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Abstract 

Apple Pomace as a Novel Nutritional Aid for Western Diet-Induced Nonalcoholic Fatty Liver 

Disease in Young Female Sprague Dawley Rats 

 

R. Chris Skinner 

Apple pomace is a “waste” byproduct of apple processing that causes environmental pollution 

and is costly to dispose of. Yet, apple pomace is rich in dietary fibers and antioxidants. Analysis 

of apple pomace’s nutritional profile indicates suitability as a potential dietary treatment for non-

alcoholic fatty liver disease (NAFLD) and the more severe non-alcoholic steatohepatitis (NASH). 

NAFLD is the most prevalent liver disease in the world with prevalence and severity expected to 

increase in both adults and children. Currently, there is no approved drug treatment for NAFLD 

and therefore, dietary intervention is the primary treatment. The study objectives were to 

determine the effect of apple pomace consumption on diet-induced NAFLD, NASH and renal 

and bone health using a rodent model. Growing (aged 22-29 d) female Sprague-Dawley rats 

(n=8/group) were fed ad libitum diets consisting of AIN-93G, AIN-93G with 10% apple pomace 

substitution (AIN/AP), Western diet (45% fat, 34% sucrose), or Western diet with 10% apple 

pomace substitution (Western/AP) for 8 weeks. Results showed Western diet consumption 

increased (p<0.0001) gonadal adipose weight independent of body weight differences. Rats 

consuming Western diet showed histological evidence of hepatic fat infiltration and inflammation 

characterizing NAFLD and progression to NASH. Fatty acid analysis by gas chromatography 

showed increase (p<0.05) hepatic palmitic, palmitoleic, and oleic acid content in rats consuming 

Western diet was attenuated by apple pomace. Gonadal adipose tissue fatty acid analysis 

showed rats consuming a Western diet to have significantly reduced palmitic, stearic, and oleic 

acid compared to all diet groups. These results suggest saturated and monounsaturated fatty 

acids from the adipose tissue are being transported to the liver, resulting in increased hepatic fat 

deposition. Additionally, hepatic gene expression by real time-quantitative polymerase chain 



 
 

reaction (RT-qPCR) showed rats consuming Western diet upregulated hepatic expression of 

diacylglycerol O-acyltransferase 2 (DGAT2), which was attenuated by apple pomace. Rats 

consuming Western diets also had upregulated nuclear factor kappa-light chain enhancer of 

activated B cells (NFκB) and interleukin-6 (IL-6). Further, gonadal adipose tissue expression of 

NFκB, IL-6, and tumor necrosis factor alpha (TNFα) was significantly upregulated compared to 

all groups contributing to progression of NAFLD to NASH. The results suggest increased 

gonadal adipose also increased transport of inflammatory cytokines, resulting in NASH 

progression. Apple pomace attenuated Western diet-induced NAFLD due to the high fiber 

content in apple pomace increasing (p<0.02) serum bile acids. Caloric substitution with apple 

pomace also attenuated Western diet-induced progression to NASH. High polyphenol content in 

apple pomace resulted in significantly increased serum total antioxidants and decreased urinary 

antioxidants. The calcium and fructose content in apple pomace showed no significant effects in 

indices of renal or bone health. Collectively, the study results showed caloric substitution of a 

healthy or Western diet with 10% apple pomace attenuated NAFLD, progression to NASH, and 

was safe for renal and bone health. Therefore, apple pomace has potential to be repurposed for 

human consumption as a sustainable functional food and as a nutritional aid to promote liver 

health.   



iv 
 

Acknowledgments  

 I would like to thank my parents for continually supporting and encouraging me over the 

course of my schooling. Without your guidance and patience, I would surely not be the person, 

student, or scholar I am today. Thank you for all that you have done to prepare and support me 

over the course of my doctoral studies, before, and all you will do after. I love you both. I would 

also like to thank my girlfriend, Rebekah Honce, soon to be PhD. You have been the best 

girlfriend, support system, stress reliever, editor, therapist, and friend since we began dating. 

You have helped me grow as a person and as a scientist and I will forever be grateful you are a 

part of my life. I love my Bek.  

 Thank you to Janet Tou for accepting me into your lab, keeping me focused, allowing me 

to pursue my interests, and helping me to shape my future. I am very lucky to have enrolled in 

your course during the course of my Master’s, and even more to have been your student the 

past three years. Thank you to my committee for the aid in methods and analysis, being 

available for questions and conversations, and for conversations had regarding my project and 

my future. Thank you, Vagner Benedito, Joey Gigliotti, Joe Moritz, and Kang Mo Ku.  Thank you 

to friends and family members who have continually supported me, providing crucial mental 

breaks from science and excellent extracurricular adventures. Thank you to my lab mates, 

particularly Derek Warren for all your help, and all the interns who have assisted in my study. 

Thank you to mentors past, including Greg Popovich, Paul Chantler, and Amy Kuhn, who 

helped to shape my interests in the health sciences and were essential to my pursuing a PhD 

and a career in academics. Thank you to Swilled Dog Hard Cider Company for providing the 

apple pomace used in my project. Thank you to Office of the Provost and the WVU Foundation 

for funding my doctoral studies. Thank you to all others who have aided me in educational 

journey. Thank you to God. Thank you to West Virginia and West Virginia University. 

  



v 
 

TABLE OF CONTENTS 

Abstract ii 

Acknowledgments iv 

Introduction 1 

1.0      Literature Review 7 

1.0.1 A Comprehensive Analysis of the Composition, Health Benefits, and Safety of Apple 

Pomace 7 

1.0.1 Abstract 8 

1.0.2 Introduction 9 

1.0.3 Nutrient Composition of Apple Pomace 9 

1.0.4 Macronutrients 10 

1.0.5 Micronutrients 13 

1.0.6 Health Benefits of Apple Pomace Consumption 18 

1.0.7 Safety of Apple Pomace Consumption 26 

1.0.8 Potential Food Uses 32 

1.0.9 Conclusion 33 

1.0.10 References 35 

1.1 Diet-induced non-alcoholic fatty liver disease: a brief review 58 

1.1.1 Etiology 58 

1.1.2 Diagnosis 61 

1.1.3 Treatment 62 

1.1.4 Conclusions 64 

1.1.5 References 65 

2.0 Study Objectives and Hypotheses 77 

3.0       Chapter 1 78 

Apple pomace consumption favorably alters hepatic lipid metabolism in young female 

Sprague-Dawley rats fed a Western diet 78 

3.1 Abstract 79 

3.2. Introduction 80 

3.3. Materials and Methods 81 

3.4 Results 87 

3.5 Discussion 90 

3.6 References 96 

4.0       Chapter 2 116 



vi 
 

Apple pomace attenuates liver-adipose crosstalk and improves antioxidant status in 

young female rats consuming a Western diet 116 

4.1 Abstract 117 

4.2 Introduction 118 

4.3 Materials and Methods 119 

4.4 Results 125 

4.5 Discussion 128 

4.6 References 134 

4.7 Supplementary Material 156 

5.0       Chapter 3 159 

Caloric Substitution of Diets with Apple Pomace was Determined to be Safe for Renal 

and Bone Health Using a Growing Rat Model 159 

5.1 Abstract 160 

5.2 Introduction 161 

5.3 Materials and Methods 162 

5.4 Results and Discussion 168 

5.5 References 171 

Supplemental Material 188 

6.0       Chapter 4 189 

Dissertation Discussion, Conclusions, and Future Directions 189 

6.1 Discussion and Conclusions 189 

6.2 Potential Future Studies 190 

 

  



vii 
 

List of Tables 

Literature Review 

Table 1. 49 

Table 2. 50 

Table 3. 51 

Table 4. 55 

 

Chapter 1 

Table 1. 104 

Table 2. 105 

Table 3. 106 

Table 4. 107 

Table 5. 108 

Table 6. 110 

 

Chapter 2 

Table 1. 145 

Table 2. 146 

Table 3. 147 

Supplementary Table 1. 156 

Supplementary Table 2 157 

 

Chapter 3 

Table 1. 179 

Table 2. 180 

Table 3. 181 

Table 4. 182 

Table 5. 183 

Table 6. 184 

Supplementary Table 1. 188 

 

  



viii 
 

List of Figures 

Literature Review 

Figure 1. 75 

Figure 2. 76 

 

Chapter 1 

Figure 1. 113 

Figure 2. 114 

Figure 3. 115 

 

Chapter 2 

Figure 1. 151 

Figure 2. 152 

Figure 3. 153 

Figure 4. 154 

Figure 5. 155 

 

Chapter 3 

Figure 1. 186 

Figure 2. 186 

  



1 
 

Introduction  

Apples are one of the most popularly consumed fruits in the United States (U.S.). Most 

apples produced in the U.S. are processed for apple products, such as: apple juices, ciders, and 

more [1].  Apple processing separates the juice from the insoluble portions of the apple, 

including: the skin, stem, seeds, calyx, and pulp. This insoluble apple portion is known as apple 

pomace and is typically regarded as “waste [2].” Additionally, apple pomace can result in rapid 

spoilage and environmental pollution if not swiftly managed, but proper disposal is costly [2]. 

Currently, it is estimated the U.S. spends $10 million annually on apple pomace disposal and is 

expected to rise as the apple processing industry continues to expand [2-4]. However, studies 

have shown apple pomace is rich in nutrients associated with positive health outcomes [2,5,6].  

Repurposing apple pomace for human consumption could decrease disposal costs and 

environmental pollution while providing nutritional value and health benefits.  

Apple pomace is rich in several nutrients, including vitamins and minerals, but is 

particularly high in dietary fiber and phytochemicals [2,3,7].  Dietary fiber has been shown to 

have numerous health benefits, including lowering the risk for metabolic disorders such as non-

alcoholic fatty liver disease (NAFLD) [8].  Phytochemicals, phenolics and flavonoids, have also 

been shown to play a role in NAFLD [7,9,10].  A synergistic relationship between dietary fiber 

and antioxidants exists, as dietary fiber facilitates transport of antioxidants through the intestines 

[11,12]. Given apple pomace is high in dietary fiber and antioxidants, and the synergistic 

function of the nutrients, whole apple pomace has potential to be repurposed for human 

consumption [2]. 

NAFLD is the most prevalent liver disease worldwide, estimated to effect over 25% of 

the U.S. population [13].  Additionally, it is estimated estimated 7% of healthy children and 34% 

of obese children have NAFLD, suggesting prevalence will increase [14].   NAFLD is defined as 

increased hepatic steatosis which is benign [15].  However, NAFLD can progress to the more 

severe non-alcoholic steatohepatitis (NASH). NASH is defined as increased hepatic steatosis in 
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conjunction with inflammation of the liver [16].  An estimated 25% of individuals with NAFLD will 

progress to NASH, which increases the risk for liver fibrosis, cirrhosis and cancer [17]. 

Progression of liver disease is suggested to be a multiple-hit pathogenesis [18]. Diets high in 

saturated fatty acids and simple carbohydrates stimulate de novo lipogenesis (DNL) and free 

fatty acid (FFA) release from the adipose tissue, resulting in NAFLD [19]. Increases in DNL and 

FFA result in increased inflammatory cytokine production and oxidative stress generation, 

signifying progression to NASH [20]. Recommended treatment for NAFLD and NASH is to 

reduce dietary intake of simple sugars and saturated fats and to increase dietary fiber, 

antioxidants, and complex carbohydrates [21-23].  Apple pomace’s high dietary fiber and 

polyphenol contents suggests potential for its utilization as a therapeutic aid for NAFLD and 

NASH. Further highlighting the need for discovering potential nutrition-based treatments for the 

disease, there are currently no approved Food and Administration (FDA) medication for NAFLD 

and NASH [24,25].  

Despite a favorable nutrient composition as a potential dietary aid for NAFLD and NASH, 

apple pomace also contains fructose [2].  Fructose has been reported to promote progression of 

NAFLD to NASH and to be detrimental to bone and kidney health [26-28].  Therefore, it is also 

necessary to evaluate the safety of apple pomace. Investigating the potential of apple pomace 

to be utilized as a safe and sustainable food source for human consumption would not only play 

a role in improving health, but also reduces environmental pollution and food waste [2,4].   

  



3 
 

References 

1.  USDA ERS - Food Availability and Consumption. USDA Economic Research Service . 

https://www.ers.usda.gov/data-products/ag-and-food-statistics-charting-the-essentials/food-

availability-and-consumption/. Published 2017. Accessed June 1, 2018. 

2.  Bhushan S, Kalia K, Sharma M, Singh B, Ahuja PS. Processing of apple pomace for 

bioactive molecules. Crit Rev Biotechnol. 2008;28(4):285-296. 

doi:10.1080/07388550802368895 

3.  U.S. Apple Association. Apple Industry Statistics. http://usapple.org/all-about-

apples/apple-industry-statistics/. Published 2017. Accessed January 4, 2018. 

4.  Kaushal NK, Joshi VK, Sharma RC. Effect of Stage of Apple Pomace Collection and the 

Treatment on the Physico-Chemical and Sensory Qualities of Pomace Papad (Fruit Cloth). Vol 

39.; 2002. http://jglobal.jst.go.jp/en/public/20090422/200902173246576860. 

5.  Lu Y, Foo L. Antioxidant and radical scavenging activities of polyphenols from apple 

pomace. Food Chem. 2000;68(1):81-85. doi:10.1016/S0308-8146(99)00167-3 

6.  Gazalli H, Malik AH, Sofi AH, et al. Nutritional value and physiological effect of apple 

pomace. Int J Food Nutr Saf. 2014;5(1):11-15. 

7.  Boyer J, Liu RH. Apple phytochemicals and their health benefits. Nutr J. 2004;3(1):5. 

8.  Anderson JW, Baird P, Davis Jr RH, et al. Health benefits of dietary fiber. Nutr Rev. 

2009;67(4):188-205. doi:10.1111/j.1753-4887.2009.00189.x 

9.  Chang CY, Argo CK, Al-Osaimi AMS, Caldwell SH. Therapy of NAFLD: antioxidants and 

cytoprotective agents. J Clin Gastroenterol. 2006;40 Suppl 1:S51-60. 

doi:10.1097/01.mcg.0000168648.79034.67 

http://jglobal.jst.go.jp/en/public/20090422/200902173246576860


4 
 

10.  Dreher ML. Dietary Patterns, Foods, Nutrients and Phytochemicals in Non-Alcoholic 

Fatty Liver Disease. In: Dietary Patterns and Whole Plant Foods in Aging and Disease. Cham: 

Springer International Publishing; 2018:291-311. doi:10.1007/978-3-319-59180-3_10 

11.  Liu RH. Whole grain phytochemicals and health. J Cereal Sci. 2007;46(3):207-219. 

doi:10.1016/J.JCS.2007.06.010 

12.  Saura-Calixto F. Dietary Fiber as a Carrier of Dietary Antioxidants: An Essential 

Physiological Function. J Agric Food Chem. 2011;59(1):43-49. doi:10.1021/jf1036596 

13.  Younossi ZM, Stepanova M, Afendy M, et al. Changes in the Prevalence of the Most 

Common Causes of Chronic Liver Diseases in the United States From 1988 to 2008. Clin 

Gastroenterol Hepatol. 2011;9(6):524-530.e1. doi:10.1016/J.CGH.2011.03.020 

14.  Anderson EL, Howe LD, Jones HE, Higgins JPT, Lawlor DA, Fraser A. The prevalence 

of non-alcoholic fatty liver disease in children and adolescents: a systematic review and meta-

analysis. Wong V, ed. PLoS One. 2015;10(10):e0140908. doi:10.1371/journal.pone.0140908 

15.  Loomba R, Sanyal AJ. The global NAFLD epidemic. Nat Rev Gastroenterol Hepatol. 

2013;10(11):686-690. doi:10.1038/nrgastro.2013.171 

16.  Suzuki A, Diehl AM. Nonalcoholic Steatohepatitis. Annu Rev Med. 2017;68(1):85-98. 

doi:10.1146/annurev-med-051215-031109 

17.  Michelotti GA, Machado M V., Diehl AM. NAFLD, NASH and liver cancer. Nat Rev 

Gastroenterol Hepatol. 2013;10(11):656-665. doi:10.1038/nrgastro.2013.183 

18.  Buzzetti E, Pinzani M, Tsochatzis EA. The multiple-hit pathogenesis of non-alcoholic 

fatty liver disease (NAFLD). Metabolism. 2016;65(8):1038-1048. 

doi:10.1016/J.METABOL.2015.12.012 



5 
 

19.  Byrne CD, Targher G. NAFLD: A multisystem disease. J Hepatol. 2015;62(1):S47-S64. 

doi:10.1016/J.JHEP.2014.12.012 

20.  Koch LK, Yeh MM. Nonalcoholic fatty liver disease (NAFLD): Diagnosis, pitfalls, 

and staging. Ann Diagn Pathol. 2018;37:83-90. doi:10.1016/J.ANNDIAGPATH.2018.09.009 

21.  Romero-Gómez M, Zelber-Sagi S, Trenell M. Treatment of NAFLD with diet, physical 

activity and exercise. J Hepatol. 2017;67(4):829-846. doi:10.1016/J.JHEP.2017.05.016 

22.  Munteanu MA, Nagy GA, Mircea PA. Current management of NAFLD. Clujul Med. 

2016;89(1):19-23. doi:10.15386/cjmed-539 

23.  Trappoliere M, Tuccillo C, Federico A, et al. The treatment of NAFLD. Eur Rev Med 

Pharmacol Sci. 2005;9(5):299-304. http://www.ncbi.nlm.nih.gov/pubmed/16231594. Accessed 

January 25, 2019. 

24.  Tilg H, Moschen A. Weight loss: cornerstone in the treatment of non-alcoholic fatty liver 

disease. Minerva Gastroenterol Dietol. 2010;56(2):159-167. 

http://www.ncbi.nlm.nih.gov/pubmed/20485253. Accessed January 25, 2019. 

25.  Diehl AM, Day C. Cause, Pathogenesis, and Treatment of Nonalcoholic Steatohepatitis. 

Longo DL, ed. N Engl J Med. 2017;377(21):2063-2072. doi:10.1056/NEJMra1503519 

26.  Odermatt A. The Western-style diet: a major risk factor for impaired kidney function and 

chronic kidney disease Odermatt A. The Western-style diet: a major risk factor for impaired 

kidney function and chronic kidney disease The Western-Style Diet and Comparison with Other 

Diets. Am J Physiol Ren Physiol. 2011;301:919-931. 

27.  Tsanzi E, Light HR, Tou JC. The effect of feeding different sugar-sweetened beverages 

to growing female Sprague–Dawley rats on bone mass and strength. Bone. 2008;42(5):960-

968. doi:10.1016/J.BONE.2008.01.020 



6 
 

28.  Lim JS, Mietus-Snyder M, Valente A, Schwarz J-M, Lustig RH. The role of fructose in the 

pathogenesis of NAFLD and the metabolic syndrome. Nat Rev Gastroenterol Hepatol. 

2010;7(5):251-264. doi:10.1038/nrgastro.2010.41 

 

 

 

  



7 
 

1.0      Literature Review  

1.0.1 A Comprehensive Analysis of the Composition, Health Benefits, and Safety of Apple 

Pomace  

R. Chris Skinner1, Joseph C. Gigliotti2, Kang-Mo Ku3, Janet C. Tou1 

 

1Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26506, 

United States; 2Department of Integrative Physiology and Pharmacology, Liberty University 

College of Osteopathic Medicine, Liberty, VA, 24515, United States; 3Department of Plant and 

Soil Sciences, West Virginia University, Morgantown, WV 26506, United States 

 

 

 

Corresponding Author: 

Janet C. Tou, PhD 

Division of Animal and Nutritional Sciences  

West Virginia University  

Morgantown, WV 26506  

Tel: (304)293-1919 

Fax: (304)293-2232 

e-mail: janet.tou@mail.wvu.edu 

 

Published in Nutrition Reviews in December 2018 as: Skinner RC, Gigliotti JC, Ku K-M, Tou 

JC. A comprehensive analysis of the composition, health benefits, and safety of apple pomace. 

Nutr Rev. August 2018. doi:10.1093/nutrit/nuy033 

 

  

mailto:janet.tou@mail.wvu.edu


8 
 

1.0.1 Abstract 

Apple processing results in peel, stem, seeds, and pulp being left as a waste product known as 

apple pomace. This review comprehensively assessed apple pomace composition for nutritional 

value and bioactive substances, as well as evaluated potential health benefits, and safety.  

Apple pomace is a rich source of health benefiting nutrients including: minerals, dietary fiber, 

antioxidants, and ursolic acid, suggesting its potential use as a dietary supplement, functional 

food, and/or food additive. Preclinical studies have found apple pomace as well as its isolated 

extracts to have several health benefits including; improved lipid metabolism, antioxidant status, 

gastrointestinal function, and metabolic disorders (e.g. hyperglycemia, insulin resistance, etc.). 

Safety studies have shown apple pomace to be a safe livestock feed additive and pesticide 

concentrations to be within safety thresholds established for human consumption. Despite 

promising evidence, commercial development of apple pomace for human consumption 

requires more research focusing on standardized methods of nutrient reporting, mechanistic 

studies, and human clinical trials.  

 

Keywords: apple pomace, fiber, antioxidants, health benefits, safety 
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1.0.2 Introduction 

Diets high in fruits and vegetables are widely recommended for health benefits. The 

Dietary Guidelines for Americans recommends fruits and vegetables make-up one-half of your 

plate [1]. Globally, apples are among the most popular and frequently consumed fruits. This is 

due to public perception that apples are a healthy food and the availability of apples throughout 

the year in a variety of forms [2]. The United States (U.S.) produces ~240 million bushels of 

apples, annually. Approximately 33% (~79 million bushels) of apples harvested are processed 

into juices, ciders, alcoholic beverages, sauces, canned, dried, and frozen apple slices [3]. 

However, processing of apples results in 25% of the apple mass (e.g. skin, stem, seeds, and 

pulp) being discarded as waste that is referred to as apple pomace [4-6]. 

Management of apple pomace is a major public health issue as it easily ferments making 

it a cause of environmental pollution. Disposal of apple pomace is costly with the U.S. spending 

$10 million, annually [5,6]. Therefore, the development of potential commercial applications for 

apple pomace is a growing field of research interest. Currently, apple pomace is used as a 

livestock feed ingredient, for specific nutrient (dietary fiber, polyphenol, etc.) extraction for 

dietary supplements, and food ingredient substitute [7-9]. Given the potential nutrient value, 

pollution and financial demands of apple pomace disposal, an economical solution is to utilize 

apple pomace as a dietary supplement, functional food and/or food additive for human 

consumption. Therefore, the aim of this review is to address the nutritional value, health 

benefits, and safety of apple pomace in order to determine its potential for human consumption. 

 

1.0.3 Nutrient Composition of Apple Pomace 

In this review, nutrient values are reported as fresh weight (FW) rather than dry weight 

since apples and apple products are typically consumed “fresh.” However, Lavelli and Corti [10] 

suggested a reduction from 70-85% moisture content to <10% to sustain apple pomace quality 

and storage stability. Comparisons for nutrient value between apples and apple pomace were 
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based on values reported in peer-reviewed literature published in the English language and 

values available in the United States Department of Agriculture (USDA) data base. Nutrient 

compositional study limitations include small sample sizes and confounding factors that 

influence nutrient content such as: differences in apple cultivars and varieties, growing 

conditions, harvesting, processing techniques, and storage methods and storage length were 

not consistently reported in the study description. Future compositional studies evaluating apple 

pomace should provide this information and develop standards to allow for comparisons among 

studies for nutrient value. 

 

1.0.4 Macronutrients 

Diets low in dietary fat have been shown to prevent weight gain and obesity, lower risk of 

cardiovascular disease (CVD), cancer, and other chronic diseases [11-14]. An apple contains 

0.16-0.18% fat, while apple pomace has been reported to range between 1.1-3.6% (Table 1) 

[9,15,16]. Consumption of apple pomace includes seeds, which is the portion of the apple 

containing the majority of fatty acids, mostly as linoleic acid (18:2n-6) and oleic acid (18:1n-9) 

[9]. Linoleic acid is an essential fatty acid, with some studies suggesting benefits of reduced risk 

of atherosclerosis, improved impaired glucose tolerance, and reducing body fat deposition [17-

20]. Apple pomace, due to a low fat content, is not considered a rich source of these fatty acids. 

Additionally, apples are low in protein although the reported amount of protein in apple pomace 

is higher likely due to the seeds (Table 1). 

Carbohydrates account for ~14% of the nutrient composition of apples [15]. Apple 

pomace has a greater carbohydrate content compared to apples (Table 1). Sucrose content in 

apple pomace showed a wide range since sucrose is highly variable among apple cultivars 

[15,16]. Both apples and apple pomace contain a large percentage of total carbohydrates as 

fructose and glucose [9,15]. Higher amounts of fructose and glucose in apple pomace 

compared to apples are likely due to the inclusion of the sugar-containing stem and calyx (Table 
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1). Among fruits popularly consumed in the U.S. apples are considered particularly concentrated 

in fructose [21]. Free fructose is poorly absorbed and functions similar to dietary fibers, by 

escaping absorption in the small intestine and being fermented in the large intestines [22]. 

Apples also contain complex carbohydrates such as polysaccharides. In a preclinical 

study by Chen, et al [23] male Kunming mice (age 45-days old, n=18 animals/group) were 

randomly assigned to be fed a high-fat diet (HFD) (45% kcal fat) or a HFD supplemented with 

apple pomace polysaccharides at doses of 200, 400, or 800 mg/kg bwt/d for 30 days. Results 

showed all doses of apple pomace polysaccharides improved serum triglycerides, total 

cholesterol. HDL-C, insulin, and adiponectin compared to mice fed HFD. Doses of 200 and 400, 

but not the highest dose of 800 mg/kg bwt/d apple pomace polysaccharide significantly reduced 

serum low density lipoprotein-cholesterol (LDL-C). The lowest dose of apple pomace 

polysaccharides (200mg/kg bwt/d) showed lower (p<0.05) serum cholesterol, insulin, and 

adiponectin compared to HFD fed mice. Additionally, 200 mg/kg bwt/d apple pomace 

polysaccharides reduced (p<0.001) serum leptin compared to HFD fed mice. All doses of apple 

pomace polysaccharides increased serum hexokinase and glucagon concentrations, indicating 

a return to metabolic balance. Additionally, apple pomace polysaccharides supplementation to 

rats fed a HFD restored antioxidant capacity to control levels in a dose-dependent manner. 

Furthermore, all doses of apple pomace polysaccharides reduced (p<0.05) fasting serum insulin 

and liver lipid content compared to mice fed HFD (Table 3) [23-34]. Collectively, study results 

showed mice fed HFD supplemented with apple pomace polysaccharides had improved insulin, 

glucose metabolism, lipid profile, and antioxidant status. Based on preclinical studies, apple 

pomace polysaccharides supplementation may be a potential treatment for diet-induced 

metabolic or obesity-related diseases. However, clinical studies are needed to confirm health 

benefits for humans. 

 

Dietary Fiber 
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 It has been recommended the American population increase their dietary fiber 

consumption for various health benefits [15]. However, only about 5% of the U.S. population 

achieves the recommended level of dietary fiber consumption [35]. Among the top consumed 

fruits in the U.S., apples with skin had one of the highest dietary fiber contents [22]. Since apple 

pomace includes the skin, stem, seeds, and calyx, there is a higher fiber content in apple 

pomace than an apple. Apple pomace has been reported to contain between 4.4-47.3 g/100g of 

fiber [9]. The variability in reported fiber content in apple pomace is likely due to use of different 

cultivars of apples and methods of quantifying or extracting dietary fiber. In apple pomace, 

insoluble fiber accounts for 33.8-60.0% of total fiber with cellulose accounting for 6.7-40.4% and 

lignin for 14.1-18.9% [9]. Soluble fiber accounts for 13.5-14.6% of total fiber in apples. Since the 

majority of soluble fiber in apples is in the skin, this results in apple pomace containing a larger 

percentage of soluble fiber than apples [36]. In particular, apple pomace contains higher pectin 

than apples (Table 1). Due to its high fiber, consumption of 100g of apple pomace provides 

approximately half of the recommended daily fiber intake. 

Diets high in dietary fiber have been reported to promote gastrointestinal health and to 

reduce the risk for diverticular diseases and certain cancers, particularly colorectal cancer 

[37,38]. Extraction of fiber-rich colloids from apple pomace was used to investigate fiber as the 

specific component in apple pomace responsible for gastrointestinal benefits. Sembries, et al 

[24] fed young (age 8 weeks) male Wistar rats (n=12 animals/group) either a standard rodent 

diet or a standard rodent diet supplemented with 5% apple pomace fiber-rich colloid for six 

weeks. Fiber-rich colloids from apple pomace increased microflora fermentation indicated by 

significantly higher short chain fatty acids (SCFA), acetate and propionate, in the cecum. Rats 

provided diet supplemented with apple pomace-rich colloid also had increased (p<0.001) bile 

acid excretion in the feces. Additionally, consumption of fiber-rich colloids from apple pomace 

resulted in significant decreased weight gain in the absence of reduced food consumption 
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(Table 3). The authors attributed this to increased food passage rate in the gut due to the high 

fiber content of the apple pomace. 

