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Abstract 

Exercise as a Treatment for Conduit Artery Dysfunction in a Comorbid State of 
Metabolic Syndrome and Depressive-like Symptoms 

R. Christopher Skinner 

Metabolic Syndrome (Mets) is a clustering of cardiovascular risk factors that results in a 
three-fold increase in cardiovascular disease. MetS is known to be associated with 
adverse arterial remodeling, endothelial dysfunction, decreased nitric oxide (NO) 
bioavailability, increased inflammation, and conduit artery dysfunction. 
Depression/chronic stress is emerging as a potent contributor to MetS, with MetS also 
aiding in the progression of depression, and thus increased vascular dysfunction. These 
bi-directional comorbidities are continually increasing in prevalence, justifying a need for 
research on their interplay and potential treatments. Aerobic exercise is a widely accepted 
therapy for the risk factors associated with MetS, mental stress, and vascular dysfunction. 
However, no study has evaluated the ability of aerobic exercise to combat the vascular 
dysfunction caused by MetS and depressive-like symptoms. Our objective is to evaluate 
the effects of MetS, chronic unpredictable stress, and exercise on the conduit arteries. 
The central hypothesis is aerobic exercise will attenuate the harmful arterial remodeling, 
endothelial dysfunction, and decreased NO bioavailability caused by MetS and chronic 
stress.     
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Purpose 

Heart disease is the leading cause of death in the United States, with 169.8 of every 

100,000 deaths being attributed to cardiovascular health complications (Kochanek, et al., 

2014). Metabolic Syndrome (MetS) is clustering of cardiovascular risk factors highly 

associated with cardiovascular disease (CVD) (Grundy, et al., 2004). The estimated direct 

and indirect cost of cardiovascular disease is $320.1 billion annually, with projections for 

the next 15 years topping $900 billion (Mozaffarian, et al., 2015). Additionally, an 

estimated 18.1% of the population suffers from anxiety (Kessler, et al., 2005), with 14.4% 

of Americans suffering from major depressive disorder (Kessler, et al., 2012), and annual 

costs totaling $53 billion (Wang, et al., 2003). Depression and MetS are intimately linked 

to each other, as well as cardiovascular disease (Skilton, et al., 2007). Aerobic exercise 

is an accepted and common treatment for both MetS and depression (Katzmarzyk, et al., 

2003 & Strohle, et al., 2009). However, no study has studied the effect of exercise on 

individuals simultaneously suffering from MetS and depression.         

The purpose of this thesis is to determine the effects of exercise on structural vascular 

remodeling, nitric oxide bioavailability, and inflammation of the carotid artery and aorta in 

a rodent model MetS and depression as comorbidities.  

 

Specific Aims & Hypothesis 

Specific Aim #1: Determine the effects of 8 weeks of exercise training on structural arterial 
remodeling and reactivity in rodents with MetS.  
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• Hypothesis #1: Rats with MetS who exercise for 8 weeks will exhibit improved 
structural arterial remodeling and reactivity compared to sedentary, healthy 
control rodents.  

Specific Aim #2: Determine the effects of 8 weeks of chronic unpredictable stress on 
structural arterial remodeling and reactivity in rodents with MetS.  

• Hypothesis #2: Rodents with depressive-like symptoms and MetS will exhibit 
deleterious structural arterial remodeling and reactivity compared to sedentary, 
healthy control rodents.  

Specific Aim #3: Determine the effects of 8 weeks of exercise training on structural arterial 
remodeling and reactivity in rodents with MetS and depressive-like symptoms.  

• Hypothesis #3: Rats with MetS and depressive-like symptoms who exercise for 8 
weeks will have structural arterial remodeling and reactivity similar to sedentary, 
healthy control rodents.   
 
 

Background and Significance  

Cardiovascular disease (CVD) is the leading cause of death worldwide, with one in every 

three deaths attributed to CVD (Go, et al., 2014).  A plethora of lifestyle, environmental, 

genetic, and physiological factors can increase the prevalence of CVD. Poor diet and a 

sedentary lifestyle can result in negative cardiovascular risk factors, such as abdominal 

obesity, dyslipidemia, elevated blood pressure, and insulin resistance. This cluster of CV 

risk factors is known as the Metabolic Syndrome (MetS). An estimated one-quarter of the 

United States’ population has MetS, with prevalence continuing to rise with the “obesity 

epidemic (Beltran-Sanchez, et al., 2013).”  

In addition to MetS other environmental and psychological factors can increase the risk 

for negative cardiovascular outcomes. Chronic stress and depression have been linked 

to MetS (Koponen, et al., 2008), as well as increased risk for CVD and vascular 

dysfunction (Golbidi, et al., 2015). Nearly 17% of the U.S. population will suffer from 
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depression over the lifespan. Due to the high prevalence of both MetS and depression, 

and their association with CVD, a comorbidity exists between the two afflictions (Kessler, 

et al., 2005).  

A common hallmark of CV risk factors is increased arterial stiffening (AS), which can be 

identified by changes to the vascular wall’s scaffolding proteins: collagen and elastin 

(Aronson, et al., 2003). The end result of MetS and depression is an increase in the 

amount of collagen, the tensile protein, with a decrease in elastin (Zieman, et al., 2005). 

In addition to altering the structural proteins of blood vessels, CVD is also linked to 

deviations in the production and bioavailability of nitric oxide (NO). NO regulates basal 

vessel tone, plays a pivotal role in vasodilation, and is associated with anti-tumor and 

anti-pathogenic processes (Dinerman, et al., 1993). Adverse changes to the structure and 

function of blood vessels is associated with increased incidence of myocardial infarction, 

stroke, coronary heart disease, and hypertension, leading to an increase chance of 

mortality (Isomaa, et al., 2001).     

Exercise is a widely accepted and recommended treatment to combat CVD and to 

promote overall health. Studies have shown exercise to be beneficial for treating, 

preventing, and reversing the signs of MetS risk factors, in addition to a variety of other 

positive health outcomes (Katzmarzyk, et al., 2003). Exercise has also been cited as a 

treatment for cardiovascular ailments associated with depression (Dimeo, et al., 2001). 

However, exercise as a treatment for vascular dysfunction caused by the comorbid state 

of MetS and depression has not been adequately studied.    
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Background Information 

Defining Metabolic Syndrome 

Several definitions of MetS exist, causing confusion in diagnosis, and discrepancies in 

the literature (Zieman, et al., 2005). The World Health Organization (WHO) states the 

presence of insulin resistance and impaired glucose tolerance as essential components 

of MetS along with the presence of at least two other parameters; including elevated blood 

pressure (> 140 mmHg systole and/or 90 mmHg diastole), hypertriglyceridemia and/or 

low-HDL cholesterol (<35 mg/dL in men, <39 mg/dL in women), obesity, and 

hyperinsulinemia (Alberti, et al., 1998; Balkau, et al., 1999). The National Cholesterol 

Treatment Panel III (NCEP:ATP III) has a slightly different definition of MetS. Increased 

waist circumference, blood lipids (< 40 mg/dL men, 50 mg/dL women), blood pressure (> 

130/85 mmHg), and fasting glucose are all included, but insulin resistance is not 

considered necessary for diagnosis (Alberti, et al., 2005). The third and final major 

classification of MetS is from the American Association of Clinical Endocrinologists 

(AACE), which combines criteria from the WHO and ATP III. The AACE does not require 

a minimum number of risk factors, but relies on clinical judgment for diagnosis. Increased 

abdominal adiposity, dyslipidemia (same as NCEP: ATP III), increased blood pressure 

(same as NCEP: ATP III), impaired glucose tolerance, and insulin resistance are all 

considered risk factors for MetS (Einhorn, 2003).  

 

Inflammation in MetS 

Although not included in the definition of MetS, evidence supports the presence of 

chronic, low-grade inflammation in MetS, and as a risk factor for CVD (Haffner, 2006). 

Obesity has been linked to increased plasma concentrations of the inflammatory markers, 
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tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and C-reactive protein (CRP) (Kern, 

et al., 2001; Vozarova, et al., 2001; Pradhan, et al., 2001). The inflammation associated 

with MetS has further been linked to cognitive impairment (Yaffe, et al., 2004), which has 

also been associated with depression (Kauhanen, et al., 1999). Research has found 

inflammation to be a predictive marker of the development of type 2 diabetes mellitus 

(T2DM) and obesity (Esser, et al., 2014). The well-known link between obesity and a 

proinflammatory state has been hypothesized as a pathophysiological mechanism 

explaining the onset of MetS (Emanuela, et al., 2011), and inflammation has been cited 

as a key component to deciphering the pathogenesis of MetS (Fuentes, et al., 2013).  

 

Animal Models of MetS  

The use of human subjects is not always possible in research, due to the need for invasive 

studies and ethical considerations (Zaragoza, et al., 2011). Primates and swine provide 

larger vessels and organs, with similar physiology to humans. However, these models 

are not cost efficient and are difficult to house (Russell, et al., 2006). A commonly used 

model for studying the cardiovascular system and its diseases is rats (Hasenfuss, 1998). 

Rats share similar physiology to humans, however they are typically resistant to 

atherosclerosis. However, several strains of rats have been developed, making certain 

strains suitable for CVD research. The obese Zucker rat (OZR) exhibits rapid weight gain, 

insulin resistance, and dyslipidemia, making it a suitable model for MetS. The OZR 

develops MetS-like symptoms due to an alteration to the leptin receptor, making a 10-fold 

reduction in the binding affinity of leptin. As a result, these leptin-deficient rats rapidly gain 

weight and do not gain satiety, resulting in mass food consumption (Russell, et al., 2006). 



9 
 

The OZR typically becomes noticeably obese between the third and fifth week of life, and 

displays glucose intolerance and hyperinsulinemia around the same time. Additionally, 

OZRs have been shown to display endothelial dysfunction and increased markers of 

inflammation, further validating the OZR as an excellent model of MetS (Artinano & 

Castro, 2009).  

 

Vascular Health  

Normal Cardiovascular Function 

The primary function of the heart is to eject oxygenated blood into systemic circulation, 

and to receive deoxygenated blood from venous return (Waktare, 2002). During systole 

the heart contracts, ejecting blood out of the heart and into circulation. The left ventricle 

pumps blood into the aorta and carotid arteries, or conduit arteries. Blood then flows into 

smaller arteries, followed by arterioles and capillaries. Blood moves from areas of high to 

low pressure, with pressure decreasing in smaller vessels (Lakatta, 1990). The conduit, 

or elastic arteries, are essential for blood flow, as they act as a pressure reservoir, 

ensuring normal blood flow during diastole, or when the heart is relaxing (Joannides, et 

al., 1995).  

The diameter of blood vessels is also essential to cardiac function. Nitric oxide 

(NO) plays a pivotal role in establishing basal tone of blood vessels. NO is produced by 

the amino acid L-arginine by the enzymatic reaction of nitric oxide synthase (NOS). In the 

endothelium, two forms of NOS are present; endothelial NOS (eNOS), which calcium-

dependent, and inducible (iNOS), or calcium-independent. Under normal conditions NO 
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is constantly being produced by eNOS. Increases in blood flow, resulting in shear stress 

within the vessel, result in eNOS production and activity. Additionally, binding to 

endothelial receptors by vasodilators, such as acetylcholine, also result in NO production. 

NO production can also be the result of inflammation, which stimulates iNOS activity and 

subsequent NO release (Lancaster, 1997). 

 

Diseased Cardiovascular and Arterial Function 

The cardiovascular system undergoes several functional and structural changes in 

diseased states. The risk factors associated with MetS can result in decreased 

compliance and elasticity in the conduit arteries, resulting in a reduction in the conduits 

ability to supply steady blood flow during diastole and a stiffening of the arteries. In 

diseased states, blood vessel walls become thicker, resulting in increased lumen, 

reducing resistance to flow. As a result the left ventricle must work harder to pump blood 

to the rest of the body.  

Diseases of the heart also have a profound impact on NO. In cardiovascular 

disease a shift is observed in terms of typical production of NO. A diseased state results 

in an increase in NO production from iNOS, indicating more inflammation in the 

vasculature. Additionally, a decrease in NO bioavailability is observed, resulting in 

alterations in basal tone and ability to vasodilate.       
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Endothelial Function Measurements  

Other molecular markers can also be used to determine vascular health. NO 

bioavailability and NO activity play a key role in endothelial dysfunction (Cai, et al., 2000). 

NO bioavailability and markers for vessel health are difficult to directly measure in 

humans, providing rationale for using animal models. Pressurized vessel and microvessel 

systems can be used to measure endothelial, smooth muscle, and nitric oxide function. 

In brief, vessels are removed, kept in a physiological state, exposed to vasoactive agents, 

and vessel diameter is measured, via video microscopy, to determine vasoreactivity 

(Phillips, et al., 2005).  

 

Diagnosing and Modeling Depression 

In humans, depression is diagnosed by a medical doctor, using the criteria of the latest 

Diagnostic and Statistical Manual of Mental Disorders (DSM) (Kessler, et al., 2005). 

Identification is difficult, as patients often exhibit different symptoms, such as decreased 

appetite and sexual desire, disrupted sleep patterns, and suicidal thoughts. Through 

observations and interviews doctors are able to diagnose and treat depressive disorders 

to the best of their ability (Harrington, 2001). Antidepressants are commonly prescribed 

for treatment of depression. However, these drugs have been linked to increased 

incidences of CVD (Hamer, et al., 2011), further highlighting a critical need for a viable 

treatment for depression and CVD.       

