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ABSTRACT 
 

Land as a Renewable Resource: Integrating Climate, Energy, and Profitability Goals Using 
an Agent-Based NetLogo Model 

 
Inocencio Rodríguez 

 
 

Product innovations and new production configurations are a growing part of the economy.  In 
the case of agriculture, this product development is driven mainly by the increased demand for 
more healthful, nutritious, fresh and locally grown food products as well as the growing 
recognition that agriculture can provide more than just food.  There is obviously a potential 
increase in private benefits to producers/landowners as a result of increased production of 
established and niche crops to satisfy this demand.  What is less obvious is the potential to also 
generate increased social benefits, particularly as they relate to energy conservation, alternative 
energy development and carbon offsets. Overall, the objective of this analysis is to develop a 
conceptual framework and an associated model to illustrate the conditions under which it is 
feasible for a farm to produce multiple products. Our approach includes the production of food, 
energy, and carbon offsets in a way that enhances profitability at the farm-level while enabling 
surrounding communities to benefit from high quality food products, environmental 
improvement, economic development and, ultimately, quality of life.  Using an optimal control 
framework and an agent-based simulation model, we apply this analysis to the case of pasture-
based beef (PBB) in West Virginia.  

The objectives of this study center over the course of the beef production life cycle as a 
management strategy to optimize the financial and natural resource endowment on farms at the 
county level based on the data available.  Although the application is to West Virginia, 
implications can be derived for other areas with similar resource endowments.  The beef farms 
located in adjacent locations within a county are identified as suppliers of inputs to the farm of 
interest (or contracting farm) in order to provide the basic foundation for agglomeration 
economies. The idea is to interconnect the farmer, society, and the ecosystem in ways that meet 
both private and social goals.  Obviously, the production configuration envisioned here is 
somewhat forward looking and futuristic, but one that is based on emerging trends and societal 
priorities.  It involves decision-making at the individual farm-level, as with current operations, 
but greater cooperation and/or contracting with surrounding farms in a way that enhances the 
ability of the farm to reap benefits associated with clustering or agglomeration, as with other 
industries. 

Both an intertemporal component and a spatial component are involved since clustering 
systems are enhanced when key players are interconnected over space. This is accomplished by 
using an optimal control framework as the basis of a NetLogo agent-based model (ABM) that 
explicitly includes a spatial component. This model is intended to provide a foundation for 
developing agglomeration economies in which other locations are able to supply resources to 
given locations - or to serve as input markets - by taking advantage of the spatially integrated 
nature of the agriculture industry. The spatial component provides the basis for regional 
economic development through clustering among the agricultural and other sectors since they 
might share locally produced inputs/outputs in the supply chain, thereby enhancing both scope 
economies and agglomeration economies. Thus, the integration of environmentally friendly 
technologies that enhance diversified products for the area such as renewable energy as well as 



 

 
 

digested manure along with high quality beef products and carbon offsets would create new 
markets which expand market channels and spur economic development, of interest to policy 
makers at all levels. As a result, farmers would be able not only to produce essential inputs for 
their own farms but, given appropriate incentives, would also supply them to adjacent farms 
boosting the local economy. Furthermore, a comparison with conventional, confined animal 
feeding operations (CAFOs), is briefly provided for perspective as well as the basis for 
environmental improvement through PBB techniques. Our intention is to replicate a diversified 
PBB industry and its interaction with surrounding communities in order to identify the optimized 
paths of the farmer and society in an intertemporal setting.  The design of policy instruments is 
based on the results from the ABM wherein maximizing farm-level profitability that is able to 
bring benefits to society in which clustering among locations contributes in intensifying the 
benefits from the adoption of sustainable best management practices (BMPs). Thus, the explicit 
recognition and use of multifunctional land attributes enables us to address bio-fuel production 
and climate-related issues such as carbon offsets as well as to expand adoption of sustainable 
BMPs across space and time.  In order to determine policy instruments, we ran our ABM with 
the absence of carbon prices and cost-share programs as well as different carbon prices and cost-
share percentages under different clustering systems along a planning horizon of 15 years. We 
also compared the profitability between a diversified entrepreneur with a specialized business as 
an approach to identify the financial motivation to establish our proposed business concept.  
Results indicate that in order to observe environmental and social benefits as well as economic 
development in Appalachia through the introduction of a diversified PBB industry, a 
combination of cost-share policies and carbon prices must be considered. Our results imply that 
for an average grass-fed beef enterprise with 93 acres of pastureland (as is typical of Appalachia) 
as the primary resource surrounded by nearby cow/calf farms within an approximate 20 mile 
radius, will need to rely on a minimum of $13 per ton CO2e reduced along with a cost share 
program willing to share the risk of no less than half of the capital investment associated with an 
anaerobic digester within a clustering system of up to two participants to successfully diversify 
its business bringing environmental and economic development to the region. Alternatively, a 
policy combination of 50 percent cost share with a $26 carbon price not only will enhance 
environmental improvement but also profitability under unexpected as well as certain weather 
conditions. We also found that more renewable energy can be generated when more farms join a 
regional cluster, implying a synergistic effect through clustering. We estimate results under both 
deterministic and stochastic situations.  The latter relate primarily to weather uncertainty and 
animal death loss, since those are the variables for which data is available.  

The results have implications for producers, the industry and policy makers in 
Appalachia and possibly other regions where niche products have the potential to enhance farm 
income while also contributing to societal objectives. Our approach illustrates one way in which 
a given sector such as farming can potentially contribute to the solution of “wicked problems” 
relating to energy, obesity, and quality of life.    
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CHAPTER I: INTRODUCTION 

Introduction 

The quality of land for current and future uses is a key factor influencing the sustainability of the 

pasture-based livestock industry. According to Perman et al. (2003), renewable resources are 

stock resources with the capability of regeneration over time such as plant and animal 

populations among others. However, these resources can also be exhaustible when their 

harvesting rate is higher than regeneration capabilities at the point of depleting the resources 

(Perman et al., 2003). Thus, land as a renewable resource can be used for farming over and over 

again as long as the resource continues to be productive. This occurs when appropriate farming 

techniques such as pasturelands for beef production take place; otherwise, farming would no 

longer be viable since land would be depleted. The more land we use for crop production, the 

fewer nutrients are available for future yield which will require higher amounts of fertilizers to 

satisfy the demand. Agricultural land could be a renewable resource if well-managed and 

sustainable practices are taken into account.  The term “sustainable practices” is based on the 

definition of sustainability expressed in “Our Common Future” or the Brundland Report as 

“…development that meets the needs of the present without compromising the ability of future 

generations to meet their own needs” (WCED, 1987). The introduction of such sustainable 

practices as a PBB system and waste management for electricity production not only would bring 

benefits to farmers but also to society since they could result in economic development in the 

area while protecting natural resources for future needs. Nowadays, the use of BMPs in 

agricultural lands has become an essential component in food production in order to enhance 

high quality output as well as a better environment. In fact, BMPs is defined as “methods or 

techniques found to be the most effective and practical means in achieving an objective (such as 
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preventing or minimizing pollution) while making the optimum use of the firm’s resources.” 

(BDC, 2012).    

Land quality is an essential component of the pasture-based industry since grass is the 

main ingredient in order to have more sustainable beef production. The increased use of pasture 

as the primary diet for cattle in the beef industry has been attributed to positive effects not only 

in terms of animal welfare but also to human health, land, and the ecosystem. In fact, lands 

characterized by having topographical constraints, limited soil fertility or erosion are able to be 

converted into more productive uses when pasture practices are implemented (Evans et at., 

2007). A marketing claim that livestock is “pasture-raised’ means animals have had “continuous 

and unconfined access to pasture throughout their life cycle” (Paine, et al., 2009). The American 

Gras-Fed Association, defines the closely related “grass-fed” concept as “food products from 

animals that have eaten nothing but their mother’s milk and fresh grass or grass-type hay from 

birth to harvest-all their lives.” (AGA, 2011). 

        In addition, studies have demonstrated that the waste produced from livestock can be used 

as natural fertilizer as well as a source of alternative energy which eventually maintains land 

quality and provides renewable fuels to farmers, in the process reducing dependency on products 

derived from fossil fuels (Fulhage, et al., 1993, Pimentel and Pimentel, 2008). These practices 

make this industry more attractive since it becomes more self-reliant while maintaining 

agricultural lands for future production as well as protecting the environment with attendant 

societal benefits.  

        However, land might also be exhausted if it is not managed appropriately. History has 

shown that row crop production, along with intensive fertilizer applications and accompanying 

land tillage practices due to specialization has provoked land compaction, increased erosion as 
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well as breakdown of the soil structure in regions such as Eastern Canada (StoneHouse and Bohl, 

1990 ). Also, unlike pasture-based beef (PBB) practices in which some grass varieties do not 

require seeding for years, annual crop production such as corn requires tillage which diminishes 

water conservation as well as organic matter in the soil. In fact, the movement of soil particles, 

inorganic fertilizers and other chemical residues from farmland to downstream water bodies such 

as reservoirs and rivers at lower elevations leads to water degradation (StoneHouse and Bohl, 

1990). 

McConnell (1983) established that land degradation leads to two main externalities: the 

degradation of downstream bodies of water as well as a reduction of future food production as 

the two main externalities affecting the ecosystem (McConnell, 1983). 

 Figure 1.1 provides a description of the potential negative impacts of particular grain-fed 

beef practices, known also as conventional techniques, to farmers and surrounding communities 

which also represent the environmental conditions that would be targeted improvement by 

introducing the PBB industry. This figure represents a grain-fed beef farm in which animals 

tends to live in a confined environment or CAFOs. Confined conditions as well as a high diet on 

grain such as corn impact farmers as well as society in the following manner:  

• Under these operational conditions, there are situations in which animals get sick because 

their diet (grain) gets contaminated with manure. Moreover, the use of grain as the 

primary diet for beef production causes acid-resistant conditions in the animals’ intestines 

that motivate the reproduction of E. Coli counts in their stomach. Furthermore, confined 

conditions not only cause stress to animals which eventually will  be reflected in 

diminished quality of the final product but also are directly exposed to other animals that 

might be ill so diseases are easily spread among the animals. This operational condition 
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requires farmers to incur additional costs associated with antibiotics in order to improve 

animals’ health.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     Figure 1.1: Grain-Fed Beef Concept 

Also, beef farms that use grains such as corn as part of the livestock diet not only absorb the 

costs associated with these inputs regardless of whether they are grain growers or grain buyers 

but also contributes to the tillage and fertilizer application needed. Also, as a technique to boost 

animals’ weight, farmers provide hormones to cattle which imply an increase on input costs. On 

the other hand, manure is usually deposited into lagoons or ponds that release methane to the 
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atmosphere contributing to GHG emissions. Thus, the lack of appropriate manure management 

practices would increase greenhouse effects. Under this scenario, farmers rely on fossil fuel 

sources to satisfy their energy needs which also generate GHG emissions.   

• Farmers’ decisions obviously have an impact on society. The quality of the product might 

be negatively affected. For instance, E. Coli counts stored in the beef are transferred to 

humans through consumption as well as high levels of Omega-6 proving a less nutritious 

food that threatens human health. Also, due to the fact that grain production requires 

certain cultivating stages that lead to a decrease of water quality and wildlife habitat 

reduction through land tilling as well as erosion impacting the natural resources of the 

area. It also generates GHG emissions through the production of inorganic fertilizer 

required to satisfy grain yield as well as the use of the machinery required for growing 

grain, besides other energy inputs needed to operate the farm. GHG emissions would be 

also positively affected by methane emissions from the manure lagoons. The 

concentration of all these GHG emissions would cause air pollution and warming effects 

that would negatively affect nearby communities through drought, decay of vegetation, 

and asthma among other social problems. As a result, society would be impacted by 

grain-fed practices under confined operations.   

If indeed the PBB industry has the potential for higher profitability and reduction in the 

negative externalities caused by conventional practices while contributing to the local and 

regional economy, transitioning to this type of system would be beneficial to society. 

Approximately 26 billion pounds of beef were consumed in the U.S. in 2010, most of which was 

produced domestically.  This amount of beef had a market value of $74 billion (Mathews and 

McConnell, 2011).  In 2005, approximately $230 was spent on beef products per U.S. household 
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(Evans, et al., 2007).  The economic value of this sector to the US is clearly large and well 

documented.  What is less obvious is the ecosystem value of this production, and its associated 

contribution (or detraction) to the multi-attribute functions increasingly expected by society and 

policymakers from the land resource.  

 Figure 1.2 illustrates the PBB concept proposed in this research. It basically represents a 

diversified pasture-fed beef farm that integrates the collection of manure to produce renewable 

energy and natural fertilizer, a by-product from alternative energy production, as 

environmentally friendly as well as managerial strategies to enhance farm and social benefits. As 

we can observe, the integration of these sustainable practices not only provides natural 

conditions for animals by enhancing healthy diets and stress reduction that eventually is reflected 

in the quality of the beef but also more energy and fertilizer independence through improved 

waste management practices since manure is utilized and not deposited into lagoons or ponds. 

These techniques would bring the following benefits to farmers as well as society:  

• Farmers benefit from the proposed concept since they do not incur costs associated with 

antibiotics, hormones and grains on a regular basis since animals are exposed to a healthy 

diet and natural environment which make them more resistant to diseases. Moreover, the 

use of digested manure, a by-product from renewable energy production, as a fertilizer 

reduces the costs associated with inorganic fertilizer purchases to be applied on 

pasturelands providing the nutrients required for pasture production while any excess can 

be sold to nearby farms. In addition, the electricity produced from manure can either be 

used to satisfy the farm’s energy needs or sold to utility companies as a source of income.  

• Society would also benefit when these management practices are taken into account. The 

production of pasture as the primary input in the animals’ diet contributes to low E. Coli 
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counts and healthy essential nutrients through beef consumption. Furthermore, grasslands 

reduce land erosion (StoneHouse and Bohl, 1990 ) that otherwise would decrease water 

quality (Saliba, 1985), as well as enhance wildlife diversification and CO2 sequestration 

improving the attractiveness of the area and human health conditions associated with 

greenhouse emissions. Society also benefits from alternative energy production and its 

by-product since it not only provides cleaner energy sources but also reduces the need of 

inorganic fertilizer production offsetting CO2 emissions.  

 

                           Figure 1.2: Pasture-Fed Beef Concept 
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This study is part of a larger, interdisciplinary multi-institutional research project funded 

by USDA, ARS, focusing on the development of sustainable PBB systems for Appalachia. 

1.1 Problem Statement  

The study area is West Virginia (WV), characteristic of Appalachia in general.  The latter is an 

interesting study area because of the close relationship among natural resources, economic 

development and quality of life. Although efforts to improve the well-documented economic 

malaise  in the Appalachian region have been conducted by governmental agencies through 

educational programs,  heath care accessibility and, more recently, obesity-reduction programs, 

economic stagnation  persists in the study area (Shubert, 2010). The Appalachian area has been 

identified as the “most economically distressed” region in the U.S. (D'Souza, 2010).  

Furthermore, land use in the central Appalachian coal region is limited due to its steep slopes. 

This restricts its potential use for practices other than developing industrial, residential and 

commercial enterprises (Zipper and Skousen, Undated). In addition, mining has an impact on 

Appalachian soils. There are more than 190,000 acres of surface-mined lands in WV that are 

considered as being “severely disturbed” by the industry (BRMGL, 2007, MATRIC, 2010). 

Given the fact that Appalachia faces resource limitations for economic development, production 

systems in which resources are optimized must be evaluated.  One such system could be pasture-

based beef. 

1.2 Significance of the Study 

This study can contribute to the sustainable growth and development of Appalachia and 

specifically the PBB industry.  By linking the pasture resource to landowner objectives 

(increased productivity, profitability and income opportunities while better managing risk) as 

well as to societal objectives (sustainable land use, enhanced water quality, alternative energy 
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and climate change mitigation), this study can  provide knowledge  and recommendations to 

enhance  socio-economic and environmental  conditions in Appalachia.  Furthermore, this study 

advances the literature by examining a new approach, agent-based models, to sustainable land 

use management.  

1.3 Research Objectives 

The fact that the Appalachian region provides the natural resources needed to develop a 

diversified PPB system, the introduction of this industry through the application of economic 

theory would lead us to identify solutions to “wicked problems” in the area. We define wicked 

problems: "A wicked problem is one for which each attempt to create a solution changes the 

understanding of the problem. Wicked problems cannot be solved in a traditional linear fashion, 

because the problem definition evolves as new possible solutions are considered and/or 

implemented." (Rith and Dubberly, 2006). The approaches developed in this research offer 

alternative solutions to such issues as the lack of economic development and quality of life 

encountered in the region. Our research objectives are defined as follow. First, we design a 

conceptual framework based on optimal control theory that integrates a spatial component in 

which the production of pasture-based beef (PBB), renewable energy as well as carbon offsets 

enhance profitability and social welfare. The development of an optimal control model allows for 

better visualizing the proposed sustainable concept from two perspectives (farmer and 

surrounding society) in a spatial context in order to intensify the benefits from sustainable 

practices in the area. In addition, the application of the conceptual model developed in this paper 

could be applicable to the sustainable development of other production systems. Second, we 

develop a dynamic, agent-based model (ABM) that replicates the complexities associated with 

the introduction of the PBB concept proposed in order to analyze the interaction among agents 
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and surrounding environment. The use of an ABM (using a program such as NetLogo) to 

simulate the introduction of this industry based on available (secondary) data could help identify 

the potential optimal paths for farmers and for society, providing the basis for recommendations. 

Third, we develop policy instruments to enhance the implementation of the proposed sustainable 

techniques to improve local economic growth and social welfare. Thus, the simulation results 

could lead to the development of policy instruments associated with pasture-based, carbon offset 

production as well as renewable energy sources that can be utilized by policymakers to enhance 

local economic growth and social welfare.   
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CHAPTER II: REVIEW OF THE LITERATURE  

2.1 The Study Area  

There are underlying and persistent economic, social and environmental concerns that have kept 

the Appalachian region stagnant for decades. This region consistently ranks below the U.S. 

average in per capita income and other socioeconomic measures (Stevens and Deal, 2010). 

Based on Appalachian Regional Commission data (2002), only 17 percent of rural counties 

nationwide are identified as distressed areas while 33 percent of rural counties in Appalachia are 

so categorized. In addition, the mountainous topography dampens business opportunities in the 

region because it increases the expected costs of production, operation, and transportation (Bagi, 

et al., 2002). In 1990, the poverty rate was 13 percent at the national level while Appalachia 

experienced a 15 percent poverty rate. A large proportion (77 percent) of all counties in the 

region are considered poor (Cushing and Rogers, Undated). 

Environmental contamination and health issues have also been a big concern in the 

region. For instance, the Washington Moment used to be seen from a distance of 75 miles away 

along the Appalachian Trail. However, the pollution caused by congestion today is so persistent 

that this national monument is no longer observed as used to happen until about 40 years ago 

(Chidester, 2010). In fact, Chattanooga, an Appalachian city, was ranked number 4 out of 100 

U.S. cities as one of the worst cities to live in with asthma (AAFA, 2011). In addition, several 

locations, like for example, the Chesapeake Bay have identified inorganic fertilizers and 

pesticide use as being of vital concern in the Appalachian catchment areas  (CBSG, 2008). In 

addition, the state of WV, the only one contained wholly within the Appalachian region,  has an 

obesity rate that consistently ranks in the top three among US states  (D'Souza, 2010). People’s 

health has been affected  by professions such as farming,  coal mining  and chemical 
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manufacturing which tend to be prominent in the area, and which increase exposure to hazardous 

substances (Stevens and Deal, 2010).   

Although Appalachia experiences challenging issues in need of alleviation, the 

introduction of PBB seems to offer potential solutions. In fact, the combination of a highly 

mountainous terrain and existing farm resource endowments (a WV farm is 194 acres on 

average, of which 48 percent is devoted to pasture) makes grass-fed cattle production well suited 

to WV (Evans, et al., 2007). According to the West Virginia Department of Agriculture, a total 

of 10,700 farmers generated more than $100 million from approximately 150 million pounds of 

beef sales with a resource base of 200,000 beef cattle in 2010 (WVDA, 2012).   

2.2 Technology  

Technological innovation plays an essential role when considering the integration of biofuel 

production and climate change within the PBB industry. The anaerobic digester is becoming one 

such popular, environmentally friendly technology. It is basically on an enclosed chamber with 

the absence of oxygen in which manure is broken down by bacteria as part of a natural biological 

process. After the manure is collected, it enters into the digester where a decomposition process 

takes place under temperatures of 950 to 1050F while releasing the biogas (composed of 55-70 % 

methane) which is used for electricity generation. For optimal digestion, this procedure might 

take approximately 15 to 20 days for the biogas release and it is trapped in a permeable and 

flexible cover (Pillars, 2003). The methane is captured and utilized as a renewable energy source 

to generate heat or electricity as well as for reducing potential environmental pollution such as 

surface water contamination, manure odor and GHG emissions (Key and Sneeringer, 2011). 

Once the anaerobic digestion is complete, the remained biosolids possess higher concentration of 
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potassium, nitrogen and phosphorus than undigested manure in a mineralized form which makes 

it more readily accessible to crops just like commercial fertilizers (Pillars, 2003).     

2.3 Pasture as a Primary Input and its Implications 

The use of grass as the primary diet for cattle in the beef industry has the potential to generate 

positive benefits in terms of animal welfare, human health, energy and fertilizer independence as 

well as environmental conditions, as outlined below.  

2.3.1 Animal Welfare.  Management-intensive grazing such as rotational grazing (upon 

which PBB is based) contributes to improving cattle immune systems and decreasing animal 

stress. Heckman et. al (2007) defines management-intensive grazing as a system in which 

livestock is moved between paddocks. Through this way, this system “can provide the highest 

forage production and use per acre, control weeds … and allow paddocks to rest and regrow 

completely.” Under PBB, cattle are exposed to a more natural diet that facilitates digestibility, in 

the process substantially reducing the chances of disruption in rumen function as often occurs 

with animals under conventional or feedlot practices (Evans, et al., 2007).  Although 

conventional practices might result in economies of scale through feedlot methods, the crowded 

conditions in which steers are raised enhance “stress-induced immunological deficiencies” 

sometimes leading to death and morbidity through acquired illness (Evans et al., 2007, 

Hennessy, Roosen, and Jensen, 2005). 

