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ABSTRACT

Topological Visualization of Tensor Fields
Using a Generalized Helmholtz Decomposition

Lierong Zhu

Analysis and visualization of fluid flow datasets has become increasing important with
the development of computer graphics. Even though many direct visualization methods
have been applied in the tensor fields, those methods may result in much visual clutter.
The Helmholtz decomposition has been widely used to analyze and visualize the vector
fields, and it is also a useful application in the topological analysis of vector fields.
However, there has been no previous work employing the Helmholtz decomposition of
tensor fields. We present a method for computing the Helmholtz decomposition of tensor
fields of arbitrary order and demonstrate its application. The Helmholtz decomposition
can split a tensor field into divergence-free and curl-free parts. The curl-free part is
irrotational, and it is useful to isolate the local maxima and minima of divergence (foci of
sources and sinks) in the tensor field without interference from curl-based features. And
divergence-free part is solenoidal, and it is useful to isolate centers of vortices in the
tensor field. Topological visualization using this decomposition can classify critical
points of two-dimensional tensor fields and critical lines of 3D tensor fields. Compared
with several other methods, this approach is not dependent on computing eigenvectors,
tensor invariants, or hyperstreamlines, but it can be computed by solving a sparse linear
system of equations based on finite difference approximation operators. Our approach is
an indirect visualization method, unlike the direct visualization which may result in the
visual clutter. The topological analysis approach also generates a single separating
contour to roughly partition the tensor field into irrotational and solenoidal regions. Our
approach will make use of the 2™ order and the 4™ order tensor fields. This approach can
provide a concise representation of the global structure of the field, and provide intuitive
and useful information about the structure of tensor fields. However, this method does

not extract the exact locations of critical points and lines.
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CHAPTER 1:
INTRODUCTION

1.1. Motivation

Analysis and visualization of fluid flow datasets has become increasing important with
the development of computer graphics. Many scientists are interested in performing the
research and make great contribution in visualization of tensor fields. There are many
different methods to visualize the tensor fields. Even though Volume rendering [3],
particle tracing, tensor probe and similar illuminated field lines methods have proved to
be the most suitable approaches for the flow field visualization, those traditional
visualization approaches often provide a rather coarse spatial resolution. The fast 2D
texture-based billboarding visualization by McGraw et al. [2] is combined with the
current glyph, particle and texture-based visualization techniques. The resulting image is
blended textured billboards, which are rendered at the center of each voxel in the dataset,
and rendering polygons always face the viewer. This approach has very few parameters,
and the speed of the billboarding method makes parameter turning much faster since the
image can be recomputed in real-time. Furthermore, the texture-based approach can
flexibly map diffusion tensor field properties to visual characteristics such as color,
texture orientation, texture frequency, tensor animation, and other characteristics. It is
effective and suitable for a large spectrum of applications. My previous work involved

applying this method into three dimensions. The result is presented in Figure (1.1).



Fig. 1.1. Result of 3D texture-based billboarding visualization of a human brain MRI

The results obtained using the billboarding approach show some visual artifacts between
voxels. And the visualization approaches mentioned are all direct visualizations of flow
fluid datasets. However, all direct visualization approaches of the flow fluid datasets may
still include the visual clutter if the original datasets are cluttered, which makes it difficult
to analyze the tensor fields correctly. How to effectively visualize the flow fluid dataset

still presents a great challenge.

The Helmholtz decomposition has been widely used to resolve many problems of fluid
mechanics and electromagnetism, and it has also been applied in the topological analysis
of vector fields. Polthier and Preuss [34, 35] use a discrete Helmholtz decomposition to
robustly locate singularities in vector fields. Because they are dealing with vector fields
defined on irregular meshes they must carefully define divergence and curl operators.
Tong et al. [29] describe vector fields in a multiscale framework by defining a vector
field scale space in terms of the separate scale spaces of the solenoidal and irrotational
parts of the field. The vector field is then smoothed by separately smoothing these

constituent fields. It can be seen that this approach better preserves singularities than



smoothing the input field directly. They also enhance features of the field by separately
amplifying the components of the decomposed field. Li et al. [30] used the Helmholtz
decomposition to segment 2D discrete vector fields, and use Green’s function method to
compute the decomposition. Then for each critical point they find the region of influence
using graph-cuts. In their work the critical points are defined in terms of scalar stream
and potential functions. Even though the Helmholtz decomposition has been proved
useful in the analysis of the vector field, there has been no previous work applying this
decomposition to tensor fields. Our approach will be to use finite difference

approximations of the differential operators in regular Cartesian coordinates.

