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Arvind Thiruvengadam Padmavathy 

ABSTRACT 

Heavy-duty natural gas engines compliant with the 2010 EPA emissions standards have a 

clear advantage over diesel engines in meeting regulations with minimal after-treatment 

configuration. Heavy-duty natural gas engines are largely promoted as a cleaner burning engine 

with respect to low PM mass emissions. However, lack of sufficient data and literature on the 

exhaust emissions from advanced natural gas engines and the potential adverse health effects 

has raised concern amongst regulatory agencies. Also, the ammonia emissions from three-way 

catalyst equipped heavy-duty natural gas engines could be a major contributor to the formation 

of secondary PM in the atmosphere  

This CARB funded study focuses primarily on characterizing the toxicity of the volatile 

fraction of PM from advanced heavy-duty natural gas engines. The objective of the study also 

includes characterizing the unregulated species of the exhaust together with number 

concentration and size distribution of ultrafine nanoparticle emissions. CNG fueled transit buses 

were tested on WVU’s heavy-duty chassis dynamometer in Stockton, CA. A wide array of 

sampling procedures was included to characterize the complete chemical composition of the 

exhaust. The toxicity analysis included three different assays a) DHBA b) DTT and c) alveolar 

macrophage ROS assay. 

Results of the gas phase chemical speciation results reported all carbonyl, PAH and VOC 

emissions close to levels found in background or below the detection limits of the analytical 

method. Results of elemental analysis reported elements such as calcium, phosphorus, 

potassium, zinc, sulfur and magnesium are some of the metals that were found in significant 

concentration in the PM samples. The findings of the study directly relate lubrication oil as the 

single most dominant source to non-volatile fraction PM emissions in the tailpipe. Both DHBA 

and DTT assay correlated highly with mass of elements and metals such as zinc, iron and cobalt. 

The DTT assay resulted in high correlation with mass of copper, zinc, phosphorus and PAH with 

molecular weight less than 200. The findings of this study also reported the possible formation 

of non-volatile nucleation mode particles of 10 nm size range. 
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CHAPTER 1 -  INTRODUCTION 

The health effects of ultrafine particulate matter (PM) emissions from internal combustion 

engines have been a subject of intense debate and scrutiny. The complex chemical and physical 

nature of PM has contributed to uncertainties about the contribution of the different fractions 

of PM to toxicity responses. Given the link published between PM surface area and health 

effects (Wichmann and Peters, 2000, Nemmar et al., 2002), future PM regulation may 

eventually move towards a particulate number based system in addition to the existing mass 

based system. With continuous advancements in after-treatment technology and advanced 

combustion strategies, mass emissions of PM have decreased by orders of magnitude 

compared to legacy diesel engines. However, increased nanoparticle emissions have been 

observed over certain operating conditions (Ardanese et al., 2009). The observed nanoparticle 

emissions could be as result of gas to particle conversions or solid carbon emissions due to 

momentary loss in diesel particulate filter (DPF) filtration efficiencies. As a first step the 

European Union has proposed a particle number regulation which is aimed at regulating the 

number concentration of only the solid fraction of PM. A principle driving force for this 

regulation has been that elemental carbon emissions have been identified to be active 

participant in forcing climate change and induce long term health effects (Andersson et al., 

2010). However, a significant portion of the heavy-duty vehicle exhausts in the form of volatile 

and semi-volatile fraction, which can be also attributed to adverse health effects, is not 

accounted for. The reason for exclusion of this fraction from the proposed regulation is the fact 

that formation and measurement of volatile nanoparticles are associated with many 

uncertainties. Looking beyond the issues concerning uncertainties in formation and 

measurement, lack of sufficient information related to potential health effects of volatile 

particles has raised concerns among regulatory agencies. 

USEPA 2010 emissions compliant heavy-duty engines have adopted advanced combustion 

strategies and after-treatment technologies to meet current regulations. The diesel segment of 

the heavy-duty population has adopted exhaust gas recirculation (EGR), variable geometry 

turbochargers (VGT), diesel particulate filter (DPF) and selective catalytic reduction (SCR) 

systems while the natural gas segment has adopted a stoichiometric fuelling, coupled with 
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cooled EGR strategy, and equipped with a three-way catalyst (TWC) for NOx control. Natural 

gas engines do not require any PM after-treatment device as the gaseous fuel burns relatively 

soot free when compared to diesel combustion. PM emissions from both DPF equipped diesel 

and natural gas vehicles are largely similar in elemental carbon emissions. However, 

nanoparticle emissions as a result of nucleation of volatile organic compounds and formation of 

sulfuric acid particles are still significant at certain operating conditions of the engine. Also, the 

contribution of lubrication oil towards particle formation is of significance as it can prove to be 

a source of sulfur, poly aromatic hydrocarbon and inorganic precursors to PM formation. 

Lubrication oil emissions can also be viewed as a major contributor to mass and particle 

number emissions from natural gas engines as they are not equipped with a particulate filter. 

Hence, engine durability issues and operating load characteristics could alter the PM emissions 

rates and characteristics of heavy-duty natural gas engines. 

Studies have shown the dependence of exhaust temperatures on nanoparticle emissions 

from DPF and SCR equipped diesel engines (Kittelson et al., 2008, Vaaraslahti et al., 2005, 

Thiruvengadam et al., 2012). Findings in literature have shown that even with the use of ultra 

low sulfur diesel (ULSD) in on-road heavy-duty diesel engines, significant concentrations of 

nucleation mode particles, believed to be sulfuric acid based are observed (Vaaraslahti et al., 

2005, Kittelson et al., 2008). Literature has attributed the sulfur contribution to be primarily 

from lubrication oil. Sulfur from lubrication oil undergoes sequential oxidation at high exhaust 

temperatures over catalyzed after-treatment systems to SO3

1.1 PROBLEM STATEMENT 

 which upon mixing with moisture 

in dilution air could form sulfuric acid based nucleation mode particles. However, in the 

absence of high exhaust temperatures, particle concentrations have been observed to be close 

to the detection limits of the instrument. 

One of the key questions remaining is the compositional significance of nanoparticle 

emissions from heavy-duty engines in relation to their toxicity. A compositionally diverse heavy-

duty PM imparts significant uncertainty to the relative contribution of different fractions to 

overall PM toxicity. The lack of clarity in health effects of PM from advanced heavy-duty 
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engines, is due to the uncertainties in particle formation mechanisms as a result of the 

presence of multiple after-treatment systems in the form of DPF, SCR and TWC. This study 

would like focuses on natural gas engines, which have tailpipe PM emissions profiles similar to 

those of DPF equipped diesel. The study realizes that there are technological differences 

between natural gas engine and diesel engines. However the investigation of PM from natural 

gas fueled engines devoid of fuel sulfur would better illustrate the contribution of lubrication oil 

to engine out PM. 

This study used a thermal denuder method of treating a sample stream and removing the 

volatile fraction through adsorption on an activated charcoal bed. Although the method has its 

limitations, it is the only method of volatile fraction removal without a catalytic system that 

might contribute to PM artifacts. Due to the low PM mass emissions from the vehicles, high 

flow sampling systems were developed to reduce collection times, and have sufficient sample 

loading for toxicity analysis. 

1.2 OBJECTIVE 

The global objective of this study is to investigate the linkages between the different 

fractions of PM to their respective toxicity responses. 

The study funded by California Air Resources Board involved the collection of PM in a 

denuded (volatile fraction removed) and non-denuded (total particulate matter) composition to 

correlate the fractional composition of PM to its toxicity responses. The objectives of the study 

included the characterization of volatile organic compounds (VOC), polyaromatic hydrocarbons 

(PAH), carbonyl compounds, elemental carbon, organic carbon, metals and ions emissions.  

The study involved the analysis of PM for three different bio assays namely, two cell free) 

(chemical based) assays 1) didydroxybenzoate (DHBA) assay 2) dithiothreitol (DTT) assay and a 

cell based alveolar macrophage ROS assay (Reactive Oxidative Species). 

Two compressed natural gas (CNG) fueled heavy-duty buses equipped with a three-way 

catalyst were tested on the WVU heavy-duty chassis dynamometer. The natural gas vehicles 

were powered by a Cummins ISLG 280 stoichiometrically fueled, cooled EGR engine equipped 
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with a three-way catalyst. The Transportable Emissions Measurement System (TEMS) was 

stationed in Stockton, CA, to carry out the emissions measurement from the two buses 
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CHAPTER 2 -  LITERATURE REVIEW 

Particulate matter (PM) composition from advanced heavy-duty engines has undergone 

complex chemical and physiological changes in comparison to PM emitted from legacy diesel 

engines. A variety of after-treatment systems and combustion strategies employed to meet 

regulations has largely contributed to this change in composition and emission rate of PM. 

Primary PM formation from heavy-duty vehicle exhaust depends on the type of fuel, engine 

operating loads and after-treatment system performance. The literature review in this work will 

look into the differences in physical and chemical characteristics of PM between diesel and 

natural gas vehicles and focus on the effect of individual factors namely lubrication oil 

consumption and after-treatment systems that contribute to PM emissions. 

2.1 PM EMISSIONS FROM HEAVY-DUTY DIESEL AND NATURAL GAS ENGINES 

PM emitted from diesel engines is a complex mixture of volatile, semi-volatile, carbon 

fractions and inorganic elements. In a diesel engine, the primary PM formed is a result of soot 

formation within the rich zones of the injector spray cone. Immediately downstream of the 

combustion chamber, PM is comprised of only soot and metallic fractions.  However, 

precursors for formation of semi-volatile and volatile PM remain in gas phase, until the exhaust 

undergoes cooling upon dilution with ambient air. Also, of importance is the adsorption of 

volatile materials on to solid fractions, contributing to particles that may contain a solid core 

coated with a hydrocarbon layer. The bulk of the organic and volatile fractions of PM are 

formed as a result of exhaust gas cooling. PAH compounds are one of the dominant precursors 

for soot formation. They are usually a direct result of incomplete combustion of a fuel high in 

aromatic content such as diesel. As a result the combustion of diesel, inherently results in 

higher soot content in comparison to natural gas fuel, which is devoid of any aromatic content 

(Lev-On et al., 2002). The primary PM formed in the combustion chamber of an internal 

combustion engine also depends on various other factors such as engine control parameters 

and load. Kittelson’s work has shown the typical composition of a heavy-duty PM from a late 

1990 model year diesel engine (Figure 2-1). The results show a composition consisting 

predominantly of elemental carbon and unburned oil and fuel. The results also show a 
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significant contribution of sulfate and water, even with the use of ultra low sulfur diesel (ULSD) 

with a sulfur percentage typically below 0.05% by wt (Kittelson, 1998b). The results shown in 

this study, present the composition of PM collected in accordance with the operational 

definition of PM by the EPA. Presence of a sulfate component in PM is heavily dependent on 

moisture content in the exhaust and dilution air, and does not necessarily manifests itself in the 

total PM every time during real-world operating and dilution conditions. 

 
Figure 2-1 Typical composition of PM from a late 1990 diesel engine tested on a FTP cycle (Kittelson, 

1998b). 

Current model year natural gas engines employ spark ignition while operating on a 

stoichiometric air/fuel ratio strategy. This path has been primarily adopted to employ a three-

way catalyst to control NOx emissions. Since, natural gas engines utilize a gaseous fuel, the 

resulting combustion is soot free. PM emissions from natural gas engines completely consist of 

organic carbon in nature (Lev-On et al., 2002, Ayala et al., 2002). However, the use of an 

oxidation catalyst has been shown to reduce the concentrations of organic carbon by removal 

of VOC (volatile organic compounds) (Ayala et al., 2003). Due to the absence of elemental 

carbon in the exhaust of natural gas, PM nanoparticle formation is highly dependent on dilution 

conditions and availability of nucleation precursors. In the presence of an oxidation catalyst, the 

concentrations of hydrocarbons that could nucleate to form a particle are reduced, and hence 

inhibit gas to particle conversion. However, under certain operating conditions lubricating oil 

proves to be a significant contributor to nanoparticle formation (Kittelson et al., 2008). A study 

conducted at WVU on a single cylinder research engine fueled by hydrogen showed oil 
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consumption to be well correlated with engine operating parameters such as intake air boost, 

engine speed and in-cylinder pressures (George, 2008). The lube oil derived PM is more 

noticeable in heavy-duty natural gas engines, due to the fact that natural gas combustion is 

relatively soot free, and vehicles primarily operate without a DPF. The influence of lubrication 

oil on PM emissions is more observable as it often contributes to significant mass emissions 

from these soot free engines. 

2.2 EVOLUTION OF PM EMISSIONS 

2.2.1 ENGINE EVOLUTION 

 Heavy-duty diesel and alternative fueled engines have evolved from a primitive technology 

to a current advanced sensor based control systems. The thrust behind this transformation has 

been the moving target of achieving stringent emissions standards. Two criteria pollutants that 

have been progressively regulated have been NOx and PM. Due to the trade-off that exists 

between these two pollutants it is natural to observe an increase in engine out PM, while 

attempting to reduce engine out NOx. Manufacturers have adopted various strategies to 

alleviate the PM increase as a result of NOx reduction strategies such as EGR. One of the major 

developments in this regards has been the advancement in fuel injection technology and 

strategies that use high pressure direct injection and injection rate shaping to improve 

combustion performance and reduce the mass of engine out PM (Ardanese, 2008).  

Advanced diesel engines have various electronic control devices that work together in 

achieving a targeted emissions goal. These emissions control devices such as VGT, EGR valve 

and high-pressure fuel injectors are optimized for optimum in-cylinder combustion. The 

strategies associated with each device independently affect the in-cylinder combustion in 

various forms and in turn directly affect the PM formation mechanism. In a study conducted at 

West Virginia University it was observed that VGT positions associated with high boost 

pressures resulted in lower soot production and smaller accumulation mode particles 

(Ardanese, 2008). The study showed that by varying the VGT position from 26% to 30% the 

primary particle diameter in the accumulation region decrease from 89 nm to 53 nm. Further 

the study also showed that increase in EGR levels, resulted in a direct increase in particle 
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diameters (Ardanese, 2008). Figure 2-2 and Figure 2-3 show the effect of VGT and EGR valve 

position on primary particle diameter from an advanced control diesel engine. Many of the 

improvements to diesel engine technology have contributed to lower mass of PM and smaller 

diameter primary combustion generated nanoparticles. 

 

 
Figure 2-2 Effect of VGT on engine out particle 

size distribution from diesel engine and 
concentration (Ardanese, 2008) 

 

 
Figure 2-3 Effect of EGR valve position on engine 
out particle size distribution from diesel engine 

and concentration (Ardanese, 2008)  

Similarly, it can be expected that PM from stoichiometric natural gas engines to have 

reduced significantly in comparison to PM mass emissions observed from early model year lean 

burn engines. Early, lean-burn natural gas engines faced numerous design challenges, which 

affected the durability of the engines. This resulted in higher mass emissions of PM due to a 

pronounced effect from the lubrication oil (Thiruvengadam et al., 2010).  Early lean-burn 

engines operated without an oxidation catalyst, however growing concerns over CO and no-

methane hydrocarbons (NMHC) emissions, forced regulatory agencies to mandate retrofit of 

natural gas vehicles with oxidation catalysts. Lean-burn engines inherently faced temperature 

limitations that affected oxidation catalyst activity at certain operating conditions and hence 

resulted in higher VOC content in the exhaust, which in turn increased organic carbon (OC) 

emissions.  In comparison, an advanced stoichiometric fueled natural gas engine, that operates 

at higher exhaust temperatures than its lean-burn counterpart are characterized by ultra-low 
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level PM mass emissions. However, lubrication oil based PM, in the form of ultrafine and 

nanoparticle emissions is still a significant source of PM that does not always contribute to 

significant emission mass, but results in increased number count emissions. 

2.2.2 FUEL EVOLUTION 

Beginning 2007 fuel sulfur levels have progressed from a low sulfur level of 500 ppm (wt.) 

to ultra-low sulfur level of below 15 ppm (wt.). The impetus for this change has been to protect 

catalytic after-treatment systems from sulfur poisoning. However with fuel sulfur content 

below 15 ppm (wt.), nanoparticle formation at high temperature operating conditions of the 

engine has been reported in the literature (Kittelson et al., 2008, Thiruvengadam et al., 2012). 

Sulfur based PM emissions are usually in the form of sulfates or sulfuric acid droplets, a result 

of sulfur trioxide mixing with water vapor in dilution air. In modern diesel engines, urea based 

SCR systems play a major role in sulfate formation. Aqueous urea injection introduces ammonia 

in the exhaust which could react with oxides of sulfur under certain exhaust temperature 

conditions to form ammonium sulfate crystals (Majewski, 2005), which in turn could contribute 

to PM emissions. 

2.2.3 LUBRICATION OIL INFLUENCE ON PM EMISSIONS 

Lubrication oil is a significant contributor to PM emissions from internal combustion 

engines. In non DPF equipped diesel engines, the contribution of lubrication oil to PM is masked 

by in general higher fuel sourced. In the presence of a DPF the total mass emissions of PM is 

most often below detection limits. The contribution of lubrication oil is well observed in natural 

gas engines as the gaseous fuel combusts relatively soot free and hence the need for a 

particulate trap is not justified.  

Lubrication oil’s contribution to PM emissions is directly related to the durability of engine 

components that present the pathways for the entrainment of lubrication oil into the 

combustion chamber either through the intake manifolds or via the piston rings or directly into 

the exhaust stream through the turbochargers. Oil entrainment into the combustion chamber 

could occur through three mechanisms a) oil seeping through the piston rings b) evaporation of 

oil deposited on the walls of the cylinder, and c) oil mist as a result of crank case scavenging 
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into the intake manifold. Of the three mechanisms evaporation of oil from the cylinder walls 

and closed crank case ventillation is inevitable. However, well designed oil traps could minimize 

the effect of oil contribution due to crankcase scavenging. The oil entrainment into the 

combustion chamber through piston ring is significant during low load engine operating 

conditions characterized by lower in-cylinder pressures resulting in insufficient sealing of the 

combustion chamber from the crank case by the piston rings (Nakashima et al., 1995).  

Lubrication oil contributes to a significant amount of soluble organic fraction (SOF) in to the 

PM composition. Low temperature combustion gases during the exhaust stroke may evaporate 

the oil transported onto the cylinder walls through the piston rings resulting in incomplete 

oxidation of the oil contributing to increased SOF content in the exhaust. A study has reported 

close to 30% of lubrication oil evaporation occurs during the late part of the exhaust and 

expansion stroke (Froelund et al., 2001). Most literatures report oil consumption mechanisms 

only in spark ignited engines and light-duty diesel engines. However, heavy-duty diesel engines 

with higher compression ratios, will result in lesser lube oil transported through piston rings 

would be, lesser in comparison to SI engines. Also, the design of the in-cylinder components are 

more robust, which aid in better oil control even during low load operating conditions. And the 

result is lower oil entrainment into the combustion chamber.  The type of vehicle operation 

plays a vital role in the rate of oil entrainment into the combustion chamber. Vehicle operation 

characterized by frequent stop-and-go and extended idle periods could result in higher 

lubrication oil consumption. This is based on the findings  that idle operation result in lower in-

cylinder pressures and therefore would result in increased oil consumption (Anderson et al., 

2004). Since current natural gas engines operate on a SI engine platform, lubrication oil 

consumption mechanisms would be similar to those reported by Anderson et al. (Anderson et 

al., 2004). Further, Zielinska et al. have shown that PAH emissions in gasoline engines, closely 

resemble PAH composition of used lubrication oil and not fuel (Zielinska et al., 2004). Results 

from this study can be used to infer that used oil contribution to PM in natural gas engines 

would be more significant than the contribution of fresh oil. The observed change in oil 

consumption rate between used and fresh oil indicate that the viscosity of oil to change with 

engine operating hours. 
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Lubrication oil also results in several inorganic constituents that form a part of the total PM 

emissions from internal combustion engine. Lubrication oil consists of various additives that 

provide detergents, dispersant, acid neutralizers, anti-oxidants, corrosion inhibitors, and anti-

wear properties to the lubrication system. Hence, as a result of lubrication oil consumption, 

these additives will manifest themselves as inorganic constituents in the exhaust. Some of the 

predominant elements observed in engine exhaust and directly related to lubrication oil are Ca, 

Zn, Ph and S (Fujita et al., 2007). Sulfate emissions are a major source due to the lubrication oil 

sulfur content that is subject to partial oxidation inside the combustion chamber. A report from 

Desert Research Institute (DRI), documented the chemical analysis of over 10 different 

lubrication oils over varying oil life. The study observed an average oil sulfur composition of 

3000 microgram/gm,  indicating a significant source of sulfur for the formation of sulfate ions 

(Fujita et al., 2006). Findings from this report suggests a significant contribution of lubrication 

oil towards the formation of sulfate compounds. 

The contribution of lubrication oil to PM has been a widely researched topic. However, the 

fractional contribution of lubrication oil to the volatile and non-volatile fraction of PM and its 

subsequent health effects has not been clearly established. While studying PM composition 

from natural gas engines, it is possible to observe the effects of lubrication oil sulfur in PM 

formation under real-world operating conditions with better clarity due to the absence of the 

contribution from fuel sulfur. As pointed out earlier in this section, lubrication oil consumption 

between heavy-duty SI and compression ignition (CI) engines is vastly different. However PM 

mass fraction analysis derived from SI engines could be used to explain mass emissions of 

organic and inorganic PM fractions during certain operating conditions of heavy-duty diesel 

engines. Further, the objectives of the current study involving the characterization of the 

different compositions of PM and correlating their toxicity effects will provide a holistic 

approach in identifying the source of the emission and suggesting a direct relation between 

source and end effect. 

2.2.4 AFTER-TREATMENT SYSTEM INFLUENCE ON PM EMISSIONS 

The variety of after-treatment systems employed to meet regulations has contributed to 

changes in composition and emission rates of PM. Subhasis et al. concludes that after-
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treatment systems altering the physical and chemical characteristics of PM and induce changes 

in particle formation pathways (Subhasis et al., 2009).  

Diesel particulate filters have been identified as the only after treatment system that could 

help achieve the current PM emissions standard of 0.01 gms/bhp-hr. DPFs have demonstrated 

PM mass filtration efficiencies close to 99% over most operating conditions. However, many 

studies have also reported the increased emissions of nucleation mode particles downstream of 

a DPF (Herner et al., 2011, Thiruvengadam et al., 2012, Giechaskiel et al., 2007, Kittelson et al., 

2008). It is to be noted that the emissions of nucleation mode particles downstream of a DPF, 

are not observable throughout the entire operating regime of the engines. Nanoparticle 

emissions downstream of a DPF are in fact most often a function of exhaust dilution conditions 

and exhaust temperature. As, DPFs are either catalyzed for passive regeneration or non-

catalyzed and are equipped with fuel injectors for active regeneration, high temperature engine 

activity contributes to a fractional loss in filtration efficiencies of a passively regenerating trap 

and possible increased hydrocarbon emissions during active regeneration events. PM emissions 

downstream in an after-treatment system are entirely dependent on engine operating 

conditions. A recent study by Biswas et al. has shown the size segregated PM emissions 

compared between baseline engine configuration and 6 different after-treatment systems that 

included catalyzed DPFs and SCR systems (Biswas et al., 2009b). The study presented data from 

two different vehicle operations namely cruise mode and UDDS cycle. The results of the study 

indicated that during cruise mode operation, PM emissions downstream of most after-

treatment systems are in the nucleation region and dominated by significant sulfate 

concentrations. The study also reported that the vanadium based SCR system, exhibited highest 

sulfate concentration over the UDDS cycle, hence suggesting a lower catalytic activity 

temperature and higher conversion rate of SO2 Biswas et al., 2009b to sulfates ( ). Although the 

referenced study does not, document the source of sulfur for sulfate formation, the results 

presented are well correlated with other literature that has attributed the formation of sulfates 

to lubrication oil more than fuel sulfur.  Also, cold start conditions with no catalytic activity have 

been attributed to increased nanoparticle emissions from a DPF equipped diesel vehicle 

(Giechaskiel et al., 2007). 
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Given the fact that the DPF filters all elemental fractions, PM composition downstream of a 

DPF will be dominated by OC. While characterizing the OC emissions downstream of a catalyzed 

after-treatment system, it is also important to assess the levels of water soluble organic 

compound (WSOC) fraction compared to the total OC concentrations. WSOC are indicative of 

aerosol aging and can be viewed as a secondary PM formation pathway and not necessarily a 

primary OC fraction. WSOC are usually formed by the coagulation of gas phase partitioning of 

certain organic fractions such as formic acid, nitro-PAH and aliphatic compounds (Asa-Awuku, 

2008). The study by Biswas et al. illustrates that the low WSOC/OC ratio from baseline vehicles 

is indicative of a freshly formed primary organic PM. Also higher WSOC/OC ratios downstream 

of catalyzed after-treatment system, indicates a higher water solubility of OC in the nucleation 

region and catalyzed after-treatment systems contribute to possible precursors for WSOC 

formation (Biswas et al., 2009b). 

 While comparing the exhaust constituents of current advanced diesel engines and 

stoichiometric natural gas engines, it can be seen that tailpipe concentrations of nucleation 

mode precursors and the levels of elemental carbon are quite similar. Although, CNG exhaust is 

characterized by higher total hydrocarbon content, it almost entirely consists of methane which 

does not contribute to nanoparticle formation. The one main difference in the two cases is the 

effect of fuel sulfur and its subsequent oxidation processes which has possibilities of sulfuric 

acid based particle formation at exhaust temperatures greater than 380 Deg C (Thiruvengadam 

et al., 2012) . Consequently in order to isolate the effects of fuel based sulfur and focus our 

attention on discerning the toxicity of volatile and non-volatile particles from heavy-duty 

engines as result of combustion and lubrication oil consumption, it would be appropriate to 

study PM profile from CNG exhaust and further apply the findings to diesel engine exhaust. 

Another recent advancement in after-treatment technology has been the use of urea 

based SCR systems for NOx abatement. Aqueous ammonia which is used as a reducing agent 

for NOx control, is believed to alter particle formation mechanisms to aid in the formation of 

ammonium sulfate and ammonium nitrates as result of byproducts of SCR reaction (Herner et 

al., 2011). However, the contribution of SCR systems to particle toxicity has not been well 

documented yet. Similarly, in the case of stoichiometric CNG engines, the use of TWC as a NOx 
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control after-treatment system have been shown to result in significant levels of ammonia as 

result of high temperature TWC activity. Hence, there is a possibility that a similar particle 

formation mechanism may be observed from both SCR equipped diesel and TWC equipped 

natural gas engines. 

Metals have been identified as one of the major fractions of PM from advanced heavy-duty 

engines (Verma et al., 2010). The source of metallic emissions can be traced to lube oil 

consumption and catalytic after-treatment systems that continuously age with vehicle. With 

increasing catalytic systems in the exhaust stream, metallic emissions could constitute a major 

fraction of tailpipe PM emissions from heavy-duty engines, and could further bias toxicity 

results of the non-volatile fraction of PM. Hence, it is imperative to discern accurately the 

composition of non-volatile fraction of PM to better understand the relative contribution of EC 

and non-organic fractions to toxicity. 

2.3 HEALTH EFFECTS OF PM 

Regulatory agencies have aimed at reducing PM emissions due to concerns about potential 

PM related health effects suggested by toxicological studies. Published literature has shown the 

increased morbidity and mortality in people exposed to ultrafine particulate matter emissions 

(Dockery et al., 1993, Pope III et al., 1995, Englert, 2004). Although most exposure studies are 

conducted for ambient PM, it is to be noted that a major anthropogenic source for ultrafine PM 

in the atmosphere is from mobile sources and specifically that of the heavy-duty vehicle 

population. Hence urban population exposure to heavy-duty vehicle PM could be a significant 

driving force for deterioration in human health. Diesel exhaust in particular has been identified 

as a potent carcinogen (1998, 2012). Most carcinogenic species in diesel exhaust appear in gas 

phase, but these gas phase organic compounds do act as precursors for nanoparticle formation. 

One of the main setbacks in existing literature has been the absence of a size segregated 

volatility measurement with its associated health effects. The absence of literature can be 

justified by the fact that smaller particles have negligible mass and most toxicological 

experiments require considerable aerosol mass to obtain a discernible biological response. The 

problems are compounded while trying to simulate extended dosage and exposure (as in real 
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world interactions of humans with PM) within the confines of an experimental setup bounded 

by test procedures and time limitations. 

A number of factors such as particle number, size, surface area, chemical composition, 

morphology and deposition fraction are likely to influence the toxicity of nanoparticles. All of 

these factors are directly dependent on engine operating conditions and exhaust 

configurations. Also, of significant importance is the composition of PM nanoparticles emitted 

from heavy-duty internal combustion engines. All combustion generated particles are 

considered to exist in equilibrium between two states i.e gas phase and solid phase. Particles 

are viewed to be comprised of solid core with low volatile and semi-volatile materials adsorbed 

on this core. This view can be challenged by the fact that homogenous nucleation produces 

particles completely volatile in nature formed as a result of condensing vapors within regions of 

super saturation conditions of VOCs. However, homogenous nucleation is a highly uncertain 

phenomenon governed by various factors such as dilution conditions and partial vapor 

pressures of the various VOCs. Also, homogenous nucleation can be considered as an 

atmospheric governed particle formation mechanism as opposed to primary particle formation 

from heavy-duty vehicles that are completely governed by engine operation and exhaust 

conditions. Hence, heterogeneous nucleation of gas phase compounds condensing on a solid 

core is believed to be a more dominant particle formation mechanism during the cooling of 

heavy-duty vehicle exhaust. Moreover, binary nucleation of SO3

Vaaraslahti et al., 

2005

 with water to produce sulfuric 

acid based particles has recently been identified as a dominant particle formation mechanisms 

from heavy-duty engines operating at certain high exhaust temperatures (

). 

A few studies have measured the volatility of PM in dynamometer tests using tandem 

differential mobility analyzer (TDMA) systems (Sakurai et al., 2003). The volatility 

measurements yield information on particle mixing characteristics and nanoparticle vapor 

pressures, which can be compared with standards to estimate the carbon numbers of the 

volatile organic components. Given that inhalation and deposition behavior of nanoparticles is 

determined by particle mobility rather than aerodynamic properties, mobility based 
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measurements are especially well-suited to use with nanoparticle studies related to health 

effects.  

The current knowledge base woefully lacks data that directly links the physical and 

chemical characteristics of specific exhaust emissions species, or a combination of species to 

health risks, and how such health risks change as a function of changing composition of exhaust 

PM emissions. Of the studies that have been conducted previously focusing on discerning the 

toxicity effects of PM, a few important ones are discussed here. 

a) Study by Liu et al. measured genotoxic activity on solvent extracts from diesel and 

gasoline engine PM. The study indicated distance specific mutagenic activity of 

diesel PM to be 3-7 times higher than that of gasoline exhaust PM. However 

mutagenicity activity from semi-volatile organic compound (SVOC) extracts from 

diesel and gasoline indicated gasoline SVOC to be more potent on a mass basis  (Liu 

et al., 2005). 

b) Gene mutation activity from organic solvent extracts of diesel PM from a single 

cylinder diesel engine was studied by McMillian et al. The study investigated the 

effects of various fuels such as Fischer Tropsch, natural gas, and conventional diesel 

on PM toxicity. The study revealed a significant difference in mutagenic activity 

between different fuel types as a result of different organic fractions in PM 

(McMillian et al., 2002). One of the salient outcomes of this study was the 

development of a quadratic surface dose response relationship between brake 

mean effective pressures (BMEP), engine speed and toxicity response. This is one of 

the few studies that specifically correlated engine operating conditions to toxicity 

response. 

c) Of the studies that focused on fuel and after-treatment systems, the work of Bagely 

et al. is worth mentioning. The researchers found that the use of an oxidation 

catalyst in combination with a PM trap substantially decreased the particle number 

concentration and mutagenic activity of PM emissions from gasoline engines using 

leaded and unleaded fuel (Bagely et al., 1996).  
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d) A study by Seagrave et al. can be considered as one of the most important and 

comprehensive work with respect to toxicity and mutagencity of particulate matter 

from heavy-duty natural gas vehicles. The authors sampled particulate matter and 

vapor-phase SVOC from natural gas transit buses with different PM emissions rates 

such as high emitter, normal emitter and a new technology with oxidation catalyst. 

Results indicated mutagenicity was highest for the high emitter vehicle and lowest 

for the new technology vehicle. The study also concluded that mutagenic potencies 

for the CNG PM samples were similar in potency level observed by gasoline and 

diesel PM (Seagrave et al., 2005). 

The studies listed above are all characterized by certain limitations with respect to 

experimental conditions that were adopted and the engine technologies the studies represent. 

Almost all toxicological studies have been carried out as engine dynamometer experiments with 

engine technology that may not necessarily represent current model year technology. Also, 

engine load conditions with the exception of the study by McMilllian et al (McMillian et al., 

2002) are usually characterized by steady state operating conditions, which do not completely 

represent real world engine operation and subsequent PM formation. Natural gas engine 

studies cited herein have all been carried out on oxidation catalyst equipped lean burn natural 

gas vehicles, which are no longer representative of current model year technology of CNG 

vehicles. The current study presented here attempts to investigate in particular toxicity effects 

from advanced stoichiometric natural gas heavy-duty vehicles, which have emissions rates 

similar and in some operations lower than DPF-SCR equipped modern diesel engines. 

Since the composition of PM will vary in accordance with treatment method of the 

sample or the vehicle’s exhaust, this study will adopt the definition of PM as per USEPA’s 

operational definition “of all mass collected on a filter from a diluted exhaust stream at a 

temperature of 47±5 Deg C”. Since, the PM standards of heavy-duty vehicles are subjected to 

this definition it is imperative to understand the fractional toxicity effects of PM collected in 

accordance with this operational definition. 

PM formation from heavy-duty vehicle exhaust depends on the type of fuel, engine 

operating loads and after-treatment systems. Hence, composition of PM can be viewed as 
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engine duty cycle dependent. Population exposed to urban traffic and near highway traffic will 

have PM exposure patterns completely different from each other. This can be attributed to the 

fact that, within the urban scenario, heavy-duty vehicles will be characterized by slower speeds, 

and lower loads and frequent acceleration and decelerations. On the contrary highway 

operations would be characterized by a more steady state operation with higher engine loads. 

