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Abstract 

Enhancing the Thermoelectric Performance of Calcium Cobaltite through Cation 
Substitution and Non-Stoichiometric Addition 

Cullen Boyle 

 Thermoelectric (TE) materials have the unique ability to convert temperature 

differences directly into electricity due to the Seebeck effect. Thermoelectric generators 

have a variety of applications including waste heat recovery for power plants and 

automobiles. For high-temperature waste-heat recovery, misfit layered calcium cobaltite, 

Ca3Co4O9, is one of the most promising p-type TE oxides offering good durability in air 

with low cost and minimized environmental impact. A challenge for developing 

polycrystalline calcium cobaltite TE materials is to improve its energy conversion 

efficiency for large scale applications. The energy conversion efficiency of TE materials 

is characterized using the figure-of-merit ZT, which is defined as ZT = S2ρ-1Κ-1T, where 

S, ρ, S2ρ-1, Κ-1, and T are Seebeck coefficient, electrical resistivity, power factor, thermal 

conductivity, and temperature respectively. State of the art commercial conventional TE 

materials, such as bismuth telluride (Bi2Te3) and lead telluride (PbTe), possess values of 

ZT ≈ 1, which corresponds to an energy conversion efficiency of 10%. Calcium cobaltite 

single crystals show extraordinary TE performance with an extrapolated ZT value of 0.87 

at 973 K.4 By contrast, the TE performance of polycrystals is reported to be only ~20% of 

that from the single crystal and with the commonly measured ZT of ~0.2 at ~900 K. This 

dissertation focuses on improving the performance of polycrystalline Ca3Co4O9 ceramics 

for large scale applications. The present work demonstrates the feasibility of increasing 

the values of Seebeck coefficient, S and power factor of calcium cobaltite Ca3Co4O9 

ceramics through dopant grain boundary (GB) segregation. For the first time in the field 

of thermoelectrics, various dopants which include Bi, Ba, and co-dopants Bi-Ba were 

proved to segregate to the GBs and dramatically increased the ZT of Ca3Co4O9, and a 

high ZT of 0.52 was achieved for Ca3Co4O9 ceramics through dopants grain boundary 

segregation. The method of introducing the dopants to the grain boundaries, and their 

origin of the performance enhancement of thermoelectric oxide ceramics were thoroughly 

investigated and presented in this dissertation.  
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Chapter 1: 

Background Review of Thermoelectric 
Generators and Materials 

 

1.1 Brief introduction of thermoelectric generators 

Thermoelectric generators (TEGs) are silent devices having no moving parts and are 

very low maintenance. [1,2] This enables them to be ideal in harsh environments and used 

in situations where mechanical servicing is not possible or easily accessible. TEGs are 

also environmentally friendly causing no CO2 emissions and are used to repurpose 

energy through harnessing waste heat. [1,2] Figure 1 shows a common design and set up 

of a thermoelectric generator. In 1821 Thomas Seebeck discovered that dissimilar 

material subjected to different temperatures at opposite ends will produce a voltage. [3,4] 

This voltage produced from the temperature gradient within became known as the 

Seebeck Effect. This temperature gradient causes a heat flow within the material creating 

an electrical potential and diffusing charge carriers throughout the material. [4] It is these 

charge carriers that are responsible for the current within the material. He then realized 

that by utilizing this property that heat, waste heat to be more exact, can be “captured” 

and transformed directly into electrical energy. 
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Figure 1 Cutaway of Thermoelectric Generator.  [5] 

 

As of now there are two main methods to utilize the Seebeck Effect. The first is 

through the Photovoltaic process or solar thermal processes.[6] Photovoltaic process 

shown in figure 2 is the excitement of the electron-hole pair, through light, to create a 

current within the device.[6,7] This process is commonly seen being used with a flat panel, 

mainly seen on rooftops of houses, buildings, or in solar farms to harness the light from 

the Sun.[6] The second is through solar thermal process which utilizes mechanical waste 

heat through engines.[6, 8] In this instance a device can be designed to capture heat from 

household appliances or heat supplied by means of solar hot-water systems or even from 

the waste heat of a car engine. More than 60% of energy is lost, mostly as waste heat, 

and most mechanical devices operate at a 30% efficiency, meaning the other 70% is lost 
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during combustion or dissipated into the atmosphere as waste heat as well, causing these 

all to be optimal methods of harvesting wasted energy. [9,10,11] 

 

Figure 2 Inside of a Photovoltaic cell [12] 

 

1.2 P & n type of thermoelectric materials 

All circuits are comprised of components with specific charge carriers and just as 

batteries have a positive and a negative side, so too do TEGs. The charge carriers are 

the electron-hole pair and the charge-carrying mediums are the negative and positive 

materials of the device, referred to as the n-type and p-type, respectively. These 
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alternating p- and n-type ‘legs’ of TEGs are shown magnified in figure 3. Although a 

unicouple is limited by a small voltage generation and is not practical for commercial use, 

it can be used to further elucidate the diffusion of charge carriers throughout the p- and 

n-type mediums. How the electron-hole pair diffuse through the system can be seen 

though the illustration in figure 4. The electron is excited due to the electrical potential 

created by the thermal gradient and moves to a higher energy level leaving behind a void, 

or “hole”. As the electron continues this trend it moves along the n-type material, since an 

electron carries a negative charge. The hole, which carries a positive charge, moves in 

the opposite direction along the p-type material. The p- and n-types are connected to form 

a module, via a metal conductor to complete the circuit. [13] They are connected electrically 

in series to increase its voltage capabilities and thermally in parallel to increase its current 

capacity. The circuit then sits on a substrate usually made of ceramic or glass. Below is 

a schematic of a TEG.  
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Figure 3 Schematic of thermoelectric device.  [14] 

 

A semiconductor has a conductivity of that between an insulator and a metal and is 

often described by its dominating charge carrier. An intrinsic semiconductor is a pure 

semiconductor uninfluenced by external factors. Its number of charge carriers is strictly 

determined by the properties of the material itself. When an intrinsic semiconductor is 

doped with an impurity it takes on extrinsic properties pertaining to the specific dopant 

thus making it an extrinsic semiconductor. [15,16] This allows the electron or hole to be the 

dominating carrier thus distinguishing between the p- and n-type. [10,11] The Seebeck 

coefficient is another distinguishing factor in deciding whether the material is p- or n-type. 
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A p-type material will have a positive Seebeck coefficient just as an n-type material would 

have a negative Seebeck coefficient. Figure 4 illustrates how the electron-hole pair move 

through their respective materials. 

 

Figure 4 P- & n- type legs of a Thermoelectric Generator.  [4] 

 

The two main kinds of dopants are donors and acceptors. Doping a semiconductor 

has various effects on the material’s properties such as indirectly affecting its electrical 

properties by directly affecting its carrier concentration. [17,18Error! Bookmark not defined.] Doping 

allows for energy states within the band gap, which is the gap between the conductive 

band and the valence band shown in figure 5. [18] Depending on the dopant type these 

energy states can be close to its corresponding energy band. [Error! Bookmark not defined.] 

Donor dopants will create energy states close to the conduction band, while acceptor 
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dopants will create energy states close to the valence band. [Error! Bookmark not defined.] This 

gap that is created between the energy state and its nearest band is referred to as the 

dopant site. [Error! Bookmark not defined.] 

A donor dopant has extra valence electrons so that when it is introduced as an impurity 

it will increase the amount of electrons in the conductor and in turn increase its overall 

negative charge. This causes the electron to be the majority charge carrier making it a 

negative material or an n-type semiconductor. [15,16] An acceptor impurity atom has fewer 

valence electrons than the atom it’s replacing allowing it to accept electrons from the 

conductor so there will be a decrease in electrons thus decreasing its electrical charge. 

Decreasing the electrical charge will make it positively charged causing the hole to be the 

majority charge carrier. [15,16] This component becomes a positive material or a p-type 

semiconductor. Together, the n- and p-type semiconductors work in tandem to create a 

circuit for current to pass through.  
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Figure 5 Energy band diagram of a semiconductor.  [114] 

 

1.3 Figure of Merit ZT and specific ZTs of various materials 

TE materials are measured by their figure of merit, ZT. The figure of merit is a 

dimensionless numerical value that addresses the efficiency of the material. [19] It is the 

ability of a given material to efficiently produce thermoelectric power. ZT is expressed as;  

ZT = (σS2/κ)T  (1) 

Where σ is the electrical conductivity in Siemens per meter (S/m), S is the Seebeck 

coefficient in microvolts per kelvin (µV/K), κ is the thermal conductivity in watts per 

millikelvin (W/mK), and T is the temperature in Kelvin (K). [20,21,22,23] Each the p-type and 

n-type components have their own figure of merit demonstrating their unique level of 

efficiency. These are then used as input into another equation, referred to as the effective 

figure of merit, . The sole purpose of this equation is to take the figure of merit of each 

individual p- and n-type component in to consideration and combine them in to a unified 

and useful value, expressed; 

=   (2) 

Where the subscripts p and n indicate that they pertain to the p-type leg and the n-type 

leg, respectively. Furthermore, ρ, which represents the electrical resistivity in micro ohm 

meters (µΩm), is the inverse of σ and  is the average temperature between the hot and 

cold surfaces measured in Kelvin. [23] This new modified figure of merit containing the 
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efficiencies of both the p and n types can now be used in an equation discovered in 1909 

by Edmund Altenkirch to find the overall maximum efficiency of the device 

ɳmax =   (3) 

Where the subscripts H and C represent hot and cold temperatures in Kelvin respectively. 

[3,23] Since the scope of this paper only encompasses the p-type, the main focus will be 

on equation 1, the figure of merit. 

 The above is an explanation of the physical meaning of this dimensionless figure 

of merit; however, to fully grasp its concept and further demonstrate its importance, the 

figure of merits of different materials can be compared. This way the figure of merit of a 

particular material, when discussed, can be put into perspective with respect to other 

types of materials. As seen in figure 6, lead, Pb, containing material demonstrates a high 

figure of merit. The main concerns with this material is that it only produces this efficiency 

at the mid temperature ranges and lead has a high toxicity.  

When analyzing the high temperature ranges there are two standout materials in 

figure 6. Yb14MnSb11 has a high figure of merit in the high temperature range but 

antimony, Sb is known to be toxic as well making it an undesirable candidate. Silicon 

germanium, SiGe, is not considered a toxic material; however, it oxidizes at high 

temperatures necessitating its use in a vacuum environment. These are common issues 

in existing materials leaving research advances in the high temperature range wide open 

for materials containing low toxicity at a low cost. To be competitive in the high 
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temperature range a material’s figure of merit must surpass that of silicon germanium or 

be competitive at a lower cost and/or toxicity. 

 

Figure 6 ZT for various p-type thermoelectric materials.  [24] 

 

1.4 Physical characteristics of thermoelectric materials 

1.4.1 Electrical Properties of p- & n- type materials   

To better understand the figure of merit its subcomponents such as the electrical 

conductivity, Absolute Seebeck Coefficient and the thermal conductivity must be further 

explained. The electrical conductivity of a material is its measurement or ability to conduct 

or transfer electricity. A high electrical conductivity means that the component in question 

will allow electricity to flow more freely through it because it will conduct it not resist it. 
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This flow or speed is also referred to as its carrier mobility. [25] The three main factors that 

affect the conductivity are demonstrated in the equation below 

ρ =  =    (4) 

Where ρ is the electrical resistivity in micro ohm meters (µΩm), σ is the electrical 

conductivity in Siemens per meter (S/m), mu, µ, is the carrier mobility in centimeters 

squared per Volt seconds (cm2/V•s), n is the carrier concentration in units per centimeter 

cubed (cm-3), and e is the charge of the carrier. [25] For this reason the electrical 

conductivity will be referred to in this dissertation as its reciprocal, or the electrical 

resistivity.  

Carrier concentration is the concentration of the dominating charge carrier for that 

particular material and the carrier mobility is the freedom of flow of electrons throughout. 

The concentration and mobility are both directly correlated and directly proportional to the 

electrical conductivity, making them inversely proportional to the resistivity. If either the 

carrier mobility or carrier concentration decreases, the resistivity increases and vice 

versa. A high carrier mobility and high carrier concentration lead to good electrical 

properties. [21] Conceptually a high mobility means the charge carrier in question can 

move freely causing a flow of current and the higher the concentration the higher the flow 

of current. Generally speaking, material with a high density will achieve a low electrical 

resistivity. A high density reflects that of a material with high grain alignment which act as 

the transport highway for the charge carriers. Material with poor alignment will contain 
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more grains oriented more perpendicular to one another thus impeding the electron 

transport.  

The Seebeck coefficient is the proportionality constant between the voltage 

produced and the difference in temperature across the junction of semiconductors. [3] 

Platinum probes are used to measure the Seebeck coefficient since they are highly 

unreactive, and they are resistant to corrosion even at high temperatures. The Relative 

Seebeck Coefficient of the material is measured, which is the simultaneous influence of 

the Seebeck Coefficient of the material and the contribution of the Seebeck Coefficient of 

the platinum probes used to take the measurement. Only the Seebeck Coefficient of the 

material is desired, referred to as the Absolute Seebeck Coefficient, so the influence of 

the platinum probe must be subtracted from the relative Seebeck Coefficient. The 

platinum thermocouple has been studied and accounted for in order to isolate the results 

of just the material, leaving behind the desired Absolute Seebeck Coefficient.  

The predicament with the two electrical properties (electrical resistivity and 

Absolute Seebeck coefficient) is that they are intimately connected; however, not in a 

favorable way. If a doping impurity deposits itself at the grain boundary when it is 

introduced to the baseline it will act as a filter reducing the carrier concentration. This 

reduction in carrier concentration will enhance the Seebeck coefficient as it will be seen 

later on. A high carrier concentration is desirable to achieve a low resistivity yet a low 

carrier concentration is beneficial for achieving a high Seebeck coefficient. To avoid this 

paradox one can attempt to find a balance with the carrier mobility and carrier 

concentration. When the carrier concentration is decreased, to benefit the Seebeck 

coefficient, the carrier mobility can theoretically be increased to preserve the resistivity. 
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The idea is to find the balance that optimizes both parameters. This is done mainly 

through ion doping to create an extrinsic semiconductor. Doping with the proper impurity, 

in theory, one should be able to alter the material’s structure and grain texture to improve 

upon its properties.  

To better demonstrate the electrical transport properties and make them more concise 

they can be combined to form one factor. This combination, commonly referred to as the 

power factor, is the materials ability to produce electrical power. [4,23] The power factor is 

expressed as, 

PF=S2σ  (5) 

Where S is the Absolute Seebeck Coefficient in microvolts per kelvin (µV/K) and σ is the 

electrical conductivity in Siemens per meter (S/m). [4,23] The higher the power factor the 

greater the electrical power. Also the Seebeck coefficient is a quadratic, meaning not only 

does it dominate the outcome of the power factor but it negates the fact that an n-type 

component has a negative Seebeck coefficient value which will then always give a 

positive value for the power factor.  

The figure of merit can easily be summed up as the division of the electrical 

transport properties (power factor) by the thermal transport properties (thermal 

conductivity). In order to achieve a desirable device, a high figure of merit must first be 

attained. It has already been stated that this can be done by increasing its electrical 

properties and decreasing its thermal properties. According to the Wiedemann-Franz 

Law, the electrical conductivity, Absolute Seebeck Coefficient and thermal conductivity 

are all interconnected. [19] In pursuance of lowering the thermal conductivity the electrical 
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properties must suffer and vice versa. It has been shown so far how the electrical 

conductivity and Absolute Seebeck coefficient are connected. Next is to demonstrate how 

the thermal properties are intertwined in an adverse way as well.  

1.4.2 Thermal Properties of p- & n- type materials 

The thermal transport properties are comprised solely of the thermal conductivity 

making it much more transparent to work with than the electrical properties. A low thermal 

conductivity is desirable which assures that the device will not dissipate the system’s heat 

but instead act as an insulator by trapping and using the heat. After all, the greater the 

heat gradient the higher the voltage output of the device. This explains why TE generators 

generally are not good heat sinks. The thermal conductivity is calculated by the equation 

K=λCpρm  (6) 

Where K is the thermal conductivity in watts per millikelvin (W/mK), λ is the thermal 

diffusivity in meters squared per seconds (m2/s), Cp is the specific heat in joules per 

kilogram Kelvin (J/kg•K), and ρm is the mass density in grams per centimeter cubed 

(g/cm3). [6]  

Despite being more concise than the electrical transport properties, the thermal 

conductivity is still a very difficult component to fine tune, in some ways perhaps more 

difficult. Just as the electrical resistivity can be broken into the carrier concentration and 

the carrier mobility, the thermal conductivity, K, too can be broken down into two 

components shown by equation 7. 

K=Ke+KL  (7) 
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Where Ke represents the electronic thermal conductivity and KL represents the lattice or 

phonon thermal conductivity. [26,27,28] According to the Wiedemann-Franz Law the 

electrical and thermal conductivities are intimately intertwined through the electronic 

thermal conductivity as shown below.  

Ke = LσT  (8) 

Where Ke is the electronic thermal conductivity, L is the Lorentz number (2.44 x 10-8 V2/K2 

for free electrons), σ the electrical conductivity and T is the temperature in Kelvin. [26,27,28] 

To be more exact, the electrical and thermal conductivities are directly correlated to each 

other, through the electrical conductivity, as can be seen in equation 8. When the 

electrical properties are improved, the thermal properties suffer which proves to be 

problematic in the overall enhancement of the figure of merit, which is the overarching 

goal.  

It was later studied and found that when the electrical conductivity, σ, increases 

with temperature, only the electronic thermal conductivity component, Ke, increases 

shown in equation 8 and the phonon thermal conductivity, KL, is left unaffected. [29,30] It 

was then discovered that the ratio of Ke/KL is very small so it can be assumed that the 

phonon thermal conductivity is much greater than the electronic thermal conductivity and 

thus is the dominant force in determining the overall thermal conductivity. [29,30] This allows 

the lack of control over the increase in the electronic thermal conductivity to be of little 

concern and focus can be moved to reducing the lattice thermal conductivity in order to 

increase efficiency. 
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Phonons play a crucial role in the electrical and thermal properties of 

thermoelectric material. The p-type and n-type components are comprised of atoms that 

are bound together in a three dimensional pattern forming what is called a crystal lattice. 

[29,31] The atoms in the lattice act as if they are attached by springs thus vibrating due to 

any external energy that may be expelled into the system. [29,31] In this case the energy 

would be that of the waste heat which also creates the heat gradient to excite the atoms. 

These vibrations create mechanical waves containing a specific energy and momentum. 

[29,31] These wave “packets” of energy are treated as particles and are referred to as 

phonons. Just as Einstein’s quanta or packets of light are referred to photons, packets of 

lattice vibrational energy are referred to as phonons. Phonons and electrons are the main 

excitations in solids. [32]  

One way to decrease the lattice thermal conductivity is by enhancing phonon 

scattering. [20,29,30] A common method used is to introduce heavy elements as dopants to 

aid in this scattering. [33] Decreasing the thermal conductivity can also be done by 

decreasing the grain size, thus having an increase in the boundary density. This increase 

in boundary density will act as a filter and be responsible for controlling the carrier 

concentration. Also, smaller grain size means more boundaries and a shorter mean-free 

path (MFP). [29,30] The mean-free path is the path the phonon follows before its next 

scattering event and the mean-free time is the amount of time until the next scattering 

event. [29,30] The shorter the mean free path and mean free time are the more scattering 

occurs and the lower the phonon thermal conductivity; the driving component of the 

overall thermal conductivity. 
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In the mid 1990’s a concept called “phonon glass electron crystal” was proposed 

which decoupled the two components of the thermal conductivity allowing for a low 

thermal conductivity, due to phonon scattering as in a glass, and a high electric 

conductivity, due to increased electron mobility as in a crystal. [3,19] This way the electrical 

properties can be improved upon without negatively effecting the thermal properties. As 

of present day scientists have not yet found a perfect replica of the phonon glass electron 

crystal scenario. [19] 

1.5 Oxides and Calcium Cobaltite as Thermoelectric materials 

1.5.1 Use of oxides as Thermoelectric Materials 

Many approaches have been made to maximize the efficiency of the 

Thermoelectric Generator. Although the design of the circuit can be altered, most hope 

lies within doping the chemistries of the p-type and n-type material with impurities in order 

to improve their electrical and thermal properties. Common thermoelectric materials used 

today are doped alloy semiconductors such as Bi2Te3, PbTe and SiGe. [25] These 

materials have poor durability at high temperatures, tend to oxidize and are unstable due 

to decomposition. [34] These alloy semiconductors also seem to face the complication of 

melting at high temperatures along with having a high toxicity and are costly. [34] These 

characteristics are detailed in figure 7. These issues are unfavorable and have been the 

cause for a search of better and more efficient materials.  



