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ABSTRACT 

SHALE LITHOFACIES MODELING OF THE BAKKEN FORMATION IN THE WILLISTON BASIN, 

NORTH DAKOTA 

Shuvajit Bhattacharya 

The Bakken petroleum system (Devonian-Mississippian) in the Williston basin of North 
Dakota and Montana in the United States, and Saskatchewan and Manitoba in Canada is one of 
the largest unconventional oil plays in North America. The Bakken Formation consists of three 
members: upper, middle, and lower. Both upper and lower members are shale (source rocks), 
whereas the middle member (reservoir rock) is composed of mixed lithologies, including 
sandstone, dolostone, and limestone. Underlying the lower Bakken shale member, the Three 
Forks Formation is another target for hydrocarbon exploration.  

 
            Although the middle Bakken member along with the Three Forks Formation have been the 
targets for horizontal drilling and hydraulic stimulation throughout the basin, several 
uncertainties remain, including facies variation due to depositional and diagenetic controls on 
mineral composition and organic matter content in the Bakken shale members, which could play 
a significant role in hydrocarbon generation and production. Although the Bakken shale members 
may look homogeneous in the appearance, they are significantly heterogeneous and complex 
mixture of quartz, smectite, illite, carbonate, pyrite, and kerogen in varying proportions. 
Improved characterization of the Bakken shale lithofacies is important to better understand 
depositional environment, lithofacies distribution, and their potential influence on hydrocarbon 
production.  

            The main objective of this work is to investigate vertical and lateral heterogeneities of the 
Bakken shale lithofacies, based on mineralogy and organic matter richness. Secondly, if the 
Bakken shale members are composed of different lithofacies, can they be associated with 
different depositional and/or diagenetic conditions, which could influence source, 
transportation, and preservation of organic matter and sediment in the Williston basin.  

          Core data (such as X-ray diffraction, X-ray fluorescence, and Total Organic Carbon content), 
conventional borehole geophysical logs (such as gamma, resistivity, bulk density, neutron 
porosity, and photo-electric factor), and advanced petrophysical logs (such as Spectral Gamma 
and Pulsed Neutron Spectroscopy) are used and integrated together to classify the Bakken shale 
lithofacies and build models of lithofacies distribution at multiple scales. Usually there are 
minimal core data, scattered advanced well logs, and ubiquitous conventional well log suites in a 
petroliferous basin, which hinders lithofacies analysis and petrophysical modeling. Therefore, a 
significant effort of this work is geared towards developing and applying cost-effective 
mathematical algorithms (such as Support Vector Machine and Artificial Neural Network etc.) 
and geostatistical techniques (such as Sequential Indicator Simulation) to classify, predict, and 



interpolate shale lithofacies with high accuracy, using conventional well log-derived 
petrophysical parameters from several wells.  

           The results show that both upper and lower Bakken shale members are vertically and 
laterally heterogeneous at core, well, and regional scales. Bakken shale members can be 
classified as five different lithofacies, in terms of mineralogy and organic matter content. Organic-    
rich shale lithofacies are more dominant than organic-poor shale lithofacies. It appears several 
factors (such as source of minerals, paleo-redox conditions, organic matter productivity, and 
preservation etc.) controlled the Bakken shale lithofacies distribution pattern. Silica in the 
Organic Siliceous Shale (OSS) lithofacies near the basin center is hypothesized to be related to the 
presence of biogenic silica (e.g. radiolaria), whereas the portion of OSS lithofacies near the basin 
margin is believed to be associated with eolian action. High organic matter content in the Organic 
Mudstone (OMD) lithofacies near the basin margin could be interpreted due to the presence of 
algal matter. The borehole geophysical, petrophysical approaches, and the 3D lithofacies 
modeling techniques developed in this study can be applied to detailed studies of complex shale 
formations and exploration of hydrocarbon resources worldwide. 
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PREFACE 

        This research is a multi-scale study, integrating various types of geological, geochemical, 

petrophysical, and geophysical data at core, well, and regional scales.  The study was completed 

and written as three papers, described as three chapters. Chapter 1 describes the methodology 

for shale lithofacies classification and interpretation of depositional conditions, using core data 

(”ground truth”) and stochastic petrophysical modeling. Chapter 2 discusses application of 

different supervised and unsupervised mathematical algorithms (such as Support Vector 

Machine, Artificial Neural Network, Self-Organizing Map, and Multi Resolution Graph-based 

Clustering) for shale lithofacies pattern recognition and prediction, and it compares their results 

at well scale. All these algorithms are also being applied in the Marcellus shale of the Appalachian 

basin, North America to test their robustness and broader applicability in different geological 

domains. The research culminates with Chapter 3, describing 3D shale lithofacies modeling 

approaches at regional scale, and detailed interpretation of depositional and diagenetic 

environment of different shale lithofacies in the Bakken Formation. The Appendix A presents core 

data used in this work. 

        The first, second, and third chapters have been submitted as manuscripts to the Petrophysics 

journal, Journal of Natural Gas Science & Engineering, and Interpretation journal respectively. All 

the journals have their own standards for publications, and therefore, a few figures have been 

altered to meet their criteria. Also, a cross-section has been included in the Appendix (A-2) of this 

study to illustrate stratigraphic relationships among different geological formations and 

members.
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Abstract 

       The study demonstrates applications of core and advanced well logs on computing general 

log based stochastic multi-mineral solutions to build detailed 1-D shale petrofacies model and 

integrate with chemostratigraphy to better decipher depositional environments of the Bakken 

Shale units in the Williston basin of North Dakota, USA. In particular, relations among trace 

element geochemical data and organic matter coupled with well log derived crossplots and 

solutions are explored to understand vertical and areal heterogeneity of the shale members in 

the Bakken Formation. A methodology based on mineral composition and organic matter 

richness derived from well logs and core data is proposed for facies classification in the Bakken 

mudstone units. The results show that Bakken shale members are heterogeneous, in terms of 

mineralogy and organic matter, which can be classified as five different petrofacies, reflective of 

changes in depositional and diagenetic environment. Highly organic-rich shale facies units were 

deposited in euxinic environment, whereas relatively organic-poor shale units were deposited in 

anoxic and dysoxic conditions. Statistical analyses suggest that trace element geochemical data 

can be applied to a significant degree of confidence to compare with log derived facies model to 

characterize different shale petrofacies and construe the depositional environment in detail.  
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1.1 Introduction               

       Lithofacies or petrofacies classification, assigning a rock type to specific rock samples on the 

basis of petrography or measured petrophysical properties, is fundamental to subsurface 

investigations. Clastic and carbonate petrofacies have been studied extensively for depositional 

and diagenetic environment studies.  However, research in black shale petrofacies is relatively 

rare, most being based on either single well study or descriptive analysis (Bhattacharya et al., 

2015; Egenhoff and Fishman, 2013; Hickey and Henk, 2007; Schieber, 1999). A case study from 

the Bakken Formation in the Williston basin in North America has been chosen for this study.  

       The Bakken petroleum system (Devonian-Mississippian) in the Williston basin of North 

Dakota and Montana is one of the largest unconventional oil plays in North America with an 

estimated 7.4 billion barrels of undiscovered oil reserve (Pollastro et al., 2013). The Bakken 

Formation consists of two world class source rocks (upper Bakken and lower Bakken shale) that 

sandwich the reservoir middle Bakken, which is composed of mixed lithologies including 

sandstone, dolomite and limestone. Most of the geological and petrophysical studies in the 

Bakken play, ranging from depositional history, facies analysis, and reservoir characterization, 

have been focused on the middle Bakken member and Three Forks Formation (LeFever et al., 

2011; Sesack, 2011; Simenson, 2011; Warner, 2011). Source rock potential of different mudstone 

reservoirs (including the Bakken Formation), in terms of hydrocarbon production and 

chemostratigraphy using X-ray Fluorescence (XRF) and Total Organic Carbon (TOC) data has been 

performed recently towards better understanding of geological processes controlling source and 

transportation of organic matter and mud to depositional site, preservation of organic matter 

and diagenesis of mud after deposition (Maldonado, 2012; Nandy et al., 2014; Rowe et al., 2012; 
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Schieber et al., 1998a, b). In this study we attempt to identify different petrofacies in the Bakken 

shale units based on petrophysical and geochemical characteristics to better understand their 

depositional and diagenetic controls on mineral composition and TOC. 

        Although Bakken along with the Three Forks formations have been the target for horizontal 

drilling and hydraulic stimulation throughout the basin, several uncertainties remain including 

facies variation due to depositional and diagenetic controls on mineral composition and organic 

matter content in the Bakken shale members, which could play a significant role in hydrocarbon 

production. Improved characterization of Bakken shale petrofacies is important to better 

understand depositional environment, facies distribution and their influence on hydrocarbon 

production. In this study, we claim that both Bakken shale members are heterogeneous and 

complex mixture of quartz, smectite, illite, carbonate, pyrite and kerogen in varying proportions 

based on core and well log derived petrophysical interpretation, which can be classified as 

different petrofacies. Five different petrofacies could be identified and correlated in the 

Mississippian- Devonian shale interval. Contrary to the popular beliefs of shale facies deposition 

in anoxic environment, we “deconstruct” that major portion of both upper and lower shale 

members were rather deposited in euxinic environment (high sulfur content in the ocean) with 

limited portion being restricted to anoxic and dysoxic conditions based on trace element 

geochemical study. 

        In this study proper well log conditioning and similarity modeling between the wells were 

performed before application and interpretation for facies clustering. Core X-ray Diffraction 

(XRD) and TOC data has been calibrated with conventional and advanced well log (such as Pulsed 
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Neutron Spectroscopy, PNS) derived petrophysical parameters to classify shale petrofacies at 

core and log scales. A general methodology integrating core and log analysis for shale petrofacies 

classification in the Bakken Formation has been presented. Next, covariance of GR, TOC logs, 

various trace elements (such as Mo, U, V, Cu and Ni), and clay (Al and K) has been investigated, 

in an attempt to tie geochemical signatures from core data with log derived stochastic petrofacies 

models to better delineate association of different shale petrofacies with respective depositional 

environment with a significant degree of confidence.  

1.2 Geological Background 

        The Bakken Formation in the Williston basin spans over portions of North Dakota, South 

Dakota, Montana in the United States and Saskatchewan, Manitoba in Canada (~200,000 mi2, 

~500,000 Km2). The Williston basin is a large intracratonic sedimentary basin (Pitman et al., 2001). 

Deposition of sediments in the basin began in the Cambrian; however, increased subsidence and 

sedimentation took place from the Ordovician to the Devonian when the Bakken Formation was 

deposited (Smith and Bustin, 2000; Webster, 1984). Both shale members in the Bakken 

Formation are considered to be deposited during the basin wide transgression and/or basin 

subsidence at the end of Three Forks Formation deposition, whereas middle Bakken member 

(composed of mixed lithology such as limey siltstone and dolomitic siltstone) has been 

interpreted to have been deposited as a result of dramatic sea-level drop at the close of the 

Devonian (Dumonceaux, 1984; LeFever et al., 1991; Meissner, 1978; Sesack, 2011; Sonnenberg 

and Pramudito, 2009; Steptoe, 2012). A major north-south structural feature, Nesson Anticline is 
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present near the center of the basin, where all Bakken members are thickest (>50 feet, 15m) in 

the basin. 

1.3 Dataset and Methods 

        Two wells (A and B), around 26 miles (42 km) apart in McKenzie County, North Dakota were 

chosen for this study. Well B is closer towards the basin center (Figure 1-1), which is why it has 

thicker Bakken interval compared to Well A (Figure 1-2). The dataset was ideal for this study as 

both of the wells have conventional well logs (GR, resistivity, neutron porosity, bulk density, and 

photoelectric) for the selected Bakken interval and trace element geochemical data was collected 

in a consistent manner. Apart from that, well B possesses PNS log, core spectral GR, core-derived 

XRD and Rock-Eval pyrolysis (TOC) data. While upper Bakken portion of well B had limited core 

available for experimental studies, Well A had full core available. XRD and TOC data were 

measured in laboratory. Two different sources of trace element geochemical data were available: 

Na-Peroxide-treated Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) analysis and X-ray 

Fluorescence (XRF). Identification of both upper and lower Bakken shale members was done 

based on 

High GR (~ 400 to 900 API) 

High resistivity (~ 25 to 500 Ω-m) 

High neutron-porosity (~ 30 to 45%) 

High TOC (~ 2 to 20 wt%)  
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         Quality control of well logs is critical before applying them for advanced interpretation and 

facies clustering. Both of the wells were drilled using oil-based mud, which resulted in good 

quality of well logs. A density correction curve already available with the well dataset was used 

to correct bulk density log. 
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Figure 1-1. Structural map of the upper Bakken member showing location of two wells (marked 

by green circles) chosen for the study. Nesson Anticline, which is a north-south oriented anticline 

present near the basin center has been shown on the map (marked by crisscross brown lines). 
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          Similarity Threshold Modeling (STM) was applied to compare the similarity of well log 

measurements in both wells in the selected interval of study (Thevoux-Chabuel et al., 1997). STM 

technique can be used to insure quality control by determining the similarity of well logs in the 

reference well with the application well, which can be represented either in depth section or 

crossplot (Figures 1-2 and 1-3). Dissimilarities may arise due to bad borehole conditions affecting 

log quality, tight streaks, or boundary effects. 

 

 

Figure 1-2. Cross-section showing thickness variation of different members (upper, middle and 

lower members in the Bakken Formation between well A and B. Well B shows larger thickness of 

Bakken units compared to well A due to its presence near the basin center. Similarity Threshold 

Modeling (STM) of common logs performed between A (reference well) and B (application well) 

shows similar class (value 3), ambiguous class (value 2) and dissimilar class (value 1) across the 

Bakken interval. GR log in Track 1 is shaded based on API value. 
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Figure 1-3. Multiwell neutron-density crossplot showing similarity of density and neutron logs 

color coded by STM log in the Bakken interval. Most of the corresponding data points between 

two wells are similar, apart from a few measurements (which can be considered as ambiguous 

or dissimilar). Dissimilarities may arise due to log measurements, bad borehole conditions 

affecting log quality, tight streaks, or boundary effects. 