 

 

 



12 
 

The Unpredictable Chronic Mild Stress Model 

The unpredictable chronic mild stress (UCMS) protocol was developed to induce 

depression-like sumptoms in animals, in accordance with the DSM criteria. The UCMS 

protocol consists of several stressors which are implemented in a fashion so the animal 

cannot predict which stress will occur next. Stressors include reversing light/dark cycles, 

wet bedding, removing bedding, a 45 degree cage tilt, placing animals in the cage of 

another animal, and the removal of bedding with the addition of shallow water to a cage 

(Demirtas, et al., 2014).       

The UCMS protocol focuses on anhedonia, or the inability to feel pleasure, by 

decreasing responsiveness to awards. Anhedonia is shown in rodents exposed to UCMS, 

as they display a decrease in sucrose-sweetened drinking water and avoidance of other 

natural and drug rewards (Willner, 1997). Additionally, studies have shown UCMS to 

decrease sexual behavior, aggression (D’Aquilia, et al., 1994), and locomotor behavior 

(Willner, 1997). Importantly, rodents exposed to UCMS shown signs of increased activity 

in the hypothalamus-pituitary-adrenal (HPA) axis and adrenal hypertrophy, which is the 

body’s major regulator of stress response. Increase HPA-axis activity suggests the rodent 

is undergoing an increased level of stress (Muscat and Willner, 1992). Additionally, UCMS 

has been linked to corticosterone hypersecretion, further verifying the UCMS protocol as 

capable of inducing depressive-like symptoms (Ayensu, et al., 1995).     
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Figure 1. Symptoms associated with depression in DSM-IV and similarities in the 

unpredictable chronic mild stress (UCMS) model.  

 

The Role of Cortisol 

Cortisol is known as the “stress hormone” due to its release through the HPA-axis in 

response to stress. During normal function cortisol can influence blood glucose, 

metabolism, specifically gluconeogenesis, anti-inflammation, blood pressure, and blood 

vessel tone (Dickerson, et al., 2004). Cortisol secretion has been shown to have a diurnal 

release, with no apparent steady-state or basal level over the course of the day. However, 

various diseased states, including depression and MetS, as well as exercise can 

dramatically alter cortisol secretion and activity (Weitzman, et al., 1971).  

Depressed individuals have been shown to secrete substantially more cortisol than 

healthy individuals (Sachar, et al., 1973; Yehuda, et al., 1996). Additionally, individuals 

with depression have been shown to have a blunted response to cortisol secretion, 

indicating a decreased ability to physiologically handle stress. Depressed individuals also 

experienced impaired stress recovery in correlation with this blunted response to cortisol 
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(Burke, et al., 2005). Other studies show prolonged increased in cortisol to permanently 

downregulate hippocampal cell receptors and produce chronic inflammation in the 

hippocampus. These alterations are associated with diminished serotonin synthesis in 

the brain and altered neurotransmitter function (Stokes, 1995). 

Individuals with an increased waist:hip ratio (WHR) have been shown to have an 

exaggerated cortisol response to stress (Epel, et al., 2000). Individuals with MetS, much 

like depressed individuals, have been shown to have hyperactivity of the HPA axis, 

resulting in chronic cortisol secretion. This increase in cortisol has been linked to 

increases in visceral fat accumulation, further exacerbating the situation as the WHR 

grows (Anagnostis,et al., 2009). Central obesity, a MetS risk factor, is positively correlated 

with elevated cortisol, which can then lead to insulin resistance, hypertension, and 

dyslipidemia, further progressing MetS. Prolonged overstimulation of cortisol and the HPA 

axis can result in deficiencies in stress-reducing feedback mechanisms, resulting in 

chronic stress (Bjorntorp, et al., 2000).    

Intensity of exercise plays a large role in cortisol secretion. High intensity exercise 

has been shown to significantly increase serum cortisol levels, while low intensity exercise 

shows little effect (Hill, et al., 2008). Another study suggested exercise to stimulate an 

increase in the rate of cortisol uptake by peripheral tissues, with cortisol returning to 

normal post-exercise training (Few, 1974).  
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Metabolic Syndrome and Vascular Dysfunction 

Arterial Stiffness  

The vascular dysfunction associated with MetS has been studied in depth. Early studies 

established the relationship between MetS and vascular dysfunction. One study focused 

on the interplay of AS, MetS, and hypertension. MetS was found to be associated with 

increased pulse wave velocity (PWV), with PWV being greater in those MetS and 

hypertension group than the hypertension alone. Aortic pulse pressure (APP) was found 

to be higher in both hypertensive groups, regardless of the presence of MetS. Results 

suggest increased arterial stiffness to be present in MetS regardless of the presence of 

high blood pressure (Kangas, et al., 2013). These findings further support earlier 

research, which concluded MetS was an independent determinant of arterial stiffness 

(Schillaci, et al., 2005; Ferreira, et al., 2005).  

MetS and AS have also been studied with ischemic stroke included as a 

parameter, again measuring vascular health. Subjects with MetS and ischemic stroke 

were shown to have significantly higher PWV than those suffering from ischemic stroke 

without MetS. This study shows an association between arterial stiffness and MetS, while 

also indicating MetS as a link to other diseases of the cardiovascular system 

(Tuttolomondo, et al., 2012). These results are in agreement with other studies. One study 

concluded individuals with MetS had a more prevalent history of coronary heart disease, 

myocardial infarction, and stroke than those without MetS (Isomaa, et al., 2001). Another 

study found MetS to be associated with an increased risk of death from coronary heart 

disease and CVD, regardless of presence of type 2 diabetes mellitus (T2DM) as a risk 
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factor for MetS, indicating the clustering of risk factors to increase mortality regardless of 

insulin resistance (Malik, et al., 2004). 

 

Vascular Remodeling 

Remodeling of the vasculature occurs as a result of diseased states, such as prolonged 

periods of hypertension, inflammation, T2DM, or chronic kidney disease. Vascular 

remodeling typically associated with MetS is hypertrophic inward, which results in a 

thicker wall, decreased distensibility, increase wall:lumen ratio (WLR), and an increase in 

cross-sectional wall area (CSWA) (van Varik, et al., 2013). Matrix metalloproteinases 

(MMP) have been shown to be key in remodeling in physiological and pathological states. 

MMPs are under the regulation of inflammation, oxidative stress, injury, and 

hemodynamics (Galis and Khatri, 2002). Blood flow has been shown to be a powerful 

regulator of MMP expression, with temporary carotid artery flow cessation in a murine 

model causing significant upregulations in MMP-9 (Bassiouny, et al., 1998). The NO 

produced by shear stress has been shown to be crucial to the remodeling process. A 

study utilized eNOS-null mice found a lack of compensatory remodeling to increases in 

shear stress (Rudic, et al., 1998). In another study, rabbit femoral arteries were shown to 

undergo constrictive remodeling following balloon injury, which was attributed to a 

decrease in NO bioavailability and an increase in collagen deposition (Lafont, et al., 

1999). MMPs can also be activated by NO in diseased states. When NO and superoxide 

are simultaneously produced peroxynitrate is generated, which can lead to activation of 

MMPs and exacerbate vascular dysfunction (Rajagopalan, et al., 1996).  
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Figure 2. Common types of large artery remodeling in diseased states. 

 

Decrease in eNOS has been linked to an increase in remodeling in response to 

arterial stress (Rudic, et al., 1998). Diseases, like MetS and depression, can result in 

hypertrophic remodeling on the arterial wall. Hypertrophic remodeling is the thickening of 

the arterial wall and can occur inward, where the wall becomes thicker inward, or outward 

(van Varik, et al., 2013). 

MetS and T2DM have both been shown to cause the formation of advanced 

glycation end products (AGEs), or proteins or lipids that have become glycated following 

exposure to oxidative stress and copious amounts of sugar. AGEs can alter the vascular 

basement membrane and ECM through binding to receptors for AGEs. This binding leads 
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to increases in collagen cross linking, decreased elastin, and arterial stiffness (Chantler 

& Frisbee, 2014). AGEs also diminish NO activity and cause endothelial dysfunction 

(Goldin, et al., 2006). AGEs have been shown to be prevalent in the conduit arteries of 

animal models of MetS, yielding them as a translational point of research in the disease 

(Reddy, 2004; Hill, et al., 2001).   

MetS results in chronic injurious stimuli to the ECM, which results in structural alterations, 

tissue dysfunction, and loss of structure and form. Collagen, the strength and tensile 

protein in the artery, has been shown degrade and re-proliferate at a higher rate when 

exposed to high levels of MMP-9, resulting in a stiffer vessel. Pathological conditions like 

MetS alter the normal activity of MMPs and other important remodeling factors, which has 

a profound impact of the health of the vasculature (Galis and Khatri, 2002).  

 

 

Inflammation 

Other findings elucidated the underlying inflammatory mechanisms associated with MetS 

and endothelial dysfunction. Individuals with MetS were found to have significantly higher 

circulating concentrations of all inflammatory cytokines. The inflammatory markers were 

correlated with E-selectin and vascular cell adhesion molecule-1 (VCAM-1), which are 

markers of endothelial function (Dinerman, et al., 1993). The inflammatory markers were 

also found to have a relationship with arterial stiffness (Dinerman, et al., 1993). These 

results support other findings suggesting MetS is associated with a specific profile of 

inflammatory cytokines (Troseid, et al., 2009; Weiss, et al., 2011). 
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In contrast, Weiss, et al. found increases in arterial stiffness and endothelial 

dysfunction associated with increased markers of IL-6 to be independent of the presence 

of MetS, indicating vascular dysfunction may be the result of inflammation and not 

necessarily MetS (Weiss, et al., 2013). However, other literature provides evidence a 

proinflammatory state induces insulin resistance, ultimately resulting in MetS. Combining 

the findings regarding vascular dysfunction and inflammation, and the inflammatory effect 

on the onset of MetS, it can be concluded vascular dysfunction is the result of the 

culmination of chronic inflammation and the pathogenesis of MetS (Dandona, et al., 

2004). 

MMPs are another marker of vascular dysfunction and inflammation. MMPs are 

tightly controlled by tissue inhibitor of metalloproteinase (TIMP) and an imbalance in the 

two can result in pathogenic processes, such as atherosclerosis (Rodriguez, et al., 2010). 

Several MMPs exist, each with a unique function and significance. Individuals with MetS 

have been shown to have higher circulating concentrations of MMP-9, yielding an 

increased risk for vascular dysfunction (Goncalves, et al., 2009). Another study confirmed 

the increase in MMP-9 in those with MetS, as well as TIMP-1 and TIMP-2, suggesting 

higher circulating levels of these factors could be associated with MetS (Cicero, et al., 

2007). Both MMP-2 and MMP-9 were found to be increased in the plasma in individuals 

with heart failure (Alberti, et al., 2003). Inhibition of the MMPs has been shown to reverse 

hypertension and inhibit vascular dysfunction in a rat model (Castro, et al., 2007). 

Furthermore, NO formation and plasma MMP-9 levels have been found to have an 

inverse relationship, suggesting MMP-9 directly impacts NO bioavailability and vascular 

health (Demacq, et al., 2008).     



20 
 

 

Endothelial Dysfunction 

In addition to arterial stiffening, endothelial dysfunction is common in diseases of the 

cardiovascular system (Cai & Harrison, 2000; Heitzer, et al., 2001; Hadi, et al., 2005). 

Many pathways converge to cause endothelial dysfunction, such as inflammation 

(Goldberg, 2009), aging (Csiszar, et al., 2008), and obesity (Tounian, et al., 2001). One 

of the key regulators of endothelial function is NO (Rees, et al., 1989; Steinberg, et al., 

1994). NO plays a crucial role in endogenous vasodilation (Palmer, et al., 1988) and has 

been shown to be impaired in diseased states, such as diabetes (Williams, et al., 1996).      

Endothelium dependent and independent vasodilation were found to be severely 

impaired in an animal model of MetS. The decrease in vasodilation was attributed to either 

impaired production of NO by the endothelium and/or smooth muscle, or a reduction in 

NO bioavailability. An increase in oxidative stress in the impaired vessels was also found 

(Ferreira, et al., 2005). These results are further supported as insulin resistance has been 

linked to endothelial dysfunction (Stuhlinger, et al., 2002). Furthermore, TNF-α 

overexpression has also been shown to impair endothelium-dependent vasodilation, 

additionally linking MetS and inflammation to cardiovascular complications (Picchi, et al., 

2006).  

Further exacerbating the vascular dysfunction caused by MetS is depression. The 

interaction between these two diseases and their negative effect on the vasculature 

results in comorbidities.   
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Depression linked with MetS and Vascular Dysfunction 

Depression and MetS 

The link between MetS and depression has recently become more evident and 

researched. Rodents exposed to the UCMS model of depression experienced impaired 

vasodilation and endothelial dysfunction following eight weeks of stresses (Isingrini, et 

al., 2011). Endothelial dysfunction has been cited as a potential link between depression 

and CVD, with the UCMS protocol verified as a reliable depression-like model in rodents 

(d’Audiffret, et al., 2010).  

In humans, depression is positively correlated with diabetes in middle-aged 

women. Incidence is attributed to an increase in central adiposity, indicating the potential 

role of MetS in the onset of depression (Everson-Rose, et al., 2004). Building on this, 

individuals with MetS were shown to have a greater incidence of depression. This 

association was present following adjustments for age, gender, socioeconomic status, 

smoking status, BMI, physical activity, and previous cardiovascular events, indicating a 

relationship exists between the two diseases (Skilton, et al., 2007). However, previous 

research found young women, but not men to have a higher association of MetS and 

depression (Raikkonen, et al., 2007; Kinder, et al., 2004) . Additionally, one study found 

no association among age, MetS, and depression (Herva, et al., 2006).  

