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ABSTRACT 
 

Segmentation of Images with Low-Contrast Edges 
 

Matthew J. Madden 
 

 
A vast amount of the current research in medical image analysis has aimed to develop 

improved techniques of image segmentation. Of the existing approaches, active contour 

methods have proven effective by incorporating edge or region information from the 

image into a level set formulation. However, complications arise in images containing 

regions of low-contrast due to noise, occlusions, or partial volume effects, which are 

often unavoidable in practical applications. Incorporating prior shape information into the 

segmentation framework provides a more accurate and robust solution by constraining 

the evolving contour to resemble a target shape. Two methods are presented to 

incorporate a shape prior into existing active contour segmentation methods, including 

the edge-based geodesic active contours model and a fast update implementation of the 

region-based Chan-Vese model. Applying these methods to synthetic and real images 

demonstrates that an improved result can be obtained for images containing low-contrast 

edge regions.  
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Chapter 1: Introduction 
The chapter begins by providing a brief overview of the current research topics being 

explored in the field of medical image processing. This is followed by a discussion of the 

key terminology and concepts necessary in understanding the task at hand. The 

motivation behind this work as well as the definition of the problem explored throughout 

the course of this research is then given. The chapter concludes by outlining the 

remainder of the thesis. 

1.1 Overview 

Recently, the focus of a vast amount of research in the field of medical image analysis 

has aimed to develop improved methods of image segmentation, image registration, and 

the quantification of anatomical and physiological parameters of images. These 

techniques provide the key components involved in systems such as those designed for 

image-guided surgery, the construction of atlas-based descriptions of anatomical regions, 

and the visualization of anatomy and their underlying physiological processes [24]. 

Recent improvements in image acquisition techniques and the processing power of 

modern computers have allowed for significant advancements in these technologies. The 

field of image analysis has proven itself a powerful tool in the field of medicine, 

stimulating an incredible demand for faster and more accurate techniques and algorithms 

that require less human interaction. As a result, the amount of research invested in these 

topics is increasing dramatically. This section provides a brief overview of image 

segmentation, magnetic resonance imaging (MRI), and image registration. Finally, the 

Insight Registration and Segmentation Toolkit (ITK) is introduced.   

Image Segmentation 

Image segmentation refers to the process of partitioning an image into regions which are 

homogeneous according to some property. In medical image analysis, segmentation is a 

critical step used in the identification of region boundaries and the separation of tissue 

classes [52]. Figure 1.1 illustrates an example segmentation of a slice of MRI brain data 
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into the different tissue classes, which include the white matter, gray matter, and 

ventricles. 

 

  
                                   (a)                                                                 (b)  
Figure 1.1. Example of the segmentation of MRI brain data into different tissue classes in which (a) the 
original brain image is segmented into the regions of: (b) white matter (white), gray matter (gray), and the 
ventricles and background (black). 

An accurate segmentation result allows for improved accuracy in quantification [34] and 

morphological analysis [71], and leads to enhancements in the visualization [6] of data. 

Thus, accuracy during the segmentation process is important to provide a more useful 

visual rendering to aid radiologists and clinicians in diagnostics and surgical planning [3, 

26]. Manual segmentations may be performed by an expert through the careful labeling 

of tissue classes at each pixel in the image data. While this may yield desirable results, it 

is often time consuming, expensive, and the subjective nature of the process does not 

allow for reproducibility. As a result, a number of computational methods for image 

segmentation have been investigated. 

 

The image segmentation problem can be classified into two primary approaches. The first 

approach involves clustering pixels into different regions and subsequently providing a 

label for each region [11, 51]. A second approach seeks to extract the boundaries of the 

image which separate these regions [10, 32, 42]. In either approach, many variations 

exist. First, these algorithms may be formulated to solve the segmentation problem in the 

case of 2 or 3 dimensional (2D or 3D) images. Also, the application may either require 

user initialization or may be fully automatic. Similarly, the number of region labels to be 
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applied may be user-specified or may be left to be determined by the algorithm. Finally, 

the nature of the tissue classification at each pixel may be strictly limited to a single label, 

or may contain a fractional probability associated with each label.  

 

Many of the existing segmentation techniques are based on image intensity [51], intensity 

gradient [10, 32, 42], and region statistics [11]. However, complications occur such as the 

object of interest may be occluded, the image may be noisy, or there may be partial 

volume effects. In the latter case, multiple tissue classes contribute to the intensity value 

of a single pixel or voxel of the image, an effect that may be attributed to choice of slice 

thickness or pixel size. In low-contrast regions, the boundaries between contiguous 

regions may become blurred, causing the two regions to appear to be connected when an 

actual boundary exists. Similarly, different objects in the image may take on similar 

intensity characteristics, making it more difficult to segment these tissues. It then 

becomes necessary to include a combination of information into the segmentation 

algorithm in order to more accurately extract the target object. Methods have been 

proposed which incorporate prior information in terms of shape [12, 13, 20, 21, 25, 35, 

36], topology [43], atlas information [2, 14, 19, 22, 33, 59, 64, 70, 73] (see [52] for 

details), and statistical information [44]. The exact technique and information to be 

incorporated should be chosen to best suit the specific application. A more complete 

overview of medical image segmentation techniques can be found in [52]. Chapter 2 

provides a more detailed description of active contour segmentation techniques. In 

particular, level set methods, including geodesic active contours [10], the Chan-Vese 

image segmentation model [11], and a fast algorithm for level set optimization [61] are 

discussed.  

Magnetic Resonance Imaging (MRI) 

Medical image segmentation, as applied to magnetic resonance (MR) or computed 

tomography (CT) images, is used to map the anatomy of a subject [52]. An important use 

of these images includes the segmentation of the brain scans of normal subjects. The 

extraction of the brain tissue from the data may then lead to the classification of gray 
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matter, white matter, and cerebrospinal fluid (CSF), or may lead to the segmentation of 

specific structures in the brain. 

 

Magnetic resonance imaging (MRI) is an imaging technique based upon the principles of 

nuclear magnetic resonance (NMR) [28]. NMR, which has origins in the fields of 

chemistry and physics, is a spectroscopic technique used to observe the molecular 

properties of materials. MRI is a Hydrogen-based imaging technique used primarily in 

the medical field to observe the physiology of living tissue inside the body. MRI has 

shown to be especially useful in brain imaging due to its ability to provide images which 

exhibit superior soft tissue contrast, high resolution, and high signal to noise ratio (SNR). 

Also, MRI has flexibility in acquiring, or re-slicing images in the orientation best suited 

for visualizing and quantifying a specific anatomical structure. It is therefore effective in 

demonstrating a broad range of pathologies making it an extremely valuable tool in 

medical diagnostics.  

 

MRI has demonstrated superiority over computed tomography (CT) in several respects. 

First, CT uses an ionizing radiation in the form of x-rays to perform the image 

acquisition. MRI employs a non-ionizing radio frequency signal, leading to the non-

invasive nature of this technology. Also, because MRI has the ability to provide greater 

soft tissue contrast, it allows for greater differentiation of white and gray matter of the 

brain. Another desirable property of MRI lies in its ability to identify morphological 

anomalies of the brain associated with disorders such as schizophrenia [37] and 

Alzheimer’s disease [49]. These irregularities are often very subtle. In fact, diagnosing 

such disease can not be accomplished through an individual subject, but through 

differences which are apparent in comparing group data only. Accuracy in the imaging 

techniques used in the visualization and quantification of the brain is therefore of high 

importance.  

 

To provide a summary of the basic principles of MRI, the following overview is given. 

Consider the human body, which is primarily fat and water. The hydrogen content within 

these components leads to the body being composed of roughly 63% hydrogen atoms 
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[28]. The nuclei of these hydrogen atoms consist of a single proton, which continuously 

spins around an axis. This property of rotating charge is therefore referred to as ‘spin’, 

and may be interpreted as a small magnetic field. As illustrated in Figure 1.2 (a), a group 

of protons in a natural state do not possess a net magnetic field due to the random 

orientation of these magnetic moments. The application of a fixed external magnetic 

field, B0, causes the spin axes of protons to precess about B0, leading to a net 

magnetization in the direction parallel or anti-parallel to that of B0 [28]. Figure 1.2 (b) 

illustrates the effect of applying B0 to a group of protons originally in a natural random 

state.  

     
                                      (a)                                                 (b) 

Figure 1.2. The application of an external magnetic field, B0, to a group of protons which are: (a) initially 
in a natural random state. (b) The application of B0 causes precessional motion about the direction of B0. 

The precessional motion occurs at a frequency which is proportional to B0. This is 

referred to as the Larmor frequency given as 

00 B⋅= γω , (1.1) 

where γ is the gyromagnetic constant. If the direction of B0 lies in the z-plane, the net 

magnetic field will remain zero in the transverse plane, or x-y plane in this case.  

 

The application of electromagnetic radiofrequency (RF) pulses of an appropriate 

frequency has the ability to force the spin axis of the protons from the z-axis into the x-y 

plane, as illustrated in Figure 1.3.  
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Figure 1.3. A RF pulse applied to a proton in the presence of an external magnetic field B0 forces the spin 
axis of the proton from the direction of B0 into the transverse plane.  

This process, referred to as RF excitation, is accomplished by passing a current through 

an RF coil, which acts as a transmitter, to produce an electromagnetic field. This leads to 

a net magnetization in the transverse plane. Upon completion of this RF pulse, the spin 

axis is able to realign to the original direction given by the magnetic field, B0, as shown 

in Figure 1.4.  

 

Figure 1.4. After the RF pulse ends, the spin of the proton realigns with the direction of B0 as indicated. 

As a result of the changes in the magnetic properties associated with the spins realigning 

following the RF pulse, the nuclei emit RF energy. This effect produces a current in the 

RF coil, which now acts as the receiver. This current is the signal that is measured during 
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the acquisition process. Figure 1.5 illustrates the MRI magnet and the direction of the 

magnetic field. In order to acquire image data, the subject is placed in the bore of the 

magnet. 

 

Figure 1.5. The MRI magnet with the axes directions indicated. The transverse plane lies in the x-y plane 
while the direction of B0 is in the direction of the z-axis. 

In order to obtain data for a single slice, a magnetic field gradient, referred to as the slice-

select gradient, is applied to provide a magnetic field which is unique to each slice of the 

volume [28]. If the magnitude gradient field in the z-direction is applied, an RF pulse can 

then be emitted to bring about a net magnetization in the transverse plane of a desired 

slice. The removal of the z-component of the magnetization and then applying this 

gradient magnitude concept in the x and y directions of the magnetic field allows for the 

relative coordinate positions to be encoded by the frequency of the obtained signal. This 

process is known as frequency encoding. Similarly, in phase encoding gradient pulses are 

applied separately along the orthogonal direction to the frequency encoding to allow for 

the phase to be a function of the spatial position of the emitted signal. The specific order 

and timing associated with applying the gradient magnitudes in each direction is referred 

to as the pulse sequence. Reconstructing the raw data into useful images is then 

accomplished through an inverse 2D Fourier transform. 

 

The intensity values of the acquired image are generally influenced by the underlying 

properties of the tissues from which the RF signal is generated. However, one of the 

primary strengths of MRI is that the contrast between different biological tissues may be 

tuned by varying the parameters involved in the image acquisition [37]. The spin lattice 
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relaxation time, T1, refers to the time constant related to the spin realigning with the 

magnetic field, B0. Similarly, the spin-spin relaxation time, T2, refers to the decay of the 

net magnetization in the x-y direction. Proton density (PD) is a measure based upon the 

number of nuclei stimulated. The time between RF pulses (TR) and the time when the 

signal is acquired following this pulse (TE), determines the contribution from PD, T1 and 

T2 in the resulting image.  

 

The ability to alter the mentioned parameters has given rise to a wide variety of methods 

used to acquire images of differing characteristics. For example, a 3D acquisition 

protocol commonly used includes spoiled gradient recall (SPGR) imaging [37]. SPGR is 

a T1-weighted imaging technique which therefore provides images with relatively good 

white and gray matter contrast. This modality can acquire data from an entire brain with 

1.5 mm or thinner slices in 10 minutes or less. Also, Fast Spin Echo (FSE) imaging is a 

T2-weighted imaging sequence, which provides a better contrast between brain tissue and 

bone. Figure 1.6 illustrates examples of these MRI images. Table 1.1 contrasts the 

intensity value characteristics associated with white matter, gray matter, and CSF for T1- 

and T2-weighted images. A more thorough treatment of the principles of MRI physics is 

provided by [28, 63]. 

 

   
           (a)                                               (b) 
Figure 1.6. Example of (a) T1- and (b) T2- weighted image simulation models generated from Brainweb: 
Simulated Brain Database [8, 16]. 
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Table 1.1. The intensity characteristics of the white matter, gray matter, and CSF tissue classes associated 
with T1 and T2 weighted images. 

 White Matter Gray Matter CSF 
T1 Bright Light Dark 
T2 Dark Light Bright 

 

More recently, variations to the pulse sequence involved in MRI acquisition have been 

used to produce images containing information specific to oxygenation levels or water 

diffusion, as in the case of functional MRI (fMRI) and diffusion tensor MRI (DT-MRI), 

respectively [28]. fMRI is often used to determine which brain regions are being used in 

performing functions such as thought, speech, movement, and sensation. DT-MRI is used 

to generate detailed 3D maps of nerve pathways in the brain, heart muscle fibers, and 

other soft tissues. 

 

Consider two categories of MRI images: (1) anatomical images, which depict information 

based mainly on morphology, and (2) functional images, which illustrate information 

based upon metabolism or blood flow. The process of image registration of functional 

medical data to the associated anatomical data can be used to align the two images, thus 

generating an image which displays this metabolic activity superimposed over the 

anatomical region responsible for this activity [41]. This may provide useful insight that 

may aid radiologists and surgeons in the diagnosis and treatment of a range of conditions.  

Image Registration  

Image registration denotes the process of determining the coordinate transformation that 

brings two images into spatial alignment. As in image segmentation, an expert can 

perform a manual registration by aligning images according to visual clues. However, the 

process is neither time nor cost efficient. Accuracy in the registration process is necessary 

in applications such as the construction of atlas-based descriptors of anatomical regions, 

comparison of pre- and post-operation images, and tumor growth tracking. 

 

To summarize the process involved in performing a typical registration approach, 

consider two images which are to be registered. Assume one image is designated as the 

‘fixed’ image and the second image is referred to as the ‘moving’ image. One convention 
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stipulates that the coordinate system of the fixed image is moved relative to the 

coordinate system of the moving image to find the best alignment between the two 

images [30]. This searching process characterizes the registration as an optimization 

problem. The primary components of the registration include: (1) an interpolator, which 

determines the voxel intensities at non-grid positions, (2) a similarity metric, which 

provides a measure of how well the images are matched, (3) an optimization scheme, 

which uses the metric as a cost function to guide the search for the optimal 

transformation parameters, and (4) the type of transform, which specifies the parameters 

to be used in the optimizer search space [30].  

 

The variety of applications involving registration has contributed to the large range of 

techniques. Therefore, a number of criteria have been identified to be used in determining 

which techniques to incorporate given a specific task [41]. For example, the problem may 

involve images acquired from multiple subjects, or from an individual subject as in the 

case of longitudinal time studies. Another criterion to consider includes the types of 

imaging modalities involved. While unimodal registration techniques exist to register 

images of the same modality, multimodal registration techniques are also available to 

provide a correspondence between images of differing imaging modalities. In yet another 

example, the characteristics of the data for which the registration process is to be 

performed must be determined. This may include the use of known anatomical landmarks 

within the data, or the use of information provided by the image intensities of the full 

image [41]. The consideration of these criteria, among others described further in [41], is 

necessary in choosing the techniques and methods to be incorporated for the specific 

registration application. A more complete overview of medical image registration can be 

found in [41, 75]. 

 

Chapter 2 provides a more detailed description of the components involved in the 

registration process. Also, registration methods which incorporate mutual information as 

the metric component are discussed in more detail in Chapter 2 as well as in the methods 

of Chapter 3. 
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Insight Segmentation and Registration Toolkit (ITK) 

The Insight Segmentation and Registration Toolkit (ITK) is an object-oriented, open 

source software system currently under active development [30]. The toolkit, provided in 

a template C++ style, is available in multiple platforms, including Windows, UNIX, and 

Linux. ITK was developed to support the Visible Human Project and to provide the 

medical imaging community with tools for segmentation and registration in data of two, 

three, or higher dimensions. Within the toolkit there exists a vast repository of algorithms 

well-known within the medical imaging community. ITK allows for applications used in 

research to be quickly implemented without the need for reproducing and debugging code 

fundamental to the field of medical image analysis. 

 

The data within ITK are represented as objects, and process objects are referred to as 

filters. These data objects are connected to filters in pipelines in order to perform the 

desired process. The use of “smart pointers” within the implementation of ITK provides 

efficient memory management. ITK does not, however, provide graphical user interfaces 

(GUIs), nor does it provide tools for visualization of the data. However it is not difficult 

to incorporate other tools such as the Visualization Toolkit (VTK) and the Fast Light 

Toolkit (FLTK) in order to provide this functionality. ITK also provides wrappers for 

interfacing with interpreted languages such as Tcl or Java. 

 

Assembling an application in ITK involves connecting a string of filters, each of which is 

used to perform a precise function [30]. Data, usually in the form of an image, are 

specified as the input to the first filter to be processed. Each subsequent filter in the 

pipeline is connected by specifying its input as the output of the previous filter. The 

parameters associated with each of the filters are also to be specified prior to processing 

the data. Upon executing the pipeline, this data sequentially undergo the process 

associated with each filter, generating the desired output at the final filter. The filters 

involved in an ITK implementation of an affine registration and geodesic active contours 

application are discussed in more detail in Chapter 3.   
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1.2 Motivation 

Alzheimer’s disease (AD) is a form of dementia usually occurring in the elderly 

population [1]. It has been estimated that roughly 4.5 million Americans may suffer from 

AD. Although the disease is not recognized as a normal part of the aging process, AD 

usually begins around the age of 60 and the risk of disease increases with age. The 

disorder first affects the regions of the brain responsible for controlling memory, thought, 

and speech. Initial symptoms slowly become apparent and may include difficulty in 

retrieving recent memories or the names of familiar people. As AD progresses, symptoms 

include the inability to recognize family members, difficulty speaking, forgetting how to 

perform common daily tasks, aggression, and extreme anxiety. Extreme cases require the 

individual to be given full-time care. 

 

Although no cure exist, early and accurate diagnosis of AD is important to provide the 

best treatment for the symptoms [1]. Diagnosing AD is a difficult task and no single test 

exists which can confirm the disease with great certainty.  Therefore accurate diagnosis 

relies on a combination of a number of tools, such as a review of family history, physical 

examinations, and brain scans. Morphological scans such as CT or MRI are frequently 

used to ensure that the symptoms mimicking those of AD are not being caused by a 

tumor, hemorrhage, blood clot, or hydrocephalus. These scans are also used to show loss 

of brain mass, particularly in the hippocampus, associated with AD. Researchers are 

working to develop techniques which provide an accurate measure for this brain atrophy 

from imaging data to aid physicians in diagnosing AD with greater success [1]. 

1.3 Problem Definition 

The overall aim of this research is to investigate techniques for the segmentation of gray 

scale images containing edges with regions of low-contrast. More specifically, a goal is 

to provide a method adept in extracting the brain volume from a population of real MRI 

rabbit brain data. These data volumes were acquired for use in an experiment designed to 

analyze the effects of AD on the relative volumes of the tissue classes in the brain. The 

brain extraction step is necessary for a subsequent classification step which determines 

the white matter, gray matter, and CSF content within the brain volume. This 
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classification then allows for the quantification of the relative tissue volumes which are 

compared between a normal animal group and an animal model of AD.  