2.3.2 Human Health. Management-intensive grazing techniques are beneficial to human 

health through green space and healthier end products.  Recent literature confirms that grass-fed 

meat provides greater health benefits to humans than grain-fed beef (Evans, et al., 2007). Studies 

have proven that a 6-ounce steak produced from a pasture-fed animal can provide 100 fewer 

calories, up to 6 times more Omega-3s (a nutrient for obesity and other diseases prevention) and 
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conjugated linoleic acid (a cancer fighter) than a comparable 6-ounce steak from a grain-fed 

steer. This would result in the consumption of 17,733 calories less per year for a typical  beef 

consumer without impacting the normal intake routine (Robinson, 2002). PBB is also an 

excellent source of vitamin E which contributes to the prevention of  immune disorders, lung 

disease, diabetes and eye illnesses (Portelli, 2008).  

2.3.3 Energy Input. The use of pasture based production techniques also consumes 

potentially less energy input than confined animal feeding operations (CAFOs). It is estimated 

that one cattle unit requires around 74 gallons of crude oil if it is pasture-fed while a grain-fed 

cow consumes 208 gallons of crude oil from conception to the finish phase before slaughtering 

(Lee, et al., 2005). In general, a total of 930 gallons of gasoline per year is needed for the process 

of cultivating, processing and distributing the amount of food required for a four- member family 

(Hemert and Holmes, 2008).  

2.3.4 Renewable Energy. Today, most of the farms that use livestock manure for energy 

production are under CAFOs since their infrastructure design makes it easier to collect animal 

wastes than under pastured-fed methods. However, if pasture-based systems are able to develop 

effective manure collection techniques, farmers could produce alternative energy, leading to the 

development of an additional, renewable, energy source.  For example, New Zealand is 

considering adopting the cap and trade system for livestock, where it has been proposed that all 

livestock be fitted with manure catchers similar to the horse bun bag.  In addition, to capture the 

belching, responsible for more than half of the methane emissions, it is suggested that livestock 

be fitted with carbon filter gas masks.  According to Peter (2011), a series of balances allow the 

mask to open when in the feeding position and close when in "chewing the cud" mode. 
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There are environmentally-friendly technologies, like for example, anaerobic digesters 

which convert animal waste (methane) into electricity making it appealing to farmers, the 

environment and utility companies (Key and Sneeringer, 2011).  In fact, methane is 

approximately 25 times more harmful than CO2, and is one of the major contributors of 

greenhouse gas emissions (Baylis and Paulson, 2011, EPA, 2004, Key and Sneeringer, 2011, 

Forster et. al, 2007, EPA, 1999).  Thus, when it is captured and utilized as a renewable energy 

source, it contributes significantly to reducing the greenhouse effect. Additionally, the electricity 

generated through “engine-generator” attached to the anaerobic digestion systems can be 

purchased by utility companies (Leuer, Hyde and Richard, 2008). The amount of manure 

produced by one 1,000 pound-cattle unit per day might generate approximately 10,239 BTUs or 

3 KWh (Fulhage, et al., 1993). Moreover, methane, the major element of natural gas, can be 

carried by pipeline to be sold to the local power grid in order to be used in electric generators 

(S.E.C.O., Undated). This practice also potentially helps in reducing costs to farmers by 

providing their own energy as well as decreasing human health problems associated with the use 

of conventional fuels. In addition, previous studies have shown that large livestock farms are 

likely to profit from anaerobic digesters due to their level of manure production that offset the 

costs of technology. For instance, Shih et. al (2006) found out that anaerobic digesters might be 

lucrative on livestock farms equal or greater than 400 heads. On the other hand, Ghafoori and 

Flynn (2006) identified that a centralized anaerobic digestion system like the one located in the 

Red Deer County, Alberta is more profitable than any combination of systems based on multiple 

plants due to the fact that its manure source shipped from a 7500 beef cattle feedlot to the system 

allows for low “capital cost per unit of input/output”.  
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2.3.5 Natural Fertilizer. The use of manure to maintain the required nutrients for soil 

fertility is essential not only to support sustainable practices that reduce input costs associated 

with crop production but also to keep potential pollutants away from the atmosphere, water 

streams and the nearby farm population.  When manure is used for the production of alternative 

energy, its nutrient content is not affected, enabling retention of nitrogen, potassium and 

phosphorus with their valuable characteristics (Pimentel and Pimentel, 2008). In fact, this 

manure, known as digested slurry or digested manure, is very effective in enhancing porosity and 

fertility as well as providing humus to the soil (TaTEDO, Undated). However, manure generated 

in conventional beef production practices can also destroy crops due to its high content of heavy 

metals, hormone remains, nitrogen and phosphorus (Portelli, 2008). Furthermore, studies suggest 

that moderate nitrogen applications contribute in building up carbon availability in the soil 

(FAO, 2010).    

2.3.6 Carbon Sequestration/Offset. Despite the uncertainty regarding the amount of 

carbon sequestered in the soil by the pasturelands, it might contribute reducing CO2 emissions 

suspended in the atmosphere (FAO, 2010). In fact, this emerging and sustainable farming 

technique has also been known as carbon farming since it helps building up carbon sequestration 

into the soil. This strategy takes place when pasture-based production systems and reduced 

tillage intensity is considered. These farming practices are also known as carbon farming since it 

contributes addressing climate change by sequestrating CO2 from the atmosphere and convert it 

into carbon in the soil (Keating and Carberry, 2008). Although the literature examined seems to 

differ in terms of the size and distribution of the CO2 sequestered from the atmosphere done by 

pasturelands, most sources agree on the potential environmental and soil nutrient improvements. 

For instance, LaSalle (2009) points out that grassland soils have the capability of sequestrating 
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approximately 5.5 tons of CO2 annually per acre which is equivalent to 1.5 tons of carbon in the 

soil that are not released into the air. Moreover, a reduction of an estimated 14 billion pounds of 

CO2 from the atmosphere would take place if all the (16 million) acres of land devoted to grow 

corn for cattle feedlot in U.S. were to be used for forage (Portelli, 2008). On the other hand, FAO 

(2010) expresses that around 3.67 tons of CO2 sequestered from the atmosphere would bring 1 

ton of carbon into the soil. Furthermore, Follett, Kimble and Lal (2001) indicate that U.S. 

pasturelands are likely to sequester approximately over 190 million tons of CO2 at the yearly 

basis for thirty years. Moreover, the combination of water from the soil, carbon dioxide from the 

air and energy from the sunlight enables crops to produce organic compounds leading carbon to 

become an important component in soil organic matter (Sundermeier, et al., 2005).  Thus, the 

adoption of some grazing management techniques such as rotational grazing and reasonable 

livestock might help increasing carbon available in soils where pasturelands have been degraded 

(FAO, 2010). Also, 0.2 kg of flying particulates can be absorbed by 1 m2 of grass in addition to 

supplying the amount of oxygen that one person needs for a year through the process of 

photosynthesis (Mazereeuw, 2005). Furthermore, it was determined that the use of biogas 

produced from cattle manure in a year would contribute to reducing about 4 percent (99 million 

tons) of the greenhouse gas (GHG) emission emitted in the U.S. (Cuellar and Webber, 2008). 

Livestock operations also can contribute to reduced GHG emissions when manure 

management techniques are employed. For instance, livestock farmers who reduce methane 

emissions through methane digesters can sell “carbon offsets” in the carbon offset market to 

other GHG emitters that might face emission caps. This allows livestock producers to generate 

additional income in which their profitability will depend on emissions sold in a carbon offset 

market, energy sales as well as energy savings (Key and Sneeringer, 2011). This makes the use 
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of anaerobic digesters attractive for entrepreneurs as well as society through environmental 

improvements.   

2.4 Optimal Control Model  

Optimal control theory allows us to illustrate the integrated PBB concept proposed as a way of 

optimizing a farm’s resources in an environment in which dynamic optimization is applied. 

Through this theory, we are able to maximize the farmer’s profitability while enhancing social 

welfare when sustainable practices are taken into consideration.     

2.4.1 Dynamic Optimization. Dynamic optimization models have increasingly been 

applied in the agricultural and resource economics area in recent years (Cacho, 1998).  Chiang 

(2000) describes the fundamental components of an optimal control (OC) model. The author 

establishes that a control variable can be seen as a policy tool that is able to impact state 

variables which means that any selected control path involves a linked state path (Chiang, 2000). 

On the other hand, Perman et al. (2003) establish that an optimal control model does not 

necessarily need to have the state and control variables present in the objective functions. In 

addition, they state that what makes dynamic optimization important is to obtain the values of 

these variables at each point in time up to the planning horizon as the solution to the problem. 

The initial values of state variables and their evolution over time are based on some physical, 

economic and biological system that is captured through a set of differential equations or state 

equations. Moreover, control variables represent instruments in which their values can be chosen 

by the decision maker with the purpose of steering the evolution of the state variables through 

the pass of time in a desired way. Another essential variable in the optimal control model is the 

co-state variable which is commonly known as the price shadow. This variable basically denotes 
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the marginal valuation of the state variable at each point in time which varies over time (Perman, 

et al., 2003).   

2.4.2 Optimal Control Approaches.  Cacho (1998) employs an OC model using a meat 

production function in which grass is the primary input while stocking rate and fertilizer 

applications have an indirect control over production. The author considers four state variables 

such as soil depth and animal weight, and control variables such as the stocking rate to capture 

seasonal variations on an annual basis (Cacho, 1998).  

 Saliba (1985) explores the interactions among management choices, soil loss through 

erosion, and farmland productivity. The author analyzes four models developed by other 

researchers and concludes that none of them directly addresses the relationship between soil 

erosion and soil productivity. In addition, tradeoffs among intensity of crop rotation, soil 

conservation practices and production inputs are not sufficiently explained, limitations that the 

author seeks to overcome. She addresses the tradeoffs among intensity of crop rotation, soil 

conservation practices and production inputs through her model. The optimization model 

developed considers a profit maximizing farmer in which the contributions and costs of soil 

among other inputs in crop yield are analyzed when making decisions with regard to input use 

and conservation methods. The objective function takes into account crop rotation, output price 

and other variables in which the marginal value soil depth is categorized as the costate variable 

and five necessary conditions are developed. Entrepreneurs have two alternatives to maintain 

crop production by either: i) substituting a better variety of plants, or commercial fertilizers 

among other inputs; or ii) implementing conservational techniques such as conservation tillage 

instead of conventional tillage (Saliba, 1985). Similarly, McConnell (1983) develops an 

economic model where the use of soil can be optimized from a social and private point of view. 
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He builds up a production function in which explanatory variables such as technological change, 

soil loss, and soil depth are considered to express the effect on output. The model also establishes 

that farmers’ behavior toward soil is influenced by the soil’s effect on profits in which the farmer 

makes use of the land in order to maximize the value of the farm plus the present value of the 

profit stream at the end of the planning horizon. This implies setting up an objective function as 

well as the Hamiltonian equation and derives the Pontryagin necessary conditions (first order 

conditions of each variable) to find the optimal path of each variable considered  (McConnell, 

1983).  

Furthermore, Torell, Lyon and Godfrey (1991) construct a dynamic OC model in which 

the stocking rate is the instrumental variable while the average herbage production represents the 

state variable with the purpose of maximizing the discounted net present value from grazing over 

future years specifically applied in eastern Colorado. The stocking rate model developed 

employs a deterministic approach where forage conditions, costs and prices are foreseen at the 

time the stocking rate choice is made (Torell, et al., 1991). On the other hand, Standiford and 

Howitt (1992) utilize the stocks of livestock and oak trees as state variables while the amount of 

oak firewood cut and livestock density as control variables. The objective is to maximize the net 

present value of profits based on firewood, hunting and livestock revenues. Under these 

circumstances, the farm manager has to make decisions on a yearly basis since oak trees 

negatively impact livestock revenue but positively impact hunting returns. Thus, ranch managers 

select optimal hunting levels by controlling livestock density and firewood harvesting. The 

authors evaluate the optimal trajectory for each control variable under different scenarios for a 

policy analysis, specifically in the Californian hardwood rangeland region due to the dynamic 

interaction among the resources available in the area (Standiford and Howitt, 1992).  
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Other approaches integrate a spatial component into OC theory. For instance, Brock and 

Xepapadeas (2009) propose an OC model in which spatial effects of accumulated state variables 

in other locations are considered as influencing given sites in an abstract format in which specific 

locations are not specified, allowing for broad applications. They establish that the integration of 

the model kernel expressions is an appropriate tool for dynamic economics when spatial effects 

are taken into account (Brock and Xepapadeas, 2009).  

2.5 Clustering System  

The integration of a PBB industry into this region would also provide the basis for regional 

economic development through clustering among the agricultural and other sectors surrounding 

the area of interest.  

2.5.1 Agglomeration Economies. Agglomeration economies play a crucial role not only in 

the development of emerging companies but also as a mechanism to enhance economic growth 

in the geographic area of interest (Porter, 1990). Porter (1990) establishes that clusters contribute 

to: i) rising productivity among the businesses in the clustering system, ii) encouraging new 

companies in the field, and iii) increasing innovation in the field. The optimal use of the 

resources available within the beef industry in the Appalachian region would enhance the local 

economy. Pastureland is an abundant resource in the area as well as cattle farming. Moreover, 

the use of state-of-the-art technology motivates the development of new products, services, 

production procedures and innovative ways of organizing economic activity as a way of 

establishing new markets (Dearlove, 2001). Thus, the integration of environmentally friendly 

technologies that enhance diversified products for the area such as alternative energy as well as 

digested manure along with high quality beef products and carbon offsets would create new 

markets which expand market channels and create new economic conditions locally. Therefore, 
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innovation would contribute to extending the lifespan of inputs and bringing more products when 

resources are maximized. Since firms are capable of motivating and supporting local suppliers of 

essential inputs, they have an incentive to  play an energetic role in developing clusters that 

enhance coordination with local channels, suppliers and buyers to help them improve and extend 

their own competitive advantage (Porter, 1990). In fact, the integration of a carbon market within 

a region when methane digesters are employed could stimulate existing economies and 

concentration of production on large scale operations. On the other hand, smaller operations 

could be able to attain more efficient methane scale when digesters are shared with other small 

operations. Actually, the use of anaerobic digesters can be motivated through instruments such as 

tax incentives or cost-sharing subsidies when the adoption of this innovation by small operators 

is a policy goal (Key and Sneeringer, 2011). Thus, clustering among small operations as well as 

the introduction of a carbon market would allow for more efficient business development even in 

smaller scale operations. In addition, farmers would be able not only to produce natural 

fertilizers, hay, energy, and calves among other things for their own farms but also to supply 

them to adjacent farms boosting the local economy. This clustering would also connect farmers’ 

production with energy utility companies through renewable energy which eventually stimulates 

GHG emissions reduction through methane capture.   

2.6 Agent-Based Models 

In order to simulate the economic, environmental and social complexities of the 

examined PBB industry within a region, the application of agent-based modeling is considered in 

this study since computer simulations have been categorized as a useful tool to evaluate the 

complexity of ecological and economic systems. In fact, an ABM is considered a new method to 

model complex systems characterized by the role of independent and interrelating agents (Macal 
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and North, 2010). They tend to be easier, quicker and less expensive than ordinary experiments 

(Chi, 2000). In addition, some simulation programs not only provide figures and values as 

outputs to illustrate the system interaction but also graphical illustrations of the system behavior 

as a close approach to the reality. Furthermore, ABMs, also known as individual-based 

simulations, are used to replicate certain scenarios in which individuals interact based on their 

actions or procedural regulations and distinctive parameters where their acts are tracked through 

time (Reynolds, 1999). Simulations contribute in estimating and comprehending emerging 

behaviors that require the development of new regulations for local agents that would make 

improvements to the system. In other words, the performance of a system is highly probable to 

get better when agents’ activities are optimized at a local level (Anthes, 2003). Thus, the 

outcomes derived from the agent-based platform such as NetLogo would have the basis to 

address policy instruments based on system behavior and outcomes.      

2.6.1 Model Development. Different simulation models have been developed through 

computer networks to evaluate real world problems under specific scenarios in order to approach 

the potential solutions that can be used by educational institutions and policymakers among other 

interested parties. Planners must develop systems that function harmoniously not only internally 

but also with the environment that they are projected to match. A system can be described as a 

region, individual, a herd of animals or a nation while a subsystem is expressed as explanatory 

variables which might be common to some subsystems or restricted to a subsystem. It is also 

crucial that models do not violate the assumptions under consideration. In order to simulate 

management systems for a particular set of social, economic and production scenarios, 

maximization skills can be taken into account (Joandet and Cartwright, 1975). When developing 

the model, it is important to identify first the calculations under consideration since they will be 
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used by the computerized system. Also, theory, data and program are fundamental in agent-based 

computer simulation models (Chi, 2000). Moreover, the extendibility of the model is essential 

for future research purposes since potential users are willing to adapt the model for new 

applications. Through this way, an investigator would be able to use the model already published 

to add a new characteristic in order to find an answer while others may want to explore new 

variants of the model (Axelrod, 1997).   

2.6.2 Language Programming. When considering agent-based modeling, it is essential to 

keep in mind that procedural languages might be involved. For example, Visual Basic is 

accessible for spreadsheet programs making it suitable to be jointly used with Excel while having 

full control of a procedural language using the framework of a simple spreadsheet. This program 

is very useful when simple ideas need to be tested (Axelrod, 1997). Other computer programs 

such as Stella and ModelMaker do not require programming languages which helps in saving 

time that might be spent on programming (Chi, 2000). Others such as StarLogo (a programmable 

environmental ABM), Pascual, C, Basic and FORTRAN are among the most common 

programming languages (Axelrod, 1997). Another AMB is NetLogo which is based on the 

language programming known as Java. Furthermore, once the system is conceptualized, it can be 

described either through equations or verbally. In order to describe cause and effect 

relationships, mathematical models are applied by animal scientists. Let’s say, “phenotype of 

progeny” is a function of dietary requirements as a function of carcass measurements. Other 

models describe pasture production based on a particular species while still others consider 

different species, and the consequences of foraging. Since simulation results are the end point of 

the functions developed for the model, they must be cautiously interpreted. The necessity of 

conducting production research can be replaced by effective models that simulate production 
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(Joandet and Cartwright, 1975). For instance, Carter, along with the U.S. Geological Survey, 

developed a spatially-explicit model of animal behavior, in which pasture consumption  and 

animal movement were jointly analyzed (Reynolds, 1999).  

2.6.3 Model Considered. Since the focus of this study is on simulations using an ABM 

known as NetLogo, it is significant to point out some of its features for a basic understating of 

the program.  This is a free of charge model developed by Northwestern University and suitable 

for developing complex systems. It provides manuals, dictionary, tutorial and other mechanisms 

to help users in the development process. NetLogo provides different alternatives in which the 

system that needs to be explained can be built up. For instance, the simulation can be performed 

by adding the codes in the procedures tap and linking them to functional features such as buttons, 

sliders, monitors, and switches among others available in the interface tab which allow the 

simulation to begin and stop as well as to modify the conditions or parameters of the system. 

Simulations can also be done by interconnecting a system dynamic diagram with the codes 

developed in the procedures tab and with the interface functional features. Depending on the 

programmer’s approach, the system behavior could also be graphically illustrated or viewed in 

what is called the “view or world window” that is based on coordinates and the codes expressed 

in the procedures tab in which the boundaries and topology of the world are defined.     

2.7 Policy Instruments  

The extent of adoption of diversified PBB systems will probably hinge on policy changes and 

instruments that account for both private and social benefits. Policy instruments, like for 

example, “Oil for Food” are appropriate for the Appalachian region (Lee, et al., 2005). This 

particular policy tool could be employed, for instance, when non-renewable energy producers 

compensate the public for the removal of oil, natural gas and coal from public lands. In the 
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context of this study, for example, a policy instrument can be devised whereby firms that lease 

public areas for conventional energy production would be mandated to lease equivalent areas for 

pasture-based livestock or similar types of production.  

Carbon credits are another alternative to enhance pasture-fed practices since they 

stimulate the development of sustainable practices to decrease GHG emissions. Carbon credit 

programs have become popular since they are a promising source of income in GHG markets 

(E.P.A., Undated). The use of carbon credits to address climate change enhances practices that 

reduce carbon emissions in the atmosphere. Moreover, non-profit organizations, like for 

example, Greenhouse Emissions Management Consortium has bought carbon emission reduction 

credits from farmers that reduce methane emissions from livestock waste, power production 

from biomass and no-till farming techniques (BELC, Undated).  Moreover, the cap and trade 

system enhances agricultural mitigation for offset credits through improved agricultural 

techniques (Horowitz and Gottlieb, 2010), as exemplified recently for cattle in the case of New 

Zealand for example. In fact, these reductions on methane emissions can be sold to greenhouse 

emitters who might either willingly desire to reduce their own emissions or encounter emissions 

caps (Key and Sneeringer, 2011, Subler, 2006).       
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CHAPTER III:  CONCEPTUAL FRAMEWORK  

 3.1 Objective 1: Conceptual Framework  

 The objective is to develop a conceptual framework based on OC theory that integrates a 

spatial component in which the production of PBB and alternative energy as well as GHG 

emission reduction enhances profitability.   Although our analysis is mostly focused on the 

supply side, WV is used as the given location in which surrounding communities would benefit 

from high quality food products, environmental improvement, and economic development. This 

model is intended to provide a basic foundation for developing agglomeration economies in 

which other locations are able to supply resources to given locations as a way of impacting the 

economic and environmental conditions of the Appalachian region through a spatially dependent 

industry.  

3.2 Model and Expected Results: 

 An OC framework is proposed to examine how a niche product such as PBB can benefit 

the farmer and society by integrating current climate, energy and production challenges. As 

Saliba (1985) and Chiang (2000) propose, the OC framework allows decision variables to 

respond over time to accrued influences of previous control management choices on state 

variables and crop production. This model is intended to capture the dynamic effects that take 

place in three interconnected production functions that eventually determine farm-level 

profitability. Management-intensive grazing practices allow farmers to identify the optimal 

choice between grass production and cattle consumption in the production of beef wherein 

benefits are dispersed across locations.  

This model is projected to integrate the OC approaches proposed by McConnell (1983), 

Saliba (1985) and Cacho (1998) as well as to incorporate a spatial component based on Brock 
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and Xepapadeas (2009). In addition to the explicit integration of a spatial component, this study 

is unique in that it also includes potential ecosystem benefits of the PBB industry, vis-à-vis 

electricity production, digested manure as well as GHG emission reductions. In addition to farm-

level profitability, this model also provides the basis for agglomeration economies to enhance 

economic and environmental development in the Appalachian region. This can be achieved when 

the optimal private path equals the socially optimal path.  

It is essential to mention that the following conceptual framework tends to differ from our 

experimental ABM simulation in certain ways which will be discussed in details in Chapter IV. 

