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Abstract 

Role of Perivascular Adipose Tissue in Vascular Pathology and the 
Therapeutic Effect of Exercise 

 
Evan R. DeVallance 

Aortic compliance is important for dampening pulsatile flow and delivery of continuous 
flow to the periphery. Aortic compliance is regulated by extracellular matrix composition 
and endothelial derived nitric oxide. Disruption of aortic endothelium or extracellular 
matrix can lead to the development of aortic stiffness an independent risk factor of 
cardiac events and mortality. Over the past decade perivascular adipose tissue (PVAT) 
surrounding the vasculature has come to light as an important regulator of artery function. 
The main focus of this dissertation is to evaluate the role PVAT surrounding the aorta in 
mediating endothelial relaxation in health and disease. Specifically, metabolic syndrome 
(MetS) and chronic stress induced depressive states. 

 The United States has a high prevalence of both MetS and depressive states, 34% 
and 17% respectively. Additionally, the co-prevalence of depressive states with MetS is 
common. Both MetS and depressive states are associated with vascular dysfunction, in 
part, mediated through an increase of pro-inflammatory cytokines and oxidative stress. 
Little is known about the impact of MetS on PVAT regulation of the aorta and the impact 
of depressive states or depressive states concomitant with MetS on PVAT is unexplored. 

 Aerobic exercise training is recognized to have antioxidant and anti-inflammatory 
properties and promotes vascular health. Exercise training has been shown to reduce 
aortic stiffness and reduce the risk of cardiac events and mortality. Likewise exercise 
treatment of MetS or depressive state yields beneficial effects and limits the vascular 
pathology of these disease state. However, the actions of exercise on PVAT in health and 
disease are poorly understood. In order to evaluate these gaps in knowledge, I purpose the 
following specific aims for this dissertation: 

 Determine Metabolic Syndrome’s impact on Thoracic Aorta PVAT and PVAT 
derived TNFα contribution to aortic dysfunction 

 Determine if UCMS impacts the regulation of PVAT on aortic function 
 Test the therapeutic effectiveness of aerobic exercise on PVAT and its regulation 

of aortic function 

The results of this study will establish the role of PVAT in mediating aortic dysfunction 
associated with MetS and depressive state. Additionally, this work will identify key 
disease specific mediators of PVAT regulation of aortic function. Finally, this work will 
establish mechanisms through which exercise mediates beneficial aortic function. 
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Chapter 1: Review of Literature 

 

Aortic Function 

The aorta is the largest artery in the body and directly receives blood from the heart and helps 

distribute blood to most of the body. The aortic wall is comprised of 3 regions the tunica intima, 

tunica media, and tunica adventitia. The tunica intima consists of a single interconnected layer of 

endothelial cells with underlying extra cellular matrix (ECM). The endothelium provides a 

physical barrier and is responsible for regulation of function stiffness of the aorta. The internal 

elastin lamina separates the tunica intima from the tunica media. The tunica media is made up of 

alternating circumferentially organized layers of elastin and smooth muscle with interspersed 

elastin, collagen, and proteoglycans. This layer is the major determinant of aortic distensibility. 

Finally, the external elastic lamina divides the tunica media from the tunica adventitia. The 

tunica adventitia consists primarily of collagen fibers conferring a rigid structure, with diffuse 

smooth muscle precursors, elastin, and vasa vasorum. The vasa vasorum is the local supply of 

blood to the aortic wall, which can traverse from outside the tunica adventitia almost to the 

tunica intima. 

 

Due to the length of the aorta distinct anatomical regions segment the aorta with profound 

differences arising as you move from the thoracic aorta down into the abdominal aorta. The most 

notable difference is the ECM make up for the aortic wall with regions proximal to the heart 

presenting with higher levels of elastin in comparison to increasing collagen as you move distally 

from the heart [1]. The review will focus on the structure and function of the thoracic aorta as its 



2 
 

function as a more direct impact on cardiac function, all mentions of aorta will refer to the 

thoracic region unless otherwise specified.  

 

Figure 1.1. Digital representation of arterial wall with perivascular adipose tissue. 

 

 

 

Mechanical Properties of the Aorta 

The elastin is mainly organized in the medial layer of the aorta wall inter mixed with smooth 

muscle cells and collagen fibers. The high levels of elastin in the aorta give it elastic properties. 

The elastin properties allow the aorta to comply with high systolic pressures storing kinetic 

energy and blood to then recoil during cardiac diastole. This is known as the Windkessel effect 

and is important for the following reasons. It dampens the pulsatile nature of the cardiac flow 

and allows for continuous blood flow to the organs [2, 3]. In the arch this same effect is needed 

to develop diastolic pressure and perfuse the coronary arteries as blood flow into the 

myocardium is greatly reduced during systole [4].  Secondly, the compliant nature of the aorta 
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helps to maintain lower afterload allowing for more efficient cardiac work. Any change in the 

elastic properties of the aorta could negatively impact the heart and other organs. The media 

layer of the aorta also contains collagen fibers and smooth muscles. The collagen fibers help give 

the aorta its structure and become engaged as pressure increases inhibiting aortic distension. The 

aortic smooth muscle cells play more of a secretory role, making the elastin and collagen fiber 

building blocks [5, 6] and ECM remodeling proteins [7]. The prominent ECM remodeling 

proteins are matrix metalloproteinases (MMPs), which play an important role in normalizing 

shear stress via wall remodeling [8]. Additionally, transmembrane attachment of MMPs to the 

ECM allow the contractile state of the smooth muscles to differentially direct stress onto 

collagen and elastin fibers [9]. Therefore, making endothelial derived smooth muscle mediators 

important in the regulation of aortic compliance. The predominant smooth muscle modulator in 

the aorta is nitric oxide (NO), causing relaxation and preferential loading of elastin fibers while 

reduced NO and increased smooth muscle tone loads collagen [10, 11]. The role of NO in aortic 

compliance is supported by decreases in aortic compliance with eNOS inhibition in mice [12]. 

This is in part due to impaired relaxation increasing tone of aortic smooth muscles exposing 

them to higher imparted wall stress leading to ECM remodeling to normalize the distribution of 

stress. Additionally, NO regulation of aortic compliance may be mediated through effects on 

remodeling proteins [13, 14]. Gurjar et al. [13] showed eNOS gene transfer or NO donor 

compounds significantly reduced smooth muscle migration. This was mediated through 

upregulated levels of TIMP-2, which prevented the activation of both MMP2 and MMP9 to their 

active forms. This suggest NO mediates aortic compliance through regulation of smooth muscle 

tone causing the preferential loading of elastin fibers and protects the elastin fibers from 

degradation through TIMP sequestration of the elastases MMP2 and MMP9. 
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Disease Burden of Aortic Alterations 

In pathological conditions resulting in reduced NO or changes in ECM composition of the aorta 

stand to have significant health burdens. The loss of compliance in the aorta is deemed aortic 

stiffening. Stiffening refers to loss of elastic properties compared to the healthy norm resulting in 

a diminishing Windkessel effect and an increase of pulsatile flow [4]. Stiffness and pulsatile flow 

has numerous physiological effects on the heart and the periphery. At the heart, aortic stiffness 

increases afterload, work of the heart, and increases O2 demand [15]. While pulsatile flow 

reduces diastolic BP and coronary perfusion potentially resulting in O2 supply demand mismatch 

and a limited functional capacity [4, 16, 17]. One standard deviation increase in aortic stiffness, 

measured by aortic pulse wave velocity, elevates the risk of cardiac events and risk cardiac 

mortality ~50% [18]. Systemically, pulsatile flow disrupts smooth continuous flow in the 

capillaries hampering capillary-tissue exchange [19]. Aortic stiffness is associated with micro-

vessel damage and organ damage leading to pathology. Making aortic stiffness an independent 

risk factor for stroke, stroke mortality, all-cause mortality [20, 21].   

 

Perivascular Adipose Tissue Modulation of Vascular Function 

 

For the longest time the adipose tissue sitting outside of the vascular wall adventitia was thought 

to act simply as a cushion (Fig.1.1). However, over the past decade the perivascular adipose 

tissue (PVAT) has been recognized as an important regulator of vascular function. PVAT has 

been shown to release factors, which can modulate ECM, smooth muscle, and endothelial cells. 

Importantly, PVAT appears to have functions distinct from other depots of adipose and 
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alterations in normal PVAT function have been recognized as key mediators of disease 

progression. The PVAT depot of adipose appears to be distinct from other depots and regulate 

vascular function based on the following evidence. 

 

Origin and Regionality of Perivascular Adipose Tissue 

Proteomic and genomic profile assessment of PVAT shows close similarity to brown adipose 

and distinct differences in comparison to white adipose tissue (visceral, subcutaneous, etc.) [22]. 

Despite similarities to brown adipose PVAT likely develops from a separate lineage. This was 

first discovered crossing peroxisome proliferator-activated receptor- (PPAR) floxed mice with 

smooth muscle specific driver SM22 [23]. PPAR is an essential regulator in adipogenesis, 

lipid storage, and lipid metabolism [24]. The conditional knock of PPAR from smooth muscle 

precursors results in the development a vasculature devoid of PVAT [23]. To the contrary, brown 

and white adipose depots developed normally due to separate developmental origin of lineages 

[25, 26]. The idea of PVAT developing alongside smooth muscle from a common origin bares 

similarities to the development of brown adipose which develops from the same precursors as 

skeletal muscle [27]. Not only does it appear PVAT is its own unique adipose depot but it 

displays various phenotypes and function depending on location (Fig.1.2) [28]. The PVAT 

surrounding the thoracic aorta (tPVAT) is unique as it’s the only brown-like depot with a very 

dense population of mitochondria. The abdominal aorta transitions to a beige phenotype with a 

mix of brown and white like cells. Finally, mesenteric and the majority of peripheral PVAT 

presents with a white-like phenotype. These phenotypic differences along the vasculature 

correspond with variations in adipokine/hormone expression level [29]. More evidence in white-

like PVAT shows adipocytes more closely resemble pre-adipocytes and this is associated with 
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increases in pro-inflammatory cytokine production [30]. Whereas, tPVAT a more brown-like 

phenotype, has less inflammatory cytokines and has higher expression of uncoupling protein-1. 

In addition to adipocytes, PVAT consists of adipose precursors and resident immune cells. In 

healthy depots of adipose tissue alternatively activated macrophages [31, 32], B-1 cells [33], 

innate lymphoid cells [34], and eosinophils [35-37] release anti-inflammatory cytokines, support 

adipose tissue function, and in PVAT promote beneficial adipose-vascular interactions [33, 35]. 

In combined, the secretory profile of the tPVAT environment can influence the structure and 

function of the aorta through paracrine signaling and local circulation [38]. 

 

 

Function of Perivascular Adipose Tissue in Health 

In health, the tPVAT is catabolic breaking down nutrients and fueling the electron transport 

chain. However, high expression of UCP-1 inhibits ROS production [39] and redirects the 

electron flux to produce heat instead of ATP production. The production of heat from the tPVAT 

is thought to be an important thermoregulatory mechanism [23]. UCP-1 expression and heat 

production are the hallmark of the brown-like tPVAT phenotype. The brown-like adipose tissue 

phenotype, in part, is supported through NO signaling. The importance of NO signaling for 

mitochondrial biogenesis and the brown adipose phenotype is highlighted in studies utilizing 

eNOS null mice [40, 41]. In addition to the production of heat, in 1991 the observation had been 

made that PVAT blunted the contractile response of the aorta, but was dismissed as merely 

agonist uptake [42]. It would be 11 years later tPVAT derived cytokines regulation were first 

uncovered in 2002 [43]. Löhn and colleagues [43] exposed aortas with and without tPVAT to 

increase doses of multiple vaso-constrictors and collected the bath solution from aorta with 
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tPVAT and added it to the bath of aortas without tPVAT. They showed the anti-contractile 

effects could be transferred. These experiments clearly demonstrate anti-contractile actions of 

tPVAT were not due to agonists uptake. Finally, the study showed preheating the transfer 

solution abolished the transfer of the anti-contractile effects, which led to the conclusion tPVAT 

releases vasoactive peptide(s), which blunt the aortic contractile response. This crucial 

experiment opened the door for subsequent evaluations of tPVAT function and coined the term 

PVAT derived relaxing factor (PVRF). The direct influence of tPVAT on smooth muscle cell 

relaxation is under intensive study. Numerous PVFRs have been proposed including: hydrogen 

sulfide, NO, palmitic acid methyl ester, adiponectin, and angiotensin (Ang) 1-7, and are 

highlighted in a recent review on the topic [44]. Five years after the discovery of an unknown 

PVRF, Gao et. al. [45]showed that PVAT could activate endothelial NO production, laying the 

ground work for PVAT regulation of the endothelium. 

 

Perivascular Adipose Tissue Autocrine and Paracrine Mediators 

Adiponectin may be the most prominent adipokine in healthy tPVAT. Through autocrine 

signaling adiponectin is a potential mediator of the brown-like phenotype through NO signaling 

[46]. Adiponectin is the prominent anti-inflammatory adipocyte acting to promote alternative 

polarization of macrophages and preventing the classic polarization [47, 48] in PVAT. These 

actions on resident macrophages help to prevent infiltration by pro-inflammatory immune cells 

into the adipose tissue due to lower production of chemoattractants [49]. Further evidence 

identifies adiponectin regulation of interleukin (IL)-10 as an important anti-inflammatory signal 

in macrophages [50]. IL-10 functions to reduce ROS and inhibit pro-inflammatory cytokine 

production [51, 52]. Although its potential role as PVRF has been dispelled [53], adiponectin 
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released from PVAT mediates endothelial function via NO production [54]. Specifically, 

adiponectin regulates NO bioavailability by increasing transcription and activation of eNOS [55-

58]. Additionally, IL-10 release from healthy tPVAT may act to suppress ROS production and 

promote eNOS expression in the aortic endothelium [59, 60]. As discussed above the promotion 

of NO signaling promotes compliance of the aorta. Finally, PVAT is known to express the full 

complement of angiotensin system [61]. Expression of the angiotensin converting enzyme 2 

(ACE2) is of interest as it is responsible for the breakdown of the vaso-constrictor Ang2 yielding 

Ang 1-7 [62], which is shown to cause vasodilation through actions on eNOS [63]. With tPVAT 

signaling supporting endothelium NO, any changes to tPVAT function may alter this beneficial 

relationship. Indeed, multiple disease states induce change is PVAT phenotype and function. 

Role of Perivascular Adipose Tissue in Vascular Pathologies 

 

Metabolic Syndrome 

The prevalence of the metabolic syndrome (MetS) in the United States is 34% [64] and the CDC 

estimated medical costs for MetS is over $300 billion annually. MetS is collection of risk factors 

including dyslipidemia, obesity, hypertension, and elevated glucose, which elevates risk of 

diabetes, cardiovascular disease, and cardiac events [65]. Pathologically, MetS presents with 

increases in pro-inflammatory cytokines and oxidative stress [66-68]. Circulating elevations of 

pro-inflammatory cytokine are attributed to expansion and dysfunction of the visceral adipose 

tissue. Consequently, this is associated with large arteries in MetS suffer from reduced NO 

bioavailability and undergo ECM remodeling causing increases in arterial stiffness [69]. 

Elevation of aortic stiffness in MetS is one mechanism driving the increasing risk of cardiac 

events. Aortic stiffness regardless of disease status is an independent risk factor for CVD and 
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cardiac events [20, 21]. This association arises from the direct impact of stiffness on the heart, 

increasing afterload and reducing coronary flow [4]. Aortic stiffness in MetS arises from loss/ 

fragmentation of elastin fibers, deposition of collagen, collagen cross linkage, and smooth 

muscle tone. While aortic stiffness may be exacerbated by hypertension [70] in MetS, evidence 

suggests aortic stiffness may precede the development of hypertension [71, 72]. The chronic 

ROS production in MetS not only quenches NO but also causes fragmentation of elastin fibers R. 

Additionally, MetS is associated with increases of matrix remodeling protein expression 

specifically, MMP-9 and MMP-2 R.  Both MMP-9 and MMP-2 may alter aortic compliance 

through their actions as elastases. Complicating the fragmentation of elastin is the increased 

deposition of type 1 collagen. Collagen type 1 is more rigid than that of collagen type 3 and 

elevation of expression throughout the vascular wall increases aortic stiffness [73, 74]. On top of 

reduction of elastin and increase collagen, glucose and ROS elevation of advanced glycation end 

product cause cross-linkage of ECM fibers further increasing aortic stiffness [75].  

 

Perivascular Adipose Tissue in Metabolic Syndrome 

Similar to the white adipose depots in MetS, it appears thoracic and peripheral PVAT adipocytes 

increase in size [54, 76]. This coincides with increases in ROS production and inflammatory 

cytokines. Work in the New Zealand obese (NZO) mice model of MetS shows increased 

expression of cell adhesion molecules in tPVAT [76]. Cell adhesion molecules assist in immune 

cell infiltration of tPVAT, which may perpetuate the pro-oxidative/inflammatory environment. In 

accordance with this, PVAT in NZO mice showed higher levels of ROS production, in part, due 

to increased NOX activity and decreased expression of all 3 SOD isoforms [76]. However, the 

contribution to total ROS and the specific isoforms of NADPH oxidases involved need further 
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evaluation. Furthermore, there appears to be a differential effect of MetS on NADPH oxidase 

ROS when comparing tPVAT to mesenteric PVAT in the NZO mouse. As such, the impact of 

NADPH oxidase ROS on subsequent regulation of aortic function warrants further investigation. 

 

To date, the role of MetS tPVAT regulation of aortic function is unknown. Existing data 

examining how MetS affects adipose tissue and its role on aortic function comes from either, 

other PVAT depots, from animal models of MetS components, or from other vascular beds 

(mesenteric or small skeletal muscle arteries). The role of the MetS on tPVAT and in turn, the 

role of tPVAT on aortic function is likely dependent on the complex interactions of its 

components, which may yield differing effects than a component in isolation. I have described 

below some of the main findings from the auxiliary studies. Uncovering the distinct and 

coordinating signaling pathways of the MetS components in tPVAT should be the topic of future 

evaluation. The two most common components of MetS studied in PVAT are obesity and 

hypertension 

 

Perivascular Adipose Tissue in Obesity 

Obesity results in expansion of adipocyte mass, tissue volume, and whitening of tPVAT in 

obesity [54, 76-78]. Hypertrophy of PVAT adipocytes is complicated by a reduced micro-vessel 

network leading to regional hypoxia [79-81]. Hypoxia is a potent signal increasing pro-

inflammatory cytokine production and chemo-attractants. Another hallmark of beige adipose or 

PVAT during obesity is a shift toward whiter phenotypes. It is speculated during the 

development of obesity during tissue expansion that PVAT undergoes some degree of 

dedifferentiation and whitening, which results in upregulation of pro-inflammatory cytokines and 
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immune-attractant chemokines [30]. However, the role of regional hypoxia or the direct initiation 

of the dedifferentiation is poorly understood. Persistent hypoxia may lead to adipocyte death, a 

hallmark of obese adipose depots, which attracts macrophages and up-regulates TNF 

production [82]. Resident PVAT macrophages are predominantly M2 polarized in health aiding 

in promote of an anti-inflammatory environment [83, 84]. Upon the onset of obesity, it is likely 

these macrophages shift to a pro-inflammatory phenotype and signal to attract T-cells and 

monocytes to the PVAT [84, 85], leading to accumulation of PVAT pro-inflammatory immune 

cells [37, 86]. Macrophage infiltration appears to be essential in obesity induced PVAT 

dysfunction [86]. Upregulation of inflammatory cytokines promote further signaling for cell 

adhesion and chemokine production [87-89]. In addition, 2.5 hours of hypoxic conditions in 

tPVAT abolished the anti-contractile effect, which was restored with an anti-TNF antibody. 

This suggests hypoxia induces TNF expression and release from hypoxic tPVAT [54]. This is 

supported by experiments in PVAT and other adipose depots displaying increased TNF and 

MCP-1 [77, 90]. Hypoxia may additionally enhance the inflammatory burden of elevated fatty 

acids mediated through increased ROS production [91]. Obesity rapidly induces alterations in 

fatty acid composition directly leading to PVAT and adipose dysfunction [92, 93]. Another study 

however, suggests PVAT undergoes compensatory measures to retain the brown-like phenotype 

proceeding PVAT dysfunction and whitening in early obesity [94]. In this study Gil-Ortega et. 

al. [94] shows increases in NO in early obesity, which promotes the brown-like phenotype. 

However, this is eventually lost once inflammatory cytokine production and ROS increases [95-

97]. 
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There is opposing evidence in tPVAT, which suggests it is protected against the pathophysiology 

of obesity [22]. Fitzgibbons et. al. [22] described a protection from diet induced obesity related 

infiltration of pro-inflammatory macrophages. This coincides with retention of UCP-1 

expression and the brown phenotype and no increase in pro-inflammatory cytokine production 

after 13 weeks and 20 weeks of high fat diet. However, these experiments were conducted on 

tPVAT surrounding the aortic arch and might represent further regional differences in tPVAT 

between the arch and descending thoracic. Additionally, longer durations may be needed to 

initiate detrimental signaling in tPVAT as 8 months of high fat diet in the same mouse strain 

shows tPVAT inflammation. While we have some general understanding of obesity mediated 

changes in tPVAT, much is still left to be cleared up such as:  

 What are the initiation signaling events in early obesity? 

 Acute effects of caloric excess? 

 What role does PVAT-adventitial fibroblast signaling play? 

 What is the time course of immune cell infiltration? 

 What role do resident immune population play? 

 Do the different PVAT depots respond the same and over the same time course? 

 Additionally, we need a well-defined tPVAT profile in health to understand the changes 

associated with obesity? 

 How are these effected by concomitant components of MetS? 
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Figure 1.2. Image of obesity induced PVAT dysfunction 

 

Oxidative Environment of Perivascular Adipose Tissue in Obesity  

Alterations in PVAT phenotype (whitening), Immune cell infiltration (T-cells & macrophages), 

hypoxia, and fatty acids contribute to oxidative stress in PVAT [76, 91-93, 98-101] (Fig.1.2). 

ROS causes oxidative damage to cellular components as well as sequesters NO, drives 

phenotypic whitening, which can further exacerbate ROS production [39]. Oxidative stress in 

PVAT appears to be related to both increasing ROS production and loss of the antioxidant 

system. The shift toward the pro-oxidative state develops early as 3 weeks of fructose feeding 

induced obesity reduced the superoxide dismutase and glutathione defense systems by half 

resulting in a doubling of oxidative stress markers [93]. The infiltration of immune cell brings 

higher expression of oxidative enzymes, chiefly NOX [102], into the PVAT. Numerous studies 
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in various PVAT depots support the idea of NOX as an important mediator of ROS in obesity. In 

the abdominal aorta gene expression of NOX subunits were increased along with PVAT ROS 

generation.  The elevated ROS could be abolished with the general NOX inhibitor apocynin [93]. 

In mesenteric PVAT an expression of NOX subunit p67phox has been recorded [100] and elevated 

NOX activity coinciding with increased PVAT ROS [76, 97]. Similarly, tPVAT in obese mice 

show elevated ROS production and greater than 2-fold increased gene expression for numerous 

NOX subunits [99]. Contrary, to these findings of obesity induced NOX ROS production, 

Sanchez et al. [103] suggest long term high fat diets decrease expression of NOX subunits in 

mesenteric PVAT. These results are hard to interpret in the context of the greater literature as 

high fat diets were implemented after weaning for 5 months, longer than other diet induced 

obesity protocols, however the diet did not induce weight gain compared to the controls despite a 

100% increase in chow calorie content [103]. While these collective works make a strong case 

for NOX in obesity induction of PVAT ROS, other mechanisms have been reported. One such 

study showed tPVAT uncoupled eNOS was solely responsible for increased ROS with obesity. 

eNOS uncoupling occurs without cofactors important for dimerization or substrate depletion, in 

this active monomeric state eNOS reduces atmospheric O2 to superoxide [104]. Xia et. al. [101] 

showed superoxide production was 6 times higher in obese tPVAT, which was abolished when 

tPVAT was pretreated with a NOS inhibitor (L-NAME). The uncoupling in obese tPVAT was 

due to diminished eNOS substrate L-arginine caused by the increased activity of the alternate 

arginase pathway [101]. Immune infiltration and NOXs were not evaluated in the study. ROS in 

itself can cause eNOS uncoupling through oxidation of tetrahydrobiopterin (BH4). It is likely in 

the studies reporting increase ROS and increased expression or activity of NOX, PVAT 

undergoes some degree of uncoupling. With the overwhelming evidence for immune cell 
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infiltration and increases in NOX activity, it is highly unlikely uncoupled eNOS is the only 

enzyme producing ROS. Alternatively, it may be L-NAME treatment through inhibition of 

immune cell iNOS decreased the stimulation of NOX ROS production [105]. Another alternative 

source of PVAT ROS comes from recent evidence suggesting mitochondrial ROS production is 

an essential mechanism of PVAT dysfunction, depicted in a study by da Costa et al. [98], which 

showed an account of mitochondria function in obese tPVAT. The authors suggested no change 

in tPVAT mitochondria number as a result of obesity. However, the mitochondria in obese 

tPVAT expressed less UCP-1, consumed less O2, and produced more ROS. It is clear many 

oxidative pathways may play a part in obesity and potentially MetS related PVAT ROS. Further 

investigations into the origin, time course, and relative contribution of various oxidative enzyme 

to tPVAT ROS production are merited.  

 

Perivascular Adipose Tissue ROS Impact on Vascular Function 

Superoxide is a short lived volatile radical, which likely doesn’t diffuse to the endothelium from 

PVAT. However, the reaction of superoxide and water mediated by SOD produces the more 

stable hydrogen peroxide (H2O2). H2O2 production was shown to be produced by PVAT and to 

induce vascular relaxation independent of the endothelium [45]. In obesity, the H2O2 production 

is elevated despite the loss of SOD levels. Pre-treatment of abdominal aorta PVAT with PEG-

catalase (the enzyme which breaks H2O2 into H2O and O2) prior to aortic EDD had differing 

effects dependent upon obesity status. In lean PVAT H2O2 scavenging causes impaired EDD of 

the abdominal aorta, while in obese PVAT EDD was improved.  This suggests there is an ideal 

H2O2 concentration window and once H2O2 is elevated with obesity it causes vascular 

impairment. Additionally, ROS may directly cause fragmentation of elastin fibers in the aorta 
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[106]. While no experiment has directly tested the impact of obesity induced PVAT ROS on 

vascular stiffening, studies in another oxidative disease such as aging implicate a link. Fleenor et 

al. [107] showed treatment of aging tPVAT with the free radical scavenger TEMPOL inhibits 

PVAT mediated stiffening of the aorta. 

 

Perivascular Adipose Tissue Proteasome Function 

The oxidative load may also impair the ubiquitin-proteasome system (UPS) in PVAT. Currently, 

there is no direct indication of this, but evidence from other tissue can be used to draw 

speculation. Recently, both obese human and mouse visceral adipose tissue showed reduced 

proteasome activity and was linked to development of insulin resistance, a hallmark of MetS 

[108]. We speculate the importance of proteasome function is magnified in the protein dense 

PVAT. Eukaryotic cells express the 26S proteasome, which is comprised of the 20S core bound 

to one or two 19S cap regulatory particles. The 19S cap facilitates substrate [109] recognition 

and 20S gate opening [110] feeding ubiquitinated and damaged proteins into the 20S core [111]. 

It has been speculated higher oxidative environments may cause the 19S cap to dissociate from 

the 20S core reducing the ability to recognize and degrade ubiquitin [112]. This may potential 

cause the buildup of proteasome substrates, as ROS is known to damage and cause misfolding of 

proteins [113]. The increase accumulation of damaged and misfolded proteins can lead to 

cellular and oxidative stress [114-116]. Specifically, buildup of oxidized and ubiquitin through 

activation of endoplasmic reticulum stress induced production of inflammatory cytokines [115]. 

Taken together this collection of literature may suggest PVAT proteasome function may 

modulate inflammatory cytokine production and participate in MetS induced PVAT dysfunction. 
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Future endeavors are needed to assess the causative and/ or exacerbating role of the entire UPS 

in PVAT dysfunction. 

 

Inflammation of Perivascular Adipose Tissue in Obesity 

Ubiquitin [115, 116] and ROS [117] are two known stimulators of inflammatory cytokines, 

which are indeed increased in obese PVAT. TNF is probably the most studied cytokine 

associated with PVAT. In obesity gene expression and PVAT concentration greatly increase. 