 

An exploration into the literature of existing techniques in medical image analysis was 

completed in order to gain an understanding of the steps that have been taken in order to 

arrive at the desired result. Through this research, several approaches were investigated 

as a solution for the segmentation of images containing edges with low-contrast regions, 

in which the real MRI rabbit data is an example. These approaches incorporate concepts 

from image registration and segmentation in order to perform the task at hand.   

 

In the initial stages of this research, the MRI rabbit head data sets were obtained. During 

the preliminary experiments aimed towards extracting the brain volume, a variety of 

segmentation approaches were visited. However, several characteristics of the data 

complicated the process. These include the irregular shape of the rabbit brain, the 

similarity of intensity values of the brain to tissues outside of the brain region, and also 

partial volume effects apparent in several slices of each data volume. The standard 

approaches found in the existing literature were unable to produce adequate segmentation 

results. These include intensity thresholding, k-means, snakes active contours, geodesic 

active contours, and the Chan-Vese segmentation model. Although active contour 

methods were among the most promising, these methods would require improvements in 

order to provide an adequate segmentation of the MRI rabbit brain data. 

1.4 Contributions 

Information provided by a shape prior can be incorporated into image segmentation 

techniques to make the process more accurate and robust. In this thesis, several methods 

are proposed which incorporate shape information into existing level set based techniques 

to provide an improved solution for the segmentation of low-contrast images.   

 

First, a method is presented for using shape information within many existing curve-

evolution based segmentation algorithms by encoding this information into the speed 

term. This makes it possible to perform segmentation based on a shape prior using 
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existing algorithms and code by simply substituting the speed image. An algorithm is 

presented which uses a pre-segmented atlas image. The new speed function slows curve 

evolution near edges in the image to be segmented as well as near edges in the registered 

atlas image. This technique is demonstrated using 2D synthetic images as well as real 

data. 

 

Second, a method is proposed which uses moment invariants to provide a shape 

constraint within the segmentation technique proposed by Song and Chan in [61]. The 

algorithm presented incorporates an additional shape energy term into their fast level set 

framework. This shape term influences the evolving segmentation to maintain the shape 

prior. The correspondence between these two shapes is provided by a set of moment 

invariants computed from each. This technique is demonstrated using 2D synthetic and 

real image data. 

1.5 Outline 

The remainder of this thesis is outlined as follows. Chapter 2 presents a background of 

the literature which provides a foundation for the concepts and methodology described 

throughout the thesis. Also to be discussed in Chapter 2 is the ITK toolkit used in 

implementing and testing a number of these concepts. Chapter 3 presents the methods 

surrounding a new speed function used in a geodesic active contours segmentation 

approach. Chapter 4 presents a method which incorporates image moments to provide a 

shape prior based Chan-Vese segmentation model. Chapter 5 provides the details and 

results of these experiments using the methods presented in Chapters 3 and 4. Concluding 

remarks as well as a discussion of possible future work are included in Chapter 6. 
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Chapter 2: Background 
The following chapter provides an overview of the literature that was examined, along 

with a background of the ITK software used in implementing several of the concepts 

employed through the course of this research. Methods of image segmentation, image 

registration, as well as the use of an atlas or shape prior to assist the segmentation 

process, were of primary focus. Also discussed are the concepts of image moments and 

the use of moment invariants in pattern recognition. 

2.1 Medical Image Segmentation 

A number of approaches used in the segmentation of images exist. These methods may 

be classified into a number of categories including thresholding [51], clustering [5, 17], 

region growing [27], active contours [10, 11, 32, 42, 60], graph cuts [7], Markov Random 

Field models [44], and atlas guided approaches [2, 14, 19, 22, 33, 59, 64, 70, 73]. A more 

complete summary of many of these approaches can be found in [52]. 

2.1.1 Active Contours 

Of these techniques, active contour methods have been proven highly effective in 

medical image segmentation. These methods operate by first initiating a user-specified 

curve in an image. The curve then evolves according to the minimization of an energy 

function which drives the curve to the boundaries of a target object. Figure 2.1 

demonstrates the use of active contour segmentation techniques in segmenting a target 

object from the background. 

 

Kass, Witkin, and Terzopolous introduced the active contour approach with their classic 

snakes model [32]. To describe this model, consider the parametric representation of a 

curve as c(s) = (x(s), y(s)), in which x and y represent coordinates of the image grid at 

locations in which the curve lies. This parametric representation is illustrated in Figure 

2.2. 
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                                           (a)                                                 (b)        

  
                                           (c)                                                 (d)        
Figure 2.1. A 2D example of using active contours techniques to find the boundaries of a shape object in 
an image. (a). The initial contour (red) located inside the target object (light). (b) and (c) Intermediate steps 
of the evolving contour. (d) The final segmentation result.  

 

Figure 2.2. A parametric representation of a curve (red) represented as a vector of points (white).  

In this snakes model, the energy function to be minimized is written as [32] 

dsscEscEscEE conimagesnake ))(())(())((
1

0 int
* ++= ∫ . (2.1) 

This energy controls the curve evolution by incorporating (1) an internal energy term 

which controls the smoothness of the evolving curve, (2) an image-based energy term to 
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pull a curve to the desired image feature, and (3) a user provided constraint term which 

allows a user to influence the curve toward or away from certain regions in the image. 

 

The internal energy term, Eint, is represented in [32] by a combination of a first order 

membrane spline energy term and a second order thin plate spline energy term written as  

( ) ,2/)()( 22
int scscE sss βα +=  (2.2) 

where α and β are weights controlling the influence of each of these energy components. 

Minimizing the membrane spline energy of a curve minimizes the curve’s length, while 

minimizing the thin plate spline energy minimizes the curve’s squared curvature.  

 

The image energy, Eimage, presented in [32] is used to attract the curve to salient features 

in the image such as lines and edges. Here, lines refer to dark or light contours in an 

image, while edges refer to contours with large image gradients. This energy term can be 

written as a combination of the two features  

,edgeedgelinelineimage EwEwE +=  (2.3) 

where wline and wedge represent the constants weighting these terms. If the first term is set 

as Eline = I(x,y), the image intensity at the pixel (x,y), then Eline attracts the curve to dark 

or light intensity lines, depending upon the sign of wline. If the second term is set as 

Eedge = -|∇ I(x,y)|2, the curve is attracted to contours with large image gradients.  

 

The user constraint term of the energy, Econ, consists of simple repulsion or attracting 

forces, described further in [32], which push or pull the curve towards user specified 

locations in the image. If the last two energy terms of (2.1) are combined to give 

Eext = Eimage + Econ, the evolution equation derived in [32] is written as  

extssssss Ecc
t
c

∇−−=
∂
∂ βα . (2.4) 

 

An example of the segmentation results obtained using this model is shown above in 

Figure 2.1. Despite the potential of this model to obtain desirable segmentation results, it 



 

18 

fails to accommodate situations in which the evolving interface develops sharp corners or 

cusps, or experiences topological changes. Therefore, the result is extremely dependent 

upon the initialization of the active contour.  

 

Level set techniques overcome the problems associated with discontinuities or 

topological changes within the parametric representation. During level set curve 

evolution, the interface is able to split and merge, thus accommodating for complex 

topologies. Another advantage of this property over previous active contour methods is 

that the topology is not required to be specified in advance and there is no additional 

complexity in handling the occurrence of such situations.  

2.1.2 Level Set Segmentation Methods 

Level set techniques, originating in the fields of fluid mechanics and material science to 

track dynamic boundaries, were introduced by Osher and Sethian [48]. In this model, a 

curve c(t), where t is a spatial parameter, is represented as the zero level set of a higher 

dimensional embedding function, φ. Figure 2.3 illustrates such an embedding function 

which follows the conventions described below. 

 

Figure 2.3. A 3D embedding function, φ, the level sets of which are indicated by the 2D contour plot found 
below the mesh plot. Values inside the zero level set are negative, while values outside are positive. 
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One possible technique to initialize φ is by applying the signed distance function to an 

initial contour placed in the image as specified by a user. Here, φ(x,y) is determined by 

the distance from the (x,y) location in the image grid to the curve. One convention 

stipulates that the region inside the curve is represented by values of φ less than zero, and 

the region outside of the curve is denoted by values of φ greater than zero, which is 

summarized in the following:  

0),( =yxφ , if ),( yx is on the curve,  

0),( <yxφ , if ),( yx is inside the curve, 

0),( >yxφ , if ),( yx is outide the curve. 

(2.5) 

 

The use of this implicit model allows for geometric properties of the curve to be easily 

determined. For instance, the gradient of φ is perpendicular to the level curve, and 

therefore the normal of the embedded curve can be computed as  

.
),(
),(),(

yx
yxyxN

φ
φ

∇
∇

=  (2.6) 

Also, the curvature of the level curve is determined as the rate of change of this normal 

vector as 

.
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In order to derive an evolution equation for φ, consider c(t) the zero level set curve, 

where φ (x(t),  y(t), t) = 0, for all t. This implies that 

,0)),(),(( =ttytx
dt
dφ

 (2.8) 

which, by the chain rule, can be rewritten as 

t
tc

tdt
dy

ydt
dx

xdt
d

∂
∂
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∂
∂

+
∂
∂

+
∂
∂
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φφφφφφ ))(( . (2.9) 

The c'(t) term in (2.9) can be decomposed into its tangent and normal components to give  
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φφ ))()(((0 . (2.10) 

Because the gradient of the embedding function is perpendicular to the tangent of c(t), the 

tangential component can be removed and (2.10) is rewritten as  

t
tNvN ∂

∂
+⋅∇=

φφ ))(((0 . (2.11) 

Substituting Equation (2.6) for the normal component N(t) gives  
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∂
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which may be rearranged as 

t
vN ∂

∂
+∇=

φφ0 . (2.13) 

In curvature based evolution schemes, vN is a function of the curvature κ as written in 

(2.7). Equation (2.13) can therefore be written as  

t
F

∂
∂

+∇⋅−=
φφκ )(0 . (2.14) 

The details of an example of the function F(κ) used in the geodesic active contour level 

set approach are provided in the following section. 

Geodesic Active Contours 

Geodesic active contours is a level set segmentation approach in which an embedding 

function φ, which is initialized by the user, evolves according to an energy function 

consisting of three terms: (1) an internal smoothness constraint term which minimizes 

curvature, (2) an image dependent speed term which slows the curve near image region 

boundaries, and (3) an inflation force used to expand or contract the curve. Similar to the 

derivation shown in (2.8) through (2.14), the evolution equation for φ was derived by 

Sapiro et al [10] to give 
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φφκφ
∇⋅∇+∇−=

∂
∂ gIg

t
)( . (2.15) 

Here, φ represents the embedding function; g represents the image dependent speed term; 

and κ represents the curvature.  

 

In determining the speed term g used in the level set formulation, a typical approach 

begins with the computation of the image intensity gradient. The negative potential of the 

intensity gradient is then computed using a speed function, resulting in an edge potential 

image. This function can take rational and exponential forms, examples of which are 

shown in Equations (2.16) and (2.17), respectively as  
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These speed functions provide a mapping which assigns strictly positive values close to 1 

in homogeneous regions and near 0 where edges are located. Therefore, the evolving 

curve is slowed to a near stop close to the boundaries of homogeneous regions. Figure 2.4 

illustrates the intermediate images, including the speed image produced using (2.17), 

involved in a segmentation application using the geodesic active contour model. Figure 

2.4 (d) shows that the pixels located near the edge of Figure 2.4 (a) are mapped to low 

values while pixels in the homogeneous region are mapped to higher values between 0 

and 1.  

 

In (2.17), commonly referred to as the sigmoid function, the constant α defines the center 

of the gradient intensity range and β defines the width of this range. Properties of this 

function are illustrated in Figure 2.5. These constants are chosen by the user to indicate 

the range of gradient values which are to be considered image edges and the gradient 

values which are to correspond to homogeneous regions. 
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                                         (a)                                     (b) 

  
                 (c)                               (d) 

Figure 2.4. The intermediate steps of geodesic active contours segmentation. (a) The image I. (b) 
Smoothed image. (c) The gradient magnitude image. (d) The speed image g computed using (2.17). 

 
                                           (a)                                                   (b)                              
Figure 2.5. The effects of varying the parameters of (2.17), the sigmoid function. (a) Varying α. Here, α = -
4 (dotted line), α = -2 (solid line), and α = -1 (dashed line). (b) Varying β. Here, β = -2 (dotted line), β = 0 
(solid line), and β = 2 (dashed line). 

Other methods to generate the speed term have also been proposed, which use local 

homogeneity measurements, as described in [31] e.g., to provide a measure of edge 

strength and homogeneity at each location within the image. 
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Figure 2.6 illustrates the segmentation of the right ventricle of the brain image of Figure 

2.4. Figure 2.6 (a) shows the initialization of φ, specified by a user as the white circle. 

Applying the signed distance function to this circle provides the initial embedding 

function. Figure 2.6 shows the final segmentation result of the right ventricle. 

 

  
                                         (a)                                     (b)   
Figure 2.6. An example of the results of the geodesic active contours for the segmentation of the right 
ventricle. (a) The original image showing the initial embedding function φ0 where φ0 < 0. (b) The final 
segmentation result. 

This technique is able to produce adequate segmentation results in the limited case that a 

quality initialization of φ is provided and the image contains detectable edges between 

regions. In regards to the latter case, areas of low-contrast may prevent the detection of 

discernable edges in a number of regions. Therefore, the speed image did not have the 

effect of slowing the evolving contour at the location of the true boundary during the 

segmentation process. This contour is then able to pass through into the non-brain regions 

of the head. Figure 2.7 illustrates this ‘leaking’ effect in a single slice of data resulting 

from an attempt to extract the rabbit brain tissue from the surrounding tissue in an MRI 

image using an implementation of geodesic active contours. Compare the speed image 

and segmentation result provided in Figure 2.7 with the speed image of Figure 2.4 (d) and 

segmentation result provided in 2.6 (b). The speed image pictured in Figure 2.4 (d) shows 

distinct edges at the boundary of the ventricles. The corresponding segmentation result 

shown in Figure 2.6 (b) illustrates the ability of the speed image to slow the evolving 

curve to a stop at this boundary, producing a desirable result. This is in contrast to the 

speed image pictured in Figure 2.7 (b), which shows no apparent edge in several 

locations along the boundary of the brain. The evolving curve is therefore able to ‘leak’ 

beyond the boundary as indicated by the arrows in Figure 2.7 (c). 
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                          (a)                                       (b)                                       (c)       
Figure 2.7. The segmentation of the brain region of a slice of MRI rabbit brain data with weak edge 
characteristics. (a) A slice of the rabbit brain MRI data. (b) The speed image. (c) A poor segmentation 
result in which the evolving curve (white) has passed beyond the boundary of the brain as indicated by the 
arrows (red). 

Active Contours without Edges 

Chan and Vese [11] proposed another level set based segmentation model which is 

governed by the properties of the region enclosed by the evolving curve. Therefore, the 

segmentation allows for the detection of objects containing no discernable edges as 

provided by the intensity gradient. Another benefit of using this model is that the result is 

less dependent upon the initialization. This implementation involves the minimization of 

a Mumford-Shah function [47] which defines the energy  
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where u0(x,y) represents the image, u(x,y) represents an image model, Ω is the image 

domain, and the curve is denoted as c. The terms of (2.18) include (1) a boundary 

smoothness term, (2) a term describing the model fit error, and (3) a term constraining the 

smoothness of the model u(x,y). The implementation proposed by Chan and Vese uses a 

piecewise constant image model, resulting in the energy  
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where c1 is the average of u0(x,y) inside c, and c2 denotes the average of u0(x,y) outside c 

computed as  



 

25 

∫
∫

Ω

Ω=
dxdyH

dxdyuH
c

)(

)(
1

φ

φ
, 

∫
∫

Ω

Ω

−

−
=

dxdyH

dxdyHu
c

))(1(

))(1(
2

φ

φ
. 

(2.20) 

 

Through the use of the regularized heaviside H(z) and Dirac measure δ(z) functions 

described by Chan and Vese in [11], the energy function in Equation (2.19) is cast into 

the level set framework. The minimization of this function using the Euler Lagrange 

framework leads to the evolution equation written as 
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Fast Update for Minimization of the Chan-Vese Model 

Chan and Song [61] proposed a fast algorithm for solving optimization problems 

formulated by level sets. In the Chan-Vese segmentation model, φ is updated by solving 

the Euler-Lagrange equation shown in (2.21). However, the methods presented in [61] 

dramatically reduce the computational speed by computing the energy directly and 

tracking only the sign of φ.  

 

The algorithm of [61] begins by initializing φ as φ = 1 inside the level set and φ = -1 

outside, which may be randomly assigned at each pixel. Next, the segmentation process 

begins by sweeping over the entire image. In doing so, each pixel of the image is visited 

and the energy change associated with switching each pixel from inside the curve to 

outside, or vice versa, is computed. According to the energy function in Equation (2.19), 

the direct solution is presented in [61] as follows. Assume at the current location (x, y), φ 

= 1. The change in energy associated with changing φ = 1 to φ = -1 (neglecting the length 

term) is computed as  
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where I(x,y) is the pixel intensity value at location (x,y), and m and n are the number of 

pixels for which φ = 1 and φ = -1, respectively. Similarly, if at the current pixel location, 

φ = -1, the change in energy is given as 
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In [61], the length term of the energy (2.19) in the Chan-Vese model is approximated by  
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where φi,j is the value of φ  at the i,jth pixel. The result of (2.24) can only take values of 0, 

1, or √2, depending on whether the set {φ i,j, φ i+1,j, φ i,j+1} belong to the same regions. If 

this length term is to be considered, the change of length associated with switching φ is 

easily computed since only four neighbor points are altered in changing the value of φ.   

 

In the occurrence of a negative change in energy, the sign of φ is changed. Thus, the 

region label of the pixel is switched to minimize the overall energy. When the φ value of 

a pixel is switched, the values of c1 and c2 are recomputed. This process is repeated until 

the total energy remains unchanged. This algorithm has demonstrated the ability to 

converge in only a few sweeps for two phase images, which refers to images containing 

two regions. An in depth analysis of this technique is presented in [61]. An example of 

the results obtained using the segmentation algorithm is illustrated in Figure 2.8. Figure 

2.9 illustrates the effect of using this smoothness constraint in an image with a high level 

of noise. In the case that the smoothness constraint is not enforced, the result of the 

segmentation includes spurious pixels throughout the image as shown in Figure 2.9 (b). 

However, the application of the smoothness constraint is able to more accurately segment 

the objects from the background as shown in Figure 2.9 (c). 
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                       (a)                                          (b)                                 (c)   
Figure 2.8. An example of image segmentation using an implementation of the fast update algorithm found 
in [61]. (a) The image I. (b) The initial embedding function φ0 where φ0 > 0. (c) The final segmentation 
result φ where φ > 0 after 2 sweeps of the algorithm. 

   
                       (a)                                          (b)                                 (c)   
Figure 2.9. The effect of the smoothness constraint in the segmentation of an image with a high level of 
noise. (a) The image I. (b) The final segmentation result, φ > 0, when the smoothness constraint is not 
enforced. (c) The final segmentation result, φ > 0, when applying the smoothness constraint. 

If the smoothness constraint of this fast Chan-Vese algorithm is omitted, it can be 

compared to the k-means segmentation algorithm presented in [39]. The k-means 

procedure is initialized by randomly placing two centers of mass, m1 and m2. This is 

analogous to the initialization of the fast update algorithm in which φ is initialized and the 

values of c1 and c2 are computed. In separating the clusters in the k-means procedure, a 

minimum distance classifier is used to update the segmentation result. This step 

corresponds to the comparison of each pixel value to the mean value of each region using 

(2.22) and (2.23). Following this classification step in the k-means algorithm, m1 and m2 

are recomputed for each cluster. Similarly, the values of c1 and c2 are updated according 

to the new segmentation result given by φ. 

