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ABSTRACT 
 

Topological Visualization of Tensor Fields  
Using a Generalized Helmholtz Decomposition  

 
Lierong Zhu 

 

Analysis and visualization of fluid flow datasets has become increasing important with 

the development of computer graphics. Even though many direct visualization methods 

have been applied in the tensor fields, those methods may result in much visual clutter. 

The Helmholtz decomposition has been widely used to analyze and visualize the vector 

fields, and it is also a useful application in the topological analysis of vector fields. 

However, there has been no previous work employing the Helmholtz decomposition of 

tensor fields. We present a method for computing the Helmholtz decomposition of tensor 

fields of arbitrary order and demonstrate its application. The Helmholtz decomposition 

can split a tensor field into divergence-free and curl-free parts. The curl-free part is 

irrotational, and it is useful to isolate the local maxima and minima of divergence (foci of 

sources and sinks) in the tensor field without interference from curl-based features. And 

divergence-free part is solenoidal, and it is useful to isolate centers of vortices in the 

tensor field. Topological visualization using this decomposition can classify critical 

points of two-dimensional tensor fields and critical lines of 3D tensor fields. Compared 

with several other methods, this approach is not dependent on computing eigenvectors, 

tensor invariants, or hyperstreamlines, but it can be computed by solving a sparse linear 

system of equations based on finite difference approximation operators. Our approach is 

an indirect visualization method, unlike the direct visualization which may result in the 

visual clutter. The topological analysis approach also generates a single separating 

contour to roughly partition the tensor field into irrotational and solenoidal regions. Our 

approach will make use of the 2nd order and the 4th order tensor fields. This approach can 

provide a concise representation of the global structure of the field, and provide intuitive 

and useful information about the structure of tensor fields. However, this method does 

not extract the exact locations of critical points and lines.  
  



 
 

iii 
 

ACKNOWLEDGEMENTS 
 
 
First and foremost, I would like to express my sincere gratitude to my supervisor, Dr. 

Tim McGraw, who has offered me great help in completing this thesis. My supervisor 

shared with me a lot of his valuable expertise and research.  And throughout the duration 

of my research and thesis-writing, he provided encouragement, thoughtful suggestions, 

good teaching, and a lot of good ideas. Without his help, my research and thesis would 

have been impossible to be successfully completed. 

 

Secondly, I also would like to express my appreciation for the instruction of other 

members of my committee, Dr. Xin Li and Dr. Arun A. Ross. I am truly thankful for their 

sound advice, valuable time enormous support, and constructive comments. 

 

Last but not least, I would like to thank my colleagues Matthew Madden and Swetha 

Danda, my friends Yunfei Zheng, Congxia Dai, Takamitsu Kawai, Chuck Maggio, and 

my family for their abundant help and support,  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  



 
 

iv 
 

TABLE OF CONTENTS 
 
 
TITLE--------------------------------------------------------------------------------------------------i 

ABSTRACT------------------------------------------------------------------------------------------ii 

ACKNOWLEDGEMENTS-----------------------------------------------------------------------iii 

TABLE OF CONTENTS--------------------------------------------------------------------------iv 

LIST OF TABLES----------------------------------------------------------------------------------vi 

LIST OF FIGURES--------------------------------------------------------------------------------vii 

CHAPTER 1: INTRODUCE-----------------------------------------------------------------------1 

1.1. Motivation-----------------------------------------------------------------------------1 

1.2. Thesis Outline-------------------------------------------------------------------------3 

CHAPTER 2: VECTOR CALCULUS AND DIFFERENTIAL OPERATORS-------------5 

2.1. The 2nd Order Cartesian Tensors---------------------------------------------------6 

2.2. Higher Order Cartesian Tensors----------------------------------------------------9 

CHAPTER 3:  VECTOR CALCULUS AND DIFFERENTIAL OPERATORS----------14 

3.1. Gradient of Scalar Fields-----------------------------------------------------------15 

3.2. Vector Field Operator---------------------------------------------------------------15 

3.2.1. Vector Divergence-------------------------------------------------------16 

3.2.2. Vector Curl----------------------------------------------------------------18 

3.3. Tensor Field--------------------------------------------------------------------------20 

3.3.1. Tensor Divergence-------------------------------------------------------21 

3.3.2. Tensor Curl----------------------------------------------------------------22 

CHAPTER 4: THE HELMHOLTZ DECOMPOSITION OF VECTOR AND TENSOR 

FIELDS ----------------------------------------------------------------------------------------------24 

4.1. The Helmholtz Decomposition of Vector Fields--------------------------------24 

4.2. The Helmholtz Decomposition for tensor field----------------------------------26 

CHAPTER 5: NUMERICAL IMPLEMENTATION------------------------------------------28 

5.1. Taylor Series Expansion------------------------------------------------------------28 

5.2. Kronecker product-------------------------------------------------------------------29 

5.3. Center Difference--------------------------------------------------------------------31 



 
 

v 
 

5.4. Gradient of the 2nd Order Tensor Field G---------------------------------------36 

5.5. Curl of the 2nd Order Tensor Field C---------------------------------------------37 

5.6. Numerical Implementation of the Helmholtz Decomposition-----------------39 

5.7 Conjugate Gradient Algorithm------------------------------------------------------40 

CHAPTER 6: TOPOLOGICAL VISUALIZATION------------------------------------------47 

6.1 Critical Points and Vortices----------------------------------------------------------47 

6.2 Degenerate Points and Separatrices-------------------------------------------------49 

6.3 Topological Segmentation-----------------------------------------------------------49 

CHAPTER 7: EXPERIMENT RESULTS------------------------------------------------------51 

7.1. Experiment 1: simple 2nd and 4th synthetic tensor fields-----------------------51 

7.2. Experiment 2:  a 2nd order MRI tensor data of human being------------------56 

7.3. Experiment 3: more different 2nd and 4th order synthetic tensor fields-------58 

7.4. Experiment 4: generating 100 2nd and 4th order random tensor fields--------66 

CHAPTER 8: CONCLUSIONS AND FUTURE WORK------------------------------------70 

8.1 Conclusions----------------------------------------------------------------------------70 

8.2 Future Work----------------------------------------------------------------------------71 

BIOGRAPHY---------------------------------------------------------------------------------------72 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
  



 
 

vi 
 

LIST OF TABLES 
 
 
2.1. Distinct Elements of the Diffusion Tensor up to the 4th order, and their response 

multiplicities-----------------------------------------------------------------------------------------13 

5.1. The matrix size of G and C for the 2nd and the 4th order tensors----------------------41 

5.2. Pseudocode: the algorithm for the topological visualization using the Helmholtz 

decomposition --------------------------------------------------------------------------------------46 

7.1. Comparison of the various 2nd order synthetic tensor fields---------------------------61 

7.2. Comparison of the various 4th order synthetic tensor fields----------------------------65 

7.3. The comparison of the mean, variance, and max of the 2nd order random tensor 

fields--------------------------------------------------------------------------------------------------67 

7.4. The comparison of the men, variance, max of the 4th order random fields-----------68 

 
 

 

 

 

 
  



 
 

vii 
 

LIST OF FIGURES 
 

 

1.1. Result of 3D texture-based billboarding visualization of a human brain MRI--------2 

2.1. Image indication of a 3D Diffusion tensor three principal axis directions-------------8 

2.2. The diffusion tensor images resulting from various typical eigenvalues---------------8 

3.1. (a) and (b) indicate the source and its expanding direction, (b) and (c) represent the 

sink and its shrinking direction-------------------------------------------------------------------17 

4.1. The results of Helmholtz decomposition of vector fields-------------------------------26 

5.1. A simple example of the comparison of Kronecker (X, Y) and Kronecker(Y, X)----30 

5.2. (a) Plot of the relationship of the target neighbor pixels in one dimension. (x) is the 

target pixel. (b) Transform the vector to one column vector---------------------------------31 

5.3. The result of plotting ∆  operator based on 16-------------------------------------32 

5.4. (a) Plot of the relationship of the target neighbor pixels in two dimension. (x) is the 

target pixel. (b) Transform the 2D matrix data to one column vector-----------------------32 

5.5. The result of plotting ∆ , ∆ operators based on 4 4-----------------------33 

5.6. (a) Plot of the relationship of the target neighbor pixels in three dimensions. (x) is the 

target pixel. (b) Transform the 3D matrix data to one column vector-------------------34 

5.7. The result of plotting ∆ , ∆ , ∆  operators based on 4 4 4--------35 

5.8. Plot of the gradient of the 2nd order tensor field, 4 4 4-----------37 

5.9. Plot of the Curl of the 2nd order tensor field, 4 4 4----------------38 

5.10. The image of method for the conjugate gradients and gradient descent--------------42 

6.1. Vortices, (a) is the source, (b) is the sink--------------------------------------------------48 

7.1. (a) and (d) illustrate vortices while (b) and (c) illustrate a source and sink 

respectively, which are used to construct a synthetic 2nd order tensor field----------------52 