In fact, our ABM is an optimization model in which the resources available across space are 

optimized bringing some economic benefits to society and entrepreneurs over a planning 

horizon. Optimization procedures have been a favorite approach to model programmers when 

topics involving a wide number of schemes are evaluated against numerous criteria (Wang, 

2001) allowing our main concept to be simulated from an optimization perspective in NetLogo. 

In fact, simulation models are able to replicate complex systems through the use of computerized 

methods making it suited to the topic as well as feasible (Wang, 2001). Furthermore, the use of 

dynamic optimization through simulation models permits parameters to change over time 

intervals when applying diverse economic and natural circumstances (Costanza and Neuman, 

1997). This would allow modelers to experiment the emerging development of the system 

simulated under economic and environmental conditions obtaining optimized results. Literally, 

given some initial conditions and the dynamics involved in a computerized platform is what a 

programmer needs to conduct a simulation. In addition, it requires the capability to change the 

initial conditions and run the model several times in order to experiment new outcomes 

(Costanza and Neuman, 1997).  In our experimental approach, we intent to estimate an 
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optimization model (BET) using some of the basis of our conceptual framework. Table 3.1 

contains a description of all variables used in our OC model.  

 Farmer’s Perspective: 

As a starting point, we developed Equation (1) with the main purpose of illustrating the objective 

function without considering the spatial component in contrast to Equation (4) which captures 

the spatial influences. However, it is essential to point out that our conceptual model is derived 

from Equation (2) to Equation (28). Assuming that the value of the land at the end of the 

planning horizon is not considered (Standiford and Howitt, 1992, Cacho, 1998) since the 

resale of the farm is not an argument, the objective function in which the entrepreneur maximizes 

the present value of the profit stream or discounted accumulated profits over the planning 

horizon (McConnell, 1983, Saliba, 1985) is:  

0

[ ( ) ( ( ) ( )) ]
T

rt
t tMax J e p f p f p f c c cs dtα α γ ξ ξ ψ ψ α ξγ

γ ω γ ξ γ ω−= + + − − −∫                   (1) 
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Table 3.1: Definition of Variables   

Variable 
Type/Function 

  Variable Symbol                Description                                            Units 

Control  

                                    Stocking Rate                                         head/acre  
                      

State                
                                   Pasture Mass                                          lbs./acre 

                                   Soil Organic Matter                               lbs./acre         
Prices  

                                   Price of Beef                                          $/lbs. 

                          Price of Electricity                                 $/KWh  

                          Carbon Price                                          $/CO2e ton 

Costs  

                                  Beef Production Costs                            $/lbs. 

                                      Electricity Production Costs                   $/kWh 

                                     Fixed Costs                                             $ 
Others  

                                      Beef Production                                      lbs./acre 

                                      Electricity Production                             KWh/head 
                                   GHG Emission Reduction Function      $/CO2e ton 

                                     Harvested Forage by Stocking               lbs./acre  

                                     Digested Manure Application                lbs./acre                                           

                                     Forage Growth                                        lbs./acre 

                                 Hay for Winter Feed                               lbs./acre 
                                     Nutrients Accumulation                          lbs./acre 

                                                 Amount of Manure Collected                 lbs./head 
                                     Precipitation                                            inches 

                               Pasture Mass at the End of                        % 
                                            the Feeding Season  

                                   Continuous Time Discount Factor           

                                   Continuous Time Welfare Factor                  

                                     Welfare Value of Future Generations                                     
                                        Private Discount Rate  
                                       Specific Time Period   
                                       End of the Planning Horizon  

Spatial                                     Given Locations   
                                       Other Locations  
                                       Entire Spatial Domain 
                                     Concentrations of Pasture Mass from z’    lbs. 
                                       Accumulated Soil Organic Matter  
                                                                          from z’                                                       lbs. 

                      

Equation (1) represents the objective function of the farmer which is to maximize the discounted 

γ

ρ
η

pα

pξ

pψ

cα
cξ
cs
α
ξ
ψ
µ
β
φ
θ
ς

ω
ν

1tκρ +

rte−

te δ−

δ
r
t
T
z
'z

Z
Ρ
Ν



 

31 
 

accumulated profits over the planning horizon within a non-spatial context. Notice that 

Equation (1) is only used to illustrate our starting point; but our main objective function is 

presented in Equation (4) since it is the one integrating the spatial component. In order to 

integrate the spatial components in our objective function, the following procedures and 

assumptions have been considered.  

 As part of the integration of the spatial component in our OC model, we created the 

following five assumptions.   

 Since the farm of interest might be surrounded by a diverse group of businesses 

throughout the entire spatial domain, their spatial influences toward its production functions 

might differ depending on the operational nature of every nearby farm. This implies that besides 

the farm of interest, other businesses in the surrounding area might be producers of beef, hay 

among other agricultural products. Therefore, we need to consider the spatial influences in our 

objective function which is represented in Equation (4).  This spatial diversity leads us to the 

assumption number 1.    

 Assumption 1: Locations z’ are adjacent forage-based farms in which the spatial effects 

are heterogeneous across locations.  

 The slope of the pastureland available in an area has an impact on land use, especially for 

grazing as well as fertilizer applications. In fact, the steeper the slope the less pasture in the site 

is consumed by cattle since animals tend to gather and graze more in flat or less steep slopes. 

This might have a negative effect on the grazable land area available for beef production (Laca, 

2000, Holechek, 1988).  Since land use in Appalachia is limited due to its steep slopes, it might 

restrict its potential use for agricultural production among others (Zipper and Skousen, Undated). 

This leads us to the assumption number 2. 

T
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 Assumption 2: The slope of farms in location z is flat while land slope in location z’ 

might be steeper which is a limiting factor for machinery use as well as grazing.  

 and  represent inputs (Brock and Xepapadeas, 2009) in the production functions 

presented in the objective function (4), the amount of  and  would have different 

interpretations. In our model, these quantities could be captured in the amount of undigested 

manure available and in hay production. This is true not only because the change on state 

variables is influenced by these variables in some way but also due to the fact that they play an 

essential role in energy and beef production as well as in GHG emission reductions eventually. 

Since these variables are mobile across locations, this allows for clustering among locations as a 

wisely planned strategy of optimizing resources available in the entire spatial domain in order to 

maximize profits. The development of interconnected businesses and suppliers in a geographic 

region enhances the ability for firms to cluster together in a way that creates economic activity as 

well as concentration of knowledge (Dearlove, 2001). Due to the fact that manure is collected 

during winter season and transported from adjacent farms to the farm of interest, we define 

assumption 3 and 4. Since hay is also transported from nearby hay farms to the farm of interest, 

we define it as a mobile input. 

Assumption 3: Manure is collected during the winter season in the barn.  

 Assumption 4: Undigested manure and hay are completely mobile.   

 As an approach of presenting the reality of the production cycle and a well performed 

economic functions, we assume that production functions are differently concave (Brock and 

Xepapadeas, 2009, Cacho, 1998). This allows us to observe diminishing returns over as a typical 

economic behavior in business of how the rate of output changes when inputs of production vary. 

This provides the basis for assumption 5.      

Ρ Ν

Ρ Ν
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Assumption 5: Production functions are differentiable AND concave which presents 

diminishing returns over time. Due to the fact that spatial distributions are not uniform across 

locations or are spatially heterogeneous, this allows for the emergence of agglomeration  

economies or clustering through resource optimization which could turn out to be persistent in a 

heterogeneous steady state among locations (Brock and Xepapadeas, 2009).  In other words, 

state variables are optimized when management decisions are manifested wisely through 

sustainable practices considering the entire space domain. However, the land endowment for 

each enterprise in the entire spatial domain is constant, which implies that every farm has the 

same number of acres on average for simplification purposes. This provides the fundamentals for 

assumption 6.     

Assumption 6: Pastureland in the PBB industry is predetermined.  

 Furthermore, mathematical expressions have been designed to illustrate the effects of 

variables developed in adjacent locations on the production functions in a given location. In 

order to integrate the spatial effects in locations  (the given locations) caused by the 

accumulated state variables in other locations identified as 'z , it is essential to consider the 

kernel formulation which basically measures the influences of sites 'z  on location  developed 

by  Brock and Xepapadeas, 2009. For instance, variables such as pasture mass and soil organic 

matter (our state variables) identified in nearby locations can be expressed as part of the 

production functions of the farm of interest by integrating the kernel function.  Following Brock 

and Xepapadeas (2009), the spatial influences of the concentrated state variables  and 

 in locations  (adjacent locations) on the state variables  and  in 

locations  (locations or areas of interest) are represented in equations (2) and (3), respectively: 

                (2) 

z
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                (3) 

 The integration of these state variables into the production functions at locations of 

interest is an approach to illustrate the spatial interaction when the kernel function is employed. 

In fact, the application of the kernel influence function, , as described by Brock and 

Xepapadeas (2009) allows us to describe explicitly the impact of state variables located at spatial 

locations  on state variables at particular sites  in which the entire spatial domain is 

represented as Z ( ). In other words,  (accumulated pasture mass) and  (soil 

organic matter) from locations  (adjacent locations) reflect spatial spillovers on the beef,  

and electricity, , production functions on z locations. The integration of these adjacent state 

variables into the objective function on the entrepreneurs in the given locations allows the 

development of “dynamic system forces” that leads to agglomeration economies in the region 

(Brock and Xepapadeas, 2009).     

= 

 

                                 (4) 
 
 Equation (4) denotes our intended objective function that maximizes the discounted 

accumulated profits over the planning horizon when spatial spillovers are internalized while 

the value of the land at the end of the planning horizon is not considered since it is not an 

argument. Figure 3.1 provides a simplified overview of the state variables paths when decision 

variables are taken into account.  
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Figure 3.1: Paths of Soil Organic Matter and Pasture Mass in Locations z. 

The objective function is subject to changes in pasture mass available and soil organic 

matter accumulation per acre and their corresponding initial amounts at the beginning of the 

feeding season in locations z in which spatial effects are taken into consideration:   

                                             (5) 

Equation (5), is the change in pasture mass produced per acre in locations z which 

depends on the pasture mass available at the beginning of the feeding season, , and the and 

the amount of pasture mass available at the end of the feeding season, . The change in 

pasture mass available is basically represented by the growth of forage function, .  

, 1, , , , , , , , ,( , , , , , )t z t z t z t z t z t z t z t z t z t zf vρ ρ ρ γ η ρ β+∆ = − = Ρ Ν
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                (6) 

All these influences imply: a) forage growth would impact beef production as well as 

energy production. Thus, the contribution of hay for winter season and harvested forage by 

stocking would positively impact beef production,  , shown in equation (11) and 

alternative energy production, , or equation (12) since forage is the primary diet in this 

beef industry which eventually would be transformed into manure, the primary input in the 

biogas production process. Therefore, the GHG emission reduction function, , presented 

in equation (13) would be positively impacted by forage growth since it contributes in carbon 

offsets; and b) the forage growth would also impact the GHG emission function in a positive 

manner, , through carbon sequestration since the pasturelands would be able to 

sequestrate CO2 from the air.         

Equation (6) defines the forage growth function which is basically a function of stocking 

rate, , the soil organic matter, , pasture mass at the beginning of the feeding season, , 

digested manure or natural nutrients application, , the average precipitation, a weather 

condition,  and the accumulated pasture mass, , as well as concentration of soil organic 

matter, , from locations z’.  Most of these are implicitly affected by the amount of carbon 

available in the soil. The impacts of each variable on this function are the following (notice that 

subscripts  and  have been dropped for simplification): 
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The stocking rate negatively influences forage growth, i.e. .  However, digested 

manure or nutrient application as well as soil organic matter can be used to counteract this 

negative effect, i.e.  and ,  since they both increase nutrient availability which 

enhances forage growth per acre. In addition, this function is positively affected by the pasture 

mass available at the beginning of the feeding season,  and precipitation influences 

forage growth positively, . Moreover, forage growth is influenced by the spatial effects 

from locations z’ through the accumulated pasture mass,  , in the form of hay and 

accumulated soil organic matter, , in the form of undigested manure from locations z’ to 

be used in locations z.  

Steady State Condition 1: As previously mentioned, the change of pasture mass available per 

acre is influenced by the stocking rate, the soil organic matter accumulation rate, the pasture 

mass at the beginning of the feeding season, the nutrient application rate, the accumulated 

pasture mass as well as soil organic matter concentrations from locations z’ and precipitation. In 

other words, pasture mass is in a steady state condition or reaches equilibrium due to the 

influences of each variable on the forage growth, , ( , , , , , , )t z fφ η ρ β ν γ= Ρ Ν , in which sustainable 

management decisions and clustering among locations are considered. This means that the 

change in pasture mass is optimized when these strategies are wisely employed since sustainable 

practices are taken into account in the entire space domain. This happens when stocking rate is 

optimized. Therefore, this contributes to the levels of beef and energy production as well as 
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GHG emission reduction through a carbon offset in locations z since the resources available are 

efficiently utilized when the pasture mass system is at a stable stage during a given period of 

time. The relationship between the pasture mass, soil organic matter and beef yield is presented 

in Figure 3.2.  

 

  

 

  

 

 

 

 

 

 
 
 
 
Figure 3.2: Effects of Soil Organic Matter on Pasture Mass and Beef Production. Soil organic matter 
influences pasture mass positively which improves beef production. The availability of nutrients ( 1η ) in 
the soil would increase pasture growth which allows for animals weight gain that eventually rise beef 
production. On the other hand, the application of addition nutrients ( 2η ) into pasturelands accelerates 
the availability of pasture mass permitting higher beef production over time at a decreasing rate.  
 

                                                             (7) 

Equation (7) represents the initial pasture mass available per acre at the beginning of the 

feeding season in locations z. The effects of stocking rate on forage growth and their relationship 

with soil organic matter are illustrated in Figure 3.3. 
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Figure 3.3: Effects of Stocking Rate on Forage Growth and their Relationship with Soil Organic Matter. 
Stocking rate negatively influences both pasture mass as well as soil organic matter availability while soil 
organic matter improves pasture mass. The absence of stocking rate ( 0γ = ) allows pasture mass to 

grow since more nutrients are available. However, the introduction of stocking rate ( 0γ > ) decreases 
the pasture mass through consumption as well as nutrients available since it extracts the nutrients 
accumulated from the soil. 

 
 

                                                (8) 

Equation (8) is the change in soil organic matter accumulated per acre in locations z 

which depends on the soil organic matter at the start of the feeding season, , and the amount 

of soil organic matter available at the end of the feeding season, , in locations z. The change 

on soil organic matter is essentially the nutrient accumulation function, .  

       (9) 
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Equation (9) defines the nutrient accumulation function which is a function of the 

stocking rate, , the digested manure application, , the percentage of the remaining 

pasture mass at the end of the feeding season, , in which  is a constant term with values 

, the soil organic matter available at the beginning of the feeding season, , the 

concentration of soil organic matter, , as well as accumulated pasture mass from locations 

z’. The influences of each variable on this function are shown as follows (after dropping 

subscripts  and  for simplicity): 

The stocking rate negatively affects the nutrient accumulation function, , since it is 

extracted from the soil through harvested forage by the livestock and hay production for winter 

feed. On the other hand, the percentage of the remaining pasture mass at the end of the feeding 

season, , and the digested manure application, , contribute in counteracting this 

negative impact. In addition, the soil organic matter at the beginning of the feeding season would 

influence this function positively, i.e., . Furthermore, nutrient accumulation is positively 

influenced by the concentration of soil organic matter, , and accumulated pasture mass, 

, from locations z’ in a form of undigested manure and hay respectively to be used in 

locations z.  

Under this scenario, these influences suggest that: a) the fact that the availability of 

nutrients enhances forage growth for stocking implies that nutrient accumulation would 

positively influence beef production, , through the increase of pasture available for 
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grazing and the winter season which eventually would increase the animal’s weight. Likewise, 

nutrients would impact energy production in a positive manner, , through the contribution 

of pasture growth and spatial influences (N). This occurs due to the fact that the forage harvested 

by the stocking rate and hay for winter feeding is positively influenced by nutrient accumulation 

in locations z which would eventually be transformed into manure and utilized as an input for 

electricity production. Since alternative energy production enhances carbon offsets, GHG 

emission reduction function, , is positively influenced which progressively increases 

GHG emission reduction in locations z.         

Steady State Condition 2: The change of soil organic matter per acre is explained by the 

influences of the stocking rate, pastureland for carbon sequestration, digested manure or nutrient 

application, the percentage of the remaining pasture mass, the soil organic matter at the 

beginning of the feeding season, the concentration of soil organic matter and pasture mass from 

location z’ on the nutrient accumulation function. In other words, the soil organic matter is in a 

steady state condition or reaches equilibrium due to the impact of each variable on nutrient 

accumulation, 1( , , , , , )tf kς β ρ η γ+= Ν Ρ , in which sustainable management decisions are 

considered. This would contribute to the levels of beef and energy production and eventually 

GHG emission reductions through a carbon offset.  This occurs because the resources available 

are efficiently utilized when the soil organic matter system is at a stable stage during a given 

period of time. The relationship between the stocking rate and soil organic matter and renewable 

energy production is illustrated in Figure 3.4. 
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         Figure 3.4: Effects of Stocking Rate on Soil Organic Matter and Energy Production. 
       Stocking rate enhances soil organic matter in the form of manure which influences energy 
       production positively.                      

 
 

                                                                                                               (10) 

Equation (10) represents the initial soil organic matter available per acre in location z at 

the beginning of the feeding season. 

                            (11) 

 Equation (11) represents beef production explicitly presented in the objective function 

which depends on stocking rate, , and concentrations of pasture mass, , and soil organic 

matter,  as depicted in Equation (4). 

                              (12) 

 Equation (12) represents the electricity production explicitly incorporated in the objective 

function that depends on the amount of manure collected, , which is a function of the 
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stocking rate, , and spatial effects of the state variables from locations z’.    

                                                                                                                          (13)               

Equation (13) represents the GHG emission reduction function explicitly incorporated in 

the objective function that depends on the amount of energy produced, . The relationship 

between the GHG emission reduction and energy production is illustrated in Figure 3.5. 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Figure 3.5: Effects of Energy Production on CO2 Emissions. Energy production enhances GHG emission 
reduction or decreases CO2 emissions through methane captured known as “carbon offset” technique.   
 
 Due to the fact that and  are inputs (Brock and Xepapadeas, 2009) in the production 

functions (as manure and hay) presented in equations (11) and (12), this provides the basis for 

regional economic development through clustering systems within a diversified industry spatially 

distributed in an area.  

 As we can observe, the objective function is composed of total revenue gained from beef, 

, electricity, , and carbon offset, , revenues minus the variables costs 

associated with beef production, , which depends on stocking rate, energy production, 

, which depends on the amount of manure collected. The carbon offset is captured through 
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the reduction of methane emissions as part of the alternative energy production process in which 

variable costs are already incorporated in the costs associated with energy production. The total 

costs are also impacted by fixed costs associated with grass-based beef as well as energy 

production and carbon offset expressed as .   

As Cacho (1998) and Brock and Xepapadeas (2009) suggest, subscripts  and have 

been dropped for simplification and to avoid confusion. For this optimal control problem, there 

are four types of necessary conditions that will be explained below (Saliba, 1985). As we can 

see, the Hamiltonian is composed of the integrand function plus the product of the co-state 

variables and their corresponding equation of motion (Chiang, 2000).  

Equation (14) presents the Hamiltonian for this problem: 

 
                             (14) 

  

(A). The derivative of the Hamiltonian with respect to the control variable must be equal 

to zero according to the maximum principle (Saliba, 1985). The optimal path of  in a 

spatiotemporal scenario is:  

i) For :  
 

 

                            (15) 

 

The right hand side (RHS) of equation (15) shows the product of beef price and the 

influence of stocking rate on beef production plus the product of electricity price and the 

influence of stocking rate on the production of this renewable fuel plus the carbon price and the 

effects of this control variable on the GHG emission reduction function. The RHS also captures 
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the variable costs associated with the amount of animal units on the farm and the variables costs 

associated with manure collection. On the other hand, the left hand side (LHS) of this equation 

expresses the product of the pasture mass co-state variable and the influence of stocking rate on 

forage growth and the product of the soil organic matter co-state variable and the effects of 

stocking rate on the nutrient accumulation function. In other words, equation (15) represents the 

benefits of higher stocking rate per acre in terms of profits from beef and energy production as 

well as carbon offsets shown on its RHS while the LHS implies the costs associated with heads 

per acre in terms of the marginal value of increasing one additional animal per acre to enhance 

beef and renewable energy production as well as to reduce GHG emissions through energy 

production.  

 (B). Another important variable is the auxiliary variable also known as the co-state 

variable which is basically a valuation variable (its value changes at different time periods), 

named the shadow price of the related state variable.  This variable is integrated into the optimal 

control model through the Hamiltonian function. This function is used to optimize the control 

variable before employing the maximum principle (Chiang, 2000). In this model, the shadow 

price represents the amount of money farmers would be willing to pay (WTP) for an additional 

pound of pasture mass produced per acre and an additional lb. of soil organic matter per acre. In 

fact, if the cost associated with any of these two state variables were less than the shadow price, 

the present value of the profit stream or the value of the objective function would increase. In 

contrast, if the associated costs were higher than the shadow price, then the value of the objective 

function would decrease while an equal cost would keep it unchanged. Every co-state equation 

presents the change rate of each co-state variable (Saliba, 1985). Thus, the optimal path of each 
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co-state variable is represented through the marginal value (Cacho, 1998, Saliba, 1985) of  and 

:  

      

                                  (16)  

Equation (16) denotes that changes in the marginal value of pasture mass available per 

acre at each point in time, , depends on the product of the discount rate, , and the current 

value of the co-state variable, ; minus the product of beef price,  and the influences of 

pasture mass on the beef production function, ; minus the product of the electricity price, 

and the effects of the pasture mass on the energy production function, ; minus the product of 

the carbon offset price, , and the influences of pasture mass on the reduction of GHG 

emissions, , at each time period. Thus, the implicit cost of pasture mass produced per acre 

must grow at the rate of discount minus the contribution of the pasture mass available either for 

stocking through the harvested forage and hay per acre to the current returns from beef and 

energy production as well as GHG emission reductions though “carbon offsets”. 