TNF has both autocrine effect on PVAT and paracrine effect on the underlying vessel. TNFα 

activates the production of ROS from oxidative enzymes, such as NADPH oxidase [118, 119], 

giving it the ability to affect both PVAT and vascular ROS. Infiltrating macrophages in obesity 

play a major role in adipose production of TNF partially in response to tissue hypoxia [90, 

120]. Greenstein et al. [54] showed TNF can be induced even in healthy PVAT, presumably 

from repolarize of the resident macrophages and adipocytes, as macrophage infiltration should 

be low. In this study TNFα exposure in healthy rat mesenteric arteries with intact PVAT repealed 

the anti-contractile effect of PVAT. However, the role of PVAT is confounded because TNFα 

was acting on both PVAT and the vessel. Assessment of small gluteal arteries showed higher 

expression of TNF receptors in the PVAT of MetS patients with loss of anti-contractile effects. 

This however, could not be reversed by TNF receptor blockade. More data in visceral small 

arteries from Virdis et al. [121] shows increased PVAT TNF gene expression and increase TNF 

receptor in PVAT and the vascular wall of obese patients. TNFα stimulation of NADPH oxidase 

ROS was found in the vessel wall causing reduced NO, which was reversed with TNF 

neutralization. However, immunofluorescent detection of TNF was strongest in the vessel wall. 

Due to experimental design, it is hard to determine the exact impact of TNF produced in the 
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PVAT compared to that of vascular origin. The acute effects of TNF are likely mediated by this 

activation of vascular NOX, while chronic effects further impair vascular function through 

inhibition of eNOS, which may link PVAT dysfunction with pathological vascular changes such 

as remodeling and stiffness. In addition to activation of ROS TNF also controls other cytokine 

expression through direct and indirect pathways [122]. It is clear TNF plays a major role in 

obese PVAT dysfunction. However, much of what we know comes from TNF receptor inhibition 

in small artery with intact PVAT. Further research is needed in conduit artery PVAT and to 

determine signaling pathways mediating TNF actions in PVAT and the vascular wall. 

 

Adiponectin & Interleukin 10. In the context of PVAT one of the most important targets effected 

by TNF is adiponectin. As discussed above adiponectin plays a number of important roles in 

mediating healthy PVAT signaling. Increased TNF inhibits adiponectin removing its effects on 

PVAT and vascular NO [57]. This leads to perpetuation of the whitening phenotype of PVAT 

and loss of PVAT assistance in EDD. Obesity also results in the loss of anti-TNF cytokines like 

IL-10.  IL-10 in produced primarily in M2 polarized macrophages and adipocytes so as the 

various obesity induced mediators drive repolarization expression and release of IL-10 drops [32, 

123]. This is important because IL-10 inhibits NOX enzymes, which is a major source of both 

vascular and PVAT ROS in obesity [124]. Additionally, IL-10 inhibition of TNF actions is lost 

in obesity exacerbating its increase [59].  

 

Leptin. Leptin is another important anti-inflammatory PVAT cytokine, which can induce vaso-

relaxation through multiple pathways [125]. However, in obesity leptin levels increase as 
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resistance to leptin signaling develops, much like insulin resistance, this may exacerbate vascular 

impairment [126]. 

 

Interleukin 1 beta. TNF mediates expression of IL-1 [127], another stimulator of oxidative 

enzymes [128]. Additionally, IL-1β can act to enhance TNFα signaling through regulation of 

TNF receptors [129]. This implicates IL-1β in a supportive role to TNFα in mediating obese 

regulation of PVAT/ vascular dysfunction.  

 

Thrombospondin 1. Another action of TNF is upregulation of thrombospondin-1 (TSP-1) 

[130]. TSP-1 is expressed in adipocytes however; it has not been evaluated in the context of 

PVAT pathophysiology. TSP-1 has been shown to inhibit eNOS function and impair EDD [131, 

132], thus it may participate in both phenotypic whitening and vascular dysfunction. TSP-1 may 

further perpetuate in adipose dysfunction through its anti-angiogenic actions, potentially 

participating in PVAT hypoxia and immune cell infiltration [133, 134].  

 

Matrix Metalloproteinase 9. TNF may also meditate ECM remodeling and stiffness through 

actions on PVAT MMPs. Both adipocytes and immune cells express MMPs [135, 136], in 

particular, MMP9 which is highly associated with aortic stiffness and displays elastase activity 

[137]. The fragmentation of elastin increases aortic stiffness by causing the loading of collagen 

fibers at lower pressures [4]. First, TNFα can stimulate the production of MMP9 directly [138]. 

Second, TNFα can indirectly stimulate MMP9 though its promotion of other cytokines, whereby 

both IL-1β and TSP-1 can activate MMP9 [139, 140]. Active MMP9 can feedback to cleave 

TNFα [141] and IL-1β into active forms [142] possibly creating a cycle of upregulation between 
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remodeling proteins and pro-inflammatory cytokines. One study has shown increased MMP9 

protein levels in aortic tissue, which may have included PVAT, as “aortic tissue” used for 

imaging clearly contains PVAT [99]. Expression of MMPs in PVAT and their actions on the 

elasticity of the underlying vessel are important mechanisms to understand PVAT-vessel 

interactions. 

 

Interleukin 6. IL-6 is another well studied PVAT cytokine in obesity. It appears the major role of 

IL-6 is autocrine signaling directing immune infiltration [143] and T-cell pro-inflammatory 

polarization [144]. IL-6 exposure on health small artery with PVAT impaired function and IL-6 

blockade restored anti-contractile properties in hypoxia exposed vessels [54]. This may be due to 

actions of IL-6 activation of endothelium ROS and inhibition of eNOS [145, 146], however this 

has not been shown directly in obese PVAT. The role of PVAT IL-6 in obesity induced aortic 

stiffness is unknown, but evidence from aging suggests it may contribute [147]. 

 

Aldosterone. Aldosterone, similar to TNF, can activate ROS production through activation of 

NOX enzymes [148]. Recently the angiotensin-aldosterone system has been identified in PVAT/ 

adipose tissue [149]. Expression of aldosterone was shown to be increased in obesity and 

inhibition of aldosterone receptors in mesenteric arteries with intact PVAT blunted the PVAT 

induced impairment of EDD [150]. This suggests a role of the local RAAS system in obesity 

mediation of vascular impairment however this has not been shown in tPVAT and the aorta. New 

evidence suggests the impairment of vascular function by aldosterone is mediated by angiotensin 

receptors and not mineralcorticoid receptors [151] making the assessment of aldosterone 

vascular effects more difficult. While a lot of work has been done to show the impact of 
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individual mediators of autocrine regulation of PVAT dysfunction and paracrine vascular 

dysfunction much more work is needed to interpret how all of these mediators work in concert or 

opposition of one another, a representative diagram is shown in figure 1.3. 

Figure 1.3. Depiction of known and potential PVAT regulation of vascular function. 

 

 

 

Impact of Hypertension on Perivascular Adipose Tissue 

The effect of hypertension on PVAT has been less well studied than obesity however the 

Harrison lab has performed a few well-designed studies to implicate T-cells in PVAT 

hypertension pathology. They first made the observation vascular function was preserved in Ang 

II induced hypertensive mice, which were T-cell null. Immunohistochemical evaluation of the 

aorta showed the T-cells preferentially infiltrated the tPVAT [152]. This study was followed up 

by an in-depth characterization of tPVAT immune cell population and the chemotactic cytokines 

involved [153]. The study concluded a very specific subset of T-cells was drawn to the PVAT by 
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CCL5 production in the tPVAT.  This subpopulation constituted a sizable portion of the 

infiltrating cells. Blocking CCL5 reduced ROS production and T-cell infiltration of tPVAT. 

Importantly, this class of T-cells expressed high levels of interferon gamma (IFN-) and IL-17, 

which they showed IFN- drastically reduced EDD after an extended incubation.  Infiltrated 

immune cell release of IL-17 may play an important role in recruitment of other immune cells 

[154]. The only drawback from the study is IFN- production was not quantified from tPVAT 

and an arbitrary concentration of IFN- was used in EDD experiments. However, this is 

supported by work from another group showing IFN- expressing immune cells regulate vascular 

impairment in hypertension [155]. These works present ample evidence for PVAT pathology 

being mediated through this subpopulation of high IFN- expressing T-cells, which relies on 

adipocyte and resident immune cells production of CCL5. Previous work had established loss of 

anti-contractile effects of PVAT in spontaneously hypertensive rats [153]. However, this was not 

due to IFN- but rather the loss of the NO promoting peptide Ang 1-7. Another proposed 

mechanism for PVAT mediated vascular dysfunction is decreased leptin expression in 

hypertension [156]. These two models may however not represent the pathological development 

of hypertension in MetS, which may confer different effects on PVAT function and aortic 

regulation, especially concomitantly with other components of MetS. Additionally, these studies 

highlight immune infiltration and ROS production as similarities between obesity and 

hypertension induced PVAT dysfunction. However, it appears different immune populations are 

implicated in the two disease states. Another similarity may be the activation of NOX enzyme 

ROS production.  Some evidence suggests the IL-17 producing T-cells infiltrating PVAT result 

in activation of NOX enzyme ROS production [157, 158]. It is suggested this is driven by IL-6 

expression and release [144]. Understanding the IL-6 – IL-17 axis in PVAT MetS needs further 
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exploration as IL-6 elevation is a common finding in obese PVAT. More studies are needed to 

understand the full effect of hypertension of PVAT and concomitantly with obesity or with other 

components of MetS.  

 

Chronic Stress and Depression States 

 

Prevalence and Pathology 

Depressive psychological disorders are a common worldwide affliction. According to the World 

Health Organization, depressive states affect approximately 350 million people making it the 

leading global cause of disability. The burden of depressive states is at its highest in the USA 

with prevalence rate of roughly 17% [159]. The complex psycho-physiological interactions of 

depressive states cause numerous health issues including CVD [160, 161]. Clinical evaluations 

of arterial stiffness [162], a CVD risk factor [163], and flow mediated dilation [164] link 

vascular impairment with depressive symptoms. The link between depressive states and vascular 

function have slowly come to light in recent history; a detailed account of the advancements in 

the field can be found in a review by Golbidi et. al [165]. In addition, there is a high co-

prevalence of depressive states with obesity/ metabolic syndrome (MetS) [166, 167] and little is 

known about the physiologic consequences of this comorbidity. With one study showing worse 

behavioral outcomes in the comorbid state [168]. Despite the growing evidence in the 

vasculopathy of depressive states, the effect on tPVAT regulation of aortic function is unknown. 

 

Animal Model of Depressive States 
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The unpredictable chronic mild stress (UCMS) protocol is a well-defined model to induce a 

depressive state in rodents [169, 170]. Rodents undergoing UCMS manifest with clinically 

relevant depressive symptoms such as anhedonia, disordered sleeping patterns and learned 

helplessness [169-172]. A review of UCMS reveals alteration in brain structure and function, 

parallel to clinical depression [173] and importantly, the behavioral outcomes used to validate 

depressive states can be reversed by treatment with antidepressants further validating the use of 

UCMS to study depressive states in rodents [174].  

 

Effect of Chronic Stress on Physiological Function 

Exposure to chronic stress activates two major pathways: hypothalamus-pituitary-adrenal (HPA) 

axis and the sympathetic nervous system.  

 

Vascular Effects 

The Frisbee lab has conducted one of the only studies to evaluate the impact of depressive states 

on conduit vessel function [175]. In this study 8 weeks of UCMS reduced aortic EDD in mice, 

due to reduced NO bioavailability. The endothelial NO independent component of relaxation 

was increased following UCMS due to the dilatory actions of H2O2. However, it was not enough 

to compensate for the loss of NO. Circulating factors did not correlate well with the observed 

impairment suggesting a possible outward in disease signaling. 

 

Glucocorticoids 

Glucocorticoids are the end effector of the HPA axis, cortisol (in humans) or corticosterone (in 

rodents) and are shown to impair endothelial function. Cortisol and corticosterone are shown to 
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reduce NO bioavailability [176, 177] and regulate a gene promoter of eNOS [178]. Indirectly, 

glucocorticoids activation of ROS production [179, 180] can interfere with NO or eNOS 

cofactors leading to eNOS uncoupling and perpetuation of the oxidative load [181, 182]. The 

increased H2O2 component of relaxation in the Frisbee study may due to corticosterone actions 

leading to increased SOD activity and decreased catalase activity [183]. However, this has only 

been described in the liver and many conflicting accounts of corticosterone effects on the 

antioxidant system have been reported, which may be further complicated by tissue specificity 

[180, 183, 184]. Uncovering the endothelial antioxidant response to corticosterone warrants 

further investigation. Importantly, these are effects of chronically elevated glucocorticoids as 

acute high dose of corticosterone was shown to activate eNOS through AKT [185]. The 

comorbidity of UCMS with high fat diet was shown to not cause any further impairment to 

eNOS expression, but at extended time points UMCS decreased the nitrate/nitrite levels below 

that of just the high fat diet suggesting an additional inhibition of NO through a non-

transcriptional pathway [186]. Additionally, this study showed increased MMP9 expression in 

the aorta [186], suggesting the comorbidity may exacerbate the effects on aortic stiffness. 

 

Sympathetic Nervous System 

Sympathetic signaling in the blood vessels leads to vasoconstriction, in the context of the aorta 

smooth muscle contraction increases the loading of collagen fibers and stiffens. Highlighted by a 

recent study showing blockade of sympathetic input results in decreased aortic stiffness [187]. 

One of the major effects of increased SNS activity is activation of the RAAS, which contribute 

to CVD risk [188-190]. Ang II and aldosterone are the predominant vasoactive mediators of 

RAAS. Both can stimulate endothelial ROS production [148, 191, 192]. The increased ROS 
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appears to be mediated by activation of NOX [193-195] and increased transcription of NOX 

components [194, 196, 197]. 

 

Adipose Effects 

The effects of UCMS on PVAT function have never been evaluated. However, we can speculate 

based on the impact of UCMS on physiological function and other adipose depots. An interesting 

finding, which has implications for tPVAT, is the effect on brown adipose tissue. Starck et al. 

[198] report corticosterone reduced UCP-1 expression and heat generation while lipid storage 

increased. Suggesting elevation of corticosterone in UCMS may lead to phenotypic whitening in 

tPVAT. Additionally, UCMS contributes to altered lean/adipose ratio, macrophage infiltration, 

glucose metabolism, insulin resistance, and inflammation in adipose tissue [199, 200]. 

Glucocorticoids normally suppress immune function and pro-inflammatory cytokines [201, 202]. 

However, chronic exposure leads to glucocorticoid resistance and upregulation of inflammatory 

cytokines [203, 204]. This is especially troublesome for adipocytes and resident macrophages as 

studies showed glucocorticoid resistance, Ang II and SNS activation all increase adipose 

cytokine produce (i.e. TNF) [205-209]. The increased production of inflammatory cytokines 

has detrimental impact on both the adipose tissue and vasculature as discussed above. As chronic 

stress activates the systemic RAAS it may as well activate local RAAS. Adipose and PVAT are 

shown to expression local RAAS and as discussed previously enzymatic activity of ACE2 is 

important in breaking down Ang II to produce Ang 1-7 [62] a PVAT derived vaso-relaxant. 

However, the impact of UCMS on local RAAS is unknown. Signaling of Ang II may alter 

adipose blood flow distribution, increase SNS activity, increase oxidative stress and promote 

lipogenesis [61, 210] contributing to adipose tissue dysfunction. While evidence suggests UCMS 
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may initiate PVAT dysfunction, extensive investigations into the effect of UCMS and depressive 

states on PVAT are needed. Furthermore, many of these signaling pathways bare resemblance to 

obesity related vascular and adipose dysfunction. Determining the activation and consequences 

of these pathways in the comorbid state of obesity with depressive like states warrants 

investigation. 

 

Physiological Changes Exerted by Exercise 

 

Aerobic exercise is a common therapy used in treating both MetS and depressive states as both 

disease states normally present with diminished physical activity [211]. It is well known aerobic 

exercise training (Ex) reduces the risk of cardiovascular disease, events, and mortality [212, 213] 

and improves vascular function in these disease states [214, 215]. This is partially due to the 

restoration of NO bioavailability, reduced stiffness, and restoration of oxidant/ inflammatory 

mediators. Ex has also long been recognized for its anti-depressant effects [216]. The major 

mechanism regulating vascular and adipose function is the reduction of SNS activity following 

Ex [217]. The beneficial effects of Ex on vascular and adipocyte function are discussed below. 

 

Vasculature Effects 

Ex improves NO bioavailability multiple pathways. Ex is shown to increase eNOS gene 

transcription and protein levels [218, 219]. This may be mediated through Ex induced H2O2 

production [220, 221]. Additionally, eNOS activation increased NO production and Ex increase 

both Akt and AMPK phosphorylation of eNOS [222]. Available levels of essential eNOS 

cofactors may also increase with Ex [223, 224] further augmenting NO. As discussed previously 
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NO is an important regulator of aortic stiffness. Indeed, Ex has been shown to reduce aortic 

stiffness in disease states [67, 225, 226]. Accompanying the improved endothelial function, Ex 

both increases antioxidant defense and reduces oxidative enzyme ROS production [227, 228], 

which contributes to the increase bioavailability of NO and eNOS cofactors. Ex also decreases 

the levels of pro-inflammatory cytokines [229]. Reduced vascular wall inflammation starts with 

shear stress mediated reduction of cell adhesion expression [230, 231]. However, the main anti-

inflammatory effect of Ex is through its effects on the adipose tissue. 

 

Adipose Tissue Effects 

Studies show Ex promotes adipose NO signaling [40], which promotes mitochondrial biogenesis 

and phenotypic browning [40, 41]. In turn, the brown-like phenotype helps to reduce the 

oxidative burden in the adipocyte [39]. Additionally, Ex alters polarization of resident immune 

cells [232, 233], thus further reducing the oxidative and inflammatory burden. Numerous studies 

have assessed Ex effect on visceral adipose tissue showing reduced levels of TNF and IL-1 

while Ex increased anti-inflammatory cytokines like IL-10 [234, 235]. Some evidence suggests 

the anti-inflammatory effects of Ex are independent of weight loss and adiposity [236, 237]. One 

potential mechanism of recued inflammation is Ex restoration of adipocyte profusion through 

angiogenesis [238, 239]. Restoration of adipose capillary density likely decreases the hypoxic 

stimulus for immune-attraction and inflammation. While direct evidence is lacking for exercise 

effect on adipose tissue aldosterone expression, indirect evidence shows aldosterone levels are 

correlated with body mass and weight loss [240-242]. To date only one study, has examined the 

effect of Ex on PVAT regulation of vascular function. In healthy rats, exercise had no impact on 
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PVAT regulation of aortic function [243]. Further, studies are needed to access the therapeutic 

efficacy of Ex on tPVAT in disease state, like MetS. 

 

Summary and Purpose of the Dissertation 

It is clear endothelial function of the aorta is important for maintaining healthy cardiovascular 

function. However, in disease states like MetS and depressive states reduced endothelial function 

and wall remodeling increase CVD risk. It is clear tPVAT regulates aortic function in health and 

plays a role in mediating vascular pathology in obesity and hypertension, but many gaps still 

exist in our knowledge of tPVAT function in MetS and its subsequent regulation of aortic 

endothelium and mechanical properties. tPVAT contribution to aortic dysfunction in depressive 

states is virtually unexplored and may play a part in vascular dysfunction based on observation 

from other adipose depots. However, the validity of these assumption need rigorous testing. It 

appears similar pathways (inflammation, RAAS, and SNS) may mediate the vascular pathology 

of depressive states as in MetS. Some studies suggest an additive effect of depressive states 

furthering tissue dysfunction in obesity in the comorbid state. The impact of the comorbidity in 

tPVAT is unknown and may bare import implications for understanding vascular function and 

CVD risk. Finally, Ex is known to reverse the detrimental pathophysiology of both MetS and 

depressive states. However, virtually nothing is known about Ex mediated effects in tPVAT. 

 

For these reasons, we utilized a clinically translational model of MetS the obese Zucker rat and 

their lean counterparts for the purpose of filling in the gaps in our knowledge about pathways 

mediating tPVAT aortic function in MetS, depressive states, and Ex. This work has implications 

in understanding MetS and depressive disease progression. Additionally, we will determine the 
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therapeutic efficacy of exercise in prevention of impairment of tPVAT and tPVAT regulation of 

aortic dysfunction.  
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Chapter 2:  Methods 

 

tPVAT Preparations: The diaphragm was cut and the aorta with the surround tPVAT was 

removed immediately and placed in ice cold Krebs Henseleit Buffer (1.18 mM KH2PO4, 1.2 mM 

MgSO4•7H2O, 4.7 mM KCl, 25 mM NaHCO3, 118 mM NaCl, 5.5 mM glucose, 0.026 mM 

Ethylenediaminetetraacetic acid (EDTA), 2.5 mM CaCl2•2H2O, bubbled with 95% O2). tPVAT 

was carefully removed from the aorta under a dissecting microscope. The tPVAT completely 

surrounds the aorta however thin stretches of predominantly connective tissue are observed on 

the anterior and posterior aspects of the aorta.  To remove the tPVAT two cut were made down 

the connective tissue to minimize damage to adipocytes and peeled away. After removal, large 

blood vessels and nervous tissue were removed without major disturbance to the adipose tissue. 

tPVAT sample were then immediately snap frozen or place in physiological HEPES buffer (43.7 

mM NaCl, 80 mM KCl, 1.17 mM MgSO4•7H2O, 1.6 mM NaH2PO4, 18 mM NaHCO3, 0.03 mM 

EDTA, 5.5 mM glucose, 5 mM HEPES) for later experimental use. 

 

Treated tPVAT Gene Expression: 50mg sections of tPVAT sections were weighed and incubated 

at 37°C in physiological HEPES buffer (43.7 mM NaCl, 80 mM KCl, 1.17 mM MgSO4•7H2O, 

1.6 mM NaH2PO4, 18 mM NaHCO3, 0.03 mM EDTA, 5.5 mM glucose, 5 mM HEPES) or 

HEPES buffer containing 4μM TNFα neutralizing antibody (TNFα AB, Catalog #: AF-510-NA, 

R&D systems) at a ratio of 200μg/ mL. After 1-hour PVAT was removed and snap frozen. To 

assess gene expression, tPVAT was homogenized in QIAzol and processed for qPCR using the 

RNeasy Lipid Tissue Mini Kit (Qiagen), QuantiTect reverse transcription kit (Qiagen 205313). 

Equal concentrations of cDNA were then loaded into the QIAgility (Qiagen), which mixed 20μL 
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PCR reactions with QuantiTect primer assays  

 

Measurement of Reactive Oxygen Species: Dihydroethidium (DHE, Invitrogen D1168) assays 

were performed on unfixed aortic rings and tPVAT sections to evaluate in situ ROS production. 

tPVAT was treated with various drugs for 30 minutes then quickly washed in HEPES and placed 

in a well with an aortic ring. Following the drug incubation 2μl of stock DHE solution was added 

to each well to a concentration of 10μM and incubated at 37°C for another 30 minutes. 

Following completion of DHE incubation rings and PVAT were washed in HEPES buffer, 

placed separately in Optimal Cutting Temperature compound (OCT, Fisher Healthcare™ Tissue-

Plus™ O.C.T Compound) and frozen in liquid nitrogen cooled isopentane and stored at -80°C. 

DHE OCT blocks were then cut into 8μm slices using a cryostat at -22°C and transferred to 

charged slides (Fisherbrand® Superfrost® plus microscope slides) and stained/mounted with 

DAPI mounting media (VECTORSHEILD antifade mounting media with DAPI, Vector 

laboratories). Slides were imaged with an EVOS fluorescent microscope (Invitrogen EVOS FL 

Auto Cell Imaging System), 3 sections per image-treatment, and analyzed in ImageJ as 

fluorescent density/nucleus, the mean of the 3 images/treatment were used as the mean for each 

animal. Values were normalized to signal from tempol treatment to eliminate background signal. 

 

Measurement of NO Bioavailability: Aortic NO production was measured by 4-Amino-5-

Methylamino-2′,7′- Difluorofluorescein Diacetate (DAF-FM-DA, Invitrogen) according to the 

manufacturer's instructions. HEPES buffer was supplemented with L-Arginine (100μM, MP 

Biomedical Inc. 100736), in order to promote NO production. In order not to contaminate aortic 

NO production tPVAT exudate was used for the 30-minute incubation. To assess NO in tPVAT 
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10mg segments were used in separate wells. Aortic rings incubated with the NOS inhibitor L-

NAME were used to normalize fluorescent readings to eliminate background fluorescence. 

 

Aortic Reactivity: Prior to use for incubation tPVAT segments were sectioned into 200mg 

pieces.  This weight was determined by preliminary studies in which multiple tissue weights and 

exudates were compared to aortic rings with intact tPVAT. 200mg incubated in 1 ml HEPES was 

determined to be the most representative in comparison to intact tPVAT (Fig.1). Additionally, no 

difference was found between use of the exudate and incubation with tissue (Fig.2). 3mm 

thoracic aortic rings (cleaned of surrounding tissue, n=14-16) were rinsed in physiological salt 

solution and mounted in a myobath chamber between a fixed point and a force transducer (World 

Precision Instruments) and pre-stretched to 1.5 grams for 1 hour to equilibrate. The organ baths 

contained Krebs Henseleit Buffer aerated with 95% O2 and 5% CO2 at 37°C. After equilibration, 

aortic baseline tension was adjusted to a stable 1 gram and vessel viability was checked with 

50mM of KCl and rings not generating a rapid response were excluded from the study. Aortic 

relaxation was carried out as previously described1. To test EDD, aortic rings were pre-

constricted with phenylephrine (PE, 1X10-7M, Sigma-Aldrich P6126) and a stable tension was 

reached and recorded. Upon reaching a stable constricted state increasing doses of methacholine 

(MCh, 1X10-9 M to 1X10-5 M) were applied to the bath. Relaxation was calculated as % 

relaxation for each dose of MCh from the following equation:  

% relaxation= × 100,  

Where z is tension after PE 1X10-7, x is the tension following a given does of MCh, and y is 

baseline tension. 
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Following the initial relaxation curve, the system was washed again and allowed to return to 

baseline. To test the effect of PVAT on EDD, 200 mg sections of PVAT were incubated in 1mL 

of HEPES buffer both with and without TNFα-nAB at 37°C. The exudate was either snap frozen 

for use in crossover experiments (LZR tPVAT exudate on OZR aorta and OZR tPVAT exudate 

on LZR aorta) or used on rings from the same animal as follows. Exudate or 200mg of tPVAT 

were added to the bath and rings were allowed to incubate for 30 minutes. Pilot studies showed 

no difference between EDD when aortic rings were incubated with exudate vs. 200mg of tPVAT 

tissue. Following the incubation, a MCh relaxation curve was carried out as described above. 

Finally, aortic rings both with and without tPVAT incubation were pre-constricted with PE 

1X10-7 and treated with increasing doses of the endothelial independent dilator sodium 

nitroprusside (SNP; 1X10-9 M to 1X10-5 M, MP Biomedical 152061). 

 

MMP9 Activity Assay (Biotrak activity assay RPN2634): Equal amounts of protein form tPVAT 

was loaded into the 96-well ELISA plate. The plate was incubated overnight and then washed to 

remove unbound protein. Subsequently, a colormetric substrate was added to the wells to 

measure the rate of substrate breakdown (increase in color intensity) over a 90-minute period. 

The rate of color intensity development was measured and normalized compared to the LZR 

control rate. 

 

Aortic Stiffness via Elastic Modulus: One 3 mm aortic ring from per animal (n=8 per group) was 

incubated in Ca2+ free Van Breemen solution (119 mM NaCl, 4.7 mM KCl, 1.17 MgSO4•7H2O, 

20 mM MgCl2•6H2O, 1.18 mM NaH2PO4, 24 mM NaHCO3, 0.03 mM EDTA, 2mM ethylene 

glycol-bis (β-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA), 5.5 mM glucose) to elicit a 
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passive state. The rings were then mounted on an automated motorized force transducer (Aurora 

Scientific Inc. model 6350*358) and force output was recorded in lab chart software by powerlab 

(AD instruments). Rings were pre-conditioned by an initial 1-minute stretch eliciting 20mN of 

force and then all the tension was removed (i.e. to a force of 0mN). Rings were then stretched to 

10mN of force for 3 minutes during which time the internal diameter and wall thickness were 

measured. Subsequently, the automated force transducer increased the aortic ring diameter by 

25% of initial internal diameter every 3 minutes until mechanical failure (determined by a drop-

in force following a stretch). Stress and strain equations will be modified from those previously 

used2 to match those used in large arteries3 and the slope of the relationship plotted to determine 

the elastic modulus. Stress and strain were calculated as follows: 

one-dimensional stress (t) = λL / 2HD. 

strain (λ) = (Δd / d(i). 

Δd = change in diameter, d(i) = initial diameter) L = one-dimensional load applied, H = wall 

thickness, and D = length of vessel.  