7.2. Helmholtz decomposition results for the 2nd order synthetic tensor field 

grad curl ψ --------------------------------------------------------------------------54 

7.3. Helmholtz decomposition results for the 4th order synthetic tensor field 

grad curl ψ --------------------------------------------------------------------------55 

7.4. Helmholtz decomposition results for the 2nd order DT-MRI datasets of human brain--

---------------------------------------------------------------------------------------------------------57 



 
 

viii 
 

 

7.5. The left side images are various 2nd order synthetic tensor fields, and the right side 

images are the result of the topological visualization of left side tensor data--------------60 

7.6. The left side images are various 4th order synthetic tensor fields, and the right side 

images are the result of the topological visualization of left side tensor data--------------64 

7.7. (a) is a synthetic 2nd  order  random tensor field,  (b) is the topological visualization 

of  the left side 2nd order random tensor field--------------------------------------------------67 

7.8. (a) is a synthetic 4th order random tensor field,  (b) is the topological visualization of  

left side 4th order random tensor field------------------------------------------------------------68 

7.9. The comparison of time consuming for different size and order tensor fields-------69 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

1 
 

CHAPTER 1:   
INTRODUCTION 
 
 
 
1.1.  Motivation 
 

Analysis and visualization of fluid flow datasets has become increasing important with 

the development of computer graphics. Many scientists are interested in performing the 

research and make great contribution in visualization of tensor fields. There are many 

different methods to visualize the tensor fields. Even though Volume rendering [3], 

particle tracing, tensor probe and similar illuminated field lines methods have proved to 

be the most suitable approaches for the flow field visualization, those traditional 

visualization approaches often provide a rather coarse spatial resolution. The fast 2D 

texture-based billboarding visualization by McGraw et al. [2] is combined with the 

current glyph, particle and texture-based visualization techniques. The resulting image is 

blended textured billboards, which are rendered at the center of each voxel in the dataset, 

and rendering polygons always face the viewer. This approach has very few parameters, 

and the speed of the billboarding method makes parameter turning much faster since the 

image can be recomputed in real-time. Furthermore, the texture-based approach can 

flexibly map diffusion tensor field properties to visual characteristics such as color, 

texture orientation, texture frequency, tensor animation, and other characteristics. It is 

effective and suitable for a large spectrum of applications. My previous work involved 

applying this method into three dimensions. The result is presented in Figure (1.1). 



 
 

2 
 

 
Fig. 1.1. Result of 3D texture-based billboarding visualization of a human brain MRI 

 

The results obtained using the billboarding approach show some visual artifacts between 

voxels. And the visualization approaches mentioned are all direct visualizations of flow 

fluid datasets. However, all direct visualization approaches of the flow fluid datasets may 

still include the visual clutter if the original datasets are cluttered, which makes it difficult 

to analyze the tensor fields correctly. How to effectively visualize the flow fluid dataset 

still presents a great challenge. 

 

The Helmholtz decomposition has been widely used to resolve many problems of fluid 

mechanics and electromagnetism, and it has also been applied in the topological analysis 

of vector fields. Polthier and Preuss [34, 35] use a discrete Helmholtz decomposition to 

robustly locate singularities in vector fields. Because they are dealing with vector fields 

defined on irregular meshes they must carefully define divergence and curl operators. 

Tong et al. [29] describe vector fields in a multiscale framework by defining a vector 

field scale space in terms of the separate scale spaces of the solenoidal and irrotational 

parts of the field. The vector field is then smoothed by separately smoothing these 

constituent fields. It can be seen that this approach better preserves singularities than 
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smoothing the input field directly. They also enhance features of the field by separately 

amplifying the components of the decomposed field. Li et al. [30] used the Helmholtz 

decomposition to segment 2D discrete vector fields, and use Green’s function method to 

compute the decomposition. Then for each critical point they find the region of influence 

using graph-cuts. In their work the critical points are defined in terms of scalar stream 

and potential functions. Even though the Helmholtz decomposition has been proved 

useful in the analysis of the vector field, there has been no previous work applying this 

decomposition to tensor fields. Our approach will be to use finite difference 

approximations of the differential operators in regular Cartesian coordinates. 

 

There is a long history of the topological analysis of surfaces and scalar fields. 

Applications include surface editing, segmentation, and shape matching. Reeb graphs 

[22] have been useful in describing the topology of surfaces in terms of a skeleton. Nodes 

of the Reeb graph represent critical points where isocontours of a scalar function are 

defined over the surface change topology. The contour tree [13, 26] is a special case of a 

Reeb graph - one which contains no cycles. It is often applied to images, or scalar fields 

of arbitrary dimension [18]. 

 

Our approach is based on the topological visualization and Helmholtz decomposition. 

The goal of this work is to develop a simple, but powerful representation of the complex 

phenomena described by the data.  

 

 

1.2.  Thesis Outline 
 

Chapter 1 provides an overview of this thesis, the motivation to choose the topic of 

topological visualization of tensor fields using a generalized Helmholtz decomposition, 

the contribution of this thesis for diffusion tensor fields, and the thesis outline. 

 

Chapter 2 introduces the mathematical equations and properties of the 2nd order Cartesian 

tensors and higher order Cartesian tensors.  
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Chapter 3 introduces several very important concepts which will be applied in the 

following chapters, including the properties of scalar field gradient, vector field 

divergence, vector field curl, tensor field divergence and tensor field curl.  

 

Chapter 4 illustrates the properties of Helmholtz decomposition method and how the 

Helmholtz decomposition method works in the vector fields. Also, the Helmholtz 

decomposition is applied to the tensor fields extending from vector fields by employing 

the definitions of tensor field differential operators. 

 

Chapter 5 introduces the numerical implementation, and thus illustrates how to realize the 

idea described in chapter 4 by using sparse matrices and Kronecker product to compute 

the curl-free and divergence-free components of a tensor field.  

 

In Chapter 6, topological concepts, such as critical points, vortices, etc., will define the 

signed error function which will be used to segment tensor fields. 

 

In Chapter 7 we demonstrate the results of experiments which apply the Helmholtz 

decomposition to synthetic tensor fields and diffusion tensor MRI of the human brain and 

the topological visualization of synthetic tensor fields based on signed error function.   

 

Chapter 8 represents the conclusion of the thesis and recommendation for future work. 

Although this method appears to work very well, there is still room for a great deal of 

improvement to this method.  
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CHAPTER 2:  
The 2nd ORDER AND HIGHER ORDER  
CARTESIAN TENSOR 
 

 

Tensors have become a very important topic, since they have been introduced into 

mathematics, physics and the engineering field to extend the notion of scalars, vectors 

and matrices. Tensor fields, especially the 2nd order tensor fields, are useful in many 

medical, mechanical and physical applications such as: fluid dynamics, molecular 

dynamics, biology, geophysics, MRI and other applications. Tensors provide a natural 

and concise mathematical framework for formulating and solving problems in these areas 

of research. 

 

The order of the tensor is the number of numerical indices which can specify an 

individual component of a tensor. If the tensor order is l and d represents the dimension 

of the tensor, then the tensor has l indices and components. Each index can take one of 

d different values. In 2 dimensions, an lth order tensor then has 2 components. Similarly 

in 3 dimensions, if the order of the tensor is 2, the tensor has 9 components, and if the 

order of the tensor is 4, then the tensor has 81 components.  

 

Thus the 0th order tensor is a scalar, which is a single component. Tensors of the 1st order 

are represented as vectors, and tensors of the 2nd order are represented as matrices and so 

on. Tensors are generalizations of scalars (that have no indices), vectors (that have 

exactly one index), and matrices (that have two or more indices) to an arbitrary number 

of indices. The notation of a tensor is similar to a matrix and has an arbitrary number of 

indices. A general tensor may also have two different types of indices, covariant denoted 

by subscripts and contravariant denoted by superscripts. The distinction between 

covariant and contravariant indices must be made for general tensors. The two indices are 

equivalent for tensors in three-dimensional Euclidean space. Such tensors are known as 

Cartesian tensors. Therefore, indices will be denoted using only subscripts.  
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2.1.  The 2nd Order Cartesian Tensors 
 

Diffusion tensor MRI is a source of tensor field data which is common in medical 

imaging applications. Diffusion tensor imaging scans comprise at least six gradient 

directions. A diffusion tensor MRI is measured via the magnetic field variations in the 

MRI magnet. It is sufficient to calculate, for each voxel, a diffusion tensor D. The 2nd 

order tensor in 3 dimensions will have 9 components represented by a 3 3 positive 

symmetric matrix given by, 

                                                 (2.1) 

 

The diagonal elements  , and  represent the apparent diffusion coefficient 

(ADC) along the x, y and z axes in the laboratory frame. Furthermore, the tensor is 

symmetric, so =D. 

 

The MRI intensity, S, at each voxel depends on the properties of the diffusion-encoding 

gradient, b, and the apparent diffusion tensor, D, at that location. The Stejskal-Tanner 

formula indicates their relationship is given as:  

                                      2.2  

                             

In Equation (2.2),  is the signal intensity without the diffusion weighting, S is the signal 

with the gradient, b is a matrix characterizing the gradient pulse sequence, and D is the 

diffusion constant.  