                             (17) 

                                                                 (18) 

Equations (17) and (18) present the initial pasture mass available per acre at the 

beginning of the grazing season and its change at locations z, respectively.   
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                   (19) 

Equation (19) implies that the changes in the marginal value of soil organic matter per 

acre at each point in time, ,  depends on the product of the discount rate, , and the current 

value of the co-state variable, ; a) minus the product of the beef price, , and the effects of 

soil organic matter on the beef production function, ; minus the product of the electricity 

price, , and the influences of soil organic matter on the energy production function, ; 

minus the carbon offset price, , and the impacts of soil organic matter, , on the reduction 

of GHG emissions at each point of time. The implicit cost of soil organic matter per acre must 

grow at the rate of discount minus its positive impact on forage production per acre that enhances 

current returns from beef and electricity production as well as methane emission or CO2e 

emission reductions. 

                   (20) 

                                                                   (21) 

Equation (20) and (21) represent the initial soil organic matter at the start of the feeding 

season per acre and its change in locations z, respectively. 

 (C). The state equations:  

                 (22) 
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                         (23) 

Equations (22) and (23) are the state equations for every state variable. Equation (22) 

represents the state equation for pasture mass while equation (23) denotes the state equation for 

the soil organic matter. These two equations are subject to the initial conditions of each state 

variable in order to solve them through the passage of time. These functional relationships are 

able to capture the effects of management decisions (control variables) on the state variables 

(Saliba, 1985).    

 (D). The endpoint conditions consider the initial conditions of every state variable as well 

as the transversality condition.  

                  (24)  

                  (25) 

The initial conditions for each state variable are shown in equations (24) and (25).  

                      (26) 

                            (27) 

Equations (26) and (27) display the transversality conditions in the final period . This is 

the last condition considered in an optimal control model. This condition essentially represents 

what would occur in the final period of time (Chiang, 2000). Following Saliba’s approach, these 

equations establish that the marginal values of each state variable considered will influence the 

market value of price of its related product. As we can notice, this spatial optimal control model 

also provides for tradeoffs between beef and energy production while abating GHG emissions by 

selecting stocking rate as the main decision variable in this model.  
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Beef, Electricity and Carbon Offset 

At the planning horizon , the marginal value of pasture mass produced and soil organic matter 

per acre would have an impact on the market value of beef, energy and carbon prices. This 

occurs due to the fact that beef and energy production as well as GHG emission reductions are 

mutually dependent on state variables in locations z as well as the spatial influences of state 

variables from locations z’ through the interaction between the stocking rate, the feeding seasons 

based on the harvested forage by stocking, the hay for winter feed and undigested manure.  

= 

 

          

                                                                                                                                  
(28) 

 
Equation (28) represents the value of the farms in locations z to society when spatial influences 

are considered. 

              As McConnell (1983) suggests, the socially efficient strategy would be equal to the 

private goal when the private discount rate, , is equal to the value of the welfare of future 

generations, . This value represents the implementation of sustainable practices in the present 

period of time and is reflected at the end of the planning horizon (T). When this interaction,

, takes place and the market works efficiently, society and the farmer would be efficiently 

interconnected and the path of the stocking rate would be wisely chosen. This would eventually 

influence the paths of the pasture mass and the soil organic matter per acre. This also occurs due 

to the fact that clustering systems enhance competition within related industries in which the 

firms actively involved in the clustering benefits from a productive environment. Therefore, the 

implementation of sustainable practices in the PBB industry would benefit the farmer as well as 

surrounding communities. In addition, since the farmer is taking into consideration 
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environmental improvement which allows reducing potential negative externalities from he/her 

operation, it contributes to achieve social efficiency.  
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CHAPTER IV:  METHODOLOGY 

4.1 Objective 2:  

The main goal of objective two is to develop an agent-based model that replicates the 

complexities associated with the introduction of the diversified PBB to analyze the interaction 

among agents and their surrounding intertemporal environment through resource optimization. 

 Before providing details regarding the methodology developed for our simulation model, 

it is essential to point out dissimilarities in terms of the approaches conducted between the OC 

model (i.e., the conceptual model) and the ABM (empirical) model based on availability of data. 

Although the Befergyonet (its acronym, BET) model and the conceptual framework developed in 

objective one might share some similarities, our ABM experimental approach tends to differ in 

certain ways. We might have realized that both models consider the stocking rate, pasture mass 

and soil organic matter over space as a way of developing agglomeration economies in a region 

that would bring benefits to society and businesses. However, BET is more focused on 

optimizing these resources available in the spatial domain in order to intensify the benefits that a 

diversified industry would bring to the region and compare it with a specialized industry. On the 

other hand, our OC model focuses in obtaining the optimal stocking rate subject to these state 

variables with the objective of maximizing the profit streams of the farmer in which the 

contributions and costs associated with the state variables are analyzed when making decisions. 

In other words, BET refers to the optimal stocking rate derived when the pasture pass available 

in the spatial domain is optimized for beef production and the eventual manure production for 

energy and carbon offsets.  

 Furthermore, BET differs in some of the variables and assumptions employed in our 

conceptual framework. Even though the two models differ on certain assumptions, some are 
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captured in both, like for example, variation in slopes across space; when pasture and manure are 

mobile; land is predetermined; and manure is collected during the winter season. Moreover, the 

influences affecting the pasture mass growth in our OC model differ from the ABM and only 

precipitation is used in both. Indeed, notice that in our simulation model forage growth depends 

on daily solar radiation, precipitation events, coordinates as well as minimum, average and high 

temperatures. Another variable that both models differ is the stocking rate. For example, our 

conceptual framework centers in obtaining the optimal stocking rate subject to these state 

variables with the objective of maximizing the profit streams of the farmer in which the 

contributions and costs associated with the state variables are analyzed when making decisions. 

On the other hand, BET derives the optimal stocking rate based on pasture availability versus 

consumption or what is also known as “carrying capacity” where the pasture available is 

optimized since no pasture is available for one additional head. In order to measure profitability, 

we employ NPV equations which are utilized by OC approaches, like for example, Torell, Lyon 

and Godfrey (1991), Standiford and Howitt (1992), Brock and Xepapadeas (2009), Cacho 

(1998), Dorfman (1969), Burt (1981) among others in the reviewed literature. Given the 

previously mentioned transition between our models, let’s examine the development of our 

experimental ABM approach.  

 For the ABM, the NetLogo platform is employed to simulate the effects of a diversified 

PBB industry on the environment and society as well as farmers’ profitability when resources are 

optimized in which we employ 11 assumptions throughout this experimental approach as 

describe in Table 4.1. Our model makes comparisons between specialized and diversified 

enterprises to evaluate profitability and its eventual environmental implications within a region 

for clustering systems. Indeed, economies resulting from clustering and agglomeration are 
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considered in this study as an important element of a sustainable production system.  In our 

model, we define the diversified farm as the farm of interest within the PBB industry interested 

in generating income from beef, energy and carbon offset sales while the specialized one is 

focused solely on beef production and without explicit recognition of any clustering effect. 

 

 

 

 

 

 

 

 

 

 

4.2 Befergyonet Model: An Overview 

BET is a simulation model based on agent-based modeling that permits the evaluation of PBB 

and renewable energy production as well as carbon offsets as a function of environmental 

variables from a deterministic and stochastic perspective. This allows an approach to compare 

potential beneficial environmental effects as well as profitability under certainty and uncertainty. 

The model is composed of two key elements: the supply and the environmental and economic 

impacts interconnected through high quality beef, renewable energy and carbon dioxide 

emissions reduction within a specific region simulating the interaction among agents spatially 

distributed bringing some economic and environmental implications to the whole system.  

 

Assumptions  Description 
Assumption 1 Initial pasture mass is 1,400 lbs. per acre while soil organic matter is 6,800 Kg/acre. 

Assumption 2 Dry matter intake per day is 3 percent while daily weight gain during grazing and 
winter season are 1.5 and 0.87, respectively.    

 
Assumption 3 

2/3 of the paddocks are for grazing while 1/3 is used for winter feed. Pasture is 
represented as tall fescue-clover mix that, once it is consumed at the stated stocking 
rate, takes approximately 30 days to grow back. 

Assumption 4 Pastureland in the PBB industry is predetermined. 
Assumption 5 Forage is a tall fescue-clover mixture. 
Assumption 6 Death loss is 2 percent under certainty while under uncertainty differs annually. 
Assumption 7 Hay is completely mobile across space. 
Assumption 8 The farm of interest is a beef supplier under an agreement in which the average 

stocking rate over the planning horizon is the minimum stocking rate to be sold at the 
end of each operational year. 

Assumption 9 The slope in the contracting farm is flat while in the nearby farms might differ. 
Assumption 10 90 percent of the manure in the spatial domain is recoverable. 
Assumption 11 Manure is completely mobile across space and collected during winter season. 
 

Table 4.1: Assumptions   
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BET simulates pasture growth as a function of daily precipitation, solar radiation, and 

temperature; electricity production based on manure generated and its associated carbon offset 

based on methane captured in an anaerobic digester during the winter season (November to 

April). The association among methane emissions and CO2 arises from the fact that methane has 

25 times the global warming capacity of CO2; however, when one ton of methane is utilized for 

energy production, it releases one ton of carbon dioxide. This implies that burning one ton of 

methane is equal to reducing twenty four tons of CO2 (Key and Sneeringer, 2011). Thus, the 

equivalence to CO2 emissions in terms of methane is called carbon dioxide equivalent (CO2e) 

emissions. Furthermore, our model interconnects the benefits and costs associated with PBB and 

renewable energy production and subsequently carbon reductions by maximizing the pasture 

available in a specific region among farms within a radius of distance in a planning horizon of 15 

years under certain and uncertain conditions. BET is an experimental approach that also 

evaluates potential clustering development in which resources available such as cattle, forage 

allowance and manure generated within the sector are optimized within a spatially 

interconnected industry on a yearly basis. 

This ABM is composed of pre-interaction and interaction stages. During the pre-

interaction stage, the model simulates pasture growth as a function of daily irradiance, rainfall 

and temperature as well as latitude based on historical data for 15 years for the deterministic and 

stochastic approaches in order to obtain the control variable or the optimal stocking rate per year 

over the entire spatial domain. During the interaction phase, the interactive world becomes active 

and the interaction among agents takes place generating emerging patterns and data based on 

their rational behavior. In fact, the model is designed to be run for a total of over 10,900 

iterations repeated from 5 to 10 times for each scenario exercised in order to obtain a fair 
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variability from the stochastic simulation. We employed a total of seven scenarios in which 

every scenario (under the existence/absence of carbon prices and cost-share programs) was tested 

under six hypothetical clustering systems, specifically from zero to five clustering members as 

depicted in Table 4.2.  

 

 

 

 

 

 

 

 

 This simulation experiment was designed to evaluate potential influences from a 

diversified pasture fed industry in most counties in WV based on data available as a 

representation of the Appalachian region. We used Monongalia County for the different 

scenarios exercised on this simulation; however, the model can be run for any other county to 

simulate the potential impacts for the proposed industry on each county.    

NetLogo allows choosing important elements such as stocks, variables, flows and links to 

perform the simulation in a dynamic format (Bakshy, 2007).  For instance, each of these 

elements is identified and linked to each other so it simulates the variables that influence the 

flows that eventually reduce or increase the stocks values over time. In this model, the daily 

pasture growth and forage available for grazing and hay, beef production, electricity generation 

from anaerobic digester, manure production, carbon offset and CO2 baseline have been 

Scenarios Conducted in ABM Simulation* 
 Carbon Prices 
Clustering System $0.00 $13.00 $26.00 $13.00 $26.00 $13.00 $26.00 
0 (0,0,0) (0,13,0) (0,26,0) (0,13,20) (0,26,20) (0,13,50) (0,26,50) 
1 (1,0,0) (1,13,0) (1,26,0) (1,13,20) (1,26,20) (1,13,50) (1,26,50) 
2 (2,0,0) (2,13,0) (2,26,0) (2,13,20) (2,26,20) (2,13,50) (2,26,50) 
3 (3,0,0) (3,13,0) (3,26,0) (3,13,20) (3,26,20) (3,13,50) (3,26,50) 
4 (4,0,0) (4,13,0) (4,26,0) (4,13,20) (4,26,20) (4,13,50) (4,26,50) 
5 (5,0,0) (5,13,0) (5,26,0) (5,13,20) (5,26,20) (5,13,50) (5,26,50) 
 0 % 20 % 50 % 

Cost-Share Percentage 
*Scenarios are combination of: (clusters, carbon price, cost-share percentage) 

 

 

Table 4.2: Scenarios   
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categorized as stocks. On the other hand, some variables are represented as values or expressions 

that would have an effect on inflows and outflows (represented as pipelines) and available 

through arrows in the system dynamics modeler. In this model, environmental as well as 

economic variables are integrated in the system dynamics as a form of extraction rates such as 

forage intake and carbon offset rate as well as costs and net present values associated with the 

daily interactions.  

The advantages of this agent-based software consist of: (i) the capability to integrate 

routines written in Java language into the model and synchronize language programming with 

the systems dynamic modeler; (ii) the capability to provide instructions to users before, during, 

and at the end of the simulation; (iii) the availability to illustrate the interaction among agents 

and space through graphs as well as visual representation; (iv) the flexibility to export simulation 

results in different file extensions such as txt and csv for further analysis in other programs as 

well as during the simulation in its interface view; (v) the ability to develop a control panel to 

manipulate the initial conditions and parameters of the model; (vi) the advantage of importing 

data to be used in the simulation; (vii) flexibility of using extensions (BET employs R-

Extension) to perform statistical instruments during the simulation.  

In our approach, a system dynamic modeler was developed in order to capture the 

dynamics over time and space expressed through mathematical equations using NetLogo. 

Figures 4.1 and 4.2 present the system dynamic modeler of the concept proposed. In the system 

dynamic diagram, links allow a value from a variable or stock into a stock or flow making them 

available from one source to another in order to perform the simulation (Bakshy, 2007). As we 

can appreciate in Figure 4.1, the largest rectangular boxes represent the stocks that are influenced 

by the pipeline-shapes that store equations composed of values located either in the code tab, the 
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interface view or in the variables presented as green rectangular boxes (smaller boxes) in the 

diagram while the arrows or links connect values among the previously explained components. 

Note that some variables are connected to more than one arrow when variables are used in other 

functions allowing for multi-use and eliminating unnecessary replications of the same variable in 

the system such as the “Pgr-Temp-Adj” variable that is used by “RGR-ENV” and “RGR-ENV-

STOC” depicted in Figure 4.1.  

The stocks are able to change over time due to the influences caused by changes on their 

flows. The flows are affected by changes in the values of their variables and time making the 

stocks either to increase or decrease over time. These variables might be identified as a 

parameter or value stored in the variable or identified in the interface view under the simulation 

control panel. Thus, the interactions taking place in the whole system would basically have an 

impact on stocks that eventually will be reflected on production, profitability among other 

components of the system. Figure 4.2 shows a closer view of one of the segments represented in 

the complete flowchart.  

Additionally, the main simulated equations utilized for the system dynamics are 

discussed in details on Section 4.6. In order to run these simulated equations, the system 

dynamics needs to be well-synchronized with language programming considering time and 

space. Figure 4.3 illustrates part of the code developed for the simulation. This code shows a 

segment of the first steps to create the agents in BET in which NetLogo identifies as “breeds”. 

The coding section is crucial for ABM developed with NetLogo and requires trials and errors, 

especially if the model has never been built before. Additional segments of the code developed in 

BET are illustrated on Figures A-1 to A-4 as samples of the Java language utilized by the 

NetLogo platform. 
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Figure 4.1: NetLogo-System Dynamics Modeler used for Simulation: Complete Flowchart. 
The figure above shows the system dynamic modeler used in BET model.  The largest rectangular boxes 
represent the stocks that are influenced by the pipeline-shapes that store equations composed of values 
located either in the code tab, the interface view or in the variables presented as green rectangular boxes 
in the diagram while the arrows or links connect values among the previously explained components. 
Note that some of variables are connected to more than one arrow since that variable might be used in 
other functions. Figure 4.2 shows a segment of the complete flowchart for a more specific explanation. 
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Figure 4.2: NetLogo-System Dynamics Modeler: A Segment.  
Note: The flow (pipeline) named “Electricity-Generation” stores an equation composed of the variables 
(e.g. on-line-efficiency, Net-Energy-Content, etc.) that might be identified as a parameter or value stored 
in the variable or identified in the interface view under the simulation control panel. The flow changes 
depending on changes in variables during each iteration proving different values over time while the links 
(arrows) help make values available from one section to another. Then, the energy produced is 
accumulated in the stock called “Generation”. Notice that “Generation” also depends on changes in the 
flow identified as “-Biogas-Production-Head” making this a dynamic system along the planning horizon.  
 
  
 
 
 
 

 

 

 

 

 

 

Figure 4.3: NetLogo-Programming Language in Java.  
Note: In the coding section, the interacting elements of the “world” such as agents and global variables 
among other components are created and synchronized with the system dynamics modeler.   
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4.3 Experimental Model: Agents, System and Interactions 

4.3.1 World. The simulated world consists of a 49 by 49 grid of coordinates with a patch 

size of 3 (world landscape) in which agents (turtles and patches) interact based on the resources 

available throughout space. Figure 4.4 illustrates the measurements of the world build up in our 

model through grids. In our ABM, dynamic and static agents are identified as farmers, farms, 

stocking rates, vegetation, tractors, manure storage, anaerobic digesters, manure transporters, 

silage hauling trucks, pasturelands (green) and roads (gray). The interaction among these agents 

on the system is eventually reflected in the production of final products as well as returns to the 

farm of interest. In fact, it is intended to simulate a realistic model of plan-animal interaction 

based on entrepreneur decisions within an emerging PBB industry. 

 

 

 

 

 

 

 

 

 

 

 

 

                           Figure 4.4: NetLogo-World Setting. 
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4.3.2 Farm Locations and Farmers. There are a total of nine farms spatially distributed.  

Every farm in the spatial domain relies on 93 acres of pastureland which is divided into 6 

paddocks (Schuster et. al, 2001) of approximately 15 acres each where10 patches represent 1 

acre in NetLogo terms. Figure 4.5 shows the interactive system developed as a representation of 

the system to be simulated. The farm of interest is a stocker farm identified with the color red 

surrounded by adjacent cow/calf farms (gray), stocker farms (brown) and one silage farm (blue) 

within a radius of approximately 20 miles derived from the interaction among participating farms 

in the clustering system and invoked by the farm of interest. Farms are distributed throughout a 

grid of patches identified by their coordinates allowing the simulation to measure their distances 

when the clustering system is activated. On the other hand, the model also simulates farmers’ 

interaction with the livestock during the grazing season by rotating it from one paddock to the 

next within an intertemporal context. This interaction provides a close to reality representation of 

a PBB industry where the land resources are optimized. This occurs when the forage system fits 

with the total amount of livestock as an approach to undertake appropriate pasture management 

techniques (William and Hall, 1994).     
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                        Figure 4.5: Interactive World in NetLogo. 

4.3.3 Stocking Rate. It is assumed that the daily pasture intake per head is 3 percent of its 

body weight (Zobell, Burrell and Bagley, 1999, Rayburn, 2005, Schuster et. al, 2001) with a 

daily weight gain of 1.5 and 0.87 pounds on a daily basis during grazing (May to October) and 

winter (November to April) seasons, respectively (Rayburn, 2008, Blaser et., al 1986, VAFS, 

1969). It is also fundamental to point out that we employ a daily pasture intake of 3 percent of 

body weight as an approach to get high individual animal performance. In fact, the increase of 

grazing intensity would cause a competition effect between forage nutrititive value and quantity 

(Sollenberger and Vanzant, 2011). Thus, the relationship between forage nutritive value and 

quantity of pasture available is taken into acccount when the stocking rate is optimized. 

Furthermore, the livestock grazes 2/3 of the paddocks while 1/3 is used for hay or silage for 

winter feed each year based on expert opinion. The livestock is composed of an Angus breed 

with an initial weight of 500 pounds (Rayburn, 2002, Schuster et. al, 2001) purchased at the end 

of April from adjacent cow/calf farms and grazing is assumed to start in early May and moved to 

a building during the winter season where animals are fed and manure is collected. In fact, BET 
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identifies the closest cow/calf farms and the amount of livestock (calves) available to fit the 

maximum sustainable stocking rate needed in the contracting business creating a clustering 

between the farm of interest and cattle suppliers each year.  

The stocking rate is derived during the first stage of the simulation and randomly 

distributed on paddocks by the farmer during the second phase of the modeling. During the 

grazing season, animals are rotated between paddocks for optimal forage consumption. After 

reaching approximately 900 lbs. (April), the animals are sold for slaughtering and a new stocking 

rate is brought to begin the annual operational cycle over again. It is important to mention that 

beef prices are seasonal which tends to reach the highest during April compared to October with 

a difference of approximately 5 percent (Hahn, 2012) making appealing to beef producers to sell 

during this particular season. However, our approach employs annual average prices.     

4.3.4 Manure Hauling Trucks. These trucks simulate the manure haulers transporting the 

manure from adjacent cow/calf farms to the farm of interest during the winter season. The 

manure collected during this period of time is used to generate electricity and carbon offsets in 

the contracting business.   

4.3.5 Silage Transporters. These trucks simulate silage transportation from the closest 

silage supplier to the farm of interest and nearby stocker farms. This occurs when the forage 

production on these farms are limited to satisfy the amount of animals purchased on an annual 

basis.   

4.3.6 Carbon Offset Counter. It is a static agent with the purpose of explicitly illustrating 

the amount of the current CO2 equivalent reductions that have been reduced during the winter 

season. Although this static agent does not move, it indeed depends on the carbon offset stock 

developed in the system dynamics modeler for execution. 
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4.3.7 Lagoon. This static agent simulates a manure lagoon or pond to explicitly show the 

CO2e baseline that would be generated from manure during the winter season if it were deposited 

into a pond instead of using it for electricity generation. This agent depends on CO2e emissions 

generated in the system dynamics.   

4.3.8 Manure Collection Counter. This agent is the manure storage in the farm of interest. 

This is another static agent with the main function of illustrating the amount of manure collected 

during the winter season in the interacting world.  

4.3.9 Anaerobic Digester. This agent represents the daily electricity generated from the 

manure collected during the winter season. This agent is located at the contracting farm in the 

simulated world.  

4.3.10 Paddocks. Paddocks play an essential role in the PBB industry since it contributes 

in optimizing the amount of pasture available. In other words, they represent the grazing area in 

which animals are exposed to a natural environment for approximately180 days.  

4.3.11 Pasture. The forage is represented through green patches that interact with 

the stocking rate when consumed. In our model, pasture is represented as tall fescue-clover mix 

that, once it is consumed at the stated stocking rate, takes approximately 30 days to grow back. 

4.3.12 Roads. This is the area in which manure, silage and cattle trucks transport their 

inputs from nearby farms to the farm(s) making the request for beef and electricity production. 