 

PVAT Culture Studies: To determine the direct impact of PVAT on mechanical stiffness, LZR 

aortic rings (n=4 per treatment) were cultured for 72 hours under the following conditions; 

control (just media), LZR PVAT, OZR PVAT, or OZR PVAT+TNFα AB. Aortic rings and 

tPVAT segments were cultured in RMPI +GlutaMAX™ + 25mM HEPES media (gibco® by life 

techonologies™) supplemented with streptomycin and kept in a CO2 cell incubator at 37°C 

under 5% CO2. Media was replenished every 24 hours. Following the 72 hours of culture aortic 

rings were washed and allowed to equilibrate in Ca2+ free Van Breemen solution. Aortic rings 

were then subjected to the protocol described above to generate an elastic modulus.  
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tPVAT Pilot Data 

Figure 2.1. 200mg Verification 

 

Comparison between 30-minute incubation with 200mg tPVAT to Ao with intact tPVAT (n=3). 

Shows incubation with 200mg tPVAT closely represents intact tPVAT. 
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Figure 2.2. Other PVAT Samples 

 

 

Comparison between 30-minute incubation with tPVAT to Ao with intact tPVAT (n=3). Shows 

these masses of tPVAT don’t represent intact tPVAT.  
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Figure 2.3. Exudate Verification 

 

Comparison between 30-minute incubation with tPVAT or tPVAT exudate made from 

200mg/ml in HEPES buffer (n=3). Data shows use of exudate and 200mg of tPVAT elicit 

equivalent responses. 
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New and Noteworthy:  

 Buildup of ubiquitin due to diminishing proteasome activity is a potential mechanism of 

tPVAT dysfunction and pro-inflammatory cytokine production in MetS. 

 tPVAT release of TNFα causes tPVAT ROS production through activation of NOX2 

dependent pathway, activates aortic ROS production, and mediates aortic stiffness 

potentially through MMP-9 activity.  
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Abstract: Aims: Perivascular adipose tissue (PVAT) is recognized for its vaso-active effects, 

however it’s unclear how Metabolic Syndrome impact thoracic-aorta (t)PVAT and the 

subsequent effect on functional and structural aortic stiffness. Methods & Results: Thoracic 

aorta and tPVAT were removed from 16-17week old lean (LZR, n=16) and obese Zucker (OZR, 

n=16) rats. OZR presented with aortic endothelial dysfunction, assessed by wire-myography, and 

increased aortic stiffness, assessed by elastic modulus. OZR-tPVAT exudate further exacerbated 

the endothelial dysfunction reducing nitric oxide and endothelial dependent relaxation (p<0.05). 

Additionally, OZR-tPVAT exudate had increased MMP9 activity (p<0.05) and further increased 

elastic modulus of the aorta following 72-hours of coculture (p<0.05). We found the observed 

aortic dysfunction caused by OZR-tPVAT was mediated through increased production and 

release of TNFα through a NADPH-oxidase 2 (NOX2) dependent pathway. We found OZR-

tPVAT had increased gene expression of immune markers, inflammatory cytokines, and 

oxidative enzymes. This coincided with increased ROS production (p<0.01), reduced activity of 

the 20S proteasome’s active sites (p<0.05), and reduced superoxide dismutase activity (p<0.01). 

OZR-tPVAT dysfunction caused increased release of inflammatory cytokines especially TNFα 

(p<0.01). The greater release of pro-inflammatory cytokines from OZR-tPVAT resulted in 

activation of ROS in aortic rings (p<0.01), leading to reduced nitric oxide (p<0.05). OZR-tPVAT 

dysfunction and subsequent aortic dysfunction was inhibited by TNFα neutralization and 

inhibition of NOX2. Conclusion: Metabolic syndrome causes tPVAT dysfunction through a 

cyclical interplay between TNFα and NOX2 leading to tPVAT mediated aortic stiffness by 

activation of aortic ROS and increased MMP9 activity. 
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Introduction 

A clustering of cardiovascular risk factors, known as metabolic syndrome (MetS), is associated 

with increases in oxidative stress and inflammation leading to vascular dysfunction as reported 

by our group and others (3, 10, 24). In MetS, the aorta becomes less compliant through an 

increase in both functional and structural stiffness. Functional stiffness arises from reduced nitric 

oxide (NO) bioavailability increasing smooth muscle tone and redistributing circumferential 

stress onto the extracellular matrix (ECM) (52). The remodeling of the ECM, fragmentation of 

elastin and deposition of collagen, is the hallmark of structural stiffness (13, 26). The resulting 

loss of aortic compliance increases afterload on the heart (34), reduces coronary perfusion (26), 

and increases pulsatile flow to the periphery (28), which can ultimately lead to end organ damage 

(39). 

Perivascular adipose tissue (PVAT) surrounds much of the vasculature and has various 

phenotypes and function depending on location. Over the past decade, PVAT has been shown to 

actively regulate vascular function. Unlike other PVAT depots, “brown-like” thoracic (t)PVAT 

encases the aorta and releases vasoactive factors, which promote beneficial vascular effects 

through the promotion of NO production (15). In disease states, PVAT becomes dysfunctional 

and shifts towards a pro-oxidative and pro-inflammatory state (6, 32). Of particular interest is the 

cytokine tumor necrosis factor alpha (TNFα), which has a potent vasoactive effect, induces the 

production of inflammatory cytokines, including its own transcription (7, 36), and activates the 

production of ROS from oxidative enzymes, such as NADPH oxidase (7, 25). Data from 

peripheral PVAT depots highlight the detrimental impact of a pro-oxidative and pro-

inflammatory state on small artery function (18, 49), especially endothelial dependent dilation 

(EDD). Studies show pathological ECM remodeling and arterial stiffness is mediated through 
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reductions in NO and EDD (13, 20, 23). These previous studies highlight the effects of 

individual disease states, but the effect of the concurrent risk factors in MetS on tPVAT function 

is limited. Additionally, much of the current MetS literature on PVAT function is in depots 

surrounding mesenteric or small arterials. MetS effects on tPVAT and its regulation of aortic 

function is poorly understood and key to understanding the vascular consequences of MetS and 

developing effective therapeutics. 

 

Significant aortic dysfunction has been previously shown in a rat model of MetS the obese 

Zucker rat (33). However, it remains unknown to what extent tPVAT affects the pathological 

changes in MetS and how it regulates aortic function. In our study, we aim to uncover key 

pathways, which drive tPVAT dysfunction and the subsequent mediators of aortic impairment in 

MetS. We hypothesize phenotypic shifts in MetS PVAT leads to an increase in ROS production 

from TNFα activation of NOX2. We further hypothesize tPVAT derived pro-inflammatory 

cytokines activate ROS production in the aorta diminishing NO bioavailability with subsequent 

aortic dysfunction.  

 

Methods & Materials 

 

Animals: Male lean (LZR) and obese (OZR) Zucker rats were purchased from Envigo 

Laboratories at 8-9 weeks of age (n=16/group). Animals were housed at the West Virginia 

University Health Science Center (WVUHSC) animal care facility on an approved protocol by 

the WVUHSC Animal Care and Use Committee, which meets the NIH guidelines for care and 

use of laboratory animals. Animals received standard chow and tap water ad libitum. At time of 
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terminal procedures 16-17 weeks old animals were weighed (LZR 419±17 g vs. OZR 604±10 g) 

then deeply anesthetized with pentobarbital sodium (50 mg/kg) and tracheal was intubated to aid 

in keeping a patent airway. All rats then received carotid artery and jugular vein cannulation to 

measure mean arterial pressure (MAP, LZR 106±2 mmHg vs. OZR 135±6 mmHg) and to 

administer heparin, respectfully. The diaphragm was then cut and the aorta was removed and 

placed in ice cold Krebs Henseleit Buffer (1.18 mM KH2PO4, 1.2 mM MgSO4•7H2O, 4.7 mM 

KCl, 25 mM NaHCO3, 118 mM NaCl, 5.5 mM glucose, 0.026 mM Ethylenediaminetetraacetic 

acid (EDTA), 2.5 mM CaCl2•2H2O, bubbled with 95% O2). tPVAT was then carefully removed 

from the aorta under a dissecting microscope, and the aorta was cut into 3mm rings. Gene 

expression, inflammatory mediators were assessed in tPVAT. 

 

Gene Expression: 50mg sections of tPVAT were incubated at 37°C in physiological HEPES 

buffer (43.7 mM NaCl, 80 mM KCl, 1.17 mM MgSO4•7H2O, 1.6 mM NaH2PO4, 18 mM 

NaHCO3, 0.03 mM EDTA, 5.5 mM glucose, 5 mM HEPES) or HEPES buffer containing 4μM 

TNFα neutralizing antibody (TNFα-nAB, Catalog #: AF-510-NA, R&D systems) at a ratio of 

200μg/mL. After 1 hour PVAT was removed and snap frozen. To assess gene expression, tPVAT 

was homogenized in QIAzol and processed for qPCR using the RNeasy Lipid Tissue MiniKit 

(Qiagen), QuantiTect reverse transcription kit (Qiagen 205313). Equal concentrations of cDNA 

were then loaded into the QIAgility (Qiagen), which mixed 20μL PCR reactions with QuantiTect 

primer assays [Adiponectin (QT01169343), β-actin (QT00193473), catalase (QT00182700), 

CCL5 (QT01083614), CCR3 (QT00183925), CCR5 (QT01084034), CD4 (QT00181811), CD68 

(QT00372204), CD8a (QT00177261), GSR (QT01083285), IFN-γ (QT00184982), IL-10 

(QT00177618), IL-13 (QT00184842), IL-1β (QT00181657), IL-4 (QT01590316), Keap1 



72 
 

(QT00189595), MMP2 (QT00996254), MMP9 (QT00178290), Gp91phox (QT00195300), Nrf2 

(QT00183617), p47phox (QT00189728), SOD-1 (QT00174888), SOD2 (QT00185444), TIMP-1 

(QT00185304), TNF (QT02488178), TSP-1 (QT01300607), UCP-1 (QT00183967), Qiagen] and 

QuantiFast Sybr Green Master Mix (Qiagen 204056). Relative quantification was carried out by 

the 2^(ddCt) method with the reciprocal used for graphical representation of negative fold 

changes. 

 

Measurement of Reactive Oxygen Species: Dihydroethidium (DHE, Invitrogen D1168) assays 

were performed on unfixed aortic rings and tPVAT sections to evaluate ROS production. Aortic 

rings were placed in a 96-well plate containing 200μl HEPES buffer with the following 

treatments: control (no drug), tPVAT, Crossover tPVAT (i.e., LZR-tPVAT on OZR aortic rings 

and OZR-tPVAT on LZR aortic rings), apocynin (10μM, Millipore, Calbiochem 178385-1GM), 

NOX2ds-TAT (50μM, Applied Biosystem Inc), or 4-Hydroxy-TEMPO (TEMPOL 100μM, 

Sigma-Aldrich 176141) at 37°C. Additionally, tPVAT was pretreated, with Pyrogallol (10μM, 

MP Biomedical 151993), NOX2ds-TAT (50μM), or TNFα-nAB (4μM). Aortic rings were 

incubated in drug treatment for 30 minutes followed by addition of DHE to 10μM and incubated 

for another 30 minutes. Following completion of DHE incubation samples were washed in 

HEPES buffer, placed in Optimal Cutting Temperature compound (OCT, Fisher Healthcare™) 

and frozen in liquid nitrogen cooled isopentane and stored at -80°C. DHE OCT blocks were cut 

into 8μm slices using a cryostat and transferred to charged slides (Fisherbrand® Superfrost®) 

and stained/mounted with DAPI mounting media (Vector laboratories). Slides were imaged with 

an EVOS fluorescent microscope (Invitrogen EVOS FL Auto Cell Imaging System), three 

images per treatment, were analyzed by ImageJ as fluorescent density/nucleus, the mean of the 3 
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images/treatment were used as the mean for each animal. Values were normalized to signal from 

tempol treatment to eliminate background signal. 

 

NO Bioavailability: Aortic NO production was measured according to manufacturer's 

instructions by 4-Amino-5-Methylamino-2′,7′-Difluorofluorescein-Diacetate (DAF-FM-DA 

Invitrogen). 3mm aortic rings were placed in individual wells of a 96-well plate containing 200μl 

of HEPES buffer supplemented with L-Arginine (100μM, MP Biomedical Inc. 100736), with the 

following treatments: control (no added drug), tPVAT, Crossover tPVAT, tPVAT+TNFα-nAB 

(4μM) or nitro-L-argininemethylester (L-NAME, an inhibitor of NO synthase, Sigma-Aldrich 

N5751). After 30-minutes of incubation with treatment, 10μM DAF-FM-DA was added and the 

vessel was stimulated with methacholine (MCh, 1X10-6 Sigma-Aldrich A2251). After 10 

minutes, the rings were removed, and conditioned solution was read in a plate reader (BioTek 

Synergy HT) excitation/emission at 495/515nm wavelength. Fluorescence was normalized to 

aorta length and L-NAME value. 

 

PVAT Cytokine Profile: tPVAT (200mg/mL) was incubated in HEPES buffer for 2 hours at 

37°C. The tPVAT was removed and the media was snap frozen and stored at -80°C. The 

conditioned media was run on rat inflammatory panel-2 (Mesoscale discovery V-plex K15059D-

2), MMP9 activity ELISA (GE Biotrak activity assay RPN2634), and high molecular weight 

adiponectin ELISA (Mybiosource MBS020496). Additionally, tPVAT homogenates were run on 

inflammation rat panel-1 (Mesoscale discovery K15179C-9), 20S proteasome ELISA 

(Mybiosource MBS730715), and Ubiquitin ELISA (Mybiosource MBS039103). All assays were 

run per manufacturer’s instructions. 
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PVAT Tissue Function: tPVAT homogenates were run per manufacturer’s instructions for SOD 

activity (Sigma-Aldrich 19160-1KT-F), total and phosphorylated NF-κBp65 (ThermoFisher 

multispecies InstantOne™ ELISA Kit, 85-86083-11). tPVAT was homogenized in HEPES 

buffer containing 1mM DTT, 2mM ATP, and 10mM magnesium chloride were assayed with 

100μM LLVY-AMC (ENZO BML-P802-0005), 100μM nLPnLD-AMC (Bachem I-1850.0005), 

and 10μM RLR-AMC (Boston Biochem S-290). These substrates are cleaved by the three 

different protease sites in the 20S core particle, and are thus a good general indicator of 

proteasome degradation capacity in the cell. Proteasome assays were measured by kinetic read 

(1read/minute for 120 minutes) on a plate reader (ex/em 380/460nm) warmed to 37°C. V-max 

for each assay was determined from 30 points on the linear portion of the kinetic read and 

normalized to V-max in the presence of the 20S inhibitor MG132.  

 

Aortic Reactivity: 3mm thoracic aortic rings (cleaned of surrounding tissue, n=14-16) were 

rinsed in physiological salt solution and mounted in a myobath chamber between a fixed point 

and a force transducer (World Precision Instruments) and pre-stretched to equilibrate for 1 hour 

in Krebs Henseleit Buffer aerated with 95%O2 and 5%CO2 at 37°C. After equilibration, aortic 

baseline tension was adjusted to 1 gram and vessel viability was checked with 50mM of KCl and 

rings not generating a rapid response were excluded from the study. To test EDD, aortic rings 

were pre-constricted with phenylephrine (PE, 1X10-7M Sigma-Aldrich P6126) and a stable 

tension was reached and recorded followed by increasing doses of MCh (1X10-9M-1X10-5M). 

Relaxation was calculated as %relaxation for each dose of MCh from the following equation:  

%relaxation= × 100,  
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where z=tension after PE 1X10-7M, x=tension following a given does of MCh, and y=baseline 

tension. 

 

Following the relaxation curve, the system was washed again with buffer and allowed to return 

to baseline. To test the effect of tPVAT on EDD, tPVAT exudate and exudate generated after 

treatment with TNFα-nAB and/or NOX2ds-TAT was either snap frozen and used in crossover 

experiments or used immediately. Exudate was added to the bath and rings incubated for 30 

minutes. Pilot studies showed no difference in EDD between exudate vs. tPVAT tissue 

incubation. Following the incubation, relaxation curves were determines as described above. 

Finally, aortic rings both with and without tPVAT incubation were pre-constricted with PE 

1X10-7M and treated with increasing doses of sodium nitroprusside (SNP; 1X10-9M-1X10-5M, 

MP Biomedical 152061). 

 

Aortic Stiffness via Elastic Modulus: Aortic rings were incubated in Ca2+ free Van Breemen 

solution (119 mM NaCl, 4.7 mM KCl, 1.17 MgSO4•7H2O, 20 mM MgCl2•6H2O, 1.18 mM 

NaH2PO4, 24 mM NaHCO3, 0.03 mM EDTA, 2mM ethylene glycol-bis (β-aminoethyl ether)-

N,N,N',N'-tetraacetic acid (EGTA), 5.5 mM glucose) to elicit a passive state and mounted on an 

automated motorized force transducer (Aurora Scientific Inc. model-6350*358) and force output 

was recorded in lab chart software by powerlab (AD instruments). Rings were pre-conditioned 

by a 20 mN 1-minute stretch and then all tension was removed (i.e. force = 0 mN). Rings were 

then stretched to 10mN of force for 3 minutes and the internal diameter and wall thickness were 

measured. Subsequently, the automated force transducer increased the aortic ring diameter by 

25% of initial internal diameter every 3 minutes until mechanical failure. Stress and strain 
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equations were modified from those previously used (3) to match those used in large arteries (14) 

and the slope of the relationship plotted to determine the elastic modulus. Stress and strain were 

calculated as follows: 

one-dimensional stress(t)=λL/2HD. 

strain(λ)=(Δd/d(i). 

Δd=change in diameter, d(i)=initial diameter) L=one-dimensional load applied, H=wall 

thickness, and D=length of vessel.  

 

PVAT Culture Studies: To determine the direct impact of PVAT on mechanical stiffness, LZR 

aortic rings (n=4/treatment) were cultured for 72-hours in RMPI + GlutaMAX™ + 25 mM 

HEPES media (gibco® by Life Techonologies™) with streptomycin and kept in an incubator at 

37°C and 5% CO2, under the following conditions; control (just media), LZR PVAT, OZR 

PVAT, or OZR PVAT+TNFα-nAB. Media was discarded and replenished daily. Following the 

72-hours of culture, the aortic rings were subjected to the protocol described above to generate 

an elastic modulus.  

 

Statistics: All data are represented as means ± standard error. All experiments were run in 

duplicate, and the reads were averaged for each animal.  Data analysis and graphing were 

conducted using GraphPad Prism 6 software and p<0.05 was set as the mark for statistical 

significance. Comparisons between LZR and OZR were conducted using a simple student T-test, 

while repeated measure ANOVA analysis was used for treatment effects, effect of tPVAT, and 

aortic ring relaxation. 
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Results 

 

tPVAT Environment 

Gene Expression: To assess the effect of MetS on the tPVAT environment we first compared 

gene expression of key transcripts involved in adipose phenotype, pro/anti- inflammatory 

cytokines, and pro & anti-oxidants. OZR showed a significant drop in uncoupling protein-1 

(UCP-1) expression suggesting a shift towards a “whiter” phenotype (p<0.01, Fig.3.1A) and 

increased immune cell markers CD68 (macrophages, p<0.05) and CD8a (cytotoxic T-cells, 

p<0.05) (Fig.3.1A). This was accompanied by an increased expression of pro-

inflammatory/oxidative genes (Fig.3.1B). We also identified a reduction in gene expression of 

the protective anti-inflammatory/oxidant genes, which could exacerbate the pro-

inflammatory/oxidative changes of tPVAT from OZR’s (Fig.3.1C). With the observed increase 

in oxidative gene expression we sought to measure ROS production and SOD activity in tPVAT. 

 

tPVAT Function: ROS was significantly increased in OZR-tPVAT compared to LZR-tPVAT 

(p<0.001, Fig.3.2A & ImageS1), in part, due to a reduced SOD activity in OZR-tPVAT 

(p<0.001, Fig.3.2B). Under normal physiological conditions oxidized cellular components are 

cleared by the proteasome system. With the sizable increase in ROS production we were 

interested in the clearance of oxidized cellular components. We found proteasome activity was 

globally diminished in OZR-tPVAT. This was shown by reduced (p<0.01) V-max across all 3 

assays: LLVY, RLR, and nLDnLP (chymotrypsin-like, trypsin-like, and peptidylglutamyl-

peptide hydrolyzing active sites) (Fig.3.2C). This proteasome dysfunction was again highlighted 
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by an increased expression of ubiquitin, suggesting a reduced ability to clear ubiquitinated 

proteins (Fig.3.2D), which is linked to increased inflammation.  

 

Proteasome dysfunction and buildup of ubiquitin are linked to increases in inflammation, thus we 

evaluated tPVAT cytokine production. First, we looked at chemoattractant cytokines because of 

the increased immune specific gene expression. Cytokine assays showed an increase (p<0.05) in 

both monocyte chemoattractant protein-1 (MCP-1) and chemokine (C-X-C motif) ligand-1 

(KC/Gro) (Fig.3.3A). Further, all cytokines profiled showed significant alterations in OZR 

compared to LZR, with pro-inflammatory mediators (TNFα, IL-1β, IL-6, IFN-γ, and TSP-1) 

significantly elevated and anti-inflammatory mediators (IL-4, IL-5, IL-10, IL-13, and 

adiponectin) significantly reduced (Fig.3.3A&B). These data demonstrated altered tPVAT 

function in MetS, we then wanted to investigate how tPVAT in OZR affected aortic ROS.  

 

tPVAT Mediated Aortic ROS Production: ROS production was higher in OZR aorta compared to 

LZR (p<0.05, Fig.3.4A & Supplemental image2). We then incubated the LZR aorta with LZR 

tPVAT and identified a slight non-significant reduction in ROS production. In contrast, when the 

OZR aorta was incubated with OZR tPVAT, aortic ROS production was increased by ~120% 

(p<0.001, Fig.3.4A & Supplemental image2). Further, the activation of aortic ROS production 

was significantly inhibited when the OZR aorta was treated with apocynin, and to a lesser extent 

with NOX2ds-TAT (Fig.3.4A & Supplemental image2). The SOD activity in the OZR aorta was 

diminished compared to LZR (p<0.001, Fig.3.4B). The increased ROS production has the 

potential to impact NO production and EDD. 

 



79 
 

tPVAT Effect on Nitric Oxide and Aortic Relaxation: As expected, we found reduced NO 

bioavailability in the aorta from OZR compared to LZR (Fig.3.4C). Adding to this known 

finding, we showed aortic NO production was further reduced by ~20% (p<0.01) in the presence 

of OZR-tPVAT (Fig.3.4C). In contrast, LZR-tPVAT increased (p<0.05) aortic NO production in 

the LZR by ~15% (Fig.3.4C). The aortic EDD (without the presence of tPVAT) in OZR was 

blunted by ~15% in comparison to LZR EDD (p<0.01, Fig.3.4D). In the OZR, tPVAT further 

blunted aortic EDD by ~10% (p<0.01) compared to OZR without tPVAT (Fig.3.4C). In contrast, 

LZR aortic EDD in the presence of LZR-tPVAT improved EDD by 5% (p<0.05, Fig.3.4D). 

Importantly, endothelial independent dilation to SNP was not different between the two groups 

in the presence or absence of tPVAT (p>0.05, maximal relaxation: LZR Ao 101 0.9%, LZR 

tPVAT-Ao 100 2.1%, OZR Ao 98 1.5%, OZR tPVAT-Ao 97 4.8%). These data illustrated 

tPVAT caused further impairment in OZR aortic EDD. We then wanted to determine if this was 

due to the release of cytokines from tPVAT or, in part, due to intrinsic properties of the OZR 

aorta. To assess this, we preformed crossover experiments were the LZR aorta was exposed to 

OZR-tPVAT media and vice versa. 

 

PVAT Crossover Treatments: First we explored the effect of crossover tPVAT treatment on 

aortic ROS production. Interestingly, the LZR “health” aorta was not protected against OZR-

tPVAT activation of aortic ROS production (p<0.001, Fig.3.4E). Additionally, LZR-tPVAT was 

treated with pyrogallol to produce ROS. LZR-tPVAT with pyrogallol increased ROS production 

(Fig.3.4E & Supplemental image3) and decreased EDD from the LZR aorta (p<0.05, max 

relaxation: LZR tPVAT+ pyrogallol-Ao 74 2.6% vs LZR tPVAT-Ao 87 1.8%) but not to the 

same extent as OZR-tPVAT (p<0.05, max relaxation: LZR tPVAT+ pyrogallol-Ao 74 2.6% vs 
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OZR tPVAT- LZR Ao 64 1.5%). We then incubated LZR-tPVAT with the OZR aorta, which 

reduced aortic ROS production (p<0.01, Fig.3.4E). Whereas, when OZR-tPVAT was incubated 

with the LZR aorta NO production was reduced, with subsequently impaired aortic EDD 

(p<0.01) in the LZR (Fig.3.4F&G). Conversely, the crossover treatment improved (p<0.01) NO 

production and aortic EDD in OZR treated with LZR-tPVAT (Fig.3.4F&G). After observing a 

~10-fold increase in TNF gene expression and ~10X increase in TNFα secretion in OZR tPVAT, 

we repeated the above experiments with a TNFα-nAB to determine its role in orchestrating the 

observed dysfunction. Additionally, we targeted NOX2 the prominent NOX enzyme of 

inflammatory immune cells, as it is a known target of TNFα. 

 

PVAT with TNFα Neutralization 

Gene Expression: We first sought to determine the role of TNFα on OZR-tPVAT gene 

expression. TNFα-nAB treatment (ex-vivo) significantly down-regulated phosphorylation of 

nuclear factor kappa-light-chain-enhancer (NF-κB, Fig.3.5A), reduced TNF inflammatory gene 

expression, and decreased gene expression of NOX2 and its regulator p47phox (Fig.3.5B). 

Additionally, TNFα-nAB reduced (p<0.05) MMP-9 gene expression and increased (p<0.05) the 

gene expression for Nrf2, IL-10, and adiponectin (Fig.3.5B), highlighting the role TNFα in the 

regulation of gene expression in the tPVAT. However, does TNFα-nAB treatment ameliorate 

tPVAT ROS production and the activation of aortic ROS by tPVAT?  

 

Reactive Oxygen Species: TNFα-nAB treatment caused a marked reduction (p<0.001) in the 

DHE signal from OZR-tPVAT to similar levels observed with inhibition by NOX2ds-TAT (Fig. 

3.5C & Supplemental image4). In turn, the TNFα-nAB treatment in OZR-tPVAT completely 
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inhibited the tPVAT activation of ROS in both OZR and LZR aorta (p<0.001, Fig.3.5C & 

Supplemental image4). Further, highlighting the importance of TNFα activation of NOX2 in 

OZR-tPVAT dysfunction, inhibition with NOX2ds-TAT completely inhibited the tPVAT 

activation of ROS produced by the aorta (p<0.001, Fig.3.5C & Supplemental image4). To 

determine if the diminished proteasome activity in OZR-tPVAT was acutely mediated by TNFα 

we cultured OZR-tPVAT with TNFα-nAB and ran all 3 proteasome assays. The results showed 

no effect of TNFα-nAB (VMAX: LLYV 1.2 ± 0.05, RLR 2.5 ± 0.07, nLPnLD 0.5 ± 0.04, 

p>0.05).  

 

Nitric Oxide and Aortic Reactivity: With TNFα-nAB treatment yielding beneficial effects on 

gene expression and ROS production we examined its actions on NO and aortic EDD. TNFα-

nAB treatment in OZR-tPVAT inhibited tPVAT mediated reduction of NO production from 

OZR and LZR aortas (p<0.001, Fig.3.5D). In turn, TNFα-nAB treatment in OZR-tPVAT 

completely inhibited tPVAT mediated dysfunction of aortic EDD in both OZR and LZR (p<0.01, 

Fig.3.5E&F). To highlight the importance of NOX2 in the TNFα mediated aortic dysfunction, 

we treated OZR-tPVAT with NOX2ds-TAT and demonstrated aortic EDD was completely 

restored (p<0.001, Fig.3.5E), however the combination of TNFα-nAB and NOX2ds-TAT caused 

no further improvement (p>0.05, maximal relaxation: 71 3.0%). Additionally, to show the 

importance of tPVAT activation of aortic ROS production, the LZR and OZR aortas were 

pretreated with TEMPOL, which prevented the impaired EDD (p<0.05, maximal relaxation: 

OZR tPVAT-Ao+TEMPOL 78 1.8% vs OZR tPVAT-Ao 58 2.1% vs OZR Ao 68 1.8%). Our 

data to this point has established the role of OZR-tPVAT mediating NO regulation of smooth 
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muscle tone, and thus functional aortic stiffness.  Additionally, we assessed the role of MetS 

tPVAT on aortic remodeling and structural stiffness. 