Shape Prior Segmentation Techniques 

While variations of level set techniques have been proposed to improve computation time 

[61], others have presented methods for improving upon the segmentation accuracy. In 
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doing so, many techniques have been proposed which include a shape prior into the 

active contour segmentation framework [12, 13, 20, 21, 25, 35, 36, 58]. In [35, 36], 

Leventon et al. presented a method which includes statistical shape information into the 

geometric active contours energy function. Another approach presented by Chen et al. 

[13] incorporated a different shape term into this model. Also, several approaches have 

been introduced which incorporate shape priors into the Chan-Vese model [12, 21, 25]. 

Cremers et al. [21] proposed a variational approach that incorporates a shape term into 

the Chan-Vese model along with a labeling level set function L to indicate the region in 

which the shape prior is to be enforced. However, the reference shape must be aligned 

with the target object. Chan and Zhu [12] improved upon this work by allowing 

translation, scaling, and rotational differences of the prior shapes in accordance with the 

image object. Chan and Zhu also applied this concept to the fast update technique, 

excluding the length term, proposed in [61]. Foulonneau et al. [25] incorporated shape 

descriptors based on Legendre moments into the energy function, thus minimizing a 

function of the distance between the evolving contour and a target shape. The use of such 

moments allows for misalignment between the target object and shape prior and also 

allows for geometric variability between the object and reference shape.  

Shape Descriptors based on Image Moments 

In 2D pattern recognition, the forms of distortion often encountered include translation, 

rotation, scaling, and skew [38]. A number of methods have been developed, which are 

geared towards transforming a pattern into a form which is invariant under such 

distortions. In 1962, Hu first proposed a method which uses moments for 2D pattern 

recognition applications in [29], which allows for object recognition in 2D image patterns 

regardless of distortions caused by translation, rotation, and scaling. 

 

In [29], Hu derived the set of 2D moment invariants based on the theory of algebraic 

invariants. The set of second- and lower-order invariants are summarized as follows. In 

[29], a 2D (p + q)th order moment mpq of a density function ρ(x, y) is defined in terms of 

Riemann integrals as  
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where p, q = 0, 1, 2, … The first order moments are used to compute the image centroids, 

or the centers of mass, using  
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Using these centroids, the central moments μpq are defined in [29] as  
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The central moments do not change with a change in coordinates, and therefore, these 

moments are invariant to translation. These central moments may also be expressed in 

terms of the ordinary moments, the equations of which, corresponding to the first four 

orders, are provided in [29]. The first few orthogonal invariants which use the second 

order centralized moments are given as  
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An extended list of these invariants is provided in [29].  

 

In the specific example of 2D image patterns, methods which use moment invariants 

[29], Fourier descriptors [50, 74], Hough transforms [4], shape matrices [65], and 

principle axis methods [56] have been investigated as solutions to providing a normalized 

image which is invariant under the mentioned distortions. However, difficulties in 

accommodating for skew remain in these methods. Wang and Zhao [38] proposed a 

method which makes use of moment invariants to produce a compact image 

representation which accommodates for this type of distortion. Such a representation may 

be used to provide a measure of similarity between two images despite differences in 

translation, rotation, scaling, and skew. 
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2.1.3 Atlas-guided Segmentation  

Information such as shape may also be provided by an atlas [2, 14, 19, 22, 33, 59, 64, 70, 

73]. The atlas refers to a reference image, which provides a model of the anatomy or 

general morphology expected to be contained within the population of image data. 

Construction of an atlas can be accomplished by sampling from a large data bank, 

registering these samples to a defined coordinate system, and then averaging these 

samples to form a single data volume. In one possible representation of the anatomical 

structure of interest, careful manual or semi-automatic segmentation of the atlas may be 

conducted in order to arrive at a binary mask. By incorporating the atlas binary mask into 

a segmentation procedure, one introduces prior knowledge, such as the shape and 

geometry of the anatomical structure of interest.  

 

Atlas-guided segmentation approaches are generally treated as an image registration 

problem, a process which is described in the following section, and are commonly 

referred to as atlas-warping. In this approach, one finds the transformation which maps 

the target image space to the atlas space to compare to one another on a level playing 

field. As a result, any labeling which identifies anatomical structures within the atlas is 

transferred to the novel image. While approaches have been proposed which use linear 

transformations [2, 33, 64], mappings formed by a sequence of linear and non-linear 

transformations [14, 19, 22, 59] allows for variability in the anatomy between subjects. 

Techniques have also been proposed which estimate a non-rigid deformation field 

between an atlas and the target image [73]. The deformation is then applied to the atlas to 

achieve the segmentation of the anatomical structure of interest. Also, methods have been 

proposed which combine non-rigid registration and segmentation into a unified 

framework, thus achieving the atlas-assisted segmentation result in a single step [70]. 

2.2 Medical Image Registration  

As introduced in Chapter 1, image registration is the process used to determine  

( ) ( )( ),,min 21 xIxIdistT  (2.29)
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the spatial transformation T which provides the minimum distance between homologous 

points of two images, I1 and I2. This distance refers to a measure of dissimilarity 

computed as a function of the image intensities of the images. A minimum of this 

distance is found using an optimization process. The optimization is accomplished by 

traversing through a given transformation parameter space with the moving image and 

computing the distance between the transformed moving image and the fixed image. As 

previously mentioned, the main components required within this registration framework 

include an interpolator, the type of transform, a similarity metric, and an optimization 

scheme. Existing techniques used in implementing each component are discussed in the 

following sections. 

2.2.1 Interpolator 

While performing the search for the optimal transformation parameters, an image is often 

mapped onto non-grid positions, and therefore an estimation of the image intensities at 

the sub-pixel level is required. This estimation can be accomplished through a number of 

interpolation techniques. The choice of interpolator to be used through the course of the 

registration process necessitates a tradeoff between computational speed and accuracy. 

Due to the numerous iterations in which the interpolation is performed during a typical 

registration, the time required in the registering two images may dramatically increase 

[30].  

 

The computational efficiency of techniques such as linear interpolation or nearest-

neighbor techniques has greatly popularized their use in image registration [41]. Linear 

interpolation is based upon the assumption that the image intensities vary linearly 

between integer pixel positions. The intensities at the non-grid positions are continuous, 

and the gradient of the intensity values is discontinuous at grid positions. Other methods, 

such as B-splines or Windowed Sinc interpolation, provide for greater sub-voxel 

accuracy, but at a computational cost [30]. B-spline interpolation methods represent 

image intensities using B-spline basis functions [67, 68, 69]. Upon inputting an image, 

the coefficients of the basis functions are computed using recursive filtering. The 
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intensities at non-grid positions are then determined by multiplying these coefficients 

with shifted B-spline kernels in a small support region.  

2.2.2 Transformation 

In choosing the type of transformation to be used in the registration framework, the 

nature of the spatial transformation required to align the images of interest must be 

considered. Typical transformations used in image registration include rigid, affine, 

projective, and curved transformations [41]. Rigid transformations allow for translations, 

rotations, and reflections, and are best suited for applications in which the object of 

interest is ‘rigid’ and exhibits only small difference in shape between the images. Affine 

transformations extend rigid transformations to include scaling and shearing, in which 

straight lines and parallelism between lines is preserved, but not the lengths and angles 

between these lines. Affine transformations are therefore most appropriate in the case that 

the scaling factors between images are not precisely known. Projection transformations 

do not preserve parallelism, and are most common in registering 2D images to 3D image 

volumes [41, 53]. While the above transformations can be represented in the form of a 

matrix, curved transformations require a displacement field representation [53]. Curved 

transformations are performed on a local basis, and are useful when the required mapping 

must have the ability to transform straight lines into curves. 

2.2.3 Metric 

Perhaps the most significant of the components to consider given a specific application is 

the choice of metric [30]. Certain metrics are less effective in the case that the images to 

be registered are of different modalities. Typical examples of unimodal registration 

metrics include the sum of squared-differences between image intensities and normalized 

cross-correlation [30]. In the case of multimodal registration, any given tissue present in 

the data may generate very different intensity values when acquired using another 

modality. Concepts from information theory, such as mutual information [18, 40, 53] and 

the Kullback-Leibler measure [15], have provided a solution to the multimodal 

registration application. 
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Mutual Information has proven to be an extremely useful metric, and may be interpreted 

as a measure of how much information in one image is contained in another image, in 

terms of the image intensities [40].  The exact correspondence between these intensities is 

not necessarily required to be known, and therefore this metric is suitable for multimodal 

registration applications.  

 

In order to describe mutual information between two random variables, the Shannon 

Entropy for a random variable A and event a is first defined as 

))((log)()( apapAH A
a

A∑−= . 
(2.30) 

Given another random variable B for which the entropy is similarly defined, the joint 

entropy of A and B can be written as  
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which is equal to the sum of the individual entropies of A and B in the case that A and B  

are independent. The mutual information defined in terms of the joint entropy as  

),()()(),( BAHBHAHBAI −+= , (2.32) 

which serves as a measure of the difference in the joint entropy associated with the 

degree of dependence between two random variables A and B [30, 53]. As a result, 

maximum value of mutual information denotes an optimal correspondence between two 

random variables. 

  

Mutual information can be used in order to provide a similarity metric between two 

images, A and B. This can be accomplished by first estimating the marginal and joint 

probability densities. One way to provide this estimation is through the normalization of 

the joint and marginal histograms of the image [30]. The joint histograms are constructed 

by initializing a 2D array, the rows and columns of which correspond to each image 

intensity bin, and each dimension is associated with an image. The value of each 2D 

histogram bin is therefore determined by the intensities of both images. Besides 

histogram normalization, continuous density estimation techniques such as Parzen 



 

34 

windowing may also be used to estimate the densities [23]. Following the density 

estimation, the entropies can be computed using Equations (2.30) and (2.31) and the 

mutual information, I(A,B), can be obtained using (2.32). The mutual information is 

assumed to be maximal when the images are geometrically aligned. Therefore, when 

using this metric within the registration framework, the distance as described in Equation 

(2.29) must be maximized. 

2.2.4 Optimization Schemes 

Lastly, numerous optimization algorithms exist which may be incorporated into the 

registration framework. The optimizer is used to find a minimum or maximum of a 

function based on the metric. This is accomplished by traversing the transformation space 

with the fixed image, the parameters of which are defined by the type of transformation. 

The optimizer therefore provides the search algorithm which ultimately finds the 

transformation providing the best match between the images according to some metric.  

 

Because this metric function may not be differentiable, or because the computational 

complexity in differentiating the function may be expensive, techniques have arisen to 

simplify this task. These optimization methods include techniques such as gradient 

decent, Newton’s method, and Quasi-Newton [9] methods, which are based on Taylor’s 

series expansion. Also, a number of search methods exist such as Brent’s Line Search 

[55], Simplex Search [62], and Powell’s Method [54], which are relatively general, 

simple to implement, and do not require the function derivatives to be computed. 

2.3 Insight Segmentation and Registration Toolkit (ITK) 

Many of the medical image analysis concepts visited throughout this chapter have been 

previously implemented as ITK classes. Therefore, this software was used extensively 

through the course of this research to test the ability of these methods to perform the 

required registration and segmentation tasks. This section provides a background of the 

segmentation and registration capabilities of ITK.  
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2.3.1 Overview of Segmentation in ITK 

ITK provides a number of fundamental segmentation algorithms which can be 

incorporated into a complete segmentation application [30]. The components involved in 

a segmentation application can be tuned to accommodate the type of data and the 

characteristics of the anatomical region to be segmented. Typically, several filters in the 

pipeline may be used in pre-processing the data prior to the segmentation. These may 

include denoising filters or filters used in extracting image features such as edges. Filters 

may also be used to refine the segmentation result in a post-processing step.  

 

The types of segmentation filters available in ITK fall into three main categories, 

including: (1) region growing segmentation techniques, (2) segmentation methods based 

on watersheds, and (3) level set segmentation algorithms [30]. A number of hybrid 

approaches are also available, which make use of combinations of these region-based and 

boundary-based techniques. This approach exploits the strengths and weaknesses in each 

technique in order to improve the quality of the segmentation. 

 

Region growing segmentation filters detect object regions based on the similarity of 

intensity values of adjacent pixels [30]. The process of region growing begins through the 

user specification of initial seed pixels, which are indicated as inside or outside the object 

of interest. These filters then evaluate neighboring pixels according to a criterion which 

varies depending on the exact region growing filter used. These neighboring pixels are 

then determined to be inside or outside of the object. This process continues until all 

pixels have been visited and labeled. 

 

Watershed techniques have acquired its name from the manner in which the segmentation 

is performed [30]. Consider a feature image f, which serves as a height function of the 

image, and which is typically formed from the gradient magnitude or curvature measures 

within the image. The segmentation is accomplished using gradient decent on this 

function f to identify the paths of steepest descent terminating at the same local minimum 

of f. The result determines the basins which provide the segmentation. Watershed 

segmentation techniques are less sensitive to thresholds than the region-growing 
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techniques. Also, a hierarchy of segmentations is determined which allows a user to assist 

in the segmentation process.  

ITK Level Set Segmentation Techniques  

The level set method filters available in ITK make use of a generic level set equation 

used to update the embedding function φ according to the partial differential equation 

[30]  
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Here, A represents the advection term used to attract the curve to the edges, P is the 

propagation term, and Z represents the spatial modifier associated with the curvature κ. α, 

β, and γ are constants which provide the weight of influence for each of the three terms in 

the evolution equation. The terms to be included in the application will vary depending 

upon the specific level set filter used. 

 

ITK provides an implementation of geodesic active contours based upon the paper 

proposed by Sapiro et al in [10]. This implementation extends the evolution equation in 

Equation (2.33) to include a curvature term as well as an additional advection term. These 

terms provide a smoothness constraint to the evolving contour, and attract the curve to 

the object boundaries, respectively.  

 

As mentioned, the inputs to this filter include the initial embedding function and the 

feature image, which in this case refers to the speed image computed as a function of the 

gradient magnitude image. In a typical application, a user specifies an initial contour in 

the form of the zero level set of an embedding function φ  [10]. The result of this 

segmentation method is relatively sensitive to the initialization, and therefore, the initial 

contour should be placed inside the boundaries of the target object. In order to produce 

the speed image, the original image is typically processed in the following manner. The 

image is first smoothed using an edge-preserving smoothing filter, such as an anisotropic 

diffusion filter, to remove noise. This smoothed image is then passed to a second filter 

used to compute the gradient magnitude image. Finally, the output of the gradient 
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magnitude filter is passed to a filter such as the sigmoid filter which makes use of 

Equation (2.17) to provide the speed image.  

 

Upon executing the segmentation process for a number of iterations, the output of the 

segmentation filter is a single image representing φ at the final time step. The zero level 

set of the evolved embedding function provides the surface of the segmented object 

computed at subpixel accuracy. This result is typically passed through a threshold filter 

which sets the values denoting the inside of the curve to 1 and outside to 0. The methods 

presented in Chapter 3 provide a detailed description of an ITK application which uses 

the implementation of geodesic active contours.  

2.3.2 Overview of Registration in ITK 

ITK treats the registration problem as an optimization process used to determine the 

spatial correspondence between two images. The basic input to the registration method in 

ITK includes two images, one of which is designated as the fixed image, and the other the 

moving image. The registration framework consists of four primary components, each of 

which has a number of interchangeable options. These components include an 

interpolator, the type of transform, a similarity metric, and an optimization scheme.  

The variety of types available for each of these components allows for a large range of 

possible combinations, leading to many unique registration methods. Interpolation 

functions existing in ITK include nearest neighbor, linear, B-spline, and Windowed Sinc 

interpolation methods. Many transforms are available, including translation, rigid, affine, 

and B-spline deformations, to name a few. ITK metrics include mutual information, mean 

squares, normalized correlation, and Kullback-Leibler distance. Finally, several 

optimization methods offered by ITK include gradient descent, one-plus-one 

evolutionary, Powell method, and the Nelder-Meade downhill simplex. 

 

Upon plugging each of the components into the pipeline and specifying parameters for 

each, the process may be executed. The output of the registration process includes the 

parameters of the transformation required to map the fixed image to the moving image. 

Post-processing steps may include applying this transformation to the moving image in 
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order to provide the aligned image. The methods presented in Chapter 3 provide a 

detailed description of an ITK registration application which makes use of an affine 

transformation, mutual information based metric, and a Powell optimization filter. 
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Chapter 3: A New Speed Function for Shape Prior 
Segmentation 
 
The approach discussed in this chapter incorporates shape information into the speed 

term used in many curve-evolution based segmentation algorithms. This makes it 

possible to perform segmentation based on a shape prior using existing algorithms and 

code by simply substituting the speed image. The new speed function slows curve 

evolution near edges in the image to be segmented as well as near edges in a registered 

atlas image. In this chapter, the details of the atlas construction and registration step, 

which only applies to the segmentation of the real MRI data, are first provided. This is 

followed by a discussion of the methods used to compute the new speed term, as well as 

the segmentation step which uses an implementation of geodesic active contours.  

3.1 Overview 

To overcome the complications associated with extracting the MRI rabbit brain data, an 

atlas image Iatlas was constructed and used to guide the process. This segmentation 

procedure includes the following steps: 

 

Step 1: Register the novel data set with Iatlas. 

Step 2: Compute the new speed term. 

Step 3: Perform the segmentation using an embedding function 

initialization provided by the registration step, and by replacing a new 

speed term for the traditional speed in an implementation of geodesic 

active contours. 

 

The atlas was constructed using a twelve-member subset of the MRI data sampled from 

the population of available data. This was then hand segmented to produce a mask 

labeling the brain and non-brain tissue regions. A signed distance function was computed 

from this binary image to give φatlas representing the brain surface of Iatlas. Each novel 

data volume I to be segmented is registered to Iatlas. This process finds a transformation 

matrix Taffine which is used to map φatlas onto I.  
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Within the population of data, anatomical variations do not allow for such a registration 

step to provide an adequate segmentation result. However, the step may be used to 

produce a close approximation to the final segmentation by using φatlas as an initial 

embedding function in a final level set segmentation step. The input to the segmentation 

step also includes the speed image g, which is typically computed from the gradient 

magnitude of I using an edge potential function such as (2.17). Because of the low-

contrast edges at the boundary of the brain, a new speed function, which also incorporates 

information provided by Iatlas, is used to compute the speed image g. Upon producing the 

initial embedding function φ0 and the new speed map g, several iterations of geodesic 

active contours segmentation are performed to achieve the final segmentation result.  

3.2 Atlas Construction 

In order to construct Iatlas, 12 data sets were sampled from the population of existing MRI 

data. Of these, a single data set ITrainingReference was chosen to provide a basis for which the 

remaining training samples ITraining (k), where k = 1, 2, …11, were to be registered. Each 

data set in ITraining was then registered to ITrainingReference using the registration framework of 

ITK.   

 

The two-step algorithm used to register ITrainingReference and ITraining(k), for each k, finds the 

affine transformation Taffine. This transformation registration solves for translation, 

rotation, scaling, and shearing. Components used in this ITK registration application 

include Mattes mutual information image metric and the Powell optimizer. A complete 

description of the registration process used in aligning these data sets is provided in 

section 3.3. 

 

Following the registration, the transformed training data sets I′Training(k) were then used to 

give the atlas image, Iatlas,  by computing the median of the intensity values at each voxel. 