Chapter 1: Background Review of Thermoelectric Generators and Materials 

 

30 
 

 

Figure 7 Typical waste heat and operating temperature ranges of various thermoelectric 
materials. [4] 

 

Oxides were first overlooked as thermoelectric material due to the belief of their 

having low figure of merits caused by poor carrier mobility from their ionic structures. [30,35] 

However, the discovery of NaxCo2O4 in 1997 with a high Seebeck coefficient of around 

100 µV/K at room temperature dismissed the conventional wisdom and ignited extensive 

research into layered cobalt oxides. [15] Since oxides have high thermal and chemical 

stability they present a much more promising alternative than alloy semiconductors. 

Oxides are also easier to handle in the lab because of their nontoxicity and high oxide 

resistance which can also be seen from figure 7. These attributes helped to push oxides 

into the forefront of research. 
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NaxCo2O4 is just one of many oxides that have been studied and are being used 

in labs today. Ca3Co4O9 is another Co-based oxide that has a thermoelectric performance 

of its single crystal comparable to that of alloys allowing it to be a promising candidate for 

research. [34] Ca3Co4O9 has been studied extensively in the past years and it has been 

found that the performance of the single crystal shows great promise as a thermoelectric 

material. The figure of merit of the Ca3Co4O9 single crystal is ~0.87 at 973 K but the 

polycrystalline bulk sample, with its highest ZT reported as 0.22 at 1173 K for pure 

Ca3Co4O9 and 0.32 at 1000K for bismuth and sodium substitution, still needs 

improvement and is not yet suitable for technical or commercial application. [36,37,38] This 

is mainly due to an intrinsically low electrical conductivity and a high thermal conductivity. 

[36]  

Many attempts have been made to improve upon the thermoelectric performance 

of this already promising material. Some solutions involve ion doping or altering the 

fabrication process. Most hopes, however, are to decrease the thermal conductivity by 

means of doping through cationic substitution at the Ca site with Sr, Y, Bi and other rare-

earth elements such as Yb, Lu, Dy, Er, Ho, and Eu which are detailed in figures 8-11. [4,27] 

There are also reports of doping at the Co site which are included in figures 8-11 as well; 

however, the Ca site has proven to be more beneficial and is what this dissertation will 

focus on. The following four graphs were published by Jeffrey Fergus in Oxide materials 

for high temperature thermoelectric energy conversion and detail the results of various 

dopants in the Ca3Co4O9 ceramic and under differing processing parameters. VPP 

represents the data from Ca3Co4O9 ceramics with varied processing parameters under 

undoped conditions. 
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Figure 8 shows the log electrical conductivity in S/m and this range would be 

equivalent to an electrical conductivity of the magnitude 104 S/m or an electrical resistivity 

in the range of 100 µΩm. Figure 9 shows the thermal power or Seebeck coefficient of 

these same materials which range within a window of 100-150 µV/K depending on the 

material or processing parameters used. Figure 10 is the log thermal conductivities which 

would equate to around 2 W/mK and figure 11 shows the figure of merits for these 

materials. It is evident from figure 11 that none of these materials have been reported as 

passing the 0.5 ZT mark. Although these specific materials are the better alternative to 

alloy semi-conductors and skutterudites, in regards to their thermal and chemical stability, 

along with low toxicity and cost, their ZT values are still inferior. 

 

Figure 8 Log electrical conductivity for Ca3Co4O9 with various dopants. [39] 

 



Chapter 1: Background Review of Thermoelectric Generators and Materials 

 

33 
 

 

Figure 9 Absolute Seebeck coefficient for Ca3Co4O9 with various dopants. [39] 

 

Figure 10 Log thermal conductivities of Ca3Co4O9 with various dopants. [39] 
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Figure 11 Figure of merit for Ca3Co4O9 with various dopants. [39] 

 

1.5.2 Crystal Structure and anisotropic nature of Ca3Co4O9 

Calcium Cobaltite, Ca3Co4O9, is an intrinsic semiconductor that when doped with 

impurities takes on extrinsic properties, which in turn will alter its electrical and thermal 

properties. It is a p-type Co-based misfit layered oxide consisting of two sub-systems. 

[30,34, 34,33] The misfit layers are stacked in the c-direction having the same a, c, β 

parameters but different b parameters making it misfit along the b-axis. These alternating 

commensurate layers can be seen in the schematic shown in figure 12. The first layer is 

the outer CoO2 layers which form a triangular lattice and act as conductive layers 

providing the electronic transport pathway. [30,34,34] The second layer, sandwiched 

between the conducting layers, is the distorted rock-salt type Ca2CoO3 which forms a 



Chapter 1: Background Review of Thermoelectric Generators and Materials 

 

35 
 

rectangular lattice and is the insulating layer, responsible for phonon-scattering, lowering 

its thermal properties. [30,34, 34] In this regard it has a lattice constant and lattice geometry 

misfit.  

 

Figure 12 Schematic of alternating subsystems of Ca3Co4O9 crystal structure  [40] 

 

As mentioned Calcium Cobaltite’s single crystal has a relatively high figure of merit 

due to its significant grain alignment in the c-direction. This is the direction of the stacking 

of the alternating sub-systems. The polycrystalline form however, suffers from 

misalignment of these crystals thus having a high electrical resistivity. The challenge for 

this material is to improve the thermoelectric performance, or ZT, of the polycrystalline 

ceramic. This can be done by improving its electrical properties through grain alignment 
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which in turn will improve its overall power factor. Furthermore, by reducing the thermal 

conductivity of the material through phonon scatter the figure of merit, ZT, can be 

increased as well. 

Grain alignment is measured through what is called the Lotgering factor and given 

a value between 0 and 1. [41] Material with complete disorder is represented by a Lotgering 

factor of 0 and materials with complete order have a factor of 1. The Calcium Cobaltite’s 

baseline has a Lotgering factor of about 0.74. [27,41] Although grain growth can be 

beneficial it can have a downside as well. If the grain growth is too rapid and significant 

the grains can have a difficult time aligning themselves during the sintering process and 

can cause the lattice to expand, reducing the density and negatively affecting the 

material’s electrical resistivity. This growth also causes misalignment in the grains and 

does not allow for smooth transport of the electron-hole pair.  

The Ca3Co4O9 material is anisotropic, having different values for its lattice 

depending on which direction it is measured in. This has to do with its unique stacking 

structure. Not only do the stacks alternate in the c-direction, but this causes each 

individual insulating layer to have different dimensions from its neighboring conductive 

layer, thus giving it two different b-direction values, b1 and b2. This misalignment at the 

boundaries can be a platform for phonon scattering events, leading to a low thermal 

conductivity. This also tends to create misalignment throughout the material. These 

commensurate b-direction values can be seen in figure 13, labeled as b’CoO2 and b’RS. In 

order to properly bond the alternating layers one must compress thus creating undulations 

within this layer while the other expands. 
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Figure 13 Schematic of lattice misfit.  [34] 

 

1.5.3 Current Status of Ca3Co4O9 Thermoelectric Performance Reported in Literatures 

 A large issue pertaining to this research is the expense of the processing of some 

of the materials. Solid-State-Reaction, SSR, is most widely used among researchers but 

does not particularly allow the proper control of the stoichiometric ratios or the same 

uniformity that the sol-gel route has to offer. SSR is most commonly used due to its ease 

in the lab and requires the ball milling of the precursors which are then immediately 

calcined after. [42,43] The sol-gel route on the other hand requires stirring the precursors 

suspended in a mixture which aids in decomposition and polymerization to create a new 

compounds. [38] The inorganic material is then burned off before it enters the calcination 
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stage. This extra step allows the materials to rearrange their structures and create bonds 

before they reach their crystal structure during calcination. The sol-gel process for 

precursors allows for the exact chemistry which can be controlled from the beginning of 

the process to the pelletization of the powders. This ensures that end results reflect the 

original intentions of the chemistry. From here it is much easier to know how to change 

the parameters and which parameters to change. SSR also requires a higher 

temperature, for thermal polymerization, or multiple thermal treatments, in order to react 

together, constituting a higher calcination temperature [42]. A higher temperature can 

stimulate too much grain growth too early in the process creating a bulk material with a 

lower density and a higher electrical resistivity. SSR is also often accompanied by lattice 

deformation energy and strain. [44] This process only exacerbates this material’s 

preexisting lattice deformation which can be responsible for impeding its electrical 

properties as well. 

 Another variance in processing are the pressing parameters. Two main methods 

of pressing are through hot and cold pressing. A lot of the times the dopant involved will 

dictate which method is used. Certain materials react more favorably when exposed to 

heat during the pressing stage and can assist in the alignment of grains whether through 

their reaction and action to the heat or from the densification of a liquid phase achieved. 

More often than not the pressure or temperature involved in this stage predominantly 

effects the densification and texture of the pellet. 

 Spark plasma sintering, SPS, has been a commonly used practice for 

thermoelectric ceramic material. SPS uses pulses of DC current that pass through a 

graphite press. [45,46] The purpose of the process is to increase density within the pellet 
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during sintering. [45,46] This can be beneficial for electrical purposes but can pose an issue 

when testing its thermal properties considering thermal conductivity is directly related to 

the material’s density. The other benefit SPS has is that it only takes minutes to sinter 

since there is internal heat created through the current. This allows the temperature to 

ramp up quicker than a conventional furnace would for alternative methods. This high 

heating rate of SPS, allowing for less holding time, also reduces the possibility of 

unwanted sintering reactions. Aside from the shorter sintering time, SPS creates a bulk 

sample with a relatively higher density. [47] Conventional sintering although more time 

consuming than SPS has less opportunity for cracking to occur in the sample due to the 

slower ramping temperature. Conventional sintering is the cheaper alternative of the two 

methods and is also highly reproducible. This is the chosen method for this study covered 

in this dissertation. 

 Previously alloy semiconductors, lead and antimony containing compounds such 

as PbTe, Sb2Te3, and Sb2Se3 have been widely used as thermoelectric material. The 

benefits of utilizing these materials is that most are very robust and efficient at high 

temperatures. However, due to their instability and issues with oxidizing, some of the 

higher temperature operating materials need to be used in a vacuum. Silicon germanium 

for instance has a figure of merit of around 1 at temperatures around 1000 K and 

BiCuSeO figure of merit has been improved upon from 0.5 to 1.4 from 2010 to 2014 both 

needing a vacuum to achieve these values for a long timeline. [24,38,48] Both can be located 

in the graph in figure 14. Lead, Pb and antimony, Sb, containing material yield very 

promising ZTs at mid to high temperatures but are toxic and not desirable to handle in the 

lab. The idea is to create a material that not only provides efficiency and a high electrical 
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power, but also one that is stable and robust at high temperatures along with being 

structurally sound. 

 

Figure 14 Dimensionless figure of merit vs. temperature of typical current thermoelectric 
materials. [48] 

 

For the purpose of this dissertation it is important to approach the efficiency of 

silicon germanium in order to be competitive on a large scale. Some other materials may 

yield a figure of merit well over 1 but once again they either operate at low temperatures 

or the material can be toxic or pricey due to its rare status. Since these achievements, 

oxides have made substantial leaps in this field to finally be competitive with their costly 
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and toxic counterparts. Rare-earth elements such as Yb, Lu, Pr, Nd, Gd, and Eu have 

recently been used to dope oxides to achieve great success. [49,50,51 Oxides have 

improved vastly over the years but still suffer from inferior ZTs comparted with alloys alike. 

The highest ZT to date for oxides was reported by Shrikant Saini et al through Terbium 

Ion doping of Ca3Co4O9 with a record ZT of 0.74 at 800 K. [52] This is the highest value 

reported for any polycrystalline sample. [52] this work proves that oxides still have a place 

in this particular research and have plenty of room to grow through processing and 

doping.  
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Chapter 2: 

Research Objectives and Methodology 

2.1 Objectives 

Over 80% of the United States’ electrical energy comes from fossil fuels which is 

the major source of CO2 emissions leading to global warming. [1] Furthermore, these 

natural resources are limited and threaten to eventually be exhausted. Scientists have 

been working on an answer for years, utilizing many different methods and thoughts for 

renewable energy and waste energy recovery. For as far back as one can search the holy 

grail for scientists and inventors has been the fabled “perpetual motion machine”. [2] It is 

a device that will run forever without the loss of energy. In theory a perpetual motion 

machine works with 100% efficiency and no waste heat at all. [2,3] This is impossible from 

a physics standpoint due to the second law of thermodynamics. The second law states 

that waste heat must always be produced thus increasing entropy in the Universe. [2]  

One approach widely used today is the harvesting of this unused energy. One of 

the earliest and probably most recognizable forms of harvesting energy would be that of 

solar panels which use the Sun’s light as its source of energy and were first used in space 

in 1958 and later introduced to the commercial market in the 70s. [4] The use of solar 

panels is an example of the photovoltaic process. Since then, many attempts have been 

made to utilize this same concept of harnessing waste heat and transforming it into usable 

energy. A second approach is through thermoelectric generation. As stated in the 

previous chapter TEG are used to harness and repurpose energy through waste heat. 
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Oxides as a thermoelectric material provide a much greater alternative than the 

long used alloy semiconductors. As of now their efficiencies are still inferior in comparison 

but they hold great promise due to their low toxicity, low cost, ease of use, thermal and 

chemical stability, and their ability to operate in air. Oxides are quickly catching up in their 

thermoelectric performance and more and more research has been dedicated to altering 

their micro- and nanostructures, in order to boost their efficiency. Their robust nature and 

ability to operate at high temperatures allow them to have a bright future in this field. 

Calcium cobaltite is in the forefront of that research right now with plenty of room to 

improve upon. 

The main sources of harvestable energy have been through mechanical vibrations 

and waste heat. Both byproducts that go unused and a lot of times unnoticed. Harvesting 

energy through waste heat is what this paper will mainly focus on. More specifically, the 

method discussed in this dissertation will be by use of a TEG pertaining to waste heat. It 

will cover what a TEG is, what it does, and how it works. It will also describe the 

components that comprise the device and how they work as well. 

The objective of this research is to improve the thermoelectric performance of 

Calcium Cobaltite ceramics by modifying its chemistry. This was done through 

conventional sol-gel processing for precursors and conventional pelletization and 

sintering. It will investigate different doping elements along with different methods of 

introducing these dopants into the Ca3Co4O9 ceramic. The effects of the chemistry 

modification on its thermoelectric performance and nanostructure will be extensively 

investigated to understand the correlation between the two induced by the chemistry 

modification.  
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2.2 Methodology 

Three different dopants in the Ca3Co4O9 are investigated in this dissertation. 

Chapter three focuses on the first which is the addition of the Chalcogen bismuth 

telluride, Bi2Te3 in the Ca3Co4O9. This was achieved by mixing stoichiometric 

measurements of Ca3Co4O9 then adding the Bi2Te3 in a second stage ball mill. The 

motivation of this set is to investigate whether the addition of bismuth telluride forms an 

alloy or a composite with Ca3Co4O9. Bismuth telluride was doped into the Ca3Co4O9 in 

order to analyze the possibility of grain boundary segregation. The formation of a 

secondary phase using bismuth telluride as a dopant is also very possible and was 

analyzed as well.  

Chapter four introduces the second dopant which covers the cationic 

substitution of bismuth into the Ca3Co4O9. Bismuth has a high atomic mass which 

should help to increase the density of the material to enhance its electrical properties and 

create scattering events in order to reduce its thermal conductivity. Bismuth is also known 

to be the most naturally occurring diamagnetic element in nature allowing it to have the 

lowest thermal conductivity of all metals.  

Chapters five and six discuss the use of non-stoichiometric addition of dopants 

into the Ca3Co4O9 chemistry. The motivation was to investigate the thermoelectric 

properties of a chemistry where the dopant will most likely not replace calcium in the 

lattice and not deposit itself at the grain interior. With this approach the stoichiometry was 

purposely not preserved in order to analyze where such a dopant presents itself and how 

it affects the overall performance of the material. In chapter five, bismuth was once 

again used to dope the Ca3Co4O9. Bismuth’s ionic radius is close in size to that of 
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calcium’s but with no subtraction of the calcium the bismuth should have nowhere else to 

go but the grain boundary. The motivation was to explore whether the bismuth still finds 

its way into the lattice or is deposited elsewhere. Chapter six introduces the third and 

final dopant, discussing the doping of Ca3Co4O9 with barium to further investigate this 

non-stoichiometric addition. Barium has a larger ionic radius than calcium and does not 

deposit in the lattice whether there are calcium deficiencies or not thus leaving it nowhere 

to go but the grain boundary. Barium is known to have a high electrical conductivity and 

is considered a heavy element which can cause phonon scattering to decrease the 

thermal conductivity positively affecting the overall performance.  

Chapters seven, eight, and nine investigate the dual doping of both bismuth 

and barium into the Ca3Co4O9 polycrystalline powders. Chapter seven discusses the 

non-stoichiometric addition of bismuth and the non-stoichiometric addition of barium while 

chapter eight and nine addresses the cationic substitution of bismuth and the non-

stoichiometric addition of barium. 

All chemistries in this dissertation began through a sol-gel stage of precursors with 

conventional methods of pelletization. Not only was this process affordable it was 

controllable and highly reproducible. Pellets were tested using a Linseis LSR-1100 to 

attain their electrical resistivities and Absolute Seebeck coefficients and a Linseis LFA-

1200 laser flash machine was used to acquire their thermal conductivities. Fractured 

pieces of the sample pellets were then further analyzed by their microstructures through 

a Hitachi Scanning Electron Microscope and PANalytical X-Ray Diffraction and their 

nanostructures analyzed by way of Transmission Electron Microscope. 
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Chapter 3: 

Effect of Bismuth Telluride Addition on the 
Electrical Performance of Ca3Co4O9 Ceramics 

 

3.1 Background & motivation of using Bismuth Telluride as a dopant in Ca3Co4O9 

Chalcogens, otherwise known as group 16 or the oxygen family, are considered 

among the main group elements. [1] They consist of the elements oxygen, sulfur, 

selenium, tellurium and polonium which can all be found in nature in both free and 

combined states. The name Chalcogen proposed by Wilhelm Blitz and colleague Werner 

Fischer in 1932 comes from the combination of the Greek word chalkos, meaning “bronze 

ore”, and the Latinized Greek word genes, meaning born or produced. [1,2] All of the 

Chalcogens have six valence electrons, leaving them two electrons short of a full outer 

shell. [2,3] This means that they will most likely act as an accepter impurity when used as 

a dopant. Since they will accept electrons to fill their outer shell the baseline will lose two 

electrons leaving behind holes thus making it a good candidate for doping p-type material. 

Oxygen, sulfur and selenium are all nonmetals while tellurium is a metalloid meaning that 

its chemical properties are between those of a metal and a nonmetal which will make for 

a good semi conductive material. [1] However, it is not certain whether polonium is a metal 

or a metalloid. 

Tellurium, a member of the Chalcogen family was discovered in the Habsburg Empire 

in 1782 by Franz-Joseph Müller von Reichenstein in a mineral containing tellurium and 

gold. [2,3] His first thought was that it was already among the known elements mistaking it 
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for antimony. In 1798, almost two decades later, Reichenstein sent a sample to German 

chemist Martin Heinrich Klaproth to analyze further. [3] Klaproth discovered that it was in 

fact a new element giving all credit to its discoverer von Reichenstein. [2] Klaproth named 

this new element tellurium after the Latin word, tellus, meaning “earth”. [2] This was due 

to the ubiquitous amounts found in the earth’s crust. It is known now that tellurium seldom 

occurs in its pure state and is often found as a compound in ores of gold along with silver, 

copper, lead, mercury or bismuth. [1,2] Commercially, tellurium has mainly been used in 

alloys. It is often found in steel for its malleability, copper to improve machinability, and 

lead to resist vibrations and fatigue. [2,3] Depending on its atomic alignment, tellurium is a 

semiconductor that can display a high electrical conductivity, which can be useful for 

thermoelectric applications. 

As mentioned, tellurium combines easily with certain elements. It is also easy to 

engineer the band structure of a Chalcogen by impurity doping. [3] If the Chalcogen has 

energy levels resonant with the host band this will alter the electrical properties. This 

chapter discusses the results of Ca3Co4O9 doped with the compound bismuth telluride, 

Bi2Te3. Bismuth telluride’s small band gap of 0.16 eV causes it to be a partially degenerate 

semiconductor with its Fermi-level close to the conduction band. [4] This means that it has 

a high intrinsic carrier concentration which should reduce the electrical resistivity. 