High dietary fiber consumption has also been linked to reduced risk of CVD [39]. Fiber-

rich colloids isolated from apple pomace was used to investigate fiber as a specific component 

in apple pomace responsible for CVD health benefits [25]. Apple pomace was mixed with hot 

water, and colloids were extracted from the apple pomace juice mixture. Young male Wistar rats 

(age 6 weeks) were randomly assigned (n=10 animals/group) to be fed a standard rodent diet 

containing (5% diet weight) fiber-rich colloids isolated from different apple pomace extraction 

juice from different apple varieties (Boskoop, Werder Frucht, Glindow, Germany). After six 

weeks, feeding apple pomace fiber-rich colloids significantly reduced serum total cholesterol 

and low density LDL-C, while increasing serum high density lipoprotein-cholesterol (HDL-C). 

The excretion of bile acid and neutral sterols was also increased (p<0.05) in rats fed fiber-rich 

colloids (Table 3). Dietary fiber by acting as a bile sequestrant improves serum lipids and 

lipoproteins [25]. 

The main fiber constituent found in apple pomace is pectin [40]. Apple pomace contains 

10-15% pectin (dry weight) making it a good source of this insoluble fibre [41]. Pectin has been 

recommended to be the source of 30-50% of total daily dietary fiber intake due to its reported 

health benefits. Pectin has been shown to lower cholesterol absorption and to lower plasma and 

liver triglycerides [42].  In an in vitro study, Kumar and Chauhan [42] extracted pectin from apple 

pomace to evaluate it as an inhibitor of pancreatic lipase, which is the primary enzyme 

responsible for hydrolyzing dietary triglycerides. Pectin extracted from apple pomace resulted in 

a 94.3% inhibition of pancreatic lipase indicating purified pectin from apple pomace may be a 

potential anti-obesity treatment by reducing calories through inhibition of fat absorption. 

 

1.0.5 Micronutrients 

Minerals 
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Micronutrients of concern in the American diet includes potassium and calcium [1]. 

Consumption of potassium (e.g. fruits and vegetables) lowers blood pressure [43]. According to 

Koutsos, et al [44] apples contain 107 ± 2.21 mg of potassium/100g FW. Based on a survey of 

popularly consumed fruits in the U.S., apples were among the fruits lowest in potassium, 

however apple pomace contains more potassium (Table 2) [9,15,45-49]. Calcium and 

phosphorus are important for bone health with adequate intake reducing risk of osteoporosis 

[9,50]. Oranges are the richest source of calcium among commonly consumed fruits in the U.S. 

[22,48]. Apples are lower but apple pomace provided more calcium than oranges (Table 2). Of 

popularly consumed fruits in the U.S., bananas contain the most phosphorous. Apples are 

lower, but when processed into pomace results in higher phosphorous content making apple 

pomace a richer source of phosphorus than other popularly consumed fruits in the U.S. (Table 

2). The mechanisms by which bone health is improved by fruits and vegetables have not been 

thoroughly investigated. The acid-base hypothesis postulates acid load is buffered in part by 

bone tissue, leading to bone resorption and reduced bone density [51]. Fruits and vegetables 

are a good source of alkaline precursors such as potassium, calcium as well as magnesium. 

These minerals neutralize the acidic effects of low pH foods derived from the diet [52]. Apples 

(5.0 ± 0.7 mg/100g) provide a modest amount of magnesium with the amount in apple pomace 

(176 ± 157.5 mg/100g) being much higher (Table 2). 

In terms of human health, food sources that increase iron consumption are of interest, 

since iron deficiency anemia is the most common nutrient deficiency worldwide [53]. Fruits are 

not considered a rich source of iron. However, the amount of iron in apple pomace was higher 

than in apples. Zinc deficiency is another common nutrient deficiency [54]. Zinc content is also 

higher in apple pomace compared to apples (Table 2). Compared to the most popularly 

consumed fruits in the U.S., apples only provided modest amounts of dietary minerals. On the 

other hand, apple pomace provides significantly more dietary minerals likely due to inclusion of 

peel [9,55]. Gorinstein, et al [56] reported apple peels to have higher amounts of sodium, 
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potassium, calcium, magnesium, and iron than in whole apples. Compositional evaluation 

indicates potential use of apple pomace as a supplement to increase dietary mineral intake. 

 

Vitamins 

Vitamins C and E are non-enzymatic antioxidants and have been shown to be potent 

scavengers of reactive oxygen species (ROS). Previous studies have reported apples to be a 

rich source of vitamins C and E [57]. However, when compared to other popular consumed 

fruits in the U.S., apples were lower in vitamin C content (0.057 mg/g). Corrected for total 

antioxidant activity contributed by vitamin C, apples (97.23 μmol of vitamin C equivalents/g) 

ranked second after cranberries (176.98 μmol of vitamin C equivalents/g). Although apples 

contain less vitamin C than other fruits, antioxidant activity was still higher. This finding has 

physiological significance, as the high antioxidant bioactivity index of apples was shown to have 

anti-proliferative activity on cancer cells, second only to cranberries [58]. Apple pomace was 

reported to have 22.4 mg/100g of vitamin C [59]. 

  Vitamin E is found to be abundant in seeds [57]. Apple pomace which contains seeds 

was reported to have 5.5 mg/100g of vitamin E [59]. Lu and Foo [60] analyzed the free radical 

scavenging abilities of apple pomace. Vitamin C (EC50=0.35) had the second highest free 

radical scavenging activity in apple pomace and vitamin E (EC50=0.30) ranked third. Phloridzin, 

a phytochemical, had the highest free radical scavenging activity (EC50=0.60). Phloridzin 

present in apple pomace is absent in other pomace sources such as pears [61]. In addition to 

antioxidant vitamins, apple pomace also contains phytochemicals with antioxidant properties 

that may reduce the risk of various diseases. 

 

Phytochemicals  

 Diets high in phytochemicals decrease risk of diseases associated with oxidative stress 

and inflammation [62,63]. Five major polyphenolic groups have been found in apples: flavanols, 
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flavonols, hydroxycinnamates, dihydrochalcones, and anthocyanins [64,65]. Some of the most 

popularly consumed apple varieties including: Fuji, Red Delicious, and Gala were reported to be 

high in phenolics and flavonoids and supports data showing apples inhibit lipid peroxidation and 

scavenge free radicals, ex vivo [66,67]. Total antioxidant activity of apples is reported to be 

~100 μmol vitamin C equivalents/g fruit, which was second only to cranberries in a study of 

popularly consumed fruits in the U.S [66]. 

The processing of fruits has been found to alter nutrient composition and content of fruit 

constituents [68]. However, polyphenolic antioxidants present in apples are also abundant in the 

apple pomace. Polyphenols are predominantly located in the skin and therefore, most 

polyphenols remain in the pomace [69]. Polyphenolic compounds found in apple pomace 

include: catechin, p-Coumaric acid, caffeic acid, and ferulic acid and have been shown to have 

significantly higher scavenging activities than antioxidant vitamins E and C indicating apple 

pomace’s potential as a source of dietary antioxidants [9,60]. Apple pomace also contains 

polyphenols: flavanols, flavonols, hydroxycinnamates, and dihydrochalcones [61]. Of the 

flavonoids, quercetin and its glucosides are the most abundant flavanoids in apple pomace, and 

have been linked to the prevention of several diseases [66].  

Saucier and Waterhouse [70] isolated polyphenols from apple pomace processed from 

Gala apples and evaluated antioxidant activity. Results showed apple pomace polyphenols had 

2 to 3 fold greater 1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging and 10 to 30 fold 

greater superoxide scavenging activity than vitamins C or E. In another study [71], polyphenols 

were isolated from five apple pomace from six common Spanish apple cultivars (Limon Montes, 

Meana, Durona de tresali, de la Riega, Perezosa, and Carrio). DPPH and ferric reducing power 

(FRAP) assays were used to determine the antioxidant capacities of apple pomace from 

different apple cultivars. Results showed apple pomace to be a rich source of polyphenols for all 

cultivars. Certain cultivars showed greater antioxidant activity. Carrio had the highest (p<0.05) 

DPPH and FRAP values. de la Riega and Meana, Limon Montes cultivars had higher DPPH 
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values compared to other cultivars.  Additionally, the study found the antioxidant activity of apple 

pomace can be predicted by its content of phloridzin, procyanidin B2, rutin + isoquercitrin, 

protocatechuic acid, and hyperin. High levels of these phytochemicals indicate more antioxidant 

activity [71]. Apple pomace consists 95% skin, which contains a substantial amount of 

polyphenols, including the polyphenolic compounds: cinnamic acid, epicatechin, caffeic acid, 

and procyanidin [9,60]. Other chemical compounds found in the skin of apples may also have 

potential beneficial health effects. 

 

Ursolic Acid 

 The cuticle forms a protective layer on the surface of the skin of the apple and is 

composed of two main components: cutin and wax [72]. The wax on the cuticle layer known as 

the epicuticular wax protects against damage caused by insects and other pathogens and has 

been suggested to have antioxidant properties [73,74]. The main epicuticular wax in apples is 

ursolic acid [72]. Ursolic acid exists as several isomers including oleanolic acid [75]. Both ursolic 

and oleanolic acid have been reported to have antioxidant, anti-inflammatory, anti-cancer, and 

anti-hepatotoxic activities [76-82].  

Apple pomace has been proposed to be a good source of ursolic acid [83,84]. Frighetto, 

et al [75] measured ursolic acid content in the skin of different apple cultivars: Fuji, Gala, Smith, 

and Granny Smith. Results found Smith apples had the highest content of ursolic acid (0.82 

mg/cm2) followed by Fuji (0.77 mg/cm2), Granny Smith apples (0.49 mg/cm2), and Gala (0.21 

mg/cm2). The authors concluded apple pomace could have potential benefits since apple 

pomace includes the entire skin of the apple, and therefore, would be expected to provide large 

amounts of ursolic acid. Grigoras, et al [85] evaluated ursolic acid isomers in apple pomace 

processed from four apple cultivars: Gala variety Royal Gala Tenroy, Golden variety Golden, 

Granny Smith, and Pink Lady variety Cripps Pink. Identification using high-performance liquid 

chromatography (HPLC) showed apple pomace contained ursolic acid, and oleanolic acid, 
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which was consistent with finding reported in apples. Furthermore, apple pomace from Gala 

apples was shown to have readily extractable ursolic acid [86]. The presence of ursolic acid in 

apple pomace provides further evidence in support of health benefits of apple pomace for 

human consumption.  

Overall, compositional analysis of apple pomace found several compounds present in 

high concentration with beneficial effects that including attenuating metabolic dysfunction and 

oxidative stress. This provides evidence in support of commercial development of compounds 

isolated from apple pomace such as: total dietary fibers, pectin, and apple pomace 

polysaccharides as a dietary supplement, functional food and/or food additive for human 

consumption. Currently, extracted isolated compounds from apple pomace are being used for 

human dietary supplements. However, extraction and purification of specific apple pomace 

ingredients can be technologically challenging and costly. Also, the combination of compounds 

in apple pomace may have synergistic effects. Therefore, the health benefits of whole apple 

pomace consumption is reviewed in the next section. 

1.0.6 Health Benefits of Apple Pomace Consumption  

Ravn-Haren, et al [26] compared plasma lipid profiles of individuals consuming apple 

pomace, apples or apple juice. Subjects were healthy non-smoking, non-obese men and 

women (age 18-69 years, n=34) who did not use vitamin or mineral supplements. The 

experimental design was a randomized single-blinded 5 x 4 weeks crossover study consisting of 

five diet treatments, including: a restricted diet period low in pectin and polyphenols, and four 

periods where the restricted diet was supplemented with either, apple pomace (22 mg/day), 

apples (550 g/day), cloudy (fiber containing) apple juice (500 ml/day), or clear apple juice (500 

ml/day). 

Study results showed pectin consumption was correlated (r2=0.983) to reduced plasma 

cholesterol concentration.  Apple pomace consumption for four weeks had no significant effect 

on serum total cholesterol, LDL-C, HDL-C, and bile acid concentration. This may be attributed to 
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less pectin in apple pomace (2.12 g/day) than apples (2.87 g/day). Subjects consuming apple 

pomace reported a trend (p<0.066) for decreased heart rate, blood pressure, serum alanine 

amino transferase, C-reactive protein, insulin-like growth factor 1, and insulin like growth factor 

binding protein 3. A significant health benefit of apple pomace consumption was improved 

gastrointestinal health indicated by decreased (p<0.05) lithocholic acid excretion (Table 3). 

Consumption of clear apple juice, which lacks dietary fiber, had no significant effect on 

gastrointestinal function. Therefore, authors suggested the fiber (pectin) content of apple 

pomace was the component responsible for improved intestinal health. However, the study 

included subjects that ranged widely in age, inconsistent adherence to the study’s dietary 

guidelines, the apple pomace group consumed the least fructose despite higher fructose 

content. Additionally, lower pectin content was reported when most studies found significantly 

higher pectin content in apple pomace compared to apples (Table 1). 

 In a further analysis of the Ravn-Haren, et al [26] study, Rago, et al [27] performed 

untargeted metabolomics on plasma collected from subjects. Apple pomace consumption 

decreased aromatic amino acids, which has been associated with gut microbial fermentation 

and to insulin sensitivity. Additionally, apple pomace decreased plasma medium- and short-

chain acylcarnitines, primary bile acids, deydropiandrosterone sulphate, and lysophospholipids, 

which are associated with cholesterol transport from the liver. The authors concluded apple 

pomace consumption can benefit cholesterol levels, insulin sensitivity, and gut microbial 

functionality. However, the study also found apple pomace consumption increased plasma uric 

acid (Table 3). Caliceti et al [87] reported a direct relationship between fructose intake and 

circulating levels of uric acid, which is the final product of purine metabolism. Recent preclinical 

and clinical evidence suggests that chronic hyperuricemia is an independent risk factor for 

hypertension, metabolic syndrome, and cardiovascular disease [88-90]. It is  also potentially an 

independent risk factor for chronic kidney disease, type 2 diabetes, and cognitive decline [90-
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92]. Since fructose content is higher in apple pomace than apples (Table 1), health implications 

of fructose content in apple pomace should to be further investigated. 

Few studies have investigated the health benefits of apple pomace consumption by 

humans despite preclinical studies reporting health benefits on lipid metabolism, body weight, 

gut health, and glucose regulation as well as on antioxidant activity [9]. Cho, et al [28] 

investigated the effect of feeding rats a HFD supplemented with apple pomace on body weight 

and circulating lipids and lipoproteins. Weanling male Sprague-Dawley rats were randomly 

assigned (n=8 animals/group) to diet groups including: HFD (15% by diet weight, consisting of 

8% lard and 7% soybean oil) to induce obesity, a HFD supplemented with 10% (diet weight) 

apple pomace, or a standard rodent diet. At the end of nine week feeding study, results showed 

rats fed HFD supplemented with 10% apple pomace significantly reduced body weight and body 

fat percentage, and improved serum lipid profiles indicated by lower (p<0.05) serum LDL-C and 

higher (p<0.05) serum HDL-C compared to rats fed HFD. The authors concluded reduced body 

weight and improved serum lipid profile in rats fed HFD supplemented with 10% apple pomace 

was due to altered lipid metabolism indicated by reduced liver cholesterol and triglyceride 

content, and higher fecal total cholesterol and triglyceride excretion (p<0.05) (Table 3). 

Significantly higher fecal lipid excretion and improved lipid absorption and metabolism in rats fed 

HFD supplemented with 10% apple pomace was attributed to higher fiber intake. 

Bobek et al [29] reported similar effects of improved lipid profile. Weanling male Wistar 

rats were randomly assigned (n=20 rats/group) to be fed either a cholesterol diet (0.3% diet 

weight) or a cholesterol diet supplemented with 5% (diet weight) apple pomace for 10 weeks. 

Results showed rats fed cholesterol diet supplemented with 5% apple pomace reduced (p<0.05) 

liver cholesterol content by 11% compared to rats fed cholesterol diet. Rats fed diet 

supplemented with apple pomace reduced (p<0.05) liver HMG-CoA reductase activity (a rate 

controlling enzyme for de novo cholesterol synthesis), reduced plasma levels of conjugated 

dienes, and increased (p<0.01) the fractional catabolic rate of plasma cholesterol, but did not 
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significantly reduce plasma total cholesterol (Table 3). These results were attributed to the 

ability of fiber to bind to bile acids. In addition, antioxidant status was determined. Cholesterol 

diets supplemented with apple pomace significantly reduced antioxidant enzymes: SOD, 

catalase, and GPx activity in erythrocytes (Table 3). The authors suggested decreased 

erythrocyte antioxidant enzyme activity was due to an increase in vitamins C, E, and A, as well 

as β-carotene, retinol, phytochemicals, and flavonoids from consumption of the apple pomace. 

Based on the results the authors concluded apple pomace plays a significant role in antioxidant 

defense systems. However, the study did not support the proposed mechanism by measuring 

antioxidant vitamins or phytochemical content of apple pomace. 

A preclinical study investigated polyphenol and fiber rich apple pomace on antioxidant 

status and gastrointestinal physiology. Juskiewicz, et al [30] conducted a feeding study using 

unprocessed apple pomace and apple pomace in which the polyphenol content was significantly 

reduced by ethanol extraction, referred to as processed apple pomace. Male Wistar rats (age 35 

days) were randomly assigned (n=8 animals/group) into three groups consisting of a standard 

rodent diet (control) or a standard control diet supplemented with either 15% (diet weight) 

unprocessed apple pomace or 14% (diet weight) processed apple pomace. Results showed 

erythrocyte SOD was significantly higher in unprocessed apple pomace. Both apple pomace 

groups significantly increased serum antioxidant capacity of water-soluble substances 

compared to control. However, only unprocessed apple pomace significantly increased serum 

antioxidant capacity of lipid-soluble substances. Additionally, unprocessed apple pomace 

decreased (p<0.05) liver thiobarbituric acid reactive substances (TBARS) compared to control 

(Table 3). As expected, unprocessed apple pomace which is rich in polyphenols showed greater 

improvements in antioxidant status.  

The effect of apple pomace on gastrointestinal health was determined by measuring 

digestibility and gastrointestinal function markers. Nitrogen was used as a measure of 

digestibility of the apple pomaces by measuring nitrogen intake compared to nitrogen excreted 
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in the feces and urine. Nitrogen intake did not differ among groups, but both apple pomace 

groups decreased (p<0.05) fecal nitrogen compared to control. Only unprocessed apple 

pomace significantly decreased nitrogen in the urine. Nitrogen digestibility was significantly 

decreased in both apple pomace groups, but nitrogen utilization was not altered. Both apple 

pomace groups significantly increased cecum tissue weight, digesta, dry matter percentage, pH, 

and ammonia in the cecum compared to control. Unprocessed apple pomace significantly 

decreased digesta β-glucuronidase, an enzyme catalyzing the breakdown of complex 

carbohydrates, compared to control while processed apple pomace showed greater microbiota 

glycolytic activity indicated by significantly decreased digesta β-glucuronidase and β-

glucosidase. Rats fed unprocessed apple pomace also had the lowest (p<0.05) digesta pH in 

the colon. Both apple pomace groups promoted fermentation indicated by significantly 

decreased fecal pH and higher cecal digesta SCFA compared to control. Although, only 

processed apple pomace decreased fecal pH at the end of the 28 days study (Table 3). 

Collectively, the results suggested both unprocessed and processed apple pomace improved 

intestinal health through beneficial decreases in gut enzymes without significantly impacting 

nitrogen utilization. Also, unprocessed apple pomace favorably modified antioxidant status. 

In another study examining the potential role of apple pomace on gastrointestinal health, 

Kosmola, et al [31] randomly assigned young (age 4 weeks) male Wistar rats (n=8 

animals/group) to be fed standard rat diet (control) or standard rat diet supplemented with apple 

pomace (0.23% w/w), flavonoid-reduced (0.10 % w/w) apple pomace, or flavonoid-deprived 

(0.01 % w/w) apple pomace. Following four weeks, gastrointestinal fermentation and health 

were evaluated. Resulted showed all apple pomace groups had increased intestinal 

fermentation, significantly higher fecal SCFA, and decreased cecum pH compared to control. 

However, rats fed apple pomace had significantly increased cecum tissue weight compared to 

control indicating greater ability to metabolize energy dense foods and had the lowest β-

glucuronidase which has been linked to a decreased risk for colon cancer [93]. Whereas, 
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flavonoid-reduced apple pomace supplementation significantly increased glycolytic activity of 

cecal microbiota and beneficially modified the ratio of cecal SCFA and branched-chain fatty 

acids compared to control. Further, flavonoid reduction of apple pomace resulted in significantly 

decreased cecal ammonia and colonic pH compared to control (Table 3). The authors 

concluded apple pomace consumption improved gastrointestinal health with flavonoids in apple 

pomace showing improved local interactions in the digestive tract.  

When using animal models to study digestive health, the pig has advantages of similar 

digestive and associated metabolic processes to humans. The pig is an omnivorous animal with 

comparable nutritional requirements to humans and also has a similar intestinal microbial 

ecosystem [94]. Sehm, et al [32] fed young (age 24 days old) male piglets (Pietráin × (Deutsche 

Landrasse × Deutsches Edelschwein) a standard swine diet or a standard swine diet 

supplemented with 3.5% (by weight) apple pomace for six weeks (n=39 pigs/group). Results 

showed apple pomace supplementation had no significant effect on energy intake, feed uptake, 

and average daily weight gain. However, apple pomace increased villi breadth in the jejunum 

(p<0.01) and ileum (p<0.001) suggesting improved nutrient absorption. Apple pomace also 

reduced (p<0.007) gut-associated lymphoid tissue (Table 3), which plays a role in the immune 

function of the gastrointestinal tract, indicating apple pomace may offer anti-inflammatory 

capabilities. Based on the results, the authors concluded apple pomace improved 

gastrointestinal health. 

Apple pomace was compared to other fruit byproducts as a source of fiber with potential 

benefits for lipid metabolism, intestinal health, and glucose regulation. Macagnan, et al [33] 

compared apple pomace to two other common fruit byproducts; orange bagasse and passion 

fruit peel. Weanling male Wistar rats (n=8 animals/group) were randomly assigned to four 

groups: supplemented with cellulose (50 g/kg) as a control, apple pomace (68.8 g/kg), orange 

bagasse (99.6 g/kg), or passion fruit peels (86.2 g/kg). Different amounts of the fruit byproducts 

were used to balance macronutrient and energy amounts among diets. After 34 days of feeding, 
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food consumption, weight gain, and feed efficiency ratio did not differ among diet groups. All 

fruit byproducts had significantly higher apparent digestibility of digestive fiber compared to 

cellulose Apple pomace and orange bagasse had significantly increased fecal nitrogen 

percentage, a marker of diet digestibility, compared to passion fruit peels and control (Table 3). 

All fruit byproducts significantly decreased dry fecal production and increased fecal moisture 

content. However, none significantly altered gastrointestinal transit time. Apple pomace had no 

effect on intestinal fermentation, but the other fruit byproducts promoted intestinal fermentation 

indicated by reduced (p<0.05) fecal pH.  However, apple pomace had the highest (p<0.05) fecal 

lipid percentage. This in turn, was expected to influence circulating lipids. All fruit byproducts 

had significantly reduced serum triglycerides and liver LDL-C, but did not alter serum total 

cholesterol (Table 3). Liver fat percentage was not significantly altered by any of the diet groups. 

  Regarding glucose regulation, all fruit fiber groups significantly decreased area under the 

curve for glucose (Table 3). Orange bagasse and passion fruit peel, but not apple pomace 

significantly reduced postprandial fasting glucose compared to cellulose. Only orange bagasse 

significantly decreased glycemic peak. Other studies reported apple pomace consumption 

improved blood glucose. Juskiewicz, et al [30] reported unprocessed polyphenol rich apple 

pomace reduced serum glucose. Kosmala, et al [31] found feeding apple pomace and flavonoid-

reduced apple pomace, but not flavonoid-deprived apple pomace reduced serum glucose 

(Table 3). All food byproducts studied were similar in terms of digestibility, gastric transit, and 

lipid metabolism alterations. Orange bagasse appeared to be the most efficient at glycemic 

control, which may be related to polyphenol content, as high polyphenol foods have been shown 

to inhibit glucose absorption [95]. Collectively, the results indicate the importance of polyphenols 

rich fiber as the compound in apple pomace influencing glucose regulation.    

Ma, et al [34] investigated apple pomace combined with rosemary extract, a popular 

flavoring herb, on fructose consumption-induced insulin resistance. Male Sprague Dawley rats 

(age 7 weeks) were randomly assigned into two initial groups for the first 13 weeks of the study: 
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water control (n=6 animals) or 10% (w/v) fructose in the drinking water (n=27). Following 13 

weeks, the fructose group was divided into three groups (n=9 animals/group) fructose control, 

fructose with 100 mg/kg of apple pomace and rosemary extract, and fructose with 500 mg/kg of 

apple pomace and rosemary extract. At the end of five weeks, the higher dose of 500 mg/kg 

apple pomace and rosemary extract significantly decrease fasting plasma glucose compared to 

fructose control. Fasting plasma insulin, homeostasis model assessment of insulin resistance 

(HOMA-IR) and adipose insulin resistance (Adipo-IR) were significantly decreased at both 

doses of apple pomace and rosemary extract compared to fructose control. High dose (500 

mg/kg) apple pomace and rosemary extract improved insulin resistance. Gastrocnemius 

sarcolemmal CD36 contributes to insulin resistance by facilitating fatty acid uptake and down-

regulation of glucose transporter-4 (GLUT-4). Rats fed the high dose (500 mg/kg) of apple 

pomace and rosemary extract significantly reduced gastrocnemius sarcolemmal CD36 and 

GLUT-4 stain intensity compared to fructose control (Table 3). The authors concluded high dose 

apple pomace and rosemary extract improved fructose consumption-induced insulin resistance 

by attenuation of impaired CD36 cells and GLUT-4 transporter. 

Collectively, human and animal study results showed apple pomace consumption 

improved lipid metabolism, blood lipid profile, and metabolic dysfunction (e.g. hyperglycemia, 

insulin resistance) induced by unhealthy diets (e.g. high in fat, high in fructose), as well as 

antioxidant status and gastrointestinal health and therefore, warrants further research towards 

development of apple pomace for human consumption. Of the preclinical studies investigating 

potential health benefits of apple pomace consumption, all used animal models consisting of 

growing or young adult males. Most feeding studies were of short-duration (4-10 weeks). 

Typical of animal feeding studies, doses of apple pomace or purified apple pomace ingredients 

were higher than typically consumed or achievable by humans and therefore, translational 

dosing studies are needed. Evidence regarding the potential of health benefits of apple pomace 
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for human consumption is promising. However, no studies have specifically addressing the 

safety of apple pomace for human consumption. 

 

1.0.7 Safety of Apple Pomace Consumption  

The safety of apple pomace for human consumption has not been comprehensively 

reviewed and few studies exist regarding potential health risks of consuming apple pomace. A 

commercial use for apple pomace has been as a feed additive for livestock animals (e.g. cattle 

and goats). Studies found apple pomace to be a suitable feed additive for livestock by providing 

adequate nutrients with no detriments to protein digestion, growth, pregnancy outcome, and 

milk production [96-99]. However, ruminants are not translational animal models and nutritional 

inadequacies resulting from apple pomace intake is not a major concern for humans. Issues of 

greater concern for apple pomace consumption by humans is presence of natural toxins in 

apple seed and pesticide exposure.  

The cyanogenic glycoside, amygdalin is a naturally-occurring plant toxin. When apple 

tissues are disrupted amygdalin interact with endogenous digestive enzymes resulting in the 

release of hydrogen cyanide. Consumption of cyanogenic plants can result in acute cyanide 

poisoning with symptoms including: headaches, dizziness, hypotension, loss of consciousness, 

coma, and death [100-102]. Bolarinwa, et al [100] analyzed apple seed amygdalin levels in 15 

varieties of apples. Results found Golden Delicious (3.91 ± 0.49 mg/g), Royal Gala (2.96 ± 0.12 

mg/g), and Red Delicious (2.80 ± 0.50 mg/g) had the highest seed amygdalin content. Braeburn 

(1.19 ± 0.12 mg/g) and Egremont Russet (0.95 ± 0.22 mg/g) had the lowest seed amygdalin 

content (Table 4) [100,103-115]. Variations in amygdalin content can be attributed to different 

cultivars and environmental differences. The authors suggested that amygdalin content found in 

apple seeds was high and consumption of apple seeds could be a cause for concern. 

Opyd, et al [103] fed male Wistar rats (age 8 weeks) apple seeds isolated from apple 

pomace to determine if the amygdalin content of apple seeds included in the pomace impacted 
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health. Rats were randomly divided (n=10 animals/group) into three groups consisting of a high 

saturated fat (7% lard, 1% cholesterol) and high fructose (68.75%) (HSHF) diet, HSHF 

supplemented with 0.24% (the equivalent of 160 mg/kg) amygdalin, or HSHF supplemented 

with 18.4 % apple seeds (amygdalin content=0.24%). Following 14 days, apple seed 

supplementation significantly reduced dietary intake and body weight compared to control and 

amygdalin diet groups. Additionally, protein digestibility and nitrogen retention were decreased 

(p<0.001). Apple seed supplementation significantly increased cecum tissue mass and digesta 

mass, increased microbial enzyme activity, and increased (p<0.001) digesta SCFA compared 

control and amygdalin diet groups. Serum glucose, triglycerides, and total cholesterol were not 

significantly affected by apple seed supplementation, but HDL-C was increased (p=0.015) 

compared to control. Apple seed supplementation also increased (p=0.002) serum antioxidant 

capacity of water-soluble substances compared to control and amygdalin and significantly 

decreased liver TBARS compared to control. The authors concluded amygdalin content of apple 

seeds did not negatively impact markers of digestion, blood lipids, and improved antioxidant 

status of rats. Results indicated apple pomace which contain apple seeds to be safe for 

consumption.  