This result was then manually segmented by identifying and labeling the voxels in the 

brain to produce a binary image.  
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The binary image is then used as input to the itk::SignedDaniellsonDistanceMapImageFilter. 
This filter takes a binary image as input and computes a distance map approximated to 

pixel accuracy. The signed distance refers to the Euclidean distance between a current 

pixel and the closest point of the closest object while using the sign of the value to 

indicate whether the pixel is located inside or outside the binary object. ITK convention 

stipulates that the values of the inside pixels are negative, while the values of the outside 

pixels are positive. The output of this filter is φatlas, the signed distance map 

representation of the atlas brain surface.  

 

The results of the intermediate steps involved in constructing the atlas, including the 

registration step, the averaging process used to obtain Iatlas, and the manual brain 

segmentation, are provided in Chapter 5. 

3.3 Registration Algorithm 

As mentioned in section 3.2, the registration procedure described in this section is used in 

the construction of Iatlas. Also, this procedure is used in the initial registration step 

involved in the segmentation of I.  

 

This two-step registration algorithm performs an initial registration step to find Ttranslation. 

This quickly corrects for any large translational misalignment between the two images. 

Ttranslation is then used as the initial transform in a second registration step, which finds the 

affine transformation, Taffine. In the registration algorithm involved in registering a novel 

image, Taffine is applied to φatlas to obtain φ0, the initial embedding function used in the 

geodesic active contours segmentation. Figure 3.1 depicts the registration framework in 

relation to the inputs, outputs, and ITK registration components.  

 

The registration procedures used in the atlas construction and in the initial stages of the 

segmentation are essentially the same. However, minor variations in the preprocessing 

and the postprocessing stages exist. The procedure described in this section emphasizes 

the registration of Iatlas to I used in determining φ0, although any discrepancies are 
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specified. This section provides implementation details of the preprocessing, 

initialization, optimization, and postprocessing stages of the registration procedure. 

 

 

Figure 3.1.  The flow chart of the ITK registration framework used in the registration step of the brain 
extraction algorithm. Inputs Iatlas, I, and φatlas are used to obtain φ0, which is then used in the segmentation 
step. 

3.3.1 Preprocessing 

In registering Iatlas to I, the two images are first read from file and cast to type float. The 

statistical distributions of the images’ intensity values are then normalized to zero mean 

and unit variance using the itk::NormalizeImageFilter class in order to simplify the 

computation of the mutual information metric within ITK. A low-pass filter, provided in 
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the itk::DiscreteGaussianFilter class, is then used to smooth I. Performing this filtering step 

improves the registration process in terms of robustness to noise. The variance parameter 

of the Gaussian kernel used in the itk::DiscreteGaussianFilter class is specified using the 

SetSigma( ) method. This filter is not applied to Iatlas due to the assumption that the 

averaging process involved in the atlas construction has the effect of smoothing the noise 

components of the data.    

3.3.2 Initialization  

A generic registration interface is provided by the base class, itk::ImageRegistrationMethod 

[30]. This class expects two input images, which are designated as the fixed and the 

moving image using the methods SetFixedImage( ) and SetMovingImage( ). The coordinate 

system of the fixed image is used by this class as a reference. In the construction of Iatlas, 

ITraining(k) is designated as the moving image while ITrainingReference is denoted as the fixed 

image. In the registration of Iatlas to I, Iatlas is set as the moving image and I is designated 

as the fixed image. Note that the actual inputs to the registration filter are the 

preprocessed versions of the images as described in the previous section. The registration 

process then determines the coordinate transform that maps points from the space of the 

fixed image to the space of the moving image.  

3.3.3 Registration Framework Components 

The itk::ImageRegistrationMethod base class is used to connect a generic interpolator, 

transform, metric, and optimizer, thus allowing for the run-time selection of the exact 

types of these components to be used. Upon initializing a registration application, an 

object of this base class is instantiated. Once the types of the registration framework 

components are chosen, an object corresponding to each of these classes is instantiated. 

The components are then connected through the itk::ImageRegistrationMethod base class, 

using the methods SetInterpolator( ), SetTransform( ), etc. The parameters corresponding to 

each of these components can be set at any time prior to executing the registration 

process.  
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Interpolation 

An interpolator is used during the registration process to estimate image intensities of the 

moving image when the transformation maps pixels to non-grid positions of the 

coordinate system. To minimize the computation time, a linear interpolation scheme 

provided by the itk::LinearInterpolateImageFunction class was used. No parameters are 

required in implementing this class. 

Transformation 

As mentioned, the transform parameters define the search space for the optimizer within 

the registration framework [30]. The more parameters this transform contains, the longer 

the computation time associated with performing the registration. In order to reduce the 

time required, the registration is broken up into two stages: (1) resolve the translational 

misalignment to provide a quick initial result, and then (2) solve for rotation, scaling, and 

shearing to achieve a refined alignment result.  

 

The itk::TranslationTransform class is plugged into the transform component of the 

registration filter in the initial registration step. The transform matrix associated with this 

class represents a simple translation of points in each of the image dimensions. Therefore, 

each component of the transform matrix output is associated with a dimension of the 

input image. This registration step is used to quickly solve for Ttranslation.  

 

The affine transform, provided by the itk::AffineTransform class, is a transformation 

composed of rotation, scale, translation, and shearing [30]. It is represented by an N x N 

and an N x 1 vector, where N is the number of dimensions in the image space. The 

number of parameters in the transformation matrix is therefore (N + 1) x N. Here, the first 

N x N parameters define the matrix, corresponding to scaling, rotation, and shearing, in 

column major order. The last N parameters define the translation associated with each 

dimension of the image space. The result of the first registration step, Ttranslation, is used as 

the initial translation in the final affine registration step which finds Taffine. The initial 

translation is set using the SetInitialTransformParameters( ) method of the registration base 

class. No other parameters are required to be set for this component. 
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Metric 

Mattes mutual information measure is a variation to the mutual information metric as 

proposed by Mattes et. al in [45]. The primary difference in Mattes implementation is that 

only a single subset of the intensities are drawn from the image, instead of using every 

pixel intensity. This sample set is used to compute the joint and marginal probabilities at 

the discrete histogram bins. The entropy is then computed by summing over these bins. 

This implementation results in a smoother cost function to be used within the 

optimization process, as well as a faster computation with only a minimal loss in 

accuracy [30]. 

 

The implementation provided in the itk::MattesMutualInformationImageToImageMetric class is 

based on [45, 46, 66]. Using this class requires that only a set of the intensity values are 

used to compute the metric value [30]. The method SetNumberOfSpatialSamples( ) is used 

to specify the number of pixel intensities to sample from the image. This sample set is 

used to compute the joint and marginal probability distribution function (PDF) at the 

discrete histogram bins spread evenly throughout the range of image intensity values 

using Parzen histograms. The number of bins to be used is set using the 

SetNumberOfHistogramBins( ) method. The entropy is then computed by doubly summing 

over these bins. The value returned is the negative mutual information. 

 

The metric classes available in ITK support region based evaluation to allow a user to 

specify the region of the image from which the metric is to be computed [30]. Although 

the region is not specified in the registration procedure used in constructing the atlas, a 

dilated version of the manually segmented atlas is used as an itk::SpatialObject to specify 

this region. First, a structuring element is instantiated in the form of a binary ball with 

radius of 20 using the itk::BinaryBallStucturingElement class in ITK. This structuring element 

is set as the kernel for the itk::BinaryDilateImageFilter using the SetKernal( ) method. Upon 

inputting the atlas binary mask, it is dilated using this filter to produce a binary image 

indicating the region which contains the brain volume but excludes a large portion of the 

surrounding data. The SetFixedImageMask( ) and SetMovingImageMask( ) methods of the 
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metric class are used to specify that the dilated binary mask marks the image region 

which is to contribute to the value of the metric.  

Optimizer 

The optimizer traverses a transformation space specified by the type of transform in 

search of a minimum (or maximum) of the cost function defined by the metric [30]. 

Because the mutual information metric is employed, the optimizer must be suited for 

handling a single valued cost function. In the registration methods implemented, the 

itk::PowellOptimizer class is used as the optimizer component. This class provides an 

implementation of Powell optimization which uses a Brent line search [30]. To briefly 

describe this optimization scheme, consider the N-dimensional parameter space 

characterizing the transform. At each iteration of the optimization procedure, the 

optimizer seeks to minimize the Mattes mutual information value in each of the N 

dimensions [54].  

 

Within this optimizer class, the method SetStepLength( ) is used to set the initial step 

distance that is to be taken in each line direction of the parameter space. The 

StepTolerance( ) method is used to terminate the optimization process when the current 

parameter values are known to be within the distance specified. Similarly, the 

ValueTolerance( ) method is used to terminate the optimization when the value of the 

metric at the current parameters is known to be within the tolerance specified. Because 

the parameters of the transform may have different dynamic ranges, angles versus 

translations i.e., the scale to be used for each parameter of the transform is set using the 

SetScales( ) method. Also, the SetMaximize( ) method is called with the parameter false to 

indicate that the Mattes mutual information metric should be minimized. Finally, the 

SetMaximumIteration( ) method is used to limit the number of iterations to be performed. 

3.3.4 Registration Optimization 

The registration procedure begins by reading in the images to be registered and 

performing the preprocessing steps. This is followed by initializing each of the 

registration components, setting the necessary parameters associated with each of the 
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components, and connecting the data and process objects into a pipeline using the 

registration base class, as shown in Figure 3.1.  

 

Upon construction of the pipeline, the registration begins by performing the initial 

translation registration. Optimization terminates upon arriving at a tolerance value 

indicated by the optimizer, or by reaching the maximum iteration number indicated. The 

output of the registration filter, Ttranslation, is then used as input to the second registration 

step which performs the affine registration. The optimization of the affine registration 

step proceeds in an analogous manner, with the exception of the transformation space in 

which the optimizer traverses. The result of this step gives Taffine, which can be then used 

to map the fixed image to the moving image. 

3.3.5 Postprocessing 

In the case of the registration between the atlas Iatlas and a novel data set I, Taffine is used to 

provide a transformation which maps Iatlas onto I. This transformation is applied to the 

signed distance map of the binary atlas mask φatlas to get  

( ) ( )( )xTx affineatlasφφ =0 , (3.1) 

which is to be used as the initial embedding function in the segmentation step. This is 

accomplished using an itk::ResampleImageFilter, an ITK class used to resample an image 

according to a specified coordinate transform [30]. Here, the image φatlas is set as the 

input to be transformed according to Taffine. The type of interpolation to be used by this 

filter is specified as the itk::BSplineInterpolateImageFunction, the details of which are 

provided in [30]. Finally, the spacing, size, and direction for the output image are 

specified by setting I as the reference image and using the UseReferenceImage( ) method 

available in the itk::ResampleImageFilter class. The output of this filter is φ0.  

 

Similarly, in the registration procedure used in constructing the atlas, the transformation 

Taffine computed using ITraining(k) is used to align ITraining(k) to ITrainingReference. As performed 

in the transformation of the embedding function described above, this is accomplished 

using itk::ResampleImageFilter and the itk::BSplineInterpolateImageFunction interpolator.  Here, 

the image ITraining(k) is set as the input to be transformed according to Taffine. Finally, the 
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spacing, size, and direction for the output image are specified by setting ITrainingReference as 

the reference image and using the UseReferenceImage( ) method. The output of this filter 

is the aligned training data image, I′Training(k). Examples of the results obtained by 

performing the registration step required in both the construction of Iatlas, and in mapping 

φatlas to a novel data set, are provided in Chapter 5. 

3.4 Geodesic Active Contour Level Set Segmentation Method 

The segmentation approach used in extracting the brain volume from the image I uses a 

segmentation filter in ITK which implements the geodesic active contours. The pipeline 

which performs the segmentation includes a series of filters. These components are used 

to perform image smoothing, compute the gradient magnitude image, compute the speed 

image, and perform the segmentation. This process is followed by a thresholding step to 

isolate the region of interest located inside the evolved interface, which is represented by 

the negative values of the embedding function. This section describes the segmentation 

procedure and provides insight into key parameters used within the components of the 

segmentation pipeline. Details of the preprocessing stage, speed image computation, level 

set evolution, and post-processing stage of the segmentation are also provided in this 

section. The code corresponding to an implementation of this method is provided in the 

Appendix. 

3.4.1 Preprocessing 

In order to begin the segmentation process, the image I is smoothed in order to denoise 

the image. This is accomplished using an edge-preserving, anisotropic diffusion filter 

implemented in by the itk::CurvatureAnisotropicDiffusionImageFilter class. The time step, 

conductance, and the number of iterations are set using the SetTimeStep( ), 
SetConductanceParameter( ), and SetNumberOfIterations( ) methods of this class. An 

additional class method UseImageSpacingOn( ) is used to indicate that the image spacing is 

to be accounted for while undergoing the smoothing process. Next, the smoothed image 

is passed to an itk::GradientMagnitudeRecursiveGaussianImageFilter, which computes the 

gradient magnitude image through the convolution with the first derivative of a Gaussian. 

The variance σ2 parameter of the Gaussian is set using the SetSigma( ) method. 
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3.4.2 A New Speed Function for Shape Prior Segmentation 

The traditional speed image is computed by passing the output of the gradient magnitude 

filter to an itk::SigmoidFilter, which results in an edge potential image. This filter provides a 

pixel-wise implementation of Equation (2.17). The key parameters of this filter include α 

andβ, the implications of which are described in section 2.1.2. These values are set using 

the SetAlpha( ) and SetBeta( ) methods of the itk::SigmoidFilter class.  

 

In cases in which the edges are not detected by the gradient magnitude, edge information 

from the atlas may be used in these locations. The proposed speed function therefore 

combines the gradient information with atlas information. Computing the proposed speed 

term is summarized in the following steps: 

 

Step 1: Compute two speed map terms, referred to as gHigh and gLow, using 

the traditional speed function given by Equation (2.17). The two terms are 

computed using different values of the constant β.  

Step 2: Take the difference of the two speed terms, but apply the Dirac 

measure, δε, to restrict the effect of the difference of gHigh and gLow, to the 

surface of the atlas shape. 

 

In the first step, two speed map terms, referred to as gHigh and gLow, are computed using 

(2.17). Here, βHigh and βLow are substituted for β in (2.17) to compute the gHigh and gLow 

terms of the new speed map. The values of βHigh and βLow are tuned by the user to 

generate speed maps gHigh and gLow that will remain equal in regions of strong edges and 

homogeneity, but will differ in value where there is intermediate edge information. βLow 

is chosen to be the value of the gradient magnitude, below which, the image at that 

location is to be considered homogeneous. βHigh is chosen to be the value of the gradient 

magnitude, above which, the image at that location is to be considered an edge. Figure 

3.2 shows the original synthetic image in Figure 3.2 (a) from which the gradient 

magnitude image of Figure 3.2 (b) is generated. From the gradient magnitude, the two 

speed maps are computed as shown in Figure 3.2 (c) and (d). Once these speed terms are 

found, their difference can then computed as g = gHigh - gLow, as shown in Figure 3.3. 
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                                                   (a)                    (b) 

   
                                                   (c)                    (d) 
Figure 3.2.  Computing the gHigh and gLow terms. (a) The original image I is used to compute (b) the 
gradient magnitude image. This is then used to compute the speed terms: (c) gHigh and (d) gLow. 

 
Figure 3.3. The difference between the speed terms gHigh and gLow computed as g = gHigh - gLow. 

However, the result shown in Figure 3.3 is isolated to the region immediately 

surrounding the atlas brain surface, as indicated by the zero level set of φ0, by formulating 

the new speed function as 

( ) ,0 LowHigh ggg φδε−=  (3.2) 

where φ0 denotes the initial embedding function, and δε denotes the regularized Dirac 

measure as proposed in [11], given by 

( ) ⎟
⎠
⎞

⎜
⎝
⎛

+
= 22

1
z

z
ε

ε
π

δε , (3.3) 
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where ε represents the width of the function. Using φ0 computed in (3.1), Equation (3.3) 

is then used with ε = 1.0 to get the δε(φ0) term of the new speed function. Finally, the 

speed map is computed using (3.2). The binary atlas, from which the signed distance map 

is computed to give φ0, is shown in Figure 3.4 (a). The speed map computed using the 

new speed function (3.2) is shown in Figure 3.4 (b). Here, it can be observed that the 

apparent gaps in edge information are filled by edge information provided by the atlas. 

 

  
                                                   (a)                    (b) 
Figure 3.4. The new speed term. (a) The binary atlas image used to compute φ0, and (b) the new speed 
term. 

Upon computing the new speed term, the segmentation is performed by replacing this 

speed term for the traditional speed in an implementation of geodesic active contours. 

Level Set Segmentation Method 

The itk::GeodesicActiveContourLevelSetImageFilter class used to perform the segmentation 

expects two inputs including: (1) an initial level set embedding function φ0, and (2) the 

speed image g. The initial level set φ0 provided by the preceding registration stage is 

initialized using the SetInput( ) method. The proposed speed image g computed using the 

methods described in the previous section is input using the SetFeatureImage( ). The 

weights given to the advection, propagation, and curvature terms of the energy are set 

using SetAdvectionScaling( ), SetPropagationScaling( ), and SetCurvatureScaling( ) methods, 

respectively. The components of the segmentation pipeline which implements geodesic 

active contours are depicted in Figure 3.5.  
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Figure 3.5.  Diagram of the segmentation application using the geodesic active contour filter in ITK. The 
level set input φ0 is provided by the registration step as indicated in Figure 3.1. The new speed term is 
computed as described. 

The user terminates the segmentation process upon visual inspection of a close 

segmentation provided by the evolving curve represented by φ. The segmentation will 

also terminate after a predefined number of iterations. When the segmentation completes, 

the final result φfinal is obtained from the itk::GeodesicActiveContourLevelSetImageFilter. This 

is then passed to a thresholding filter, itk::BinaryThresholdImageFilter, which sets the 

negative values denoting the inside of the curve to 1. The positive values representing 

pixels on the outside of the curve are set to 0. This is accomplished by setting the upper 

threshold, lower threshold, inside value, and outside value parameters of this filter. The 

result is a binary mask which labels the brain volume and non brain tissues of the data 

set. 
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Chapter 4: Fast Level Set Segmentation using a Shape 
Prior  
 
In another segmentation approach, a method is proposed which uses concepts of image 

moments to provide a shape constraint to be incorporated into the fast algorithm for 

Chan-Vese level set optimization presented in [61]. This method is similar to the method 

proposed by Chan and Zhu [12]. The main difference is that the transformation linking 

the shape prior to the segmentation is determined by the set of moments computed from 

the evolving segmentation and the shape prior.  

 

The proposed method first determines a set of moments from shape image Ishape. At each 

sweep of the set of image pixels during the segmentation process, a set of moments are 

computed from the current segmentation specified by the embedding function, φ. In some 

situations, it is useful to build a hierarchy of these moments which correspond to the sub-

regions of the images. This is accomplished by first computing the moments of the 

complete image. The image is then split into two regions along the principle axes, and the 

moment computation process is repeated for each of these regions. 

 

From the moments, a transformation matrix is determined which maps Ishape onto the 

shape represented by the current segmentation as H(φ), where H is the Heaviside 

function. The transformation allows for translation, rotation, and scaling differences 

between the shape and image. The shape comparison term used in the energy is computed 

as the difference between Ishape and H(φ). The fast level set principle described in [61], 

implemented with the additional shape term, is then used to perform the update of φ. The 

outline of the segmentation algorithm can be summarized as follows:  

 

Step 1: Initialization of the embedding function, φ0. The initial 

segmentation is constructed as φ = +1 for the initial inside region and φ = -

1 for the initial outside region. The set of moments for the shape prior are 

also computed.  
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Step 2: Advance. Compute the region means c1 and c2, the set of moments 

corresponding to H(φ), and the transformation matrix. The segmentation 

process then advances through the image, pixel by pixel. At each pixel, the 

change in energy associated with changing φ(x,y) = -φ(x,y) is computed.  