There is a long history of the topological analysis of surfaces and scalar fields.
Applications include surface editing, segmentation, and shape matching. Reeb graphs
[22] have been useful in describing the topology of surfaces in terms of a skeleton. Nodes
of the Reeb graph represent critical points where isocontours of a scalar function are
defined over the surface change topology. The contour tree [13, 26] is a special case of a
Reeb graph - one which contains no cycles. It is often applied to images, or scalar fields

of arbitrary dimension [18].

Our approach is based on the topological visualization and Helmholtz decomposition.
The goal of this work is to develop a simple, but powerful representation of the complex

phenomena described by the data.

1.2. Thesis Outline

Chapter 1 provides an overview of this thesis, the motivation to choose the topic of
topological visualization of tensor fields using a generalized Helmholtz decomposition,

the contribution of this thesis for diffusion tensor fields, and the thesis outline.

Chapter 2 introduces the mathematical equations and properties of the 2" order Cartesian

tensors and higher order Cartesian tensors.



Chapter 3 introduces several very important concepts which will be applied in the
following chapters, including the properties of scalar field gradient, vector field

divergence, vector field curl, tensor field divergence and tensor field curl.

Chapter 4 illustrates the properties of Helmholtz decomposition method and how the
Helmholtz decomposition method works in the vector fields. Also, the Helmholtz
decomposition is applied to the tensor fields extending from vector fields by employing

the definitions of tensor field differential operators.

Chapter 5 introduces the numerical implementation, and thus illustrates how to realize the
idea described in chapter 4 by using sparse matrices and Kronecker product to compute

the curl-free and divergence-free components of a tensor field.

In Chapter 6, topological concepts, such as critical points, vortices, etc., will define the

signed error function which will be used to segment tensor fields.

In Chapter 7 we demonstrate the results of experiments which apply the Helmholtz
decomposition to synthetic tensor fields and diffusion tensor MRI of the human brain and

the topological visualization of synthetic tensor fields based on signed error function.

Chapter 8 represents the conclusion of the thesis and recommendation for future work.
Although this method appears to work very well, there is still room for a great deal of

improvement to this method.



CHAPTER 2:
The 2" ORDER AND HIGHER ORDER
CARTESIAN TENSOR

Tensors have become a very important topic, since they have been introduced into
mathematics, physics and the engineering field to extend the notion of scalars, vectors
and matrices. Tensor fields, especially the 2" order tensor fields, are useful in many
medical, mechanical and physical applications such as: fluid dynamics, molecular
dynamics, biology, geophysics, MRI and other applications. Tensors provide a natural
and concise mathematical framework for formulating and solving problems in these areas

of research.

The order of the tensor is the number of numerical indices which can specify an
individual component of a tensor. If the tensor order is / and d represents the dimension
of the tensor, then the tensor has / indices and d'components. Each index can take one of
d different values. In 2 dimensions, an /th order tensor then has 2!components. Similarly
in 3 dimensions, if the order of the tensor is 2, the tensor has 9 components, and if the

order of the tensor is 4, then the tensor has 81 components.

Thus the 0™ order tensor is a scalar, which is a single component. Tensors of the 1* order
are represented as vectors, and tensors of the 2™ order are represented as matrices and so
on. Tensors are generalizations of scalars (that have no indices), vectors (that have
exactly one index), and matrices (that have two or more indices) to an arbitrary number
of indices. The notation of a tensor is similar to a matrix and has an arbitrary number of
indices. A general tensor may also have two different types of indices, covariant denoted
by subscripts and contravariant denoted by superscripts. The distinction between
covariant and contravariant indices must be made for general tensors. The two indices are
equivalent for tensors in three-dimensional Euclidean space. Such tensors are known as

Cartesian tensors. Therefore, indices will be denoted using only subscripts



2.1. The 2" Order Cartesian Tensors

Diffusion tensor MRI is a source of tensor field data which is common in medical
imaging applications. Diffusion tensor imaging scans comprise at least six gradient
directions. A diffusion tensor MRI is measured via the magnetic field variations in the
MRI magnet. It is sufficient to calculate, for each voxel, a diffusion tensor D. The ond
order tensor in 3 dimensions will have 9 components represented by a 3X3 positive

symmetric matrix given by,

Dxx ny sz
D=|Dy, D,, D,, 2.1
sz Dzy Dzz

The diagonal elements Dy, D,, and D,, represent the apparent diffusion coefficient
(ADC) along the x, y and z axes in the laboratory frame. Furthermore, the tensor is

symmetric, so DT=D.

The MRI intensity, S, at each voxel depends on the properties of the diffusion-encoding
gradient, b, and the apparent diffusion tensor, D, at that location. The Stejskal-Tanner

formula indicates their relationship is given as:
3 3
1T 1

In Equation (2.2), S, is the signal intensity without the diffusion weighting, S is the signal
with the gradient, b is a matrix characterizing the gradient pulse sequence, and D is the

diffusion constant.

