scfm.  Temperature in the venturi is measured 

with an exposed fast-respond thermocouple and pressure is measured by an absolute 

pressure transducer.  Heated sampling probes and lines transports diluted exhaust to a 

number of different gas analysis instruments.  The engine test cell is equipped with a pre-

conditioning system for intake air and dilution air.  Microprocessor controlled heated 

probes and sampling lines are used to draw gaseous samples into the gas analysis bench.  

Continuous sampling and analysis of the exhaust stream is done by NDIR analyzers for 

CO and CO2; a wet chemiluminescent analyzer for NOx; and a heated FID for THC.  

Data from the exhaust analyzers, sampling trains, double dilution tunnel, and the engine 

are acquired and archived at a rate of 5 Hz.   

 All dilution air is HEPA filtered to minimize the background particulate 

contribution entering the tunnel.  Two HEPA filters, each at a 2400 cfm capacity, are 

placed in parallel to provide up to 4800 cfm dilution air capacity to the primary tunnel.   

 Additionally, the engine is instrumented for speed, torque, manifold air pressure, 

air intake restriction, total exhaust backpressure, manifold intake temperature, coolant 

temperature, oil temperature, and exhaust temperature according to CFR 40 Part 86 

requirements [38].     
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5 Test Matrix/Procedure 
 Multiple test days were utilized to ensure that data presented encompassed a 

variety of ambient conditions and fuels.   

5.1 Sequence I 2005 
Two SEMTECH-D systems were coupled with a MEMS flow tube and installed in the 

EERL.  Five FTP cycles and one steady state test were run and compared with the 

stationary laboratory analyzers.   

 

5.2 Sequence II 2006 
The SEMTECH-D and MEMS were placed back into EERL and two days of tests were 

conducted.  Day one provided three valid FTP cycles for both systems, and on the second 

day two thirteen mode steady state tests were run.  Then, the MEMS flow tube was 

removed and over the next two days a total of fourteen valid FTP tests were collected.  

All data collected were compared to the laboratory analyzers.   

 

5.3 Sequence III 2006 
Beginning on May 23 and ending on the May 26, a variety of FTP, steady state, and 

transient tests were conducted.  The steady state tests were designed to provide insight 

into the behavior of the SEMTECH-D EFM.  The transient test was a laboratory version 

of a road test developed by WVU.            

 

5.4 Sequence IV 2006 
Starting on August 18, the WVU EERL conducted fuel certification testing.  The testing 

consisted of a series of FTP cycles, switching between a reference fuel and a candidate 

fuel.  SEMTECH-D data were  collected and compared to the laboratory.  The emissions 

compared in this document are from the reference fuel tests.  Twelve FTPs were collected 

total (nine hot, three warm) over two days of testing.   
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5.5 Test Procedure 
The following procedure was used for all tests that are being reported in this document.  

After the installation of the SEMTECH-D flow tube, and before any data was collected 

the following quality assurance steps were taken: 

• SEMTECH-D leak check was performed after initial installation 

• Exhaust filter was changed every other test 

• Emission analyzers were zeroed and spanned before every test 

• EFM pressure lines were purged multiple times before every test 

• Sling psychrometer data collected at beginning of each test to compare 

to SEMTECH-D weather probe  

• MEMS system calibrated  

• MEMS heated filter replaced every other test 

• MEMS analyzers zeroed and spanned before each test 

• WVU EERL prepared accordingly before initial test and in between tests 

5.6 Test Cell Setup 
 Pictured in Figure 5.1 is the SEMTECH-D setup inside the WVU EERL.  The 

EFM flowtube is situated above the unit and installed directly into the exhaust pipe 

routed to the dilution tunnel.  The exhaust setup was identical for all testing sequences, 

except for the location of the tube with respect to the turbo of the engine.  Sequence I 

placed the tube closer to the turbo outlet.  The SEMTECH-D received power from an 

alternating current to a direct current power supply capable of providing 80 amperes at 

110 volts.  A backup battery was included to provide power if there was an interruption 

from the power supply.   
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Figure 5.1 SEMTECH-D test setup inside EERL. 

5.7 Test Engine 

Table 5.1 Test Engine Specifications 

Engine Manufacturer Detroit Diesel Corp. 
Engine Model Series 60 
Unit Number O6R0105610 
Model Year 1992 
Displacement (liters) 12.7 
Power Rating (hp) 360@1819 rpm 
Configuration Inline 6 
Bore (in.) x Stroke (in.) 5.12 x 6.30 
Induction Turbocharger with Aftercooler 
Fuel Type Diesel 
Engine Strokes per Cycle Four 
Injection Direct, Electronic 

 
 

 

 
   EFM Flow tube                          Heated Line 
 
 
 
 EFM Box 
 
     SEMTECH-D 
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5.8 PEMS Span gases 

5.8.1 The SEMTECH-D was spanned with the following concentrations: 

Table 5.2 SEMTECH-D Span Gases 

Gaseous Species Concentration 
Propane 257 ppm 
CO 1289 ppm 
CO2 13.01% 
NO 1728 ppm 
NO2 256 ppm 

 

5.8.2 The MEMS span bottle used had the following concentrations: 
 

Table 5.3 MEMS Span Gases 

Gaseous Species Concentration 
NOX 2190 ppm 
CO2 11.92% 
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6 Experimental Results and Discussion: 

6.1 Introduction 
 The purpose of this study was to validate the SEMTECH-D as an accurate and 

reliable option for in-use testing.   

6.2 Laboratory Performance/Consistency 
 Before the PEMS could be evaluated for performance, efforts were made to 

document that the WVU EERL was performing as it should, in compliance with 

requirements of 40CFR Part 86 Subpart N.  It should be noted that the laboratory has 

been performing fuel certification tests on heavy-duty engines for CARB and the Texas 

Commision on Envirironmental Quality (TCEQ) [38].   

6.2.1 Repeatability 
 In December 2005, fuel certification testing was conducted at the WVU EERL 

using the DDC Series 60 engine described above.  The schedule consisted of four days of 

testing, including three days of reference fuel preliminary testing.  During this time, 27 

hot start FTP tests were conducted using the reference fuel.  Day one consisted of nine 

valid hot starts.  On days two and three, twelve and six hot starts were conducted, 

respectively.  Figure 6.1 represents the average NOX values for each of the three days of 

testing using the reference fuel.  Note that there is a 0.08% difference between the 

average for day one and for day four [38].       
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Figure 6.1 Average laboratory NOX values from hot-start FTP tests using reference 
fuel.  Error bars represent one standard deviation for each data set.  Note the 

expanded axis.   

Figure 6.2 illustrates the brake-specific emissions of CO2 over the three days of testing.  

Notice that there is only a 0.4% difference between day two and day four. 
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Figure 6.2 Average laboratory CO2 values from hot-start FTP tests using reference 
fuel.  Error bars represent one standard deviation for each data set.  Note the 

expanded axis. 
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Brake-specific emissions of CO are shown in Figure 6.3 with the error bars representing 

one standard deviation for each test day.  Note that there is a 2.3% difference between the 

average for day two and the average for day one.        
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Figure 6.3 Average laboratory CO values from hot-start FTP tests using reference 

fuel.  Error bars represent one standard deviation for each data set.  Note the 
expanded axis. 

The repeatability of the brake-specific total hydrocarbons (THC) and non-methane 

hydrocarbons (NMHC) is shown in Figure 6.4.  Again, the error bars represent one 

standard deviation for each day of testing and the day-to-day variations are below three 

percent.       
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Figure 6.4 Average laboratory emission values from hot-start FTP tests using 

reference fuel. 

As seen from the previous figures, the laboratory is very repeatable and can be 

confidently used for comparison testing. 