As a result vehicle operation within an urban setup could be characterized by lower exhaust 

temperatures and in turn lower catalytic activity. In the case of stoichiometric natural gas 

engines, the temperature difference between highway and urban operation would be very 

similar, however, larger deviations in the closed loop air-fuel ratio control would exist due to 

the highly transient operations.  A study conducted by Li et al. showed the differences in pro-

inflammatory responses from particles sampled over two driving cycles namely, UDDS and the 

idle mode. The results of the study indicated a higher level of redox active metals and organic 

compounds over the UDDS cycle compared to the idle mode that contributed to oxidative 

stress in human aortic endothelial cells (Li et al., 2010).  

With the advent of modern emission control technologies in heavy-duty vehicles in 

particular diesel vehicles, the balance between EC/OC emissions is continuously changing with 

respect to engine operation and after-treatment system state. Periodic DPF regeneration 

(active or passive) result in momentary loss in filter efficiency and would result in higher EC 

emissions. Similarly in natural gas engines, highly transient activity would result in frequent rich 

fuel-air mixture to cater to the power demands of the driver, thereby resulting in possible 

increased VOC composition contributing to OC emissions. Elemental carbon or black carbon has 

been associated with various respiratory and cardiovascular disorders. A controlled human 

exposure study has indicated a close relationship between indoor and outdoor black carbon 

levels to cases of respiratory conditions such as asthma. However, the same study disproves its 

hypothesis suggesting a strong association of black carbon with adverse cardio vascular effects 

such as blood pressure and pulse rate (Jansen et al., 2005). The findings from the study by 

Jansen et al. could be related to the differences in deposition factors in the various regions of 

the human airway, hence contributing to one response and not the other. Details of deposition 

fraction and surface area will be discussed in the following sections.  
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Most studies that elucidate the link between respiratory conditions and elemental carbon 

concentration represent human population exposed to ambient levels of elemental carbon. 

Hence, an accurate dosage vs. response is not available for a specific source of elemental 

carbon such as heavy-duty vehicle population. In the presence of exhaust particulate filters it is 

uncertain to what extent tailpipe concentrations of elemental carbon could be attributed to 

adverse health effects. Also, it is important to understand, the levels of exposure that would 

exhibit a significant response from toxicity indicators and to further matching those levels of 

elemental carbon emissions to its respective engine operating conditions such as transient, 

highway or idle. This would provide the accurate link between engine operation and toxicity, 

rather than generalizing that all vehicle activity will produce PM emissions that are potent to 

the health of humans. 

Literature has documented the importance of WSOC in affecting the hygroscopicity of the 

aerosols wherein it enhances the possibility of PM to act as cloud condensation nuclei. WSOCs 

primarily consist of dicarboxylic acids, aliphatic amines, compounds consisting of carboxyl 

groups and carbonyl species (Bao et al., 2009, Biswas et al., 2009b). It is commonly believed 

that anthropogenic emissions of particle phase WSOC compounds is not common, and on the 

contrary WSOC fraction in OC increase with continuous aging of the aerosol (Bao et al., 2009). 

Hence, WSOC fraction in PM can be viewed as a secondary particulate matter formation 

pathway pertaining to the atmospheric reactions. A study by Biswas et al. suggests a strong 

association of WSOC to increased oxidative potential of PM (Biswas et al., 2009a). The study 

suggests that changes in oxidative potential could be attributed to chemical changes induced by 

catalytic after-treatment systems in the exhaust stream. Literature has pointed to the role of 

WSOC in increasing the acidity of organic PM composition (Bao et al., 2009). Semi-volatile 

species such as oxygenated PAHs, nitro-PAHs and quinines have exhibited high correlation 

towards certain bio assays, which indicate the oxidative potential of a species (Biswas et al., 

2009a, Biswas et al., 2009b). 

Metallic fractions in PM originate from various sources in the exhaust of a heavy-duty 

vehicle. Traditionally in a baseline engine configuration, metals emissions were entirely due to 

engine wear issues and lubrication oil consumption. However, with the use of multiple after-
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treatment systems that are catalyzed for purposes of emissions control, metallic content in PM 

has also increased. PM toxicity associated with metals is highly proportional to their mass 

fractions in the total PM mass. A study by Verma et al. has observed significant changes in 

toxicity responses in the presence of transition metals in total PM composition (Verma et al., 

2010). Redox active transition metals such as Fe, V, Ni, Cr, Cu and Mn are observed to be more 

in abundance in exhaust of after-treatment system equipped heavy-duty diesel engines in 

comparison to baseline diesel (Verma et al., 2010).  The study found that vehicles equipped 

with retrofit after-treatment devices, are characterized by higher metallic fraction in PM, and 

have greater tendency to induce oxidative stress in living cells (Verma et al., 2010) . In another 

study, Distefano et al. have indicated the direct contribution of copper ions in generation of 

reactive oxygen species (ROS) through a chemical toxicity assay procedure. The study further 

indicates the role of certain transition metals present in PM emissions from diesel engines that 

could alter the anti-oxidation properties of cells (Distefano et al., 2009). 

This section, detailing the health effects of PM has examined various studies that have 

attempted to correlate different PM compositions to its toxicity. Literature has also related 

driving cycle dependency on PM composition and to its toxicity response. However, the link 

between engine operating conditions to toxicity is woefully lacking. Driving cycle based 

differences such as distance, speed, time and PM mass will not be sufficient enough to derive 

broad conclusions about toxicity effects of heavy-duty PM with respect to vehicle operation. 

However, an in depth analysis of factors such as lubrication oil consumption, average exhaust 

temperatures, after-treatment performance, durability, inorganic emissions, nucleation and 

accumulation mode particle concentrations are necessary to define characteristics of engine 

operation that can be related to PM composition and subsequent toxicity potential. Current 

ultra-low engine-out PM concentrations have induced a large uncertainty in mass measurement 

procedures, consequently imparting a large uncertainty in the measured toxicity also. 

Discerning toxicity response from ultra-low level PM emission rates is a challenging task. This 

sampling method adopted in the current work has attempted to improve sample loading on 

filter media through a process of high volume sampling in order reduce test times and possible 

sampling artifacts due to extended sample collection time.  
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2.4 TOXICITY ASSAYS 

Toxicity assays can be broadly divided into two categories, namely 1) In vitro and 2) In vivo 

studies. In-vitro refers to toxicity analysis performed to discern the toxic effects of a certain 

compound using cultured bacteria or mammalian cells. And In vivo testing refers to evaluation 

of toxic potential of a compound using live animals or humans. There are different approaches 

and surfactants that can be used to perform in vitro studies. A few important in vitro 

approaches in reference to diesel PM are: 1) Researchers at National Institute of Occupational 

and Safety Hazard (NIOSH) tested three different surfactants namely Salmonella bacteria (Ames 

Salmonella Assay) and mammalian cells derived from Chinese hamster (Micronucleus (MN) 

Assay). The study was aimed at discerning toxicity potential by understanding bacterial 

mutagenicity using the Salmonella extracts and DNA damage in the mammalian cell extracts. 

One of the salient features of this study was that it challenged the conventional in vitro 

approach of introducing organic solvent extracted PM to cell cultures, by introducing a method 

of dosing wherein diesel particulate matter is directly, in its true form is introduced in to the 

surfactant. The researchers believed that this method in comparison to extraction methods, 

better illustrates the possible effects of particle morphology and chemical structure to its 

toxicity potential (Shi et al., 2005).  

2) Another study conducted by researchers at University of California, Los Angeles used 

human aortic endothelial cells (HAEC) to study the influence of PM in increasing cardiovascular 

risks in humans. Diesel PM was collected on T60A20 glass fiber filters, and further extracted out 

of the filter using ultra pure water. The extract was later used to expose the HAEC to study its 

toxicity response (Li et al., 2009).  

Although cell based In vitro studies can be considered as non-selective in their response to 

various components PM, the use of a particular cell or bacteria will indirectly bias the toxicity 

response to certain components of PM. However, by introducing the PM samples directly to the 

cell it becomes difficult to discern the composition of PM that influenced the toxicity response. 

Hence, a cell based in vitro study can be viewed as an indicator of the overall health effect of 

PM and not necessarily point to a specific composition of PM. If in case a compositionally 

selective toxicity response is desired then the particulate sampling method would have to be 



 

22 | P a g e  
 

directed towards sampling individual compounds such as metals, organics and elemental 

carbon and individually subjecting the cell cultures to these samples.  

Cell-free or chemical methods of performing In vitro studies have been widely researched. 

These methods do not employ any living cell cultures and on the contrary use chemical 

substances as indicators for toxicity response. Chemical based In vitro approach is highly 

selective in its response to different fractions of PM, and can alleviate some of the concerns 

identified with cell based studies. For example DTT assay is highly responsive to organic 

material in PM, DHBA assay is very responsive to fenton-active (reaction of certain metals with 

oxygen to produce highly reactive hydroxyl ions) metals such as Cu and Fe (Verma et al., 2010) . 

From the literature it is clear that there exists no one unified metric to quantify toxicity of 

PM. Different assays quantify toxicity potential using different units or in this case metrics. 

Although, the metrics used to represent PN toxicity may vary, the basic underlying principle or 

objective of all assays are aimed towards discerning the oxidative stress induced in a cell or the 

oxidative potential (OP) of a compound that could possibly inflict damage to living cells. 

Oxidative stress is a result of generation of reactive oxygen species (ROS) to levels that would 

exceed the natural antioxidant defense level of a cell. Higher ROS content can damage proteins 

and DNA and cause death of cells. High ROS levels can also induce inflammatory responses that 

are cause for many respiratory and pulmonary diseases (HEI, 2010).  

ROS are chemical species which consists of highly reactive oxygen species or superoxide. 

They include chemical species that contain OH radicals, singlet oxygen and hydrogen peroxide. 

ROS is a common byproduct of aerobic metabolism in human body. The production of 

antioxidants from cells, maintains the balance of ROS species, and in turn regulates the various 

cellular functions (Landreman et al., 2012). However, entry of foreign substances with toxic 

properties can increase the concentration of ROS compounds relative to the antioxidant 

production. This ability of a substance to induce ROS generation is called the OP of that 

substance. The cellular reaction aimed at neutralizing the excessively generated ROS, results in 

the oxidative stress of the cells. PM induced ROS generation can be studied through various cell 

based and cell free assays.  
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Alveolar macrophage (ROS) assay is a method to measure toxicity response from alveolar 

macrophages exposed to aqueous suspension of particulate matter. This method represents a 

well correlated model to link pulmonary inflammation response to particulate matter 

concentration. This method is also highly sensitive to the presence of transition metal content 

in the PM sample (Verma et al., 2010). 

The current study will present data from three different assays namely a) Dithiothreitol 

(DTT) assay b) Didydroxybenzoate (DHBA) assay and c) Macrophage ROS assay. The selectivity 

in response of these assays and documented findings in the literature with respect to heavy-

duty PM will be discussed in the subsequent sections. Keeping in line with the global objective 

of this study, literatures cited and its interpretation will not include a detailed analysis of the 

toxicity aspects. Instead, the toxicity response will merely be used as an indicator metric for 

adverse health effects. The study will however attempt to correlate engine based factors to PM 

composition and finally point towards the direction of its possible health effects if any. The 

absence of a single toxicity metric and the complex composition of PM make it challenging to 

comprehend the health effects of heavy-duty PM as a whole. As in previous cases, the study 

will provide insights to possible links between different compositions of PM and its ability to 

induce oxidative stress in cells. 

2.4.1.1   DTT ASSAY 

DTT assay is a type of a cell free assay where a chemical called dithiothreitol is used as an 

indicator of oxidative potential of a test sample. The assay uses the consumption of DTT as a 

marker to identify cellular redox reaction in the presence of oxygen (Verma, 2011). Hence, the 

rate at which DTT is consumed is proportional to the mass of redox active species present in the 

sample and consequently greater oxidative potential. Researchers have found that the DTT 

assay demonstrates selectivity towards organic compounds such as quinones, carbonyl, volatile 

fraction of particulate matter and PAH emissions. A study by Charrier and Anastasio has 

illustrated the response of the DTT assay towards the presence of transition metals in specific 

copper and manganese. The study further shows that up to 80% of DTT consumption can be 

attributed to the presence of transition metals in a sample consisting of mixture of transition 

metals and quinones (Charrier and Anastasio, 2012). Findings from another study has exhibited 
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good correlation between DTT consumption of ambient PM with production of stress proteins 

from tissue cultures, linking the influence of organic fractions of PM towards cellular toxicity 

(Cho and Froines, 2006). Hence, the use of DTT assay in the current study is used to elucidate 

the difference in DTT activity between thermally denuded and non-denuded assays. The 

difference in DTT activity, if any, should directly indicate the contribution of volatile fraction to 

PM toxicity. The above referenced study has revealed that DTT activity correlated well with OC 

(r2=0.53) and with elemental carbon (r2 Cho and Froines, 2006=0.79) ( ). It is to be noted that 

soot emissions in diesel engines does not comprise only EC. Soot in diesel engines is comprised 

of significant concentration of adsorbed PAH compounds. Higher consumption of DTT in the 

presence of PAH compounds and the possible higher fractions of PAH adsorbed on soot than in 

OC could have resulted in the better correlation of DTT activity towards EC. However, this 

scenario might be different for PM from natural gas engines, where the fuel is devoid of 

aromatic content and as a result lower in exhaust PAH content. The EC thus formed could be 

simply elemental carbon with minimal to no PAHs adsorbed. However, establishing a link 

between lube oil consumption and PAH emissions could provide insight of possible PAH 

fractions adsorbed onto EC.  The current study will attempt to correlate PAH emissions, EC and 

OC concentrations to DTT activity. Hence, the denuded PM sample will effectively indicate DTT 

activity of predominantly EC and the non-denuded sample will be indicative of a DTT activity 

representative of OC and EC concentration. The difference in activity should effectively indicate 

the activity of OC fraction alone. 

2.4.1.2 DHBA ASSAY 

DHBA assay is a cell free assay that uses the production of dihydroxybenzoic acid as marker 

for in vivo toxicity. DHBA assay is highly selective towards the presence of transition metals in 

the filter sample. The basic principle behind the DHBA assay is based on the fact that 

derivatives of salicylic acid are present in human body as anti-inflammatory agents. And it is 

found that in the presence of salicylates, transition metals undergo Fenton’s reaction to 

produce OH radicals (Coudray and Favier, 2000). Further, the reaction between salicylates and 

OH radicals produce DHBA. Hence, by quantifying DHBA levels, one can conclude the rate of OH 

radical production, which in turn can be viewed as the extent of salicylate production due to 
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inflammatory response in the human body. The DHBA analysis is performed using high-

performance liquid chromatography techniques. The work by Distefano et al. describes the 

development of this assay and illustrates the selectivity of this assay to metal content in PM. 

The research work documented the role of copper and iron in DHBA formation, and further 

elucidated the positive response of the assay to copper and other transition metals, while it 

correlated poorly with iron concentrations. Copper concentrations observed in diesel and 

ambient PM presented a good correlation (r2

Figure 2-4

=0.95) with DHBA formation rate as shown in 

 (Distefano et al., 2009). One of the drawbacks of the assay is the possible masking of 

DHBA formation due to other metals in the presence of higher concentration of copper. It has 

also been studied that chelation process (removal of metal from sample) of the sample 

completely suppresses DHBA activity, lending support to the hypothesis of high metal 

selectivity of the DHBA assay (Cho and Froines, 2006). 

 
Figure 2-4 Correlation of copper concentration in ambient and diesel PM to DHBA formation rate 

(Distefano et al., 2009). 

 Internal combustion engines generated PM is characterized by a varied metals 

composition in PM since metals emissions from engines are due to a combination of factors 

involving engine operation and durability factors. As explained in 2.2.3 and 2.2.4 source of 

metals emissions could be from lubrication oil and or after-treatment systems. Not many 

studies have documented the DHBA activity of internal combustion generated PM. This lack of 

literary knowledge could be owed to the reasoning that DHBA assay has been a relatively new 

method developed in identifying oxidative stress in cells that are induced by the presence of 

metal composition through a cell free assay. Hence, the results provided in this work would 
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provide an understanding of metal composition in total PM to DHBA activity. The solid fraction 

of PM, will consists of a mixture of EC, metals and inorganic ions, hence the correlation of mass 

fraction of metals in the PM sample to DHBA activity, will illustrate the oxidative potential of 

the PM due to its metals composition alone. The changes in mass fraction of metals in PM as a 

function of engine operating parameters will provide information on engine load characteristics 

that would possibly contribute to higher metal emission and, as a result, prove more potent to 

oxidative stress. This would help to reach conclusions on the type of exposure by humans (near 

highway or urban traffic) resulting in adverse health effects. 

2.4.1.3 ALVEOLAR MACROPHAGE ROS ASSAY 

Alveolar macrophage assay is a cell based toxicity assay wherein the aqueous PM samples 

will be introduced into rat alveolar macrophage tissues. Alveolar macrophages are commonly 

found in the inner epithelial cells of the airways and lungs and hence by quantifying ROS 

generation within alveolar tissues, would be an indicator of pulmonary inflammatory responses 

to PM (Verma et al., 2010). The assay uses 2,7-dichlorodihydrofluorescein diacetate (DCFH-DA) 

compound’s reactivity with ROS compounds as a marker for cellular oxidative stress. The 

reaction of (DCFH-DA) with ROS compounds yields a highly fluorescent byproduct, which is 

measured using a fluorescent probe or plate reader. A compound called zymosan is used as the 

positive control, and the ROS response of a substance is presented as a function of zymosan 

equivalent response or zymosan units. The fluorescence induced by aqueous suspension of PM 

will be represented as equivalent fluorescence exhibited by the control substance, zymosan. A 

recent study by Landerman et al. has shown that this assay is effective for PM mass loading of 

less than 100 micrograms and that it accurately represents pulmonary response to PM 

exposure, as the lung airways are the first line of defense for the human body against 

particulate matter ingestion (Landreman et al., 2012). 

Although the macrophage ROS assay is designed to exhibit the net effect of total PM, 

recent studies by Hu et al. and Verma et al. have observed the selectivity of this assay towards 

water soluble transition metals (Hu et al., 2008, Verma et al., 2009). Results from a recent study 

conducted by Verma et al. focused on PM emissions from retrofitted heavy-duty vehicles, 

suggests that ROS activity correlated well with concentrations of water soluble metals. The 
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authors arrived at this conclusion by comparing ROS activity with and without removal of water 

soluble metals from the PM samples (chelation). The study showed that with removal of water 

soluble metals, the ROS activity was also lower for all driving cycles (Verma et al., 2010). 

One of the limitations of existing studies documenting ROS production as result of PM 

exposure is the physical metric to which the toxicity response is normalized. Current works 

have represented toxicity responses with respect to physical mass of PM collected on filter. This 

representation would be accompanied by high variability, as gravimetric measurements of PM 

at ultra low level emissions are accompanied by high uncertainties. Also, if studies are aimed at 

discerning the toxicity effect of volatile fraction of PM, then the variability in mass could be 

orders of magnitude higher and lower of the mean value.  

The following sections will study the possibility of alternate physical metrics such as surface 

area, lung deposited surface area (LDSA) and mass calculations using effective particle density 

to arrive at a metric that would correlate well with different observed size fractions of PM and 

their corresponding toxicity responses. 

2.5 PHYSICAL CHARACTERISTIC METRICS FOR PM ANALYSIS 

In regulatory terms, mass based metric has been widely accepted to be the physical metric 

that represents PM emissions from internal combustion engines. However, the mass based 

metrics fails to provide a definitive value at ultra-low level emissions of PM such as those from 

DPF equipped diesel and advanced natural gas engines. Figure 2-5 shows the typical particle 

number, mass and surface are distribution of diesel engine combustion generated particles 

having an aerodynamic diameter in the size range of 2 nm- 200 nm. With advanced after-

treatment systems, the higher particle diameters are most often not observed. 
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Figure 2-5 Typical particle mass and number weighted distribution (Kittelson, 1998b) 

As we can see in the above figure, diesel engine exhaust particle size distribution can be 

categorized into three modes a) nuclei mode (predominantly volatile particles) b) accumulation 

mode (a complex mixture of semi-volatile and solid fraction particles) c) coarse mode (particles 

such as ambient dust). Nuclei and accumulation are two modes of interest with respect to 

internal combustion engines. The bounding diameters of nuclei mode is not clearly defined. 

Kittelson in his early works has determined nuclei mode as particle aerodynamic  diameters less 

than 50 nm (Kittelson, 1998a). However, in a recent work he has redefined this boundary to be 

a particle less than 30 nm (Kittelson et al., 2002). This attempt to redefine the boundaries of 

nucleation mode particles came about after extensive experiments aimed at discerning the 

volatile fraction of PM through catalytic strippers and heated dilution approaches. Recent 

works have challenged the existing understanding that all particles below 50 nm were volatile 

in nature and should be classified as nucleation mode particles. Also, the proposed European 

Particle Measurement Programme (PMP) has proposed all solid particles above 23 nm need to 

be regulated. The change in viewpoint regarding to nuclei mode particles can be attributed to 

the advancement in engine and after-treatment technology. Current, heavy-duty diesel and 

natural gas engines emit particles predominantly in the nuclei and ultrafine region. From Figure 
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2-5 it can also be seen from the relative contribution of surface area is several orders of 

magnitude greater than mass contribution within the nucleation mode size range.  

Toxic reactions induced by particulate matter are usually a result of particle surface 

interaction with tissue or individual cells. Hence, we can easily conclude that greater the 

surface area of nanoparticles, the greater its effect on cells. The contribution of surface area 

relative to mass is higher in the nanoparticle size range. Therefore surface area would be a 

more appropriate metric to correlate nanoparticle emissions and toxicity but all current 

particulate matter metrics are based on mass contributions. This is due to the fact that 

regulations for heavy-duty engines are mass based and measurement of surface and number 

count requires specialized instruments. But surface area analysis and correlation with toxicity 

responses could lay the foundation for future regulations on the particle size ranges of interest.  

2.5.1 PARTICLE NUMBER 

Particle number count is measured using optical or charge collection methods. 

Condensation particle counters (CPC) are optical based instruments and electrometers are 

charge collection based instruments. Particle number count associated with the size 

distribution as the combination of the two metrics, suggests the count median diameter (CMD) 

of a log normally distributed particle size distribution. Number based metric is very helpful in 

determining the nanoparticle concentration in the exhaust. The concurrent measurement of 

particle size distribution and number concentration is achieved through a combination of a 

differential mobility analyzer (DMA) and a particle counter. The size segregation through a DMA 

is achieved through the principles of electrical mobility.The particles are classified using the 

electrical mobility diameter of the particles. In general electrical mobility diameter of a 

spherical particle is closely associated with its Stokes diameter of particles in flow stream 

(Burtscher, 2001). 

Particle number count is a useful metric to discern PM emissions in the size ranges that do 

not contribute to substantial mass. Particle number count in the nucleation region is highly 

dependent on exhaust dilution conditions, since number and size of particles is a function of 

nucleation, condensation and coagulation rates. Unlike PM mass, which is a direct 
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representation of the concentration of primary particles emitted from the tailpipe, particle 

number can be viewed as metric that represents both primary particle concentration and 

particles formed as result of dilution outside the confines of the exhaust tailpipe (not 

necessarily representing secondary PM formed in the atmosphere).  

The particle number based regulation is a highly debated topic between European 

legislation and regulatory agencies in the US. This divide is primarily due to the differences in 

the accepted definition of PM from internal combustion engines. While the USEPA defines 

particulate matter with dilution and sampling conditions, the European legislation has recently 

adopted additional solid particle number count metric in the Particle Measurement Programme 

(PMP) regulations. 

One of the key questions faced by US regulatory agencies is the path of which future PM 

regulation would be adopted. Since, the current regulatory standard of 0.01 gms/bhp-hr, is well 

over the emission rates of natural gas and DPF equipped vehicles. The path forward in the 

regulation would be to adopt a number based metric. However, the drive behind a proposed 

regulation must be to either set a standard that would reduce health effects of nanoparticle 

emissions, or a standard that would identify failed PM after-treatment systems that would 

result in higher solid fraction of PM emissions. Since, all regulatory standards are indirectly 

aimed towards alleviating health issues related to PM emissions, it is necessary to study metrics 

that better associate toxicity and PM emissions. Particle number count metric would be a 

suitable path on which to base future regulations; however, there is also a need to link number 

with other metrics such as surface area, deposition factors and lung deposited surface area 

(LDSA) to better relate health effects to particle number emissions. The following section will 

detail the European PMP approach of particle number count measurement. 

2.5.1.1 EUROPEAN PARTICLE MEASUREMENT PROGRAMME (PMP) 

Particle Measurement Programme (PMP) is an informal group of the United Nations 

Economic Commission for Europe’s (UNECE) Working Party on Pollution and Energy (GRPE). The 

main objective of this group is to develop a particle measurement technique that would 

circumvent the short comings of the current mass based technique while addressing health 
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concerns from ultrafine particle emissions. Amidst, the divided opinion of the medical 

community on the dependence of physical composition of PM to its toxicity, the PMP group has 

adopted a path to detect solid particles in a size range in which accurate number count 

measurement is feasible, and to further quantify only the contribution of primary tailpipe 

nanoparticle emissions without considering the effects of dilution.  The working group’s 

objectives were aimed at developing a technique that is suitable for both light duty and heavy-

duty vehicle applications. A report by the Joint Research Commission (JRC) details the 

development of the PMP methodology and its findings (Andersson et al., 2010). The 

methodology involves a first stage heated dilution which outputs diluted sample stream at 

temperatures between 150 oC and 400 oC, followed by an evaporator section maintained at 300 
oC and designed to achieve a residence time of 0.2 sec. Finally the particle stream would be 

cooled, with a secondary dilution system, with HEPA filtered dilution air at ambient 

temperature. Multiple dilution stages can be used to reduce the particle concentrations below 

the upper bound of the particle counter. The particle counter should have a d50

Giechaskiel et al., 2008

 cut point 

diameter of 23 nm, in order to exclude volatile particles that may be formed by gas to particle 

conversion process during secondary dilution ( ). On a whole the PMP can 

be summarized as a methodology which is aimed at counting all particles greater than 23 nm in 

diameter and assumed to be solid in physical composition. It is to be noted that, similar to 

USEPA’s definition of TPM, UNECE’s definition of solid PM is also based on sampling conditions 

and not necessarily derived from physical and morphological analysis. The underlying theory 

behind the UN-ECE PMP is the fact that by heat treating and successive dilution of the exhaust 

gas, the gas phase compounds present in the sample stream would have achieved low enough 

partial vapor pressures that would inhibit particle formation through gas phase portioning. As a 

result the particle stream would consist of mainly particles with solid fractions and volatile 

material would remain in gas phase. 

The current EURO V/VI light duty standard for particle number count has been set at 6 X 

1011 Giechaskiel et al., 2008 #/km ( ). A study by Johnson et al evaluated the PN emissions from a 

MY 1999 international DT466, 7.6 liter engine and a MY 2000 Caterpillar C-15, 15 liter engine in 

accordance to procedures set forth in the PMP (Johnson et al., 2009). A salient feature of the 
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study was the use of a CPC with a low detection diameter of 2-3 nm in addition to the PMP CPC 

with a modified low detection diameter of 23 nm. The results of the study show that during the 

chassis dynamometer test cycles that included cruise and UDDS, the particle number counts 

were well below the UN-ECE light duty regulation for the 23 nm CPC. However, the lower 

detection limit CPC detected higher particle number count and in some instances exceeded the 

6 X 1011

Johnson et al., 2009

 #/km limit. Also, on-road testing of a vehicle equipped with the C-15 diesel engine 

resulted in 23 nm CPC number count well below the UN-ECE limit. However, higher particle 

counts were observed to exceed the limit during certain high load operations. One of the 

important findings of the study has been the detection of “solid particle” <23 nm in size 

( ). Similar observations have been referenced in unpublished works by 

Herner et al. and Ayala et al. (Johnson et al., 2009). The results of the study can be interpreted 

as the possibility of particle formation mechanisms that manifests themselveself as “solid 

particle” as per PMP methodology, while in actuality could be sulfuric acid based particles or re-

nucleating light hydrocarbons that form particles below 2-3 nm. However, this observation also 

offers the question of the total fraction of particles over 23 nm that are associated with 

condensation of light hydrocarbons and sulfuric acid droplets. 

From the PMP perspective particle number count metric can be viewed as a highly 

sensitive metric that can measure PM emissions at low mass emission rates. Particle number 

count as a work specific metric or a distance specific metric can be used effectively to monitor 

after-treatment system performance and compliance. However, in order to address potential 

health effects of nanoparticle emissions from heavy-duty vehicles alternate metrics must be 

considered that better link toxicity and PM composition. 

2.5.2 PARTICLE MASS 

Regulatory standards both in Europe and in the United States have adopted a mass based 

system as the primary metric in which PM would be regulated. Particulate matter mass 

measurements are performed by a gravimetric method in which a suitable filter media (Teflon 

based) is used to collect PM samples at standardized sampling conditions and subsequently 

weighed over a sensitive microbalance to discern the mass of emissions. 40 CFR part 1065 
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prescribes various sampling conditions that must be achieved before sample collection over the 

filter. Table 1 lists the sampling conditions as prescribed in 40 CFR Part 1065. 

 

Table 1 40 CFR Part 1065 PM sampling requirements (USEPA, 2012) 

Dilution Air Quality and Temperature HEPA filtered, 25±5 oC 

Dilution Ratio Primary: Minimum 2:1; Overall: Minimum 5:1 

to 7:1 

Residence Time Minimum of 0.5 s 

Sample Temperature 47±5 0C 

Filter Face Velocity Approx. 100 cm/s 

 

These prescribed sampling conditions are designed to minimize sampling artifacts and 

provide a repeatable and consistent PM collection process and not necessarily represent real-

world PM formation mechanisms. The sampling procedures prescribed in 40 CFR Part 1065 

(USEPA, 2012) are a result of an extensive study conducted by Southwest Research Institute 

(SWRI) as part of the E-66 study (Khalek, 2007). The study investigated various parameters that 

affect sample loading on the filter as applicable to exhaust from DPF equipped and ultra low 

PM emission engines such as natural gas (Khalek, 2007). USEPA regulations adopted the 

findings of this study to prescribe a sampling methodology that would be associated with the 

least sampling artifacts, and be able to capture the volatile fraction of PM more efficiently on a 

filter material. 

Mass based metric faces serious limitations at ultra low PM emission rates. In the case of 

DPF equipped diesel engines, the mass emissions are well below the detection limits of the 

gravimetric system and hence high variations in measured mass is not vital to the compliance of 

the engine to regulations. Similarly, in natural gas engines the soot free combustion produces 

particles predominantly in the nucleation region, which does not impart any mass to the 

collected PM.  
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However, PM toxicity studies commonly reference toxicity response to mass dose emitted. 

In case of ultra low level PM emissions rate, inaccuracies in mass measurements would impart 

an error in the mass normalized PM toxicity result. To alleviate this setback, most studies adopt 

extended sampling times and high volume flow sampling to increase mass loading on the filter, 

in order to observe a better toxicity response and sufficient mass to measure accurately. The 

approach of both extended sampling times and high volume flow has been widely debated due 

to the positive and negative artifacts that may be imparted to the PM sample as result of 

extended sample flow across the filter or high filter face velocities that could possibly strip 

volatile material from collected PM. Since, no study has accurately characterized the effect of 

sampling artifacts on toxicity response, high volume sampling and extended sampling times are 

continued to be widely used sampling procedures for increasing filter sample loading. 

The inaccuracies in physical measurement of PM mass can be addressed through an 

approach of PM mass calculation using particle number count and size distribution 

classification. Many studies have developed particle effective density functions that have 

related particle diameter to their mass. Hence, by measuring particle number count and size 

distribution, it is possible to calculate mass of PM (Liu et al., 2012). A study by Liu et al. focused 

on the strategies that would help detect ultra-low PM emissions at better resolution and with 

greater repeatability. The study investigated two alternate methods a) chemical reconstruction 

of mass though separate chemical speciation of exhaust and b) an integrated particle size 

distribution method (IPSD). The study found that the IPSD method provided a methodology to 

quantify PM mass at ultrafine and nanoparticle size ranges with high levels of resolution and 

repeatability (Liu et al., 2012). 

The study investigated various effective density functions from important literatures and 

found that the function developed by Maricq et al. matched closely with gravimetric PM results 

of a non-DPF equipped engine. Figure 2-6 shows the density plots developed by Maricq in 2000 

and 2004 and Park et al. in 2003. It can be seen that the Maricq et al. (Maricq and Xu, 2004) 

density function developed in 2004, shows a constant unit density for all particles within the 

nucleation mode and part of the accumulation mode (Liu et al., 2012). Both natural gas engines 

and DPF equipped diesel would most often emit PM within these size ranges. 
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Figure 2-6 Effective density functions developed by various researchers (Liu et al., 2012) 

Maricq et al.’s density distribution function is given in Equation 1 (Maricq and Xu, 2004). 

 

𝝆𝒆𝒇𝒇 = 𝟏.𝟐𝟑𝟕𝟖 ∗ 𝒆−𝟎.𝟎𝟎𝟒𝟖∗𝑫𝒑  

           Equation 1 

With the effective density function relating particle diameter Dp and particle density over 

the entire size distribution, mass calculation can be performed by assuming all particles to be 

spherical, with Ni 

Liu et al., 2012

number of particles in each size bin. Hence the mass calculation equation can 

be expressed as ( ). 

𝑃𝑀𝑚𝑎𝑠𝑠 = ∑ 𝜌𝑒𝑓𝑓,𝑖
𝐻𝑖𝑔ℎ𝑒𝑟 𝐷𝑝
𝑖=𝑙𝑜𝑤𝑒𝑟 𝐷𝑝 ∗ �4

3
� ∗ 𝜋 ∗ �𝐷𝑝𝑖

2
�
3
∗ 𝑁𝑖    

           Equation 2 

The approach using particle number count to calculate mass could prove more accurate in 

relating toxicity response to total mass of PM. Instruments such as TSI’s Engine Exhaust Particle 

Spectrometer (EEPS) could be versatile in discerning mass for transient engine operations and 

to further calculate mass for ultra-low PM emissions vehicles. 
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2.5.3 PARTICLE SURFACE AREA 

Nanoparticle surface area has long been considered to be a metric that better represents 

health effects of nanoparticles. From Figure 2-5 we see that particles of smaller diameters offer 

a greater surface area for interaction than particles of larger diameter. When we consider the 

case of inhalation of ultrafine and nanoparticle size range engine exhaust particles, we are 

forced to consider the possible interactions these particles will undergo in the airways and in 

gas exchange regions of the lungs. Hence, a more appropriate metric would be the surface area 

as it represents the total amount of particle that would physically react with cells and tissue. 