These are basically patches designed to represent the pathways for the mobilization of the 

resources needed within the region.  

4.3.13 Winter Building. The structure in which the stocking rate is placed for the winter 

season and is fed with forage. Also, it is the location for manure collection which is transferred 

to the adjacent anaerobic digestion system.  
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4.3.14 Trees. This simulates the typical surrounding vegetation in a PBB farm 

representing seasonal changes during an operational year. As a result of intertemporal changes, 

trees change color as a representation of the four seasons in WV based on current temperature.   

4.3.15 Links. Links are useful agents with the main purpose of connecting the clustering 

system during simulation. They also measure the average distance in miles among the members 

of the cluster during the interaction phase.   

4.3.16 Silage Tractors. These tractors simulate hay collection for winter season. They 

collect forage only on 1/3 of the total acreage or 2 paddocks out of the 6 paddocks in which the 

area is fertilized approximately a month before pasture collection. Also, these agents are invoked 

by the farm of interest at the end of Spring and Summer seasons every year throughout the 

planning horizon.    

4.3.17 Fertilizer Applicators. It is assumed that the fertilization season starts in April at a 

rate of two paddocks per month. This agent is also invoked by the farm of interest and takes 

place during the interaction stage.  

4.3.18 Cattle Hauling Trucks. These trucks simulate the supply of cattle from the 

cow/calf farms to the farm of interest. This event occurs at the beginning of each operational 

year before grazing season starts.  

4.4 Selections: Buttons, Choosers, Switches and Monitors 

4.4.1 Buttons. The first buttons under the “Simulation Control Panel” (SCP) are 

categorized as “System Setup”, “Simulation” and “Simulation by Step”. They have been 

designed to setup and refresh the initial conditions, run the simulation continuously until 

reaching the planning horizon and run the model step by step or one iteration at the time.    
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4.4.2 Clustering System. The model allows selecting the composition of the clustering 

system for manure supply by changing the number of farms in the system from the chooser 

“Clusters” under the SCP. This allows users to perform the simulation under different clustering 

systems for sensitivity analysis generating some economic and environmental impacts within the 

region. It allows users to select from 0 to 5 clusters to simulate their interaction and their 

influences within the system or world.     

4.4.3 Distance Factor. The “Distance-Factor” permits users to select an estimated radius 

distance from the farm of interest with respect to adjacent farms. For the purpose of our 

experimental model, the system measures a radius distance of approximately 20 miles 

(Weinheimer, 2008) by using a distance factor of 0.5. The distance factor has been created to 

provide some flexibility to potential users that might desire to choose different mile distances 

within the clustering system. In fact, users have the option to select 0.4, 0.5, 0.8, 1 or 1.2 to 

represent an approximation of 15, 20, 30, 40 or 50 radius mile distance between farms, 

respectively.    

4.4.4 County Selection. The “Country-WV” permits county selection to execute the 

simulation based on specific county data in order to identify the potential environmental and 

economic impacts in a specific region. Due to lack of data, most of the counties in WV can be 

simulated in BET.  

4.4.5 Initial Weight. The “Initial-Weight” option allows selecting the initial weight per 

head at time zero. In this experimental study, we define 500 lbs. as the initial weight based on a 

survey conducted of farmers in the pasture-fed beef industry at the national level (Rayburn and 

Lozier, 2002) and reach a final weight of approximately 900 lbs. at harvest. However, this 

chooser permits users to select an initial weight between 400, 450, 500 or 550.    
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4.4.6 Carbon Price. The “Carbon-Prices-List” provides a list of the commonly used 

carbon prices (Key and Sneeringer, 2011, Baylis and Paulson 2011 and EPA, 1999) in order to 

perform a sensitivity analysis based on changes in carbon prices assuming the existence of a 

carbon market. In fact, it is expected that pressure to decrease greenhouse gas emissions could 

begin increasing in the future; therefore, carbon prices would eventually rise significantly. 

However, uncertainty still exists with regard to the carbon offset market in a cap-and-trade 

framework (Key and Sneeringer, 2011). This is one of our parameters for policy 

recommendations.  

4.4.7 DM-Intake-List. Although our default dry matter intake is 3 percent, BET provides 

the option of changing this percentage. This was done for the benefit of prospective users of the 

model providing some flexibility in simulation performance.     

4.4.8 Switches. Switches displayed in the SCP, like for example, “Show-Weight?”, 

“Show-Manure?”, “Show-CO2-Baseline?”, “Show-CO2-Offset?”, “Show-Electricity?” and 

“Show-Profitability?” are used to either activate or deactivate stocking rate weight, manure 

production, CO2 baseline generation, carbon offset, electricity production on a daily basis while 

the business economic performance is shown at the end of the simulation, respectively. The 

values are explicitly presented as tags or labels in some of the dynamic (animals) or static 

(manure storage, anaerobic digester, pond or manure lagoon and the carbon offset counter) 

agents while the interaction is simulated.   

4.4.9 Monitors. Monitors were incorporated in our model since they keep us updated 

about the state of the simulation. For instance, “Transportation Frequency” shows the number of 

trips manure hauling trucks need to execute during the winter season (from adjacent farms to the 

farm of interest) and being requested by the farm of interest. The “Average Radius Miles” shows 
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the average miles between nearby farms and the farm of interest when the clustering system is 

active. Also, the “Pre Interaction: Days” and “Interaction: Days” are monitors able to keep track 

of the days or iterations before the world and during the world interaction. The “Slope Range: 

Farm of Interest” and “Slope Range: Nearby Farms” represent the slope range on these areas 

based on the data collected from the Web Soil Survey (USDA, 2009). In this model, we use the 

average slope which is prompted through the SLOPE-ADJUSTMENT variable in BET based on 

coordinates identified on the Web Soil Survey and monitored under the “Terrain Slope” section 

in the interface view. The sloping factor is based on slope ranges for specific locations in which 

slopes within ranges between zero to ten percent, eleven to thirty and thirty one to sixty are 

adjusted as 1.0, 0.7 and 0.3, respectively. Figure 4.6 shows all the features expressed in section 

4.4. Furthermore, the death loss percentage is monitored under both certainty and uncertainty 

simulations. The county location is also displayed through the “Latitude” monitor under the 

“County Selection.” 

 

 

 

 

 

 

 

 

 

 

Figure 4.6: NetLogo-Simulation Control Panel (discussed in section 5.4).       
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4.4.10 Cost-Share Program. The “Cost-Share-Program” selection provides a list of 

percentages that can be hypothetically considered as a policy development tool in order to share 

the costs associated with the initial capital investment needed to afford the anaerobic digester in 

the PBB industry. This allows users to choose from different cost-share options, especially when 

conducting sensitivity analysis toward profitability.    

4.5 Outcome from Emerging Patters: Results Generation 

Besides the interaction within the system illustrated in the interactive world, BET has been 

conveniently programmed to provide simulation results in several forms.  

 4.5.1 Plots. Plots are graphical representations of the system interaction in which 

stocking rate, pasture growth rate and average temperature and precipitation rate and depicted 

over time during the first simulation stage. Others plots are illustrated such as daily beef 

production, renewable energy generation and carbon offset as well as CO2 emissions during the 

second phase of the simulation performance.  

 4.5.2 Output. The model also provides results of the stocking rate based on the system 

interaction in the interface window below the “Simulation Results” box during the two phases of 

the simulation. Although complete outcomes are stored in a spreadsheet, this allows users to 

have a quick view of some of the results. 

 4.5.3 Total Outcomes. Outcomes from the ABM can also be exported to a spreadsheet for 

further evaluation once the simulation is completed. This way, a more comprehensive database is 

generated that can be accessed through a program such as MS-Excel for comparison purposes 

and further analysis. In order to perform this task, a window providing instructions appears 

before the simulation takes place right after the “System Setup” button is clicked. After this task 

has been executed, it is just a matter of choosing the conditions explained under section 4.4-
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Selections and by clicking either “Simulation” or “Simulation by Step” button explained in 

section 4.4.1 - Buttons to perform the simulation.  

4.6 Simulated Equations and Assumptions  

4.6.1 Simulated Equations and Assumptions.  Since the BET model is a dynamic model 

that interacts based on interconnected equations as well as coding, we present the main equations 

(equations 1 to 37) used for the simulation illustrated below. However, the Java code or language 

program developed in NetLogo provides complete information of the entire combination of 

equation and the code required to perform the simulation. Appendix Figures A-1 to A-4 illustrate 

coding samples of BET developed in NetLogo since language programming plays a fundamental 

part for appropriate model performance. The model has also been made available at the NetLogo 

User Community Models website at 

http://ccl.northwestern.edu/netlogo/models/community/BEFERGYONET%20MODEL as a contribution 

for researchers and other parties interested in either using, extending or learning more about the 

model.    

As an initial condition at time zero, we are assuming that an initial pasture mass is 1,400 

pounds per acre (Cacho 1998, Rayburn, 2005) while the soil organic matter value has been 

identified as 6,800 Kg/acre. As a way of simplifying the complexities described in our theoretical 

approach, our soil organic matter assumption is based on a 2 inches soil layer with a 3 percent 

organic matter in which 58 percent is composed of carbon or 7,900 Kg (Ward, 2004). In fact, 

under acceptable management practices, state variables would reach equilibrium when the 

control variable is under optimal conditions and the time horizon is sufficient. In other words, the 

system is intended to reach a productive pattern that can be sustained by keeping it under a stable 

operation (Costanza and Neuman, 1997). Nonetheless, the use of manure as fertilizer may differ 

http://ccl.northwestern.edu/netlogo/models/community/BEFERGYONET%20MODEL
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among the literature reviewed. For instance, the implications of using tall fescue grass and clover 

mix as the primary diet for animals might require approximately 200 lbs. per acre on an annual 

basis (Rayburn et. al, 1998, Parsch, Popp and Loewer, 1997) to assure the nutrients needed in the 

soil for plant growth. In fact, the percentage composition of manure produced by beef cattle is 

typically 0.54, 0.18 and 0.39 with an approximation of 3:1:2 in terms of nitrogen (N), 

phosphorus (P) and potassium (K) (Rayburn et. al, 2006). On the other hand, Evanylo and 

Peterson (2000) express that approximately 1,025 pounds per acre of biosolids from anaerobic 

digestion systems can be applied in tall fescue fields. Thus, in order to assure that the 

pasturelands acquire the necessary nutrients, 620 pounds of digested manure are applied per acre 

annually which might not a limitation since in the contracting farm over 1,500 lbs. is produced 

per head annually.     

Assumption 1: Initial pasture mass is 1,400 lbs. per acre while soil organic matter is 

6,800 Kg/acre.  

In our approach is also assumed that the daily pasture intake per head is 3 percent of its 

body weight (Zobell, Burrell and Bagley, 1999, Rayburn, 2005, Schuster et. al, 2001) with a 

daily weight gain of 1.5 and 0.87 pounds on a daily basis during grazing and winter seasons, 

respectively (Rayburn, 2008, Blaser et., al 1986, VAFS, 1969). Furthermore, the livestock grazes 

2/3 of the paddocks while 1/3 is used for hay or silage for winter feed each year based on expert 

opinion. 

Assumption 2: Dry matter intake per day is 3 percent while daily weight gain during 

grazing and winter season are 1.5 and 0.87, respectively. 

Assumption 3: 2/3 of the paddocks are for grazing while 1/3 is used for winter feed. 
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In our model, pasture is represented as tall fescue-clover mix that, once it is consumed at the 

stated stocking rate, takes approximately 30 days to grow back. 

Pasture Growth. The pasture growth equation is a dynamic equation intended to estimate 

relative plant growth rate of forage crops based on daily solar radiation, precipitation events, 

coordinates as well as minimum, average and high temperatures simulated in NetLogo based on 

expert opinion (Ed Rayburn, Forage Extension Specialist, West Virginia University) and Lee, 

Boyer and Dickerson (1979), Wilensky (1999) and Wilensky (2005). This equation is crucial in 

our simulation model since the optimal consumption of the pasture available mainly determines 

the optimal stocking rate for each year and eventually, beef and electricity production as well as 

a carbon offset. In addition, our simulation considers a rest interval of approximately 30 days for 

tall fescue-clover mix to regrow after grazing as well as silage collection (Rayburn et. al, 1998, 

Rayburn, 2005) since “erect-growing forage species” have been identified as best to be used also 

for silage or hay due to their high yield potential (Abaye, Green and Rayburn, 2006) which are 

frost seeded every three years in order to supply a considerable component of the cattle’s diet 

(McCann, 2010). In fact, a survey conducted of PBB producers at the national level identified 

cool season grass-clover as an extremely important component of the forage system (Rayburn 

and Lozier, 2002). Furthermore, studies in which the grass-legume mixture as tall grass-clover 

has been compared to other grass-legume mix (tall-grass alfalfa and bluegrass-clover), have 

demonstrated that tall grass-clover presents faster growth rate on average than other mixtures 

(Yohn and Rayburn, 2000). In BET, every farm in the spatial domain relies on 93 acres of 

pastureland which is divided into 6 paddocks (Schuster et. al, 2001). 

Assumption 4: Pastureland in the PBB industry is predetermined. 

Assumption 5: Forage is a tall fescue-clover mixture.  
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 Daily PGR Acre = RGR ENV * PGR MAX               (1) 

 The daily pasture growth rate per acre (Daily PGR ACRE) is defined as relative growth 

rate associated with the total environmental interaction (PGR  ENV) times the expected 

maximum pasture growth rate (PGR MAX) in which PGR-MAX is assumed to be constant with 

a value of 60 (lbs./acre).  

              RGR ENV = RGR TEMP * RGR DL * RGR H2O                                  (2) 

The RGR ENV depends on the relative growth rate due to mean air temperature (RGR 

TEMP) times relative growth rate based on day length multiplied by expected maximum pasture 

growth rate (PGR MAX) and the relative growth due to available soil water (RGR-H2O) in 

which RGR TEMP is defined as follows: 

If TAVE < UPPER CRITICAL TEMP; then RGR TEMP = UPPER CRITICAL TEMP - TAVE 

* (1 / (UPPER CRITICAL TEMP  - UPPER OPTIMUM TEMP).                        (3)  

Otherwise; RGR TEMP = 0; where the UPPER CRITICAL TEMP = 90 and UPPER OPTIMUM 

TEMP = 70.  

Now, if TAVE < UPPER OPTIMUM TEMP; then RGR TEMP = 1.  

On the other hand, if TAVE < LOWER OPTIMUM TEMP; then  

RGR TEMP = (TAVE – LOWER OPTIMUM TEMP) * (1 / (LOWER OPTIMUM TEMP – 

LOWER CRITICAL TEMP); where LOWER OPTIMUM TEMP = 50 and LOWER CRITICAL 

TEMP = 40. 

However, if TAVE < LOWER CRITICAL TEMP; then RGR TEMP = 0.  

In order to estimate daily evapotranspiration or the movement of water to the air from 

sources such as soil, the following equations are employed to measure solar radiation on a given 

day of the year (DOY). 
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    LAT RADIANS = PI * LATITUDE / 180              (4) 

 Latitude radians (LAT RADIANS) are influenced by PI or 3.1415 times the latitude 

(LATITIDE) divided by 180.   

                 DL = 24 * ACOS(0 – TAN(LAT RADIANS) * TAN (DEC) / PI          (5) 

                 DEC = 0.41015 * SIN (0.01721 * (DOY) – 1.389)                                 (6) 

where; DL reflects length of a particular day of the year (DOY) and DEC measures the 

declination of the earth’s axis to the sun. DEC basically determines the angle at noon of the sun 

light hitting a horizontal surface on the earth at a given latitude.  

In addition, the relative growth rate based on day length (RGR DL) is represented as 

follows:   

  RGR DL =           (7)  

If DL is less than MIN DAY LENGTH; then RGR DL is 0; otherwise, RGR-DL equals DL – 

MIN DAY LENGTH) / (MAX DAY LENGTH – MIN DAY LENGTH); where MIN DAY 

LENGTH and MAX DAY LENGTH are 9.15 and 14.85, respectively. 

LAMBDA =            (8)  

LAMBDA represents the solar longitude which depends on D, the number of days 

following the vernal equinox (March 21), as follows: 

If D is greater than 186; then LAMBDA equals D – 186; otherwise, LAMBDA is equal to 180 

times D divided by 186.  

(1 0.001672 ^ 2) / (1 0.01672* ( *(77.5 ) /180))R COS PI LAMBDA= − + +    (9)  

  80D DOY= −         (10)  

Furthermore, R is the radius vector which is basically defined as the ratio of the earth-sun 

distance and its mean that also depends on LAMBDA. 
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SP = 889.23 / R^2 * (COS (LAT RADIANS) * COS (DEC) * SIN (H) 

                     * ( )*180) / )H COS H PI−                            (11)  

     ( *( / 2)) /12H PI DL=                                                                             (12)  

On the other hand, SP characterizes the daily total of potential solar radiation on a 

horizontal surface at a given location while H represents the hour angle. It is important to 

mention that SP is identified as an extremely valuable parameter due to the fact that its flux 

density is highly correlated with the standard (long-term mean) cycles of global radiation.  

PAN EVAP = (-0.2345 – 0.0326 * PRECIPITATION + 0.002188 * TAVE + 0.0002088   

* SP + 0.004202 * (TMAX – TMIN))                       (13) 

 Moreover, PAN EVAP is the pan evaporation for a particular weather station in a specific 

county.  The equation PAN EVAP is limited by setting PAN EVAPD = 0 when PAN EVAP is 

negative in order to have positive values; specifically: 

If PAN EVAP < 0; then PAN EVAPD = 0; otherwise, PAN EVAPD carries the value of PAN 

EVAP. 

          ASW =                (14)  

 In addition, the available soil water at the current day (ASW) takes the following form: 

If PREVIOUS ASW + PRECIPITATION – PREVIOUS EFF ET > ASW MAX; then ASW = 

ASW MAX; otherwise ASW is defined as PREVIOUS ASW + PRECIPITATION – PREVIOUS 

EFF ET. 

 Likewise, the amount of rainfall available on a daily basis plays a crucial role in our 

model. Despite the fact that other variables such as temperature and coordinates are fundamental 

in our pasture growth model, rainfall is the key player in our equation and it is introduced 

through the PRECIPITATION variable. Actually, changes in climatological conditions between 
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years cause forage fluctuations significantly in which inadequate rainfall induces a reduction on 

pasture growth (Yohn and Rayburn, 2000, Holechek, 1988, Parsch, Popp and Loewer, 1997).    

Also, the PREVIOUS ASW is the lag of the variable ASW or the available soil water 

from the previous day while PREVIOUS EFF ET is the previous day’s evapotranspiration based 

on ASW-PCT (the available soil water today expressed as a percentage of ASW MAX or ASW 

divided by ASW MAX) in which ASW MAX is the maximum available soil water that the soil 

can hold that has been defined as:  

ASW MAX = (2 * RYE – 4)             (15) 

In this equation, RYE represents the soil realistic yield expected which is defined as a 

constant equals to 4. 

EFF ET =               (16)  

On the other hand, EFF ET, the effective evapotranspiration due to ASW PCT = 0 when 

ASW PCT ≤ 0. In addition, when the variable ASW PCT equals 0; then EFF ET takes the 

following form: 

EFF ET = PAN EVAPD * EVOTRANS vs PANEVAP * PGR – H2O                

Here, the EVOTRANS vs  PANEVAP variable represents the ratio ET to weather station pan 

evaporation for cool-season forages (such as tall fescue) with a value of 0.79.  

             RGR H2O =               (17)  

Moreover, RGR H2O, the relative growth rate due to available soil water, equals to 1 if 

ASW PCT > ASW ABOVE (available soil water percentage at which plant growth starts 

decreasing due to water shortage). For cool-season grasses, ASW ABOVE is about 50 percent or 

0.5. In contrary, if ASW PCT < ASW ABOVE, RGR H2O takes the following form:  

 RGR H2O = (12 * ASW – PCT^2 – 16 * ASW – PCT^3) 
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             REL CUM GROWTH =              (18)  

 In addition, when DOY (day of the year) = 1, REL CUM GROWTH, the variable 

representing relative cumulative pasture growth is set to zero. On the other hand, when DOY > 1 

this variable takes the following form: 

              REL CUM GROWTH = PREVIOUS REL CUM GROWTH + RGR ENV; 

in which the PREVIOUS REL CUM GROWTH represents the lag of REL CUM GROWTH or 

the REL CUM GROWTH of the previous DOY. The other variable employed is the CUM 

GROWTH which is basically the growth accumulated over time defined as: 

            CUM GROWTH = REL CUM GROWTH * PGR MAX             (19) 

For the stochastic pasture growth, some of the previous equations were modified as an 

approach to integrate stochastic precipitation in order to provide a better representation of the 

climatological events in real life. In our approach, we use precipitation due to the fact that 

pasture yield relies heavily on rainfall (Rayburn, 2003). In fact, we employ the same fifteen years 

of daily historical weather data (Parsch, Popp and Loewer, 1997) utilized for the deterministic 

simulation. Our approach for the stochastic daily rainfall is based on the mean weekly 

precipitation and its standard deviation from normal distribution (Pang et. al, 1999).  

Another variable incorporated in our simulation is the death loss based on percentages 

employed in previous studies (Ferreira, 2001, Eberly and Groover, 2011 and Schuster et al., 

2001). In our ABM, this variable has been set up as two percent every year under certainty while 

the stochastic variable is a random number up to three percent that changes on an annual basis 

throughout the planning horizon.  

 Assumption 6: Death loss is 2 percent under certainty while under uncertainty differs 

annually.  
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Stocking Rate. The amount of steers for the annual operation depends on the forage 

capacity grown on the farm on a yearly basis and the slope of the terrain.  In order to identify the 

maximum sustainable amount of animals on each farm in the entire region in our ABM, our 

approach is based on Redfearn and Bidwell (2009), Holechek (1988), Wilensky (1999) and 

Wilensky (2005). In fact, the management decision of using rotational grazing induces stocking 

rate to utilize more of the pasture available resulting in increased animal grazing days per acre 

(Rayburn, 2005). The optimal stocking rate is bounded by the pasture availability and the 

average slope (USDA, 2009) identified for specific locations and implemented in the model 

based on sloping factors (Holechek, 1988). In effect, the slope in the farm of interest is assumed 

to be flat as suggested in our theoretical model while in adjacent locations may vary depending 

on the specific data for that particular location at the county level. Furthermore, since the model 

maximizes the pasture available within the entire simulated system, the farm of interest would 

not need to interact with adjacent silage farms because the maximum sustainable stocking rate 

depends only on the forage available at the farm of interest; however, it might not reflect reality.  