Step 3: Update. Switch φ(x,y) = -φ(x,y) for each of the pixels (or a fraction 

of these pixels) that demonstrate a negative change in energy. Repeat Step 

2 until the segmentation converges or as indicated by a maximum number 

of iterations.  

 

The details of the implementation used to accomplish each of these steps are discussed in 

this section. The code corresponding to an implementation of this method is provided in 

the Appendix. 

4.1 Image Moments 

Prior to the segmentation process, the set of moments are computed from the shape prior 

image Ishape. Generally, a binary image serves as the shape representation. Applying 

Equation (2.24) to the 2D N x M digital image Ishape (x, y) gives the 2D moments as  
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where p, q = 0, 1, and 2.   Upon computing moments, the centroids are computed using  
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The three second-order central moments, μ20, μ02, and μ11, characterize the size and 

orientation of the image [72]. Considering only these moments, the original image is 

equal to the image ellipse of the same size, orientation, and centroid location. The 

orientation of the image is determined as the orientation of the principal axes of the 

corresponding image ellipse, referred to as the tilt angle, according to the equation 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

⎟
⎠
⎞

⎜
⎝
⎛= −

0220

111 2
tan

2
1

μμ
μ

θ . (4.4) 

The conventions of [38] require the angle to be chosen as the angle between the x-axis 

and the semi-major axis of the image ellipse. Also, the principle axis of the arc tangent 

function is chosen so that –π/2 ≤ tan-1x ≤ π/2. Table 4.1 summarizes the choice of the tilt 

angle to be chosen according to these conventions [72].  

Table 4.1. Tilt angle θ for the different sign cases of the second order central moments. 
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In the case that the moments are to be computed for the image sub-regions, the image is 

subdivided along the principal axis, resulting in two child images. The process is then 

repeated for each of these child images for a specified number of subdivision levels. 

Generally, one or two levels are used. 
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The moments are similarly computed for the current segmentation prior to each sweep of 

the segmentation algorithm over the image pixels. The difference is that Ishape of Equation 

(4.1) is replaced by H(φ), the heaviside function of the current segmentation. Applying 

the Heaviside function to φ  results in a binary image. 

4.2 Transformation 

From the moments and tilt angle computed from both Ishape and H(φ), a transformation 

matrix T is constructed which maps the pixels of Ishape to the corresponding pixels of the 

current segmentation. In order to accomplish this transformation, the transformation 

matrix is constructed as the product of several components. These include a (1) centering 

matrix, (2) translation matrix, (3) rotation matrix, and (4) scaling matrix. The centering 

matrix cen translates the centroids of H(φ) to the origin, and is constructed using the 

image centroids as follows.  

⎥
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cen , (4.5) 

The centering component of the transform in combination with the translation component 

maps the centroids of Ishape to the location of the centroids of H(φ). The translation matrix 

trans is constructed using the centroids of Ishape as 
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Next, the covariance matrices are first constructed using the central moments computed 

from Ishape and H(φ). The covariance matrix of a pattern is used to decouple correlated 

features and to scale the features to make the pattern compact [38]. The covariance 

matrix M of each image pattern is given in [38] as  
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to give Mshape and Mimage, where μij are the central moments. The eigenvalues of these 

covariance matrices are computed from the central moments as  
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The eigenvectors associated with these eigenvectors are computed as  
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The dot product of the eigenvector ei corresponding to Ishape and H(φ) is computed and 

compared with the dot product computed for -ei corresponding to H(φ). The sign of ei for 

H(φ) is chosen based on which dot product is greater.  

 

The rotation matrix E rotates the eigenvectors of Ishape to align with the eigenvectors of 

H(φ). This is computed as the product of the eigenvectors matrix of the shape prior and 

the inverse of the eigenvector matrix of the image. From the eigenvectors, the rotation 

matrix E can be constructed as   

E = Mshape Mimage
T. (4.11) 

 

Each component of the covariance matrix of Ishape can be scaled independently in order to 

arrive at a covariance matrix which is scaled to the covariance matrix of H(φ). This is 

accomplished by first constructing the scaling matrices W for each image, Ishape and 

H(φ) as 
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resulting in Sshape and Simage. The scaling matrix W used in computing the transformation 

matrix is given by  

W = Simage Sshape
-1. (4.13) 

 

In computing the final transformation matrix, the 2x2 rotation and scaling matrices, E 

and W, are first extended to 3x3 matrices to give a uniform matrix size between the 

various transformation components. This is accomplished by replacing the first 2x2 

components of a 3x3 identity matrix with the matrix given by E or W. The final 

transformation matrix T is computed as the product of the components found using 

Equations (4.4) through (4.13) as  

T = cen*trans*E*W. (4.14) 

Figure 4.1 illustrates the transformation, computed using the image moments of Ishape and 

H(φ), which is used to map Ishape to the current segmentation. In the case that the 

moments have been computed for the image sub-regions, a transformation matrix T is 

similarly computed using the moments corresponding to each of these sub-regions.  

 

 

Figure 4.1. An example of the transformation T applied to Ishape (upper left) used to map this shape prior to 
H(φ)  (upper right) to obtain the result used as the shape constraint (bottom). The directions of the principal 
axes, computed from the image moments, are indicated in the upper two images. 
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4.3 Fast Algorithm for Level Set Based Optimization 

4.3.1 Initialization 

The first step of this segmentation algorithm requires the initialization of φ by setting 

φ = +1 in the initial region denoting the object and φ = −1 in the initial region denoting 

the background. This is either accomplished by randomly assigning values of -1 or +1 to 

each pixel, or by initializing φ with an arbitrary shape such as a circle, with values of -1 

outside and +1 inside. Also, the set of moments and tilt angle described in section 4.1 are 

computed for Ishape.  

4.3.2 Segmentation Procedure 

Prior to performing a sweep of the segmentation through the pixels of the image, the 

mean of the inside and outside regions, c1 and c2, as specified by the value of φ are 

computed using Equation (2.20). Also, the set of moments and tilt angle are computed for 

H(φ) using the procedure described in section 4.1. Using the set of moments of H(φ) and 

Ishape, T is computed using the methods presented in section 4.2. The segmentation then 

begins through the sweeping process over the image pixels. During this process, the 

energy change associated with switching the class of each pixel is computed. This energy 

is composed of three terms, including (1) the Chan-Vese model fitting term, (2) the 

smoothness constraint term, and (3) a shape constraint term. 

Chan-Vese Model Energy Term 

Assume at the current location (x, y), φ = 1. The change in energy associated with 

switching φ = 1 to φ = -1, as proposed in [61], is computed as given in (2.22). Similarly, 

if at the current pixel location, φ = -1, the change in energy is given in (2.23). The 

variance of the image intensity in the respective regions is taken into account as in [57] to 

give  
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where σ1
2 and σ2

2 represent the expected variance of the object and background regions.  

Smoothness Constraint 

As mentioned, Chan and Song approximate the length term of the Chan-Vese model 

energy in [61] using Equation (2.24). This constraint is used to minimize the length of the 

curve and therefore provide a smooth segmentation result. Equation (2.24) only provides 

values of 0, 1, or √2, depending on whether the set {φ i,j, φ i+1,j, φ i,j+1} belong to the same 

regions. In this implementation, (2.24) is extended to include all elements in a 3x3 

neighborhood within the summand as well to get a more accurate approximation. 

 

Because the value of H(φ i,j ) for a given point (i,j) is {0, 1}, there are 29 possible 

combinations for the 3x3 neighborhood considered. The change in length, ΔL, associated 

with switching φ i,j to -φ i,j for each 3x3 neighborhood combination can therefore be pre-

computed. This will allow for ΔL to be determined and a look-up table constructed in a 

single step. This table then provides ΔL for all possible neighborhood combinations, 

minimizing the computation time and accuracy of the length approximation for any 

subsequent segmentation procedure.  

 

The ΔL look-up table described is constructed as follows. Each neighborhood 

combination is assigned an index, which is computed according to its content as follows. 

Consider the 3x3 neighborhood H(φ i,j ) matrix  
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where ai = 0 or 1 depending on the values of φ. The index is computed as  
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The length term L1 is then computed for nhood using the extension to Equation (2.24) as 

described. The a5 component of nhood is then switched, and from this new matrix the 

length term L2 is computed. The change in length ΔL is then computed as      

12 LLL −=Δ , (4.19) 

which is stored in the look-up table along with the index. This table can then used during 

the segmentation process to find ΔL for a given pixel location (i,j). This is accomplished 

at each pixel by computing the index value from the 3x3 neighborhood of H(φ) 

surrounding the pixel location (i,j) using (4.18). The ΔL value is then found at the 

location of the look-up table provided by the index. The change in energy when applying 

this length constraint then becomes 

,LFE Δ+Δ=Δ α  (4.20) 

where ΔF is the change in energy computed from (4.15) or (4.16) and α is a positive 

constant used to weight the influence of the length constraint.  

Shape Constraint 

In addition to the change in energy found through Equations (4.15), (4.16), or (4.20), the 

shape energy term is incorporated after completing several sweeps of the segmentation 

procedure. Chan and Zhu define the shape comparison term in [12] as 

∫Ω
−= dxHHEshape

2))()((),( ψφψφ , (4.21) 

where ψ represents the signed distance function of the shape prior. In this 

implementation, however, H(ψ) is replaced by Ishape. In order to compute Eshape, the 

location (x , y ) of the pixel in Ishape corresponding to the current pixel is determined using 

the transformation matrix T as follows:   
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In the case that a different T was computed for the sub-regions of the images, the T that 

is used in (4.22) is determined by first determining which region of the image the current 
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pixel is found in relation to the principle axis. The energy change can then be written for 

φ (x,y) = +1 as 

)),~,~()),(((1212 yxIyxHLFE shape−+Δ+Δ=Δ φλα  (4.23) 

and similarly for the case that φ (x,y) = -1 

)),~()),(((2121 yxIyxHLFE shape−+Δ+Δ=Δ φλα , (4.24) 

where λ is a constant weighting the effect of the shape constraint. The additional energy 

term encourages switching the value of φ in locations where the shape provided by the 

current segmentation φ does not match Ishape .  

Updating  

Once ΔE has been computed at each pixel during this sweep, a threshold value ΔEthresh is 

computed as a specified percent of the minimum negative value of ΔE. At the pixel 

locations that contain a negative value of ΔE which is less than ΔEthresh, the value of φ is 

set to -φ . The values of c1 and c2 are then updated, along with the set moments and 

transformation matrix. 

 

Instead of recomputing the set of moments by summing over the entire image as in (4.1), 

these values can be quickly updated using the following procedure. Following each 

sweep over the image pixels, φ is switched as specified above according to ΔE. In the 

case that a pixel (x,y) has been switched from outside to inside φ , the moments computed 

in (4.1) may be updated as 
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Similarly, for each pixel (x,y) that is removed from inside φ, the moments computed in 

(4.1) may be updated as  
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Following this update of the moments, the image centroids, second order central 

moments, eigenvalues λ1 and λ2, and the angle θ are recomputed using Equations (4.2), 

(4.3), (4.4), (4.8), and (4.9), respectively. 

  

The above segmentation process is then repeated for a number of iterations or until the 

segmentation converges as indicated by no change in the energy. 

4.3.3 Variations to the Segmentation Procedure 

Several variations to the shape prior-based fast level set algorithm have been employed in 

situations which fail to provide a desirable segmentation result using the methods 

described above. These variations are found to be most useful in the case that objects in 

the background have an exceptionally negative impact while attempting to segment the 

target object. The region growing concept described avoids including background object 

pixels that are not connected to the target image. Similarly, a labeling function allows the 

user to discriminate against objects with similar intensity or shape characteristics and 

arrive at the desired result. 

Update via Region Growing  

The first variation limits the switching of the value of φ  following each sweep of the 

image pixels to include only the pixels connected to edge of the current segmentation φ as 

in a region growing implementation. In [61], the smoothness term of the energy in the 

Chan-Vese model, the first term in Equation (2.19), is approximated by (2.24). The result 

of (2.24) can only take values of 0, 1, or √2, depending on whether the set {φ i,j, φ i+1,j, 

φ i,j+1} belong to the same regions. As mentioned, (2.24) is extended to include the φ i-1,j 

and φ i,j-1 terms within the summand.  Equation (2.24) is computed prior to each sweep of 
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the image pixels. The change in energy at each pixel is initially set to a value of 0 and is 

only computed in the case that the smoothness computed using this extension to (2.24) is 

greater than 0. This in turn restricts the possibility of φ  being switched to include only 

the pixels adjacent to the current segmentation boundary. 

4.3.4 Labeling Function 

The second variation to the algorithm makes use of a user-specified labeling function L. 

In the methods presented in [12, 21], L is used to indicate the region of the image in 

which the shape constraint is to be enforced. In this implementation, L is used to indicate 

the region of H(φ) to be used in computing the image moments. This in turn will allow 

for Ishape to be correctly mapped to H(φ)  by excluding regions similar in image intensity 

to the object to segment. This concept is incorporated into the implementation by 

replacing Equation (4.1) used to compute the moments of the current segmentation with  
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where L is represented as a binary image with values of +1 in the region used to compute 

the image moments from the current segmentation, and 0 elsewhere. 

 

Results are provided in Chapter 5 to illustrate the ability of the proposed method to 

segment various objects in the presence of noise and object occlusion. Examples are also 

illustrated which make use of these variations to the implementation. These are 

contrasted with the segmentation results obtained using the fast level set algorithm 

presented in [61]. 
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Chapter 5: Experimental Results 
This chapter provides a description of the experimental results obtained through the 

course of this research. First, the details surrounding the real image data are given. The 

intermediate results obtained during the construction of an atlas image from the real data 

are shown and slices of the atlas image are then provided. Finally, the experimental 

results of using the segmentation methods described in Chapter 3 and 4 are presented for 

a number of images. The experiments demonstrate the ability of the shape prior 

segmentation techniques to overcome the complications of image segmentation in the 

presence of object occlusion, noise, and partial volume effects. 

5.1 Registration 

In regards to the real MRI data, results of the registration process used in constructing the 

atlas and in aligning the atlas to a novel image are provided in this section. The 

intermediate results obtained during the construction of an atlas are shown and slices of 

the resulting atlas image are then provided. In registering the atlas to novel image data, 

results are shown to illustrate the methods ability to align the atlas mask to the brain 

volume of the new image to provide a close initialization for a final segmentation step. 

Real Image Data 

The 3D fast spoiled gradient echo (FSPGR) images of brain data were acquired from 

rabbit subjects by Susan Lemieux, Ph.D., and Bernard Schreurs, Ph.D., at West Virginia 

University. This was accomplished using a General Electric 3T Signa Excite MR scanner 

and a Nova Medical 12 cm Quadrature Coil. The parameters include TR = 10.4, TE = 2.3 

ms, and FOV = 80x60 mm. The resulting images are each composed of a 16 bit grayscale 

matrix = 256x256x72 with a slice thickness = 0.8mm.  

5.1.1 Atlas Construction 

Figure 5.1 illustrates a slice of the 3D data set, ITrainingReference, used as the reference image 

in the registration of the remaining training samples ITraining (k), for k = 1,2,…11.  A few 

corresponding slices of ITraining (k) are also pictured to provide insight into the variation 

that exists between subjects. 
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                       (a)             (b)          (c) 
Figure 5.1 Various slices of the training data used to construct the atlas image Iatlas. (a) A slice of the 
reference training data volume, ITrainingReference. (b) and (c) the corresponding slices from the training data, 
ITraining. 

Table 5.1 provides implementation details, in terms of the parameters, used in performing 

the 3D registration of the training data ITraining to the training data reference image 

ITrainingReference. Figure 5.2 illustrates an example of the results obtained through this 

registration process, including the initial difference image as well as the final transformed 

result. Figure 5.2(b) shows the initial misalignment between the two images through the 

difference image produced by subtracting ITrainingReference by ITraining. The difference image 

in Figure 5.2(c) illustrates the aligned images provided by the registration process. 

Table 5.1. Parameters of the filters involved in the registration process used in registering the training data. 

Filter Parameter Translation Registration Affine Registration 
Number of Histogram Bins 64 64 Mattes MI 

Metric Number of Spatial Samples 20000 20000 
Step Length 0.01 0.01 

Step Tolerance 0.001 0.0005 
Value Tolerance 0.001 0.0005 
Max Iterations 100 100 

Translation Scaling 0.01 0.01 

Powell 
Optimizer 

Matrix Scaling NA 10 
 
 
Upon registering each training data set ITraining(k) to ITrainingReference, the atlas image Iatlas is 

computed as the median intensity value at each pixel location of these training sets. 

Figure 5.3(a)-(e) illustrate corresponding slices found within the aligned training data 

I'Training. Figure 5.3(f) shows the resulting slice within Iatlas, which can be seen to provide 

an average representation of the data with the same resolution, particularly in the brain 

region. 
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                    (a)             (b)                              (c) 
Figure 5.2 Results of registering ITraining to ITrainingReference. (a) A slice of the training data, ITraining. (b) The 
difference image between corresponding slices in ITrainingReference and the unregistered ITraining. (c) The final 
difference image between corresponding slices in ITrainingReference and the registered ITraining.    

   
             (a)               (b)                                           (c) 

   
             (d)                             (e)                                           (f) 
Figure 5.3 Computing Iatlas (a)-(e) Several slices of I'Training resulting from the registration step. (f) The 
corresponding slices of Iatlas computed as the median of these registered training samples. 

Following the computation of Iatlas, the atlas binary mask was formed by manually 

segmenting each slice of Iatlas. Figure 5.4 illustrates slices of Iatlas with the binary manual 

segmentation result superimposed over the brain region. 
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                                         (a)                   (b) 
Figure 5.4 The result of the manual segmentation of Iatlas. (a) and (b) Slices of Iatlas with the respective 
manual segmentation results indicated (red).  

5.1.2 Novel Image Registration  

In the initial steps involved in extracting the brain volume from a novel data set, the 3D 

atlas Iatlas is registered to the novel data set I.  The parameters of the filters used in the 

ITK implementation of this registration step are the same as in constructing Iatlas, which 

are provided in Table 5.1. The transformation Taffine found in this registration step is used 

to map the signed distance of the manually segmented atlas φatlas onto the corresponding 

brain region of I. Figure 5.5(a)-(c) illustrates slices of Iatlas with the manual segmentation 

overlay. Figure 5.5(d)-(f) shows the transformed binary φ0 < 0 over slices of I resulting 

from Taffine found in the registration of Iatlas to I. This illustrates the ability of the method 

to accurately register the two data volumes to provide a close initialization for the final 

segmentation step. The transformed result φ0 appears to be well aligned with the brain 

region of I. This signed distance map is then used as the initial embedding function φ0 for 

the level set segmentation step.  
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                       (a)                                          (b)                                          (c) 

   
                      (d)             (e)            (f) 
Figure 5.5 Results of the registration of Iatlas to I. (a)-(c) Slices of Iatlas with the respective manual 
segmentation. (d)-(f) The corresponding slices of a novel image I with the transformed signed distance φ0, 
where φ0 < 0, which provides the initial embedding function of the segmentation step.  

5.2 Geodesic Active Contour Level Set Segmentation Method  

To illustrate the use of the proposed speed function, the new speed function described in 

Chapter 3 was first applied to synthetic images and then to the real MRI rabbit brain data. 

This was accomplished by replacing the speed map g described in [10] with the proposed 

speed map to be used in an implementation of the geodesic active contours method.  