 
 

6.2.2 Carbon Balance 
 Fuel consumption of the FTP cycles was determined by carbon-balance, and also 

measured with the positive displacement fuel flow meter.  A comparison of these values 

offeres a basic quality assurance check on gaseous analyzer performance and exhaust 

flowrate measurements.  Figure 6.5 displays the integrated percent difference between 

these two values.  The engine used was a 1992 DDC Series 60 engine.  As one can 

observe from Figure 6.5, the carbon balance yields values that range from-3% to +2% in 

comparison to fuel flow meter.   
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Figure 6.5 EERL Fuel Consumption Percent Difference (consumed vs. recovered) 

The Sequence I 2005 testing had slightly higher fuel recovery numbers.  On average, for 

the five FTPs collected during Sequence I 2005, the laboratory recovered 6.5% more fuel 

then the flow meter reported.  On the contrary, during the August testing, the laboratory 

under recovered almost three percent less fuel than the flow meter measured, on average. 

   

6.3 Sequence I 2005 
 The engine tested was a 1992 Detroit Diesel series 60 engine.  The fuel used was  

federal D2 that was procured locally.  Five FTP cycles were compared (laboratory 

sequence #E00840), and the time aligned averaged data from two independent 

SEMTECH-D systems and MEMS was plotted versus the averaged WVU EERL values. 

6.3.1 NOx Mass Emission Flowrate 
 NOX mass emissions data were compared against two Rosemount 955 CLD 

laboratory grade analyzers.  Figure 6.6 provides a view of the transient behavior of the 

PEMS and the two laboratory analyzers (labeled LAB and LAB2). 
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Figure 6.6 PEMS and laboratory NOx mass emission flowrate traces for FTP 
E00840_01. 

The integrated total mass percent error for SEMTECH#1 reported anywhere from 17-

23% high, while SEMTECH#2 reported 24-29% higher than the laboratory analyzers.  

MEMS error compared to the laboratory ranged from 4.1% to 6.8% higher.  NOX mass 

emission totals for SEMTECH-Ds and laboratory are seen in Figure 6.7.   
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Figure 6.7 Total NOX Mass for Sequence I 2005 testing.  SEMTECH#1 did not 

capture E00840_03.   
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Instantaneous time aligned values for all five FTP’s were averaged for all three portable 

systems, and were plotted against the laboratory data.  A linear regression was calculated 

for each plot and the intercept was forced through zero.  The R2 value was 0.92.  The 

linear regression shows poor correlation.  To produce the comparison plots seen below, 

all five FTP tests were time aligned and each individual data point was averaged and 

plotted against the corresponding reference system value.  Figure 6.8 and Figure 6.9 show 

the time aligned averaged data compared to the laboratory for SEMTECH#1 and 

SEMTECH#2, respectively.  The correlation equation listed (y=1.2) again shows the 

~20% error as calculated.      
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Figure 6.8 Laboratory versus SEMTECH#1 averaged FTP NOX mass emissions 

rate. 
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NOx Mass Flowrate : Averaged Laboratory vs. Averaged 
SEMTECH#2
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Figure 6.9 Laboratory versus SEMTECH#2 averaged FTP NOX mass emissions 

rate. 

Due to a system error, MEMS only captured four of the five FTP cycles.  The test cycles 

recorded were E00840_01, 02, 05, and 06, and the averaged NOX mass emission error for 

these tests was 5.55% compared to the laboratory, with a range of 4.13% to 6.81%.       

 Both SEMTECH-D systems were consistent from test to test.  In order to 

demonstrate this, individual time aligned FTP tests were plotted against each other.  

Figure 6.10 plots the first and second FTP tests against one another to provide a glimpse 

of SEMTECH-D’s repeatability.  The R2 value equals 0.993.  A second test to test 

repeatability plot is included in APPENDIX A Sequence I 2005. The NOX total mass 

emitted coefficient of variation for SEMTECH#1 was 1.32%.    
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Figure 6.10 SEMTECH-D#1 repeatability, FTP 1 versus FTP 2 NOX mass emissions 

rate. 

 

Figure 6.11 shows the repeatability of SEMTECH#2, by plotting the first two FTP tests 

against one another.  The comparison shows good correlation (R2=0.988) and 

demonstrates a tight pattern.  A second set of tests were plotted and included in 

APPENDIX A Sequence I 2005.  The NOX total mass emitted coefficient of variation for 

SEMTECH#2 was 1.27%.    
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Figure 6.11 SEMTECH-D#2 repeatability, FTP 1 versus FTP 2 NOX mass emissions 

rate. 

MEMS’ NOX total mass emitted coefficient of variation is 0.99%, and its repeatability is 

seen in Figure 6.12 .     
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Figure 6.12 MEMS repeatability, FTP 2 versus FTP 6 NOX mass emissions rate. 

 

Table 6.1 compiles the integrated percent differences for all three systems when 

compared to the laboratory.  MEMS performed well averaging over 5% error, while both 

SEMTECH systems were over 20% different.   

Table 6.1 PEMS Integrated NOX Mass Percent Differences Compared to 

Laboratory 

Test Number E00840_01 E00840_02 E00840_03 E00840_05 E00840_06 
System NOX Percent Difference (grams) 
SEMTECH#1 20.4% 23.1% 18.0% 21.5% 20.6% 
SEMTECH#2 27.7% 29.6% 25.0% 26.8% 26.2% 
MEMS 6.7% 4.4% N/A 4.1% 6.8% 
 

6.3.2 CO2 Mass Emission Flowrate 
A sample of a trace from an individual FTP cycle is seen in Figure 6.13.  Both 

SEMTECH-Ds can be seen spiking nearly 40% higher than the laboratory.   
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Figure 6.13 PEMS and laboratory CO2 mass emission flowrate traces for FTP 

E00840_01. 

 

 
The CO2 mass emission totals, as seen in Figure 6.14, were better than those for NOX.  

Cycle specific mass emissions (grams/cycle) of CO2 for both SEMTECH-D units were 

within 13% of the EERL for an integrated FTP cycle.  The error associated with 

SEMTECH#1 ranged from 8-13% higher compared to the laboratory, while 

SEMTECH#2 was anywhere from 6-11% higher.  The same test to test repeatability is 

again evident for both the laboratory analyzer and both SEMTECH-Ds.   
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Figure 6.14 CO2 mass emission totals for Sequence I 2005 testing.  E00840_03 was 
not captured by SEMTECH#1. 

Figure 6.15 shows the averaged CO2 mass emission flowrate values for the laboratory 

versus the average CO2 mass emission flowrate values for SEMTECH#1.  R2 is equal to 

0.88. 
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Figure 6.15 Laboratory versus SEMTECH#1 averaged FTP CO2 mass emissions 

rate. 
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Figure 6.16 provides a view of the averaged laboratory CO2 mass emission flowrate 

values versus the corresponding averaged SEMTECH#2 values.  Correlation is poor, with 

the R2 value equal to 0.88 for the trend line.    
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Figure 6.16 Laboratory versus SEMTECH#2 averaged FTP CO2 mass emissions 

rate. 

To show the consistency of the PEMS, the following system specific test versus test plots 

were included: Figure 6.17 and APPENDIX A Figure 9.5 that are repeatability plots for 

SEMTECH#1, while Figure 6.18 and APPENDIX A Figure 9.6 are for SEMTECH#2.   
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Figure 6.17 SEMTECH-D#1 repeatability, FTP 1 versus FTP 2 CO2 mass emissions 

rate. 

 

SEMTECH-D#1 had a coefficient of variation of 3.74% for total CO2 mass emissions. 
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Figure 6.18 SEMTECH-D#2 repeatability, FTP 1 versus FTP 2 CO2 mass emissions 

rate. 