Tellurium bonds with bismuth to comprise some of the best room temperature 

thermoelectric results with a temperature-independent ZT between 0.8 and 1.0. [4] 

Weon Ho Shin et al reported a ZT value of 1.16 at 393 K with reduced graphene oxide, 

RGO, incorporated Bi0.36Sb1.64Te3 composites which is ~15% higher than its pristine form. 

[5] Kim et al. also reported an impressively high ZT of 1.86 at 320 K for Bi0.5Sb1.5Te3 due 
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to a low lattice thermal conductivity of 0.33 W/mK. [6] Cheng et al. report a ZT of 0.73 at 

320 K for Bi2Te3 heteronanojunctions. [7] 

3.2 Experimental Procedure 

Ca3Co4O9 powders were obtained through a sol-gel route in which stoichiometric 

ratios of Ca(NO3)2•4H2O, Co(NO3)2•6H2O were mixed in deionized water. Ethylene glycol 

and polyethylene glycol were used to aid polymerization of the solution and to vary particle 

size. [8] Lastly in the process nitric acid was added under a fume hood to induce nitrate 

salts decomposition and facilitate new compound formation. [9] The liquid solution was 

then submerged in a silicone oil bath on a hot plate and mechanically stirred at 353 K for 

3 hours to achieve the sol-gel state. The sol-gel was distributed in to ceramic crucibles 

loosely covered with aluminum foil and put into a box furnace. The furnace was heated 

with a ramp rate of 10 K per minute reaching a temperature of 773 K where it was held 

for 2 hours. Holding the temperature here, at 773 K, for the allotted time ensures that any 

inorganic material is removed from the material. The furnace was then cooled at a rate of 

10 K per minute. The ashes were suspended in ethanol and ball milled for 20 minutes 

alternating between 1 minute of milling and 1 minute of resting in order to aid in the 

dissipation of heat. The ball milled powders were calcined in an oxygen rich induced 

environment with a ramp rate of 10 K per minute reaching a temperature of 973 K and 

held for 4 hours to achieve the Ca3Co4O9 crystal structure. The powders were then cooled 

down to room temperature at 10 K per minute. Bi2Te3 was then added in non-

stoichiometric ratios to the Ca3Co4O9 crystal. The two powders were hand ground 
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together for uniformity then placed in the ball mill suspended in ethanol for another 20 

minutes in 1 minute intervals then set out to dry.  

Two pellets were pressed, one to test its electrical properties and the other for its 

thermal properties. The calcined powders were pressed uniaxially with 1 GPa of force 

and held for 10 minutes at 298 K. The pellets’ densities were obtained before they were 

put in to a tubular furnace to be sintered. The sintering process removes any extra 

moisture the pellet may contain and assures proper grain alignment. Pellets were sintered 

in an oxygen rich induced environment with a ramp rate of 10 K per minute and held at 

1233 K for 9 hours. They were then cooled back to room temperature at a rate of 4 K per 

minute and once again the densities were taken. Pellets were cut into a 2 mm x 3.5 mm 

x 9 mm rectangular shapes and inserted into a Linseis LSR 3-Seebeck machine, 

subjected to a low pressure helium, He, environment where the pellet’s electrical 

resistivity and Absolute Seebeck Coefficient were simultaneously determined by means 

of a dc four-probe method. Since helium is an inert gas it will not react or interfere with 

the measurement. A second pellet was cut along a different axis and inserted into the 

Linseis LFA 1000 machine to test its thermal conductivity. The pellet was cut to be 2 mm 

thick and polished to a diameter of 11-13 mm. Any less than 11 mm and there would be 

room for heat to escape the holder, any more than 13 mm and the pellet would be too 

large for the holder. The thermal conductivity is calculated by the equation 

K=λCpρm   (13) 

Where λ is the thermal diffusity in meters squared per second (m2/s), Cp is the specific 

heat capacity in joules per kilogram kelvin (J/kg•K), and ρm is the mass density in grams 
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per centimeter cubed (g/cm3). As stated in the first section, these are the three values 

needed in order to obtain the materials’ ZT value. For this set the concentrations of Bi2Te3 

were as follows: Ca3 (Bi2Te3)u Co4O9 where u=0.0, 0.003, 0.006, 0.025, 0.05, and 0.1. 

3.3 Electrical Performance of Ca3Co4O9 doped with Bi2Te3 

Each doping concentration had an electrical resistivity that was higher than the 

baseline; up to ~65% higher. This is not caused by over doping considering there were 

samples with a very low concentration. It also goes to show that it’s not the case where 

the sample was under doped either considering the highest concentration had a resistivity 

almost 7 times that of the baseline. This chemistry set does, however, reinforce the 

intimate connection between the resistivity and the Seebeck coefficient through the carrier 

concentration. As mentioned in the literature review a decrease in carrier concentration 

generally leads to an increase in resistivity. This can clearly be seen in the Ca3Co4O9 

sample doped with Bi2Te3 0.1 in figure 15. This reduction in carrier concentration then 

leads to a slight enhancement of the Seebeck coefficient in the same sample which can 

be seen in figure 16.  
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Figure 15 Temperature dependence of electrical resistivity for Ca3Co4O9 Bi2Te3 
addition. 

 

It can be observed from figure 16 that there is in fact a benefit to the doping of 

Bi2Te3 in the Ca3Co4O9. At 315 K the Seebeck coefficient experiences a large increase 

up to ~160 µV/K which is a 20 µV/K jump. Generally the Seebeck coefficient is highly 

intrinsic to the particular material and Ca3Co4O9 has a very stable and consistent room 

temperature Seebeck coefficient of around 140 µV/K. More often than not any variation 

of the Seebeck coefficient manifests itself as an increase or decrease as the temperature 

rises. A change in Seebeck coefficient at room temperature is not a common occurrence. 

This enhancement in the Seebeck coefficient is most likely the direct cause of the Bi2Te3 

addition. Due to the increase in resistivity along with the lack of change in Seebeck 
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coefficient, with the exception for the Seebeck coefficient of the Bi2Te3 0.1 sample, the 

power factor decreases significantly shown in figure 17. The resistivities of the samples 

were too high to offset the room temperature enhancement in the Seebeck coefficient. 

This caused all samples to achieve a lower power factor than the pure Ca3Co4O9. 

 

Figure 16 Temperature dependence of absolute seebeck coefficient for Ca3Co4O9 
Bi2Te3 addition. 
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Figure 17 Temperature dependence of power factor for Ca3Co4O9 Bi2Te3 addition. 

 

3.4 Summary of results for Bi2Te3 doped Ca3Co4O9 
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room temperature has been investigated. Bismuth telluride enhanced the Seebeck 

coefficient from ~140 µV/K to ~158 µV/K at 315 K. This shows that a large room 

temperature Seebeck coefficient can be achieved through doping the Ca3Co4O9 ceramic 
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a low electrical resistivity coupled with the enhanced Absolute Seebeck coefficient would 

then lead to a high power factor. This also opens up the possibility of optimizing the 

dopant in order to enhance the Absolute Seebeck coefficient. Determining whether the 

presence of the bismuth or the telluride lead to the enhancement can be achieved by 

isolating the dopants individually. To further investigate this Seebeck phenomenon at 

room temperature bismuth was used to dope the Ca3Co4O9 ceramic and is detailed in 

chapter 4. Bismuth’s micro- and nanostructures were analyzed to understand what was 

responsible for this enhancement in Absolute Seebeck coefficient. 
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Chapter 4: 

Improving the TE performance and crystal 

texture of Ca3Co4O9 ceramics through Bismuth 

Cation Substitution 

 

4.1 Introduction to Cation Substitution 

Ion substitution is the exchange of ions with similar size and charge [1] Anion 

substitution is difficult due to how strongly bonded the anions are. This is the motivation 

for the extensive research into the use of cation substitution. The use of cation substitution 

has been reported on vastly in the literature. It is arguably the most common and 

successful approach to impurity doping. It is simple, straightforward, and achieves great 

results. The substitution method uses a concentration “x” of a specific dopant, in the case 

of this chapter, bismuth, that is then added into the of Ca3Co4O9 baseline. By subtracting 

the same concentration from the Ca location two things happen. First, the stoichiometric 

ratio is preserved and secondly the dopant is forced to go into the lattice in place of the 

Ca vacancies. As mentioned this usually only works if the ionic radii and ionic charges 

are similar enough in size and charge. 

4.2 Background and motivation for Bismuth as a dopant in Ca3Co4O9 

Bismuth has an unusually low toxicity for being such a heavy metal which allows it to 

be commercially used in items such as cosmetics and medicine. [2] This same stability 

and low toxicity means safer handling in the lab and in the environment. Bismuth is also 
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considered the most naturally occurring diamagnetic element; more diamagnetic than any 

other metal. [2] Diamagnetism is a property of the material that allows it to create an 

induced magnetic field in an opposite direction to that of an externally applied magnetic 

field. [4] Superconductors are usually considered perfect diamagnets. This diamagnetic 

property gives bismuth the ability to have one of the lowest thermal conductivities of all 

metals. [4] This is advantageous when calculating its figure of merit.  

Ca3Co4O9 ceramics doped with bismuth were shown to begin melting at sintering 

temperatures of 1273 K; while, the undoped Ca3Co4O9 can be synthesized up to 1373 K 

demonstrating that bismuth may form a liquid phase aiding in the sliding of grains and 

densification of the material. Bismuth can then increase in size 3.32% upon solidification 

increasing lattice parameters and further helping to densify the bulk sample to improve 

grain connectivity and enhance carrier mobility thus reducing its electrical resistivity. [3,4,5] 

Bismuth has been commonly shown to decrease electrical resistivity through this 

increased carrier mobility as well as enhancing its Seebeck coefficient. [6,7] Increase in 

grain growth due to partial substitution of bismuth for calcium ions contributes largely to 

this increase in carrier mobility as well. [8] Siwen at al. confirm this grain growth and report 

a dimensionless figure of merit of ~0.2 at 973 K for Ca2.5Bi0.5Co4O9, shown in figure 18,  

through solid state reaction of powders in stoichiometric ratios and conventional pressing 

and sintering. [9] Eight years after Siwen, Yuhen et al. reported a figure of merit of 0.25 at 

973 K for bismuth doped Ca0.85Bi0.15Co4O9 prepared through sol-gel precursor powders 

and spark plasma sintering (SPS). [7] 
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Figure 18 Temperature dependence of figure of merit for Ca3-xBixCo4O9+δ (x=0.0 and 
0.5) [9] 

 

Bismuth substitution has also been effective in decreasing oxygen deficiencies in the 

system. [11] Replacing divalent Ca2+ ions with trivalent Bi3+ ions in the Ca2CoO3 insulating 

layer causes bismuth to inject electrons in to the CoO2 conductive layer due to the charge 

imbalance. An increase in oxygen content is then experienced in order to stabilize this 

charge imbalance. This provides the hole carriers to the system, reducing the electrical 

resistivity. [11] Since the hole carriers dominate the Ca3Co4O9 system, this scenario 

contributes to a reduction in carrier density, n, playing a large role in increasing the 

Seebeck coefficient as well. [11] Furthermore, according to W. Koshibae et al. the 
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substitution of Bi3+ is expected to lower the overall valence of cobalt, thus resulting in a 

decrease in Co4+ concentration in exchange for the Co3+ valence state in the CoO2 

conductive layer to cause an enhancement of the Seebeck coefficient. [10] 

Masashi et al. reported on the increase in cell volume of Ca3Co4O9 with increased 

doping of bismuth, confirming that not only does bismuth promote grain growth but it also 

enters the lattice, upon doping, in place of calcium vacancies to increase the overall lattice 

parameters. [11] By entering the lattice, bismuth stabilizes the crystal structure and 

eliminates stacking faults improving grain connectivity by moderating the misfit 

relationship between the insulating Ca2CoO3 and the conducting CoO2 layers. [11] This 

improvement in grain connectivity causes a reduction to the electrical resistivity. Also, 

relaxing the misfit lattice can shorten the phonon mean free path. [11] This lattice 

relaxation, along with bismuth’s size and mass, are all known to reduce its thermal 

conductivity, helping to contribute to a higher figure of merit. [6,7] This lattice parameter 

increase is shown in figure 19. 
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Figure 19 Lattice parameters calculated by Rietveld analysis as a function of Bi 
composition b1 and b2 correspond to the b parameters of [Ca2CoO3] and [CoO2] layers, 

respectively. [11]
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Reports on bismuth doped calcium cobaltite single crystal have shown to improve 

Ca3Co4O9’s figure of merit to 0.9 at 973 K. [12] However, there is a lack of information on 

the doping of bismuth in polycrystalline bulk samples with the use of a sol-gel route with 

conventional pressing and sintering methods. There is also no study on the correlation 

between the microstructure and its properties.  

This chapter focuses on the investigation into the possible Seebeck coefficient 

enhancement while achieving a low electrical resistivity and thermal conductivity with 

bismuth doping. X-ray diffraction patterns of single crystals prepared with partially bismuth 

substituted Ca3Co4O9 reported by Masashi et al. displayed a secondary phase of 

Bi2Ca2Co2Ox with the molar ratio of Ca:Bi:Co=2.5:0.5:4. [11] This secondary phase, most 

likely due to the over doping of bismuth, can cause an increase in electrical resistivity 

showing that a Ca:Bi ratio of 2.5:0.5 is most likely too large and proved to be a reference 

point when choosing the doping concentrations used in this chapter. 

4.3 Experimental Procedure 

Ca3-xBixCo4O9 powders where x=0.0, 0.1, 0.2, 0.3, 0.4 were obtained through a sol-

gel route in which stoichiometric ratios of Ca(NO3)2•4H2O, Co(NO3)2•6H2O and 

Bi(NO3)2•5H2O were mixed in deionized water. Ethylene glycol and polyethylene glycol 

were used to aid polymerization of the solution and vary particle size. Lastly in the process 

nitric acid was added to induce nitrate salts decomposition and facilitate new compound 

formation. [12] The liquid solution was then submerged in a silicone oil bath on a hot plate 

and mechanically stirred at 353 K for 3 hours to achieve the sol-gel state. The sol-gel was 

then distributed to ceramic crucibles, loosely covered with aluminum foil, and put into a 
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box furnace with a ramp rate of 10 K per minute reaching a temperature of 773 K. The 

powders were held there for 2 hours before cooling back down to room temperature at 10 

K per minute. Holding this temperature for the allotted time ensures that any inorganic 

material is removed from the material. The powders were deposited into a mortar where 

they were manually ground via pestle and mortar for 20 minutes. After the powders have 

been manually ground they were deposited in a tubular furnace where they were calcined 

in an oxygen rich induced environment at 973 K for 4 hours, with a ramp rate of 10 K per 

minute, to achieve the Ca3Co4O9 crystal lattice. The powders were then cooled down to 

room temperature at a rate of 10 K per minute.  

Two pellets were pressed, one to test the electrical properties and the other for the 

thermal properties. The calcined powders were pressed uniaxially with 1 GPa of force 

and held for 40 minutes at 423 K then allowed to cool back to 298 K. The pellets’ densities 

were obtained before they were put in to a tubular furnace to be sintered. The sintering 

process removes any extra moisture the pellet may contain and assures proper grain 

alignment. Pellets were sintered in an oxygen rich induced environment with a ramp rate 

of 10 K per minute and held at 1233 K for 9 hours. The pellets were then cooled back to 

room temperature at a rate of 4 K per minute and once again the densities were taken. 

Pellets were cut into a 2mm x 3.5mm rectangular shapes and inserted into a Linseis LSR 

3-Seebeck machine, subjected to a low pressure helium, He, environment where the 

pellet’s electrical resistivity and Absolute Seebeck Coefficient were simultaneously 

determined by means of a dc four-probe method. Since helium is an inert gas it will not 

react or interfere with the measurement. A second pellet was cut along a different axis 

and inserted into the Linseis LFA 1000 machine to test its thermal conductivity. The pellet 
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was cut to be 2 mm thick and polished to a diameter of 11-13 mm. Any less than 11 mm 

and there would be room for heat to escape the holder, any more than 13 mm and the 

pellet would be too large for the holder. The thermal conductivity is calculated by the 

equation 

K=λCpρm   (6) 

Where λ is the thermal diffusity in meters squared per second (m2/s), Cp is the specific 

heat capacity in joules per kilogram kelvin (J/kg•K), and ρm is the mass density in grams 

per centimeter cubed (g/cm3). As stated in the first section, these are the three values 

needed in order to obtain the materials’ ZT value. For bismuth substitution five different 

chemistries were used. The first chemistry was the Ca3Co4O9 baseline and the other four 

are dopings of bismuth in 0.1 gram increments; Ca3-xBixCo4O9 where x = 0.1, 0.2, 0.3, 

and 0.4.   

4.4 Experimental Results of Bismuth doped Ca3Co4O9 using cation substitution 

4.4.1 Presence of bismuth in the lattice & at the grain boundary of Ca3Co4O9 ceramics 

As figure 20 shows, the undoped sample starts at 315 K with an electrical resistivity 

at around 70 µΩm and as the temperature increases to 1100 K so too does the resistivity, 

to about 100 µΩm. This is characteristic of how a metal would act, increased resistivity 

with increased temperature. As the doping concentration of bismuth is increased the 

electrical resistivity steadily decreases in all temperature ranges. Doping up to x=0.3 

proves to enhance grain growth, increase its grain anisotropy, along with improving its 

crystal texture development. [12] The optimal resistivity occurs with a doping concentration 
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of Bi x=0.2 and Bi x=0.3 both achieving a resistivity of around 28 µΩm at room 

temperature increasing to around 45 µΩm at 1073 K. The electrical resistivity increases 

drastically with the doping of the Bi x=0.4. It has risen more than three times that of the 

undoped sample. This demonstrates the over doping of bismuth at this concentration. At 

bismuth x=0.4 the sample is over doped and experiences deterioration of its grain 

alignment. Its lack of grain alignment is mainly due to is vast grain growth in comparison 

with the optimal samples of bismuth x-0.2 and x=0.3. This misalignment is evident from 

its drastic increase in electrical resistivity. 

 

Figure 20 Temperature dependence of electrical resistivity for Ca3-xBixCo4O9 bismuth 
cation substitution. 
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Figure 21 represents the Absolute Seebeck Coefficients of the different bismuth 

dopings. It can be seen that as soon as the bismuth is introduced, the room temperature 

Absolute Seebeck coefficient increases up 20-30 µV/K from the undoped Ca3Co4O9 

sample. This shows that the Seebeck coefficient enhancement experienced in the Bi2Te3 

set from chapter 3 was most likely responsible due to the existence of the bismuth. With 

each increased concentration of Bismuth the room temperature Absolute Seebeck 

Coefficients are greater than the last. This trend stays consistent up until its saturation 

limit at around 150 µV/K. As the temperature increases to 1073 K so do the Seebeck 

coefficients, with the exception of bismuth x=0.4 which succumbs to its large increase in 

carrier concentration at roughly 650 K. This drop in Seebeck coefficient is highly indicative 

of an over doped sample. The grain growth was too vast causing improper alignment and 

drastically lowering carrier mobility in the sample.  
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Figure 21 Temperature dependence of absolute seebeck coefficient for Ca3-xBixCo4O9 
bismuth cation substitution. 
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times higher than the Ca3Co4O9 baseline. Bismuth x=0.4’s power factor however is lower 
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low power factor. Although the bismuth x=0.4 resistivity drops consistently and 

significantly as the temperature increases, its Absolute Seebeck coefficient falls off 

drastically at 650 K being the major contributor for its poor power factor in the mid to high 

temperature range. In order to obtain a consistent high power factor, both values must 

yield good results throughout all temperatures ranges. This also explains the slight 

decrease in power factor of all samples as well, with the exception of the over doped 

sample. Even though all of their Absolute Seebeck coefficients steadily increase with 

increasing temperature their resistivities increase slightly as well causing almost a 

perfectly flat power factor. This rise is mainly due to the intrinsic nature of the resistivity 

of a metal in general. [2] The highest power factors are for the bismuth x=0.2 and x=0.3 

samples, at 973 K, with power factors of ~0.80 mW/mK2 and ~0.83 mW/mK2, respectively. 

Both are nearly three times that of the undoped sample and are also higher than any 

reportings for polycrystalline samples of Ca3Co4O9; comparable to that of the single 

crystal’s power factor. [12] 
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Figure 22 Temperature dependence of power factor for Ca3-xBixCo4O9 bismuth cation 
substitution. 