 

Depression and Endothelial Dysfunction 

The association between MetS and depression establishes the diseases as 

comorbidities. Similar to MetS, depression has also been shown to be involved with 

vascular dysfunction (Rajagopalan, et al., 2001). Individuals with depression were shown 
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to have decreased eNOS activity and NO levels, when compared to healthy controls 

(Chrapko, et al., 2004). Endothelial dysfunction has been proposed as a link between 

cardiovascular disease and depression (Sherwood, et al., 2005). Endothelial dysfunction 

was found to be present in individuals following treatment with antidepressants (Broadley, 

et al., 2002), and also during depression remission (Rybakowski, et al., 2006). Given the 

interaction between antidepressants and cardiovascular drugs this presents a need for 

different therapy in combating the onset of both diseases (Hamer, et al., 2011). 

 

Depression and Arterial Stiffness  

Depression has also been linked to arterial stiffness (Tiemeier, et al., 2003;Yeragani, et 

al., 2006) and anxiety (Jiang, et al., 2004). Depressed and anxious subjects were both 

found to have increased arterial stiffness (p=0.01). Subjects with higher degrees of 

depression and/or anxiety, or with long-term conditions were shown to have a further 

increase in AS, providing evidence for a dose-response relationship between depression 

and arterial stiffening (Seldenrijk, et al., 2011). 

 

Depression and Inflammation 

Depression is also associated with inflammation (Stewart, et al., 2009). Inflammation has 

been linked to structural changes in vascular proteins and reductions in NO bioavailability. 

These findings suggest diseases of inflammation, such as MetS and depression, are 

associated with vascular dysfunction (Zieman, et al., 2005). Conflict exists regarding the 

role inflammation plays in the relationship between depression and CV health. Some 

studies suggest inflammation plays only a minor role (Vaccarino, et al., 2007). However, 
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evidence indicates inflammation as a cause of depression and the reverse, as well as 

depression to be a cause of inflammation, resulting in a pathologic process, which 

increases risk for diseases of the cardiovascular system (Shimbo, et al., 2005).  

The association between depression and MetS is also bidirectional. Individuals 

with decreased carotid artery distensibility, a common feature of MetS, were shown to be 

more likely to have a depressive disorder. This indicates MetS and arterial stiffness as 

potential risk factors and contributors to depression (Tiemeier, et al., 2003).   

With the suggestion that MetS and depression have an association with each other, and 

to vascular dysfunction, their comorbidity is established. Aerobic exercise is widely 

studied and recognized treatment for vascular dysfunction caused by both MetS and 

depression as independent diseases, however no study has investigated the exercise 

treatment for both simultaneously.  

 

Pathophysiology of MetS and Depression 

The onset of MetS or depression is not an overnight phenomenon. Each disease stems 

from a chronic stimulus, resulting in disease onset, while also increasing the risk for the 

other (Dunbar, et al., 2008). Chronic stress increase HPA-axis activity, resulting the 

release of corticotrophin-releasing hormone (CRH) from the hypothalamus. CRH 

stimulates the anterior pituitary gland to release adrenocorticotropic hormone (ACTH), 

which in turns results in cortisol release from the adrenal glands (Breznoscakova & 

Nagyova., 2013). Cortisol is anti-inflammatory when functioning normally (Cline, et al., 

1966). However, chronic cortisol activation and circulation results in a removal of the anti-

inflammatory effects of cortisol, making it a pro-inflammatory hormone (Brown, 2013). 
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This chronic release of cortisol results in the release of several inflammatory cytokines, 

including TNF-α, IL1-β, and interferon (IFN)-γ, into circulation and the vasculature. This 

increase in inflammation results in immune cell attraction and infiltration, increasing the 

risk of LDL oxidation and foam cell formation (Miller, et all., 2009). Additionally, the 

inflammatory cytokines also generate ROS, leading to an increase in superoxides and 

NOX, while decreasing NO and anti-oxidant defenses (Brown, 2013). 

Chronic cortisol release also stimulates an increase in sympathetic nervous 

system (SNS) activity, which in turn increases heart rate and blood pressure (Paredes, et 

al., 2014). Overtime, this increase in BP results in increased wall stress and vascular 

remodeling (Heagerty, et al., 1993). This vascular remodeling is mediated through 

increases in MMPs and collagen, with smooth muscle cell hypertrophy. The culmination 

of this remodeling is macrovascular dysfunction (Chantler & Frisbee, 2014). The increase 

in SNS activity also activates the renin-angiotensin-aldosterone system (RAAS). 

Increased RAAS activity stimulates an increase in angiotensin (ANG)-II activity 

(Majumder & Wu, 2014). Increases in circulating ANG-II will result in increased binding to 

ANG-II type-I receptors (AT1R). This binding will stimulate ROS generation, inflammation, 

insulin inhibition, and vascular smooth muscle proliferation. Importantly, an increase NfKB 

signaling will result in TNF-α and IL1-β activation, resulting in a cascade of pro-thrombotic 

and pro-inflammatory factors, including CRP, V-CAM, I-CAM, MMPs, and various 

cytokines (Prasad, et al., 2004). The end result of this pathway is endothelial dysfunction, 

through decreased in NO bioavailability and chronic increases in vasoconstriction. 

MetS shares many of the pathophysiological mechanisms with depression. 

However, MetS has distinct features increasing cardiovascular risk, as well as 



25 
 

exacerbating depression. Physical inactivity, smoking, stress, eating in caloric excess, 

and genetics are all known risk factors of MetS. Overtime individuals chronically place 

themselves in positive energy balance, from overeating and lack of physical activity, 

resulting in adipose tissue hyperplasia and hypertrophy. This results in altered free fatty 

acid (FFA) metabolism, leading to increased circulation of FFA, increased 

gluconeogenesis, and dyslipidemia. Altered FFA metabolism also results in insulin 

resistance, pancreatic β-cell impairment, hyperglycemia, and eventually T2DM (Kaur, 

2014).  

MetS also alters the release of adipocytes, specifically increasing leptin and 

decreasing adiponectin (Kaur, 2014). This decrease in adiponectin further exacerbates 

insulin resistance and progression of T2DM (Whitehead, et al., 2006). The increase in 

leptin results in leptin resistance, and an inability to gain satiety (Korner, et al., 2007). The 

combination of altered FFA metabolism and adipokine release results in stimulation of the 

SNS, resulting in activation of the same ANG-II pathway involved in depression. MetS 

also increases oxidative stress and ROS generation, leading to similar complications 

associated with depression, such as NOX and superoxide generation, paired with a 

decrease in NO bioavailability and endothelial dysfunction (Kaur, 2014). The result of 

these two converging diseases is chronic inflammation, increased vascular remodeling, 

elevated blood pressure and heart, altered insulin signaling and insulin resistance, and 

endothelial dysfunction, resulting in a severe increased risk for CVD and death. 
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Figure 3. Pathways linking Metabolic Syndrome (MetS) and chronic stress/depression. 
Abbreviations: HPA, hypothalamus-pituitary-adrenal; CRF, corticotrophin releasing 
factor; AA, amino acids; ROS, reactive oxygen species; LDL, low-density lipoproteins; 
SOD, superoxide dismutase; GPX, glutathione peroxidase; NO, nitric oxide; O2-, 
superoxide; ONOO-, perioxynitrate, NOX, NADPH oxidase; XO, xanthine oxidase; IR, 
insulin resistance; ANS, autonomic nervous system; HR, heart rate; BP, blood pressure; 
SMC, smooth muscle cell; MMP, matrix metalloproteinases; WT, wall thickness; WLR, 
wall:lumen ratio; CSWA, cross-sectional wall area; RAAS, renin-angiotensin aldosterone 
system; ANG-II, angiotensin II; AT1R, angiotensin II type-I receptor; IGF-1, insulin-like 
growth factor-1; VSMC, vascular smooth muscle cell; Ca, calcium; NfKB, nuclear factor 
kappa-light-chain-enhancer of activated B cells; IL1β, interleukin-1 β; ICAM, intracellular 
cell adhesion molecule; VCAM, vascular cell adhesion molecule; TNF-α, tumor necrosis 
factor-α; IL-6, interleukin-6; eNOS, endothelial nitric oxide synthase; CRP, c-reactive 
protein; MCP-1, monocyte chemoattractant protein-1; E, energy; FFA, free-fatty acid; TG; 
triglycerides; NAFLD; non-alcoholic fatty liver disease; PAI-1, plasminogen activator 
inhibitor-1; AGE, advanced glycation end products; NAD+, nicotinamide adenine 
dinucleotide; PKC, protein kinase C; COX, cyclooxygenases.     
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Exercise and Vascular Dysfunction  

The effects of exercise on cardiovascular and mental health have been widely 

investigated. Aerobic exercise training has been reported to be beneficial to CV health. 

Individuals with MetS participating in 20 weeks of supervised aerobic exercise saw 

significant improvements in cholesterol, blood pressure, glucose tolerance, and waist 

circumference (Katzmarzyk, et al., 2003). Chronic exercise training was able to increase 

extracellular NOS and NO production, as well as NO gene expression, in dogs (Sessa, 

et al., 1994)  

In a rat model of hypertension, swimming was able to reduce degradation of elastin 

and improve vessel health (Andrade, et al., 2013). When rats were fed a high-fat diet to 

induce MetS followed by endurance training dyslipidemia, blood pressure, glucose 

tolerance, cholesterol, obesity, and endothelial function were improved. These 

improvements persisted despite the rats being maintained on a high-fat diet throughout 

the study. The study results showed exercise to be beneficial even in the absence of 

dietary intervention (Touati, et al., 2011).  

 

Exercise and Endothelial Dysfunction 

Obese Zucker rats had increased NO bioavailability following chronic treadmill running 

when compared to sedentary rats (Frisbee, et al., 2006). Individuals with coronary artery 

disease participated in a four-week exercise-training regimen, which resulted in 

improvement in endothelium-dependent vasodilation in epicardial and resistance vessels 
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(Hambrecht, et al., 2000). These results suggest exercise training to be capable of 

improving MetS and CVD.  

Subjects with MetS were shown to have lower markers of NO formation, indicating 

vascular dysfunction (Gomes, et al., 2008). Plasma and whole body nitrite, which are end 

products of NO release and potential storage pools for NO generation (Lundberg, et al., 

2008), were decreased in individuals with MetS. Cyclic guanosine monophosphate 

(cGMP), a secondary messenger key to NO release in the smooth muscle, was also found 

to be decreased (p<0.05) (Archer, et al, 1994), with oxidative stress shown to be 

increased (p<0.05). However, exercise training was able to recover concentrations of 

blood nitrite and cGMP activity, while reducing oxidative stress (Gomes, et al., 2008).  

 

Exercise Intensity 

Intensity of exercise is an important factor in the treatment of vascular dysfunction. 

Moderate intensity exercise, defined as 40-65% of VO2 max (Johnson, et al., 2007), has 

been cited as beneficial in combatting MetS (Haffner, et al., 2006) and decreasing 

inflammation in T2DM (Zoppini, et al., 2006). These results conflict with other studies, 

suggesting a higher intensity of exercise is more beneficial to improving vascular 

dysfunction. High-intensity exercise, defined as 65-80% of VO2 max (Johnson, et al., 

2007), was shown to be superior to moderate-intensity in reducing MetS risk factors 

(Tjonna, et al., 2008). High-intensity exercise was also more effective in reducing 

inflammation associated with MetS than moderate intensity exercise (Balducci, et al., 

2010). However, intense exercise training caused more inflammation and a marked 

increase in circulating inflammation markers (Peeling, et al., 2009), suggesting moderate 
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intensity exercise as a better modality for a population already suffering from chronic 

inflammation.  

 

Exercise and Arterial Stiffness  

Moderate intensity exercise has been shown to be beneficial in combatting vascular 

dysfunction in both MetS and depression. When subjects with MetS were subjected to an 

aerobic training regimen of moderate intensity, consisting of 8 weeks of training, they 

were shown to have reduced arterial stiffness (Donley, et al., 2014). Individuals with 

hypertension were shown to have improvements in blood pressure and arterial stiffness 

following four weeks of moderate intensity aerobic exercise training (Collier, et al., 2008). 

Short-term aerobic exercise training was shown to reduce central arterial stiffness, but 

have little effect on the peripheral vessels, which was determined to take a longer training 

regimen (Hayashi, et al., 2005). Aerobic exercise training was also determined to be 

beneficial in treating multifactorial arterial stiffness, caused by age, T2DM, hypertension, 

and high cholesterol (Madden, et al., 2009).  

Similarly, when individuals with depression participated in moderate intensity 

walking or mindful walking protocols they were shown to have improvements in NO 

production and vascular function (Prakhinit, et al., 2014). Adolescents who did not partake 

in regular aerobic exercise were shown to have an increased risk of childhood depression, 

resulting in poor cardiovascular function (Waloszek, et al., 2015). Elderly individuals who 

had suffered from a cardiovascular incident were shown to have increased quality of life, 

decreased anxiety, and an increase in cognitive and cardiovascular function when 

subjected to an exercise training protocol as part of their cardiovascular rehabilitation 
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(Fleg, et al., 2012). The ability of moderate intensity aerobic exercise to decrease vascular 

dysfunction in both MetS and depression, while causing minimal inflammation, makes it 

an ideal training protocol for combatting these comorbid states. 

 

Exercise and Vascular Remodeling  

Exercise training has been shown to have several positive outcomes in remodeling the 

vasculature. Exercise training results in the increase in capillarity, or angiogenesis, and 

the enlargement of conduit arteries, known as arteriogenesis. The increase in blood flow 

caused by exercise results in larger, thicker-walled elastic arteries (Tronc, et al.,1996). 

Chronic increases in shear stress, caused by a regular exercise program, drive increases 

in NO production, vasodilation, and remodeling in order to handle the increased demand 

placed on the vessels (Prior, et al., 2002). Critically, normal NOS function is needed for 

conduit remodeling to occur, as inhibition of NOS function with L-NAME was found to 

eliminate vascular remodeling and stunt the increase in blood flow caused by exercise 

training (Yang, et al., 2001).       