       Corrected density log was used to calculate TOC by Schmoker’s method (1983) and volume 

of clay was computed using average Vclay from neutron-density (N-D) crossplot and uranium free 

spectral gamma log (or Computed Gamma Ray, CGR) for better calibration with XRD and TOC 

data. The equations used are as follows: 

TOC_Schmoker= (154.497/Bulk Density) - 57.261 and 

Vclay_Final= (Vclay_N-D + Vclay_CGR)/2 

        Next mineralogy and TOC data from core and PNS logs were combined and plotted in a 

ternary diagram to understand heterogeneity of the shale members (Figure 1-4) and a general 
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scheme has been proposed for Bakken shale facies classification based on the data pattern 

(Figure 1-5). Due to the relative scarcity of core points and unavailability of PNS log in well B, 

stochastic mineral solutions were obtained for both wells using linear inversion technique 

(Kulyapin and Sokolova, 2014; Mitchell and Nelson, 1988; Moss and Harrison, 1985; Savre, 1963).  

 

Figure 1-4. Ternary diagram showing mineralogical composition and TOC of Bakken shale 

members based on core and PNS log data. It can be observed that Bakken shale units are 

generally rich in quartz and clay compared to carbonate. Three lines (Quartz-to-Carbonate ratio 

3 and 1/3) and clay (30%) have been drawn over the triangle to identify and characterize different 

shale facies clusters. Color scale is based on weight percent Total Organic Carbon (TOC). 
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Figure 1-5. The schematic workflow utilized to classify shale petrofacies based on core analysis 

and PNS log data in the Bakken shale. Five different shale petrofacies could be classified based 

on available mineralogical composition and TOC data.  

         Input well logs selected for stochastic mineralogy solutions using PowerLog™ are: GR, 

neutron-porosity, bulk density, and Umaa (Umaa is the product of photoelectric and density log 

corrected by apparent total porosity). The final mineralogical solution was constrained by Vclay.  

Calculated output curves are volumetric proportions of quartz, clay, calcite, dolomite, kerogen 

and pyrite. The kerogen estimation could also include any free oil and water that is present in the 

system.  The calculated proportions of log derived quartz, clay, carbonate (calcite + dolomite) 
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and TOC data were used to classify different petrofacies in the shale units based on mineralogy 

and TOC cutoff criteria as defined from core and PNS logs for rock-typing scheme.  

       After well log based shale facies classification, trace element geochemical data were cross-

plotted with each other and well logs (e.g. GR and TOC etc.) to understand their interrelationship 

and variability, in terms of depositional environment and different statistical analyses (Pearson’s 

correlation coefficient and Chi-square test) were performed to find association of core and log 

defined shale petrofacies with chemostratigraphy based depositional environment. 

1.4 Results and Discussion 

         It can be observed from the spectral GR component plots that the clay type is mostly illite 

(Figure 1-6). Spectral GR log was used for this study as it helps to understand contribution of 

uranium component on total radioactivity across organic-rich black shale and found to correlate 

well with TOC (Figure 1-7), because uranium is insoluble in reducing condition and soluble in 

oxidizing condition (Adams and Weaver, 1958).  
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Figure 1-6. Thorium/Potassium vs. Thorium/Uranium plot showing most of the organic-rich shale 

units are illite/mixed clay in nature and were deposited in reducing condition compared to 

organic-poor gray shale samples, which were rather deposited in relatively “oxic” (dysoxic) 

condition (modified after Doveton, 1994). Color scale is based on weight percent Total Organic 

Carbon (TOC). 
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Figure 1-7. Relation between GR and uranium from Spectral GR log showing higher GR values in 

Bakken shale are due to high uranium content, which can be attributed to presence of high 

organic matter richness (indicated by TOC color bar). The correlation coefficient is around 98%. 

 

       The ternary plot of major mineralogy and TOC data reveals heterogeneity of upper and lower 

shale members, both of which are rich in quartz and clay compared to carbonate. Concentrating 

on the points having TOC more than 7% made it easier to distinguish different rock clusters. Three 

criteria were used to classify shale petrofacies: TOC (cutoff 7%), clay volume (cutoff 30%) and 

quartz to carbonate ratio (cutoff 3).  

       Evaluation of stochastic mineral solutions based on above-mentioned shale facies 

classification criteria was performed to define five different shale petrofacies: two are organic-

rich (organic mudstone and organic siliceous shale) and the remaining three are organic-poor 

shale petrofacies (gray siliceous shale, gray mixed shale and gray mudstone) (Figures 1-8 and 1-
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9). It is evident that two organic-rich petrofacies are dominant compared to three organic-poor 

petrofacies. The three organic-poor petrofacies could be present due to shoulder bed effects, but 

they appear to be related to core observations, trace element geochemical data, and the 

expected pattern of facies at the geological transition between anoxic and oxic environments in 

the Bakken interval. 

 

Figure 1-8. Mineralogy and petrofacies of Bakken shale in the well B. PNS log derived mineralogy 

was used to supervise shale petrofacies classification. Five different shale petrofacies could be 
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identified. It should be noted that Lodgepole Formation, middle Bakken and Three Forks 

Formation were not classified; they were assumed to be composed of one facies, using the 

geological knowledge for this study.  Track 1 is Gamma-ray shaded by API, Track 2 is the multi-

mineral model defined by PNS logs, Track 3 is the stochastic multi-mineral model with kerogen 

(kerogen could also include fluids), and Tracks 4 is the five organic-rich and organic-poor 

petrofacies determined from the stochastic mineralogy, using criteria in Figure 1-5. 

 

Figure 1-9. Stochastic mineralogy and classified petrofacies of the Bakken shale in the well A. Five 

different shale petrofacies could be identified, similar to well B.  Track 1 is Gamma-ray shaded by 

API, Track 2 is the stochastic multi-mineralogical model with kerogen (kerogen could also include 

fluids), and Track 3 are the five organic-rich and organic-poor petrofacies defined by criteria in 

Figure 5. 
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      Trace element concentrations can be used as geochemical proxies to understand depositional 

environment in detail and their influence on shale facies distribution (Algeo and Maynard, 2004; 

Newton, 2012) (Figure 1-10). Bakken shale members are highly enriched in redox-sensitive trace 

elements (Figures 1-11a-e) such as molybdenum (Mo), uranium (U), vanadium (V), copper (Cu), 

and nickel (Ni). Covariation among trace elements and TOC depicts three different patterns:  

1. Clusters with low TOC (<7%) have relatively small trace element concentrations,  

2. Clusters with moderate TOC (7- 12%) have relatively higher trace element concentrations; 

showing linear interrelationship and 

3. Clusters with high TOC (>12%) are overwhelmingly rich in trace element concentrations; 

showing non-linear positive relationship for both shale members.  
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Figure 1-10. Different depositional environments of mudstone (modified after Newton, 2012). 

Trace element concentrations increase with sulfur level, which becomes the most in the euxinic 

environment. 

 

(a) 

 

(b) 
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(c) 

 

 

(d) 
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(e) 

Figure 1-11. (a) through (e) show trace element (molybdenum, uranium, vanadium, copper, and 

nickel) behavior with TOC in the shale units. Trace element richness is small in the dysoxic zone, 

whereas it exhibits linear relation with TOC in the anoxic environment. All of the trace elements 

show highest amount of enrichment and independence of increase in TOC during euxinic 

environment. Green line (at TOC ~7%) indicates possible boundary of dysoxic and reducing 

(anoxic and euxinic) environment. 

 

      Trace elements generally exhibit higher enrichment in euxinic marine environment when 

sulfur concentration in the ocean is significantly high (Brumsack, 1986; Dahl et al., 2013). All of 

the trace elements show strong euxinic behavior when TOC crosses the threshold of 12-13%, 

whereas they show relatively smaller enrichment when TOC ranges from 7-12% and at relatively 

lower sulfur level. This pattern can be associated with non-sulphidic anoxic condition. The other 

pattern where TOC falls far below 7% and at very low sulfur level, shows poor concentration of 

trace elements (transported by detrital influx), prevailing directly from the top and base of upper 
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and lower shale members are gray shale members. The observations suggest gray shale units 

were deposited in relatively higher level of dissolved oxygenated water column or dysoxic 

condition, whereas the dominant portion of the shale units were deposited in relatively oxygen 

depleted condition, because redox-sensitive trace elements are less soluble under reducing 

condition than that of oxic condition based on the behavior of multiple geochemical proxies and 

TOC (Nandy, 2014; Tribovillard et al., 2006).  

       It was inferred that three different depositional environments prevailed during Bakken shale 

deposition, which are dysoxic, anoxic and euxinic. All of the dysoxic, anoxic and euxinic events 

were sorted out of the core sample database, then Pearson’s correlation coefficient was 

calculated separately for euxinic and anoxic-influenced samples to better understand GR, TOC 

versus trace element behavior (Tables 1-1 and 1-2). It was observed that presence of silica (Si) 

decreases GR and TOC responses, whereas clay elements such as aluminum and potassium (Al 

and K) and trace elements (Mo, U, V, Cu and Ni) enrich them. 
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Table 1-1. Pearson’s correlation coefficients were calculated to understand covariation among 

GR, TOC, different major and trace elements in the euxinic system. Bold colors indicate highly 

positive correlation. 

 GR TOC Si Al K Ti Mo V U Ni Cu S 

GR - 0.49 -0.18 0.52 0.27 -0.04 0.69 0.22 0.55 0.47 0.11 0.2 

TOC 0.49 - -0.28 0.53 0.48 0.09 0.61 0.44 0.51 0.62 0.41 0.77 

Si -0.18 -0.28 - -0.41 -0.75 -0.2 -0.18 -0.45 -0.35 -0.57 -0.48 -0.6 

Al 0.52 0.53 -0.41 - 0.76 0.43 0.43 0.44 0.5 0.6 0.42 0.69 

K 0.27 0.48 -0.75 0.76 - 0.46 0.24 0.56 0.38 0.6 0.67 0.72 

Ti -0.04 0.09 -0.2 0.43 0.46 - -0.13 0.22 -0.006 0.07 0.43 0.66 

Mo 0.69 0.61 -0.18 0.43 0.24 -0.13 - 0.36 0.6 0.6 0.33 0.55 

V 0.22 0.44 -0.45 0.44 0.56 0.22 0.36 - 0.4 0.67 0.51 0.4 

U 0.55 0.51 -0.35 0.5 0.38 -0.006 0.6 0.4 - 0.56 0.41 0.89 

Ni 0.47 0.62 -0.57 0.6 0.6 0.07 0.6 0.67 0.56 - 0.48 0.55 

Cu 0.11 0.41 -0.48 0.42 0.67 0.43 0.33 0.51 0.41 0.48 - 0.71 

S 0.2 0.77 -0.6 0.69 0.72 0.66 0.55 0.4 0.89 0.55 0.71 - 

 

Table 1-2. Pearson’s correlation coefficients were calculated to understand covariation among 

GR, TOC, different major and trace elements in the anoxic system. Bold colors indicate highly 

positive correlation. 

 GR TOC Si Al K Ti Mo V U Ni Cu 

GR - 0.3 -0.76 -0.52 -0.51 -0.78 0.69 -0.07 0.75 0.55 0.52 

TOC 0.3 - -0.05 0.05 -0.2 -0.52 0.89 0.77 0.84 0.89 0.88 

Si -0.76 -0.05 - -0.05 -0.08 0.3 -0.4 0.02 -0.54 -0.4 -0.4 

Al -0.52 0.05 -0.05 - 0.94 0.76 -0.2 0.49 -0.13 0.09 0.1 

K -0.51 -0.2 -0.08 0.94 - 0.86 -0.35 0.32 -0.27 -0.03 -0.02 

Ti -0.78 -0.52 0.3 0.76 0.86 - -0.73 -0.06 -0.71 -0.5 -0.5 

Mo 0.69 0.89 -0.4 -0.2 -0.35 -0.73 - 0.52 0.97 0.93 0.91 

V -0.07 0.77 0.02 0.49 0.32 -0.06 0.52 - 0.57 0.75 0.79 

U 0.75 0.84 -0.54 -0.13 -0.27 -0.71 0.97 0.57 - 0.94 0.93 

Ni 0.55 0.89 -0.4 0.09 -0.03 -0.5 0.91 0.79 0.93 - 1 

Cu 0.52 0.88 -0.4 0.1 -0.02 -0.5 0.91 0.79 0.93 1 - 
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       Elemental interrelationships vary considerably in euxinic environment compared to anoxic 

environment. Pearson’s correlation coefficient (rP) was computed to understand strength of 

multivariate relationships in anoxic and euxinic systems. Most of the trace elements show 

significantly strong correlation (rP > 0.30), between themselves (especially, Cu and Ni in anoxic 

system than that of euxinic system) and with GR and TOC logs also. This pattern manifested by 

trace elements, TOC, and GR log indicate trace elements residing in the organic matter and 

getting deposited as organometallic complexes in non-sulphidic anoxic condition, whereas they 

are drastically enriched in the euxinic condition and independent of increase in TOC 

concentration after a certain threshold of organic matter richness (TOC~12%). Sulfur content 

increased during this time and trace elements were directly precipitated in the basin as 

authigenic phases such as metal sulphides (e.g. pyrite) (Algeo and Maynard, 2004). Pyrites are 

mostly observed across euxinic events, because of higher sulfur content during that time.  