5.2.1 Synthetic Data  

A 2D synthetic image of size 128 x 128 with 256 gray levels was generated by taking an 

arbitrary shape and then blurring the edges in various locations around the perimeter. For 

this experiment, the image without the blurred edges serves as Iatlas. This synthetic image 

is illustrated in Figure 5.6, along with the intermediate steps involved in determining the 
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proposed speed map. This new speed map, shown in Figure 5.6(f) provides information 

of the edges found in the atlas image when edge information is missing. 

 

  
                                                 (a)                                     (b)                    

  
                                                 (c)                                     (d)                             

    
                                                 (e)                                       (f)                              
Figure 5.6 The intermediate steps involved in computing the proposed speed term. (a) The synthetic image 
I. (b) The gradient magnitude image. (c) The gLow speed image. (d) The gHigh speed image. (e) The 
difference gHigh – gLow. (f) The new speed map g. 

Segmentation results were obtained for the synthetic image shown in Figure 5.6 using 

both the traditional speed function in (2.17) as well as the proposed difference speed 

function. This was accomplished using the geodesic level set implementation available in 

ITK, as described in section 3.4. The initial embedding function φ0 was initialized as a 

signed distance function of a circle located in the center of the shape. 
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In using the proposed speed function, the speed image was simply replaced by the image 

generated using the methods in section 3.4.2. The gHigh speed term was used as the speed 

term computed using (2.17) to produce the results of using the traditional approach. No 

parameters involved in the level set evolution equation were altered when comparing the 

use of the traditional and proposed speed maps. Table 5.2 provides the parameter values 

used to obtain the results illustrated in Figure 5.7. These results show that the evolving 

curve passes through regions of missing edge information when a traditional speed map 

is used. However, a more accurate result is obtained with the proposed speed function.  

Table 5.2 Parameters used in the ITK segmentation of the synthetic data. 

Smoothing Filter Sigmoid Filter Geodesic Active Contours Filter 
σ αLow βLow αHigh βHigh Advection Curvature Propagation

1.0 -4.0 25.0 -6.0 60.0 0.9 0.4 0.2 
 

 
     (a)          (b)   
Figure 5.7. Segmentation results of the synthetic image using: (a) The speed map computed using (2.17). 
(b) The proposed speed map computed using the methods presented in section 3.4. 

This concept was also tested using another synthetic image in which the target object is 

surrounded by background objects of similar intensity characteristics. The 2D synthetic 

image I of size 207 x 229 contains 256 gray levels and an added Gaussian noise of 25% 

variance. This image, along with the shape image Ishape, is illustrated in Figure 5.8. 

Results were obtained using an implementation of geodesic active contours written with 

MATLAB 7.1.  
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                                         (a)                                                    (b)                    
Figure 5.8 The input image data including: (a) The synthetic image I. (b) The shape image Ishape.  

Segmentation results were first obtained using two different speed images both computed 

using the traditional speed function in Equation (2.17). In the first example, the 

parameters of (2.17) are set to produce a speed map which should prevent the evolving 

curve from passing through the object boundary into the surrounding regions. The 

gradient magnitude image, the speed map, the initial φ, and the segmentation result are 

found in Figure 5.9. Table 5.3 provides the parameter values used to obtain the 

segmentation result.  

 
In a second example using the traditional speed function, the parameters of (2.17) are set 

to allow for the evolving curve to proceed through the entire object without permitting 

the evolving curve to leak into the surrounding objects. Figure 5.10 illustrates the speed 

map and final segmentation result. The gradient magnitude image and initialization are 

the same as in the previous example, and are pictured in Figure 5.9 (a) and (c). Table 5.4 

provides the parameter values used during the segmentation of this image.  

Table 5.3 Parameters used in the ITK segmentation of the synthetic data shown in Figure 5.9 using the 
traditional speed function. 

Smoothing Filter Sigmoid 
Filter Geodesic Active Contours Filter 

σ α β Advection Curvature Propagation 
0.6 -1.0 6.0 1.0 0.75 0.75 
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                                        (a)                                                    (b)     

  
         (c)                                                   (d)     
Figure 5.9. Intermediate steps involved in the segmentation as well as the result of using the traditional 
speed function found in (2.17). (a) The gradient magnitude image. (b) The speed image. (c) The 
initialization, φ0 < 0. (d) The segmentation result. 

Table 5.4 Parameters used in the ITK segmentation of the synthetic data shown in Figure 5.10 using the 
traditional speed function. 

Smoothing Filter Sigmoid 
Filter Geodesic Active Contours Filter 

σ α Β Advection Curvature Propagation 
0.6 -1.0 12.0 1.0 0.75 0.75 

 

  
         (a)                                                   (b)     
Figure 5.10. Segmentation result using a second example of the traditional speed function found in (2.17). 
(a) The speed image. (b) The segmentation result. 
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From the results shown in Figure 5.9, it becomes apparent that by adjusting the 

parameters of the speed function to segment the object from the background objects, the 

speed map does not allow for the entire image to be segmented, given the initialization 

φ0. The results shown in Figure 5.10 further illustrate the difficulty in choosing the 

parameters that would allow for an accurate segmentation. Despite these complications, 

using the proposed speed function described in section 3.4.2 provides a more useful 

speed map. Figure 5.11 illustrates the intermediate steps used in computing the proposed 

speed map. The segmentation result illustrated in Figure 5.11(d) is obtained using the 

proposed speed function in place of the traditional function (2.17). Table 5.5 provides the 

parameter values used in the implementation. 

Table 5.5 Parameters used in the ITK segmentation of the synthetic data using the new speed function. 

Smoothing Filter Sigmoid Filter Geodesic Active Contours Filter 
σ αLow βLow αHigh βHigh Advection Curvature Propagation

0.6 -1.0 12.0 -1.0 16.0 1.0 0.75 0.85 
 

  
                                            (a)                                               (b)                    

  
                                            (c)                                               (d)                                                          
Figure 5.11 The segmentation result obtained using the proposed speed function and initialization φ0 shown in Figure 
5.9 (c). (a) The gLow speed image. (b) The gHigh speed image. (c) The new speed map g. (d) The segmentation result 
obtained using the parameters provided in Table 5.5.  
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5.2.2 Real Image Data 

As mentioned, the real image data contains regions of no discernable edges, as indicated 

by arrows in Figure 5.12(b), which creates difficulties in obtaining an accurate 

segmentation result. Therefore, the speed function proposed in section 3.4.2 was used in 

place of Equation (2.17), which is applied to produce the traditional speed map used in 

level set segmentation techniques. The intermediate steps of computing this speed map 

for a slice of the real MRI data are illustrated in Figure 5.13. 

 

 
                (a)           (b) 
Figure 5.12. Input data used in the implementation of geodesic active contours segmentation. (a) The 
original image. (b) The speed map image of MRI rabbit brain data computed using the Sigmoid Filter 
provided by ITK with β = 35 and α = -5. Edge information is missing as indicated by arrows.  

As with the synthetic data, segmentation results were obtained for the real 2D MRI data 

using both the traditional speed map computed with Equation (2.17) as well as the 

proposed speed map obtained as described in section 3.4.2. The segmentation was then 

performed using the geodesic level set implementation available in ITK as described in 

Chapter 3. Table 5.6 provides the parameter values used to obtain the results shown in 

Figure 5.14. Figure 5.14(a) illustrates the traditional speed map’s inability to prevent the 

contour from passing through the boundary of the brain. This occurs in the regions of 

missing edge information. Figure 5.14(b) shows an improved segmentation result 

obtained using the proposed speed map. The edge information provided by the atlas is 

used in locations where edge information provided by the image gradient is not found.  
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                                                (a)                                       (b)                                        

  
                                                (c)                                      (d)                  

  
                                     (e)                                       (f)                                        

Figure 5.13. Input data used in the implementation of geodesic active contours segmentation. (a) A slice of 
the Rabbit brain MRI data I. (b) The gradient magnitude image. (c) The gLow speed image. (d) The gHigh 
speed image. (e) The difference gHigh – gLow. (f) The proposed speed map g. 

Table 5.6. Parameters used to obtain the results shown in Figure 5.14 from the ITK segmentation of the 
real data shown in Figure 5.12. 

Smoothing 
Filter Sigmoid Filter Geodesic Active Contours Filter 

σ αLow βLow αHigh βHigh Advection Curvature Propagation
1.5 -7.0 30.0 -7.0 42.5 0.75 2.0 0.25 
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(a)                                       (b)                  

Figure 5.14. Segmentation of MRI data using: (a) A typical speed map. (b) The proposed speed map.                    

5.3 Fast Level Set Segmentation using Shape Constraints  

The fast level set shape prior segmentation methods proposed in Chapter 4 were 

implemented using MATLAB 7.1. This implementation was applied to several 2D 

images to illustrate the ability of this method to quickly segment an object from the 

background in the presence of occlusions and noise. The results are contrasted with 

results obtained using an implementation of the method presented in [62] to show that the 

incorporation of the shape prior provides a more accurate and robust solution. 

5.3.1 Synthetic Data 

A 150 x 175 pixel size synthetic image was generated in order to illustrate the ability of 

the method to segment an object that is occluded by another object. The first synthetic 

image consisting of 256 gray levels with added Gaussian noise of 10% variance is 

illustrated in Figure 5.15. φ was randomly initialized at each pixel of the image. Figure 

5.16 illustrates the result of segmenting the image I using the fast level set 

implementation of [61] without the shape constraint. The result, which was obtained in 

23 sweeps of the segmentation algorithm in 11.05 seconds, shows that the approach 

presented in [61] is unable to segment the hand object from all surrounding objects. 
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Figure 5.15. The synthetic hand image I.  

  
        (a)                                                      (b) 
Figure 5.16. The segmentation result using an implementation [61]. (a) The binary segmentation. (b) Final 
segmentation result in which the hand is not entirely segmented from the background. 

Figures 5.17 and 5.18 illustrate the segmentation result using the proposed method 

described in Chapter 4 with two different shape priors. The incorporation of these shape 

priors, represented as the binary images illustrated in 5.17(b) and 5.18(b), allows for a 

more accurate segmentation of the hand object from the surrounding background. The 

parameters used to obtain these results are shown in Table 5.7. 

Table 5.7. Parameters used in the segmentation of the hand image using the shape constraint. 

Result 
Figure Size σ1

2 σ2
2 λ 

% Min. 
Pixel 

Switched

Iterations 
(before 
shape 

constraint) 

Total 
Iterations 

Computational 
Time (secs) 

5.17, 5.18 150x175 1.50 1.00 2.0 75 23 30 4.32 
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         (a)       (b) 

  
         (c)                  (d) 
Figure 5.17. The image segmented using the method proposed in Chapter 4. (a) The original image I. (b) 
The binary image shape representation Ishape. (c) The binary result φ  > 0. (d) The segmented image I. 

  
       (a)        (b) 

  
       (c)        (d) 
Figure 5.18. The segmentation result using the proposed method. (a) The original image I. (b) The binary image shape 
representation Ishape. (c) The binary segmentation result φ  > 0. (d) The segmented image. 
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A second synthetic image was generated to mimic the low-contrast between contiguous 

regions of the real rabbit brain data. This image, of size 186 x 195 pixels, consists of 256 

gray levels with added Gaussian noise with 25% variance, and is illustrated in Figure 

5.19(a). A projection is attached to the brain shape which does not adhere to a typical 

brain shape, an example of which can be seen in Figure 5.20 (a). Figure 5.19(b) shows 

the segmentation result obtained from 10 sweeps of the fast level set algorithm of [61]. 

These results show that this method provides no shape constraints to avoid such a result. 

 

  
           (a)                (b) 
Figure 5.19. The image segmentation using an implementation of [61]. (a). The synthetic brain shape 
image I. (b). The binary segmentation result φ  > 0. 

Figure 5.20 illustrates the segmentation results using the fast level set shape prior 

segmentation implementation which make use of the shape image Ishape found in Figure 

5.20(a). The results were obtained using the parameters indicated in Table 5.8. The 

results indicate that the proposed method has the ability to segment the brain shape object 

from such a projection in order to obtain a result which exhibits an acceptable shape. 

Figure 5.20(d) shows the difference in segmentation results provided by the original 

method [61] and the proposed method including a shape constraint. The most significant 

difference appears in the location of the region projecting from the brain shape.  

Table 5.8. Parameters used in the segmentation of the data pertaining to the segmentation of the image 
shown in Figure 5.19(a) to provide the results shown in Figure 5.20. 

Result 
Figure Size σ1

2 σ2
2 λ 

% Min. 
Pixel 

Switched 

Iterations 
(before 
shape 

constraint) 

Total 
Iterations 

Computational 
Time (secs) 

5.20 186x195 1.00 1.00 3.0 75 10 12 5.34 
 
 



 

81 

  
          (a)                                                (b) 

   
          (c)                                                (d) 
Figure 5.20. The image segmentation of the synthetic image using the proposed method. (a). The binary 
image shape representation Ishape. (b). The binary segmentation result φ > 0. (c). The segmented image. (d). 
The difference image computed between the segmentation result without the shape term (Figure 5.19 (b)) 
and the segmentation result using the shape term (Figure 5.20 (b)). 

This concept was also tested using the synthetic image of the tree object found in section 

5.3.1. As mentioned, the synthetic image I of size 207 x 229 contains 256 gray levels and 

an added Gaussian noise of 25% variance. This image, along with the shape image Ishape, 

is illustrated in Figure 5.8 of section 5.3.1. Segmentation results were first obtained using 

the fast level set algorithm implementation of [61] without the shape constraint term. 

Using different values of σ1
2 and σ2

2, different regions of the image may be segmented as 

shown in Figure 5.21. The parameters used to obtain these results are found in Table 5.9. 

Table 5.9. Parameters used in the segmentation of the synthetic image shown in Figure 5.21.  

Result 
Figure Size σ1

2 σ2
2 λ % Min. Pixel 

Switched 
# 

Iterations 
Computational 

Time (secs) 
5.21 b. 209x229 2.75 1.00 0.00 75 24 1.02 
5.21 c. 209x229 1.00 1.00 0.00 75 20 0.99 
5.21 d. 209x229 0.35 1.00 0.00 95 34 1.69 
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        (a)       (b)  

  
        (c)       (d) 
Figure 5.21. Segmentation results without the shape constraint. (a) The original image I with the initial 
segmentation φ 0 > 0 indicated as the white circle. (b)-(d) The segmentation results using different values of 
σ1

2 and σ2
2 provided in Table 5.9 above. 

The two variations described in section 4.3.3 were imposed on the fast level set algorithm 

used to segment the object while imposing the shape constraint. The first variation 

includes limiting the switching of the value of the segmentation to only pixels connected 

to the current segmentation as in a region growing implementation. Table 5.10 provides 

details of the parameters and computation time involved. Results are illustrated in Figure 

5.22. 

Table 5.10. Parameters used in the segmentation of the data pertaining to Figure 5.22. 

Result 
Figure Size σ1

2 σ2
2 λ 

% Min. 
Pixel 

Switched

# Iterations 
(before 
shape 

constraint) 

# Total 
Iterations 

Computational 
Time (secs) 

5.22 209x229 1.00 1.00 2.0 75 65 70 34.14 
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                  (a)       (b)  

  
                   (c)       (d)  
Figure 5.22. Segmentation results using the shape constraint and the region growing approach. (a) The 
original image I with the initial segmentation φ0 > 0 indicated as the white circle. (b) The shape image (c) 
The binary segmentation result φ  > 0. (d) The final segmentation result. 

The second variation to the algorithm makes use of the labeling function L as described 

in 4.3.3. The initialization of φ was accomplished by randomly assigning values of 1 and 

-1 throughout the image space. Table 5.11 provides details of the parameters and 

computation time involved and the results are illustrated in Figure 5.23. The results 

shown in Figures 5.22 and 5.23 illustrate the ability of the proposed method to segment 

the tree object using the variations presented in section 4.3.3. As shown in Figure 5.21, 

difficulties exist in segmenting this object which do not allow for the method presented in 

[61] to obtain such a result. 

Table 5.11. Parameters used in the segmentation of the data pertaining to Figure 5.23. 

Result 
Figure Size σ1

2 σ2
2 λ 

% Min. 
Pixel 

Switched 

Iterations 
(before shape 

constraint) 

Total 
Iterations 

Computational 
Time (secs) 

5.23 207x229 0.35 1.00 2.0 95 34 42 7.26 
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                  (a)       (b)  

  
                  (c)       (d)  
Figure 5.23. Segmentation results using the shape constraint along with the labeling function. (a) The 
region of the image to be considered in the shape comparison as indicated by L. (b) The shape image (c) 
The binary segmentation result φ  > 0. (d) The final segmentation result. 

5.3.2 Real Data 

The proposed fast level set segmentation method was also applied to a 256 x 256 sized 8 

bit real image shown in Figure 5.24. In segmenting this aircraft image, φ was randomly 

initialized at each pixel of the image. Figure 5.25 illustrates the result of segmenting the 

image I using the fast level set implementation of [61] without the shape constraint. The 

result, which was obtained in 15 sweeps of the segmentation algorithm in 18.90 seconds, 

shows that this approach presented in [61] is unable to segment the aircraft from the 

background, which contains regions similar in intensity characteristics. Here, regions of 

the background are included in the segmentation while regions of the aircraft are missing. 

The parameters used, excluding the shape constraint, are the same as those indicated in 

Table 5.12.  
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Figure 5.24. A real data aircraft image I.  

  
        (a)                                                      (b) 
Figure 5.25. The segmentation result using an implementation [61]. (a) The binary segmentation. (b) Final 
segmentation result. 

Figures 5.26 illustrates the segmentation result using the proposed method described in 

Chapter 4 with the use of the labeling function L as described in 4.3.3. The labeling 

function is necessary in excluding a portion of the darker regions of the background in 

order for the shape image to be accurately transformed to the image object. The 

incorporation of these shape priors, represented as the binary image illustrated in 5.26(b), 

allows for the entire segmentation of the aircraft from the surrounding background. The 

parameters used to obtain these results are shown in Table 5.12. 

Table 5.12. Parameters used in the segmentation of the real image data shown in Figure 5.25 to obtain the 
results shown in Figure 5.26. 

Result 
Figure Size σ1

2 σ2
2 λ 

% Min. 
Pixel 

Switched 

Iterations 
(before 
shape 

constraint) 

Total 
Iterations 

Computational 
Time (secs) 

5.26 256x256 1.00 1.00 5.0 25 5 15 20.06 
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       (a)        (b) 

  
       (c)        (d) 
Figure 5.26. The image segmented using the method proposed in Chapter 4. (a) The original image I in the 
regions to be used in the shape constraint as indicated by L. (b) The binary image shape representation 
Ishape. (c) The binary result φ  > 0. (d) The segmented image I. 

 
 



 

87 

Chapter 6: Concluding Remarks and Future Work 
Level set techniques such as geodesic active contours [10] have proven an effective 

solution to the segmentation problem of images with well defined boundaries. In 

implementing such segmentation methods, a crucial step in arriving at a desirable 

segmentation is the computation of the speed map to be used in the evolution equation. 

The speed map, typically derived from the gradient information of the image, is designed 

to allow an evolving curve to move freely in regions of homogeneity but slow the curve 

to a stop at edges. However, boundary information may become distorted due to 

occlusions, noise, or partial volume effects. The speed map computed from this image 

may not have the ability to slow the evolving curve in these low-contrast regions, thus 

allowing the curve to pass beyond the boundary and into other regions of the image. The 

accuracy of the segmentation method is compromised as a result. Assuming that an atlas 

or shape prior is available, this information could be incorporated into the segmentation 

framework in order to avoid such occurrences.  