 

4.4.3 Microstructure of bismuth doped Ca3Co4O9 

The alignment of grains can be seen in the Scanning Electron Microscope cross-

sectional images illustrated in figure 23 taken from the fractured surface of the pellets. 

Larger grains can make it more difficult for the grains to properly align themselves in a 

fashion that aids its electrical transport properties. Larger grains also mean less grain 

boundaries and less opportunity for phonon scattering. Figure 23 shows the increased 

improvement of the grain alignment with the increase in bismuth concentration from (a) 

to (d) representing Ca3Co4O9, Ca2.9Bi0.1Co4O9, Ca2.8Bi0.2Co4O9, and Ca2.7Bi0.3Co4O9, 

respectively. Image (e) and (f) show high and low magnification of the Ca2.6Bi0.4Co4O9 

over doped sample. There is vast grain growth and misalignment among the crystal 
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texture of the sample. However, as mentioned, grain growth can have a positive effect on 

the results as well. Ruoming et al. claimed that Ca3Co4O9 baseline has a Lotgering factor 

of about ~0.74 but after doping with bismuth they achieved a value of around 0.9. [13] This 

is due to the grain growth and alignment caused by the doping of bismuth which 

significantly reduces the material’s electrical resistivity. At the doping level of Bi x=0.4 the 

sample becomes over doped and the grain growth becomes too significant for the grains 

to move or jitter as well during sintering in order to align themselves efficiently. This 

causes misalignment in the grains and does not allow for smooth transport of the electron-

hole pair causing a significant increase in the electrical resistivity which was shown in 

figure 20. 

 

Figure 23 SEM cross-sectional view of undoped Ca3Co4O9 and doped Ca3-xBixCo4O9 
with x=0.0, 0.1, 0.2, 0.3, 0.4. [12] 
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4.4.4 Nanostructure of bismuth doped Ca3Co4O9 

Figure 24 shows the TEM nanostructure of the optimal sample of Ca2.7Bi0.3Co4O9. 

Low magnification of the TEM diffraction contrast in image (a) shows a typical grain 

boundary and the adjacent two grains. The pink and green arrows labeled C1 and C2 

respectively indicate the different c-axis orientations of these two grains with a 

misorientation angle of about 6°.  Low magnification STEM Z-contrast from the same 

grain boundary is indicated in image (b). High magnification STEM Z-contrast of that 

same grain boundary shows two segregations sites in image (c). EDS point examinations 

were conducted at eight different locations and are summarized and illustrated in table 1. 
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Figure 24 TEM nanostructure of Ca2.7Bi0.3Co4O9. [12] 

. 

Table 1 EDS spot examination showing the chemistry of segregation regions and 
neighboring grains in the sample Ca2.7Bi0.3Co4O9. [12] 

 

  



Chapter 4: Improving the TE performance and crystal structure of Ca3Co4O9 ceramics through Bismuth 
Cation Substitution 

 

 

80 
 

Figure 25 shows TEM images of undoped and bismuth doped Ca3Co4O9. Image 

(a) shows one Ca3Co4O9 grain boundary and its two neighboring grains with nano-lamella 

morphologies. Image (b) shows the selected area diffraction pattern and indexing circled 

red in image (a). Image (c) shows the magnified grain boundary from the yellow dotted 

region framed in image (a). The nanostructure of Ca2.7Bi0.3Co4O9 is shown in image (d). 

 

Figure 25 TEM images of undoped and bismuth doped Ca3Co4O9. [12] 

 

4.4.5 Impact of sample density on thermal conductivity 

 The Ca3Co4O9 baseline has a thermal conductivity of 2.3 W/mK at 373 K dropping 

to around 2 W/mK at 1073 K. It can be seen in figure 26 that upon doping with bismuth it 
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immediately reduces the conductivity to 2.1 W/mK at 373 K and drops below 1.9 W/mK 

at 1073 K. This is due to the increase in density at the grain boundary. Although bismuth 

mainly distributes itself directly into the grains it also deposits itself in the grain boundary 

causing its density to increase. With bismuth x=0.3 the thermal conductivity is slightly 

higher than that of the baseline. This is due to over doping and its grain growth which 

affected its figure of merit. As the grain size increases, the lattice thermal conductivity 

increases with it since larger grains mean fewer grain boundaries and weaker phonon 

interface scattering. [14] 

 

Figure 26 Temperature dependence for thermal conductivity of Ca3-xBixCo4O9 bismuth 
cation substitution. 
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Bismuth x=0.4 has the highest thermal conductivity due to its significant increase 

in density. As mentioned in equation 13 the pellet’s density is directly related to the 

thermal conductivity and with a density of 4.80 g/cm3 for the bismuth x=0.4 sample this is 

much greater than the 3.70 g/cm3 and 3.95 g/cm3 of the bismuth x=0.1 & x=0.2 

respectively. The low densities of those specific samples reinforces the role that the 

sample’s density plays in measuring its thermal conductivity. 

4.4.6 Significance of low thermal conductivity for achieving the high Figure of Merit 

The figure of merits of the undoped and bismuth doped Ca3Co4O9 samples are 

represented in figure 27. The Ca3Co4O9 baseline has a figure of merit of about 0.03 at 

373 K and increases to 0.15 at 1073 K. The doping of bismuth x=0.1 not only increases 

the figure of from 0.03 to 0.08 at 373 K, almost 3 times that of the baseline, but its final 

data point at 1073 K has kept this trend to best that of the Ca3Co4O9 baseline by over two 

times its original value to achieve a ZT value of 0.33 at 1073 K. 
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Figure 27 Temperature dependence of figure of merit for Ca3-xBixCo4O9 bismuth cation 
substitution. 
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a low figure of merit but it actually drops below that of the pure baseline. This is caused 

by its large grain size and poor alignment resulting in a high electrical resistivity and low 

Absolute Seebeck coefficient in tandem with its high thermal conductivity. 

 

Figure 28 Temperature dependence of the ZT values for undoped Ca3Co4O9 and 
(Ca0.95Bi0.05)3Co4O9 [7] 

 

4.5 Summary of results for Bismuth cation substitution in Ca3Co4O9 

Bismuth deposits itself at the grain interior to improve the crystal texture through 

increased grain growth along with grain alignment. It also deposited itself at the grain 

boundary causing segregation resulting in a carrier concentration reduction and 
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enhancement of the Absolute Seebeck coefficient. The segregation at the grain boundary 

also helps to improve the crystal texture along with reducing the thermal conductivity. Low 

electrical resistivities of around 23 µΩm were achieved through doping the Ca3Co4O9 with 

bismuth. The optimal concentration was found to be bismuth x=0.2 mainly attributing its 

high figure of merit due to its high power factor of ~0.77 mW/mK2 and its low thermal 

conductivity of ~1.88 W/mK, both at 973 K. Bismuth x=0.3 still demonstrated a high power 

factor but its figure of merit suffers due to its slight increase in thermal conductivity caused 

by its increase in density. Bismuth x=0.4, the over doped sample, has both poor electrical 

and thermal properties. Leading to a figure of merit lower than the pristine Ca3Co4O9. 

Figure 29 shows a drawing to demonstrate where the bismuth deposits and how it effects 

the grain alignment. The light red shows the presence of bismuth in the grains and the 

dark red line indicates the bismuth enriched grain boundaries. 

 

Figure 29 Microstructure drawing of undoped Ca3Co4O9 and Ca2.7Bi0.3Co4O9. 
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 Analyzing bismuth’s role at the grain boundary motivates the possibility to 

maximize the amount of segregation at the boundary. By using a non-stoichiometric 

addition method, which will be explained in detail in the following chapter, an attempt to 

force the bismuth solely to the grain boundary can be made in order to further enhance 

the absolute Seebeck coefficient.  
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Chapter 5: 

The Versatility of Bismuth doping through Non-
stoichiometric Addition of Ca3Co4O9 

 

5.1 Background and motivation for non-stoichiometric addition method 

Until recently, the most common and possibly the only doping method reported on has 

been that of cation substitution. Simply replacing specific ions of a baseline chemistry 

with a series of dopants which would cause different kinds of defects, within the material, 

leading to improved thermoelectric results. It was discovered, however, that in the event 

of doping a chemistry set there are some advantages to not replacing any of the ions from 

the baseline, rather adding to it and leaving the original chemistry untouched. Instead of 

dictating where the dopant will go by forcing it into vacancies created in lattice, through 

cation substitution, it allows the dopant to deposit itself where it so sees fit. Chapter four 

uses bismuth as a dopant utilizing the substitution method. Bismuth depositing itself at 

the grain interior and grain boundary allow it to be a great candidate for non-stoichiometric 

addition.  

Non-stoichiometric addition is the addition of a dopant into the Ca3Co4O9 without 

subtracting any existing ions such as the calcium ions substituted in chapter 4. Instead of 

subtracting the calcium, the Ca3Co4O9 chemistry will be untouched and just the specified 

concentration of the bismuth will be added. This allows bismuth ions the freedom to 

deposit themselves where they most naturally see fit which is where the energy is highest. 

Despite being close in ionic size with calcium there will be no reduction of ions thus 
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presenting a greater amount of bismuth at the grain boundary in order to further enhance 

the room temperature Seebeck coefficient while still having the opportunity to fill in any 

calcium vacancies that may have occurred. By not preserving the original stoichiometry 

the possibility for secondary phases to occur increases and was investigated as well. 

5.2 Experimental Procedure 

Ca3BiuCo4O9 powders where u=0.0, 0.01, 0.05, 0.1, 0.2, 0.25, 0.3, 0.35, 0.4 were 

obtained through a sol-gel route in which non-stoichiometric ratios of Ca(NO3)2•4H2O, 

Co(NO3)2•6H2O and Bi(NO3)2•5H2O were mixed in deionized water. Ethylene glycol and 

polyethylene glycol were used to aid polymerization of the solution and to aid in particle 

size. [1] Nitric acid was added to induce nitrate salts decomposition and facilitate new 

compound formation. [2]The liquid solution was then submerged in a silicone oil bath on a 

hot plate and mechanically stirred at 353 K for 3 hours to achieve the sol-gel state. The 

sol-gel was then distributed to ceramic crucibles loosely covered with aluminum foil and 

put into a box furnace with a ramp rate of 10 K per minute and held at 773 K for 2 hours 

then cooled back to room temperature at a ramp rate of 10 K per minute. Holding the 

temperature here, at 773 K, for the allotted time will ensure that any inorganic material is 

removed from the material. The ashes were then hand milled for 20 minutes via pestle 

and mortar. The powders were deposited in a tubular furnace where they were calcined 

in an oxygen rich induced environment with a ramp rate of 10 K per minute and held at 

973 K for 4 hours, to achieve the Ca3Co4O9 crystal lattice. The powders were then cooled 

down to room temperature at a rate of 10 K per minute.  
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Two pellets were pressed, one to test its electrical properties and the other for its 

thermal properties. The calcined powders were pressed uniaxially with 1 GPa of force 

and held for 40 minutes at 423 K. The pellets’ densities were obtained before they were 

put in to a tubular furnace to be sintered. The sintering process removes any extra 

moisture the pellet may contain and assures proper grain alignment. Pellets were sintered 

in an oxygen rich induced environment at 1233 K for 9 hours with a ramp rate of 10 K per 

minute. It was then cooled back to room temperature at a rate of 4 K per minute and once 

again the densities were taken. Pellets were cut into a 2 mm x 3.5 mm x 9 mm rectangular 

shapes and inserted into a Linseis LSR 3-Seebeck machine, subjected to a low pressure 

helium, He, environment where the pellet’s electrical resistivity and Absolute Seebeck 

Coefficient were simultaneously determined by means of a dc four-probe method. Since 

helium is an inert gas it will not react or interfere with the measurement. A second pellet 

was cut along a different axis and inserted into the Linseis LFA 1000 machine to test its 

thermal conductivity. The pellet was cut to be 2 mm thick and polished to a diameter of 

11-13 mm. Any less than 11 mm and there would be room for heat to escape the holder, 

any more than 13 mm and the pellet would be too large for the holder. The thermal 

conductivity is calculated by the equation 

K=λCpρm   (13) 

Where λ is the thermal diffusity in meters squared per second (m2/s), Cp is the specific 

heat capacity in joules per kilogram kelvin (J/kg•K), and ρm is the mass density in grams 

per centimeter cubed (g/cm3). As stated in the first section, these are the three values 

needed in order to obtain the materials’ ZT value. For bismuth addition, nine different 

chemistries were used. The first chemistry is the baseline of Ca3Co4O9 and the other eight 
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are dopings of bismuth; Ca3BiuCo4O9 where u = 0.01, 0.05, 0.1, 0.2, 0.25 0.3, 0.35 and 

0.4.  

5.3 Simultaneously doping the lattice and grain boundary 

5.3.1 Increasing the carrier mobility through bismuth non-stoichiometric addition 

Since bismuth 0.01 is such a small amount to dope with, it can be seen in figure 30 

that the change in resistivity between the baseline and bismuth 0.01 is very trivial. 

However, at bismuth 0.05 a jump in the trend can be seen. At room temperature, the 

electrical resistivity of the bismuth 0.05 concentration is around 43 µΩm. Just below this, 

following suit with the trend lies bismuth 0.1 at 39 µΩm. Unlike the baseline and bismuth 

0.01’s electrical resistivity which increased from 70 µΩm to 100 µΩm a 30 µΩm jump, 

bismuth 0.05 and bismuth 0.1’s resistivity only increases from around 40 µΩm at room 

temperature to 60 µΩm at 1073 K which is only a 20 µΩm jump. The trend continues up 

to bismuth 0.3 with each increased concentration having a lower resistivity than the last. 

The room temperature electrical resistivities of bismuth 0.2, 0.25, and 0.3 are all between 

17 and 21 µΩm and increase to between 40 and 49 µΩm at 1073 K. Although each 

concentration increased in electrical resistivity from room temperature to 1073 K, it is 

noticeable that with each increased amount of bismuth the resistivity starts off lower and 

increases less. This trend insinuates that the addition of bismuth improves the grain 

texture and size and aids in the alignment of the grains just as it has with the set utilizing 

the cation substitution method. [3] Samples using the non-stoichiometric addition method 

actually have a lower electrical resistivity than that of the cation substitution samples at 

its optimum concentrations. The 0.35 and 0.4 content samples experience a significant 
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increase in their electrical resistivities most likely demonstrating an over doping of the 

samples. Furthermore it is notable that 0.35 has a higher electrical resistivity than the 0.4 

concentration. Although this can indirectly insinuate that another drop can be expected if 

the concentration were to be increased, due to the electrical resistivity trends followed by 

these samples it is evident that both are in fact over doped and this slight variation can 

be explained through slight process variation due to error. This will be further elucidated 

when their absolute Seebeck coefficients are discussed.  

 

Figure 30 Temperature dependence of electrical resistivity for Ca3BiuCo4O9 bismuth 
non-stoichiometric addition. 
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5.3.2 Improvement of grain alignment along with boundary segregation 

Figure 31 shows grain development the from cross-sectional SEM images of 

surface fractured pellets. Image (a) shows the undoped Ca3Co4O9 where (b), (c), (d), and 

(e) show the 0.1, 0.2, 0.3 and 0.35 concentrations respectively. The improved grain 

alignment is evident as the content of bismuth increases. The optimal concentration, of 

0.3, shown in image (d) is in stark comparison with that of the undoped Ca3Co4O9 shown 

in image (a), with its preferred alignment along the a- and b-plane. Image (e) shows a 

glassy like crystal structure of the over doped Ca3Bi0.35Co4O9 sample with grains larger 

than 20 µm and no preferred direction. This improved crystal texture in image (d) is 

caused by the doping of bismuth into the Ca3Co4O9 lattice which improves its alignment 

as bismuth increases to its optimal concentration of 0.3.  

 

Figure 31 SEM cross-sectional view of undoped Ca3Co4O9 and doped Ca3BiuCo4O9 with 
u=0.0, 0.1, 0.2, 0.3, and 0.35. 
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Apparent in figure 32 is that once the bismuth is added to the baseline the Seebeck 

coefficient increases anywhere from 20-30 µV/K at room temperature reaching a range 

of 140-150 µV/K which is consistent with the findings of K. Rubešová et al. [4] This is, in 

fact, greater than that experienced through the cation substitution method using the same 

dopant. This increase is due to bismuth depositing itself and segregating at the grain 

boundary as well as depositing itself at the grain. The unique thing about the addition 

process is that the doping element is allowed to deposit itself where it sees fit, as opposed 

to deliberately forcing it go a specific location.  

 

 

Figure 32 Temperature dependence of absolute seebeck coefficient for Ca3BiuCo4O9 
bismuth non-stoichiometric addition. 
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Bismuth deposits itself at the grain, due to a similar ionic size to calcium, causing a 

significant reduction in the electrical resistivity. [3,5] This can be shown via the PANalytical 

XPert-Pro X-Ray Diffraction which used Cu K-alpha radiation with 45 kV tension and 40 

mA of current at room temperature. Figure 33 is a graph of those results with figure 34 

focusing in on the (004) peak clearly showing a shift in peak to a lower angle with 

increasing bismuth. This means that the d-spacing between crystal planes must be 

increasing, indicating a growth in lattice size. This is an indicator that the bismuth still 

deposits itself into the lattice upon doping, even in a scenario where calcium atoms are 

not being removed. It can also be seen that there is a presence of bismuth at the grain 

boundary causing the segregation which manifests itself as an increase in the Absolute 

Seebeck Coefficient. [3] 

 

Figure 33 X-Ray Diffraction patterns of undoped and doped Ca3Co4O9. 
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Figure 34 (004) peak from X-Ray Diffraction patterns of undoped and doped Ca3Co4O9 
powders.

 

 

Bismuth acts as a filter at the grain boundary to reduce the carrier concentration thus 

enhancing the Seebeck Coefficient. [6] However, a decrease in carrier concentration 

usually leads to an increase in electrical resistivity. [7,8] Both electrical properties can be 

simultaneously improved with the help of its carrier mobility. [8] During substitution the 

bismuth deposits itself at the calcium site increasing the carrier mobility. [2] Since bismuth 

can deposit itself freely during addition some will still find its way to where there are any 

calcium deficiencies and deposit itself there into the grain once again increasing the 

carrier mobility, improving crystal texture and in turn reducing the electrical resistivity. [9] 

This is why there is an increase in Seebeck coefficient at the grain boundary without 

negatively affecting its electrical resistivity. [10] 
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However, there is an elegant balance to this method. Too large of a reduction to the 

carrier concentration will eventually have an overall deleterious effect since at a certain 

point this becomes too influential for the mobility to counterbalance. This is exactly why 

in the over doped samples the electrical resistivity has a drastic increase in electrical 

resistivity mirrored by a significant decrease in its Seebeck coefficient at high 

temperatures. [2] The growth at the grain boundary dominates causing too large of a 

reduction in carrier concentration. Highly doped materials tend to have a smaller mobility 

and a smaller mean free time. [10,11] The mean free time is the time it takes for successive 

impacts of particles and a smaller mean free time means more scattering and less 

mobility.  

Taking a closer look at the low temperature regime in figure 35 can further elucidate 

the scenario and create a clearer mental image. Figure 35 (a) gives a closer look at the 

electrical resistivity and 36 (b) gives a closer looks at the Absolute Seebeck Coefficients, 

both in the low temperature regime. It can be seen that there are three main groupings of 

the Absolute Seebeck Coefficients in figure 35 (b). The first is the baseline which has an 

expected low Seebeck coefficient. The second grouping contains all of the dopings, up to 

but not including the over doped samples, ranging from 139-149 µV/K. As stated earlier 

the increase in Seebeck coefficient is due to the introduction of bismuth to the grain 

boundary to decrease carrier concentration. Each successive increase in doping also 

increases the Seebeck coefficient within its respective grouping. The third grouping 

containing bismuth 0.35 and 0.4 dopings has the highest Seebeck coefficient in the low 

temperature regime which proves that even at these high concentrations the carrier 

concentration is still decreasing due to the bismuth at the grain boundary. Along with the 
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decrease in concentration there is also a decrease in mobility therefore it is at these 

concentrations where the negative effects of the over doping become evident. By 

examining figure 35 (a) it can be seen that it is at these concentrations that the electrical 

resistivities make a massive leap due to the decrease in mobility and in turn will decrease 

its overall power factor to the point where its large Seebeck coefficient cannot 

compensate for this reduction in electrical resistivity.  

 

Figure 35 (a) Temperature dependence of electrical resistivity and (b) absolute seebeck 
coefficient of Ca3BiuCo4O9 bismuth non-stoichiometric addition. 