Both number and mass metrics consider particles as a bulk system and toxicity reactions as 

function of the entire particle composition. However, internal combustion engine particle 

composition is complex and could consist of multiple layers of organic and inorganic fractions. 

Hence it is important to know what fraction of the particles offer the greatest surface for 

interaction. Consequently particle surface area can be viewed as a metric that indirectly takes 

into account the particle morphology and the surface composition of the particles.  

The importance of particle surface area is more pronounced for particles that are insoluble 

in lung fluids or water. In the case of particles that are soluble in water or lung fluid, a bulk 

metric such as number and mass would be sufficient in correlating toxicity with PM emissions. 

However, if in case of an insoluble particle, the composition of the outer surface of the particle 

and the amount of surface area offered would be the critical metric that would provide an 

appropriate correlation to toxicity response. One important metric that is analogous to particle 

surface area is the lung deposited surface area (LDSA), which takes into account the deposition 

fraction of particles entering into the human airway. LDSA could be a useful metric in 

developing better correlations between PM composition and toxicity response.  

Very few studies have attempted to correlate particle surface area and health effects. 

Studies by Sager and Castranova ((Sager and Castranova, 2009) and Oberdorster et al. 

(Oberdorster et al., 1994) are some of the important works that have suggested that surface 

area dosing of particles correlates better with inflammatory responses in tissues of the human 

airways. A review of literature involving respiratory health effects of diesel particulate matter 

(Ristovski et al., 2012) states that three physio-chemical properties of diesel particulate matter 
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namely :a) surface area, b) presence of transition metals in PM and c) adsorbed organics on 

surface of DPM are to be considered while linking PM emissions and health effects (Ristovski et 

al., 2012). 

Discerning the particle composition on the surface of a nanoparticle is a challenging task, 

and as a result surface area metric has been a highly debatable metric in the health community. 

Short comings of the surface area metric have forced particle mass as the de facto metric for 

associating health effects. However, LDSA and the representativeness of diffusion charger 

instrument’s response as an indicator of LDSA could change future perspective of the surface 

area metric (Wilson et al., 2007). The following section will review in detail the LDSA metric and 

its associated findings. 

2.5.4 LUNG DEPOSITED SURFACE AREA (LDSA) 

LDSA is a very effective metric in refining the surface area metric as it pertains to human 

inhalation. From a health perspective the total surface area of a particle size distribution would 

not represent the actual surface area of particles that will interact with airway tissues and cells. 

This is due to the fact that as particles travel through the airways, inertial and diffusion forces 

act upon particles, which will result in deposition in various regions of the airways. Hence, a 

deposition curve is required to relate the total surface area of particle to the deposited surface 

area of the particle. Hence, LDSA represents a surface area that takes into account the particle 

deposition factor for a human lung. 

Traditionally LDSA could be calculated only by measuring the particle size distribution and 

number concentration to calculate the total surface area of spherically assumed particles 

followed by using deposition fractions to calculate LDSA. However, recent studies have shown 

that by coincidence, diffusion charging based instruments have been observed to produce a 

response that is very similar to LDSA. Wilson et al in their work with an electrical aerosol 

detector observed that the instrument response was well correlated with LDSA calculations 

(Wilson et al., 2007). The study used a TSI electrical aerosol detector (EAD) and scanning 

mobility particle sizer (SMPS) to measure particle size distribution and particle length. One of 

the important findings of the study was that it observed a strong correlation between the signal 
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from the EAD and the calculated deposited surface area (particle number concentration 

multiplied by the deposition fraction for a certain diameter). The study further concluded that 

even with changes in particle size distribution, the signal from EAD correlated well with 

deposited surface area (Wilson et al., 2007). Hence, the EAD by itself could be a versatile 

instrument in directly suggesting the LDSA metric of a particle stream. 

2.5.4.1 DEPOSITION FRACTION 

Deposition fraction (DF) is an important parameter in discerning health effects of 

nanoparticles, and also to optimize respiratory drug delivery methods. DF defines the percent 

deposition of particle of various sizes during its transport within the human airway system, 

while being subjected to various forces such as gravitational settling, inertial settling and 

Brownian and diffusion movements. The respiratory tract consists of three regions namely: a) 

nose and head airways b) tracheobronchial region c) alveolar region. Deposition models have 

been a focus of research from early 1930s’. Findeisen developed the first lung deposition model 

in 1935. Since then the Findeisen model has undergone modifications in 1950 by Landahl and 

Beeckman in 1965 (Ensor, 2011). However, from the early 1960s the model developed by the 

International Commission on Radiological Protection (ICRP) has been the widely accepted 

model used for drug delivery and associating nanoparticle inhalation with health risks. The toal 

fraction of particles deposited in human lungs cab be estimated using Equation 3 (Ensor, 2011). 

𝐷𝐹 = 0.0587 +
0.911

1 + exp (4.77 + 1.485𝑙𝑛𝐷𝑝)
+  

0.943
1 + exp (0.508 − 2.85𝑙𝑛𝐷𝑝)

 

           Equation 3 

The above equation represents the deposition model for both men and women average for 

three types of physical activity that includes resting, light exercise and heavy exercise. The 

above equation was obtained through a curve fit of experimental data fitted to produce a 

deposition curve as a function of particle diameter Dp.  
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Figure 2-7 Measured and theoretical curve for particle DF as adapted from (Ensor, 2011) 

The type of particle diameter used in the model vary with the region in which the model is 

applicable. Gravitational and inertial settling and thermodynamic processes such as diffusion 

dominate particle deposition. Hence, in regional where gravitational settling and inertial 

settling are dominant, the aerodynamic diameter is used and in regions where diffusion is 

dominant, thermodynamic diameters are used. However, most particle instruments measure 

the electrical mobility diameter of the particle, which is closely approximated to stokes 

diameter for a spherical particle. Hence, while attempting to discern particle DF from mobility 

based instruments, diameter conversion is to be taken into account. Wilson et al. in their study 

suggest that electrical mobility agrees well with particle diameters associated with diffusion 

based measurements (Wilson et al., 2007). Hence, if Dp in the above equation is assumed to be 

stokes diameter, then the electrical mobility diameter measured directly from SMPS or EEPS 

can be used to represent DF as a function of particle diameter. 

The subject of DF can be further extended to discern regional DF in the three regions 

mentioned earlier. The following equations represented in Equation 4, Equation 5 and Equation 

6 signify the DF values for the different regions in the airway (Wu and Allen). The equations 
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represented here are derived from the ICRP model as applicable to the different regions of the 

lungs. 

a) Head Airways 

𝐷𝐹ℎ𝑒𝑎𝑑 = 𝐼𝐹 �
1

1 + exp(6.84 + 1.183𝑙𝑛𝐷𝑝) +
1

1 + exp(0.924 − 1.885𝑙𝑛𝐷𝑝)� 

Where 

𝐼𝐹 = 1 − 0.5 ∗ �
1

1 + 0.00076𝐷𝑝2.8� 

           Equation 4 

b) Tracheobronchial region 

𝐷𝐹𝑇𝐵 =  �
0.00352
𝐷𝑝

� ∗ �𝑒(−0.234(𝑙𝑛𝐷𝑝+3.40)2) + 63.9 ∗ 𝑒(−0.819(𝑙𝑛𝐷𝑝−1.61)2)� 

           Equation 5 

c) Alveolar region 

𝐷𝐹𝐴𝐿 =  �
0.0155
𝐷𝑝

� ∗ �𝑒(−0.416(𝑙𝑛𝐷𝑝+2.84)2) + 19.11 ∗ 𝑒(−0.482(𝑙𝑛𝐷𝑝−1.362)2)� 

           Equation 6 

 

Figure 2-8 shows the percentage DF calculated from the ICRP model for two different 

breathing types as a function of particle diameter. The curves show that particles below the 

ultra fine size range (<100 nm) have a significant deposition fraction in the alveolar region. 

Hence particles with smaller diameters can be viewed as a more potent threat to human health 

as they enter into the oxygen exchange regions of the lung. Particles in the accumulation region 

are observed to have a greater deposition in the tracheobronchial region, and as result might 

contribute to significant inflammatory responses in the cells of the respiratory path. Although 

the tracheobronchial region acts to filter most inhaled particles, greater surface area 

contribution combined with potent particle surface coating such as organics and transition 

metals can induce ROS responses in the cells and contribute to breakdown of the defense 

system. 
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Figure 2-8 Percentage DF curve as function of particle diameter adapted from (Wilson et al., 2007) 

This study will present an analysis of the deposition fraction of nanoparticle emissions from 

heavy-duty natural gas engines and further correlate the toxicity responses to LDSA as 

calculated using particle size distribution and DF, in addition to measurements obtained from a 

TSI EAD.  

2.6 CLOSING STATEMENTS 

Literatures cited in this work have focused on detailing research that has focused on 

investigating and characterizing particulate matter composition and its associated health 

effects. It can be concluded that there is sufficient lack of information in the literary community 

with respect to toxicity responses based on compositional characteristics of PM. Although 

studies have shown the fractional contribution of various elements of PM such as metals and 

organics to specific toxicity responses, the health effects of PM as a whole pertaining to 

different operational characteristics of the engine are largely unknown. This void in knowledge 

can be widely attributed to the lack of connection between engine studies that represent real-

world conditions to health effects research that does not consider the complexities of engine 

design, operation and durability. PM emissions are a function of many factors and the 

corresponding health effects should also be closely related to it. However, almost no 

toxicological study approaches PM emissions and health effects from an engine and its 

associated technology stand point. 
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Health effects of PM emissions cannot be represented by a single unified metric. Hence, 

different assay are used to study toxicity responses from various fractions of PM. This study is 

unique in its approach by simultaneously investigating toxicity response from three different 

assays. The results of the study will provide statistical correlation to size resolved chemical 

composition of PM with its toxicity responses. 

Literatures cited in this work have highlighted the drawbacks of using the mass based 

metric in determining toxicity responses of PM emissions from advanced heavy-duty engines. 

Particle LDSA, number and surface area are some of the metrics that have proven to be suitable 

for normalizing PM toxicity. Combination of TSI EAD and TSI EPPS used in this study has helped 

provide an analysis of the particle surface area as calculated from a simple number count 

measurement with the TSI EEPS and through a dedicated LDSA response instruments the EAD. 

Hence, the result of this study provides a link between observed instrument response from an 

EAD and an EEPS to a probable toxicity response.  

The study has adopted a novel approach to highlight engine operation, technology and 

durability as a main factor in relating particle emissions and its subsequent toxicity. The 

approach attempts to provide a complete analysis of source to end effect relationship in PM 

emissions. 
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CHAPTER 3 -  EXPERIMENTAL SETUP 

3.1 VEHICLE EMISSIONS TESTING LABORATORY 

The West Virginia University Transportable Heavy Duty Vehicle Emissions Laboratory 

consists of transportable heavy-duty chassis dynamometer and a transportable emissions 

measurement container. 

3.1.1 CHASSIS DYNAMOMETER 

The chassis dynamometer test bed consists of rollers, flywheel assembly, eddy current 

power absorbers, differentials, hub adapter, torque and speed transducer built onto a tandem 

axle semi trailer (see Figure 3-1 and Figure 3-2). The hydraulic jack on the chassis dynamometer 

test bed is functional in setting the test bed on the ground and onto the trailer. The various 

components of the chassis dynamometer are discussed in detail below. 

• Rollers: The chassis dynamometer consists of a set of two paired rollers in the front 

which supports the single or forward drive axle and a set of single roller at the back 

in order to support the rear axle of tandem axle vehicles. The rear pair of rollers can 

be placed in three different positions to accommodate tandem spacing of 4 to 5 ft 

(1.22 – 1.52m) and each roller is 12.6 inch (32 cm) in diameter with their axis along 

the length of the test bed. Each pair of rollers is linked by a flexible coupling to have 

uniform rotational speed on either side of the vehicle and the coupling was 

designed to accept 20% of the wheel torque in case of any imbalance due to uneven 

surface at the test location. 

• Hub Adapters: The hub adapters are used to couple the engine drive axle with the 

flywheel assembly and eddy current power absorber via torque and speed 

transducer. The adapter is made of a 0.5 inch (13 mm) thick aluminum plate of 

diameter 1.8 ft (0.55 m). 

• Load Simulation System: The load simulation system consists of a flywheel 

assembly, an eddy current power absorber, a speed and torque transducer, double 

differentials and universal couplings on either side of the vehicle to be tested as 

shown in the figure below. The power from the vehicle’s drive axle is transmitted to 



 

44 | P a g e  
 

the flywheel assembly and power absorbers by a hub adapter which is connected to 

a 24 inch (61 mm) long spline shaft running into a pillow block. The spline shaft is 

connected to the speed and torque transducer by a universal coupling which can 

withstand torque up to 16,415 lb-ft (222,256 N-m) on either side. The speed and 

torque transducer is capable of providing the data logging computer with time 

varying output torque at a rate of 10 Hz. The torque transducer drives a second 

shaft via companion flange. This shaft transfers power to a right-angle speed 

increasing drive, a double reduction differential with a ratio of 1:3.65 which drives 

the flywheel assembly and a second differential. The second differential with a ratio 

of 1:5.73 drives the eddy current power absorbers. 

• Flywheel Assembly: The flywheel assembly is designed to simulate vehicle gross 

weights of 40,000 to 66,000 lb. With the maximum being 40,000 lb (18,144 kg) at a 

wheel diameter of 4 ft (1.22 m) and 66,000 lb (30,000 kg) at a wheel diameter of 

3.25 ft (1 m). The flywheel assembly consists of a drive shaft with four drive rotors 

running in two pillow blocks. Each drive shaft supports eight flywheels of different 

sizes with bearings resting on the shaft. By selectively engaging the flywheels to the 

drive rotors, vehicle mass can be simulated in 250 lb (113 kg) increments. 

• Eddy Current Power Absorbers: A Mustang model CC300 air cooled eddy current 

dynamometer mounted on two bearings is used as power absorbers. The power 

absorbers are used to simulate load due to rolling friction of the tires and the 

aerodynamic drag resistance. The eddy current dynamometer has the capability of 

absorbing 300 hp (224 kW) continuously and 1000 hp (745.7 kW) intermittently 

during peak operation. Dynamometer load at any speed is controlled by the direct 

current supplied to the coils and the power absorbed is measured by the torque 

arm force transducer (load cell). 
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Figure 3-1 Components of a Chassis Dynamometer 

 
Figure 3-2 Connecting and supporting structure of chassis dynamometer 

While the driver is responsible for the control of the speed, the transient torque must 

be controlled by an automated system. The load supplied by the flywheels simulates the static 
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weight on the engine and is controlled by their rotational speed, while the load due to rolling 

friction and wind drag is simulated by the eddy current dynamometer. The eddy current 

dynamometer is controlled by a Dyn-Loc IV control system provided by Dyne-Systems. The Dyn-

Loc IV control system operated by a PID control loop where “P” stands for proportional control 

in which the controller calculates error between the actual and the desired output resulting in a 

restoration signal linearly proportional to the error. “I” stands for integral control in which the 

controller calculates the average error over a time and provides a restoring signal which is the 

product of the error and the time the error persisted. It is used to restore the original set point. 

D stands for differential control in which the controller calculates the rate at which the set point 

is changed and produces a corrective signal to reach the set point quickly. Hence, PID controller 

provides a fast and smooth response in controlling the transient set points. During the test, the 

power absorbers receive the torque set point from the dyne-loc controller. The set point is 

equal to the road load power and it is calculated using the following Equation 7: 

𝑃𝑟 = �𝐶𝑟 ∗ 𝑀 ∗ 𝑔 + �
1
2
� ∗ 𝜌𝑎 ∗ 𝐶𝑑 ∗ 𝐴 ∗ 𝑉2� ∗ 𝑉 

           Equation 7 

Where: 

Pr

C

 = Road load power 

r

M = Vehicle gravitational mass 

 = Coefficient of rolling resistance 

ρa

A = Frontal area of vehicle 

 = Air density 

CD

V = Vehicle speed 

 = Coefficient of drag 

The updating of set points and data acquisition are performed at 10 Hz. 
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3.1.2 TRANSPORTABLE EMISSIONS MEASUREMENT SYSTEM (TEMS) 

The housing for the new Transportable Emissions Measurement System (TEMS) is a 

reconstructed 9.1m (thirty-foot) long cargo container which houses a high efficiency particulate 

filter (HEPA) primary dilution unit, two primary full-flow dilution tunnels, a subsonic venturi, a 

secondary particulate matter sampling system, a gaseous emissions analytical bench 

instrumentation system, a computer-based DAQ and control system, a heating, ventilating and 

air conditioning (HVAC) system, and chassis dynamometer control systems. Figure 3-3 shows 

the schematic of the transportable laboratory container. The two primary dilution tunnels 

inside the container, of 0.46 m (18 inches) ID and 6.1 m (20 feet) long, were designed to provide 

dedicated measurement capability for both low PM emissions (“clean”)  vehicles (with the 

upper tunnel referred as the “clean tunnel”), as well as traditional diesel-fueled vehicles with 

high PM levels (lower tunnel referred as “dirty tunnel”). This provision reduces tunnel history 

effects between test programs of differing exhaust emission composition. A stainless steel 

plenum box houses two HEPA filters for filtering primary dilution air, as well as twin dual-wall 

exhaust transfer inlet tubes dedicated as exhaust inlets for the upper and lower tunnels.  The 

HEPA plenum is connected into the main dilution tunnels, which are selectively connected to 

the subsonic venturi via stainless elbow sections.  The air compressor and two vacuum pumps 

are installed inside a noise isolating overhead. An air tank stores compressed air and provides 

shop air to the zero air generator (a device removes PM and THC) for instrumentation use. A 

PM sampling box for the secondary dilution tunnels is located alongside the primary tunnels, 

downstream of tunnels’ sample zones. The secondary PM dilution tunnel of either the dirty or 

clean tunnel is connected to the PM sampling box for PM measurement during the test. Figure 

3-4 shows the TEMS container on the transportation Landoll 435 trailer. 



 

48 | P a g e  
 

 
Figure 3-3 Schematic of the TEMS container 

1- Exhaust inlet of dirty tunnel; 2- Exhaust inlet of clean tunnel; 3- Clean tunnel; 4- Dirty tunnel; 5- 

Air compressor; 6- Vacuum pumps; 7-  Oven; 8- PM sampling box; 9- Glove box; 10- Zero air generator; 

11- MEXA-7200D motor exhaust gas analyzer; 12- Computer table; 13- Air tank; 14- DAQ rack; 15- 

Subsonic venturi; 16- Air conditioner deck; 17- Outlet to blower; 18- Ventilation fan; 19- HEPA filters 

 

 
Figure 3-4 View of the TEMS container at the test facility 
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3.1.2.1 GASEUOUS EMISSIONS SAMPLING SYSTEM 

The gaseous emissions measurement system was designed to be capable of measuring 

raw exhaust and diluted emission levels. Emissions levels vary continuously over transient test 

cycles. Final emissions values must be determined with correction for background level. The 

background sample flow is taken from a sample probe located immediately after the HEPA 

filters inside the plenum box. A diluted sample flow is drawn from the sample probe installed at 

the primary sample zone, providing a bag of composite diluted exhaust, which is analyzed along 

with the background bag. While the purpose of the background batch sampling is to correct for 

background gaseous levels, the diluted batch sampling provides for a check on integrated 

continuous values for quality control purposes. In some cases, where the emissions vary over a 

wide concentration range over a cycle, a dilute bag analysis may also provide a more accurate 

assessment of those species than can be obtained by integration. This is often the case for CO 

from legacy diesel vehicles over severe transient cycles.  

The container is equipped with Horiba MEXA 7200D motor exhaust gas analyzer for 

gaseous measurements from the dilution tunnel. The MEXA7200D is capable of measuring all 

regulated emission species that include THC, CO, CO2, NOx and methane through a non-

methane cutter equipped secondary hydrocarbon channel. The unit can be fitted with various 

analyzer modules, and the current configuration consists of AIA-721A CO analyzer, an AIA-722 

CO/ CO2 analyzer and a CLA-720 “cold” NOx analyzer part of the cold sample stream and the 

FIA-725A THC analyzer and CLA-720MA NOx

3.1.2.2 PM SAMPLING AND MEASUREMENT SYSTEM 

 analyzer part of the heated sample stream. 

The measurement container houses the PM sampling system for the transportable 

laboratory. However, the measurement system of pre-weighing and post weighing the 

gravimetric filters are carried out in Morgantown, WV at the WVU facility which houses a class 

1000 clean room, with controlled environment for accurate weighing of the filters. The 

measurement system is operated with in-house developed software to calibrate the scales, 

perform measurements, and also to monitor the filters history. The schematic of the on-board 

PM sampling system is as shown in Figure 3-5 
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Figure 3-5 Schematic of the CFR 40 Part 1065 Regulated PM sampling system 

Figure 3-6 shows the view of the temperature controlled PM sampling system with two 

independent streams for the clean tunnel and the dirty tunnel. 

 
Figure 3-6 CFR 40 Part 1065 compliant PM sampling system on-board the transportable laboratory 

container 
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The sampling system consists of the dilution air stream, which is filtered and cooled to 

remove moisture. The dry dilution air is then heated to 25±5°C as per regulations prescribed in 

CFR 1065 (USEPA, 2012). The conditioned secondary dilution flow is subsequently introduced to 

the main PM flow drawn from the primary dilution tunnel and allowed to mix in the secondary 

dilution tunnel. The size of the secondary dilution tunnel was determined by Simulink modeling 

[71]. The secondary tunnel wall is maintained at 47°C. The flow from the secondary tunnel 

enters in to the PM sampling chamber through a PM2.5

3.1.2.3 CVS FLOW CONTROL 

 cyclone and into the 47mm filter holder. 

The PM system consists of two streams with two separate cyclones and filter holders, 

connected to the two different primary dilution tunnels. The PM box is also maintained at 47°C. 

All flows are controlled by calibrated mass flow controllers. 

The laboratories CVS flow control is achieved through a sub-sonic venturi (SSV). The SSV 

installed on the transportable laboratory was supplied with 300 series Schedule 5 stainless steel 

pipe sections, with a nominal internal diameter of 12” The SSV throat diameter was 6.26”. To 

ensure the accuracy and repeatability of SSV flow rate measurement, a straight section of 

Schedule 5 pipe, ten feet in length, was flanged and attached to each end of the subsonic 

venturi to minimize the flow wakes, or eddies, or flow circulation which might be induced by 

pipe bends or coarse inside walls. This particular SSV was calibrated with a reference SSV from 

400 scfm to 4000 scfm following the procedure defined in 40 CFR Part 1065.340. The flow rate 

of the SSV is calculated, in real time, using the equations in 40 CFR Part 1065.640 and 40 CFR 

Part 1065.642 (USEPA, 2012). 

3.2 TEST VEHICLE AND ENGINE SPECIFICATIONS 

Two transit buses from the Sacramento transit agency were used for the study. The buses 

were CNG fueled and initially intended to be of one high mileage and one lower mileage test 

vehicles. However, the since the buses were all commissioned relatively at the same point into 

the fleet, the mileage differences were not significant. Hence, the test plan was modified to 

procure and test two buses with similar odometer readings. Table 2and Table 3 list the vehicle 

and engine specifications of the Sacramento transit buses tested in this study. 
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Table 2 Test vehicle specifications 

Bus 
# Vehicle ID Chassis 

Manufacturer GVWR Odometer 
Reading 

Vehicle 
Model 
Year 

After-
treatment 

System 
Fuel 

2834 1VHGH3W2586703737 Daimler Bus 
North America 42540 77538 2008 

3-Way 
Catalyst, 
Cummins 

CNG 

2824 1VHGH3W2486703602 Daimler Bus 
North America 42540 84994 2008 

3-Way 
Catalyst, 
Cummins 

CNG 

 

Table 3 Test vehicle engine specifications 

Engine 
Manufacturer 

Engine 
Model 

Engine 
Model Year 

Displacement/Power 
(L/HP) 

Type of 
Fuelling 

NOx/PM 
(gm/bhp-hr) * 

Cummins ISLG 280 2007 8.9 / 280 CNG 
Stoichiometric 0.2 / 0.01 

* Values indicate the USEPA emissions standard compliance of the engine 

3.3 TEST CYCLE 

Three test cycles were used for this study. Urban Dynamometer Driving Schedule (UDDS), 

45 MPH steady state and idle test. 

The UDDS cycle simulates the freeway and non-freeway operation of a heavy-duty vehicle. 

The UDDS and the heavy-duty federal test procedure (FTP) cycle used for engine certification 

were derived from the same data set. The cycle is of 1060 seconds in duration with a maximum 

speed of 58 MPH. The vehicle is exercised over 5.5 miles over the entire test cycle. Due to the 

expected low PM emissions levels from the test vehicles, the triplicate versions of the UDDS 

driving cycles were created. Regulated emissions were calculated over a three UDDS cycles and 

unregulated media were sampled over three repeats of a triple length UDDS on one media. 

The 45 MPH steady state cruise cycle was maintained for 1 hour. Idle test was lasted for 1 

hour and emissions were reported as grams/sec of idle. Figure 3-7 shows the 16.5 mile long and 

53 minute duration triple-UDDS cycle. 
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Figure 3-7 Speed Vs. Time trace of triple length UDDS cycle 

 

3.4 THERMODENUDER PM SAMPLING SYSTEM 

Thermodenuder PM sampling system was designed and built at WVU to perform high 

volume sampling of thermally denuded and non-denuded PM samples on filter media. The 

system was designed to contain 4 thermal denuders, with independent flow control using mass 

flow controllers to maintain a flow rate of 50 lpm. Samples downstream of the denuders were 

collected onto separate 47mm T60A20 filters. The sampling system also contained the 5th 

sampling stream for the non-denuded sample collection. This stream was designed as a high 

volume sampling stream with flow rate of 200lpm, controlled by a calibrated critical flow 

orifice. Thermal denuders were air cooled by circulating compressed air through its cooling 

stream. Figure 9 and Figure 10 show the thermodenuder sampling system setup. 
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Figure 3-8 Outside view of the thermodenuder sampling system 

 
Figure 3-9 Inside view of thermodenuder sampling system 

National instruments DAQ NI-USB6009 was used to record flow, temperature, pressure and 

also to control the set points of the mass flow controllers. National Instruments Lab View 

software was used to create the data acquisition program for the sampling system. The system 
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initiation was linked to the container in order to sync data collection with the main container 

DAQ system. 

3.5 PARTICULATE MATTER SIZING SETUP 

The study employed the TSI EEPS (TSI Model 3090) for transient particle size distribution 

measurement and the TSI EAD (TSI Model 3070A) to monitor the instantaneous particle 

concentration with respect to an aerosol parameter called total aerosol length. Both the EEPS 

and the EAD were setup up for sampling from the CVS dilution tunnel. This method of sampling 

was chosen over partial flow dilution of raw exhaust using ejector pumps in order to better 

correlate the gravimetric PM and the particle size distribution and concentration formed as a 

result of dilution within the CVS. Further the PM size distribution and concentration data could 

also be associated with toxicity data as dilution conditions for both sampling stream are the 

same. As preliminary procedures sample flow rates of the EEPS were verified with a standard 

flow meter, and the operation of the instrument was checked against the standard TSI SMPS 

(TSI Model 3936). The instrument was cleaned and electrometers were zeroed before the 

commencement of the study. 

Since the EEPS was sampling directly from the CVS tunnel, the only applicable dilution ratio 

is based on the exhaust flow (Vexhaust) and the total CVS flow (Vmix

           Equation 8 

); hence, is a function of 

engine operation. 

𝐷𝑅 =
�̇�𝑚𝑖𝑥

�̇�𝑒𝑥ℎ𝑎𝑢𝑠𝑡
=
𝑚𝑜𝑙/𝑠𝑒𝑐
𝑚𝑜𝑙/𝑠𝑒𝑐

 

Due to the lack of accurate exhaust flow measurements, the dilution ratio has been 

approximated based on a simplified carbon balance, assuming stoichiometric combustion (Eq. 

3.3), methane (CH4) and ideal air (21% O2, 79% N2) as the sole reactants as well as no carbon 

content (CO2, CO, HC) within the dilution air, and the continuous measurement of CO2 within 

the CVS tunnel. According to Equation 3.3 for each mole of CO2 produced one mole of CH4 is 

being consumed. Therefore, multiplying the amount of CO2 measured at the CVS sample plane 
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with the total flow through the CVS system (Vmix) gives the molar rate of CH4 burned as shown 

in Equation 9. 

𝐶𝐻4 + 2(𝑂2 + 3.76𝑁2)
𝑦𝑖𝑒𝑙𝑑𝑠
�⎯⎯⎯� 𝐶𝑂2 + 2𝐻2𝑂 + 7.52𝑁2 

           Equation 9 

𝐶𝐻4�𝑚𝑜𝑙 𝑠𝑒𝑐� � =
𝐶𝑂2(𝑝𝑝𝑚)

106
∗ �̇�𝑚𝑖𝑥 

           Equation 10 

Further, using the theoretical air-fuel ratio (AFRmolar) on a molar basis (9.52 for CH4), 

calculated from the stoichiometric reaction equation (Eq. 3.3) the molar rate of intake air flow 

and exhaust flow can be estimated based on (Eq. 3.5) and (Eq. 3.6), respectively. 

�̇�𝒊𝒏𝒕𝒂𝒌𝒆 �𝒎𝒐𝒍 𝒔𝒆𝒄� � =  𝑪𝑯𝟒 �𝒎𝒐𝒍 𝒔𝒆𝒄� � ∗  𝑨𝑭𝑹𝒎𝒐𝒍𝒂𝒓 

           Equation 11 

�̇�𝑒𝑥ℎ𝑎𝑢𝑠𝑡�𝑚𝑜𝑙 𝑠𝑒𝑐⁄ � =  �̇�𝑖𝑛𝑡𝑎𝑘𝑒�𝑚𝑜𝑙 𝑠𝑒𝑐⁄ � ∗  𝐶𝐻4�𝑚𝑜𝑙 𝑠𝑒𝑐⁄ � 

           Equation 12 

 

3.6 UNREGULATED EMISSIONS SAMPLING SYSTEM 

The samples of unregulated emissions were drawn at the second sampling section 

downstream of the regulated emissions sampling section. The unregulated emissions sampling 

system consisted of various sampling trains to sample different emissions which are described 

in the following sections. 

3.6.1 CARBONYLS 

The carbonyl sampling system consisted of a heated probe and a heated sampling line 

whose temperatures were maintained at 240oF (115.5oC) to prevent water condensation. A 

flow of 2 lpm was maintained using a calibrated critical flow orifice and a vacuum pump. The 

sample was collected into cartridges packed with silica gel coated with acidified 2, 4-
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dinitrophenylhydrazine (DNPH). The cartridges were then shipped to a CARB MLD laboratory 

for subsequent analysis. 

3.6.2 POLYCYCLIC AROMATIC HYDROCARBON (PAH) SAMPLING SYSTEM 

PAH was sampled from the tunnel into PUF/XAD cartridges. Sample from dilution tunnel 

was drawn at 200 lpm. The flow control was achieved through a critical flow orifice. The sample 

is admitted into the sampler through a copper tube and into a manifold which contains the 

housing for the PUF/XAD cartridge. Figure 11 shows the schematic of the PUF/XAD cartridge 

housing. The housing holds the PUF/XAD cartridge and a 70mm T60A20 filter used to capture 

the PM bound organic compounds. The pumps are initiated manually with the start of the test. 

 
Figure 3-10 Schematic of WVU PUF/XAD cartridge housing 

3.6.3 VOC CANISTER SAMPLING SYSTEM 

VOCs were collected into a steel canister for laboratory analysis using a critical flow orifice 

system provided by CARB Monitoring Laboratory Division. The canister had a capacity of 6.0L at 

atmospheric condition. The steel canisters used to collect dilute exhaust were completely 

evacuated, and a vacuum of 10mm Hg was present inside the canister prior to the start of the 

test. Sample was collected below atmospheric pressure to prevent water condensation. The 
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vacuum inside the canister was used to draw the sample from the tunnel, through the critical 

flow orifice. 

3.6.4 CYCLONIC PARTICLE CLASSIFIER 

Sampling of unregulated emissions included gravimetric analysis of particulate matter in 

size fractions of 10 µm, 2.5 µm and 1 µm. This was accomplished by using cyclone classifiers 

(URG 16.7 lpm cyclone). Cyclone classifier makes use of vertical flow inside a cylindrical or 

conical chamber to separate particles depending on the flow rate. A double vortex flow is 

induced in the conical body of the cyclone by introducing the sample tangentially at the top 

where flow spirals down along the wall, which then reverses and spirals through inner core to 

exit the chamber. Particles with sufficient inertia impact on the cyclone wall as they cannot 

follow the streamlines of the flow exiting the chamber. The various size fractions of PM were 

sampled directly from the primary dilution, as the tunnel was built to a single stage PM 

sampling specification. The samples were collected on a 47mm Teflon coated glass fiber filters 

(T60A20). The flow through the cyclone was controlled using mass flow controllers. 

3.6.5 GAS BAG SAMPLING 

Tedlar bags were used to collect samples of dilute exhaust gas and dilution air during each 

emissions test. The bag samples were analyzed at the end of every test to perform background 

correction of the regulated emission constituents. The dilute exhaust bag served as a QA/QC 

check point when compared with the continuous sample. 

3.7 INSTRUMENTATION CONTROL AND DATA ACQUISISTION 

A software application developed in-house controlled the power absorbers and the data 

acquisition system. The program acquired the raw data (ADC codes) and a reduction program 

converted the raw data into proper engineering units using respective calibration curves. 

3.8 MEDIA 

Different types of media were used to collect samples for speciation and gravimetric 

analysis during the test procedure. The media were conditioned, weighed and handled as per 
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the regulations outlined in 40 CFR, Part 1065. A list of species and the media used to collect 

them is given in the Table 4. 

Table 4 List of unregulated species and sample media 

Species Collecting Media 
Volatile Organic Compound (VOC), VOC Steel Canister 

PAH, n-PAH TX 40 70 mm Filter + 
PUF/XAD Cartridge 

Aldehydes DNPH Cartridge 

PM2.5 Metals/Ions Teflo (47mm) Filter 

PM1.0/PM 2.5 Gravimetric T60A20 (47mm) Filter 

 

3.9 MEDIA CONDITIONING AND WEIGHING 

The media used in collecting PM for gravimetric analysis were conditioned and pre-

weighed in the WVU engine research center facility before transporting them to the test site. 