      Trace element behaviors match well with GR, TOC and proportions of major stochastic 

mineralogy such as clay (Figures 1-12 and 1-13).  With increase in GR (associated with high TOC), 

all of the redox-sensitive elements (such as Mo, U, V, Cu and Ni) exhibit positive change in 

respective concentrations. Integrated multi-well study of well logs and elemental data reveals 

that upper Bakken is defined by two major patterns (upward decreasing trend followed by an 

increasing upward pattern), whereas lower Bakken can be characterized by three different 

patterns such as “upward decreasing”, “no visible change”, and “upward decreasing” trend of 

trace element richness, which can be also observed in the gradational changing pattern of GR, 

TOC, and stochastic mineralogical volumes. 
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Figure 1-12. Petrofacies distribution, depositional environment interpreted based on major 

mineralogy, trace element and TOC data in the Well A. The upper and lower Bakken shale 

members are characterized by trace element patterns (marked by red arrows). Track 1 is Gamma-

ray shaded by API, Track 2 is the stochastic mineralogy, Track 3 is the petrofacies from stochastic 

mineralogy, Track 4 is the depositional environment (yellow, green, gray, and red bars indicating 

oxic, dysoxic, anoxic, and euxinic conditions respectively), and Tracks 5 through 9 show trace 

element distribution. 
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Figure 1-13. Petrofacies distribution, depositional environment interpreted based on major 

mineralogy, trace element and TOC data in the Well B. A gap in interpreting depositional 

environment in the upper Bakken portion resulted due to unavailable core data.  Track 1 is 

Gamma-ray shaded by API, Track 2 is the stochastic mineralogy, Track 3 is the petrofacies from 

stochastic mineralogy, Track 4 is the depositional environment, and Tracks 5 through 9 show 

trace element distribution. 

      Based on the above results, five different petrofacies are believed to be present in the upper 

and lower Bakken shale members, which are associated with characteristic chemostratigraphy. 

While possible shoulder effects may be present, the boundaries between upper and lower shale 

units with respective overlying and underlying non-shaly formations appear to fall into broad 

category of organic-poor (TOC< 7%) gray shale petrofacies (gray siliceous shale, gray mixed shale 

and gray mudstone), which were interpreted as deposited in dysoxic condition. All of these gray 

shale facies are bioturbated facies, due to less preservation of kerogen in sediment (possible 
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effect of burrowing by organisms) and dilution. During this transitional period (between oxic and 

reducing) relatively higher level of oxygen and lower sea level did not help preservation of 

kerogen; hence low GR, TOC and poor concentration of trace elements. Apart from gray shale 

petrofacies units, major portion of both shale members are dominated by cyclic depositional 

pattern of organic siliceous shale and organic mudstone (TOC> 7%), which are enriched in trace  

elements and interpreted to be deposited in both anoxic and euxinic environment, indicating 

higher levels of paleoproductivity and redox condition in the basin.  

       It was hard to assign particular depositional environment to each of these two organic-rich 

petrofacies with TOC greater than 7% based on trace element behavior and TOC, because both 

facies were deposited in anoxic and euxinic environments. So a Chi-square test (Table 1-3) was 

performed to understand influence of respective depositional environments (category_1) on 

classified shale petrofacies (category_2). We stated the hypothesis as below: 

Null Hypothesis (Ho): Depositional environment and petrofacies are independent. 

Alternative Hypothesis (Ha): Depositional environment and petrofacies are not independent. 

       We constructed a 5x3 contingency table (five petrofacies and three depositional 

environments) with degrees of freedom equal to 8 [(number of category_1- 1)*(number of 

category_2- 1)]. A robust statistical significance level was chosen (0.0001). 

Table 1-3. Chi-square test between core/log derived shale petrofacies and depositional 

environment for both wells 
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     Facies                                
 
Environment  

Gray 
Mudstone 

Gray Mixed 
Shale 

Gray Siliceous 
Shale 

Organic Siliceous 
Shale 

Organic 
Mudstone Total 

Euxinic 0 0 0 58 38 96 

Anoxic 0 0 0 10 21 31 

Dysoxic 4 5 4 0 0 13 

Total 4 5 4 68 59 140 
 

The test revealed that Chi-square P value is much less than the chosen significance level of 

0.0001; hence Ho was rejected, which implies deposition of different shale petrofacies is related 

to corresponding geological environment with a high level of accuracy. 

1.5 Conclusions 

(1) Both upper and lower shale members of the Bakken Formation are vertically and laterally 

heterogeneous, in terms of mineralogy and organic matter content. Stochastic mineralogical 

solutions of both wells reveal presence of five different petrofacies in the shale members, which 

are recognizable, and predictable at core, log scales, and could potentially provide a methodology 

to map organic-rich and organic-poor mudrock petrofacies in the shale members of the Bakken 

Formation at the regional scale. Clay proportion, TOC content and quartz-to-carbonate ratio are 

the key identifiers for Bakken shale petrofacies classification. The average values of quartz (40- 

70%), clay (15- 35%) and TOC (10- 15%) in the upper Bakken are different from the average values 

of quartz (35- 60%), clay (15- 40%) and TOC (10- 17%) in the Lower Bakken.   

(2) The uncertainty of stochastic formation evaluation technique can be reduced with the help of 

existing core and/or PNS logs. If supporting “ground truth” (e.g. core and PNS logs etc.) 
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information is not available for multi-well studies, proper input log conditioning and STM 

technique can be applied to compare similarity of corresponding log responses among all wells 

for classified facies propagation at regional scale. 

(3) Application of spectral GR tool proved to be useful to understand high values of total GR 

response and its association with high kerogen content in shale units, which was also used to 

determine refined clay volume from well logs. 

(4) Geochemical proxies have been tied to log defined shale petrofacies successfully, which was 

used to interpret depositional environment in detail. Organic-poor (TOC<7%) gray shale 

members (gray siliceous shale, gray mixed shale and gray mudstone), which exhibit insignificant 

covariation of GR, TOC, major elements and trace elements were deposited in dysoxic condition, 

whereas organic-rich samples (TOC>7%), showing high degree of covariation of GR, TOC, major 

elements and trace elements were deposited in reducing condition. Organic-rich parts of upper 

and lower shale members indicate cyclic deposition of organic siliceous shale and organic 

mudstone petrofacies, both of which were deposited in episodic non-sulfidic anoxic (TOC: 7-12%) 

and euxinic (TOC>12%) condition. 

(5) Statistical analyses indicate petrofacies distribution in the Bakken shale members are 

controlled by depositional environment. Certain elements  such as TOC, aluminum, Mo, U, Ni, Cu 

and V (to an extent) are present in higher concentration in well B compared to well A for both 

anoxic and euxinic conditions. It may be due to the fact that Bakken shale units in the well B were 

deposited in a deeper elevation (near the basin center) compared to well A, which can be 

attributed to prevalent bottom water anoxia suitable for organic-rich black shale deposition and 
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preservation.  The benefit of this detailed analysis by churning out a plethora of geoscientific data 

is that the three different depositional conditions, owed to changes in paleoenvironment could 

not be interpreted from well log defined shale petrofacies only and the characteristic association 

of different well logs with trace element data can be utilized to predict elemental behavior in 

other wells without core data. 
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Nomenclature 

Al = Aluminum (percent) 

Cu = Copper (ppm) 

GR = Gamma ray log, gAPI 

K = Potassium (percent) 

Mo = Molybdenum (ppm) 

Ni = Nickel (ppm) 

NPHI = Neutron porosity log (fraction) 
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PEF = Photoelectric log, barns/e 

RHOB = Bulk density log, gcm-3 

rp = Pearson’s correlation coefficient 

S = Sulfur (percent) 

Si = Silica (percent) 

STM = Similarity Threshold Modeling 

Ti= Titanium (percent) 

TOC = Total Organic Carbon, weight percent 

U = Uranium (ppm) 

V = Vanadium (ppm) 

Vclay_CGR = Clay volume estimated from uranium free computed gamma ray log 

Vclay_Final = Final clay volume estimated from neutron-density crossplot and uranium free    

                     computed gamma ray log 

Vclay_N-D = Clay volume estimated from neutron-density crossplot 

XRD = X-ray Diffraction 

XRF = X-ray Fluorescence 
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Abstract  

          Quantitative lithofacies modeling is important to understand the depositional and 

diagenetic history, and hydrocarbon potential of unconventional resources at a regional scale. 

The complex heterogeneous nature and large data dimensionality of unconventional mudstone 

reservoirs increase the challenge of lithofacies interpretation by conventional qualitative 

methods. Quantitative shale lithofacies, which are meaningful, mappable, and predictable at 

core, well log, and regional scales, can be defined based on mineralogy and Total Organic Carbon 

(TOC) derived from core analysis and advanced geochemical spectroscopy logs (e.g. Pulsed 

Neutron Spectroscopy, PNS). However, access to numerous and widespread core samples and 

geochemical log responses is typically limited by cost and time.  

        We apply different mathematical techniques to ubiquitous conventional well log suites 

calibrated to rock types, defined by the limited number of wells with high-quality core and 

geochemical logs. The documented interrelationships between lithofacies and conventional logs 

are propagated with a quantified degree of accuracy in wells without advanced log or core data. 

Our study addresses issues of different approaches of quantitative lithofacies classification and 

prediction techniques from well logs. Various data-driven supervised and unsupervised 

computational approaches, such as Support Vector Machine (SVM), Artificial Neural Network 

(ANN), Self-Organizing Map (SOM) and Multi Resolution Graph-based Clustering (MRGC), are 

applied and compared to reduce uncertainty of propagating single-well based lithofacies analysis, 

and efficiently understand geological trends.  

      Two different dataset from the Devonian Bakken and Mahantango-Marcellus Shale 

formations in North America are used, in order to undertake a comparative assessment of 
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computational techniques for lithofacies characterization. Original shale lithofacies, defined from 

geochemical logs and core data, are used to compare the results of selected supervised and 

unsupervised computational approaches. The results show that both Bakken and Mahantango-

Marcellus shale members are vertically and laterally heterogeneous, but can be classified into at 

least five mudstone lithofacies, along with calcareous siltstone and limestone lithofacies. SVM 

works better than other techniques for lithofacies classification and prediction in reduced 

computational time, no iteration, and with highly repeatable results. Accuracy of lithofacies 

prediction increases if the algorithms are supervised with geological rules.  

 

Keywords: Quantitative modeling, Organic mudstone, Lithofacies, Mineralogy, Well logs, 

Machine learning 
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2.1 Introduction 

          This paper discusses application of different computational techniques in mudstone 

lithofacies modeling. Lithofacies modeling or assigning a rock type to specific rock samples on 

the basis of petrography or measured physical properties, is fundamental to many subsurface 

investigations. Even though various clastic and carbonate facies have been studied in detail for 

depositional and diagenetic environment study, research in mudstone lithofacies is relatively 

rare. Mudstone is heterogeneous, in terms of variable mineralogy and organic matter content. 

Two approaches have been followed for mudstone facies modeling. The first approach deals with 

either single borehole study or descriptive core and outcrop sample analysis (Egenhoff and 

Fishman, 2013; Schieber, 1999; Singh, 2008), whereas the second approach, which is more 

recent, is pursued from a quantitative perspective (Bhattacharya et al., 2015; Qi and Carr, 2006; 

Wang, 2012). In this study we choose two world class Devonian mudstone formations in North 

America such as the Bakken and Mahantango-Marcellus formations. There have been extensive 

qualitative studies on mineralogical composition, facies description, and depositional history in 

both of the shale formations (Egenhoff and Fishman, 2013; Emmanuel and Sonnenberg, 2013; 

LeFever et al., 2011).  

       However, it is not always possible to have access to widespread and abundant core, advanced 

well logs, due to economic and logistic constraints, which poses significant challenges in correct 

lithofacies interpretation, facies identification, and reservoir characterization. Outcrop shale 

sample studies can prove to be futile, due to weathering and chance of kerogen degradation over 

time. Therefore, we emphasize quantitative approaches over qualitative approaches, which 

contribute to only visual idea about lithology. Quantitative approaches can be used to classify 
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lithofacies using conventional wireline logs at borehole scale, and propagated to multi-well 

studies to predict lithofacies, and measure accuracy of prediction with available original 

lithofacies model, derived from core and/or advanced well logs.  

        In recent years several mathematical techniques have been proposed for facies and 

petrophysical property modeling (Al-Anaji and Gates, 2010; Qi and Carr, 2006; Wang et al., 2014). 

There is also a significant bias to use conventional well log based cutoff values to build facies 

models quickly. Such deterministic and simplified cutoff values may not work well in complex 

mudstone formations (Schlanser et al., 2014). In addition, well log cutoff values can be misleading 

in regional studies, while using them without normalization. Hence, there is a need to compile 

mathematically powerful machine learning algorithms together, to assess their individual 

capacity for predictive lithofacies modeling, and define a protocol for using them in specific 

geological scenarios. We claim that a few quantitative techniques can learn complex subsurface 

geological pattern better than others. 

       This paper compares different mathematical methods to classify and predict mudstone 

lithofacies from ubiquitous conventional well logs, in terms of reducing uncertainty in 

exploration. Different supervised and unsupervised machine learning algorithms including 

Support Vector Machine (SVM), Artificial Neural Network (ANN), Self-Organizing Map (SOM), and 

Multi Resolution Graph-based Clustering (MRGC) are used and discussed in detail, with 

corresponding advantages and disadvantages, to design a suitable schematic workflow for 

intelligent mudstone lithofacies pattern recognition. We first introduce mathematical principles 

of all four algorithms, followed by actual lithofacies characteristics in the dataset, and then use 

them to classify and predict lithofacies. The result shows that both Bakken and Mahantango-
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Marcellus shale members are heterogeneous, but can be classified into at least five mudstone 

lithofacies, along with calcareous siltstone and limestone lithofacies. Supervised approaches, 

especially SVM, work better than other techniques for lithofacies classification and prediction 

purposes in reduced computational time, no iteration, and with highly repeatable results.  

2.2 Principles Of Mathematical Algorithms 

2.2.1 Support Vector Machine (SVM) 

       SVM is one of the fastest growing approaches of computational intelligence, in terms of data 

classification and prediction in all scientific disciplines. It is based on solid mathematical 

background of statistical learning theory (Kordon, 2010; Vapnik, 1995).  

       The idea behind SVM is to map the original data from input space to a higher dimensional or 

even infinite-dimensional feature space so that distance between each data points gets 

increased, and classification among different variables into different clusters becomes simpler 

(Luts et al., 2010). The mapping is done by a suitable choice of kernel function. 