 

A low electrical resistivity of 17 µΩm and a vastly enhanced Absolute Seebeck 

coefficient of 148 µV/K at 315 K give rise to a high power factor of 1.3 mW/mK2 which is 

over seven times that of the 0.17 mW/mK2 power factor from the undoped Ca3Co4O9, 

both shown in figure 36. It also achieves a power factor of ~0.94 mW/mK2 at 983 K which 

is three time larger than the 0.35 mW/mK2  power factor from the undoped Ca3Co4O9, 

allowing it to have one of the highest power factors across this temperature range. 
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Figure 36 Temperature dependence of the power factor for Ca3BiuCo4O9 bismuth non-
stoichiometric addition. 

 

5.3.3 Significance of Phonon Scattering and a small Mean Free Path (MFP) 

 The thermal conductivity is a less controllable parameter than the electrical 

properties, as stated earlier, due to the Wiedemann-Franz Law. This is reflected in the 

seemingly inconsistent jumps in thermal conductivity as the dopings are increased. The 

reason for this is the coupling of the electron thermal conductivity and the lattice or phonon 

thermal conductivity. The phonon thermal conductivity can be decreased by interface 

phonon scattering at the grain boundaries which results in a decrease in phonon mean 

free path. [1,10,12] As mentioned bismuth allows the Ca3Co4O9 to have a shorter mean free 

path. Also a smaller grain size means more grains and in turn more grain boundaries and 

a stronger phonon scattering at the boundaries. This is yet another reason why bismuth 
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is a good candidate for thermoelectric materials. Bismuth allows for grain growth in order 

to enhance the electrical properties but does not grow to where it will negatively affect the 

thermal properties. Defects such as impurities, point defects, and dislocations all 

contribute to scattering at the boundaries as well. [1,12,13,14] The power factor of bismuth 

0.4 was poor due to the grain growth and decrease in mobility and its thermal properties 

would most likely be poor as well due to a higher density considering the density increases 

with increasing amounts of bismuth. For this concentration only the electrical properties 

were tested.  

The doping of bismuth 0.01 was not enough to trigger the grain growth or have any 

kind of presence at the grain boundary. It also did not affect the sample’s density to a 

large extent so no significant results came from its thermal conductivity, causing it to be 

very similar to the conductivity of that of the baseline. The doping of bismuth 0.05 is where 

its first drop in thermal conductivity can be seen in figure 37, with bismuth 0.35 surprisingly 

having the lowest conductivity. A lower density allows for a higher rate of phonon 

scattering at the grain boundary which is responsible for its low thermal conductivity. 

Although it has such a low thermal conductivity, coupled with its poor power factor it would 

most likely not have a high figure of merit. 
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Figure 37 Temperature dependence of thermal conductivity for Ca3BiuCo4O9 bismuth 
non-stoichiometric addition. 

 

5.3.4 Figure of merit of bismuth non-stoichiometric addition doped Ca3Co4O9 

 The power factor of the Ca3BiuCo4O9 samples increases with each sample of 

increased bismuth concentration. This is due to the simultaneous decrease in electrical 

resistivity caused by its grain growth, texture improvement, and grain alignment along 

with its increase in the Absolute Seebeck Coefficient caused by the grain boundary 

segregation. This trend continues up to and includes bismuth 0.3 which has the highest 

power factor of ~0.94 mWm-1K-2 at 973 K. This is more than 3 times as high as the 

baseline which is ~0.29 mWm-1K-2 at 973 K. The two over doped samples of bismuth 0.35 

and 0.4 have a lower power factor than the baseline which is due to the drastic increase 

in their electrical resistivities as mentioned earlier.  
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The figure of merits shown in figure 38 demonstrate that the bismuth 0.3 doped sample 

at the low temperature regime, specifically at 373 K, starts at ~0.19 which is higher than 

the high temperature regime of the baseline and bismuth 0.01 at 1073 K, which are 0.15 

and 0.18 respectively. The bismuth 0.3 doped sample continues to increase with 

increasing temperature until it reaches a value of 0.45 at 973 K and 1073 K. This is 3 

times higher than the 0.15 value of the undoped sample at the same temperature. 

 

Figure 38 Temperature dependence of figure of merit for Ca3BiuCo4O9 bismuth non-
stoichiometric addition. 

 

5.4 Effects of processing parameters on electrical & thermal properties 

The concentration with the best figure of merit was analyzed to see if its 
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bismuth 0.3 sample were varied as the fabrication process was held constant. The two 

main experimental groups for this exercise were comparing cold pressing to hot pressing 

(hot pressing was used for the set previously discussed in this chapter). During the cold 

pressing procedure, pellets were pressed at 298 K for 10 minutes. The hot pressing 

procedure was held at a temperature of 423 K for 40 minutes. This allows the ability of a 

denser pellet since the heat can cause the forming of a liquid phase enabling the grains 

to better align themselves. As mentioned, a higher density will usually enhance the 

electrical properties but the thermal properties almost always suffer since they are directly 

related to the density. 

Within each pressing group, another parameter was varied in order to optimize 

their results. Under the cold pressing condition, pellets were pressed at 0.5 GPa, 0.75 

GPa and 1 GPa and under the hot pressing condition, pellets were pressed at 0.75 GPa 

and 1 GPa. Different pressures will once again impact the pellets’ density. Since the 

electrical and thermal properties are so intimately intertwined, mainly through their 

density’s, there is hope to find the perfect balance of enhanced electrical properties 

without adversely affecting the thermal and vice versa. By varying these pressing 

parameters the hope is that the electrical and thermal properties will indeed find that 

balance where the greatest figure of merit can be achieved.  

5.4.1 Electrical performance of Ca3Bi3Co4O9 varying ceramic processing parameters 

Increased pressing pressure yields a denser material and enhances the electrical 

resistivity. The only sample that does not follow suit with this trend is the sample hot 

pressed at 0.75 GPa which can be seen in figure 39. It actually has a lower electrical 

resistivity at high temperatures than the pellet that was cold pressed at 1 GPa. This is 
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due to the heat applied during the pressing process. The heat created a liquid phase of 

the bismuth in order to allow for better grain alignment giving it a higher density which 

lead to a lower electrical resistivity. The pellet hot pressed at 0.75 GPa has a density of 

4.25 g/cm3 while the cold pressed pellet pressed at 1 GPa has a density of 3.95 g/cm3. 

This shows that the temperature of the pressing process effects the pellets density much 

greater than the pressure at which it is pressed.  

 

 

Figure 39 Temperature dependence of electrical resistivity for Ca3Bi0.3Co4O9 bismuth 
non-stoichiometric addition with pressing parameter variation. 

 

The pellet pressed at 423 K with a pressure of 0.75 GPa achieves an electrical 

resistivity of ~17 µΩm at 315 K, same as the two pellets pressed at 1 GPa. They begin to 

differ at high temperatures where the pellet pressed with 0.75 GPa at 423 K and 1 GPa 

at 423 K both achieve an electrical resistivity of ~36 µΩm at 985 K. If suffices to say that 



Chapter 5: The Versatility of Bismuth through Non-stoichiometric Addition of Ca3Co4O9 

 

106 
 

by lowering the pressing pressure from 1 GPa to 0.75 GPa and maintaining the hot 

pressing parameters there was very little variation. This is evident in figure 40 where cross 

sectional SEM images were taken from fractured pellets. This shows little or no change 

in texture or alignment from the sample pressed at 1 GPa image (d) to the one pressed 

at 0.75 GPa image (e). 

 

Figure 40 SEM cross-sectional view of undoped Ca3Co4O9 and doped Ca3BiuCo4O9 with 
u=0.0, 0.1, 0.2, 0.3, 0.3 (0.75 GPa), and 0.35. 

 

The Absolute Seebeck coefficient is very much an intrinsic value meaning there 

were no changes to the Seebeck coefficient since the chemistries were not varied in any 

way. Since the samples’ Seebeck coefficients do not change the power factor will solely 

depend on the variances in the samples’ electrical resistivities. Therefore the three 

highest power factors are found in the two samples that were pressed at 1GPa and the 

one hot pressed with 0.75 GPa of pressure; all having a power factor ranging from 0.9-

0.93 mW/mK2 at 973 K which can be seen from figure 41.  
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Figure 41 Temperature dependence of power factor for Ca3Bi0.3Co4O9 bismuth non-
stoichiometric addition with pressing parameter variation. 

 

Pellets were pressed for these three samples in order to analyze their thermal 

properties and compare their figure of merits. The figure or merit is already known for 

bismuth 0.3 hot pressed with 1 GPa so that will be used as the reference for their thermal 

conductivities. The sample hot pressed at 0.75 GPa is significantly lower than the two 

pressed at 1 GPa shown in figure 42. This is due to the lower pressing pressure leading 

to a lower density. The lower density creates porosity causing more phonon scattering 

events at the boundaries thus reducing the thermal conductivity. This density correlation 

is demonstrated again with the cold pressed sample having a lower thermal conductivity 

than the sample with the higher density due to hot pressing. As mentioned, the sample 
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cold pressed at 1 GPa had a density of 3.95 g/cm3 and the sample hot pressed at 1 GPa 

had a density of 4.2 g/cm3. 

 

Figure 42 Temperature dependence of thermal conductivity for Ca3Bi0.3Co4O9 bismuth 
non-stoichiometric addition with pressing parameter variation. 

 

 The figure of merit of the sample with the lowest thermal conductivity was found 

and compared with the set discussed earlier in this chapter. Even though its electrical 

properties were comparative to that of hot pressed 1 GPa, the thermal conductivity of the 

pellet hot pressed at 0.75 GPa is significantly lower causing it to have a higher ZT than 

the previous sample with the best results. Its figure of merit crests 0.5 in the high 

temperature regime with 0.52 at 973 K and 1073 K respectively. This 0.5 mark is a 

milestone as mentioned earlier since it now allows Ca3Co4O9 to be competitive with 

materials such as SiGe. These results are shown in figure 43. 
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Figure 43 Temperature dependence of figure of merit for Ca3Bi0.3Co4O9 bismuth non-
stoichiometric addition with pressing parameter variation. 

 

5.5 Summary of results for bismuth non-stoichiometric addition of Ca3Co4O9 

 By comparing the optimal Ca3Bi0.3Co4O9 bismuth non-stoichiometric addition 

results to the optimal Ca2.8Bi0.2Co4O9 bismuth cation substitution results it is evident that 

with this particular dopant, addition proves to be the preferred method. Bismuth deposits 

at the grain interior thus improving the crystal texture and aiding in grain growth along 

with segregating at the grain boundary. This is the first time the grain boundary 

segregation has been observed and investigated. It was shown from the X-Ray Diffraction 

of the samples’ powders that bismuth enters the lattice and increases the lattice 

parameters upon using the non-stoichiometric addition method.  
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  After varying pressing parameters bismuth’s optimization was found at the bismuth 

0.3 concentration with the pressing parameters set to 0.75 GPa for 40 minutes at 423 K. 

This particular sample achieves a power factor of ~0.90 mW/mK2 and ~0.81 mW/mK2 and 

a thermal conductivity of 1.71 W/mK and 1.74 W/mK both at 973 and 1073 K respectively. 

This allows for a high dimensionless figure of merit of 0.52 at 973 K and 1073 K 

respectively, which are both higher than any reportings on any polycrystalline dopants. At 

bismuth 0.35 the sample becomes over doped and its electrical properties suffer 

significantly causing over a 60% decrease in its dimensionless figure of merit. Figure 44 

shows a drawing to demonstrate where the bismuth deposits and how it effects the grain 

alignment. The light red shows the presence of bismuth in the grains and the dark red line 

indicates the bismuth enriched grain boundaries. 

 The motivation behind this set was to segregate at the grain boundary exclusively. 

As this chapter has detailed this was not the case. Due to the ionic size of bismuth being 

as close as it is to that of calcium, it was able to replace any calcium deficiencies thus 

doping the lattice. This prompts the idea that in order to assure the dopant will segregate 

at the grain boundary it is crucial to choose a dopant with a significantly large enough 

ionic radius that under no circumstance will it have the ability to replace the calcium ions. 

This sparked the motivation to use barium as a dopant in the next chapter considering 

barium has an ionic radius of 149 pm compared with calcium’s ionic radius of 117 pm. 
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Figure 44 Microstructure drawing of undoped Ca3Co4O9 and Ca2.7Bi0.3Co4O9. 

 

 

  



Chapter 5: The Versatility of Bismuth through Non-stoichiometric Addition of Ca3Co4O9 

 

112 
 

5.6 References 

1  Marat Gunes, Macit Ozenbas. Effect of grain size and porosity on phonon scattering 
enhancement of Ca3Co4O9. Journal of Alloys and Compounds Vol.626, pp.360-367, 
2015. 

2  Boyle, Cullen; Calvillo, Paulo; Chen, Yun; Barbero, Ever J.; McIntyre, Dustin. Grain 
boundary segregation and thermoelectric performance enhancement of bismuth doped 
calcium cobaltite. Journal of the European Ceramic Society 36(3):601-607 
Elsevier 2016 0955-2219 

3  Masashi Mikami, Kanju Chong, Yuzuru Miyazaki, Tsuyoshi Kajitani, Takahiro Inoue, 
Satoshi Sodeoka, and Ryoji Funahashi. Bi-Substitution effects on crystal structure and 
thermoelectric properties of Ca3Co4O9 single crystals. Japanese Journal of Applied 
Physics. Vol.45, No.5A, pp.4131-4136, 2006. 

4  K. Rubešová, T. Hlásek, V. Jakeš, Š. Huber, J. Hejtmánek, D. Sedmidubský. Effect of 
a powder compaction process on the thermoelectric properties of Bi2Sr2Co1.8Ox 
ceramics. Journal of the European Ceramic Society, Vol.35, pp.525-531, 2015. 

5  Sajid Butt, Yaoyu Ren, Muhammad Umer Farooq, Bin Zhan, Rizwan ur Rahman Sagar, 
Yuanhua Lin, Ce-Web Nan. Enhanced thermoelectric performance of heavy-metals (M: 
Ba, Pb) doped misfit-layered ceramics: (Ca2-xMxCoO3)0.62 (CoO2). Energy Conversion 
and Management. Vol.83, pp.35-41, 2014. 

6  Calvillo, Paulo. Chen, Yun. Boyle, Cullen. Barnes, Paul. N. Song, Xueyan. 
Thermoelectric performance enhancement of calcium cobaltite through barium grain 
boundary segregation. Inorganic Chemistry. American Chemical Society Publications. 
September 11, 2015. 

7  Tao Wu, Trevor A. Tyson, Haiyan Chen, Jianming Bai, Hsin Wang and Cherno Jaye. A 
structural phase transition in Ca3Co4O9 Associated with enhanced high temperature 
thermoelectric properties. Cornell University Library. April 15, 2012. 

8  T. Takeuchi, T. Kondo, K. Soda, U. Mizutani, R. Funahashi, M. Shikano, S. Tsuda, T. 
Yokoya, S. Shin, T. Muro. Electronic structure and large thermoelectric power in 
Ca3Co4O9. Journal of Electron Spectroscopy and Related Phenomena. Vol.137-140, 
pp.595-599, 2004. 

9  T. Sun, H. H. Hng, Q. Y. Yan, and J. Ma. Enhanced high temperature thermoelectric 
properties of Bi-doped c-axis oriented Ca3Co4O9 thin films by pulsed laser deposition. 
Journal of Applied Physics. Vol.108, 2010. 

10 Guangkun Ren, Jinle Lan, Chengcheng Zeng, Yaochun Liu, Bin Zhan, Sajid Butt, Yuan-
Hua Lin, and Ce-Wen Nan. High performance oxides-based thermoelectric materials. 
Journal of Minerals, Metals & Materials Society. Vol.67, No.1, pp.211-221, 2015. 

11 Ruoming Tian, Tianshu Zhang, Dewei Chu, Richard Donelson, Li Tao, Sean Li. 
Enhancement of high temperature thermoelectric performance in Bi, Fe co-doped 
layered oxide-based material Ca3Co4O9+δ. Journal of Alloys and Compounds. Vol.615, 
pp.311-315, 2014. 

                                                            



Chapter 5: The Versatility of Bismuth through Non-stoichiometric Addition of Ca3Co4O9 

 

113 
 

                                                                                                                                                                                                
12 Susumu Fujii and Masato Yoshiya. Manipulating thermal conductivity by interfacial 

modification of misfit-layered cobaltites Ca3Co4O9. Journal of Electronic Materials, 
Vol.45, No.3, pp.1217-1226, 2016 

13 Lijun Wu, Qingping Meng, Christian Jooss, Jin-Cheng Zheng, H. Inada, Dong Su, Qiang 
Li, and Yimei Zhu. Origin of phonon glass-electron crystal behavior in thermoelectric 
layered cobaltite. Advanced Functional Materials. Vol.23, pp.5728-5736, 2013. 

14 Chong Xiao, Jie Xu, Boxiao Cao, Kun Li, Mingguang Kong, and Yi Xie, Solid-solutioned 
homojunction nanoplates with disordered lattice: a promising approach toward “phonon 
glass electron crystal” thermoelectric materials. Journal of the American Chemical 
Society. Vol.134, pp.7971-7977, 2012. 

15 Haoshan Hao, Limin zhao, and Xing Hu. Microstructure and thermoelectric properties 
of Bi- and Cu-substituted Ca3Co4O9 oxides. Journal of Materials Science Technology., 
Vol.25, No.1, pp.105-108, 2009. 

16 G. Constantinescu, Sh. Rasekh, M. A. Torres, M. A. Madre, A. Sotelo, J. C. Diez. 
Improvement of thermoelectric properties in Ca3Co4O9 ceramics by Ba doping. Journal 
of Materials Science., Vol.26, pp.3466-3473, 2015. 

17 Majid Abdellahi, Hamid Ghayour, Maryam Bahmanpour. Effect of process parameters 
and synthesis method on the performance of thermoelectric ceramics: A novel 
simulation. Ceramics International. Vol.41, pp.6991-6998, 2015. 

18 Kasper A. Borup, Johannes de Boor, Heng Wang, Fivos Drymiotis, Franck Gascoin, 
Xun Shu, Lidong Chen, Mikhail I. Fedorov, Eckhard Müller, Bo B. Iverson, and G. 
Jeffrey Snyder. Measuring thermoelectric transport properties of materials. Energy & 
Environmental Science. Vol.8, pp.423-435, 2015. 

19 Haoshan Hao, Qinglin He, Changqing Chen, Hongwei Sun, and Xing Hu. Textured 
structure and anisotropic thermoelectric properties of Ca2.7Bi0.3Co4O9 oxide prepared 
by conventional solid-state reaction. International Journal of Modern Physics B, Vol.23, 
No.1, pp.87-95, 2009. 

20 M. Sabarinathan, M. Omprakash, S. Harish, M. Navaneethan, J. Archana, S. 
Ponnusamy, H. Ikeda, T. Takeuchi, C. Muthamizhchelvan, Y. Hayakawa. Enhancement 
of power factor by energy filtering effect in hierarchical BiSbTe3 nanostructures for 
thermoelectric applications. Applied Surface Science. Vol418, pp.246-251, 2017. 

21 Zhi-Lei Wang, Takahiro Akao, Tetsuhiko Onda, Zhong-Chun Chen. Microstructure and 
thermoelectric properties of Bi-Sb-Te bulk materials fabricated from rapidly solidified 
powders. Scripta Materialia. Vol.136, pp.111-114, 2017. 

22 Kenji Tanabe, Ryuji Okazaki, Hiroki Taniguchi, and Ichiro Terasaki. Optical conductivity 
of layered calcium cobaltate Ca3Co4O9. Journal of Physics: Condensed Matter. Vol.28, 
2016. 

23 Zunyi Tian, Xiaohong Wang, Jun Liu, Zhongjin Lin, Yangsen Hu, Yigui Wu, Chao Han, 
Zhiyu Hu. Power factor enhancement induced by Bi and Mn co-substitution in NaxCoO2 
thermoelectric materials. Journal of Alloys and Compounds. Vol.661, pp.161=167, 
2016. 



Chapter 5: The Versatility of Bismuth through Non-stoichiometric Addition of Ca3Co4O9 

 

114 
 

                                                                                                                                                                                                
24 Siwen Li, Ryoji Funahashi, Ichiro Matsubara, Kazuo Ueno, Satoshi Sodeoka, and 

Hiroyuki Yamada. Synthesis and Thermoelectric Properties of the New Oxide Materials 
Ca3-xBixCo4O9+δ (0.0<x<0.75). American Chemical Society. Chemistry of Materials. 
Vol.12, pp.2424-2427, 2000. 