The filters were conditioned in an environmentally controlled chamber (Class 1000) maintained 

at 70o

The filters were pre-weighed after a stabilization period of 24 hours using a Metler -Toledo 

Microbalance. The balance was interfaced with a computer in which the filter weights were 

logged for future reference and use. The filters were conditioned for several hours in the 

chamber before the petri-dishes were sealed and packed in padded envelopes for shipping to 

the test site. 

F with a relative humidity of 50%, for at least 1 hour and not more than 80 hours before 

being weighed according to 40 CFR, Part 1065 specifications. The 70mm filters were placed in 

the glass petri dishes and 47mm filters were placed in plastic analyslides, with their lids closed 

but not sealed in order to prevent dust from accumulating on the media while allowing for 

humidity exchange. Two reference filters were conditioned with the test filters and placed in 

the environmental chamber in order to account for change in the filter weight due to 

fluctuation in humidity. The reference filters were weighed before and after any set of media 

were weighed to ensure that the conditions in the environmental chamber were stable. 
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3.10 MEDIA SHIPPING AND TRACKING 

The petri-dishes containing the filter media were sealed and placed in padded envelopes 

after they had been pre-weighed. The set of envelopes containing media required for one test 

were placed together to aid in quick loading of the media into the sampling system. The sealed 

media were transported overnight to the test site in coolers filled with frozen water pouches. 

After the media was received at the test site it was placed in the conditioning room until used. 

A media tracking application was developed to identify the media with the test sequence and 

run number. The tracking tool also aided in QA/QC protocol. The used media were placed back 

into their respective petri-dishes in the conditioning room and were tracked before shipping to 

the location, where they were analyzed. 
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CHAPTER 4 -  EMISSIONS TESTING PROCEDURE 

4.1 LABORATORY SET-UP 

The chassis dynamometer which is built onto a flat bed trailer was set-up on a flat surface 

and leveled to prevent variation in the vehicle’s inertial loading which is simulated using 

rotating flywheels. The emissions measurement container which houses the analyzers, dilution 

tunnel, dynamometer control and signal conditioning devices was placed close to the chassis 

dynamometer. This reduced the length of exhaust tubing between the tail pipe and the dilution 

tunnel in turn reducing thermophoretic and other losses of particulate matter in the transfer 

tube. The blower was placed at the end of the dilution tunnel and a flexible air duct was used in 

connecting the tunnel to the blower. HEPA filters were installed to the inlet manifold of the 

dilution tunnel. After all the connections were made to the dilution tunnel the instrument 

trailer was prepared for testing. 

4.2 LABORATORY CHECKS 

Initial laboratory set-up procedures include complete measurement system verification 

followed by calibration. All required system verifications are performed as per requirements 

stated in 40 CFR, Part 1065, Subpart D. The measurement container is equipped with the Horiba 

Mexa 7200 Motor Exhaust Gas Analyzer, which is capable of automatically performing the 

required analyzer verification tests. The verification procedure and pass criteria of the tests 

were in accordance to the provisions described in 40 CFR, Part 1065, Subpart D. Table 6 lists the 

complete set of analyzer verification checks performed on field prior to the commencement of 

the testing. Table 5 lists the complete set of leak checks performed on the gaseous and PM 

measurement systems. 

Table 5 Gaseous and PM measurement system verification checks 

Leak Checks Pass Criteria 
Leak and Delay Time Check (all analyzers) 

Within ± 5% over 30 sec 
interval PM System 1 Leak Check 

PM System 2 Leak Check 
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Table 6 Gaseous analyzer verification checks 

Analyzer Checks Pass Criteria 
THC1 Hang-up  
THC2 Hang-up  

CO(L), CO2 Within ±1%  Interference Check 

THC, O2 Within ± 2%  Interference Check 

CO2 Quench NOx Within ±1% 1 

CO2 Quench NOx Within ±1% 2 

H2O Quench NOx Within ±1% 1 

H2O Quench NOx Within ±1% 2 

Non-Methane Cutter Efficiency PFCH4>0.85 and PFC2H6<0.02 

 

4.3 MASS FLOW CONTROLLER CALIBRATION 

Mass flow controllers were used in controlling the flow through cyclonic particle classifier, 

TPM flow through the filter and various other unregulated emissions sampling systems. The 

calibration was performed against a Laminar Flow Element supplied by Meriam Flow 

Measurement Devices. Meriam provides a calibration equation and co-efficient for each LFE 

which is obtained through calibration involving a flow meter that is traceable to NIST standards. 

A five point calibration was performed on the MFCs between fully open and fully closed 

position. 

Differential pressure across the LFE and absolute pressure was measured using a Heise 

pressure reader and the temperature was measured using a Fluke Temperature calibrator. The 

actual flow measured through the LFE was converted to standard flow by 40 CFR, Part 1065 

specified standard condition of 20o

4.4 CVS-SSV DILUTION TUNNEL VERIFICATION 

C and 101.1kPa. 

The CVS system was verified by injecting a known quantity of propane into the primary 

dilution tunnel while CVS-SSV system operating. The concentration of the propane was 

determined using a pre-calibrated HFID analyzer and the mass of propane injected was 
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measured by the flow data and the density of propane. The propane injection test helped in 

determining leak in the tunnel and any discrepancy in the flow measuring device (CVS-SSV 

system).  

The method uses a propane injection kit with a critical flow orifice meter to accurately 

measure the amount of propane injected into the tunnel. The flow rate of propane through the 

orifice meter is determined by measuring the inlet temperature and pressure using Equation 

13. 

𝑞 =
𝐴 + (𝐵 ∗ 𝑃) + (𝐶 ∗ 𝑃2)

√460 + 𝑇
 

           Equation 13 

Where: 

q         = flow rate through orifice in SCFM 

A, B, C = Calibration coefficients of the orifice provided by the propane injection kit   

           manufacturer (Horiba) 

P        = Absolute orifice inlet pressure, in psia 

T        = Orifice inlet temperature in o

The total flow through CVS is given by 

F 

Equation 14 

𝑄 =
�̇�

60 ∗ 𝑡 

           Equation 14 

Where: 

Q = Total volume in SCF 

V = Flow rate in SCFM measured by the subsonic venture of the CVS tunnel 

t = Time interval in seconds, usually 300 seconds  

The calculated sample concentration was determined by Equation 15 
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𝑪𝒄𝒂𝒍𝒄 = �
𝒒
𝑸
∗ 𝟏𝟎𝟔� ∗ 𝟑 

             Equation 15 

The system error is given by Equation 16 

𝑬𝒓𝒓𝒐𝒓 =  �
𝑪𝒂𝒃𝒔
𝑪𝒄𝒂𝒍𝒄

− 𝟏� ∗ 𝟏𝟎𝟎 

           Equation 16 

Where: 

Cobs

If the error is greater than 2%, then the cause for discrepancy was found and corrected. 

The error could be due to various reasons such as leaks before the sampling plane, leaks after 

the sampling plane and improper analyzer calibration. Three repeatable propane injections 

within a difference 0.5% of each other is required to pass the dilution tunnel verification test. 

 = Measured concentration of the injected propane by HFID analyzer 

4.5 TEST PROCEDURE 

Before mounting the vehicle on the chassis dynamometer the appropriate flywheel 

combination was determined and locked in place to simulate the inertial load of the vehicle. 

The inertia setting for the bus was equal 34450 lbs. The outer rear wheel on the drive axle is 

removed and fitted with hub adapters which are later connected to the face plate. The vehicle 

was backed onto the dynamometer and the vehicle drive axle which drives the flywheel 

assembly and power absorbers were connected through a hub adapter. The vehicle was leveled 

with the drive axle and the tires were checked for any distortion as it would add to the vehicle 

loading. The vehicle exhaust was now connected to the dilution tunnel via insulated transfer 

tubes. The vehicle was chained down to the dynamometer bed as a safety measure. 

The vehicle was made to run at a high speed after being mounted on the dynamometer to 

warm the lubricating oil in the differentials. This was done to reduce additional load on the 

vehicle due to highly viscous oil. During warming up of the differentials the gas analyzers were 

zero-spanned with blower operating at set-point. The driver interface speed monitor and 
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communication head sets were put in place to aid the driver in following the scheduled drive 

cycle. A dummy test was conducted by making vehicle to run over the scheduled drive cycle 

with dummy media loaded in the tunnel to check whether the gas analyzers operated within 

the range for which they were calibrated and to check the flow through the mass flow 

controllers. If the analyzers pegged or measured below the range then they were recalibrated 

with proper span gas and the mass flow controllers were checked for any malfunction. After the 

warm up run the vehicle was shut down and allowed to soak for twenty minutes. During the 

soak time the official media required for various sampling were loaded in their respective 

holders and mounted onto the tunnel. The media loading was carried out in the controlled 

chamber to avoid accumulation of dust or other debris, a set of field blanks were maintained to 

study the effect of transportation on the used and unused media. 

This study was unique for the fact that the work plan required adequate mass collection on 

the thermally denuded and non-denuded filters for toxicity and mutagenicity assays. The 

toxicity analysis required 1mg loading on the filters and the mutagenicity assays required 0.5mg 

loading on the filters. However, natural gas PM consisting predominantly of organic fraction, 

would be completely devoid of any mass in the thermally denuded sample. Hence, the test 

matrix was decided to be based on the mass loading on the filters of the non-denuded stream. 

Initial test runs were conducted to infer the PM mass emissions from the test vehicles. Due 

to the lack of accurate weighing capabilities on field, the number of hours of cycle repetitions 

was decided based on the initial test runs for each cycle. Table 7 below summarizes the number 

of repetitions of the individual cycle to attain adequate mass loading. 

Table 7 Cycle repetitions for PM mass loading 

Test Cycle Cycle Duration 
(Min) 

Number of 
Repetition 

3x UDDS 53 10 

Idle 60 13 

45 MPH 60 12 
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Vehicles were repeatedly exercised over their respective drive cycles for the stipulated 

number of testing hours to collect PM onto the filters. The filters were not replaced and mass 

from consecutive testes were repeatedly loaded onto the same filters. Decision to extend the 

test matrix, if required were made based on approximate and unconditioned weighing of the 

filters at the Stockton, CARB facility. Unregulated sampling streams were sampled over three 

repetitions of each cycle. Tunnel blanks and system blanks were collected for all sample 

streams at the end of each testing day. Figure 4-1 and Table 8 summarizes the different special 

sampling streams with their respective sampling instruments and flow rate settings. 

 
Figure 4-1 Schematic of CVS and sampling streams 

Table 8 Summary of sampling media, sampling devices and methods used to analyze unregulated 
exhaust species 

ID Sample Media Type Flow rate/ Flow Control 
Unregulated Sampling 

3 Carbonyls DNPH cartridge 2 lpm, Critical flow orifice 

4 VOC Steel Canister Critical flow orifice provided 
by MLD 

5 PAH PUF/XAD and 90mm T60A20 200 lpm, Critical flow orifice 

6 PM 2.5 EC/OC Pre-fired Quartz (WVU Critical flow 
Cyclone Sampling) 

16.7 lpm (2.5 micron URG 
Cyclone) 

9 PM 2.5 Ions Teflon (WVU Critical flow Cyclone 
Sampling) 

16.7 lpm (2.5 micron URG 
Cyclone) 
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10 PM 2.5 Metals Teflon (WVU Critical flow Cyclone 
Sampling) 

16.7 lpm (2.5 micron URG 
Cyclone) 

13 Particle Size Dist. Transient EEPS, EAD 10 lpm 
ID Sample Media Type Flow rate/ Flow Control 

Toxicity Sampling 

11 Toxicity stream 
with Volatiles 47mm T60A20 200 lpm, Critical flow orifice 

12 Toxicity stream 
w/o Volatiles 

47mm T60A20 through the 
Thermodenuder System 

50 l/min/ denuder stream, 
mass flow controller 

11 ROS Tox 47mm T60A20 2.5 scfm, mass flow controller 
11 Mutagencity 47mm T60A20 2.5 scfm, mass flow controller 

 

4.6 EMISSIONS CALCULATIONS 

4.6.1 EQUATIONS TO CALCULATE DISTANCE SPECIFIC MASS OF UNREGULATED 

SPECIES 

The equation used in calculating the distance specific emissions of unregulated 

components is similar to the equation used in calculating the regulated emissions. The 

unregulated species analyses were carried out by multiple institutions as tabulated in Table X. 

The chemical speciation analysis was performed by calculating the total volumetric flow 

through the tunnel. 

( )105.20.1/min PMPMPMDenuderVOCDNPHXADPUFimixTunnel VVVVVVVVVV ++++++++=  

             
           Equation 17 

Where: 

VTunnel

V

 = Total tunnel flow before removing the samples, in SCF 

mix

V

  = Total flow through the tunnel with samples removed for analysis, in SCF 

mini

V

  = Total flow through the secondary dilution tunnel, in SCF 

PUF/XAD

V

 = Total flow through the PUF/XAD cartridge, in SCF 

DNPH  = Total flow through the DNPH cartridge, in SCF 
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VVOC

V

  = Total flow collected into VOC canisters, in SCF 

Denuder

V

 = Total flow from denuded and non-denuded stream, in SCF 

PM1.0, VPM2.5, VPM10.0

The tunnel concentration of unregulated species is calculated by the following equation. 

 = Total flow through the respective cyclones, in SCF 

610** −= sampletunnelectedTestUncorr SpeciesVSpecies  

           Equation 18 

Where, 

SpeciesTestUncorrected

Species

 : Tunnel concentration of individual species without correcting for  

    background concentration (gms). 

Sample

3/ mgµ

          : Concentration obtained respective analysis procedure and intital  

    data processing from SWRI ( ). 

Vtunnel Equation 17           : As calculated in  (m3

   

) 

( )mileg
ceTotalDis

Species
Sepcies ectedTestUncorrceSpecificDis

ectedTestUncorr /
tan

tan =  

           Equation 19 
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CHAPTER 5 -  RESULTS AND DISCUSSIONS 

5.1 REGULATED EMISSIONS 

A summary of the regulated emissions from the two buses tested over the three different 

test cycles are shown in Figure 5-1 and Figure 5-2. Figure 5-1 represents the regulated 

emissions as work specific and Figure 5-2 represents the regulated emissions as distance 

specific. The emissions from the chassis laboratory are usually represented as distance specific, 

however due to the availability of hub work (ahp-hr) the results are also represented in a work 

specific format. The work specific results can be used as an indication of the vehicles emissions 

limits with respect to its certification values. Results are presented as averaged results of 

number of tests that satisfy a COV of 5% for CO2 emissions. The error bars indicate the 

maximum and minimum emission values of the averaged tests. The CO2

Regulated emissions were sampled over a triplicate length UDDS cycle. The 2010 compliant 

ISL G-280 Cummins CNG engines are stoichiometrically fueled, 3-way catalyst equipped 

engines. The 3-way catalyst is effective in reducing NOx emissions with stoichiometric fuelling. 

Axle-work specific NOx emissions from the vehicles were close to certification limit of 0.20 

g/bhp-hr. However, it is to be noted that certification values are calculated to work available at 

flywheel, and the chassis dynamometer calculates work available at the wheels. Engine work 

would be significantly higher than the work available at wheels due to transmission 

inefficiencies and loading from auxiliary systems such as air compressors. 

 are scaled down by a 

factor of 100 for ease of data plotting. Idle emissions are plotted as g/sec and scaled by a factor 

of 100 for ease of plotting. The hydrocarbon (HC) plotted in the chart represents THC. The 

presence of an oxidation catalyst reduced the concentration of NMHC to very low levels, and 

hence the THC concentrations were very close to the methane concentrations. THC values are 

plotted to avoid reporting very small and in some cases negative NMHC values. 

NOx emissions from bus 2 were 30% lower than bus 1 emissions over the UDDS cycle. This 

could be due to the differences in catalytic activity in reducing NOx emissions. Further the 

difference in catalytic activity is also observed in the emissions of CO and THC from the two 
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buses. Bus 2 was observed to emit 49% lower CO emissions than bus 1, similarly the THC 

emissions from bus 2 were 46% lower than bus 1. It is also to be noted that a 6% difference in 

CO2 emissions over the UDDS cycle between the two buses indicate a very similar fuel 

consumption. The PM emissions from bus 2 were 52% greater than of bus 1. CNG vehicles are 

usually characterized by low PM mass emissions with higher organic carbon or volatile carbon 

fraction of PM. A major portion of the PM emissions from a natural gas vehicle is attributed to 

entry of lubrication oil into the combustion chamber. The observed results could indicate a 

higher lubrication oil effect on bus 2 in comparison to bus 1. 

NOx emissions were close to detection limits, during the 45MPH steady state cycles, due to 

a steady fuelling rate. Stoichiometric engine’s fuelling is usually characterized by slight 

oscillations in air-fuel ratio known as dithering. Dithering aids in the simultaneous reduction of 

NOx, CO and hydrocarbons. The frequency and amplitude of dithering, directly affects the 

reduction efficiencies of the compounds, since the optimum reduction window is continuously 

changing. The dithering procedure is better controlled and well optimized during steady state 

operation as throttle demand and load variations are minimal. Hence, the resulting dithering 

frequencies and amplitude during cruise mode operation results in the best possible efficiencies 

for NOx, CO and THC emissions. As a result the 45 MPH cruise mode driving cycle resulted in 

low NOx emissions of 0.096 gms/ahp-hr and 0.157 gms/ahp-hr for bus 1 and bus 2 respectively.  
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Figure 5-1 Axle work-specific regulated emissions summary of test vehicles over three different driving 

cycles 

The PM mass emission on idle mode from bus 2 was 64% higher than bus 1. This could be 

attributed to the increased lubrication oil consumption by engine in bus 2. Although the total 

miles travelled by both buses are very similar, differences in day to day duty cycle as result of 

difference in operating routes could possibly affect emissions rates from engines, specifically 

PM. Vehicles operating on routes characterized by denser traffic and more frequent stops 

would operate extensively on lower loads and subject to frequent accelerations and 

decelerations which could influence oil consumption rate of an engine and result in higher mass 

emissions rates of PM. 
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Figure 5-2 Distance specific regulated emissions summary of test vehicles over three different driving 

cycles. 

Oxidation catalysts are more efficient in reducing NMHC than methane. Methane usually 

requires sustained high exhaust temperatures for complete catalytic light-off. The fact that the 

Cummins ISLG platform is stoichiometrically fueled, results in sustained high exhaust 

temperature, even at low load operating conditions. Hence, the THC emissions represented in 

the figures above, indicate near complete methane emissions with NMHC concentrations below 

detection limits of a FID analyzer. However, ppb levels of volatile hydrocarbon could be 

detected through gas chromatography analysis of canister samples and results of such analysis 

are presented in section 5.2.3. 

5.2 UNREGULATED EMISSIONS 

The study involved the speciation of carbonyl, PAH compounds, EC/OC and VOC. PAH 

compounds were extracted and quantified by South West Research Institute (SWRI) and 

carbonyl, EC/OC and VOC were analyzed by Monitoring Laboratory Divisions (MLD) of CARB. 
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Raw data reported by the different institutions were reduced with tunnel flow rates to calculate 

grams of species in the dilution tunnel. 

The results are reported uncorrected for background, with background values plotted 

separately as tunnel background concentrations. This method has been adopted to avoid 

reporting negative background corrected test values in cases of concentrations with high 

measurement uncertainty due to measurement close to or below detection limit. 

5.2.1 POLY AROMATIC HYDROCARBONS (PAH) EMISSIONS 

The PAH data contains speciation results of 22 different PAH compounds. PAH compounds 

have major health impacts and EPA has classified these pollutants under the Hazardous Air 

Pollutants (HAP) category. PAH compounds are considered to be carcinogenic in nature. 

Emissions of PAH compounds are a characteristic to diesel engines, and these compounds are 

most often associated with PM fraction of diesel emissions. However, their concentrations in 

CNG exhaust have found to be minimal and mostly originating from lubrication oil combustion. 

Sampling of PAH compounds was targeted towards three phases, namely gas phase, semi-

volatile phase and particle phase. The gas phase and semi-volatile phase are captured in the 

PUF/XAD cartridge and the particle phase is captured in the 90mm T60A20 upstream filter. 
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Figure 5-3 Distance specific (time-specific for idle) PAH emissions results of CNG bus 1 

Figure 5-3 and Figure 5-4 and represent the distance-specific PAH emissions of bus 1 and 

bus 2 respectively. Only analytes whose concentrations were found to be within the detection 

limits of the instruments have been reported. SWRI had assigned a zero concentration for 

analytes below detection limit. 

The PAH emissions from the two buses were observed to be the same order of magnitude. 

With the absence of aromatic content in the fuel, the source of PAH emissions could be 

attributed to the lubrication oil consumption in the engine. Naphthalene was found to be the 

major contributor towards PAH emissions in both vehicles. Also, significantly high PAH 

concentrations were detected in the tunnel background samples. Similar observations were 

documented during in previous studies conducted in California. 
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Figure 5-4 Distance specific (time specific for idle) PAH emissions results of CNG bus 2 

 

5.2.2 ELEMENTAL CARBON/ORGANIC CARBON (EC/OC) 

EC/OC data was reported by CARB MLD. Samples were collected on to pre-fired quartz 

filters and shipped to MLD for EC/OC quantification. The analysis method involved the Thermal-

Optical Reflectance (TOR) and Transmittance (TOT) procedure. TOT procedure is based on the 

EPA/NIOSH 5040 method and reports corerected EC fraction that take into account the 

pyrolysis of OC during the analysis procedure. The method quantifies 4 different OC fractions 

depending on the amount of CO2
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 liberated at different temperatures and oxidizing 

environments. Also, reported is the EC fraction oxidized above 550°C. TOR method utilizes a 

laser and a photo diode to monitor the reflectance of the light non-absorbing OC and the light 

absorbing EC, to quantify the pyrolyzed portion of the OC. Similarly, the transmittance method 

utilizes a laser photo diode and a photocell to detect the transmittance of the filter. Both the 
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transmittance and reflectance aid in correcting for the organic fraction that was pyrolyzed and 

converted to EC during the heat ramps.  

 
Figure 5-5 Distance specific EC and OC emissions results of bus 1 

Figure 5-5 show the distance specific EC and OC emissions for bus1 and bus 2 respectively. 

Results of all the different OC and EC quantification methods for a given cycle have been 

plotted. It can be seen that the PM from the CNG buses were completely organic in nature and 

is consistent with the established theory of CNG vehicles exhaust being completely or very low 

on EC concentrations. The TEC observed in the UDDS cycle of bus 1could be an outlier in the 

transmittance data. EC and OC emissions during the idle of bus 1 were observed to be close to 

background levels. 

The organic fraction content of PM from bus 2 is similar to that observed in bus 1. A 

significant contribution in EC carbon is also observed and reported by the transmittance and 

the reflectance method. However, the EC fraction was reported to be below detection limit. 
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The source of the EC in these samples could be likely attributed to lubrication oil combustion, 

during the low speed, and idle modes of the UDDS cycle. Also, to support the argument 

0.005mg/sec of EC fraction is also observed during the idle mode operation. 

5.2.3 VOLATILE ORGANIC COMPOUNDS (VOC) 

VOC analysis was carried out in cooperation with CARB MLD and data post processing was 

performed by WVU to report emissions as distance specific VOC emissions. 28 different VOC 

compounds were quantified. Concentrations reported to be below detection limits have been 

omitted in Figure 5-6 and Figure 5-7. 

 
Figure 5-6 Distance specific BTEX emissions results from bus 1 and bus 2 

Figure 5-6 shows the comparison of benzene, toluene, ethyl benzene and isomers of xylene 

(BTEX) emissions from bus 1 and bus 2. BTEX compounds are part of the EPA list of hazardous 

air pollutants and indentified to be carcinogenic in nature. Mobile sources are identified as the 

major source of emission. The presence of the TWC after-treatment system in the test vehicle 

was effective in reducing the concentrations of most BTEX compounds below detection limits. 
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Oxidation catalyst are very effective in reducing higher-chain hydrocarbons over a wide 

temperature range unlike lower chain hydrocarbons which require higher exhaust 

temperatures for catalytic light-off. Most concentrations of majority of the targeted species 

were lower or equal to background concentrations. However, high variations in background 

concentrations were detected based on the time of day. 

Figure 5-7 shows the comparison of ethanol, acrolein and acetone emissions between bus 

1 and bus 2. Since all test concentrations are associated with high background values, the actual 

contribution of the exhaust to the concentrations of these species are very minimal. Also 

realtively high background variability due to time of data collection, introduces higher 

uncertainties in the actual vehicle exhaust emissions of these species. 

 
Figure 5-7 Distance specific VOC emissions of bus 1 and bus 2 
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5.2.4 CARBONYL EMISSIONS 

Carbonyl analysis was carried out by CARB MLD. Further data processing was completed by 

WVU to report distance specific emissions of the carbonyl species. Idle emissions and its 

background values are represented in units of mg/sec. Species whose concentration were 

reported to below detection limits have been omitted from the chart. Figure 5-8 shows the 

distance specific carbonyl emissions from bus 1 and bus2 over the three test cycles. 

Formaldehyde and acetaldehyde are commonly observed in significant concentrations in the 

exhaust of baseline CNG vehicles. However, oxidation catalysts have previously shown to 

reduce the concentration of most carbonyl species by over 90%. The TWC in the current study 

has been effective in reducing both formaldehyde and acetaldehyde to levels found in 

background air. Since the vehicle in the current study was stoichiometrically fueled, exhaust 

temperatures were sufficient for sustained catalytic activity even in lower engine loads and idle 

conditions. 

 
Figure 5-8 Distance specific (time-specific for idle) carbonyl emissions results for CNG bus1 and bus 2 
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5.2.5 WATER SOLUBLE IONS EMISSIONS 

Figure 5-9 show the water soluble ions data for the two CNG buses tested in this study. The 

CNG fuel being completely devoid of sulfur, did not contribute to any sulfate formation. 

However, the results do not show a possibility of sulfate formation due to contribution from 

lubrication oil. All water soluble ions concentrations were close to levels found in the 

background. Since the concentrations detected were very low, it could be concluded that the 

water soluble ions results would contain a high level of measurement uncertainty. Significant 

levels of gas phase ammonia were detected in the exhaust. The ion analysis also further 

indicates the presence of ammonium in both the test and background samples. The ammonium 

ions detected in the tunnel blank samples could be tunnel artifacts during the background 

sample collection period. The ammonium ions in the form of nitrates could have formed during 

exhaust gas dilution in the CVS system. 
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Figure 5-9 Distance specific (time-specific for idle) water soluble ion emissions results of CNG bus 1 
and bus 2 

 

5.2.6 METALS EMISSIONS 

Figure 24 shows the metals data for the two CNG buses tested in this study. 50 different 

elements were analyzed through an analysis method involving inductively coupled plasma mass 

spectroscopy (ICPMS) technique. The chart displays only elements that were detected at levels 

higher than background concentrations. Calcium were relatively high in the exhaust and 

background samples. The results of the metal analysis were used to derive correlation between 

the various toxicity assays, in an attempt to observe the effect of metallic fraction of PM on 

toxicity. Literature has elucidated the influence of transition metal concentrations towards 

certain toxicity assays (Verma et al., 2010). Hence, the current study presents correlation of 

mass fractions of transition metals such as Cu, Fe, V and Zn with net PM toxicity. Figure 5-10 

shows only few of the metals that were detected in significant concentrations in the sample. 

However, further analysis will present Pearson’s correlation for all metallic species to PM 

toxicity in order to present the dominant metallic species that could possibly contribute to the 

oxidative potential of engine out PM. 
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Figure 5-10 Distance specific (time-specific for idle) metals emissions results of CNG bus 1 and bus 2 

 

5.2.7 OIL ANALYSIS 

Table 9 shows the results of the oil analysis performed on the samples collected from the 

two vehicles. The oil analysis reported wear metal and additive metals present in the oil 

sample. The results reported in ppm show calcium, zinc phosphorus as the major additive 

components present in the oil. Interestingly the oil also shows significant concentration of iron 

and copper which can be classified as wear metals from engine components. 
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Table 9 Results of wear and additive metal analysis in oil samples 

  (ppm)  Bus 1 Bus 2 

Wear Metals 
Fe 19 9 
Cu 188 168 
Cr 2 2 

Additive Metals 

Ca 1393 1391 
Mg 54 6 
Zn 971 927 
P 640 514 

Contaminant 
Metals 

Si 46 4 
Na 16 16 
K 8 1 

The result of the oil analysis corroborates the metals and elemental analysis presented in 

Figure 5-10. Ca, P and Zn are predominant additive metals that are observed both in the oil 

sample as well as PM samples, hence indicating the direct contribution of lubrication oil to PM.  

5.3 TOXICITY RESULTS 

Three different in-vitro toxicity assays were performed as part of this study. Two cell free 

assays namely DHBA and DTT assays and one cell based assay using rat alveolar cells known as 

macrophage ROS assay were performed on the collected PM samples. Both the denuded and 

the non-denuded PM were extracted from the filter using purified water and further 

concentrated to be used in each of the assays. The current work will not document the details 

of the assay procedures, since detailed analysis procedures are documented elsewhere in the 

literature (Cho et al., 2005, Li et al., 2003, Verma et al., 2010). The toxicity units reported by the 

three different assays differ by the methodology represented by the assays. The DHBA and DTT 

assay represent the consumption of a chemical reagent that directly represents electron 

transfer from oxygen molecule to hydroxyl radicals, which further indicates the onset of 

oxidative stress or broadly the oxidative potential of a toxic species. Macrophage ROS on the 

other end depends on the ROS species that are produced within a cell to produce fluorescence 

in the presence of a certain reagent and the fluorescence produced is measured against a 

reference control substance called zymosan. As a result the toxicity data is reported as 

equivalent zymosan units. It is to be noted that, the units accompanying each assay cannot be 
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used to conclude the magnitude of the health effect in general. However, the results should be 

interpreted as an indication to oxidative potential and further correlate the magnitude of the 

response to magnitude of different PM composition in order to derive conclusions about the 

various compositions of PM that could drive its overall toxicity. The absolute magnitude of the 

health effects of PM would be very hard to discern as there exists no correlation or reference 

between the reported toxicity units and observed health effects. This aspect is one of the main 

differences between an in-vitro and a in-vivo studies. The results of in-vivo studies indicate the 

actual end effect of the toxic species in a living animal body. 

5.3.1 DTT ASSAY 

DTT assay was performed by University of California, Los Angeles, School of Medicine. PM 

samples collected from the two vehicles were placed in analyslides and frozen and shipped over 

dry ice to the laboratory for analysis. The detailed procedures and experimental setup for the 

DTT assay is well documented in the works by Cho et al. (Cho et al., 2005) and Li et al.(Li et al., 

2003). 

Table 10 Results of DTT assay for non-denuded particulate matter 

Test Cycle 

Total 
Sampling 

Time 
(hrs) 

Total 
Distance 
(miles) 

Total 
PM 

(mg/mi)  
Total PM 
(mg/hr)  

Non-
Denuded PM 

DTT 
consumption 
(nmole/min) 

3X UDDS-Bus 1 6.2 115.8 1.48 27.7 1885.22 
45 MPH (Bus 

1+Bus 2) 22.4 1009.5 0.17 7.65 2402.61 
Idle (Bus 1+Bus 

2) 19.0 NA NA 17.3 4612.44 
3X UDDS-Bus 2 9.7 181.7 1.28 23.9 1860.60 

 

Table 10 above shows the results of the DTT assay for the non-denuded PM samples 

collected from the two buses. It can be seen that the total sample time over each cycle has 

proceeded over several hours in order to collect sufficient sample for observing responses 

through the assays. The DTT assay required a minimum of 1 mg of net PM sample collected 

over the filter for an effective toxicity analysis. Although, extended sampling times and high 

volume rate sampling rates were employed, the mass emissions rates of PM from most vehicle 
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operation specifically during idle and cruise mode operation was very low. Hence, the analysis 

institution decided to integrate filter samples from both the buses for the 45 MPH and idle 

operation as one single test data. The process of integrating two filters from different buses 

poses different challenges during data interpretation. Mainly the differences in mass emission 

rates of PM between the two buses is averaged to one single data point, and moreover an 

attempt to produce correlation between toxicity and various PM fractions becomes less 

accurate due to the availability of lesser data points. However, an analysis carried out with 

insufficient mass could have most likely resulted in toxicity levels below detection limits no 

discernible data to study the composition of PM that would drive the oxidative stress reactions. 

The process of integrating filter samples resulted in observable toxicity responses from the DTT 

assay. 

The DTT assay uses the consumption of a chemical called dithiothreitol (DTT) as a marker 

for quantifying oxidative stress. Hence the DTT activity unit “nmole/min” represents the 

consumption rate of DTT in the presence of the PM sample. 
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Figure 5-11 Results of DTT consumption rate for different driving cycles 

Figure 5-11 shows the bar chart of the total PM mass specific DTT activity of the non-

denuded PM sample. Since the steady state and idle operation did not result in adequate PM 

loading, samples from the two buses were integrated into one. Hence, the values represented 

here can be viewed as an average toxicity of two vehicles over the same driving cycle. It is to be 

noted that although the PM mass emissions from the steady state operation did vary 

significantly, PM mass emission rate during idle from bus 2 was an order of magnitude higher 

than Bus 1. 

Figure 5-12 shows the mass specific DTT activity over the different driving cycles. The 

results show mass specific DTT activity to be of the same order of magnitude over all driving 

cycles. The order of magnitude higher mass specific DTT activity from bus 2 during UDDS cycle 

is a result of normalizing measured DTT activity to a lower PM mass collected on the filter 

samples over this cycle. 

 
Figure 5-12 PM mass specific DTT activity over driving cycles 
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Figure 5-13 Ambient DTT activity levels in 

Boyle Heights, CA (Cho et al., 2005) 

 
Figure 5-14 Ambient DTT activity levels in 

Calremont, CA (Cho et al., 2005)

Figure 5-13 and Figure 5-14 serve as a reference to compare the results obtained in this 

study to previously observed ambient DTT activity in certain regions of California (Cho et al., 

2005). It can be seen that DTT activity of heavy-duty natural gas vehicle PM samples is on an 

average an order of magnitude lesser than DTT activity of ambient PM. 
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Figure 5-15 Scatter plot of total PM emission rates over different driving cycle vs. DTT consumption 

rate 

Figure 5-15 shows the scatter plot between DTT consumption rate of non-denuded 

particulate matter and mass emissions rate of PM over different driving cycles. It can be seen 

that no significant correlation exists between DTT activity and total mass emissions rate of PM. 