 

Elastic Modulus: Aortic stiffness was increased (p<0.01) by ~90% in the OZR compared to LZR 

(Fig.3.6A). Thus, we wanted to examine the role of tPVAT in OZR aortic stiffness. We first 

examined tPVAT gene expression and found an increased MMP9 expression (p<0.05) but no 

change in MMP2 and TIMP-1 (Fig.3.6B). We then examined the aortic protein levels of TIMP-1, 

which were decreased in OZR compared to the LZR (Fig.3.6C). Further, activity levels of 

MMP9, assessed in tPVAT exudate, were increased in OZR compared to LZR, and treating 

tPVAT with the TNFα-nAB prevented the increase in MMP9 activity (Fig.3.6D). This laid the 

groundwork for the potential role of OZR-tPVAT to affect aortic remodeling. Next, we 

examined the direct contribution of tPVAT to aortic stiffness, and the role of TNFα. Co-culturing 

the LZR aorta with LZR-tPVAT did not alter the elastic modulus compared to culture control; 

however, the LZR aorta cultured with OZR-tPVAT showed an increased (p<0.01) elastic 

modulus (Fig.3.6E), which was completely inhibited when the LZR aorta with OZR-tPVAT 

were cultured with the TNFα-nAB (p<0.01, Fig.3.6E). 

 

Discussion 

Previous studies have detailed the effect of hypertension and obesity on PVAT function.  

However, MetS pathology is dependent on the complex interactions of its components and may 

yield differing effects than a component in isolation. Uncovering the distinct and coordinating 

signaling pathways of the MetS components in tPVAT warrants future evaluation. Our present 

study identified key mediators of tPVAT dysfunction and demonstrated an essential role of 
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tPVAT on aortic dysfunction in MetS. We identified, for first time, diminished 20S proteasome 

activity as a potential mechanism of tPVAT dysfunction in MetS. Additionally, we demonstrated 

TNFα as a key stimulator of tPVAT ROS production through a NOX2 dependent pathway, and 

activation of aortic ROS production through a non-NOX2, NADPH oxidase pathway. 

Additionally, we demonstrated the cyclical activation of NOX2 ROS and TNFα by one another 

was essential for the observed aortic dysfunction. Finally, we demonstrated tPVAT from OZR 

could directly cause aortic stiffness through a TNFα dependent mechanism targeting MMP9 

activity. Chronic effects and the temporal development of vascular dysfunction in MetS are well 

defined by our group and others (3, 10, 24). However, the role of tPVAT in orchestrating aortic 

function in MetS was previously unknown. Collectively our study has important implications of 

tPVAT pathological consequences on aortic stiffness in MetS and highlights the potential avenue 

of adipo-centric therapeutic development. 

 

MetS PVAT Environment 

Similar to what has been shown in obesity (45), our data showed a phenotypic “whitening” of the 

MetS tPVAT, supported by the change in UCP-1 expression. Given that over expressing UCP-1 

can inhibit ROS production (30), the downregulation of UCP-1 in our study may suggest an 

avenue for the increased tPVAT ROS production noted in the OZR. Additionally, UCP-1 can be 

downregulated by pro-inflammatory cytokines released from immune cells, thus linking 

phenotypic shifts in tPVAT with immune infiltration and ROS (40). In the current study the 

phenotypic shift in tPVAT was likely driven by increased KC/Gro and MCP-1 levels, resulting 

in a loss of anti-inflammatory cytokines and increased inflammatory immune cell markers 

(CD68 and CD8a), which produce TNFα and possess NOX2. Our data from inhibition of the 
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NOX p47phox subunit suggests NOX2 was largely responsible for the tPVAT ROS production. 

Further, an increased NOX2 activity coupled with a substantial reduction in SOD activity in 

OZR-tPVAT, likely accounts for the increased ROS production in tPVAT. Importantly, our data 

showed TNFα was a key mediator for the elevated ROS in MetS tPVAT. Activation of NOX2 

ROS appears to be dependent on TNFα-nAB treatment, as the simultaneous treatment with both 

NOX2ds-TAT and TNFα-nAB didn’t cause a further reduction in ROS production. This is in line 

with the literature suggesting multiple TNFα functions are carried out by the activation of 

NADPH oxidases (25, 29). Additionally, the TNFα-nAB treatment showed partial restoration of 

tPVAT gene expression, likely due to direct action on TNFα and subsequent reductions in ROS 

(43) resulting in the observed decrease in NF-κB activation. This suggests chronic changes in 

oxidative and inflammatory machinery might also be driven by TNFα and its activation of 

NOX2. Interestingly, the inhibition of NOX and/or the use of the TNFα-nAB did not completely 

inhibit ROS production, and ROS levels were still well above those measured in LZR-tPVAT. 

This highlights the role of other oxidative enzymes, and potentially other cytokine mediators 

playing some role in tPVAT ROS production.  

 

Recently, both obese human and mouse visceral adipose tissue showed reduced chymotrypsin-

like activity in the proteasome and was linked to development of insulin resistance, a hallmark of 

MetS (8). We wanted to build upon these observations, as tPVAT is more protein dense than 

visceral adipose tissue, which we speculate magnifies the importance of proteasome function. 

ROS is known to damage and misfold proteins, which are cleared by the 26S proteasome. The 

26S comprises of the 20S core bound to one or two 19S regulatory particles, which feed 

ubiquitinated and damaged proteins into the 20S core (46). Our results showed increased ROS, 
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and for the first time in tPVAT, impaired proteasome function. The accumulation of 

ubiquitinated proteins is likely due to this loss of proteasome capacity, and therefore the 

accumulation of proteasomal substrates. Interestingly, diminished proteasome function was not 

due to the loss of 20S proteasome levels (Fig 2) The increase accumulation of damaged and 

misfolded proteins can lead to cellular and oxidative stress (17, 21, 35). Specifically, the buildup 

of oxidized and ubiquitin, through activation of endoplasmic reticulum stress, can induce the 

production of inflammatory cytokines (17). Suggesting, the observed proteasome dysfunction is 

an integral mechanism of increased pro-inflammatory cytokine production. Future endeavors 

will be aimed at assessing the causative and or exacerbating role of the entire ubiquitin-

proteasome system in disease mediated PVAT dysfunction.  

 

tPVAT Regulation of Aortic Function 

Our data showed a blunted aortic EDD in OZR, which was further reduced in the presence of 

OZR-tPVAT. The impaired EDD was derived from reduced bioavailability of NO in OZR aorta, 

which was further reduced (~20%) in the presence of OZR-tPVAT. Pro-inflammatory cytokines 

and ROS, which were increased in OZR-tPVAT, have the potential to interfere with NO 

bioavailability (27, 54).  

 

The acute tPVAT impairment of the aorta was due to OZR-tPVAT inducing over a 100% 

increase in ROS production from the already elevated levels in the OZR aorta. The production of 

ROS (via NOX) can interfere with NO bioavailability through the direct interaction with NO 

forming peroxynitrite (54), and through oxidation of the eNOS essential co-factor 

tetrahydrobiopterin (48). Our data implicates NOX, but not NOX2, in aortic ROS production. 
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This is in opposition to Serpillon et.al. (44) who showed p47phox inhibition in the aorta caused a 

profound reduction of ROS. We speculate this difference may be due to the advanced diabetic 

state of the rats in Serpillon et.al. study (44) resulting in a key shift in oxidative enzymes upon 

the development of type-2 diabetes, and potentially through the influence of advanced glycation 

end products receptor signaling (57). Our data shows NOX2 production of ROS in tPVAT is 

essential in causing tPVAT activation on aortic ROS. Experimentally creating an oxidative 

environment with pyrogallol in healthy tPVAT was unable to recreate the same level of aortic 

dysfunction as MetS tPVAT. This would suggest the phenotypic changes in MetS tPVAT are 

essential for the production capacity of inflammatory mediators that activate aortic ROS, and 

interfere with NO bioavailability.  

 

Previous data shows TNFα activates the production of ROS from oxidative enzymes, such as 

NADPH oxidase (25, 29). In our study, we showed the activation of aortic ROS production by 

OZR tPVAT could be completely abolished by a TNFα-nAB. Similarly, albeit in a completely 

different vascular bed, the small resistance vessels from obese patients showed an increased gene 

expression of TNF in PVAT, and use of a TNF receptor inhibitor reduced vessel ROS 

production (49), but due to experimental design they were unable to differentiate between basal 

and PVAT activation of ROS. In addition to direct activation of ROS TNF mediates expression 

of IL-1 (47), another stimulator of oxidative enzymes (19). Additionally, IL-1β can act to 

enhance TNFα signaling through regulation of TNF receptors (41). This implicates IL-1β in a 

supportive role to TNFα in mediating OZR-tPVAT regulation of aortic dysfunction. Both TNFα 

and IL-1 levels can be regulated by IL-10 (37, 56), which we showed to be reduced in exudate 

from OZR-tPVAT. In addition, IL-10 is a known inhibitor of oxidative enzymes (9) suggesting 
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losing IL-10 release from tPVAT removes the brakes from ROS production and exacerbates the 

increase of inflammatory cytokines. Finally, our data showed elevated IFN-γ, which has been 

implicated in PVAT mediation of vascular dysfunction. However, TNFα-nAB treatment 

completely blocked OZR-tPVAT mediated aortic dysfunction and no evidence suggests a role of 

TNFα in IFN-γ secretion. This suggests IFN-γ secretion may not affect acute aortic function in 

MetS; however, it may play a role in chronic vascular dysfunction as previously shown (32). 

 

In addition, MetS altered levels of cytokines with direct impact on NO production. TSP-1, a 

multifunctional homotrimeric matrix glycoprotein, was released from tPVAT at a higher 

concentration in OZR than LZR. Importantly, TSP-1 can inhibit eNOS activation and thus 

reduce NO production (22). Further, TSP-1 has a direct role in mediating immune infiltration 

(31), a key source of tissue inflammation. However, TSP-1 expression can also be mediated by 

TNFα signaling (12) suggesting a role for TNFα mediating TSP-1 production as a potential 

mechanism of tPVAT mediated aortic dysfunction in MetS. Another potential mechanism for the 

reduced NO bioavailability could be the reduced release of adiponectin from OZR-tPVAT. 

Adiponectin can inhibit inflammation (50) and promote NO production (51). This is in 

concurrence with data showing PVAT derived adiponectin regulates small (100 to 150 µm 

diameter) peripheral artery function (18). These pathways likely only play a small role as our 

data, in Fig.S2, showed pretreatment of the aorta with TEMPOL prevented most of the tPVAT 

mediated impairment. However, the chronic loss or TNFα inhibition of adiponectin stimulating 

(51) eNOS gene expression may play a part in the pathological loss of vascular eNOS. The 

chronic effect of tPVAT derived TNFα on the aorta is beyond the scope of this study and 

warrants future investigations. 
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tPVAT mediated aortic stiffness 

In addition to NO regulation of EDD, previous studies have shown NO is an essential regulator 

of ECM remodeling and aortic structure (20, 23). In obese and aged mice, tPVAT was shown to 

increase arterial stiffness through alterations of oxidative status, leading to elastin fragmentation 

(6, 14). However, PVAT may also directly affect ECM remodeling as adipocytes and immune 

cells express MMPs (2, 5), in particular, MMP9 which is highly associated with aortic stiffness 

and displays elastase activity (55). The fragmentation of elastin increases aortic stiffness by 

causing the loading of collagen fibers at lower pressures (26). We believe tPVAT production of 

TNFα plays an important role in the aortic stiffening with MetS through a number of pathways. 

First, TNFα can stimulate the production of MMP9 directly (53) and we found that OZR-tPVAT 

had increased MMP9 activity, which was inhibited by TNFα-nAB treatment. Second, TNFα can 

indirectly stimulate MMP9 though its promotion of other cytokines, whereby both IL-1β and 

TSP-1 can activate MMP9 (4, 11) and active MMP9 can cleave TNFα (16) and IL-1β into active 

forms (42). Third, ROS has also been implicated in the fragmentation of elastin (6, 14), thus 

TNFα activation of ROS may also play a role in the observed aortic stiffness in our study. 

Fourth, reduced levels of TIMP-1 (a tissue inhibitor of MMPs) can further add to MMP9 

mediated aortic dysfunction (38). However, a limitation of our study was that the MMP9 activity 

assay was performed after the ELISA pull-down of MMP9 and bound MMP9 was activated. 

However, this might suggest, because of higher LZR-tPVAT TIMP-1 levels the magnitude of 

difference in-vivo for activity of MMP9 is even greater in OZR compared to LZR. Additionally, 

our co-culture experiment was limited due to the lack of intraluminal flow, which is an important 
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for shear stress mediated release of NO and regulation of stiffness. However, the use of a media 

control helps to account for the increase in stiffness due to the lack of flow. 

 

Clinical Outlook 

The findings from the current study may help to elucidate mechanisms underlying increased 

aortic stiffness. Our data suggests adding treatment for adipose tissue dysfunction to a 

multifaceted therapeutic approach in MetS may improve vascular function. Our data identifies 

tPVAT localized NOX2 as an essential component of tPVAT mediated aortic dysfunction. As 

NOX2 is predominantly found in immune cells(1) the development of adipose tissue specific 

immunotherapy or tissue specific delivery of inhibitors might have potential therapeutic benefits. 

Lastly, building evidence suggests restoring functionality of the ubiquitin-proteasome system in 

MetS might restore adipose function and insulin sensitivity (8, 21), and our data suggest a 

potential pleiotropic effect on vascular function.  

 

Conclusions  

In summary, we are the first to show in MetS a comprehensive picture of tPVAT TNFα 

production, which regulates gene expression and ROS production (specifically NOX2 derived 

ROS) in the tPVAT. Additionally, we show global reductions in proteasome function in MetS 

tPVAT. These effects of MetS on tPVAT increased the production of TNFα, TSP-1, and IL-1β 

and decreased the production of IL-10 and adiponectin, which leads to a reduction in NO, EDD, 

MMP9 activation, and increases in structural stiffness. These data show tPVAT dysfunction is a 

major driving force in MetS aortic impairment and highlight the potential for adipo-centric 

therapeutics. 



90 
 

 

Funding 

This study was supported by the American Heart Association grants IRG14330015, pre-doctoral 

fellowship AHA (14PRE20380386); National Institute of General Medical Sciences of the 

National Institutes of Health (U54GM104942, and 5P20GM109098). 

 

Acknowledgments 

We would like to acknowledge Vincent Setola PhD and David Siderovski PhD for assistance 

with PCR experiments and the use of their Qiagen equipment.  

 

The authors declare no conflicts of interest  



91 
 

References 

 

1. Bedard K and Krause KH. The NOX family of ROS-generating NADPH oxidases: 

physiology and pathophysiology. Physiological reviews 87: 245-313, 2007. 

2. Bouloumie A, Sengenes C, Portolan G, Galitzky J, and Lafontan M. Adipocyte 

produces matrix metalloproteinases 2 and 9: involvement in adipose differentiation. Diabetes 50: 

2080-2086, 2001. 

3. Brooks SD, DeVallance E, d'Audiffret AC, Frisbee SJ, Tabone LE, Shrader CD, 

Frisbee JC, and Chantler PD. Metabolic syndrome impairs reactivity and wall mechanics of 

cerebral resistance arteries in obese Zucker rats. American journal of physiology Heart and 

circulatory physiology 309: H1846-1859, 2015. 

4. Brown RD, Jones GM, Laird RE, Hudson P, and Long CS. Cytokines regulate matrix 

metalloproteinases and migration in cardiac fibroblasts. Biochemical and biophysical research 

communications 362: 200-205, 2007. 

5. Chakraborti S, Mandal M, Das S, Mandal A, and Chakraborti T. Regulation of 

matrix metalloproteinases: an overview. Molecular and cellular biochemistry 253: 269-285, 

2003. 

6. Chen JY, Tsai PJ, Tai HC, Tsai RL, Chang YT, Wang MC, Chiou YW, Yeh ML, 

Tang MJ, Lam CF, Shiesh SC, Li YH, Tsai WC, Chou CH, Lin LJ, Wu HL, and Tsai YS. 

Increased aortic stiffness and attenuated lysyl oxidase activity in obesity. Arteriosclerosis, 

thrombosis, and vascular biology 33: 839-846, 2013. 

7. Chen XL, Zhang Q, Zhao R, and Medford RM. Superoxide, H2O2, and iron are 

required for TNF-alpha-induced MCP-1 gene expression in endothelial cells: role of Rac1 and 



92 
 

NADPH oxidase. American journal of physiology Heart and circulatory physiology 286: H1001-

1007, 2004. 

8. Diaz-Ruiz A, Guzman-Ruiz R, Moreno NR, Garcia-Rios A, Delgado-Casado N, 

Membrives A, Tunez I, El Bekay R, Fernandez-Real JM, Tovar S, Dieguez C, Tinahones 

FJ, Vazquez-Martinez R, Lopez-Miranda J, and Malagon MM. Proteasome Dysfunction 

Associated to Oxidative Stress and Proteotoxicity in Adipocytes Compromises Insulin 

Sensitivity in Human Obesity. Antioxidants & redox signaling 23: 597-612, 2015. 

9. Didion SP, Kinzenbaw DA, Schrader LI, Chu Y, and Faraci FM. Endogenous 

interleukin-10 inhibits angiotensin II-induced vascular dysfunction. Hypertension 54: 619-624, 

2009. 

10. Donley DA, Fournier SB, Reger BL, DeVallance E, Bonner DE, Olfert IM, Frisbee 

JC, and Chantler PD. Aerobic exercise training reduces arterial stiffness in metabolic 

syndrome. Journal of applied physiology 116: 1396-1404, 2014. 

11. Donnini S, Morbidelli L, Taraboletti G, and Ziche M. ERK1-2 and p38 MAPK 

regulate MMP/TIMP balance and function in response to thrombospondin-1 fragments in the 

microvascular endothelium. Life sciences 74: 2975-2985, 2004. 

12. Fairaq A, Goc A, Artham S, Sabbineni H, and Somanath PR. TNFalpha induces 

inflammatory stress response in microvascular endothelial cells via Akt- and P38 MAP kinase-

mediated thrombospondin-1 expression. Molecular and cellular biochemistry 406: 227-236, 

2015. 

13. Fitch RM, Vergona R, Sullivan ME, and Wang YX. Nitric oxide synthase inhibition 

increases aortic stiffness measured by pulse wave velocity in rats. Cardiovascular research 51: 

351-358, 2001. 



93 
 

14. Fleenor BS, Eng JS, Sindler AL, Pham BT, Kloor JD, and Seals DR. Superoxide 

signaling in perivascular adipose tissue promotes age-related artery stiffness. Aging cell 13: 576-

578, 2014. 

15. Gao YJ, Lu C, Su LY, Sharma AM, and Lee RM. Modulation of vascular function by 

perivascular adipose tissue: the role of endothelium and hydrogen peroxide. British journal of 

pharmacology 151: 323-331, 2007. 

16. Gearing AJ, Beckett P, Christodoulou M, Churchill M, Clements J, Davidson AH, 

Drummond AH, Galloway WA, Gilbert R, Gordon JL, and et al. Processing of tumour 

necrosis factor-alpha precursor by metalloproteinases. Nature 370: 555-557, 1994. 

17. Ghosh AK, Garg SK, Mau T, O'Brien M, Liu J, and Yung R. Elevated Endoplasmic 

Reticulum Stress Response Contributes to Adipose Tissue Inflammation in Aging. The journals 

of gerontology Series A, Biological sciences and medical sciences 70: 1320-1329, 2015. 

18. Greenstein AS, Khavandi K, Withers SB, Sonoyama K, Clancy O, Jeziorska M, 

Laing I, Yates AP, Pemberton PW, Malik RA, and Heagerty AM. Local inflammation and 

hypoxia abolish the protective anticontractile properties of perivascular fat in obese patients. 

Circulation 119: 1661-1670, 2009. 

19. Gurjar MV, Deleon J, Sharma RV, and Bhalla RC. Role of reactive oxygen species in 

IL-1 beta-stimulated sustained ERK activation and MMP-9 induction. Am J Physiol Heart Circ 

Physiol 281: H2568-2574, 2001. 

20. Gurjar MV, Sharma RV, and Bhalla RC. eNOS gene transfer inhibits smooth muscle 

cell migration and MMP-2 and MMP-9 activity. Arteriosclerosis, thrombosis, and vascular 

biology 19: 2871-2877, 1999. 



94 
 

21. Hohn A, Konig J, and Jung T. Metabolic Syndrome, Redox State, and the Proteasomal 

System. Antioxidants & redox signaling 25: 902-917, 2016. 

22. Isenberg JS, Martin-Manso G, Maxhimer JB, and Roberts DD. Regulation of nitric 

oxide signalling by thrombospondin 1: implications for anti-angiogenic therapies. Nature 

reviews Cancer 9: 182-194, 2009. 

23. Jenkins GM, Crow MT, Bilato C, Gluzband Y, Ryu WS, Li Z, Stetler-Stevenson W, 

Nater C, Froehlich JP, Lakatta EG, and Cheng L. Increased expression of membrane-type 

matrix metalloproteinase and preferential localization of matrix metalloproteinase-2 to the 

neointima of balloon-injured rat carotid arteries. Circulation 97: 82-90, 1998. 

24. Katakam PV, Snipes JA, Tulbert CD, Mayanagi K, Miller AW, and Busija DW. 

Impaired endothelin-induced vasoconstriction in coronary arteries of Zucker obese rats is 

associated with uncoupling of [Ca2+]i signaling. American journal of physiology Regulatory, 

integrative and comparative physiology 290: R145-153, 2006. 

25. Kim YS, Morgan MJ, Choksi S, and Liu ZG. TNF-induced activation of the Nox1 

NADPH oxidase and its role in the induction of necrotic cell death. Molecular cell 26: 675-687, 

2007. 

26. Lakatta EG and Levy D. Arterial and cardiac aging: major shareholders in 

cardiovascular disease enterprises: Part I: aging arteries: a "set up" for vascular disease. 

Circulation 107: 139-146, 2003. 

27. Laursen JB, Somers M, Kurz S, McCann L, Warnholtz A, Freeman BA, Tarpey M, 

Fukai T, and Harrison DG. Endothelial regulation of vasomotion in apoE-deficient mice: 

implications for interactions between peroxynitrite and tetrahydrobiopterin. Circulation 103: 

1282-1288, 2001. 



95 
 

28. Levy BI, Ambrosio G, Pries AR, and Struijker-Boudier HA. Microcirculation in 

hypertension: a new target for treatment? Circulation 104: 735-740, 2001. 

29. Li JM, Fan LM, Christie MR, and Shah AM. Acute tumor necrosis factor alpha 

signaling via NADPH oxidase in microvascular endothelial cells: role of p47phox 

phosphorylation and binding to TRAF4. Molecular and cellular biology 25: 2320-2330, 2005. 

30. Lin Y, Berg AH, Iyengar P, Lam TK, Giacca A, Combs TP, Rajala MW, Du X, 

Rollman B, Li W, Hawkins M, Barzilai N, Rhodes CJ, Fantus IG, Brownlee M, and 

Scherer PE. The hyperglycemia-induced inflammatory response in adipocytes: the role of 

reactive oxygen species. J Biol Chem 280: 4617-4626, 2005. 

31. Mandler WK, Nurkiewicz TR, Porter DW, and Olfert IM. Thrombospondin-1 

mediates multi-walled carbon nanotube induced impairment of arteriolar dilation. 

Nanotoxicology 11: 112-122, 2017. 

32. Mikolajczyk TP, Nosalski R, Szczepaniak P, Budzyn K, Osmenda G, Skiba D, 

Sagan A, Wu J, Vinh A, Marvar PJ, Guzik B, Podolec J, Drummond G, Lob HE, Harrison 

DG, and Guzik TJ. Role of chemokine RANTES in the regulation of perivascular 

inflammation, T-cell accumulation, and vascular dysfunction in hypertension. FASEB journal : 

official publication of the Federation of American Societies for Experimental Biology 30: 1987-

1999, 2016. 

33. Mingorance C, Alvarez de Sotomayor M, Jimenez-Palacios FJ, Callejon Mochon M, 

Casto C, Marhuenda E, and Herrera MD. Effects of chronic treatment with the CB1 

antagonist, rimonabant on the blood pressure, and vascular reactivity of obese Zucker rats. 

Obesity 17: 1340-1347, 2009. 



96 
 

34. O'Rourke M. Arterial stiffness, systolic blood pressure, and logical treatment of arterial 

hypertension. Hypertension 15: 339-347, 1990. 

35. Otoda T, Takamura T, Misu H, Ota T, Murata S, Hayashi H, Takayama H, Kikuchi 

A, Kanamori T, Shima KR, Lan F, Takeda T, Kurita S, Ishikura K, Kita Y, Iwayama K, 

Kato K, Uno M, Takeshita Y, Yamamoto M, Tokuyama K, Iseki S, Tanaka K, and Kaneko 

S. Proteasome dysfunction mediates obesity-induced endoplasmic reticulum stress and insulin 

resistance in the liver. Diabetes 62: 811-824, 2013. 

36. Parameswaran N and Patial S. Tumor necrosis factor-alpha signaling in macrophages. 

Critical reviews in eukaryotic gene expression 20: 87-103, 2010. 

37. Raychaudhuri B, Fisher CJ, Farver CF, Malur A, Drazba J, Kavuru MS, and 

Thomassen MJ. Interleukin 10 (IL-10)-mediated inhibition of inflammatory cytokine 

production by human alveolar macrophages. Cytokine 12: 1348-1355, 2000. 

38. Roderfeld M, Graf J, Giese B, Salguero-Palacios R, Tschuschner A, Muller-Newen 

G, and Roeb E. Latent MMP-9 is bound to TIMP-1 before secretion. Biological chemistry 388: 

1227-1234, 2007. 

39. Saji N, Kimura K, Shimizu H, and Kita Y. Association between silent brain infarct and 

arterial stiffness indicated by brachial-ankle pulse wave velocity. Intern Med 51: 1003-1008, 

2012. 

40. Sakamoto T, Takahashi N, Sawaragi Y, Naknukool S, Yu R, Goto T, and Kawada 

T. Inflammation induced by RAW macrophages suppresses UCP1 mRNA induction via ERK 

activation in 10T1/2 adipocytes. Am J Physiol Cell Physiol 304: C729-738, 2013. 

41. Saperstein S, Chen L, Oakes D, Pryhuber G, and Finkelstein J. IL-1beta augments 

TNF-alpha-mediated inflammatory responses from lung epithelial cells. Journal of interferon & 



97 
 

cytokine research : the official journal of the International Society for Interferon and Cytokine 

Research 29: 273-284, 2009. 

42. Schonbeck U, Mach F, and Libby P. Generation of biologically active IL-1 beta by 

matrix metalloproteinases: a novel caspase-1-independent pathway of IL-1 beta processing. 

Journal of immunology 161: 3340-3346, 1998. 

43. Sen CK and Packer L. Antioxidant and redox regulation of gene transcription. FASEB 

journal : official publication of the Federation of American Societies for Experimental Biology 

10: 709-720, 1996. 

44. Serpillon S, Floyd BC, Gupte RS, George S, Kozicky M, Neito V, Recchia F, Stanley 

W, Wolin MS, and Gupte SA. Superoxide production by NAD(P)H oxidase and mitochondria 

is increased in genetically obese and hyperglycemic rat heart and aorta before the development 

of cardiac dysfunction. The role of glucose-6-phosphate dehydrogenase-derived NADPH. 

American journal of physiology Heart and circulatory physiology 297: H153-162, 2009. 

45. Shimizu I, Aprahamian T, Kikuchi R, Shimizu A, Papanicolaou KN, MacLauchlan 

S, Maruyama S, and Walsh K. Vascular rarefaction mediates whitening of brown fat in 

obesity. The Journal of clinical investigation 124: 2099-2112, 2014. 

46. Smith DM, Fraga H, Reis C, Kafri G, and Goldberg AL. ATP binds to proteasomal 

ATPases in pairs with distinct functional effects, implying an ordered reaction cycle. Cell 144: 

526-538, 2011. 

47. Turner NA, Mughal RS, Warburton P, O'Regan DJ, Ball SG, and Porter KE. 

Mechanism of TNFalpha-induced IL-1alpha, IL-1beta and IL-6 expression in human cardiac 

fibroblasts: effects of statins and thiazolidinediones. Cardiovascular research 76: 81-90, 2007. 



98 
 

48. Vasquez-Vivar J, Kalyanaraman B, Martasek P, Hogg N, Masters BS, Karoui H, 

Tordo P, and Pritchard KA, Jr. Superoxide generation by endothelial nitric oxide synthase: the 

influence of cofactors. Proceedings of the National Academy of Sciences of the United States of 

America 95: 9220-9225, 1998. 

49. Virdis A, Duranti E, Rossi C, Dell'Agnello U, Santini E, Anselmino M, Chiarugi M, 

Taddei S, and Solini A. Tumour necrosis factor-alpha participates on the endothelin-1/nitric 

oxide imbalance in small arteries from obese patients: role of perivascular adipose tissue. 