Equation (2.2) can be expanded to yield the following equation:

S = Soex p(=bxxDyx — byyDyy — b,,D,; — 2byy Dy, — 2by,,D,,, — 2by,Dy,)  (2.3)

Then we can log-linearize the Equation (2.3) to obtain the following equation,

6



InS =(—byy Dy — byyDyy — by, D,y — 2byy Dy, — 2by, D,y — 2by,Dy, ) IS, (2.4)

For each slice image, there are seven unknown parameters which represent the six
independent components of symmetric diffusion tensor, D, and S;. According to the
method of least squares linear regression, we acquire a diffusion-weighted image with 7
gradient directions which provide eight equations for S in each voxel in order to fully
generate a diffusion tensor. The system of equations can be solved using the following

Equation (2.5),

InSt 1 _b;x _bjlly _bzlz _b;y _bglzz _b;z Dyy
. : : . : . . : DZZ (2 .5)
D

InS™ 1 _b;%x _bglzy _bzlz _b;%y _bjllz _b;Z

The Equation (2.5) can compute each component of tensor. Linear algebra is used to
generate eigenvalues and eigenvectors of this tensor D,

D =UAUT (2.6)

In Equation (2.6), 4 = diag [14, 15, A3], U= [e4, e,, e3]. Sorting the eigenvalues (44, 4,
and A3), let 4; > 1, > 13>0 be the eigenvalues of the symmetric tensor D, and let e; be
the normalized eigenvector corresponding to A;. Then D can be expressed as the
following Equation (2.7),

A4 0 07res
D=1[e1 e e5] [O Ay 0] lez] (2.7)
0 0 Aslles

Expanding the Equation (2.7), therefore, the tensor equation can also be expressed as the
Equation (2.8),
D = /11616{ + ){zezeé + /13939:; (2.8)

The eigenvalues represent the magnitude of diffusion in the direction of their

corresponding eigenvectors. One purpose of diffusion tensor MRI is to assess the

7



properties of white matter in the central nervous system. The fiber direction is indicated
by the tensor’s principal diffusion direction (PDD). A popular representation for
describing anisotropic diffusion is the diffusion ellipsoid. This following ellipsoid image

(Fig. 2.1.) is the unit sphere under the transformation defined by a tensor D.

Fig. 2.1. Image indication of a 3D Diffusion tensor three principal axis directions

For anisotropic diffusion 4; > A, = A3, the diffusion ellipsoid is linear.
For anisotropic diffusion 4;=4, > A, the diffusion ellipsoid is planar.

For isotropic diffusion 4;= 1, = A3, the diffusion ellipsoid is spherical.

linear planar spherical

Fig. 2.2. The diffusion tensor images resulting from various typical eigenvalues

Fractional anisotropy (FA) is commonly used to quantify anisotropy, which is greatly
influenced by the magnitude and orientation of white matter tracts of the brain. This
results in significantly large normal variations of FA throughout the brain, in which the
FA is high in areas of prominent white matter pathways, for example. Therefore, this
property can be used to map the course of fiber tracts. However, one of the limitations of
FA imaging is that it does not contain information about the directionality of anisotropy

and it is therefore difficult to identify white-matter tracts only through the FA images



alone. Fortunately, color-coded FA images can composite images containing information

about both magnitude and direction of diffusion anisotropy.

If full tensor data acquisition is applied, the fractional anisotropy can be calculated from
the eigenvalues 44, 4, and A3 of the diffusion tensor. The equation is given as,
V3Yy(h — D2+ (1, — D2 + (45 — 4)?

I JRrAE

where 4, is the mean of the eigenvalues (*1+22*23) and 1,, A, and 2 are the eigenvalues
of diffusion tensor D sorted in decreasing order.

FA = (2.9)

FA takes on values between 0 (perfectly isotropic diffusion) and 1 (the hypothetical case

of an infinite cylinder) and is thus directly comparable between subjects.

2.2. Higher Order Cartesian Tensors

Higher-order tensors have recently been used to describe diffusion in the context of

medical imaging by Ozarslan et al. [9, 10].

From the 2™ order tensors Equation (2.6), the diffusion coefficient can be assumed as,

D(g) Zii Dijg:9; (2.10)
==

If the order indices are permuted, the result is the Equation (2.11)

3 3 3 3 3 3 3 3

i=1j=1 i=1j=1 i=

For all vectors g;g;=9;9;, and the symmetric the 2" order tensor becomes



The number of distinct components reduces from 9 to 6. Clearly, imposing a symmetry
constraint on D can significantly reduce the number of distinct components and eliminate

advective transport from the equation.