 

Equation (2.2) can be expanded to yield the following equation: 

    2 2 2     2.3     

 

Then we can log-linearize the Equation (2.3) to obtain the following equation, 
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ln 2 2 2 ln     2.4    

 

For each slice image, there are seven unknown parameters which represent the six 

independent components of symmetric diffusion tensor, D, and  . According to the 

method of least squares linear regression, we acquire a diffusion-weighted image with 7 

gradient directions which provide eight equations for S in each voxel in order to fully 

generate a diffusion tensor.  The system of equations can be solved using the following 

Equation (2.5),  

1

1
            2.5  

 

The Equation (2.5) can compute each component of tensor. Linear algebra is used to 

generate eigenvalues and eigenvectors of this tensor D,  

                                                                             (2.6) 

 

In Equation (2.6), Λ = diag [ , ,  ],  U = [ , , ]. Sorting the eigenvalues ( ,  

and ), let  >  > >0 be the eigenvalues of the symmetric tensor D, and let  be 

the normalized eigenvector corresponding to . Then D can be expressed as the 

following Equation (2.7), 

            
0 0

0 0
0 0

                             (2.7) 

 

Expanding the Equation (2.7), therefore, the tensor equation can also be expressed as the 

Equation (2.8), 

    (2.8) 

 

The eigenvalues represent the magnitude of diffusion in the direction of their 

corresponding eigenvectors. One purpose of diffusion tensor MRI is to assess the 
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alone. Fortunately, color-coded FA images can composite images containing information 

about both magnitude and direction of diffusion anisotropy.  

 

If full tensor data acquisition is applied, the fractional anisotropy can be calculated from 

the eigenvalues ,  and  of the diffusion tensor. The equation is given as,  

√3
√2

                               2.9  

 
where  is the mean of the eigenvalues (   ) and ,  and  are the eigenvalues 
of diffusion tensor D sorted in decreasing order.  
 

FA takes on values between 0 (perfectly isotropic diffusion) and 1 (the hypothetical case 

of an infinite cylinder) and is thus directly comparable between subjects.   

 

 

2.2.  Higher Order Cartesian Tensors 
 
Higher-order tensors have recently been used to describe diffusion in the context of 

medical imaging by Özarslan et al. [9, 10].  

 

From the 2nd order tensors Equation (2.6), the diffusion coefficient can be assumed as,  

                                             2.10  

                                        

If the order indices are permuted, the result is the Equation (2.11) 

   2.11  

  

For all vectors = , and the symmetric the 2nd order tensor becomes  

                                                                 (2.12) 
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The number of distinct components reduces from 9 to 6. Clearly, imposing a symmetry 

constraint on D can significantly reduce the number of distinct components and eliminate 

advective transport from the equation.  

 

Similarly, for the lth order tensors, symmetry implies that components whose indices are 

permutations of each other are equal, 

         … …                                                (2.13) 

 

where ( ) stands for all permutations of the l indices.  For instance, if l is 4th order 

tensor,  

                                      (2.14) 

 

The number of unique components of a tensor is independent of the order of indices, so 

the symmetry reduces the number of unique components from 3  to 

2
2

2 1
2                                    2.15  

 

where  is the number of unique components and l is the tensor order. For example, if l 

= 4, then the number of distinct components   =15, which is much lower than the 

number of total components 3 =81. 

 

The previous section illustrated the Stejskal-Tanner formula for 2nd order tensor. The 

generalized Stejskal-Tanner formula for order l tensor is given by 

exp …                          2.16  

               

where is one of the basic vectors. The Equation (2.16) can help us to calculate all the 

components of the diffusion tensor (DT) of general order by means of a simple 

multilinear regression. The diffusion coefficient along the gradient direction is given by 



 
 

11 
 

D g … D g g g                      2.17  

 

the generalized Stejskal-Tanner formula for order l tensor will be simplified into the 

following Equation (2.18) 

  exp                                         (2.18) 

 

Given g, a negative value, the diffusion coefficient will have the following Equation 

(2.19), 

D g D g ,     is odd
 D g ,         is even                             (2.19) 

    

However, the diffusion coefficient has a physical meaning, which implies that it can not 

have a negative value. Therefore, the l is forced to be an even number (l=2, 4, ). The 

result is the antipodal symmetrical diffusivity, given as 

   ,                                       (2.20) 

 

The Equation (2.17) shows us all the tensor components. Therefore the distinct 

components of the lth order DT can be extracted, which provides the number of times a 

given element is repeated. The number of permutations of each set of indices is equal to 

the number of times that component is duplicated. The repetition number, , of the 

component is called the multiplicity, and is given by 

!
! ! !                                  2.21  

 

where l is the order of tensors,  ,  and  are individually the number of the x, y, and 

z indices included in the full sequence of subscripts defining the component of the 

tensors, and  + + . Therefore, the general Stejskal-Tanner formula can be 

rewritten as,  
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                                     2.22   

 

Where  is the  unique element of the tensor,  is the component of the gradient 

direction specified by the   index of the   unique element of the generalized tensor 

D, and  is the multiplicity of the component. Table (2.1) lists the unique components of 

a generalized DT up to the 4th order, along with their response multiplicities.  

 
When writing an expression containing tensors, the Einstein summation convention will 

be used. This means that repeated indices are to be multiplied pairwise, and summed over 

all possible values, 

                          2.23  

 

where A and B are two same size tensors. If both tensors are symmetric, the number of 

terms in the summation can be greatly reduced by simply summing over the unique 

components 

                                     2.24  

 

where  and  are the  independent components of A and B respectively,  is the 

multiplicity of that component, is the number of unique components without repeating, 

and l is the order of tensor A or B.   
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Table 2.1. Distinct Elements of the Diffusion Tensor up to the 4th order, and their 

response multiplicities 
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CHAPTER 3:   
VECTOR CALCULUS AND DIFFERENTIAL  
OPERATORS  
 
 
 
This chapter introduces the basics of vector calculus and the differential operators, which 

will be used in the subsequent sections. A vector can be thought of as a directed arrow 

with magnitude and direction in Cartesian space. A vector field is a vector, each of whose 

components is a scalar field. We first introduce one of most important and useful 

mathematical constructs called the ‘del operator’, del is a vector differential operator, 

usually denoted by the nabla symbol, . The gradient of a scalar field, and the divergence 

and curl of vector field will be denoted by the del. Del is defined as components of a 

vector which are partial differentiations with respect to the three principle directions of a 

Cartesian coordinate system.  

 

Assuming the unit vectors in the x, y, z directions are denoted by i, j and k respectively, 

the del operator in the three-dimensional Cartesian coordinate system is given as 

                                              3.1  

 

This can also be expressed as 

, ,                                                  3.2  

                                       

Or 

                                                          3.3    
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3.1.  Gradient of Scalar Fields 
 
At any point of a scalar field, the gradient of the scalar field is a vector field which points 

in the direction of the greatest rate of change, and whose magnitude is the greatest rate of 

change.  

 

For a scalar field f(x, y, z) in Cartesian space, the gradient is given as 

, ,                       3.4  

 

where each of the partial derivatives is evaluated at the point (x, y, z). The gradient of the 

scalar field becomes a vector field. The gradient of a scalar field is simply the product of 

a scalar field such as f(x, y, z) by the del operator. Here, f(x, y, z) can be referred to as the 

potential field. 

 
 
3.2.  Vector Field Operator 
 

Besides the usual operations of vector-vector addition and scalar-vector multiplication, 

there are two types of multiplication of vectors by other vectors. These include the dot 

product and cross product.  

 

The dot product of vector field is the sum of the products of corresponding paris of vector 

components. The result of the dot product of two vectors is a scalar. In Cartesian space, 

the dot product of two vectors , ,  and , ,   is defined as: 

    ·                                          (3.5) 

 

Also the dot product can be obtained via transposition and matrix multiplication,  

      ·                                                      (3.6) 
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The cross product results in another vector which is perpendicular to the plane containing 

the two input vectors. This is also referred as the vector product because it yields a new 

vector. 

      (3.7) 

 

where i, j and k are the basis of unit vectors. Here,  is always perpendicular to both 

u and v, with the orientation is determined by the right-hand rule. The cross product of 

two vectors contains more valuable information about the two vectors themselves. 

 

If we multiply a vector field by the del operator, we will get two different multiplication 

results. One is called the divergence of a vector field, and other is called the curl of vector 

field. Divergence and curl will be introduced in detail in the following two sections. 

 

3.2.1.  Vector Divergence 
 

The physical meaning of divergence is flux density, which reflects the rate of flux 

expansion and contraction at a point. We can define divergence as the rate of increase or 

decrease in the direction of the vector at a point of a vector field. The divergence of a 

vector field is the dot product of the del operator and the vector field. Therefore, the 

divergence of a vector field is a scalar. Given a vector field , ,

, the divergence of a vector field v is given as  

               

· ·

                                                           

                                                                                         3.8  
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The divergence of the vector field becomes a scalar field by applying the dot product of 

vector operator  to the vector field. At a given point, the divergence of a vector field is a 

single number that represents how much the flow is expanding at that point.  