  The National Institutes of Health Toxicology Data Network reported the lethal dose of 

hydrogen cyanide to be 50-300 mg. The potential amount of hydrogen cyanide released from 

apple seeds is 0.6 mg of hydrogen cyanide/g, which would require consumption of 83-500 apple 

seeds for acute cyanide poisoning [104]. At most, an apple can contain 10 seeds and 

depending on apple size ~1-2 apples are needed to produce 100g of apple pomace. Therefore, 

an individual would need to consume nearly 800g of apple pomace for potential acute cyanide 

poisoning [116,117]. 

Another potential adverse effect of apple pomace consumption by humans is pesticide 

exposure since apple crops are heavily sprayed with pesticides, which includes fungicides and 

plant growth regulators [9]. Lead arsenate pesticides were once popularly used in apple and 
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other fruit orchards. Although many countries including the U.S. have ban the use of lead 

arsenate and arsenic-based pesticides, arsenic and lead can persist in soil for years [118]. The 

media has alerted consumer to presence of arsenic in food, most notably in apple juice [119]. 

No studies have investigated apple byproducts; however, it has been reported arsenic primarily 

remains in soil, roots, and leaves [120,121]. Additionally, food processing has been suggested 

to be effective for reducing pesticide residue [122,123]. Washing fruit and other produce has 

been shown to be effective [124]. Washing apples with 10 mg/ml sodium bicarbonate for 12-15 

minutes reduced the pesticides phosmet and thiabendazole levels in apples by 95.6% and 80%, 

respectively. Using bleach, a common washing method, did not effectively remove pesticides 

[125]. However, washing may not be sufficient for systemic pesticides, such as neonicotinoids 

which translocate to all parts of the plant including the fruit [126]. Neonicotinoids have been 

found to penetrate apple flesh with 24 hours of topical application, indicating potential for 

neonicotinoid residues in apple pomace [106].    

To assess health risk of pesticides on humans, the Environmental Protection Agency 

(EPA) uses reference dose (RfD) which is an estimated measurement of daily human oral 

exposure to acute or chronic dose that produces no adverse short-term or lifetime health risks 

based on animal studies as well as % population adjusted dose (% PAD) which is based on RfD 

and adjusts for additional susceptibility (e.g. infants, children, pregnancy) with values less than 

100% PAD considered safe [127,128].  

Apples contained low amounts of neonicotinoids (<0.001 mg/kg) however, acetamiprid 

were more frequently detected in apples than other fruits and vegetables, based on the USDA 

Pesticide Data Program from 2004-2011 [106].  In a mouse study, oral ingestion of 30 

mg/kg/day of acetamiprid for 35 days resulted in significantly decreased testis, epididymis, 

seminal vesicle, and prostate weights compared to mice provided no acetamiprid. Histological 

evaluation showed acetamiprid damaged Leydig cells indicated by increased (p<0.05) testicular 

p38 MAPK, a marker of stress and inflammation, and decreased testicular antioxidants: 
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catalase, GPX and SOD. Sperm count, viability and motility, rate of intact acrosomes, and 

serum testosterone were significantly decreased by acetamiprid ingestion (Table 4). Based on 

the results acetamiprid reduced male fertility [105].  

Chen, et al [106]. analyzed specific neonicotinoid residues in fruits and vegetables using 

liquid chromatography-mass spectrometry. Analysis of apples included several varieties, 

including: Cortland, Granny Smith, Fuji, Red Delicious, Golden Delicious, Gala, Honey Crisp, 

and Macintosh. Results found apples to have negligible amounts of most neonicotinoids with the 

exceptions of Granny Smith and Honey Crisp reporting high concentrations of acetamiprid of 

0.0407 and mg/kg and 0.1007 mg/kg, respectively (Table 4). Based on these doses reported in 

apples, results indicate a low risk for acetamiprid toxicity in humans since acute RfD for 

acetamiprid is 0.10 mg/kg/day and the chronic RfD is 0.07 mg/kg/day, with % PAD ranging from 

10-40% [107]. Based on the levels of toxicity reported for neonicotinoids in the mouse study by 

Zhang, et al [105] ~30 mg/kg of neonicotinoids would need to be consumed for acute toxicity in 

humans (Table 4).  

Fungicides are another widely used chemical that results in better fruit yield and quality. 

However, fungicides are environmentally mobile through wind and rain runoff and can be toxic 

to humans [129]. Depending on dose, fungicides vary in adverse side effects in humans from 

allergies to cancer [130]. Lozowicka [108] evaluated fungicide residues in a variety of fruits 

using spectrophotometric and chromatographic techniques. Fungicide residue was found on 

52% of 974 sampled fruits, including apples. However, 1.3% of fruits, including apples (n=696), 

sampled exceeded the maximum residue level of pesticides. Dithiocarbamates, the most 

widespread fungicide in the world, occurred most frequently in apples. In order to assess safety, 

the author calculated both the long-term risk using hazard index, a measure of the maximum 

amount of pesticide intake and safety and acute reference dose, which estimates 24 hours daily 

oral exposure without long-term risk. A hazard index and an acute reference dose over 100% 

indicates potential risk to the consumer. Short-term and long-term risks associated of all 
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pesticides found on apples did not pose a health risk since hazard index and acute reference 

dose values ranged from 0 to 4.65% (Table 4). The authors concluded long-term risks 

associated with consuming fungicides from apples are low in children and adults based on their 

risk estimates of consumed pesticides compared to acceptable daily intakes.  

Liu, et al [109] analyzed fungicide residue in fresh apples (n=24) using HPLC. Of the 

apples (n=24) sampled 50% had detectable fungicide residue. Three classes of fungicides 

found in apples were thiophanate, carbendazim, and pyrimethanil. Liu, et al [113] reported 

thiophanate residues in apples were within established maximum allowed residue levels (2 

mg/kg). Additionally, the EPA states all foods known to have carbendazim and thiophanate 

including apples have low % PAD [113,131]. However, apples were found to have the highest 

amount of pyrimethanil among all surveyed fruits that included: grapes, watermelons, bananas, 

blueberries, and peaches. Since no maximum residue levels have been established for 

pyrimethanil and carbendazim conclusions cannot be drawn. However, the EPA’s data on 

cyprodinil, a similar fungicide to pyrimethanil found minimal acute and chronic risk with the 

highest % PAD being 5.8% [110,113]. The authors also calculated acute and chronic risk of 

pesticide exposure and found negligible acute or chronic risk for thiophanate. According to the 

authors long-term risk from fungicide exposure from apple consumption was negligible. 

Plant growth regulators are also commonly used in apple growth and orchard 

maintenance to defend against fruit drop and delay ripening [132]. Maiti, et al [111] studied 

residues of naphthaleneacetic acid, a commonly used plant growth regulator, in apples by 

HPLC method. Seven samples were analyzed as whole apples, apple skin only, and apple 

without the skin. Apple skin showed the highest levels of naphthaleneacetic acid (0.433 mg/kg). 

Naphthaleneacetic acid content in whole apple and apples without skin ranged from 0.042 

mg/kg to 0.285 mg/kg (Table 4). No maximum permissible concentration for humans has been 

established The EPA states naphthaleneacetic acid to poses no acute or chronic health risks 

and levels in foods so low that no measurements are necessary [112]. Liu, et al [113] analyzed 
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fresh fruits in China (the country producing the most apples worldwide) for plant growth 

regulators residue using HPLC reported no detectable plant growth regulators residues (Table 

4). Diphenylamine is a plant growth regulator commonly used to control browning during apple 

storage. Lozowicka [108] reported diphenylamine to be present on 14.6% of apple samples 

analyzed (n=696), however dose was not reported. The EPA reports animal studies on 

diphenylamine studies have shown it to be slightly toxic through oral, dermal, and inhalation 

route, causing increased bladder tumors in male and female mice, as well as reticulum cell 

sarcomas in mice.  However, the EPA has found diphenylamine to pose a low risk for toxicity, 

setting a tolerance level of 10ppm for apples and 30ppm for apple pomace (Table 4) [114]. The 

USDA has a database of pesticides detected in various foods, the highest concentration at 

which the pesticides were detected, and the established EPA Tolerance Level for the pesticide. 

The most recently published data on the USDA database is from 2015, with n=708 apples being 

sampled and tested for 223 pesticides. No pesticide was found to be over the EPA’s established 

Tolerance Levels. These results indicate apples and in turn, apple pomace likely does not 

contain levels of pesticides harmful to human health [115]. 

Collectively, studies results showed apple pomace to be a safe feed additive for 

livestock and pesticide content in apples to be within accepted safe standards for human 

consumption. Previous studies on feeding apple pomace to rodents and humans have not 

shown health detriments. However, it should be noted that no studies directly evaluated 

potential risks associated with pesticide residues in apple pomace. Although apples contain 

naturally toxic substances (e.g. amygdalin), the amount of apple pomace that must be 

consumed to result in acute toxicity would be nearly 2 lbs. Therefore, apple pomace appears to 

be safe for human consumption. However, more studies are needed on the safety of apple 

pomace for human consumption to ensure various pesticides and harmful compounds are not 

retained at toxic levels in apple pomace. 
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1.0.8 Potential Food Uses 

 Apple pomace is being studied for extraction and isolation of nutrients such as dietary 

fiber and polyphenols for use as purified food ingredients. Dietary fibers extracted from apple 

pomace and used as a replacement for fat in cookies resulted in changes in cookie size, shape, 

and color but maintained a pleasing texture for consumption [133]. Others have investigated 

apple pomace as an ingredient in baked goods. Apple pomace was incorporated into cakes to 

increase dietary fiber and polyphenol content. Cakes prepared with 25% apple pomace wheat 

flour blend resulted in 14.2% total dietary fiber content compared to 0.47% in wheat flour. 

Additionally, 25% apple pomace blend increased polyphenols by 50%. Results showed 

incorporating apple pomace as an ingredient in cakes improved its nutritional profile [134]. 

Masoodi, et al [8] utilized apple pomace as a source of dietary fiber in wheat bread. Blends were 

made by incorporating 2, 5, 8, and 11% apple pomace into wheat flour. Sensory evaluation 

found up to 5% apple pomace in wheat bread maintained favorable texture, color, general 

appearance, taste and odor. Unrefined dried powered apple pomace was evaluated in an 

ingredient pie filling and oatmeal cookies. Apple pomace added at 10-20% total formula of pie 

filling resulted in no differences in sensory attributes except for texture. Apple pomace added to 

oatmeal cookies at 30, 40, and 50% weight resulted in flavor changes. However, both products 

were rated as moderately liked [135]. Issar, et al [136] utilized apple pomace to develop a fiber-

enriched yogurt. Apple pomace was added at 2.5, 5, 7.5 and 10% to whole milk then inoculated 

with starter culture. Fiber ranged from 2.42 to 9.94% with optimal sensory attributes of color, 

flavor, texture, and overall acceptability reported with 5% apple pomace. To our knowledge no 

studies have evaluated apple pomace as an edible food. Apple pomace has high potential to be 

reconstituted into a food product due to its favorable nutritional profile and reported sweet taste 

and smell [9,135,137]. However, apple pomace would need to be dried due to its high moisture 

content and propensity for rapid spoilage [9]. Following drying, apple pomace could potentially 
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be reconstituted into snack bars, granolas, flavoring powders, toppings, and other innovative 

food products.  

 

1.0.9 Conclusion 

 Apple pomace is a byproduct of the apple processing industry that is typically regarded 

as waste and presents a public health issue as its disposal is difficult and costly. As reviewed in 

this paper, nutrient composition of apple pomace showed higher content of dietary fiber, 

essential fatty acid, protein, several dietary minerals important to human health, several classes 

of dietary antioxidants, and ursolic acid as compared to apples and other popularly consumed 

fruits in the U.S., making it a potentially nutritious for human consumption.  

Collectively, preclinical study results reported health benefits of improved lipid 

metabolism, antioxidant capacity, and digestive health indicating apple pomace’s potential as a 

dietary supplement, food additive or functional food for human consumption. Studies have 

shown no deleterious effects in livestock from consumption of apple pomace as a feed additive 

and research on pesticide content in apples has shown safe levels for short- and long-term 

human consumption. However, further mechanistic, translational dose, and clinical studies on 

both health benefits as well as safety of apple pomace for human consumption are required. 

Apple processing is a continually growing industry, as ciders and juices are in high demand, 

resulting in apple pomace being readily available. Therefore, re-purposing apple pomace as a 

commercial product for human consumption can result in an environmental and economical 

solution to apple waste generated by industrial processing of apples. 
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Table 1. Comparison of the nutrient composition of whole apples versus apple pomace 

Constituents (Fresh weight) Whole Apple1  Apple Pomace2  

Macronutrients (%)   

Fat  0.16-0.18 1.1-3.6 

Protein  0.24-0.28 2.7-5.3 

Total Carbohydrate  13.81 44.5-57.4 

Simple Carbohydrates (%)   

Fructose  5.8-6.0 44.7 

Glucose  2.4-2.5 18.1-18.3 

Complex Carbohydrates (%)   

Total Fiber  2.1-2.6 4.4-47.3 

Insoluble Fiber  1.54 33.8-60.0 

Soluble Fiber  0.67 13.5-14.6 

Pectin 0.71-0.93 3.2-13.3 

Major Minerals (mg/100g)   

Sodium  0.9-1.1 185.3 

Potassium  104.8-109.2 398.4-880.2 

Calcium  5.7-6.3 55.6-92.7 

Phosphorus 10.7-11.3 64.9-70.4 

Magnesium  4.9-5.1 18.5-333.5 

Trace Elements (mg/100g)   

Iron 0.11-0.13 2.9-3.5 

Zinc  0.0036-0.0044 1.4 

Copper  0.026-0.028 0.1 

Manganese  0.033-0.037 0.4-0.8 

Values are the ranges reported for n=6-38 samples. A single value indicates an n=1 sample. 
1Values for whole apples are based on the USDA database.[1] 2Values for apple pomace are 
based on Bhushan, et al.[2] and Queji, et al.[3]  
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Table 2. Mineral values in commonly consumed fruits in North America.    

Dietary 
Minerals 
mg/100 g Fresh 
Weight 

Apples1 Bananas1 Pears1 Grapes1 Oranges1 Blueberries1 Apple Pomace2  

 Sodium  1 ± 0.07 1 ± 0.40 1 ± 0.20 0.4 ± 0.44 0 ± 0.03 0.16 ± 0.35 185.3 ± 0.00 
 Potassium 107 ± 2.21 358 ± 1.91 116 ± 3.61 191 ± 27.52 181 ± 1.40 77 ± 5.45 639.3 ± 240.9 

 Calcium  6 ± 0.34 5 ± 0.05 9 ± 0.41 14 ± 1.72 43 ± 2.24 6 ± 0.79 74.1 ± 18.5 

 Phosphorus  11 ± 0.34 22 ± 0.17 12 ± 0.23 10 ± 0.61 14 ± 0.44 12 ± 0.51 67.6 ± 2.8 

 Magnesium  5 ± 0.07 27 ± 0.48 7 ± 0.07 5 ± 0.18 10 ± 0.17 6 ± 0.20 176.0 ± 157.5 

 Iron 0.12 ± 0.01 0.26 ± 0.001 0.18 ± 0.03 0.29 ± 0.06 0.1 ± 0.04 0.28 ± 0.11 3.2 ± 0.3 

 Zinc  0.04 ±0.004 0.15 ± 0.001 0.10 ± 0.004 0.04 ± 0.01 0.07 ± 0.00 0.16 ± 0.02 1.4 ± 0.00 

 Values report as mean ± SE for n=1-212 samples.  
1Values for apples, bananas, pears, grapes, oranges, and blueberries are from USDA.[1,4-8] 2Apple pomace values are from 
Bhushan, et al.[2]
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Table 3. Studies of apple pomace constituents and whole apple pomace effects on health.  

Reference Dietary study characteristics  Results  

Apple Pomace 
Constituents  

  

   
     Chen, et al. (2017) [23]  Male Kunming mice age 45d 

n=18 animals/group 
45% HFD with 200, 400, or 
800 mg/kg bwt/d apple 
pomace polysaccharide 
extract for 30 days 

200 mg/kg bwt/d  
↓ serum cholesterol 
↓ serum insulin 
↓ serum adiponectin 
↓ serum leptin 
200 and 400 mg/kg bwt/d   
↓ serum LDL-C 
All doses 
↓ fasting serum insulin 
↓ serum hexokinase and glucagon 
↓ liver lipid 
↑ serum antioxidant capacity dose-dependent  
 

     Sembries, et al. (2006) 
[24] 

Male Wistar rats age 8 weeks 
n=12 animals/group 
Standard rodent diet with 5% 
apple pomace fiber-rich 
colloid for 6 weeks  
 

↑ cecum SCFA, acetate, and proprionate  
↑ fecal bile acid excretion  
↓ body weight  

     Sembries, et al. (2004) 

[25]  
Male Wistar rats age 6 weeks 
n=10 animals/group 
Standard rodent diet + 5% 
apple pomace fiber-rich 
colloids for 6 weeks 
 

↓ serum CHL 
↓ serum LDL-C 
↑ serum HDL-C 
↑ fecal bile acid and neutral sterol excretion 
 

Apple pomace 
Human Studies 

  

     Ravn-Haren, et al. (2015) 
[26]  

Men and women age 18-69 
years (n=34) 
Polyphenol and pectin 
restricted diet + 22 mg/day 

NS lipid profile and bile acid 
↓ fecal lithocholic acid excretion 
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apple pomace for 5 x 4 
weeks crossover 
 

     Rago, et al. (2015) [27]  Men and women age 18-69 
years (n=34) 
Polyphenol and pectin 
restricted diet + 22 mg/d 
apple pomace for 5 x 4 
weeks crossover 

Plasma measurements: 
↓ aromatic amino acids 
↓ medium- and short-chain acylcarnitines 
↓ primary bile acids 
↓ deydropiandrosterone sulphate, and lysophospholipids 
↑ uric acid  
 

    Preclinical Studies 
     Cho, et al. (2013) [28]  

 
Male Sprague Dawley rats 
age 3 weeks (n=8 
animals/group)  
15%HFD + 10% apple 
pomace for 9 weeks 
 

 
↓ body weight and fat 
↓ serum LDL-C 
↑ serum HDL-C 
↓ liver CHL and TG 
↑ fecal CHL and TG  
 

     Bobek, et al. (1998) [29]  Male Wistar rats age 3 weeks 
n=20 animals/group 
0.3% CHL + 5% apple 
pomace for 10 weeks 

↓ liver CHL 
↓ liver HMG-CoA reductase 
↓ plasma conjugated dienes 
↑ fractional catabolic rate of plasma CHL  
↓ erythrocyte SOD, catalase, GPx activity 
 

     Juskiewicz, et al. (2012) 
[30]  

Male Wistar rats age 35 d 
n=8 animals/group 
Standard diet + 15% 
unprocessed or 14% 
processed apple pomace for 
28 d 
 

Unprocessed apple pomace 
↑ erythrocyte SOD 
↑ serum antioxidant capacity of fat and water-soluble 
substances 
↓ urine nitrogen 
↓ digesta β-glucosidase 
↓ serum glucose 
↓ liver TBARS 
 
Processed apple pomace 
↑ antioxidant capacity of water-soluble substances  
↓ digesta β-glucosidase and β-glucuronidase  
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↓ colon digesta pH 
↓ fecal pH  
 
All apple pomace groups 
↓ fecal nitrogen 
↓ nitrogen digestibility  
↑ cecum tissue weight, digesta, dry matter, pH, ammonia  
↑ cecal digesta SCFA 
 
 

     Kosmala, et al. (2011) [31]  Male Wistar rats age 4 weeks 
n=8 animals/group 
Standard diet + 0.23% (w/w) 
whole apple pomace, 0.10% 
(w/w) flavonoid-reduced 
apple pomace, or 0.01% 
(w/w) flavonoid-deprived 
apple pomace for 4 weeks 
 

Whole apple pomace 
↑ cecum tissue weight 
↓ β-glucuronidase 
↓ serum glucose 
Flavonoid-reduced apple pomace 
↑ cecal microbiota glycolytic activity 
Modified cecal SCFA:BCFA ratio 
Flavonoid-deprived 
↓ cecal ammonia  
↓ colonic pH 
↓ serum glucose 
All apple pomace groups 
↑ intestinal fermentation 
↑ fecal SCFA 
↓ cecum pH 
 

     Sehm, et al. (2007) [32]  Male Pietráin × (Deutsche 
Landrasse ×Deutsches 
Edelschwein) piglets age 24d 
n=39 animals/group 
3.5% apple pomace for 6 
weeks 
 

NS feed/energy intake, weight gain 
↑ jejunum and ileum villi breadth 
↓ gut-associated lymphoid tissue 

     Macagnan, et al. (2015) 
[33]  

Male Wistar rats age 3 weeks 
n=8 animals/group 
Standard diet + 68.8 g/kg of 

↑ apparent digestibility  
↑ fecal nitrogen 
↓ dry fecal production 
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apple pomace for 34 d 
 

↑ fecal moisture content 
↑ fecal lipid 
↓ serum TG 
↓ liver LDL-C 
↓ AUC for glucose 
 

     Ma, et al. (2016) [34]  Male Sprague-Dawley rats 
age 7 weeks 
n=6-9 animals/group  
10% fructose in water + 
standard diet with 100 mg/kg 
or 500 mg/kg apple pomace 
+ rosemary extract  for 5 
weeks 

500 mg/kg apple pomace 
↓ fasting plasma glucose  
↓ gastrocnemius sarcolemmal CD36 and GLUT-4 stain 
intensity  
Both apple pomace groups 
↓ plasma insulin, HOMA-IR, and Adipo-IR 
 

Abbreviations and symbols: ↓, decrease; ↑, increase; Adipo-IR, adipose tissue insulin resistance; AUC, area under the curve; BCFA, 
branched-chain fatty acid; CHL, cholesterol; HDL-C, high density lipoprotein-cholesterol; GPx, glutathione peroxidase; HFD, high fat 
diet; HOMA-IR, homeostatic model assessment for insulin resistance; LDH, lactate dehydrogenase; LDL-C, low density lipoprotein-
cholesterol; NS non-significant; SCFA, short-chain fatty acids; SOD, super oxide dismutase; TBARS, thiobarbituric acid reactive 
substances; TG, triacylglycerol. 
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Table 4. Studies on safety of apple and apple constituents and pesticide safety information.  

Reference Safety study characteristics  Results  
Amygdalin    

     Bolarinwa, et al. (2014) [100]  Seeds from 15 apple varieties    
 
 

↑ amygdalin (2.80-3.91 mg/g)  in Golden 
Delicious, Royal Gala, and Red Delicious  
↓ amygdalin (0.95-1.19 mg/g) Braeburn and 
Egremont Russet  
 

     Opyd, et al. (2017) [103]  Male Wistar rats age 8 weeks 
n=10 animals/group 
High-saturated fat (7% lard, 1% 
CHL) and high-fructose (68.75%) 
diet with 0.24% amygdalin or 
18.4% apple seeds (0.24% 
amygdalin) 

Amygdalin dose equivalent to 160 mg/kg 
Apple Seeds 
↓ food consumption  
↓ body weight 
↓ protein digestibility and nitrogen retention 
↑ cecum and digesta mass 
↑ cecum microbial enzyme activity  
↑ digeta SCFA  
↑ serum HDL-C 
↑ serum antioxidant capacity of water-
soluble substances 
↓ liver TBARS 
 

     NIH (2017) [104]  Toxicology Database Hydrogen cyanide LD=50-300 mg 
= need to consume ~800g apple pomace  

Pesticides    

Neonicotinoids   

     Zhang, et al. (2011) [105]  Male Kungming mice age 8 
weeks 
n=10 animals/group 
Oral ingestion of 30 mg/kg bwt/d 
acetamiprid for 35 d 
 

~30 mg/kg = toxicity in humans 
↓ testis, epididymis, seminal vesicle, 
prostate weight  
↑ Leydig cell damage  
↑ testicular p38 MAPK 
↓ testicular catalase, GPX, and SOD 
↓ sperm count, viability, and motility, rate of 
intact acrosomes 
↓serum testosterone  
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    Chen, et al. (2014) [106]  8 apple varieties  
 

↑ acetamiprid Granny Smith (0.407 mg/kg) 
and Honey Crisp (0.1007 mg/kg)  
 

     EPA (2002) [107]  Acetamiprid Fact Sheet Acute RfD=0.10 mg/kg/d 
Chronic RfD=0.07 mg/kg/d 
% PAD=10-40 

Fungicides    

     Lozowicka (2015) [108]  Apples n=696  Dithocarbamate residue found most 
frequently on apples 
Risk at 100% 
Hazard index and acute reference dose 0-
4.65% 
   

     Liu, et al. (2016) [109]  Apples n=24 Thiophanate (2 mg/kg) and found within 
allowed residue levels  
Thiophanate and carbendazim low % PAD 
↑pyrimethanil compared to other fruits  
EPA (1998)[29] states cyprodinil (similar to 
pyrimethanil) % PAD=5.8 

 

Plant Growth Regulators    

     Maiti, et al. (1988) [111]  Apples n=7  
Whole apples 
Apples without skin 
Apple skin 

↑ Naphthaleneacetic acid residue on apple 
skin  (0.433 mg/kg) 
Naphthaleneacetic acid in whole apples and 
without skin (0.042-0.285 mg/kg)  
EPA (2007)[31] states naphthaleneacetic 
acid poses no acute or chronic health risks  
 

     Liu, et al. (2016) [113]  Apples n=24 No detectable PGR residue 
 

     Lozowicka (2015) [108]  Apples n=696 Diphenylamine found on 14.6% of apples 
EPA(1998)[33] states low risk for toxicity  
Tolerance level of 10 ppm (apples) and 30 
ppm (apple pomace) 
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     USDA Database (2015) [115]  Apples n=708 223 pesticides tested for 
All below EPA tolerance level  

Abbreviations and symbols: ↓, decrease; ↑, increase ; EPA, Environmental Protection Agency; NIH, National Institutes of Health; NS, 
non-significant; PGR, plant growth regulator; ppm, parts per million; RfD, reference dose; % PAD, % population adjusted dose; 
TBARS, thiobarbituric acid reactive substances; USDA, United States Department of Agriculture. 
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1.1 Diet-induced non-alcoholic fatty liver disease: a brief review   

 Non-alcoholic fatty liver disease (NAFLD) is the most prevalent liver disease worldwide 

with prevalence also rising in children [1,2]. NAFLD is defined as hepatic steatosis not caused 

by alcohol consumption and is often linked to overconsumption of saturated fat and simple 

carbohydrates as well as obesity [3-5]. NAFLD can progress to the more severe non-alcoholic 

steatohepatitis (NASH), which includes inflammation in addition to steatosis [6]. As the disease 

progresses from NAFLD to NASH, mortality and systemic complications increase [7,8]. 

Approximately 25% of the world’s population is reported to have NAFLD, with 25% of these 

individuals having the more severe NASH [9]. However, prevalence may be higher since liver 

biopsy is most accurate diagnostic for the disease is costly and invasive [10]. As the obesity 

epidemic continues, cases of NAFLD and NASH, with current predications forecasting a 

potential liver disease crisis [9,11].  

1.1.1 Etiology  

NAFLD has been suggested to be the hepatic manifestation of metabolic syndrome [12]. 

Poor diet and lack of physical exercise are factors in NAFLD development [1]. NAFLD 

prevalence is particularly high in Western countries, due to “Western diets” defined as diets high 

in saturated fat and simple carbohydrates [13,14]. A multiple-hit model has been proposed to 

explain NAFLD progression, with the first hit being accumulation of fat in the liver and the 

second hit being the onset of inflammation [4]. 

Accumulation of hepatic fat results from dysregulation of hepatic lipid metabolism. 

Overconsumption of saturated fat and simple carbohydrates results in increased i lipogenesis 

(DNL) through the stimulation of genes involved in the DNL cascade [15,16]. Transcription 

factors sterol regulatory binding protein-1c (SREBP-1c) and carbohydrate element response 

binding protein (ChREBP) stimulate fatty acid synthase (FAS) to catalyze the synthesis of 

saturated fatty acids (SFAs) [15]. These SFAs can then be further desaturated to 

monounsaturated fatty acids (MUFAs) by stearoyl-CoA desaturase (SCD-1), which are more 
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readily used for triglyceride synthesis [15,17]. Esterification is catalyzed by diacylglycerol O-acyl 

transferase-2 (DGAT2), resulting in the accumulation of hepatic triglycerides [18]. Triglycerides 

can accumulate in the liver or enter circulation via activation by microsomal triglyceride transport 

protein (MTTP), which stimulates very-low density lipoprotein (VLDL) production and 

subsequent circulation (Figure 1) [19].  