      The key feature of SVM is support vectors (Figure 2-1). Support vectors are the data points 

(i.e. samples), which lie on the boundaries of different classes (such as different lithofacies) 

during classification. There can be a large number of hyperplanes, which can discriminate 

between two classes, out of which SVM tries to find the optimal hyperplane, which is the farthest 

from both classes. For two-class problems, it assumes two planes that support each class, and 

maximizes the distance (called margin) between them. Optimization problem involves pushing 

these parallel planes apart until they collide with data points, representative of each class (called 
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support vectors).Therefore, SVM uses a significantly small portion of the training dataset (Pal and 

Foody, 2012). 

 

Figure 2-1. An optimal hyperplane separating two classes of data in SVM model (Kordon, 2010) 

 

Figure 2-2. SVM kernel function maps data from input space to feature space (modified after 

Kordon, 2010) 

       Consider a training dataset ,i ix y
𝑖=1

𝑁

, with xi ∈Rd being the input vectors and yi∈{-1, +1} the 

class labels. SVM maps the input vector x from the input space to dh-dimensional feature space 
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Margin 
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   Input Space (Rd)                              Feature Space (𝐑ℎ
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using a function 𝜑(. ): Rd→ 𝐑ℎ
𝑑  (Figure 2-2). The separating hyperplane or classification function 

(indicator function) in the feature space is defined as  

wT𝜑(x) + b = 0       (1) 

where b∈R. Parameters b and w determine the offset from origin, and the orientation of 

discriminating plane respectively. A data point x is assigned to the class 1 (or lithofacies 1) if f(x) 

= sign (wT𝜑(x) + b) ≥ +1 or to class 2 (or lithofacies 2) if f(x) ≤ −1.  

        However, in most of the real cases, perfect linear separation is impossible due to overlapping 

classes, especially in geology, which is why a restricted number of misclassifications are tolerated 

around the margin. The resulting optimization problem for SVM is written as 
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such that yi(wT𝜑(x) + b)≥ 1- 𝜉i,      i= 1,.……,n       (2) 

𝜉i ≥ 0, i=1,……,n where C is a positive regularization constant (or penalty parameter). 

       The first term in the above equation corresponds to minimization of the quadratic program 

to maximize the margin, and the second term relates to empirical error or penalty (Kecman, 2005; 

Luts et al., 2010). Larger C assigns a higher penalty to errors. 

      In case of non-linear data modeling, SVM maps data to a significantly large feature space to 

make them linearly separable and it uses a kernel functions to solve the optimization problem in 

that space. Four type of kernel functions are generally used: linear, polynomial, Radial Basis 
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Function (RBF), and multilayer perceptron (Cortes and Vapnik, 1995; Tan et al., 2015; Wang et 

al., 2014). 

       Although originally built as a binary classifier, SVM algorithm can be used in multi-class 

geological pattern recognition problems. SVM handles the multi-class problems efficiently by 

one-against-all and pairwise comparison (one-against-one) techniques (Hastie and Tibshiranu, 

1998; Li et al., 2003). Pairwise comparison method leads to larger number of simpler binary 

classification, compared to one-against-all method (Wang et al., 2014). 

2.2.2 Artificial Neural Network (ANN) 

      ANN is a popular machine learning algorithm, which is used extensively in data classification 

and prediction studies (Bishop, 1995). ANN attempts to mimic some of the basic information 

processing methods in human brain (Kordon, 2010; McCulloh and Pitts, 1943). 

      Generally, ANN consists of three layers: input layer, hidden layer and output layer, all of which 

are connected via artificial neurons (Figure 2-3). The input layer receives the incoming data, 

which is distributed to the hidden layer. Hidden layer is the key part of the ANN structure that 

learns data structure, in terms of patterns and interrelationship among input variables, and then 

distributes the learned data patterns (mathematically expressed as weight) to the output layer. 

The output of a node is controlled by an activation function, which is basically a function of total 

input parameters and a threshold, which determines the initiation of output (Doveton, 1994). 
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Figure 2-3. Schematic architecture of an ANN algorithm where input layer corresponds to 

different well logs and output refers to different lithofacies (modified after Manshad et al., 2015) 

 

     ANN modeling starts with randomly assigned weight coefficients. Then a set of data patterns 

is fed forward repeatedly and the weights of the neurons are modified until the output matches 

closely with the actual values (Doveton, 1994). Training is usually accomplished by “back-

propagation technique” in iterative manner, while minimizing the error between ANN computed 

output and target output. 

      There are several parameters to control, while designing ANN such as number of hidden 

layers, number of hidden layer nodes, learning rate, damping coefficient or momentum, and 

number of iterations for better optimization. 

2.2.3 Self-Organizing Map (SOM) 

        SOM was first introduced by Kohonen (1982, 2001), as a technique for clustering and 

reduction of data dimensionality. SOM clusters data in such a way that the statistical relationship 
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among multidimensional input dataset is converted to a lower dimensional SOM grid space 

without losing topological properties among data points (Roy, 2013). SOM is different from ANN, 

in the sense that the former preserves geometrical relationships of input data (Venkatesan and 

Mullai, 2014). 

        Consider a 2D SOM represented by PV (prototype vectors) mi, mi= [mi1, mi2,…., miN], where N 

represents dimensions of prototype vectors. After arranging the PVs in a lower-dimensional 2D 

grid space, SOM model is trained and tested with an available dataset. 

       During SOM training process, an input vector (x) is randomly chosen from a set of input 

vectors, then the Euclidean distance between this vector and all other vectors (mi, i= 1, 2,..,n) are 

computed. According to Kohonen (2001), the prototype vector (mb), with minimum distance 

from the input vector, is called the Best Matching Unit (BMU), which can be expressed as: 

‖𝑥 −  𝑚𝑏‖ = min{‖𝑥 − 𝑚𝑖‖}       (3)                                        

     Then, the BMU prototype vector mb, and other input vectors within a neighborhood radius of 

σ are updated as a part of the training. The rule of updating the weight of prototype vectors 

inside and outside the neighborhood radius is given by (Kohonen, 2001; Roy, 2013) 

mi(t + 1) = mi(t) + α(t)hbi(t)[x - mi(t)] if ‖ri −  rb‖ ≤ σ(t)       (4) 

                = mi(t)                                     if ‖ri − rb‖ > σ(t) 

where  rb and ri are position vectors of mb and mi respectively. The neighborhood function is 

defined as hbi(t) where t represents the length of training. The neighborhood radius decreases 

with successive iteration and BMUs are brought closer to the input vectors, finally forming 

different clusters. Next, the trained prototype vectors are color coded for better visualization of 

various clusters. 
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2.2.4 Multi Resolution Graph-based Clustering (MRGC) 

        MRGC is an unsupervised data classification technique, which can solve the dimensionality 

problem and obtain valuable information about the input dataset (Ye and Rabiller, 2000). It is 

based on K-nearest neighbor and graph based presentation. Most of the other techniques require 

exact number of clusters prior to training, whereas MRGC automatically clusters the data, and 

yet allows the user to either lump or subdivide different clusters based on “ground truth” at the 

end. 

     MRGC describes data pattern by two indices: Neighboring Index (NI) and Kernel 

Representative Index (KRI). NI measures how close the data points are with respect to each other 

in the input domain. It is computed by mutual rank of neighboring data points, which can be 

expressed as 

NI (x) = exp (-m/ α)       (5) 

          = 1 if m= 0 

         ≅ 0 otherwise 

 Here x is the mth nearest neighbor of y, which is nth nearest neighbor of x in the dataset, 𝑚 ≤

𝑁 − 1, and α> 0.  

        However, it is important to recognize optimal number of clusters, otherwise infinite number 

of clusters can be constructed, including local irregularities, which is not correct. Hence, the other 

index KRI measures the probability of each data point to be a representative cluster kernel (Ye 

and Rabiller, 2000). KRI can be expressed as 
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KRI (x) = NI(x) M(x,y) D(x,y), where M(x,y) = M if y is the mth neighbor of x, and D(x,y) is the 

distance between x and y. Data points corresponding to the highest KRI values are assigned to 

form final clusters or lithofacies. 

2.3 Bakken and Mahantango-Marcellus Shale Lithofacies 

        We chose the Devonian Bakken and Marcellus formations in North America to apply, and 

compare different quantitative techniques for mudstone lithofacies modeling. Both Bakken and 

Marcellus formations are big unconventional oil and gas plays in North America. The Bakken 

Formation in the Williston basin spans over portions of North Dakota, South Dakota, Montana, 

and extends in to Canada, whereas the Mahantango-Marcellus formations in the Appalachian 

basin is present in West Virginia, Pennsylvania, and New York etc. in the United States (Figure 2-

4). 
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Figure 2-4. Study areas in the Williston and Appalachian basins marked by black rectangles 

 

      The Bakken Formation consists of two world class source rocks (upper Bakken and lower 

Bakken shale) that sandwich the middle Bakken member, which is composed of mixed lithologies, 

including sandstone, dolostone and limestone. The Mahantango-Marcellus interval is composed 

of gray shale and organic rich shale units with carbonate interlayers.  

     Original shale lithofacies models, based on core geochemical data (XRD and TOC) and 

advanced PNS logs, are available for the Bakken and Mahantango-Marcellus mudstone intervals 

(Bhattacharya et al., 2015; Wang, 2012). Both shale members are heterogeneous; they are rich 

in quartz and clay, compared to carbonate (Figure 2-5).  

 

Figure 2-5. Ternary diagrams (a and b) showing variation in major mineralogy and TOC content 

(all in percentage) in the Bakken and Marcellus shale formations respectively. Both shale 

formations are siliceous mudstone (modified after Bhattacharya and Carr, 2016). 

 

        We apply a schematic methodology to classify the shale lithofacies in a quantitative manner 

(Bhattacharya and Carr, 2016). We use three criteria such as clay volume, TOC content, and 



51 
 

quartz-to-carbonate ratio to classify different lithofacies (Figure 2-6). We use clay volume of 30% 

in the Bakken dataset, whereas 40% cutoff is used in the Mahantango-Marcellus dataset, 

calibrated to core-based ground truth information. Both Bakken and Mahantango-Marcellus 

shale members are composed of at least five different lithofacies such as Organic Mudstone 

(OMD), Organic Siliceous Shale (OSS), Gray Mudstone (GMD), Gray Siliceous Shale (GSS), and Gray 

Mixed Shale (GMS), along with limestone and mixed lithology (calcareous siltstone). Organic 

Mixed Shale lithofacies is absent from the available dataset, however, the schematic 

methodology can be used to evaluate other mudstone formations. The non-shaly middle Bakken 

member is composed of mixed lithology (siltstone, dolostone, and limestone), which is 

considered as a single lithofacies unit for the scope of this study. OSS lithofacies has high silica 

and high organic matter content, which make it amenable to effective hydraulic stimulation and 

hydrocarbon production. Figure 2-7 and Figure 2-8 show depth displays of various conventional 

well logs, mineralogical analysis, and original lithofacies model in the Bakken and Mahantango-

Marcellus intervals. 
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Figure 2-6. Schematic methodology to classify shale lithofacies. Three criteria such as clay 

volume, TOC content, and quartz-to-carbonate ratio (Q/C) are used to classify shale lithofacies 

quantitatively (modified after Bhattacharya and Carr, 2016).  
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Figure 2-7. Integrated well log and original lithofacies model display in one of the training wells 

in the Bakken dataset. Upper Bakken and lower Bakken shale members are composed five 

different mudstone lithofacies, based on mineralogy and organic matter richness. Limestone, 

mixed lithology (calcareous siltstone), GMD, GMS, GSS, OSS, and OMD lithofacies are 

represented by numerical codes from 1 to 7 in a rainbow pattern. 
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Figure 2-8. Integrated well log and original lithofacies model display in one of the training wells 

in the Mahantango-Marcellus interval. The Mahantango interval is mostly composed of lower 

order gray shale facies, whereas the Marcellus Formation is mostly composed of different types 

of organic shale lithofacies, along with carbonate interlayers.  
 

2.4 Materials and Methods 

        Two different dataset containing conventional well log suites, such as gamma, resistivity, 

neutron porosity, density, and photoelectric factors, are compiled from the Devonian Bakken and 
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Mahantango-Marcellus shale formations, in order to undertake a comparative assessment of 

computational techniques for lithofacies characterization. The Bakken dataset consists of 

petrophysical logs from three wells, whereas the dataset from the Mahantango-Marcellus 

interval contains similar data from two wells. In general, the petrophysical log data are obtained 

from around 100 feet (30.48 meters) thick Bakken interval, whereas the data interval is of around 

200 feet (60.96 meters) in the Mahantango-Marcellus formations. Each well log is recorded at 

half-foot (0.15 meters) increment.  

        We compare, and investigate the capabilities of all four quantitative algorithms (SVM, ANN, 

SOM, and MRGC) in shale lithofacies classification and prediction, using well logs from the Bakken 

and Mahantango-Marcellus Shale formations as examples. The emphasis of the assessment is on 

the potential for value creation in subsurface geologic analysis by reducing uncertainties in 

lithofacies pattern recognition. The whole methodology includes: (1) pre-processing input 

petrophysical dataset; and (2) training and testing the classifiers for lithofacies modeling.  

2.4.1 Pre-processing Input Petrophysical Dataset 

        Pre-processing input petrophysical logs is an important step to construct a reliable lithofacies 

model. This process involves proper selection of well logs, which are facies-sensitive. Apart from 

that, well logs should be normalized and environmentally corrected based on regional geology. 