Both systems prove to be repeatable with R2 values equal to 0.99.  The CO2 total mass 

emission coefficient of variation was 1.63% for SEMTECH-D#2.  Figure 6.19 shows the 

repeatability of MEMS.  The first two FTP tests collected were plotted against each other 

and a regression line is included that shows poor conformity to a 45 degree line.      
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Figure 6.19 MEMS repeatability, FTP 1 versus FTP 2 CO2 mass emissions rate. 

 

 
The CO2 total mass coefficient of variation was 0.71% for MEMS.  Table 6.2 shows the 

individual percent differences of total CO2 mass for each system.  Each individual PEMS 

calculated CO2 mass emission value was time aligned with the laboratory and integrated.  

Then the percent difference (compared to the laboratory) in total CO2 mass emitted was 

calculated.   As noted before, MEMS failed to record valid data for E00840_03.       

Table 6.2 CO2 Integrated Percent Differences Compared to Laboratory 

Test Number E00840_01 E00840_02 E00840_03 E00840_05 E00840_06 
System CO2 Percent Difference (grams) 
SEMTECH#1 12.4% 9.1% 8.6% 9.2% 10.0% 
SEMTECH#2 11.3% 8.8% 6.9% 5.9% 9.5% 
MEMS -0.3% 2.4% N/A -1.1% -0.9% 

6.3.3 Exhaust Flowrate 
The inferred standard exhaust flowrate, calculated from the laboratory data, was 

compared to the measurements from both SEMTECH-Ds.  Since the NOX mass emission 
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flowrate numbers for both SEMTECH-Ds were at least 20% in error, one would expect 

the exhaust flowrate values may account for the error.  This was not exactly the scenario.    

SEMTECH#1 had an integrated difference ranging from 5-8.7% high compared to the 

laboratory’s inferred flowrate, while SEMTECH#2 varied from 11% to 14% higher when 

compared to the laboratory.  Figure 6.20 illustrates the total volume of exhaust measured 

for each system.  Both SEMTECH-D systems report higher totals for every transient FTP 

cycle collected. 
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Figure 6.20 Exhaust volumetric totals from Sequence I 2005 testing.  SEMTECH#1 

did not capture FTP E00840_03. 

Flowrate comparisons to the laboratory for both SEMTECH-D systems shows slightly 

scattered behavior for both EFMs.  Figure 6.21 and Figure 6.22 show plots of inferred 

flowrate (laboratory) against the flowrate measured by the SEMTECH-D units. 
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Figure 6.21 Laboratory versus SEMTECH#1 averaged FTP exhaust flowrate. 
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Figure 6.22 Laboratory versus SEMTECH#2 averaged FTP exhaust flowrate. 
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While comparing the SEMTECH-D flowrates to one another, one can see that 

SEMTECH#2 is consistently 50 SCFM higher than SEMTECH#1 when the flowrate is 

below 200 SCFM.  Yet, when the flowrate is above 200 SCFM the two systems correlate 

very well.  This discrepancy is not as clear when viewing the emission flowrate traces 

seen earlier (Figure 6.6&Figure 6.13).  This can be observed in Figure 6.23, which 

contains a portion of the plot of multiple SEMTECH#1, SEMTECH#2, and WVU EERL 

exhaust flowrate traces.  The first two tests collected for all three systems are included in 

this plot, and SEMTECH#2 behaves the same in both traces.  This shows that the EFM 

for SEMTECH#2 is improperly zeroing its low end transducers.  This could explain the 

larger NOX mass emission errors reported by SEMTECH#2.     
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Figure 6.23 Multiple system exhaust flowrate trace. 

Table 6.3 shows the error associated with exhaust flowrate measurement compared to the 

laboratory intake air plus fuel flow.  As expected, SEMTECH#2 totaled larger errors than 

SEMTECH#1, due to the poor behavior at lower flow rates. 
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Table 6.3 Exhaust Flowrate Integrated Percent Differences. 

Test Number E00840_01 E00840_02 E00840_03 E00840_05 E00840_06 
System Exhaust Flowrate Percent Difference (SCF) 
SEMTECH#1 7.8% 7.8% 5.3% 7.7% 8.1% 
SEMTECH#2 13.2% 13.2% 10.9% 11.1% 11.6% 
MEMS -0.3% 2.4% N/A -1.1% -0.9% 
 

6.3.4 Steady State Test 
One steady state test was conducted when both SEMTECH-D systems were available.  

The test was a seven-mode test consisting of engine speeds ranging from 600-1650 rpm.  

Table 6.4 provides percent errors for NOX and CO2 mass emissions rates and exhaust 

flowrate errors compared to the laboratory for all three PEMS.    

Table 6.4 Sequence I 2005 steady-state test errors compared to the laboratory. 
NOx Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Average 
SEMTECH#1 51.27% 16.74% 27.98% 18.46% 13.04% 14.99% 15.10% 22.51%
SEMTECH#2 54.09% 8.47% 31.26% 21.53% 7.65% 22.59% 13.34% 22.71%
MEMS -5.44% -1.54% 4.02% -1.26% 0.97% -2.82% -2.92% -1.28%
CO2 Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Average 
SEMTECH#1 37.42% 6.56% 19.71% 9.10% 5.54% 7.72% 7.23% 13.33%
SEMTECH#2 41.05% -0.02% 23.47% 11.45% -1.10% 13.03% 5.32% 13.32%
MEMS -15.52% -7.39% -0.08% -5.74% -7.20% -10.50% -8.98% -7.91%
Ex. Flowrate Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Average 
SEMTECH#1 33.92% 12.91% 24.93% 15.66% 28.33% 12.62% 12.19% 20.08%
SEMTECH#2 40.00% 5.79% 28.59% 18.36% 20.55% 18.16% 9.91% 20.20%
MEMS -13.18% 0.04% 5.96% 0.89% 13.47% -4.80% 15.05% 2.49%

 

6.3.4.1 NOX Mass Emission Flowrate 
Figure 6.24 shows the three PEMS time aligned with the laboratory.  Both SEMTECH-D 

systems are consistently higher than the laboratory, with an average error for all modes 

being 22.5% and 22.7% for SEMTECH#1 and SEMTECH#2, respectively.  The MEMS 

average percent difference is -1.3% for all modes.  Both SEMTECH-D systems are in 

agreement with one another, yet reporting drastically different values against the 

laboratory.  This leads the author to believe that the SEMTECH-D units may have a 

problem that was not unique to the WVU-owned unit.     
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Figure 6.24 Steady state NOX mass emission flowrate. 

6.3.4.2 CO2 Mass Emission Flowrate 
In Figure 6.25 the CO2 mass emission flowrate is time aligned with respect to the 

laboratory.  Both SEMTECH-D systems average about 13.3% higher readings than 

reported by the laboratory, while MEMS is 7.9% under the laboratory.  Again, both 

SEMTECH-Ds are in agreement, yet nearly 14% different than the laboratory.      
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Figure 6.25 Steady state CO2 mass emission flowrate. 

6.3.4.3 Exhaust Flowrates 
Figure 6.26 is a plot of the integrated exhaust flowrate from each system.  SEMTECH#1 

and SEMTECH#2 average 20.6% and 21.2% error compared to the laboratory, 

respectively, and MEMS averages 5.3% higher than the laboratory.   
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Figure 6.26 Exhaust volumetric flowrate. 
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Between modes two and three, SEMTECH#2 does not change exhaust flow rates.  A 

glimpse of the raw file shows the flowrate dip at the end of mode two, then return to the 

same flowrate for mode three.  SEMTECH#2 error during mode two was ~6% and the 

error during mode three was ~29%.  Figure 6.27 shows this behavior.  This phenomenon 

explains the poor correlation CO2 mass emissions rate for SEMTECH#2 between modes 

two and three, when the laboratory drops in flowrate and SEMTECH#2 actually rises.  