25 Ankam Bhaskar, Z.-R. Lin, Chia-Jyi Liu. Thermoelectric properties of Ca2.95Bi0.05Co4-

xFexO9+δ (0<x<0.15). Energy Conversion and Management Vol.76, pp. 63-67, 2013. 



Chapter 6: Non-stoichiometric Addition of Barium to Enhance Seebeck Coefficient of Ca3Co4O9 

115 
 

Chapter 6: 

Non-stoichiometric Addition of Barium to 

Enhance Electrical Power Factor of Ca3Co4O9 
 

6.1 Background and motivation for Barium as a dopant in Ca3Co4O9 

Barium was identified in 1774 but it wasn’t until 1808 that English chemist Sir 

Humphry Davy was able to isolate it through electrolysis. [1] Like most elements barium 

was named after a Greek word and due to its high mass it was named after the word 

barys, meaning heavy. [1] Barium is considered one of the alkaline-earth metals and is 

soft and metallic. [2] It reacts with the oxygen in air, forming barium oxide, BaO, which is 

why it is never found free in nature. [1] Barium has also been reported on in the past by 

Zhang et al. and Lu et al. stating that barium has improved the thermoelectric properties 

by decreasing their electrical resistivities and thermal conductivities. [3] Barium is also 

known to have a very low electrical resistivity. Zhang et al. reported a ZT of 0.2 at 973 K 

for Ca3Co4O9 doped with barium using the cation substitution method. [4] Using the cation 

substitution as well, Constantinescu et al. reported a power factor of 0.29 mW/mK2 for 

barium doped Ca3Co4O9. [5] All reports on barium to date utilize the cation substitution 

method. This chapter details the investigation of doping Ca3Co4O9 with barium by means 

of the non-stoichiometric addition method in order to segregate the grain boundary 

knowing that barium’s 149 ρm ionic radius will not allow it to deposit itself in place of the 

114 ρm calcium ions should there be any vacancies. 
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6.2 Experimental Procedure 

Ca3BauCo4O9 powders where u=0.0, 0.03, 0.05, and 0.07 were obtained through a 

sol-gel route in which non-stoichiometric ratios of Ca(NO3)2•4H2O, Co(NO3)2•6H2O and 

Ba(NO3)2 were mixed in deionized water. Ethylene glycol and polyethylene glycol were 

used to aid polymerization of the solution and vary grain size. [6] Lastly, nitric acid was 

added to induce nitrate salts decomposition and facilitate new compound formation. [7] 

The liquid solution was then submerged in a silicone oil bath on a hot plate and 

mechanically stirred at 353 K for 3 hours to achieve the sol-gel state. The sol-gel was 

then distributed to ceramic crucibles loosely covered with aluminum foil and put into a box 

furnace heated to 773 K with a ramp rate of 10 K per minute and held for 2 hours before 

being cooled at a rate of 10 K per minute. Holding the temperature here, at 773 K, for the 

allotted time will ensure that any inorganic material is removed from the material. The 

ashes were then suspended in ethanol and ball milled for 20 minutes alternating between 

1 minute of milling and 1 minute of resting in order to aid in the dissipation of heat. The 

powders were deposited in a tubular furnace where they were calcined in an oxygen rich 

induced environment with a ramp rate of 10 K per minute and held at 973 K for 4 hours, 

to achieve the Ca3Co4O9 crystal lattice. The powders were then cooled down to room 

temperature at a rate of 10 K per minute. 

Two pellets were pressed, one to test its electrical properties and the other for its 

thermal properties. The calcined powders were pressed uniaxially with 1 GPa of force 

and held for 10 minutes at 298 K. The pellets’ densities were obtained before they were 

put in to a tubular furnace to be sintered. The sintering process removes any extra 

moisture the pellet may contain and assures proper grain alignment. Pellets were sintered 
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in an oxygen rich induced environment with a ramp rate of 10 K per minute and held at 

1233 K for 9 hours. It was then cooled back to room temperature at a rate of 4 K per 

minute and once again the densities were taken. Pellets were cut into a 2 mm x 3.5 mm 

x 9 mm rectangular shapes and inserted into a Linseis LSR 3-Seebeck machine, 

subjected to a low pressure helium, He, environment where the pellet’s electrical 

resistivity and Absolute Seebeck Coefficient were simultaneously determined by means 

of a dc four-probe method. Since helium is an inert gas it will not react or interfere with 

the measurement. A second pellet was cut along a different axis and inserted into the 

Linseis LFA 1000 machine to test its thermal conductivity. The pellet was cut to be 2 mm 

thick and polished to a diameter of 11-13 mm. Any less than 11 mm and there would be 

room for heat to escape the holder, any more than 13 mm and the pellet would be too 

large for the holder. The thermal conductivity is calculated by the equation 

K=λCpρm   (13) 

Where λ is the thermal diffusity in meters squared per seconds (m2/s), Cp is the specific 

heat capacity in joules per kilogram kelvin (J/kg•K), and ρm is the mass density in grams 

per centimeter cubed (g/cm3). As stated in the first section, these are the three values 

needed in order to obtain the materials’ ZT value. For barium addition, four different 

chemistries were used. The first chemistry is the baseline of Ca3Co4O9 and the other 

three are dopings of barium 0.03, 0.05, and 0.07.   
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6.3 Effect of barium’s grain boundary segregation on the power factor 

6.3.1 Increased electrical properties of Ca3Co4O9 through Ba addition  

Low doping levels of barium demonstrate a higher electrical resistivity than the 

undoped sample shown in figure 45. However, unlike the bismuth samples, the barium 

samples show a trend that maintains a low electrical resistivity through all temperature 

ranges. This causes the sample with the low doping of Ba 0.03 to achieve a lower 

electrical resistivity than the undoped sample at mid and high temperature ranges. This 

is due to barium being an alkaline-earth metal which acts more like a semi-conductor than 

a metal. [8] The Ca3Co4O9 material demonstrates an immediate drop in electrical resistivity 

at low temperatures with higher levels of barium doping. The sample Ca3Ba0.5Co4O9 

demonstrates a room temperature resistivity of ~35 µΩm which is less than half that of 

the baseline sample. As the baseline increases to almost 90 µΩm at 1081 K the sample 

with optimal barium doping only increases to around 45 µΩm which once again is 50% of 

the baseline.   
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Figure 45 Temperature dependence of electrical resistivity for Ca3BauCo4O9 barium 
non-stoichiometric addition 

 

Another benefit of using barium as a dopant is its ability to achieve a high Seebeck 

coefficient in the low to mid temperature range shown in figure 46. It was mentioned in 

the previous chapter that bismuth causes an increase in the Absolute Seebeck coefficient 

at room temperature to a saturation level around 150 µV/K. Barium betters this by having 

a room temperature Absolute Seebeck coefficient just shy of 170 µV/K, in all doping 

levels, which is one of the highest reported for this material. [9] This “dramatic increase” 

as it was referred to by Calvillo et al. has been attributed to the barium segregating at the 

Ca3Co4O9 grain boundaries. [10] The barium deposited at the grain boundary acts as a 

filter for the carrier concentration causing the enhancement in the absolute Seebeck 

coefficient at room temperature. 
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Figure 46 Temperature dependence of absolute seebeck coefficient for Ca3BauCo4O9 
barium non-stoichiometric addition. 

 

 The low electrical resistivity of ~35 µΩm coupled with the high Absolute Seebeck 

coefficient of 167 µV/K, both at 315 K, combine to achieve a high power factor of 0.82 

mW/mK2 at 315 K demonstrated in figure 47. These two parameters play a very similar 

role through all temperature ranges. The Absolute Seebeck coefficient slowly increases 

with temperature as the electrical resistivity slowly increases as well to obtain its highest 

power factor of 0.85 mW/mK2 at 810 K. Both are achieved with the same concentration 

of barium 0.05 and are over two times greater than the power factor of the baseline at the 

respective temperatures. 
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Figure 47 Temperature dependence of power factor for Ca3BauCo4O9 barium non-
stoichiometric addition. 

 

6.3.2 Microstructure and nanostructure of Barium doped Ca3Co4O9 

Figure 48 shows the cross-sectional SEM view for surface fractured pellets. As the 

barium doping concentration increases from image (a) to (c) the grain alignment vastly 

improves. Image (d) demonstrates the misalignment of grains in the over doped sample. 

This shows that just like bismuth, barium has the ability to improve crystal texture through 

grain alignment as well. The SEM image of the optimal concentration of Ca3Ba0.5Co4O9 

illustrated in image (c) of figure 48 clearly demonstrates the vastly improved grain 

alignment from the pure Ca3Co4O9 illustrated in image (a). However, unlike bismuth, 

barium does not trigger near as much grain growth allowing the grains to compact more 

easily giving it a much higher density than previous chemistry sets. The optimum bismuth 
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cation substitution density was 3.95 g/cm3, the bismuth non-stoichiometric addition 

density was 4.20 g/cm3 whereas the density of the optimal barium concentration is 4.51 

g/cm3. 

 

Figure 48 SEM cross-sectional view of undoped Ca3Co4O9 and doped Ca3BauCo4O9 
with u=0.0, 0.01, 0.05, and 0.1. [10] 

 

The samples were investigated by use of a transmission electron microscope TEM 

as can be seen in figure 49. Image (a) shows two grains A and B where 12 different EDS 

data points were taken. For this image a low magnification TEM image was taken. Table 

2 details the atom percentage at each location demonstrating proof that barium is not 

found at locations 1-4 and 9-12 which were all taken from inside the grain itself. In fact, 

barium only deposits within the grain boundary which reinforces its ability to segregate at 
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the boundary. Image (b) is a high resolution TEM image showing that there was no 

secondary phase that had formed at the grain boundary. Images (c) and (e) show the 

electron diffraction collected from grain A and B respectively while image (d) shows the 

electron diffraction collected at the grain boundary between grains A and B. 

 

Figure 49 Diffraction contrast images and the selected area diffraction patterns from the 
Ca3Ba0.05Co4O9 sample. [10] 
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Table 2 Chemical Compositions of two neighboring grains A (spots 1, 2, 3, and 4) and B 
(spots 9, 10, 11, and 12) and at the grain boundary between (spots 5, 6, 7, and 8) 

shown in figure 42. [10] 

 

 

6.4 Summary of electrical properties of Barium non-stoichiometric addition of 

Ca3Co4O9 

 Barium has proven to be a great candidate for a thermoelectric material based on 

these results and the ones from the literature. Barium’s ability to deposit itself at the grain 

boundary and enhance the Absolute Seebeck coefficient while maintaining a low 

resistivity in all temperature ranges vastly improves the efficiency of the material. This is 

the first reporting on barium doping using the non-stoichiometric addition method. The 

non-stoichiometric addition method also proves beneficial despite not preserving the 

stoichiometry. Furthermore, there were no secondary phases present at the grain 

boundary despite this lack of stoichiometric preservation. This method in combination with 

barium’s ionic size help to assure that barium will deposit itself at the grain boundary in 

order to create this segregation to enhance the Absolute Seebeck coefficient. This allows 

barium doped Ca3Co4O9 to have enhanced electrical properties and achieve a power 

factor of 0.82 mW/mK2 at 315 K and 0.84 mW/mK2 at 910 K, proving to hold great promise 

in this field. Figure 50 shows a drawing to demonstrate where the barium deposits and 
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how it effects the grain alignment. Notice there is no presence of barium at the grain 

interior only at the grain boundary indicated in yellow. 

 

Figure 50 Microstructure drawing of undoped Ca3Co4O9 and Ca3Ba0.05Co4O9. 

 

 Seeing both bismuth and barium independently achieve impressive thermoelectric 

results motivates the question of whether both dopants can be used in tandem. The goal 

would be to implement a dual dopant scenario in order to achieve dual benefits of bismuth 

improving the crystal texture through grain alignment and grain growth, along with both 

bismuth and barium segregating at the grain boundary to enhance the Absolute Seebeck 

coefficient. This can possibly further optimize the thermoelectric performance of the 

Ca3Co4O9 and is the motivation for the next three chapters. 
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Chapter 7: 

Non-Stoichiometric dual doping of Bismuth and 
Barium 

 

7.1 Motivation of introducing dual dopants using non-stoichiometric addition 

This has been the first approach of dual doping to tune the lattice of the Ca3Co4O9 

and the grain boundary simultaneously. It is also the first approach of dual doping using 

the non-stoichiometric addition approach. After studying the effects of the non-

stoichiometric addition of barium it was found that the dopant deposits itself at the grain 

boundary enhancing the Absolute Seebeck Coefficient. That coupled with the fact that 

bismuth deposits itself into the lattice to effect the grain growth and at the grain boundary 

to enhance the Absolute Seebeck coefficient allows for the possible simultaneous 

enhancement of both the electrical resistivity and the Absolute Seebeck Coefficient 

beyond what the other chemistries were capable of individually.  

The next three chapters discuss the dual doping of two elements into the Ca3Co4O9 

baseline. Two methods were investigated in order to compare the effects of cation 

substitution versus non-stoichiometric addition. The two chemicals being used to dope 

the Ca3Co4O9 were bismuth and barium. The non-stoichiometric addition of barium as a 

doping agent was studied and analyzed in order to determine its efficiency. Barium was 

found to enhance the Absolute Seebeck coefficient greatly at room temperature along 

with maintaining a low electrical resistivity throughout all temperature ranges due to its 

semi-conductive nature. Its Absolute Seebeck coefficient at low temperatures exceeded 
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that of Bismuth’s with Bismuth yielding a lower electrical resistivity. From this the two 

dopings were used to analyze the efficiency of the bismuth and barium working in tandem.  

This coupling allows the Bismuth to be utilized at the grain to trigger its growth and 

alignment in order to obtain a low electrical resistivity while benefiting from having both 

the bismuth and barium deposit themselves at the grain boundary in order to increase the 

Absolute Seebeck coefficient. Although barium has a higher Absolute Seebeck coefficient 

than bismuth at room temperature, bismuth’s Absolute Seebeck coefficient rises more 

sharply causing them to be comparable at high temperatures. Barium’s semi-conductive 

nature was also utilized to help maintain bismuth’s already low resistivity at room 

temperature. 

Chapter seven explores the dual doping of bismuth non-stoichiometric addition and 

barium non-stoichiometric addition in tandem. Individually both were the optimal methods 

for their respective sets. This set was not only compared with the Ca3Co4O9 baseline but 

also to the non-stoichiometric addition method of bismuth doped alone. This was the 

compare their dual nature directly to a set with similar chemistry. The addition of bismuth 

0.3 was the optimal concentration; however, since the sample contains no vacancies it 

has the potential to be over doped much quicker, so bismuth 0.2 was used as the starting 

concentration. 

7.2 Experimental Procedure 

Ca3BiuBawCo4O9 powders, where u=0.0 & 0.2 and w=0.02, 0.05, 0.07 were obtained 

through a sol-gel route in which non-stoichiometric ratios of Ca(NO3)2•4H2O, 

Co(NO3)2•6H2O, Bi(NO3)2•5H2O and Ba(NO3)2 were mixed in deionized water. Ethylene 
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glycol and polyethylene glycol were used to aid polymerization of the solution and to aid 

in particle size. [1] Lastly, nitric acid was added to induce nitrate salts decomposition and 

facilitate new compound formation. [2]  

The liquid solution was then submerged in a silicone oil bath on a hot plate and 

mechanically stirred at 353 K for 3 hours to achieve the sol-gel state. The sol-gel was 

then distributed to ceramic crucibles loosely covered with aluminum foil and put into a box 

furnace with a ramp rate of 10 K per minute and held at 773 K for 2 hours then cooled at 

10 K per minute. Holding the temperature here, at 773 K, for the allotted time will ensure 

that any inorganic material is removed from the material. The ashes were then suspended 

in ethanol and ball milled for 20 minutes alternating between 1 minute of milling and 1 

minute of resting, in order to aid in the dissipation of heat. The powders were deposited 

in a tubular furnace where they were calcined in an oxygen rich induced environment with 

a ramp rate of 10 K per minute and held at 973 K for 4 hours, to achieve the Ca3Co4O9 

crystal lattice. The powders were then cooled down to room temperature at a rate of 10 

K per minute. 

Two pellets were pressed, one to test its electrical properties and the other for its 

thermal properties. The calcined powders were pressed uniaxially with 1 GPa of force 

and held for 10 minutes at 298 K. The pellets’ densities were obtained before they were 

put in to a tubular furnace to be sintered. The sintering process removes any extra 

moisture the pellet may contain and assures proper grain alignment. Pellets were sintered 

in an oxygen rich induced environment with a ramp rate of 10 K per minute and held at 

1233 K for 9 hours then cooled at a rate of 4 K per minute and once again the densities 

were taken. Pellets were cut into a 2 mm x 3.5 mm x 9 mm rectangular shapes and 
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inserted into a Linseis LSR 3-Seebeck machine, subjected to a low pressure helium, He, 

environment where the pellet’s electrical resistivity and Absolute Seebeck Coefficient 

were simultaneously determined by means of a dc four-probe method. Since helium is an 

inert gas it will not react or interfere with the measurement. A second pellet was cut along 

a different axis and inserted into the Linseis LFA 1000 machine to test its thermal 

conductivity. The pellet was cut to be 2 mm thick and polished to a diameter of 11-13 mm. 

Any less than 11 mm and there would be room for heat to escape the holder, any more 

than 13 mm and the pellet would be too large for the holder.. The thermal conductivity is 

calculated by the equation 

K=λCpρm   (13) 

Where λ is the thermal diffusity in meters squared per seconds (m2/s), Cp is the specific 

heat capacity in joules per kilogram kelvin (J/kg•K), and ρm is the mass density in grams 

per centimeter cubed (g/cm3). As stated in the first section, these are the three values 

needed in order to obtain the materials’ ZT value. Bismuth non-stoichiometric addition 

has been reported on and a concentration of 0.2 was used and held constant throughout 

the varied barium dopings. A non-stoichiometric addition method was used for varying 

the doping concentrations of barium. Their chemistries are as follows: Ca3BiuBawCo4O9 

where u = 0.0, 0.2 and w = 0.0, 0.002, 0.02, 0.05, and 0.07. 

7.3 Finding a balance between carrier mobility & concentration through tuning 

dopant concentration 

Figure 51 shows that at low temperatures the electrical resistivities of the bismuth 

barium dual doped samples were higher than that of bismuth 0.2 non-stoichiometric 
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sample alone. As the temperature increased this gap closed drastically with the 

Ca3Bi0.2Ba0.02Co4O9 dual doped chemistry coming in just less than 10 µΩm higher than 

the Ca3Bi0.2Co4O9 nonstoichiometric chemistry at 1080 K. This is largely due to the semi-

conductor characteristics that barium contributes to this chemistry. [3] As bismuth acts like 

a metal and its electrical resistivity increases over temperature, the barium concentration 

in the dual doped sample contributes to act more like a semi-conductor decreasing the 

electrical resistivity with increasing temperature, allowing the gap to close. [3,4] The 

Ca3Bi0.2Co4O9 non-stoichiometric chemistry shown in figure 51 is ~5 µΩm lower than its 

Ca2.8Bi0.2Co4O9 cation substitution counterpart from chapter 4 across the whole 

temperature spectrum. However, the electrical resistivities of the dual doped samples 

were over 5 times larger than the Ca3Bi0.2Co4O9 non-stoichiometric chemistry. 
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Figure 51 Temperature dependence of electrical resistivity for Ca3BiuBawCo4O9 bismuth 
& barium non-stoichiometric addition where u=0.0, 0.02, 0.05, and 0.07. 

 

Such an increase in electrical resistivity has to do with the over saturation of 

dopants in the sample. The addition of both dopants simultaneously proved to over dope 

the sample at low concentrations considering both dopants are predominantly depositing 

themselves at the grain boundary. This most likely created a situation indicative of an 

over doping at a much lower concentration than expected. Due to the reduction in 

electrical resistivity there is either a drastic deficiency in carrier mobility, carrier 

concentration or both. [5,6,7,8,9,10] Another probability is the formation of a secondary phase 

at the grain boundary. 
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Having both bismuth and barium deposit themselves at the grain boundary 

simultaneously has proven to enhance the Absolute Seebeck coefficient beyond the 

capabilities of bismuth non-stoichiometric addition alone as is evident from figure 52. 

Barium’s semi-conductor characteristics allow the electrical resistivity to maintain a low 

value all the way up to the high temperatures but the Absolute Seebeck coefficient now 

suffers in this same temperature range. This decrease reiterates an increase in carrier 

concentration at the grain boundary causing the reduced Absolute Seebeck Coefficient. 