European heart journal 36: 784-794, 2015. 

50. Wang Y, Wang X, Lau WB, Yuan Y, Booth D, Li JJ, Scalia R, Preston K, Gao E, 

Koch W, and Ma XL. Adiponectin inhibits tumor necrosis factor-alpha-induced vascular 

inflammatory response via caveolin-mediated ceramidase recruitment and activation. Circulation 

research 114: 792-805, 2014. 

51. Wang ZV and Scherer PE. Adiponectin, cardiovascular function, and hypertension. 

Hypertension 51: 8-14, 2008. 

52. Wilkinson IB, Franklin SS, and Cockcroft JR. Nitric oxide and the regulation of large 

artery stiffness: from physiology to pharmacology. Hypertension 44: 112-116, 2004. 

53. Wu HT, Sie SS, Kuan TC, and Lin CS. Identifying the regulative role of NF-kappaB 

binding sites within promoter region of human matrix metalloproteinase 9 (mmp-9) by TNF-

alpha induction. Applied biochemistry and biotechnology 169: 438-449, 2013. 

54. Yang B and Rizzo V. TNF-alpha potentiates protein-tyrosine nitration through activation 

of NADPH oxidase and eNOS localized in membrane rafts and caveolae of bovine aortic 

endothelial cells. Am J Physiol Heart Circ Physiol 292: H954-962, 2007. 



99 
 

55. Yasmin, McEniery CM, Wallace S, Dakham Z, Pulsalkar P, Maki-Petaja K, Ashby 

MJ, Cockcroft JR, and Wilkinson IB. Matrix metalloproteinase-9 (MMP-9), MMP-2, and 

serum elastase activity are associated with systolic hypertension and arterial stiffness. 

Arteriosclerosis, thrombosis, and vascular biology 25: 372, 2005. 

56. Zemse SM, Chiao CW, Hilgers RH, and Webb RC. Interleukin-10 inhibits the in vivo 

and in vitro adverse effects of TNF-alpha on the endothelium of murine aorta. Am J Physiol 

Heart Circ Physiol 299: H1160-1167, 2010. 

57. Zhang M, Kho AL, Anilkumar N, Chibber R, Pagano PJ, Shah AM, and Cave AC. 

Glycated proteins stimulate reactive oxygen species production in cardiac myocytes: 

involvement of Nox2 (gp91phox)-containing NADPH oxidase. Circulation 113: 1235-1243, 

2006. 

 

Figure Legends 

Figure 3.1. Relative gene expression of tPVAT. The graph shows relative gene expression in 

OZR tPVAT compared to LZR tPVAT for A) phenotype and immune markers B) oxidative and 

inflammatory genes, and C) and anti-inflammatory and oxidative defense markers. Data 

expressed as MeanSEM, *denotes significant difference in OZR vs. LZR, minimum of 2-fold 

change and t-test p<0.05, n=3. UCP-1, uncoupling protein-1; CD, cluster of differentiation; 

NOX2, NADPH oxidase 2 catalytic subunit (GP91); p47phox, NADPH oxidase 2 intracellular 

regulatory subunit; TNF, tumor necrosis factor; CCL5, Chemokine (C-C motif) ligand 5; IL, 

interleukin; TSP-1, thrombospondin 1; IFN-, interferon gamma; CCR, C-C motif chemokine 

receptor; AdipoQ, adiponectin; NFR2, nuclear factor (erythroid 2)-like 2; Keap1, kelch-like ECH 

associated protein 1, SOD, superoxide dismutase; GSR, glutathione reductase; CAT, catalase. 
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Figure 3.2. tPVAT ROS formation SOD defense and proteasome function. A) DHE measured 

ROS production (n=8) and B) relative SOD activity (n=5) in tPVAT.  C) Proteasome function 

measured across all 3 active sites (n=8); LLVY (chymotrypsin-like), RLR (trypsin-like) and 

nLPnLD (peptidylglutamyl-peptide hydrolyzing) and D) levels of ubiquitin and the 20S 

proteasome from tPVAT homogenates (n=5). Data expressed as MeanSEM, *denotes 

significant difference in OZR vs. LZR measured by t-test, p<0.05. 

 

Figure 3.3. Cytokine profile of tPVAT. A & B) tPVAT immuno-attractive and inflammatory 

cytokines and C & D) levels of anti-inflammatory cytokines (n=5), HMW: high molecular 

weight. Data expressed as MeanSEM *denotes a statistically significant change in OZR vs. 

LZR determined by t-test, p<0.05. KC/GRO, chemokine (C-C motif) ligand 1; MCP-1, 

monocyte chemoattractant protein-1; TNF, tumor necrosis factor alpha; IL, interleukin; IFN-, 

interferon gamma; TSP-1, thrombospondin 1; HMW adiponectin, high molecular weight 

adiponectin 

 

Figure 3.4. OZR-tPVAT role in activating aortic ROS production and reducing nitric oxide. A) 

tPVAT effect on aortic (Ao) ROS production measured by DHE assay (n=8), and B) relative 

SOD activity of aortic homogenates (n=4). C & D) Effect of tPVAT on aortic NO production 

and EDD and (n=16). E, F, & G) the effect of crossover treating LZR rings with OZR-tPVAT 

and OZR rings with LZR-tPVAT had on aortic ROS, NO, and EDD (n=8). Data expressed as 

MeanSEM *denotes significance between LZR and OZR, # denotes a significant difference 

between tPVAT and respective control, and ^ denotes a significant difference of drug treatment 
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compared to respective tPVAT.  SOD activity was analyzed by t-test while drug treatments and 

aortic reactivity were analyzed by repeated measures ANOVA. Pe, Phenylephrine; MCh, 

Methacholine. 

 

Figure 3.5. Effect of TNFα-nAB on tPVAT and tPVAT mediated aortic function. A) Effect of 

TNFα AB treatment on activation of NF-κB (n=6) and the B) change in tPVAT gene expression 

following TNFα-nAB treatment (n=3). C) ROS production in both tPVAT and aorta following 

tPVAT TNFα-nAB treatment (n=8). D) The effect of TNFα-nAB treated OZR-tPVAT on both 

LZR and OZR aortic rings NO production (n= 5-8), and E & F) EDD (n=5-8). Data expressed as 

MeanSEM ^denotes significant effect of TNFα-nAB compared to control assessed by repeated 

measures ANOVA, p<0.05. Pe, Phenylephrine; MCh, Methacholine; TNF, tumor necrosis factor; 

NOX2, NADPH oxidase 2 catalytic subunit (GP91); p47phox, NADPH oxidase 2 intracellular 

regulatory subunit; TSP-1, thrombospondin 1; IL, interleukin; IFN-, interferon gamma; NFR2, 

nuclear factor (erythroid 2)-like 2; AdipoQ, adiponectin MMP, matrix metalloproteinase; TIMP, 

tissue inhibitor of metalloproteinase.  

 

Figure 3.6. Role of tPVAT in aortic stiffness. A) Aortic elastic modulus in LZR and OZR rings 

without culture experiments (n=8), with B) tPVAT gene expression of remodeling factors (n=3) 

and C & D) tPVAT tissue levels of TIMP-1 and relative activity of MMP9 form LZR, OZR, and 

OZR+TNFα-nAB tPVAT exudate (n=5). E) Elastic modulus of LZR aortic rings following 72-

hours culture with media, LZR-tPVAT, OZR-tPVAT, or OZR-tPVAT+TNFα-nAB (n= 3-4). 

Data expressed as MeanSEM *denotes significant change between OZR and LZR and ^denotes 

significant effect of TNFα-nAB treatment compared to OZR.  A, B, & D analyzed by t-test and 
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C & E analyzed by 2-way repeated measures ANOVA, p<0.05. MMP, matrix metalloproteinase; 

TIMP, tissue inhibitor of metalloproteinase  
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Figures 
Figure 3.1. Relative gene expression of tPVAT 
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Figure 3.2. tPVAT ROS formation SOD defense and proteasome function. 
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Figure 3.3.Cytokine profile of tPVAT 
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Figure 3.4. OZR-tPVAT role in activating aortic ROS production and reducing nitric oxide 
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Figure 3.5. Effect of TNFα-nAB on tPVAT and tPVAT mediated aortic function 
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Figure 3.6. Role of tPVAT in aortic stiffness 
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Supplemental Image 1. Representative DHE Images 
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Supplemental image 2. Representative DHE Images 
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Supplemental Image 3. Representative DHE Images 
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Supplemental Image 4. Representative DHE Images 
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Abstract: We reported thoracic perivascular adipose tissue (tPVAT) mediates aortic impairment 

in metabolic syndrome (MetS). With the known benefits of exercise, we aimed to determine the 

effect of 8-weeks of aerobic exercise training (Ex) on preventing the MetS impairments in 

tPVAT and tPVAT induced aortic dysfunction. Methods & Results: Experiments were conducted 

in lean (LZR) and obese (OZR) Zucker rats (n=8/group) following 8-weeks of control conditions 

or treadmill Ex. Ex had no effect on body weight or blood pressure compared to respective 

controls. However, Ex prevented phenotypic whitening in OZR-Ex through elevated tPVAT 

nitric oxide production (20%, p<0.05). Additionally, OZR-Ex had lower tPVAT ROS production 

(p<0.01) measured by DHE and improved tPVAT 19S-dependent proteasome function measured 

by Ub4(lin)-GFP-35 degradation in LZR-Ex (p<0.05) and OZR-Ex (p<0.01). Improved tPVAT 

function resulted in a significantly (p<0.05) lower TNF, TSP-1, and higher IL-10 in OZR-Ex 

tPVAT. Whereas, LZR-Ex and OZR-Ex tPVAT had significantly (p<0.05) higher adiponectin 

levels compared to LZR and OZR controls. tPVAT increased LZR-Ex and OZR-Ex aortic nitric 

oxide and aortic relaxation. Finally, aortic stiffness (elastin modulus) was reduced in OZR-Ex 

compared to OZR controls. This was associated with increased TIMP-1 and decreased MMP-9 

activity in the OZR-Ex tPVAT. Conclusion: Together these results suggest Ex prevents the 

phenotypic whitening of tPVAT associated with MetS. The change in OZR-Ex tPVAT cytokine 

profile is essential for the improved aortic relaxation and reduced aortic ROS following Ex. 

Finally, reduced MMP-9 activity and ROS contributed to prevention of aortic stiffness in OZR-

Ex.  
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Introduction: 

Metabolic Syndrome (MetS) increases cardiovascular mortality risk by 3-fold [1]. We and others 

have shown the MetS causes vascular dysfunction through increasing reactive oxygen species 

(ROS), inflammation, and reducing nitric oxide (NO) bioavailability [2-4]. An important 

cardiovascular risk factor associated with MetS is aortic stiffness, which increases the burden on 

the heart and reduces coronary profusion [5] and increases pulsatile flow leading to end organ 

damage [6].   

  

Over the past decade, investigations into perivascular adipose tissue (PVAT) have uncovered its 

roles in regulating vascular function and the progression of vascular pathologies (chapter3)[7, 8]. 

We have recently shown PVAT surrounding the thoracic aorta (tPVAT) has an important role in 

mediating aortic endothelial dysfunction and structural stiffness in obese Zucker rats (OZR), a 

model of MetS. We identify TNFα, as the key mediator of tPVAT dysfunction leading to the 

release of pro-inflammatory cytokines and the activation of aortic oxidative enzymes. We have 

also found impairment of proteasome function and a buildup of ubiquitin in MetS tPVAT, which 

might exacerbate the oxidative and inflammatory environment within tPVAT. 

  

It is well known aerobic exercise training (Ex) reduces the risk of cardiovascular disease, events, 

and mortality [9, 10]. This is partially due to the restoration of NO a key mediator of aortic 

health and stiffness. Ex can improve NO through increasing endothelial NO synthase (eNOS) 

activation, expression [11, 12], levels of eNOS co-factors [13], decreasing the levels of 

inflammation [14], and reducing ROS [15]. Our previous clinical work has shown 8-weeks Ex 

reduces central pulse wave velocity, a clinical measure of aortic stiffness, in patients with MetS 
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[16]. However, the effects of Ex on tPVAT and the role of tPVAT following Ex in mediating 

aortic function are unknown in MetS. Thus, we investigated the effect of Ex on tPVAT function, 

its subsequent regulation of aortic reactivity, and stiffness in the OZR. We hypothesize Ex will 

prevent the phenotypic shift of tPVAT in OZR and the subsequent tPVAT dysfunction. We 

further hypothesize the cytokine profile released from tPVAT following Ex will improve 

endothelial NO production and reduction of aortic stiffness. Finally, we hypothesize the changes 

in tPVAT are essential for Ex improvement of aortic function. 

 

Methods: 

Animals and Ex Intervention: Male lean (LZR, n=16) and OZR (n=16) were purchased from 

Envigo Laboratories at 7-9 weeks of age. Animals were housed at the West Virginia University 

Health Science Center (WVUHSC) AAALAC certified animal care facility on an approved 

protocol by the WVUHSC Animal Care and Use Committee. Animals received standard chow 

and tap water ad libitum. LZR and OZR were randomly assigned into control or Ex groups 

(LZR-Ex, n=8 & OZR-Ex n=8). LZR-Ex and OZR-Ex underwent 8 weeks of treadmill running. 

Animals ran 5 days/week in individual lanes on a motor driven treadmill at a 5% grade. During 

the first week, animals were acclimatized to the treadmill by progressively increasing running 

time form 20 minutes until a duration of 60 minutes was achieved. A maximum speed test was 

then performed on each animal and target running speed was set for 60-70% of that maximum. 

Workouts for the following 7 weeks were 60 minutes in duration and consisted of 15 minutes of 

gradual increases in speed until reaching target speed, which was maintained for remaining 45 

minutes. Mild electrical stimulation was used to encourage running. Importantly, terminal 

procedures were performed a minimum of 48 hours following the last bout of Ex to eliminate the 



119 
 

acute effects of exercise on experiments. At time of terminal procedures, animals were weighed 

then deeply anesthetized with pentobarbital sodium (50 mg/kg ip). All rats then received carotid 

artery and jugular vein cannulation to measure mean arterial pressure and to administer heparin, 

respectfully. The aorta with the surround tPVAT was removed and processed as previously 

published. Assessments of gene expression, tPVAT function, and aortic function were conducted 

as previously described in detail (Chapter 3). Hereafter experimental methods are briefly 

described. 

 

Gene Expression: To assess gene expression, tPVAT was prepared and qrt-PCR carried out using 

the RNeasy Lipid Tissue Mini Kit (Qiagen) and Qiagen automated pipetting machines. 20μL 

PCR reactions were mixed with QuantiTect primer assays and QuantiFast PCR master mix 

(Qiagen). Relative quantification was carried out by the 2^(ddCt) method with the reciprocal 

used for graphical representation of negative fold changes. 

 

Measurement of ROS: Dihydroethidium (DHE, Invitrogen D1168) assays were performed on 

unfixed aortic rings and tPVAT sections placed in individual wells of a 96 well plate containing 

HEPES buffer with the following treatments: control (no added drug), tPVAT, Crossover OZR 

tPVAT (i.e., tPVAT from OZR on OZR-EX aortic ring or 4-Hydroxy-TEMPO (TEMPOL, 

100μM, Sigma-Aldrich 176141). Following completion of DHE incubation rings and PVAT 

were washed in HEPES buffer, placed separately in Optimal Cutting Temperature compound 

(OCT, Fisher Healthcare™ Tissue-Plus™ O.C.T Compound) frozen and then cut and 

stained/mounted with DAPI mounting media (VECTORSHEILD antifade mounting media with 

DAPI, Vector laboratories). Slides were imaged with an EVOS fluorescent microscope 



120 
 

(Invitrogen EVOS FL Auto Cell Imaging System), three sections per image-treatment, were 

analyzed by ImageJ as fluorescent density/nucleus, the mean of the 3 images/treatment were 

used as the mean for each animal. Values were normalized to signal form TEMPOL treatment to 

eliminate background. 

 

NO Bioavailability: Aortic rings were placed in individual wells of a 96 well plate containing 

HEPES buffer and 4-Amino-5-Methylamino-2′,7′- Difluorofluorescein Diacetate (DAF-FM-DA, 

Invitrogen) supplemented with L-Arginine (100μM, MP biomedical Inc. 100736), with the 

following treatments: control (no added drug), PVAT, Crossover PVAT, PVAT+TNFα AB 

(4μM) or nitro-L- arginine methyl ester (L-NAME, a potent inhibitor of NO synthase, Sigma-

Aldrich N5751) and then stimulated with Acetyl-β-methylcholine chloride (methacholine (MCh), 

1X10-6, Sigma-Aldrich A2251). The conditioned solution was read in a plate reader 

excitation/emission at 495/515nm wavelength. Fluorescence was normalized to aorta length and 

L-NAME value. 

 

tPVAT Cytokine Profile: tPVAT (200mg/mL) was incubated in HEPES buffer for 1 hours at 

37°C. The tPVAT was then removed and the media was snap frozen and stored at -80°C. The 

conditioned media was then run on MSD multiplex rat inflammatory panel 2 (Mesoscale 

discovery, V-plex K15059D-2), MMP-9 activity ELISA (GE), and High molecular weight 

adiponectin ELISA (Mybiosource MBS020496). Additionally, tPVAT homogenates were 

prepared and run on MSD inflammation panel 1 rat (Mesoscale discovery, K15179C-9), 20S 

proteasome ELISA (Mybiosource MBS730715), and Ubiquitin ELISA (Mybiosource 

MBS039103).  All assays were run per the manufacturer’s instructions. Additionally, samples 
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were run in standard western blot procedures to analyze the 19S proteasome levels normalized to 

-actin. 

 

tPVAT Tissue Function: tPVAT homogenates were used to run SOD activity (Sigma-Aldrich 

19160-1KT-F), total and phosphorylated NF-κB p65 (ThermoFisher multispecies InstantOne™ 

ELISA Kit, 85-86083-11). All assays were run per manufacturer’s instructions. tPVAT 

homogenated in HEPES buffer containing 1mM DTT, 2mM ATP, and 10mM magnesium 

chloride were assayed with 10μM LLVY-AMC (ENZO BML-P802-0005), 100μM nLPnLD-

AMC (Bachem I-1850.0005), and 10μM RLR-AMC (Boston Biochem S-290). These substrates 

are cleaved by the three different protease sites in the 20S core particle, and are thus a good 

general indicator of proteasome degradation capacity in the cell.  

 

Proteasome assay was measured by kinetic read (1 read per minute for 120 minutes) on BioTek 

plate reader (ex. 380nm em. 460nm, BioTek Synergy HT) warmed to 37°C. V-max for each 

assay was determined from 30 points on the linear portion of the kinetic read and normalized to 

V-max in the presence of the 20S inhibitor MG132 to account for background. Additionally, to 

directly test 19S mediated proteasome function tPVAT homogenates were run in Ub4 (lin)-GFP-

35 (0.08 µg/ reaction) degradation assays carried out in 50 µl reactions using 96-half-well black 

plates (Corning) at 37ºC. GFP fluorescence was measured at every 60 seconds for 4 hours 

(ex/em:485/528). Degradation rates were determined in a similar manner to that described above. 

The Ub4 (lin)-GFP-35 substrate, a gift from Dr. David M. Smith, was generated as described by 

Martinez-Fonts and Matouschek [17].  
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Aortic Reactivity: Endothelial dependent dilation (EDD) and the effect of tPVAT on EDD were 

assessed in aortic rings cleaned and mounted in a myobath chamber between a fixed point and a 

force transducer (World Precision Instruments). The equilibrated aortic rings were constricted 

with phenylephrine and exposed to increasing doses of MCh (1X10-9 M to 1X10-5 M) and then 

increasing doses of the endothelial independent dilator sodium nitroprusside (SNP; 1X10-9 M to 

1X10-5 M, MP Biomedical 152061). 

 

Aortic Stiffness: Aortic rings were incubated in Ca2+ free Van Breemen solution to elicit a 

passive state. The rings were then mounted on an automated motorized force transducer (Aurora 

Scientific Inc. model 6350*358) and force output was recorded in lab chart software by powerlab 

(AD instruments). After preconditioning rings were stretched to 10mN of force for 3 minutes 

during which time the internal diameter and wall thickness were measured. Subsequently, the 

automated force transducer increased the aortic ring diameter by 25% of initial internal diameter 

every 3 minutes until mechanical failure (determined by a drop in force following a stretch). 

Elastin modulus was determined as the slope of the stress-strain relationship.  

 

Statistics: All data is represented as mean ± standard error. All experiments were run in 

duplicate, at minimum, and the average of the reads used as the mean for each animal.  Data 

analysis and graphing were conducted using GraphPad Prism 6 software (GraphPad Software, 

Inc.) and p<0.05 was set for statistical significance. Comparisons between groups were 

conducted using a one-way ANOVA, and a two-way repeated measure ANOVA for aortic 

function. 
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Results: 

Animal characteristics: OZR present with obesity, increased MAP, fasting glucose and lipids 

compared to LZR. Importantly, for the analysis of our experimental data, no differences in BW, 

MAP and glucose were noted between the Ex and control groups (Table 4.1).  

 

tPVAT Environment 

tPVAT Phenotype: Disease states may alter adipocyte phenotype, which may be prevented by 

Ex. Indeed, compared to OZR controls, uncoupling protein-1 (UCP-1) expression was higher 

(p<0.01, Fig.4.1A) in the OZR-Ex group. Similar, UCP-1 was higher in the LZR-Ex vs. LZR 

control group, suggesting a retention and strengthening of the brown-like phenotype, 

respectively. Further, our data showed OZR-Ex tPVAT had reduced expression of immuno-

attractant cytokines (Fig.4.1B) and lower gene expression of immune cell specific markers 

(Fig.4.1A). An important regulator of adipose phenotype is NO, which was reduced in OZR-

tPVAT. In contrast, NO bioavailability in tPVAT was higher in the OZR-Ex group vs. OZR 

control (p<0.05, Fig.4.1C), and in LZR-Ex compared to LZR control (p<0.05, Fig.4.1C). The 

changed NO bioavailability was not due to altered AKT activation, as phosphorylated AKT did 

not differ across the groups (Fig.4.1D).  

 

ROS Production: Compared to LZR controls, ROS production in tPVAT was 50X higher in OZR 

controls (Fig.4.1E); however, tPVAT ROS production was 95% lower (p<0.05) in the OZR-Ex 

group compared to OZR controls, and not significantly different from LZR controls (Fig.4.1E). 

Whereas, no difference was noted in tPVAT ROS production between LZR controls and LZR-
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Ex. The lower ROS signal in OZR-Ex tPVAT was, in part, explained by a higher global SOD 

activity in the tPVAT from LZR-Ex and OZR-Ex vs. their respective controls (p<0.05, Fig.4.1F). 

Our previous data highlighted the essential role of tPVAT ROS production from NOX2 in 

mediating aortic dysfunction. Importantly, the gene expression of GP91 (the catalytic subunit of 

NOX2) was lower in LZR-Ex (p<0.05, Fig.4.1D) and OZR-Ex (p<0.05, Fig.4.1A) compared to 

the LZR and OZR controls. However, no differences in gene expression was noted between the 

Ex and control groups for the NOX2 regulatory subunit, p47phox. Other factors involved in ROS 

production were also affected by Ex, whereby the gene expression for SOD 1 and 2, NrF2, and 

GSR were higher in the OZR-Ex vs. OZR control group (Fig.1A, p<0.05). While only GSR was 

higher in LZR-Ex (p<0.05, Fig.4.1A). The oxidative load of cells is known to impact the 

ubiquitin-proteasome-system (UPS). 

 

Proteasome Function: Our previous data (chapter 3) implicated proteasome dysfunction as a 

potential mechanism of tPVAT impairment in OZR. The LZR-Ex group had higher activity of 

the chymotrypsin-like active site and trypsin-like active site, whereas the OZR-Ex group had 

higher activity of the chymotrypsin-like active site and peptidylglutamyl-peptide hydrolyzing 

active site (Fig.4.2B) compared to their respective controls. Additionally, an increased 

expression of the 20S catalytic core was noted in the OZR-Ex (p<0.05) but not in the LZR-Ex 

group (Fig.4.2A). The improved 20S core activity was accompanied by a lower expression of 

ubiquitin in both LZR-Ex and OZR-Ex compared to their respective controls (p<0.05, Fig.4.2B). 

Ubiquitin degradation is dependent upon the 19S regulatory cap of the proteasome, so we 

assessed 19S-dependent degradation and 19S protein levels. The 19S dependent degradation rate 

of fluorescent ubiquitin was higher in the LZR-Ex and OZR-Ex groups compared to their 
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respective controls (p<0.05, Fig.4.2C). Further, 19S expression was significantly lower in the 

tPVAT of OZR control vs. LZR control. However, tPVAT 19S expression was higher in the 

OZR-Ex vs. OZR control (p<0.01, Fig.4.2E), and LZR controls (p<0.05, Fig.4.2E).  Finally, a 

slightly higher 19S expression levels was noted in the LZR-Ex vs. LZR controls (Fig.4.2E). Thus 

far our data has shown the beneficial effects of Ex on tPVAT phenotype and function. 

tPVAT cytokine production: ROS and ubiquitin can stimulate pro-inflammatory cytokines 

production. In tPVAT, LZR-Ex had similar anti- and pro-inflammatory cytokine profiles 

compared to LZR controls (Fig.4.3), however, a higher HMW adiponectin was noted in the LZR-

Ex tPVAT vs. LZR control (p<0.05, Fig.4.3B). OZR-Ex had increased (between 30-120%, 

p<0.05) levels of IL-4, IL-5, IL-10, IL-13 and HMW adiponectin released from the tPVAT 

compared to OZR controls (Fig.4.3A&B). The gene expression of anti-inflammatory cytokines 

in the tPVAT were similar in both LZR-Ex and OZR-Ex compared to their respective controls 

(Fig.4.3C). Interestingly, OZR-Ex had 75% and 25% lower TNFα (p<0.01) and TSP-1 (p<0.05) 

compared to OZR controls, respectively with no differences in tPVAT levels of IFN- and IL-1 

(Fig.4.3D&E). Further, the only differences in the pro-inflammatory gene expression in the 

tPVAT were for TNF and IFN-, which were lower in the OZR-Ex vs. OZR control group 

(Fig.4.3F). These data suggest Ex prevented the increased release of TNF from tPVAT 

associated with MetS, and increased IL-10 and restored HMW adiponectin. Thus, how would 

such changes impact the ROS production and EDD in the aorta?  

 

tPVAT Regulation of Aortic Function 
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Aortic ROS: Surprisingly, we found no differences on global aortic SOD activity in LZR-Ex and 

OZR-Ex compared to their respective controls (Fig.4.4A). However, in OZR-Ex, aortic ROS 

production was significantly lower vs. OZR controls (Fig.4.4B). Incubation of the OZR control 

aorta with OZR control tPVAT increased aortic ROS production, whereas incubating the OZR-

Ex aorta with OZR-Ex tPVAT further reduced aortic ROS production compared to OZR-Ex 

aorta with tPVAT incubation (p<0.01, Fig.4.4B). Aortic ROS production did not differ between 

LZR control and LZR-Ex (Fig.4.4B). 

 

Aortic Reactivity: Similar to effects on ROS, aortic EDD was significantly higher in the OZR-Ex 

and LZR-Ex groups (without tPVAT) (Fig.4.4C). This was likely due to higher aortic NO 

production in the Ex groups, and the aortic NO production was further increased in the presence 

of tPVAT for both LZR-Ex and OZR-Ex (Fig.4.4D). The increased NO in the presence of 

tPVAT caused a further improvement in aortic EDD in both LZR-Ex and OZR-Ex (Fig.4.4F&E).   

 

tPVAT Crossover Experiments: With both tPVAT dependent and independent effects on aortic 

function improved following Ex we wanted to know if the aortic EDD in the OZR-Ex was 

protected against the detrimental effects of tPVAT from a OZR control. Incubation of the OZR-

Ex aorta with OZR control tPVAT reduced aortic EDD compared to OZR-Ex aorta with tPVAT 

(p<0.01, Fig.4.5). However, if the OZR control tPVAT was treated with TNF-nAB, EDD was 

restored in the OZR-Ex aorta back to the same level as OZR-Ex aorta (without tPVAT) (p<0.05, 

Fig.4.5).  
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Aortic Structural Stiffness 

Aortic stiffness in the OZR-Ex was lower compared to OZR controls (p<0.05, Fig.4.6A). 

Further, the tPVAT gene expression of MMP9 was lower in OZR-Ex vs. OZR controls, whereas 

no differences were noted in the gene expression of TIMP-1 (Fig.4.6B). In addition, MMP9 

activity in tPVAT exudate was lower (p<0.05) in the OZR-Ex compared to OZR controls, and 

now similar to LZR controls (Fig.4.6D). Further, tPVAT TIMP-1 protein levels in OZR-Ex were 

reduced compared to OZR controls, and once again, similar to LZR controls (Fig.4.4C). 