For example, resistivity logs should be corrected for hydrocarbon effects, sonic log should be free 

from overburden related compression effects near basin center, and neutron porosity logs 

should be free from clay bound-water effects, so that facies models generated with these logs 

will be independent of any fluid and normalization related issues.  
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      We choose five conventional well logs such as gamma (GR), natural logarithm of deep 

resistivity (LnRt), neutron porosity (NPHI), bulk density (RHOB), and photoelectric factor (PEF), 

and five other derived parameters such as apparent matrix density (RHOmaa), photoelectric 

absorption index (Umaa), gamma/density (GR/RHOB), photoelectric/density (PEF/RHOB), and 

TOC as input for lithofacies modeling (Figure 2-9). Shale lithofacies modeling is a multi-class 

problem; it is better to use more input parameters to increase the average distance between 

data points, thereby forming easily separable lithofacies clusters. GR, LnRt, and RHOB logs are 

used as input petrophysical parameters, because organic shale has higher uranium concentration 

(associated with high GR), higher resistivity, and lower density, compared to organic-poor 

lithofacies. NPHI log is used as it can help to distinguish clay-rich intervals from clay-poor 

intervals, whereas PEF log is utilized to separate carbonate and non-carbonate layers. Other 

parameters such as RHOmaa, Umaa, GR/RHOB, and PEF/RHOB are utilized to enhance the 

evaluation of high silica content in the shale formations, detect carbonate interlayers, and 

remove parts of the noise if any. TOC parameter is used as a quantitative measure of kerogen 

richness in the mudrocks, which can distinguish organic-rich shale from organic-poor gray shale. 

Kerogen has low density (~1.1 g/cc). TOC is derived from RHOB log using Schmoker’s method 

(1983). 

TOC= (154.497/RHOB) – 57.261       (6) 

RHOmaa= (RHOB - PHIA)/ (1 - PHIA)       (7) 

Umaa= (PEF*RHOB - 0.5*PHIA)/ (1 - PHIA)       (8) 

where PHIA corresponds to average porosity from NPHI and RHOB logs. 
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                                      (a)                                                                                   (b) 

Figure 2-9. Histograms showing statistical feature of conventional well log suites (as model input) 

in the Bakken (a) and Mahantango-Marcellus (b) dataset. The green curve indicates Gaussian 

distribution and the black curve indicates cumulative distribution. 

 

2.4.2 Training and Testing the Classifiers  

        All three machine learning algorithms (SVM, ANN, and SOM) need to be set up with optimum 

network parameters to enable them work efficiently for lithofacies training and testing. A large 

number of trials with various combination of user-defined parameters are performed to train the 

classifiers. GeologTM and WEKA programs are used to train and test petrophysical dataset, and 

PowerLogTM to display well logs and lithofacies model. We used an Intel computer with 32 GB 

RAM and CPU@3.6 GHz for this study. 

      For SVM classifier, choice of kernel function is significantly important. Literature review in 

different research areas suggests that RBF function performs quite well in comparison to other 

kernels (Camps-Valls, 2009; Hsu et al., 2003), and hence used in this study. RBF kernel based SVM 
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classifier requires fine tuning of two user-defined parameters: gamma (kernel parameter), and 

penalty parameter (C).  

      We apply back propagation ANN algorithm with one hidden layer with both datasets. Optimal 

values of learning rate, momentum, and epoch (i.e. number of iterations) obtained after large 

number of trials is used for enhanced petrophysical data classification and testing. In case of 

SOM, we use 2D SOM method, with square grid of neurons (five in each side). 

      In case of Bakken dataset, SVM, ANN and SOM algorithms are trained and tested on dataset 

obtained from different wells for facies prediction. Whereas, a 10-fold cross-validation is used 

with the Marcellus dataset, due to smaller sample size. With unsupervised MRGC method, first a 

number of clusters are formed to generate a high-resolution lithofacies model, which is then 

lumped into a coarser model based on similarity of data statistics in different clusters, and the 

original lithofacies model. Results from SVM, ANN and SOM are represented in form of confusion 

matrices and overall classification accuracy. 

 

2.5 Results and Discussions 

      Results from both Bakken and Mahantango-Marcellus dataset show that SVM method is the 

best lithofacies classifier in training and testing domains. This performance is attributed to the 

RBF kernel. Application of RBF function in the SVM classifier generated best possible result. 

Because, RBF kernel can efficiently map non-linear data to a higher-dimension feature space, and 

solve the problem of data classification. 

       In the Bakken dataset SVM accuracy of data prediction is 87.3%, compared to ANN (83.7%), 

SOM (84.03%), and MRGC (71.3%), shown in the confusion matrices (Tables 2-1, 2-2, 2-3, and 2-
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4). The best values of gamma and C in the SVM model are found to be 1.2 and 25 respectively. 

The optimum values of learning rate and momentum in the ANN algorithm are 0.3 and 0.8 

respectively. For 2D SOM a lower dimensional square grid (5x5) is chosen (Figure 2-10). In case 

of MRGC, first a high-resolution lithofacies model is built up with 16 clusters, which is then 

lumped into relatively coarser resolution lithofacies model of seven classes to match with the 

original lithofacies model.  

 

Table 2-1. Confusion matrix illustrates accuracy of SVM algorithm in lithofacies prediction in the 

Bakken test dataset. Overall accuracy by SVM is 87.3%. 

 

  Actual 
 Lithofacies 1 2 3 4 5 6 7 

Predicted 

1 25 3 0 0 0 0 0 
2 0 140 0 3 2 0 0 
3 0 0 6 0 2 1 1 
4 1 0 0 1 3 0 0 
5 0 0 0 0 1 0 0 
6 0 0 0 0 0 45 23 
7 0 0 0 0 0 0 50 

Absolute 
Accuracy 

96.15% 97.90% 100% 25% 12.50% 97.82% 67.60% 
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Table 2-2. Confusion matrix illustrates accuracy of ANN algorithm in lithofacies prediction in the 

Bakken test dataset. Overall accuracy by ANN is 83.7%. 
 

  Actual  

 Lithofacies 1 2 3 4 5 6 7 

Predicted 

1 23 0 0 0 0 0 0 
2 2 125 1 1 2 0 0 
3 1 13 2 1 1 0 0 
4 0 5 1 2 1 0 0 
5 0 0 2 0 4 1 0 
6 0 0 0 0 0 44 17 
7 0 0 0 0 0 1 57 

Absolute 
Accuracy 

88.46% 87.41% 33% 50% 50.00% 95.65% 77.03% 
 

Table 2-3. Confusion matrix illustrates accuracy of 2D SOM algorithm in lithofacies prediction in 

the Bakken test dataset. Overall accuracy by SOM is 84.03%. 

 

  Actual 
 Lithofacies 1 2 3 4 5 6 7 

Predicted 

1 26 5 0 0 1 0 0 
2 0 138 0 4 5 0 0 
3 0 0 0 0 1 0 0 
4 0 0 0 0 0 0 0 
5 0 0 6 0 1 1 6 
6 0 0 0 0 0 41 16 
7 0 0 0 0 0 4 52 

Absolute 
Accuracy 

100.00% 96.50% 0% 0% 0% 89.13% 70.27% 
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Table 2-4. Confusion matrix illustrates accuracy of MRGC algorithm in lithofacies prediction in 

the Bakken test dataset. Overall accuracy by MRGC is 71.3%. 
 

  Actual 

 Lithofacies 1 2 3 4 5 6 7 

Predicted 

1 26 4 0 0 1 0 0 
2 0 98 0 0 3 0 0 
3 0 33 0 1 0 0 0 
4 0 8 0 0 0 0 0 
5 0 0 6 3 4 1 2 
6 0 0 0 0 0 38 19 
7 0 0 0 0 0 7 53 

Absolute 
Accuracy 

100.00% 68.53% 0% 0% 50.00% 82.60% 71.62% 

 

 

      Figure 2-11 and Figure 2-12 show visual comparison of four different facies models, with 

respect to the original lithofacies model during training and testing phases. It appears that all 

four algorithms can be trained to understand the well log data pattern associated with lithofacies 

distribution significantly well, however, most of them fail to predict lithofacies accurately during 

testing. 
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(a) 

 

(b) 

Figure 2-10. An example of 2D SOM maps representing all ten input parameters in lower-

dimensional grid space (five neurons in each side) by representative log values (a) and lithofacies 

(b) respectively in the Bakken dataset 
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Figure 2-11. The Bakken interval lithofacies are classified in a training well. The second track 

shows original lithofacies, and third, fourth, fifth, and sixth track are showing training results from 

four different algorithms. Lithofacies models classified by all three supervised techniques (SVM, 

ANN, and SOM) look significantly similar to the original lithofacies model. 
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Figure 2-12. The Bakken interval lithofacies are classified in a test well. The second track shows 

original lithofacies, and four other tracks showing predicted lithofacies results from four different 

algorithms. 

 

    In the Marcellus dataset, SVM achieves accuracy of 82.46% for lithofacies classification, which 

is much higher than that of ANN (78.75%), SOM (69.65%), and MRGC (64.42%). The optimal 

values of gamma (i.e. 4.1) and C (i.e. 20) are used with SVM classifier with this dataset. The 

optimal parameters used with ANN and SOM are found to be the same as used in the Bakken 
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dataset. In case of MRGC, first a high-resolution lithofacies model is built up with 18 clusters, 

which is then merged to six classes, matching with the original lithofacies model. A comparative 

assessment of all four quantitative techniques is shown in Figure 2-13 and confusion matrices 

(Tables 2-5, 2-6, 2-7, and 2-8). Figure 2-14 summarizes lithofacies prediction results by four 

algorithms in both dataset. 
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Figure 2-13. The Mahantango-Marcellus interval lithofacies are predicted in a test well. The 

second track shows original lithofacies, and third, fourth, fifth, and sixth tracks show test results 

from four different algorithms.  

 

Table 2-5. Confusion matrix illustrates accuracy of SVM algorithm in lithofacies prediction in the 

Mahantango-Marcellus dataset. Overall accuracy by SVM is 82.46%. 
 

  Actual 

 Lithofacies 1 2 3 4 5 6 

Predicted 

1 56 0 12 0 0 0 
2 0 106 2 32 0 0 
3 11 7 181 9 1 0 
4 0 8 12 99 0 1 
5 0 0 0 0 1 2 
6 0 0 0 1 6 46 

Absolute 
Accuracy 

83.58% 87.60% 87.44% 70.21% 12.50% 93.88% 

 

Table 2-6. Confusion matrix illustrates accuracy of ANN algorithm in lithofacies prediction in the 

Mahantango-Marcellus dataset. Overall accuracy by ANN is 78.75%. 

 

  Actual 

 Lithofacies 1 2 3 4 5 6 

Predicted 

1 57 0 12 0 0 0 
2 0 101 4 36 0 0 
3 10 7 173 18 0 0 
4 0 13 18 85 0 0 
5 0 0 0 0 2 0 
6 0 0 0 2 6 49 

Absolute 
Accuracy 

85.07% 83.47% 83.57% 60.28% 25.00% 100.00% 
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Table 2-7. Confusion matrix illustrates accuracy of 2D SOM algorithm in lithofacies prediction in 

the Mahantango-Marcellus dataset. Overall accuracy by SOM is 69.64%. 
 

  Actual 

 Lithofacies 1 2 3 4 5 6 

Predicted 

1 58 0 26 11 0 1 
2 0 86 2 39 0 0 
3 9 17 151 15 0 0 
4 0 18 21 71 0 0 
5 0 0 7 3 1 2 
6 0 0 0 2 7 46 

Absolute 
Accuracy 

86.56% 71.07% 72.95% 50.35% 12.50% 93.88% 

 

Table 2-8. Confusion matrix illustrates accuracy of MRGC algorithm in lithofacies prediction in 

the Mahantango-Marcellus dataset. Overall accuracy by MRGC is 64.42%. 

 

  Actual 

 Lithofacies 1 2 3 4 5 6 

Predicted 

1 58 0 36 0 0 0 
2 0 104 16 61 0 0 
3 1 5 118 5 0 0 
4 6 12 26 70 0 2 
5 2 0 11 5 5 20 
6 0 0 0 0 3 27 

Absolute 
Accuracy 

86.56% 85.95% 57.00% 49.65% 62.50% 55.10% 
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Figure 2-14. Summary of lithofacies prediction by SVM, ANN, SOM and MRGC methods in the 

Bakken and Mahantango-Marcellus dataset. SVM appears to be the best method. 

 

      Both Bakken and Mahantango-Marcellus shale members are vertically and laterally 

heterogeneous, but can be classified into five different mudstone lithofacies, along with 

calcareous siltstone and limestone units. All supervised algorithms can train and test shale 

lithofacies patterns. However, the overall uncertainty of each method mostly stems from 

relatively poor sample proportion of the gray shale lithofacies (GMD, GMS, and GSS). Results 

from both dataset indicate that SVM works far better than other techniques for lithofacies 

classification and prediction purposes in reduced computational time (0.11 sec and 0.18 sec with 

the Bakken and Mahantango-Marcellus dataset, in comparison to 5.58 sec and 2.38 sec 

respectively by ANN algorithm), requires no iteration, and with highly repeatable results with the 

same dataset, because it does not require setting of randomized interconnected weights as 

SVM ANN SOM MRGC

Bakken 87.3 83.7 84.03 71.3

Mahantango-Marcellus 82.46 78.75 69.65 64.42
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opposed to ANN algorithm. SVM also uses a significantly small portion of training data 

represented by support vectors compared to all other approaches, which require full training 

dataset during training. With the Bakken dataset, SVM uses 40 support vectors, whereas it needs 

only 26 support vectors to represent the full petrophysical data pattern associated with 

lithofacies in the Marcellus dataset. Further, SVM needs only two parameters (gamma and C) to 

optimize during training and testing. Figure 2-15 shows that accuracy of lithofacies classification 

approaches 100% by increasing values of gamma and C during training. In fact, SVM training 

models start mimicking the original lithofacies model, once gamma and C values are over 100. 

But the models fail to work successfully outside their training domain, with such high gamma and 

C parameters, due to the loss of its generalization property. Relatively low values of gamma and 

C help to balance the model during training and testing.  

 

Figure 2-15. SVM Network parameter optimization by checking accuracy level at every gamma 

and C values (a and b). 

 

In terms of computational cost used by SOM and MRGC algorithms (both of them take more than 

120 sec per well to generate lithofacies models), their precise values of the computational costs 

cannot be exactly compared with SVM and ANN algorithms, because all algorithms were 

(a) (b) 
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implemented using different programming languages and software. Nevertheless, a comparison 

of computational cost suggests that the SVM is computationally less demanding than the ANN, 

SOM, and MRGC. 