Rise in circulating VLDL impairs bile acid homeostasis [20]. Typically, bile acids assist in 

digestion and absorption of fats and fat-soluble vitamins, cholesterol homeostasis, and 

eliminates waste from the body [20, 21]. Bile acids also act as metabolic signaling molecules, 

with normal reabsorption critical for triglyceride and glucose metabolism homeostasis [21]. 

Individuals with NAFLD have elevated bile acid production which contributes to elevated levels 

of circulating fatty acids and glucose that eventually leads to increased fat deposition and a 

proinflammatory state [22-24]. Additionally, bile acid dysregulation along with increased DNL 

can increase circulating free fatty acids [25]. Increases in MUFAs have been shown to 

increased triglyceride production and storage [26]. While increases in SFAs has been linked to 

increased inflammation, a second hit in the NAFLD cascade [27].  

Increases in SFAs has been shown to stimulate inflammatory gene expression, through 

activation of transcription factor nuclear factor kappa-light enhancer of activated B cells (NFκB) 

[28]. NFκB activates downstream inflammatory cytokines, such as IL-6 and TNF-α, resulting in 

increased hepatic inflammation [4,29]. This inflammatory cascade is not limited to the liver, as 

adipose tissue is also implicated in the inflammatory process. Alterations in fatty acid and 

glucose metabolism result in in adipose tissue lipogenesis leading to alterations in adipose 

tissue fatty acid profiles and inflammation status, further exacerbating increased hepatic DNL 

[30-32]. Inflammatory cytokines, upregulated by SFA, are transported to the liver, further 

promoting inflammation [4,30]. Inflammation coupled with increased reactive oxygen species 

(ROS) generation from free fatty acid metabolism promotes NAFLD progression to the more 

severe NASH (Figure 2) [6].  
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Further complicating this progression, polyunsaturated fatty acids (PUFAs) can also 

exacerbate inflammation and lipid peroxidation in NASH [14,33]. Overconsumption of the n-6 

PUFA, linoleic acid can result in increased inflammation and exacerbate liver disease [34]. 

Current recommendation are for the ratio of linoleic acid to n-3 PUFA α-linolenic acid to be 

approximately 1:1. The Western diet has a linoleic:α-linolenic acid ratio of 15:1 [14,34]. This 

essential fatty acid imbalance increases metabolism of linoleic acid to arachidonic acid [35]. 

Arachidonic acid can be further metabolized by cyclooxygenases to bioactive compounds, 2 

series prostaglandins and thromboxanes or to 4 series leukotrienes by lipooxygenases [36,37].  

Further, the ratio of n-6:n-3 has been shown to be the most important determinant of cell 

membrane composition, with an increase in n-6 consumption leading to a proinflammatory state 

[38]. 

 Increases in inflammatory cytokines from the liver and adipose tissue can be circulated 

to the kidney, resulting in renal inflammation and vascular dysfunction [4,39]. Increased uric acid 

production, due to overconsumption of sucrose and fructose, further exacerbates inflammation 

and increases risk of developing kidney stones, gout, and other renal diseases [40-42] [43,44]. 

Additionally, recent research suggests as NAFLD progresses it can result in detriments to bone 

health. Individuals with NAFLD have been shown to have decreased bone mineral density, and 

to increase the risk of osteoporosis [45-47]. Chronic inflammation increases in inflammatory 

cytokines, and decreased antioxidant defense have been suggested as a link between NAFLD 

and decreased bone mineral density [47].  

 NAFLD is reversible with lifestyle modifications. However, as NAFLD progresses from 

simple steatosis to NASH reversibility decreases [6]. Continual consumption of a diet high in 

saturated fat and simple carbohydrates without intervention can lead to the onset of NASH, and 

eventual cirrhosis [6,48]. Cirrhosis of the liver is defined as hepatic steatosis, inflammation, and 

fibrosis [49]. Cirrhosis is advanced stage liver disease that is irreversible and significantly 

increases risk of mortality [49,50]. Currently, no Food and Drug Administration approved drugs 
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exist for NAFLD treatment, medications are recommended to slow progression of cirrhosis, 

along with lifestyle modifications [51]. Cirrhosis of the liver also further increases the risk for 

chronic kidney disease, osteoporosis, and development of hepatocellular carcinoma [5,6,52,53]. 

Drug and lifestyle interventions slows the progression of cirrhosis, however liver transplant the 

only effective remedy [49]. NAFLD prevalence is increasing and onset is occurring in younger 

individuals with potential of a liver transplant epidemic in the future [7]. Therefore, diagnosis of 

NAFLD in its early stages in essential for improving outcomes and reducing potential burdens 

associated with late-stage liver disease.  

 

1.1.2 Diagnosis   

 NAFLD and NASH are diagnosed by liver biopsy and histological evaluation of the liver 

for steatosis, inflammation, and hepatocellular ballooning, or enlargement of hepatocytes [54]. 

Histological grading for steatosis is divided into four scores: a score of 0 indicates no sign of fat 

infiltration, a score of 1 indicates fat infiltration in <33% of hepatocytes, a score of 2 indicates fat 

infiltration in 33-66% of hepatocytes, and a score of 3 indicates fat infiltration in >66% of 

hepatocytes [55]. Similarly, inflammation is categorized by grading. Inflammation grades are 

divided into lobular inflammation, chronic portal inflammation, and cell ballooning. Liver lobular 

inflammation is scored as: 0 being no sign of inflammation, 1 being <2 signs of lobular 

inflammation present, 2 being 2-4 signs of lobular inflammation present, and 3 being >4 signs of 

lobular inflammation present.  Chronic portal inflammation is scored as a 0, 1, or 2, being none, 

mild, or severe respectively. Ballooning is scored similarly, with 0 being none, 1 being few, and 

2 being many [54,56]. Fibrosis is scored as: 0 being no fibrosis, 1 being fibrosis in the 

presinusoidal or portal region, 2 being fibrosis in the presinusoidal and portal region, 3 being 

bridging of fibrosis, and 4 being cirrhosis [57].    

While liver biopsies provide the most reliable method for diagnosing NAFLD and NASH, 

the procedure is invasive, costly, and only performed when an individual is suspected of having 
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liver disease [58]. Researchers have criticized pitfalls in using liver biopsies and histology for 

diagnosis due to inability for early NAFLD detection and potential confounders causing liver 

damage separate from diet (i.e. alcohol and drugs) [59].  Therefore, other methods are also 

used to diagnosis liver disease. Serum measurement of alanine aminotransferase (ALT) and 

aspartate aminotransferase (AST) are used as biological indicators of liver injury [60]. ALT and 

AST are enzymes that catalyze reactions important for transamination and elevated levels can 

indicate liver damage [61]. However, studies have shown serum ALT and AST levels to be 

normal in up to 60% of individuals with NAFLD and NASH, indicating the value of these 

enzymes for diagnosing and are insufficient [62]. Other measurements used to complement ALT 

and AST measures include: insulin resistance using homeostatic model assessment (HOMA), 

fasting glucose, triglycerides, cholesterol, as well as blood pressure and abdominal 

circumference [57]. New imaging tools are being developed to diagnose NAFLD. Abdominal 

ultrasounds are being widely used to aid diagnosis of NAFLD; however, few studies have 

investigated their accuracy [63]. Therefore, histological evaluation remains ‘the gold standard’ 

for determining NAFLD and disease progression.  

 

1.1.3 Treatment 

 In the absence of Food and Drug Administration approved drugs that specifically treat 

NAFLD, lifestyle changes are the primary treatment for liver disease [64,65]. Weight loss diet 

modification to achieve a healthier weight is recommended to treat NAFLD. Other dietary 

recommendations are to decrease saturated fat, sucrose, and fructose consumption. 

Decreasing overconsumption of saturated fat and simple sugars reduces DNL and inflammation 

[1]. Additionally, increased consumption of n-3 fatty acids, as well as complex carbohydrates, 

dietary fiber, and antioxidants have been suggested as treatments for NAFLD [33,65,66]. 

Increasing consumption of n-3 fatty acids, particularly eicosapentaenoic acid (EPA) and 

docosahexaenoic acid (DHA), has been shown to decrease expression of SREBP-1c and 
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ChREBP resulting in decreased circulating free fatty acids, DNL and hepatic fat storage. 

Supplementing with long-chain n-3 fatty acids has also been shown to reduce inflammation and 

oxidative stress through modulation of inflammatory cytokines, particularly IL-6 and TNF-α [67]. 

Studies have yet to elucidate the optimal n-3 PUFA to treat NAFLD [67,68].  

Dietary fiber also has health benefits associated with reducing NAFLD. Soluble dietary 

fiber binds to LDL- and VLDL-cholesterol decreases circulating cholesterol [69,70]. Soluble fiber 

consumption also produces short-chain fatty acids. Short chain fatty acids have been shown to 

decrease hepatic inflammation, lipid deposition, and to increase lipid metabolism [71]. Dietary 

fiber also bind to bile acids resulting in a decrease in circulating bile acids, ameliorating 

increased bile acids caused by NAFLD [69,72]. Additionally, increasing antioxidant intake has 

been suggested for NAFLD since individuals with liver disease have been shown to have 

increased inflammation, ROS, and lipid peroxidation [4,25]. Antioxidants stabilize free radicals 

by donating electrons ameliorating the impact of free radicals on ROS and inflammation [73]. 

Although a plethora of studies have been conducted on various dietary antioxidants, results 

have produced inconsistences in regarding effectiveness [74-76]. Studies suggest antioxidants 

may have the greatest efficacy when combined with dietary fiber [75,77].  

Studies have been conducted utilizing insulin sensitizing drugs, LDL-cholesterol 

reducing drugs, and bile acid targeting drugs have produced inconsistent results [7,76,78,79]. 

However, as discussed diet was able to favorably modulate the proposed drug targets for 

treating NAFLD [66]. Using functional food to treat of NAFLD has recently gained attention. 

Functional foods are defined as foods that beneficially affect one or more target functions in the 

body beyond adequate nutritional effects. Functional foods can be whole foods such as an 

apple or isolated components antioxidant compounds derived from apples [73]. Recent studies 

on the role of functional foods, particularly antioxidant and probiotic foods, as a treatment 

NAFLD have produced favorable results indicating potential for use as a treatment for NAFLD 
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[80-84]. Although new drugs and physiological targets continue to be studied, lifestyle 

modification remains the standard for treating individuals diagnosed with NAFLD. 

 

1.1.4 Conclusions 

 NAFLD is the most prevalent liver disease in the world, with projections estimating a 

potential liver disease epidemic [9,39]. NAFLD is primarily a lifestyle disease with increased 

saturated fat and simple carbohydrate consumption and physical inactivity central to disease 

etiology [4]. Onset of NAFLD is characterized by steatosis caused by alterations in lipid 

metabolism leading to increased DNL and alterations to bile acid homeostasis subsequently, 

followed by progression to NASH due to increased inflammation and ROS [4,21,85]. As NAFLD 

progresses to the more severe NASH, the disease becomes more difficult to manage. 

Eventually, untreated NASH can lead to cirrhosis, an incurable liver disease requiring liver 

transplant [6]. The continual increase in NAFLD prevalence, with onset occurring at a younger 

age, gives credence to a potential liver transplant epidemic [9]. Therefore, improved diagnosis 

and treatment of NAFLD are essential.  

Difficulties with diagnosing NAFLD has shifted focus to finding novel and effective 

treatments. Currently, no drugs are approved to treat NAFLD and therefore, lifestyle 

modification are primary treatment [64]. Dietary recommendations include decreasing saturated 

fat and simple carbohydrate intake and increasing complex carbohydrate and antioxidant intake 

[86]. Fruits, such as apples are high in dietary fiber and antioxidant compounds indicating its 

potential as a nutrition aid in the prevention and treatment of NAFLD [87,88]. Apple pomace, a 

waste byproduct from apple processing, should also be considered. When compared to apples, 

fiber content and antioxidant polyphenol content were higher in apple pomace [89,90]. 
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Figure 1. Illustration of de novo lipogenesis, lipid storage, and transport pathway. Adapted from 
Browning, et al [91]. Abbreviations: ACC, acetyl co-A carboxylase; ACL, ATP citrate synthase; 
ApoB, apolipoprotein B; ChREBP, carbohydrate response element bind protein; CPT-1, 
carnitine palmitoyltransferase 1; diacylglycerol O-acyltransferase 2; FAS, fatty acid synthase; 
FFA, free fatty acids; HSL, hormone sensitive lipase; LCE, long chain fatty acyl elongase; SCD, 
stearoyl-CoA desaturase; SREBP1c; sterol regulatory element binding protein 1c; VLDL, very 
low-density lipoprotein [6].  
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Figure 2. Depiction of the multiple hit theory of liver disease progression. Abbreviations: FFA, 
free fatty acids; NAFLD, non-alcoholic fatty liver disease; NASH, non-alcoholic steatohepatitis 
[92].  

  



77 
 

2.0 Study Objectives and Hypotheses  

Study 1 

Objective: To investigate the effect of 10% caloric substitution with apple pomace on features 

of Western diet-induced non-alcoholic fatty liver disease in growing female rats.  

Hypothesis: Caloric substitution with apple pomace will attenuate features of non-alcoholic fatty 

liver disease in growing female rats consuming a Western diet. 

 

Study 2 

Objective: To determine the effect of 10% caloric substitution with apple pomace on features of 

Western diet-induced non-alcoholic steatohepatitis in growing female rats.  

Hypothesis: Caloric substitution with apple pomace will attenuate features of Western diet-

induced non-alcoholic steatohepatitis in growing female rats.   

 

Study 3 

Objectives: To determine the effect of 10% caloric substitution with apple pomace on renal and 

bone health in growing female rats consuming ‘healthy’ and Western diets.  

Hypothesis: Caloric substitution with apple pomace will not have detriment renal or bone health 

in growing female rats consuming ‘healthy’ or Western diets.  

 

Overall Hypothesis: A 10% caloric substitution with apple pomace will attenuate Western diet-

induced onset of non-alcoholic fatty liver disease and progression to non-alcoholic 

steatohepatitis and will be safe for consumption, regardless of diet quality in growing female 

rats.  
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3.1 Abstract  

Apple pomace, a waste byproduct of processing, is rich in several nutrients, particularly 

dietary fiber, indicating potential benefits for diseases attributed to poor diets, such as non-

alcoholic fatty liver disease (NAFLD). NAFLD affects over 25% of United States population and 

is increasing in children. Increasing fruit consumption can decrease NAFLD. The study objective 

was to replace calories in standard or Western diets with apple pomace to determine effects on 

genes regulating hepatic lipid metabolism and on risk of NAFLD. Female Sprague-Dawley rats 

were randomly assigned (n=8 rats/group) to isocaloric diets of AIN-93G and AIN-93G/10% w/w 

apple pomace (AIN/AP) or isocaloric diets of Western (45% fat, 33% sucrose) and Western/10% 

w/w apple pomace (Western/AP) diets for 8 weeks. There were no significant effects on hepatic 

lipid metabolism in rats fed AIN/AP. Western/AP diet containing fiber-rich apple pomace 

attenuated fat vacuole infiltration, elevated monounsaturated fatty acid content, and triglyceride 

storage in the liver due to higher circulating bile and upregulated hepatic DGAT2 gene 

expression induced by feeding a Western diet. The study results showed replacement of 

calories in Western diet with apple pomace attenuated NAFLD risk. Therefore, apple pomace 

has potential to be developed into a sustainable functional food for human consumption. 

 

Keywords: apple pomace, NAFLD, Western diet, DGAT2, bile acids, food waste, sustainability   
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3.2. Introduction 

One-third of apples harvested in the United States (USA) are processed into apple 

products [1]. Apple pomace is a byproduct of apple processing that includes: skin, stem, seeds, 

core, and calyx [2]. Apple pomace presents an environmental and public health issue due to its 

rapid spoilage and fermentation. Moreover, apple pomace disposal is expensive with annual 

costs being estimated at $10 million in the USA [3,4]. Yet, apple pomace is a rich source of 

various nutrients (e.g., phytochemicals, vitamins, dietary minerals), but it is particularly high in 

non-digestible carbohydrates and dietary fibers, indicating potential benefits for reducing 

metabolic dysfunction, such as non-alcoholic fatty liver disease (NAFLD) [5]. 

NAFLD is characterized by dysregulated lipid metabolism and liver steatosis. It is the 

most prevalent liver disease worldwide with reports of over 25% of the population having 

NAFLD [6]. Global prevalence in children is estimated to be between 7.6–34.2% [7]. Further, 

liver steatosis has also been diagnosed in non-obese patients [8]. Diets that are high in fat and 

sucrose, which characterize Western diets, have been shown to induce NAFLD [9,10]. High 

carbohydrate consumption has been linked to NAFLD progression by upregulating the 

expression of key gene transcription factors that are involved in hepatic de novo lipogenesis 

(DNL), such as sterol regulatory element-binding protein-1c (SREBP-1c) and carbohydrate 

response element binding protein (ChREBP) [11]. SREBP-1c and ChREBP stimulate fatty acid 

synthase (FAS) to catalyze the synthesis of saturated fatty acids (SFAs). In turn, SFAs can be 

desaturated to monounsaturated fatty acids (MUFAs) by stearoyl-CoA desaturase-1 (SCD-1). 

Promoting fatty acid esterification by diacylglycerol O-acyl transferase-2 (DGAT2) stimulates 

hepatic triglyceride synthesis that can contribute to hepatic steatosis and production of 

triglyceride-rich very low density lipoproteins (VLDLs), which characterizes NAFLD [12].  

Currently, there are no approved drugs for the treatment of NAFLD; therefore, 

management of NAFLD relies on proper diet and lifestyle changes [13]. Despite a paucity of 

studies, apple pomace has been shown to reduce metabolic risk factors, such as hyperglycemia 
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and dyslipidemia, providing rationale for apple pomace consumption to reduce NAFLD [14,15]. 

However, a potential concern is apple pomace’s fructose content. Excessive fructose 

consumption has been shown to promote NAFLD development and progression [16]. 

Previously, we reported growing female Sprague-Dawley rats consuming different fructose 

containing drinks for eight weeks promoted NAFLD, but had no significant effect on body weight 

when compared to the water control [17]. Therefore, the objectives of this study were to 

determine the effects of caloric substitution with apple pomace in a normal (standard diet) or 

Western diet on expression of genes regulating hepatic lipid metabolism and NAFLD risk in a rat 

model. Our study followed the suggested dietary advice of replacing calories in the diet with 

healthier food choices instead of dietary supplementation with a purified isolated nutrient [18]. 

Study results showed that apple pomace had no detrimental effects on hepatic lipid metabolism 

and liver health in rats consuming normal diets and attenuate features in the NAFLD spectrum 

of upregulated gene expression of triglyceride synthesis as well as liver steatosis induced in rats 

consuming a Western diet. Investigating whether apple pomace, a byproduct generated from 

apple processing, can be re-purposed as a functional food for human consumption has the 

potential to improve public health and food sustainability by providing an economical solution for 

reducing environmental pollution and costly waste disposal. 

3.3. Materials and Methods 

Animals and Diets 

Weanling (age 22–29 days) female Sprague-Dawley rats (n = 32) were purchased from 

Harlan-Teklad (Indianapolis, IN, USA). Female rats were selected on the basis of their greater 

susceptibility to hepatic effects with increased carbohydrate consumption [19]. All animal 

procedures were approved by the Animal Care and Use Committee at West Virginia University 

and were conducted in accordance with the guidelines of the National Research Council for the 

Care of Laboratory Animals [20]. Rats were individually housed with cages kept in a room at 

constant temperature of 21 ± 2 °C with a 12 h light/dark cycle throughout the study. 
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Following seven-days acclimation, rats were randomly assigned (n = 8 rats/group) to 

four dietary groups consisting of: (1) AIN-93G, a standard purified rodent diet (AIN), (2) AIN-93G 

with 10% (g/kg) calorically substituted with apple pomace (AIN/AP), (3) Western diet (45% fat, 

33% sucrose by kcals), or (4) Western diet with 10% (g/kg) calorically substituted with apple 

pomace (Western/AP). AIN diets were adjusted to be isocaloric (3.7–3.8 kcal/g) and Western 

diets were adjusted to be isocaloric (4.7 kcal/g), resulting in different types rather than amounts 

of simple and complex carbohydrates. Detailed ingredient composition of experimental diets is 

provided in Table 1. Locally sourced apple pomace was provided by Swilled Dog Hard Cider 

Company (Franklin, WV, USA) and nutrient composition analysis was performed by Medallion 

Laboratories (Minneapolis, MN, USA) (Table 2). Total polyphenols in apple pomace and 

treatment diets were determined while using the Folin-Ciocalteu method [21]. Diets were stored 

at −20 °C until fed. Rats were provided ad libitum access to their assigned diets and deionized 

distilled water (ddH2O) throughout the eight weeks study duration. At baseline (day 1) and final 

(end of eight weeks), rats were individually housed in a metabolic cage for 24 h to collect feces. 

Feces was weighed and dried. Food intake was measured and assigned diets were replaced 

every other day while ddH2O was replaced weekly. Rats were fasted overnight then euthanized 

by carbon dioxide inhalation. The liver was excised, perfused with 0.7% saline solution, 

weighed, and then flash frozen in liquid nitrogen. Rat livers were stored at −80 °C until 

analyzed. 

 

Liver total lipid and triglyceride content  

Lipid extraction was performed according to Bligh and Dyer [22]. Briefly, 1g of liver tissue 

was homogenized in Tris/EDTA buffer (pH 7.4). To quantify fatty acids, 50 µL of nonadecanoic 

acid (19:0) was added as a standard during the initial weighing of the samples. A chloroform: 

methanol:acetic acid (2:1:0.15, v/v/v) solution was added to liver samples, centrifuged at 900× g 

for 10 min at 10 °C, and the bottom chloroform layer collected. The collected chloroform layer 
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was mixed with chloroform: methanol (4:1, v/v) and centrifuged at 900× g at 10 °C for 10 min. 

The chloroform layer was then collected and filtered. Extracted lipids were dried under nitrogen 

gas. Total lipid content in the liver was gravimetrically determined. 

Liver triglyceride content was determined using a commercially available triglyceride 

colorimetric assay kit (Cayman Chemicals, Ann Arbor, MI, USA). Briefly, liver tissue (400 mg) 

was homogenized using assay standard diluent (2 mL). Tissue homogenate was centrifuged at 

10,000× g for 10 min at 4 °C. Supernatant was collected and diluted 1:5 in assay standard 

diluent. Hepatic samples (10 µL) and lipase enzyme solution (150 µL) were added to a 96-well 

cell culture plate and then incubated for 15 min. Hepatic sample absorbance was measured at 

540 nm using a BioTek Epoch microplate spectrophotometer (Winooski, VT, USA). All samples 

were performed in duplicate. The inter-assay coefficient of variation was 15.16%. 

 

Diet and liver fatty acid composition  

Following lipid extraction, diet and liver tissue samples were transmethylated according 

to the method described by Fritsche and Johnston [23]. Briefly, fatty acids were methylated by 

adding 4% sulfuric acid in anhydrous methanol to the extracted lipid samples followed by 

incubation in a 90 °C water bath for 60 min. Samples were cooled to room temperature and 

ddH2O was added. Chloroform was then added to the methylated samples and centrifuged at 

900× g for 10 min at 10 °C. The collected chloroform layer was filtered through anhydrous 

sodium sulfate to remove any remaining water. Fatty acid methyl esters (FAMEs) were dried 

under nitrogen gas and re-suspended in iso-octane. 

FAMEs were analyzed by gas liquid chromatography (CP-3800; Varian, Walnut Creek, 

CA, USA) using an initial temperature of 140 °C held for 5 min and then increased 1 °C per min 

to a final temperature of 220 °C. A wall-coated open tubular fused silica capillary column 

(Varian, Walnut Creek, CA) was used to separate FAME with CP-Sil 88 at the stationary phase. 

Nitrogen was used as the carrier gas and the total separation time was 56 min. Quantitative 37 
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Component FAMEs Sigma Mix (Supelco, Bellefonte, PA, USA) was used to identify fatty acids. 

Fatty acids were determined by retention time and quantified using peak ultra-counts. All 

samples were performed in duplicate and reported as % of total fatty acids. 

 

Liver histology 

The left lateral liver lobe (n = 7–8) was removed and immediately fixed in 10% buffered 

formalin solution for histological evaluation. Tissues were dehydrated through a series of 

increasing ethanol concentrations (70–100% in ddH2O), then placed in xylene and embedded in 

paraffin. Sections (8 µm) from each block were stained with hematoxylin and eosin. All slides 

were analyzed under a Nikon TE 2000-S light microscope (Nikon Instruments, Melville, NY, 

USA) by three trained individuals who were blinded to diet treatments. Liver fat accumulation 

was graded using the classification described by Brunt, et al., where grade 0 is no evidence of 

fat vacuoles, grade 1 is evidence of fat vacuoles in <33% of hepatocytes, grade 2 is evidence of 

fat vacuoles in 33–66% of hepatocytes, and grade 3 is evidence of fat vacuoles in >66% of 

hepatocytes [24]. Images were captured using a PC interface with Q-Capture imaging software 

(Quantitative imaging Corporation, BC, Canada). 

 

RNA isolation and gene expression 

Total RNA was extracted from frozen tissue (50 mg) using the Zymo Research mRNA 

Isolation Kit (Irvine, CA, USA) according to the manufacturer’s instruction for total RNA isolation. 

Isolated RNA integrity was visualized on a 1.5% agarose gel and then quantified by 

spectrophotometry (NanoDrop 100; Thermo Scientific, Waltham, MA, USA). Following DNase I 

treatment with TURBO DNA-free kit (Applied Biosystems, Foster City, CA, USA), total mRNA 

was amplified using the Superscript III First-Strand Synthesis System with oligo dT primers 

(Invitrogen, Carlsbad, CA, USA). 
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Real-time quantitative polymerase chain reaction (RT-qPCR) consisted of 2.5 µL of 

SYBR Green Master Mix (Applied Biosystems, Foster City, CA, USA ), 1 µL of cDNA (diluted 

1:10), 1 µL of forward and reverse primer solutions (10 µM each), and 0.5 µL of deionized 

distilled water for a total reaction volume of 5 µL. The thermal profile consisted of 50 °C for 2 

min, 95 °C for 10 min, and then 40 cycles of 95 °C for 15 s and 60 °C for 1 min. A melt curve 

analysis was applied at the end of cycling. Primers were designed for ChREBP, SREBP-1c, 

sterol regulatory binding protein 2 (SREBP2), FAS, SCD-1, peroxisome proliferator-activated 

receptor-α (PPARα), peroxisome proliferator-activated receptor-γ (PPARγ), hormone sensitive 

lipase (HSL), microsomal triglyceride transfer protein (MTTP), and DGAT2, as well as for 

housekeeping genes, β-actin and glyceraldehyde 2-phosphate dehydrogenase (GAPDH) using 

the Primer3 program (Howard Hughes Medical Institute) and respective mRNA sequences that 

were obtained from the NCBI database. Forward and reverse primers for gene transcriptions 

can be found in Appendix A. 

 

Serum biochemical measurements 

Rats were fasted overnight and euthanized by carbon dioxide inhalation. Blood was 

collected by aorta puncture. Collected blood was centrifuged at 1500× g for 10 min at 4 °C to 

obtain serum. Serum samples were stored at −80 °C until analyzed. Serum measures of liver 

function included: alanine aminotransferase (ALT) and aspartate aminotransferase (AST). 

Values were determined enzymatically using a commercially available Vet-16 rotor and were 

quantified by a Hemagen Analyst automated spectrophotometer (Hemagen Diagnostics Inc., 

Columbia, MD, USA). AST: ALT ratio was determined by dividing AST values by ALT values. 

Serum cholesterol, low-density lipoprotein-cholesterol (LDL-C)/VLDL, and high-density 

lipoprotein-cholesterol (HDL-C) were determined by commercially available fluorometric assay 

(Cell Biolabs, San Diego, CA, USA). Briefly, 200 µL precipitation reagent was added to 200 µL 

of serum and then centrifuged at 2000× g for 20 min. The supernatant containing HDL-C was 
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removed and diluted to a final volume of 1:50. Pelleted portion containing LDL-C/VLDL was 

resuspended in reaction buffer and diluted to a final volume of 1:50. Serum samples were 

aliquoted onto a 96-well plate, incubated for 45 min, and measured at excitation of 570 nm and 

emission at 590 nm using a BioTek Epoch microplate spectrophotometer. 

Serum triglycerides were determined by commercially available colorimetric assay 

(Cayman Chemical, Ann Arbor, MI, USA). Briefly, 10 µL of serum was aliquoted onto a 96-well 

plate and reaction was initiated with 150 µL of diluted enzyme mixture solution. The plate was 

incubated at room temperature for 15 min and measured at a wavelength of 540 nm using a 

BioTek Epoch microplate spectrophotometer. All of the samples were performed in duplicate. 

The intra-assay coefficient of variation was 15.6%. 

 

Serum total bile acid concentration 

 Serum total bile acid content was determined using a commercially available bile acid 

colorimetric assay kit (Crystal Chem Inc., Elk Grove, IL). Briefly, 20 µl of serum and 150 µl of 

standard reagent were added to a 96-well plate and incubated for 5 min at 37°C. Absorbance 

was measured at 540 nm on a BioTek Epoch microplate spectrophotometer. A second standard 

reagent (30 µl) was then added to all wells followed by a 5 min incubation at 37°C and 

absorbance read again at 540 nm. Differences between absorbance were measured to 

determine total serum bile acid concentration. All samples were performed in duplicate. The 

intra-assay coefficient of variation was 38.5%. 