Whereas, no differences were detected for MMP9 gene expression, MMP9 activity, TIMP-1 

gene expression, or TIMP-1 protein levels in LZR-Ex vs. LZR controls (Fig.4.6B&C).  

 

Discussion: 

 

For the first time, we evaluated the effects of Ex on MetS tPVAT and its regulation of aortic 

function. The present study presented novel data suggesting the detrimental impact of MetS on 

tPVAT and its impairment of aortic function was prevented by Ex. We show that 8-weeks of Ex 

had a significant impact on the tPVAT NO bioavailability and phenotype in OZR, accompanied 

by improvements in ROS, proteasome function, and inflammatory cytokine profile. Such 

significant changes essentially reversed the impact of MetS on tPVAT, with the subsequent 

improvement in aortic function, and a reduction in aortic stiffness. Additionally, our data 

suggests these tPVAT changes are essential for improved aortic function following Ex. 
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Effect of Exercise on Adipose Tissue 

tPVAT phenotype: Whitening adipose phenotypes are associated with increased oxidative stress 

and inflammation [7, 18, 19]. Pro-inflammatory cytokines have been linked to the suppression of 

UCP-1 [19], a hallmark of brown-like phenotype, exacerbating the whitening process. 

Additionally, sequestration of NO and eNOS uncoupling, are implicated in adipose dysfunction 

[20] and may contribute to the changing phenotype [21, 22]. Studies utilizing eNOS null mice 

highlight the importance of NO signaling for mitochondrial biogenesis, the brown adipose 

phenotype [21, 22], and the Ex induced browning of white adipose [22]. In the OZR, the 

increased oxidative load in tPVAT likely interferes with NO bioavailability, leading to a drastic 

shift in tPVAT phenotype. In contrast, OZR-Ex had lower ROS production, a higher NO 

bioavailability, and a higher UCP-1 gene expression in tPVAT, suggesting a maintenance of the 

brown phenotype. Additionally, Ex may prevent eNOS uncoupling through an increase 

production of eNOS cofactors, as the expression levels of GCh1, the rate-limiting enzyme in BH4 

production, was increased in the tPVAT from OZR-Ex. Taken together, these data suggest Ex 

promotes NO signaling in tPVAT, which plays a pivotal role in establishing a healthy tPVAT 

phenotype in the OZR. The retention of the brown-like phenotype, in turn, supports an anti-

oxidant tPVAT environment through UCP-1 signaling [18]. The direct mechanism driving the 

promotion of NO in tPVAT with Ex is unknown. However, it has been suggested that the 

myokine release from the exercising muscle [21] and autocrine signaling of adiponectin, which 

was higher in OZR-Ex, can promote adipose NO signaling and browning [23]. 

 

ROS: Our data showed the tPVAT gene expression of pro-inflammatory immune cells was lower 

in the OZR-Ex vs. OZR controls. Additionally, Ex is known to alter immune polarization [24, 
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25], thus reducing the oxidative and inflammatory burden, of immune cells. Reduced immune 

cell populations in tPVAT likely contributes to the reduction of the NOX2 expression [26]. In 

contrast, the tPVAT gene expression of the p47phox regulatory subunit was similar in the OZR-

Ex and OZR controls, likely reflecting differential regulation between gene expression, protein 

levels, and activation [27] or p47phox mediation of important cellular function independent of 

the NOX compound [28]. Our previous work showed the NOX2 enzyme was a major culprit of 

ROS production in OZR tPVAT (REF). This would suggest a reduction in tPVAT ROS 

production was the result of Ex limiting the tPVAT phenotypic shift and NOX2 expressing 

immune cell infiltration, coupled with an increase in SOD activity.  

 

Proteasome Function: The high oxidative load in OZR tPVAT may be exacerbated by the 

buildup of ubiquitin due to reduced proteasome function. The buildup of ubiquitin can lead to 

increased inflammatory cytokine production and ROS associated with MetS [29-31]. Ex has 

been shown to improve proteasome function in muscle [32] but the effect of Ex on the UPS in 

tPVAT had not been previously explored. We show Ex reduced ubiquitin and increased activity 

of the proteasome, with the largest effect on increasing 19S Cap expression thus facilitating 

improvements in substrate [33] recognition and 20S gate opening [34]. This was supported by 

our data, which showed increased rate of substrate breakdown (Fig.2). It has been speculated 

higher oxidative environments, like in OZR tPVAT, may cause the 19S cap to dissociate from 

the 20S core reducing the ability to recognize and degrade ubiquitin [35]. This was supported by 

the reduced expression of the 19S cap and ubiquitin buildup in OZR-tPVAT. This suggests the 

increase of the 19S cap expression in OZR-Ex is partly mediated through lower ROS production. 

Proteasome function in OZR-Ex may be additionally improved through increased 20S core 
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proteasome concentration, which may serve as a compensatory adaptation to Ex, increasing 

proteasome number to account for the diminished function in the OZR control tPVAT. Taken 

together, Ex significantly increased proteasome concentration of both the 19S regulatory cap and 

the 20S core. This culminates in greatly improved recognition and breakdown of ubiquitin, as 

supported by the Ub4 (lin)-GFP-35 substrate assay, ultimately reducing the ubiquitin stimulation 

of inflammatory cytokines following Ex in MetS. Uncovering the adipose signaling pathways 

underlying the maintenance or alteration in proteasome function needs further investigation.  

 

tPVAT Cytokines: In our study, the OZR-Ex group had reductions in two known inflammatory 

cytokine signaling pathways; 1) ubiquitin [29, 30] and, 2) ROS [36]. We have previously shown 

the tPVAT ROS production, and tPVAT mediated aortic impairment in the OZR was dependent 

on TNFα (chapter3). Importantly, the OZR-Ex had a drastically lower production of TNFα from 

the tPVAT, and higher IL-10 and HMW adiponectin vs. OZR controls. IL-10 is a known 

inhibitor of TNF [37] and ROS [38]. The lower production of TNF and immune cell 

population in OZR-Ex tPVAT likely has 3 important actions on the autocrine signaling of 

tPVAT. First, reducing TNF removes autocrine activation of tPVAT ROS, which subsequently 

decreases oxidative dissociation of the 19S from the proteasome improving function, decreases 

sequestration of NO, and decreases activation of transcription factors. Secondly, reducing TNF 

removes the inhibition on HMW adiponectin [39], allowing for autocrine activation of NO 

bioavailability and the promotion of the brown-like phenotype. Lastly, reducing TNF would 

downregulate TSP-1 (Fig.3), which would remove TSP-1 inhibition of eNOS function and anti-

angiogenic actions, a potentially cause of obesity related adipose dysfunction [40, 41]. These 

actions of Ex on cytokine profile would have important implications on the tPVAT mediated 
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function of the aorta [39, 42].  

 

Role of tPVAT on Aortic Function  

Aortic Function: Aortic ROS was drastically lower in OZR-Ex coupled with a higher aortic NO 

bioavailability and a higher EDD compared to OZR controls despite no changes in body weight 

or MAP with Ex. The improved aortic EDD occurred despite a lack of effect on global SOD 

activity in the OZR-Ex and LZR-Ex groups. Other studies clearly show vascular SOD levels are 

increased following Ex [43, 44]. The lack of difference in SOD activity in our study may reflect 

differences in Ex protocol, protein level vs. activity, or age of the animals [15]. Additionally, 

SOD-1 is the focus of many previous reports, so SOD-1 changes may be masked by no Ex on 

other isoforms [44] in our assessment of global SOD activity. In addition to the reduced basal 

ROS production in the OZR-EX, incubation of the OZR aorta with OZR-Ex tPVAT actively 

suppressed aortic ROS production.   

 

tPVAT Mediated Aortic Function: Improved tPVAT mediated EDD was the result of increased 

NO in LZR-Ex and OZR-Ex and inhibition of ROS in OZR-Ex. The tPVAT inhibition of aortic 

ROS production is likely due to the higher levels of IL-10 inhibiting NOX [38] a significant 

contributor to aortic ROS production [45] (paper 1). Additionally, the reduced secretion of TNFα 

removes the stimulus for NOX activation contributing to reduced aortic ROS.  This suggests Ex 

prevents the shift towards ROS activators and away from ROS inhibitors associated with MetS. 

Increased NO is likely due to the actions of the increased secretion of HMW adiponectin [39] 

and the decreased TSP-1 (in OZR-EX) [46]. These data again highlight the importance of tPVAT 

TNFα- IL-10- HMW adiponectin balance, this time in effecting aortic function. These data 
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strongly suggest changes in tPVAT cytokine release as a major pathway of Ex aortic adaptation. 

This idea is supported by our crossover experiments, in which OZR-Ex aorta was not protected 

against the inflammatory insult released from OZR-tPVAT, chiefly TNF. Suggesting the 

improved aortic function following Ex is dependent on reduced inflammatory cytokine release 

from tPVAT. Future studies are needed to assess the effect of Ex in other PVAT depots and 

vascular beds. Understanding key cellular events in PVAT in response to Ex might uncover a 

therapeutic target to prevent the progression of vascular pathologies.  

  

To date only one other study, to our knowledge, has examined the effect of Ex on PVAT 

regulation of vascular function. In healthy rats, exercise had no impact on PVAT regulation of 

aortic function [47]. Similarly, we found very few changes in tPVAT between LZR and LZR-Ex 

outside of increased HMW adiponectin release and improved EDD. The difference in 

adiponectin findings might arise from measuring tissue vs. secreted levels and measuring 

adiponectin vs. HMW adiponectin. Additionally, differences may have arisen from the different 

rat strains used and/or differences in total work. This may suggest the exercise stimulus was 

greater in the current study due to the incorporation of vertical work utilizing 5% incline 

compared to 0%.  

 

Aortic Stiffness and tPVAT: Finally, we showed Ex prevented the structural stiffening of the 

aorta associated with MetS. This is presumably due to Ex reduction of aortic ROS, in part, 

mediated by the altered tPVAT cytokine profile. Additionally, Ex preserved TIMP-1 levels and 

reduced MMP-9 activity in the tPVAT. Both ROS and MMP-9 are known to cause elastin 

fragmentation [8, 48, 49], which leads to reduced distensibility [50]. Ex reduction of TNF and 
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TSP-1, known activators of MMP-9 [51, 52], may explain the lower MMP-9 activity in tPVAT. 

These findings may help to explain results from a previous study in patients with MetS, in which 

we found Ex reduced aortic pulse wave velocity (a clinical measure of aortic stiffness) 

independent of changes in circulating inflammation and markers of oxidative stress [16]. Our 

results from the current study suggest changes in tPVAT of MetS patients might have been 

responsible for the observed improvement in pulse wave velocity. 

 

Limitations: One limitation to our current study is Ex was introduced during the development of 

MetS. Thus, these data should be interpreted as such and future studies to determine the 

therapeutic efficacy of Ex after the development of MetS on tPVAT function and regulation of 

the aortic endothelium are needed. However, we have previously shown that the OZR by 9 

weeks of age already exhibits some vascular impairment and alterations in circulating cytokines 

[2]. Suggesting our data might then represent a halt in the progression of MetS induced vascular 

pathology and a reversal in the impairments present at 9 weeks of age. Additionally, small n’s 

were utilized in gene expression experiments due to limited LZR tPVAT. However, many genes 

showed robust and consistent responses such as UCP-1 and TNF. Finally, only global SOD 

activity was measured, and data may not reflect regional alterations in specific isoforms. 

 

Conclusions and Prospective 

The present study is the first examination of the Ex effect on tPVAT and its regulation of aortic 

function in MetS. The promotion of physical activity lifestyle even independent of weight loss 

and changes in blood pressure may prevent the accelerated aortic impairment seen with obesity 

and MetS through preservation of tPVAT NO signaling and brown-like phenotype. Ex prevented 
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the increase of ROS and inflammation associated with MetS, while enhancing proteasome 

function in tPVAT. Additionally, our data suggests, at least, in part the aortic adaptations to Ex 

are dependent on the function of the tPVAT. This was supported by the lack of protection in 

OZR-Ex aortas against OZR tPVAT impairment of NO and EDD. This suggests therapeutically 

targeting tPVAT in combination with Ex or other vascular therapeutics in patients with MetS 

might accelerate beneficial vascular adaptation and reduce the cardiovascular burden of obesity.  
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Figure Legends  

Figure. 4.1 tPVAT Reactive Oxygen Species and Phenotype. A) tPVAT relative gene expression 

compared to LZR control for markers of phenotype, immune cell markers, and pro/ anti- 

oxidants (n=3), while B) represents protein levels of immune-attractants measured in tPVAT 

exudate (n=5). C) tPVAT production of NO measured by fluorescent DAF-FM (n=8) and D) 

highlights activation of the AKT pathway (n=5). Finally, E&F) represent tPVAT DHE measured 

ROS production and total SOD activity (n=5-8). Data are represented as Mean SEM *denotes 

statistical difference compared to LZR control, #denotes statistical difference compared to OZR 

control measured by ANOVA with Tukey Post-Hoc, p<0.05. UCP-1, uncoupling protein-1; CD, 

cluster of differentiation; eNOS, endothelial nitric oxide synthase; Gch, GTP cyclohydrolase; 

SOD, superoxide dismutase; NOX2, NADPH oxidase 2 catalytic subunit (GP91); p47phox, 

NADPH oxidase 2 intracellular regulatory subunit; Keap1, kelch-like ECH associated protein 1, 

GSR, glutathione reductase; CAT, catalase, KC/GRO, chemokine (C-C motif) ligand 1; MCP-1, 

monocyte chemoattractant protein-1; p-AKT, phosphorylated- Protein Kinase B.  

 

Figure. 4.2 Ex Enhancement of Proteasome Function. A) Proteasome function measured across 

all 3 active sites (n=6-8); LLVY (chymotrypsin-like), RLR (trypsin-like) and nLPnLD 

(peptidylglutamyl-peptide hydrolyzing) and B) levels of ubiquitin and the 20S proteasome from 

tPVAT homogenates (n=5). C) Depiction of 19S dependent regulation of fluorescent ubiquitin 

degradation (n=6), D&E) representative western blot of 19S protein levels and quantification 

(n=4). Data are represented as Mean SEM *denotes statistical difference compared to LZR 

control, #denotes statistical difference compared to OZR control measured by ANOVA with 

Tukey Post-Hoc, p<0.05. 
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Figure. 4.3 tPVAT Cytokine Profile Following Ex. A&B) Anti-inflammatory cytokine levels 

measured in tPVAT exudate (n=5) with B) supporting tPVAT relative gene expression (n=3). D) 

Pro-inflammatory cytokine levels measured in tPVAT exudate (n=5) and E) tissue homogenates 

(n=5) with F) relative gene expression of inflammatory genes (n=3). Data are represented as 

Mean SEM *denotes statistical difference compared to LZR control, #denotes statistical 

difference compared to OZR control measured by ANOVA with Tukey Post-Hoc, p<0.05. IL, 

interleukin; HMW adiponectin, high molecular weight adiponectin; TNF, tumor necrosis factor 

alpha; IFN-, interferon gamma; TSP-1, thrombospondin 1; CCL, Chemokine (c-c motif) ligand; 

CCR, Chemokine (c-c motif) receptor. 

 

Figure. 4.4 Effect of Ex on tPVAT Mediated Aortic Function. A&B) Relative total aortic SOD 

activity (n=5) and aortic ROS production with and without tPVAT incubation (n=8). C) Effect of 

Ex on aortic EDD (n=8) and D) NO production with and without tPVAT incubation (n=8). Ex 

effect on tPVAT mediated aortic EDD in E) OZRs (n=8) and F) LZRs (n=8). Data are 

represented as Mean SEM *denotes statistical difference compared to LZR control, #denotes 

statistical difference compared to OZR control, ^denotes statistical significant effect of tPVAT 

measured by ANOVA in Panel A and repeated measures ANOVA in B-F both with Tukey Post-

Hoc, p<0.05. SOD, Superoxide dismutase. 

 

Figure. 4.5 Ex Does Not Protect the Aorta Against tPVAT Derived TNF Mediated 

Impairment. The graph depicts OZR-Ex aortic EDD when crossover treated with OZR tPVAT 

(n=8) and with OZR tPVAT+TNF-nAB (n=5). Data are represented as Mean SEM ^denotes 
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statistically significant effect of crossover OZR tPVAT compared to OZR-EX tPVAT, $denotes 

statistically significant effect of TNF-nAB treatment compared to the OZR tPVAT crossover 

measured by repeated measures ANOVA with Tukey Post-Hoc, p<0.05. TNF-nAB, tumor 

necrosis factor alpha- neutralizing anti-body. 

 

Figure. 4.6 Ex Prevents Aortic Stiffness. A) Aortic stiffness measured by elastin modulus in 

aortic rings (n=8). B) Remodeling factor gene expression (n=3), C) tPVAT TIMP-1 protein 

levels (n=5), and D) MMP-9 activity in tPVAT exudate (n=5). Data are represented as Mean 

SEM *denotes statistical difference compared to LZR control, #denotes statistical difference 

compared to OZR control measured by ANOVA with Tukey Post-Hoc, p<0.05. MMP, matrix 

metalloproteinase; TIMP, tissue inhibitor of metalloproteinase. 
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Table 4.1. Body Weight, Blood Pressure, and Blood Profile of LZR and OZR 

Table 1 LZR OZR 

 Control Exercise Control Exercise 

Body Mass (g) 41817 36311 60410* 62719 

MAP (mmHg) 1063 1142 1356* 1346 

Glucose (mg/dl) 986 1018 18412* 15412 

TG (mg/dl) 253 313 1248* 8215# 

Data represented as Mean SEM,* denotes statistical difference compared to LZR control and # 

denotes statistical difference from OZR control measured by ANOVA with Tukey Post-Hoc 

p<0.05 (n=6-8). MAP, mean arterial pressure; TG, triglyceride 
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Figures  
Figure 4.1. tPVAT Reactive Oxygen Species and Phenotype 
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Figure 4.2. Ex Enhancement of Proteasome Function 
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Figure 4.3. tPVAT Cytokine Profile Following Ex 
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Figure 4.4. Effect of Ex on tPVAT Mediated Aortic Function 
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Figure 4.5. Ex Does Not Protect the Aorta Against tPVAT Derived TNF Mediated Impairment 
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Figure 4.6. Ex Prevents Aortic Stiffness 
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Abstract: 

Depressive disorders are common worldwide and in the United States, with an alarmingly high 

prevalence amongst MetS patients. Endeavors into the pathophysiological impacts of depressive 

states has uncovered many links to vascular impairment and risk of cardiovascular disease. In 

recent studies perivascular adipose tissue (PVAT) has been shown to regulate vascular 

impairment in various disease states. However, the impact of depressive state and the 

comorbidity of depressive states with MetS on thoracic (t)PVAT are unknown. Additionally, 

exercise training is known to combat the pathology of both MetS and depressive states, but the 

role of tPVAT in these actions are unknown. To assess these gaps in knowledge we will 

implement the chronic mild stress protocol (UCMS) and treadmill exercise (Ex) in lean (LZR) 

and MetS (OZR) rats. UCMS resulted in increased secretion of Ang II and decreased release of 

adiponectin in both LZR and OZR tPVAT. UCMS tPVAT subsequently reduced aortic EDD in 

both LZR (p<0.05) and OZR (p<0.05). UCMS caused increased stiffness in LZR through actions 

of tPVAT, while no effect was seen in OZR. Ex prevented the tPVAT impairment of aortic 

relaxation associated with UCMS in both LZR (p<0.05) and OZR (p<0.05). Additionally, Ex 

reduced aortic stiffness in both LZR and OZR. These beneficial regulations of the aorta are likely 

due to Ex prevention of increased Ang II and reduced adiponectin associated with UCMS in 

tPVAT. In conclusion UCMS alters tPVAT secretion profile leading to the activation of aortic 

ROS and impairment of function. These effects of UCMS can be prevented by Ex. 
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Introduction: 

Depressive psychological disorders are a common worldwide affliction affecting approximately 

350 million people making it the leading global cause of disability according to the world health 

organization. The burden of depressive states is at its highest in the USA with prevalence rate of 

roughly 17% [1]. The complex psychophysiological interactions of depressive states cause 

numerous health issues including being an independent risk factor of cardiovascular disease 

(CVD) [2]. Clinical evaluations of arterial stiffness [3], a major CVD risk factor [4], and flow 

mediated dilation [5], link vascular impairment with depressive symptoms.  

 

The link between depressive states and vascular function have slowly come to light in recent 

history; a detailed account of the advancements in the field can be found in a review by Golbidi 

et. al [6]. In addition, there is a high co-prevalence of depressive states with obesity and the 

metabolic syndrome (MetS) [7, 8], a disease state with significant pre-existing vascular 

dysfunction [9-12]. A growing body of work shows perivascular adipose tissue (PVAT) partially 

mediates the progression and development of vascular diseases. Our own previous work in a 

rodent model of MetS (obese Zucker Rat, OZR) indicates thoracic (t) PVAT cytokine alterations 

mediate aortic dysfunction through activation of aortic reactive oxygen species (ROS) 

production. Despite growing evidence linking depressive states with the development of 

vasculopathies important questions remain. 1) Does the development of depressive states affect 

tPVAT or tPVAT mediated aortic function and 2) is this relationship affected by the comorbidity 

of MetS?  

  



 154

Aerobic exercise training (Ex) has been utilized as a therapy for depressive states and to yield 

improvements in vascular function in the MetS . Aerobic exercise (Ex) promotes vascular 

protection through its anti-inflammatory and anti-oxidative effects REF. However, the effect of 

Ex on tPVAT and its regulation of aortic function is unknown with concurrent UCMS and the 

comorbidity of UCMS and MetS. We have previously shown Ex in the OZR is beneficial in 

restoring aortic function and tPVAT mediation of aortic function (ref). Indeed, Ex in OZR resorts 

the tPVAT phenotype and tPVAT promotion of NO signaling in the aorta. Thus, given our 

previous work examining the beneficial effects of Ex on vascular function, specifically the its 

role on tPVAT regulation, we asked the following question: Can Ex during the development of 

MetS and depressive states, limit the aortic and tPVAT dysfunction? 

 

In the study, we aim to determine the impact of UCMS on tPVAT and tPVAT regulation of 

aortic function with and without concomitant MetS. We hypothesize UCMS will impairer 

tPVAT function and upregulate pro-inflammatory cytokines causing impairment of aortic 

endothelial function in both lean and MetS compared to controls. We further hypothesize the 

implementation of Ex alongside UCMS will prevent tPVAT impairment and improve tPVAT 

regulation of aortic function. 

 

Methods 

Animals and Ex Intervention: Male lean (LZR, n=24) and OZR (n=24) were purchased from 

Envigo Laboratories at 7-9 weeks of age. Animals were housed at the West Virginia University 

Health Science Center (WVUHSC) animal care facility on an approved protocol by the 

WVUHSC Animal Care and USE Committee. Animals received standard chow and tap water ad 
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libitum. LZR and OZR were randomly assigned into control, UCMS (LZR-UMCS, n=8 &  OZR-

UMCS, n=8), or combination of UCMS and Ex groups (LZR-UCMS+Ex, n=8 & OZR-

UCMS+Ex, n=8).  

 

UCMS Protocol: The unpredictable chronic mild stress (UCMS) protocol is a well-defined 

model to induce a depressive state in rodents [13, 14]. Rodents undergoing UCMS manifest with 

clinically relevant depressive symptoms such as anhedonia and learned helplessness [13, 14] 

with alterations in brain structure and function parallel to clinical depression. Rats were singly 

housed in UCMS groups, and exposed to the following mild environmental stressors in randomly 

chosen sequences for 8 hours each day, 5 days/week, over the course of 8 weeks:  

1. Damp bedding – 10 oz. of water was added to each standard cage  

2. Bath – all bedding was removed and ~0.5 inches of water was added to empty cage. 

Water temperature was room temperature, ~24°C  

3. Cage Tilt - cage was tilted to 45 degrees without bedding  

4. Social stress – each rat was switched into a cage of a neighboring rat   

5. No bedding – all bedding was removed from the cage 

6. Alteration of light/dark cycles –turning lights off/on in random increments for scheduled 

period.  

 

UCMS and Exercise Combination Protocol: LZR-UCMS+Ex and OZR-UCMS+Ex underwent 8 

weeks of treadmill running. Animals ran 5 days/week in individual lanes on a motor driven 

treadmill at a 5% grade. During the first week, animals were acclimatized to the treadmill by 

progressively increasing running time form 20 minutes until a duration of 60 minutes was 
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achieved. A maximum speed test was then performed on each animal and target running speed 

was set for 60-70% of that maximum. Workouts for the following 7 weeks were 60 minutes in 

duration and consisted of 15 minutes of gradual increases in speed until reaching target speed, 

which was maintained for remaining 45 minutes. Mild electrical stimulation was used to 

encourage running. treadmill running was performed first thing in the morning immediately 

followed by subjection to the UCMS protocol as described previously.   

 

Coat Score and Adrenal Weights: This evaluation was done for every group throughout the 

duration of the 8-week protocol.  Each week, the rats were weighed and inspected for grooming 

habits.  The total cumulative score was computed by giving an individual score of 0 (clean) or 1 

(dirty) to eight different body parts. During terminal procedures adrenal glands were removed 

and cleaned under a dissecting microscope. Subsequently, adrenal glands were patted dry and 

weighed individually and then averaged together for each animal and were normalized to body 

weight. 

  

Terminal Procedures: Importantly, terminal procedures were performed a minimum of 48 hours 

following the last bout of Ex to eliminate the acute effects of exercise on experiments. At time of 

terminal procedures, animals were weighed then deeply anesthetized with pentobarbital sodium 

(50 mg/kg ip). All rats then received carotid artery and jugular vein cannulation to measure mean 

arterial pressure and to administer heparin, respectfully. The aorta with the surround tPVAT was 

removed and processed as previously published. 

Assessments of gene expression, tPVAT function, and aortic function were conducted as 

previously described in detail (ref). Hereafter experimental methods are briefly described. 
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Gene Expression: To assess gene expression, tPVAT was prepared and qrt-PCR carried out using 

the RNeasy Lipid Tissue Mini Kit (Qiagen) and Qiagen automated pipetting machines. 20μL 

PCR reactions were mixed with QuantiTect primer assays and QuantiFast PCR master mix 

(Qiagen). Relative quantification was carried out by the 2^(ddCt) method. 

 

Measurement of ROS: Dihydroethidium (DHE, Invitrogen D1168) assays were performed on 

unfixed aortic rings and tPVAT sections placed in individual wells of a 96 well plate containing 

HEPES buffer with the following treatments: control (no added drug), tPVAT, Crossover OZR 

tPVAT (i.e., tPVAT from OZR on OZR-EX aortic ring or 4-Hydroxy-TEMPO (TEMPOL, 

100μM, Sigma-Aldrich 176141). Following completion of DHE incubation rings and PVAT 

were washed in HEPES buffer, placed separately in Optimal Cutting Temperature compound 

(OCT, Fisher Healthcare™ Tissue-Plus™ O.C.T Compound) frozen and then cut and 

stained/mounted with DAPI mounting media (VECTORSHEILD antifade mounting media with 

DAPI, Vector laboratories). Slides were imaged with an EVOS fluorescent microscope 

(Invitrogen EVOS FL Auto Cell Imaging System), 3 sections per image-treatment, and analyzed 

in ImageJ as fluorescent density/nucleus, the mean of the 3 images/treatment were used as the 

mean for each animal. Values were normalized to signal form TEMPOL treatment to eliminate 

background. 

 

NO Bioavailability: Aortic rings were placed in individual wells of a 96 well plate containing 

HEPES buffer and 4-Amino-5-Methylamino-2′,7′- Difluorofluorescein Diacetate (DAF-FM-DA, 

Invitrogen) supplemented with L-Arginine (100μM, MP biomedical Inc. 100736), with the 
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following treatments: control (no added drug), PVAT, Crossover PVAT, PVAT+TNFα AB 

(4μM) or nitro-L- arginine methyl ester (L-NAME, a potent inhibitor of NO synthase, Sigma-

Aldrich N5751) and then stimulated with Acetyl-β-methylcholine chloride (methacholine (MCh), 

1X10-6, Sigma-Aldrich A2251). The conditioned solution was read in a plate reader 

excitation/emission at 495/515nm wavelength. Fluorescence was normalized to aorta length and 

L-NAME value. 