       Figure 2-16 shows changes in accuracy of SVM based lithofacies classification with increasing 

size of the training dataset. For the Bakken interval, 4 training dataset of varying size (i.e. 157, 

235, 313, and 391 samples for all seven lithofacies) were generated, using stratified random 

sampling. Stratified random sampling was used, because the original dataset is highly 

imbalanced, which implies proportions of all seven lithofacies are not the same. Bakken test 

dataset consisting of 307 samples was used with different training dataset. Results from Fig. 15 

suggest that the performance of SVM classifier depends on the size of the training samples for 

lithofacies classification, which confirms the findings of Sebtosheikh and Salehi (2015), suggesting 

increase in classification accuracy with increasing training sample size. These results are also 

similar to other studies (Pal and Foody, 2010; Pal and Mather, 2005).  

 

Figure 2-16. Variation in lithofacies classification accuracies with change in data size 
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        Although, ANN and SOM methods produced good results, they work as black-box model. The 

lower accuracy of these supervised algorithms, compared to SVM, can be attributed to local 

minima problem. Number of iterations for these algorithms in the both dataset is set at the range 

of 1000 to 2000 to derive a global solution, rather than a solution stuck in local minima error. 

However, this process is not cost-effective (time). Number of iterations also depends on the 

complexity and size of dataset. Moreover, there are several user defined data dependent 

parameters required to control during ANN model building process; such as number of hidden 

layers, learning rate, and momentum, which are data dependent. MRGC is a powerful tool, which 

can reveal natural data structure, without interpreter’s bias. The lower rate of accurate 

prediction by MRGC with these datasets may result from high error rates resulting from the small 

sample size of relatively rare lithofacies such as inorganic gray shale lithofacies or even 

suboptimum input well log conditioning. The probability of predicting relatively rare lithofacies 

in the sample population increases, if the data is intelligently partitioned rather than random 

splitting for cross-validation, so at least a few samples of each lithofacies are present during 

training, testing, and validation phases.  

       We recommend using MRGC as an exploratory technique if the geology is unknown, and then 

use the initially generated lithofacies model as a reference for SVM based lithofacies 

classification. MRGC helps to understand high-resolution natural data structure, which can be 

used to understand the complex lithofacies pattern. Once, the lithofacies pattern is established 

and/or calibrated to “ground truth” information at various scales of analysis, SVM algorithm can 

be used efficiently for lithofacies modeling in other test wells. 

2.6 Conclusions 
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       The study shows that heterogeneous and complex mudstone lithofacies can be modeled by 

pattern recognition tools. These kinds of machine learning tools are useful to classify and predict 

lithofacies in wells, with limited a priori geological knowledge. Once lithofacies model is defined 

in each well in the study area, they can be populated in grids to create 3D geocellular facies 

models, providing insight to depositional and diagenetic processes. The major conclusions of this 

study are as follows: 

1. Both Bakken and Mahantango-Marcellus shale members are heterogeneous, but can be 

classified into at least five mudstone lithofacies, along with calcareous siltstone and limestone 

lithofacies.  

2. Apart from fundamental working principles, the uncertainty of each method (SVM, ANN, SOM, 

and MRGC) also depends on the size, complexity of the dataset, and suitable choice of input 

parameters for lithofacies classification. 

3. SVM is the best method for lithofacies classification and prediction purposes in reduced 

computational resources, no iteration, and with highly repeatable results. 

4. Accuracy of lithofacies prediction increases with geological rules being superimposed.  

5. The probability of predicting relatively rare facies in the sample population is increased if the 

data is intelligently partitioned, rather than random splitting, so at least a few samples from each 

lithofacies are present during training and testing processes.  
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Abstract 

      Integrated 3D shale lithofacies modeling is important to visualize distribution pattern of 

different lithofacies, interpret depositional, diagenetic environments, and understand 

hydrocarbon potential of mudstone formations. A 3D shale lithofacies model is constructed for 

the shale members in the Bakken Formation of the Williston basin in North Dakota, United States. 

The principal objective of this multi-scale study is to identify different shale lithofacies in the 

Bakken Formation to better understand their depositional and diagenetic controls on mineral 

composition and organic-matter content, plus provide a quantitative geological framework at 

core, well, and regional scales. Shale lithofacies can be defined using quantitative mineralogy, 

Total Organic Carbon (TOC) content, and various petrophysical properties derived from core 

analysis, advanced geochemical spectroscopy logs, and conventional well logs at core and well 

scales. Machine learning algorithms such as Support Vector Machine (SVM) and Artificial Neural 

Network (ANN) are used and compared to recognize the pattern of different shale lithofacies, 

associated with basic petrophysical parameters from ubiquitous conventional well log suites 

from a large number of drilled wells. A limited set of ten petrophysical parameters are used as 

input to the mathematical algorithms, which can directly output shale lithofacies with high 

accuracy in wells, with or without core data and advanced geochemical log based constraints. 

Geostatistical algorithms, such as Sequential Indicator Simulation, are used to populate all 

lithofacies in a 3D grid, covering the portion of the Williston basin in North Dakota. The results 

show that the Bakken shale members are vertically and laterally heterogeneous, but can be 

classified into five different lithofacies. Proportion of organic-rich shale lithofacies outweigh the 

proportion of organic-poor (“gray”) shale lithofacies. Distribution pattern of organic-rich siliceous 
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shale in the Williston basin is hypothesized to be related to presence of biogenic and detrital 

components, whereas organic mudstone is believed to be associated with organic productivity. 
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3.1 Introduction 

        This paper discusses the application of geologic pattern recognition and 3D lithofacies 

modeling of the Bakken shale members, integrating core and well log data. Shale lithofacies 

classification and prediction is a complex and multi-class problem at various scales of analysis. 

Research in organic-rich shale lithofacies is relatively rare, compared to clastic and carbonate 

rocks. Most of the works on shale lithofacies are based on either outcrop, single well study or 

core based descriptive analysis, using petrography, fossil content, and texture etc. (Bhattacharya 

and Carr, 2016; Egenhoff and Fishman, 2013; Hickey and Henk, 2007; Schieber, 1999). However, 

core samples are limited due to economic and logistic constraints, which poses a significant 

challenge to accurately identify facies variations and correlate shale lithofacies at the regional 

scale. In addition, outcrop shale formations may not be always analogous to the subsurface, due 

to weathering processes and potential of kerogen degradation over time. Advanced geochemical 

logs such as Pulsed Neutron Spectroscopy (PNS) can be used to develop an understanding of 

continuous variation of mineralogy and organic-matter content. However, data acquisition and 

processing with PNS tools are expensive that is why the limited number of wells with such 

advanced logs is insufficient for regional scale studies. All these aspects complicate the problem 

of shale lithofacies modeling, because shale lithofacies are heterogeneous at various scales. Shale 

lithofacies should be geologically meaningful, mappable, and consistent at various scales of 

analysis, to have a broader implication on depositional, diagenetic environment studies, and 

integrated reservoir characterization (Wang, 2012). In this study, we attempt to classify and 

integrate shale lithofacies at core, well, and regional scales in a quantitative manner, calibrated 

to “ground truth”. Such multi-scale quantitative lithofacies modeling can be significantly useful 



82 
 

to analyze sedimentary formations, to interpret depositional and diagenetic environments, to 

predict variations in rock properties, and to characterize the petroleum system. The shale 

members of the Bakken Formation in the Williston basin of North Dakota are chosen for this 

study.  

       The Bakken Formation consists of two world class source rocks (upper Bakken and lower 

Bakken shale) that sandwich the reservoir middle Bakken, which is composed of mixed lithologies 

including sandstone, limestone, and dolostone. Most of the geological studies in the Bakken 

Formation have been focused on depositional, diagenetic history, facies analysis, and reservoir 

characterization of the middle Bakken member and the underlying Three Forks Formation 

(LeFever et al., 2011; Sesack, 2011; Simenson, 2011; Warner, 2011). Recently, a handful of studies 

on the Bakken shale members, ranging from source rock potential and chemostratigraphy, using 

limited core based X-ray Diffraction (XRD), X-ray Fluorescence (XRF), and Total Organic Carbon 

(TOC) data have been performed towards better understanding of geological processes 

controlling transportation, deposition, preservation, and diagenesis of organic matter and mud 

(Kocman, 2014; Maldonado, 2012; Nandy et al., 2014; Rowe et al., 2012). In this study, we will 

investigate vertical and lateral variations of different Bakken shale lithofacies at multiple scales, 

and attempt to associate the shale lithofacies with corresponding geologic factors.  

        This study starts with shale lithofacies classification at core scale, and then propagates the 

facies classification scheme at well scale, and finally upscales the integrated geologic data at 

regional scale, to generate 3D shale lithofacies models for the upper and lower Bakken shale 

members. We classify the Bakken shale lithofacies at core scale, using a schematic methodology 
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based on core-derived mineralogy from XRD and TOC data (Bhattacharya and Carr, 2016). Next, 

core data is calibrated to conventional and advanced PNS logs responses. Once, shale lithofacies 

is established at well scale, we use predictive algorithms such as SVM and ANN to train and test 

the model for all the available wells with ubiquitous wells with conventional well logs, no core 

data and/or advanced well log based controls. Such data-intensive machine learning algorithms 

are efficient for lithofacies modeling at regional scale, compared to conventional method of 

“manually” assigning lithofacies on a well-by-well basis. Next, all classified and predicted shale 

lithofacies are compiled and mapped at the regional scale, using geostatistical algorithms. In this 

study, we use Sequential Indicator Simulation (SIS) algorithm for 3D stochastic geocellular 

modeling. The results show that both upper and lower Bakken shale members are vertically and 

laterally heterogeneous, but can be classified into five different lithofacies. Organic-rich shale 

lithofacies are more dominant than organic-poor shale lithofacies in the Bakken Formation.  

3.2 Geologic Setting 

         The Late Devonian-Mississippian Bakken Formation in the Williston basin (Figure 3-1) spans 

over portions of North Dakota, South Dakota, Montana in the United States, and Saskatchewan 

and Manitoba in Canada (~200,000 mi2, ~500,000 Km2). The Williston basin is a large intracratonic 

sedimentary basin (Pitman et al., 2001). The Bakken Formation lies unconformably over the 

Three Forks Formation, and it is overlain by the Lodgepole Formation. The Bakken system is 

composed of three members- upper, middle, and lower units. Middle Bakken member, which is 

composed of siltstone, limestone, and dolostone (mixed lithology), is bound by two shale 

members at the top and bottom (Smith and Bustin, 2000; Webster, 1984) (Figure 3-2). Both 
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Bakken shale members are heterogeneous and complex mixture of quartz, smectite, illite, 

carbonate, pyrite, and kerogen in varying proportions (Bhattacharya and Carr, 2016). Upper and 

lower shale members in the Bakken Formation are considered to be deposited during the basin 

wide transgression and/or basin subsidence at the end of the deposition of the Three Forks 

Formation, whereas the middle member (composed of mixed lithology) has been interpreted to 

be deposited as a result of dramatic sea-level drop at the close of the Devonian period (LeFever 

et al., 1991; Sesack, 2011; Sonnenberg and Pramudito, 2009; Steptoe, 2012). Nesson Anticline, a 

north-south trending structural feature is present near the center of the basin, where all the 

Bakken members are thickest (>50 feet, 15m) in the basin.  
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Figure 3-1. Paleogeographic location of the Williston basin in North America during the Late 

Devonian period (a) and study area in North Dakota, with available core and well log data (b).  

The circles on the study area map shows the type of data available (blue color indicates 

conventional well logs, red indicates PNS logs, whereas yellow represents core data.). Figure 3-

1b shows the present day upper Bakken structure map (modified after Blakey, 2011). 

(a
) 

(b
) 
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Figure 3-2. Lithostratigraphy of the Bakken Formation. The Bakken Formation is composed of 

three members- upper shale, middle mixed lithology, and lower shale (modified after Egenhoff 

et al., 2011). 

           As per paleogeography, the Williston basin was near the equator (within 5° to 10° south) 

during the Devonian period, when the Bakken Formation was deposited. This fact may attribute 

to eolian activities due to trade winds, which may influence lithofacies distribution pattern.  

3.3 Dataset and Methods 
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          The dataset used in this study consists of 417 wells containing conventional well log suites 

(such as gamma, resistivity, neutron porosity, density, and photoelectric factors), 37 wells with 

advanced PNS logs, and 17 wells with core data (XRD and TOC). Each well log is recorded at half-

foot (0.15 meters) interval. Cores are sampled at North Dakota Geological survey in such a way, 

so that they cover broad geographical range to include as much geological variation as possible 

and none of the cores are more than 5 to 6 years old, which implies reduced chance of kerogen 

degradation over time. 

        The Bakken shale lithofacies is classified and integrated at core, well, and regional scales. 

First, mineralogy and organic matter richness data from XRD and TOC measurements were 

plotted in a ternary diagram to understand heterogeneity of the Bakken shale units at core scale 

(Figure 3-3) (Bhattacharya and Carr, 2016). A schematic methodology is used to classify the 

Bakken shale lithofacies, using the criteria, described by Bhattacharya and Carr (2016) (Figure 3-

4). Three criteria are used to classify the Bakken shale lithofacies: TOC (cutoff 7%), clay volume 

(cutoff 30%) and quartz-to-carbonate ratio (cutoffs 3 and 1/3).  
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 Figure 3-3. Ternary diagram showing variation of mineralogy and TOC content of the Bakken 

shale members based on core and PNS log data. The Bakken shale members are rich in quartz 

and clay, compared to carbonate. Most of the samples have high TOC. Three lines (quartz-to-

carbonate ratio 3 and 1/3) and clay (30%) are drawn over the triangle to identify and distinguish 

different shale lithofacies (Bhattacharya and Carr, 2016). 

Quartz 

TO
C

 

25% 75% 

75% 
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Figure 3-4. A general workflow to classify shale lithofacies using core and PNS log data. Six 

different shale lithofacies could be classified based on mineralogy and TOC data, however, 

organic mixed shale lithofacies is absent in the Bakken Formation.  