 

            
(a)  div(v) > 0, expanding                               (b) source 

            
(c) div(v) < 0, shrinking                                  (d) sink 

Fig 3.1.  (a) and (b) indicate the source and its expanding direction, (b) and (c) represent 

the sink and its shrinking direction 

 

A positive value of  at a point means that the integral lines of the vector field v 

diverge there. We can also say that v has a source there, whose volume density is .  

 

A negative value of   at a point means that the integral lines of the vector field v 

converge there. We say that v has a sink, whose volume density is .  
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If   = 0, v has neither a source nor a sink. A vector field v, where  = 0 at all 

points is referred to as solenoidal. A solenoidal field is also sometimes called 

incompressible. 

 

We use the velocity field to illustrate the divergence of vector field. The divergence of a 

vector field is relatively easy to understand intuitively. Imagine that the vector field v 

(Figure (3.1.a)) provides the velocity of a fluid flow. It appears that the fluid is expanding 

outward from the origin. Its expansion of fluid flowing with velocity field v is captured 

by the divergence of v, which we denote div(v) ( ). The divergence of the above 

vector field is positive (  > 0) since the flow is expanding. In contrast, the vector field 

(Figure (3.1.c)) represents fluid flowing so that it compresses as it moves toward the 

origin. Since this compression of fluid is the opposite of expansion, the divergence of this 

vector field is negative (  < 0). 

 

Divergence is distributive, and therefore satisfies  . If v is 

an incompressible fluid, it satisfies    = 0. 

 

 

3.2.2.  Vector Curl  
 

Curl (also called rotor or rotation) is defined as the rate of increase or decrease 

perpendicular to the vector field, which reflects the rotational tendency at a point of a 

vector field. The curl of a vector field is the cross product of the del operator and a vector 

field, and therefore the curl of a vector field is still a vector field. Given a vector 

field , ,  , the curl of a vector field is given as 
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0

0

0

                                                                              3.9  

 

where v is the vector field, , ,  are functions of the variables x, y and z, and i, j and k 

are the unit basis vectors. In fluid mechanics, the curl of the fluid velocity field is called 

the rotation because it measures the field's degree of rotation around a given point.  

 

Based on the above definitions of divergence and curl definition, we can analyze the 

properties of the divergence and curl of a vector field.  

·

0          3.10  

           

The divergence of the curl of a vector field is always zero. Therefore, the curl of a vector 

field is described as divergent-free or solenoidal.  

 

Similarly,  

0                                                                                                                    3.11  
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The curl of the gradient of a scalar field is always zero. The gradient field is described as 

irrotational, or curl-free.  

 

 

3.3.  Tensor Field 
 

The properties of a tensor have been described in Chapter2. A tensor field, a concept 

which has been applied in mathematics, physics and engineering, is defined as a 

Cartesian space, each point of which has a tensor value. Tensor divergence and tensor 

curl will be related through discrete partial derivatives, which are denoted by the symbol 

, 

                                                       3.12   

                                                     

Therefore, tensor equations such as divergence and curl can be expressed in a simple and 

compact manner based on the above equation. 

 

Using Equation (3.4), the gradient tensor for the 2nd order is simply the product of the del 

operator and tensor, which is given as 

  

                                                                         3.13  

 

or         
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                                               (3.14) 

 

where superscripts denote tensor order. Similarly, the gradient tensor for the 4th order can 

be expressed as, 

                                               (3.15) 

 

where the notation indicates that for all possible values of index i, the tensor components 

are differentiated with respect to that index. 

 
 
3.3.1.  Tensor Divergence 
 

In general, the divergence of an order n tensor field is an order (n-1) tensor field. If the 

order of tensor field is 2,  

·                                    3.16  

 

Therefore, the divergence of the 2nd tensor field is given as, 

·                   3.17  

                  

Therefore, the divergence of the tensor field can be expressed in Einstein notation as, 

                                                (3.18) 

 

Similarly, if the order of tensor field is 4, the divergence of the tensor field can be 

expressed in Einstein notation as, 

                                                 (3.19) 
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Where the notation indicates that for all possible values of index i, the tensor components 

are differentiated with respect to that index and summed over. If the field consists of 

totally symmetric tensors, the divergence tensor will also be completely symmetric.  

 

If we apply the product rule for differentiation, the divergence for Dv will be, 

                                  (3.20) 

 

From the Equation (3.20), we find the divergence of Dv is split into two parts. The first 

term   relies on the divergence of . The second component  
depends on the gradient of v ( ). The divergence of D contains all of the information 

regarding how spatially varying D influences the div(Dv). 

 

The divergence often appears in conservation laws such as Fick’s second law, 

    0                      (3.21) 

 

which is a statement of conservation of mass for the diffusion process governed by the 

concentration gradient and diffusion tensor field D. Expanding  using the 

product rule, it becomes apparent that if the concentration gradient is nonzero and 

constant, then mass can only be conserved if the divergence of the tensor field is zero. 

 
 
3.3.2.  Tensor Curl 
 
Similarly, the curl of a tensor field can be derived from the product rule. The curl of a 

tensor field is a rotation operator. The magnitude of each point of the tensor field is the 

rotation magnitude, and the direction of curl is perpendicular to the rotation plane at each 

point. The curl of tensor field is denoted curl  or . 

                  3.22  
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The curl of the 2nd order case in 3 dimensions is defined as  

                                      (3.23) 

 

Also the curl of the 4th order case in 3 dimensions is defined as 

                               (3.24) 

 

where  is the permutation tensor (Levi-Civita symbol),  

    
1, , ,       
1, , ,       

0,
           (3.25) 

 

The permutation tensor is often used to define the vector cross product .  

Therefore, the curl is usually used to characterize vortices and shear in flows.  
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CHAPTER 4:  
THE HELMHOLTZ DECOMPOSITION OF  
VECTOR AND TENSOR FIELDS  
 

 

4.1.  The Helmholtz Decomposition of Vector Fields 
 

A general vector field may contain features such as sources and sinks which are 

characterized by divergence. They may also contain other features, such as vortices, 

which are characterized by the curl.  If we can separate the field into two components, in 

which one part contains the sources and sinks, and the other part contains the vortices we 

can simplify the processing and visualization of the field. 

 

Fortunately, in the mathematical theory of fluid dynamics, a method exists which can 

separate the divergence-free and curl-free components. This method is the well known 

Helmholtz decomposition (also referred to as the Helmholtz-Hodge decomposition). 

Hermann von Helmholtz found that any sufficiently smooth, rapidly decaying vector field 

in 3 dimensions can be decomposed into three components, including a curl-free vector 

field, a divergence-free vector field, and a harmonic vector field. The equation 

representing this is given as,  

                                                (4.1) 

 

where v is a vector,  is the gradient of a scalar potential field ,  is the curl of a 

vector stream field , and h represents a harmonic vector field.  

 

Chapter 3 describes the characteristics of gradient, divergence, and curl of vector fields. 

The properties of these concepts can be applied in Equation (4.1). The gradient of a scalar 

potential field  is curl free, and therefore we have 

  0                                      (4.2) 

 

Similarly, the curl of a vector stream field  is divergent free, and therefore we have 
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   · 0                                     (4.3) 

 

If a vector field possesses both solenoidal and potential features, it is said to be a 

Laplacian field, which is common in vector analysis. The symbol of the Laplacian 

operator is  , also written as ∆. The Laplacian of a scalar field is given as,  

·                                 4.4   

 

The Laplacian field is satisfies the conditions curl(v)=0 and div(v)=0. 

 

Harmonic vector field h, is both solenoidal and irrotational, so the harmonic vector field 

also has the following properties, 

    0                                               (4.5) 

 

 is called the curl-free or divergence component,  is the divergence-free part or 

rotation component, and the remaining h is the harmonic component. Also  can be 

referred to as the rotation potential and  can be referred to as the divergence potential. If 

the curl operator is applied to the Helmholtz decomposition equation, the result is  

            (4.6) 

 

The curl of the divergence-free component is the same as the curl of the original vector 

field. The curl-free and harmonic components are eliminated from the equation.  

 

If the divergence operator is also applied to the Helmholtz decomposition equation, the 

result is 

                  (4.7) 

 

The divergence of the curl-free part is equal to the divergence of the original vector field. 

The divergence-free part and harmonic components are eliminated from the equation.  
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Fig 4.1. The results of Helmholtz decomposition of vector fields,   
 
 
 
4.2.  The Helmholtz Decomposition for tensor field 
 
The above section has described the Helmholtz decomposition for vector fields in detail.  