 

tPVAT Cytokine Profile: tPVAT at a ratio of 200mg/1mL was incubated in HEPES buffer for 1 

hours at 37°C. The tPVAT was then removed and the media was snap frozen and stored at -

80°C. The conditioned media was then run on MSD multiplex rat inflammatory panel 2 

(Mesoscale discovery, V-plex K15059D-2), MMP-9 activity ELISA (Biotrak activity assay), and 

High molecular weight adiponectin ELISA (Mybiosource MBS020496). Additionally, tPVAT 

homogenates were prepared and run on MSD inflammation panel 1 rat (Mesoscale discovery, 

K15179C-9), aldosterone ELISA (Mybiosource MBS731388), and angiotensin II ELISA 

(Spibio, A05880).  All assays were run per manufacturer’s instructions. Additionally, tPVAT 

homogenates were used to run a SOD activity assay (Sigma-Aldrich 19160-1KT-F) to 

manufacturer’s specifications. 

 

Aortic Reactivity: Endothelial dependent dilation (EDD) and the effect of tPVAT on EDD were 

assessed in aortic rings cleaned and mounted in a myobath chamber between a fixed point and a 

force transducer (World Precision Instruments). The equilibrated aortic rings were constricted 

with phenylephrine and exposed to increasing doses of MCh (1X10-9 M to 1X10-5 M). Additional 

responses were carried out with either tPVAT incubation or L-NAME as previously described.  
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Aortic Stiffness: Aortic rings were incubated in Ca2+ free Van Breemen solution to elicit a 

passive state. The rings were then mounted on an automated motorized force transducer (Aurora 

Scientific Inc. model 6350*358) and force output was recorded in lab chart software by powerlab 

(AD instruments). After preconditioning rings were stretched to 10mN of force for 3 minutes 

during which time the internal diameter and wall thickness were measured. Subsequently, the 

automated force transducer increased the aortic ring diameter by 25% of initial internal diameter 

every 3 minutes until mechanical failure (determined by a drop in force following a stretch). 

Elastin modulus was determined as the slope of the stress-strain relationship.  

 

PVAT Culture Studies: To determine the direct impact of PVAT on mechanical stiffness, LZR 

aortic rings (n=4/treatment) were cultured for 72-hours in RMPI + GlutaMAX™ + 25 mM 

HEPES media (gibco® by life techonologies™) with streptomycin and kept in a CO2 cell 

incubator at 37°C under 5% CO2, under the following conditions; control (just media), LZR 

tPVAT, OZR tPVAT, LZR-UCMS tPVAT, OZR-UCMS tPVAT, LZR-UCMS+Ex tPVAT or 

OZR-UCMS+Ex tPVAT. Media was discarded and replenished daily. Following the 72-hours of 

culture aortic rings were subjected to the protocol described above to generate an elastic 

modulus.  

 

Results: 

 

Characteristics of Rats 

Table 5.1 displays the characteristics of the experimental groups. The components of the MetS 

were largely unaffected by UCMS or the combination of UCMS+Ex. Additionally, confirmation 
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of the stress induced states following UCMS were validated by increased corticosterone, a 

reduced grooming habit as measured by coat score, and increased adrenal weights. 

 

Aortic reactivity 

Following 8-weeks of UCMS aortic EDD was impaired ~10% in LZR-UCMS compared to LZR-

controls (p<0.05, Fig.5.1A). While no differences were noted in aortic EDD between OZR-

UCMS and OZR-controls (Fig.5.1B). Ex alongside UCMS had no effect on aortic EDD (in the 

absence of tPVAT) as both OZR-UCMS+Ex and LZR-UCMS+Ex were not significantly 

different from either of their respective controls or UCMS groups (Fig.5.1A&B).  

When aortic reactivity was conducted in the presence of tPVAT, EDD was further reduced by 

8% (p<0.05) in LZR-UCMS, an effect in opposition to LZR control whereby LZR-tPVAT 

increased maximal EDD by 5% (p<0.01, Fig.5.1C). Similarly, tPVAT reduced aortic EDD to a 

greater magnitude in OZR-UCMS compared to OZR-control (i.e., max dilation decreased 15% 

vs. 10% p<0.05, respectfully) (Fig.5.1D). However, Ex prevented the tPVAT impairment of 

EDD in both LZR-UCMS+Ex and OZR-UCMS+Ex (Fig.5.1E&F).  

 

Aortic reactivity conducted in the presence of the NO synthase inhibitor L-NAME showed 

UCMS increased the reliance on NO-independent relaxation pathways in LZR-UCMS (p<0.05, 

Fig.5.2A). No effect was seen in OZR-UCMS as OZR control already presented with an 

increased NO-independent portion of relaxation (Fig.5.2B). Ex reduced the reliance on NO-

independent mechanisms of relaxation in LZR-UCMS+Ex compared to LZR-UCMS (p<0.05, 

Fig.5.2A) and OZR-UCMS+EX compared to OZR control and OZR-UCMS (p<0.05, Fig.5.2B).  
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Effect of UCMS on tPVAT 

 

tPVAT and Aortic ROS 

Aortic ROS production was higher in the LZR-UCMS vs. LZR-control group (p<0.001, 

Fig.5.2C). In addition, incubation of the LZR-UCMS aorta with its tPVAT further increased 

aortic ROS production (Fig.5.2C). There were minimal differences in aortic ROS production 

between LZR-UCMS+Ex and LZR-UCMS. However, Ex did prevent the activation of aortic 

ROS production when incubated with its tPVAT (Fig.5.2C). In OZR-UCMS, aortic ROS 

production did not differ from OZR control; in contrast, incubation with its tPVAT significantly 

elevated aortic ROS production (Fig.5.2D), and to a higher level than in the OZR control (Fig. 

5.2D). Aortic ROS production did not differ between OZR-UCMS+Ex and OZR-UCMS, but Ex 

in the OZR-UCMS+Ex group did prevent the tPVAT activation of aortic ROS (Fig.5.2D).  

 

tPVAT and Aortic NO 

LZR-UCMS presented with lower NO bioavailability than LZR-controls, and aortic NO 

bioavailability was further reduced by 12% following tPVAT incubation (Fig.5.2E). Whereas, 

aortic NO bioavailability was higher (p<0.05) in the LZR-UCMS+Ex in the absence and 

presence of tPVAT compared to LZR-UCMS (Fig.5.2E). In the OZR’s, no differences were 

noted in aortic NO bioavailability in the UCMS and control groups. However, when the OZR-

UCMS aorta was incubated with the OZR-UCMS tPVAT, NO bioavailability was significantly 

decreased (p<0.05, Fig.5.2F). Ex had minimal effects in the OZR, whereby aortic NO 

bioavailability did not differ between OZR-UCMS+EX and OZR-UCMS. Incubation of the 

OZR-UCMS+Ex aorta with its tPVAT did not improve or decrease NO bioavailability, which 
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yielded higher NO compared to both OZR control and OZR-UCMS aortas incubated with 

tPVAT (Fig.5.2F).  

 

Effect of UCMS and Exercise on tPVAT Environment 

 

tPVAT ROS, Anti-oxidant Defense, and Immuno-attraction 

tPVAT ROS production was higher in both LZR-UCMS and OZR-UCMS compared to their 

respective controls (Fig.5.3A). In contrast, tPVAT ROS production was lower in LZR-

UCMS+Ex and OZR-UCMS+Ex vs. the their respective UCMS groups (Fig.5.3A). Additionally, 

SOD activity was impaired by 50% in LZR-UCMS vs. LZR-controls, but not in OZR-UCMS vs. 

OZR-controls, whereas tPVAT relative SOD activity was higher in the LZR-UCMS+Ex and 

OZR-UCMS+Ex vs. LZR and OZR UCMS groups (Fig.5.3B). Immuno-attractants MCP-1 and 

lipocalin-2 were significantly 50% higher in the LZR-UCMS compared to LZR control, but 25-

50% lower in LZR-UCMS+Ex vs. LZR UCMS group (Fig.5.3C). UCMS had no effect on 

immune-attractant cytokines in OZR-UCMS, but in the OZR-UCMS+Ex group KC/GRO was 

35% lower compared to OZR UCMS, and 60% lower compared to OZR-controls (p<0.05, 

Fig.5.3D).  

 

tPVAT Cytokine and Hormone Release 

Along with the increased tPVAT ROS production, a higher (p<0.05) release of pro-inflammatory 

cytokines from the tPVAT in the LZR UCMS was noted, specifically TNF (120%), IL-1b 

(100%), IFN- (200%), IL-6 (300%), and TSP-1 (50%) were higher vs. LZR-controls (Fig.5.4A-

E). Interestingly, only IFN- and TSP-1 were lower (p<0.05) in the LZR-UCMS+Ex vs. LZR-
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UCMS group (Fig.5.4C&E). Surprisingly, pro-inflammatory cytokines were not different 

between OZR-UCMS and OZR-controls. However, OZR-UCMS+Ex did have a lower (p<0.05) 

IL-1 and IL-6 compared to OZR-UCMS, and a lower TNF and IL-6 compared to OZR-

controls (Fig.5.4A). 

 

Anti-inflammatory cytokines were reduced by UCMS, specifically IL-4 (70%), IL-5 (60%), IL-

13 (55%), and IL-10 (75%) were lower (p<0.01) in the LZR-UCMS vs. LZR-controls 

(Fig.5.4F&G), whereas, both IL-4 and IL-10 were higher (p<0.05) in the LZR-UCMs+Ex vs. 

LZR-UCMS group (Fig.5.4F&G). While, the anti-inflammatory cytokines did not differ between 

OZR-UCMS and OZR-controls (Fig.5.4H), IL-10 was higher (p<0.05) in OZR-UCMS+Ex 

compared to OZR-controls (Fig.5.4F).  

 

The NO promoting cytokine HMW adiponectin was 70% lower (p<0.01) in LZR-UCMS 

compared to LZR-control (Fig.5.4I), and Ex restored adiponectin levels in LZR-UCMS+Ex back 

to LZR-control (Fig.5.4I). A similar pattern was observed in OZRs, whereby adiponectin was 

65% lower (p<0.01) in OZR-UCMS compared to OZR-control, but no differences were noted in 

adiponectin between OZR-UCMS+Ex and OZR-controls (Fig.5.4I). 

 

Since the pro-inflammatory cytokines were unable to explain the increased ROS and decreased 

aortic EDD we explored stress induced pathways. Angiotensin II (Ang II) was 50% higher 

(p<0.05) in both LZR-UCMS and OZR-UCMS compared to their controls. Whereas, Ang II was 

lower in the LZR-UCMS+Ex and OZR-UCMS+Ex vs. their respective UCMS groups 

(Fig.5.5A). Gene expression of the angiotensin converting enzyme 2 was not different between 
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LZR-UCMS and LZR-controls. However, expression was significantly higher in OZR control 

compared to LZR and expression was reduced back to LZR control levels in OZR-UCMS 

(Fig.5.5C). Additionally, aldosterone was higher (p<0.05) in OZR-UCMS vs. OZR-controls 

(Fig.5.5B), but lower (p<0.05) in OZR-UCMS+Ex vs. OZR-UCMS (Fig.5.5B). No differences in 

aldosterone levels were noted between the LZR groups.  

 

Effect of UCMS and Exercise on Aortic Stiffness 

Aortic stiffness was higher (p<0.05) in LZR-UCMS vs. LZR controls, but lower (p<0.05) in 

LZR-UCMS+Ex vs. LZR-UCMS (Fig.6A). On the contrary, aortic stiffness was similar between 

OZR-controls and OZR-UCMS, but the aortic stiffness was lower (p<0.05) in OZR-UCMS+Ex 

compared to both OZR-UCMS and OZR-controls (Fig.5.6A).   

 

To examine the direct role of tPVAT in aortic stiffness we co-cultured healthy LZR vessels with 

tPVAT from the various experimental groups. Similar to elastin modulus in the uncultured 

aortas, aortic stiffness was 20% higher (p<0.05) with the LZR-UCMS tPVAT compared to 

media control (Fig.5.6B), whereas tPVAT from OZR-controls and OZR-UCMS increased aortic 

stiffness to the same degree (Fig.5.6B). Ex prevented the tPVAT mediated increased stiffness in 

both LZR-UCMS+Ex and OZR-UMCS+Ex (Fig.5.6B). We also examined MMP-9 activity and 

TIMP-1 protein levels in the tPVAT. tPVAT MMP-9 activity was higher (p<0.05) in LZR-

UCMS vs. LZR-controls (Fig.5.6C), but lower (p<0.05) in the LZR-UCMS+Ex compared to 

LZR-UCMS (Fig.5.6C). Of note, MMP-9 activity was unchanged in all OZR groups (Fig.5.6C). 

Additionally, the inhibitor TIMP-1 which did not differ between LZR-controls and LZR-UCMS 
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was lower in the LZR-UCMS+Ex vs. LZR controls. In the OZR groups we only established a 

trend for TIMP-1 to be higher in the OZR-UCMS+Ex vs. OZR-controls (Fig.5.6D). 

 

Discussion: 

 

For first time our study shows 3 important findings regarding the effect of UCMS alone and with 

MetS on tPVAT and tPVAT regulation of aortic function. 1) UCMS in LZR increased 

production of Ang II and TNF in tPVAT accompanied by increased tPVAT ROS production; 

alteration in tPVAT caused activation of aortic ROS, reduced NO bioavailability, diminished 

EDD, and increased stiffness compared to the media control. 2) Contrary to findings in LZR, 

OZR-UCMS did not alter aortic NO or EDD compared to controls without the presence of 

tPVAT. However, in the presence of tPVAT aortic ROS was activated resulting in reduced NO 

and EDD in OZR-UCMS compared to OZR control, likely due to tPVAT increased Ang II and 

aldosterone.  3) The major effect of Ex was reduced Ang II and higher HMW adiponectin in 

tPVAT, which removed the UCMS associated detrimental impact of tPVAT on aortic function 

 

UCMS Impairments of tPVAT and Aortic Function 

 

Aortic Dysfunction in UCMS 

It has been previously shown that exposure to chronic daily stress impairs aortic EDD in healthy 

mice, via reduced NO bioavailability that was independent of changes in eNOS expression [15]. 

Our data supports these findings in lean healthy rats. Further, our data suggests increased aortic 

ROS production may be responsible for lower NO bioavailability and the reduced aortic EDD 
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observed in LZR-UCMS (without tPVAT incubation). Similar to the previous study [15], aortic 

relaxation after treatment with the NOS inhibitor L-NAME was higher in LZR-UCMS, likely 

due to the upregulation of compensatory pathways. This slight increase in NO-independent 

relaxation was not enough to fully compensate for the loss of NO. In opposition to our findings 

in healthy rats, UCMS had no effect on aortic EDD in OZR. This is likely due to the fact OZR 

aortas present with already impaired aortic EDD, increased ROS, and reduced NO production, 

which again were unaltered in OZR-UCMS. Aortic relaxation following L-NAME treatment was 

higher in OZR compared to LZR and OZR-UCMS was not different from OZR control. This 

suggest the compensatory mechanisms of aortic relaxation are induced by MetS and UCMS has 

no further effect. However, these compensatory mechanisms of relaxation only constitute a small 

portion of the relaxation response and NO still predominates. 

 

tPVAT impairment of EDD and NO in UCMS 

 

Previous work utilizing the UCMS model established traditional circulating markers of 

inflammation and oxidative stress did not correlate highly with impaired aortic function [15]. 

Our current work does show UCMS tPVAT actively impairs endothelial function potential 

through tPVAT derived hormones and inflammatory cytokines paracrine signaling. Chronic 

exposure to stress has been shown to increase inflammation [16-18], however, the effect on 

tPVAT inflammation was previously unknown.  

 

Role of inflammatory cytokines 
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These two pathways normally compete to regulate inflammatory cytokines release (SNS) or 

suppression (HPA axis). However, chronic exposure to stress can result in glucocorticoid 

resistance, which removes the major mechanism for HPA axis suppression of inflammation[19, 

20].  This results in upregulation of cytokine production and release [18, 20]. Similar to isolated 

immune cells [17, 18] and other body tissues [16], we show chronic stress increases the release 

of pro-inflammatory cytokines from tPVAT. The pro-inflammatory cytokines, specifically TNF 

[21] and IL-1 [22], are known activators of oxidative enzymes and likely contributed to the 

increased activation of aortic ROS production by tPVAT in LZR-UCMS. Additionally, these 

cytokines may act through autocrine signaling to promote pro-inflammatory gene expression 

[23-25], as well as, activation of oxidative enzymes in tPVAT, perpetuating tissue dysfunction. 

Further experiments are needed to fully understand how tPVAT mediates inflammation; 

however, resident tPVAT macrophages likely play a significant role as it has been previously 

shown that  social stress induces glucocorticoid resistance and increased inflammation in splenic 

macrophages [18]. Additionally, TNF inhibits adiponectin, an important mediator of adipose 

NO signaling [26] and maintaining a healthy phenotype [27], was decreased in the UCMS 

groups. Taken together, UCMS induces expression of the inflammatory cytokine TNF in LZR-

UCMS tPVAT similar to OZR controls, and likely represents a key mediator of tPVAT 

dysfunction. Interestingly, increased inflammation was not observed in OZR-UCMS compared 

to OZR controls, this is likely due to the already increased SNS activation [28] and inflammation 

associated with the MetS phenotype (chapter3). This might suggest that the MetS and the 

development of a depressive like state (via UCMS) act through similar pathways to activate pro-

inflammatory cytokines to be released in tPVAT. Of note, not only is TNF elevated as an 

outcome of UCMS, but TNF has been shown to mediated stress-induced depression and TNF 
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receptor knockout mice present with an anti-depressive phenotype [29]. This might suggest that 

our OZR controls may suffer some level of depressive symptoms.  

 

UCMS effect of tPVAT Angiotensin II and Aldosterone 

In addition to the effect on inflammation, chronic stress activates the renin-angiotensin-

aldosterone-system (RAAS) [30]. The presence of RAAS in adipose tissue and its role in CVD 

has been well defined [31]. We therefore assessed secretion of the key vasoactive hormones Ang 

II and aldosterone from tPVAT. We showed Ang II secretion from tPVAT was elevated in both 

LZR-UCMS and OZR-UCMS compared to their respective controls. Further, Ang II was 

elevated in the OZR control vs. LZR control, so unlike inflammatory cytokines, UCMS results in 

higher levels of Ang II released from tPVAT above the already elevated levels in OZR control. 

The increased Ang II with UCMS may be due to the decreased ACE 2 gene expression with 

UCMS. ACE 2 metabolizes Ang II to Ang 1-7 [32] and is an important PVAT derived 

vasodilator [33]. Autocrine signaling of Ang II may alter adipose blood flow distribution, 

increase SNS activity, increase oxidative stress and promote lipogenesis [34, 35]. Suggesting the 

actions of Ang II in LZR-UCMS tPVAT might be the cause for the increasing oxidative load and 

additionally the increased TNF secretion [36, 37]. Upregulation of Ang II may also account for 

the decreased HMW adiponectin following UCMS in tPVAT as blockade of Ang II receptors 

was shown to increase adiponectin gene expression [38]. In OZR-UCMS Ang II did not augment 

pro-inflammatory cytokines likely due to the already elevated levels of ROS and inflammation.  

However, unlike in LZR-UCMS, Ang II stimulated the increase of aldosterone in OZR-UCMS.  

Ang II stimulation pathway of adipose aldosterone was recently uncovered and has been 
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implicated in obesity related vascular impairment [39].  Aldosterone’s mechanism of vascular 

impairment is likely a result of oxidative enzymes activation [40]. 

 

Ang II is the common vaso-active link between LZR-UCMS and OZR-UCMS. Increased release 

of Ang II following UCMS may impacts aortic reactivity in 3 ways. First Ang II is a potent 

stimulator of vascular ROS through activation of NOX [41] subsequently reducing NO. 

Secondly, Ang II enhances the vascular signaling of the vasoconstrictor endothelin-1 [42]. 

Finally, Ang II stimulates vascular inflammation [36]. Additionally, UCMS caused reduction of 

HMW adiponectin, potentially through Ang II or TNF. HMW adiponectin promotes aortic NO 

production through rapid non-genomic and long term genomic pathways [26], suggesting the 

reduced levels observed in the current study may contribute to the diminished NO bioavailability 

and EDD following UCMS. In LZR-UCMS elevated Ang II was accompanied by elevated 

inflammatory cytokine TNF, IFN-, and TSP-1. TNF, IFN-, and TSP-1 have all been shown 

to impair NO and EDD [43-45] . Additionally, TNF can stimulate aortic ROS by NOX and 

inhibit adiponectin interfering with NO bioavailability [26, 46, 47]. In contrast, in OZR-UCMS, 

Ang II caused the increased release of aldosterone from tPVAT. Similar to AngII and the 

cytokines discussed above aldosterone impairs EDD through increasing ROS production [48]. 

Additionally, aldosterone is proposed to increase endothelin sensitivity and cause endothelial 

swelling and rigidity [49], which may reduce NO [50].  More in-depth studies are needed to 

detail the direct adipose signaling pathways responsible for Ang II upregulation and downstream 

signaling in stress/depression and in combination with MetS. 

 

UCMS effect on aortic stiffness 
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Increased aortic stiffness is a classic cardiovascular risk factor, with significant clinical 

relevance, and is an independent predictor of cardiovascular morbidity and mortality [51, 52]. 

Are data showed increased aortic stiffness in the LZR-UCMS, however, no effect was noted in 

the OZR-UMCS vs. OZR controls. Like the lack of change in EDD in the OZR-UMCS, the lack 

of effect seen in aortic stiffness in the OZR-UCMS is likely due to the already elevated aortic 

stiffness in OZR. Our aorta-tPVAT culture studies provided some insight to the role of tPVAT 

on aortic stiffness. LZR-UCMS tPVAT increased aortic stiffness of a LZR control aorta 

significantly compared to media control, but only trended for significance compared to LZR 

control tPVAT. Though this effect did not reach significance we believe it still highlights a 

detrimental impact of UCMS tPVAT on aortic stiffness. This is supported by increased MMP9 

activity in LZR-UCMS tPVAT exudate. This increased MMP9 activity may, in part, be due to 

the increased TNF levels, which mediates activation of MMP9 [53]. A similar effect is evident 

in OZR control tPVAT, which we have previously shown to be dependent on TNF (chapter3). 

The culture study supports the idea of tPVAT mediated stiffening in the aorta as it increased 

stiffness compared to the media control.  However, it did not reach statistical difference from 

LZR control tPVAT we speculate this means circulating and tPVAT factor play a supportive role 

in increasing aortic stiffness in LZR-UCMS.  

 

Effect of Exercise in Preventing UCMS Impairment of tPVAT 

 

Due to the pro-inflammatory pathophysiology of both stress and depressive states and  MetS, 

makes Ex a logical treatment option for both stress induced depressive states and MetS. From the 

current study, it was clear that Ex had little to no impact on UCMS induced behavioral changes 
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or adrenal mass, suggesting the benefits of Ex were independent from the response to the 

stressful stimuli measured. However, we cannot rule out the effect of Ex on the SNS stress 

response as it was not measured [54].   

 

Ex Effect on Aortic ROS and Reactivity 

Ex had no effect on OZR aortic relaxation in the absence of tPVAT. While in LZR-UCMS+Ex 

maximal relaxation was improved compared to LZR-UCMS, the whole relaxation response did 

not differ from LZR UCMS or control. Ex did however, increase the NO contribution to EDD as 

relaxation after L-NAME treatment was the same as LZR control for both LZR and OZR 

UCMS+EX. This was supported by trends for increased NO in LZR and OZR UCMS+Ex aorta 

and decreased ROS in LZR-UCMS+Ex. While Ex had only marginal effects on aortic function in 

the absence of tPVAT, significant benefical effects were observed in tPVAT regulated aortic 

function.  

 

Effect of Exercise on tPVAT Cytokines 

Ex is known to have anti-inflammatory effects and reduce oxidative stress in the vasculature and 

other tissues [55]. However, to what extent Ex effects the tPVAT dysfunction after UCMS was 

previously unknown. There are many purposed mechanisms of exercise’s anti-inflammatory 

effects including reduced immune infiltration into adipose tissue, repolarization of tissue resident 

immune cells, and endocrine signaling from Ex induced release of anti-inflammatory cytokines. 

The exact mechanisms of Ex signaling are beyond the scope of the study but are discussed 

elsewhere [56]. In the current study, Ex in combination with UCMS in LZR showed mixed 

success in reducing the pro-inflammatory cytokines with significant reductions only evident for 
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TSP-1 and IFN-. In OZR-UCMS+Ex TNF, IL-6, and IL-1 were significantly reduced from 

either OZR control or OZR UCMS. In contrast, the anti-inflammatory cytokines, IL-10 and 

adiponectin were increased in both LZR-UCMS+Ex and OZR-UCMS+Ex. It has been 

previously shown that IL-10 and adiponectin can affect TNF [57, 58], thus the higher levels of 

IL-10 and adiponectin in the LZR-UCMS+Ex may exert some inhibition of TNF actions, (i.e. 

activation of ROS production) despite the fact we found no significant change in TNF in LZR-

UCMS+Ex. These data, might suggest Ex shifts the balance away from oxidative enzyme 

activation to the promotion of NO, supported by the increased NO and reduced ROS in tPVAT 

incubated aortas in the combination groups [26, 57, 58].  

 

Effect of Exercise on Angiotensin II 

Our data showed Ang II had uniform increases in both OZR-UCMS and LZR-UCMS and might 

represent a key mechanism in linking UCMS to tPVAT ROS, inflammation, and impairment of 

aortic function. Importantly, Ex prevented the higher levels of Ang II noted in the UCMS alone 

groups. The lower levels of Ang II in the UCMS+Ex groups likely represents a key mechanism 

for the prevention aortic EDD dysfunction in the presence of tPVAT, as it was the only marker to 

return to control levels, concurrently the tPVAT impairment on EDD was removed. In OZR-

UCMS+Ex we suggest Ex had a multifaceted effect which prevented the impairment of tPVAT 

due to both MetS and UCMS. The major effect of Ex was in the prevention of aortic ROS 

activation via reduced Ang II, aldosterone, and TNF production. 

 

Exercise Effect on Aortic Stiffness 
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Both Ex groups had reduced aortic stiffness compared to their respective UCMS groups. 

Reduced aortic stiffness may, in part, be due to alterations in tPVAT signaling. Co-culture 

experiments showed tPVAT from both Ex groups had lower measures of aortic stiffness 

compared to their respective UCMS groups. The improved aortic stiffness in the LZR 

UCMS+Ex group likely reflects the actions of Ex on decreasing aortic and tPVAT production of 

ROS, and a reduction in tPVAT derived MMP-9 activity. In contrast, in the OZR-UCMS+Ex 

group, MMP-9 activity and TIMP1 levels in tPVAT were not different compared to the OZR-

UCMS group. However, tPVAT activation of aortic ROS production was reduced in the OZR-

UCMS+Ex, suggesting that this is likely the main pathway by which Ex improved aortic 

stiffness in the OZR.  

 

Limitations 

A limitation of the study was that Ex was introduced alongside UCMS, and results should be 

interpreted as such. However, quality control measures of UCMS, coat score and adrenal weight 

showed the combination groups were adequately stressed under the protocol. Additional 

investigations into the efficacy of Ex in reversing the effects of established UCMS are warranted. 

Another limitation is the lack of intraluminal flow in the co-culture experiments, which is an 

important for shear stress mediated release of NO and regulation of stiffness. However, the use 

of a media control helps to account for the increase in stiffness due to the lack of flow. 

 

Conclusion: 

In conclusion, this study shows UCMS impairs tPVAT, regulating activation of aortic ROS and 

decreasing NO regardless of MetS status. UCMS had both common and divergent (dependent on 
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MetS status) effects on tPVAT. Two common features of UCMS impact on tPVAT were 

increased Ang II and reduced HMW adiponectin, which likely contributes to the increased 

activation of aortic ROS by UCMS tPVAT and reduced NO bioavailability in aortas incubated 

with UCMS tPVAT. Uniquely in LZR, UCMS elevated pro-inflammatory cytokines (i.e. TNF, 

TSP-1, and IL-1), which likely contributes to aortic impairment of EDD and stiffness through 

actions on MMP9. Alternatively, in OZR, UCMS elevated tPVAT aldosterone, which may 

contribute to the production of ROS. Implementation of Ex alongside UCMS, prevented the 

increased Ang II and reduced HMW adiponectin in tPVAT associated with UCMS. Additionally, 

Ex reduced aldosterone and pro-inflammatory cytokines in OZR-UCMS+Ex. The restoration of 

tPVAT secretion profile prevented the tPVAT impairment of aortic EDD and stiffness, 

potentially through reduced activation of aortic ROS.  
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Figure Legends: 

 

Figure 5.1. Effect of UCMS and Exercise on Aortic Relaxation. A&B) The effect of UCMS and 

exercise on aortic reactivity in LZR and OZR and the C&D) impact of tPVAT on UCMS on 

aortic reactivity (n=8) and E&F) The effect of exercise on preventing UCMS impairment of 

aortic reactivity by tPVAT (n=8). Data represented as Mean SEM * denotes statistical 

difference compared to LZR control, # denotes statistical difference compared to OZR control, + 

denotes statistical difference of UCMS from respective control group, and ^ denotes statistical 

difference, analyzed by repeated measures ANOVA with Tukey post-Hoc, p<0.05. Pe, 

phenylephrine; MCh, methacholine 

 

Figure 5.2. Effect of UCMS and Exercise on Nitric Oxide and Aortic Reactive Oxygen Species. 