 

Due to relative scarcity of core points, continuous mineralogy from advanced PNS logs, TOC logs, 

and stochastic mineralogical solutions were also used in wells, without required core data to 

enrich the dataset to better understand and evaluate shale heterogeneity. TOC is estimated from 

bulk density log, using Schmoker’s technique (1983). The derived TOC can be considered as a 

quantitative estimate of organic matter richness. 

TOC_Schmoker= (154.497/Bulk Density) - 57.261    
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          Stochastic mineralogical solutions are obtained for many wells, using linear inversion 

technique (Kulyapin and Sokolova, 2014; Mitchell and Nelson, 1988; Moss and Harrison, 1985; 

Savre, 1963). Gamma, neutron porosity, bulk density, and Umaa parameters are chosen as input 

for stochastic mineralogical modeling using PowerLog™. Umaa is the product of photoelectric 

and bulk density log corrected by apparent total porosity. The final stochastic mineralogical 

solution is composed of quartz, clay, calcite, dolomite, kerogen and pyrite (Figure 3-5). The 

mineralogical solution is constrained, either by available core data and/or PNS logs.  The kerogen 

estimation could also include any free oil and water present in the Bakken system, however, 

study of different types of fluid is out of the scope of this study.  The calculated proportions of 

mineralogy and TOC data are used to classify different shale lithofacies in the Bakken Formation 

based on the tree-based facies classification scheme, described earlier (Figure 3-4). However, 

deriving geologically meaningful stochastic mineralogical solutions for all wells at regional scale, 

with this approach can take significantly high amount of time. Figure 3-6 shows the lithofacies 

distribution and depositional conditions (paleo-redox) based on trace element geochemical data 

and TOC content. 
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Figure 3-5. Integrated well log and original lithofacies model display in one of the training wells 

in the Bakken dataset. Upper Bakken and lower Bakken shale members are composed of five 

different shale lithofacies. Limestone, mixed lithology (calcareous siltstone), GMD, GMS, GSS, 

OSS, and OMD lithofacies are represented by numerical codes from 1 to 7 in a rainbow pattern. 
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Figure 3-6. Integrated display of lithofacies model, depositional conditions (paleo-redox) and 

geochemical data. A gap in interpreting depositional environment in the upper Bakken member 

resulted due to unavailable core data.   
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          We use a second approach here, to classify shale lithofacies, using ubiquitous conventional 

well logs from a large number of wells. We built predictive and cost-effective (time) mathematical 

models that can directly output the shale lithofacies at well scale with high accuracy, using 

conventional well log derived petrophysical parameters as input. SVM and ANN algorithms are 

utilized to build the mathematical models. Both of these machine learning algorithms are flexible 

in their design to deal with a complex, non-linear data pattern recognition problem, and have 

been applied successfully in the past for lithofacies classification and prediction purposes in 

complex reservoirs (Qi and Carr, 2006; Wang et al., 2014; Zhao et al., 2015). We choose five 

conventional well logs; gamma (GR), natural logarithm of deep resistivity (LnRt), neutron porosity 

(NPHI), bulk density (RHOB), and photoelectric factor (PEF), and five other derived parameters 

including apparent matrix density (RHOmaa), photoelectric absorption index (Umaa), 

gamma/density (GR/RHOB), photoelectric/density (PEF/RHOB), and TOC as input parameters for 

lithofacies modeling (Figure 3-7). All of the input parameters chosen are sensitive to variations in 

shale lithofacies. For example, organic-rich mudstone typically shows high GR, high LnRt, high 

NPHI, and low RHOB signatures, associated with high kerogen and high clay. Kerogen has a 

uranium component in the increased GR response, and high resistivity and low density (~1.1 

g/cc). High NPHI response of organic mudstone is attributed to the bound water associated with 

high clay volume in it.  
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Figure 3-7. Histograms showing statistical feature of conventional well log suites in the Bakken 

dataset, used as input parameters for SVM and ANN model. Five basic well logs and five derived 

parameters are used as input shale lithofacies pattern recognition. The green curve indicates 

Gaussian distribution, whereas the black curve indicates cumulative distribution of well log data. 

 

           Based on numerous experiments, SVM and ANN models are set up with optimum network 

parameters to enable them work efficiently in both training and testing domains. We use Radial 

Basis Function (RBF) kernel for SVM classifier, which requires fine tuning of two user-defined 

parameters: gamma (kernel parameter), and penalty parameter (C). For SVM, the values of 

gamma and C are 4.1 and 20 respectively. We apply back propagation ANN algorithm with one 

hidden layer. Optimal values of learning rate (i.e. 0.3), momentum (i.e. 0.9), and number of 

iterations (i.e. 1000), obtained after large number of trials, are used for shale lithofacies 

classification. In the next step, the models are supervised with available shale lithofacies in a few 

wells for training, and then they are tested to check accuracy of lithofacies prediction outside 
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their training domain. SVM algorithm is chosen for further application as it proved to be better 

than ANN technique for lithofacies pattern recognition (Bhattacharya and Carr, in press). 

The Bakken shale lithofacies classified and predicted in all available wells are used to 

generate a 3D geocellular lithofacies model at regional scale in an area of approximately 12,824 

square mile (~33,213 square km). The unit boundaries, zones, layers in each zones, and 

corresponding structural maps of the upper Bakken, middle Bakken, lower Bakken, and the Three 

Forks Formation are utilized to create a 3D grid. Next, the Bakken lithofacies logs (from SVM 

model) are upscaled in such a way, so that vertical thickness of the 3D cells match with well log 

sampling rate to preserve formation details. Geostatistical techniques, such as SIS algorithm, are 

used to construct the 3D shale lithofacies models. SIS algorithm is used in this study, because we 

do not have sufficient knowledge about transportation, depositional mechanism of fine-grained 

rocks and associated shale lithofacies distribution pattern. Application of spatial statistics is 

useful to visualize vertical and lateral distribution of different lithofacies in three dimensional 

grid, which can aid in interpreting depositional and diagenetic environments, and drive decisions 

for petroleum system management. In this study, WEKA program is used for SVM and ANN based 

lithofacies classification and prediction, PowerLogTM to display well logs and vertical lithofacies 

distribution, PetraTM to generate maps, and PetrelTM to construct 3D geological models. 

3.4 Results and Discussions 

The ternary diagram shows that Bakken shale members are heterogeneous, in terms of 

mineralogy and organic matter content (Figure 3-3). Both Bakken shale members are siliceous 

mudstone- rich in quartz and clay, compared to carbonate. Most of the samples have high TOC 
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(>7 wt%). Five different shale lithofacies are defined, using the lithofacies classification scheme 

based on core data, PNS logs, and stochastic mineralogical solutions (Figure 3-4). Out of five 

different shale lithofacies two are organic-rich (Organic Mudstone (OMD) and Organic Siliceous 

Shale (OSS)) and the remaining three are organic-poor lithofacies (Gray Siliceous Shale (GSS), 

Gray Mixed Shale (GMS), and Gray Mudstone (GMD)).  

          Mineralogical solutions depict that Bakken shale members are vertically heterogeneous, in 

terms of different lithofacies at well scale, however, organic-rich lithofacies (OSS and OMD) 

assemblages outweigh the proportion of relatively organic-poor “gray” shale lithofacies 

members (GSS, GMS, and GMD) (Figure 3-5). Application of supervised SVM and ANN shows that 

the Bakken shale lithofacies can be predicted in a large number of test wells, using a few wells 

for training the lithofacies pattern associated with conventional well log signatures (Figure 3-8). 

SVM and ANN show accuracies of 87.3% and 83.7% respectively for lithofacies prediction (Tables 

3-1 and 3-2). ANN algorithm could not predict the distribution of GSS and GMS, compared to SVM 

technique. This may be due to significantly small proportion of these two shale lithofacies, 

compared to other dominant lithofacies. This problem could be solved, either by training and 

testing the samples with a large number of iterations (more than 1000) to get rid of local minima 

problem, which is not cost-effective process or using intelligent data partitioning technique, so 

that at least a few samples from each shale lithofacies are present during training and testing 

processes (Bhattacharya and Carr, in press). Given the fact that, there are significantly small 

proportions of these two gray shale lithofacies in the Bakken dataset, intelligent data partitioning 

was not pursued.  
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Figure 3-8. Lithofacies in the Bakken interval are classified in a well. The third track shows original 

lithofacies, whereas fourth, and fifth track are showing training results from Support Vector 

Machine (SVM) and Artificial Neural Network (ANN) algorithms. Lithofacies model generated by 

SVM looks significantly similar to the original lithofacies model, compared to the ANN model. 
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Table 3-1. Confusion matrix illustrating accuracy of Support Vector Machine algorithm in 

lithofacies prediction in the Bakken test dataset. Overall accuracy by SVM algorithm is ~87.3%. 

 

 

Table 3-2. Confusion matrix illustrating accuracy of Artificial Neural Network algorithm in 

lithofacies prediction in the Bakken test dataset. Overall accuracy by ANN technique is ~83.7%. 

 

 

Table 3-3 summarizes features of different shale lithofacies in the Bakken Formation, in 

terms of mineralogy, TOC, and conventional well log responses. Figure 3-9 shows the vertical 
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lithofacies proportions in the upper and lower Bakken shale, and Figure 3-10 shows the 3D shale 

lithofacies model of the Bakken Formation at the regional scale. The figures depict the vertical 

and lateral variation of different shale lithofacies in the Bakken interval. However, the areal 

extent of the shale members are significantly larger than their vertical thickness (maximum 100 

feet), which makes it difficult for enhanced visualization and interpretation. Lithofacies logs are 

upscaled separately for the upper Bakken and the remaining part of the Bakken Formation 

(middle and lower member), prior to application of SIS algorithm (Figure 3-11). The newly 

generated 3D models (for upper and lower Bakken shale members) are presented in the form of 

a “simbox” (in PetrelTM, Schlumberger, 2012) for better visualization of lithofacies distribution 

pattern (Figure 3-12). In the “simbox” view, the topography of the model is flattened 

(Schlumberger, 2012). The total number of cells in the 3D geocellular models is around 1.72 

million, with a dimension of each of cell of 101x143x1 feet. 
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Table 3-3. Summary of the mineralogical features, TOC content, and conventional well log 

responses of the five shale lithofacies defined from core and advanced well logs in the Bakken 

shale of the Williston basin.  

Lithofacies Pie Plot 
Average 

Proportion (wt %) 
Gamma  

(API) 

Bulk 
Density 
(g/cc) 

Neutron Ø 
(%) 

Ln(Deep 
Resistivity) 

(ohm-m) 

Umaa 
(barns/cc) 

 

Organic 

Mudstone 

(OMD) 

 

Quartz: 

Carb: 

Clay: 

TOC: 

52 

3 

45 

12.5 

337-873 

605 

2.05-2.3 

2.18 

30-48 

39 

2.1-6.56 

4.33 

6-9.6 

7.8 

Organic 

Siliceous 

Shale 

(OSS) 

 

Quartz: 

Carb: 

Clay: 

TOC: 

70 

1 

29 

12.4 

303-750 

527 

2.06-2.38 

2.22 

22-40 

31 

2.4-5.8 

4.1 

5.5-9.5 

7.5 

Gray   

Siliceous 

Shale 

(GSS) 

 

Quartz: 

Carb: 

Clay: 

TOC: 

67 

5 

28 

4.2 

150-347 

249 

2.44-2.6 

2.52 

18-26 

22 

1.03-2.3 

1.67 

8.3-10.6 

9.45 

Gray       

Mixed 

Shale (GMS) 

 

Quartz: 

Carb: 

Clay: 

TOC: 

51 

27 

22 

2.08 

101-202 

152 

2.55-2.68 

2.62 

15-27 

21 

1.1-3.8 

2.45 

8.8-12.6 

10.7 

Gray  

Mudstone 

(GMD) 

 

Quartz: 

Carb: 

Clay: 

TOC: 

60 

3 

37 

3.86 

238-410 

324 

2.43-2.5 

2.47 

26-36 

31 

1.3-3.2 

2.25 

8.8-9.84 

9.32 
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Figure 3-9. Lithofacies proportion in the upper and lower Bakken shale members. Both upper and 

lower shale members are classified into 50 different layers, to preserve the details of lithofacies 

distribution information during 3D modeling.  
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Figure 3-10.  3D shale lithofacies model of the Bakken Formation. AA’ line represents the well 

cross-section in Figure 3-11. 

 

80,000 ft 



103 
 

 

Figure 3-11. An example of lithofacies upscaling in the Bakken Formation. Lithofacies logs are 

upscaled separately for the upper Bakken, and the remaining part of the Bakken (middle plus 

lower members) separately. The first and second track show the GR log and original lithofacies, 

whereas third and fourth track show upscaled lithofacies logs. The well cross-section is flattened 

on the upper Bakken top and it is oriented along east-west (AA’) (Figure 3-10). 

A
 

A
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Figure 3-12. 3D shale lithofacies models of the upper shale (a) and lower shale (b) members in 

“simbox” view 
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SIS algorithm used here for 3D modeling, is different from other available geostatistical 

techniques (such as Indicator Kriging and Gaussian Simulation) in a way that it can provide a non-

parametric statistical framework for quantitative geological studies, without assuming any 

normal data distribution (Hansen, 1993). SIS algorithm can be used when the lithofacies lack a 

strong geometric pattern or a clear ordering in three different dimensions (Wang and Carr, 2013).  