[5,6,11,14,12]  

 

Figure 52 Temperature dependence of absolute seebeck coefficient for 
Ca3BiuBawCo4O9 bismuth & barium non-stoichiometric addition where u=0.0, 0.02, 0.05, 

and 0.07. 
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For the electrical resistivity to decrease at high temperatures the way it 

demonstrates here, there must have been an exceptional carrier mobility increase in order 

to offset the carrier concentration decrease. [5,6,7, 10] Having both the bismuth and barium 

deposit themselves at the grain boundary proved to decrease the carrier concentration. 

[5,6,12] This is normally responsible for increasing the Absolute Seebeck coefficient but was 

inferior compared to the drastic decrease in mobility causing a slower increase in the 

Absolute Seebeck coefficient. This shows that one of the dopants were forced into the 

lattice. In this case any competition at the grain boundary leads to barium depositing at 

the boundary, due to its ionic size and inability to insert itself into the lattice. This leaving 

bismuth to go to the grain interior over doping the lattice which is demonstrated through 

their Absolute Seebeck coefficients in figure 52. [12,13,14]  

High electrical resistivity could not offset the enhanced Absolute Seebeck 

coefficient which then eventually lead to a power factor that was lower in the dual dopant 

chemistries in comparison with the non-stoichiometric addition of bismuth. This can be 

seen in figure 53 where the dual doped samples are only around 25% of the bismuth 

doped sample at low temperatures. 
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Figure 53 Temperature dependence of power factor for Ca3BiuBawCo4O9 bismuth & 
barium non-stoichiometric addition where u=0.0, 0.02, 0.05, and 0.07. 

 

7.4 Summary of results for doping Ca3Co4O9 using dual dopants Bismuth & 

Barium through non-stoichiometric addition 

The dual doping of bismuth and barium through non-stoichiometric addition to the 

Ca3Co4O9 oxide was successful in enhancing the room temperature Absolute Seebeck 

Coefficient to ~160 µV/K. However, due to over doping, the electrical resistivity suffered 

and yielded a much greater value across all temperatures than it did for the optimal 

samples of both the bismuth and barium non-stoichiometric addition methods individually. 

As seen in figure 53 the Ca3Bi0.2Co4O9 sample had a power factor of 1.23 mW/mK2 at 

315 K which is about 4 times greater than the 0.33 mW/mK2 power factor that the optimal 
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dual doped sample achieved at the same temperature. At 982 K the Ca3Bi0.2Co4O9 

sample achieves a power factor of 0.89 mW/mK2 which is only about 50% higher than the 

0.57 mW/mK2 power factor the dual doped sample achieved at the same temperature. 

Despite having a higher electrical resistivity, the presence of the barium was able to 

maintain its value across all temperatures which explains why the power factor was 25% 

that of the optimal chemistry used in the bismuth non-stoichiometric addition set at low 

temperatures and about 65% of the optimal chemistry at high temperatures. For this 

reason more chemistries and concentrations of this set were tested to find the proper 

doping levels in order to achieve the perfect balance in carrier mobility and carrier 

concentration to enhance the Absolute Seebeck coefficient while achieving and 

maintaining a low electrical resistivity. 
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Chapter 8: 

Dual Doping Ca3Co4O9 through Cationic 
Substitution & Non-Stoichiometric Addition 

 

8.1 Background and motivation for dual doping with cation substitution and non-

stoichiometric addition 

Dual doping is not necessarily a new concept and it has been utilized and explored in 

the last chapter through the non-stoichiometric addition method. However, there are no 

reportings in the literatures on the dual doping while utilizing the cationic substitution and 

non-stoichiometric addition in tandem. The last chapter discussed the dual doping of 

bismuth and barium using the nonstoichiometric addition. This chapter explores the 

combination of both the cationic substitution and nonstoichiometric addition. The 

Ca3Co4O9 baseline was doped with a set concentration of bismuth by using the cation 

substitution method where the bismuth atoms replace calcium atoms to improve crystal 

texture. Barium utilizes the non-stoichiometric addition method to enhance the Absolute 

Seebeck coefficient and maintain a low electrical resistivity. Since barium can only deposit 

at the grain boundary it forces the bismuth to mainly deposit at the grain interior. This can 

cause the sample to be easily over doped, which was seen in the last chapter. By using 

cation substitution with the non-stoichiometric addition the calcium vacancies give the 

bismuth a place to deposit lessening the possibility of over doping. 

The best concentrations of bismuth cation substitution described in chapter 4 were 

that of x=0.2 and x=0.3. Results from the previous chapter proved that this method has a 
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great tendency to over dope the sample much easier due to the dual nature. For this 

reason the lower of the two were used in this chapter as to not over dope the sample. 

Also this provides a much more linear comparison between this chapter and last 

considering the same bismuth concentration was used. Barium utilized the method of 

non-stoichiometric addition once again with the same three concentrations used in 

chapter 7, which were barium 0.02, 0.05 & 0.07, in order to find a trend and see if the 

Absolute Seebeck Coefficient can be further enhanced thus improving the power factor 

and overall efficiency.  

8.2 Experimental Procedure 

Ca3-xBixBauCo4O9 powders, where x=0.0 & 0.2 and u=0.0, 0.02, 0.05, 0.07 were 

obtained through a sol-gel route in which stoichiometric ratios of Ca(NO3)2•4H2O, 

Co(NO3)2•6H2O and Bi(NO3)2•5H2O were mixed with non-stoichiometric ratios of 

Ba(NO3)2 in deionized water. Ethylene glycol and polyethylene glycol were used to aid 

polymerization of the solution and to aid in particle size. [1] Lastly, nitric acid was added to 

induce nitrate salts decomposition and facilitate new compound formation. [2]  

The liquid solution was then submerged in a silicone oil bath on a hot plate and 

mechanically stirred at 353 K for 3 hours to achieve the sol-gel state. The sol-gel was 

then distributed to ceramic crucibles loosely covered with aluminum foil and put into a box 

furnace with a ramp rate of 10 K per minute and held at 773 K for 2 hours then cooled at 

a rate of 10 K per minute. Holding the temperature here, at 773 K, for the allotted time will 

ensure that any inorganic material is removed from the material. The ashes were then 

suspended in ethanol and ball milled for 20 minutes alternating between 1 minute of 
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milling and 1 minute of resting in order to aid in the dissipation of heat. The powders were 

deposited in a tubular furnace where they were calcined in an oxygen rich induced 

environment with a ramp rate of 10 K per minute and held at 973 K for 4 hours, to achieve 

the Ca3Co4O9 crystal lattice. The powders were then cooled down to room temperature 

at a rate of 10 K per minute.  

Two pellets were pressed, one to test its electrical properties and the other for its 

thermal properties. The calcined powders were pressed uniaxially with 1 GPa of force 

and held for 10 minutes at 298 K. The pellets’ densities were obtained before they were 

put in to a tubular furnace to be sintered. The sintering process removes any extra 

moisture the pellet may contain and assures proper grain alignment. Pellets were sintered 

in an oxygen rich induced environment with a ramp rate of 10 K per minute and held at 

1233 K for 9 hours. It was then cooled back to room temperature at a 4 K per minute and 

once again the densities were taken. Pellets were cut into a 2 mm x 3.5 mm x 9 mm 

rectangular shapes and inserted into a Linseis LSR 3-Seebeck machine, subjected to a 

low pressure helium, He, environment where the pellet’s electrical resistivity and Absolute 

Seebeck Coefficient were simultaneously determined by means of a dc four-probe 

method. Since helium is an inert gas it will not react or interfere with the measurement. A 

second pellet was cut along a different axis and inserted into the Linseis LFA 1000 

machine to test its thermal conductivity. The pellet was cut to be 2 mm thick and polished 

to a diameter of 11-13 mm. Any less than 11 mm and there would be room for heat to 

escape the holder, any more than 13 mm and the pellet would be too large for the holder. 

The thermal conductivity is calculated by the equation 
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K=λCpρm   (13) 

Where λ is the thermal diffusity in meters per second (m2/s), Cp is the specific heat 

capacity in joules per kilogram kelvin (J/kg•K), and ρm is the mass density grams per 

centimeter cubed (g/cm3). As stated in the first section, these are the three values needed 

in order to obtain the materials’ ZT value. Bismuth cation substitution has been reported 

on and a concentration of 0.2 was used and held constant throughout the varied barium 

dopings. A non-stoichiometric addition was used for varying the doping concentrations of 

barium. Their chemistries are as follows: Ca3-xBixBauCo4O9 where x = 0.0, 0.2 and u = 

0.0, 0.02, 0.05, and 0.07. 

8.3 Comparison of Non-stoichiometric dual doping to Cation Substitution & Non-

stoichiometric dual doping 

In the previous chapter it was shown how the semi-conductor nature of barium 

allowed the electrical resistivity of the dual doped sample to be competitive with the 

optimal bismuth non-stoichiometric addition sample at high temperatures, even though it 

had a much lower electrical resistivity at lower temperatures. [3] The dual doped samples 

in this chapter start off at low temperatures with an electrical resistivity relatively higher 

but much closer to the sample doped with only bismuth using the cationic substitution 

method alone which is evident from figure 54. This comparable electrical resistivity at low 

temperatures allows these samples to achieve a similar electrical resistivity at the mid-

high temperature range and even surpass the bismuth sample beyond 900 K, due to the 

ability of barium to act like a semi-conductor. This unique ability that barium has to 

maintain a low electrical resistivity across all temperatures allows the addition of barium 
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to the bismuth cation substitution set to surpass that of bismuth alone at high 

temperatures. [3] The bismuth aids in lowering the resistivity sufficiently at room 

temperature and barium’s semi-conductor nature causes it to maintain this low resistivity. 

[3,4] 

 

Figure 54 Temperature dependence of electrical resistivity for Ca3-xBixBauCo4O9 
bismuth cation substitution & barium non-stoichiometric addition where u=0.0, 0.02, 

0.05, and 0.07. 

 

Demonstrated in figure 55, the sample that just includes the cation substitution of 

bismuth alone experiences an immediate increase in its Absolute Seebeck Coefficient, 

up to ~145 µV/K in the low temperature regime. This is consistent with the bismuth cation 

substitution set previously analyzed in chapter 4. This is due to the bismuth depositing 
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itself at the grain boundary and acting as a filter for the carrier concentration.[5,6,7] Once 

the barium is introduced at the grain boundary this effect is further enhanced achieving a 

room temperature Absolute Seebeck Coefficient of anywhere between 155-160 µV/K. 

This shows that barium allows this material to have a much higher saturation level at the 

grain boundary, predominantly due to the fact barium deposits itself wholly at the grain 

boundary instead of both the boundary and the lattice as bismuth does. [7,8] The Absolute 

Seebeck Coefficient increased with increasing temperature at a slow rate compared with 

the sample of bismuth cation substitution alone. This slow increase that it experiences is 

caused from the increase in carrier concentration which consequentially caused the 

reduction in electrical resistivity as the temperature increases. [5,6] 
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Figure 55 Temperature dependence of absolute seebeck coefficient for 
Ca2.8Bi0.2BauCo4O9 bismuth cation substitution & barium non-stoichiometric addition 

where u=0.0, 0.02, 0.05, and 0.07. 

 

The main motive behind this sample set was to increase the Absolute Seebeck 

Coefficient, through grain boundary segregation, while maintaining a low electrical 

resistivity, through grain texture and alignment. The Absolute Seebeck Coefficient, 

although increased at low temperature with the presence of barium, did not compare to 

that of the Ca2.8Bi0.2Co4O9 doping at high temperature. In fact, the semi-conductor nature 

of the barium providing a low electrical resistivity at high temperatures was responsible 

for allowing the dual doped set to have a competitive power factor of 0.80 mW/mK2 at 985 

K with the Ca2.8Bi0.2Co4O9, which too had a power factor of 0.80 mW/mK2 at the same 

temperature shown in figure 56. 
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Figure 56 Temperature dependence of power factor for Ca2.8Bi0.2BauCo4O9 bismuth 
cation substitution & barium non-stoichiometric addition where u=0.0, 0.02, 0.05, and 

0.07. 

 

8.4 Summary of results for cation substitution & non-stoichiometric addition dual 

doping of Ca3Co4O9 

The dual doped samples achieved a low electrical resistivity of ~40 µΩm in all 

temperature ranges. This low electrical resistivity coupled with an enhanced Absolute 

Seebeck coefficient allowed for a high power factor of 0.84 mW/mK2 at 1010 K with the 

optimal sample Ca2.8Bi0.2Ba0.05Co4O9. This overlaps the bismuth cation substitution 

sample and is about three times greater than the 0.29 mW/mK2 power factor of the pure 

Ca3Co4O9 at the same temperature. This was mainly due to the consistent low electrical 
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resistivity across the whole temperature range, caused by the semi-conductive abilities 

of barium, along with the increase in room temperature Absolute Seebeck coefficient, 

caused by the grain boundary segregation of both dopants. Only the material’s electrical 

properties were studied for this set since the power factor that was achieved was not 

greater than that of the bismuth cation substitution alone. 
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Chapter 9: 

Optimization of Dual Doping Ca3Co4O9 by 
Controlling Grain Growth & Texture while 
Enhancing Absolute Seebeck Coefficient 

 

9.1 Motivation  

In the last two chapters the dual doping method has been investigated with two 

different approaches. The first was through non-stoichiometric addition of both dopants 

and the second was through cationic substitution of one dopant and non-stoichiometric 

addition of the second. The second approach seems to over dope less easily and holds 

more promise. This is the method concentrated on and analyzed in this chapter. Chapter 

8 showed that using Ca2.8Bi0.2BauCo4O9 concentration of bismuth caused mild over 

doping. This lead to the motivation of this chapter where a lower concentration of bismuth 

will be used. Therefore, the baseline was doped with a set concentration of bismuth by 

using the cation substitution method as before, where the bismuth atoms will replace 

calcium atoms. The concentration used was bismuth x=0.1 to avoid over doping. Barium 

used the method of non-stoichiometric addition allowing it to deposit itself freely. Since 

barium’s optimization was reached at barium 0.05 addition, the doping levels used for 

barium were 0.02, 0.05, 0.07, and 0.1, in order to find a trend and see if the Absolute 

Seebeck Coefficient can be further enhanced and grain texture improved thus enhancing 

the power factor and overall efficiency. 
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9.2 Experimental Procedure 

Ca3-xBixBauCo4O9 powders, where x=0.0 & 0.1 and u=0.0, 0.02, 0.05, 0.07 were 

obtained through a sol-gel route in which stoichiometric ratios of Ca(NO3)2•4H2O, 

Co(NO3)2•6H2O and Bi(NO3)2•5H2O were mixed with non-stoichiometric ratios of 

Ba(NO3)2 in deionized water. Ethylene glycol and polyethylene glycol were used to aid 

polymerization of the solution and to aid in particle size. [1] Lastly, nitric acid was added to 

induce nitrate salts decomposition and facilitate new compound formation. [2]  

The liquid solution was then submerged in a silicone oil bath on a hot plate and 

mechanically stirred at 353K for 3 hours to achieve the sol-gel state. The sol-gel was then 

distributed to ceramic crucibles loosely covered with aluminum foil and put into a box 

furnace with a ramp rate of 10 K per minute and held at 773 K for 2 hours then cooled at 

a rate of 10 K per minute. Holding the temperature here, at 773 K, for the allotted time will 

ensure that any inorganic material is removed from the material. The ashes were then 

suspended in ethanol and ball milled for 20 minutes alternating between 1 minute of 

milling and 1 minute of resting in order to aid in the dissipation of heat. The powders were 

deposited in a tubular furnace where they were calcined in an oxygen rich induced 

environment with a ramp rate of 10 K per minute and held at 973 K for 4 hours, to achieve 

the Ca3Co4O9 crystal lattice. The powders were then cooled down to room temperature 

at a rate of 10 K per minute. 

Two pellets were pressed, one to test its electrical properties and the other for its 

thermal properties. The calcined powders were pressed uniaxially with 1 GPa of force 
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and held for 10 minutes at 298 K. The pellets’ densities were obtained before they were 

put in to a tubular furnace to be sintered. The sintering process removes any extra 

moisture the pellet may contain and assures proper grain alignment. Pellets were sintered 

in an oxygen rich induced environment with a ramp rate of 10 K per minute and held at 

1233 K for 9 hours. It was then cooled back to room temperature at 4 K per minute and 

once again the densities were taken. Pellets were cut into a 2 mm x 3.5 mm x 9 mm 

rectangular shapes and inserted into a Linseis LSR 3-Seebeck machine, subjected to a 

low pressure helium, He, environment where the pellet’s electrical resistivity and Absolute 

Seebeck Coefficient were simultaneously determined by means of a dc four-probe 

method. Since helium is an inert gas it will not react or interfere with the measurement. A 

second pellet was cut along a different axis and inserted into the Linseis LFA 1000 

machine to test its thermal conductivity. The pellet was cut to be 2 mm thick and polished 

to a diameter of 11-13 mm. Any less than 11 mm and there would be room for heat to 

escape the holder, any more than 13 mm and the pellet would be too large for the holder. 

The thermal conductivity is calculated by the equation 

K=λCpρm   (13) 

Where λ is the thermal diffusity in meters squared per second (m2/s), Cp is the specific 

heat capacity in joules per kilogram kelvin (J/kg•K), and ρm is the mass density in grams 

per centimeter cubed (g/cm3). As stated in the first section, these are the three values 

needed in order to obtain the materials’ ZT value. Bismuth cation substitution has been 

reported on and a concentration of 0.1 was used and held constant throughout the varied 
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barium dopings. A non-stoichiometric addition method was used for varying the doping 

concentrations of barium. Their chemistries are as follows: Ca3-xBixBauCo4O9 where x = 

0.0, 0.1 and u = 0.0, 0.02, 0.05, 0.07, and 0.1. 

9.3 Decreased electrical resistivity and enhanced thermoelectric properties of 

Ca3Co4O9 induced by dual doping 

9.3.1 Low electrical resistivity achieved through dual doping 

 It is clearly evident in figure 57 that the Ca2.9Bi0.1Ba0.07Co4O9 doped sample has a 

significantly lower room temperature electrical resistivity than that of the Ca2.9Bi0.1Co4O9. 

At 315 K the bismuth barium dual doped sample has an electrical resistivity of ~28 µΩm 

whereas the Ca2.9Bi0.1Co4O9 is ~48 µΩm at the same temperature. As the bismuth cation 

substitution sample increases in temperature its electrical resistivity experiences a large 

increase as well, from ~48 µΩm up to ~74 µΩm at around 1080 K, yet the 

Ca2.9Bi0.1Ba0.07Co4O9 sample only increases slightly from ~28 µΩm to ~38 µΩm. [3,4] This 

low electrical resistivity can be attributed to the exceptionally low electrical resistivities 

that bismuth and barium can achieve independently. This sample has a slightly higher 

electrical resistivity than the bismuth x=0.2 in chapters 4 & 8 but the bismuth x=0.2 rises 

from 22 µΩm to about 49 µΩm which is larger than the optimal dual doped sample with 

the lower bismuth concentration. 

All samples dual doped with bismuth and barium had a comparable or lower 

electrical resistivity than the sample doped only through bismuth cation substitution, with 

the exception of the over doped sample of Ca2.9Bi0.1Ba0.1Co4O9. Each dual doped sample 
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maintained this low electrical resistivity into the high temperatures as the sample doped 

only with bismuth cation substitution continued to rise as the temperature increased. The 

optimal concentration of Ca2.9Bi0.1Ba0.07Co4O9 shown in figure 57 achieved a low electrical 

resistivity of 28 µΩm at 315 K and ~37 µΩm at 982 K which is 35% of that of the pure 

undoped Ca3Co4O9. 

 

Figure 57 Temperature dependence of electrical resistivity for Ca2.9Bi0.1BauCo4O9 
bismuth cation substitution & barium non-stoichiometric addition where u=0.0, 0.02, 

0.05, 0.07, and 0.1. 