The same occurrence is visible in the NOX plot (Figure 6.24) where the laboratory drops 

and SEMTECH#2 gradually increases (SEMTECH#2: 8% error mode 2 to 31% error 

mode three) and in the CO2 mass emissions rate (SEMTECH#2: -0.2% error mode 2 to 

23% error mode 3). 
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Figure 6.27 SEMTECH-D raw steady-state exhaust flow rate traces.  
 

6.4 Sequence II 2006 
Multiple FTP cycles were captured over four test days.  Day one, five tests were 

performed.  Days two and three both consisted of six hot-start FTP tests, while day four 

captured four tests.  The third day was broken into two parts, Day 3 and Day3X2, with 

both parts consisting of three hot start FTP tests.  Data were kept separate because Day 3 

was in the morning and Day3X2 was in the evening.  

 
   Mode 2               Mode 3 
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6.4.1 NOX Mass Emission Flowrate 
Figure 6.28 shows mass emissions (grams/cycle) averaged totals for each system and 

each individual day’s tests.  Error bars on the plot represent the standard deviation for 

each system and each day of testing.   Percent differences are calculated using the 

laboratory as the reference [Equation 3.11].  The largest standard deviation occurred on 

Day 2 and was equal to 4.4 grams.  Day3X2 error was largest for testing period and equal 

to 16.9%.    
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Figure 6.28 Average NOX mass emission totals.  Error bars represent one standard 

deviation for each day of testing.  Percent difference calculation made using 
Laboratory as standard. 

 

6.4.2 CO2 Mass Emission Flowrate 
Figure 6.29 contains averaged CO2 mass emitted totals for each day during Sequence II 

2006.  Again, Day 1and 2 are both comprised of six hot start FTP tests, while Day 3 and 

Day3X2 have three tests and Day 4 has four tests.  SEMTECH-D totals are clearly higher 

for each test day. 
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Figure 6.29 Average CO2 mass emission totals.  Error bars represent one standard 

deviation for each day of testing.  Percent difference calculations made using 
Laboratory as reference. 

6.4.3 CO Mass Emission Flowrate 
Figure 6.30 contains average CO totals for each day during Sequence II 2006 testing.  

Due to calibration errors, Day 1 values are invalid for the laboratory.  As one can see 

from the plot, the SEMTECH is consistently ~20% higher than the laboratory.   
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Figure 6.30 Average CO mass emission totals.  Error bars represent one standard 

deviation for each day of testing.  Percent difference calculations made using 
Laboratory as reference. 
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6.4.4 HC Mass Emission Flowrate 
Figure 6.31 includes the average HC totals for the various days of testing along with error 

bars.  Fuels used for individual days were not documented to explain the variations day-

to-day of the laboratory. 

0.0

1.0

2.0

3.0

4.0

5.0

6.0

HC
 (g

ra
m

s/
cy

cl
e)

SEMTECH-D 4.51 5.30 5.46 4.75 4.18

LAB 3.16 4.37 4.42 3.77 3.66

Percent Difference 42.77% 21.37% 23.57% 26.02% 14.15%

Day 1 Day 2 Day 3 Day 3X2 Day 4

 
Figure 6.31 Average HC mass emission totals.  Error bars represent one standard 

deviation for each day of testing.  Percent difference calculations made using 
laboratory as reference. 

6.4.5 Exhaust Volumetric Flowrate 
Figure 6.32 represents the exhaust flowrate data for Sequence I 2006 testing.  As 

mentioned before, the laboratory flowrate is a calculated value from intake air and 

fueling.   
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Figure 6.32 Average exhaust volumetric flowrate totals.  Error bars represent one 
standard deviation for each day of testing.  Percent difference calculations made 

using Laboratory as reference. 

 

 

6.5 Sequence III 2006 
The testing conducted during May 2006 provides WVU EERL and SEMTECH-D data.  

Mass emission comparisons match what has previously been reported, and the following 

provides a good overview of what was observed.  Table 9.3 in APPENDIX A compiles 

all measured gas constituents and exhaust flowrate measurement percent differences for 

SEMTECH-D. 

6.5.1 NOx Mass Emission Flowrate 
This test showed typical erroneous results that came from FTP test E01118_01.  One can 

observe that SEMTECH-D matches well at lower flowrates (<0.12g/s), and strays at 

higher flowrates (>0.12g/s), see Figure 6.33.  This fact is quite apparent when examining 

the integrated error.  At mass emission flowrates below 0.12 g/s the average difference of 

the SEMTECH-D to the laboratory analyzers is ~4%.  On the other hand, at mass 

emission rates greater than 0.12 g/s the average difference is ~21%.  These differences 

can be explained once the exhaust flowrate plot is viewed, see Figure 6.34.  In this plot 

the exact opposite occurs, the SEMTECH-D under estimates the flowrate at steady state 

operation, and correlates well during transient events.   
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Figure 6.33 FTP E01118_01 NOX mass emissions rate plot segment. 

Further, Figure 6.33 shows the phenomenon of the SEMTECH NOX mass emission 

flowrate straying by nearly 25% higher than the laboratory analyzers during highly 

transient events.  In Figure 6.34 the SEMTECH-D is nearly 50% under measuring the 

exhaust flowrate, compared to the laboratory, during idle conditions and correlates well 

during transient events.  For the complete test, the SEMTECH-D total exhaust volume is 

1% higher than the laboratory.          
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Figure 6.34 Segment of Exhaust Flowrate for FTP E01118_01. 
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Figure 6.35 System agreement for FTP Sequence E01118 NOX mass emissions rate. 

Two complete sets (three consecutive hot starts) of FTP tests were averaged and the 

statistics are included in Figure 6.36.  The differences seen for the two test sequences 

collected were 22.4% higher and 19.2% higher than the laboratory.     
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Figure 6.36 Average NOx mass emission totals.  Error bars represent one standard 

deviation for each day of testing.  Percent difference calculations made using 
Laboratory as reference. 

 

As mentioned in the Section 5, there are several ways to calculate the mass emission 

rates.  The SEMTECH-D allows the user to choose either the exhaust flowrate or the fuel 

flowrate method.  For FTP E01118_01, both methods were used and compared to the 

laboratory, as seen in Figure 6.37.  The difference compared to the laboratory for the fuel 

flowrate method was 21.3% and 19.3% different from each NOX laboratory analyzers 

(LAB and LAB2).  In comparison, the exhaust flowrate method yielded differences of 

19.6% and 17.6%, respectively.   



 

 67

-0.01

0.09

0.19

0.29

0.39

0 50 100 150 200 250 300

Time (sec)

NO
x 

M
as

s 
Fl

ow
ra

te
 (g

/s
)

SEMTECH
LAB
LAB2

 

Figure 6.37 Segment of E01118_01 NOx plot with SEMTECH mass emissions 
calculated using ECU fuel flowrate.  Complete test shown in Appendix A Figure 9.8. 

The same 300 seconds of the FTP cycle that was examined in Figure 6.33 is seen in 

Figure 6.37.  In Figure 6.37 SEMTECH behaves well during the transient events (that is, 

between 0-100 seconds), yet settles nearly 50% higher than the laboratory during steadier 

portions of the cycle (that is, 100-200 seconds).  This behavior could possibly be 

explained by the difference in characteristics of the test fuel and the fuel used by the 

manufacturer to generate the engine maps for the ECU.  