However, the Helmholtz decomposition of tensor fields can be extended from the vector 

field to a tensor field. The Helmholtz decomposition can split a tensor field into three 

parts: divergence-free, curl-free and harmonic tensor field components. The Helmholtz 

decomposition of a tensor field is represented by, 

                                                    (4.8) 

 

where D is a tensor field,  is the gradient of a scalar potential field ,  is the curl 

of a tensor stream field  and H is a harmonic tensor field. Similarly with the vector 

field,  is irrotational,  is solenoidal, and H is both solenoidal and irrotational 

with a typically small amplitude. The tensor field has the following properties, which will 

greatly aid in computing the values of  and  in future computations,  

  · 0                                   (4.9) 
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   0                                 (4.10) 

      · 0                                            (4.11) 

 

Combining Chapter 3 definitions of tensor divergence, curl and gradient of Cartesian 

tensors given by Heinbockel [36] with the above equation for Helmholtz decomposition 

of tensor field, the Helmholtz decomposition of the 2nd order tensor fields is given in 

Einstein notation as,  

                                     (4.12) 

 

Similarly, the equation for the Helmholtz decomposition of the 4th order tensor field in 

Einstein notation is given as, 

                             (4.13) 

 

The formulation of the Helmholtz decomposition for tensor fields can be made for 

tensors of arbitrary order, however, we only present the 2nd order and the 4th order 

decompositions due to the fact that these provide the basis for the experiments in Chapter 

7.  
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CHAPTER 5:  
NUMERICAL IMPLEMENTATION  
 

 

5.1.  Taylor Series Expansion 
 

We have indicated how to extend the Helmholtz decomposition from the vector fields to 

the tensor fields in Chapter 4. From the description of Equation (4.12) and (4.13), we find 

that both the 2nd order tensor and the 4th order tensor have first derivative. In order to 

compute the first derivative of the tensor data, the Taylor series expansion for 

approximating a derivative will be applied. This concept provides the basis for many 

numerical methods, such as numerical differentiation.  Taylor series is a series expansion 

of a function about a point with derivative of continuously increasing order derivatives. 

Therefore, we can apply Taylor series expansion for approximating the derivative. The 

Taylor series is given by  

!
           5.1     

 

where n! denotes the factorial of n and  denotes the nth derivative of ƒ evaluated 

at the point . And the first order Taylor series expansion can be expressed as,  

                                  (5.2) 

 

Evaluating at x =  +h yields, 

                            (5.3) 

 

Replacing h with −h in the previous equations gives,  

                                   (5.4) 

 

Using Equation (5.3) to subtract Equation (5.4) provides the following approximation,  

2                                 (5.5) 
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Equation (5.5) divided by 2h provides the centered difference: 

2                              5.6  

 

 

5.2.  Kronecker product 
 

In order to represent the discretized operators as block matrices, where the blocks 

correspond to finite difference operators applied to a single tensor component. We use the 

Kronecker tensor product, denoted by symbol .  

 

If given A is a  matrix and B is a  matrix,  
…

…
 &  

 

…

…
                   (5.7) 

 

Then the Kronecker product  is the  block matrix as following, 

                
…

…
                        (5.8) 

 

Now, when we extend every element of matrix B in the above Equation (5.8), we will get 

the Kronecker product of A and B as following Expression (5.9),  

… … …
… … …

… … …

… … …
… … …

… … …

   (5.9)   
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The Kronecker product is a special case of the tensor product, and therefore, it is bilinear 

and associative. The Kronecker product follows several laws similar to scalars and 

vectors,  

Distributive Law:  

        

k is a scalar:  

Associative Law:  

Transposition:  

Mixed-product property:  

 

However, the Kronecker product is not commutative, so the Kronecker product  

and  are different matrices. Therefore,  

 

A simple example can be used to illustrate that the Kronecker products  and 

 are different matrices,  
1 1 1
1 1 1
1 1 1

  & 
1 0 0
0 1 0
0 0 1

 

 

Plot the Kronecker (X, Y), Kronecker (Y, X) 

 
Kronecker (X, Y)                                                  Kronecker (Y, X) 

Fig. 5.1. A simple example of the comparison of Kronecker (X, Y) and Kronecker(Y, X)  
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5.3.  Center Difference 
 

The above section applies Taylor series to compute the first derivative by using centered 

difference. In the case of 1  vector data, the following illustration can be used to 

demonstrate the computation of the 1-dimensional gradient. Using matrices, the data will 

be transformed into a 1 column vector,  

 
(a) 

 

(b) 

Fig. 5.2. (a) Plot of the relationship of the target neighbor pixels in one dimension. (x) is 

the target pixel. (b) Transform the vector to one column vector 

 

∆
1
2

0 1 0 … 0
1 0 1

0 1 0 0
1

0 … 0 1 0

                                   5.10  

 

∆ ∆ is the operator to compute the first derivative of one dimension data, and the 

Figure (5.3) can show us the operator. 
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Fig. 5.3. The result of plotting ∆  operator based on 16 

 

 Now we use a 2-dimensional pixel map to explain how to design the matrix to compute 

the 2D gradient, divergence, and curl. The pixel relationship of the image can be 

expressed by a simple map. The density of any pixel is , . The center pixel is the 

output pixel (x, y). It depends on its neighbor pixels in 4 directions. The following 

coordinate table shows the relationship of the target neighbor pixels,  

 
(a) 
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,

,

,

,

,

 

(b)  

Fig. 5.4. (a) Plot of the relationship of the target neighbor pixels in two dimensions. (x) is 

the target pixel. (b) Transform the 2D matrix data to one column vector 

 

Still we need to transform the  matrix data a to a 1 rows vector. Also,  

∆ ∆                                              (5.11) 

   ∆ ∆                                              (5.12) 

 

∆ and ∆  are the operators to compute the first derivatives of x and y directions of two 

dimensions data, and the Figure (5.5) can show us the two operators in one map. 

 
Fig.  5.5. The result of plotting ∆ , ∆ operators based on 4 4 
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(a) 

, ,

, ,

, ,

, ,

, ,

, ,

, ,

 

(b) 

Fig. 5.6.  (a) Plot of the relationship of the target neighbor pixels in three dimensions. (x) 

is the target pixel. (b) Transform the 3D matrix data to one column vector 

 

To compute the 3-dimensional matrix data,  

∆ ∆                                            (5.13) 

∆ ∆                                             (5.14) 

∆ ∆                                             (5.15) 

 

where  is a  identity matrix, and ∆  is a  finite difference matrix, and 

 is the Kronecker product, 
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∆ , ∆ , and ∆  are the operators to compute the first derivatives of x, y, and z directions 

of three dimensions data, and the Figure (5.7) can show us the three operators in one map. 

 
Fig. 5.7. The result of plotting ∆ , ∆ , ∆  operators based on 4 4 4 

 

 

In order to illustrate how the numerical implementation works, the following sections 

will use the 2nd order tensor data to indicate the entire numerical implementation 

procedure. 

 

For computational convenience, we will reshape the 2nd tensor fields where 

 

 

into a column vector to arrive at the following Equation (5.16) 

                         5.16  
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It becomes apparent that the column has 9 rows. The above expression tells us that both 

the elements (for example, ,  ) of each tensor component (for example, 

, , , ) and the tensor components are vectorized in lexical order of the 

spatial coordinates (x, y, z). If the size of the input, the 2nd order tensor field, is 

, the result is 9  rows. 

 

 

5.4.  Gradient of the 2nd Order Tensor Field G 
 

According to the central differences for approximately derivatives Equation (5.6), we can 

compute the gradient of the 2nd order tensor field  

                                                (5.17) 

 

G represents the gradient matrix, . Multiplying the gradient matrix by  will get 

result in the gradient of the tensor field, . 

∆ 0 0
0 ∆ 0
0 0 ∆

∆ 0 0
0 ∆ 0
0 0 ∆

∆ 0 0
0 ∆ 0
0 0 ∆

                                              (5.18) 
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Fig. 5.8. Plot of the gradient of the 2nd order tensor field, 4 4 4 

 

 

5.5 Curl of the 2nd Order Tensor Field C 
 

Similarly, we can compute the curl of the second tensor field  based on the operators 

described above,  

                                                      (5.19) 
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C represents for the curl matrix , which is the sparse block matrix. Also, the 

above equation can be rewritten as . Using the product of the curl matrix and 

ψ will provide the curl of the tensor field .  

0 0 0 ∆ 0 0 ∆ 0 0
0 0 0 0 ∆ 0 0 ∆ 0
0 0 0 0 0 ∆ 0 0 ∆

∆ 0 0 0 0 0 ∆ 0 0
0 ∆ 0 0 0 0 0 ∆ 0
0 0 ∆ 0 0 0 0 0 ∆
∆ 0 0 ∆ 0 0 0 0 0
0 ∆ 0 0 ∆ 0 0 0 0
0 0 ∆ 0 0 ∆ 0 0 0

        (5.20) 

 

 
Fig. 5.9.  Plot of the Curl of the 2nd order tensor field, 4 4 4 
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As a matter of fact, the 4th order tensor data can also be computed by using the 

discretized operators, which are similar to the discretized operators of the 2nd order 

tensor. Because each tensor contains 81 rows, the matrices will not be provided, however, 

codes will be used to realize the 4th order tensor decomposition. 