Exercise training has been found to decrease MMP-9 expression, thereby 

protecting the ECM from the pathophysiological breakdown of collagen and elastin 

(Roberts, et al., 2006). Exercise training was also shown to increase circulating 

concentrations of TIMPs, which directly oppose MMP-induced ECM breakdown. 

Increases in TIMP further emphasize the importance of exercise training in maintaining 

healthy and positive vascular remodeling (Tayebjee, et al., 2005). In a model of 

spontaneously hypertensive rats one study found exercise training to increase elastin 

content in conduit arteries, with a sedentary model showing increases in collagen 



31 
 

deposition. Decreases in elastin in sedentary animals were positively linked to increases 

in MMP-2 and MMP-9 expression. Exercise animals not only increased elastin content, 

but also decreased blood pressure and MMP concentrations. The authors contribute 

these factors to an overall decrease in hypertrophic remodeling on the exercise rats 

arteries (de Andrade Moraes-Teixeira, et al., 2010).  
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Abstract  
Metabolic Syndrome (MetS) and chronic stress/depression are associated with an 
increased risk for poor cardiovascular outcomes and harmful arterial remodeling. Both of 
these diseases are continuously increasing in prevalence, but not much is known about 
the pathological effects of their comorbidity.  Exercise is a widely accepted and supported 
modality for combating MetS and managing chronic stress. However, a gap in the 
literature exists regarding the degree to which exercise can mitigate the injurious arterial 
remodeling associated with MetS and chronic stress simultaneously. The Unpredictable 
Chronic Mild Stress (UCMS) model is used as a simulation of daily, prolonged stress. The 
Obese Zucker Rat (OZR) represents MetS, with Lean Zucker Rats (LZR) paralleling a 
healthy individual. PURPOSE: To determine the degree to which exercise can attenuate 
negative arterial remodeling caused by chronic stress and metabolic syndrome. 
METHODS: OZRs and LZRs were separated into experimental groups including: control 
(C), exercise (Ex), UCMS, and UCMS with exercise (UCMS+Ex).  The carotid artery was 
isolated and passive vessel mechanic responses to changes in intraluminal pressure 
were assessed. RESULTS: OZR-UCMS inner diameter (ID) was significantly smaller 
when compared to LZR-C, Ex, and UCMS+Ex. OZR-UCMS wall thickness (WT) and 
wall:lumen ratio (WLR) was significantly higher than all LZR groups, but was rescued with 
Ex training, regardless of UCMS. CONCLUSIONS:  Comorbidity between MetS and 
chronic stress is a confounding factor on healthy vasculature, and can cause hypertrophic 
remodeling of the carotid artery. Exercise can be used as an intervention for these two 
diseases to mitigate adverse carotid artery remodeling. 
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Introduction 

 Metabolic Syndrome (MetS) and depression are both risk factors for 

cardiovascular disease (CVD), and have been bi-directionally linked to each other 

(Dunbar, et al., 2008). The increased risk of CVD in MetS (Stehouwer, et al., 2008) and 

depression (Seldenrijk, et al., 2011) has been linked to increases in arterial stiffness and 

adverse changes to vascular structure (Scuteri, et al., 2004), resulting in further 

complications, including myocardial infarction and stroke.  

 The vascular dysfunction associated with MetS and depression has been shown 

to be prevalent in the conduit arteries (Schillaci, et al., 2005 & Stanley, et al., 2014). The 

conduit, or elastic arteries, are responsible for maintaining a constant pressure throughout 

the arterial system, and include the carotid arteries and aorta. Alterations to conduit 

function can result in pathological conditions and alterations in normal cardiac function 

and blood flow. MetS is associated with an increase in carotid intima media thickness 

(IMT) and advanced vascular damage (Oliijhoek, et al., 2004).  

 Moderate intensity aerobic exercise has been shown to have beneficial effects on 

the vasculature of individuals with MetS (Donley, et al., 2014) and depressive-like 

symptoms (Kiuchi, et al., 2012). Furthermore, exercise has been shown to be 

neuroprotective (Teri, et al., 2003; Nabkasorn, et al., 2006) and to have a favorable effect 

on the majority of risk factors associated with MetS (Pattyn, et al., 2013).  

 To simulate MetS the obese Zucker rat (OZR) model was used. The OZR (fa/fa) 

exhibits rapid weight gain, hypertension, elevated blood glucose, and dyslipidemia 

making it a suitable model for MetS (Zucker, 1972). In order to simulate depression-like 

symptoms the unpredictable chronic mild stress (UCMS) protocol was implemented. The 

UCMS protocol produces depressive-like symptoms in rodents through decreases in 
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award seeking, increased HPA axis activity, adrenal hypertrophy, and increases in 

corticosterone production (Willner, 1997).    

 The goal of this study was to fully assess the structural and molecular changes in 

the carotid artery caused by depression and MetS as comorbidities, and evaluate the 

effectiveness of moderate intensity aerobic exercise on the vasculature of this comorbid 

state. To simulate MetS the OZR, which displays elevated blood glucose, hypertension, 

rapid weight gain, dyslipidemia, and increased inflammation, was used, with the LZR 

serving as the healthy control. Furthermore, the UCMS protocol was utilized to induce 

depression-like symptoms in the animals. We hypothesized the comorbid state of MetS 

and depression would result in increased adverse arterial remodeling and exercise 

training would be able to attenuate the negative vascular changes caused by the 

comorbidities.      

  

Materials and Methods 

 Animals and Housing: Male LZR and OZR (Leprfa/fa) were purchased from Envigo 

Labratories (Indianapolis, IN) and housed in a pathogen-free vivarium room with a 

12hr:12hr reverse light:dark cycle, in standard Allentown rat cages.  

 

Feeding and handling: Rats were fed standard rodent chow and tap water ad 

libitum. Animal handling and care were performed in accordance with the Public Health 

Service Policy on Humane Care and Use of Laboratory Animals and West Virginia 

University’s Institution of Animal Care and Use Committee.  
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 Study Design: Rodents were divided into eight experimental groups: LZR control 

(C) (n=8), LZR exercise (EX) (n=8), LZR UCMS (n=8), LZR EX+UCMS (n=8), OZR C 

(n=8), OZR EX (n=8), OZR UCMS (n=8), and OZR UCMS+EX (n=10). Animals were 

single housed. Rats were weighed and their weights recorded weekly for the duration of 

the study. To ensure animals were being adequately fed food amount was weighed and 

recorded twice a week. Control animals remained in the vivarium room and were only 

disturbed for body and food weighing, and coat scoring throughout the duration of the 

study.  

 

 Coat Scoring: Coat score data was obtained weekly to determine the health and 

grooming habits of each animals. The total cumulative score was determined by giving 

an individual score of “0” (clean) or “1” (dirty) to eight different body areas (head, neck, 

back, underside, tail, hindlimb, forelimb, and genitals).  

 

 Veterinary Treatment: If animals sustained injuries or lesions during the course of 

the study they were reported to WVU’s Office of Laboratory Animal Research veterinary 

staff. The veterinary staff inspected and treated the animal. If further attention was needed 

directions were given and strictly adhered to.  

 

 Exercise Training: Animals were run on a Columbus Instruments rodent treadmill 

(Exer-3/6) for 60 minutes per day, five days per week, over the course of the eight week 

study. Animals were run on a slight incline of 10 degrees to place more emphasis on 

training the fore and hindlimb muscles. On the first day of training animals were placed 
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on the treadmill for 10 minutes, running at 5 m/min. During the first week, each day time 

and speed were increased, until at the start of week two animals were exercising for 60 

minutes, reaching a speed of 20 m/min (LZR) or 14 m/min (OZR). Animals exercised on 

a progressive exercise regimen, beginning each session with a 5 minute warm-up at 5 

m/min (OZR) or 7 m/min (LZR) and progressively increasing speed throughout the 

session. If an animal refused to run, by sitting on the shock bay, resisting gentle prodding, 

the shock bay was turned off and a note was made of the animal’s refusal to run.  

 

Maximal Speed Test: To determine if a training effect was present a maximal 

speed test was performed during weeks one and eight. Animals began running at 5 m/min 

with speed increasing by 2 m/min every 30 seconds until exhaustion. Exhaustion was 

defined as when the rat sat on the shock bay with no attempts to continue exercising for 

5 seconds. Maximal running speeds were recorded following exhaustion.   

 

 Work Calculation: Work (J) was calculated in an attempt to normalize speed and 

body weight across all experimental groups. Work was calculated using the equation 

(𝐵𝐵𝐵𝐵 ∗ 9.81) ∗ (sin Ѳ∗𝜋𝜋
180

) ∗ 𝐷𝐷, where BM is body mass (kg), 9.81 is gravity, θ is the angle of 

the treadmill, and D is the distance run (meters, m).  

 

 Unpredictable Chronic Mild Stress (UCMS) Protocol: The UCMS protocol was 

used to simulate chronic stress/depression. Rodents were subjected to a variety of 

stresses over a 6-8 hour period five days per week. Stresses included: the removal of 

bedding (no bedding), the addition of 10 oz. of water to the bedding (damp bedding), the 
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removal of bedding and the addition of 10 oz. of water to the cage (bath), the removal of 

bedding and a 45 degree cage tilt (cage tilt), relocation of rodents into another rodents 

cage (social stress), and successive light/dark cycles (light/dark cycle). Each stress was 

performed for 2-4 hours per day so animals were exposed to 2-3 stresses per day. The 

stresses were designed to be unpredictable to prevent acclimation to the protocol, 

therefore stresses were purposefully different each day with the protocol never repeating 

on consecutive days.  

 

  Injection, Tracheotomy, Mean Arterial Pressure, and Blood Draw: Animals were 

injected with sodium pentobarbital (Nembutal 50 mg/kg) via intraperitoneal injection. 

Animals were inspected for consciousness via toe pinch. Booster injections were given 

until the rodent had no response to a substantial squeezing on the right foot with forceps. 

At the point of unconsciousness the animal’s neck was cleaned of fur, skin, fat, muscle, 

and fascia until the trachea was exposed. A small incision was made in anterior wall of 

the trachea and a breathing tube was inserted and sutured in place. The right carotid 

artery was then exposed and cannulated to determine mean arterial pressure (MAP). 

Following a 5 minute equilibration period the MAP was recorded. Immediately following 

the recording of MAP an incision was made into the abdomen on the animal and the 

diaphragm was cut. A blood draw was then made from the inferior vena cava, which was 

immediately centrifuged and taken for lab analysis.  

 

 Carotid Artery Removal, Hanging, and Passive Mechanics: Following blood draw 

the left carotid artery was isolated in the same fashion as previously mentioned. Once 
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isolated an incision on the proximal and distal end of the carotid was made and the vessel 

removed and placed in a dish filled with physiological salt solution (PSS). From the dish 

the vessel was transferred to 37°C microvessel chamber and superperfused with Van 

Breeman’s calcium-free solution. The carotid was cannulated with inflow and outflow 

micropipettes and secured with suture. Vessels were pressurized at 100% MAP via 

hydrostatic column. Passive vessel mechanic responses to changes in intraluminal 

pressure, of the inner (ID) and outer diameter (OD), were measured by video micrometer 

and recorded.    

 

 Wall Thickness: Wall thickness (WT) was calculated by the equation (𝑂𝑂𝑂𝑂−𝐼𝐼𝑂𝑂
2

), 

where the inner diameter was subtracted from the outer diameter, and the difference was 

divided by two.  

 

 Cross-Sectional Wall Area: Cross-sectional wall area (CSWA) was calculated 

using the equation �𝜋𝜋 ∗ 𝑂𝑂𝑂𝑂
2
�
2
−  �𝜋𝜋 ∗ 𝐼𝐼𝑂𝑂

2
�
2
.  

 

 Wall:Lumen Ratio: Wall:Lumen Ratio (WLR) was calculated using the equation 

𝑊𝑊𝑊𝑊
𝐼𝐼𝐼𝐼
2

, where the WT calculated previously was divided by the corresponding ID divided by 

two.  

  

 Stress-Strain Curves: For the calculation of circumferential stress intraluminal 

pressure was converted from mmHg to N/m2, where 1 mmHg = 1.334 x 102 N/m2. 
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Circumferential stress was then calculated using the equation σ = Pil x ID
2𝑊𝑊𝑊𝑊

 and 

circumferential ID5 strain was calculated as 𝜀𝜀 = (ID−ID5)
ID5

, where Pil represents the 

intraluminal pressure and ID5 represents the internal arterial diameter at the lowest 

intraluminal pressure (i.e. 5 mmHg). Each stress-strain relationship was fitted with the 

equation Y = α • eβX , where Y is circumferential stress, X is circumferential strain, α is the 

intercept, and β is the slop of the exponential fit. The β-coefficient is used as a relative 

measure of vascular stiffness.  

 

 Corticosterone ELISA: The concentration of corticosterone in the plasma was 

measured with an ELISA kit (Cayman Scientific). The change in color was monitored at 

a wavelength of 405 nm using a Dynex MRX plate reader. Measurements were performed 

in duplicate with all comparisons performed with the same assay. The corticosterone 

content was expressed as pg/ml and reported as relative to LZR control values. 

 

 Statistical Analyses: All values are expressed as mean + SEM unless otherwise 

specified. A one-way ANOVA was used to compare groups unless otherwise specified. 

When a main effect was observed a Tukey post-hoc test was performed to determine 

group differences. All statistics were performed using SPSS.   

 

 

Results 

Body Weight: Body weight increased for all animals over the duration of study. LZR body 

weight remained consistent, with animals reaching roughly 400 grams, regardless of 
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treatment. OZR gained weight more rapidly, with controls reaching over 600g on average. 