In order to incorporate the interaction among the adjacent silage suppliers in our 

interactive model, the average stocking rate throughout the entire planning horizon is assumed to 

be the minimum amount of cattle required by the buyer at the end of each operational year in 

both stochastic and deterministic simulations. Thus, when the optimal stocking rate in the 

contracting farm (farm of interest) is expected to be lower than the amount agreed with the final 

product purchaser due to pasture limitations, the farm of interest requests the adjacent silage 

farm to supply the silage needed in order to satisfy the forage demanded by the minimum amount 

of livestock agreed. This emerging pattern allows our simulation to have a closer approach to 

real agent interaction. In fact, BET has been programmed to measure the average stocking rate 
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throughout the entire planning horizon which represents the minimum number of livestock to be 

sold at the end of each operational year. This permits the interaction between stocker farms and 

the silage provider solely when the maximum sustainable stocking rate is below the average 

stocking rate. 

Assumption 7: Hay is completely mobile across space. 

Assumption 8: The farm of interest is a beef supplier under an agreement in which the 

average stocking rate over the planning horizon is the minimum stocking rate to be sold at the 

end of each operational year. 

Under the assumption that the precipitation does not vary between the farm of interest 

and adjacent farms and the slope in the farm of interest is flat while in nearby farms might differ, 

we identify the maximum sustainable stocking rate as follow: 

STOCKING RATE = (TOTAL USABLE FORAGE / FORAGE DEMAND) 

* SLOPE ADJUSTMENT                         (20) 

Where total usable TOTAL USABLE FORAGE is defined as the total forage production 

per acre times the total amount of acres available (ACRES) in units of pounds while FORAGE 

DEMAND is based on the daily animal weight (WEIGHT HEADS) times the daily dry matter intake 

(DM DAILY INTAKE) multiplied by the days of grazing and winter feed (DAYS INTAKE) as follows: 

TOTAL USABLE FORAGE = FORAGE PRODUCTION * ACRES 

FORAGE DEMAND = WEIGHT HEADS * DM DAILY INTAKE  

* DAYS INTAKE                  (21) 

 WV is characterized by hilly terrain that might cause grazing limitations to animals. This 

limitation is captured by integrating the SLOPE ADJUSTMENT variable. In fact, the spatial 

distribution of forage influences intake rate that eventually affect productivity and sustainability 

(Laca, 2000). Furthermore, stocking rate tends to gather and graze more in flat or less steep 
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slopes since the steeper the slope the less pasture in the site is consumed decreasing the grazable 

land area for the stocking rate (Laca, 2000, Holechek, 1988). In order to identify the optimal 

stocking rate in locations were the terrain is not flat as a representation of the region, the slope 

cannot be ignored.   

Assumption 9: The slope in the contracting farm is flat while in the nearby farms might 

differ. 

Electricity Generation. The source of energy generated is identified as renewable, due to 

the fact that it comes from a constantly available flow of input (Bhattacharyya, 2011). The 

energy generation equation has been built up based on EPA (2004), Barker (2001), Beddoes 

(2007), Wilensky (1999) and Wilensky (2005) approaches for our simulation.  

GENERATION = NET ENERGY CONTENT * METHANE ELECTRICITY 

CONVERSION * KWH BTU * ON-LINE EFFICIENCY                                   (22)      

where variables ON LINE EFFICIENCY,  KWH BTU and METHANE ELECTRICITY 

CONVERSION  are constants defined as 0.90, 0.000292997 and 0.25, respectively.  

             NET ENERGY CONTENT =                                                                              (23)  

On the other hand, NET ENERGY CONTENT is influenced by the GROSS ENERGY 

multiplied by the PERCENT ENERGY in which the latter is a constant with a value of 0.3554.  

GROSS ENERGY CONTENT =               (24)  

Furthermore, the GROSS ENERGY CONTENT is represented as the  

DAILY BIOGAS PRODUCTION HEAD times BTU. The BTU variable is a constant commonly 

used with the value of 600 that reflects the biogas energy content (EPA, 2004, Balsam and Ryan, 

2006, Beddoes, 2007 and Baker, 2001).  

DAILY BIOGAS PRODUCTION HEAD =                                                         (25)  
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The DAILY BIOGAS PRODUCTION HEAD is composed of the DAILY POUNDS 

PER HEAD times a biogas production factor with the value of 0.03440. 

Carbon Offset. The use of anaerobic digesters also provides potential GHG emissions 

reduction to livestock producers (in this particular case, the PBB industry) when capturing 

methane from the manure generated as a sustainable management practice (Baylis and Paulson, 

2011). In fact, these reductions on methane emissions can be sold to greenhouse emitters who 

might either willingly desire to reduce their own emissions or encounter emissions caps (Key and 

Sneeringer, 2011).    

CARBON OFFSET = DAILY METHANE PRODUCTION * 24         (26)   

The CARBON OFFSET equation is influenced by the DAILY METHANE 

PRODUCTION * 24. This is because methane has around 25 times the heat trapping capacity of 

CO2 or global warming of CO2; however, once it is captured through the anaerobic digester, 1 

ton of methane used for energy is equivalent to removing 24 tons of CO2.  

CO2 BASELINE = DAILY METHANE PRODUCTION * 25                          (27) 

Based on the same reasoning, CO2 BASELINE is equal to DAILY METHANE 

PRODUCTION times 25 (Baylis and Paulson, 2011, EPA, 2004, Forster et. al, 2007, EPA, 1999, 

Wilensky, 1999 and Wilensky, 2005). This model is able to estimate the amount of CO2 

equivalent emissions (or methane emissions) baseline based on total methane generated.  The 

methane production is based either on the amount of heads spatially distributed in the entire 

interactive world on a yearly basis when a clustering system is taken into account or by the 

amount produced only by the farm of interest under the absence of an anaerobic digester in 

which manure is deposited into a manure lagoon allowing emissions to be released into the 

atmosphere.  
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In fact, the CO2 BASELINE represents the carbon dioxide emissions generated by the 

cows in the cow/calf farm and the steers on the farm of interest (stocker farm) under certainty 

and uncertainty, respectively. On the other hand, the CARBON OFFSET shows their respective 

CO2 equivalent emissions reduction from deterministic and stochastic points of view.  

DAILY METHANE PRODUCTION =                                                                   (28) 

DAILY POUNDS PER HEAD * METHANE CONVERSION FACTOR * VS * 

MMPCA * MD * TPD  

The variable METHANE CONVERSION FACTOR is a percent with a value of 0.698 

specifically for the state of West Virginia while VS (total volatile solids) for high pasture-diet 

cattle is 10.1 (NRCS, 2011). Furthermore, the maximum methane producing capacity, MMPC, is 

valued 0.00384 and MD (methane density) is defined as 0.041 while TPD (daily ton factor) is a 

constant as 0.0005 or 1/2000 (EPA, 2004 and EPA, 1999).    

Manure Production. As mentioned earlier, under the assumption that each animal is 

purchased (in the farm of interest) at 500 lbs. and reaches approximately 900 lbs. before it is 

taken to the slaughterhouse and 1,000 lbs. cow in cow/calf farms across space; DMP or daily 

manure production in NetLogo is defined as follows (NRCS, 2011, Wilensky, 1999 and 

Wilensky, 2005) under the assumption that only 90 percent of the production is recoverable 

(NRCS, 1995): 

DAILY MANURE PRODUCTION = AAW * BHFDM * STK                               (29) 

AAW (daily average animal weight) is influenced by the IW (incoming weight plus 

(OW) outgoing weight divided by 2 or AAW = (IW + OW) / 2 which fluctuates on a daily basis 

throughout the simulation. On the other hand, the variable BHFDM represents the high forage 
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diet manure production by a beef cattle which is a constant with an average value of 10.1 pounds 

per 1,000-lbs. of animal. This is multiplied by the stoking rate (STK) during that particular year.   

Assumption 10: 90 percent of the manure in the spatial domain is recoverable based on 

NRCS (1995). 

Assumption 11: Manure is completely mobile across space and collected only during 

winter season as an approach to enhance clustering systems in the region. 

Cost of Investment (Anaerobic Digester). As the number of head increases (as clustering 

members), the costs associated with the anaerobic digester increases at a decreasing rate. Based 

on the Key and Sneeringer (2011) approach and using data from case studies published by 

Beddoes et. al (2007), the cost parameters are estimated in NetLogo when the following log-log 

functional form is employed:  

ln( ) ln( )K Nα β ε= + + ;                                                                                             (30) 

in which K represents the observed capital cost of the technology and construction, N is the 

number of heads while the estimated parameters α  equals 
^

exp( )α and β  equals 
^
β . In order to 

obtain the cost of investment, the estimated parameters are used in the following equation:                                                                                                                    

 *( )K N βα=                                                                                                               (31) 

It is assumed that the technology employed is a plug-flow digester since it is the typical 

technology used in Pennsylvania (Leuer, Hyde and Richard, 2008). The cost associated with the 

technology comprises the design and construction of the pump as well as construction 

observation and assistance, hydrogen sulfide filter, utility charge, power lines, electric generator, 

effluent holder, solid separators, building, pit heating and so forth (Key and Sneeringer, 2011, 

Leuer, Hyde and Richard, 2008).      

Net Present Value. A PBB farm considering investing in an anaerobic digester has the 
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options of either investing in a diversified business or maintaining its current sustainable 

business. In order to identify the farm of interest profitability, we use the net present value or 

discounted cash flow approach. In fact, the net present value (NPV) is a formal approach that 

condenses ecological and economical evaluations of a managing process within a planning 

horizon predetermined in which every contribution (net revenues) throughout the time under 

consideration is discounted up to the present day given a certain interest rate (Costanza and 

Neuman, 1997). The NPV would help us in evaluating the motivation behind venturing a 

diversified enterprise or continue under a specialized pasture based beef business from a 

profitability standpoint.  The following presents our profitability approach based on Perman et. 

al, (2003) and Key and Sneeringer (2011) and programmed in NetLogo (Wilensky, 1999 and 

Wilensky, 2005) under the assumption that the farm of interest is faced with diminishing returns: 

(i) If the NPV of the diversified business is positive ( 0BECNPV > ) and the NPV of the 

PBB business ( 0BNPV > ), the investment into the anaerobic digester should be considered.  

(ii) If the 0BECNPV <  and 0BNPV >  ; then, the investment on the anaerobic digester is 

an unacceptable option and solely PBB enterprise is profitable.    

0 0
/ (1 ) / (1 )

BEC BEC

T T
t t

BEC R E BEC BEC
t t

NPV PV PV R d E d
= =

= − = + − +∑ ∑
                              

(32) 

BECNPV  is composed of the present value receipts, 
BECRPV , minus the present value 

expenditures,
BECEPV , generated from the diversified business.  

0 1 15/ (1 )... / (1 )
BEC

t t T T
R BEC BEC BECPV R R i R i= = == + + + +

                                                                   (33) 

 
BECRPV  captures the summation of revenues generated from PBB and electricity 

production as well as carbon offsets over the planning horizon in which i  is the discount rate or 
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the value of money, t  represents indexes time and T  is the planning horizon and lifespan of the 

anaerobic digester. In other words, it reflects the discounted value of expected net receipts.    

0 1 15/ (1 )... / (1 )
BEC

t t T T
E BEC BEC BECPV E E i E i= = == + + + +

                                                                   (34) 

 Moreover, 
BECEPV  represents the summation of discounted expenditures or costs 

associated with the PBB production, energy generation and carbon emissions reduction based on 

capital and variable costs with regards the entire operation.   

 
0 0

/ (1 ) / (1 )
B B

T T
t t

B R E B B
t t

NPV PV PV R d E d
= =

= − = + − +∑ ∑
                                                   

(35) 

 On the other hand, BNPV  is defined as the present value receipts,
BRPV , minus the 

present value expenditures, 
BEPV , associated with the PBB production only during the planning 

horizon in which 
BRPV is represented as:  

       
0 1 15/ (1 )... / (1 )

B

t t T T
R B B BPV R R i R i= = == + + + +                                                                     (36) 

While 
BEPV  takes the following form: 

0 1 15/ (1 )... / (1 )
B

t t T T
E B B BPV E E i E i= = == + + + +                                                               (37)  

Using the same reasoning illustrated with the diversified enterprise, 
BRPV , and 

BEPV  is 

employed; however, the specialized business is solely a PBB farm.   

4.6.2 Data Sources. The data used for the simulation are included in Tables A-1 to A-12 

in the Appendix section. Climatological and WV county data, like for example, precipitation, 

temperature and average slopes are compiled from NOAA and Web Soil Survey (2009). On the 

other hand, the number of acres of pastureland per beef farm is an averaged value identified in 

previous studies conducted by Evans et al. (2007). Moreover, costs associated with beef 

production such as pasture production per acre and costs of production per head are based on 
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Eberly and Groover (2011) and Schuster et. al. (2001) while cattle prices are based on Hahn 

(2012) and Rayburn (2006).  Costs and prices were adjusted for inflation using the inflation 

calculator developed by DOL (2012). Also, it is assumed that the price of purchased silage is $88 

per ton (Judy, 2011). Furthermore, the daily pasture intake per animal and the sloping factor data 

have been compiled from Zobell, Burrell and Bagley (1999), Rayburn (2005) and Holechek 

(1988). Also, energy prices are commercial prices (EPA, 1999, Beddoes et. al, 2007) based on 

historical data published by the US Energy Information Administration (2012) and forecasted 

using the trend method based on Bhattacharyya’s (2011) approach in order to establish cyclical 

trends since the value of electricity is volatile and might continuously vary (EPA, 1999). 

Furthermore, the selected dicount rate and the average costs associated with the maintenance and 

monitoring of the anaerobic digester as well as the planning horizon for the NPV estimation are 

based on Key and Sneeringer (2011) and Baylis and Paulson (2011).  Moreover, costs related to 

manure collection are based on Ribaudo et. al (2003) and Weinheimer (2008) which includes 

manure base charges, transportation costs per mile and cost of manure per ton. On the other 

hand, the capital costs associated with the anaerobic digester are based on case studies identified 

by Beddoes et. al (2007) and parameters are derived using the Key and Sneeringer (2011) 

approach.     

 

 

 

 

 

CHAPTER V:  RESULTS AND DISCUSSION 
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The patterns emerged through this ABM simulation that allow us to understand the complexities 

associated with the introduction of the diversified PBB into the region and eventual benefits to 

entrepreneurs within the industry, society and the surrounding environment.  

5.1 Results and Discussion  

5.1.1 World Interaction. It is important to point out that the production approach assumed 

here is somewhat forward-looking and idealistic, but based on actual trends and current 

priorities.  The industry configuration assumed in this study is, by definition, more horizontally 

and vertically integrated than that found in conventional beef production since we incorporate 

renewable energy production as well as CO2e emissions reduction as an approach to enhancing 

the stream of benefits to farmers and society (i.e., multiple products produced in a spatially and 

intertemporally integrated manner).  The simulation model developed for this purpose is useful 

in answering “what if” questions and enhances our understanding of the interactions among a 

large number of variables as well as helping reduce the time and costs associated with 

experimentation.  In fact, modeling work associated with ecological and agricultural systems 

tends to be categorized as an applied development or investigation with a practical objective 

(Thornley and France, 2007).      

During the interaction, the system identifies the amount of cattle available over space and 

is able to supply the livestock required by the farm of interest from the closest adjacent cow/calf 

farms at yearly basis. As we can appreciate, Figure 5.1 shows the interaction between the 

cow/calf farms and the contracting farm as part of the emerging patterns in the clustering system 

represented by the yellow links among businesses. Interaction between the farm of interest 

(stocker farm) and the cow-calf farms in the region during the cattle supply process in which 

livestock is provided by farms available in the region at yearly basis. Another interaction that 



 

88 
 

takes place is that the process of rotating the livestock during grazing season. BET simulates 

farmers rotating the cattle during the grazing season from one paddock to another in the entire 

spatial domain. Fertilizer applications (digested manure) are also simulated by BET as well as 

harvested forage for winter feed. Figures 5.2 and 5.3 illustrate the interactions during the grazing 

season.   

 

 

 

 

 

 

 
Figure 5.1: Interaction between the farm of interest (stocker farm) and the cow-calf farms in the region 
during the cattle supply process in which livestock is provided by farms available in the region at yearly 
basis hauled by cattle trucks. In this particular year, BET identifies that three adjacent cow/calf farms are 
able to supply the stocking rate needed in the contracting farm. 
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Figure 5.2: A representation of the interaction among agents within the system during the grazing season 
in which the farmer rotates stocking rate in 2/3 of the paddocks while 1/3 of the paddocks are used for 
silage for winter feed (based on expert opinion) and using 1st and 2nd cuts each year (Rayburn, 2008 ). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.3: On every iteration, one head of cattle is randomly chosen to illustrate its current weight 
during the grazing season simulation. 

 
Figure 5.4 presents the interaction between the stocker farms and the silage supplier in 

the region and each farm requests the adjacent silage farm to supply the silage needed in order to 

satisfy the forage demanded by the minimum amount of heads under agreement or contract. This 

 

 



 

90 
 

emerging pattern allows our simulation to have a closer approach to real life scenarios at the 

regional level. 

 
 
 
 
 
 
 
 
 
 

 

 

 

 
 
Figure 5.4: When livestock consumption is greater than the forage available in the farm of interest, the 
farm of interest contracts with the adjacent silage farm to supply the input in order to satisfy the forage 
demanded by the stocking rate. This occurs only when the optimal stocking rate based on forage 
available on stocker farms is below the average stocking rate (based on mean stocking rate over 15 
years) to be sold at the end of the operational year. Hauling trucks are invoked by the farm of interest so 
the interaction taking place.  
 

The farm of interest is the only business taking the risk of retaining ownership of the 

animals after the grazing season is complete. The intuition behind this farmer’s decision is due to 

the fact that during the winter season, the cattle are confined to a handling facility or similar 

building for continued beef and energy production and its eventual CO2e emissions reduction 

expecting to obtain higher profitability than a specialized PBB enterprise at the end of the 

planning horizon through electricity sales, beef and carbon offset. Once the grazing season is 

finished, adjacent cow/calf farms sell their calves and maintain their cows during the winter 

season becoming part of the clustering system through manure collection. Figure 5.5 illustrates 

the links between farms represent the clustering system that connects the farm of interest with 

nearby cow/calf enterprises as well as manure transporters as a way of optimizing the resources 
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available causing agglomeration economies within the region.  

 

 

 

 

 

 

 

 

 

 

 
 
Figure 5.5: During the winter season, animals are confined to a building where manure is collected in 
the entire spatial domain. The manure produced in nearby farms is transported by hauling trucks to the 
farm of interest for energy generation while methane is captured through the anaerobic digester. The 
activation of the clustering is invoked by the farm of interest. 
 

The model is able to show estimates through labels attached to agents such as the 

simulated pond (to the left of the farm of interest depicted below) which depicts the CO2e 

emissions baseline generated if the manure produced within the clustering system is deposited 

into the pond. BET is programed to explicitly illustrate estimations of the manure produced 

during the winter period of each year as well as energy generation and the amount of carbon 

offset as presented in Figure 5.6. 
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Figure 5.6: From left to right, the interacting world illustrates an estimate of: CO2 equivalent emissions 
baseline (60 tons), manure collected (20 tons), electricity generation (4 MWh) and carbon offset (58 tons) 
through the anaerobic digester at the daily basis during winter period. 
 

5.1.2 BET Model and Outcomes. This simulation model offers the advantages of 

generating simulation results in the interface view while running the simulation. For instance, 

BET derives the annual stocking rate graphically as well as in the simulation results box during 

the first stage of the simulation as depicted in Figure 5.7 (interface view). It also provides the 

NPV for the specialized and diversified enterprises as well as the cost of technology under 

stochastic and deterministic scenarios at the end of the simulation. The interface view also gives 

the parameter estimates derived from ordinary least square (OLS) for the cost of technology and 

energy price trends. In addition, during this phase stochastic and deterministic precipitation and 

pasture growth as well as temperature are simulated simultaneously. On the other hand, the 

primary products (beef, energy and carbon offset) are graphically presented in the interface view 

during stage two in which agents spatially located interact. Moreover, the model provides simple 

instructions to the export outcomes spreadsheet as depicted in Figures 5.8 and 5.9. 
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Figure 5.7: The model is programmed to display some of the simulation results of the interface view 
through plots (graphs) and the “Simulation Results” box shown to the right. 
 
 As shown in Figure 5.8, BET exports simulation results to a spreadsheet file with csv extension 

named netlogoresults.csv. This file stores results and selected parameters such as county, members in the 

clustering system, carbon price, cost-share percentages, stocking rates, technology costs, annual net 

revenues and NPVs for further analysis and comparison between simulations under different scenarios.     

 

 

 
 
 

 

 

 

 
Figure 5.8: BET is conveniently programmed to provide instructions of how to export complete 
simulation results to a spreadsheet before simulation starts. After the completion of the simulation, users 
can access the “netlogoresults.csv” file for further evaluation. 
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Figure 5.9: After the simulation is complete, results are exported in the form of a spreadsheet using csv 
extension to be accessed through MS-Excel or any other compatible program.  

 As previously mentioned, our model considers fescue-clover mixture as the primary 

forage for the business. Under appropriate fertilization and well-managed practices, tall fescue 

grasses are able to produce approximately 5.1 tons of dry matter per acre per year with a standard 

deviation of 1.4 tons (Rayburn, 2003). Our assumption also coincides with the majority of PBB 

businesses (65 out of 83) at the national level, who considers a cool-season grass-clover 

combination as highly important in their forage system (Rayburn and Lozier, 2002). In fact, 

pasture yield relies heavily on precipitation (Rayburn, 2003) while legumes contribute building 

up nutrients available such as nitrogen in the soil or its fertility allowing for more pasture 

availability (Raine, 2001). Thus, a tall fescue-clover mixture along with appropriate digested 

manure application and the initial soil organic matter condition permit nutrients to be at a steady 

state each year. In fact, the effect of fertilization and nutrient availability depends on the pasture 

growth rate which depends on temperature and precipitation (Rayburn et. al, 1998, Rayburn, 

2005). Therefore, the pasture growth (pasture mass) emerging patterns on a daily basis provide 
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an insightful understanding and closer real life interactions of the primary input in the PBB 

industry. Figures 5.10 and 5.11 illustrate the pasture yield per acre in pounds on a yearly basis 

derived from the simulation while Figures 5.12 to5.15 present graphical results of the 

precipitation and temperature for one year as well as over the entire planning horizon.  