A New Speed Function for Shape Prior Segmentation 

A new speed function has been proposed that combines edge and atlas information to 

compute the speed map in atlas-assisted level set segmentation. Subtracting two 

traditional speed terms, which differ only in the value of the constants in Equation (2.17), 

separates regions of homogeneity and strong edges from regions of intermediate edge 

information. The proposed speed function is formulated to rely on atlas information when 

the edge information in unavailable. This concept was incorporated into an 

implementation of geodesic active contour segmentation by simply replacing the 

traditional speed term computed using (2.17) with the proposed speed term.  

 

Results of the segmentation of synthetic and real MRI data illustrate the ability of the 

new speed map to prevent the ‘leaking’ of the evolving curve in regions of the image 

containing missing edge information which would otherwise occur. This leads to a more 

accurate and robust segmentation than a typical speed map may provide, without a 

significant increase in computation time.  
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Possible future work for the new speed function concept includes:  

• Applying the proposed speed function to 3D data. 

• Determining a method to automatically determine the parameter values, α and β, 

of Equation (2.17).  

• Investigating its potential in graph cut segmentation methods. 

• Casting this concept into a Bayesian Framework. 

 

In another level set segmentation model [11], Chan and Vese propose a technique which 

partitions an image based on the region properties such as intensity mean, rather than 

including a speed term based on the gradient of the image. This allows for the detection 

of objects even in the presence of smooth or discontinuous boundaries. However, as in 

the case of the geometric active contours, the Chan-Vese model fails to provide an 

accurate segmentation in regions of high noise or when the target object is occluded by 

other objects. Such occurrences are often unavoidable in practical applications. 

Therefore, prior shape information may once again be incorporated into the segmentation 

method in order to provide a more accurate and robust solution.  

Fast Level Set Segmentation using a Shape Prior 

A method is proposed which embeds a shape prior into region-based active contour 

segmentation models through an additional energy term which minimizes a function of 

the distance between the evolving active contour and the shape prior. This shape term 

therefore constrains the evolving curve to resemble a target shape. This allows for a more 

accurate segmentation despite noise and occlusions when information regarding the shape 

of the target object is available. This concept is implemented by extending the fast 

algorithm applied to the Chan-Vese model presented in [61] to include the shape prior 

term. This method is similar to that presented by Chan and Zhu in [12]. However, the 

approach for incorporating the shape prior is based on image moments. Experimental 

results obtained from 2D image data demonstrate the ability of the geometric shape prior 

to provide a more accurate segmentation of the target object in images of low-contrast. 

Also, it is shown that objects can be segmented from an image containing similar 

background objects and occlusions.  
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Possible future work for this concept includes:  

• Extending to a multiphase piecewise constant segmentation Chan-Vese model. 

• Incorporating a linear model as opposed to the piecewise constant model. 

• Investigating this concept as applied to texture based segmentation methods.  

• Extending this work to 3D.  

• Experimenting with higher order moments as shape descriptors.  

• Providing a more accurate look-up table regarding the smoothness constraint of 

the energy.  

 

Although a technique could not be determined which can be applied to the real MRI data 

used in this research, possible future work also includes providing a solution to this 

problem using the proposed fast shape prior segmentation concept. 
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APPENDIX 
 

The following section of code found in ‘SegmentData_GAC_Base.cxx’ uses ITK to 
perform the geodesic active contours segmentation. This was implemented and compiled 
using Microsoft Visual C++. It is assumed that the input image ‘input_image’ and φ0 
‘initial_phi’, provided by the registration step, have previously been read from file. 
The final segmentation result is assigned to the image variable 
’segmented_binary_image’ which is previously defined. Also, the parameters for the 
various filters are previously defined and the values have been assigned. 
 
/* The first step is to instantiate the anisotropic diffusion filter and set the corresponding 
parameters. */ 
 
m_smoothing_filter = AnisotropicDiffusionFilterType::New(); 
m_smoothing_filter ->UseImageSpacingOn(); 
m_smoothing_filter ->SetTimeStep(time_step); 
m_smoothing_filter ->SetNumberOfIterations(number_of_iters); 
m_smoothing_filter ->SetConductanceParameter(conductance_param); 
 
/* Next, instantiate a gradient magnitude filter and set the parameters. */ 
 
m_gradient_magnitude = GradientMagnitudeFilterType::New(); 
m_gradient_magnitude ->SetSigma(sigma); 
 
/* For the high speed term, instantiate a sigmoid filter and set parameters. */ 
 
m_sigmoid_high = SigmoidFilterType::New(); 
m_sigmoid_high ->SetOutputMinimum(0.0); 
m_sigmoid_high ->SetOutputMaximum(1.0); 
m_sigmoid_high ->SetAlpha(alpha_high); 
m_sigmoid_high ->SetBeta(beta_high); 
 
/* Similarly, for the high speed term, instantiate a sigmoid filter and set parameters. */ 
 
m_sigmoid_low = SigmoidFilterType::New(); 
m_sigmoid_low ->SetOutputMinimum(0.0); 
m_sigmoid_low ->SetOutputMaximum(1.0); 
m_sigmoid_low ->SetAlpha(alpha_low); 
m_sigmoid_low ->SetBeta(beta_low); 
 
/* Now, create the new speed term with the following steps: 
(1) Apply Dirac measure to initial embedding function, initial_phi (Equation (3.3)). */ 
 
for(int i=0, i<x_dim, i++) 
 for(int j=0, j<y_dim, j++) 
  delta_phi(i,j) = (1/pi)*(1 /(1+initial_phi(i,j))); 
 end 
end 
 
/* (2) Multiply the low speed term by the delta_phi computed above (Equation (3.2)).*/ 
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m_multiplier = MultiplyImageFilterType::New(); 
m_multiplier->SetInput1(m_sigmoid_low->GetOutput()); 
m_multiplier->SetInput2(delta_phi); 
 
/* (3) Subtract the result of step (2) from the high speed term (Equation (3.2)). */ 
 
m_subtractor = SubtractionFilterType::New(); 
m_subtractor->SetInput1(m_sigmoid_high); 
m_subtractor->SetInput2(m_multiplier->GetOutput());   
 
/* Next, instantiate the geodesic active contour filter and set parameters. */ 
 
m_geodesicActiveContour = GeodesicActiveContourFilterType::New(); 
m_geodesicActiveContour->SetCurvatureScaling(curvature_scaling); 
m_geodesicActiveContour->SetPropagationScaling(propagation scaling); 
m_geodesicActiveContour->SetAdvectionScaling(advection_scaling); 
m_geodesicActiveContour->UseImageSpacingOn(); 
  
/* Instantiate threshold image filter and set parameters. */ 
 
m_thresholder = ThresholdFilterType::New(); 
m_thresholder->SetUpperThreshold(itk::NumericTraits<float>::Zero);  
m_thresholder->SetLowerThreshold( 
 itk::NumericTraits<float>::NonpositiveMin());  
m_thresholder->SetInsideValue(1); 
m_thresholder->SetOutsideValue(0); 
 
/* Set up the pipeline which connects all of the data and process filters. */ 
 
m_smoothing_filter->SetInput(input_image); 
m_gradient_magnitude->SetInput(m_smoothing filter->GetOutput()); 
m_sigmoid_high->SetInput(m_gradient_magnitude->GetOutput());   
m_sigmoid_low->SetInput(m_gradient_magnitude->GetOutput());  
m_geodesicActiveContour->SetInput(initial_phi); 
m_geodesicActiveContour->SetFeatureImage(m_subtractor->GetOutput()); 
m_thresholder->SetInput(m_geodesicActiveContour->GetOutput()); 
 
/* Execute the segmentation filter to perform the segmentation. */ 
 
m_geodesicActiveContour->Update(); 
 
/* Finally, execute the thresholding filter to get the final binary segmentation result. */ 
 
m_thresholder->Update(); 
segmented_binary_image = m_thresholder->GetOutput(); 
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The following is a basic version of the MATLAB function ‘bingsong_shape.m’  used 
to perform the fast update Chan-Vese segmentation technique with the additional shape 
constraint term. This function takes an input image ‘image’, shape prior image ‘atlas’, 
and smoothness constraint look-up table  ‘delta_length’, as parameters. The output 
includes the final segmentation result ‘seg’. Several other MATLAB functions are 
called within this code, and are therefore provided as well. All MATLAB code was 
implemented using MATLAB 7.1. 
 
function [ seg ] = bingsongshape6( image, shape, dL_lookup ) 
     
[rows, cols] = size(image); 
% Transformed shape. 
shape_reg = 0*shape; 
% Change in energy at each pixel. 
dE = zeros(rows, cols); 
% Randomly assign initial embedding function at each pixel. 
seg = 2*(rand(rows, cols)>=0.5)-1; 
seg = max(0,seg); 
  
% Assign a weight of influence for each term of the energy. 
alpha  = 1.0;       % Region smoothness contraint. 
lambda = 1.0;       % Shape constraint. 
delta  = 1.0;       % Chan-Vese model-fitting term. 
% Assign the variance for each region. 
sigma1 = 1.0;       % Inside variance. 
sigma2 = 1.0;       % Outside variance. 
  
smooth_itr = 10;    % Iteration to start smooth constraint. 
shape_itr  = 20;    % Iteration to start shape constraint. 
max_itr    = 100;   % Maximum iterations. 
  
% Weights given to 3x3 neighborhood locations. Used to find the 
% index for the smooothness constraint lookup table. 
index_wt = [(2^8) (2^5) (2^2); 
    (2^7) (2^4) (2^1); 
    (2^6) (2^3) (2^0)]; 
  
% Compute the image moments for the shape prior. 
tree_level = 1; 
shape_moment_tree = build_moment_tree(shape, tree_level); 
  
% Begin the segmentation process. 
for n=1:max_itr 
  
    % Compute the mean for the inside region. 
    inside = image(seg > 0); 
    n_inside = size(inside,1); 
    mean_inside = sum(sum(inside))/n_inside; 
  
    % Compute the mean for the outside region. 
    outside = image(seg <= 0); 
    n_outside = size(outside,1); 
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    mean_outside = sum(sum(outside))/n_outside; 
     h = seg>0; 
   
    % Compute the image moments for the current segmentation. 
    [image_moment_tree] = build_moment_tree(h, tree_level); 
  
    % Compute the tranformation from the image moments. 
    [transform_tree] = build_transform_tree(shape_moment_tree,          
 image_moment_tree); 
  
    % Begin iterating through the image, pixel by pixel. 
    for i=1:rows 
        for j=1:cols 
            % Value of the image at the current location. 
            I = image(i,j); 
            % Value of the current segmentation class. 
            class = seg(i,j); 
            x=i;y=j; 
            % Use the lookup table to find the change in length. 
            dL=0; 
            if((i>1 && i<rows)&&(j>1 && j<cols))&&(n>=smooth_itr) 
                % Current 3x3 neighborhood. 
                nhood = h(i-1:i+1,j-1:j+1); 
                % Find the index for the current neighborhood. 
                ind = sum(sum(nhood.*index_wt)) + 1; 
                % Value of smoothness constraint. 
                dL = dL_lookup(ind); 
            end 
  
            % Find the value of the transformed shape at the current            
  % pixel. 
            if n>=shape_itr 
                % Tranformed pixel location of the shape image. 
                x_reg = int16(transform_tree.xform*[x; y; 1]); 
                % Value of the transformed shape at current location. 
                if x_reg(1)>0 && x_reg(2)>0 && x_reg(1)<=size(shape,1)                 
   && x_reg(2)<=size(shape,2) 
                    shape_reg(x,y) = shape(x_reg(1),x_reg(2)); 
                else 
                    shape_reg(x,y) = 0; 
                end 
            end 
  
            %Compute dE if swap pixel from inside to outside. 
            if class > 0 
                dE(i,j) = delta*(n_outside/(n_outside+1))*((I-                  
   mean_outside)/sigma2)^2 - delta*(n_inside/(n_inside-                
   1))*((I-mean_inside)/sigma1)^2 ; 
                if (n > shape_itr) 
                    %Apply shape contraint. 
                    dE(i,j) = dE(i,j) + lambda*(shape_reg(x,y)-class); 
                end 
                % Apply smoothness constraint. 
                dE(i,j) = dE(i,j)+alpha*dL; 
                %Compute dE if swap pixel from outside to inside. 
            else 
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                dE(i,j) = delta*(n_inside/(n_inside+1))*((I-                    
   mean_inside)/sigma1)^2 - delta*(n_outside/(n_outside-               
   1))*((I-mean_outside)/sigma2)^2; 
                if (n > shape_itr) 
                    %Apply shape contraint. 
                    dE(i,j) = dE(i,j) + lambda*(shape_reg(x,y)-class); 
                end 
                % Apply smoothness constraint. 
                dE(i,j) = dE(i,j)+alpha*dL; 
            end 
        end 
    end 
  
    % Perform the update on pixels with lowest dE values. 
    min_dE = min(min(dE)); 
    if min_dE < 0 
        thresh = 0.75*min_dE; 
        for i=1:rows 
            for j=1:cols 
                if dE(i,j) <= thresh 
                    seg(i,j) = ~seg(i,j); 
                end 
            end 
        end 
    end 
     
end 
end 
end 
 
 
The following is a basic version of the MATLAB function ‘build_moment_tree.m’ 
used to compute the image moments for a binary image. This function takes an input 
image ‘image’, and number of image subdivisions ‘level’ as parameters. The output 
includes a tree structure ‘tree’, which contains the image moment information.  
 
function [ tree ] = build_moment_tree(image,level)     
  
[R C] = ndgrid(1:size(image,1),1:size(image,2)); 
  
% Compute the regular moments. 
tree.M00 = sum(sum(image)); 
tree.M10 = sum(sum(image.*R)); 
tree.M01 = sum(sum(image.*C)); 
tree.M11 = sum(sum(image.*R.*C)); 
tree.M20 = sum(sum(image.*R.*R)); 
tree.M02 = sum(sum(image.*C.*C)); 
  
% Compute the image centroids. 
tree.x_bar = tree.M10/tree.M00; 
tree.y_bar = tree.M01/tree.M00; 
  
% Compute the second-order central moments. 
tree.mu11c = tree.M11/tree.M00 - tree.x_bar*tree.y_bar; 
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tree.mu02c = tree.M02/tree.M00 - tree.y_bar^2; 
tree.mu20c = tree.M20/tree.M00 - tree.x_bar^2; 
  
% Compute the eigenvalues. 
tree.lambda1 = 0.5*(tree.mu20c + tree.mu02c) + 
 0.5*sqrt(4*tree.mu11c^2+(tree.mu20c - tree.mu02c)^2); 
tree.lambda2 = 0.5*(tree.mu20c + tree.mu02c) - 
 0.5*sqrt(4*tree.mu11c^2+(tree.mu20c - tree.mu02c)^2); 
  
% Compute the principal axis direction. 
if (tree.mu20c - tree.mu02c) == 0 
    if tree.mu11c == 0 
        tree.theta = 0; 
    elseif tree.mu11c > 0 
        tree.theta = pi/4; 
    else 
        tree.theta = -pi/4; 
    end 
elseif (tree.mu20c - tree.mu02c) > 0 
    if tree.mu11c == 0 
        tree.theta = 0; 
    else 
        tree.theta = 0.5*atan2(2*tree.mu11c,(tree.mu20c - tree.mu02c)); 
    end 
else 
    if tree.mu11c == 0 
        tree.theta = -pi/2; 
    else 
        tree.theta = 0.5*atan2(2*tree.mu11c,(tree.mu20c - tree.mu02c)); 
    end 
end 
  
% If the image is to be subdivided, continue computing the image   
% moments for the next level of the image. 
if level == 1 
    tree.child1 = []; 
    tree.child2 = []; 
else 
    % Subdivide the image based on principal axes. 
    R = R - tree.x_bar; 
    C = C - tree.y_bar; 
    n = [cos(tree.theta); sin(tree.theta)]; 
    region1 = R.*n(1) + C.*n(2) > 0; 
    region2 = 1-region1; 
 
    % Get image moments at the next level. 
    [tree.child1] = build_moment_tree_1(image.*region1,level-1); 
    [tree.child2] = build_moment_tree_1(image.*region2,level-1); 
end 
end 
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The following is a basic version of the MATLAB function ‘build_transform_tree.m’ 
used to compute the transformation which maps the shape image to the current 
segmentation. This function takes an input image, ‘image’; the image moment trees, 
‘node1’ and ‘node2’, computed from the shape image and the current segmentation, 
respectfully; and the number of image subdivisions, ‘level’, as parameters. The output 
includes a tree structure ‘tree’, which contains the transformation matrix.  
 
function [ tree ] = build_transform_tree(image, node1, node2, level) 
     
image_node = node1; 
shape_node = node2; 
  
% The covariance matrix of the shape image. 
shape_cov = [shape_node.mu20c shape_node.mu11c;shape_node.mu11c 
shape_node.mu02c]; 
  
e1_shape = [(shape_node.mu11c/sqrt((shape_node.lambda1-
 shape_node.mu20c)^2+shape_node.mu11c^2)) ((shape_node.lambda1-
 shape_node.mu20c)/sqrt((shape_node.lambda1-shape_node.mu20c)^2 + 
 shape_node.mu11c^2))]'; 
e2_shape = [(shape_node.mu11c/sqrt((shape_node.lambda2-
 shape_node.mu20c)^2+shape_node.mu11c^2)) ((shape_node.lambda2-
 shape_node.mu20c)/sqrt((shape_node.lambda2-shape_node.mu20c)^2 + 
 shape_node.mu11c^2))]'; 
  
Vshape = [e1_shape(1) -e1_shape(2); e1_shape(2)  e1_shape(1)]; 
Dshape = Vshape*shape_cov*Vshape'; 
  
% The covariance matrix of the image. 
image_cov = [image_node.mu20c image_node.mu11c;image_node.mu11c 
image_node.mu02c]; 
 
e1_image = [(image_node.mu11c/sqrt((image_node.lambda1-
 image_node.mu20c)^2+image_node.mu11c^2)) ((image_node.lambda1-
 image_node.mu20c)/sqrt((image_node.lambda1-image_node.mu20c)^2 + 
 image_node.mu11c^2))]'; 
e2_image = [(image_node.mu11c/sqrt((image_node.lambda2-
 image_node.mu20c)^2+image_node.mu11c^2)) ((image_node.lambda2-
 image_node.mu20c)/sqrt((image_node.lambda2-image_node.mu20c)^2 + 
 image_node.mu11c^2))]'; 
  
Vimage = [e1_image(1) -e1_image(2);e1_image(2)  e1_image(1)]; 
Dimage = Vimage*image_cov*Vimage'; 
  
% Compute the rotation matrix. 
xrot = eye(3,3); 
xrot(1:2, 1:2) = Vshape*Vimage'; 
  
% Construct the centering matrix. 
xcen = [ 1 0 -image_node.x_bar; 
    0 1 -image_node.y_bar; 
    0 0 1]; 
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% Construct the translation matrix. 
xtrans = [ 1 0 shape_node.x_bar; 
    0 1  shape_node.y_bar; 
    0 0 1]; 
  
% Compute the scaling matrix. 
c_shape = 1; 
W_shape = [c_shape/sqrt(shape_node.lambda1) 0; 
    0 c_shape/sqrt(shape_node.lambda2)]; 
  
c_image = 1; 
W_image = [c_image/sqrt(image_node.lambda1) 0; 
    0 c_image/sqrt(image_node.lambda2)]; 
  
scale = eye(3,3); 
scale(1:2, 1:2) = W_image*W_shape^-1; 
  
% Compute the final tranformation matrix. 
tree.xform = xtrans*xrot*scale*xcen; 
  
% Continue computing the transformation matrix for the next level if 
% necessary. 
[R C] = ndgrid(1:size(image,1),1:size(image,2)); 
R = R - image_node.x_bar; 
C = C - image_node.y_bar; 
n = [cos(image_node.theta2); sin(image_node.theta2)]; 
tree.region = R.*n(1) + C.*n(2) > 0; 
  
if isempty(image_node.child1) 
    tree.child1 = []; 
    tree.child2 = []; 
else 
    tree.child1 = build_transform_tree_1(image, node1.child1, 
node2.child1); 
    tree.child2 = build_transform_tree_1(image, node1.child2, 
node2.child2); 
end  
end 
 
The following is the MATLAB code, ‘build_lookup_table.m’, used to construct the 
smoothness constraint lookup table. This table contains the change in length ‘dL’ 
associated with each possible 3 x 3 neighborhood combination, which is denoted by a 
unique index.  
 