A&B) Aortic reactivity following the incubation of the aorta with the nitric oxide synthase 

inhibitor L-NAME in both LZR and OZR groups (n=4-6). C&D) DHE measured ROS 

production in aortas and aortas incubated with tPVAT and the E&F) DAF-FM measured NO 

production in aortas and aortas incubated with tPVAT (n=8). Data represented as Mean SEM * 

denotes statistical difference compared to LZR control, # denotes statistical difference compared 

to OZR control, + denotes statistical difference of UCMS from respective control group, and ^ 

denotes statistical difference, analyzed by repeated measures ANOVA with Tukey post-Hoc, 

p<0.05. Pe, phenylephrine; MCh, methacholine; DHE, dihydroethidium. 
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Figure 5.3. Effect of UCMS and Exercise on tPVAT Reactive Oxygen Species and tPVAT 

Immuno-Attractant Release. A&B) The DHE measured tPVAT ROS production (n=8) and 

relative SOD activity (n=5). The measured levels of immune-attractants in C) LZR and D) OZR 

tPVAT exudate (n=5). Data represented as Mean SEM * denotes statistical difference 

compared to LZR control, # denotes statistical difference compared to OZR control, and + 

denotes statistical difference of UCMS from respective control group, analyzed by repeated 

measures ANOVA with Tukey post-Hoc, p<0.05. KC/GRO, chemokine (C-C motif) ligand 1; 

MCP-1, monocyte chemoattractant protein-1 

 

Figure 5.4. Effect of UCMS and Exercise on tPVAT Cytokines. The effect of UCMS and 

Exercise on A) TNF, B) IL-1, C) IFN-, D) IL-6, E) TSP-1, F) IL-10, G&H) IL-4, IL-5, IL-

13, and I) HMW adiponectin (n=5). Data is represented as Mean SEM * denotes statistical 

difference compared to LZR control, # denotes statistical difference compared to OZR control 

measured by ANOVA with Tukey Post-Hoc, p<0.05. IL, interleukin; HMW adiponectin, high 

molecular weight adiponectin; TNF, tumor necrosis factor alpha; IFN-, interferon gamma; 

TSP-1, thrombospondin 1. Data is represented as Mean SEM * denotes statistical difference 

compared to LZR control, # denotes statistical difference compared to OZR control measured, 

and + denotes statistical difference of UCMS+EX compared to respective UCMS group analyzed 

by repeated measures ANOVA with Tukey Post-Hoc, p<0.05. TNF, tumor necrosis factor 

alpha; IL, interleukin; IFN-, interferon gamma; TSP-1, thrombospondin 1; HMW adiponectin, 

high molecular weight adiponectin. 
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Figure 5.5. Effect of UCMS and Exercise on tPVAT Angiotensin II and Aldosterone. A&B) The 

effect of UCMS and Exercise on tPVAT levels of Angiotensin and Aldosterone (n=5) and C) 

gene expression of ACE2 in control and UCMS groups (n=3). Data is represented as Mean 

SEM * denotes statistical difference compared to LZR control, # denotes statistical difference 

compared to OZR control measured, and + denotes statistical difference of UCMS+EX 

compared to respective UCMS group analyzed by repeated measures ANOVA with Tukey Post-

Hoc, p<0.05. ACE, angiotensin converting enzyme. 

 

Figure 5.6. Effect of UCMS and Exercise Prevents Aortic Stiffness. A) Aortic stiffness 

measured by elastin modulus in aortic rings (n=8) and B) LZR rings co-cultured with tPVAT 

from the experimental groups (n=3-4). Remodeling factor expression C) MMP-9 activity in 

tPVAT exudate (n=5), and D) tPVAT TIMP-1 protein levels (n=5). Data is represented as 

Mean SEM * denotes statistical difference compared to LZR control, # denotes statistical 

difference compared to OZR control, + denotes statistical difference of UCMS+EX compared to 

respective UCMS group, and ^ denotes statistical difference compared to media control 

measured by repeated measures ANOVA with Tukey Post-Hoc, p<0.05. MMP, matrix 

metalloproteinase; TIMP, tissue inhibitor of metalloproteinase. 
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Table 5.1. Assessment of Body Weight, Blood Pressure, Blood Profile, and Stress Indices  

 LZR OZR 
 Control UCMS UCMS+EX Control UCMS UCMS+EX 
Body Mass (g) 4008 3615* 3435* 5858* 59911 56710 
MAP (mmHg) 1122 1223 1203 1394* 1424 1323 
Glucose 
(mg/dl) 

986 1247 1158 18412* 23014 21915 

TG (mg/dl) 253 5416 363 1248* 11414 10316 
Corticosterone 
(ng/ml) 

7.00.2 8.80.5* 10.71.5 13.80.6* 17.31.4# 15.81.5 

Coat Score 
(AU) 

0.80.2 1.80.2* 2.00.3* 2.70.2* 5.10.2# 4.80.2# 

Adrenal 
weight (mg) 

16.80.8 25.21.5* 21.41.1* 27.21.4* 32.72.3# 32.02.4# 

Normalized 
adrenal 
weight (mg/g 
body mass) 

0.040 
0.001 

0.068 
0.003* 

0.063 
0.002* 

0.045 
0.002 

0.056 
0.003# 

0.061 
0.003# 

Data represented as Mean SEM,* denotes statistical difference compared to LZR control 
and # denotes statistical difference from OZR control measured by ANOVA with Tukey 
Post-Hoc p<0.05 (n=6-8). MAP, mean arterial pressure; TG, triglyceride 
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Figures  
Figure 5.1. Effect of UCMS and Exercise on Aortic Relaxation 
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Figure 5.2. Effect of UCMS and Exercise on Nitric Oxide and Aortic Reactive Oxygen Species 
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Figure 5.3. Effect of UCMS and Exercise on tPVAT Reactive Oxygen Species and tPVAT Immuno-Attractant Release 
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Figure 5.4. Effect of UCMS and Exercise on tPVAT Cytokines 
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Figure 5.5. Effect of UCMS and Exercise on tPVAT Angiotensin II and Aldosterone 
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Figure 5.6. Effect of UCMS and Exercise Prevents Aortic Stiffness 
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Chapter 6: Dissertation Discussion 

 

The experiments conducted and represented in this dissertation were in an attempt to illuminate 

gaps in current knowledge, in the field of disease mediated tPVAT regulation of aortic function. 

In an attempt to directly define the effect of tPVAT on the aorta a methodology of aortic 

reactivity was adopted to acquire EDD curves from the same ring with and without the exposure 

to tPVAT. Similarly, for measurements of NO and ROS production, sequential rings from the 

same aorta received incubation with tPVAT or no treatment. The methodology used in the 

dissertation are discussed in detail in chapter 2. 

 

Chapter 3 established the multifaceted effect of TNF in mediating MetS impairment of tPVAT 

function with subsequent impairment of aortic EDD and stiffness. Limited work in other labs [1-

3] had started to establish alteration in PVAT function with MetS, which implicated TNF and 

NOX ROS. Through the use of TNF-nAB and NOX2 inhibitor (NOX2ds-TAT) our work 

builds on this work to establish the increase in tPVAT ROS was mainly mediated through TNF 

activation of NOX2. This was supported by similar ROS reducing effects of TNF-nAB and the 

NOX2 inhibitor (NOX2ds-TAT) with no additive effect with co-treatment, suggesting a common 

pathway. For the first time, diminished proteasome activity was shown in tPVAT resulting in a 

buildup of ubiquitinated proteins, which can stimulate of pro-inflammatory cytokine production 

[4]. Indeed, the cytokine profiles of tPVAT exudate from OZR had increased levels of TNF, 

TSP-1, IL-6, IL-1, IFN-, MCP-1, and KC/GRO accompanied by a reduction in the anti-

inflammatory cytokines; adiponectin, IL-4, IL-5, IL-10, and IL-13. This drastic shift in 

inflammatory profile was, in part, mediated by TNF activation of NF-B in tPVAT. This 
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finding was supported when the OZR tPVAT was treated with TNF-nAB resulting in a reduced 

activation of NF-B in tPVAT. We also show TNF released from OZR tPVAT mediated the 

activation of aortic ROS, which impaired aortic NO and EDD. Further, TNF-nAB treated of 

OZR tPVAT restored aortic ROS, NO, and EDD to levels without tPVAT incubation. These 

actions of OZR tPVAT were not due to intrinsic aortic properties in the OZR as crossover 

experiments exposing the aorta from LZR to OZR tPVAT had similar results, which were 

rescued by treating OZR tPVAT with TNF-nAB. Finally, we examined the stiffness of the 

aorta and the role of tPVAT on mediating aortic stiffness. Firstly, we measured aortic stiffness 

(elastin modulus) in freshly isolated aorta’s (cleaned from tPVAT) from LZR and OZR’s. As 

expected OZR aortas were significantly stiffer than LZR, which are lab has previously shown to 

also be the case in humans with MetS [5]. Secondly, we freshly isolated aorta’s and using a co-

culture model, we cultured the isolated aortas with the cleaned from tPVAT from either LZR and 

OZR to examine the effects of tPVAT on the mechanical properties of the aorta. The aortic 

stiffness in the OZR appeared to be, in part, mediated by tPVAT as co-culturing LZR aorta with 

OZR tPVAT significantly elevated the elastin modulus, which was prevented by the treatment of 

OZR tPVAT with TNF-nAB. These data suggest TNF may activate tPVAT derived MMP-9 

and contribute to aortic stiffness. Additionally, TNF activation of aortic ROS may also mediate 

stiffness through elastin fragmentation. The conclusion of this study is signaling through a 

TNF-NOX2 dependent pathway mediates tPVAT ROS and tissue dysfunction. tPVAT derived 

TNF exacerbates aortic dysfunction through activing ROS, reducing NO, impairing EDD, and 

increasing stiffness. 
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The findings in chapter 3 provide evidence for tPVAT derived TNF in mediating autocrine and 

paracrine regulation of the aortic dysfunction in MetS. With these data providing evidence for a 

pathway by which tPVAT mediated aortic dysfunction in MetS, we hypothesize that Ex would 

prevent the MetS associated impairment of tPVAT. To accomplish this we employed 8 weeks of 

aerobic exercise training controlling for differences in exercise capacity between LZR and OZR 

by conducting maximal speed tests. Ex intensity was set at 70% for 45 minutes following a 

progressive 15-minute warm up. Importantly, Ex was stopped a minimum of 48 hours prior to 

terminal procedures to remove the influence of an acute bout of exercise on the collected data. 

Ex training had no effect on body weight or blood pressure in both LZR-Ex and OZR-Ex. 

However, the benefits of Ex are known to happen independent of anthropomorphic changes [6, 

7]. In tPVAT following Ex, ROS production in OZR-Ex was similar to levels observed in LZR 

controls. This coincided with a preservation of NO bioavailability in tPVAT resulting in higher 

expression of UCP-1 and lower expression of immune cell markers in OZR-Ex compared to 

OZR control. This suggested Ex prevented the impairment of NO in tPVAT, which maintained a 

more brown-like phenotype. In turn, the brown-like phenotype helped to suppress ROS 

production through UCP-1 signaling. Additionally, OZR-Ex presented with an increased global 

SOD activity, and reduced gene expression of the NOX catalytic subunit GP91 in tPVAT. The 

lower oxidative load in the tPVAT from OZR-Ex corresponded with greater 19S proteasome cap 

expression. Additionally, Ex increased concentration of the 20S core in OZR-Ex tPVAT. These 

data suggested a drastic improvement in proteasome function, and reduced ubiquitin. In OZR-

Ex, lower levels of ROS and ubiquitin likely removed two major contributors to increased pro-

inflammatory cytokine production in MetS. Whereby, OZR-Ex had significantly lower 

concentrations of TNF and TSP-1 in tPVAT exudate, which likely signifies and important 
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benefit of Ex as we showed TNF mediates vascular impairment in OZR. The tPVAT from 

OZR-Ex also had increased release of IL-10 and adiponectin, which may aid in the reduction of 

ROS production and increased NO bioavailability in tPVAT.  

As expected Ex reduced basal aortic ROS production and improved NO levels in comparison to 

the OZR control. Additionally, the OZR-Ex tPVAT further reduced aortic ROS production 

potential through the actions of IL-10 on aortic NOX enzymes. This lower level of ROS 

production coupled with the NO promoting signals of adiponectin resulted in improved tPVAT 

mediated EDD in OZR-Ex. Similar results were seen even in the LZR-Ex group as adiponectin 

was the only cytokine levels to respond to Ex, which likely mediated the improvement in tPVAT 

mediated EDD. In order to determine if the Ex adaptions in tPVAT were essential for the 

observed aortic adaptation to Ex we preformed crossover experiments where we exposed OZR-

Ex aortic rings to OZR control tPVAT, and tPVAT from OZR controls were treated with the 

TNF-nAB. These experiments suggested the reduction of TNF by Ex was essential in 

promoting improved aortic EDD as OZR-Ex aorta had impaired EDD following incubation with 

OZR control tPVAT. This effect was absent when OZR control tPVAT was pretreated with a 

TNF-nAB. Further, this may suggest, in general, the function of the aorta was directionally 

associated with the functional status of the surrounding PVAT. The conclusion from this study 

was Ex prevented the whitening of tPVAT in MetS, and maintained an antioxidant and anti-

inflammatory environment. Specifically, reduction of TNF and higher IL-10 and adiponectin 

are essential in mediating beneficial Ex adaptions to the aorta further reducing basal ROS and 

augmenting NO production. This culminated in improved tPVAT mediated EDD and reduced 

aortic stiffness. 
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With Chapter 3 and 4 establishing the effects of MetS and Ex on tPVAT function we were able 

to then hypothesize on the effect of UCMS alone, UCMS with concurrent MetS, and the effect of 

Ex on both. Utilizing rodent models of chronic stress, data chapter 5 highlights the role of 

tPVAT in depressive states alone and concurrently with MetS in mediating aortic impairment. 

UCMS is a validated method for studying depressive states in rodents [8-10], which was 

supported in our study by the increased circulating corticosterone, coat scores, and adrenal 

weights. LZR-UCMS presented with diminished NO and EDD, and an increased production of 

Ang II and TNF in LZR-UCMS tPVAT resulting in the autocrine activation of ROS. We 

believe the UCMS tPVAT resulted in the activation of aortic ROS, reduced NO bioavailability, 

which further diminished EDD. Additionally, LZR-UCMS had increased aortic stiffness and 

culturing healthy aortas with LZR-UCMS tPVAT increased aortic stiffness compared to the 

media control. To the contrary, OZR-UCMS did not alter basal aortic NO or EDD compared to 

OZR controls, but in the presence of tPVAT, NO and EDD were reduced to a greater magnitude 

in OZR-UCMS compared to OZR control.  However, no change was found in inflammatory 

cytokine release compared to the already elevated levels in OZR control. The increased aortic 

impairment by tPVAT in OZR-UCMS was instead likely due to increased release of Ang II and 

aldosterone, leading to increased activation of aortic ROS. Based on a similar response in LZR 

and OZR, it appears the increased tPVAT production of Ang II, and decreased production of 

adiponectin are common responses to UCMS independent of disease state. It has been previously 

shown that Ang II can upregulate pro-inflammatory cytokines and aldosterone; however, 

divergent actions based on MetS status were observed in tPVAT. In LZR-UCMS, increased Ang 

II with subsequent upregulation of pro-inflammatory cytokines were likely culprits of the 
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whitening phenotype and a mediator of aortic dysfunction. While in OZR-UCMS, increased Ang 

II resulted in elevated aldosterone with no effect on pro-inflammatory cytokines. 

 

We next examined the role of exercise training on ameliorating the tPVAT dysfunction observed 

in UCMS groups. In LZR- and OZR-UCMS+Ex groups, the aortic dysfunction which was 

mediated by tPVAT was prevented and reflected higher production of NO and increased EDD by 

tPVAT compared to LZR- and OZR-UCMS groups. The major effect of Ex appeared to be on 

Ang II and adiponectin, whereby lower Ang II and higher adiponectin levels in tPVAT were 

noted in the LZR- and OZR-UCMS+Ex groups vs. their UCMS controls. However, Ex also 

reduced aldosterone, IL-1 and IL-6 in OZR-UCMS+Ex and IFN- and TSP-1 in LZR-

UCMS+Ex, which suggested Ex was able to prevent the MetS triggered inflammation and 

UCMS activation of the local RAAS. 

 

Ex also had beneficial effects on aortic stiffness. The tPVAT mediated aortic stiffness in the 

LZR-UCMS was prevented in LZR-UCMS+Ex group, and was further demonstrated by the 

respective effects on tPVAT MMP-9 activity. UCMS had no added effect on the already elevated 

aortic stiffness in OZR; however, in the OZR-UCMS+Ex group, aortic stiffness was reduced, 

and tPVAT from this group did not induce aortic stiffness in the co-culture experiments. These 

data suggest the activation of tPVAT inflammatory cytokines triggers aortic stiffness likely 

through the activation of MMP-9. Accordingly, the anti-inflammatory actions of Ex prevent the 

MetS and UCMS mediated aortic stiffness. 
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Summary 

The key findings of this work are OZR tPVAT dysfunction through a TNF-NOX2 dependent 

pathway regulate aortic activation of ROS, impairing EDD. Additionally, TNF, in part, 

mediates OZR tPVAT stiffening of the aorta through increased MMP9 activity. For the first time 

in tPVAT we show Mets causes proteasome dysfunction, which may act as a trigger for 

inflammation. The exposure of LZR to UCMS caused a phenotypic shift and as such the tPVAT 

in the LZR-UCMS group resembled tPVAT from OZR controls (i.e., increased ROS, pro-

inflammatory cytokines, and hormones). This was coupled with tPVAT increased activation of 

aortic ROS, impaired EDD, and aortic stiffness. The comorbid state of OZR with UCMS did not 

result in any basal change in aortic function or pro-inflammatory cytokines in tPVAT. However, 

OZR-UCMS did present with elevated Ang II and aldosterone, which activated aortic ROS and 

diminished EDD significantly more than just OZR alone. Finally, the detrimental actions of 

MetS, UCMS and UCMS in combination with MetS on tPVAT function and tPVAT impairment 

of the aorta were prevented by Ex. Additionally we showed for the MetS impairment of 

proteasome function in tPVAT was prevented by Ex. This work establishes the essential role of 

tPVAT in conferring the beneficial effects of Ex on the aorta. Detailed comparison of the effects 

of the various experimental groups on tPVAT (Table 1) and tPVAT regulation of the aorta 

(Table 2) can be found below. 
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Table 6.1. Effect of tPVAT on Aortic Function 

 

Arrows represent direction of change in tPVAT of the “experimental group” from the “compared 

to”. Red indicates detrimental change while green represents beneficial change, and blue is 

neutral. ROS, reactive oxygen species; TNF, tumor necrosis factor alpha; IL, interleukin; IFN-

, interferon gamma; TSP, thrombospondin; HMW, high molecule weight; Ang, angiotensin; 

UCMS, unpredictable chronic mild stress; Ex, aerobic exercise training. 

  

Table 1 tPVAT Factors

Experimental
Group

Compared 
to

tPVAT
ROS TNF⍺ IL-1β IFN-ɣ TSP-1 IL-10 HMW 

Adiponectin Ang II Aldosterone

LZR UCMS LZR control

LZR Ex LZR control N/A N/A

LZR UCMS+Ex

LZR control

LZR UCMS

OZR control LZR control

OZR UCMS OZR control

OZR Ex OZR control N/A N/A

OZR UCMS+Ex

OZR control

OZR UCMS
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Table 6.2. Effect of tPVAT on Aortic Function 

 

Arrows represent direction of change in tPVAT of the “experimental group” from the “compared 

to”. Red indicates detrimental change while green represents beneficial change, and blue is 

neutral. ROS, reactive oxygen species; NO, nitric oxide; EDD, endothelial dependent dilation. 

Ao w/o tPVAT represents comparison to the aorta from the respective experimental group 

without incubation with tPVAT. 

Table 2 tPVAT Effect on Aorta

Experimental
Group

Compared 
to Aortic ROS NO EDD Stiffness

LZR UCMS

Aow/o 
tPVAT

LZR control

LZR Ex

Aow/o 
tPVAT

N/A

LZR control N/A

LZR UCMS+Ex

Aow/o 
tPVAT

LZR control

LZR UCMS

OZR control

Aow/o 
tPVAT

LZR control

OZR UCMS

Aow/o 
tPVAT

OZR 
control

OZR Ex

Aow/o 
tPVAT

N/A

OZR 
control

N/A

OZR UCMS+Ex

Aow/o 
tPVAT

OZR 
control

OZR UCMS
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Limitations  

There are a number of limitations with regard to the studies conducted. One limitation of the 

study design is the implantation of the Ex protocol during the development of MetS and 

depressive states. As such the results should be interpreted as more of a preventative role of Ex. 

However, previous work from our lab shows inflammation and vascular dysfunction is already 

present at the age rats were enrolled in the study. As for the effect of Ex on UCMS measures of 

coat score and adrenal weights were unaffected by Ex. This suggests Ex did not blunt the 

stressful stimulus, however we cannot rule out the possibility of Ex dampening the SNS response 

to stress as this is a well-known effect of Ex. 

  

A second limitation is with the co-culture experiments. Flow is an important stimulus for NO 

production in arteries and as described in the introduction of this dissertation, NO is an important 

mediator of aortic stiffness. To address this in the experimental design the use of a media only 

control should account for the increase in stiffness due to lack of flow. What is lost in this 

experiment is the contribution of tPVAT inhibition of NO levels on aortic stiffness. Further, the 

longitudinal and circumferential components of aortic stiffness are lost in this experimental 

design. However, evidence suggests the test is a good metric of overall conduit vessel stiffness 

[11]. Additionally, the results are limited as collagen, collagen crosslinks, and elastin were not 

directly analyzed. 

 

Another potential limitation is the removal of tPVAT may reduce the influence of certain 

mediators on the aorta. While this is a strength of the study because it allows us to directly test 

the impact of tPVAT through conducting basal and tPVAT incubations on the same ring. The 
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methodology may limit the effect of lipid mediators, exosome, and short-lived mediators due to 

distance, water solubility, and density. However, the vast majority of significant vascular 

modulators from tPVAT are cytokines or long-lived radicals which should be unaffected by the 

methodology employed.  

 

Another minor limitation is the use of the DHE assay, which detects both superoxide and 

hydrogen peroxide, which cannot be differentiated between when analyzing by imaging 

software. Analysis by HPLC can distinguish between the production of superoxide and hydrogen 

peroxide, but the technology was unavailable at the time of the project. 

 

A final potential limitation is the use of the OZR rat. The leptin receptor mutation inhibits all 

leptin signaling, which shown to play some role in PVAT function. However, the OZR is a 

clinically relevant model of MetS as clinical patients normally present with leptin signaling 

resistance. 

 

Clinical prospective 

Clinically this works adds to our knowledge of the MetS induced aortic pathology. Highlighting 

the role of local inflammation in activation of endothelial ROS. This work suggests modifying 

the function of the surrounding PVAT may mediate vascular benefits. Suggesting employing 

treatments directed at PVAT may be successful in restoring vascular function. This highlight in 

chapter 4 as Ex improved aortic function was dependent on alterations to the surrounding 

tPVAT. A few targets are presented for potential treatment options. First, from this work and 

others developing pharmaceuticals directed at PVAT resident NOX2 expressing immune cells 
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may have promising implications are it appears these cells are essential in MetS induce PVAT 

dysfunction. Further this work elucidates mechanism through which exercise mediates vascular 

protection.   

 

Future Direction 

A simple follow up experiment to the ones conducted in this dissertation could be to implement 

Ex after rats had reached full progression of MetS and additionally after the onset of a depressive 

state. This would allow us to test the efficacy of Ex in reversing the effects of MetS and UCMS 

on tPVAT outcomes. Another logical progression from the work presented here in this 

dissertation would be to implement drug treatment to alter components of tPVAT dysfunction or 

MetS components. Our lab has previously employed this approach in assessment of cerebral 

vascular function in MetS [12]. This approach of in-vivo drug treatment may further identify the 

mechanisms through which MetS and UCMS causes impairment of tPVAT function. The work 

in this dissertation showed TNF is responsible for MetS impairment of tPVAT, to build on 

these findings evaluation of TNF signaling pathways leading to the observed outcomes would 

be warranted. In addition to the approaches used in this dissertation flow cytometry analysis of 

tPVAT would further illuminate mechanisms of tPVAT dysfunction through the population 

profile of immune cells. Flow cytometry analysis coupled with drug treatments may uncover 

important disease associated signals leading to the observed dysfunction in this dissertation. 

 

The majority of PVAT experiments, including the ones conducted in this dissertation, are 

conducted ex-vivo. While ex-vivo experiments have greatly expanded our knowledge of PVAT 

function and regulation of the underlying vessel, studies evaluating PVAT in-vivo are needed. 
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However, this presents with a number of challenges. Genetic knockout animal lines represent an 

important means to identify physiologic function, especially those which knockouts factors in a 

tissue specific manner. These tissue specific knock models allow you to conduct loss of function 

studies while reducing systemic influences from whole body knockouts. However, in the context 

of PVAT methodological hurdles remain as identification of a PVAT specific drive have not 

been identified. The development/ identification of PVAT specific promoters would allow for 

greater interrogation of PVAT signaling in-vivo. Further combining in-vivo manipulation of 

tPVAT with in-vivo assessment of aortic function (i.e. pulse wave velocity) would generate more 

physiologically relevant experiments. For example, a logical progression from this work may to 

be to generate a PVAT knockout of TNF along with an inducible PVAT TNF knockout to 

examine the role of adipocyte regenerated TNF in regulation of aortic function and the 

progression of MetS induced PVAT dysfunction. While identification of a PVAT adipocyte 

specific promoter remains elusive, modulation of immune cells represents an alternative 

approach. Immune cell infiltration is recognized as an important mechanism in PVAT regulation 

of disease progression. Generation of immune cell specific knockouts are a useful alternative to 

study their role in PVAT dysfunction. Recently, this approach has been implemented to study the 

effects of hypertension on PVAT function [13].  

 

Similar to the lack of PVAT specific knockouts the field is currently lacking a PVAT specific 

cell line.  Currently, cell work for PVAT is being conducted in white adipose cell lines, which as 

discussed in chapter 1 develop from different stem cell origins and display different phenotypes. 

The development of a PVAT cell line would allow for a more appropriate assessment of PVAT 

adipocyte function. For application to our current line of research we could assess time course 
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responses of adipocyte to various MetS associated stimuli. For example, assess PVAT adipocyte 

phenotype, ROS, TNF, and adiponectin in response to high glucose and high free fatty acids. 

This would allow for a better understanding of the individual and combined effects of MetS on 

PVAT adipocytes.  Additionally, using our animal models and interventions tPVAT immune 

cells could be isolated and used in a co-culture experiment to better understand the effects of the 

infiltrated immune cell population on PVAT adipocyte function. 

 

Our data showed TSP-1 was elevated in MetS and restored with exercise. TSP-1 is known to 

regulate a number of vascular pathways. TSP-1 negatively regulates capillarity and may play a 

role in developing tPVAT dysfunction. TSP-1 inhibition of eNOS could alter adipose phenotype 

and directly impact the function of the underlying blood vessel. Finally, TSP-1 has been 

implicated in the regulation of vascular stiffening through its actions on the ECM. Additionally, 

TSP-1 is partially regulated by TNFα potentially linking its expression to the increased 

inflammation in tPVAT. The multifaceted actions of TSP-1 warrant further investigation in 

tPVAT to determine its role in the TNFα dependent signaling shown to mediate tPVAT 

impairment of the aorta.  

 

Long Term Outlook 

Logistical hurdles remain in the study of tPVAT. In addition to the identification and 

development of PVAT adipocyte specific promoters and cell lines; implementation of in-vivo 

assessment of cytokine levels through probes, catheters, or live image tracking would prove 

beneficial in understanding the in-vivo relationship between the aorta and the tPVAT. Clearing 
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these technical hurdles would open the way for a myriad of experimental options to expand 

PVAT research.  

 

Outside of technological advancement I believe the development of time course studies to 

elucidate the development of PVAT dysfunction with disease will drive the field forward. Time 

courses to understand the early signaling cascades, which lead to dysfunction may yield novel 

therapeutic targets for the prevention of vascular disease. Additionally, PVAT is densely 

innervated understanding the nerve to PVAT crosstalk and alteration with various disease states 

would add another layer of understanding to the function of PVAT and its regulation of the 

vasculature.  
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