Figures 3-13a and 3-13b show the 3D shale lithofacies models of the upper and lower 

Bakken shale members. To test the robustness of the 3D shale lithofacies models, a limited 

number of wells (90% of total) were chosen for upscaling and generating the 3D lithofacies 

models again, while keeping all other parameters same. The results (Figures 3-13c and 3-13d) 

show that the 3D models are robust and they can be used for geological interpretation. OMD 

lithofacies can be observed surrounding the OSS lithofacies in both shale members near the 

central portion of the basin, which coincides with the depocenter. The major proportion of the 

OSS lithofacies are found near the basin center. Most of the gray shale lithofacies such as GMD, 

GMS, and GSS are found near the basin margin. Figure 3-14 shows lithofacies cross-section along 

east-west. Lithofacies packages are thicker near the Nesson Anticline, which could be the 

depocenter of the Williston basin.  
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Figure 3-13. 3D shale lithofacies model validated using 90% of total number of wells. The 

validation of the 3D models is done for both upper and lower Bakken members (Figures 3-13c 

and 3-13d). 
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Figure 3-14. Lithofacies cross-section along east-west direction (along AA’). Nesson Anticline can 

be observed near the central portion of the basin. Middle Bakken member (colored blue) is 

assumed to be composed of one lithofacies- mixed lithology. 

It appears several factors contributed to the Bakken shale lithofacies distribution pattern. 

The depositional pattern of different lithofacies in shale can be controlled by the interplay of 

source of minerals (terrigenous versus marine), organic matter productivity, and preservation 
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etc. (Arthur and Sageman, 2005; Carr et al., 2011; Sageman et al., 2003; Wang, 2012). Figure 3-

15 shows the net thickness of OSS lithofacies in both upper and lower Bakken shale members.  

 

Figure 3-15. Net Organic Siliceous Shale (OSS) lithofacies thickness map of the upper and lower 

Bakken shale members. A major portion of thick OSS lithofacies is present near the central 

portion of the basin, along with the northern margin of the study area. Areas with OSS lithofacies 

thickness less than 5 feet are colored white, to better understand the subtle depositional signal 

of shale lithofacies. 
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Figure 3-16. Silica versus titanium crossplot showing variation of silica content with titanium in 

the upper, lower Bakken members, and Three Forks Formation. 

Silica in the shale lithofacies can come from detrital fractions (terrigenous) and/or 

biogenic components (e.g. radiolaria). Relative proportion of marine biogenic silica increases 

towards the distal part of the basin, which in this case, is near the central portion of the study 

area (near the Nesson Anticline). Silica in the OSS lithofacies near the basin center could be 

related to biogenic silica, whereas OSS lithofacies near the basin margin could be associated with 

eolian action. Cross-plot between XRF-derived titanium and silica shows that silica content 

increases steadily with titanium in the basal part of the Bakken or the Three Forks Formation, 

whereas it shows an opposite trend for significant portions of the upper and lower Bakken 

members (Figure 3-16). The positive relation between titanium and silica can be interpreted as 

detrital trend, and the negative relationship can be attributed to biogenic trend, because 
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titanium can be used as a proxy for detrital environment (Bertrand et al., 1996; Sageman et al., 

2003). However, distinguishing biogenic and detrital silica, using well logs and “semi-

quantitative” analytical geochemical data is hard, unless aided by thin section studies. Egenhoff 

and Fishman (2013) and Albert (2014) found evidences of radiolaria in the Bakken mudstone 

units, using petrography. The eolian transportation of terrigenous silica is possible, because of 

the prevailing trade-wind off the Canadian Shield, blowing near the equatorial position, where 

the Williston basin was located during the deposition of the Bakken Formation. Such silica can 

mix with algal matter near the basin margin, be lithified together, and classified as OSS lithofacies, 

based on core and well log data-driven lithofacies modeling scheme. 

Organic matter in the OMD lithofacies could be attributed to the presence of algal matter 

near the basin margin. XRD data suggests that the clay type is mostly illite in the Bakken shale 

members. GMD, GMS, and GSS lithofacies are mostly found near the transition between the 

upper and lower Bakken shale members, with corresponding overlying and underlying carbonate 

units along the vertical direction, whereas they are mostly found near the basin margin along the 

lateral direction. Organic matter content is low in these lithofacies, which could be interpreted 

due to higher wave energy in surface water near the basin boundary, higher oxygen level, and 

effect of dilution by terrigenous matter, reducing the chance of kerogen preservation in 

sediment.  

           Using core derived XRF data, Bhattacharya and Carr (2016) showed that a significant 

proportion of the organic-rich shale lithofacies are deposited in euxinic and anoxic redox 

conditions, whereas gray shale lithofacies are deposited in mostly dysoxic conditions. Low 
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concentration of trace elements in gray shale lithofacies is associated with dysoxic and relatively 

oxic environments, because these trace elements are soluble in dysoxic and relatively oxic 

environments, and therefore they are not detected by measurements (Adams and Weaver, 1958; 

Algeo and Maynard, 2004; Bhattacharya and Carr, 2016; Nandy, 2014; Tribovillard et al., 2006). 

Presence of gray shale lithofacies at the boundary of organic shale lithofacies (OSS and OMD) 

makes geological sense, which can be explained either by increased supply of oxygen and/or 

gradual decrease in sea level for the deposition of calcareous middle Bakken member and the 

Lodgepole Formation.  

            Productivity of organic matter is hypothesized to be another major driver for the 

deposition of the dominant OSS and OMD lithofacies in the upper and lower shale members. The 

depositional pattern of OMD lithofacies suggests significant organic productivity, which can be 

related to upwelling. High productivity of organic matter is related to high supply of nutrients, 

which implies more organic carbon reaches the bottom water, and depletes oxygen level 

(Rabalais, 2010). Such a condition can be favorable for anoxia/euxinia. Euxinia in the Bakken shale 

members has been suggested by Nandy et al., (2015), based on δ34S isotope data.  On the other 

hand, Bakken shale members are significantly rich in trace elements. Some of these trace 

elements, such as, copper and nickel can be used as minor bionutrients by planktons (Algeo and 

Maynard, 2004). The significant source of nutrients is thought to be wind-blown. 

           The 3D geological models show no significant impact of the Nesson Anticline on the 

depositional pattern of different Bakken shale lithofacies. This may be due to great water depth 

(~100 feet) during deposition of the upper and lower Bakken shale members, which is why the 
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Nesson Anticline did not influence the depositional lithofacies. Apart from all these factors 

controlling Bakken shale lithofacies distribution pattern, we cannot account for the possible 

effects of paleo-salinity and paleo-acidity on diagenesis of different shale lithofacies, due to lack 

of relevant data. 

3.5 Suggestions for Further Study 

The present study can be extended to portions of Montana and Canada to understand 

the Bakken shale lithofacies variation at a larger basin scale. We may expect to find more gray 

shale lithofacies, as the basin is shallower towards the Canadian portion, and there could be 

significantly stronger effect of trade-winds off the Canadian Shield. This may affect hydrocarbon 

production. Although it is important to understand lithofacies distribution of the Bakken source 

rocks, this study can be integrated with lithofacies model of the middle Bakken member and the 

Three Forks Formation (reservoirs), and various engineering parameters such as lateral length, 

number of hydraulic stimulation stages, and proppant types etc. Such an integrated study could 

enable better understanding of the interplay of different geologic and non-geologic factors 

controlling hydrocarbon production from the non-shaly reservoir components. In addition, we 

anticipate applying the proposed shale lithofacies modeling scheme to other mudstone systems 

worldwide to check its robustness. 

3.6 Conclusions 
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           In this study we integrated core derived geochemical data with conventional well logs, and 

advanced PNS logs to build 3D shale lithofacies models of the Bakken Formation. The key points 

from the study can be enumerated as following: 

1. Both upper and lower Bakken shale members are vertically and laterally heterogeneous, in 

terms of mineralogy and organic matter richness, which are classified into five different shale 

lithofacies (OMD, OSS, GSS, GMS, and GMD). The presence of all these lithofacies at core, 

well, and regional scales indicate that the classified shale lithofacies are geologically 

meaningful, mappable, and consistent at multiple scales. 

2. Bakken shale members are primarily siliceous mudstone. Both upper and lower Bakken shale 

members have high silica and clay content. Silica in the OSS lithofacies can be derived from 

biogenic components and/or detrital fraction (eolian action). It appears that source of 

sediments, organic productivity, and anoxia control the distribution pattern of the Bakken 

shale lithofacies at regional scale significantly. 

3. Quantitative methods such as SVM and ANN can be applied efficiently to understand relation 

of different shale lithofacies to various well log signatures (i.e. physical properties). These 

kinds of pattern recognition tools are useful to classify and predict lithofacies in wells, with 

limited a priori geological knowledge. Application of such powerful machine learning 

algorithms and quantitative geological modeling with soft data are significantly important, 

not only to better understand geology of the study area, but also help in reservoir 

management decisions. Usually there are minimal core data, scattered advanced well logs, 

and insufficient 3D seismic volumes in a petroliferous basin. In this study we showed that we 

can use ubiquitous conventional logs calibrated to limited core and advanced well log suites 
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to identify and characterize different shale lithofacies of the Bakken Formation to better 

understand their depositional and diagenetic controls on mineralogy and TOC, plus predict 

their distribution at the regional scale. 

4. As geologic conditions for different shale formations are unique in their nature, this study 

and the corresponding lithofacies modeling techniques discussed here, can provide 

comprehensive methodology that can be used to better understand the depositional history 

and hydrocarbon exploration in the Williston basin, which perhaps can be applied to facilitate 

further research on mudrock systems in other basins. 
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SUMMARY 

The upper and lower shale members in the Bakken Formation were studied, using a variety of 

geological data at core, well, and regional sacles. The results of this study can be summarized as 

following: 

 The Bakken shale lithofacies can be classified, using core data (XRD and TOC), PNS logs, and 

stochastic petrophysical solutions, in terms of mineralogy and organic matter content. Three 

criteria such as clay proportion, quartz-to-carbonate ratio, and TOC content can be directly 

used for shale lithofacies classfication.  

 Conventional well log suites can be used to understand complex shale lithofacies distribution. 

Cross-plots of various petrophysical parameters from well logs can reveal mathematical 

relations among them, and the underlying geological principles. A strong correlation exists 

between spectral gamma components (such as uranium) and TOC, because organic matter is 

generally associated with uranium in the reducing condition. Spectral gamma plots showed 

that the clay type in the Bakken shale members is primarily illite. Quantitative estimate of 

TOC content can be derived from bulk density log, as kerogen has low density. 

 Petrophysical parameters from conventional well log suites can be trained and tested to 

recognize lithofacies pattern efficently. Ten different petrophysical parmaters were chosen 

as input parameters to machine learning algorithms. Supervised algorithms such as SVM is 

the best method for lithofacies classification and prediction in reduced time, no iteration, and 

highly repeatable results. Accuracy of lithofacies prediction can be increased by supervising 

the classification problem with the “known” gelogical rules. 
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 Optimal parameters should be used, while working with machine learning algorithms. 

Accuracy of lithofacies training can reach upto 100%, however, there is a significant chance 

that the mathematical models may fail outside the training domain. Algorithm-specific 

parameters (such as gamma, and penalty, in case of SVM) should be fine-tuned after a large 

number of experiments. Relatively low values of gamma and penalty parameter helped to 

balance the model during training and testing with the Bakken dataset.  

 Sequential Indicator Simulation (SIS) performed well for populating all classified and 

predicted lithofacies in the 3D grid, covering the portion of the Williston basin in North 

Dakota. Bakken shale members are vertically and laterally heterogeneous at core, well, and 

regional scales. Both upper and lower shale members are composed of five different 

lithofacies such as GMD, GMS, GSS, OSS, and OMD. Organic-rich shale lithofacies dominate 

over the the orgnaic-poor gray shale lithofacies proportions.  

 Cyclic depositional pattern exists between the dominant organic-rich OSS and OMD 

lithofacies. On the other hand, gray shale lithofacies such as GMD, GMS, and GSS are rare, 

and they are mostly found at the transitions between organic-rich shale lithofacies, with 

corresponding overlying and underlying non-shaly layers (such as the Lodgepole, Three Forks 

formations, and the middle Bakken member). Based on trace element geochemical data, OSS 

and OMD lithofacies are found to be deposited mostly in euxinic and anoxic conditions, 

whereas GMD, GMS, and GSS lithofacies are considered to be deposited mostly in the 

dysoxic-redox conditions.  

 The distribution pattern of the Bakken shale lithofacies shows significant controls of source 

of sediment, transportation mechanism, paleo-redox conditions, organic matter productivity, 
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and preservation etc. This pattern is exhibited by the 3D stochastic lithofacies models and net 

OSS lithofacies thickness maps for the upper and lower Bakken shale members in the 

Williston basin.  
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APPENDICES 

Appendix A-1: Total Organic Carbon (TOC) content and Trace Element Geochemical data for the 

Sikes State Well. TOC data were measured at NETL laboratory, Morgantown, whereas trace 

element data were measured by Actlabs, Canada. 

Depth 

(feet) 

TOC 

(wt%) 

Ti 

(wt%) 

Mo 

(ppm) 

U 

(ppm) 

V 

(ppm) 

Cu 

(ppm) 

Ni 

(ppm) 

9726.38 11.81 0.13 299 48.9 265 84 300 

9727.25 10.26 0.1 210 40.5 213 64 220 

9728.48 13.58 0.26 350 56.2 182 98 410 

9728.83 12.23 0.31 343 68.3 203 99 1110 

9779 20.13 0.3 451 68 1190 123 710 

9780.2 21.47 0.26 499 80.8 1580 100 830 

9785.35 18.76 0.24 412 101 1150 96 640 

9785.95 14.56 0.2 298 67.7 869 57 410 

9788.35 13.56 0.19 347 49.7 924 59 430 

9791.34 14.25 0.18 266 62.6 709 95 420 

9794.33 13.09 0.18 212 45.5 510 66 280 

9796.43 14.63 0.21 281 55.6 728 80 390 

9800.02 16.16 0.25 209 68.9 498 63 300 

9803.02 14.46 0.2 236 56.5 337 62 290 

9808.4 22.44 0.17 267 298 322 110 340 
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9809.6 17.4 0.17 242 71 309 67 320 

9814.09 19.15 0.25 238 84.7 211 78 250 

9817.39 3.92 0.41 8 9.1 125 46 70 

9819.48 2.16 0.44 1 3.8 125 31 60 
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Appendix A-2: A well log-based cross-section along AA’, showing different Bakken members 
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