% Go through the indexes of each possible neighborhood combination. 
for n=0:(2^9)-1 
    % Determine the 9-element binary string that gives this index. 
    bin_str = dec2bin(n,9) 
    % Reshape into a 3x3 matrix which represents the neighborhood.  
    tmp = reshape(bin_str,3,3); 
 
    % Reassign the values from type character to type integer. 
    neigbr = zeros(3,3); 
    for i=1:3 
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        for j=1:3 
            if tmp(i,j) == '1' 
                neigbr(i,j)=1; 
            end 
        end 
    end 
 
    % Compute the length for the neighborhood by incrementing for each 
    % difference found between 2 neighboring pixels.     
    len1(1,1) = sqrt( (neigbr(1,2)-neigbr(1,1))^2 + (neigbr(2,1)-
 neigbr(1,1))^2); 
    len1(1,2) = sqrt( (neigbr(2,2)-neigbr(1,2))^2 + (neigbr(1,3)-
 neigbr(1,2))^2); 
    len1(1,3) = sqrt( (neigbr(2,3)-neigbr(1,3))^2); 
  
    len1(2,1) = sqrt( (neigbr(2,2)-neigbr(2,1))^2 + (neigbr(3,1)-
 neigbr(2,1))^2); 
    len1(2,2) = sqrt( (neigbr(2,3)-neigbr(2,2))^2 + (neigbr(3,2)-
 neigbr(2,2))^2); 
    len1(2,3) = sqrt( (neigbr(3,3)-neigbr(2,3))^2); 
     
    len1(3,1) = sqrt( (neigbr(3,2)-neigbr(3,1))^2); 
    len1(3,2) = sqrt( (neigbr(3,3)-neigbr(3,2))^2); 
    len1(3,3) = 0; 
     
    % Switch the center pixel class value from 0 to 1, or vice versa. 
    neigbr(2,2)=~neigbr(2,2); 
     
    % Recompute the length according to the swapped center pixel. 
    len2(1,1) = sqrt( (neigbr(1,2)-neigbr(1,1))^2 + (neigbr(2,1)-
 neigbr(1,1))^2); 
    len2(1,2) = sqrt( (neigbr(2,2)-neigbr(1,2))^2 + (neigbr(1,3)-
 neigbr(1,2))^2); 
    len2(1,3) = sqrt( (neigbr(2,3)-neigbr(1,3))^2); 
  
    len2(2,1) = sqrt( (neigbr(2,2)-neigbr(2,1))^2 + (neigbr(3,1)-
 neigbr(2,1))^2); 
    len2(2,2) = sqrt( (neigbr(2,3)-neigbr(2,2))^2 + (neigbr(3,2)-
 neigbr(2,2))^2); 
    len2(2,3) = sqrt( (neigbr(3,3)-neigbr(2,3))^2); 
     
    len2(3,1) = sqrt( (neigbr(3,2)-neigbr(3,1))^2); 
    len2(3,2) = sqrt( (neigbr(3,3)-neigbr(3,2))^2); 
    len2(3,3) = 0; 
 
    % Compute the change in length that corresponds to the given  
    % neighborhood combination. 
    length_original = sum(len1(:)); 
    length_final = sum(len2(:));     
    dL(n+1) = length_final - length_original;    
 
end  
% Save the lookup table. 
save 'lookup_table.mat' dL; 
 



 

99 

BIBLIOGRAPHY 

1. “Alzheimers Disease Factsheet”. 2006. National Institute of Health/National Institutes 
on Aging. July 2007. <www.nia.nih.gov/Alzheimers/Publications/adfact.htm.>  
 
2. Andreasen, N.C., et al. “Automatic Atlas-Based Volume Estimation of Human Brain 
Regions from MR Images.” Journal of Computer Assisted Tomography 20 (1996): 98-
106. 
 
3. Ayache, N., et al. “Segmentation of Complex Three Dimensional Medical Objects: A 
Challenge and a Requirement for Computer-Assisted Surgery Planning and 
Performance.” In R.H. Taylor, S. Lavallee, G.C. Burdea, and R. Mosges, editors, 
Computer Integrated Surgery: Technology and Clinical Applications. MIT Press (1996): 
59-74. 
 
4. Ballard, D. H. “Generalizing the Hough Transform to Detect Arbitrary Shape.” Pattern 
Recognition 13 (1981): 111-122. 
 
5. Bezdek, J. C., Hall, L. O. and Clarke, L. P. “Review of MR Image Segmentation 
Techniques using Pattern Recognition.” Medical Physics 20 (1993): 1033-1048. 
 
6. Bomans, M., Hohne, K., Tiede, U., and Riemer, M. “3-D Segmentation of MR Images 
of the Head for 3-D Display.” IEEE Transactions on Medical Imaging 9 June 1990: 253-
277.  
 
7. Boykov, Y., and Jolly, M. “Interactive Graph Cuts for Optimal Boundary and Region 
Segmentation of Objects in N-D Images.” ICCV (2001). 
 
8. “Brainweb: Simulated Brain Database.” July 2007 
<http://www.bic.mni.mcgill.ca/brainweb/ >. 
 
9. Broyden, C. G. “A New Double-Rank Minimization Algorithm.” Notices of the 
American Mathematical Society 16 (1969): 670. 
 
10. Caselles, V., Kimmel, R., and Sapiro, G. “Geodesic Active Contours.” ICCV (1995): 
694-699. 
 
11. Chan, T., and Vese, L. “Active Contours without Edges.” IEEE TIP (2001). 
 
12. Chan, T., and Zhu, W. “Level Set Based Shape Prior Segmentation.” IEEE CVPR'05 
2 (2005): 1164-1170.   
 
13. Chen, Y., et al. “Using Prior Shapes in Geometric Active Contours in a Variational 
Framework.” International Journal of Computer Vision 50(3) (2002): 315-328. 
 



 

100 

14. Christensen, G. E., Joshi, S. C., and Miller, M. I. “Volumetric Transformation of 
Brain Anatomy.” IEEE Transactions on Medical Imaging 16 (1997): 864-877. 
 
15. Chung, A., Wells, W., Norbash, A., and Grimson, W. “Multi-Modal Image 
Registration by Minimizing Kullback-Leibler Distance.” In MICCAI’02 Medical Image 
Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science 
(2002): 525-532. 
 
16. Cocosco, C. A., Kollokian, V., Kwan, R. K.-S., and Evans, A. C. “BrainWeb: Online 
Interface to a 3D MRI Simulated Brain Database. NeuroImage” vol.5, no.4, part 2/4, 
S425, 1997 -- Proceedings of 3-rd International Conference on Functional Mapping of 
the Human Brain. Copenhagen, May 1997. 
 
17. Coleman, G.B., and Andrews, H.C. “Image Segmentation by Clustering.” Proc. IEEE 
5 (1979): 773-785. 
 
18. Collignon, Maes, F., Delaere, D., Vandermeulen, D., Suetens, P., and Marchal, G. 
“Automated Multi-Modality Image Registration Based on Information Theory.” 
Information Processing in Medical Imaging (1995): 263-274. 
 
19. Collins, D. L., Holmes, C. J., Peters, T. M., and Evans, A. C. “Automatic 3-D Model-
Based Neuroanatomical Segmentation.” Human Brain Mapping 3 (1995):190-208. 
 
20. Cremers, D., Tischhauser, F., Weickert, J., and Schnorr, C. “Diffusion Snakes: 
Introducing Statistical Shape Knowledge into the Mumford-Shah Functional.” 
International Journal of Computer Vision 50(3) (2002): 295-313. 
 
21. Cremers, D., Sochen, N., and Schnorr, C. “Towards Recognition-Based Variational 
Segmentation using Shape Priors and Dynamic Labeling.” In L. Griffith, editor, 
International Conference on Scale Space Theories in Computer Vision, volume 2695 of 
LNCS: 388-400, Isle of Skye, 2003. 
 
22. Davatzikos, C. “Spatial Normalization of 3D Images using Deformable Models.” 
Journal on Computer Assisted Tomography 20 (1996): 656-665. 
 
23. Duda, R. O., Hart, P. E., and Stork, D. G. Pattern Classification, 2nd ed. John Wiley 
& Sons, Inc. 2000. 
 
24. Duncan, J., and Ayache, N. “Medical Image Analysis: Progress over Two Decades 
and the Challenges Ahead.” IEEE PAMI (2000). 
 
25. Foulonneau, A., Charbonnier, P., and Heitz, F. “Geometric Shape Priors for Region-
Based Active Contours.” In Proc. IEEE Conference on Image Processing 3 Sept. 2003: 
413-416. 
 



 

101 

26. Grimson, W. E. L., et al. “Utilizing Segmented MRI Data in Image-Guided Surgery.” 
International Journal on Pattern Recognition and Artificial Intelligence 11 (1997): 1367-
1397. 
 
27. Haralick, R. M., and Shapiro, L. G. “Image Segmentation Techniques.” Computer 
Vision and Graphic Imaging Proceedings 29 (1985): 100-132. 
 
28. Hornak, J.P. “Basics of MRI.” Sept. 1996. <http://www.cis.rit.edu/htbooks/mri.htm>. 
 
29. Hu, M. K. “Visual Pattern Recognition by Moment Invariants.” IRE Transactions on 
Information Theory IT 8 (1962): 179-187. 
  
30. Ibanez, L., Schroeder, W., Ng, L. and Cates. The ITK Software Guide, the Insight 
Consortium, <http://www.itk.org>. 
 
31. Jin, Y., Laine, A., and Imielinska, C. “An Adaptive Speed Term Based on 
Homogeneity for Level-Set Segmentation.” SPIE Feb. 2002: 25-28. 
 
32. Kass, M., Witkin, A., and Terzopoulos, D. “Snakes: Active Contour Models.” 
International Journal of Computer Vision (1988). 
 
33. Lancaster, J. L., et al. “Automated Labeling of the Human Brain: A Preliminary 
Report on the Development and Evaluation of a Forward-Transform Method.” Human 
Brain Mapping 5 (1997): 238-242. 
 
34. Larie, S. M., and Abukmeil, S. S. “Brain Abnormality in Schizophrenia: A 
Systematic and Quantitative Review of Volumetric Magnetic Resonance Imaging 
Studies.” Journal on Psych. 172 (1998): 110-120. 
 
35. Leventon, M., Faugeraus, O., Grimson, W., and W. W. III. “Level Set Based 
Segmentation with Intensity and Curvature Priors.” Mathematical Methods in Biomedical 
Image Analysis (2000). 
 
36. Leventon, M., Faugeraus, O., and Grimson, W. “Statistical Shape Influence in 
Geodesic Active Contours.” CVPR (2000): 316-323. 
 
37. Lim, K., Rosenbloom, M., and Pfefferbaum, A. “In Vivo Structural Brain 
Assessment.” 2000. <http://www.acnp.org/g4/GN401000089/CH.html>. 
 
38. Lo, C.-H., Don, H.-S. “3D Moment Forms: Their Construction and Application to 
Object Identification and Positioning.” IEEE PAMI 11 Oct. 1989: 1053-1064. 
 
39. MacQueen, J. “Some Methods for Classification and Analysis of Multivariate 
Observation.” Proceedings of the 5th Berkeley Symposium on Mathematical Statistics 
and Probability (1967): 281-297. 
 



 

102 

40. Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., and Suetens, P. 
“Multimodality Image Registration by Maximization of Mutual Information.” IEEE 
Transactions on Medical Imaging 16(2) (1997): 187-198. 
 
41. Maintz, J., and Viergever, M. “A Survey of Medical Image Registration.” Medical 
Image Analysis (1998). 
 
42. Malladi, R., Sethian, J. A., Vemuri, B.C. “Shape Modeling with Front Propagation: A 
Level Set Approach.” IEEE Transactions on Pattern Analysis and Machine Intelligence 
17(2) (1995): 158-175. 
 
43. Mangin, J.F., Frouin, V., Bloch, I., Regis, J., and Lopez-Krahe, J. "From 3D 
Magnetic Resonance Images to Structural Representations of the Cortex Topography 
using Topology Preserving Deformations.” Journal of Mathematical Imaging and Vision 
5 (1995): 297-318. 
 
44. Marroquin, J., Santana, E., Botello, S. “Hidden Markov Measure Field Models for 
Image Segmentation.” IEEE PAMI (2003). 
 
45. Mattes, D., Haynor, D. R., Vesselle, H., Lewellen, T., and Eubank, W. “Non-rigid 
Multimodality Image Registration.” In Medical Imaging 2001: Image Processing (2001): 
1609-1620. 
 
46. Mattes, D., Haynor, D. R., Vesselle, H., Lewellen, T., and Eubank, W. “PET-CT 
Image Registration in the Chest Using Free-form Deformations.” IEEE Transactions on 
Medical Imaging 22(1) Jan. 2003: 120-128. 
 
47. Mumford, D., and Shah, J. “Optimal Approximation by Piecewise Smooth Functions 
and Associated Variational Problems.” Comm. Pure Appl. Math. 42 (1989): 577-685. 
 
48. Osher, S., and Sethian, J.A. “Fronts Propagating with Curvature Dependent Speed: 
Algorithms based on Hamilton-Jacobi Formulation.” J. Comput. Phys. 79 (1988): 12-49. 
 
49. Pearlson, G.D., Harris, G.J., Powers, R.E., Barta, P.E., Camargo, E.E., Chase, G.A., 
Noga, J.T. and Tune, L.E. “Quantitative Changes in Mesial Temporal Volume, Regional 
Cerebral Blood Flow, and Cognition in Alzheimer's Disease.” Arch Gen Psychiatry 49 
(1992): 402-408. 
 
50. Persoon, E. and Fu, K. S. “Shape Discrimination using Fourier Descriptors.” IEEE 
Transactions on Systems, Man, and Cybernetics 7 (1977): 170-179. 
 
51. Prasanna K. Sahoo, Soltani, S., Wong, A. K. C. “A Survey of Thresholding 
Techniques.” Computer Vision, Graphics, and Image Processing 41(2) (1988): 233-260. 
 
52. Pham, D. L., Xu, C., and Prince, J. L. “Current Methods in Medical Image 
Segmentation.” Annual Review of Biomedical Engineering 2 (2000): 315-337. 



 

103 

53. Pluim, J. P., Maintz, J. B. A., and Viergever, M. A. “Mutual-Information-Based 
Registration of Medical Images: A Survey.” IEEE Transactions on Medical Imaging 
22(8) Aug. 2003: 986-1004. 
 
54. Powell, M. J. D. “An Efficient Method for Finding the Minimum of a Function of 
Several Variables without Calculating Derivatives.” Computer Journal 7 (1964): 155-
162. 
 
55. Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T. Numerical 
Recipes in C. Cambridge University Press, 2nd ed. 1992. 
 
56. Rosenfeld, A., and Kak, A. C. Digital Picture Processing. Academic Press, New 
York, 1982. 
 
57. Rousson, M., and Deriche, R. “A Variational Framework for Active and Adaptive 
Segmentation of Vector Valued Images.” In Proc. IEEE Workshop on Motion and Video 
Computing Dec. 2002: 56-61. 
 
58. Rousson, M., and Paragios, N. “Shape Priors for Level Set Representations.” In Proc. 
Seventh European Conf. Computer Vision May 2002: 78-93. 
 
59. Sandor, S., and Leahy, R. “Surface-based Labeling of Cortical Anatomy using a 
Deformable Atlas.” IEEE Transactions on Medical Imaging 16 (1997): 41-54.  
 
60. Sethian, J.A. Level Set Methods and Fast Marching Methods. Cambridge University 
Press, 1996. 
 
61. Song, B., and Chan, T. “A Fast Algorithm for Level Set Based Optimization.” CAM-
UCLA 68 (2002). 
 
62. Spendley, W., Hext, G. R., and Himsworth, F. U. “Sequential Application of Simplex 
Designs in Optimisation and Evolutionary Operation.” Technometrics 4 (1962): 441-461. 
 
63. Sprawls, P. Physical Principles of Medical Imaging. Aspen Publishers, 1993. 
 
64. Talairach, J., and Tournoux, P. Co-Planar Stereotaxic Atlas of the Human Brain. 3-
Dimensional Proportional System: An Approach to Cerebral Imaging. Thieme Medical 
Publisher, Inc., Stuttgart, New York, 1988. 
 
65. Taza, A., and Suen, C. Y. “Discrimination of Planar Shapes using Shape Matrices.” 
IEEE Transactions on Systems, Man, and Cybernetics 19(5) (1989): 1281-1289. 
 
66. Thevenaz, P., and Unser, M. “Optimization of Mutual Information for Multi-
Resolution Image Registration.” IEEE Transactions on Image Processing 9(12) Dec. 
2000. 



 

104 

67. Unser, M. “Splines: A Perfect Fit for Signal and Image Processing.” IEEE Signal 
Processing Magazine 16(6) Nov. 1999: 22-38.  
 
68. Unser, M., Aldroubi, A. and Eden, M. “B-Spline Signal Processing: Part I-Theory.” 
IEEE Transactions on Signal Processing 41(2) Feb. 1993: 821-832. 
  
69. Unser, M., Aldroubi, A. and Eden, M. “B-Spline Signal Processing: Part II-Efficient 
Design and Applications.” IEEE Transactions on Signal Processing 41(2) Feb. 1993: 
834-848. 
 
70. Vemuri, B. C., Chen, Y., and Wang, Z. “Registration Assisted Image Smoothing and 
Segmentation.” ECCV 4 (2002): 546-559. 
 
71. Worth, A. J., Makris, N., Caviness, V. S., and Kennedy, D. N. “Neuroanatomical 
Segmentation in MRI: Technological Objectives. International Journal on Pattern 
Recognition and Artificial Intelligence 11 (1997): 1161-1187. 
 
72. Xiaohong, W., and Rongchun, Z. “A New Method for Image Normalization.” 
Intelligent Multimedia, Video and Speech Processing (2001): 356-359.  
 
73. Xu, C., Pham, D.L., Prince, J.L. Image Segmentation using Deformable Models. In 
Sonka, M., Fitzpatrick, J.M., eds.: Handbook of Medical Imaging. Volume 2. SPIE Press. 
129-174, 2000. 
 
74. Zahn, C. T., and Roskies, R. S. “Fourier Descriptors for Plane Closed Curves.” IEEE 
Transactions on Computing 2(1) (1972): 269-281. 
 
75. Zitova, B., and Flusser, J. “Image Registration Methods: A Survey.” Image and 
Vision Computing 21(11) (2003). 


	Segmentation of images with low-contrast edges
	Recommended Citation

	ABSTRACT
	TABLE OF CONTENTS
	List of Tables
	List of Figures

	Chapter 1: Introduction 
	Chapter 2: Background 
	Chapter 3: A New Speed Function for Shape Prior Segmentation 
	Chapter 4: Fast Level Set Segmentation using a Shape Prior  
	Chapter 5: Experimental Results 
	Chapter 6: Concluding Remarks and Future Work
	APPENDIX 
	BIBLIOGRAPHY 

		2007-08-02T13:16:19-0400
	John H. Hagen
	I am approving this document