The results show that total mass emissions of PM, is not directly related to DTT consumption 

rate. Hence, detailed compositional analysis must be presented to illustrate the dependence of 

DTT activity on individual fractions that constitute the total PM emissions. 

5.3.1.1 ELEMENTAL COMPOSITION VS. DTT ACTIVITY 

Literatures reviewed in section 2.4.1.1 have documented the influence of transition metals 

specifically copper and iron in increased DTT activity. This section will provide correlation 

analysis of various metals that contributed to significant mass emissions from the heavy-duty 
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natural gas vehicle. The metals analyzed include transition metals and metals that are markers 

for lubrication oil influence such as S, P and Zn. 

 

Table 11 Pearson Correlation coefficient (R) and level of significance (p) for elemental species Vs. DTT 
activity 

Species R p 
Cu 0.99 0.01 
Mg 0.84 0.16 
Al 0.79 0.21 
P 0.99 0.01 
S 0.57 0.43 
K 0.43 0.57 

Ca 0.73 0.26 
V 0.57 0.43 
Cr 0.81 0.19 

Mn 0.70 0.30 
Fe 0.28 0.72 
Co -0.24 0.76 
Zn 0.93* 0.07* * 

Table 11 shows the Pearson correlation between total mass of elements measured and 

measured DTT activity. Results show that Cu (R=0.99) and P (R=0.98) exhibits a significant 

correlation (p<0.05) towards DTT activity. For the current data set, the R value in the 95% 

confidence interval is 0.95 and in the 90% confidence interval is 0.90. Both Cu and P show 

significant correlation in the 95% confidence interval whereas Zn (R=0.93) falls within the 90% 

confidence interval. Hence, in further analysis Zn will also be considered as a significant factor 

influencing DTT activity of PM samples. The results shown here further corroborate the findings 

of other studies that have illustrated the potency of transition metals to induce oxidative stress. 

One of the surprising findings of the current study is the low correlation of DTT activity to Fe 

mass content in PM. The lower correlation of Fe in comparison to Cu could be due to the fact 

that the DTT activity is extremely sensitive to Cu and Mn (DTT consumption is approximately 

300 times faster) in comparison to Fe (Charrier and Anastasio, 2012). Hence as a result we could 

be observing the masking effect of copper over the possible DTT activity of Fe. 



 

90 | P a g e  
 

It is to be noted that the presence of Cu can be viewed as a sampling artifact, as the use of 

Cu in exhaust after-treatment systems has been prohibited by the US regulatory agencies. 

Although, the influence of copper on DTT activity is pronounced, the contribution of Zn and P 

towards the DTT activity suggests the role of lubrication oil emissions in PM toxicity. A report 

presented by Desert Research Institute (DRI) documents that Zn, P and S are the dominant 

elements’ found in lubrication oil that manifests itself in exhaust PM emissions also (Fujita et 

al., 2006). 

Metal chelation is a process through which the oxidative effect of metals can be 

suppressed by either addition of a chemical reagent or through removal of metals from the 

sample. In the case of the DTT assay a reagent called DTPA (Diethylenetriamine pentaacetic 

acid) is used to suppress the activity of transition metals to observe the possible effect of other 

species towards DTT consumption rate. The results showed no DTT consumption rate post 

metal chelation process, indicating a complete contribution of transition metals Cu and Zn and 

possibly the presence of non-metal phosphorus towards DTT consumption. 

DTT activity of the thermally denuded PM was of the same of order of magnitude of the 

non-denuded PM, further supporting the argument of the contribution elements and metals to 

the observed DTT activity. Since the denuded PM mass was insufficient to generate toxicity 

data individually for bus1 and bus 2, filter samples from both buses were integrated as one 

single sample set. As a result, the toxicity data from the denuded PM sample could only be used 

as an evidence to support the correlation obtained through the non-denuded PM samples. 

Since, the process of thermal denuding removes only the volatile species, the effect of metals 

on the toxicity of the denuded PM sample should theoretically remain the same.  

5.3.1.2 PAH, ELEMENTAL CARBON AND ORGANIC FRACTION VS. DTT ACTIVITY 

The analysis in this section presents correlation between PAH compounds, elemental 

carbon and organic carbon mass to DTT activity. Most PAH compounds were found to be below 

detection limits. However, a few lighter PAH compounds (molecular weight less than 200) were 

observed to be significantly higher background concentrations. Hence, the total PAH emissions 

for compounds with molecular weight less than 200 were chosen to be correlated with DTT 
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activity. DTT activity has shown to be sensitive towards OC concentrations, however, OC 

analysis from pre-fired quartz filters, in the case of natural gas vehicle exhaust could be biased 

with large positive sampling artifact and hence appear to not correlate well with DTT activity. 

This could be mainly attributed to the fact that the OC measured could be simply gas phase 

lower chain hydrocarbons (predominantly methane) adsorbed onto the filter rater than particle 

phase organic carbon formed as result of gas to particle conversion. 

 

Table 12 Pearson correlation for volatile, semi-volatile and elemental carbon compounds Vs. DTT 
activity 

Species R p 
PAH 

(MW<200) 0.98 0.01 
OC 0.78 0.21 
EC 0.84 0.16 

 

Table 12 shows the Pearson correlation for PAH compounds with molecular weight less 

than 200, organic carbon and elemental carbon emissions to the measured DTT activity of the 

non-denuded PM sample. Only PAH compounds show statistically significant (p<0.05) 

correlation with DTT activity. The results obtained in this study is contrary to results reported in 

the work by Ntziachristos et al. which showed low correlation coefficients for PAH compounds 

with molecular weight less than 250 (Ntziachristos et al., 2007). However, it is to be noted that 

the cited literature is based on ambient PM, and it differs significantly in the type of PAH 

compounds detected in the sample. PAH compounds that were observed to be in significant 

concentrations in the current study are characteristic of natural gas vehicle emissions. The 

absence of aromatic content in fuel results in minimal higher chain PAH compounds 

concentration and is characterized by lower chain PAH compounds such as phenanthrene, and 

isomers of methyl naphtlene. Although, no direct particle formation mechanisms have been 

documented by these compounds, it is possible that lower chain PAH compounds can readily 

adsorb onto other particle sites such as metal species and contribute to particle phase PM. The 

high correlation coefficient for the light PAH compounds suggest a possible combined redox 

activity of transition metals and PAH compounds. 
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Organic carbon and elemental carbon showed no statistical significant correlation with DTT 

activity. This can be further substantiated with the results of the post metal chelation DTT 

activity suggesting no redox activity from any other fraction of PM other than metals. 

5.3.1.3 MULTIVARIATE REGRESSION FOR DTT ACTIVITY 

Since more than one factor presented statistically good correlation with DTT activity, a 

multivariate regression was performed to establish a relationship between the different factors 

in predicting DTT activity. Matlab statistical tool was used to perform the multivariate 

regressions analysis. The general equation for multivariate regression is show in Equation 20. 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐷𝑇𝑇 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 (𝑌) = 𝛽0 + 𝛽1 ∗  𝑋1+𝛽2 ∗ 𝑋2+𝛽3 ∗  𝑋3 

           Equation 20 

Where βo, β1, β2, β3

Two regression analyses were performed by considering the effect of copper and by 

eliminating the influence of Cu in DTT activity. The regression analysis as result of the absence 

of Cu will essentially indicate the complete contribution of lubrication oil based emissions on 

DTT activity. 

 are regression coefficients obtained through the analysis. 

Table 13 lists the results of the two regression analysis performed on the DTT activity data. 

The coefficients derived from the analysis can be used to predict DTT activity with known 

masses of the factors considered. 
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Table 13 Results of multivariate regression analysis 

  Factor Coefficient Value R2 

Regression 
1 

Constant β 0 o 

1 

Cu β 2.681 1 

Zn β -0.3573 2 

P β 0.444 3 
PAH 

(MW<200) β -835.4 4 

Regression 
2 

Constant β 1849.3 o 

0.97 
Zn β 0 1 

P β 0 2 
PAH 

(MW<200) β 0.0235 3 

 

 
Figure 5-16 Scatter plot of the predicted DTT activity Vs. measured DTT activity 
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Figure 5-16 shows the scatter plot between predicted DTT activities as result of the 

regression analysis to the measured DTT activity. It can be seen that with the inclusion of Cu as 

a factor the analysis results in a R2=1 and with the exclusion of Cu it decreases to R2

 

=0.97.  

5.3.2 DHBA ACTIVITY 

The DHBA activity contrary to the DTT activity measures the formation of dihydroxybenzoic 

acid produced as result of fenton reactions of transition metals with hydroxyl ions. The 

formation of DHBA can be considered as a marker for the process of consumption of 

antioxidants within livings cells in the event of exposure to metal concentrations. 

The DHBA assay has been a relatively new development in the field of toxicity assays and is 

targeted towards discerning the effect of metal concentration on cellular oxidative stress. The 

analysis for the DHBA assay was performed on the same PM extracts used for the DTT analysis. 

Table 14 shows the results of the DHBA formation rates in nmole/min for the non-denuded PM 

samples. 

Although the same filter extracts were used for the DTT and DHBA assay, it appears that 

the DTT activity is more sensitive to lower concentrations of PM in comparison to the DHBA 

assay. The results of the DHBA assay indicate DHBA formation of test samples to be comparable 

to rates obtained from background filter samples. The results suggest that within the scope of 

this study, the PM mass emissions rates from heavy-duty natural gas vehicles to be insufficient 

to exhibit discernible DHBA formation rates in order to provide further analysis. Since, the DTT 

activity as discussed in the previous section provides insight into the role of PAH and metals 

present in the same sample, it further supports my assumption of the lower sensitivity of the 

DHBA assay towards ultra-low PM emission rates.  
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Table 14 Results for DHBA formation of non-denuded particulate matter. 

Test Cycle 

Total 
Sampling 
Time (hrs) 

Total 
Distance 
(miles) 

Total 
PM 

(mg/mi)  
Total PM 
(mg/hr)  

Non-
Denuded PM 

DHBA 
formation 

(nmole/min) 
3X UDDS-Bus 1 6.2 115.8 1.48 27.72 599.84 

45 MPH 22.4 1009.5 0.17 7.65 1716.15* 
Idle 19.0 NA NA 17.34 527.14 

3X UDDS-Bus 2 9.7 181.7 1.28 23.94 558.18 

 * 45 MPH test was characterized by very low PM mass and as a result the DHBA 

formation rate for the test was characterized by high measurement uncertainty and values 

lower than background PM samples DHBA formation rate. 

 

Table 15 presents the Pearson correlation coefficient for elemental species with observed 

DHBA formation rate. It can be seen that no statistical significance in the 95% confidence 

interval exists (p<0.05) for any of the metals or elemental species. Literature suggests that the 

DHBA formation is well correlated with Cu and Fe concentrations. However, results from the 

current study do not show any statistically significant correlation between DHBA formations 

and measured mass emissions rates of metals. The lack of correlation exhibited in this study 

could be as result of the very low PM mass and consequently the chemical kinetics of the assay 

unable represents oxidative stress reaction within cells. Results from Table 15 show better 

correlation for sulfur, potassium, vanadium, iron and cobalt. However, the lack of significance in 

the correlation demands a larger data set to derive better conclusions. 
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Table 15 Pearson Correlation coefficient (R) and level of significance (p) for elemental species Vs. 
DHBA formation 

Species R P 
Cu -0.05 0.95 
Mg 0.37 0.63 
Al 0.45 0.55 
Ca 0.52 0.47 
P -0.29 0.72 
S 0.70 0.30 
K 0.80 0.20 
V 0.70 0.30 
Cr 0.42 0.58 

Mn 0.57 0.43 
Fe 0.89 0.11 
Co 0.70 0.30 
Zn 0.10 0.90 

 

5.3.3 ALVEOLAR MACROPHAGE ASSAY 

Results of the alveolar macrophage cell based assay, represents the mass of ROS species 

present in the PM sample as function of fluorescence exhibited by a compound called DCFH-DA. 

The fluorescence exhibited by the sample is referenced to the fluorescence exhibited by a 

control substance called zymosan. Hence the fluorescence exhibited by a PM sample will be 

expressed in units of mass of zymosan per mass of particulate matter. Table 16 shows the 

results of the alveolar macrophage assay for the different driving cycles for bus 1 and bus 2. 

Figure 5-17 shows the bar plot of the results of the macrophage assay over different driving 

cycles both CNG buses. Figure 5-18 shows a figure adapted from a study conducted by Verma et 

al. that has documented the macrophage assay results for various technology diesel and 

gasoline vehicles (Verma et al., 2010). Comparing the results of the study presented by Verma 

et al. to the current study it can be seen that the response of heavy-duty natural gas vehicles 

PM over the UDDS cycle to be comparable to Euro V diesel vehicles. However, since the engine 

of the buses tested in the current study is a stoichiometrically operated natural gas engine, it 

would be appropriate to view the toxicity response of the current study with results from a 

gasoline vehicle, as both vehicles would have a similar after-treatment system configuration 



 

97 | P a g e  
 

(Verma et al., 2010). From Figure 5-18 it can be seen that the macrophage assay results 

observed in this study is one order of magnitude lower than Euro III gasoline vehicles. This 

could be attributed to the fact that the current study observed ultra low level PM mass 

emissions and hence the resulting toxicity responses could be characterized by levels of 

uncertainty. Literature has suggests that the macrophage assay has been developed to be 

sensitive to PM mass less than 0.1 mg. Steady state operation of both vehicles and idle 

operation of Bus 1 resulted in low PM mass being collected in the sample filter. Although a net 

filter weight of 0.1 mg was achieved, significant portion of the mass could be a result of positive 

artifacts due to gas phase adsorption on the T60A20 filter material as opposed to actual mass 

contribution from particle phase material. 

 

Table 16 Results of macrophage assay for non-denuded particulate matter 

Test Cycle 

Total 
Sampling 

Time 
(hrs) 

Total 
Distance 
(miles) 

Total 
Non-

Denuded 
PM (mg) 

Non-
Denuded 
Total PM 
(mg/mi)  

Non-
Denuded 
Total PM 
(mg/hr)  

Non-
Denuded 
PM ROS 
activity 
(µg of  

Zymosan 
units) 

Non-
Denuded 
PM ROS 

activity (µg 
of 

Zymosan 
units/mg 

of PM) 
Bus 1 UDDS 6.18 231.6 109.87 0.47 17.77 297030.19 2703.47 

Bus1 45 MPH 8.00 360.2 38.81 0.11 4.85 0 0.00 
Bus 1 Idle 12.0 NA 29.21 NA 2.43 108341.62 3709.06 

Bus 2 UDDS 7.07 183.0 231.22 1.26 32.72 99801.49 431.63 
Bus 2 45 MPH 11.0 495.8 49.62 0.10 4.51 30602.34 616.73 

Bus 2 Idle 6.00 NA 199.52 NA 33.25 278701.09 1396.86 
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Figure 5-17 PM mass specific macrophage ROS activity over different driving cycles 

 
Figure 5-18 PM mass specific macrophage ROS activity of different technology vehicles and ambient 

PM (Verma et al., 2010) 
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5.3.3.1 ELEMENTAL CARBON/ORGANIC CARBON COMPOSITION VS. 

MACROPHAGE ROS ACTIVITY 

This section presents the analysis of the effect of EC/OC on the observed macrophage ROS 

activity. Since, the macrophage ROS assay utilizes living rat alveolar tissues, the response 

provided by this assay can be viewed as an actual dose vs. response characteristic of the 

elemental and organic carbon mass of the PM samples. However, no findings in literature 

document the relationship of EC/OC mass to the observed ROS activity. Literary knowledge of 

the response of macrophage ROS to heavy-duty PM has been illustrated only for metals and 

transition metal composition in PM. This could be due to the fact that the assay is specifically 

more responsive to water soluble compounds, since aqueous suspensions of the PM are 

administered to the cell cultures. 

 
Figure 5-19 Scatter plot of macrophage ROS activity Vs. elemental carbon mass 

R² = 0.88

0.00E+00

5.00E+04

1.00E+05

1.50E+05

2.00E+05

2.50E+05

3.00E+05

3.50E+05

0 20 40 60 80 100 120 140 160

µg
 o

f Z
ym

os
an

 u
ni

ts

Mass of EC (mg)



 

100 | P a g e  
 

Figure 5-19 shows the relationship between EC mass and observed macrophage ROS 

activity of the non-denuded PM. Table 17 below shows the Pearson correlation coefficient and 

level of significance for the correlation analysis of EC and OC mass to ROS macrophage activity. 

The results shows statistically significant correlation between EC mass and macrophage ROS 

activity (R= 0.94 and p=0.004). However, it is to be noted that the EC mass for 3 out the 6 data 

points were reported to be zero. Since, there is lack of literary evidence to corroborate the 

findings of this study, a greater spread in the EC mass could have provided a better confidence 

in presenting the correlation between EC mass and macrophage ROS activity. Natural gas PM 

has characteristically been devoid of EC fraction, and the major contribution to elemental 

carbon has been from in cylinder combustion of lubrication oil. The correlation analysis of 

organic carbon mass resulted in correlation coefficient of R=0.55 with p=0.25, suggesting no 

statistical significance in the observed correlation. One of the drawbacks in quantifying OC 

composition of heavy-duty natural gas PM is the possibility of results being skewed by positive 

gas phase adsorption artifacts on the pre-fired quartz filters. 

 

Table 17 Pearson Correlation coefficient (R) and level of significance (p) for EC/OC Vs. ROS 
macrophage activity of non-denuded PM 

Species R P 
EC 0.94 0.004 
OC 0.55 0.25 

PAH 
(MW<200) -0.50 0.30 

 

A correlation analysis of EC composition vs. denuded PM resulted in poor correlation 

coefficient (R=0.39, p=0.43). This could be due to the fact that the EC mass collected on the 

denuded filters were so negligible and the presence of other compounds such as metals could 

have masked the activity of EC. 

Correlation analysis between PAH compounds with molecular weight less than 200 and the 

ROS activity of non-denuded PM resulted in a negative correlation with no statistical 

significance. All PAH compounds are insoluble in water and the solubility decreases with 
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increasing molecular weight. PAH compounds have previously not been observed to correlate 

well with macrophage ROS activity (Biswas et al., 2009a). PAH compounds are most often 

bound with other particulate matter composition such as soot or elements. Hence, the 

influence of PAH compounds in producing ROS can be viewed as a combined effect of the PAH 

and its substrate that it is adsorbed on to. Alveolar macrophage assay utilizes ionized water to 

extract particulate matter from the sample filters and to subsequently introduce it into the cell 

cultures. PAH compounds having very low levels of water solubility could have resulted in lesser 

extraction rates from the filter and consequently a statistically insignificant correlation. 

 

5.3.3.2 ELEMENTAL COMPOSITION VS. MACROPHAGE ROS ACTIVITY 

Table 18 below shows the Pearson correlation results between elemental composition and 

macrophage ROS activity detected from denuded and non-denuded PM. The results indicate 

statistically significant correlation coefficients for the highlighted elements in the table with the 

ROS activity detected from the denuded PM. The metals that exhibited significant correlation 

with the ROS activity of the denuded PM resulted in lower correlation coefficient with non-

denuded PM. This trend could be attributed to a possible presence of a volatile coating over the 

elemental particles, thereby preventing the interaction of the alveolar cell tissues and the 

elemental fraction. As stated earlier, PAH compounds are characterized by low vapor pressures 

and hence tend to condense on EC or elemental particulate matter fraction. This semi-volatile 

coating over soot or elemental composition could change the toxicity nature of that particular 

fraction. Previous studies by Verma et al. have shown the characteristic transition metals to 

generate ROS through the macrophage ROS assay (Verma et al., 2010). Literature does not 

illustrate the effect of PAH in the generation ROS through this particular assay. Also the results 

of the current study indicate no significant correlation of ROS activity with PAH emissions in the 

exhaust. Lesser correlation of non-denuded PM ROS activity with elemental composition could 

be a result of lower either a low sample extraction rate from the filters as result of insolubility 

of PAH with water and or a layer of PAH compounds over the elemental fraction possibly 

preventing the interaction of elemental fraction and alveolar tissue cells. 
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Table 18 Pearson Correlation coefficient (R) and level of significance (p) for elemental species vs. 
macrophage ROS activity for denuded and non-denuded PM 

  Denuded PM Non-Denuded PM 
Species R P R P 

Cu 0.97 0.00 0.52 0.28 
Mg 0.28 0.59 0.06 0.90 
Al 0.27 0.59 0.06 0.90 
P 0.99 0.00 0.56 0.25 
S 0.73 0.09 0.34 0.50 
K 0.30 0.55 0.07 0.88 

Ca 0.33 0.52 0.72 0.11 
V 0.83 0.04 0.40 0.43 
Cr 0.99 0.00 0.55 0.26 

Mn 0.49 0.32 0.20 0.69 
Fe 0.95 0.00 0.47 0.33 
Co 0.68 0.13 0.27 0.60 
Zn 0.94 0.00 0.49 0.32 

The study by Verma et al. provides a comprehensive analysis of the effect of various 

elements, specifically transition metals in generation of ROS species through this particular 

assay. Mn, Co, Cr, Fe were some of the metals identified by the study to correlate statistically 

well with ROS activity from the macrophage ROS assay (Verma et al., 2010). The cited literature 

has documented ROS activity from a DPF-SCR equipped vehicle. Hence, the elemental 

composition observed in the current study is significantly different from that cited in the 

literature. The current study reports significant emissions of lubrication oil based elements such 

as P, S, Zn and Ca. On the contrary the study by Verma et al. have documented lower 

concentration of lubrication oil based elements and hence lower observed correlation with the 

ROS activity. The statistically significant correlation exhibited by P, Zn and S with the denuded 

PM ROS activity suggests that lubrication oil based emissions driving bulk of the toxicity 

reactions in natural gas engines as opposed to diesel engines, which could be dominated by 

catalyst performance, DPF efficiencies and elemental emissions from after-treatment devices. 
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5.3.3.3 MULTIVARIATE REGRESSION FOR MACROPHAGE ROS ACTIVITY 

A multivariate regressions analysis was performed between the combination of elemental 

mass compositions and the observed macrophage ROS activity to discern the combined 

contribution of the different elemental mass towards ROS generation. Since a majority of the 

mass of denuded PM originates from the lubrication oil, P and Zn are considered to be the two 

major factors influencing the ROS activity. In addition to these two elemental fractions Cr, S and 

Fe mass was included to test for the regression. The results showed that regressions 1 and 

regression 2 as shown in Table 19 showed a positive correlation with R2

 

 equal to 0.98 and 0.88 

respectively. The addition of Fe as a variable resulted in negative correlation contradicting the 

individual influence of Fe on ROS activity. Hence, the Fe was not considered as variable 

influencing ROS activity in this case. 

Table 19 Multivariate regressions analysis results for elemental composition and macrophage ROS 
activity 

  Factor Coefficient Value R 

Regression 
1 

Constant β 39384 o 

0.98 P β 1 2 
Zn β 0 3 
Cr β -4 4 

Regression 
2 

Constant β 35030 o 

0.88 P β 0 1 
Zn β 1 2 
S β 0 3 

 

Figure 5-20 shows the scatter plot of the predicted macrophage ROS activity to the 

measured ROS activity. The results show a good fit (R2=0.98) for a combined influence of P, Zn 

and Cr and lower fit (R2=0.88) for a combination of P, Zn and S. The results suggests that the 

lubrication oil based emissions in the form of elemental emissions of P and Zn together with a 

possible engine wear metal Cr are the dominant factors driving the ROS species generation in 

the alveolar macrophage assay. 
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Figure 5-20 Scatter plot of the predicted macrophage ROS activity Vs. measured macrophage ROS 

activity  

5.4 PARTICLE SIZE DISTRIBUTION ANALYSIS 

Instantaneous particle size distribution and concentration measurements were performed 

using a TSI EEPS. Primary diluted exhaust was sampled from the CVS and instantaneous dilution 

ratio calculations were performed as function of exhaust flow and CVS tunnel flow. Secondary 

dilution was not used, in order to prevent excessive dilution of the exhaust thereby resulting in 

particle concentrations close to the detection limits of the instrument.  

The particle size distribution analysis presented in this section will be further divided into 

three different bins namely: a) Nanoparticle (NP) with size ranges between 6.04 and 25.5 nm b) 

Ultrafine particle (UFP) with size ranges between 29.4 and 107 nm and c) Fine particle (FP) with 

size ranges between 124 and 523.3 nm. The bin diameters represent the different channels of 

the TSI EEPS and hence the diameters represented here are the electrical mobility diameter of 

the particles.  

R² = 0.98

R² = 0.88

0.00E+00

5.00E+05

1.00E+06

1.50E+06

2.00E+06

2.50E+06

3.00E+06

3.50E+06

4.00E+06

4.50E+06

0.00E+00 1.00E+05 2.00E+05 3.00E+05 4.00E+05 5.00E+05 6.00E+05 7.00E+05

Pr
ed

ic
te

d 
DT

T a
ct

iv
ity

 (µ
g o

f Z
ym

os
an

 u
ni

ts
)

Measured DTT activity (µg of Zymosan units)

f(Zn, P, Cr) f(P,Zn, S)



 

105 | P a g e  
 

5.4.1 RESULTS OF PARTICLE SIZE DISTRIBUTION ANALYSIS FROM BUS 1 

Figure 5-21 shows the results of UDDS cycle integrated dilution ratio corrected particle size 

concentration over all the measured size ranges of the TSI EEPS for bus 1. The illustrated results 

show the average integrated particle concentration over 4 consecutive UDDS runs with the 

error bars denoting the maximum and minimum integrated particle concentration values 

measured.

 
Figure 5-21 Results of integrated particle size distribution and concentration over UDDS cycle from bus 

1 

The integrated particle size distribution shows significant particle concentration in both 

nucleation and accumulation mode size ranges. However, the error bars in the accumulation 

mode size ranges indicate high variability in measured integrated particle concentrations, 

compared to the nucleation mode integrated particle concentrations. A highly repeatable 

integrated particle concentration was measured in the 10.8 nm size range of the EEPS. This 

method of presenting transient EEPS data would not provide information of the continuously 

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

1.00E+09

1.00E+10

1.00E+11

1.00E+12

1 10 100 1000

In
te

gr
at

ed
 P

ar
tic

le
 C

on
ce

nt
ra

tio
n 

(#
/c

m
^3

)

Particle Diameter (nm)

Average



 

106 | P a g e  
 

changing particle size distribution and concentration measurement over the UDDS cycle, but 

the variability in the integrated particle concentration data will indicate if the measured particle 

concentration is characterized by instrument noise. 

 Contrary to the existing literary knowledge about the unpredictability of the formation of 

nucleation mode particles, the results from the current study indicates a particle size 

distribution characterized by lower variation particle number concentration over multiple 

repeats of a transient driving cycle. This could be attributed to a formation of nanoparticle from 

sources such as lubrication oil, whose contribution can be considered consistent in comparison 

to homogenous nucleation of VOCs and catalytic production of nucleation precursors. The high 

variability in integrated particle number concentration in the accumulation mode size bins 

indicate the integration of instrument noise in the size range and not actual particles detected. 

However, the repeatability of the integrated number concentration in the nucleation region 

indicates particle formation mechanism that is consistent from run to run. The high integrated 

number concentrations observed in the accumulation region cannot be attributed to particle 

mass, as they represent only instrument noise. 

Figure 5-22 shows the results of the continuous tracking of particle CMD within the three 

defined size bins of this study. CMD within each particle size bin is plotted together with its 

corresponding aerosol length (a product of total instantaneous particle number concentration 

within the size bin and the instantaneous CMD). This method of analysis distributes a tri-modal 

distribution into three possible mono-modal distributions that can be tracked instantaneously 

over the course of a transient driving cycle. This method presents an opportunity to graphically 

visualize the simultaneous evolution of particles within each size bin relative to a time period in 

the driving cycle. It can be observed from the results shown in Figure 5-22 that the NP size bin 

reported particle predominantly below 10 nm with an average CMD over the entire driving 

cycle of 6.04 nm. For a mono-disperse aerosol of 6.04 nm an aerosol length of 0.1 mm/cm3 

would represent a particle number concentration of 1.57 X 104 #/ cm3. Hence it can be seen 

from figure a) that the measured particle concentration in the NP size bin for the first 400 

seconds of the UDDS cycle, was close to the detection limits of the instrument and hence the 

nucleation mode detected during this time period would be characterized by high levels of 
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uncertainty. This time period cannot be considered as warm-up period, due to the fact that the 

post catalysts exhaust temperature was in the range of 300-500 o

Figure 5-22

C. Figure d) shows the three 

continuous repeats of the UDDS cycle, and its corresponding post-catalyst exhaust 

temperatures. As illustrated in  a) a continuous emission of particles in the 6 nm size 

range is observed. The increase in aerosol length in the corresponding indicates a significant 

increase in total particle concentration within this size range. However, the observed particle 

CMD and aerosol length do not seem to correlate with transients of the UDDS cycle and tend to 

be a constant emission rate independent of vehicle operation. For example, periods of idle 

operation during the UDDS cycle did not result in lower aerosol length values in the NP size bin. 
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Figure 5-22 Bus 1 a) Transient NP bin CMD and corresponding aerosol length b) Transient UFP bin CMD 
and corresponding aerosol length c) Transient FP bin CMD and corresponding aerosol length d) UDDS 

cycle speed trace and post catalyst exhaust temperature 

Results shown in Figure 5-22 b) represent the instantaneous CMD values for the UFP size 

bin and its corresponding aerosol length. The average CMD within this size bin over the entire 

UDDS cycle was 44 nm. Hence an aerosol length of 1 mm/cm3 for a mono-disperse aerosol 

stream with CMD 44 nm will correspond to a particle concentration of 2.3 X 104 #/ cm3

Results shown in 

. As 

illustrated a high variability in the CMD values is observed over the course UDDS cycle. The 

instantaneous aerosol length calculation for this size range indicate particle concentrations 

close to the detection limits of the instrument for a major duration of the driving cycle. This 

indicates high levels of uncertainty in the measured distribution and concentration within this 

size fraction. The aerosol length calculations also indicate a significant particle contribution with 

a CMD in the size range of 34-50 nm between 1500 and 2000 sec time period of the driving 

cycle. EC emission during the UDDS cycle was observed to be 0.134 mg/mile and a major 

fraction of the EC emissions would be comprised within the UFP size bin. Despite the fact that a 

gaseous fuel, would not contribute to in-cylinder EC formation, certain operating conditions 

could contribute to entrainment of lubrication oil into the combustion chamber, which could 

possibly result in EC fraction of the total PM. 

Figure 5-22 c) represent the instantaneous CMD values for the FP size bin 

and its corresponding aerosol length. The average CMD in this size bin over the entire driving 

cycle was 156 nm. Hence an aerosol length of 1 mm/cm3 for a mono-disperse aerosol stream of 

156 nm will correspond to a total particle concentration of 6.41 X 103 #/ cm3
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. As illustrated 

particle concentration in this size range was close to the detection limits of the instrument, and 

the CMD reported for a significant duration of the driving cycle (up to 2000 seconds) in this 
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chart could only be representing electrometer noise of the TSI EEPS. However, the later 

segment of the UDDS cycle reports a gradual increase in aerosol length for the reported CMD 

for this size bin. Since, the FP size bin includes particle size range that is uncharacteristic of CNG 

exhaust, the resulting CMD at 165 nm detected with significant particle concentrations could be 

a result of particle formation from tunnel artifacts such as degassing of adsorbed volatile 

materials from tunnel walls due to extended high exhaust temperatures or a possible artifact of 

ammonia emissions from the three-way catalyst. Stoichiometric fuelling of natural gas, together 

with a three-way oxidation catalyst, has been attributed to catalytic formation of ammonia at 

rich operating conditions. The formation of ammonia has been linked to the possible water gas 

shift reactions that could take place on the surface of the catalyst during NOx reduction at rich 

fuelling conditions (Defoort et al., 2003). Since findings of significant emissions of ammonia 

from heavy-duty natural gas vehicles was an important outcome of this study which was 

realized during the final phases of the project. Hence, a setup to quantify ammonia emissions 

and possibly investigate the influence of ammonia emissions on particle size distribution was 

not part of the initial test plan. 

Figure 5-23 shows the results of the integrated particle size distribution and concentration 

measurements for the idle operation of bus 1. The results show a particle size distribution with 

a predominant nucleation peak observed at a diameter of 8 nm. Integrated peak particle 

concentration for the observed peak particle diameter was found to be 6.41 X 109 #/cm3. An 

average post catalyst exhaust temperature of 300 Deg C would have been sufficient for the 

light-off of higher chain hydrocarbons. Hence conditions for particle formation through gas to 

particle conversion of higher chain volatile organic carbon would not have been prevalent. Also, 

the EC/OC analysis and VOC speciation reported organic carbon, elemental carbon together and 

concentrations of VOCs to be below detection limit or at levels observed in tunnel background 

samples.  
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Figure 5-23 Results of integrated particle size distribution and concentration during Idle operation of 

bus 1 

Figure 5-24 shows the integrated particle concentration over the entire size range of the EEPS 

over the 45 MPH steady state driving cycle. The integrated particle concentration measurement 

over the entire size range of the EEPS indicates a highly variable distribution and particle 

number concentration. A consistent particle peak within the nucleation region as observed in 

both the UDDS and the idle operation is observed for the 45 MPH steady state operation also. 

However, the nucleation mode particle concentrations observed during the steady state 

operation was characterized by higher variation in peak particle diameter than the UDDS and 

idle operation. The average integrated particle concentration results indicate high total particle 

number concentration in the accumulation mode size ranges. However, the results indicate 

particle number concentration to be successively decreasing with each consecutive test run. 

This could be attributed to the possible decrease in sampling artifacts in the CVS tunnel. The 

average integrated peak particle concentration is found to be 3.12 X 109 #/cm3
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diameter of 10.9 nm. Results from run 4 indicate no accumulation mode size distribution and a 

marginal shift in the nucleation mode peak particle diameter towards 6 nm. The results of the 

steady state mode further, supports our hypothesis of tunnel artifacts contributing to the 

majority of UFP and FP size bin particle size distribution and concentration. The particles 

detected as a result of tunnel artifacts could possibly ammonia based salts that could coat the 

walls of the tunnel during and consequently result in shedding during higher dilution tunnel 

temperatures. The steady state operation resulted in average post catalyst exhaust 

temperatures of about 530 o

 

C. Hence, a continuous high temperature exhaust sampling 

through the CVS could result in shedding of adsorbed material from tunnel walls, which further 

manifest itself in the UFP and FP size bin of the particle size distribution. 