The OZR UCMS group displayed a similar weight gain, averaging nearly 585g by the end 

of the eight weeks. OZR Exercise and UCMS+Ex animals displayed a marked increase 

in body weight compared to OZR C, averaging nearly 630g and 550g, respectively (Table 

1).  

 

Food Intake: OZR C was found to consume significantly more food than LZR C (p<0.01). 

LZR UCMS consumed less food than OZR UCMS (p<0.01). LZR Ex animals consumed 

less food than OZR Ex (p<0.01). OZR Ex animals consumed less than OZR UCMS 

animals (p<0.01). LZR UCMS+Ex consumed less than OZR UCMS+Ex (Table 1).  

 

Work: LZR UCMS+Ex animals performed the least amount of work (p<0.01). LZR Ex and 

OZR Ex performed the same amount of work. OZR UCMS+Ex performed significantly 

more work than all groups (p<0.01) (Figure 1).  

 

Mean Arterial Pressure: OZR C had increased MAP compared to LZR C. No statistical 

differences were found between UCMS groups or Ex groups. OZR UCMS+Ex animals 

were found to have decreased MAP compared to OZR C (Table 1).   

 

Coat Scores: LZR C animals had markedly better coat scores than all OZR groups, as 

well as LZR UCMS and UCMS+Ex (p<0.002). Additionally, LZR Ex animals had improved 

coat scores compared to the LZR groups exposed to UCMS and all OZR groups (p<0.04). 
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OZR C coat scores were significantly better than LZR UCMS+Ex and all other OZR 

Groups (p<0.04) (Figure 2).  

 

Corticosterone ELISA: LZR C animals showed markedly decreased corticosterone 

concentration compared to all other groups, with LZR Ex having a decrease in 

corticosterone when compared to LZR UCMS and UCMS+Ex (p<0.05). OZR C had 

increased corticosterone compared to other OZR groups (p<0.05), with OZR UCMS+Ex 

showing a decrease in corticosterone compared to OZR Ex and OZR UCMS (Figure 3).    

 

Inner Diameter: LZR C, LZR Ex, and LZR  UCMS+Ex groups were found to have a 

significantly larger inner diameter when compared to OZR UCMS rats (p<0.05). Although 

not statistically significant the LZR UCMS group appeared to have a trend towards a 

smaller inner diameter. Additionally, OZR UCMS+Ex appeared to have a trend towards 

increase the inner diameter of the vessel wall (Figure 4).  

 

Outer Diameter: No statistical differences were observed between animals, regardless of 

strain or treatment type (Figure 4).  

 

Wall Thickness: OZR UCMS animals were found to have a significantly thicker wall than 

all other groups (p<0.04), with the exception of OZR C. Exercise training was able to 

ameliorate the thickening of the wall caused by the combination of MetS and stress. LZR 

animals did not display a thickening of the arterial walls in any treatment (Figure 5).  
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Wall:Lumen Ratio: The OZR UCMS group was shown to have a significantly higher WLR 

than all other groups, with the exception of OZR C (p<0.009). Exercise training was able 

to improve WLR in the combination group of MetS and stress. LZR animals were resistant 

to changes in WLR across all treatments (Figure 6).  

 

Cross-Sectional Wall Area: No statistical differences were observed across strain or 

treatment group. OZR UCMS animals appeared to have a trend towards a higher CSWA 

(Figure 7).  

 

Stress:Strain Curves: No statistical differences were observed when comparing the β-

slopes of stress:strain relationships in LZR animals (Figure 7). A trend did appear to show 

exercise training to improve the stress-strain relationship, while UCMS worsened it. 

However, in OZR animals Ex, UCMS, and Ex+UCMS all showed a significant 

improvement in β-slope values (Figure 8). 
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Tables and Figures 

 
 
 LZR OZR 

Weight (g)   
Control 436 ± 19 604 ± 11* 
UCMS 373 ± 8*# 584 ± 26* 
Ex 363 ± 12*# 600 ± 11* 
Ex+UCMS 337 ± 6*# 543 ± 22* 
 
MAP (mmHg)   
Control 106 ± 4 135 ± 6* 
UCMS 109 ± 3 133 ± 6 
Ex 114 ± 2 134 ± 6* 
Ex+UCMS 100 ± 0# 128 ± 6 
 
Food Intake (g)   
Control 136 ± 5 196 ± 2* 
UCMS 125 ± 10# 220 ± 10* 
Ex 130 ± 11# 184 ± 10* 
Ex+UCMS 143 ± 5# 224 ± 8* 

 
Table 1. Average body weight, mean arterial pressure (MAP), and food intake for all 
experimental groups. Lean Zucker rat (LZR) control (C) weighed less than all obese 
Zucker rat (OZR) groups and all other groups. All LZR groups weighed less than OZR C. 
All LZR groups had significantly lower mean arterial pressure (MAP) than OZR C. MAP 
did not significantly decrease from OZR C in any OZR group. OZR C consumed more 
food than all LZR groups, but did not differ significantly from other OZR groups. * = p 
<0.05 vs. LZR C. # = p <0.05 vs. OZR C. n=8 for all groups.  
  

Figure 1. Average work (Joules) for each exercise treatment group. Lean Zucker rat 
(LZR) and obese Zucker rat (OZR) exercise performed the same amount of work during 
their exercise training.  LZR unpredictable chronic mild stress and exercise (UCMS+Ex) 
performed the least amount of work compared to all groups.  OZR UCMS+Ex had the 
highest average work. Values: mean ± SEM. * = p<0.01 vs. LZR control;   = p<0.01 vs. 
OZR control; # = p<0.01 vs. LZR/OZR in treatment group. All groups n = 8.        
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Figure 2. Coat scores. Lean Zucker rat (LZR) control (C) coat scores differed from all 
groups with the exception of LZR Exercise (Ex). Obese Zucker rat (OZR) C coat scores 
differed from all groups except LZR unpredictable chronic mild stress (UCMS). * = 
p<0.001. # = p<0.04. n=7-8.   

 

Figure 3. Basal corticosterone concertation. Lean Zucker rat (LZR) control (C) 
corticosterone concentration was found to be significantly less than all other groups. In 
LZR animals unpredictable chronic mild stress (UCMS) caused a trend towards an 
increase in corticosterone, regardless of exercise (Ex) training. In obese Zucker rat (OZR) 
animals UCMS and Ex both increased corticosterone, with the combination of UCMS+Ex 
showing an apparent decrease in corticosterone. P <0.05 vs. LZR C. n=3 for all groups.   

0

1

2

3

4

5

6

To
ta

l C
oa

t S
co

re
 (A

U
)

LZR C LZR UCMS LZR Ex LZR UCMS+Ex

OZR C OZR UCMS OZR Ex OZR UCMS+Ex

*#

*#*#

* *

*

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

Co
rt

ic
os

te
ro

ne
 (p

g/
m

l)

Corticosterone Concentration

LZR C LZR UCMS LZR Ex LZR UCMS+Ex

OZR C OZR UCMS OZR Ex OZR UCMS+Ex

*

*

*

*

* *

*



62 
 

 

Figure 4. Carotid artery diameter at a mean arterial pressure (MAP) of 100mmHg. 
Unpredictable chronic mild stress (UCMS) was shown to cause decreases in inner 
diameter, with exercise (Ex) training recovering inner diameter. No differences were found 
in outer diameter. Values: mean ± SEM. * = p<0.05 vs. LZR C. n=3-7 
 
 

Figure 5. Carotid artery wall thickness (WT) at a mean arterial pressure (MAP) of 
100mmHg. Unpredictable chronic mild stress (UCMS) and Metabolic Syndrome (MetS) 
were shown to cause an increase in WT. Exercise (Ex) training was able to attenuate 
thickening walls. Values: mean ± SEM. = p<0.04 vs. LZR C. n=3-6. 
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Figure 6. Carotid artery wall:lumen ratio (WLR) at a mean arterial pressure (MAP) of 
100mmHg. Unpredictable chronic mild stress (UCMS) and Metabolic Syndrome (MetS) 
were shown to cause an increase in WLR. Exercise (Ex) training was able to decrease 
WLR Values: mean ± SEM. * = p<0.009 vs. OZR C. n=3-6 
 

Figure 7. Carotid artery cross-sectional wall area (CSWA) at a mean arterial pressure 
MAP) of 100mmHg. Values: mean ± SEM. No statistical differences were found. 
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Figure 8. Carotid artery stress-strain for lean Zucker rat (LZR) animals from 0-160mmHg. 
Unpredictable chronic mild stress (UCMS) was shown to trend towards a stiffer, less 
compliant vessel. Values: mean ± SEM. No statistical differences among β-slopes were 
found.   

 

Figure 9. Carotid artery stress-strain for obese Zucker rat (OZR) animals from 0-160 
mmHg. Exercise (Ex) improved the stress-strain relationship in OZR animals. 
Unpredictable chronic mild stress (UCMS), Ex, and UCMS+Ex were all found to 
significantly improve β-slope values compared to control. Values: mean ± SEM. # p<0.05 
to OZR C.  
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Discussion 

The comorbid state of MetS and depression is one of great complexity and growing 

prevalence. Our model, utilizing the OZR and UCMS protocol, provides a controlled 

parallel to a human suffering from these two afflictions. In our study we observed 

significant weight loss in all LZR cohorts when compared to control. However, OZR 

animals did not show the same results, with OZR UCMS animals being the only group to 

show a significant decrease from OZR C. We speculate the lack of weight loss in the two 

OZR exercise-trained groups can be attributed to an increase in muscle mass, resulting 

in increased weight. However, muscle samples were not taken from these animals, 

rendering our data to be speculative only (Table 1). 

Insulin and glucose are common parameters measured to verify MetS. However, 

as our rats were not fasted we elected not to include non-fasting glucose data. 

Additionally, the laboratory used to determine insulin levels did not have sensitive enough 

equipment to quantify insulin in our rat blood. Although these two markers are common 

and important in determining MetS we remain confident in the OZR as a suitable model 

of MetS based on previous literature (Stanley, et al., 2014; Frisbee, et al., 2006; Zucker, 

et al., 1972).    

As anticipated OZR animals aid significantly more food than LZR animals (Table 

1). The alteration to the OZR’s leptin receptor results in an inability to gain satiety and 

mass food consumption (Zucker, 1972). As a result these animals exhibit markedly 

increased food intake and weight gain. However, the UCMS protocol has been shown to 

decrease body weight in rodents (Willner, 1994). These results were confirmed by our 
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study, as UCMS animals observed an increase in weight loss, paired with an increase in 

food consumption, indicating the UCMS of inducing changes in metabolism. 

We observed an increase in work in OZR UCMS+Ex animals and a decrease in 

work in LZR UCM+Ex animals (Figure 1). These results indicate our method of matching 

work to be inaccurate. However, exercise training was able to show significant 

improvements or trends toward vascular improvement in to UCMS+Ex groups when 

compared to their respective controls. Given these results we remain confident in our 

exercise training model as being viable in this study.  

No differences were observed among LZR cohorts compared to LZR C or OZR 

cohorts compared to OZR C. OZR animals were shown to have higher MAP than LZR C, 

however only OZR C and UCMS groups were significantly different. This implies exercise 

training was able to trend towards an improvement in MAP in OZR animals (Table 1). 

Eight weeks of exercise training has been shown to be ineffective in significantly altering 

blood pressure in humans, indicating our lack of robust MAP changes to be similar to 

occurrences in a human study (Donley, et al., 2014).  

Coat scores and corticosterone concentrations were used to quantify stress in 

rodents (Figures 2 and 3). Corticosterone ELISA showed LZR C to have markedly 

decreased corticosterone concentration compared to all other groups. UCMS was 

effective in increasing corticosterone concentration in LZR animals. Exercise training also 

increased corticosterone concertation in LZR animals. OZR animals showed a marked 

increase in corticosterone levels, with UCMS and Ex both increasing corticosterone 

above control levels. Corticosterone concentrations fluctuate diurnally in rodents, 

resulting in time of blood draw being extremely important when determining 
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corticosterone levels (Weitzman, et al., 1971). Blood samples were taken at different 

times throughout the day, making it difficult to rely on corticosterone as an accurate 

measure of stress.  

Coat scores were also used as a marker of stress. Coat score data showed LZR 

C animals to have markedly better scores than all. UCMS and UCMS+Ex in LZR animals 

increased coat score values significantly. All OZR coat scores were higher than LZR C, 

but all other OZR groups showed higher scores than OZR C. In the exercise trained 

animals this is likely due to lesions suffered from the running protocol, due to their fat 

pads rubbing on the treadmill. When coat score locations OZR animals could not reach 

(i.e. back and neck) were removed a decrease in coat scores in OZR animals was 

observed, but scores were still much higher than OZR C. As a result a differentiation 

should be made in the future between injury and a dirty coat.   

To our knowledge this is the first study to evaluate passive structural remodeling 

of the carotid artery in a model of MetS and depressive-like symptoms. To provide a 

translatable model for arterial remodeling vessels were pressurized at 100 mmHg and 

compared. Although robust changes were not observed between LZR cohorts, a trend 

did appear for UCMS to cause a slightly thicker wall and WLR (Figure 5 and 6, 

respectively). This observation was exacerbated in OZR animals, with OZR UCMS 

animals displaying a markedly increased WT and WLR (p <0.05). Although not significant, 

a trend also appeared in OZR UCMS animals for an increase in CSWA (Figure 7). These 

increases provide evidence of inward hypertrophic remodeling, as the wall thickness 

increased and lumen size decreased. Hypertrophic remodeling is associated with 

decreased vessel compliance, arterial stiffness, hypertension, and vascular dysfunction 



68 
 

(Intengan, et al., 2001). Exercise training was able to drastically improve WT, WLR, and 

CSWA in OZR UCMS+Ex animals (p<0.05). Interestingly, the benefits of exercise were 

not more robust in the absence of UCMS. These results indicate. LZR UCMS+Ex animals 

saw a trend towards improvements in WT, WLR, and CSWA, indicating the UCMS model 

of being capable of blunting the benefit of exercise training in a lean, healthy rodent. 