6.5.2 CO2 Mass Emission Flowrate 
Figure 6.38 shows carbon dioxide traces from a typical test.  For the FTP presented, the 

SEMTECH-D over predicted by 14%, when compared to the laboratory.  It appears that 

the majority of the error is contributed by the higher mass emission rate portions of the 

cycles (>30 g/s).  It should be noted that this is also the region where SEMTECH-D NOX 

readings deviated by nearly 50% from laboratory readings (Section 6.5.1).   
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Figure 6.38 Segment of FTP E01118_01 CO2 mass emission plot.  Complete plot 

shown in APPENDIX A Figure 9.9. 

Data (grams/cycle) for CO2 are shown in Figure 6.39.  For both sets of three hot starts, 

SEMTECH-D reported 15% higher CO2 mass emitted than the laboratory. 
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Figure 6.39 Average CO2 mass emission totals.  Error bars represent one standard 

deviation for each day of testing.  Percent difference calculations made using 
Laboratory as reference. 
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The averaged values from the three E01118 hot starts are plotted against the 

corresponding averaged laboratory values in Figure 6.40 to show system agreement.  The 

plot shows a high bias associated with the SEMTECH-D results. 
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Figure 6.40 System agreement for FTP Sequence E01118 CO2 mass emissions rate. 

 

6.5.3 CO Mass Emission Flowrate 
A segment of FTP E01118_01 CO comparison plot is seen in Figure 6.41.  Once again, 

SEMTECH-D reported twice the flowrate as measured by the laboratory at the peaks. 
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Figure 6.41 Segment of CO mass emission comparison for FTP E01118_01.  

Complete plot shown in Appendix A Figure 9.9. 
Figure 6.42 contains sequence E01118 averaged laboratory CO mass emissions rate 

versus the SEMTECH-D output.  
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Figure 6.42 System agreement for FTP Sequence E01118 CO mass emissions rate. 
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Figure 6.43 contains the statistics for both test sequences captured during Sequence II 

2006.  CO measurements were poor for both sequences and resulted in differences over 

30%. 
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Figure 6.43 Average CO mass emission totals.  Error bars represent one standard 

deviation for each day of testing.  Percent difference calculations made using 
Laboratory as reference. 

 

6.5.4 HC Mass Emission Flowrate 
SEMTECH-D HC measurement was highly erroneous compared to the laboratory during 

this testing period and can be seen in Figure 6.44. 
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Figure 6.44 Segment of HC mass emission comparison for FTP E01118_01. 

The laboratory HC mass flowrate versus SEMTECH-D HC mass flowrate plot produces a 

scattered plot seen in Figure 6.45.  The R2 coefficient was 0.77. 
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Figure 6.45 System agreement for FTP Sequence E01118 HC mass emissions rate. 
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Sequence E01118 and E01133 both experienced very high errors. 
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Figure 6.46 Average HC mass emission totals.  Error bars represent one standard 

deviation for each day of testing.  Percent difference calculations made using 
Laboratory as reference. 

 

6.5.5 Exhaust Flowrate 
The exhaust flowrate plot corresponding to the above mentioned test is shown below.  

SEMTECH-D aligns very well with the calculated flowrate from the laboratory.  As a 

reminder, the laboratory exhaust flowrate was calculated using intake air and fuel 

consumed as reported by the laboratory flowmeter. 
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Figure 6.47 Segment of FTP E01118_01 exhaust flowrate plot.  Complete trace 

shown in APPENDIX A Figure 9.13 

Shown in Figure 6.48 is the average laboratory exhaust volumetric flowrate versus the 

SEMTECH-D EFM exhaust flowrate.  The agreement between the two systems is quite 

good, having an R2 value equal to 0.98.   
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Figure 6.48 System agreement for FTP Sequence E01118 exhaust flowrate. 
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Due to the nature of the calculation, the laboratory trace does not show the pulsating 

behavior of the exhaust as observed by the SEMTECH-D.  This stems from the 

laboratory flowrate being determined with a laminar flow element at the engine intake, 

which is steadier than the actual exhaust.  In this particular test, the SEMTECH-D is 

1.0% higher then the laboratory in an integrated comparison.  Over the course of the three 

above mentioned FTP cycles, the SEMTECH-D averaged 2.1% difference from 

integrated laboratory values.  This is significantly better than results of previous testing 

periods (Section 6.4.5), where errors when compared to the laboratory averaged 6-8%.  

Figure 6.49 provides total volumes of exhaust reported by both systems.       
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Figure 6.49 Average exhaust volumetric totals.  Error bars represent one standard 

deviation for each day of testing.  Percent difference calculations made using 
laboratory as reference. 
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6.6 Sequence IV 2006 
In early August, 2006 the SEMTECH-D and EFM were sent back to Sensors, Inc for a 

complete system check.  The following note was received from the manufacturer upon 

receipt of the unit: 

 

The coalescing filter (inside the clear bowl) was wet with raw diesel fuel.  It was 

also found in the FID bypass line, and some of the in-line particulate filters.  It is 

unusual to get raw fuel in the system during vehicle testing, but can occur during 

test cell work where the engine can be forced to operate outside normal 

conditions.  It can also happen if there is post-injection that fails to ignite a 

particulate trap.  Any idea how or when this may have occurred?  Once raw fuel 

is in the sample system, it can damage the optical gas analyzers (it cannot be 

separated out of the sample like water).  This may have caused damage to the 

NDUV optics in particular.   

  

Also, some of the pressure ports in the averaging pitot tube were completely 

plugged with soot when the unit arrived, and this caused the initial audit to fail by 

4% overall (high).  We were able to blow the lines back out, and readings were 

then within spec.  The lines should be backpurged after every test using the 

automated function on the control box.  You just need to apply dry compressed 

air or N2 and press the button.  Do you know how often the operators did this?  

Also on the EFM tube, some of the stainless pressure tubing was bent 

considerably, and about 6" of the the flexible pressure lines had been pulled 

through the bulkhead where they attach.  We trimmed back the extra exposed 

line to prevent damage and installed new compression fittings.   

 

Prior to the SEMTECH being shipped back to WVU in mid-August the following update 

was provided the manufacturer: 
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The NDUV repairs were completed, and the SEMTECH has been fully tested and 

will ship back to you on Monday.  The new EFM firmware with pulsation 

compensation is also complete and programmed into your EFM control box 

 

On August 17, 2006, the SEMTECH-D was reinstalled into the EERL.  Fuel certification 

testing was scheduled to begin the next day.  A total of twelve FTP tests (3 warm and 9 

hot) were conducted over the next two days.   

6.6.1 Test Setup/Procedure 
 The test setup was the same as previously used in the engine laboratory.  The flow 

tube was mounted in the exhaust tube before the sample reaches the dilution tunnel.  The 

Sensors, Inc. specified SEMTECH setup procedure was followed including a leak check 

before the initial test, filters were changed, analyzers zeroed/spanned, and EFM purged.  

Two separate methods were used for calibrating the analyzers.  For the E01357 test 

sequence, zero and span gases were fed into the front of the unit through the zero and 

span ports.  For the following two test sequences, the calibration was performed using a 

flooded probe.  The calibration gases were fed into a tee joint that was connected to a 

two-way valve.  The pressurized gas escaped the tee to ambient conditions, while the 

heated line drew in a necessary sample. 