 
Figure 5-24 Results of integrated particle size distribution and concentration over the steady state 45 

MPH cycle from bus 1 
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Figure 5-25 a) shows the results of the instantaneous tracking of CMD of particles within 

the NP size bin with its associated aerosol length. As illustrated particle concentrations in the 10 

nm size range is observed to be relatively repeatable over consecutive runs in comparison to 

particle concentrations over other size ranges. An aerosol length of 1 mm/cm3 for a mono-

disperse aerosol stream of 10 nm would correspond to a particle concentration of 1X 105 #/cm3

Figure 5-25

, 

which is an order of magnitude greater than normally observed ambient background particle 

concentrations.  b) shows the results of the instantaneous tracking of CMD of 

particles within the UFP size bin with its associated aerosol length. An aerosol length of 1 

mm/cm3 for a mono-disperse aerosol stream of 107 nm would correspond to a particle 

concentration of 1X 104 #/cm3 Figure 5-25.  b) shows the results of the instantaneous tracking of 

CMD of particles within the FP size bin with its associated aerosol length. An aerosol length of 1 

mm/cm3 for a mono-disperse aerosol stream of 143 nm would correspond to a particle 

concentration of 1X 103 #/cm3

If the particles in this size bin are assumed to be volatile in nature, then we can suggest 

that a steady state operation, contributes significant amount of nucleation precursors that 

assists in the formation of 10 nm particles. However, the results of the VOC, PAH and carbonyl 

suggest possible nucleation precursors and particle phase volatile organic compounds to be 

below detection limits of the analytic procedure. EC/OC analysis reported no elemental carbon, 

but 0.203 mg/mi of organic carbon mass that could be attribute to possible lower chain 

hydrocarbons getting adsorbed onto the pre-fired quartz filters. 

. Since, the measured concentration within both the UFP and FP 

size bin is close to the detection limits of the instrument, the detected CMDs could be 

characterized by higher levels of instrument noise. 

Figure 5-25 d) shows a 

consistent exhaust temperature averaging at 526 oC. The catalytic light-off temperatures of 

hydrocarbons decrease with lower carbon content. Hence methane with one carbon atom has 

the highest light-off temperature close to 450 oC. Hydrocarbons that are usually involved in 

particle formation are higher chain hydrocarbons with low vapor pressures that can readily 

undergo gas to particle conversion. However, with high exhaust temperatures as in the steady 

state operation, one would expect to observe a complete methane and ethane based 

hydrocarbon content in the exhaust, in contrast to BTEX or other PAH compounds that would 
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have had catalytic reduction efficiencies of close to 100% at such high temperatures. The 

presence of a continuous nucleation mode size distribution peaking at 10 nm in diameter, 

suggests the possibility of non-volatile compounds that could be produced as result of 

lubrication oil entry into the combustion chamber. Figure 5-25 d) also shows the engine percent 

load through the steady state operation. As illustrated a constant engine load of about 35% of 

peak torque with momentary loading due to auxiliary systems such as radiator fan, and 

alternator are observed. Hence, the contribution of the nucleation mode particles must be 

independent of the engine operation and must be prevalent through the entire operating 

regime of the engine. Although, the entry of lubrication oil through the piston rings into the 

combustion chamber can be viewed as function of engine load, it is to be noted that modern 

heavy-duty diesel and natural gas engines have employed crank case ventilation to be inducted 

back into the engine. As result, we could be observing a continuous intake of oil mist and its 

associated decomposition by products entering into the combustion chamber. 
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Figure 5-25 Bus 1 steady state 45 MPH a) NP bin CMD and corresponding aerosol length b) UFP bin 
CMD and corresponding aerosol length c) FP bin CMD and corresponding aerosol length d) engine 

percent load and post catalyst exhaust temperature 
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5.4.2 RESULTS OF PARTICLE SIZE DISTRIBUTION ANALYSIS FROM BUS 2 

Figure 5-26 shows the average integrated particle size distribution and concentration 

measurements from bus 2 over the UDDS cycle. The results show a highly variable particle size 

distribution, in contrast to the particle size distribution observed from bus 1. A distinct 

nucleation mode size peak is observed at a CMD between 8 and 10 nm. The particle size 

distribution from bus 2 is significantly different from that observed from bus 1, with respect to 

the significant nucleation mode size distribution observed over the entire length of the UDDS 

cycle. Similar, to the results in bus 1 a significant particle size distribution is observed in the fine 

particle range (Dp > 100 nm). However, the particle concentration in this size range is also seen 

progressively decreasing with successive hot starts, lending support to the assumption of 

possible tunnel artifacts contributing to particle count in this size range. 

 
Figure 5-26 Results of integrated particle size distribution and concentration over the UDDS cycle of 

bus 2 

 

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

1.00E+09

1.00E+10

1.00E+11

1 10 100 1000

dN
/d

lo
gD

p 
(#

/c
m

^3
)

Particle Diameter (nm)



 

116 | P a g e  
 

 

 

 

 
Figure 5-27 Bus 2 a) Transient NP bin CMD and corresponding aerosol length b) Transient UFP bin CMD 
and corresponding aerosol length c) Transient FP bin CMD and corresponding aerosol length d) UDDS 

cycle speed trace and post catalyst exhaust temperature 

Figure 5-27 a) represents the instantaneous CMD tracking of particles within the NP size 

bin and its associated aerosol length. The average CMD within this size bin over the duration of 

the UDDS cycle was observed to be 7 nm with an average aerosol length of 0.29 mm/cm3
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mono-disperse particle stream of 7 nm an aerosol length of 0.29 mm/cm3 would correspond to 

a particle number concentration of 4.14 X 104 #/cm3

Figure 

5-27

. As a result on an average particle number 

concentrations detected in this size bin were close to the detection limits of the instrument and 

as result could be characterized by higher levels of electrometer noise of the TSI EEPS. 

 b) represents the instantaneous CMD tracking for particles within the UFP size bin and its 

associated aerosol length. The results showed a highly variable CMD values averaging at 68 nm 

were detected through the duration of the UDDS cycle. The CMD tracking reveal particle 

diameters in the size range 29 to 107 nm within this size bin. Average aerosol length for the 

UDDS driving cycle was observed to be 1.16 mm/cm3. For a mono-disperse particle stream of 

60 nm and aerosol length of 1.16 mm/cm3 would correspond to a particle concentration of 1.76 

X 104 #/cm3

Figure 5-27

. Hence, the detected concentration on an average was close to the detection limits 

of the instrument. However, periods of acceleration and idle operation resulted in particles 

with CMD of 60 nm with concentrations significantly greater than the instrument noise levels. 

 c) represents the instantaneous CMD tracking for particles within the FP size bi with 

its associated aerosol length. The results show a constant particle CMD in the range of 138 nm, 

the calculated aerosol length of 1 mm/cm3 over the entire cycle duration, translates to a 

particle concentration of 7.25 X 103 #/cm3

Figure 5-27

. Hence the detected particle CMD in this size range 

would be characterized by higher levels of instrument noise, and as a result cannot be 

associated with combustion generated particulate matter concentration. The exhaust 

temperatures (  d)) through the duration of the cycle is consistently over 400 Deg C, 

suggesting conditions for optimal catalytic activity towards hydrocarbons and other organic 

fractions, capable of particle formation. The absence of a pronounced nucleation mode size 

distribution, suggests a lesser influence of lubrication oil over the exhaust nano particle 

formation of this vehicle over the UDDS cycle. 

Figure 5-28 shows the results of the integrated particle size distribution and concentration 

measurement during idle operation from bus 2. Data was collected for an hour long idle cycle, 

and the distribution shown below represents the particle concentration integrated over the 

entire duration of the tests. The particle size distribution observed during the idle operation 
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was observed to be very repeatable and a broad distribution encompassing particle diameters 

in the range of the NP, UFP and the FP size bin. 

 
Figure 5-28 Results of integrated particle size distribution and concentration over Idle operation of bus 

2 

The particle sizing results obtained during the idle operation shows a very interesting 

distribution that measured particles with significant concentration almost through the entire 

particle range of the TSI EEPS. The very low run to run variation in the distribution and 

significant particle concentrations detected in all size ranges, suggest a factor that contributed 

to consistent particle formation mechanism. Bus 2 idle emissions reported the highest mass 

loading on the gravimetric filter on a time specific unit. Figure 5-29 shows the coloration of the 

gravimetric filter samples after 9 hours of sampling during the idle operation. As illustrated it 

can be seen that the idle operation appears to have produced significant mass of solid fraction 

of PM. 
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Figure 5-29 Gravimetric filter sample after 9 hours of PM sampling during the idle operation 

 

 

 
Figure 5-30 Bus 2 Idle operation a) NP bin CMD and corresponding aerosol length b) UFP bin CMD and 

corresponding aerosol length c) FP bin CMD and corresponding aerosol length  

Figure 5-30 a) shows the results of the instantaneous CMD tracking of particle within the 

NP size bin with its associated aerosol length calculations. The results show a average particle 
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CMD of 12 nm through the entire idle operation with a average aerosol length of 3.2 mm/cm3. 

A mono-disperse aerosol stream of 12 nm with an aerosol length of 3.2 mm/cm3 will 

correspond to a particle concentration of 2.67 X 105 #/cm3. Hence the measured concentration 

is an order of magnitude greater than typical background noise, and hence can be considered 

as a significant tailpipe PM emission. An analysis of the instantaneous CMD tracking reveals the 

first 500 seconds of the operation to be characterized with higher particle concentration and 

slightly larger particles with CMD of 16 nm in the NP size bin. Beyond 600 seconds of the 

operation resulted in a steep decrease in aerosol length from about 5 mm/cm3 to about 2.5 

mm/cm3

 

, suggesting a possible change in some engine parameter that resulted in lower particle 

concentration. 

Figure 5-31 Instantaneous NOx and exhaust temperature trace during idle operation of Bus 2 

Figure 5-31 shows the instantaneous NOx and exhaust temperature trace during the idle 

operation of bus 2. It can be seen that during the first 500 seconds of the idle period that was 

characterized by larger particles with higher concentration in the NP size bin, the exhaust 

temperatures were comparatively lower (in the range of 275 Deg C) than the later portion of 

the idle operation. Another interesting trend to be noted here is the subsequent decrease in 

NOx emissions with a gradual increase in exhaust temperature. This could be attributed to the 

dithering strategy of the air-fuel ratio employed in a stoichiometric engine to optimize NOx 

reduction over the three-way catalyst. The increase in exhaust temperature with subsequent 

decrease in NOx emissions can be attributed to the slight shift in equivalence ratio towards the 

rich mixtures, to achieve maximum NOx reductions during idle operation. It is well documented 

that rich air-fuel conditions, exhibit higher NOx conversion ratios over three-way catalysts, 
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hence manufacturers tend to shift towards slightly richer mixture (Φ>1.05 almost 100% NOx 

conversion efficiencies) (Defoort et al., 2003) during transient, low speed and idle operations. 

This shift in air fuel ratio can have indirect implications on particle formation mechanism due to 

the increase in exhaust temperature and as result better catalytic activity. The 16 nm CMD over 

the initial 500 seconds operation could gas phase compound condensing on solid fractions such 

as metallic nanoparticles. As observed in results from bus 1, lubrication oil could contribute 

significantly to solid fraction emissions in the NP size bin. Assuming, we observe the same trend 

with bus 2 also, a combination lower exhaust temperatures and presence of low vapor phase 

organics (possibly lube oil based) could result in particle formation mechanism that involves 

heterogeneous nucleation of gas phase precursors onto solid fractions, thereby resulting in 

particle CMD slightly larger than 8-10 nm range that has been previously observed from both 

the vehicles. Moreover, the instantaneous change in particle CMD from 17 nm to 10 nm with 

increase in exhaust temperatures also suggests the possibility of the attainment of catalytic 

light-off temperature and the subsequent prevention of heterogeneous nucleation. 

Figure 5-30 b) shows the instantaneous CMD tracking for particles within the UFP size bin 

with its associated aerosol length calculations. The results show a constant particle CMD of 29 

nm for the entire idle period. The particle size distribution observed during idle operation did 

not result in three distinct modes however, it should evidence of tri-modal distribution within 

the TSI EEPS size range of 6.04 nm to 500 nm. The second modal distribution was observed 

between the size range of 25 nm and 45 nm with the resulting CMD consistently at 29 nm. The 

average aerosol length for this size bin was calculated to be 3.2 mm/cm3

Figure 5-30

. As illustrated the 

aerosol length also show a gradual decrease in its value indicating a decrease particle 

concentration since the CMD remained constant. It is also seen that close to 30 minutes of idle 

operation the particle concentration in this size range falls to levels below the detection levels 

of the instrument. Since, the visual inspection of the gravimetric filter suggests significant black 

carbon emissions, it necessary to correlate masses of the different size bins to EC emissions to 

discern the size bin of the particle size distribution that contributes to EC emissions. 

 c) shows the instantaneous CMD tracking of particles within the FP size bin 

with its associated aerosol length calculations. The results show a constant particle CMD of 
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124.1 nm through the entire duration of the idle operation with an average aerosol length of 

0.22 mm/cm3

Figure 5-32

. This size range is commonly attributed to solid fraction of PM emissions that 

contribute majorly towards the mass fraction of PM. In analysis of results from bus 1, the 

results indicated a possibility of tunnel artifacts to contribute to particles within this size bin. 

However, results from idle operation of bus 2 could suggest evidence of extensive lubrication 

oil combustion that contributes to a steady concentration of particles within this size bin as 

observed in all size bins for this vehicle operation. 

 shows the results of the integrated particle size distribution and concentration 

measurement from bus2 during the steady state 45 MPH operation.  

 
Figure 5-32 Results of integrated particle size distribution and concentration over steady state 45 MPH 

operation of bus 2 

As illustrated the characteristic nucleation mode peak with a CMD of 10.8 nm is observed 

during the steady state 45 MPH operation also. However, the larger particles diameters 

observed during the idle operation are not very distinctive during the steady state operation, 

suggesting the larger particle diameters to be characteristic of idle mode operation and not 
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significant during high speed vehicle operation. The observed 10.8 nm nucleation mode peaking 

at an average particle concentration of 2.92 X 109 #/cm3

 

, appears to be a characteristic 

distribution of CNG vehicles with both vehicles regardless of the operation exhibiting this 

distribution. 

 

 

 
Figure 5-33 Bus 2 steady state 45 MPH operation a) NP bin CMD and corresponding aerosol length b) 
UFP bin CMD and corresponding aerosol length c) FP bin CMD and corresponding aerosol length d) 

ECU engine percent load and exhaust temperature trace 
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Figure 5-33 a) shows the instantaneous particle CMD tracking of particles within the NP size 

bin for bus 2 during the steady state 45 MPH operation. The results show an average CMD of 

6.5 nm during the steady state operation with a calculated aerosol length of 0.11 mm/cm3

Figure 5-33

. 

Particle concentrations detected in this size range was close to the detection limits of the 

instrument, and could be characterized with higher levels of electrometer noise. However, a 

typical nucleation mode peak with previously observed CMD was detected during the steady 

state operation of this vehicle also. 

 b) shows the instantaneous CMD tracking of particles within the UFP size bin 

for bu2 during the steady state operation. The results showed an average CMD of 37 nm with a 

corresponding average aerosol length of 0.02 mm/cm3

Figure 5-33

. The calculated aerosol lengths over the 

entire duration of the steady state cycle indicate particle concentrations below the detection 

limits of the instrument. The EC/OC analysis from bus 2 over the 45 MPH cycle reported no EC 

mass emissions, and the particle concentrations within the UFP size bin also, corroborate the 

findings of the EC/OC analysis. 

 c) shows the instantaneous tracking of particle CMD within the FP size bin, with 

its associated aerosol length calculation. The particle CMD within the size range showed high 

variation with an average CMD value of 145 nm. The aerosol length calculations for the 

observed CMD range indicate particles with particle count that could be associated with high 

levels of electrometer noise. Gravimetric results of PM from bus 2 indicated the lowest PM 

mass emissions compared to the idle and transient operating conditions. The particle size 

distribution analysis, together with the size bin based analysis indicate particle concentrations 

close to the detection limits of the instrument, with no significant particle contribution from 

any of the three particle size bins. 

5.5 RESULTS OF PARTICLE MASS ANALYSIS 

This section presents the results of the mass calculations derived from the particle size 

distribution and concentration measurement performed for the two buses. This section will sue 

the effective density functions explained in detail in section 2.5.2. The particle mass results 

presented by the post processing tool of the TSI EEPS assumes unit density, while the results 
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presented in this section will use the density function developed by Maricq et al. Since, the 

gravimetric filter sampling represents all a PM particles below the cut point of 2.5 µm, the 

section will use the custom defined bins of nanoparticle (NP) of size range between 6.04 and 

25.5 nm, ultra-fine particle (UFP) of size range between 29.4 and 107 nm and fine particle (FP) 

with size range between 124 and 523.3 nm. The bin wise calculation of particle mass will 

further enable to present a correlation between mass of various exhaust species and their 

respective category in the total particle size distribution. 

Table 20 lists the distance specific and time specific (idle operation) PM mass emissions 

calculated from particle size distribution and concentration measurements of bus 1. The 

computed values for the UDDS cycle show an average 7.08 µg/mi mass emissions of PM within 

the NP size bin, 0.155 mg/mi and 1.415 mg/mi mass emissions within the UFP and FP size bin 

respectively. The results show that the mass calculated for the NP size bin, exhibit greater 

repeatability with a standard deviation 2.60 µg/mi in comparison to standard deviation of 

130.36 and 1173.27 µg/mi for the UFP and FP size bin respectively. The higher variability of 

mass for the UFP and FP size bin is directly related to the high run to run variation of particle 

size distribution and concentration measurements reported in this size range. 

Particulate matter mass emissions in the NP size bin for the steady state 45 MPH operation 

was similar to the UDDS operation with an average distance specific mass of 2.562 µg/mi. The 

NP size bin reported particle mass emissions with low standard deviation. 

Table 20 Results of the bin wise particle mass calculations of bus 1 

UDDS  

Nanoparticle (µg/mi) 
Ultrafine Particle 

(mg/mi) 
Fine Particle 

(mg/mi) 
9.364 0.3222 1.971 
5.846 0.0676 0.749 
4.024 0.0369 0.171 
9.117 0.1929 2.768 

Average 7.088 0.155 1.415 
Max 9.364 0.322 2.768 
Min 3.064 0.118 1.244 

Std Dev 
(µg/mile) 2.60 130.36 1173.27 

SS 45 MPH Nanoparticle (µg/mi) Ultrafine Particle Fine Particle 
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(mg/mi) (mg/mi) 
2.414 0.1167 0.9369 
0.349 0.0024 0.0093 
0.055 0.0005 0.0023 
0.113 7.873E-06 2.782E-05 
9.878 0.4057 2.0232 

Average 2.562 0.105 0.594 
Max 9.878 0.406 2.023 
Min 2.507 0.105 0.594 

Std Dev 
(µg/mile) 4.21 175.38 895.12 

Idle (mass/hr)  
Nanoparticle (µg/hr) Ultrafine Particle (mg/hr) 

Fine Particle 
(mg/hr) 

0.563 4.152E-03 1.627E-03 
3.535 2.327E-06 1.200E-06 
4.618 1.166E-04 9.103E-04 

Average 2.905 0.001 0.001 
Max 1.713E+00 2.728E-03 7.810E-04 
Min 2.342E+00 1.421E-03 8.451E-04 

Std Dev  (µg/hr) 2.10 2.36 0.81 

 

The NP size bin mass PM mass emission during the idle operation was found to be 2.90 

µg/hr. Mass emissions in the NP size bin was two orders of magnitude lower than that observed 

during the UDDS and steady-state 45 MPH operation.  

Figure 5-34 shows the graphical representation of data presented in Table 20. The error 

bars in the chart represent maximum and minimum deviations from the calculated average PM 

mass emissions. The results challenge existing outlook of heavy-duty natural gas PM emissions, 

which considers lower exhaust temperature activity such as low speed and idle operation to 

contribute to the bulk of the nucleation mode particle mass and number concentrations. 

Insufficient catalytic activity has been attributed to the bulk of the nanoparticle formation due 

to higher tailpipe concentration nucleation mode precursors. However, advanced 

stoichiometric natural gas engines are not plagued by lower exhaust temperatures, and hence 

exhibit sufficient catalytic activity of low vapor pressure higher chain hydrocarbons, even at idle 

operating conditions. Hence, the nucleation mode particles observed during almost all vehicle 
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operations with varying degrees of magnitude seem to indicate a particle formation mechanism 

that is independent of catalytic activity or in other words a particle composition not 

representing particle formation mechanism of gas to particle conversion.  

 
Figure 5-34 Bar plot of bin wise particle mass calculations of bus 1 

Table 21 shows the results of the bin wise particle mass calculations for bus 2 over the 

three vehicle operation. Distance specific PM mass emissions over the UDDS cycle for bus 2 is 

comparable to that observed in bus 1. The average NP size bin PM mass for the UDDS cycle was 

calculated to be 6.95 µg/mi, with a standard deviation of 4.69 µg/mi. The average mass 

emissions in the NP size bin between the two vehicles are within 2% of each other, suggesting a 

similar particle formation mechanism between both vehicles over a transient operation. 
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Table 21 Results of the bin wise particle mass calculations of bus 2 

UDDS  

Nanoparticle (µg/mi) 
Ultrafine Particle 

(mg/mi) 
Fine Particle 

(mg/mi) 
13.531 0.7539 2.742 
7.066 0.3168 4.189 
4.050 0.2768 0.389 
3.157 0.1643 0.196 

Average 6.951 0.378 1.879 
Max 13.531 0.754 4.189 
Min 3.794 0.214 1.683 

Std Dev 
(µg/mile) 4.69 258.80 1926.49 

SS 45 MPH  

Nanoparticle (µg/mi) 
Ultrafine Particle 

(mg/mi) 
Fine Particle 

(mg/mi) 
0.494 0.010 0.030 
0.207 0.005 0.017 
0.185 0.003 0.014 
1.395 0.005 0.020 

Average 0.571 0.006 0.020 
Max 1.395 0.010 0.030 
Min 0.385 0.002 0.006 

Std Dev 
(µg/mile) 0.57 2.67 6.85 

Idle (mass/hr)  

Nanoparticle (µg/hr) Ultrafine Particle (mg/hr) 
Fine Particle 

(mg/hr) 
1948.37 9.86 7.87 
1073.04 3.38 2.50 
2650.13 19.27 13.33 
1748.60 4.74 3.30 

Average 1855.036 9.311 6.750 
Max 795.10 9.96 6.58 
Min 781.99 5.93 4.25 

Std Dev  (µg/hr) 649.03 7201.63 4984.78 

The average NP size bin mass for the steady state operation for bus 2 resulted in an order 

of magnitude lower particle mass in comparison to bus 1. The NP size bin mass for the steady 

state operation from bus 2 was calculated to be 0.571 µg/mi with a standard deviation of 0.57 

µg/mi. If lubrication oil is assumed to contribute to the bulk of the NP size bin mass, then bus 2 

steady state operation resulted in lower lubrication consumption in comparison to bus 1. 
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One of the interesting findings of the study is the observed mass emissions rate of PM from 

bus 2 during its idle operation. PM mass emission in the NP size bin during the idle operation 

was found to be three orders of magnitude greater than that observed in bus 1. The average 

mass emission in the NP size bin was calculated to be 1855.03 µg/mi with a standard deviation 

of 649.03 µg/mi. Similarly, the UFP and FP size bin also reported mass that are 3 orders of 

magnitude greater than that observed from bus 1. 

 
Figure 5-35 Bar plot of bin wise particle mass calculations of bus 2 

Figure 5-35 shows the graphical representation of the bin wise mass calculation results of 

bus 2 shown in Table 21. The results show evidence of extensive lubrication oil consumption 

that has manifested itself as particle mass emissions in all three size bins namely NP, UFP and 

FP.  This further suggest the possibility of oil entry into the combustion chamber resulting in ash 

and EC emissions contributing to mass in the UFP and FP size bin. However, the lack of volatile 

precursors and no evidence of homogenous nucleation presents a case of uncertainty in 
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attempting discern the composition of the NP size bin. The upcoming sections will present 

correlation of mass within this size bin with individual speciated mass in order to suggest 

possible compositional scenario for PM in this size bin. 

5.5.1 PARTICLE MASS ANALYSIS CORRELATIONS 

The previous sub sections of the results chapter, elucidated the mass correlations of 

various fractions of PM namely, metals, EC/OC and certain PAH compounds to toxicity 

responses. The results indicated a strong correlation of mass of metals to both DTT and the 

alveolar macrophage assay. Since, a size segregated particle mass collection was not employed 

this section will attempt to correlate particle mass in the defined bins with mass of different PM 

fractions to infer the composition of the different size bins of the particle size distribution. 

Table 22 shows the results of the Pearson’s correlation analysis performed between mass 

of particles within the NP size bin and mass of metal emissions. The analysis considered mass of 

only 4 elements namely zinc, phosphorus, chromium and iron, since these elements exhibited 

statistically significant correlation towards response from DTT and the alveolar macrophage 

assay. Also, the four selected elements are characteristic components of lubrication oil 

consumption, and were found to comprise a significant fraction of the total elemental 

emissions 

Table 22 Results of Pearson correlation coefficient and level of significance between elemental 
emissions and bin wise PM mass emissions 

Metals (Zn, P, Cr, Fe) 
Size Bin R P 

NP 0.96 0.002 
UFP 0.25 0.636 
FP -0.09 0.864 

The results exhibited an interesting correlation between the particle mass in the NP size bin 

with the elemental emissions. A Pearson’s correlation factor of 0.96 with a level of significance 

p=0.002 was obtained. Hence, a statistically significant correlation in the 99% confidence 

interval is reported for the correlation of the NP size bin mass and metallic elements. It is to be 

noted that the results presented here is based on a statistical correlation only, since a size 
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based PM sampling or results from a scanning electron microscope (SEM) is not available to 

corroborate the statistical significance. 

 Despite the lack of experimental evidence to corroborate the finding, an important study 

in the literature has documented a similar finding that suggest the possibility of nanoparticles 

composed of metallic and elemental fractions. The study by Lee et al. was aimed at gaining 

insight into the fraction of metal emissions in the ultrafine particle portion. To accomplish this 

goal the investigators used a 1.9 L diesel generator, with fuel doped with varying levels of iron 

crystals. The results of the study showed an interesting particle size distribution that indicated 

self nucleation of the iron fraction in the fuel after combustion to form nanoparticles in the size 

range of 10 nm. Further, the study indicated that engine load conditions with lower carbon 

content, enhanced the concentration of this nucleation mode, suggested to be made up of iron 

nanoparticles. The study further corroborated its finding through SEM images on these 

nanoparticles with single particle mass spectroscopy that confirmed the iron content. Also, one 

of the important conclusions of the study indicated the possibility of enhanced self nucleation 

of metallic particles during conditions of low soot or ultra low level soot emissions (Lee et al., 

2006). 

Figure 5-36 shows the particle size distribution results from the study by Lee et al. (Lee et 

al., 2006). The nucleation mode shown in the referenced study is very similar to the nucleation 

mode observed in the current study, and further corroborated by statistically significant 

correlation exhibited by nanoparticle size bin and elemental emissions. 
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Figure 5-36 Chart adapted from (Lee et al., 2006) showing the iron based nucleation mode for a diesel 

fuel doped with 60 ppm iron. 

A comprehensive study by Khalek et al. has shown that lubrication oil additives undergo 

volatilization when passing thorugh the combustion chamber and a fraction of them re-

nucleate to form nanoparticles while the remaining adsorb on to other accumulation mode 

particles. The study also documents that low soot conditions are most favorable conditions for 

nucleation of lubrication oil derived metals and elements. The study by Khalek et al. also 

suggests at the possibility of inorganic components such as calcium, zinc and magnesium 

forming solid nanoparticles (khalek et al., 1998). 

Although, the above referenced study has pointed out the possibility of a low soot engine 

favoring, nucleation of inorganic species in the exhaust, no previous study has reported this 

finding. The salient feature of the current study is the fact that the lack of sulfur in the fuel, and 

the gaseous nature of the fuel, helps investigate the composition of the observed nucleation 

mode without any interference from possible sulfate formation, sulfuric acid particles and high 

EC content in the exhaust.  

Although, lubrication oil based sulfur has been reported to be a significant contributor to 

formation of sulfuric acid particles during high temperature exhaust conditions (Thiruvengadam 

et al., 2012, Kittelson et al., 2008, Vaaraslahti et al., 2005), the sulfate composition in the 
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exhaust of the natural gas engines have been found close to the levels observed in the 

background. Moreover, sulfur was observed in abundance as elemental composition rather 

than as a sulfate fraction as expected due to the predominant high temperature operation of 

stoichiometric natural gas engines. This is due to the fact that sulfate based nanoparticles are 

formed due to successive oxidation sulfur to SO2 in the combustion chamber and further to SO3 

over catalytic surfaces. However, it is to be noted that SO2 to SO3 conversion can be achieved 

only with excess oxygen in the exhaust and at temperatures greater than 380 deg C. In the case 

of stoichiometric natural gas engines, lubrication oil based sulfur can still under go in cylinder 

oxidation to SO2, however a successive oxidation to SO3 would not be possible due to the 

oxygen deprived exhaust gas composition that is characteristic of stoichiometric engine 

operation. The lack of SO3 content inhibits the binary nucleation of sulfuric acid in the presence 

of water vapor. Hence, the nucleation mode observed in the current study differs from the 

nucleation mode observed from high temperature operation of advanced after-treatment 

equipped diesel engines, with respect to its composition. Nucleation mode observed from DPF-

SCR equipped vehicles are believed to be a result of binary nucleation of SO3

The exhaust of the stoichiometric natural gas engine tested in this study does not exhibit 

significant mass emissions of sulfates and elemental carbon, but a significant mass emissions of 

lubrication oil based elements and metals such as phosphorus, zinc, magnesium, calcium, 

chromium and iron is observed together with a particle size distribution that is completely 

dominated in the nucleation mode size bin. The high temperature three-way catalyst activity 

also resulted in VOC and PAH content close to detection limits of the analytical method. Hence, 

the collective evidence, suggests a nucleation mode particle formation mechanism that 

represents a re-nucleation of combusted lubrication oil inorganic components during exhaust 

gas cooling and dilution.  

 and water forming 

sulfuric acid droplets and that formed in the exhaust of stoichiometric natural gas engines seem 

to indicate a solid nucleation mode particles composed of inorganic fraction such as metals and 

elements. 

Table 23 shows the Pearson’s correlation results for mass of particles in the NP size bin 

with organic carbon mass and responses from DTT and alveolar macrophage assays. The 
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correlation of organic carbon and NP size bin mass resulted in a fairly good correlation, but with 

no statistical significance. This could be due to the fact that the OC mass measured through the 

NIOSH method with a pre-fired quartz filter could be characterized by higher levels of positive 

artifacts from the high methane content in the natural gas engine exhaust, together with the 

affinity of pre-fired quartz in adsorbing hydrocarbons. Also, to corroborate the finding that 

indicates a solid inorganic nucleation mode fraction a correlation of NP size bin with DTT and 

alveolar macrophage ROS was performed. The results indicate good correlation factors of 0.98 

and 0.76 for DTT and macrophage ROS respectively. The DTT correlations indicate a statistically 

significant correlation factor within the 95% confidence interval, and the macrophage ROS 

resulting in a correlation factor marginally outside the 95% confidence interval, but can still be 

considered as statistically significant. Since, the DTT and the ROS macrophage assays 

independently correlated well with the mass of phosphorus, zinc, chromium and iron it lends 

support to the possibility a NP size bin consisting of inorganic self nucleated particles. 

Table 23 Results of Pearson correlation coefficient and level of significance NP mass and DTT and ROS 
responses 

NP Size Bin 
Size Bin R P 

OC 0.62 0.18 
DTT 0.98 0.02 
ROS 0.76 0.08 

It is clear from many early research papers that certain elemental emissions such as zinc, 

phosphorus, calcium and magnesium are characteristic of lubrication oil contribution. Most of 

these elements are major additives in lubrication oil that impart various properties to the oil in 

terms of rust protection, maintain the acidity of the oil, wear protection and viscosity 

enhancers. Additive such as zinc dialkyldithiophosphates (ZDDP) developed by Castrol is 

commonly used to impart antioxidant and anti-wear properties to lubrication oil. A study by 

Hosonuma et al. has elucidated the decomposition of ZDDP in an engine and its interaction with 

diesel soot. The study reports that ZDDP decomposes into zinc free phosphorus compounds 

and phosphorous free zinc compounds in an engine. And further only the free zinc is capable of 

combining with soot as an agglomerate and not phosphorus (Hosonuma et al., 1985). In 

relation to the current study, the results might be indicative of a similar decomposition of 
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possible ZDDP additives in the lubrication oil that manifests itself as free phosphorus and zinc 

fractions in the exhaust, and further forming particles in the NP size bin. 

The path of the lubrication oil into the combustion chamber or directly in to the exhaust 

needs to be addressed while attempting to link lubrication oil consumption with PM emissions. 

The magnitudes of lubrication oil based elemental emissions seem to suggest a significant 

contribution from lubrication oil independent of vehicle operation. Further, the presence of 

nucleation mode with a particle concentration of same order of magnitude between transient, 

idle and steady state operation indicates an oil transport mechanism not dependent on in 

cylinder pressure conditions. In the case of oil transport through piston rings, idle and low load 

operation would result higher elemental emissions and steady state operations with 

comparatively higher steady loads would result in lower elemental emissions. However, the 

results seem to indicate an oil transport mechanism such as through a closed crankcase 

ventilation (CCV) system which is a load independent contribution of oil into the combustion 

chamber. Beginning of MY 2007 engine manufacturers were mandated to either include 

crankcase emissions as part of the exhaust emission while certifying emissions or employ closed 

circuit crank case ventilation to induct crank case fumes back into the intake through the 

turbochargers. Crankcase blow-by gas consists of a mixture of in cylinder combustion gases 

together with oil in vapor and fine liquid droplets. To protect the components of the 

turbochargers from piqued oil droplets manufacturers usually employ filter or impaction 

methods to remove solid and liquid fractions of the blow by gas in order to induct only gas 

phase components into the combustion chamber. In sufficient maintenance of the CCV system 

could possibly result in loss of filtration efficiency of the blow-by gas contributing to higher 

levels of lubrication oil components into the combustion chamber. Since, the ISLG series 

Cummins engine employ CCV system with possibility of either a filter mechanism or impaction 

method to remove liquid and solid fractions of lubrication oil. However, the operational 

efficiencies of these filtration mechanisms are not monitored and could result in increased 

lubrication oil fractions to be inducted in to the intake of the engine. As a result we could be 

observing the combustion and the subsequent re-nucleation of the inorganic lubrication oil 

components to form nanoparticles in the exhaust. 
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Another interesting result from the current study is the high mass emission of PM during 

the idle operation of bus 2. EC/OC analysis indicated an EC emission rate of 0.005 mg/sec 

during the idle operation of bus 2. The particle size distribution indicated a broad distribution 

with significant particle concentrations in NP, UFP and FP size bins. Since EC mass was not 

detected in all vehicle operations from both buses a statistical correlation was not possible. 