These results aid in verifying the effectiveness of the UCMS protocol, as the LZR is a very 

healthy animal (Stanley, et al., 2014). 

The improvements in WLR and WT in OZR UCMS+Ex animals compared to OZR 

UCMS animals allows for more compliance, flow, dispensability, and overall health. 

Although WT and WLR improved in OZR UCMS+Ex animals and OZR Ex animals when 

compared to OZR UCMS animals no significant changes were noted between the two 

exercise groups. This indicates, from a structural remodeling standpoint, the OZR’s ability 

to improve vessel health with exercise is blunted. It is possible, with the poor metabolic 

health of the OZR they have a cap on how much benefit exercise training can have on 

the structural remodeling of the vessel. Paired with the lack of notable weight loss and 

improvements to MAP in OZR UCMS+Ex and OZR Ex groups compared to OZR C it is 

also possible our model was not capable to dramatically alter the vascular health through 

structural remodeling alone. As this is the first study to assess structural remodeling on 

the carotid artery in a comorbid state of MetS and chronic stress further studies are 

needed to determine how structural remodeling is impacted in these diseased states and 

by exercise in the OZR model.   

Stress-strain curves for the carotid artery showed a trend for exercise training to 

improve the stress-strain relationship (Figures 8 and 9). To compare stress-strain curves 
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the β-slope was calculated. β-slope is a measurement of when the curve begins to take 

a more linear shape. A more compliant vessel will exhibit a smaller β-slope value, which 

was shown in exercised animals. Although LZR animals did not see a significant change 

among cohorts, all OZR groups were significantly different from OZR C. In agreeance 

with past literature exercise training dramatically improved β-slope values (Frisbee, 

2006). The combination of Ex+UCMS showed improvement from control, but not the 

extent of exercise alone. These results suggests the UCMS protocol of blunting the 

benefits of exercise, while also showing exercise can overcome vascular dysfunction 

caused by chronic stress. Interestingly, OZR UCMS animals showed improved β-slope 

values when compared to OZR C, suggesting stress to be beneficial for the vasculature. 

A likely explanation is the health of the OZR’s vessels is impaired so heavily to begin with 

the addition of the stress stimulus does not further exacerbate the problem when 

observing how the vessel responds to increased stress and strain. This yields to the 

potential explanation for al compensatory mechanism to attempt to preserve the health 

of the vessel in situations of extreme inflammation, oxidative stress, and immune 

infiltration (Chantler & Frisbee., 2014).   

Previous studies have shown larger differences between vessel diameters in 

peripheral resistance arterioles between LZR and OZR animals (Bouvet, et al., 2007; 

Stepp, et al., 2004). However, less stark changes are observed in the middle cerebral 

artery (MCA) of LZR and OZR animals (Stepp, et al., 2004). One study showed exercise 

to be effective in reducing conduit artery WT in obese rats to values similar to lean rats 

(Pinheiro, et al., 2006). However, another study found habitual exercise to be largely 

ineffective in altering carotid intima-media thickness in exercising males (Tanaka, et al., 
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2002). Our results, although not robust, show aerobic exercise to be capable of improving 

functional remodeling of the carotid artery in a comorbid state of MetS and chronic stress. 
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Chapter 4: 

Aerobic Exercise Intervention Improves 

Nitric Oxide-Dependent Processes in a 

Rodent Model of Metabolic Syndrome 

and Chronic Stress 
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Abstract  
Metabolic Syndrome (MetS) and chronic stress/depression are associated with an 
increased risk for poor cardiovascular outcomes and impaired vascular function. Both of 
these diseases are continuously increasing in prevalence, but not much is known about 
the pathological effects of their comorbidity.  Exercise is a widely accepted and supported 
modality for combating MetS and managing chronic stress. However, a gap in the 
literature exists regarding the degree to which exercise can mitigate the vascular 
dysfunction associated with MetS and chronic stress simultaneously. The Unpredictable 
Chronic Mild Stress (UCMS) model is used as a simulation of daily, prolonged stress. The 
Obese Zucker Rat (OZR) represents MetS, with Lean Zucker Rats (LZR) paralleling a 
healthy individual. PURPOSE: To determine the degree to which exercise can attenuate 
vascular dysfunction caused by chronic stress and metabolic syndrome. METHODS: 
OZRs and LZRs were separated into experimental groups including: control (C), exercise 
(Ex), UCMS, and UCMS with exercise (UCMS+Ex).  The aorta was isolated hung on an 
ex vivo wire tension myograph system, where changes in aortic tension were measured 
in response to pharmacological agents. Nitric oxide (NO) bioavailability was also 
measured. RESULTS: Exercise training improved LZR and OZR endothelium-dependent 
dilation. LZR and OZR UCMS+Ex dilation to methacholine was not different from LZR C 
and OZR C, respectively. Exercise training improved nitric oxide (NO) bioavailability in 
OZR and LZR animals. OZR-UCMS NO bioavailability was significantly less compared to 
all groups. LZR and OZR UCMS+Ex NO bioavailablity were not different from their 
respective controls. CONCLUSIONS:  Comorbidity between MetS and chronic stress is 
a confounding factor on healthy vasculature, but does not increase vascular dysfunction 
in already impaired vessels. Exercise can be used as an intervention for these two 
diseases to improve conduit artery health.  
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Introduction 

 Metabolic Syndrome (MetS) and depression are both risk factors for 

cardiovascular disease (CVD), and have been bi-directionally linked to each other 

(Dunbar, et al., 2008). The increased risk of CVD in MetS (Stehouwer, et al., 2008) and 

depression (Seldenrijk, et al., 2011) have both been linked to decreases in nitric oxide 

(NO) production (Frisbee, et al., 2005) and increased inflammation (Shimbo, et al., 2005; 

Yaffe, et al., 2004), further complicating the relationship between the two diseases and 

the pathological implications associated with them.  

 The vascular dysfunction associated with MetS and depression has been shown 

to be prevalent in the conduit arteries (Schillaci, et al., 2005 & Stanley, et al., 2014). The 

conduit, or elastic arteries, are responsible for maintaining a constant pressure throughout 

the arterial system, and include the carotid arteries and aorta. Alterations to conduit 

function can result in pathological conditions and alterations in normal cardiac function 

and blood flow. MetS can result in negative changes to the conduits through decreases 

in endothelium-dependent vasodilation and increased levels of oxidative stress 

(Heinonen, et al., 2014).  

 Moderate intensity aerobic exercise has been shown to have beneficial effects on 

the vasculature of individuals with MetS (Donley, et al., 2014) and depressive-like 

symptoms (Kiuchi, et al., 2012). Furthermore, exercise has been shown to be 

neuroprotective (Teri, et al., 2003; Nabkasorn, et al., 2006) and to have a favorable effect 

on the majority of risk factors associated with MetS (Pattyn, et al., 2013). Exercise training 

is linked to increases in endothelial NO synthase (eNOS) and NO activity in the aorta 

(Cacicedo, et al., 2011).   
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 To simulate MetS the obese Zucker rat (OZR) model was used. The OZR (fa/fa) 

exhibits rapid weight gain, hypertension, elevated blood glucose, and dyslipidemia 

making it a suitable model for MetS (Zucker, 1972). In order to simulate depression-like 

symptoms the unpredictable chronic mild stress (UCMS) protocol was implemented. The 

UCMS protocol produces depressive-like symptoms in rodents through decreases in 

award seeking, increased HPA axis activity, adrenal hypertrophy, and increases in 

corticosterone production (Willner, 1997).    

 The goal of this study was to fully assess the structural and molecular changes in 

the conduit arteries caused by depression and MetS as comorbidities, and evaluate the 

effectiveness of moderate intensity aerobic exercise on the vasculature of this comorbid 

state. To simulate MetS the OZR model was used, with the LZR serving as the healthy 

control. Furthermore, the UCMS protocol was utilized to induce depression-like symptoms 

in the animals. We hypothesized the comorbid state of MetS and depression would result 

in decreased endothelium-dependent dilation and decreased NO bioavailability and 

exercise training would be able to attenuate the vascular dysfunction caused by the 

comorbidities.      

  

Materials and Methods 

Animals and Housing: Male LZR and OZR (Leprfa/fa)) were purchased from Envigo 

Labratories (Indianapolis, IN) and housed in a pathogen-free vivarium room with a 

12hr:12hr reverse light:dark cycle, in standard Allentown rat cages.  
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Feeding and handling: Rats were fed standard rodent chow and tap water ad libitum. 

Animal handling and care were performed in accordance with the Public Health Service 

Policy on Humane Care and Use of Laboratory Animals and West Virginia University’s 

Institution of Animal Care and Use Committee.  

 

Study Design: Rodents were divided into eight experimental groups: LZR control (C) 

(n=8), LZR exercise (EX) (n=8), LZR UCMS (n=8), LZR EX+UCMS (n=8), OZR C (n=8), 

OZR EX (n=8), OZR UCMS (n=8), and OZR UCMS+EX (n=10). Animals were single 

housed. Rats were weighed and their weights recorded weekly for the duration of the 

study. To ensure animals were being adequately fed food amount was weighed and 

recorded twice a week. Control animals remained in the vivarium room and were only 

disturbed for body and food weighing, and coat scoring throughout the duration of the 

study.  

 

Coat Scoring: Coat score data was obtained weekly to determine the health and grooming 

habits of each animals. The total cumulative score was determined by giving an individual 

score of “0” (clean) or “1” (dirty) to eight different body areas (head, neck, back, underside, 

tail, hindlimb, forelimb, and genitals).  

 

Veterinary Treatment: If animals sustained injuries or lesions during the course of the 

study they were reported to WVU’s Office of Laboratory Animal Research veterinary staff. 

The veterinary staff inspected and treated the animal. If further attention was needed 

directions were given and strictly adhered to.  
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Exercise Training: Animals were run on a Columbus Instruments rodent treadmill (Exer-

3/6) for 60 minutes per day, five days per week, over the course of the eight week study. 

Animals were run on a slight incline of 10 degrees to place more emphasis on training the 

fore and hindlimb muscles. On the first day of training animals were placed on the 

treadmill for 10 minutes, running at 5 m/min. During the first week, each day time and 

speed were increased, until at the start of week two animals were exercising for 60 

minutes, reaching a speed of 20 m/min (LZR) or 14 m/min (OZR). Animals exercised on 

a progressive exercise regimen, beginning each session with a 5 minute warm-up at 5 

m/min (OZR) or 7 m/min (LZR) and progressively increasing speed throughout the 

session. If an animal refused to run, by sitting on the shock bay, resisting gentle prodding, 

the shock bay was turned off and a note was made of the animal’s refusal to run.  

 

Maximal Speed Test: To determine if a training effect was present a maximal speed test 

was performed during weeks one and eight. Animals began running at 5 m/min with speed 

increasing by 2 m/min every 30 seconds until exhaustion. Exhaustion was defined as 

when the rat sat on the shock bay with no attempts to continue exercising for 5 seconds. 

Maximal running speeds were recorded following exhaustion.   

 

Work Calculation: Work (J) was calculated in an attempt to normalize speed and body 

weight across all experimental groups. Work was calculated using the equation 

(𝐵𝐵𝐵𝐵 ∗ 9.81) ∗ (sin Ѳ∗𝜋𝜋
180

) ∗ 𝐷𝐷, where BM is body mass (kg), 9.81 is gravity, θ is the angle of 

the treadmill, and D is the distance run (m).  
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Unpredictable Chronic Mild Stress (UCMS) Protocol: The UCMS protocol was used to 

simulate chronic stress/depression. Rodents were subjected to a variety of stresses over 

a 6-8 hour period five days per week. Stresses included: the removal of bedding (no 

bedding), the addition of 10 oz. of water to the bedding (damp bedding), the removal of 

bedding and the addition of 10 oz. of water to the cage (bath), the removal of bedding 

and a 45 degree cage tilt (cage tilt), relocation of rodents into another rodents cage (social 

stress), and successive light/dark cycles (light/dark cycle). Each stress was performed for 

2-4 hours per day so animals were exposed to 2-3 stresses per day. The stresses were 

designed to be unpredictable to prevent acclimation to the protocol, therefore stresses 

were purposefully different each day with the protocol never repeating on consecutive 

days.  

 

Injection, Tracheotomy, Mean Arterial Pressure, and Blood Draw: Animals were injected 

with sodium pentobarbital (Nembutal 50 mg/kg) via intraperitoneal injection. Animals were 

inspected for consciousness via toe pinch. Booster injections were given until the rodent 

had no response to a substantial squeezing on the right foot with forceps. At the point of 

unconsciousness the animal’s neck was cleaned of fur, skin, fat, muscle, and fascia until 

the trachea was exposed. A small incision was made in anterior wall of the trachea and 

a breathing tube was inserted and sutured in place. The right carotid artery was then 

exposed and cannulated to determine mean arterial pressure (MAP). Following a 5 

minute equilibration period the MAP was recorded. Immediately following the recording 

of MAP an incision was made into the abdomen on the animal and the diaphragm was 
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cut. A blood draw was then made from the inferior vena cava, which was immediately 

centrifuged and taken for lab analysis.  