 Following the testing, a check was performed to verify the concentration of the 

calibration gases.  After the system was calibrated, an ‘audit’ was performed on the 

NDUV analyzer.  Two different gas bottles of different concentrations were 

independently fed through the heated line.  The span gases used for this testing were 

1728ppm NO, and 256ppm NO2, while the audit gases were 503.9ppm NOX and 

994.9ppm NOX.  The following test was performed: 

 

 

 

 

 



 

 78

Table 6.5 Audit Test 

Time (sec) Test Gas (ppm) 
60 Ambient 
60 994.9 NOX 
60 Ambient 
60 503.9 NOX 
30 Ambient 
30 994.9 NOX 
30 Ambient 
30 503.9 NOX 
30 Ambient 
30 1728 NO 
30 Ambient 
30 256 NO2 
~8 Ambient 

     

Results from the audit test are shown in Figure 6.50.  It is evident that the SEMTECH-D 

performed very well. 
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Figure 6.50 Calibration Verification Test 

 



 

 79

6.6.2 Results 
Table 6.6 provides percent differences for all gas constituents, and the exhaust flowrate 

for all FTP tests which were conducted in Sequence IV 2006.  Results from this series of 

tests are very similar to data generated in Sequences II and III.  Complete plots are 

available in APPENDIX A.  Table 6.6 combines all gaseous and exhaust flowrate data 

from Sequence IV.   

Table 6.6 Sequence IV 2006 Percent Differences Compared to Laboratory. 

 NOx1 NOx2 CO2 CO HC Ex. Flowrate 
Test Number (grams) (grams) (grams) (grams) (grams) (SCF) 
8/18/06    E01357_02 17.2% 18.7% 11.6% 29.9% 58.6% 4.2% 

E01357_03 17.3% 17.4% 11.6% 30.1% 78.3% 4.9% 
E01357_04 18.2% 19.3% 12.2% 31.2% 61.5% 4.6% 

Average 17.6% 18.5% 11.8% 30.4% 66.1% 5.2%
E01361_02 16.1% 17.4% 12.7% 29.2% 42.2% 5.5% 
E01361_03 17.2% 18.2% 13.0% 28.4% 73.1% 5.6% 
E01361_04 18.9% 19.9% 12.7% 29.7% 45.3% 5.6% 

Average 17.4% 18.5% 12.8% 29.1% 53.5% 6.2%
8/19/06    E01368_02 17.6% 19.3% 12.8% 25.2% 44.2% 5.6% 

E01368_03 18.7% 20.2% 12.8% 27.0% 19.4% 5.7% 
E01368_04 17.1% 18.4% 12.1% 26.1% 40.0% 3.7% 

Average 17.8% 19.3% 12.6% 26.1% 34.5% 5.6%
 

6.6.2.1 NOx Mass Emission Flowrate 
 As mentioned earlier, the NOx values were very similar to the results of 

sequences II and III.  Results of hot start E01361_03 were representative of the majority 

of tests, so plots from only this test are presented here.  This particular test had NOX 

errors of 17.18% and 18.17% from the two laboratory NOX analyzers.     

 A close up of the first three hundred seconds reveals that the SEMTECH-D was 

overshooting for every transient event, as seen in Figure 6.51.  Previously, this fact was 

written off as engine pulsation resulting from being in a test cell, and having fewer pipe 

restrictions.  The new firmware for the EFM was supposedly the fix for this problem.   
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Figure 6.51 Segment of FTP E01361_03 NOX mass emission flowrate plot.  Complete 

plot seen in APPENDIX A Figure 9.14. 

Figure 6.52 provides statistics from all FTP tests conducted during Sequence IV (Note the 

expanded y-axis).  The SEMTECH-D averaged 17.6% more NOX than the laboratory.   
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Figure 6.52 Average NOX mass emission totals.  Error bars represent one standard 

deviation for each day of testing.  Percent difference calculations made using 
laboratory as reference. 
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6.6.2.2 CO2 Mass Emission Flowrate 
The NDIR performance was slightly worse than previous test days.  Test E01361_03 had 

an integrated percent error of 13.01% for a twenty minute FTP.  However, the average for 

the three E01361 tests was 12.8% error.       
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Figure 6.53 Segment of FTP E01361_03 CO2 mass emission plot.  Complete plot 

seen in APPENDIX A Figure 9.16. 
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Figure 6.54 Average CO2 mass emission totals.  Error bars represent one standard 

deviation for each day of testing.  Percent difference calculations made using 
laboratory as reference. 
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6.6.2.3 CO Mass Emission Flowrate 
Carbon monoxide numbers were typical of what has already been seen in Sequence II and 

III.  Figure 6.55 provides a glimpse of the overshooting experienced by the SEMTECH-

D.   
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Figure 6.55 Segment of FTP E01361_03 CO mass emission plot.  Complete plot seen 

in APPENDIX A Figure 9.18. 

 
SEMTECH-D consistently averaged over 26% error for the nine FTP tests collected, as 

seen in Figure 2.1. 
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Figure 6.56 Average CO mass emission totals.  Error bars represent one standard 

deviation for each day of testing.  Percent difference calculations made using 
laboratory as reference. 

6.6.2.4 HC Mass Emission Flowrate 
Hydrocarbon measurements were very inconsistent during this period, having a range of 

differences of 34% to 67%.  Figure 6.57 shows a segment of the HC trace for FTP 

E01361_03.  SEMTECH-D can be seen to exceed the laboratory for every data point. 
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Figure 6.57 Segment of FTP E01361_03 HC Plot.  Complete plot seen in  
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APPENDIX A Figure 9.19. 

Figure 6.58 provides the statistics for HC during Sequence IV.   
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Figure 6.58 Average HC mass emission totals.  Error bars represent one standard 

deviation for each day of testing.  Percent difference calculations made using 
laboratory as reference. 

6.6.2.5 Exhaust Flowrate 
Figure 6.59 shows the SEMTECH-D EFM exhaust flowrate measurement behavior 

compared to the laboratory.  Again, transient events are captured precisely, while steady 

state events are inaccurate.  



 

 85

0

100

200

300

400

500

600

700

800

900

0 50 100 150 200 250 300

Time (sec)

E
xh

au
st

 F
lo

w
ra

te
 (S

CF
M

)

SEMTECH
Lab

 
Figure 6.59 Segment of FTP E01361_03 exhaust flowrate plot.  Complete plot seen 

in APPENDIX A Figure 9.20. 

During Sequence IV exhaust flowrate was both consistent and accurate, as seen in Figure 

6.60.  SEMTECH-D on average is 5% higher than the laboratory flowrate, which is 

slightly worse than Sequence III. 
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Figure 6.60 Average exhaust volumetric totals.  Error bars represent one standard 

deviation for each day of testing.  Percent difference calculations made using 
laboratory as reference. 

 
 

6.7 Additional Findings 
 The second-by-second SEMTECH-D NOX mass emission flowrate percent error 

was examined for a few FTP cycles.  In particular, the error occurring during the three 

NTE periods of the FTP was studied.  It was discovered that the average SEMTECH-D 

NTE region error was 4-6% less than the error for the entire 20 minute test.  This 

occurrence can be observed in Table 6.7.  The three errors listed for each test are the NOX 

total mass error for each NTE operation sequence.  Region 1 consists of 57 data points, 

while regions two and three contain 39 and 52 values, respectively.    

Table 6.7 SEMTECH-D NTE Region NOX Error 

 NTE Region Percent Error FTP Total Error 
TEST 1 2 3  

E01039_02 8.81% 9.08% 9.32% 15.83% 
E01133_01 15.14% 13.11% 24.62% 18.49% 
E01133_02 13.08% 13.94% 14.78% 19.62% 
E01133_03 13.74% 12.97% 12.35% 19.45% 
E01357_01 11.53% 10.96% 10.75% 17.40% 

 
The three NTE regions from cycle E01357_01 are plotted in Figure 6.61.  While in the 

NTE zone, the changes in engine speed and torque are fairly low from point to point.  
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The largest ‘instantaneous’ engine speed change is 70 rpm, which occurs in region three.  

One could argue that this is almost steady operation, and could explain the better 

performance of the unit accordingly.      
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Figure 6.61 FTP NTE engine operating region and NTE segments from FTP 
E01357_01. 
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7 Conclusions and Recommendations 

7.1 Overview 
 The main objective of this study was to qualify SEMTECH-D as a viable system 

for the measurement of emissions from heavy-duty diesel engines while ‘in-use’.  