However, the sum of particle mass in the UFP and FP size bin resulted in a total mass (16.06 

mg/hr) that is 10.7 % lower than the EC mass (18 mg/hr) during the idle operation. The sum of 

particle masses from all the size bins resulted in a total mass of 17.91 mg/hr which is 0.47% 

lower than the EC mass during the same operation. The percent differences seem to indicate 

possible EC fractions in all size bins of the particle size distribution.  

5.5.2 SUMMARY OF ANALYSIS 

Table 24 shows the tabulated results of the different components analyzed and their 

statistical correlations with different toxicity assays. Symbol ↑ and ↓ in the table is used to 

denote the concentration of a given analyte to be high and low relative to background concentrations 

respectively. Symbol ↨ is used to denote the possibility of higher concentration relative to 

background due to the presence of sampling artifacts such as gas phase adsorption on filter. 

Symbol ↕ is used to denote high variability in the measured data due to measurement close to 

the detection limits of the instrument. Symbol ** denotes Pearsons correlation coefficient with 

statistical significance level or 0.01 or in the 99% confidence interval. Symbol * denotes 

Pearsons correlation coefficient with statistical significance level or 0.05 or in the 95% 

confidence interval. ◊ denotes poor Pearsons coefficient with statically insignificant p value. 
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Table 24 Tabulated summary of correlation and statistical significance of different components 
analyzed 

Component 
Concentration 

relative to 
Bckgnd 

Relationship Level of 
Correlation 

Statistical Significance of 
Correlation 

        Significant Insignificant 

EC 

Transient ↑ DTT  Good   ◊ 
Steady state ↓ DHBA Poor   ◊ 

Idle ↑ ROS High **   

OC 
Transient ↨ DTT Poor   ◊ 

Steady state ↨ DHBA Poor   ◊ 
Idle ↨ ROS Poor   ◊ 

PAH/VOC On all driving 
types ↓ 

DTT High 

MW<200 

**   
DHBA Poor   ◊ 
ROS Poor   ◊ 

Carbonyl On all driving 
types ↓ 

DTT Poor   ◊ 
DHBA Poor   ◊ 
ROS Poor   ◊ 

Metals/Elements On all driving 
types ↑ 

DTT High 

(Cu, P, Zn) 

**   

DHBA Good   
(S, K, V, Fe, 

Co)◊ 

ROS High 

(Cu, P, S, Cr, 

Fe, Zn) **   

Nucleation mode 
particles 

On all driving 
types ↑ 

Metals/ 
elements High 

(P, Cr, Fe, 

Zn) **   
EC Poor   ◊ 
OC Poor   ◊ 

DTT High **   

ROS Good *   
PAH Poor   ◊ 

Accumulation mode 
particles 

On all driving 
types ↕ 

Metals/ 
elements Poor   ◊ 

EC Good   ◊ 
OC Poor   ◊ 

PAH Poor   ◊ 
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5.6 REGIONAL DEPOSITION FRACTIONS AND PARTICLE SURFACE AREA ANALYSIS 

Toxicity analysis, particle size distribution results and mass correlations have exhibited a 

strong relationship between metal fractions in the nanoparticle size bin to be influential in the 

PM number count emissions as well as toxicity responses. The analysis in the current section 

will provide results of deposition fractions for the different size bin together with total surface 

area and the lung deposited surface area, which is important in assessing health risks from 

heavy-duty natural gas engines. The results used deposition fraction equations developed by 

International Commission for Radiological Protection (ISRP). The dosimetry model representing 

human respiratory pathway and particle movements through it has been largely used by the 

health effect research to discern ambient particle transport to the lungs. The deposition 

fractions calculated for the different regions of the respiratory system namely 1) head and nasal 

airways (DFhead) 2) tracheobronchial (DFtb) 3) aleveolar (DFalveolar

Figure 5-37

) will be used to calculate the 

lung deposited surface area that these regions will be subjected to. Since deposition frcation is 

a function of particle size, the results will illustrate deposition fraction for the three classified 

size bins of the particle size distribution. 

 shows the total deposition fraction and regional deposition fractions for the 

electrometer channels that represent the size ranges of the TSI EEPS. The ICRP deposition 

model used for this calculation represents averaged values for men and women for three 

different activity types that include resting, light exercise and heavy exercise. The illustration 

shows up to 90% total particle deposition in the respiratory system for particles in the size 

range of 5 nm. However, this includes deposition in the head and nasal airways that are not as 

critical with respect to health effects implications as compared to particle deposition in trachea 

bronchial and alveolar. Hence, further results and LDSA calculation in this study will use only a 

sum of DFtb and DFalveolar fractions, due to their significance of particle deposition in the inner 

pathways and gas exchange regions of the lungs. 



 

139 | P a g e  
 

 
Figure 5-37 Regional and total deposition fractions calculated for the electrical mobility diameter 

range for the TSI EEPS instrument. 

 

Table 24 lists the regional and total deposition fractions for the three different size bins of 

the particle size distribution measured over the UDDS cycle for bus 1. The deposition fractions 

represented here are average over the entire driving cycle and represent the deposition of only 

the particle CMD as identified in section 5.4. 
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Table 25 Regional deposition fractions for Bus 1 for the three different size bins over the UDDS cycle 

Bus 1 UDDS 
NP size Bin 

  CMD (nm) DF DF DFhead DFtb alveolar 
Average 6.11 0.917 0.309 0.293 0.304 
Std Dev 0.501 0.006 0.014 0.005 0.016 

UFP size Bin  
  CMD (nm) DF DF DFhead DFtb alveolar 
Average 36.84 0.552 0.054 0.099 0.388 
Std Dev 8.792 0.065 0.010 0.018 0.048 

FP size Bin 
  CMD (nm) DF DF DFhead DFtb alveolar 
Average 173.44 0.163 0.024 0.012 0.077 
Std Dev 45.020 0.022 0.008 0.004 0.014 

Results from Bus 1 UDDS showed a total DF of 0.917 for an average CMD of 6.11 nm in the 

NP size bin and DF of 0.552 for an average CMD of 36.84 nm. The FP size bin deposition can be 

considered insignificant because of the higher standard deviation in the measured CMD and 

low DF values. The NP size bin exhibits equal particle deposition fraction in both 

tracheobronchial and alveolar region of the lungs. The UFP size bin shows significant deposition 

in the alveolar region with a DFalveolar of 0.388 in comparison to DFtb

Table 26 Regional deposition fractions for Bus 1 for the three different size bins over the steady state 
45 MPH cycle 

 of 0.099. Hence, suggesting 

the influence of elemental carbon if any on the alveolar tissues of the lungs. 

Bus 1 SS 45 MPH 
NP size Bin 

  CMD (nm) DF DF DFhead DFtb alveolar 
Average 9.14 0.881 0.235 0.260 0.391 
Std Dev 2.267 0.030 0.061 0.025 0.065 

UFP size Bin  
  CMD (nm) DF DF DFhead DFtb alveolar 
Average 88.58 0.334 0.032 0.099 0.201 
Std Dev 32.690 0.162 0.018 0.018 0.125 

FP size Bin 
  CMD (nm) DF DF DFhead DFtb alveolar 
Average 142.78 0.182 0.021 0.015 0.089 
Std Dev 3.100 0.004 0.000 0.001 0.003 
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Table 25 lists the regional and total deposition fractions for the three different size bins of 

the particle size distribution measured over the steady state 45 MPH cycle for bus 1. The NP 

size bin reported a DF of 0.881 for an average CMD of 9.14 nm throughout the duration of the 

steady state operation. DFtb and DFalveolar

Table 27 Regional deposition fractions for Bus 1 for the three different size bins over the idle 
operation 

 were calculated to be 0.26 and 0.391 respectively. 

The UFP size bin reported a DF of 0.334 with negligible deposition in the upper and 

tracheobronchial regions of the airways. The high variability in the measured CMD also 

indicates possible noise in measurement due to lower particle number count. 

Bus 1 Idle 
NP size Bin 

  CMD (nm) DF DF DFhead DFtb alveolar 
Average 8.06 0.893 0.243 0.272 0.376 
Std Dev 0.000 0.000 0.000 0.000 0.000 

UFP size Bin  
  CMD (nm) DF DF DFhead DFtb alveolar 
Average 30.13 0.614 0.065 0.118 0.430 
Std Dev 5.803 0.034 0.005 0.009 0.026 

FP size Bin 
  CMD (nm) DF DF DFhead DFtb alveolar 
Average 127.16 0.203 0.021 0.019 0.106 
Std Dev 29.448 0.008 0.006 0.001 0.005 

 

Table 28 Regional deposition fractions for Bus 2 for the three different size bins over UDDS cycle 

Bus 2 UDDS 
NP size Bin 

  CMD (nm) DF DF DFhead DFtb alveolar 
Average 7.26 0.903 0.271 0.281 0.343 
Std Dev 1.715 0.022 0.031 0.015 0.031 

UFP size Bin  
  CMD (nm) DF DF DFhead DFtb alveolar 
Average 67.75 0.396 0.037 0.061 0.263 
Std Dev 31.060 0.149 0.017 0.036 0.118 

FP size Bin 
  CMD (nm) DF DF DFhead DFtb alveolar 
Average 138.71 0.186 0.020 0.015 0.092 
Std Dev 8.185 0.009 0.000 0.001 0.007 
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Table 29 Regional deposition fractions for Bus 2 for the three different size bins over the steady state 
45 mph cycle 

Bus 2 SS 45 MPH 
NP size Bin 

  CMD (nm) DF DF DFhead DFtb alveolar 
Average 6.55 0.911 0.297 0.288 0.316 
Std Dev 1.483 0.019 0.039 0.016 0.042 

UFP size Bin  
  CMD (nm) DF DF DFhead DFtb alveolar 
Average 37.10 0.543 0.051 0.095 0.383 
Std Dev 3.588 0.032 0.005 0.009 0.022 

FP size Bin 
  CMD (nm) DF DF DFhead DFtb alveolar 
Average 145.29 0.187 0.022 0.016 0.093 
Std Dev 46.417 0.018 0.008 0.003 0.012 

 

Table 30 Regional deposition fractions for Bus 2 for the three different size bins over the idle 
operation 

Bus 2 Idle 
NP size Bin 

  CMD (nm) DF DF DFhead DFtb alveolar 
Average 8.06 0.831 0.164 0.225 0.452 
Std Dev 0.000 0.038 0.030 0.025 0.020 

UFP size Bin  
  CMD (nm) DF DF DFhead DFtb alveolar 
Average 30.13 0.618 0.065 0.119 0.433 
Std Dev 5.803 0.000 0.000 0.000 0.000 

FP size Bin 
  CMD (nm) DF DF DFhead DFtb alveolar 
Average 127.16 0.204 0.020 0.019 0.106 
Std Dev 29.448 0.000 0.000 0.000 0.000 

 

Table 27 and Table 28 show the results of the regional deposition fraction calculation for 

the three different size bins for bus 2 over the UDDS cycle and the steady state 45 MPH cycle 

respectively. The results show a similar deposition fraction values as observed from bus 1 due 

to the similarities in particle size distribution observed. However, a significant difference was 
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observed during the idle operation of bus 2, where the particle size distribution resulted in a 

broader normal distribution curve encompassing both the NP and UFP size bin. As result the 

CMDs obtained for both size ranges where characterized by low standard deviation. The 

deposition fraction calculation indicates 0.831 and 0.618 total particle deposition for the NP 

and UFP size bin. Another interesting finding is that the alveolar deposition from both the NP 

and UFP size bin are very similar with 0.452 for NP size bin and 0.433 for UFP size bin. This is 

due to the fact that the CMD obtained for both size bins are within the particle diameter range 

that produce the highest deposition in the alveolar region. Since, the idle mode operation from 

bus 2 produced toxicity response that was an order of magnitude higher than other operating 

modes, the high alveolar deposition observed could result in high human lung tissue exposure 

to oxidative stress inducers. 

Table 26 lists the regional and total deposition fractions for the three different size bins of 

the particle size distribution measured over the idle operation for bus 1. NP size bin reported 

particle deposition fraction of 0.893 with DFtb and DFalveolar calculated to be 0.272 and 0.376 

respectively. The UFP size bin reported average particle CMD similar to that observed during 

the UDDS operation with an average CMD of 30.13 nm associated with a total deposition of 

0.614. Alveolar deposition of particles with a DFalveolar

Figure 5-38

 of 0.430 was the dominant deposition 

mechanism in this size bin. 

 shows the results of the total particle surface area calculation for the measured 

CMD in the different size bins for bus 1 operating over different drive cycles. The surface areas 

shown in Figure 5-38 will correspond to the particle surface are as emitted from the tailpipe of 

the vehicle. Figure 5-39 shows the results of the tracheobronchial and alveolar deposited 

surface area for the measured CMD in the different size bins for bus 1 over different drive 

cycles. The surface areas shown in Figure 5-39 will correspond to the particle surface are that 

will be exposed to the human tissue interactions. 
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Figure 5-38 Total particle surface area calculated for the measured CMD in each size bin 

 
Figure 5-39 Tracheobronchial and alveolar deposited surface area calculated for the measured CMD in 

each size bin 

As illustrated the results show maximum surface area of particulate matter for the CMD 

corresponding to the UFP size bin. The NP size bin surface area contribution is consistent 

through all operating modes. As observed in Figure 5-39 the lung deposited surface area (LDSA) 

for the NP and UFP size bins are of the same order of magnitude as observed in tailpipe owing 

to the high lung deposition in this size range. However, the LDSA of the FP size bin shows an 

order of magnitude change in particle surface area from that observed in the tailpipe. 

Figure 5-40 show the particle surface area distribution representing engine out dilute 

particle size distribution and the surface area distribution calculated from applying the alveolar 

and tracheobronchial deposition fractions. The lung deposited particle surface area 
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represented in the figure considers only the summation of the alveolar and tracheobronchial as 

deposition in the head and nasal airway can be considered as non critical with respect to health 

effects. 

 
Figure 5-40 Particle surface area distribution, representing engine-out, lung deposited, 

tracheobronchial and alveolar deposition from bus 1 over the UDDS cycle. 

The results shown for the UDDS cycle elucidates the significance of the nucleation mode 

distribution since almost the entire engine out particle surface area is exposed to the inner 

regions of the lung. The UFP and the FP mode particle suffer significant loss through impaction 

in the upper regions of the respiratory tract, hence decreasing its available surface area to the 

gas exchange regions by over two orders of magnitude. Particle size distribution analysis in the 

previous sections attributed particles in the FP size bin to possible dilution tunnel artifacts and 

not necessarily an engine out distribution. However, the UFP size range could be linked with 

elemental carbon fractions that were detected by EC/OC analysis. 
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Figure 5-41 Particle surface area distribution, representing engine-out, lung deposited, 

tracheobronchial and alveolar deposition from bus 1 during Idle operation. 

Figure 5-41 shows the particle surface area distributions for bus 1 during the idle 

operation. The results show a significant exposure to particle surface area in the NP size bin. 

Surface area deposition in the UFP and FP size bin are three orders of magnitude lower than the 

NP size bin.  

Figure 5-42 shows the particle surface area distribution for bus 1 during the steady state 45 

MPH operation. The particle size distribution and concentration measurement results obtained 

for this cycle resulted in the lowest particle number and mass emissions and as a result the 

number count measurements were characterized by higher levels of electrometer noise from 

the TSI EEPS. However, the nucleation mode surface area distribution was similar in magnitude 

to that observed during the UDDS cycle and idle operation. Since, the chemical speciation of 

gases and PM did not exhibit and volatile or inorganic fractions such as nitrates that could be 

contributing to higher particle size and greater mass, the surface area distribution in the UFP 
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and FP size bin can be considered as not significant in relation to possible health effects due to 

particle toxicity. 

 
Figure 5-42 Particle surface area distribution, representing engine-out, lung deposited, 

tracheobronchial and alveolar deposition from bus 1 during steady state 45 mph operation. 

Figure 5-43 shows the particle surface area distribution from bus 2 over the UDDS cycle. 

Although the results show significant surface area contribution from UFP and FP size bins, 

chemical speciation of exhaust did not indicate any significant emissions of inorganic and 

carbon emissions that could be attributed to number count in that size range. Hence, the 

surface area distribution observed in the UFP and FP size category can be considered as 

possible sampling artifacts that may not reflect any adverse health effects of tailpipe 

nanoparticle emissions. Interestingly, the nanoparticle size bin, exhibited a surface area 

distribution with respect to magnitude and size range that was a similar to those observed from 

bus 1 during all driving cycles. 
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Figure 5-43 Particle surface area distribution, representing engine-out, lung deposited, 

tracheobronchial and alveolar deposition from bus 2 over the UDDS cycle. 

 
Figure 5-44 Particle surface area distribution, representing engine-out, lung deposited, 

tracheobronchial and alveolar deposition from bus 2 during steady state 45 mph operation. 
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Figure 5-45 Particle surface area distribution, representing engine-out, lung deposited, 

tracheobronchial and alveolar deposition from bus 2 during idle operation. 

 

Figure 5-44 shows the particle surface area distribution for the 45 MPH steady state 

operation of bus 2. The total lung deposited surface area distribution shows an order of 

magnitude decrease in particle deposition for the FP size range. The NP size bin particle surface 

area deposited in the lungs is of the same order of magnitude as that observed from the 

tailpipe. This further elucidates the contribution of NP size bin particle to particle deposition in 

the lungs. A combination of higher toxicity potential and higher surface area for interaction 

could contribute to serious health effects. 

Figure 5-45 shows the particle surface area distribution for the idle operation from bus 2. 

The lung deposited surface area contribution for the idle operation is significant for particles 

within the UFP size range. Since, the idle operation resulted in higher emissions of EC, the UFP 

surface area illustrated here could be entirely contributed by EC fraction. It was observed in our 

toxicity analysis that EC fraction of the PM showed positive correlation towards the alveolar 

macrophage ROS assay. Although, we concluded that correlation needed a larger dataset to 
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derive statistically significant conclusions, the surface area distribution deposited in the alveolar 

and tracheobronchial regions illustrate the importance of the UFP size range particles and its 

composition. A larger dataset will be required to quantify the EC composition of CNG exhaust 

and its associated toxicities to further illustrate the link the UFP size bin surface area deposition 

in the lungs to possible health effects. 

5.6.1 RELATIONSHIP BETWEEN ELECTRICAL AEROSOL DETECTOR RESPONSE 

TO PARTICLE SURFACE AREA 

The previous sections have illustrated the importance of particle surface area 

measurements and its regional deposition fractions, while relating toxicity responses to particle 

size distribution. However, measurement of lung deposited particle surface area can be 

achieved only through particle sizing equipments such as TSI EEPS for transient testing and TSI 

scanning mobility particle sizer (SMPS) for steady state testing. Measurement of particle surface 

area has traditionally been accomplished by primarily measuring the particle size distribution 

and concentration, and further calculating particle surface are by assuming spherical particle 

geometry. A recent study has shown an interesting relationship between diffusion charger 

based particle counter to particle surface area (Wilson et al., 2007). Diffusion charger based 

instruments are based on the principle of charge transfer to particles by mixing ionized air and 

particles. Charge transfer between particles and ionized air occur through the process of 

diffusion consequently number of particles can be measured through measurement of current 

from these ionized particles. 

TSI electrical Aerosol Detector (TSI EAD) is a diffusion charger based instrument that 

reports a unique particle metric called as the aerosol length. Aerosol length can simply be 

viewed as the product of mean particle diameter (mono-modal distribution) and the total 

particle number count. However, the basic measurement principle of the EAD is the diffusion 

based ionizing of particles and consequently measuring the electrometer current generated by 

impaction of these ionized particles. A recent work by Wilson et al. showed an interesting result 

that revealed high correlation of the raw EAD current to lung deposited surface area and 

regionally deposited particle surface area (Wilson et al., 2007). The findings of Wilson et al. is of 

high importance because, now the response of a diffusion charging based instrument can be 



 

151 | P a g e  
 

directly correlated to lung deposited surface area. This also showed that the surface area 

offered by the particles is directly dependent on the charge acceptance by the particle through 

the process of diffusion. However, the study is based only on atmospheric particle size 

distribution and composition and further raises important questions regarding possible 

diffusion charging efficiencies for other particle size distribution and composition such as 

vehicle exhaust. 

This section of the results will analyze the results of EAD measurements and particle 

surface area calculated from the various size bins of the particle size distribution to illustrate 

the correlation of EAD response to the lung deposited particle surface area. 

Table 31 Pearson’s correlation coefficient (R) and level of significance (p) for correlation of EAD data 
Vs. regional and lung deposited surface area and particle number count in different size bins 

EAD Aerosol Length 

 
R p 

NP size bin lung deposited surface area 0.980 0.000 
NP size bin alveolar deposited surface 

area 0.980 0.000 

NP size bin Tracheobronchial deposited 
surface area 0.920 0.000 

UFP size bin lung deposited surface area 0.754 0.000 
UFP size bin alveolar deposited surface 

area 0.579 0.003 

UFP size bin Tracheobronchial deposited 
surface area 0.625 0.001 

NP size bin total particle number 0.690 0.000 

UFP size bin total particle number 0.481 0.010 

 

Table 30 shows the Pearson’s correlation for average EAD response with lung, alveolar and 

tracheobronchial deposited surface area of each size bin of the particle size distribution for all 

vehicle operation. The results show high correlation coefficient with high statistical significance 

for EAD response and lung and regional deposition of particles of the NP size bin. However, the 

particle surface area in the UFP size bin showed only reasonable correlation for lung deposited 

and tracheobronchial and poor correlation with alveolar deposition. The poor correlation in the 
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UFP region can be attributed to the lower particle concentration detected in this size range the 

possibility of sampling artifacts contributing to an inconsistent particle size distribution in the 

UFP and FP size bins. 

EAD response with total particle number in the NP and UFP size bin correlated poorly, and 

further corroborating the existing theory of a diffusion chargers response being better 

correlated with particle surface are than particle number.  

 

Figure 5-46 Scatter plot and linear fit of EAD data Vs. a) NP size bin total lung deposited particle 
surface area b) NP size bin alveolar deposited particle surface area c) NP size bin tracheobronchial 

deposited particle surface area 
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Figure 5-46 shows the scatter plot with the liner fit for the EAD response with the total lung 

deposited surface area, alveolar deposited surface area and the tracheobronchial deposited 

surface area in the NP size bin. The illustration shows high correlation of EAD response to lung 

deposited surface area (R2=0.96), alveolar deposited surface area (R2=0.97) and 

tracheobronchial surface area (R2

 

=0.86) in the NP size bin. The lung deposited surface area 

shown area considers only the summation of alveolar and tracheobronchial deposition 

fractions. 

Figure 5-47 Scatter plot and linear fit of EAD data Vs. a) UFP size bin total lung deposited particle 
surface area b) UFP size bin alveolar deposited particle surface area c) UFP size bin tracheobronchial 

deposited particle surface area 
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Figure 5-47 shows the scatter plot with the liner fit for the EAD response with the total lung 

deposited surface area, alveolar deposited surface area and the tracheobronchial deposited 

surface area in the UFP size bin. The illustration shows the poor correlation exhibited by the 

surface area deposition in the UFP size bin with the EAD response. 

 
Figure 5-48 Scatter plot and linear fit of EAD data Vs. a) Total particle number count in the NP size bin 

b) Total particle number count in the UFP size bin 

Figure 5-48 shows the correlation scatter plot between EAD response and total particle 

number count in the NP and UFP size bin. The FP size bin has been omitted for this correlation 

due to the uncertainties in particle size measurement due to low particle concentration and 

possibility of results being biased by sampling artifacts. 

The results of this analysis show the ability to use the response of an EAD or any diffusion 

charging instrument to predict the lung deposited surface area of a particle stream. Hence, 

toxicity responses can be directly correlated with a simple diffusion charging instrument’s 

response rather than the use of complex size and number count measurement 

instrumentation.  
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CHAPTER 6 -  CONCLUSIONS 

The key objectives of this research to chemically characterize of the gas phase and 

particulate phase of the tailpipe emissions from heavy-duty natural gas engines was 

successfully carried out. The results further established the toxicity profile of thermally 

denuded and non-denude particulate matter and correlated observed toxicity with elemental 

and nanoparticle emissions.  

The gas phase chemical speciation results reported all carbonyl, PAH and VOC emissions 

close to levels found in background or below the detection limits of the analytical method. The 

results of the gas phase speciation indicated no significant contribution to particle formation 

through homogenous nucleation or through vapor phase condensation on solid particulate 

matter. The findings of this study further challenge the existing view of high volatile and semi-

volatile fractions in the tailpipe of advanced heavy-duty natural gas engines. The results 

indicate that high exhaust temperature conditions, characteristic of a stoichiometric engine 

results in almost consistent catalytic activity of all hydrocarbons, and semi-volatile compounds 

with exception to methane. This sustained high efficiency catalytic activity results in lower 

particulate forming volatile compounds such PAH and carbonyl compounds which are 

considered to precursors to exhaust particle formation during dilution of vehicle exhaust. 

Physical characterization of the PM yielded important information of the EC/OC split of the 

total PM emissions. OC emissions and VOC chemical speciation results by indicated a volatile 

organic fraction both in particulate phase and gas phase to be close to detection limits over 

most operating conditions. The OC concentrations reported for certain transient conditions 

could be a result of sampling artifacts due to the affinity of sampling media (pre-fired quartz) to 

absorption of gas phase hydrocarbons mainly in the form of methane. Interestingly the study 

reported significant EC emissions rate during idle operation that could be directly attributed to 

combustion of lubrication oil in the combustion chamber. 

Elemental and ion analyses were also performed on the PM samples to further discern the 

non volatile fraction PM emitted from these vehicles. The results indicated a significant mass 

emission rates of metal and elements that can be linked to additives used in lubrication oil. 
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Elements and metals such as Ca, P, K, Zn, S and Mg were found in significant concentration in 

the PM samples. The findings of the study directly relate lubrication oil as the single most 

dominant source to non-volatile fraction PM emissions in the tailpipe.  

The primary objective of the study was to discern the toxicity potential of the volatile and 

non-volatile fraction of PM from advanced heavy-duty natural gas engines. The low mass 

emission rate of PM from these engines proved to be a major challenge in collecting PM for 

toxicity analysis. Toxicologists typically require close to a milligram of PM depending on the 

assay to obtain a valid toxicity response that can be considered statistically significant. Hence, 

the study utilized high-volume sampling to collect larger PM mass in shorter test duration. 

However, it is to be noted that increase in sampling volume will always be associated with 

sampling artifacts such as increased gas adsorption onto the filter material that could bias the 

mass specific toxicity results. Hence, the study has refrained from using a mass specific toxicity 

metric and has focused more on relating toxicity to various fractions of PM. Three different 

toxicity assays were used in this study namely a) DHBA b) DTT and c) ROS macrophage assay. 

The DHBA and DTT assay are chemical based assays that are highly sensitive to metal and 

elemental component of PM. The ROS assay does not have any specific affinity to a certain 

fraction and can be considered to be a representative of PM toxicity as a whole. Results of the 

PM indicated toxicity values lower than those reported earlier in literature of legacy and DPF-

SCR equipped diesel vehicles. This partly due to the fact that the PM emissions observed from 

advanced natural gas engines are characterized by low mass emission rates. However, certain 

operating conditions resulted in toxicity responses that were enough to draw statistically 

significant conclusions. Both DHBA and DTT assay correlated highly with mass of elements and 

metals such as Zn, Fe and Co. The DTT assay resulted in high correlation with mass of Cu, Zn, P 

and PAH with molecular weight less than 200. The ROS assay also resulted in high statistical 

correlation with mass of Zn, P and Cr. The ROS assay statistically well correlated with EC 

fraction. However, lack of sufficient EC mass from natural gas engines imparts high level of 

uncertainty in the observed statistical correlation with ROS toxicity. Literature also lacks 

sufficient information on the toxicity response of ROS assay to EC fraction. Hence a larger 

dataset with larger non-zero EC mass result with corresponding ROS responses could further 
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shed light on this observed statistical correlation. The results showed that the toxicity 

responses on a whole were statistically well correlated with mass of metals emissions from the 

natural gas vehicles. High exhaust temperatures resulted in VOC emissions close to detection 

limits resulting in no statistical correlation between VOC concentrations and toxicity responses, 

further indicating no contribution of VOCs to particle formation in stoichiometrically fueled 

natural gas engines. However, PAH emissions of compounds lower than 200 in molecular 

weight showed statistically good correlation with the DHBA assay indicating the possibility of 

PAH adsorbing or condensing on solid fractions of PM such as metals, elements and EC 

fractions. 

The vehicles were tested over three driving cycles namely triple length UDDS, steady state 

45 mph and idle mode operation. Continuous particle size and concentration measurements 

were performed using the TSI EEPS. Particle size distribution measurements were presented to 

discern the particle formation mechanisms upon dilution of the exhaust of advanced natural 

gas engines. The results of the particle size distribution showed an consistent nucleation mode 

peak, independent of the vehicle operation and exhaust temperature conditions to be present. 

No significant accumulation mode particle size distribution was observed during UDDS or 

steady-state vehicle operation from both vehicles. However, idle operation from bus 2 showed 

significant mass loading on the filter with significant particle concentrations in the accumulation 

region of the particle size distribution. The study also divided the entire particle size distribution 

measured by the TSI EEPS into three size ranges namely NP size bin (6.04 nm-23.3 nm), UFP size 

bin (25.4 nm -100.1 nm) and FP size bin (112.3 nm to 500 nm).  

Once the study established statistically significant correlation between mass of metals and 

elemental with all three toxicity assays, the study further presented an analysis of the bin wise 

particle size derived mass to the mass of elemental and metal fractions in the exhaust. The 

statistically significant correlation of mass of metals to the NP size bin presented in this study, 

suggests the possibility of nucleation mode size particles to primarily consist of lubrication oil 

additives. Oil analysis report the presence of the similar elemental composition in the oil 

samples as that observed in the PM samples further corroborating the conclusion of lubrication 
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oil as the primary source driving metallic emissions and consequently the toxicity of PM in 

heavy-duty natural gas engines. 

The findings of the study the report the possibility of non-volatile nanoparticles in the size 

range of 10 nm is important from a regulatory perspective of enforcing number count 

regulation. Natural gas engine technology and after treatment configuration is significantly 

different from that of current model diesel, due to the absence of an exhaust particulate filter. 

Since, natural gas combustion is soot free, a particulate filtered is not required to meet PM 

regulations. Nucleation mode particles in diesel technology are usually related to nucleation of 

sulfates and water to form sulfuric acid particles. However a stoichiometric natural gas engine 

is devoid of excess oxygen in the exhaust and consequently prevents the SO3

Lee et al., 2006

 formation. 

However, statistical correlations presented in this study indicate the possibility of nucleation 

mode particles of non-volatile metallic and elemental particles. Similar, findings were observed 

in a study by Lee et al. ( ). The source of the precursors for this type of nucleation 

can be directed towards the lubrication oil consumption in these soot free engines transported 

via piston rings or more predominantly through the crank case ventilation system inducted in to 

the intake charge air of the engines. This type of homogenous nucleation may not be 

representative of only natural gas engines, and may be prevalent in diesel technology too. 

However, such particle formation would not be observed in a DPF equipped diesel due to the 

filtration process of the particulate filter, and the high soot content upstream of the DPF that 

would result mask this particle formation mechanism.  

The possibility of existence of sub 23 nm non-volatile particles challenges existing protocol 

such as the European PMP that regulates solid particle number count above the 23 nm size 

range. The repeatability of this particle size distribution in the nucleation region indicates a 

strong and consistent contribution of lubrication oil to non-volatile PM fraction in the 

nucleation region, especially for vehicles equipped with crank case ventilation inducted in to 

the intake air. The study concludes that tailpipe toxicity of PM is strongly driven by metallic and 

elemental compositions that are believed to be in the nucleation region of the particle size 

distribution. Although all toxicity assay tested in this study were more of a bulk analysis of total 

PM mass extracted, the observed particle size distribution in the nucleation region suggests the 
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possibility of greater penetration of these non-volatile particles in to the human respiratory 

system. The high lung deposited surface area offered by these particles could contribute to 

higher levels of oxidative stress in lung and respiratory tissues thereby increasing health risks. 

Atmospheric studies have previously illustrated the strong correlation of diffusion charger 

response to particle surface area (Wilson et al., 2007). However, no study had previously 

illustrated a similar correlation for engine exhaust. The findings of this study clearly show the 

correlation between particle surface area and diffusion charger response clearly exists for 

engine exhausts also that is different from atmospheric PM in physical and chemical 

characteristics. The diffusion charger response in this study being that of an electrical aerosol 

detector shows statistically significant correlation with the total lung deposited surface area. 

With recent development in diffusion charger sensors such as the Pegasor Particle Sensor (PPS), 

tailpipe monitoring of particle charge is much more direct with no elaborate sampling systems. 

Hence, the findings of this study further concludes that a lung deposited surface area based 

metric for exhaust particle monitoring could be directly achieved through a tailpipe diffusion 

charger and can more appropriately relate to health effects in terms surface area exposure and 

dosage. 
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APPENDIX I- TSI EEPS PARTICLE SIZE DISTRIBUTION 

 
Bus 1 UDDS instantaneous particle size distribution measured with TSI EEPS (not corrected for dilution ratio) 

 
Bus 1 UDDS average instantaneous CVS dilution ratios
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Bus 1 SS 45MPH instantaneous particle size distribution measured with TSI EEPS (not corrected for dilution ratio) 

 
Bus 1 SS 45MPH average instantaneous CVS dilution ratios
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Bus 1 idle instantaneous particle size distribution measured with TSI EEPS (not corrected for dilution ratio) 

 
Bus 1 idle average instantaneous CVS dilution ratios 
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Bus 2 UDDS instantaneous particle size distribution measured with TSI EEPS (not corrected for dilution ratio) 

 
Bus 2 UDDS average instantaneous CVS dilution ratios 
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Bus 2 SS 45MPH instantaneous particle size distribution measured with TSI EEPS (not corrected for dilution ratio) 

 
Bus 2 SS 45 MPH average instantaneous CVS dilution ratios 
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Bus 2 idle instantaneous particle size distribution measured with TSI EEPS (not corrected for dilution ratio) 

 
Bus 2 idle average instantaneous CVS dilution ratios
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APPENDIX II- EC AND OC ANALYSIS RESULTS 

Detection limit: 0.8 mg C/cm2; Reporting limit based on a quartz filter exposure area of 11.34 cm2

 

. 