 

Statistics 

Results are expressed as mean ± standard error of the mean (SEM). Gene expression was 

determined as a function of mRNA abundance (A), where A = 1/(gene of interest primer 

efficiency ×   ΔCT (g.o.i.) —average housekeeping primer efficiency × ΔCT (h.k.), where the 

product of efficiency and average of expression of β-actin was averaged with the product of 
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efficiency and average of expression of GAPDH to determine the overall expression of the two 

housekeeping genes [25]. For gene expression data, each treatment group was log-transformed 

prior to statistical analysis. 

Data was analyzed for normal distribution and homogeneity of variance prior to 

conducting a one-way analysis of variance (ANOVA) to determine the differences among dietary 

groups. Post hoc multiple comparison tests were performed on parametric data using Tukey’s 

test with differences considered to be significant at p = 0.05 and a tendency at p = 0.08. 

Histological scoring was analyzed using the chi-square test. All statistical analyses were 

performed using JMP 12.2 statistical software package (SAS Institute, Cary, NC, USA). 

3.4 Results  

Fatty acid composition of diets  

As shown in Table 1, dietary fat content was higher in Western diets than standard AIN 

diets. Fatty acid analysis (Table 3) showed Western/AP diet had the highest palmitic acid (16:0). 

Both Western diets contained significantly higher palmitic acid, stearic acid (18:0), palmitoleic 

acid (16:1n 7), and oleic acid (18:1n 9) compared to AIN diets. Essential fatty acids, linoleic acid 

(18:2n-6) and α-linoleic acid (18:3n-3) content were approximately seven-fold lower (p<0.0001) 

in Western diets compared to AIN diets. Arachidonic acid was higher (p<0.0001) in Western 

diets compared to AIN diets which contained negligible amounts.  

  

Food intake, body weight and tissue weights  

 Figure 1 shows there was no significant differences in body weight among diet groups 

over 8 weeks. Shown in Table 4, there was a tendency (p=0.08) for higher final body weights for 

rats fed Western diets compared to AIN diets. Growing female rat fed Western diets consumed 

significantly more carbohydrates, fat, and total calories than rats fed standard rodent AIN diets. 

There were no statistically significant differences in amount of carbohydrates, fat, and total 

calories consumed by rats fed Western diet compared to Western/AP diet. There was a 
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tendency (p=0.08) for higher initial wet and dry fecal weights in rats fed Western compared to 

AIN diets, but no significant differences in final fecal output among diet groups. There were no 

statistical differences observed in feed efficiency ratio among diet groups. Rats consuming 

Western diets had increased (p<0.001) gonadal fat pad weights compared to rats fed AIN diets. 

There were no statistically significant differences in gonadal fat pad weight in rats fed Western 

diet compared to Western/AP diet. There were no statistically significant differences in absolute 

or relative liver weights among diet groups. 

 

Liver total lipid and triglyceride content 

 Total lipids and triglyceride content in the liver were within the value range reported in 

previous studies of NAFLD [169].  There were no statistically significant differences in hepatic 

total lipid content among diet groups (Figure 2A). Rats fed Western diet had the highest 

(p=0.01) hepatic triglyceride content. Rats fed Western/AP diet showed no significant 

differences in liver triglyceride content compared to rats fed AIN diets (Figure 2B). 

 

Liver Histology 

Based on liver histology 14% of rats fed AIN diet had fat vacuoles in <33% of 

hepatocytes (Figure 3 panel A) and 43% of rats fed AIN/AP diet had fat vacuoles in <33% of 

hepatocytes (Figure 3, panel B). Higher hepatic fat infiltration was indicated by 25% of rats fed 

Western diet having fat vacuoles in 33-66% hepatocytes (Figure 3, panel C) while 13% of rats 

fed Western/AP diet had fat vacuoles in 33-66% of hepatocytes (Figure 3, panel D). There was 

an overall significant (p<0.0001) difference among histology scores.  

  

Liver fatty acid composition 

As shown in Table 5, rats fed Western diet had significantly higher hepatic palmitic acid 

content than rats fed AIN diets. While Western/AP diet contained the highest amount of palmitic 
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acid, liver content in rats fed Western/AP diet was only significantly higher compared to rats fed 

AIN/AP diet. Western diets contained higher amounts of stearic acid and showed a tendency 

(p=0.08) for higher hepatic stearic acid content than rats fed AIN diets. Both Western diets also 

contained higher amounts of palmitoleic and oleic acid than AIN diets. However, rats consuming 

Western diet had the highest hepatic palmitoleic acid content (p=0.05). Rats fed Western diet, 

but not Western/AP diet had higher hepatic oleic acid content (p=0.0005) compared to rats fed 

AIN diets. Rats consuming Western diets had significantly lower (p<0.0001) hepatic linoleic and 

α-linolenic acid content compared to rats consuming AIN diets, however no difference in hepatic 

arachidonic acid content was observed among all groups despite negligible amounts in the AIN 

diets.  

  

Hepatic lipogenic gene expression 

 As shown in Table 6, hepatic DGAT2 gene expression was up-regulated (p<0.01) in rats 

consuming Western diet compared to all diet groups. Western/AP diet reverted hepatic DGAT2 

gene expression to that found in rats fed AIN diets. There were no statistically significant 

differences in hepatic gene expression of ChREBP, SREBP-1c, SREBP-2, SCD-1, FAS, 

PPARα, PPARγ, HSL or MTTP among diet groups.  

 

Serum liver enzymes, cholesterol, triglyceride, and bile acid measurements 

 As shown in Table 7 there were no statistical significant differences in serum AST, ALT, 

AST:ALT ratio among diet groups. Serum triglycerides, VLDL/LDL-C, HDL-C, and total 

cholesterol were not significantly different among diet groups. Serum bile acid concentration 

was significantly higher in rats fed Western diet, but not Western/AP compared to rats fed AIN 

diets.   
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3.5 Discussion 

Rats that were provided Western diets ingested more (p<0.0001) calories than rats 

provided standard AIN rodent diets and had greater (p<0.0001) gonadal fat pad weight, 

although not heavier body weight. In addition to being associated with obesity, diets that are 

high in saturated fats and simple carbohydrates typified by Western diets have been associated 

with the development of NAFLD [26,27]. Liver steatosis has also been diagnosed in non-obese 

patients [8]. Replacing sugars in the diet, as well as increasing fruit consumption, is 

recommended [28]. However, studies have reported high fructose consumption induces NAFLD 

by stimulating hepatic DNL [17,26]. Among fruits popularly consumed in the USA, apples are 

considered to be particularly concentrated in fructose [2,29]. In the present study, nutrient 

analysis of apple pomace showed the major sugar was fructose (>30%). 

Histological evaluation of liver tissue showed low fat infiltration (fat vacuoles in <33% of 

hepatocytes), with no significant increase in total lipid or triglyceride content in rats consuming 

AIN/AP as compared to AIN diet. Hepatic gene expression of DNL transcription factors and 

enzymes were not upregulated and there were no increases in end products: palmitic, stearic, 

palmitoleic, or oleic acid content in the liver of rats fed AIN/AP when compared to the AIN diet. 

Furthermore, there were no significant differences in serum ALT, AST, and ALT/AST ratio to 

indicate liver damage and dysfunction. Conversely, rats fed Western diets showed greater 

hepatic lipid accumulation, as indicated by fat vacuoles in 33–66% of hepatocytes. Rats fed 

Western diet showed 25% when compared to 14% of animals fed Western/AP having fat 

vacuoles in 33–66% of hepatocytes. Rats fed Western/AP had decreased (p=0.04) hepatic 

triglyceride content as compared to rats fed Western diet, suggesting that substituting calories in 

the Western diet with 10% apple pomace attenuates hepatic triglyceride deposition. 

Hepatic DNL is stimulated by FAS catalyzing synthesis of SFAs (i.e., palmitic and stearic 

acid). Our results showed no dietary effects on hepatic FAS gene expression. Yet, rats that 

were fed Western diet had higher (p=0.0007) hepatic palmitic acid content when compared to 
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rats fed either AIN diets. This may be explained by higher palmitic content of Western diets. 

Replacement with apple pomace in the Western/AP diet resulted in similar hepatic palmitic acid 

content to rats fed the AIN diet, but was higher than rats fed AIN/AP diet. In DNL, palmitic acid 

and stearic acid can be desaturated by the enzyme SCD-1 to MUFAs and palmitoleic and oleic 

acid, respectively. Despite no significant differences in dietary MUFA content between the 

Western and Western/AP diets, rats consuming Western diet had the highest (p=0.05) liver 

palmitoleic acid content. Serum palmitoleic acid has been shown to be to be elevated in patients 

with liver disease and high serum VLDL [30,31]. Additionally, rats consuming a Western diet, 

but not Western/AP diet, had higher (p=0.0005) hepatic oleic acid content as compared to rats 

consuming AIN diets. Studies have suggested that high oleic acid stimulates hepatic fat 

deposition, since oleic acid is the preferred substrate for hepatic triglyceride synthesis [32]. In a 

human clinical study, higher serum oleic acid was positively correlated to NAFLD [33]. In the 

present study, despite differences in liver MUFA content, gene expression of SCD-1 was not 

significantly different among diet groups. Differences in hepatic fat infiltration and fatty acid 

composition in the absence of changes in DNL gene expression may be due instead to diet 

influencing genes regulating lipolysis. 

HSL catalyzes the conversion of diacylglycerols to monoacylglycerols in lipolysis [31]. 

PPARα and PPARγ have been suggested as a potential therapeutic target for NAFLD, as the 

upregulation of these transcription factors results in increased use of lipids for metabolism 

[34,35]. Therefore, gene expression of HSL, as well as transcription factors PPARα and PPARγ, 

were determined to assess whether increased lipolysis was responsible for the observed 

hepatoprotective effects of apple pomace. In the current study, the expression of genes 

regulating lipolysis were not significantly different among diet groups. Besides imbalanced DNL 

and lipolysis, altered hepatic lipid storage and transport has been suggested to be key to 

NAFLD [31,36]  . Increased gene expression of DGAT2 has been reported to promote hepatic 

steatosis [37,38]. Reducing DGAT2 has also been identified as a therapeutic target for NAFLD 
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[39]. In the current study, hepatic DGAT2 gene expression was upregulated (p=0.002) nearly 

three-fold in rats that were fed a Western diet. The mechanism for higher triglyceride content in 

the liver of rats fed Western diet might be explained by the combination of upregulation of 

DGAT2 gene expression and increased MUFAs and palmitoleic and oleic acid content in the 

liver, since MUFAs have been shown to be preferentially used for triglyceride synthesis [32,40]. 

On the other hand, polyunsaturated fatty acids (PUFAs) have been reported to have anti-

steatosis effects [33]. In our study, rats fed both Western diets had significantly lower hepatic 

PUFA (e.g., linoleic acid and α-linolenic acid) content than rats that were fed AIN diets. There 

was no difference in hepatic PUFA content in rats fed Western diet as compared to the 

Western/AP diet. Based on our results, MUFAs appeared to be the bioactive fatty acids inducing 

NAFLD in the Western diet. 

Once synthesized triglycerides enter storage or secretory pools, hepatic MTTP regulates 

the packaging of triglycerides into VLDLs for transport into the circulation [41–43]. In our study, 

hepatic gene expression of MTTP was not significantly different among the diet groups. This 

was indicated by no significant changes in serum triglycerides and LDL-C/VLDL among diet 

groups. Overexpression of DGAT2 in mouse liver has been shown to increase liver triglyceride 

content, but not VLDL secretion [44]. Based on the results, greater total triglyceride 

accumulation in the liver of rats that were fed Western diet was due to increased triglyceride 

synthesis without a concomitant increase in the transport of triglycerides out of the liver. 

Accumulation of hepatic triglycerides without increasing circulating VLDLs may be due to the 

physical limitations of liver to export triglyceride-rich VLDL particles that exceed the diameter of 

the sinusoidal endothelia pores [45]. 

On the other hand, DGAT2 gene expression in the liver was not significantly upregulated 

in rats fed Western/AP diet, suggesting a potential therapeutic role of apple pomace in 

ameliorating Western diet induced NAFLD. Studies have suggested that bile represses hepatic 

triglyceride secretion, therefore reducing triglyceride accumulation [46]. Individuals with NAFLD 
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have been reported to have higher serum bile acid [47]. Dietary fiber has been reported to 

decrease serum bile acids [48]. Individuals with NAFLD have been shown to consume less 

dietary fiber than healthy individuals [49]. Apple pomace contains a substantial amount of non-

digestible carbohydrates, including: dietary fibers, pectin, and oligosaccharides [2]. In our study, 

serum bile acid concentration was higher in rats fed Western diet (p < 0.05), but not Western/AP 

diet as compared to rats fed AIN diets. Western diet was adjusted to remain isocaloric after 

substitution with apple pomace. All diets were adjusted to have 5% total fiber. No significant 

differences in body weight, fecal weights, and feed efficiency ratio suggested no differences in 

digestible energy among diet. However, differences in fiber type may be a potential mechanism. 

Studies have reported that dietary oligofructose decreases intra-hepatic triglycerides [50]. 

Hepatocytes that were isolated from non-digestible carbohydrate oligofructose-fed rats showed 

a reduced capacity to esterify palmitic acid [51]. In our study, rats fed Western diet, but not 

Western/AP, had higher (p=0.0007) palmitic acid content in the liver when compared to rats fed 

the AIN diet. Consumption of fruits and dietary fiber have been shown to improve liver steatosis 

[49,52]. Therefore, as a fruit-based product that is high in dietary fiber, apple pomace could 

potentially improve dietary fiber consumption in individuals with hepatic steatosis and the risk of 

NAFLD. 

A study of fiber-rich colloids that were isolated from apple pomace reported increased 

fecal excretion of bile acids with dietary fiber by fiber acting as a bile sequestrant to improve 

serum lipoproteins [53]. Another potential mechanism is the effect of soluble fibers on 

microbiota. Mice fed a 30% fat diet supplemented with 4% pectin modulated microbiota and 

increased short-chain fatty acid (SCFA) production resulting in a reduction in NAFLD [54]. 

However, extraction and purification of isolated ingredients from food can be technologically 

challenging and costly. Also, nutrients in foods often act synergistically. Young male rats that 

were fed a standard diet supplemented with 5 or 15% apple pomace for four weeks increased 

cecal SCFAs [55,56]. However, there has been a dearth of studies investigating the effects of 
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apple pomace on lipid metabolism. Bobek, et al., focusing specifically on cholesterol metabolism 

in the liver, reported the beneficial effects of a 5% (w/w) apple pomace supplementation [57]. 

Another study reported diet-induced obese male Sprague-Dawley rats fed a high-fat diet (15% 

w/w) that was substituted with 10% (w/w) apple pomace for five weeks as compared to rats fed 

a high-fat diet resulted in significantly reduced liver triglyceride content, serum total triglycerides, 

total cholesterol, and LDL-C due to higher fecal triglyceride and cholesterol excretion [5]. In the 

present study, healthy growing female Sprague-Dawley rats fed the Western/AP diet attenuated 

hepatic fat infiltration and also attenuated elevated MUFA and triglyceride content induced by 

the Western diet. Additionally, elevated circulating bile acids was attenuated by apple pomace 

consumption. In contrast to the study on diet-induced obese male rats fed apple pomace, our 

study using female rats showed no improvement in serum lipoproteins [5]. Studies have shown 

that various types of diets that are used for developing NAFLD in experimental animals produce 

different effects [58]. In our study, Western diet induced hepatic steatosis was due to the 

dysregulation of hepatic triglyceride synthesis without changes in circulating lipoproteins. Similar 

hepatic effects were observed in other studies where the DGAT2 gene was overexpressed [44]. 

In summary, substituting calories with 10% apple pomace, despite added dietary 

fructose, did not promote liver steatosis in rats that were fed a standard AIN diet. Caloric 

substitution with fiber-rich apple pomace attenuated hepatic steatosis due to elevated hepatic 

MUFA content, higher circulating bile acids, and upregulated hepatic DGAT2 gene expression 

induced by a Western (high fat/high sugar) diet. Using a rat model, apple pomace consumption 

attenuated liver steatosis and had no detrimental effects on liver health. The abundance of 

apple pomace, currently a food processing waste by-product, has the potential to be re-

purposed into a sustainable food product with beneficial health properties. Further mechanistic 

studies, preclinical, and human clinical research investigating apple pomace for human 

consumption and health can offer an environmental and economical solution for fruit waste that 

is generated by the industrial processing of apples. 
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Table 1. Composition of rodent diets substituted with apple pomace (10% g/kg) fed to 

growing female rats. 

Diet Groups 1 

 AIN AIN/AP Western Western/AP 

Ingredients (g/kg) 1     
Apple pomace 0.0 100.0 0.0 100.0 
Corn Starch 397.486 392.086 63.36 57.96 
Maltodextrin 132.0 132.0 60.0 60.0 

Sucrose 100.0 43.9 340.0 283.9 
Total Dietary Fiber 50.0 50.0 50.0 50.0 
Insoluble Fiber 2 50.0 39.0 50.0 39.0 
Soluble Fiber 3 0.0 11.0 0.0 11.0 

Anhydrous Milkfat 0.0 0.0 210.0 210.0 
Soybean Oil 70.0 68.7 20.0 18.7 

Casein 200.0 196.0 195.0 191.0 
L-Cystine 3.0 3.0 3.0 3.0 

Vitamin Mix 10.0 10.0 12.5 12.5 
Mineral Mix 35.0 35.0 43.0 43.0 

Choline Bitartrate 2.5 2.5 3.1 3.1 
TBHQ, antioxidant 0.014 0.014 0.04 0.04 

Polyphenols 0.0015 0.0029 0.0008 0.0032 

Macronutrients (% kcal)     
Protein 18.8 18.9 14.8 14.8 

Fat 17.2 17.3 44.6 44.8 
Carbohydrate 63.9 63.7 40.6 40.4 

Calories (kcal/g) 3.8 3.7 4.7 4.7 
1 Abbreviations: AIN, the American Institute of Nutrition; AP, apple pomace; TBHQ, tert-

butylhydroquinone. 2 Insoluble fiber is cellulose. 3 Soluble fiber is mainly pectin [2]. 
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Table 2. Composition of freeze-dried apple pomace substituted (10% g/kg) into diets fed to 

growing female rats. 

Macronutrients (%) 

Protein 3.56 

Fat 1.3 

Carbohydrates 68.1 

Sugars (%)  

Fructose 32.5 

Glucose 9.77 

Sucrose 13.9 

Maltose <0.1 

Lactose <0.1 

Dietary Fiber (%)  

Insoluble Dietary Fiber 22.2 

Soluble Dietary Fiber 11.0 

Polyphenols (g/kg) 0.029 

Calories (kcal/100 g) 387 
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Table 3. Fatty acid analysis of rodent diets substituted with apple pomace (10% g/kg). 

Measurements 
Treatments 1 

AIN AIN/AP Western Western/AP p-Value 

SFAs      

Palmitic acid (16:0) 11.36 ± 0.09c 11.14 ± 0.15c 32.19 ± 0.03 b 32.92 ± 0.30 a <0.0001 

Stearic acid (18:0) 3.56 ± 0.25 b 3.72 ± 0.06 b 9.94 ± 0.11 a 10.24 ± 0.06 a <0.0001 

MUFAs      

Palmitoleic acid (16:1n-7) 0 ± 0.00 b 0 ± 0.00 b 1.44 ± 0.01 a 1.44 ± 0.02 a <0.0001 

Oleic acid (18:1n-9) 19.09 ± 0.10 b 18.35 ± 0.33 b 22.96 ± 0.11 a 22.95 ± 0.17 a <0.0001 

PUFAs      

Linoleic acid (18:2 n-6) 50.12 ± 0.55 a 51.41 ± 2.41 a 6.99 ± 0.09 b 7.04 ± 0.06 b <0.0001 

α-linolenic acid (18:3 n-3) 7.08 ± 0.13 a 7.13 ± 0.70 a 1.04 ± 0.01 b 1.05 ± 0.02 b <0.0001 

Arachidonic acid (20:4 n-6) 0 ± 0.00 b 0 ± 0.00 b 0.13 ± 0.00 a 0.14 ± 0.00 a <0.0001 

Values expressed as mean ± standard error of the mean (SEM, n = 5 samples/group). Different superscript letters a, b, and c within. 

The same row indicates significant difference at p < 0.05 by one-way ANOVA followed by Tukey’s test. Abbreviations: MUFAs, 

monounsaturated fatty acids; PUFAs, polyunsaturated fatty, acids; SFAs, saturated fatty acids. 
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Table 4. Effect of consumption of different diets substituted with apple pomace (10% g/kg) by growing female rats on caloric intake, 

body weight, and liver weight following eight weeks of feeding. 

Measurements 
Treatments 1 

AIN AIN/AP Western Western/AP p-Value 

Caloric intake (kcal) 2946 ± 85 b 2757 ± 62 b 3373 ± 71 a 3443 ± 134 a <0.0001 

CHO intake (kcal) 1769 ± 54 a 1708 ± 39 a 1354 ± 29 b 1347 ± 54 b <0.0001 

Fat intake(kcal) 476 ± 15 b 464 ± 11 b 1487 ± 32 a 1494 ± 60 a <0.0001 

Initial bwt (g) 95 ± 3 92 ± 3 95 ± 3 95 ± 3 0.80 

Final bwt (g) 216 ± 4 216 ± 8 228 ± 5 234 ± 5 0.08 

Total bwt gain (g) 121 ± 4 124 ± 7 133 ± 6 138 ± 6 0.17 

Wet Initial Fecal Weight (g) 0.82 ± 0.06 b 0.75 ± 0.11 b 1.30 ± 0.23 a 1.14 ± 0.13 a,b 0.06 

Dry Initial Fecal Weight (g) 0.67 ± 0.06 0.54 ± 0.14 1.269 ± 0.27 0.75 ± 0.21 0.08 

Wet Final Fecal Weight (g) 0.30 ± 0.18 b 0.28 ± 0.16 b 0.91 ± 0.34 a 0.63 ± 0.23 a,b 0.03 

Dry Final Fecal Weight (g) 0.23 ± 0.13 0.19 ± 0.10 0.78 ± 0.27 0.50 ± 0.16 0.13 

Feed Efficiency Ratio 0.17 ± 0.01 0.17 ± 0.01 0.18 ± 0.01 0.18 ± 0.01 0.13 

Gonadal fat pad weight (g) 4.12 ± 0.26 b 3.46 ± 0.44 b 5.87 ± 0.24 a 5.96 ± 0.23 a <0.0001 

Liver weight (g) 7.50 ± 0.24 7.44 ± 0.37 8.05 ± 0.30 7.98 ± 0.24 0.35 

Relative liver weight (mg/g bwt) 3.47 ± 0.078 3.45 ± 0.068 3.52 ± 0.067 3.41 ± 0.048 0.69 

1 Values expressed as mean ± SEM (n = 6–8 rats/group).  Different superscript letters a and b within the same row. Indicate 

significant difference at p < 0.05 by one-way ANOVA followed by Tukey’s test. Abbreviations: Bwt, body weight; CHO, carbohydrate.
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Table 5. Effect of consumption of different diets substituted with apple pomace (10% g/kg) by growing female rats on hepatic fatty 

acid composition following 8 weeks of feeding. 

Measurements (%) 
Treatments 1 

AIN AIN/AP Western Western/AP p-Value 

SFAs      

Palmitic acid (16:0) 
19.10 ± 0.57 

b,c 
18.40 ± 0.53 c 21.44 ± 0.53 a 21.08 ± 0.53 a,b 0.0007 

Stearic acid (18:0) 14.46 ± 0.65 14.06 ± 0.60 14.83 ± 0.83 16.28 ± 0.60 0.08 

MUFAs      

Palmitoleic acid (16:1n-7) 0.57 ± 0.25 b 0.81 ± 0.25 b 1.61 ± 0.23 a 0.76 ± 0.25 b 0.05 

Oleic acid (18:1n-9) 11.25 ± 1.65 b 10.72 ± 1.39 b 19.55 ± 1.39 a 15.95 ± 1.30 a,b 0.0005 

PUFAs      

Linoleic acid (18:2n-6) 22.44 ± 1.09 a 25.12 ± 1.09 a 9.28 ± 1.09 b 8.38 ± 1.09 b <0.0001 

α-linoleic acid (18:3n-3) 1.04 ± 0.14 a 1.28 ± 0.15 a 0.23 ± 0.14 b 0.22 ± 0.14 b <0.0001 

Arachidonic acid (20:4n-6) 13.26 ± 1.00 11.99 ± 1.61 13.20 ± 1.00 14.56 ± 1.00 0.37 
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1 Values expressed as mean ± SEM (n = 6–8 rats/group). Different superscript letters a, b, and c within the same row indicate 
significant difference at p < 0.05 by one-way ANOVA followed by Tukey’s test. Abbreviations: MUFAs, monounsaturated fatty acids; 
PUFAs, polyunsaturated fatty acids; SFAs, saturated fatty acids. 
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Table 6. Effect of consumption of different diets substituted with apple pomace (10% g/kg) by growing female rats on hepatic lipid 

metabolism gene expression following 8 weeks of feeding. 

Measurements 
Treatments 1 

AIN AIN/AP Western Western/AP p-Value 

Lipogenesis      

ChREBP 0.074 ± 0.004 0.069 ± 0.006 0.078 ± 0.006 0.077 ± 0.009 0.76 

SREBP-1c 0.118 ± 0.027 0.132 ± 0.041 0.136 ± 0.038 0.117 ± 0.031 0.11 

SREBP-2 0.088 ± 0.020 0.080 ± 0.012 0.083 ± 0.017 0.092 ± 0.026 0.92 

FAS 0.116 ± 0.034 0.096 ± 0.015 0.121 ± 0.028 0.156 ± 0.075 0.15 

SCD-1 0.234 ± 0.084 0.216 ± 0.036 0.223 ± 0.073 0.309 ± 0.080 0.13 

Lipolysis      

PPARα 0.088 ± 0.016 0.099 ± 0.013 0.098 ± 0.027 0.076 ± 0.012 0.74 

PPARγ 0.054 ± 0.021 0.053 ± 0.013 0.053 ± 0.016 0.052 ± 0.026 0.99 

HSL 0.085 ± 0.019 0.087 ± 0.011 0.084 ± 0.023 0.074 ± 0.027 0.89 

Storage and Transport      

DGAT2 0.171 ± 0.020 b 0.151 ± 0.025 b 0.617 ± 0.161 a 0.213 ± 0.039 b 0.002 

MTTP 0.145 ± 0.026 0.090 ± 0.008 0.164 ± 0.044 0.151 ± 0.035 0.43 

1 Values expressed as mean ± SEM (n = 6–8 rats/group) of transcript abundance (A) of gene of interest relative to housekeeping 

genes β-actin and GAPDH. aDifferent superscript letters a and b within the same row indicate significant difference at p < 0.05 by 

one-way ANOVA followed by Tukey’s test. Abbreviations: ChREBP, carbohydrate element response binding protein; DGAT2, 

diacylglycerol O-acyltransferase 2; FAS, fatty acid synthase; HSL, hormone sensitive lipase; MTTP, microsomal triglyceride transfer 

protein; PPARα, peroxisome proliferator-activated receptor alpha; PPARγ, peroxisome proliferator-activated receptor gamma; SCD-

1, stearoyl-CoA desaturase-1; SREBP-1c, sterol regulatory binding protein-1c; SREBP-2, sterol regulatory binding protein-2. 
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Table 7. Effect of consumption of different diets substituted with apple pomace (10% g/kg) by growing female rats on serum 

measurements of liver function enzymes, cholesterol, and bile acids following 8 weeks of feeding. 

Serum Measurements AIN AIN/AP Western Western/AP p-Value 

AST (U/L) 129.48 ± 52.86 212.50 ± 37.86 283.63 ± 45.30 259.67 ± 48.96 0.69 

ALT (U/L) 107.63 ± 19.59 118.71 ± 43.60 94.5 ± 12.58 133.5 ± 30.59 0.78 

AST:ALT ratio 3.16 ± 0.45 2.79 ± 0.28 2.97 ± 0.26 2.84 ± 0.17 0.83 

VLDL/LDL-C (mg/dl) 41.59 ± 4.17 41.74 ± 2.38 40.42 ± 6.44 41.29 ± 6.74 0.99 

HDL-C (mg/dl) 17.29 ± 2.18 18.95 ± 1.97 18.21 ± 2.13 21.85 ± 1.82 0.43 

Total Cholesterol (mg/dl) 58.89 ± 3.43 60.38 ± 3.38 59.80 ± 5.69 57.98 ± 7.85 0.99 

Triglyceride (mg/dl) 55.81 ± 8.17 47.39 ± 9.04 58.64 ± 9.38 50.04 ± 8.81 0.84 

Total Bile Acids (µmol/L) 30.00 ± 3.13 b 28.80 ± 7.69 b 54.13 ± 7.96 a 31.52 ± 3.69 a,b 0.02 

1 Values expressed as mean ± SEM of n = 6–8 rats/group. Different superscript letters a and b within the same row indicate 
significant difference at p < 0.05 by one-way ANOVA followed by Tukey’s test. Abbreviations: AST, aspartate aminotransferase; ALT, 
alanine aminotransferase; VLDL, very-low density lipoprotein, LDL-C, low density lipoprotein-cholesterol; HDL-C, high density 
lipoprotein-cholesterol. 
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Figure Legend 

Figure 1. Growth curve of growing female rats consuming different diets including apple 

pomace over 8 weeks.  