 

9.3.2 Fine tuning electrical resistivity and Seebeck coefficient through dual dopants. 

Both the bismuth and the barium were able to act in concert to vastly improve the 

Absolute Seebeck Coefficient of this material.  When only bismuth is introduced the 
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Absolute Seebeck coefficient increases to around 140 µV/k at 315 K. However, once the 

barium is introduced the material experiences another, even greater, enhancement of its 

Absolute Seebeck Coefficient above 160 µV/k at 315 K, due to its segregation at the grain 

boundary. [5,6] The Absolute Seebeck coefficient in the high temperature range is also 

comparable to that of the sample solely doped with bismuth cation substitution, 

demonstrated in figure 58, whereas the dual doped samples, in previous chapters, had a 

lower value than the bismuth alone. After increasing the barium’s levels to 0.1 it can be 

seen that the Absolute Seebeck coefficient flattens out at around 600 K, which as 

mentioned previously is indicative of over doping. This over doping is also demonstrated 

by having a much larger resistivity trend than the rest of the samples. 
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Figure 58 Temperature dependence of absolute seebeck coefficient for 
Ca2.9Bi0.1BauCo4O9 bismuth cation substitution & barium non-stoichiometric addition 

where u=0.0, 0.02, 0.05, 0.07, and 0.1 

 

This low electrical resistivity and large Absolute Seebeck Coefficient achieved by 

the optimal Ca2.9Bi0.1Ba0.07Co4O9 chemistry across all temperature ranges leads to an 

enhanced power factor in all temperature ranges as well. The Ca2.9Bi0.1Ba0.07Co4O9 

sample yields a high power factor of 0.93 mW/mK2 at 315 K and 0.94 mW/mK2 at 1005 K 

both of which are nearly 5 times and over 3 times the pure undoped Ca3Co4O9 sample, 

respectively. This is shown in figure 59 and is one of the highest power factors reported 

on for this material. 
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Figure 59 Temperature dependence of power factor for Ca2.9Bi0.1BauCo4O9 bismuth 
cation substitution & barium non-stoichiometric addition where u=0.0, 0.02, 0.05, 0.07, 

and 0.1. 

 

9.4 Microstructure of dual doped Bismuth & Barium 

9.4.1 Structure and lattice parameters 

 Figure 60 shows the X-Ray diffraction patterns obtained from ground powders 

under ambient conditions. Table 3 shows the lattice parameters of these samples for their 

different chemistries. The samples containing bismuth had shifted peaks to lower angles 

indicating an increase in lattice parameters thus reassuring the entry of bismuth into the 

lattice. Barium however, has little effect on the parameters as its concentration increases, 
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since it does not deposit into the grain interior, leaving the parameters to only deviate 

based on the small variations of bismuth from sample to sample. These peaks in figure 

60 can be indexed as the Ca3Co4O9 monoclinic structure with the x = 0.0, u=0.0 sample 

showing little to no trace of Co3O4 which can be seen from the Co3O4 (311) peak indexed. 

 

 

 

Figure 60 XRD powder diffraction patterns for the Ca3-xBixBauCo4O9 samples. [6] 
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Table 3 Lattice parameters for samples with different chemistries [6] 

Bi Ba a (Å) b1 (Å) c (Å) α° β° γ° b2 (Å) 

x = 0 y = 0 4.8637 4.5540 10.8300 90 98.45 90 2.7864 

x = 0.1 y = 0 4.8747 4.5494 10.8607 90 98.77 90 2.7903 

x = 0.1 y = 0.02 4.8810 4.5456 10.8646 90 98.91 90 2.7900 

x = 0.1 y = 0.05 4.8921 4.5512 10.8765 90 98.93 90 2.7878 

x = 0.1 y = 0.07 4.9290 4.5625 10.8791 90 99.38 90 2.7767 

x = 0.1 y = 0.1 4.8527 4.5606 10.8415 90 98.09 90 2.7929 

 

9.4.2 Texture and Grain Alignment 

Fractured samples were analyzed using a Scanning Electron Microscope (SEM) 

which show the grain growth and crystal texture development in figure 61. The presence 

of bismuth triggered grain growth, improved texture, and grain alignment. Grain texture 

and alignment continue to improve in the presence of barium. The optimal chemistry 

Ca2.9Bi0.1Ba0.07Co4O9 is shown in image (c) and it is evident that the grain alignment not 

only has improved from the sample with bismuth alone but vastly improved from the 

undoped Ca3Co4O9 sample. Image (d) shows the over doped sample as its alignment 

begins to decrease.  
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Figure 61 SEM images showing crystal texture development of the Ca3Co4O9 samples 
with dual element doping of bismuth and barium simultaneously. [6] 

  

To further elucidate this grain alignment concept, figure 62 shows the 

microstructure progression from the undoped sample to that of the Ca2.9Bi0.1Ba0.07Co4O9. 

It also demonstrates how the barium deposits at the grain boundary while bismuth 

improved the crystal texture by entering the grains. 
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Figure 62 Microstructure drawing of undoped Ca3Co4O9 and Ca2.9Bi0.1Ba0.07Co4O9. 

 

9.5 Nanostructure analysis of dual doped Bismuth & Barium through use of TEM 

Transmission Electron Microscope (TEM) was used to explore the diffraction 

contrast and gain knowledge of the chemical composition of the Ca2.9Bi0.1Co4O9 sample 

detailed in figure 63. Image (a) shows the diffraction contrast of the Ca2.9Bi0.1Co4O9 cation 

substitution sample. EDS values, shown in table 4, were taken from the points shown in 

figure 63 image (a), once again demonstrating bismuth’s ability to deposit into the lattice 

and at the grain boundary. Image (b) shows no evidence of a secondary phase and the 

red arrow indicates the bismuth enriched grain boundary. 
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Figure 63 (a) Diffraction contrast image and (b) high resolution TEM from the 
Ca2.9Bi0.1Co4O9 sample. [6] 

 

Table 4 Chemical compositions of two neighboring grains and grain boundary in 
between. [6] 

 

 

Figure 64 (a) & (b) show the nanostructure of the lamellar of the 

Ca2.9Bi0.1Ba0.07Co4O9 sample. EDS data, in table 5, shows that there is a depletion of 

bismuth at the grain boundary. This is due to the presence of the barium. As the barium 

concentration increases the grain boundary becomes more and more enriched with 
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barium and the bismuth depletes causing more to deposit into the lattice. Barium is also 

not present anywhere in the grain interior. Image (b) shows no secondary phase at the 

grain boundary plane. This is opposite to the intragrain lattice where the grain boundary 

region experiences some lattice distortions. [6] This is most likely the direct result of the 

presence of barium at the boundary. Image (c) is a high resolution TEM image also 

showing no secondary phase at the grain boundary. 

 

 

Figure 64 TEM images from the Ca2.9Bi0.1Ba0.07Co4O9 sample. [6] 

 

Table 5 Chemical compositions of two neighboring grains and grain boundary in 
between for the Ca2.9Bi0.1Ba0.07Co4O9 sample. [6] 

At%  1–1  1–2  1–3  2–1  2–2  2–3  3–1  3–2  3–3  4–1  4–2  4–3  5–1  5–2  5–3  6–1  6–2  6–3 

O 67.9 62.7 58.0 68.2 59.7 62.5 66.5 67.0 62.1 68.8 65.3 60.0 65.8 64.2 59.5 59.6 63.0 60.9 

Ca 13.3 10.2 16.6 13.2 2.5 12.0 14.6 11.6 15.2 13.1 12.4 13.5 14.9 8.4 12.6 18.0 8.2 13.8 

Co 18.5 24.4 24.8 18.1 30.9 25.2 18.4 19.6 22.1 17.7 20.5 26.2 18.8 24.5 27.5 21.9 25.4 24.8 

Ba   0.0   2.5   0.0   0.0   6.9   0.0   0.0   1.3   0.0   0.0   1.4   0.0   0.0   2.6   0.0   0.0   3.0   0.0 

Bi   0.4   0.2   0.6   0.5   0.1   0.3   0.6   0.4   0.6   0.5   0.4   0.4   0.5   0.3   0.4   0.6   0.4   0.4 
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9.6 Calculating the thermal conductivities and ZT of dual doped Ca3Co4O9 

 Thermal conductivities of the two samples with the optimal power factor from figure 

59 were tested and compared with those of the undoped Ca3Co4O9 and the 

Ca2.9Bi0.1Co4O9 samples in figure 65. Barium has the tendency to vastly increase the 

density of the bulk sample which in turn will decrease its thermal conductivity affecting its 

otherwise high power factor. This high thermal conductivity keeps this material from 

cresting the 0.5 figure of merit mark. The optimal sample of Ca2.9Bi0.1Ba0.07Co4O9 has a 

thermal conductivity of 2.8 W/mK at 373 K and 2.2 W/mK at 1073 K both values of which 

are higher than that of the pure undoped Ca3Co4O9. A high power factor allows this 

material to yield a ZT of 0.41 and 0.45 at 973 K and 1073 K respectively shown in figure 

66. This is a 60% increase from the Ca2.9Bi0.1Co4O9 sample doped only with bismuth 

using the cation substitution method and 3 times higher than the undoped Ca3Co4O9 

sample at 1073 K. 
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Figure 65 Temperature dependence of thermal conductivity for Ca2.9Bi0.1BauCo4O9 
bismuth cation substitution and barium non-stoichiometric addition where u=0.0, 0.05, 

and 0.07. 
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Figure 66 Temperature dependence of figure of merit for Ca2.9Bi0.1BauCo4O9 bismuth 
cation substitution and barium non-stoichiometric addition where u=0.0, 0.05, and 0.07. 

 

9.7 Summary of results for Ca3Co4O9 dual doping of bismuth cation substitution & 

barium non-stoichiometric addition 

The effects of dual doping Ca3Co4O9 with bismuth and barium on the electrical and 

thermal properties were analyzed and reported. Powders were attained through a 

combination of cationic substitution and non-stoichiometric ratios mixed through a 

chemical sol-gel route. The powders were then uniaxially hot pressed and sintered to form 

the polycrystalline bulk samples. The presence of bismuth at the grain causes the 

electrical resistivity to decrease drastically at room temperature. Doping with barium 
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causes the resistivity to drop further and maintain their low resistivity well into the high 

temperature regime. The dual doping of bismuth and barium allows the relaxation of the 

commensurate alternate stacks of the CoO conductive layer and the CaCo2O3 insulating 

layer causing this drastic decrease in electrical resistivity. [6] 

Furthermore, the barium at the grain boundary along with the bismuth acting in 

tandem as a filter to decrease the carrier mobility results in a large increase in a room 

temperature Absolute Seebeck Coefficient. With the substitution of bismuth the room 

temperature Absolute Seebeck Coefficient increases almost 14% from ~120 µV/K to ~140 

µV/K. The synergistic effect of both at the grain boundary causes the room temperature 

Absolute Seebeck Coefficient to increase 30% to ~160 µV/K. The power factor increases 

when doped with bismuth and continues to increase with increasing barium up to u=0.07. 

Bismuth and barium do not react at the boundary to co-segregate rather the enrichment 

of barium aids in the depletion of bismuth at the boundary due to the difference in ionic 

size. While bismuth’s 117 pm ionic radius tends to replace the 114 pm radius of calcium 

ions in the lattice, barium, with an ionic radius of 149 pm, cannot and remains at the 

boundary to enhance the Absolute Seebeck coefficient. The highest power factor 

achieved is ~0.94 mWm-1K-1 at 1005 K which is one of the highest reported for doped 

Ca3Co4O9. The same sample achieves a ZT of 0.45 at 1073 K.  
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Chapter 10:  

Conclusion and Suggestions for Future Work 
 

10.1 Conclusion 

To achieve a high efficiency in a thermoelectric material one must first find a way 

to decouple the two electrical properties. These properties are the electrical resistivity and 

the Absolute Seebeck Coefficient. Furthermore, according to the Wiedemann-Franz Law, 

the thermal conductivity is inversely proportional to these as well. [1,2,3] As the electrical 

resistivity is enhanced the thermal conductivity suffers. The literature made mention of a 

Phonon Glass Electron Crystal (PGEC) theory stating that there is potential to create a 

material that will simulate the phonon capabilities of a glass while carrying out the 

electrical properties of a perfect crystal. [4,5] Scientist have yet to find the perfect PGEC. 

The work in this dissertation shows great promise for the field of oxides as 

thermoelectric material. Mainly since the decoupling of the electrical properties has been 

achieved with great results and repeated through more than one different chemistry. It 

has proven that the electrical conductivity and the Absolute Seebeck Coefficient can be 

manipulated separately in order to enhance both. It is still uncertain how to intently 

manipulate the thermal conductivity without directly lowering its density. Although, varying 

pressing parameters proved to be successful in lowering thermal conductivity without 

adversely affecting the electrical properties. 

The two main new avenues of exploration utilized to achieve these results have 

been through non-stoichiometric addition and the dual doping of Ca3Co4O9 in order to 



Chapter 10: Conclusion and Suggestions for Future Work 

 

 

171 
 

engineer the grain boundary while fine tuning the electrical resistivity. In doing so there is 

more control over where the dopant will deposit itself and how it will act to improve upon 

the electrical properties, micro-, and nanostructures of the bulk samples based on the 

properties of the dopant.  

Chapter 3 demonstrates the Absolute Seebeck coefficient enhancement through 

bismuth telluride. Chapter 4 detailed the ability to isolate the bismuth to dope the 

Ca3Co4O9 with successful results of enhancing the Absolute Seebeck coefficient to ~150 

µV/K at 315 K. Bismuth deposits into the lattice to improve crystal texture and grain 

alignment causing a reduction in electrical resistivity while its presence at the grain 

boundary allows for enhancement of the Absolute Seebeck coefficient. Prior to this 

research the best figure of merit for bismuth cation substitution was reported by Ruomin 

Tian, et al. with a value of 0.29 at 973 K. Through a sol-gel method and conventional 

pressing and sintering it has now been enhanced to a value of 0.42 at 973 and 1073 K a 

45% increase. 

A non-stoichiometric approach was used in chapter 5 to dope the Ca3Co4O9 in 

order to investigate whether the electrical properties can be further improved through this 

alternative method. Processing parameters were also varied in order to control the pellet’s 

density and obtain the optimum conditions for its thermal conductivity and to balance the 

carrier mobility and concentration and achieve the best electrical properties. A figure of 

merit of 0.52 at 973 and 1073 K was achieved for the Ca3Bi0.3Co4O9 chemistry pressed 

at 0.75 GPa with a temperature of 423 K. Considering there has been no reports on the 

non-stoichiometric addition method, comparing it to the cation substitution of bismuth 

instead demonstrates an 80% increase at 973 K. 
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In order to further analyze the grain boundary segregation experienced in the 

bismuth sets, barium was used to dope the Ca3Co4O9 in chapter 6 with this same non-

stoichiometric addition method. The motivation was to investigate a dopant that does not 

have the ability to replace calcium deficiencies and deposits at the grain interior only. This 

chemistry, like the last two, was also successful in enhancing the room temperature 

Absolute Seebeck coefficient. Barium allowed for a higher saturation level than that of the 

bismuth non-stoichiometric chemistry achieving a value of ~160 µV/K at 315 K. In 

addition, barium, with its semi-conductor-like behavior, also aids in crystal texture 

development improving grain alignment and connectivity allowing for very promising 

electrical properties. A high power factor of 0.82 mW/mK2 at 315 K and 0.84 mW/mK2 at 

910 K was achieved with a chemistry of Ca3Ba0.05Co4O9.  

Dual doping the Ca3Co4O9 structure with bismuth and barium allowed for great 

control over the electrical properties. The chemistry utilizing the cation substitution and 

non-stoichiometric addition in tandem yielded a high power factor of 0.94 mW/mK2 at high 

temperatures with the Ca2.9Bi0.1Ba0.07Co4O9 chemistry. Bismuth’s presence in the lattice 

improved the crystal texture of the Ca3Co4O9 bulk sample by improving grain alignment 

and connectivity along with triggering the grain growth. Bismuth’s presence at the grain 

boundary enhanced the Absolute Seebeck coefficient at room temperature and the further 

doping of barium continued to improve on the grain boundary segregation reaching a 

value of ~165 µV/K at 315 K. There was no co-segregation at the boundary rather the 

increasing presence of barium depleted the bismuth’s content at the boundary due to the 

difference in ionic size. This can be seen in the progression of the microstructure 

development illustrated in figure 67. 
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Figure 67 Microstructure development of undoped Ca3Co4O9, Ca2.7Bi0.3Co4O9, 
Ca3Ba0.05Co4O9, and Ca2.9Bi0.1Ba0.07Co4O9. 

  

Figure 68 shows the comparison of the temperature dependence of the four best 

power factors taken from this dissertation. This allows the direct comparison between the 

doping of the Ca3Co4O9 with bismuth using the cation substitution and non-stoichiometric 

addition methods shown in image a) and b). Due to bismuth’s unique ability to deposit 

into the lattice in place of calcium vacancies and at the grain boundary, the non-

stoichiometric addition proves to be the more efficient method of the two. The cation 

substitution method comes close to but never actually cresting a power factor of 1 

mW/mK2 and maintains a consistent value of around 0.8 mW/mK2 through all temperature 

ranges. The non-stoichiometric method reaches a power factor of 1.3 mW/mK2 at low 

temperatures and maintains a value above 0.9 mW/mK2 through all temperature ranges. 

The Ca3Co4O9 doped with barium utilizing the non-stoichiometric addition method 

shown in image c) has a very similar trend to the bismuth cation substitution. It yields a 

consistent trend with a value of around 0.8 mW/mK2 through all temperature ranges. The 
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dual doping of these two elements was not as straightforward as combining the best two 

chemistries, along with the best two methods. Bismuth utilized the cation substitution 

method so when barium enriched the grain boundaries bismuth was able to replace the 

calcium vacancies thus reducing the chances of an over doped scenario. Ca3Co4O9 

doped with bismuth cation substitution and barium non-stoichiometric addiction is shown 

in image d) of figure 68. Although its highest power factor does not surpass that of the 

bismuth non-stoichiometric addition alone, at low temperatures, it achieves similar values 

throughout the rest of the temperature spectrum. 
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Figure 68 Comparisons of temperature dependence of power factor between a) 
Ca2.8Bi0.2Co4O9, b) Ca3Bi0.3Co4O9, c) Ca3Ba0.05Co4O9, and d) Ca2.9Bi0.1Ba0.07Co4O9. 

 

Figure 69 shows the comparison of the temperature dependence of the four best 

figure of merits taken from this dissertation. Image a) and b) show the direct comparison 

of figure of merits between the Ca3Co4O9 doping of bismuth utilizing the cation 

substitution and non-stoichiometric addition methods. Image b) shows an improvement 

of figure of merit, from 0.42 in image a) to 0.45 in b), by using the non-stoichiometric 

addition method. Both values were measured at 1073 K. This is further improved to 0.52 

at 1073 K by varying the pressing parameters from 1 GPa to 0.75 GPa. 
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The Ca3Co4O9 doped with barium utilizing the non-stoichiometric addition method 

shown in image c) was able to match this figure of merit with a value of 0.53 at 1073 K. 

Although the dual doped set did not surpass the figure of merit of either the bismuth or 

barium individual non-stoichiometric addition sets, due to its electrical results it holds 

great promise. The bulk sample’s density caused the material to have a fairly large 

thermal conductivity limiting its figure of merit to 0.45 at 1073 K. 

 

Figure 69 Comparisons of temperature dependence of figure of merit between a) 
Ca2.8Bi0.2Co4O9, b) Ca3Bi0.3Co4O9, c) Ca3Ba0.05Co4O9, and d) Ca2.9Bi0.1Ba0.07Co4O9. 
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10.2 Suggestions for future work 

This work leaves great hope within this specific field and topic. It motivates in the 

search for other dopants that can potentially segregate at the boundary as bismuth and 

barium both have already shown. It opens the door to finding a dopant that can hopefully 

enhance the Absolute Seebeck coefficient beyond what barium has already done at low 

temperatures and possibly allow it to exceed barium’s results at high temperatures. With 

the ability of dual doping there is hope to continue to treat the electrical resistivity and 

Absolute Seebeck coefficient as two separate entities when looking to alter their 

properties. The next step for the optimal chemistry involved with the dual doping of 

Ca3Co4O9 would be to vary the pressing parameters as was performed in chapter 5 in 

regards to the bismuth non-stoichiometric addition chemistry set. By attempting to 

maintain or improve the electrical properties there is the possibility of experiencing a 

significant drop in thermal conductivity in the same way Ca3Bi0.3Co4O9 did, in order to 

enhance its ZT above its already impressive value of 0.45 at 1073 K. 

Although the electrical resistivities in this work have demonstrated very low values 

there is always hope for further enhancement. This coupled with a high Absolute Seebeck 

coefficient will yield a promising power factor. Lastly, learning how better to lower the 

thermal conductivity without negatively effecting these electrical properties will continue 

to aid in ZT enhancement. As the Wiedemann-Franz Law states as long as the lattice 

thermal conductivity is lowered the electrical properties should have minimal effect on its 

results. [1, 2, 3] This gives hope for this last parameter, the thermal conductivity, to help 

achieve a desirable figure of merit. One that can allow this material to be used on a large 

scale.  
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