 

Aorta Removal, Cleaning, Hanging, and Reactivity: The thoracic and abdominal aorta 

was removed encased in perivascular adipose tissue and placed in PSS. The PVAT was 

carefully removed, leaving only the intact aorta. The vessel was then sectioned into 3 mm 

rings. Each ring was mounted to an ex vivo wire tension myograph system. Force 

transduction was used to measure the changes in aortic tension in response to 

pharmacological agonists. The aortic rings were mechanically set to 1 gram of tension 

then pre-constricted using phenylephrine (PE) (1x10-6 µM), followed by a gradual dilation 

induced by increasing concentrations of methacholine (MCh) from 1x10-9 to 1x10-5 µM. 

Excess sections of the aorta were placed in microcentrifuge tubes and stored at -80°C for 

analysis later.  

 

Nitric Oxide Bioavailability: NO bioavailability was assessed using a DAF-FM diacetate 

assay. Two mm rings of thoracic aorta were placed into a 96 well plate with 100 μL of 5 

μM DAF-Assay. Rings incubated in assay for 20 minutes at 37°C. Next rings were 

stimulated with methacholine (+/- methacholine used to demonstrate eNOS coupling) at 

a concentration of 1X10-5 µM or left untreated (equal addition of physiological solution) 

for 15 minutes.  After 15 minutes the plate was removed and placed in an empty well and 

run in a Biotek synergy HT plate reader, excited at 485 nm wavelength, and read at 530 

nm. Fluorescence is expressed in arbitrary units (AU) normalized to background assay 

fluorescence and tissue weight.   



79 
 

 

Corticosterone ELISA: The concentration of corticosterone in the plasma was measured 

with an ELISA kit (Cayman Scientific). The change in color was monitored at a wavelength 

of 405 nm using a Dynex MRX plate reader. Measurements were performed in duplicate 

with all comparisons performed with the same assay. The corticosterone content was 

expressed as pg/ml and reported as relative to LZR control values. 

 

Statistical Analyses: All values are expressed as mean + SEM unless otherwise specified. 

A one-way ANOVA was used to compare groups unless otherwise specified. When a 

main effect was observed a Tukey post-hoc test was performed to determine group 

differences. All statistics were performed using SPSS.  

 

 

Results 

Body Weight: Body weight increased for all animals over the duration of study. LZR body 

weight remained consistent, with animals reaching roughly 400 grams, regardless of 

treatment. OZR gained weight more rapidly, with controls and exercise rodents reaching 

around 600g on average. The OZR UCMS group displayed a similar weight gain, 

averaging nearly 585g by the end of the eight weeks. OZR UCMS+Ex animals displayed 

a marked decrease in body weight compared to OZR C, averaging nearly 550g (Table 1).  

 

Food Intake: OZR C was found to consume significantly more food than LZR C (p<0.01). 

LZR UCMS consumed less food than OZR UCMS (p<0.01). LZR Ex animals consumed 
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less food than OZR Ex (p<0.01). OZR Ex animals consumed less than OZR UCMS 

animals (p<0.01). LZR UCMS+Ex consumed less than OZR UCMS+Ex (Table 1).  

 

Work: LZR UCMS+Ex animals performed the least amount of work (p<0.01). LZR Ex and 

OZR Ex performed the same amount of work. OZR UCMS+Ex performed significantly 

more work than all groups (p<0.01) (Figure 1).  

 

Mean Arterial Pressure: OZR C had increased MAP compared to LZR C. No statistical 

differences were found between UCMS groups or Ex groups. OZR UCMS+Ex animals 

were found to have decreased MAP compared to OZR C (Table 1).   

 

Coat Scores: LZR C animals had markedly better coat scores than all OZR groups, as 

well as LZR UCMS and UCMS+Ex (p<0.002). Additionally, LZR Ex animals had improved 

coat scores compared to the LZR groups exposed to UCMS and all OZR groups (p<0.04). 

OZR C coat scores were significantly better than LZR UCMS+Ex and all other OZR 

Groups (p<0.04) (Figure 2).  

 

Corticosterone ELISA: LZR C animals showed markedly decrease corticosterone 

concentrations than all other groups, with LZR Ex having a decrease in corticosterone 

when compared to LZR UCMS and UCMS+Ex (p<0.05). OZR C had increased 

corticosterone compared to other OZR groups (p<0.05), with OZR UCMS+Ex showing a 

decrease in corticosterone compared to OZR Ex and OZR UCMS (Figure 3).    
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Aortic Constriction to Phenylephrine: LZR Ex maximal constriction to PE (1x10-6 µM) was 

significantly less than all other groups. No other statistical differences were present. A 

trend for UCMS groups to constrict more than their respective control groups appeared 

to be present (Figure 9).  

 

Aortic Dilation to Methacholine: LZR Ex maximal dilation to MCh (1x10-5 µM) was 

significantly increased compared to all groups. LZR UCMS dilation was significantly 

decreased compared to LZR C. LZR UCMS+Ex dilation was significantly increased 

compared to OZR C, but was not significantly different than LZR C. OZR C dilation was 

significantly reduced when compared to LZR C. OZR Ex was significantly different from 

OZR C, but not LZR C. OZR UCMS had a significant decreased in dilation when 

compared to LZR C. OZR UCMS+Ex was not significantly different from OZR UCMS or 

OZR C (Figure 10).  

 

Stimulated Nitric Oxide Bioavailability: LZR Ex NO bioavilabiltiy was significantly 

increased compared to all groups, with LZR UCMS showing a significant decrease in 

bioavailability compared to LZR C. LZR UCMS+Ex was not significantly different from 

LZR C. OZR C displayed a significant reduction to LZR C in NO bioavailability. OZR Ex 

showed a significant increase in NO bioavailability compared to OZR C, with no significant 

difference from LZR C. OZR UCMS NO bioavailability was greatly diminished, being 

significantly reduced compared to all groups. OZR UCMS+Ex was no significantly 

different from OZR or LZR C groups (Figure 12). 
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Tables and Figures 

 
 
 LZR OZR 

Weight (g)   
Control 436 ± 19 604 ± 11* 
UCMS 373 ± 8*# 584 ± 26* 
Ex 363 ± 12*# 600 ± 11* 
Ex+UCMS 337 ± 6*# 543 ± 22* 
 
MAP (mmHg)   
Control 106 ± 4 135 ± 6* 
UCMS 109 ± 3 133 ± 6 
Ex 114 ± 2 134 ± 6* 
Ex+UCMS 100 ± 0# 128 ± 6 
 
Food Intake (g)   
Control 136 ± 5 196 ± 2* 
UCMS 125 ± 10# 220 ± 10* 
Ex 130 ± 11# 184 ± 10* 
Ex+UCMS 143 ± 5# 224 ± 8* 

 
Table 1. Average body weight, mean arterial pressure (MAP), and food intake for all 
experimental groups. Lean Zucker rat (LZR) control (C) weighed less than all obese 
Zucker rat (OZR) groups and all other groups. All LZR groups weighed less than OZR C. 
All LZR groups had significantly lower mean arterial pressure (MAP) than OZR C. MAP 
did not significantly decrease from OZR C in any OZR group. OZR C consumed more 
food than all LZR groups, but did not differ significantly from other OZR groups. * = p 
<0.05 vs. LZR C. # = p <0.05 vs. OZR C. n=8 for all groups.  

Figure 1. Average work (Joules) for each exercise treatment group. Lean Zucker rat 
(LZR) and obese Zucker rat (OZR) exercise performed the same amount of work during 
their exercise training.  LZR unpredictable chronic mild stress and exercise (UCMS+Ex) 
performed the least amount of work compared to all groups.  OZR UCMS+Ex had the 
highest average work. Values: mean ± SEM. * = p<0.01 vs. LZR control;   = p<0.01 vs. 
OZR control; # = p<0.01 vs. LZR/OZR in treatment group. All groups n = 8.        
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Figure 2. Coat scores. Lean Zucker rat (LZR) control (C) coat scores differed from all 
groups with the exception of LZR Exercise (Ex). Obese Zucker rat (OZR) C coat scores 
differed from all groups except LZR unpredictable chronic mild stress (UCMS). * = 
p<0.001. # = p<0.04. n=7-8.   

 

Figure 3. Basal corticosterone concertation. Lean Zucker rat (LZR) control (C) 
corticosterone concentration was found to be significantly less than all other groups. In 
LZR animals unpredictable chronic mild stress (UCMS) caused a trend towards an 
increase in corticosterone, regardless of exercise (Ex) training. In obese Zucker rat (OZR) 
animals UCMS and Ex both increased corticosterone, with the combination of UCMS+Ex 
showing an apparent decrease in corticosterone. P <0.05 vs. LZR C. n=3 for all groups.   
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Figure 10. Aortic maximal constriction to phenylephrine. Exercise training (Ex) was able 
to decrease maximal constriction in lean Zucker rat (LZR) animals. Unpredictable chronic 
mild stress (UCMS) did not have a significant impact. Values: mean ± SEM. * = p<0.05 
vs. LZR C. n=8 
 

 
Figure 11. Aortic maximal dilation to Methacholine. Exercise (Ex) training was able to 
increase dilation in lean Zucker rat (LZR) and obese Zucker rat (OZR) animals. 
Unpredictable chronic mild stress (UCMS) decreased dilation compared to controls (C). 
Ex was able to recover dilation in UCMS animals.  Values: mean ± SEM. * = p<0.05 to 
LZR C. # =  p<0.05 to OZR C. 
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Figure 12. Nitric oxide (NO) bioavailability of the thoracic aorta. Unpredictable chronic 
mild stress (UCMS) reduced bioavailability from control in both lean Zucker rats (LZR) 
and obese Zucker rats (OZR). Exercise (Ex) increased bioavailability compared to 
controls. Ex was able to rescue diminished bioavailability caused by UCMS. Values: 
mean ± SEM. * = p<0.05 to LZR C. # =  p<0.05 to OZR C. 
  

 

 

Discussion 

The comorbid state of MetS and depression is one of great complexity and growing 

prevalence. Our model, utilizing the OZR and UCMS protocol, provides a controlled 

parallel to a human suffering from these two afflictions. In our study we observed 

significant weight loss in all LZR cohorts when compared to control. However, OZR 

animals did not show the same results, with OZR UCMS animals being the only group to 

show a significant decrease from OZR C. We speculate the lack of weight loss in the two 

OZR exercise-trained groups can be attributed to an increase in muscle mass, resulting 
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in increased weight. However, muscle samples were not taken from these animals, 

rendering our data to be speculative only (Table 1). 

Insulin and glucose are common parameters measured to verify MetS. However, 

as our rats were not fasted we elected not to include non-fasting glucose data. 

Additionally, the laboratory used to determine insulin levels did not have sensitive enough 

equipment to quantify insulin in our rat blood. Although these two markers are common 

and important in determining MetS we remain confident in the OZR as a suitable model 

of MetS based on previous literature (Stanley, et al., 2014; Frisbee, et al., 2006; Zucker, 

et al., 1972).    

As anticipated OZR animals aid significantly more food than LZR animals (Table 

1). The alteration to the OZR’s leptin receptor results in an inability to gain satiety and 

mass food consumption (Zucker, 1972). As a result these animals exhibit markedly 

increased food intake and weight gain. However, the UCMS protocol has been shown to 

decrease body weight in rodents (Willner, 1994). These results were confirmed by our 

study, as UCMS animals observed an increase in weight loss, paired with an increase in 

food consumption, indicating the UCMS of inducing changes in metabolism. 

We observed an increase in work in OZR UCMS+Ex animals and a decrease in 

work in LZR UCM+Ex animals (Figure 1). These results indicate our method of matching 

work to be inaccurate. However, exercise training was able to show significant 

improvements or trends toward vascular improvement in to UCMS+Ex groups when 

compared to their respective controls. Given these results we remain confident in our 

exercise training model as being viable in this study.  
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No differences were observed among LZR cohorts compared to LZR C or OZR 

cohorts compared to OZR C. OZR animals were shown to have higher MAP than LZR C, 

however only OZR C and UCMS groups were significantly different. This implies exercise 

training was able to trend towards an improvement in MAP in OZR animals (Table 1). 

Eight weeks of exercise training has been shown to be ineffective in significantly altering 

blood pressure in humans, indicating our lack of robust MAP changes to be similar to 

occurrences in a human study (Donley, et al., 2014).  

Coat scores and corticosterone concentrations were used to quantify stress in 

rodents (Figures 2 and 3). Corticosterone ELISA showed LZR C to have markedly 

decreased corticosterone concentration compared to all other groups. UCMS was 

effective in increasing corticosterone concentration in LZR animals. Exercise training also 

increased corticosterone concertation in LZR animals. OZR animals showed a marked 

increase in corticosterone levels, with UCMS and Ex both increasing corticosterone 

above control levels. Corticosterone concentrations fluctuate diurnally in rodents, 

resulting in time of blood draw being extremely important when determining 

corticosterone levels (Weitzman, et al., 1971). Blood samples were taken at different 

times throughout the day, making it difficult to rely on corticosterone as an accurate 

measure of stress.  

Coat scores were also used as a marker of stress. Coat score data showed LZR 

C animals to have markedly better scores than all. UCMS and UCMS+Ex in LZR animals 

increased coat score values significantly. All OZR coat scores were higher than LZR C, 

but all other OZR groups showed higher scores than OZR C. In the exercise trained 

animals this is likely due to lesions suffered from the running protocol, due to their fat 
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pads rubbing on the treadmill. When coat score locations OZR animals could not reach 

(i.e. back and neck) were removed a decrease in coat scores in OZR animals was 

observed, but scores were still much higher than OZR C. As a result a differentiation 

should be made in the future between injury and a dirty coat.   