Figure 2. (A) Total hepatic lipid percentage of rodents consuming different diets including apple 
pomace. (B) Total hepatic triglyceride content of rodents consuming different diets including 
apple pomace. Different letters a and b indicate significant difference at p<0.05 by one-way 
ANOVA followed by Tukey’s test 
 
Figure 3. Representative histological staining images of livers of growing female rats 
consuming different diets including apple pomace. 
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Figure 1. Growth curve of rats fed different diets containing apple pomace. 
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Figure 2. (A) Total hepatic lipid content (mg/g) and (B) Total hepatic triglyceride content (mg/g) 

of growing female rats consuming different diets substituted with apple pomace (10% w/w) 

following eight weeks of feeding. Different letters a and b indicate significant difference at p < 

0.05 by one-way ANOVA followed by Tukey’s test. 
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Histological steatosis scores for diet groups. 

Measurement AIN AIN/AP Western Western/AP p-Value 

Steatosis Grade 
    

<0.0001 

0 6 4 - -  

1 1 3 6 7  

2 - - 2 1  

3 - - - -  

Figure 3. Representative histological staining images of livers of growing female rats 

consuming (A) AIN, (B) AIN/AP, (C) Western, or (D) Western/AP following eight weeks of 

feeding. Arrow indicates fat deposition. Scores analyzed by chi-square test at p < 0.05. 
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4.1 Abstract 

Non-alcoholic fatty liver disease, the most prevalent liver condition, can progress to more 

severe non-alcoholic steatohepatitis (NASH). NASH is characterized by inflammation and 

dysregulation of liver-adipose crosstalk with diet being a major factor in its disease etiology and 

treatment. Apple pomace, an apple processing byproduct, is polyphenol-rich, suggesting 

potential as a functional food to alleviate features of NASH. Growing (age 22-29 days) female 

Sprague-Dawley rats were randomly assigned (n=8 rats/group) to consume purified AIN-93G, 

AIN-93G/10% g/kg caloric substitution with apple pomace (AIN/AP), Western diet, or 

Western/10% apple pomace (Western/AP) diets for 8 weeks. Rats consuming Western diet had 

the highest histological evidence inflammation. Hepatic palmitic, palmitoleic, and oleic acid were 

higher in rats consuming Western diet (p<0.05); whereas with adipose palmitic, stearic, and 

oleic acid lower (p<0.01) compared to rats consuming Western/AP. Hepatic and adipose gene 

expression of nuclear transcription factor kappa B (NFκB) was significantly upregulated in rats 

fed a Western diet compared to all groups and interlekin-6 (IL-6) was significantly upregulated 

compared to rats consuming AIN diets. Adipose tumor-necrosis factor-α (TNF-α) was 

significantly upregulated in rats fed Western diet compared to all diet groups. Apple pomace 

consumption upregulated (p<0.01) hepatic expression of glutathione peroxidase (GPx). Serum 

total antioxidants were highest (p<0.04) in rats fed Western/AP, and apple pomace attenuated 

decreased urinary total antioxidants in rats consuming Western diet. Based on the study results, 

apple pomace attenuated Western-diet induced changes to NASH by attenuating increased 

fatty acid crosstalk, upregulated proinflammatory gene expression, and decreased in antioxidant 

status. The results provide evidence that apple pomace has the potential to be a sustainable 

functional food.    

 

Keywords: apple pomace, NAFLD, NASH, inflammation, antioxidant, sustainability, fatty acid 
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4.2 Introduction  

 Apples are the most widely consumed fruit in the United States with over half of 

harvested apples processed into juice, resulting in discarding of pulp, skin, seeds, calyx and 

stem, collectively referred to as apple pomace [1]. Apple pomace disposal is costly and is an 

industrial waste product that contributes to environmental pollution [2]. Yet, apple pomace 

contains nutrients and bioactive compounds that may be used as a nutritional aid for diet-

induced metabolic complications [2,3]. Liver manifestation of metabolic syndrome, non-alcoholic 

fatty liver disease (NAFLD), has become the most prevalent liver disease worldwide and is 

increasing in children [4-6].  

Progression of NAFLD to non-alcoholic steatohepatitis (NASH), a more severe 

manifestation of NAFLD, is proposed to be a multiple-hit pathogenesis. Contributions to NASH 

are increased de novo lipogenesis (DNL) leading to lipid oxidation, resulting in formation of 

reactive oxygen species (ROS) and inflammatory cytokines [7,8]. Studies show adipose tissue 

play a role in the NAFLD progression. Cytokines produced in adipose tissue circulate to the liver 

and contribute to increased hepatic inflammation [9-12]. Also contributing to NASH are altered 

adipose triglyceride metabolism and free fatty acid released by adipose acting as stimulators of 

inflammation and oxidative stress [13-20]. 

Major dietary contributors to the NAFLD cascade of disease progression to NASH are 

increased consumption of simple carbohydrates and saturated fat [21]. Additionally, high 

consumption of omega-6 polyunsaturated fatty acids (n-6 PUFAs) has been reported to 

exacerbate liver disease through increased inflammation and oxidative stress [22]. The n-6 

PUFA, linoleic acid (LA) can be metabolized to arachidonic acid (ARA) and is also a major fatty 

acid found in Western diets. ARA provides a substrate for cyclooxygenase synthesis of 

proinflammatory 2-series eicosanoids that can exacerbate NAFLD through increased 

inflammation [23].  
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Currently, dietary interventions are the main treatment for NASH, with diets high in 

antioxidants recommended [24]. Apple pomace is a rich source of antioxidant polyphenols 

indicating potential to attenuate NASH [2]. However, apple pomace also contains fructose, 

which can increase uric acid, with subsequent increases in inflammation and oxidative stress 

[2,25-27]. 

Therefore, it is important to evaluate the potential of apple pomace to be a safe, 

nutritious, and beneficial food for human consumption. Apple pomace can be a sustainable food 

source for a growing population by repurposing processing waste as a functional food which 

decreases costs associated with disposal and reduces environmental pollution. Previously, we 

showed Western diet induced NAFLD and apple pomace to attenuate indices of NAFLD [28]. 

The aim of this study was to determine whether apple pomace can attenuate Western diet 

induced progression from NAFLD to NASH. Additionally, the study determines whether the 

fructose content of apple pomace affected liver health in animals consuming a standard ‘normal’ 

diet. We hypothesize no detrimental effects on the liver due to fructose content in apple pomace 

in rats fed normal diet, while changes to hepatic-adipose fatty acid profiles, proinflammatory 

gene expression, and antioxidant status in rats consuming a Western diet are attenuated by the 

addition of apple pomace 

 

4.3 Materials and Methods 

Animals and Diets 

Weanling (age 22-29 days) female Sprague-Dawley rats (n=32) were purchased from 

Harlan-Teklad (Indianapolis, IN). Female rats were used on the basis of their greater 

susceptibility to liver dysfunction with increased carbohydrate consumption [29]. All animal 

procedures were approved by the Animal Care and Use Committee at West Virginia University 

and conducted in accordance with the guidelines of the National Research Council for the Care 

of Laboratory Animals [30]. Rats were individually caged to measure food intake. Rats were 
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housed in cages kept in a room at constant temperature of 21+2°C with a 12 h light/dark cycle 

throughout acclimation and the study duration. 

Following a 7-day acclimation, rats were randomly assigned (n=8 rats/group) to four 

dietary groups consisting of: 1) standard purified rodent diet, AIN-93G, 2) AIN-93G with 10% 

(g/kg) calorically substituted with freeze-dried apple pomace (AIN/AP), 3) Western diet (45% fat, 

33% sucrose by kcals), or 4) Western diet with 10% (g/kg) calorically substituted with freeze-

dried apple pomace (Western/AP). Locally sourced apple pomace (varieties Gala and Honey 

Crisp) was provided by Swilled Dog Hard Cider Company (Franklin, WV) and nutrient 

composition analysis was performed by Medallion Laboratories (Minneapolis, MN). Total 

polyphenol content in apple pomace and treatment diets were determined using the Folin-

Ciocalteu method [31]. Formulation of AIN diet after apple pomace addition was adjusted to be 

isocaloric (3.7-3.8 kcal/g) and Western diet after apple pomace addition was adjusted to be 

isocaloric (4.7 kcal/g). Detailed ingredient composition of experimental diets and apple pomace 

is provided in Supplementary Table 1. Diets were stored at -20°C until fed.  

Rats were provided ad libitum access to their assigned diets and to deionized distilled 

water (ddH2O) throughout the eight weeks study duration. Food intake was measured, and diets 

replaced every other day while ddH2O was replaced weekly. At the end of eight weeks, rats 

were fasted overnight then euthanized by carbon dioxide inhalation. The liver was excised, 

perfused, weighed, and then flash frozen in liquid nitrogen and stored at -80°C until analyzed. 

 

Liver Histology  

The left lateral liver lobe (n=7-8) was removed and immediately fixed in 10% buffered 

formalin solution for histological evaluation. Dissected tissues were dehydrated through a series 

of increasing ethanol concentrations (70-100% in ddH2O) then placed in xylene and embedded 

in paraffin. Sections (8 µm) from each block were stained with hematoxylin and eosin. Liver 

inflammation was determined using a modification of the method described by Kleiner et al [32]. 
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An inflammation grade of 0 indicated no inflammation present, where a grade of 1 indicated 

presence of inflammation. All slides were analyzed using a Nikon TE 2000-S light microscope 

(Nikon Instruments, New York, NY) at magnification x 100 by a trained investigator blinded to 

the identity of the groups. Images were captured using a PC interface with Q-Capture imaging 

software (Quantitative Imaging Corporation, BC, Canada). 

  

Diet and tissue fatty acid composition  

Diet, liver tissue, and gonadal adipose tissue samples were extracted according to Bligh 

and Dyer [33]. Briefly, liver tissue (1 g), diet (1 g), and adipose tissue (0.1 g) were homogenized 

in Tris/EDTA buffer (pH=7.4). Quantification of fatty acids was determined by adding 50 μL of 

nonadecanoic acid (19:0) as a standard during the initial weigh of the samples. A 

chloroform:methanol:acetic acid (2:1:0.15 v/v/v) solution was added to all samples and 

centrifuged at 900 x g for 10 min at 10°C. The bottom chloroform layer was collected and mixed 

with a chloroform:methanol (4:1 v/v) solution and centrifugation repeated. The chloroform layer 

was collected, filtered, and dried under nitrogen gas.  

Extracted lipids were transmethylated according to the method described by Fritsche 

and Johnston [34]. Briefly, fatty acids were methylated by adding 4% sulfuric acid in anhydrous 

methanol to the extracted lipid samples followed by incubation in a 90°C water bath for 60 min. 

Samples were cooled to room temperature, and ddH2O added. Chloroform was then added to 

the methylated samples and centrifuged at 900 x g for 10 min at 10°C. The collected chloroform 

layer was filtered through anhydrous sodium sulfate to remove any remaining water. Fatty acid 

methyl esters (FAMEs) were dried under nitrogen gas and re-suspended in iso-octane. 

FAMEs were analyzed by gas liquid chromatography (CP-3800; Varian, Walnut Creek, 

CA) using an initial temperature of 140°C held for 5 min and then increased 1°C per min to a 

final temperature of 220°C. A wall-coated open tubular fused silica capillary column (Varian) 

was used to separate FAME with CP-Sil 88 at the stationary phase. Nitrogen was used as the 
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carrier gas, and total separation time was 85 min. Quantitative 37 Component FAMEs Sigma 

Mix (Supelco, Bellefonte, PA) was used to identify fatty acids. Fatty acids were determined by 

retention time and quantified using peak ultra-counts. All samples are performed in duplicates 

and reported as mg/g of total fatty acids.  

 

Liver and Adipose Oxidative Stress and Inflammatory Gene Expression 

Liver and gonadal adipose tissue total RNA was extracted from -80°C frozen samples 

(50 mg) using the Zymo Research Direct-zol RNA Miniprep Plus Isolation Kit (Irvine, CA, 

catalog #R2071) and the Qiagen RNeasy Tissue Mini Kit (Venlo, Netherlands, catalog # 74804), 

respectively, according to the manufacturer’s instruction for total RNA isolation. Isolated RNA 

integrity was visualized on a 1.5% agarose gel and quantified by spectrophotometry (NanoDrop 

100; Thermo Fisher Scientific, Waltham, MA). Following DNase I treatment with TURBO DNA-

free kit (Thermo Fisher Scientific), total mRNA was amplified using the Superscript IV First-

Strand Synthesis System with oligo dT primers (Thermo Fisher Scientific). 

 Real-time quantitative polymerase chain reaction (RT-qPCR) consisted of 2.5 µl of 

SYBR Green Master Mix (Thermo Fisher), 1 µL of cDNA (diluted 1:10), 1 µL of respective 

forward and reverse primers (10 μM) and 0.5 µl of deionized distilled water for a total reaction 

volume of 5 µl. The reactions were performed in a 7500 ABI Real-Time PCR System (Thermo 

Fisher Scientific). The thermal profile consisted of 50°C for 2 min, 95°C for 10 min then 40 

cycles of 95°C for 15 sec and 60°C for 1 min. A melt curve analysis was applied at the end of 

cycling. Primers that were designed for transcription factor and genes regulating inflammation 

included: nuclear factor kappa-light chain enhancer of B cells (NFκB), tumor necrosis factor-

alpha (TNF-α), interleukin-6 (IL-6), interleukin-10 (IL-10).  Genes regulating PUFA 

metabolism/inflammation included: cyclooxygenase 1 (COX1), cyclooxygenase 2 (COX2), 

arachidonate 5-lipoxygnease (5LOX). Genes regulating oxidation and antioxidants included: 

NADPH oxidase 4 (NOX4), transforming growth factor beta-3 (TGFβ3), chemokine (CC-motif) 
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ligand-2 (CCL-2), nuclear factor-like 2 (Nrf-2), superoxide dismutase 1 (SOD-1), superoxide 

dismutase 2 (SOD-2), catalase, and glutathione peroxidase (GPx), as well as for housekeeping 

genes β-actin and glyceraldehyde 2-phosphate dehydrogenase (GAPDH). Primers were 

designed using the Primer3 online program (Howard Hughes Medical Institute) and respective 

mRNA sequences were obtained at the NCBI RefSeq RNAs catalog through gene ID numbers. 

Forward and reverse primers for gene transcriptions are listed in Supplementary Table 2.  

 

Tissue oxidation and antioxidant measurements  

 Hydrogen peroxide content in the liver was determined using a commercially available 

assay kit (Abcam, Cambridge, MA). Briefly, liver samples (50 mg) were homogenized, 

centrifuged at 10,000 x g for 2 min at 4°C, and supernatant collected. Deproteinization was 

performed by addition of 4M perchloric acid (PCA), followed by precipitation of excess PCA with 

2M potassium hydroxide. Liver samples were adjusted to pH 6.5-8. Absorbance was read at 

570 nm using a BioTek Epoch microplate spectrophotometer (Walooski, VT). Inter-assay 

coefficient of variation was 12.7%.  

Thiobarbituric acid reactive substances (TBARS) content in the liver was determined by 

measuring malondialdehyde (MDA) using a commercially available assay (Cayman Chemical, 

Ann Arbor, MI). Briefly, liver samples (25 mg) were homogenized, centrifuged at 1600 x g for 10 

min at 4°C, and supernatant collected. Liver samples were boiled at 100°C for one hour and 

placed on ice for 10 min to stop the reaction. Absorbance was read at 535 nm using a BioTek 

Epoch microplate spectrophotometer. Inter-assay coefficient of variation was 15.2%. 

Total polyphenol content in the liver was determined according to the Folin-Ciocalteu method 

(Blainski et al. 2013). The inter-assay coefficient of variation was 11.2%.  

 

Serum and urinary total antioxidant measurements  
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Serum and urinary total antioxidant capacity was determined by commercially available 

antioxidant assay kit (Cayman Chemical, Ann Arbor, MI). At the end of the feeding study, rats 

were individually housed for 24 h in metabolic cages to collect urine. Ascorbic acid (0.1%) was 

added to the urine collection tube as a preservative along with 1 ml of mineral oil to prevent 

evaporation. Collected urine samples were centrifuged for 10 min at 1500 x g at 4°C to remove 

debris. Fasted blood was collected by aorta puncture. Collected blood was centrifuged at 1500 x 

g for 10 min at 4°C to obtain serum. Serum and urine samples were stored at -80°C until 

assayed for total antioxidant capacity. Briefly, serum and urinary samples were diluted 1:20 and 

40 μL hydrogen peroxide (441 μM) working solution added. Absorbance was read at 750 nm 

using a BioTek Epoch microplate spectrophotometer.  Inter-assay coefficient of variation was 

14.5% for serum samples and 21.1% for urine samples.  

 

Serum and urinary biochemical measurements  

Serum measurement of liver function and damage included: alanine aminotransferase 

(ALT), aspartate aminotransferase (AST), total bilirubin, and albumin were determined 

enzymatically using a commercially available Vet-16 rotor and quantified by a Hemagen Analyst 

automated spectrophotometer (Hemagen Diagnostics Inc., Columbia, MD). AST:ALT ratio was 

determined by dividing AST values by ALT values.  

Serum and urine uric acid was determined by commercially available enzymatic assay 

(Cayman Chemical). Briefly, serum and urine samples were aliquoted onto a 96-well plate and 

incubated for 15 minutes. Reaction was initiated by adding 15 μL of uricase and horseradish 

peroxidase enzyme mixture, and read at an excitation of 535 nm and an emission of 590 nm 

using a BioTek Synergy H1 microplate reader (Winooski, VT). Inter-assay coefficient of variation 

was 32.1% for both serum and urine.  

 

Statistics  



125 
 

Results are expressed as mean ± standard error of the mean (SEM). Gene expression 

was determined as a function of mRNA abundance (A), where A= 1/(gene of interest’s primer 

efficiency x ΔCT (g.o.i.))– (average housekeeping’s primer efficiency x ΔCT (h.k.)), where the 

product of efficiency and average of expression of β-actin was averaged with the product of 

efficiency and average of expression of GAPDH to determine the overall expression of the two 

housekeeping genes [28,35,36]. Gene expression data for each treatment group were log-

transformed prior to statistical analysis. One-way ANOVA was used to determine differences 

among diet groups. Post hoc multiple comparison tests were performed using Tukey’s test with 

treatment differences considered significant at p<0.05 and a tendency at p<0.08. All statistical 

analyses were performed using JMP 12.2 statistical software package (SAS Institute, Cary, 

NC). 

 

4.4 Results  

Diet Analysis 

As shown in Supplementary Table 1, caloric replacement with apple pomace in AIN 

and Western diets resulted in higher total polyphenols. Fat content was higher in the Western 

diets than standard AIN diets. Shown in Table 1, Western diets had significantly higher 

saturated fatty acids (SFAs), palmitic (16:0) and stearic acid (18:0) than AIN diets. Western/AP 

diet had the highest (p<0.0001) palmitic acid. Western diets were also significantly higher in 

monounsaturated fatty acids (MUFAs), palmitoleic acid (16:1n 7), and oleic acid (18:1n 9), than 

AIN diets.  

Essential fatty acids, n-6 PUFA, LA (18:2n-6), and n-3 PUFA, α-linoleic acid (ALA, 

18:3n-3) content were lower (p<0.0001) in Western diets than AIN diets. Long chain n-6 PUFA, 

ARA was higher (p<0.0001) in Western diets as compared to AIN diets, which contained 

negligible amounts. There were no detectable levels of long chain n-3 PUFAs, eicosapentaenoic 

acid (EPA, 20:5n-3) or docosahexaenoic acid (DHA, 22:6n-3) in any of the diets.   
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Caloric intake, body weight, and tissue weights  

Shown in Table 2, rats consuming the Western diets consumed more (p<0.0001) fat 

than rats consuming AIN diets. But, rats fed the AIN diets consumed more (p<0.0001) 

carbohydrates. Overall, rats fed the Western diets consumed significantly more calories than 

rats fed the AIN diets. No significant differences were observed in body weight gain, but a 

tendency (p=0.08) for heavier final body weight in rats fed Western diets. Rats fed the Western 

diets had heavier (p<0.0001) gonadal adipose tissue than rats fed the AIN diets.  

 

Liver histological evaluation  

As shown in Figure 1, 88% of rats fed Western diet and 63% of rats fed Western/AP diet 

had evidence of hepatic inflammation. AIN and AIN/AP diet groups each showed 15% of 

animals having hepatic inflammation.  

 

Liver and gonadal adipose fatty acid composition  

Western/AP diet contained the highest amount of dietary palmitic acid (Table 1), but 

hepatic palmitic acid content was not significantly different than rats consuming the AIN diet 

(Table 3). Both Western diets contained higher amounts of stearic acid but only showed a 

tendency (p=0.08) for higher hepatic stearic acid content compared to rats fed AIN diets. 

Western diets also contained higher amounts of palmitoleic and oleic acid than AIN diets. Rats 

consuming Western diet had the highest (p=0.05) hepatic palmitoleic acid content. Rats fed 

Western diet, but not Western/AP diet, had higher hepatic oleic acid content (p=0.0005) 

compared to rats fed the AIN diets. Rats consuming Western diets had lower (p<0.0001) 

hepatic n-6 PUFAs, LA and ALA content when compared to rats consuming the AIN diets, but 

no difference in hepatic ARA content was observed among diet groups. No EPA or DHA was 

found in diet or the liver of any of the diet groups.  
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 Gonadal adipose tissue palmitic and stearic acids were higher (p<0.0008) in rats 

consuming AIN/AP and Western/AP diets than rats consuming AIN and Western diets. Although 

no differences in gonadal adipose tissue palmitoleic acid content were observed among diet 

groups, substitution of diets with apple pomace resulted in higher (p=0.01) gonadal adipose 

tissue oleic acid. Gonadal adipose tissue LA was higher (p<0.0001) in rats consuming AIN/AP 

than the Western diets. Additionally, gonadal adipose tissue ALA was highest (p<0.0001) in rats 

fed AIN/AP diet. ARA and EPA were below detected in the gonadal adipose tissue in any diet 

group. However, gonadal adipose tissue contained more DHA (p=0.008) in rats fed AIN/AP than 

Western diets.  

 

Hepatic and gonadal adipose gene markers for inflammation and oxidative stress  

As shown in Figure 2A, rats consuming Western diet, but not Western/AP diet 

significantly upregulated hepatic transcription factor, NFκB and inflammatory cytokine, IL-6 

compared to rats fed the AIN diets. No significant differences were observed in hepatic gene 

expression of inflammatory cytokines, TNF-α and IL-10, among diet groups  

As shown in Figure 2B, gonadal adipose tissue NFκB, TNFα and IL-6 gene expression 

was upregulated (p<0.05) in rats consuming Western diet, but not Western/AP diet compared to 

rats fed the AIN diets. No significant differences were observed in gonadal adipose tissue gene 

expression of IL-10 among diet groups.   

 

Measurements of PUFA metabolism, inflammation and ROS  

As shown in Figure 3A, no significant differences were observed in hepatic gene 

expression of COX1, COX2, 5-LOX, or NOX4 among diet groups. As shown in Figure 3B, no 

significant differences were observed in gonadal adipose tissue gene expression of COX1, 

COX2, 5LOX, or NOX4 among diet groups.  As shown in Figure 4, there were no significant 

differences in hepatic expression of genes promoting progression of NAFLD to NASH, TGFβ3 
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or CCL-2. There were no significant differences in hepatic gene expression of antioxidant 

defense transcription factor, Nrf2 or endogenous antioxidant enzymes, SOD1, SOD2, or 

catalase among diet groups. However, rats consuming diets substituted with apple pomace 

showed upregulation (p<0.0001) hepatic GPx gene expression.  

 

Oxidative Stress and Antioxidant Status Measurements 

 No significant differences were observed among diet groups for liver oxidation products, 

hydrogen peroxide (Figure 5A) or MDA (Figure 5B). For antioxidants, there were no significant 

differences in total polyphenols in the liver among diet groups despite higher diet content with 

apple pomace caloric replacement (Figure 5C). However, rats consuming Western/AP diet had 

the highest (p<0.05) serum total antioxidants (Figure 5D) while rats consuming Western diet 

had (p<0.0004) the lowest urinary total antioxidants (Figure 5E).   

 

Serum and urine biochemical measurements 

 As shown in Table 4, there were no significant differences for serum markers of liver 

function and damage: ALT, AST, AST:ALT ratio, bilirubin, or albumin among diet groups. Also, 

there were no significant differences in serum or urine uric acid among diet groups.  

 

 

4.5 Discussion 

Previously, we showed caloric substitution with 10% apple pomace in rats consuming a 

Western diet attenuated increased histological evidence of steatosis, hepatic triglyceride 

content, and hepatic expression of the enzyme DGAT2, which catalyzes the terminal step in 

triglyceride synthesis [28].  To extend this study, we evaluated the effects of apple pomace 

consumption on diet-induced progression of NAFLD to NASH. The current study showed apple 

pomace attenuated histological evidence of inflammation in the liver of rats consuming a 



129 
 

Western diet. Previous studies showed adipose tissue can alter liver fatty acid composition and 

in turn, gene expression of inflammatory cytokines. Additionally, fatty acids released from the 

adipose can contribute to hepatic inflammation [37,38]. In our study, rats consuming Western 

diets had higher (p<0.0001) gonadal adipose weight compared to rats consuming standard AIN 

diets. Further, lipidomic analysis of individuals with NASH-associated hepatocellular carcinoma 

showed a significant increase in hepatic MUFA content [39].   

In this study, both Western diets contained more MUFAs; however, rats consuming 

Western diet, but not Western/AP, had higher hepatic MUFAs, palmitoleic acid (p=0.05) and 

oleic acid (p=0.0005) content compared to rats consuming AIN diets. Additionally, gonadal 

adipose tissue of rats consuming Western diet, but not Western/AP diet had reduced (p=0.01) 

oleic acid content compared to AIN/AP diet. High hepatic oleic acid content, and low adipose 

oleic acid content suggests liver-adipose crosstalk, where oleic acid released from adipose 

tissue was deposed in the liver. MUFA crosstalk between liver and adipose tissue has been 

shown to regulate DNL and inflammation [40-42]. In our study, higher MUFA transport from 

gonadal adipose to the liver in rats consuming Western diet was attenuated by caloric 

substitution with 10% apple pomace. Increased MUFAs influence triglyceride synthesis and liver 

steatosis, promoting NAFLD, where increased SFAs stimulate inflammation, promoting 

progression to NASH [16,43].  

Rats consuming Western diet, but not Western/AP had higher (p=0.0007) hepatic SFA, 

palmitic acid, content compared to rats consuming AIN diets, despite Western/AP diet 

containing the highest dietary amount of SFA. Additionally, gonadal adipose tissue of rats 

consuming Western diet had lower (p<0.0008) palmitic and stearic acid content than rats 

consuming Western/AP diets. The results suggest rats consuming the Western diet had 

increased SFA crosstalk, where palmitic acid released from gonadal adipose was transported to 

the liver, with apple pomace once again attenuating this increase in the liver. Studies have 
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implicated SFAs in NASH due to increased SFA content promoting gene expression of 

proinflammatory cytokines [44,45]. 

Transcription factor, NFκB is a key regulator of numerous inflammatory cytokines [46]. 

Upregulated gene expression of NFκB and cytokine, IL-6, are major factors in the progression of 

NAFLD to NASH [21,47,48]. In the current study, rats fed Western diet had the highest 

upregulated (p<0.05) gene expression of NFκB and IL-6 in liver and gonadal adipose tissue. 

Additionally, rats consuming a Western diet also had the highest upregulation (p=0.001) of gene 

expression of TNF-α in gonadal adipose tissue. According to Hotamisligil, et al [49]., adipose 

tissue is a major production site for TNF-α. Studies have shown free fatty acids alter gene 

expression of cytokines resulting in progression liver disease [16,41,44,50]. Caloric substitution 

with 10% apple pomace attenuated liver deposition of MUFAs and SFAs released from gonadal 

adipose tissue and upregulation of gene expression of inflammatory cytokines induced by 

Western diet resulting in the absence of development of NAFLD and progression to NASH in 

rats fed Western/AP diet.  

PUFAs also regulate inflammatory gene expression and in turn, influence liver disease 

progression [22,51]. AIN diets contained more n-6 PUFA, LA, than Western diets, which in turn 

increased (p<0.0001) hepatic and gonadal adipose tissue LA content. Long-chain n-6 PUFA, 

ARA, content was higher in Western diets compared to AIN diets, but no significant differences 

were observed in hepatic ARA content. This may be due to higher LA content in AIN diets 

undergoing metabolism in the liver to ARA [52]. ARA was not detectable in gonadal adipose 

tissue, which was expected since ARA is primarily stored in muscle and liver [53]. ALA, a n-3 

PUFA, content was significantly higher In AIN diets than Western diets. Rats fed AIN/AP had 

the highest (p<0.001) adipose tissue ALA. Additionally, gonadal adipose tissue of rats 

consuming AIN/AP had higher (p=0.0078) DHA content compared to rats consuming Western 

diets. In the absence of dietary DHA in any of the diets, this was likely due to higher dietary ALA 

in AIN/AP diet being metabolized in adipose tissue to long-chain n-3 PUFA, DHA (Table 3) [54]. 
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ARA tissue composition influences inflammation by acting as a substrate for COX- and LOX-

mediated pathways, producing proinflammatory eicosanoids and leukotrienes, respectively 

[22,55]. n-3 PUFAs compete for the same COX and LOX enzymes to produce less inflammatory 

eicosanoids and leukotrienes [56].  Despite changes in tissue fatty acid composition, there were 

no significant differences in COX1, COX2, or 5LOX gene expression in liver or gonadal adipose 

tissue among diet groups. 