 

 

5.6.  Numerical Implementation of the Helmholtz Decomposition 
 

Using the above definitions for the C and G matrices we can numerically implement the 

Helmholtz decomposition by solving for  and . If we simply change the Helmholtz 

decomposition expression, then we will get the following equation,  

                                           (5.21) 

 

Now the Helmholtz decomposition is given by the solution to the least squares problem,   

min
,

                                           5.22  

 

Where  denotes the Frobenius norm of the tensor, and . 

                                                    (5.23) 

 

Therefore, Equation (5.20) can be converted to  

,

     

                               5.24  

 

Because G is the compact operator of the gradient, and C is the compact operator of curl, 

and stemming from the fact div (curl(ψ)) = 0, and curl (grad( ) = 0, we obtain the 

following fact,  

0                                            (5.25) 
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Therefore, Equation (5.24) can be simplified to, 

,  (5.24) 

 

The goal is to find values of  and ψ which minimize the error. In multivariable calculus 

this requires us to find the values of ( , ψ) such that 

0

0
                                                          5.26  

 

 Applying Equation (5.26) to Equation (5.24), and considering that  and ψ are 

independent, two new equations are used in order to calculate  and ψ individually,  

2 2 0

2 2 0
                                      5.27  

 

Simplifying the Equation (5.27) will obtain the new expression 

                                                               5.28     

 

 

5.7 Conjugate Gradient Algorithm 
 

Section 5.5 has described how to calculate the matrix equation of  and . The format of 

the matrix equations of   and ψ can be generally described using,   

                                                     (5.29) 

 

Usually, we will use the inverse matrix transformation to compute the unknown vector x, 

due to the fact that  

                                                   (5.30) 
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Given a matrix A equal to 

                                                 (5.31) 

 

The inverse matrix is given by, 

| |                            (5.32) 

 

If the size of matrix A is small, the computation speed is fast. If the size of matrix A is 

large or the matrix is ill-conditioned, the matrix inversion method does not work. For 

example,  

 

tensors dataset size is  64 64 5  

Order Elements No. Size of G Size of C 

2 9 
9 3  9 9  

1.1325e+010 3.3974e+010 

 

Table 5.1.  The matrix size of G and C for the 2nd and the 4th order tensors 

 

From Table (5.2), we find that the sizes of grad(G) and curl(C) of tensor fields are very 

large. If we still use the inverse matrix method to compute  and , the computation will 

be extremely time-consuming. If the order is 4, the sizes of G and C will be even greater 

than those of the 2nd order.  

 

Therefore solving large systems of linear Equations (5.25) can be agonizing pain for 

many. Fortunately, Hestenes and Stiefel [12] created the Conjugate Gradient Method 

(CG), and the JR Shewchuk [31] describes the algorithm, which is effective to solve large 

systems of equations.   
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Fig. 5.10. The image of method for the conjugate gradients and gradient descent (wiki) 

 

Green lines: iterations of gradient descent.  

 Subsequent search directions , v, are perpendicular   

 0 

 

Red lines: iterations of conjugate gradient method.  

 In CG methods the search directions are conjugate  

 0 

 

Now we can resolve the linear system equation  by using conjugate gradient 

method, where A is a   symmetric and positive-define matrix. 

 

Suppose that  is a sequence of n mutually conjugate directions, therefore, they are 

orthogonal each other and linear independently.  We can expand them  

                                                    5.33  

and  
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                                              5.34  

Using the character of mutually conjugate of  to obtain the following equation, 

                                      5.35  

Therefore,  

                                                            5.36  

 

We have describe how conjugate gradient method works, in fact conjugate gradients is an 

iterative method, the result of which approaches real value gradually. The name 

“Conjugate Gradients” is a bit of a misnomer, because the gradients are not conjugate, 

and the conjugate directions are not all gradients. “Conjugated Gradients” would be more 

accurate.  

 

 We can give an initial guess  to search for the solution and stop when the value is 

close to the real solution.   

 

Let  be the residual at the kth iteration: 

                                                   (5.37) 

 

Because the conjugate constraint is an orthonormal type constraint, the Gram-Schmidt 

orthonomalization gives the following equation: 

                                                   5.38  

 

 The next optimal point following this direction is given as,  

                                               (5.39) 

                                                            5.40  
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If A is a symmetric, positive –definite matrix, the conjugate gradient method works very 

well. (A is real positive definite if and only if for all 0, 0) 

 

However, the conjugate gradient method is not suitable for asymmetric linear systems. 

Therefore, the biconjugate gradient (BiCG) method designed to solve asymmetric linear 

systems, can be used. The BiCG method delivers the same results as the conjugate 

gradient method for symmetric positive definite systems, but at twice the cost per 

iteration.  

 

BiCG can be used to solve systems where A is not symmetric, positive-definite, square. A 

solution to the least squares problem 

min                                                       (5.41) 

 

can be found by setting the derivative of Equation (5.41) to zero: 

                                                              5.42  

 

If A is square and nonsingular, the solution to Equation () is the solution to . If A 

is not square, and  is overconstrained, --that is, has more linearly independent 

equations than variables -- then there may or may not be a solution to . However, 

it is always possible to find a value of x that minimizes Equation (5.42), the sum of the 

squares of the errors of each linear equation. 

 

 is symmetric and positive (for any x, 0 ). If  is not 

underconstrained, then  is nonsingular, and methods CG can be used to solve 

Equation (5.28). The only nuisance in doing so is that the condition number of  is the 

square of that of A, so convergence is significantly slower. 
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Given the inputs A, b, a starting vector value , ,  , the number of iterations loops, and 

an error tolerance ε < 1, unlike the conjugate gradient method, biconjugate gradient 

method needs to perform multiplications matrix A. and residuals value r will reflect how 

the approximate solutions x close to the real solution. The conjugate gradient and 

biconjugate gradient methods are mature technique, I refer to this technique from internet 

to apply in my method to compute asymmetric and non-positive define matrix from linear 

equation system.  
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Table 5.2.  Pseudocode: the algorithm for the topological visualization using the 
Helmholtz decomposition  
 

Algorithm:  topological visualization for diffusion tensor field  

Using generalized Helmholtz Decomposition 

Initializing 

Compute the∆ , ∆ , ∆ Matrix 

Compute the C Matrix based on∆ , ∆ , ∆ Matrix 

Compute the G Matrix based on ∆ , ∆ , ∆  Matrix 

Iterations  

biconjugate gradients method phi = BiCG(G, D) 

biconjugate gradients method psi = BiCG(C, D) 

End 

 

Subfunction BiCG() 

 
 

 
 

k=0; 
while (  > tolerant value)                  

               

  
             
  
             
 

               

             
             
 

k+1 
 if k = max iteration then quit 
end 
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CHAPTER 6: 
TOPOLOGICAL VISUALIZATION 
 

 

Topological concepts are present in many areas of mathematics. Topology is a beautiful 

field of mathematics dealing with the shapes of objects, without regard to distances. 

Topology can be used to abstract inherent connectivity of objects while ignoring their 

detailed form.  

 

The 2nd and 4th order tensors describe a wide range of physical phenomena. Tensors can 

represent diffusivity [4, 19], the fiber orientation distribution function (ODF) in DT-MRI 

[3], mechanical stress and strain [13], and so on. More abstractly, tensors may represent 

covariance, skew, kurtosis and higher order moments of multivariate probability 

distributions as well as homogeneous polynomials. In our experiments we explore the 

topology of the diffusion tensor field (as opposed to the field of diffusion ODFs) due to 

the fact that the divergence operator has an important physical meaning when applied to 

the diffusion tensor. Zero divergence of the tensor field implies conservation of mass 

under a constant concentration gradient. However, analysis of the ODF field represented 

as the 4th order tensors, as described by Barmpoutis et al. [3] is a topic for future 

investigation. 

 

 

6.1 Critical Points and Vortices 
 

In Chapter 4, we described how the Helmholtz decomposition can separate a tensor field 

into divergence-free and curl-free components. The curl-free component is irrotational, 

which can be used to isolate local maxima and minima of divergence (foci of sources and 

sinks) in tensor fields. The divergence-free component is solenoidal, which can be used 

to isolate the centers of vortexes in tensor field. Using critical points (as mentioned in 

Chapter 4) and a few separating curves (separatrices) to visualize the tensor fields can 

reduce  a dense set of input data to provide a simple structure of the field.  
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The critical points are called singularities, which are the only locations that streamlines in 

a vector field can intersect. Critical points also are the locations at which the magnitude 

of the vector vanishes. A first order critical point can be classified according to the 

eigenvalue of the Jacobian matrix, and for the purpose of the experiments, we only focus 

on the linear case. If the real part of an eigenvalue is positive, it indicates a repelling 

nature in which the field is expanding from that point. This critical point is referred to as 

a sink. If the real part of an eigenvalue is negative, it indicates an attracting nature in 

which the field is shrinking to that point. This critical point is referred to as a source.  