 

 

 

 

 

 
 
Figure 5.10: Daily pasture growth in pounds per acre over one year. The spaces between the daily 
pasture growth under deterministic (green) and stochastic (gray) simulations is a reflection of droughts, 
while the vertical bars coincide with rainy seasons or higher precipitation shown in Figure 5.11. 
 
 
 
 
 

 

 

 

 

 
 
Figure 5.11: Daily pasture growth in pounds per acre over the planning horizon (15 years). The daily 
pasture growth is a dynamic function intended to estimate absolute plant growth rate of forage crops 
based on daily solar radiation, precipitation events as well as minimum, average and high temperatures.  
 
 
 
 
 
 

 

 

 



 

96 
 

 
 

 

 

 

 

Figure 5.12: Daily stochastic and deterministic precipitations in inches for one year. 

 

 

 

 

 

 

 

 

Figure 5.13: Pasture growth is influenced by the rate of precipitation. In fact, annual forage production 
has been determined to be strongly correlated to increased precipitation (Scaglia et. al, 2009).  During 
drought seasons, pasture growth tends to be lower while during rainy season it grows significantly. 
Above, we can appreciate the stochastic (orange) and deterministic (blue) precipitation simulated by BET 
for the entire planning horizon. 
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Figure 5.14: The above graph shows the fluctuations on temperature for one year while the graph below 
considers the entire planning horizon 
 
 
 
 
 

 
Figure 5.15: During the simulation, pasture growth increases with higher temperatures while it starts to 
decrease at lower temperatures. This can be appreciated when comparing Figures 5.9 and 5.13. 
 
 The pasture yield over the planning horizon varies depending on essential elements such 

as daily rainfall (as previously mentioned) that eventually determines the forage allowance for 

the stocking rate on an annual basis. The simulation shows a mean forage production of 7,236 

lbs./acre/year with a 642 lbs./acre/year standard deviation with a maximum production of 8,216 

and a mean forage production of 7,424 lbs./acre/year with a 611 lbs./acre/year standard deviation 

having a maximum production of 8,351 lbs./acre/year over the planning horizon, under certain 

and uncertain simulations respectively as depicted in Figure 5.16. Results also show that the 
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highest daily forage growth (depending on the climatological conditions of that particular year) 

occurs between the months of May and June which coincides with Scaglia et. al, 2008 and 

Rayburn, 2005  (Figure 5.11).    

 

 

 

 

 

 

 

 

  Figure 5.16: Total annual forage yield per acre over 15 years. 

 The stocking rate plays a significant role in our model. Due to the fact that animals tend 

to gather and graze more in flat or less steep slopes, the steeper the slope the less pasture in the 

site is consumed decreasing the grazable land area for a given stocking rate (Laca, 2000, 

Holechek, 1988). We can appreciate from Figure 5.17 that farms in locations with steeper slopes 

would consider lower stocking rate than the flatter ones. The pasture growth function is crucial in 

our simulation model since the pasture available mainly determines the optimal stocking rate for 

each year and, eventually, the beef and electricity production as well as carbon offset. The 

stocking rate for the annual operation depends on the annual forage capacity of the farm and the 

slope of the terrain. In addition, the stocking rate will determine the amount of digested manure 

generated for nutrient application. Our results identify that more than 1,500 pounds of digested 

manure could be produced per head after the manure is used for energy generation. This would 

allow the farm of interest to generate the appropriate amount of this by-product to be applied to 
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its 93 acres since approximately 620 pounds would be applied per acre annually for pasture 

production. This implies that an excess of digested manure would be produced that can be used 

in adjacent locations as fertilizer. 

 

 

 

 

 

 

 

Figure 5.17: The above figure illustrates annual stocking rate (total animal units per farm) differences 
between the farm of interest (stocker) and adjacent stocker farms due to differences in average slopes 
when forage available is optimized. It also considers the stocking rate on adjacent cow/calf farms in 
which the animal unit (AU) represents a 1,000 lb. cow with calf (Redfearn and Bidwell, 2009, William 
and Hall, 1994). The “optimal-stocking-interest-1” (black) and “optimal-stocking-interest-1-stoc” (red) 
represent the stocking rate of the farm of interest (stocker farm) under deterministic and stochastic 
simulations, respectively. On the other hand, “optimal-stocking-nearby-1” (blue) and “optimal-stocking-
nearby-1-stoc” (green) denote the stocking rate of the nearby stocker farms under certainty and 
uncertainty, respectively. At last, the “optimal-stocking-nearby-1-cow/calf” and “optimal-stocking-
nearby-1-cow/calf-stoc” displays the adjacent cow/calf farm from a deterministic as well as stochastic 
perspective, respectively. As previously mentioned, on this model we refer to the optimal stocking rate as 
the maximum sustainable production. 
 
 The results from BET are compared with those developed by Eberly and Groover (2011) 

on their stocker steers budget. They employed 1.35 acres per head for their budget which 

concides with two of our stocking rate estimations during the lowest annual forage production 

(years 12 and 14). Based on our data, our estimated stocking rate tends to be higher than 

suggested by Eberly and Groover (2011); but, their publication does not specify the data used for 

their assumption. As we have seen, the pasture growth which ultimately determines the stocking 

rate tends to vary depending on many factors such as climatological and geographical conditions. 

On the other hand,  Yohn and Rayburn (2000) conservatively estimated that approximately one 
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acre per head during grazing season is the recommended rate based on 1997-1999 data. Overall, 

the more forage allowance, the higher the annual stocking rate per acre.   

 

 

 

 

       
 

 

 

 

 
 
 
 
 For a cow/calf farm, our simulation results are compared to the ones identified by Scaglia 

et. al (2008) in which they conducted three experimental replicates of cow-calf pairs during the 

grazing season. They obtained 0.71 hectares per head (1.75 acres per head) for two experimental 

studies and 0.91 hectares per head (2.25 acres per head) in the third one.  The annual stocking 

rate derived from BET has some variability over the planning horizon due to the forage available 

on a yearly basis. However, the results depicted in Table 5.2 tend to present similarities to the 

ones identified by Scaglia et. al (2008) in their experiment. 

 

 

 

 

Table 5.1: Annual stocking rate in the farm of interest (stocker) over the 
planning horizon (15 years). 

Stocking Rate-Stocker Farm: Acres per Head 
Year Deterministic Stochastic 

1 1.04 1.02 
2 1.15 1.15 
3 1.09 1.08 
4 1.02 .97 
5 1.19 1.19 
6 1.11 1.02 
7 1.12 1.08 
8 1.06 1.04 
9 1.19 1.01 

10 0.99 1.03 
11 1.07 1.09 
12 1.35 1.21 
13 1.13 1.21 
14 1.41 1.37 
15 1.06 1.06 
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Table 5.2: Annual stocking rate for adjacent cow/calf farms over the planning horizon. Note: The 
estimation of this stocking rate plays a fundamental role during the winter season since it is used to 
estimate the manure needed for the anaerobic digester in the farm of interest.  

 

 

 

 

 

 

 

 

 

The inclusion of carbon offsets through an anaerobic digester is not only a way to reduce 

part of the methane produced in the PBB industry but also a form of generating additional 

income when a carbon market exists. Figure 5.18 illustrates CO2e baseline values in tons and its 

relative carbon offset estimates derived from our model simulation in the farm of interest.  We 

can also observe in Figure 5.19 that the greater the clustering system, the more CO2e emissions 

are captured through the anaerobic digester. 

 

 

 

 

 

 

 

Stocking Rate - Cow/Calf Farm: Acres per Head  
Year Deterministic Stochastic 

1 1.60 1.55 
2 1.79 1.79 
3 1.66 1.66 
4 1.55 1.50 
5 1.86 1.86 
6 1.72 1.55 
7 1.72 1.66 
8 1.66 1.60 
9 1.86 1.55 

10 1.50 1.60 
11 1.66 1.66 
12 2.11 1.86 
13 1.72 1.86 
14 2.21 2.11 
15 1.66 1.60 
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Figure 5.18: Carbon offset compared to CO2e baseline under deterministic and stochastic scenarios 
during winter season under a clustering system of five members. 
 
 
 
 
 
 
 

 

 

 

 

 
Figure 5.19: Carbon offset in tons over time under a 0, 3 and 5 clustering system.  
Note: This reflects the annual amount of CO2 equivalent emissions reduction over the planning horizon 
(15 years) with respect to the total amount of methane generated at a given stocking rate (through 
manure) on a yearly basis.  
 
 BET is also programmed to estimate the amount of renewable energy produced on the 

farm of interest. When the clustering system is greater than zero, electricity production depends 

not only on the methane generated during winter at a given stocking rate on the farm of interest 

(stocker farm) but also adjacent farms (cow/calf farms) spatially distributed in the system. Figure 

5.20 presents a plot (in NetLogo terms) or graphical representation of the energy production 
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during the interaction phase under stochastic and deterministic simulations. We can appreciate, 

by looking at Figure 5.21, that more renewable energy can be generated when more farms join a 

regional cluster, implying a synergistic effect reflecting a year to year variation.     

 

 

 

 

 

 

 
 
Figure 5.20: Energy generation under deterministic and stochastic scenarios produced during winter 
season. Note: “Total-Electricity” represents the total amount of daily electricity measured in megawatts 
per hour (MWh) generated in the farm of interest under certainty while the “Total-Electricity-Stoc” 
estimates electricity production stochastically.  
 
 
 
 
 

 

 

 

 

 

 
 
 
Figure 5.21: Energy generation (deterministic and stochastic) over the planning horizon when 0, 3 and 5 
clusters are taken into consideration.  
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 Beef production in the farm of interest is also measured in our model. Beside the 

clustering system formed by the manure production, another cluster is developed when the 

adjacent silage farm supplies silage. This occurs when the expected pasture consumption by the 

stocking rate is higher than the amount of forage available in the stocker farms spatially 

distributed. Beef production fluctuations (in kilograms) illustrated in Figures 5.22 and 5.23 

reflects the variability on stocking rate on a yearly basis over the planning horizon.   

 

 

 

 

 

 
 
Figure 5.22: Annual beef production under deterministic and stochastic scenarios derived during system 
interaction over 15 years. 
 
 
 
 
 

 

 

 

 

 
 
 
 
 
Figure 5.23: Besides the plot developed in NetLogo, the above graph presents more precisely the annual 
beef production over 15 years.  
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 Moreover, the cost of the anaerobic digestion system, considered as an environmental-

friendly technology, depends on the stocking rate under consideration. When a clustering system 

is absent, BET only takes into account the stocking rate available in the farm of interest. On the 

other hand, the amount of animals spatially distributed takes importance under a clustering 

system; therefore, the capital investment toward this technology considers the stocking rate 

distributed. Table 5.3 shows the costs associated with anaerobic digesters without or under a 

clustering system.   

Table 5.3: Investment costs associated with anaerobic digester. Note: As the number of heads increase 
(together with clustering members), the costs associated with the anaerobic digester increases at a 
decreasing rate, implying economies of size. 

Capital Investment: Anaerobic Digester in the Farm of Interest ($000) 

Clustering Members Deterministic Stochastic 
0 155.8 158.3 
1 174.2 176.2 
2 190.0 192.4 
3 204.0 206.4 
4 216.8 219.2 
5 228.4 231.4 

 
Besides all the social and environmental benefits that a diversified enterprise might bring 

to the region, the farm of interest requires an economic or profit motivation in order to launch 

this new venture. Our profitability approach is based on the NPV within the planning horizon of 

15 years. We compare the NPV between the diversified business against the specialized 

enterprise. Our approach differs from the ones previously mentioned under Chapter III: Review 

of the Literature-Renewable Energy since we suggest a centralized system located on a small 

farm (with less than 300 heads under a clustering system) that would purchase the manure 

produced by nearby farms not only taking the risk of the capital investment associated with this 

technology but also the costs of manure collection.        

5.1.3 Sensitivity Analysis. Different sensitivity analyses with respect to profitability were 

conducted to observe under what carbon price and cost share percentage combination the 
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diversified PBB industry would be able to diversify its profit streams while contributing to 

surrounding society as well as the environment. The clustering system does not have an impact 

on the specialized business, since the spatial effects only applies to the proposed diversified 

enterprise; especially when comparing NPV.    

5.1.3.1 Zero carbon prices and no cost share program. As we can appreciate from Figure 

5.24, the absence of an offset market and cost share program would not allow beef farmers to 

adopt an anaerobic digester; therefore, environmental improvements as well as additional income 

to businessman within the PBB industry cannot be achieved under current market conditions. 

Results shown in Figure 5.24 illustrate the NPV between these two alternatives in which the 

specialized industry generates a positive NPV while the proposed diversified farm is found to be 

unprofitable under both deterministic and stochastic situations. Indeed, we can observe that while 

the clustering system increases of the NPV of the diversified enterprise decreases. It is important 

to point out that besides the costs of the anaerobic digester, the farm of interest needs to consider 

the costs associated with manure collection within the spatial domain if the objective is to 

diversify its income stream.   
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Figure 5.24: Net Present Value (NPV) over the planning horizon. Note: This graph does not consider a 
cost share program while carbon price is set to zero (0,0). We can observe that the specialized enterprise 
is the only alternative showing positive NPV over 15 years. Notice that the clustering system does not 
have an impact on the specialized business, since the spatial effects only applies to the proposed 
diversified enterprise; especially when comparing NPV.   
  

Our model identifies that it is not economically viable to venture a diversified PBB 

enterprise if farmers do not get an economic incentive after investing in advanced technologies 

that not only generate renewable energy but also reduce CO2 equivalent emissions when 

compared to a specialized PBB business.  

 

 

 

 

 

 
 
 
 
Figure 5.25: An unprofitable notice prompted to users after simulation. Note: A notice is prompted 
after simulation is complete exposing the profitability status based on selected parameters and system 
interaction. The illustration above alerts that the farm of interest would obtain a non-positive NPV under 
the scenario selected while the figure below expresses it in the interacting world.   
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Figure 5.26: An unprofitability notification in the interacting world. Note: The profitability status is 
also depicted in the interacting world after the simulation is finished.  
 

5.1.3.2 Carbon prices ($0, 13, and 26) and no cost share program. We ran the model 

under most commonly used carbon prices ($0, $13 and $26) per CO2 equivalent tons (Key and 

Sneeringer, 2011, Baylis and Paulson 2011 and EPA, 1999) without considering cost share 

programs. Results show that while carbon prices increase, NPV decreases at a decreasing rate 

under stochastic and deterministic scenarios; however, the diversified venture still results in non- 

positive NPV even when considering carbon prices of $13 and $26 within all the clustering 

system options in the model as shown in Figure 5.27.  
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Figure 5.27: Net present value (NPV) over the planning horizon under different carbon prices. The NPV 
values do not reflect cost-share programs. 
 

5.1.3.3 Carbon prices ($13) with cost share (20% and 50%). As depicted in Figure 5.28, 

the combination of a carbon price of $13 per each CO2e ton reduced together with 20 percent of 

cost share toward the anaerobic digester still shows negative NPVs at each level of clustering. 

On the other hand, the combination of a carbon price of $13 per CO2e ton reduced combined 

with a 50 percent cost share program results in a positive NPV under stochastic as well as 

deterministic simulations. Even though the NPV in the stochastic simulation is positive, the 

specialized farm is still more economically viable with a NPV range of $46,000 to $42,000 

(compared to $33,000 to $37,000 for the diversified farm). On the contrary, if the farm of interest 

absorbs even 50 percent of the cost of the anaerobic digester, assuming that the carbon price is 

$13, the diversified enterprise becomes more attractive from a profitability stand point within a 

clustering system (with less than or equal to two members) under certainty. Based on the results, 

the diversified venture would be more economically attractive than the specialized farm when up 

to two adjacent cow/calf farms become part of the regional clustering system at a carbon market 
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price of $13 per CO2e emissions reduced since the NPV tends to be higher than the specialized 

NPV up to two clustering members.  

 

 

 

 

 

 

 

 

Figure 5.28: NPV over the planning horizon with a carbon price of $13 under different cost-share 
percentages (20 and 50 percent).  
 

5.1.3.4 Carbon prices ($26) with cost share (20% and 50%). As we can appreciate from 

Figure 5.29, although a combination of 20 percent share cost program with a carbon price of $26 

improves profitability compared to a combination of $13 carbon price when farmers invest only 

80 percent of the technology, it would not be enough for a PBB farm to switch from a 

specialized to a diversified enterprise since its NPV is significantly lower than the specialized 

business. Nevertheless, if the entrepreneur would have to pay only 50 percent of the technology 

while carbon price is $26, the new venture would be economically attractive when each 

clustering system is considered from stochastic and deterministic perspectives. In contrast to the 

previous profitability status as depicted in Figures 5.25 and 5.26; our model shows a positive 

profitability status at the end of the simulation in the interface view and interacting world as 

shown in Figures 5.30 and 5.31.         
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Figure 5.29: NPV over the planning horizon with a carbon price of $26 under different cost-share 
percentages (20 and 50 percent).  
 
 
 
 
 
 
 
 
 
 

 

 

 
 
Figure 5.30: The illustration above illustrates a positive NPV under the scenario selected, while the 
interacting world (Figure 5.30) shows the profitability status of the farm of interest.  
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Figure 5.31: The profitability status is labeled above the farm of interest after 10,979 iterations. In this 
illustration, the NPV over the planning horizon is greater than zero.  
 

Based on these simulation results, we can infer the importance of not only considering 

the influences of climatological conditions on the primary inputs of production but also 

economic motivation or incentives in order to enhance sustainable production within a spatially 

correlated industry. In fact, the revenue received from carbon offsets under the cap-and-trade 

system is a function of the manure management technique as well as market price (Key and 

Sneeringer, 2011). Thus, carbon price is a key determinant of profitability of a diversified 

enterprise. However, for small PBB businesses in Appalachia, the profitability of adopting an 

anaerobic digester to diversify a pasture based enterprise within a region might take major 

importance when a combination of carbon price with a cost-share program is taken into account. 

The benefit of an industry is intensified when clustering systems are developed and the indirect 

effects of adjacent farms with respect to the farm of interest are captured augmenting renewable 

energy production, reducing CO2 equivalent emissions compared to their baseline and improving 

profitability when policy instruments are employed. BET results show that a significant NPV 

would not take place without considering a carbon offset price and cost share program 

combination. 
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Based on the data used in our ABM, no combination comprised of a carbon price of $13 

or below along with a cost share program lower than or equal to 20 percent toward the anaerobic 

digester will motivate the specialized business to switch to a more diversified enterprise. 

However, results also show that a combination of 50 percent share cost with a carbon price of 

$13 presents great possibilities for the diversified enterprise to become a reality. This will permit 

the farm of interest to reduce approximately 176 to 308 CO2e emissions from a baseline of 184 

to 321 CO2e tons emissions produced from manure and generate approximately 12 to 20 MWh 

while providing 35,000 Kg of high quality beef to the region under certainty. This allows the 

diversified enterprise to obtain a NPV range of $39,000 to $45,000 over 15 years when 

considering from zero to up to two participants in the clustering system obtaining a higher 

profitability than focusing on grass-based beef production only ($38,500). On the other hand, 

even though the diversified business might bring some social and environmental benefits through 

the same carbon price and cost share percentage combination under an uncertain situation, it will 

generate a NPV range of $33,000 under stochastic conditions. Since the specialized business will 

generate a NPV of approximately $44,500, the farm of interest would not have an economic 

stimulus for this new business venture.  

Furthermore, deterministic results show that a combination of 50 percent cost share along 

with a $26 carbon price will build up a financial basis to diversify the sources of income on a 

PBB farm assuming that up to five participants have agreed to become part of the cluster. Under 

this scenario, the farm of interest will obtain a NPV of $62,000 to $85,000 over the planning 

horizon. It will also be able to produce on average 35,000 Kg of grass-based beef, while between 

12 to 33 MWh of energy will be produced and 176 to 505 CO2e emissions reduction or 96 

percent of baseline can be achieved.  
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On the other hand, stochastic results show that a combination of 50 percent cost share 

along with a $26 carbon price will produce approximately 12 to 34 MWh of renewable energy, 

more or less 37,000 kg of beef and capture approximately a range of 180 to 516 CO2e tons of 

emissions. This will allow the diversified PBB business to obtain a NPV of $48,000 to $87,000 

against a NPV of $43,000 to $45,000 for a specialized enterprise.  

Although the carbon prices used on this study are hypothetical as a futuristic approach, it 

is fundamental to point out some of the most recent and projected values found in the literature 

reviewed. For instance, Shih et. al (2006) express that by 2006 the carbon price was 

approximately $30 per CO2e ton under the E.U. Emissions Exchange System. On the other hand, 

FOE (2008) illustrates that the public sector tends to use this price based on the social cost of 

carbon (societal cost per ton of emission), thus this price was around $41.87 by July 2008.  

Furthermore, Baylis and Paulson (2011) point out that historical carbon prices in the European 

Union ETS floated around $21.15 per CO2e by 2010. Alternatively, Olso (2009) envisions that 

this price will be around 37 and 50 per CO2e emissions reduced by 2013 and 2016, respectively.   
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CHAPTER VI: POLICY RECOMMENDATIONS 

The outcomes from BET are fundamental in order to address our third objective or provide a 

basis for policy recommendations. Our experimental simulation shows that the emergent patterns 

in physical and time spaces can be developed through the interaction between agents and the 

surrounding environment (Lijun, 2009). In fact, the implementation of these management 

techniques as a form of optimizing beef farmers’ profitability enhances clustering among 

locations by intensifying the benefits from sustainable practices. Thus, the use of multifunctional 

land attributes enables us to address climate-related issues as well as to expand sustainable 

techniques across space. From the multiple interactions between the diversified industry, agents, 

and the surrounding ecosystem we have found potential environmental benefits as well as 

profitability. We can infer that the primary agent (i.e., the farm of interest) focuses on the 

achievement of higher profits by utilizing available inputs within a region for the production of 

outputs in concert with environmental protection objectives; however, in order to achieve these 

objectives a carbon market as well as cost share programs are crucial for this emerging industry 

to become a reality.  

Our results imply that for an average grass-fed beef enterprise with 93 acres of 

pastureland (as is typical of Appalachia) as the primary resource surrounded by nearby cow/calf 

farms within an approximate 20 mile radius, will need to rely on a minimum of $13 per ton CO2e 

reduced along with a cost share program willing to share the risk of no less than half of the 

capital investment associated with an anaerobic digester within a clustering system of up to two 

participants in order to economically justify diversification of business bringing environmental 

and economic development to the region under certainty. Alternatively, a policy combination of 

50 percent cost share with a $26 carbon price not only will enhance environmental improvement 
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but also improve profitability under unexpected as well as certain weather conditions. Current 

federal cost-share programs such as, the Environmental Quality Incentives Program (EQIP) 

under the USDA offer cost share up to 75 percent of the total capital investment (USDA, 2012). 