Alterations in tissue fatty acid composition can also promote lipid peroxidation and 

increased oxidative stress, which are suggested to promote NASH [17,57,58]. In the present 

study, no significant differences were observed in hepatic prooxidants hydrogen peroxide and 

MDA content among diet groups. Upregulated gene expression of NOX4, TGFβ3, and CCL-2 

are associated with NASH and increased oxidative stress [59-62]. Our study also showed no 

significant differences in gene expression of hepatic or adipose NOX4, or hepatic TGFβ3 or 

CCL-2 among diet groups (Figure 4). Oxidative stress occurs due to an imbalance of ROS and 

antioxidants, indicating antioxidant status as critical in attenuation of NASH [63]. Our study 

showed no significant differences in hepatic gene expression of transcription factor, Nrf2, a key 

regulator of endogenous antioxidant enzymes, SOD1, SOD2, or catalase among diet groups. 

However, rats consuming AIN and Western diets containing apple pomace had upregulated 

(p<0.0001) hepatic expression of GPx. Endogenous antioxidant, GPx defends against 

increased oxidative stress due to lipid peroxidation [64]. Diets with apple pomace contained 

more polyphenols. Increased dietary antioxidants have been shown to increase GPx gene 

expression [65]. Decreases in antioxidant enzyme activity, specifically glutathione enzymes, and 

diminished antioxidant response has been reported in subjects with NASH. [66,67]. In the 

present study, there were no significant differences in liver polyphenol content among diet 

groups, which was expected, as polyphenols circulate in the blood with excess polyphenols 

being excreted, rather than depose in tissues [68,69]. Higher antioxidant status with apple 

pomace caloric consumption was indicated by highest (p=0.0001) serum total antioxidants in 
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rats consuming Western/AP and lowest (p=0.0004) urinary total antioxidant excretion in rats 

consuming Western diet. These results showed apple pomace increased antioxidant 

bioavailability, which can result in attenuation of NASH [70].  

Bobek, et al [71]. reported rats fed cholesterol diets (0.3%) supplemented with 5% apple 

pomace for 10 weeks reduced erythrocyte SOD, catalase, and GPx. Another study reported 

feeding rats a standard diet with 14-15% apple pomace for 4 weeks decreased hepatic MDA 

and increase erythrocyte SOD and serum antioxidant capacity [72]. However, neither feeding 

study investigated apple pomace’s ability to attenuate diet-induced NASH. Most studies 

investigating antioxidant effects of apple pomace used polyphenols isolated from apple pomace. 

Consuming isolated bioactive isolated from apple pomace versus whole apple pomace avoids 

fructose intake. Fructose overconsumption has been shown to increase uric acid resulting in 

increases in proinflammatory cytokine and oxidative stress [25,73]. Our study showed no 

significant effect of caloric substation of AIN diet with apple pomace on serum or urinary uric 

acid, expression of proinflammatory cytokines, or indices of oxidative stress. Additionally, caloric 

substitution of Western diet with apple pomace attenuated progression to NASH. The results 

indicate the fructose content in 10% apple pomace to be safe for consumption. Apple pomace 

also contains a substantial amount of dietary fiber, which has been shown to produce 

synergistic effects when consumed with polyphenols [74-77]. Purification of bioactive 

components from pomace is both time consuming and costly, providing further rationale for 

consuming whole apple pomace [78-80].  

In conclusion, Western diet containing apple pomace ameliorated palmitic and oleic acid 

transport from adipose and deposition in the liver, upregulation of inflammatory genes in liver 

and gonadal adipose, and improved antioxidant status. Further, caloric substitution of standard 

AIN diet with 10% apple pomace rats showed the fructose content of apple pomace did not 

promote detrimental liver effects. Based on the current animal study, absence of detrimental 

effect on liver health while attenuating NAFLD progression to NASH induced by Western diet 
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consumption indicates apple pomace is a potential safe, beneficial, and sustainable functional 

food for human consumption.  
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Table 1. Fatty acid analysis of rodent diets substituted with apple pomace (10% g/kg). 

Measurements (mg/g) 
Treatments  

AIN AIN/AP Western Western/AP p-Value 

SFAs      
Palmitic acid (16:0) 113.6 ± 0.9c 111.4 ± 1.5c 321.9 ± 0.3b 329.2 ± 3.0a <0.0001 
Stearic acid (18:0) 35.6 ± 2.5b 37.2 ± 0.6b 99.4 ± 1.1a 102.4 ± 0.6a <0.0001 

MUFAs      
Palmitoleic acid (16:1n-7) 0 ± 0.00b 0 ± 0.00b 14.4 ± 0.1a 14.4 ± 0.2a <0.0001 
Oleic acid (18:1n-9) 190.9 ± 1.0b 183.5 ± 3.3b 229.6 ± 1.1a 229.5 ± 1.7a <0.0001 

PUFAs      
Linoleic acid (18:2 n-6) 501.2 ± 5.5a 514.1 ± 24.1a 69.9 ± 0.9b 70.4 ± 0.6b <0.0001 
α-linolenic acid (18:3 n-3) 70.8 ± 1.3a 71.3 ± 7.0a 10.4 ± 0.1b 10.5 ± 0.2b <0.0001 
Arachidonic acid (20:4 n-6) 0 ± 0.00b 0 ± 0.00b 0.13 ± 0.00a 0.14 ± 0.00a <0.0001 
EPA (20:5n-3) 0 ± 0.00 0 ± 0.00  0 ± 0.00  0 ± 0.00  1.00 
DHA (22:6n-3) 0 ± 0.00 0 ± 0.00  0 ± 0.00  0 ± 0.00  1.00 

Values expressed as mean ± standard error of the mean (SEM, n = 5 samples/group). Different superscript letters a, b, and c within. 
The same row indicates significant difference at p<0.05 by one-way ANOVA followed by Tukey’s test. Abbreviations: DHA, 
docosahexaenoic acid; EPA, eicosapentaenoic acid; MUFAs, monounsaturated fatty acids; PUFAs, polyunsaturated fatty, acids; 
SFAs, saturated fatty acids. 
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Table 2. Daily caloric and macronutrient intake, total body weight gain, liver and gonadal fat pad weights, and liver triglyceride 

content of growing female rats consuming different diets substituted with apple pomace (10% g/kg) for 8 weeks.  

Measurements 
Treatments  

AIN AIN/AP Western Western/AP p-Value 

Caloric intake (kcal/d) 53 ± 2b 49 ± 1b 60 ± 1a 61 ± 2a <0.0001 

CHO intake (kcal/d) 32 ± 1a 31 ± 1a 24 ± 1b 24 ± 1b <0.0001 

Fat intake(kcal/d) 9 ± 0.3b 8 ± 0.2b 27 ± 1a 27 ± 1a <0.0001 

Bwt gain (g/d) 2.2 ± 0.1 2.2 ± 0.1 2.4 ± 0.1 2.5 ± 0.1 0.17 

Final Body Weight (g) 215 ± 4 216 ± 8 229 ± 5 234 ± 5 0.08 

Gonadal fat pad weight (g) 4.12 ± 0.26b 3.46 ± 0.44b 5.87 ± 0.24a 5.96 ± 0.23a <0.0001 

Relative gonadal fat pad weight (mg/g bwt) 1.90 ± 0.14b 1.59 ± 0.17b 2.37 ± 0.20a 2.56 ± 0.11a <0.0001 

Liver weight (g) 7.50 ± 0.24 7.44 ± 0.37 8.05 ± 0.30 7.98 ± 0.24 0.35 

Relative liver weight (mg/g bwt) 3.47 ± 0.08 3.45 ± 0.07 3.52 ± 0.07 3.41 ± 0.05 0.69 

Values expressed as mean ± SEM (n = 6–8 rats/group).  Different superscript letters a and b within the same row. Indicate 
significant difference at p<0.05 by one-way ANOVA followed by Tukey’s test. Abbreviations: Bwt, body weight; CHO, 
carbohydrate. 
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Table 3. Liver and gonadal adipose tissue fatty acid content of young female rats consuming different diets substituted with apple 

pomace (10% g/kg).  

Liver Adipose 

Measurement 
(mg/g) 

AIN AIN/AP Western Western/AP p-value AIN AIN/AP Western Western/AP p-value 

SFAs           

Palmitic Acid 
(16:0) 

191.0 ± 5.7bc 184.0 ± 5.33c 214.4 ± 5.3a 210.8 ± 5.3ab 0.0007 132.1 ± 27.3b 282.6 ± 25.6a 123.2 ± 29.5b 241.8 ± 25.6a 0.0004 

Stearic Acid 
(18:0) 

144.6 ± 6.5 140.6 ± 6.0 148.3 ± 8.3 162.8 ± 6.0 0.08 18.3 ± 3.1b 32.9 ± 3.3a 20.2 ± 3.10b 35.5 ± 3.1a 0.0008 

MUFAs           

Palmitoleic 
Acid (16:1) 

57.0 ± 25.0b 81.0 ± 25.0b 161.0 ± 23.0a 76.0 ± 25.0b 0.05 14.7 ± 7.3 24.2 ± 10.4 17.8 ± 7.0 23.6 ± 8.8 0.84 

Oleic Acid 
(18:1) 

112.5 ± 16.5b 107.2 ± 13.9b 195.5 ± 13.9a 159.5 ± 13.0ab 0.0005 185.8 ± 39.9b 313.7 ± 39.9a 142.4 ± 46.1b 314.9 ± 42.6a 0.01 

PUFAs           

LA (18:3n-6) 224.4 ± 10.9a 251.2 ± 10.9a 92.8 ± 10.9b 83.8 ± 10.9b <0.0001 193.8 ± 65.0ab 376.1 ± 51.0a 53.5 ± 19.0b 64.6 ± 6.7b <0.0001 

ALA (18:3n-3) 10.4 ± 1.4a 12.8 ± 1.5a 2.3 ± 1.4b 2.2 ± 1.4b <0.0001 11.3 ± 3.5b 38.4 ± 5.0a 3.8 ± 2.2b 5.2 ± 1.6b <0.0001 

ARA (20:4) 132.6 ± 10.0 119.9 ± 16.1 132.0 ± 10.0 145.6 ± 10.0 0.37 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00 1.00 

EPA (20:5n-3) 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00 1.00 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00 1.00 

DHA (22:6n-3) 0 ± 0.00 0 ± 0.00 0 ± 0.00 0 ± 0.00 1.00 0.1 ± 0.1b 1.3 ± 0.3a 0 ± 0.00b 0.1 ± 0.1b 0.0078 

Values expressed as mean ± SEM (n = 6–8 rats/group).  Different superscript letters a and b within the same column 

indicate significant difference at p<0.05 by one-way ANOVA followed by Tukey’s test. Abbreviations: ALA, α-linolenic acid; 

ARA, arachidonic acid; DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid; LA, linoleic acid; MUFA, 

monounsaturated fatty acids; PUFA, polyunsaturated fatty acids; SFAs, saturated fatty acids
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Table 4. Effect of consumption of different diets substituted with apple pomace (10% g/kg) by growing female rats on serum 

and urine measurements of liver function enzymes, and uric acid following 8 weeks of feeding. 

Measurements AIN AIN/AP Western Western/AP p-Value 

Serum ALT (U/L) 107.63 ± 19.59 118.71 ± 43.60 94.5 ± 12.58 133.5 ± 30.59 0.78 
Serum AST (U/L) 129.48 ± 52.86 212.50 ± 37.86 283.63 ± 45.30 259.67 ± 48.96 0.69 
Serum AST:ALT ratio 3.16 ± 0.45 2.79 ± 0.28 2.97 ± 0.26 2.84 ± 0.17 0.83 
Serum Bilirubin 0.21 ± 0.01 0.21 ± 0.01 0.21 ± 0.01 0.21 ± 0.01 1.00 
Serum Albumin 4.06 ± 0.24 4.28 ± 0.36 4.93 ± 0.21 4.1 ± 0.36 0.21 
Serum Uric Acid (μM) 7.24 ± 0.31 6.27 ± 1.61 7.19 ± 0.86 7.57 ± 1.25 0.86 
Urine Uric Acid (μM) 5.94 ± 2.26 10.35 ± 2.11 10.40 ± 1.12 6.79 ± 1.41 0.23 

Values expressed as mean ± SEM (n=4-8 animals/group). Different superscript letters a and b within the same figure indicates 
significant difference at p<0.05 by one-way ANOVA followed by Tukey’s test. Abbreviations: AST, aspartate aminotransferase; ALT, 
alanine aminotransferase. 
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Figure Legend 

Figure 1. Representative histological staining images of the liver of growing female rats 

consuming (A) AIN, (B) AIN/AP, (C) Western, or (D) Western/AP following 8 weeks of feeding. 

Black arrows indicate fat deposition. White arrows indicate inflammation.  

Figure 2. Relative expression of genes involved in inflammation in (A) liver tissue and (B) 

gonadal adipose tissue of young female rats consuming different diets substituted with apple 

pomace (10% g/kg) for 8 weeks. Values expressed as mean ± SEM (n=6-8 animals/group). 

Different superscript letters a and b within the same figure indicates significant difference at 

p<0.05 by one-way ANOVA followed by Tukey’s test. Abbreviations: AU, arbitrary units, IL-6, 

interleukin-6, IL-10, interleukin-10; NFκB, nuclear factor kappa-light-chain enhancer of activated 

B cells; TNF-α, tumor necrosis factor alpha.  

Figure 3. Relative expression of genes involved in polyunsaturated fatty acid metabolism, 

inflammation, and oxidative stress in (A) liver tissue and (B) gonadal adipose tissue of young 

female rats consuming different diets substituted with apple pomace (10% g/kg) for 8 weeks. 

Values expressed as mean ± SEM (n=6-8 animals/group). Different superscript letters a and b 

within the same figure indicates significant difference at p<0.05 by one-way ANOVA followed by 

Tukey’s test. Abbreviations: 5LOX, arachidonate 5-lipoxygenase; AU, arbitrary units; COX1, 

cyclooxygenase 1; COX2, cyclooxygenase 2; NOX4, NADPH oxidase 4.  

Figure 4. Relative expression of genes involved in oxidative stress and antioxidant function in 

liver tissue of young female rats consuming different diets substituted with apple pomace (10% 

g/kg) for 8 weeks. Values expressed as mean ± SEM (n=6-8 animals/group). Different 

superscript letters a and b within the same figure indicates significant difference at p<0.05 by 

one-way ANOVA followed by Tukey’s test. Abbreviations: AU, arbitrary units; CAT, catalase; 

CCL-2, chemokine (C-C motif) ligand 2; GPx, glutathione peroxidase; Nrf2, nuclear factor-like 2; 
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SOD1, superoxide dismutase 1; SOD2, superoxide dismutase 2, TGFβ3, transforming growth 

factor beta-3.  

Figure 5. Oxidative stress and antioxidant status measured by (A) hepatic hydrogen peroxide, 

(B) hepatic MDA, (C) hepatic total polyphenols, (D) serum total antioxidants, and (E) urine total 

antioxidants in young female rats consuming different diets substituted with apple pomace (10% 

g/kg) for 8 weeks. Values expressed as mean ± SEM (n=6-8 animals/group). Different 

superscript letters a and b within the same panel indicates significant difference at p<0.05 by 

one-way ANOVA followed by Tukey’s test. Abbreviations: MDA, malondialdehyde.  
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Inflammation Grades     

 AIN AIN/AP Western Western/AP 

0 85% 85% 12% 37% 

1 15% 15% 88% 63% 
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4.7 Supplementary Material 

Supplementary Table 1. Composition of rodent diets substituted with apple pomace (10% g/kg) 

fed to growing female rats. 

Diet Groups *  

 AIN AIN/AP Western Western/AP 
Apple 

Pomace  

Ingredients (g/kg) *     (g/100g) 
Apple pomace 0.0 100.0 0.0 100.0 100 
Corn Starch 397.486 392.086 63.36 57.96 - 
Maltodextrin 132.0 132.0 60.0 60.0 - 
Sucrose 100.0 43.9 340.0 283.9 13.9 
Fructose 50 54.45 170 174.45 33.5 
Total Dietary Fiber 50.0 50.0 50.0 50.0 33.2 
Insoluble Fiber † 50.0 39.0 50.0 39.0 22.2 
Soluble Fiber ‡ 0.0 11.0 0.0 11.0 11.0 
Anhydrous Milkfat 0.0 0.0 210.0 210.0 - 
Soybean Oil 70.0 68.7 20.0 18.7 - 
Casein 200.0 196.0 195.0 191.0 - 
L-Cystine 3.0 3.0 3.0 3.0 - 
Vitamin Mix 10.0 10.0 12.5 12.5 - 
Mineral Mix 35.0 35.0 43.0 43.0 - 
Choline Bitartrate 2.5 2.5 3.1 3.1 - 
TBHQ, antioxidant 0.014 0.014 0.04 0.04 - 
Polyphenols 0.0015 0.0029 0.0008 0.0032 0.29 

Macronutrients (% kcal)      
Protein 18.8 18.9 14.8 14.8 3.6 
Fat 17.2 17.3 44.6 44.8 1.3 
Carbohydrate 63.9 63.7 40.6 40.4 68.1 

Calories (kcal/g) 3.8 3.7 4.7 4.7 3.9 
* Abbreviations: AIN, the American Institute of Nutrition; AP, apple pomace; TBHQ, tert-
butylhydroquinone. † Insoluble fiber is cellulose. ‡ Soluble fiber is mainly pectin 2.  
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Supplementary Table 2. List of primers used for RT-qPCR analysis.  

Gene NCBI Gene ID Forward Primer Reverse Primer 

Inflammation    

NFκB 81736 5’ TTATGGGCAGGATGGACCTA 3’ 5’ CCTTTCAGGGCTTTGGTTTA 3’ 

TNFα 24835 5’ CACAAGGCTGCTGAAGATGT 3’ 5’ GAGGGAAGGAAGGAAGGAAG 3’ 

IL-6 24498 5’ TGGCTAAGGACC AAGACCAT 3’ 5’ TTGCCGAGTAGACCTCATAGTG 3’ 

IL-10 25325 5’ CACTGCTATGTTGCCTGCTC 3’ 5’ GCCTTTGCTGGTCTTCACTC 3’ 

PUFA 
Metabolism/ 
Inflammation 

   

COX-1 24693 5’ CTGCCTCAACACCAAGACC 3’  5’ CCGTCATCTCCAGGGTAATC 3 

COX-2 29527 5’ CGGAGGAGAAGTGGGTTTTAG 3’ 5’ TGAAAGAGGCAAAGGGACAC 3’ 

5LOX 25290 5’ CCATCAAGAGCAGGGAGAAA 3’ 5’ CATAGTTGGAGGAGCGTTGG 3’ 

Oxidative 
Stress 
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NOX4 85431 5’ CCTCCATCAAGCCAAGATTC 3’ 5’ CTCCAGCCACACACAGACTAAC 3’ 

TGFβ3 25717 5’ AACTGCTGTGTGCGCCCC 3’ 5’ TAGTCCAAGCACCGTGCTGTGG 3’ 

CCL-2 24770 5’ CCACAACCACCTCAAGCAC 3’ 5’ AGGCATCACATTCCAAATCAC 3’ 

Antioxidant 
Status 

   

Nrf2 83619 5’ TGACTCGGAAATGGAAGAGC 3’ 5’ TGTGTTGGCTGTGCTTTAGG 3’ 

SOD1 24786 5' GGTCCACGAGAAACAAG TGA 3'  5' CAATCACACCACAAGCCAAG 3' 

SOD2 24787 5' GAAAGTGCTCAAGATGGACAAAG 3' 5' CTGAATGGCTTCCCTGAATG 3' 

Catalase 24248 5' TGTTGAATGAGGAGAGGA 3' 5' TTCTTAGGC TTCTGGGAGTTG 3' 

GPx 24404 5' GATACGCCGAGTGTGGTT T 3' 5' TCTTGATTACTTCCTGGCTCCT 3' 

Housekeeping    

β-actin 81822 5’ TTGCTGACAGGATGCACAAG 3’ 5’ CAGTGAGGCCAGGATAGAGC 3’ 

GAPDH 24383 5’ TCAAGAAGGTGGTGAAGCAG 3’ 5’ CCTCAGTGTAGCCCAGGATG 3’ 



159 
 

5.0       Chapter 3 

Caloric Substitution of Diets with Apple Pomace was Determined to be Safe for Renal and Bone 

Health Using a Growing Rat Model 

 

R. Chris Skinner1, Joseph C. Gigliotti2, Katherine H. Taylor1, Derek C. Warren1, Vagner A. 

Benedito3, Janet C. Tou1* 

1Division of Animal and Nutritional Sciences, 2Department of Integrative Physiology and 

Pharmacology, Liberty University College of Osteopathic Medicine, Liberty, VA, 24515, United 

States, 3Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 26506 

 

 

 

 

 

 

 

Corresponding Author: 

Janet C. Tou, PhD 

Division of Animal and Nutritional Sciences  

West Virginia University  

Morgantown, WV 26506  

Tel: (304)293-1919 

Fax: (304)293-2232 

e-mail: janet.tou@mail.wvu.edu 

  



160 
 

5.1 Abstract 

Apple pomace, a “waste” byproduct of apple processing has a favorable nutritional profile 

indicating potential for repurposing for human consumption. However, the high fructose content 

of apple pomace when added to a healthy diet or Western diet, typified by high sugar and high 

fat, may result in detriments to kidney and bone health. Therefore, the objectives of this study 

were to determine the safety of caloric substitution with 10% apple pomace substitution (g/kg) to 

a healthy or Western diet. Growing (age 22-29 days) female Sprague-Dawley rats were 

randomly assigned (n=8 rats/group) to consume a purified standard rodent diet (AIN-93G), AIN-

93G/10% g/kg apple pomace (AIN/AP), Western diet, or Western/10% g/kg apple pomace 

(Western/AP) diets for 8 weeks. Histological evaluation showed renal interstitial hypercellularity 

in rats fed AIN/AP, Western, and Western/AP diets. However, there was no effects on renal 

expression of oxidative stress and inflammatory genes or serum measures of kidney damage 

and function among diet groups. Apple pomace is also high in calcium which can affect calcium 

balance. Dietary calcium consumption was highest (p<0.0001) in rats consuming Western/AP. 

However, there was no significant differences in calcium absorption and retention among diet 

groups. Further, there was no evidence of renal calcification. There were also impact on femoral 

calcium and total mineral content, size, and strength. Based on the results, apple pomace 

consumption was safe for renal and bone health, regardless of diet quality.   

Keywords: apple pomace, safety, minerals, Western diet, bone, kidney   
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5.2 Introduction  

Apple processing generates waste, consisting of skin, stem, seeds, and calyx, 

collectively known as apple pomace. The environmental pollution and burden of waste disposal 

costs to apple farmers and producers can be decreased by re-purposing apple pomace as a 

product for human consumption [1-3]. However, among popular consumed fruits, apples had the 

highest fructose content [1]. Muir, et al. [4] reported apples to have 10.5 g of fructose/serving 

compared to 3.2 g/serving for bananas, 6.4 g/serving for blueberries, and 2.5 g/serving for 

oranges. Further, apple pomace contains 44.7% fructose compared to 5.8-6.0% fructose in 

whole apple [5]. This is a health concern because fructose overconsumption has been reported 

to contribute to renal disease and to produce deleterious effects on bone [6,7]. Apple pomace 

contains a higher mineral content than whole apples, particularly calcium which is required for 

bone health [1,8].  However, over-consumption of calcium can increase nephrocalcinosis and 

reduced kidney function [9,10]. In turn, renal dysfunction can lead to bone loss due to mineral 

imbalance, resulting in increased risk of osteoporosis and other bone-mineral disorders [11].  

Diets typical of Western countries are characterized by high fat and high sucrose.   

Western diet consumption has been shown to increase the risk of chronic kidney disease by 

inducing renal steatosis, inflammation, and oxidative stress. Western diet consumption has also 

been reported to increase risk of kidney stones due to the high sugar content [12,13]. 

Additionally, consuming a Western diet can result in early onset of osteoporosis by promoting 

mineral balance and inflammation leading to decreased bone mineral density [14,15].  

Dietary advice suggests replacing calories in the diet with healthier food choices instead of 

dietary supplementation with a purified isolated nutrient [16].  

 Previously, our laboratory reported caloric substitution of a Western diet with 10% g/kg 

apple pomace attenuating features of NAFLD [17]. However, the effects of apple pomace on 

renal and bone was not assessed in this study. To our knowledge no studies have evaluated the 

safety of apple pomace consumption on renal and bone health. Therefore, the objectives of this 
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study were to determine the safety of apple pomace, due to its high fructose content and 

increased calcium content, in growing rats consuming a standard diet or Western diet. Female 

rats were used due to their increased susceptibility to nephrocalcinosis, and growing rats 

because kidney disease has been shown to have more severe bone effects in a pediatric 

population [18,19].  We hypothesize apple pomace will not have detriment to kidney or bone 

health in growing female rats consuming “healthy” or Western diets. 

 

5.3 Materials and Methods 

Diets 

Locally sourced apple pomace was provided by Swilled Dog Hard Cider Company 

(Franklin, WV). Apple pomace was freeze dried in a VirTis Genesis 25 XL Pilot Freeze Drier (SP 

Scientific, Warminster, PA) Nutrient composition analysis of apple pomace was performed by 

Medallion Laboratories (Minneapolis, MN). Apple pomace contains 32.5% fructose compared to 

the published average of 5.9% fructose for whole apples. Dietary calcium and phosphorus were 

determined by inductively coupled plasma mass spectrometry (ICP) (model P400, Perkin Elmer, 

Shelton, CT). Apple pomace contained 1.47 mg/g calcium and 1.97 mg/g phosphorous 

compared to published values of 0.06 mg/g calcium and 0.11 mg/g phosphorous in whole 

apples [17] (Table 1).  

The ‘healthy’ diet was the standard purified American Institute of Nutrition (AIN-93G) for 

growing rats [20] while a Western diet consisting of 45% fat and 34% sucrose was used to typify 

the high fat, high sugar diet consumed by Western countries [21,22]. AIN-93G and Western diet 

were calorically substituted with 10% g/kg freeze-dried apple pomace. AIN diets were adjusted 

to be isocaloric (3.7-3.8 kcal/g) and Western diets were adjusted to be isocaloric (4.7 kcal/g). 

Table 2 shows diet formulation for macronutrients, sugars, total minerals, calcium, and 

phosphorous. The complete ingredient composition of experimental diets is provided in 

Supplemental Table 1. Diets were stored at -20°C until fed to animals. 
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Animals  

Weanling (age 22-29 days) female Sprague-Dawley rats (n=32) were purchased from 

Harlan-Tekald (Indianapolis, IN). All animal procedures were approved by the Animal Care and 

Use Committee at West Virginia University and conducted in accordance with the guidelines of 

the National Research Council for the Care and Use of Laboratory Animals [23]. Rats were 

individually housed and kept in a room at constant temperature of 21+2°C with a 12 h light/dark 

cycle throughout the study duration. Following 7-days acclimation period, rats were randomly 

assigned (n=8 rats/group) to four dietary groups consisting of: 1) AIN-93G, 2) AIN-93G with 

10% weight (g/kg) substituted with apple pomace (AIN/AP), 3) Western diet (45% fat, 33% 

sucrose by kcals), or 4) Western diet with10% of weight (g/kg) substituted with apple pomace 

(Western/AP). Rats were provided ad libitum access to their assigned diets and deionized 

distilled water (ddH2O) throughout the eight weeks study duration. Food intake was measured 

and assigned diets replaced every other day while ddH2O was replaced weekly. At the end of 

the study, rats were fasted overnight then euthanized by carbon dioxide inhalation. The kidney 

was excised, weighed, and then flash frozen in liquid nitrogen and stored at -80°C until 

analyzed. Both femurs were removed, cleaned, and stored at -20°C.  

 

Kidney histology 

The left kidney was removed, weighed, flash frozen in liquid nitrogen, and stored at -

80°C until analysis. A center sagittal section was cut from each frozen tissue (n=6-8) and stored 

in 10% neutral buffered formalin for 48 hours (fixation). After fixation, samples underwent a 

dehydration protocol consisting of 10-15 minutes incubation in increasing ethanol 

concentrations (50-to-100%) followed by two 20-minute incubations in xylenes. Following xylene 

incubation, samples were incubated in molten paraffin wax for 20 minutes (infiltration) and 

embedded into blocks. 5-7μm sections were cut and mounted on charged slides and sections 
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stained with hematoxylin and eosin. Histological evaluation included gross morphological 

assessment which included the following: glomerular hypercellularity and matrix deposition, 

interstitial hypercellularity, tubulointerstitial calcification, inflammation, and fibrosis. All slides 

were analyzed using a Nikon Labophot 2 microscope (Nikon Instruments, New York, NY) at 

magnification 10X by a trained investigator blinded to the identity of the groups. Images were 

captured using a LCL-500-LHD digital camera with a PC Method Capture Imaging software 

(Ludesco, Parkville, MD). 