Exercise training was able to dramatically improve endothelial-dependent 

vasoreactivity in the aortas of LZR, OZR, and UCMS animals. Our findings are supported 

by previous data that exercise improves vasodilation in obese rats and rats exposed to 

UCMS see detriments to vessel health (Graham, et al., 2003; Delp, et al., 1993; Stanley, 

et al., 2014). LZR Ex animals saw a marked increase in dilation ability compared to all 

groups, as did OZR Ex compared to controls. These results exemplify exercise as a great 

benefit to vascular health. UCMS caused a decrease in methacholine-induced 

vasodilation, verifying UCMS to be capable of causing endothelial dysfunction and 

providing further knowledge of the parallels between UCMS and depression in humans.  

This study is the first to show exercise as capable of improving endothelial 

dysfunction caused by MetS and depressive-like symptoms. Both LZR UCMS+Ex and 

OZR UCMS+Ex groups saw vasodilation return to their respective control values (Figure 

11). This finding highlights the potential benefit of exercise training for the vasculature of 

individuals suffering stress, anxiety, and depression, in addition to the multiple other 

benefits exercise has been shown to have in the depressed (Moylan, et al., 2013). 

Exercise training can overcome detriments elicited by UCMS and MetS, suggesting an 

individual suffering from depression and MetS could see improvements in vascular health, 

in addition to the mental and overall health benefits of exercise (Teri, et al., 2003; 

Nabkasorn, et al., 2006). 
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 Aortic NO bioavailability was also dramatically altered by MetS and the UCMS 

protocol. OZR C animals showed a significant decrease in NO bioavailability when 

compared to LZR C animals. In both LZR and OZR animals exposed to UCMS a marked 

decrease in NO bioavailability was shown. The combination of MetS and UCMS resulted 

in complete irradiation of NO bioavailability. Exercise training was able to increase NO 

bioavailability in both LZR and OZR animals, bringing OZR Ex levels to that of LZR C 

animals. Exercise training was able to rescue NO levels in UCMS animals, notably and 

significantly improving bioavailability (Figure 12). Our results regarding the ability of 

exercise to increase NO bioavailability (Graham, et al., 2004; Green, et al., 2004) and for 

UCMS to decrease NO levels (d'Audiffret, 2010) were in accordance with previous 

studies. However, this study is the first to show exercise as capable of returning NO 

bioavailability to basal levels in the presence of UCMS. The increase in NO bioavailability 

with exercise and decrease with depressive-like symptoms provides rationale for the 

observations regarding the changes in endothelial-dependent dilation.  
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Chapter 5: 

Discussion 
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The present studies demonstrate the effectiveness of exercise as a treatment for 

vascular dysfunction, in the conduit arteries, in the presence of MetS, depression, and 

the two as comorbidities. Our data show the detrimental effects of MetS, chronic 

stress/depressive-like symptoms, and the comorbid state of these two afflictions on 

vascular function. Additionally, our data also show the finding that exercise training is 

capable of stimulating positive vessel remodeling and improving endothelial function and 

NO bioavailability. Our data also show the protective effect of exercise to be independent 

of MAP changes. The observation of positive changes to the conduit vessels and NO 

bioavailability, without significant changes in MAP, leads us to hypothesize the 

mechanism through which exercise combats vascular dysfunction in MetS and 

depressive-like symptoms to be one centered on its anti-inflammatory effect.  
The UCMS protocol is a verified and acceptable model for inducing depressive-

like symptoms in rodents (Willner, 1997). Our data confirm the effectiveness of the UCMS 

protocol in causing depressive-like symptoms, with stressed animals showing markedly 

higher coat scores, and verify the UCMS as viable in causing vascular dysfunction 

(Stanley, et al., 2014). To bolster coat score data, plasma was collected and subjected to 

an ELISA to determine corticosterone concentration. LZR C animals showed markedly 

lower corticosterone concentrations than all other groups, which was to be expected. 

UCMS increased corticosterone concentrations is both LZR and OZR animals (Figure 2). 

However, exercise training also showed an increase in corticosterone. Cortisol has been 

shown to increase during exercise training, with more dynamic increases with more 

intense and longer duration exercise (Kinderman, et al., 1982). However, cortisol has 

been shown to return to baseline several hours post exercise (Few, 1974). A potential 
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answer for this corticosterone conundrum lies within the relationship between cortisol and 

glucose/insulin. Following a meal cortisol has been shown to increase in circulation, 

accompanying an increase in glucose metabolism and insulin secretion (Van Cauter, et 

al., 1992). Our rats were not fasted prior to terminal surgery and blood draw, potentially 

explaining the unexpected cortisol values in exercise-trained rats. Corticosterone/cortisol 

is a difficult reading to accurately achieve given its diurnal cycle and release in situations 

of stress, such as being transported from the animal facility to the laboratory (Putignano, 

et al., 2001). Given this information we remain confident our use of the UCMS protocol 

was effective in inducing depressive-like symptoms and exercise did not cause a 

depressive-like state in our rodents, based on vascular reactivity and remodeling data.       

Our results also further confirm the OZR as a viable model for MetS (Frisbee, et 

al., 2005; de Artinano, et al., 2009). Our finding that MAP did not significantly decrease in 

most groups with exercise is in conjunction with previous studies utilizing treadmill running 

and Zucker rats (Peterson, et al., 2008; Frisbee, et al., 2006; Xiang, et al., 2004). The 

slight decrease in MAP in OZR UCMS+Ex animals could be due to the elevated work the 

animals performed compared to other exercise groups (Table 1). In addition, the lack of 

robust changes in LZR UCMS+Ex animals may be explained by the decreased work 

performed by these animals (Figure 1). Future studies are needed to determine 

appropriate work load for animals to maximize training effect. 

Exercise training was shown to be robustly effective in improving endothelial 

function and NO bioavailability and moderately effective in structural remodeling changes. 

These results, paired with our lack of significant findings in MAP, lead us to believe the 

vascular protective effects of exercise are driven through changes in endothelium function 
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and health. As blood pressure is a key determinant of vascular remodeling (Chantler & 

Frisbee, 2014) the lack of stark changes in the structural remodeling on the carotid artery 

(Figures 4-9) is not a surprise. MetS and UCMS did cause deleterious changes the 

structural remodeling of the carotid, indicating these diseases activate blood pressure-

independent pathways, such as inflammation and immune infiltration, to cause 

hypertrophic remodeling.  

Exercise training dramatically improved endothelium-dependent dilation and NO 

bioavailability in OZR and LZR animals, and was able to recover these indices from the 

harmful effects of chronic stress (Figures 10-12). Given these robust changes it is clear 

the protective and beneficial effects of exercise on the conduit arteries, in this model, are 

an endothelium and NO-driven event. UCMS significantly impacted the ability of the 

conduit arteries to dilate and produce NO in both LZR and OZR groups (Figures 11-12). 

This negation of NO-driven events can likely be attributed to a decrease in vascular stem 

cell proliferation and increases in inflammation/ROS (Kaur, 2014). 

In humans, exercise training was not shown to make significant blood pressure 

changes. However, exercise was shown to improve arterial health (Donley, et al., 2014). 

Our results further confirm the ability of exercise to improve vascular health, even in the 

absence of changes in MAP (Table 1). The phenomenon of improvements in vascular 

health, without improving blood pressure or significantly reducing weight loss, which are 

key components of MetS, shows exercise to be capable of treating the underlying causes 

of cardiovascular disease without directly addressing MetS risk factors. It is possible if we 

extended the duration of our study we would see significant reductions in blood pressure. 

Additionally, we cannot definitively say we did not improve risk factors associated with 
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MetS, as we do not have glucose or lipid data. It is possible our study induced 

improvements in glucose and lipid metabolism, effectively improving MetS risk factors. 

Based on our data we feel confident our study demonstrates the ability of exercise training 

to improve endothelial dysfunction, nitric oxide bioavailability, and structural remodeling 

in the conduit arteries in healthy controls, rodents with MetS, and rodents going through 

the UCMS protocol.         

 

Limitations  

 Our study was not without limitations. Small sample sizes were present in some 

carotid remodeling groups. However, we are confident in our results given the replicability 

of inner and outer diameter values measured among the different animals. Additionally, 

the minimal variance in the smaller sample groups aided the results in being statistically 

significant. As previously mentioned the amount of work performed by the exercise 

training groups was inconsistent. OZR UCMS+Ex animals performed significantly more 

work than other groups, with LZR UCMS+Ex performing significantly less work. The 

discrepancy in work between groups may explain the more robust changes in OZR 

animals than LZR, as the OZR animals performed more work, suggesting their exercise 

training would be more beneficial in altering the vasculature. However, the vascular health 

of OZR animals was shown to be far worse than LZR animals, providing rationale that 

exercise intervention would have a more drastic impact on the health of the vasculature 

in obese, diseased animals.  

Another limitation is the non-differentiating nature of how coat scores were 

performed. Animals were rated as a “0” for clean or “1” for dirty. However, no 
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differentiation was made between injury and dirt accumulation associated with lack of 

grooming. Rodents exposed to UCMS protocol were observed to partake in self-mutilating 

behavior, through the biting and scratching of different areas of the body. These actions 

are typically included when coat scoring stressed animals, as they are an indication of 

stress and depressive-like activities. However, exercise animals also were found to have 

sores and injuries. These ailments were the result of treadmill running and not self-harm. 

When coat scoring animals details of treadmill versus self-harm injuries were not 

considered. As a result, exercise animals likely have higher coat scores than they should. 

This discrepancy takes away from the level of stress UCMS animals were undergoing. 

OZR Ex and OZR UCMS+Ex animals had coat scores near OZR UCMS animals. If a 

differentiation was made it is possible a clearer image of the deleterious effects of chronic 

stress paired with MetS would be apparent.  

 A final limitation deals with the metabolic parameters of the study. Animals were 

not fasted before glucose analyzation, providing an unclear image of basal glucose levels 

in these animals. Additionally, insulin measurements were performed by clinical 

laboratories at WVU. Insulin measurements did not yield readable numbers, potentially 

due to the lower circulating levels of insulin in rat blood. As a result these two important 

metabolic parameters are not accurately depicted in this experiment. However, we feel 

confident in stating the OZR is an adequate model of MetS due to its decreased NO 

bioavailability, negative vascular remodeling, and impaired vasoreactivty to 

pharmacological agents.  
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Future Research 

 With these data, and other data affiliated with this study, future research 

experiments appear promising More extensive laboratory methods are needed to fully 

understand the molecular events occurring in the conduit arteries. Although western blots 

were attempted they were not clear enough to present in this thesis. Four targets were 

selected for protein quantification; MMP-9, SOD-1, TIMP-1, and Collagen-I. MMP-9 was 

selected due to its role in vascular remodeling, and known relationship with inflammation 

and vascular injury (Galis and Khatri, 2002). TIMP-1 was selected due to its role in 

regulating MMPs, and because an imbalance in the two often leads to hypertrophic 

remodeling (Rodriguez, et al., 2010). Collagen-I was selected as it is pivotal to arterial 

structure and function, and increase in collagen indicates a stiffer vessel undergoing 

remodeling. Lastly, SOD-1 was selected due to its known upregulation in exercise and 

potent ability to scavenge ROS, thereby improving vascular health. (Chantler & Frisbee, 

2014). 

 Of these targets, westerns for MMP-9 and SOD-1 yielded visible results. However, 

an inability to develop β-actin as a control leveled the results unusable. The lack of ability 

to see β-actin could stems from a problem with the application of the secondary anti-body, 

however primary and secondary antibodies were remade multiple times in attempt to 

troubleshoot. Another potential cause was the amount of times the membranes were 

stripped before β-actin administration. Collagen-I has a very high molecular weight, 

requiring a longer transfer period from gel to membrane. Our inability to quantify collagen-

I on our membrane is most likely due to an inadequate time spent in transfer (Wang, et 

al., 2006). Lastly, TIMP-1 requires a lower dilution factor than the other targets assessed 



97 
 

in this study. TIMP-1 antibody was diluted to a far greater degree than in other literature, 

resulting in an inability to detect TIMP-1 on our membrane (Wei, et al., 2015).  

The kidney presents an interesting role in the development of MetS and 

depression. Angiotensin II, part of the renin-angiotensin-aldosterone system (RAAS) 

plays a pivotal role in controlling blood pressure. However, angiotensin II upregulation 

can result in initiating pathologies such as MetS and become exacerbated by depression. 

This increase in angiotensin II circulating and binding stimulates inflammation and ROS 

generation, MMP activation, decreases in eNOS expression, vascular smooth muscle 

constriction, immune infiltration, and vascular dysfunction. This cascade of events 

provides rationale for investigating the relationship between renal function and MetS and 

depressive-like symptoms (Brown, 2013). 

 Kidney injury molecule-1 (KIM-1) is a relatively newly discovered marker of renal 

damage, specifically proximal tubular damage (Han, et al., 2002). KIM-1 has been shown 

to be upregulated in in nearly all proteinuric, toxic, and ischemic kidney diseases providing 

rationale to study its activity in a variety of diseased states. KIM-1 is expressed early in 

renal disease, which is often difficult to assess during its beginning stages (Waanders, et 

al., 2010). As such, KIM-1 may be a potential target for understanding and treating end-

stage renal disease (ESRD), which commonly accompanies MetS and diseases of the 

CV system. The relationship between exercise and KIM-1 has not been adequately 

studied, however exercise has been shown to beneficial in the rehabilitation of individuals 

suffering from ESRD (Painter, 1994).  
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Conclusions 

 Exercise training was shown to be effective in reducing the vascular dysfunction 

associated with MetS and depressive-like symptoms. Exercise was able to marginally 

improve functional remodeling in the carotid artery and was shown to have dynamic 

effects on endothelial function and NO bioavailability in the aorta, suggesting the 

beneficial effects of exercise to be more prevalent in the endothelium than in altering the 

structural components of the arterial wall.     
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