Compound 
Carbon 
Result  

 µg C/cm

Carbon 
Result  
 µg C 2 

Carbon 
Result  

 µg C/scf 

Total Carbon 
Result mg C 

Total Carbon Result 
mg C/mile & mg 

C/sec 
  

3 
x 

U
D

D
S,

 B
us

 1
 

Organic Carbon 1 <.80 <9.072     BDL 
Organic Carbon 2 1.5 17.01 0.047 11.798 0.237 
Organic Carbon 3 1.6 18.144 0.050 12.585 0.252 
Organic Carbon 4 <.80 <9.072     BDL 
Elemental Carbon 1 <.80 <9.072     BDL 
Elemental Carbon 2 <.80 <9.072     BDL 
Elemental Carbon 3 <.80 <9.072     BDL 
Reflectance Pyrolyzed Organic Carbon <.80 <9.072     BDL 
Reflectance Organic Carbon 4.1 46.494 0.128 32.249 0.647 
Reflectance Elemental Carbon <.80 <9.072     BDL 
Reflectance Total Carbon 4.3 48.762 0.134 33.822 0.678 
Transmittance Pyrolyzed Organic Carbon <.80 <9.072     BDL 
Transmittance Organic Carbon 4.3 48.762 0.134 33.822 0.678 
Transmittance Elemental Carbon 4.0 45.36 0.125 31.462 0.631 

Transmittance Total Carbon 4.3 48.762 0.134 33.822 0.678 

SS
 4

5M
ph

, B
us

 1
 

Organic Carbon 1 <.80 <9.072     BDL 
Organic Carbon 2 1.9 21.546 0.049 14.089 0.104 
Organic Carbon 3 1.3 14.742 0.034 9.640 0.071 
Organic Carbon 4 <.80 <9.072     BDL 
Elemental Carbon 1 <.80 <9.072     BDL 
Elemental Carbon 2 <.80 <9.072     BDL 
Elemental Carbon 3 <.80 <9.072     BDL 
Reflectance Pyrolyzed Organic Carbon <.80 <9.072     BDL 
Reflectance Organic Carbon 3.7 41.958 0.096 27.437 0.203 
Reflectance Elemental Carbon <.80 <9.072     BDL 
Reflectance Total Carbon 3.7 41.958 0.096 27.437 0.203 
Transmittance Pyrolyzed Organic Carbon <.80 <9.072     BDL 
Transmittance Organic Carbon 3.7 41.958 0.096 27.437 0.203 
Transmittance Elemental Carbon <.80 <9.072     BDL 

Transmittance Total Carbon 3.7 41.958 0.096 27.437 0.203 



 

174 | P a g e  
 

 

Id
le

 6
0m

in
, B

us
 1

 

APPENDIX II CONTD. 

Organic Carbon 1 <.80 <9.072     BDL 
Organic Carbon 2 2.2 24.948 0.055 12.749 0.001 
Organic Carbon 3 1.6 18.144 0.040 9.272 0.001 
Organic Carbon 4 <.80 <9.072     BDL 
Elemental Carbon 1 <.80 <9.072     BDL 
Elemental Carbon 2 <.80 <9.072     BDL 
Elemental Carbon 3 <.80 <9.072     BDL 
Reflectance Pyrolyzed Organic Carbon <.80 <9.072     BDL 
Reflectance Organic Carbon 4.2 47.628 0.106 24.340 0.002 
Reflectance Elemental Carbon <.80 <9.072     BDL 
Reflectance Total Carbon 4.3 48.762 0.108 24.919 0.002 
Transmittance Pyrolyzed Organic Carbon <.80 <9.072     BDL 
Transmittance Organic Carbon 4.3 48.762 0.108 24.919 0.002 
Transmittance Elemental Carbon <.80 <9.072     BDL 

Transmittance Total Carbon 4.3 48.762 0.108 24.919 0.002 

3 
x 

U
D

D
S,

 B
ac

kg
ro

un
d,

 B
us

 1
 

Organic Carbon 1 <.80 <9.072       
Organic Carbon 2 <.80 <9.072       
Organic Carbon 3 1.0 11.34 0.094 7.866 0.002 
Organic Carbon 4 <.80 <9.072       
Elemental Carbon 1 <.80 <9.072       
Elemental Carbon 2 <.80 <9.072       
Elemental Carbon 3 <.80 <9.072       
Reflectance Pyrolyzed Organic Carbon <.80 <9.072       
Reflectance Organic Carbon 2.1 23.814 0.197 16.519 0.005 
Reflectance Elemental Carbon <.80 <9.072       
Reflectance Total Carbon 2.3 26.082 0.216 18.092 0.006 
Transmittance Pyrolyzed Organic Carbon <.80 <9.072       
Transmittance Organic Carbon 2.3 26.082 0.216 18.092 0.006 
Transmittance Elemental Carbon <.80 <9.072       

Transmittance Total Carbon 2.3 26.082 0.216 18.092 0.006 
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Organic Carbon 1 <.80 <9.072       
Organic Carbon 2 1.2 13.608 0.091 6.941 0.002 
Organic Carbon 3 0.85 9.639 0.064 4.917 0.001 
Organic Carbon 4 <.80 <9.072       
Elemental Carbon 1 <.80 <9.072       
Elemental Carbon 2 <.80 <9.072       
Elemental Carbon 3 <.80 <9.072       
Reflectance Pyrolyzed Organic Carbon <.80 <9.072       
Reflectance Organic Carbon 2.3 26.082 0.174 13.304 0.004 
Reflectance Elemental Carbon <.80 <9.072       
Reflectance Total Carbon 2.3 26.082 0.174 13.304 0.004 
Transmittance Pyrolyzed Organic Carbon <.80 <9.072       
Transmittance Organic Carbon 2.3 26.082 0.174 13.304 0.004 
Transmittance Elemental Carbon <.80 <9.072       

Transmittance Total Carbon 2.3 26.082 0.174 13.304 0.004 

SS
 4

5M
ph

, B
us

 2
 

Organic Carbon 1 <.80 <9.072     0.000 
Organic Carbon 2 1.1 12.474 0.036 8.266 0.076 
Organic Carbon 3 0.87 9.8658 0.028 6.537 0.060 
Organic Carbon 4 <.80 <9.072     0.000 
Elemental Carbon 1 <.80 <9.072     0.000 
Elemental Carbon 2 <.80 <9.072     0.000 
Elemental Carbon 3 <.80 <9.072     0.000 
Reflectance Pyrolyzed Organic Carbon <.80 <9.072     0.000 
Reflectance Organic Carbon 2.3 26.082 0.075 17.283 0.159 
Reflectance Elemental Carbon <.80 <9.072     0.000 
Reflectance Total Carbon 2.4 27.216 0.078 18.034 0.166 
Transmittance Pyrolyzed Organic Carbon <.80 <9.072     0.000 
Transmittance Organic Carbon 2.4 27.216 0.078 18.034 0.166 
Transmittance Elemental Carbon <.80 <9.072     0.000 

Transmittance Total Carbon 2.4 27.216 0.078 18.034 0.166 
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Organic Carbon 1 <.80 <9.072       
Organic Carbon 2 1.4 15.876 0.038 10.837 0.001 
Organic Carbon 3 2.5 28.35 0.068 19.351 0.002 
Organic Carbon 4 <.80 <9.072       
Elemental Carbon 1 3.8 43.092 0.103 29.414 0.003 
Elemental Carbon 2 3.6 40.824 0.098 27.866 0.003 
Elemental Carbon 3 <.80 <9.072       
Reflectance Pyrolyzed Organic Carbon <.80 <9.072       
Reflectance Organic Carbon 5.5 62.37 0.149 42.573 0.004 
Reflectance Elemental Carbon 7.0 79.38 0.190 54.183 0.005 
Reflectance Total Carbon 12 136.08 0.326 92.886 0.009 
Transmittance Pyrolyzed Organic Carbon 1.0 11.34 0.027 7.740 0.001 
Transmittance Organic Carbon 5.9 66.906 0.160 45.669 0.004 
Transmittance Elemental Carbon 6.5 73.71 0.177 50.313 0.005 

Transmittance Total Carbon 12 136.08 0.326 92.886 0.009 

3 
x 

U
D

D
S,

 B
ac

kg
ro

un
d,

 B
us

 2
 

Organic Carbon 1 <.80 <9.072       
Organic Carbon 2 1.0 11.34 0.090 7.445 0.002 
Organic Carbon 3 1.2 13.608 0.107 8.934 0.003 
Organic Carbon 4 <.80 <9.072       
Elemental Carbon 1 <.80 <9.072       
Elemental Carbon 2 <.80 <9.072       
Elemental Carbon 3 <.80 <9.072       
Reflectance Pyrolyzed Organic Carbon <.80 <9.072       
Reflectance Organic Carbon 2.7 30.618 0.242 20.102 0.006 
Reflectance Elemental Carbon <.80 <9.072       
Reflectance Total Carbon 3.0 34.02 0.269 22.336 0.007 
Transmittance Pyrolyzed Organic Carbon <.80 <9.072       
Transmittance Organic Carbon 3.0 34.02 0.269 22.336 0.007 
Transmittance Elemental Carbon <.80 <9.072       

Transmittance Total Carbon 3.0 34.02 0.269 22.336 0.007 
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Organic Carbon 1 <.80 <9.072       
Organic Carbon 2 <.80 <9.072       
Organic Carbon 3 0.88 9.9792 0.070 6.547 0.002 
Organic Carbon 4 <.80 <9.072       
Elemental Carbon 1 <.80 <9.072       
Elemental Carbon 2 <.80 <9.072       
Elemental Carbon 3 <.80 <9.072       
Reflectance Pyrolyzed Organic Carbon <.80 <9.072       
Reflectance Organic Carbon 2.1 23.814 0.166 15.623 0.004 
Reflectance Elemental Carbon <.80 <9.072       
Reflectance Total Carbon 2.3 26.082 0.182 17.110 0.005 
Transmittance Pyrolyzed Organic Carbon <.80 <9.072       
Transmittance Organic Carbon 2.3 26.082 0.182 17.110 0.005 
Transmittance Elemental Carbon <.80 <9.072       

Transmittance Total Carbon 2.3 26.082 0.182 17.110 0.005 

Id
le

 6
0m

in
, B

ac
kg

ro
un

d,
 B

us
 2

 

Organic Carbon 1 <.80 <9.072       
Organic Carbon 2 1.2 13.608 0.099 9.437 0.003 
Organic Carbon 3 1.5 17.01 0.124 11.797 0.003 
Organic Carbon 4 <.80 <9.072       
Elemental Carbon 1 <.80 <9.072       
Elemental Carbon 2 <.80 <9.072       
Elemental Carbon 3 <.80 <9.072       
Reflectance Pyrolyzed Organic Carbon <.80 <9.072       
Reflectance Organic Carbon 3.4 38.556 0.281 26.739 0.007 
Reflectance Elemental Carbon <.80 <9.072       
Reflectance Total Carbon 3.7 41.958 0.306 29.098 0.008 
Transmittance Pyrolyzed Organic Carbon <.80 <9.072       
Transmittance Organic Carbon 3.4 38.556 0.281 26.739 0.007 
Transmittance Elemental Carbon <.80 <9.072       

Transmittance Total Carbon 3.7 41.958 0.306 29.098 0.008 



 

178 | P a g e  
 

APPENDIX III- ICP-MS ANALYSIS RESULTS OF METALS AND ELEMENTS 

Water extracted from filter and analyses performed using magnetic-sector ICP-MS (Thermo-Finnigan Element 2) 

 

Bus 1 3X 
UDDS 

(ng/filter)  
Bus 1 60 min 

IDLE  (ng/filter)  
Bus 1 60 min 

IDLE  (ng/filter)  

Bus1 SS 45 
MPH  

(ng/filter)  

Bus 1 SS 45 
MPH  

(ng/filter)  
Li 5.407E-01 7.861E-02 1.090E-01 3.827E-02 9.641E-02 
B 3.070E+00 6.973E-01 4.412E+00 3.907E+00 5.809E+00 

Na 3.784E+02 1.100E+02 1.101E+02 8.359E+02 1.659E+02 
Mg 8.035E+01 4.770E+01 1.547E+02 4.862E+01 8.645E+01 
Al 1.831E+01 1.747E+01 1.859E+01 5.858E+00 1.504E+01 
P 7.240E+00 2.663E+00 4.944E+00 5.215E+00 3.819E+00 
S 1.185E+02 2.767E+01 4.433E+01 6.738E+01 1.015E+02 
K 6.587E+01 4.137E+01 5.639E+01 4.259E+01 5.919E+01 

Ca 9.125E+02 5.260E+02 6.709E+02 6.986E+02 8.587E+02 
Ti 5.438E-02 1.117E-01 2.086E-01 3.497E-02 1.916E-02 
V 5.078E-02 2.096E-02 4.782E-02 7.157E-02 4.527E-02 
Cr 6.414E-01 2.164E-01 1.177E+00 3.628E+00 4.065E+00 

Mn 6.683E+00 7.282E-01 1.327E+00 1.009E+00 1.255E+00 
Fe 6.306E+00 5.315E+00 4.497E+00 3.612E+01 1.862E+01 
Co 5.434E-02 6.541E-02 9.177E-02 9.572E-02 1.326E-01 
Ni 2.207E+00 3.611E-01 9.734E-01 2.067E+00 2.527E+00 
Cu 4.430E+00 7.837E-01 1.958E+00 8.145E-01 3.088E+00 
Zn 2.152E+01 1.019E+01 1.592E+01 1.605E+01 1.549E+01 
Mo 2.288E-01 7.258E-02 1.314E-01 2.205E-01 2.573E-01 
Rh 3.578E-04 2.739E-04 4.187E-04 7.605E-04 1.583E-03 
Pd 1.498E-02 1.214E-02 1.010E-02 6.580E-03 1.535E-02 
Cd 5.757E-02 4.001E-02 1.416E-01 3.328E-02 5.871E-02 
Pt -1.150E-04 1.441E-03 2.318E-03 8.121E-04 1.160E-03 
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Bus 2 3X 
UDDS   

(ng/filter) 

Bus 2 3X 
UDDS   

(ng/filter) 

Bus 2 SS 45 
MPH   

(ng/filter) 

Bus 2 SS 45 
MPH   

(ng/filter) 

Bus 2 60 min 
Idle   (ng/filter) 

Bus 2 60 min 
Idle   (ng/filter) 

Li 2.696E-02 1.206E-01 5.097E-02 2.015E-02 1.486E-03 -4.301E-03 
B 2.039E-01 4.180E+00 2.339E+00 4.205E-01 9.778E-01 4.453E-01 

Na 7.289E+00 6.121E+01 3.461E+01 4.038E+01 2.967E+01 1.416E+02 
Mg 4.597E+01 4.004E+01 4.193E+01 1.880E+01 4.975E+01 3.667E+01 
Al 3.869E+00 4.657E-01 8.110E+00 1.026E+01 9.719E+00 5.542E+00 
P 8.893E+01 2.531E+00 8.110E+00 7.311E-01 2.948E+01 5.991E+01 
S 3.968E+01 3.171E+01 3.877E+01 5.663E+00 7.384E+01 2.252E+01 
K 8.185E+00 4.110E+01 1.333E+01 1.109E+02 1.652E+01 2.842E+01 

Ca 9.310E+02 6.921E+02 6.672E+02 3.108E+02 6.875E+02 7.750E+02 
Sc 2.077E-03 1.105E-03 3.068E-03 1.121E-03 4.952E-03 -1.788E-03 
Ti 2.092E-01 9.177E-02 3.680E-01 5.446E-02 1.083E-01 1.440E-01 
V 4.555E-02 2.450E-02 9.860E-02 1.646E-02 3.898E-02 7.131E-02 
Cr 5.884E-01 6.924E-01 4.902E+00 2.239E-01 6.216E-01 1.158E+01 

Mn 1.137E+00 7.128E-01 7.666E-01 4.248E-01 7.856E-01 7.504E-01 
Fe 9.560E+00 3.434E+00 3.038E+01 1.848E+00 4.312E+00 2.131E+01 
Co 5.320E+00 6.234E-02 8.105E-01 1.451E-01 6.209E-02 1.161E-01 
Ni 1.053E+00 4.707E-01 2.172E+00 3.995E-01 6.017E-01 2.238E+00 
Cu 1.871E+00 4.843E-01 3.147E-01 4.723E-01 2.971E+00 6.202E+00 
Zn 9.711E+01 2.126E+01 1.155E+01 9.531E+00 2.082E+01 4.502E+01 
Mo 3.304E-01 3.642E-01 2.671E-01 3.486E-02 1.381E-01 5.874E-01 
Rh 1.265E-03 1.207E-04 1.129E-04 9.029E-04 6.975E-04 1.709E-03 
Pd 2.851E-03 9.103E-03 5.543E-03 3.385E-03 1.105E-02 2.277E-04 
Cd 6.370E-03 1.917E-02 4.436E-02 3.932E-02 4.634E-02 6.127E-02 
Pt 5.299E-04 1.447E-03 1.021E-04 1.246E-03 2.714E-03 1.322E-03 
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3X UDDS 
Background 
(ng/filter)  

60 min Idle 
Background 
(ng/filter)  

SS 45 MPH 
Background 
(ng/filter)  

3X UDDS 
Background 
(ng/filter)  

SS 45 MPH 
Background 
(ng/filter)  

60 min Idle 
Background 
(ng/filter)  

Li 1.192E-01 6.737E-02 1.514E-02 1.931E-02 3.858E-02 2.784E-01 
B 6.846E-01 4.473E-01 1.979E-01 2.040E+00 3.066E-01 -9.148E-03 

Na 7.806E+01 5.604E+02 9.040E+02 3.157E+02 3.653E+02 4.342E+02 
Mg 5.881E+01 4.089E+01 4.287E+01 1.243E+02 8.569E+01 5.996E+01 
Al 9.598E+00 1.899E+01 6.310E+00 1.496E+01 5.959E+00 1.810E+01 
P 4.311E+00 2.801E+00 1.903E+00 1.378E+00 7.137E+00 2.808E+00 
S 4.978E+01 6.009E+01 1.212E+01 1.059E+01 1.633E+01 6.079E+01 
K 1.982E+01 2.354E+01 9.721E+00 2.432E+01 3.003E+01 1.286E+02 

Ca 6.702E+02 6.318E+02 7.080E+02 1.059E+03 1.063E+03 1.189E+03 
Sc 8.919E-03 1.271E-04 4.279E-03 4.282E-03 5.864E-03 -7.703E-04 
Ti 3.331E-02 9.292E-02 -4.212E-03 5.449E-01 2.275E-01 -4.774E-02 
V 6.115E-02 8.141E-03 7.439E-03 3.671E-02 2.886E-02 1.736E-02 
Cr 4.571E-01 1.732E-01 4.032E-01 2.136E-01 2.107E-01 4.125E-01 

Mn 2.809E-01 4.015E-01 2.369E-01 1.774E+00 7.888E-01 1.161E+00 
Fe 3.915E+00 1.366E+00 3.359E+00 5.598E+00 3.972E+00 3.612E+00 
Co 2.021E-01 1.587E-02 2.183E-02 3.564E-02 3.078E-02 8.878E-02 
Ni 1.707E-01 1.739E-01 2.014E-01 5.741E-01 2.526E-01 2.091E+00 
Cu 1.321E+00 1.814E-03 3.224E-01 1.540E-01 3.822E-01 6.647E-01 
Zn 1.414E+01 9.562E+00 7.840E+00 1.001E+01 8.113E+00 4.824E+01 
Mo 1.613E-01 7.546E-02 4.116E-02 1.295E-01 2.163E-01 1.312E-01 
Rh 1.429E-03 4.442E-04 1.678E-03 7.256E-04 1.838E-04 3.408E-04 
Pd 1.753E-02 1.231E-02 3.312E-03 8.078E-03 1.043E-02 8.223E-03 
Cd 2.190E-02 2.941E-02 9.763E-03 1.909E-02 7.008E-02 7.501E-02 
Pt 1.440E-03 1.253E-03 1.552E-03 8.904E-04 5.558E-04 1.641E-03 
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APPENDIX IV- CARBONYL RESULTS 

Value of zero indicates analyte concentration below the detection limit of 0.007 mg/L of the extract. 4.4 ml of the extract was used for analysis 

  Bus 1 

 
3XUDDS (mg/mi) SS 45Mph (mg/mi) Idle (mg/min) Bckgnd (mg/mile) Bckgnd (mg/min) 

formaldehyde 0.157 0.058 0.035 0.142 0.058 
acetaldehyde 0.083 0.038 0.028 0.139 0.056 

acrolein 0.000 0.000 0.000 0.000 0.000 
acetone 0.259 0.104 0.068 0.397 0.169 

propionaldehyde 0.011 0.006 0.005 0.020 0.007 
butyraldehyde 0.029 0.012 0.008 0.057 0.023 

m-tolualdehyde 0.042 0.004 0.007 0.000 0.000 
methyl ethyl ketone 0.000 0.000 0.000 0.000 0.000 

methacrolein 0.000 0.000 0.000 0.000 0.000 
benzaldehyde 0.000 0.000 0.000 0.000 0.000 

crotonaldehyde 0.000 0.000 0.000 0.000 0.000 
valeraldehyde 0.000 0.000 0.000 0.000 0.000 

hexanal 0.000 0.000 0.000 0.000 0.000 
  Bus 2 

 
3XUDDS (mg/mi) SS 45Mph (mg/mi) Idle (mg/min) Bckgnd (mg/mile) Bckgnd (mg/min) 

formaldehyde 0.082 0.046 0.033 0.034 0.044 

acetaldehyde 0.088 0.034 0.017 0.025 0.028 

acrolein 0.000 0.001 0.000 0.000 0.000 

acetone 0.141 0.074 0.037 0.045 0.061 

propionaldehyde 0.013 0.009 0.004 0.007 0.006 

butyraldehyde 0.000 0.000 0.002 0.000 0.000 

m-tolualdehyde 0.000 0.000 0.000 0.004 0.003 

methyl ethyl ketone 0.013 0.006 0.004 0.005 0.006 

methacrolein 0.011 0.000 0.000 0.000 0.000 

benzaldehyde 0.013 0.000 0.002 0.008 0.009 

crotonaldehyde 0.000 0.000 0.000 0.000 0.000 

valeraldehyde 0.008 0.002 0.001 0.003 0.002 

hexanal 0.019 0.008 0.002 0.000 0.000 
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APPENDIX V- PAH RESULTS 

BDL: Below detection limitdenotes analyte concentration below 0.1 µg/sample 

Targeted Analyte Bus 1 UDDS 
(mg/test) 

Bus 1 UDDS 
Background 

(mg/test) 

Bus 1 60 min 
Idle (mg/test) 

Bus 1 60  min 
Idle 

Background 
(mg/test) 

Bus 1 SS 45MPH 
(mg/test) 

Bus 1 SS 45 
MPH 

Background 
(mg/test) 

       Naphthalene 1.814E-01 4.261E-02 2.896E-01 6.319E-02 4.704E-01 3.209E-01 
Acenaphthylene BDL BDL BDL BDL BDL BDL 
Acenaphthene BDL BDL BDL BDL 2.464E-02 BDL 

Fluorene BDL BDL 1.991E-02 BDL 4.032E-02 BDL 
Phenanthrene 3.584E-02 BDL 4.706E-02 1.986E-02 1.277E-01 BDL 

Anthracene BDL BDL BDL BDL BDL BDL 
Fluoranthene BDL BDL BDL BDL 2.464E-02 BDL 

Pyrene BDL BDL BDL BDL BDL BDL 
Benzo[a]anthracene BDL BDL BDL BDL BDL BDL 

Chrysene BDL BDL BDL BDL BDL BDL 
Benzo[b]fluoranthene BDL BDL BDL BDL BDL BDL 
Benzo[k]fluoranthene BDL BDL BDL BDL BDL BDL 

Benzo[a]pyrene BDL BDL BDL BDL BDL BDL 
Indeno[1,2,3-cd]pyrene BDL BDL BDL BDL BDL BDL 
Dibenz[a,h]anthracene BDL BDL BDL BDL BDL BDL 
Benzo[g,h,i]perylene BDL BDL BDL BDL BDL BDL 
2-Methylnaphthalene 8.960E-02 BDL 1.321E-01 2.708E-02 1.366E-01 1.248E-01 
1-Methylnaphthalene 4.704E-02 BDL 6.878E-02 BDL 7.391E-02 6.419E-02 

2,6-Dimethyl naphthalene 3.584E-02 BDL 4.344E-02 BDL 4.928E-02 1.961E-02 
1-Methyl phenanthrene BDL BDL BDL BDL BDL BDL 

Benzo(e)pyrene BDL BDL BDL BDL BDL BDL 
Perylene BDL BDL BDL BDL BDL BDL 
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Targeted Analyte  

APPENDIX V CONTD. 

Bus 2 UDDS (mg/test) 

Bus 2 UDDS 
Background 

(mg/test) 
Bus 2 60 min 
Idle (mg/test) 

Bus 2 60  min Idle 
Background (mg/test) 

Bus 2 SS 45MPH 
(mg/test) 

Bus 2 SS 45 
MPH 

Background 
(mg/test) 

Naphthalene 1.0980E-01 5.7735E-02 7.3961E-02 9.4244E-02 3.5822E-01 5.9878E-02 
Acenaphthylene BDL BDL BDL BDL BDL BDL 
Acenaphthene BDL BDL BDL BDL BDL BDL 

Fluorene BDL BDL BDL BDL BDL BDL 
Phenanthrene 3.8093E-02 BDL BDL BDL 8.2838E-02 BDL 

Anthracene BDL BDL BDL BDL BDL BDL 
Fluoranthene BDL BDL BDL BDL BDL BDL 

Pyrene BDL BDL BDL BDL BDL BDL 
Benzo[a]anthracene BDL BDL BDL BDL BDL BDL 

Chrysene BDL BDL BDL BDL BDL BDL 
Benzo[b]fluoranthene BDL BDL BDL BDL BDL BDL 
Benzo[k]fluoranthene BDL BDL BDL BDL BDL BDL 

Benzo[a]pyrene BDL BDL BDL BDL BDL BDL 
Indeno[1,2,3-cd]pyrene BDL BDL BDL BDL BDL BDL 
Dibenz[a,h]anthracene BDL BDL BDL BDL BDL BDL 
Benzo[g,h,i]perylene BDL BDL BDL BDL BDL BDL 
2-Methylnaphthalene 5.8260E-02 2.2206E-02 2.9136E-02 BDL 7.1644E-02 2.6613E-02 
1-Methylnaphthalene 2.9130E-02 BDL BDL BDL 3.8061E-02 BDL 

2,6-Dimethyl naphthalene 2.4648E-02 BDL BDL BDL 2.2389E-02 BDL 
1-Methyl phenanthrene BDL BDL BDL BDL BDL BDL 

Benzo(e)pyrene BDL BDL BDL BDL BDL BDL 
Perylene BDL BDL BDL BDL BDL BDL 
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APPENDIX V- DTT ANALYSIS RESULTS 

ND: Non-denuded PM sample 
DTPA: DTPA results denote the presence of metal chelator to block the activity of metals towards DTT consumption. 
D: Denuded PM sample 

Sample ID DTT Activity (nmole DTT/min/micg) Lower 95% Upper 95% 

Bus 1 UDDS ND  Bckgnd 0.000 0.000 0.000 
Bus 1 UDDS ND 0.011 0.008 0.013 
Bus 1 UDDS ND Bckgnd + DTPA 0.000 0.000 0.000 
Bus 1 UDDS ND + DTPA 0.000 0.000 0.000 
Bus 2 UDDS ND  Bckgnd 0.000 0.000 0.000 
Bus 2 UDDS ND 0.008 0.005 0.011 
Bus 2 UDDS ND Bckgnd + DTPA 0.000 0.000 0.000 
Bus 2 UDDS ND + DTPA 0.001 0.000 0.002 
Bus 1 & 2  Idle ND Bckgnd 0.000 0.000 0.000 
Bus 1 & 2  Idle ND 0.007 0.006 0.009 
Bus 1 & 2  Idle ND Bckgnd + DTPA 0.000 0.000 0.000 
Bus 1 & 2  Idle ND + DTPA 0.002 0.001 0.002 

Bus 1 & 2  45 MPH ND Bckgnd 0.024 0.017 0.030 
Bus 1 & 2  45 MPH ND  0.007 0.006 0.009 
Bus 1 & 2  45 MPH ND Bckgnd + DTPA 0.000 0.000 0.000 
Bus 1 & 2  45 MPH ND + DTPA 0.000 0.000 0.000 

Bus 1 & 2  UDDS D1-4  Bckgnd 0.089 0.066 0.113 
Bus 1 & 2  UDDS D1-4   0.010 0.008 0.013 
Bus 1 & 2  UDDS D1-4  Bckgnd + DTPA 0.000 0.000 0.000 
Bus 1 & 2  UDDS D1-4 + DTPA 0.002 0.002 0.003 
Bus 1 & 2  Idle D1-4  Bckgnd 0.000 0.000 0.000 
Bus 1 & 2  Idle D1-4   0.010 0.010 0.011 
Bus 1 & 2  Idle D1-4  Bckgnd + DTPA 0.000 0.000 0.000 
Bus 1 & 2  Idle D1-4 + DTPA 0.002 0.002 0.003 
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Bus 1 & 2  45 MPH  D1-4  Bckgnd 0.060 0.050 0.071 
Bus 1 & 2  45 MPH  D1-4   0.015 0.013 0.017 
Bus 1 & 2  45 MPH  D1-4  Bckgnd + DTPA 0.011 0.006 0.016 
Bus 1 & 2  45  MPH D1-4  + DTPA 0.003 0.003 0.004 
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APPENDIX VI- DHBA ANALYSIS RESULTS 

ND: Non-denuded PM sample 
D: Denuded PM sample 
 

  DHBA formation (nmoles/µg/min) lower 95% upper 95% 
Bus 1 UDDS Bkg ND 0.0000 0.0000 0.0000 

Bus 1 UDDS  Sample ND 0.0035 0.0031 0.0038 
Bus 2 UDDS ND bkg 0.0000 0.0000 0.0000 

Bus 2 UDDS ND  0.0024 0.0020 0.0028 
Bus 1 & 2 Idle ND bkg 0.0000 0.0000 0.0000 

Bus 1 & 2 Idle ND  0.0008 0.0007 0.0010 
Bus 1 & 2 45MPH ND Bkg 0.0099 0.0086 0.0113 

Bus 1 & 2 45MPH ND  0.0005 0.0004 0.0006 
Bus 1 & 2 UDDS D Bkg 0.0089 0.0078 0.0100 

Bus 1 & 2 UDDS D 0.0014 0.0012 0.0016 
Bus 1 & 2 IDLE D Bkg 0.0000 0.0000 0.0000 

Bus 1 & 2 IDLE D 0.0000 0.0000 0.0000 
Bus 1&Bus 2 45 MPH D bkg 0.0000 0.0000 0.0000 

Bus 1&Bus 2 45 MPH D 0.0003 0.0002 0.0003 
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APPENDIX VI- ALVEOLAR MACROPHAGE ANALYSIS RESULTS 

Chelex treatment refers to the removal of water soluble elements from the sample. 

Test samples Extract PM 
Mass 
(mg) 

Filter 
Fractio

n 

Control Corrected ROS 
Volum
e (mL) 

Extractio
n 

Volume 

Dilutio
n 

Factor 

µg Zymosan Units / 
Composite 

µg Zymosan Units / mg 
Composite 

 
Treatment 

Value 
(FU) 

Stde
v Change Stdev Change Stdev 

             
Bus 1, 3X UDDS, non-denuded None 0.172 1.0 727 132 0.10 5.25 1.0 463.1 95.7 2692.2 556.6 

Bus 1, 3X UDDS, non-denuded Chelexed 0.172 1.0 609 128 0.10 5.25 1.0 382.1 92.0 2221.5 534.7 

Bus 1, 3X UDDS, denuded None 0.148 1.0 100 36 0.10 5.25 1.0 32.9 30.0 221.4 201.4 

Bus 1, 3X UDDS, denuded Chelexed 0.148 1.0 74 160 0.10 5.25 1.0 15.1 111.0 101.5 746.8 
Bus 1, 60 min IDLE, non-

denuded None 0.057 1.0 320 27 0.10 5.25 1.0 212.9 30.6 3708.4 533.6 
Bus 1, 60 min IDLE, non-

denuded Chelexed 0.057 1.0 298 160 0.10 5.25 1.0 195.4 128.9 3403.9 2245.4 

Bus 1, 60 min IDLE, denuded None 0.038 1.0 269 104 0.10 5.25 1.0 172.4 85.3 4523.7 2237.5 

Bus 1, 60 min IDLE, denuded Chelexed 0.038 1.0 186 100 0.10 5.25 1.0 106.4 81.9 2793.4 2150.5 

Bus 1, SS 45MPH, non-denuded None 0.074 1.0 25 20 0.10 3.50 1.0 -10.8 12.7 -145.7 171.0 

Bus 1, SS 45MPH, denuded None 0.111 1.0 169 61 0.10 3.50 1.0 46.8 26.4 420.5 236.9 

Bus 2, 3X UDDS, non-denuded None 0.350 1.0 430 73 0.10 3.50 1.0 151.2 31.3 431.6 89.4 

Bus 2, 3X UDDS, denuded None 0.137 1.0 288 35 0.10 3.50 1.0 94.4 17.5 685.5 126.9 

Bus 2, SS 45MPH, non-denuded None 0.075 1.0 175 75 0.10 3.50 1.0 45.7 29.3 607.1 389.9 

Bus 2, SS 45MPH, denuded None 0.005 1.0 10 179 0.10 3.50 1.0 -15.6 67.1 -3117.7 13412.2 
Bus 2, 60 min IDLE, non-

denuded None 0.292 1.0 1155 80 0.10 3.50 1.0 409.4 33.4 1398.2 114.2 

Bus 2, 60 min IDLE, denuded None 0.241 1.0 1868 278 0.10 3.50 1.0 674.0 105.6 2789.8 437.0 
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