 

Renal RNA isolation and inflammatory gene expression  

Total RNA was extracted from frozen kidney tissue (50 mg) using the Zymo Research 

Direct-zol RNA Miniprep Plus Isolation Kit (Irvine, CA, catalog #R2071) according to the 

manufacturer’s instruction for total RNA isolation. Isolated RNA integrity was visualized on a 

1.5% agarose gel and quantified by spectrophotometry (NanoDrop 100; Thermo Fisher 

Scientific, Waltham, MA). Following DNase I treatment with TURBO DNA-free kit (Thermo 

Fisher Scientific), total mRNA was amplified using the Superscript IV First-Strand Synthesis 

System with oligo dT primers (Thermo Fisher Scientific). 

Real-time quantitative polymerase chain reaction (RT-qPCR) consisted of 2.5 µl of 

SYBR Green Master Mix (Thermo Fisher Scientific), 1 µL of cDNA (diluted 1:10), 1 µL of 

respective forward and reverse primers (10 μM) and 0.5 µl of deionized distilled water for a total 

reaction volume of 5 µl. The reactions were performed in a 7500 ABI Real-Time PCR System 

(Thermo Fisher Scientific). The thermal profile consisted of 50°C for 2 min, 95°C for 10 min then 

40 cycles of 95°C for 15 sec and 60°C for 1 min. A melt curve analysis was applied at the end of 

cycling. Primers that were designed for transcription factors, nuclear factor kappa-light chain 

enhancer of B cells (NFκB) and NADPH oxidase 4 (NOX4) and for inflammatory cytokines, 

tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6) as well as for housekeeping genes, 

β-actin and glyceraldehyde 2-phosphate dehydrogenase (GAPDH) using the Primer3 program 
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(Howard Hughes Medical Institute) and respective mRNA sequences obtained by NCBI. 

Forward and reverse primers for genes of interest are listed below:  

Gene NCBI Gene ID Forward Primer Reverse Primer 

NFκB 81736 5’ 
TTATGGGCAGGAT
GGACCTA 3’ 

5’ 
CCTTTCAGGGCTTT
GGTTTA 3’ 

TNFα 24835 5’ 
CACAAGGCTGCTG
AAGATGT 3’ 

5’ 
GAGGGAAGGAAGG
AAGGAAG 3’ 

IL-6 24498 5’ TGGCTAAGGACC 
AAGACCAT 3’ 

5’ 
TTGCCGAGTAGAC
CTCATAGTG 3’ 

NOX4 85431 5’ 
CCTCCATCAAGCC
AAGATTC 3’ 

5’ 
CTCCAGCCACACA
CAGACTAAC 3’ 

β-actin 81822 5’ 
TTGCTGACAGGAT
GCACAAG 3’ 

5’ 
CAGTGAGGCCAGG
ATAGAGC 3’ 

GAPDH 24383 5’ 
TCAAGAAGGTGGT
GAAGCAG 3’ 

5’ 
CCTCAGTGTAGCC
CAGGATG 3’ 

 

Serum and urinary measures of renal function and health  

Serum measures of kidney function included: blood urea nitrogen (BUN), creatinine, total 

protein, calcium, phosphorous, alanine aminotransferase (ALT). Additionally, serum glucose 

and amylase were measured. Values were determined enzymatically using a commercially 

available Vet-16 rotor and quantified by a Hemagen Analyst automated spectrophotometer 

(Hemagen Diagnostics Inc., Columbia, MD).  

Serum and urine uric acid was determined by commercially available enzymatic assay 

(Cayman Chemical). Briefly, serum and urine samples were aliquoted onto a 96-well plate and 

incubated for 15 minutes. Reaction was initiated by adding 15 μl of uricase and horseradish 

peroxidase enzyme mixture, and read at an excitation of 535 nm and an emission of 590 nm 

using a BioTek Synergy H1 microplate reader (Winooski, VT). Inter-assay coefficient of variation 

was 32.1% for both serum and urine. 
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Calcium balance and retention 

 Rats were fasted overnight and euthanized by carbon dioxide inhalation. Blood was 

collected by aorta puncture. Collected blood was centrifuged at 1,500 g for 10 min at 4°C to 

obtain serum. Serum samples were stored at -80°C until analyzed. Serum calcium was 

determined enzymatically using a commercially available Vet-16 rotor and quantified by a 

Hemagen Analyst automated spectrophotometer.  

 During the initial and final weeks of the feeding study, rats were individually housed in 

metabolic cages to collect urine and feces for 24 h. Initial and final day urine samples were 

collected, centrifuged at 1,500 g for 10 min at 4°C, filtered through Whatman no. 1 paper, and 

then diluted 1:10 in ddH2O. Initial and final feces were collected and dried for 48 h, then ashed 

in a muffle furnace (model CP18210, Thermolyne, Dubuque, IA) at 550°C for 24 h. Fecal 

samples were then acidified in 70% nitric acid, neutralized in ddH2O, filtered through Whatman 

no. 1 paper, and further diluted (1:50 v/v) in ddH2O. Ca content of feces and urine was 

determined by ICP. 

 Urinary calcium excretion was calculated as urinary calcium concentration/urine volume. 

Calcium apparent absorption was calculated as [(calcium intake-fecal calcium 

excretion)/(calcium intake)] x 100. Calcium retention was calculated as [(calcium intake – (fecal 

calcium excretion + urinary calcium excretion)] [24].  

 

Femur morphometry and mineralization  

 Following CO2 inhalation, the left and right femur were collected, and then defleshed.  

After no bilateral differences were determined using a t-test with significance set at p<0.05, the 

left femurs were used for all analyses. Femoral morphometry measurements consisting of 

depth, width, and length were determined using a Vernier caliper (Bel-Art Products, 

Pequannock, NJ, USA). Length was measured from the medial condyle to the greater 
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trochanter. Femurs were weighed using an analytical balance (Mettler Toledo, Columbus, OH, 

USA).  

Total bone mineral was determined by ashing in a muffle furnace at 600°C for 24 hours, 

then weighed ash. To measure specific minerals, bone ash was dissolved in 2 mL of 70% nitric 

acid. Acidified samples were filtered through Whatman no. 1 paper and diluted (1:50 v/v) to 

volume with ddH2O and Ca determined using ICP.   

 

Femur biomechanical strength 

Femoral strength indices were assessed using a TA,XT2i Texture Analyzer (Texture 

Technologies, Scarsdale, NY, USA) fitted with a three point bending apparatus. Femora were 

placed on supports and force applied to the midshaft marked at a position halfway between the 

greater trochanter and the distal medical condyle. Bone was broken by lowering a centrally 

placed blade (1 mm width) at a constant crosshead speed (0.1 mm/s). The load cell was 50 kg. 

The load-deflection data were collected by a PC interfaced with the TA,XT2i. Sample test 

distance was set at 10 mm with a signal collection rate of 100 points per second. Peak force, 

ultimate stiffness, ultimate bending stress and Young’s modulus were calculated according to 

Yuan and Kitts [25].   

 

Statistics  

Results are expressed as mean ± standard error of the mean (SEM). Gene expression 

was determined as a function of mRNA abundance (A), where A=1/(gene of interest primer 

efficiency x ΔCT (g.o.i.) – (average housekeeping primer efficiency x ΔCT (h.k.)), where the 

product of efficiency and average of expression of β-actin was averaged with the product of 

efficiency and average of expression of GAPDH to determine the overall expression of the two 

housekeeping gene [17,26,27]. Gene expression data for each treatment group were log-

transformed prior to statistical analysis. One-way ANOVA was used to determine differences 
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among dietary groups. Post hoc multiple comparison tests were performed using Tukey’s test 

with treatment differences considered significant at p<0.05 and a tendency at p=0.08. All 

statistical analyses were performed using JMP 12.2 statistical software package (SAS Institute, 

Cary, NC). 

 

5.4 Results and Discussion 

Rats are susceptible to renal disease and diets high in fructose and high in calcium have 

been shown to be detrimental to renal health. Also, and high-fructose diets can detriment bone 

health [7,28,29]. In the current study, histological analysis of the kidneys showed no evidence of 

fibrosis, glomerular hypercellularity, glomerular matrix deposition, or amyloidosis. However, rats 

consuming Western diet and diets containing apple pomace showed renal interstitial 

hypercellularity (Figure 1), suggesting renal inflammation. To further investigate, gene 

expression of inflammatory transcription factor, NFκB and proinflammatory cytokines, TNF-α 

and IL-6 as well as NOX4, a highly expressed enzyme regulating generation of reactive oxygen 

species, were measured in the kidneys. No significant differences were found in renal 

expression of any of the genes of interest among diet groups (Figure 2). Serum clinical 

measures of kidney damage and function were also measured [12,30-32]. Serum creatinine, 

BUN, ALT, and total protein also showed no significant differences among diet groups, 

collectively indicating absence of inflammation and oxidative stress (Table 4).  

Increased fructose consumption and elevated uric acid may play a role in renal 

inflammation [33-35]. Elevations in uric acid levels have been shown to change the fundamental 

architecture of renal histology and has been implicated in acute and chronic renal failure [36]. 

The current study results showed no significant difference in serum or urine uric acid among diet 

groups (Table 4). Interstitial hypercellularity was observed in 13-29% of animals, but there were 

no significant differences in oxidative stress and inflammatory gene expression or serum and 

urine measurements of renal dysfunction and injury were observed among diet groups. These 
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results indicate renal interstitial hypercellularity was unlikely to be of biological significance. 

Collectively, the results indicate the fructose content of apple pomace was not a risk for renal 

injury and development of chronic kidney disease in either ‘healthy’ or Western diet.   

In our study, Western diets were high in calcium with Western/AP diet having the highest 

calcium content (Table 2). Differences in calcium content in diets can have significant effects on 

calcium excretion, absorption, and retention [37]. Increased calcium excretion can induce 

nephrocalcinosis through accumulation of calcium in the kidney [38]. Initial urinary and fecal 

calcium excretion, calcium retention, and calcium absorption showed no significant differences 

among diet groups (Table 5). At final week, no differences were observed in rats urinary 

calcium excretion among all groups, but an increase (p=0.04) in fecal calcium excretion by rats 

consuming a Western/AP diet compared to AIN diet was observed. This was also likely due to a 

combination of the high insoluble dietary fiber content in apple pomace possibly binding to 

calcium and the increased dietary calcium in the Western/AP diet. This higher dietary calcium 

also explains the lack of change in apparent calcium absorption among all diet groups. No 

differences were observed in calcium retention among all diet groups. Further, renal histological 

evaluation showed no evidence of calcium deposition in any of the diet groups, further indicating 

apple pomace consumption to be safe (Figure 2). 

While Western diet (high fat and high sugar) and fructose consumption have also been 

reported to detriment bone health, whole apples have been shown to favorably alter bone 

health, through increased bone mineral density, decreased calcium loss, and decreased 

inflammation due to antioxidants present in apples [39-42]. Apple pomace has been shown to 

contain more calcium than apples [5]. Increasing dietary calcium has been shown to prevent 

osteoporosis and to lower the risk of bone fractures [43,44]. Further, children with adequate 

calcium consumption have increased bone mineral density [45,46]. The present study showed 

no significant differences in femoral calcium content among diet groups. Additionally, there were 

no significant differences in femur size or bone strength measurements among diet groups. 
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These measures included peak force, ultimate stiffness, ultimate bending stress, and Young’s 

modulus which measures the stiffness and strength of the bones (Table 5).   

 Another concern is rats consuming Western/AP diets had significantly increased gonadal 

fat pad weights than rats consuming AIN diets [data not shown, 17]. Obesity and diabetes have 

been reported to be causal factors in diet-induced kidney disease progression [6,47]. Despite 

higher adiposity in rats fed Western/AP diet there were no significant differences in fasting 

serum glucose or amylase among diet groups (data not shown). Our study provides evidence 

that high fructose and high calcium content of apple pomace was not sufficient to effect renal or 

bone health in rats, regardless of diet. Studies on apple pomace have reported numerous health 

benefits including decreases in body weight, as well improvements in serum lipid, insulin, 

glucose, antioxidant status, and digestion [48-54]. Yet, few studies have evaluated the safety of 

apple pomace consumption. Devrajan, et al. [55] fed rats unfermented or fermented apple 

pomace for 2 weeks showed a nonsignificant increase serum BUN, but found no indication of 

kidney damage [56].  

 In conclusion, caloric substitution of a healthy or Western diet with 10% apple pomace 

had no impact on renal or bone health in growing female rodents. Based on our results apple 

pomace is safe for consumption, despite its high fructose content combined with a high calcium 

content, regardless of diet quality. The study provides evidence for apple pomace, a “waste” 

byproduct of apple processing has a favorable nutritional profile and is safe and therefore has 

potential to be repurposed as a sustainable food source for human consumption.   
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Table 1. Composition of locally sourced freeze-dried apple pomace.  

Macronutrients (%)  
Protein 3.56 
Fat 1.3 
Carbohydrates 68.1 

Sugars (%)  
Fructose 32.5 
Glucose 9.77 
Sucrose 13.9 
Maltose <0.1 
Lactose <0.1 

Dietary Fiber (%)  
Insoluble Dietary Fiber 22.2 
Soluble Dietary Fiber 11.0 

Polyphenols (g/kg) 0.029 

Minerals (mg/g)  
Total Minerals  15.5 
Calcium  1.47 
Phosphorous 1.97 

Calories (kcal/100 g) 387 
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Table 2. Ingredient composition of rodent diets substituted with apple pomace (10% g/kg) fed to growing female rats. 

Diet Groups 1 

 AIN AIN/AP Western Western/AP 

Key Ingredients 1     

Apple pomace (g/kg) 0.0 100.0 0.0 100.0 

Sucrose (g/kg) 100.0 43.9 340.0 283.9 

Fructose (g/kg) 50 54.5 170 174.5 

Total Minerals (mg/g) 22.1 24.2 26.4 28.0 

Calcium (mg/g) 10.4 10.8 12.8 14.6 

Phosphorus (mg/g) 7.2 7.5 7.6 7.5 

Macronutrients (% kcal)     

Protein 18.8 18.9 14.8 14.8 

Fat 17.2 17.3 44.6 44.8 

Carbohydrate 63.9 63.7 40.6 40.4 

Calories (kcal/g) 3.8 3.7 4.7 4.7 
1 Abbreviations: AIN, the American Institute of Nutrition; AP, apple pomace. A complete list of ingredients can be found in 
Supplemental Table 1.  
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Table 3. Weekly caloric and macronutrient intake, weekly body weight gain, and kidney and bone weights of growing female rats 

consuming different diets substituted with apple pomace (10% g/kg) for 8 weeks.  

Measurements 
Treatments 1 

AIN AIN/AP Western Western/AP p-Value 

Caloric intake (kcal/week) 368 ± 11b 345 ± 8b 422 ± 9a 430 ± 17a <0.0001 

Initial bwt (g) 95 ± 3 92 ± 3 95 ± 3 95 ± 3  0.80 

Final bwt (g) 216 ± 4 216 ± 8 229 ± 5 234 ± 5 0.08 

Average weekly bwt gain (g) 16 ± 3 16 ± 3 18 ± 3 18 ± 3 0.94 

Average mineral intake (mg/d) 304.0 ± 9.3b  318.8 ± 7.3b 368.9 ± 7.8a 374.7 ± 15.0a <0.0001 

Right kidney weight (g) 0.69 ± 0.02 0.68 ± 0.02 0.71 ± 0.02 0.73 ± 0.02 0.28 

Left kidney weight (g) 0.69 ± 0.02 0.67 ± 0.02 0.74 ± 0.03 0.74 ± 0.02 0.07 

Relative right kidney weight (mg/g) 0.32 ± 0.01 0.31 ± 0.01 0.32 ± 0.01 0.31 ± 0.01 0.86 

Relative left kidney weight (mg/g) 0.31 ± 0.01 0.31 ± 0.01 0.31 ± 0.01 0.32 ± 0.00 0.70 

Left kidney ash (mg/g) 9.86 ± 0.56 10.07 ± 0.54 9.14 ± 1.09 10.34 ± 0.67 0.71 
1Values expressed as mean ± SEM (n = 6–8 rats/group).  Different superscript letters a and b within the same row. Indicate 
significant difference at p<0.05 by one-way ANOVA followed by Tukey’s test. Abbreviations: AIN, American Institute of Nutrition; 
AP, apple pomace; Bwt, body weight; CHO, carbohydrate. 
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Table 4. Effect of consumption of different diets substituted with apple pomace (10% g/kg) by growing female rats on serum and 
urine measurements of liver function enzymes, and uric acid following 8 weeks of feeding. 

 Treatments1 

Measurements AIN AIN/AP Western Western/AP p-Value 

Serum Creatinine (U/L) 1.46 ± 0.08 1.45 ± 0.11 1.38 ± 0.09 1.43 ± 0.04 0.90 

Serum BUN (mg/dl) 17.84 ± 1.59 19.63 ± 1.41 20.25 ± 2.32 16.00 ± 0.94 0.27 

Serum ALT (U/L) 107.63 ± 19.59 118.71 ± 43.60 94.5 ± 12.58 133.5 ± 30.59 0.78 

Serum Total Protein (g/dl) 3.9 ± 0.25 4.62 ± 0.34 4.08 ± 0.67 4.19 ± 0.34 0.79 

Serum Phosphorous (mg/dl) 14.18 ± 0.54 13.46 ± 1.72 15.68 ± 0.53 13.09 ± 1.02 0.35 

Serum Calcium (mg/dl) 9.56 ± 0.80 11.10 ± 1.09 11.49 ± 0.54 10.51 ± 1.00 0.48 

Serum Uric Acid (μM) 7.24 ± 0.31 6.27 ± 1.61 7.19 ± 0.86 7.57 ± 1.25 0.86 

Urine Uric Acid (μM) 5.94 ± 2.26 10.35 ± 2.11 10.40 ± 1.12 6.79 ± 1.41 0.23 
1Values expressed as mean ± SEM (n=4-8 animals/group). Different superscript letters a and b within the same figure indicates 
significant difference at p<0.05 by one-way ANOVA followed by Tukey’s test. Abbreviations: ALT, alanine aminotransferase; BUN, 
blood urea nitrogen.   
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Table 5. Calcium content of serum, feces, urine, and femurs of rats fed different diets substituted with 10% (g/kg) apple pomace.  

Calcium Balance 
Treatments 1 

AIN AIN/AP Western Western/AP p-Value 

Ca intake (g/d) 12.8 ± 0.4 13.3 ± 0.3 12.8 ± 0.3 13.1 ± 0.5 0.88 

Intake (mg/d) 135.6 ± 4.2c 140.1 ± 3.2c 162.4 ± 3.5b 184.9 ± 7.4a <0.0001 

Initial      

Urine Ca excretion (mg/dl) 0.16 ± 0.04 0.19 ± 0.04 0.17 ± 0.04 0.18 ± 0.04 0.96 

Fecal Ca excretion (mg/d) 25.9 ± 3.6 22.9 ± 3.5 31.3 ± 3.7 34.7 ± 2.7 0.12 

Ca retention (mg/d) 89.3 ± 9.4 94.9 ± 5.9 96.4 ± 5.8 109.8 ± 6.2 0.32 

Ca absorption (%) 62.5 ± 4.6 68.0 ± 4.7 61.4 ± 4.2 63.3 ± 3.0 0.70 

Final      

Urine Ca excretion (mg/ml) 0.15 ± 0.02 0.16 ± 0.04 0.16 ± 0.04 0.10 ± 0.01 0.25 

Fecal Ca excretion (mg/d) 60.9 ± 2.9b 79.4 ± 11.6ab 81.2 ± 3.9ab 99.3 ± 7.1a 0.04 

Ca retention (mg/d) 77.7 ± 5.3 66.7 ± 5.3 80.8 ± 5.0 78.9 ± 5.3 0.25 

Ca absorption (%) 54.2 ± 4.1 41.8 ± 11.8 49.7 ± 3.2 46.3 ± 5.3 0.65 
1Values expressed as mean ± SEM (n=4-8 animals/group). Different superscript letters a and b within the same figure indicates 
significant difference at p<0.05 by one-way ANOVA followed by Tukey’s test. Abbreviations: Ca, calcium.  
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Table 6. Femoral morphometry and strength measurements of rats fed different diets substituted with 10% (g/kg) apple pomace.  

Measurement 

Treatments 1 

AIN AIN/AP Western Western/AP p-value 

Femur morphometry      

Length (mm) 29.71 ± 0.53 29.09 ± 0.78 30.52 ± 0.56 29.36 ± 0.78 0.09 

Medial lateral width (mm) 2.98 ± 0.04 3.12 ± 0.12 3.06 ± 0.08 3.15 ± 0.10 0.13 

Depth (mm) 2.78 ± 0.07 2.73 ± 0.12 2.60 ± 0.09 3.06 ± 0.17 0.43 

Wet wt (g) 0.77 ± 0.02 0.74 ± 0.05 0.73 ± 0.03 0.74 ± 0.04 0.89 

Dry wt (g) 0.48 ± 0.01 0.46 ± 0.03 0.45 ± 0.02 0.47 ± 0.02 0.77 

Femur mineralization      

Ash (mg/g of bone) 407.92 ± 11.42 407.75 ± 9.26 399.66 ± 7.40 396.94 ± 6.46 0.80 

Calcium (mg/g of bone) 37.99 ± 0.78 39.09 ± 4.41 40.09 ± 2.26 38.28 ± 2.08 0.75 

Femur biomechanical strength      

Peak force (N) 1.74 ± 0.18 1.99 ± 0.25 1.55 ± 0.11 1.23 ± 0.23 0.07 

Ultimate stiffness (N/S) 382.03 ± 16.28 399.49 ± 27.07 397.55 ± 38.73 347.15 ± 14.01 0.60 

Ultimate bending stress (N/S) 42.32 ± 1.57 38.21 ± 2.19 40.12 ± 3.46 42.19 ± 2.59 0.48 

Young’s Modulus (N/mm2) 1604.92 ± 76.18 1484.85 ± 284.92 1549.57 ± 90.13 1275.92 ± 200.17 0.75 
1Values expressed as mean ± SEM (n=6-8 animals/group). Different superscript letters a and b within the same figure indicates 
significant difference at p<0.05 by one-way ANOVA followed by Tukey’s test. 
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Figure Legend 

Figure 1. Representative histological staining images of the left kidney of growing female rats 

consuming (A) AIN, (B) AIN/AP, (C) Western, or (D) Western/AP following 8 weeks of feeding. 

Black arrows indicate interstitial hypercellularity. 

 

Figure 2. Relative expression of genes involved in inflammation in kidney tissue of young 

female rats consuming different diets substituted with 10% g/kg apple pomace for 8 weeks. 

Values expressed as mean ± SEM (n=5-7 animals/group). Abbreviations: AU, arbitrary units, IL-

6, interleukin-6; NFκB, nuclear factor kappa-light-chain enhancer of activated B cells; NOX4, 

NADPH oxidase 4; TNF-α, tumor necrosis factor alpha. 
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Histological changes  AIN AIN/AP Western Western/AP 

Inflammation 0 0 0 0 

Fibrosis 0 0 0 0 

Glomerular hypercellularity 0 0 0 0 

Glomerular matrix 
deposition 

0 0 0 0 

Amyloidosis 0 0 0 0 

Interstitial Calcification 0 0 0 0 

Interstitial hypercellularity  0 2 1 2 
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Supplemental Material 

Supplementary Table 1. Composition of rodent diets substituted with apple pomace  

(10% g/kg) fed to growing female rats. 

Diet Groups * 

 AIN AIN/AP Western Western/AP 

Ingredients (g/kg) *     

Apple pomace 0.0 100.0 0.0 100.0 

Corn Starch 397.486 392.086 63.36 57.96 

Maltodextrin 132.0 132.0 60.0 60.0 

Sucrose 100.0 43.9 340.0 283.9 

Fructose 50 54.45 170 174.45 

Total Dietary Fiber 50.0 50.0 50.0 50.0 

Insoluble Fiber † 50.0 39.0 50.0 39.0 

Soluble Fiber ‡ 0.0 11.0 0.0 11.0 

Anhydrous Milkfat 0.0 0.0 210.0 210.0 

Soybean Oil 70.0 68.7 20.0 18.7 

Casein 200.0 196.0 195.0 191.0 

L-Cystine 3.0 3.0 3.0 3.0 

Vitamin Mix 10.0 10.0 12.5 12.5 

Mineral Mix 35.0 35.0 43.0 43.0 

Total Minerals 22.1 24.2 26.4 28.0 

Calcium 10.4 10.8 12.8 14.6 

Phosphorous 7.2 7.5 7.6 7.5 

Choline Bitartrate 2.5 2.5 3.1 3.1 

TBHQ, antioxidant 0.014 0.014 0.04 0.04 

Polyphenols 0.0015 0.0029 0.0008 0.0032 

Macronutrients (% kcal)     

Protein 18.8 18.9 14.8 14.8 

Fat 17.2 17.3 44.6 44.8 

Carbohydrate 63.9 63.7 40.6 40.4 

Calories (kcal/g) 3.8 3.7 4.7 4.7 
* Abbreviations: AIN, the American Institute of Nutrition; AP, apple pomace; TBHQ, tert-

butylhydroquinone. † Insoluble fiber is cellulose. ‡ Soluble fiber is mainly pectin 1. 
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6.0       Chapter 4  

Dissertation Discussion, Conclusions, and Future Directions  

 

6.1 Discussion and Conclusions 

This dissertation investigated the health benefits and safety of apple pomace 

consumption using a rat model. Rats consumed a standard ‘healthy” diet or a high-fat, high-

sugar diet typical of most Americans. The Western diet is low in fruits and vegetables, which 

provide dietary fiber and antioxidants. Finding sustainable food sources with potential to provide 

increases in these critical nutrients is important for improving diet quality. Study 1 results 

showed caloric substitution with apple pomace attenuated Western diet-induced NAFLD. Rats 

consuming Western/AP had decreased histological evidence of steatosis, hepatic triglyceride 

content, SFA and MUFA content, and hepatic DGAT2 gene expression compared to rats 

consuming a Western diet. This was attributed to the high fiber content of apple pomace 

attenuating bile acids. 

NAFLD progression to NASH is proposed to be a multiple-hit disease with the onset of 

the disease due to alteration in hepatic lipid metabolism and subsequent increases in severity 

due to increased inflammation and oxidative stress. Study 2 results showed apple pomace 

reduced histological evidence of hepatic inflammation, modulated adipose release of SFA and 

MUFA and deposition in the liver of rats consuming the Western diet. Caloric substitution with 

10% apple pomace also downregulated gene expression of inflammatory NFκB, IL-6, and TNFα 

in liver and adipose tissue in rats consuming a Western diet. This was due to increased serum 

and urine total antioxidants in the Western/AP diet group compared to the Western diet group, 

attributed to the polyphenol content of apple pomace.  

Progression of liver disease can result in systemic damage to the kidneys and bone. 

Study 3 showed Western diet consumption resulted in NAFLD and progression to NASH but 

this did not produce detrimental effects in the kidney and bone. Caloric substitution with apple 
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pomace, which is high in calcium but also high in fructose, did not produce any significant 

changes in kidney or bone health, regardless of diet quality. Based on the three studies, we 

conclude:   

1) apple pomace consumption can attenuate diet-induced NAFLD in rats consuming a 

Western diet, 

2) apple pomace consumption can prevent progression of NAFLD to NASH in rats 

consuming a Western diet, 

3) apple pomace consumption is safe for renal or bone health in rats consuming a healthy 

or Western diet.  

 

Collectively, the study results indicate apple pomace’s potential to be a sustainable 

functional food and nutritional aid for human consumption. The current environmental pollution 

and costs associated with apple pomace wastage and disposal are unnecessary. Repurposing 

apple pomace for human consumption provides a solution to a multifaceted problem. Utilizing 

apple pomace as a functional food can improve health while generating revenue. Methods of 

utilizing “waste products” is an expanding field as sustainability moves to the forefront of science 

and society due to a growing population. By providing a better understanding of the 

physiological effects of consuming products such as apple pomace the public can move towards 

a more sustainable and healthier world.  

 

6.2 Potential Future Studies 

Repurposing apple pomace for human consumption is an apparent solution to the 

increasing waste due to processing of apples for juices, ciders, sauces, and other products. 

Future studies should address long-term consequences of apple pomace consumption using 

animal models and human subjects. Human studies should address biological effects of apple 
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pomace and investigate consumer acceptability. Marketing and product development studies 

should be conducted to determine the best method for consumer delivery of apple pomace. 

Lastly, methods for quick storage must be addressed due to rapid spoilage of apple pomace. 

Although large scale apple producers may have access to industrial freeze-driers, small apple 

farmers do not. Addressing ways to improve apple pomace drying affordability will be 

paramount for enabling apple farmers to effectively repurpose apple pomace, currently a waste 

byproduct of apple processing, for human consumption. 

 


	Apple Pomace as a Novel Aid for Western Diet-Induced Nonalcoholic Fatty Liver Disease in Young Female Sprague Dawley Rats
	Recommended Citation

	tmp.1555182160.pdf.NTRa5