 
(a)                                                                          (b) 

Fig. 6.1 Vortices, (a) is the source, (b) is the sink 

  

A vortex is defined as motion of a fluid which is swirling rapidly around a center which 

is a critical point. If the critical point is a source, the vortex is expanding. Otherwise, the 

critical point is a sink, the vortex is shrinking. Therefore, the critical points and vortex 

can effectively be represented by the main structure of vector fields. We propose to 

extend the same concepts to tensor fields. 
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6.2.  Degenerate Points and Separatrices 

 
The streamlines in vector fields only intersect at critical points, and the hyperstreamlines 

in tensor fields meet only at degenerate points.  Degenerate points play an analogous role 

to critical points of vector fields in the topological analysis of tensor fields. These points 

are the basic singularities in the topology of tensor fields.  Thierry and Lambertus’s [20] 

define degenerate points, ‘A point  is a degenerate point of the tensor field D if the two 

eigenvalues of D are equal to each other at  , ie ’. We can use this 

idea to degenerate critical points. 

 

We propose to extend the concept of degenerate points to tensor fields of arbitrary order 

by defining them in terms of local extrema of the magnitude of divergence and curl. 

 

 

6.3.  Topological Segmentation  
 

Helmholtz decomposition can be used to separate a tensor field into divergence-free and 

curl-free components, which can simplify the rich and complex datasets and assist our 

analysis. In order to apply the topological visualization, we classify critical points by 

using the signed error function, 

                                     (6.1) 

 

Analyzing the above Equation (6.1) provides the following results. When e<0, 

 becomes the dominant part, so the field is better approximated by curl. When e>0, 

 becomes the dominant part, and the field is therefore better approximated by 

. Li et al. [16] used a similar decision criterion through, b, which is a ratio of the 

two errors.  Here the contour line, e = 0, separates the field into relatively low divergence 

and low curl regions. Therefore, this function can be used to roughly segment the field 

into two regions. Within the low divergence region we characterize critical points in 
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terms of the curl magnitude , and in the low curl region we investigate 

the divergence magnitude . 

 

Even though topological visualization can be used to extract the skeleton of the datasets, 

our approach is used to display the field in a way which reveals the topological features. 

To reiterate, the Helmholtz decomposition can separate a dense tensor field into simple 

divergence-free and curl-free parts, which is used to simplify the complex datasets into 

two simple fields. We then use signed error functions to classify the low curl and low 

divergence region, and it roughly splits this into irrotational and solenoidal regions. These 

features give a concise representation of the global structure of the tensor field. 
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CHAPTER 7: 
EXPERIMENTAL RESULTS 
 

 

The generalized Helmholtz decomposition was implemented in Matlab and run on a 

system with Intel Quad Core QX6700 2.66 GHz CPU and 4 GB RAM. The algorithm 

was applied to the synthetic and real datasets as described below. The fitting quality of 

the decomposition can be analyzed in terms of the magnitude of the harmonic term 

  which should be near zero.  

 

 

7.1.  Experiment 1: simple 2nd and 4th synthetic tensor fields 
A synthetic 2nd order tensor field was generated from one source, one sink and two 

vortices shown in Figure (7.1). The input data for test are generated by computing 

.  

 

The Figure (7.1) is the synthetic data for the 2nd order tensor fields, which generate the 

results of Figure (7.2).  The tensor fields in Figure (7.1) and Figure (7.2) are visualized by 

plotting the radial surfaces  for the basis of unit vectors v. The surface is 

colored blue when r is positive and red when r is negative. The results of the generalized 

Helmholtz decomposition are shown in Figure (7.2).  
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(a)   D1                                                                (b)  D2 

 

     
(c) D3                                                                     (d) D4 

Fig. 7.1. (a) and (d) illustrate vortices while (b) and (c) illustrate a source and sink 

respectively, which are used to construct a synthetic 2nd order tensor field. 
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(a) Synthetic field                           (b)   

 

 
(c)                                                 (d) Harmonic term H 
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(e)                                                                       (f)  

Fig. 7.2. Helmholtz decomposition results for the 2nd order synthetic tensor field 

 

 

Also, the synthetic 4th order tensor field was constructed from one source, one sink and 

two vortices similar to those shown in Figure (7.1). The results of the generalized 

Helmholtz decomposition of this field are shown in Figure (7.3). The tensor fields also 

are visualized by plotting the radial surfaces  for the basis of unit 

vectors v. The surface is also colored blue when r is positive and red when r is negative. 

From the resulting images of  and , we find that  has two vortices. Similarly,  has 

one source and one sink and flow direction. 
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(a) Synthetic field                               (b)   

 

 
(c)                                                    (d) Harmonic term H 

Fig. 7.3. Helmholtz decomposition results for the 4th order synthetic tensor field 

 

 

Several interesting observations can be made from above results. As evidenced from the 

negative (red-colored) lobes in Figure (7.2) and (7.3). It is obvious that the decomposition 

does not only preserve positivity. The critical points in the original field shown in Figure 

(7.2.a) and (7.3.a) are not clearly visible. However, they are quite evident in the 
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decomposed fields. Also there seems to be a correspondence between sources of positive-

definite tensors and vortices of negative-definite tensors in the decomposition fields. The 

harmonic field, which is typically of small magnitude for vector field decompositions, 

can be substantial in terms of the tensor trace, but it is extremely smooth – nearly 

constant in all of our synthetic field experiments.  

 

 

7.2.  Experiment 2:  a 2nd order MRI tensor data of human being 
 

The Helmholtz decomposition was also applied to real datasets of a diffusion tensor MRI 

of the human brain. The data were acquired on a 3.0 Tesla General Electric Medical 

Systems Horizon LX imaging system with a diffusion weighted spin echo pulse 

sequence. Imaging parameters were: effective TR = 9000 ms, TE = 78 ms, NEX = 1. 

Diffusion-weighted images were acquired with 25 different gradient directions with 

1000  and a single image was acquired with 0. The image field of view was 

24 24 cm and the acquisition matrix was 256 256 30. The 2nd order tensors were 

computed from the diffusion weighted images by performing a least squares fit to the 

logarithm of the signal attenuation. Similarly, the tensor fields in Figure (7.4) are 

visualized by plotting the radial surfaces   for the basis of unit vectors v. 

The surface is colored blue when r is positive and red when r is negative. 
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 (a)  

 
(b)   

Fig. 7.4. Helmholtz decomposition results for the 2nd order DT-MRI datasets of human 

brain 
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7.3.  Experiment 3: more different 2nd order and the 4th order synthetic 

tensor fields 
 
We display a few experiment results for the 2nd order and 4th order synthetic tensor 
datasets to test our idea and algorithms.  
 

 

 
(a1)                                                                          (a2) 

The synthetic tensor data (a1) only has one source, which is divergent from the critical 
point 
 

 
(b1)                                                                          (b2) 

The synthetic data (b1) only has one  vortex, which is rotation at the critical point 
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(c1)                                                                          (c2) 

The synthetic data (c1) has one source, one sink, and two vortices,  
 

 
(d1)                                                                          (d2) 

The synthetic tensor data (d1) has two sources and two vortices at the four corners.  
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(e1)                                                                          (e2) 

The synthetic data (e1) has one source and one sink at the bottom of two sides 
individually.  
 
 

 
(f1)                                                                          (f2) 

The synthetic tensor data (f1) has four sources at the bottom of four sides and four 
vortices at the four corners. 
 
Fig. 7.5.  The left side images are various 2nd order synthetic tensor fields, and the right 
side images are the result of the topological visualization of left side tensor data 
 
 
 
The magnitude of the residual after least-squares fitting to quantify how well the 

decomposition fits the input data since the harmonic part, H, is defined as that residual. 
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As a result we have zero fitting error. Instead, we analyze the quality of the fit by 

examining how irrotational  is, how solenoidal  is, and harmonic H. Ideally all of 

the quantities in the table below should be zero. This compare and contrast methods have 

been applied in the 2nd order and 4th order tensor fields. 

 

D 
||  ||

|| ||  
|| ||

|| ||  
||  ||
||div ||  || ||

||curl ||  

a 7.86E-017 8.66E-017 2.03E-015 1.99E-015 
b 7.89E-017 8.42E-017 2.54E-015 2.61E-015 
c 8.54E-017 8.63E-017 2.21E-015 2.39E-015 
d 5.07E-017 4.71E-017 9.67E-015 1.05E-014 
e 5.50E-017 4.65E-017 1.01E-014 1.02E-014 
f 5.48E-017 4.82E-017 7.81E-015 7.81E-015 

 

Table 7.1. Comparison of the various 2nd order synthetic tensor fields 

 
 

 
(a1)                                                                          (a2) 

The synthetic tensor data (a1) has two source points 
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(b1)                                                                          (b2) 

The synthetic tensor data (b1) has one vortex  
 

 
(c1)                                                                          (c2) 

The synthetic tensor data (c1) has one source, one sink and two vortices 
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(d1)                                                                          (d2) 

The synthetic tensor data has two vortices at the bottom of one side 
 

 
(e1)                                                                          (e2) 

The synthetic tensor data (e1) has two vortices at the bottom of two sides individually 
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(f1)                                                                          (f2) 

The synthetic data has one source at the center and four vortices at the four corners 
 

  
(g1)                                                                          (g2) 

The synthetic tensor data (g1) has four sources at the four corners and one vortex at the 
center. 
 