Numerous test cell comparisons have been collected over the course of ten months to 

develop an understanding of the transient behavior of the SEMTECH-D.  Over this time, 

four different testing periods were utilized, each providing multiple FTP comparisons.   

7.2 Conclusions 
 When the performance of the SEMTECH-D was questioned, the logical method 

of gauging its performance was to capture numerous tests and compare it to a proven 

reliable and consistent system; the West Virginia University Engine and Emission 

Research Laboratory.  From this ten month study, the WVU owned SEMTECH-D total 

NOx mass emission from a twenty minute FTP has averaged differences of 16%-23% for 

a series of three consecutive FTP cycles.  The SEMTECH-D borrowed from Cummins, 

Inc. had total errors as high as 29% different from the laboratory for a single FTP.  

Carbon Dioxide has seen averaged percent differences of 8%-15% for a series of three 

consecutive FTP cycles.  Carbon monoxide has a larger error range of 20%-36% average 

difference for a set of three consecutive FTP cycles, and HC repeatability is the poorest 

averaging as low as 20% difference to over 80% error.  Exhaust flowrate measurements 

averaged ranges anywhere from 2% to 8% higher than the laboratory.  (Noting that the 

laboratory flowrate is derived from intake air and fueling.)  The borrowed SEMTECH 

averaged 12.0% different from the laboratory during the 2005 testing sequence.   

 The SEMTECH-D repeatability from day to day and month to month was good.  

During the first testing period, when two SEMTECH-D units were in line, gaseous 

emissions results were consistent from system to system.  Over the six FTP cycles 

collected the two units were within 6% of one another for NOX and there was less than 

0.1% variation for CO2 (HC and CO both within 10%).  Sequence II NOX and CO2 

variations were both under 3% for different tests series with the same fuel (CO was 17% 

and HC was 21%).  Variations during Sequence III for NOX and CO2 were 7% and less 

than 1%, respectively.  For Sequence IV NOX maximum variation from day-to-day was 
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under 2% and CO2 variation for the same set of tests was less than 1% (HC was 25% and 

CO was 4%).    

 The testing and comparisons presented in the previous pages provide a glimpse of 

typical behavior of a SEMTECH-D.  Yet, the root cause of these errors is unknown.  The 

performance of the West Virginia University EERL need not be questioned; therefore, 

the erroneous system is the SEMTECH-D. 

 Given the aforementioned comparisons against laboratory analyzers, quality 

assurance protocols must be established to provide checks and balances for a PEMS.  It is 

known that many organizations that purchase a PEMS do not have the capability to run 

quality assurance tests to verify data and system robustness.  Thus, users could be 

measuring and reporting emissions and be unaware of error in the collected data.  Since 

PEMS will be used for compliance purposes and possibly to compliment engine 

certification tests, it is imperative that procedures outlined in Part 1065 be strictly 

followed. 

7.3 Recommendations 
CFR Part 1065 should include a quality assurance schedule, so when PEMS users 

report measurements, uncertainty statistics can be included.   

After completing this study, the one comparison that was not captured was a raw 

versus raw comparison.  West Virginia University has recently completed the verification 

and checking of a laboratory grade raw system and a testing day was not possible due to a 

full laboratory schedule.  This comparison will verify the performance of just the 

analyzers, rather than compounding the error of flow measurement and/or dilution air 

ratio to a possible analyzer error. 
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9 APPENDIX A 

9.1 Sequence I 2005 

Table 9.1 Complete Statistics from Sequence I, 2005 
NOx  semtech1 semtech2 MEMS lab CO2 semtech1 semtech2 MEMS lab 
E00840_01 138.6481 147.2368 132.8403 116.1992 E00840_01 14419.52 14268.37 13547.49 12958.34
E00840_02 142.7034 150.374 131.327 117.0191 E00840_02 14039.05 14001.87 13654.78 12974.88
E00840_03 138.0791 146.2173   116.9492 E00840_03 13044.14 13812.64   12934.94
E00840_05 140.7253 146.0644 130.6772 116.3336 E00840_05 14100.22 13663.71 13546.63 13029.53
E00840_06 139.3399 145.9218 133.5021 116.4472 E00840_06 14080.29 13985.94 13419.65 12915.48
average 139.8992 147.1629 132.0867 116.5897 average 13936.64 13946.51 13542.14 12962.63
stdev 1.853179 1.867996 1.308319 0.371486 stdev 521.4449 226.9978 96.16291 43.68554
COV 1.324654 1.269339 0.990501 0.318627 COV 3.741539 1.627632 0.710101 0.337011
error 19.99% 26.22% 5.38%   error 7.51% 7.59% -1.18%   
Ex. 
Flowrate semtech2 semtech1  lab CO semtech1 semtech2  lab 
E00840_01 384166.9 364675.3  337620 E00840_01 120.4712 95.86052  74.00154
E00840_02 385683.1 366599.5  338663.1 E00840_02 94.89514 92.76072  71.59715
E00840_03 384763.4    345621.1 E00840_03 94.30919 87.08189  70.82733
E00840_05 381929 369250.9  342077.7 E00840_05 95.75463 92.07213  71.42055
E00840_06 384440 371304.7  342720.8 E00840_06 92.59488 87.56553  68.92035
Average 384196.5 367957.6  341340.6 average 99.605 91.06816  71.35338
Stdev 1390.391 2915.103  3231.989 stdev 11.72169 3.708038  1.82161
COV 0.36% 0.79%  0.95% COV 11.76817 4.071718  2.552941
Error 12.56% 7.80%    error 0.395939 0.276298    
HC semtech1 semtech2  lab      
E00840_01 4.68997 4.91377  2.61391      
E00840_02 4.63504 5.49071  2.70996      
E00840_03 4.62498 4.45479  2.72068      
E00840_05 3.9546 3.98821  2.42005      
E00840_06 4.2341 4.50762  2.45178      
average 4.427738 4.67102  2.583276      
stdev 0.320936 0.563583  0.141245      
COV 7.248304 12.06553  5.467686      
error 0.714001 0.808177         

 

9.1.1 NOx 
The time aligned data traces from all systems are included in Figure 9.1. 
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Figure 9.1 Time Aligned Data from Multiple PEMS 

 

SEMTECH#1 and SEMTECH#2 repeatability is seen in the following figures. 
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NOx: SEMTECH#1 FTP 2 vs. SEMTECH#1 FTP 6
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Figure 9.2 Test To Test Variability of SEMTECH-D#1 

NOx: SEMTECH#2 FTP 2 vs. SEMTECH#2 FTP 6
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Figure 9.3 Test To Test Variability of SEMTECH-D #2 



 

 97

Test E00840_01 didn’t match well with other tests, yet the integrated error wasn’t the 

highest for MEMS.  The following figure shows this behavior. 