We can infer from our results that a diversified farm can benefit from lower cost-share 

percentages than currently provided if carbon markerts are available.      

Furthermore, since we are creating a new market for manure as a raw material for energy 

production (while capturing CO2e emissions) and its eventual use as fertilizer in the form of 

digested manure, this market asset would have some implications toward surrounding farms and 

given certain market mechanisms to compensate for their willingness to participate in a manure 

collection program within a clustering system. Our model assumes that adjacent farms 

collaborating in the emerging clustering systems will benefit from the price (cost) of manure sold 

to the farm of interest as well as from the sales of harvested silage which also depends on the 

climatological and topographical conditions of the region. The interaction among these agents 

driven by the goal of improving quality of life while bringing economic development to the 

region illustrates the necessity of developing appropriate policy instruments (especially during 

periods where issues dealing with energy independence, climate change and human health are 

taking on a renewed sense of urgency at the global level) that not only bring innovative 

technology but also a more sustainable industry to Appalachia. 

We can also infer from our results overall benefits to the Appalachian region if the 

proposed policy instruments are implemented as an approach to motivate the introduction of a 

diversified PBB industry in West Virginia. Examples of such benefits include:   

i. More local and nutritive meat production for the Appalachian community 

supporting local farming practices which create local jobs and increases food 
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security. The creation of clustering systems within a more diversified industry 

would enhance economic activity not only through the elements required in the 

beef livestock supply and demand chain but also power utility companies as well 

as the transportation sector in charge of the mobility of resources within the 

region. Thus, the implementation of clusters in the region would permit farmers to 

provide a healthy meat diet, more energy independence and improved and 

protected natural resources as a tool that eventually enhances economic growth 

and social improvement locally.  

ii. Enhance the use of environmentally friendly techniques for niche products within 

the agricultural sector that might expand to other local industries. By virtue of 

inter-industry linkages, the use of innovative technologies that might contribute in 

the optimization of agricultural resources while bringing some social benefits at 

the county level could stimulate other parts of the agricultural sector in 

Appalachia. Local government in conjunction with federal agencies might be able 

to encourage agricultural entrepreneurs to explore achieving the above-noted 

outcomes or envision similar interconnected applications (waste treatment, energy 

production and GHG emissions reduction) that can be economically achievable 

and advantageous. The public sector could support this “green technology” to be 

employed in farms by providing guidance and information for better planning, 

waste management logistics and economic incentives on capital investment 

(RELU, 2011). Furthermore, incentives that stimulate adjacent cow/calf 

enterprises in manure collection could help in the development of clustering 

systems.                
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iii. Greenhouse gas emissions reduction. The capture of methane to be used for 

renewable energy production allows for emissions reduction (EPA, 1999, 

S.E.C.O., Undated). In fact, the incorporation of the anaerobic digester and 

creation of clustering systems in the Appalachian region would contribute 

significantly in reducing the GHG emissions generated (through manure) from the 

PBB industry while bringing profits to Appalachian farmers.       

iv. Promote the expansion or development of markets. A diversified PBB industry 

would stimulate the establishment of new markets within the region. For instance, 

an emerging manure market would occur not only because it is the primary input 

for energy production and carbon offset but also a substitute for inorganic 

fertilizers that could be utilized in the farming sector and green areas within the 

region. In addition, the possibility of achieving substantial profitability and 

environmental benefits by diversifying products through better resource allocation 

and utilization.  As a result, the ability of generating several products within one 

industry would eventually contribute in the development of emerging markets 

through each niche product.        

v. Maximize resources available as a form of reducing the extraction of natural 

resources. Local economic activities in the rural sector might increase negative 

externalities in the area. However, an increase of renewable resources available in 

the region would lead to decreased necessity of extracting local natural resources 

in order to satisfy the demand of inputs used in the farming sector which might 

reduce the negative effects associated with these economic activities. One way to 

encourage this strategy is through guidelines developed and monitored by local 
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authorities. The government could provide incentives to support the mobilization 

of wastes from one location to the centralized digester as a measure to decrease 

the use of inorganic fertilizers while generating renewable energy (RELU, 2011, 

Horowitz and Gottlieb, 2010).  
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CHAPTER VII:  SUMMARY AND CONCLUSIONS  

7.1 Summary and Conclusions 

Our simulation model shows the difficulty associated with a small pasture-based beef farm to 

reach the economies of scale desirable in order to meet the expenses associated with the 

anaerobic digester capital investment (Baylis and Paulson, 2011, Key and Sneeringer, 2011) and 

operational costs associated with profitable manure collection. Thus, results are highly sensitive 

to the price of carbon offset and cost-share programs to make this multi-product business 

profitable while providing environmental and economic benefits to surrounding communities in 

the Appalachian region. Although anaerobic digestion systems contribute significantly to 

reducing the greenhouse effect since it is captured methane, known to be around 25 times more 

harmful than CO2 (Baylis and Paulson, 2011, EPA, 2004, Key and Sneeringer, 2011, Forster et. 

al, 2007, EPA, 1999), and utilized it as a renewable energy source, the absence of a carbon price 

would not allow to adopt this technology. In fact, Key and Sneeringer (2011) identified that 

carbon prices play a crucial role in making anaerobic digestion systems more profitable for 

businesses that sell carbon offsets. They also found that a carbon price of $13 per CO2e ton 

would make the adoption of this technology profitable in large operations located in states, like 

for example, Texas, Wisconsin, New York and California. Although their analysis did not 

incorporate the effect of cost-share subsidies, they suggest that these programs will contribute in 

adopting anaerobic digesters (Key and Sneeringer, 2011). On the other hand, Leur, Hyde and 

Richard (2008) found that even though that this technology would bring environmental 

improvements, the absence of carbon prices would bring negative profits making the adoption of 

the technology unprofitable and requiring the need of policy development.      
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 The BET model is a tool that allows us to evaluate an innovative approach to simulate an 

emerging industry using NetLogo platform in which the resources available in a given region can 

be spatially optimized.  Thus, the optimal utilization of the natural resources available in a region 

helps to develop clustering systems within an industry that eventually bring some agglomeration 

economies in the area.  

 The ABM approach using the NetLogo platform for our experimental inter-temporal 

spatial simulation permits showing a sustainable emerging industry using an innovative 

computer program. NetLogo has seemingly infinitive capabilities able to develop dynamic 

simulations within an interactive setting in order to reflect potential agent behaviors in an inter-

temporal world based on theory, data, equations and language programming. For example, our 

model allows simulating climatological influences toward production and the effects of 

optimizing spatially distributed resources in order to achieve profitable and social goals in a 

predetermined area. In fact, BET shows the importance of incorporating multiple products in 

bio-economic modeling (Standiford and Howitt, 1992) as an approach for possible 

considerations in a real PBB enterprise and associated external resources needed to attain these 

goals. Results indicate that cost-share policies and carbon prices might stimulate diversified PBB 

farms under deterministic and uncertain situations. Overall, the investment in anaerobic digesters 

when a combination of carbon price and cost-share programs exists not only brings 

environmental benefits to the Appalachian region but also profitability to PBB entrepreneurs.    

  From a sustainability perspective, it is fundamental to implement farm practices that 

would bring benefits not only to the private sector but also to society since it would be socially 

inappropriate to endorse practices that maximize private interests at the cost of society and the 

environment. When the use of a natural resource would promise highest present value to the 
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private sector compared to conserving it as natural for the wellbeing of society, it is very likely to 

experience divergence between the two sectors (Krutilla, 1967). However, the PBB industry 

promises an alternative that would contribute in a sustainable way to meet present needs without 

compromising future necessities. The combination of appropriate use of land for sustainable 

production, proper waste management practices and clustering among firms would maintain the 

required nutrients for a high quality soil as well as improved water and air quality; so, firms are 

able to obtain a premium from their high quality products while enhancing a better ecosystem 

which eventually has a positive effect on society when past events as well as uncertainty are 

taken into consideration. We recognize that the development of this emerging industry might not 

reduce all the environmental problems we encounter on a daily basis in the Appalachian region; 

but it has the potential to make a significant contribution to farmers’ profitability, our quality of 

life and the basis to bring some change in future generations.  

7.2 Policy Implications 

Based on BET results and the policy discussion addressed in Chapter VI, incentive programs 

such as cost-share programs, carbon price and renewable energy sales have an effect toward the 

existence of a carbon market since they not only might bring profitability but also GHG emission 

reductions in livestock operations (Key and Sneeringer, 2011). As we have observed, policies 

that contribute in reducing GHG emissions while diversifying energy supply are able to generate 

additional income to PBB producers in the Appalachian region. It must be recognized, however, 

that business profitability as well as social benefits will also be influenced by topographical and 

weather factors and surrounding agricultural enterprises that might have an economic motivation 

to join a clustering system. The clustering system also contributes in achieving a more efficient 

methane digester and economy of scales and scope at the regional level; however, it would 
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increases operational costs through costs associated with transporting manure from individual 

farms to the centralized technology (Ghafoori and Flynn, 2006). This occurs due to the fact that 

the adoption of anaerobic digesters for small-scale farms might not be profitable as compared to 

larger-scale enterprises (Key and Sneeringer, 2011). On the other hand, manure supplemented by 

food waste products from crops, for example, might be an alternative for small farmers to 

accomplish a more efficient scale, although additional governing requirements associated with 

managing solid waste could raise costs (MDA, 2005). Overall, if policymakers demonstrate 

interest on renewable energy sources derived from anaerobic digesters utilized in the PBB 

industry in Appalachia, then economic incentives such as grants must be considered to stimulate 

the investment on environmentally friendly technologies.      

7.3 Model Limitations and Future Research 

There are several points associated with our ABM that might be visualized as future research 

goals. It is fundamental to point out that our approach does not consider the nonmarket benefits 

that the diversified industry might bring not only to the farmer but also to communities such as 

air contamination reduction, odor control and polluted water reduction as well as revenues from 

bedding and digested manure sales to agricultural and non-agricultural adjacent locations when 

the amount of the digested manure is above the required fertilizer applications in the contracting 

farm. For instance, the potential income generated from any digested manure applied on the 

contracting farm pasture is not reflected in our approach. The exclusion of these benefits in our 

experimental ABM underestimates the overall benefits accruing to society and entrepreneurs. 

Our model also relies on the assumption of the existence of a carbon market; however, there are 

other possible incentives such as the renewable portfolio standard in WV. It basically considers 
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the production of renewable energy and reduction of CO2, using innovative technologies, like for 

example, anaerobic digesters allowing for more policy development.     

 Other limitations in our approach that might be considered for a future extension of the 

model is livestock prices employed and the profitability measure. In our approach we used 

annual average livestock prices; however, livestock prices are seasonal and tend to be higher 

during the spring season compared to fall. Thus, seasonality of each scenario, the specialized 

operation with its fall sale of livestock and the diversified operation with its spring sale of 

livestock, are not reflected in these analyses. Additionally, we computed the NPV for only the 

farm of interest from both diversified and specialized perspectives and did not measure 

profitability on the other farms in the spatial domain. Thus, the social outcomes across farms 

from a profitability stand of point are not measured.   

Moreover, BET is programmed to run on a yearly basis (365 days) over 15 years 

allowing the farm of interest to fit better as a stocker farm only that depends on the resources 

within a predetermined spatial domain. Nevertheless, BET would bring more flexibility to 

potential users if it would have the capability to switch from a stocker to cow/calf or vice versa 

as the farm of interest allowing more practical applications depending on the area of interest. 

Likewise, since our model is programmed to optimize the resources available within the spatial 

domain identified, it does not consider any external resource such as additional pasturelands 

outside of the world. The possibility of extending those model capabilities would allow for more 

flexibility to potential researchers. 

 Moreover, our model only takes into account the total amount of CO2e emissions 

generated through manure as the baseline assuming that total amount of manure on a yearly basis 

is deposited into manure ponds or lagoons. However, it is fundamental to point out that besides 
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the greenhouse emissions generated through cattle manure; ruminants also produce methane 

through belching due to microbial breakdown of carbohydrates in the rumen (Chase, 2010, 

Arthur, Herd and Basarab, 2010, Baylis and Paulson, 2011). The total methane emited by cattle 

is derived from manure and enteric emissions. In fact, 26 percent out of all rumen gases 

generated corresponds to methane. Manure produces approximately 7 percent out of the 26 

percent of methane generated by cattle while enteric fermentation is responsible for 

approaximently 19 percent (Ishler, 2008, Sniffen and Herdt, 1991). Our model only considers 

methane reductions based on manure generation and excludes enteric emissions for simplication 

purposes.  

 Other elements that our model does not explicitly consider but it is important to be aware 

is the emissions generated as well as fuel consumption by hauling truck trips from nearby farms 

to the farm of interest as part of the clustering system developed in a region. Although the 

anaerobic digester might help capturing methane generated by animals to produce renewable 

energy, pollution can be induced by hauling trucks transporting manure from adjacent farms to 

the farm of interest and its magnitude will depend on distance and transportation frequency. In 

other words, the greater the number of members that join the clustering system as well as the 

longer the distance between nearby farms and the farm of interest, the more fuel is consumed and 

the more CO2 emissions are released into the atmosphere. For instance, a clustering system 

composed of five members might generate approximately 900 pounds of CO2 or 0.45 tons and 

would consume over 230 gallons of gasoline (8504 KWh) on a yearly basis as a result of manure 

transportation (EPA, 2000). After subtracting the equivalence of the values previously 

mentioned, we identify a net energy production of 24,000 KWh annually. However, BET does 

not take into account these components derived from the transportation sector.   
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Furthermore, another possible extension for this model is to simulate the dynamics of 

prices (energy, beef and carbon offset) over time under uncertainty. BET measures the trends of 

prices through the passage of time in a deterministic manner, thus they tend to vary depending on 

historical trends. However, an extension would be to forecast prices stochastically allowing 

prices to fluctuate as a closer approach to reality. In terms of carbon offset prices, BET utilizes 

the most commonly used prices in the literature; but uncertain prices would reflect unpredictable 

response of a carbon offset market.     

Moreover, our approach uses OLS to obtain the costs of investment associated with the 

anaerobic digester for energy and carbon offset production. Another alternative would be to 

explore the possibility of using a spatial econometric model such the Spatial Autocorrelation 

Model (SAR). The possibility of employing SAR in NetLogo would allow us to obtain the 

parameters associated with the capital investment of this technology taking into consideration 

spatial autocorrelation that is not captured through OLS regression. 

 Notwithstanding these limitations, this analysis shows the advantages of using agent-

based modeling in agricultural/natural resource applications, especially those with the potential 

to generate payoffs to both private and public entities while contributing to the solution of 

“wicked problems.” 
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Table A-1: Energy Data  

Description Data Source 

Price of Energy Sold $/KWh EIA, 2012 

Cost of Maintaining and Operating Digester $0.034/KWh Baylis and Paulson, 2011, Key and Sneeringer 2011 

Cost of Anaerobic Digester $/Head  Key and Sneeringer, 2011, Beddoes et. al 2007 

 

 
 

Table A-2: Climatological and WV County Data* 

Description Data 

Precipitation Inches 

Temperature Low and High (oF) 

Coordinates Latitude and Longitude 

Average Slopes Percentage 

*Data are obtained from NOAA (30 years: 1971-2000) and Soil Web Survey, 2009. 

 
 

Table A-3: Carbon Offset Market, Costs and Prices   

Description Data* 

Price of Carbon** $/Ton of CO2e Emissions Reduction 

Initial Offset Market Transaction Costs $10,000  

Annual Offset Market Transaction Costs $3,000 

*Data are compiled from Baylis and Paulson, 2011, Key and Sneeringer, 2011 and EPA, 1999. 

**$0, $13 and $26 per ton CO2 equivalent emissions reduction are commonly used. 
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Table A-4: Steer Sold Price ($ per cwt) 

Year Price* Year Price* 

2013 $114.82 2021 $134.76 

2014 $105.76 2022 $139.17 

2015 $112.36 2023 $149.18 

2016 $118.96 2024 $149.61 

2017 $123.96 2025 $132.58 

2018 $113.48 2026 $150.02 

2019 $137.13 2027 $174.07 

2020 $137.22   

*Prices are annual averages prices based on years 2006-2011 (Hahn, 2012, Rayburn, 2006). 

*The above prices have been adjusted to inflation based on DOL, 2012. 

 

 

Table A-5: Other Beef Production Costs per Head** 

Year Cost-Diversified (Specialized)* Year Cost-Diversified (Specialized)* 

2013 $134.74 (119.63)  2021 $153.45 (132.25) 

2014 $139.52 (119.28) 2022 $158.02 (133.19) 

2015 $139.08 (120.83) 2023 $159.19 (137.06) 

2016 $141.17 (123.56) 2024 $164.90 (136.64) 

2017 $145.35 (124.42) 2025 $164.37 (138.49) 

2018 $146.42 (127.97) 2026 $166.87 (141.73) 

2019 $151.65 (127.58) 2027 $171.87 (142.77) 

2020 $151.16 (129.28)   

*Costs are based on Eberly and Groover, 2011, Schuster et al., 2001 and have been adjusted to inflation based on DOL, 2012. 

**These costs associated costs to beef production are defined as: costs of pasture grazed, labor, veterinary fees and medication, salts 
and minerals, fly control ear tags, interest and insurance, repair and maintenance, depreciation, marketing costs, miscellaneous and 
management costs.    
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Table A-6: Energy Prices in Cents (KWh) 

Year Price* Year Price* 

2013 $0.0943 2021 $0.0918 

2014 $0.0926 2022 $0.0918 

2015 $0.0921 2023 $0.0918 

2016 $0.0919 2024 $0.0918 

2017 $0.0918 2025 $0.0918 

2018 $0.0918 2026 $0.0918 

2019 $0.0918 2027 $0.0918 

2020 $0.0918   

*Prices are based on years 1990-2012 published by EIA (2012) and forecasted based on Bhattacharyya (2011). 

*Forecasted Price = 6.1426 + 0.3313 * Lag Projected Price; significant at 99 percent level with R-squared .50.  

 

 

 

Table A-7: Steer Purchasing Price ($ per cwt) 

Year Price* Year Price* 

2013 $125.95 2021 $147.82 

2014 $116.01 2022 $152.65 

2015 $123.25 2023 $163.64 

2016 $130.49 2024 $164.11 

2017 $135.98 2025 $145.43 

2018 $124.48 2026 $164.56 

2019 $150.42 2027 $190.94 

2020 $150.52   

*Prices are based on years 2006-2011 (Hahn, 2012, Rayburn, 2006). 

*The above prices have been adjusted to inflation based on DOL, 2012.  
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Table A-9: Manure Base Charge per Ton  

Year Costs* Year Costs* 

2013 $3.66 2021 $4.17 

2014 $3.64 2022 $4.20 

2015 $3.71 2023 $4.36 

2016 $3.82 2024 $4.34 

2017 $3.85 2025 $4.42 

2018 $3.99 2026 $4.55 

2019 $3.98 2027 $4.59 

2020 $4.05   

*Costs are compiled from Weinheimer (2008) and have been adjusted to inflation based on DOL, 2012. 

 

Table A-8: Hauling Manure Costs Ton Per Mile 

Year Costs* Year Costs* 

2013 $0.35 2021 $0.61 

2014 $0.38 2022 $0.65 

2015 $0.42 2023 $0.68 

2016 $0.454 2024 $0.718 

2017 $0.487 2025 $0.751 

2018 $0.520 2026 $0.784 

2019 $0.553 2027 $0.817 

2020 $0.586   

*Costs are compiled from Weinheimer (2008) and have been adjusted to inflation based on DOL, 2012. 
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Table A-10: Costs of Manure per Ton  

Year Costs* Year Costs* 

2013 $2.09 2021 $2.38 

2014 $2.08 2022 $2.40 

2015 $2.12 2023 $2.49 

2016 $2.18 2024 $2.48 

2017 $2.20 2025 $2.52 

2018 $2.28 2026 $2.60 

2019 $2.28 2027 $2.62 

2020 $2.31   

*Costs are compiled from Weinheimer (2008) and have been adjusted to inflation based on DOL, 2012. 

Table A-11: Capital Costs of Anaerobic Digester as a Function of Operation Size   

Dependent Variable: Capital Ln(capital)  

Intercept *10.1994 (0.5749) 

Ln(heads) *0.3977 (0.0888) 

Num. of Observations 10 

Standard errors depicted in parenthesis, significant at 99 percent level with R-squared .71. 

 

Table A-12: Annual Costs Associated with Forage Production** 

Year Diversified (Specialized)* Year Diversified (Specialized)* 

2013 $7,610.90 ($6,085.95) 2021 $1,984.90 ($6,637.01) 

2014 $1,576 ($5,269.86) 2022 $2,051.40 (6,859.34) 

2015 $1,628.80 ($5,446.40) 2023 $3,492.20 (8,461.22) 

2016 $1,683.40 ($5,628.85) 2024 $2,191.20 ($7,326.62) 

2017 $1,739.80 ($5,817.42) 2025 $2,264.60 ($7,572.06) 

2018 $2,961.80 ($7,175.97) 2026 $2,340.40 ($7,825.72) 

2019 $1,858.30 ($6,213.71) 2027 $2,418.80 ($8,087.89) 

2020 $1,920.60 ($6,421.87)   

*Costs are based on Schuster et al., 2001, Eberly and Groover, 2011 and have been adjusted to inflation based on DOL, 2012. 

**Costs associated with pasture production for a 93 acres farm include: seedlings, fertilizer, equipment, interest and insurance, 
depreciation, labor and harvested forage.  
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Figure A-1: Through language programming coded in the procedure tab, BET is able to measure the 
mean miles among the agents within the clustering system as well as to simulate the cattle interaction 
with the natural environment.  
 
 
 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
Figure A-2: BET also is programmed to conduct ordinary least square to estimate parameters used 
during the simulation. The code illustrated above has been developed to predict the trend of electricity 
prices (upper) and the capital cost of anaerobic digesters (lower).    
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Figure A-3: In order to provide a graphical representation of the pre-interaction and interaction stages, 
plots (as known in NetLogo) are developed in the procedure tab through code and must be synchronized 
with the interface view. 
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Figure A-4: Patches play an important role at yearly basis in the model since they simulate forage 
allowance on the interacting farms. Language programming has also been developed to represent the 
interaction between maximum pasture available for and consumed by animals as well as forage in the re-
growing process.  
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