Fig. 7.6.   The left side images are various 4th order synthetic tensor fields, and the right 
side images are the result of the topological visualization of left side tensor data 
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For the 4th order tensors we assess fitting quality in terms of the magnitude of the 

divergence and curl where the magnitude is taken to be the Frobenius norm of the tensor. 

 

D 
||  ||

|| ||  
|| ||

|| ||
|| ||
||div ||  || ||

||curl ||  

a 5.19E-008 3.24E-008 9.56E-007 9.59E-007 
b 3.24E-008 5.19E-008 9.58E-007 9.56E-007 
c 3.88E-008 3.63E-008 1.04E-006 1.02E-006 
d 3.22E-008 4.53E-008 1.15E-006 9.34E-007 
e 3.60E-008 5.98E-008 1.39E-006 1.11E-006 
f 5.26E-008 4.09E-008 7.76E-007 1.13E-006 
g 4.60E-008 2.13E-008 5.58E-007 7.10E-007 

 
Table 7.2. Comparison of the various 4th order synthetic tensor fields 
 

The results of the signed error function given by Equation (6.1) are shown in Figure (7.5, 

7.6) as a filled contour plot. Note that the ’hot’ (red, orange, yellow) colored regions 

represent the solenoidal part of the field and the ’cool’ (blue, green) colors represent the 

irrotational part of the field. The smaller contour curves encircle the critical point in the 

field. The contour at e = 0 was used to successfully segment the field into two regions, 

and separate the nearby critical points in the center of the field. This function can be seen 

as a simple classifier for the critical points, separating extrema of divergence from 

extrema of curl. The e = 0 isocontour should not be interpreted as a hyperstreamline, but 

instead as the boundary between solenoidal and irrotational regions in the field. Black 

crosses denote local maxima in divergence magnitude (centers of sources / sinks), and 

white crosses denote local maxima in curl (centers of vortices). Several synthetic 2nd 

order and 4th order tensor datasets are shown above, as well as the generated response of 

the topological visualization based on the Helmholtz decomposition.  

 

From the above images, we can found the critical points appear in original data image are 

not visible and clear, however it is very visible in the results of topological visualization 

based on the Helmholtz decomposition method both in the 2nd order and 4th order tensor 

data image.. Compared the results of the 2nd order and 4th order tensor data, we can obtain 
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that the results 4th order tensor data provide more detailed local information than those of 

2nd order tensor data.  

 

Both of the above tables reflect a high quality of fit. For all datasets the decomposition 

obeys the expected Helmholtz properties. The divergence of the solenoidal part is many 

orders of magnitude smaller than the divergence of the input field. Likewise, the curl of 

the irrotational part of the field is many orders of magnitude smaller than the input field. 

The resulting harmonic part has very small divergence and curl. The same observations 

hold when considering numerous randomly generated fields. The variance of the fitting 

parameters is very small, suggesting that the decomposition has consistent behavior over 

a large number of fields. 

 

The Helmholtz decomposition is not unique. We may add any constant tensor field to 

 or , and subtract that field from H, and obtain new fields which satisfy 

the conditions of the decomposition. 

 

The decomposition also does not preserve positivity, however we can make  or 

 positive by adding an isotropic tensor field to each, and subtracting the 

isotropic tensor fields from H. 

 

 

7.4. Experiment 4: generating 100 2nd order and 4th order random 

tensor fields 
 

We can also assess the fitting quality by generating 100 2nd order and 4th order random 

fields individually, with uniformly distributed tensor components in the range [-1, 1]. The 

mean and variance of the each fitting parameter is shown in the table below. 
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(a)                                                                          (b) 

Fig. 7.7.  (a) is a synthetic 2nd  order  random tensor field,  (b) is the topological 
visualization of  the left side 2nd order random tensor field.  
 
 

D 
||  ||

|| ||
|| ||

|| ||
|| ||
||div ||  || ||

||curl ||  

mean 5.73E-017 3.09E-017 6.07E-016 5.11E-016 
variance 7.12E-038 5.46E-038 4.23E-035 3.99E-035 

max 5.77E-017 3.11E-017 6.17E-016 5.21E-016 
 
Table 7.3. The comparison of the mean, variance, and max of the 2nd order random tensor 
fields 
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(a)                                                                          (b) 

Fig. 7.8.  (a) is a synthetic 4th order random tensor field,  (b) is the topological 
visualization of  left side 4th order random tensor field.  
 

D 
|| ||

|| ||
|| ||

|| ||  
||  ||
||div ||  || ||

||curl ||  

mean 2.66E-008 1.35E-008 1.69E-007 1.48E-007 
variance 2.80E-021 5.11E-022 2.13E-019 8.02E-020 

max 2.67E-008 1.35E-008 1.70E-007 1.48E-007 
 
Table 7.4. The comparison of the men, variance, max of the 4th order random fields 
 

It is apparent from these tables that the fitting quality of the generalized Helmholtz 

decomposition for the 4th order tensor fields are worse than the 2nd order tensor fields, but 

still show a great reduction in divergence and curl compared to the input data. 
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Fig. 7.9. The comparison of time consuming for different size and order tensor fields  
 
 

A summary of timing results is presented in Figure (7.9). The red line shows the time to 

compute the decomposition of a second-order tensor field by forming the sparse matrices 

C and G in memory, and solving the normal equations using BiCG. The blue line shows 

the computation time for the same data when implementing matrix multiplications by C 

and G procedurally. For the 4th order tensor field we do not attempt to construct the 

matrices since they are so large.  
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CHAPTER 8: 
CONCLUSIONS AND FUTURE WORK 
 
 
 
8.1 Conclusions  
 

Topological approaches attempt to reduce a dense set of input data to a simple 

representation of the structure of the field by using generalized Helmholtz Decomposition 

for tensor field visualization. The Helmholtz Decomposition of a tensor field on 

Cartesian grids allows a flow field to be separated into divergence-free, curl-free and 

harmonic components. The curl-free component is irrotational, so it is useful for isolating 

features such as local maxima and minima of divergence (foci of sources and sinks) in 

tensor fields without interference from curl-based features. Similarly, divergence-free 

component is solenoidal, and is useful for isolating centers of vortices in tensor field. The 

harmonic term is both solenoidal and irrotational, and the amplitude of harmonic term is 

typically small. Therefore, such methods can emphasize the locations of critical points 

(foci of sources and sinks, or the centers of vortices) and a few separating streamlines 

(separatrices) to generate a skeleton description of the field [11]. Such flow skeletons can 

be concise and provide intuitive representations of tensor fields. In contrast, direct 

visualization of the vector field may result in a great deal of visual clutter.  

 

Topological feature extraction methods based on tensor field decomposition have been 

developed in this thesis. Decomposition splits the field into constituents with 

fundamentally different differential behavior, and permits the field to be segmented in 

terms of this behavior. The separating curve and local extrema of differential operators 

form a sparse skeleton representation of the field which still conveys much global 

structure. Topological methods for analyzing and visualizing tensor fields hold promise 

for simplifying these rich and complex datasets. Some developments in topological tensor 

field visualization have proceeded by generalizing the concepts of vector field topology. 

Degenerate points (in 2D tensor fields) and degenerate lines (in 3D tensor fields) have 
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commonly been defined in terms of eigenvectors of the tensors. Separatrices in the tensor 

case are hyperstreamlines, or integral curves of the eigenvector field. 

 

Furthermore, our approach to topological tensor field visualization differs from previous 

approaches in several other ways. We do not depend on the computation of eigenvalues 

or eigenvectors. We do not trace deterministic or probabilistic hyperstreamlines. Instead 

we generate scalar fields based on the Helmholtz decomposition and render images which 

emphasize these features. This method does not need any preconditioner and has 

relatively few parameters.  

 

We also generate a single separating contour which roughly partitions the tensor field 

into irrotational and solenoidal regions, which has the effect of classifying the critical 

points in each region. Even though some critical points are very close to each other, the 

signed error function still can effectively separate them. However, we do not address the 

problem of extracting the exact locations of critical points or lines.  

 

 

8.2.  Future Work  
 

We recommend that future investigations attempt to develop more efficient large-scale 

optimization methods for decomposing higher order tensor fields. We also recommend 

investigating regularized decomposition methods which can also impose smoothness 

constraints. In analysis of DT-MRI it would also be interesting to compare the 

topological features of the diffusion tensor field with the topology of the tensor field 

representing fiber orientation distributions. We also wish to explore the potential field  

and stream field ψ to see if useful information can be extracted directly from them. 

Processing time for 4th order tensor fields is high, and future work should investigate 

exploiting symmetry to reduce the computational complexity of the problem. Moreover, 

we can try to involve exploiting symmetry to reduce the computational complexity of the 

problem. 
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