 

NOx: MEMS FTP 1 vs. MEMS FTP 2
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Figure 9.4 Test To Test Variability of MEMS 

9.1.1 CO2 Sequence I 2005 
CO2 repeatability of SEMTECH#1 and SEMTECH#2 
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CO2: SEMTECH#1 FTP 2 vs. SEMTECH#1 FTP 6
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Figure 9.5 Test To Test Repeatability of SEMTECH-D#1 

CO2: SEMTECH#2 FTP 2 vs. SEMTECH#2 FTP 6
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Figure 9.6 Test To Test Repeatability of SEMTECH-D#2 
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Sequence II 2006 
 

Table 9.2 Complete results from Sequence I 2006 

 April 2006 Percent Difference Compared to Laboratory 
  NOx CO2 CO HC Ex. Flowrate Carbon Balance 
 Test Number (grams) (grams) (grams) (grams) (SCF) (grams) 
4/5/2006 E01021_01 17.1% 10.5%  31.0% 6.7% 12.6% 
 E01022_01 14.4% 14.9%  43.9% 3.6% 13.5% 
 E01022_02 16.3% 10.4%  54.8% 7.3% 12.7% 
 E01022_03 16.2% 11.0%  58.5% 7.7% 12.8% 
 E01022_04 16.8% 9.6%  30.9% 7.9% 12.0% 
 E01022_05 14.1% 10.8%  39.9% 7.4% 13.3% 
 Average 15.6% 11.3% #DIV/0! 45.6% 6.8% 12.9%
4/7/2006        
 E01027_04 15.9% 9.5% 26.1% 15.2% 6.2% 13.5% 
 E01027_05 16.3% 10.1% 24.6% 22.3% 6.9% 14.0% 
 E01029_02 16.6% 9.8% 24.5% 21.3% 8.2% 11.2% 
 E01029_03 10.9% 10.9% 28.2% 18.2% 8.5% 12.2% 
 E01029_04 16.8% 9.7% 26.7% 23.1% 8.8% 10.8% 
 E01029_05 15.0% 10.0% 25.0% 28.2% 8.8% 11.5% 
 Average 15.3% 10.0% 25.9% 21.4% 7.9% 12.2%
4/8/2006        
 E01035_02 17.7% 9.9% 19.0% 21.9% 7.0% 12.4% 
 E01035_03 16.4% 9.9% 21.1% 22.2% 6.5% 12.5% 
 E01035_04 16.4% 10.1% 22.9% 26.5% 6.2% 12.7% 
 E01037_02 16.6% 9.8% 24.8% 25.2% 5.9% 10.4% 
 E01037_03 17.0% 10.2% 23.6% 23.1% 6.0% 11.2% 
 E01037_04 17.1% 11.3% 26.7% 30.2% 5.6% 12.1% 
 Average 16.9% 10.2% 23.0% 24.9% 6.2% 11.9%
4/9/2006        
 E01039_02 15.8% 9.2% 26.6% 27.6% 4.2% 10.0% 
 E01039_03 15.3% 7.4% 16.3% -5.9% 4.7% 7.9% 
 E01039_04 15.9% 7.6% 29.9% 37.1% 4.9% 8.0% 
 E01039_05 15.4% 7.4% 29.9% -0.8% 4.7% 7.7% 
 Average 15.6% 7.9% 25.7% 14.5% 4.6% 8.4%
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Table 9.3 Sequence III 2006 Complete Results 

May 2006 Percent Difference Compared to Laboratory  

 NOx1 NOx2 CO2 CO HC Ex. Flowrate 
Carbon 
Balance 

Test Number (grams) (grams) (grams) (grams) (grams) (SCF) (grams of fuel) 
E01118_01 19.6% 17.6% 14.2% 31.3% 78.3% 1.0% 24.4% 
E01118_02 23.4% 19.4% 15.2% 33.5% 84.3% 2.6% 9.8% 
E01118_03 24.2% 19.2% 15.6% 34.4% 105.7% 2.5% 23.0% 
Average 22.4% 18.7% 15.0% 33.1% 89.4% 2.0% 19.1%
E01133_01 18.5% 16.0% 14.7% 31.6% 75.50% 0.63% 11.5% 
E01133_02 19.6% 15.8% 16.3% 39.1% 71.70% 1.03% 12.8% 
E01133_03 19.45% 15.75% 15.90% 36.75% 88.20% 1.60% 12.5% 
Average 19.2% 15.9% 15.6% 35.8% 78.5% 1.1% 12.3%
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Figure 9.7 SEMTECH-D and Laboratory NOX 
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FTP E01118_01 Fuel Flowrate NOx (g/s)
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Figure 9.8 FTP E01118_01 Fuel Flowrate NOx 
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Figure 9.9 CO2 for FTP E01118_01 

A.1.1.1 NOX Concentration 
The following figures represent the results from a typical FTP.  Laboratory values are 

sampled diluted, therefore readings must be multiplied by a dilution ratio in order to 
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compare to the SEMTECH-D.  As mentioned earlier, the dilution ratio is calculated by 

dividing the entire dilution tunnel flowrate by the addition of intake air and fuel used.  

The presented test had an integrated error of 11.79% and 9.13% difference from 

Laboratory and Laboratory2, respectively.     
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Figure 9.10 NOX Concentration from FTP E01118_01 

FTP E01118_01 NOx (ppm)

-200.00

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

1400.00

1600.00

1800.00

0 50 100 150 200 250 300

Time (sec)

N
O

x 
(P

PM
)

Lab

SEMTECH
Lab2

 

Figure 9.11 Segment of Figure 9.10 
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For the E01118 test sequence, which consisted of three FTPs, the SEMTECH-D averaged 

13.6% higher readings than Laboratory, and 9.1% for Laboratory2. 

NOx: Averaged Lab vs. Averaged SEMTECH
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Figure 9.12 Time Aligned Averaged Laboratory vs. Averaged SEMTECH-D E01118 

Exhaust flowrate 
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Figure 9.13 Exhaust Flowrate from a FTP 
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Sequence IV 2006 

 

Table 9.4 August 2006 Percent Differences Compared to Laboratory 

August 2006 Percent Difference Compared to Laboratory  

 NOx1 NOx2 CO2 CO HC Ex. Flowrate 
Carbon 
Balance 

Test Number (grams) (grams) (grams) (grams) (grams) (SCF) (grams of fuel) 
E01357_02 17.2% 18.7% 11.6% 29.9% 58.6% 4.3% 9.1% 
E01357_03 17.3% 17.4% 11.6% 30.1% 78.3% 4.9% 9.0% 
E01357_04 18.2% 19.3% 12.2% 31.2% 61.5% 4.6% 9.4% 
Average 17.6% 18.5% 11.8% 30.4% 66.1% 4.6% 9.2%
E01361_02 16.1% 17.4% 12.7% 29.2% 42.2% 5.5% 9.8% 
E01361_03 17.2% 18.2% 13.0% 28.4% 73.1% 5.7% 10.1% 
E01361_04 18.9% 19.9% 12.7% 29.7% 45.3% 5.6% 10.1% 
Average 17.4% 18.5% 12.8% 29.1% 53.5% 5.6% 10.0%
E01368_02 17.6% 19.3% 12.8% 25.2% 44.2% 5.6% 10.5% 
E01368_03 18.7% 20.2% 12.8% 27.0% 19.4% 5.7% 10.8% 
E01368_04 17.1% 18.4% 12.1% 26.1% 40.0% 3.8% 10.0% 
Average 17.8% 19.3% 12.6% 26.1% 34.5% 5.0% 10.4%
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Figure 9.14 NOX Mass Emission from FTP E01361_03 
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E01357 NOx: Averaged Lab vs. Averaged SEMTECH

y = 1.1611x
R2 = 0.9422

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Lab Averaged (g/s)

SE
M

TE
C

H
#2

 A
ve

ra
ge

d 
(g

/s
)

 

Figure 9.15 Time Aligned Averaged Laboratory vs. Averaged SEMTECH-D E01357 
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Figure 9.16 CO2 Mass Emission for FTP E01361_03 
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E01357 CO2: Averaged Lab vs. Averaged SEMTECH
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Figure 9.17 Time Aligned Averaged Laboratory vs. Averaged SEMTECH-D E01357 
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Figure 9.18 CO Mass Emission for FTP E01361_03 
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Figure 9.19 HC Mass Emission for FTP E01361_03 
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Figure 9.20 Exhaust Flowrate for FTP E01361_03 
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