Similarly, for the /th order tensors, symmetry implies that components whose indices are
permutations of each other are equal,

Dii,.i; = D,y .ip) (2.13)

where (i1, -~ i;) stands for all permutations of the / indices. For instance, if / is 4™ order

tensor,

Dxxxy = Dxxyx = nyxx = Dyxxx (2.14)

The number of unique components of a tensor is independent of the order of indices, so
the symmetry reduces the number of unique components from 3' to

Nl_<z+z>:(z+z)(z+1)

i=(, : (2.15)

where N is the number of unique components and / is the tensor order. For example, if
= 4, then the number of distinct components N5 =15, which is much lower than the

number of total components 3*=81.

The previous section illustrated the Stejskal-Tanner formula for 2™ order tensor. The

generalized Stejskal-Tanner formula for order / tensor is given by

3 3 3
S=S,exp| —b Z Z Z Diliz...ijgilgiz ---gl-j (216)
i1=1 i2=1 lJ=1

where gl-jis one of the basic vectors. The Equation (2.16) can help us to calculate all the

components of the diffusion tensor (DT) of general order by means of a simple

multilinear regression. The diffusion coefficient along the gradient direction is given by

10



3 3 3
D(g) = Z Z Z Dii,-i;8i, 8i, *** 8ij (2.17)
{Tii=1 i=1

the generalized Stejskal-Tanner formula for order / tensor will be simplified into the
following Equation (2.18)
S = Spexp (—bD(g)) (2.18)

Given g, a negative value, the diffusion coefficient will have the following Equation
(2.19),

—D(g), lisodd

D(g), [ is even (2.19)

D(-g) = {

However, the diffusion coefficient has a physical meaning, which implies that it can not
have a negative value. Therefore, the / is forced to be an even number (/=2, 4, --+). The
result is the antipodal symmetrical diffusivity, given as

D(—g) = D(g),lis even (2.20)

The Equation (2.17) shows us all the tensor components. Therefore the distinct
components of the /th order DT can be extracted, which provides the number of times a
given element is repeated. The number of permutations of each set of indices is equal to
the number of times that component is duplicated. The repetition number, y, of the
component is called the multiplicity, and is given by

_(l) l—ny\ [! 291
k= N, n " n,ln,n,! (221

y y

where [ is the order of tensors, n, , n, and n, are individually the number of the x, y, and

z indices included in the full sequence of subscripts defining the component of the

tensors, and [ = n, + n,+ n,. Therefore, the general Stejskal-Tanner formula can be

rewritten as,

11



N3 l
s=5| b wbe| [gewm (222)
k=1 u=1

Where Dy, is the k" unique element of the tensor, Ji(p) 1s the component of the gradient
direction specified by the p*"* index of the k™ unique element of the generalized tensor
D, and p;, is the multiplicity of the component. Table (2.1) lists the unique components of

a generalized DT up to the 4™ order, along with their response multiplicities.

When writing an expression containing tensors, the Einstein summation convention will
be used. This means that repeated indices are to be multiplied pairwise, and summed over

all possible values,

d d d
AityiBiiyoty, = z Z ...ZAiliz...ilBiliz...il (2.23)

where 4 and B are two same size tensors. If both tensors are symmetric, the number of
terms in the summation can be greatly reduced by simply summing over the unique

components
Nl

Ai1i2"'i1Bi1iz"'il = z ,UkAkBk (224)
k=1

where A, and By, are the k*" independent components of 4 and B respectively, i is the
multiplicity of that component, N'is the number of unique components without repeating,

and / is the order of tensor A4 or B.

12



0™ Order 0 4™ Order

u=1 D Drccx Dxxyy
u=1 Dyyyy u==6 Dyyzz
2" Order D,y D,y
Diex Dxxxy
U= 1 D Yy Dxxxz
Dxxyz
D,, Dyyyx
u=14 p=12 Dyyxz
ny Dyyyz
zZZXy
u=2 Dyz Dy
D,, Dzzzy

Table 2.1. Distinct Elements of the Diffusion Tensor up to the 4™ order, and their

response multiplicities

13



CHAPTER 3:
VECTOR CALCULUS AND DIFFERENTIAL
OPERATORS

This chapter introduces the basics of vector calculus and the differential operators, which
will be used in the subsequent sections. A vector can be thought of as a directed arrow
with magnitude and direction in Cartesian space. A vector field is a vector, each of whose
components is a scalar field. We first introduce one of most important and useful
mathematical constructs called the ‘del operator’, del is a vector differential operator,
usually denoted by the nabla symbol, V. The gradient of a scalar field, and the divergence
and curl of vector field will be denoted by the del. Del is defined as components of a
vector which are partial differentiations with respect to the three principle directions of a

Cartesian coordinate system.

Assuming the unit vectors in the x, y, z directions are denoted by 7, j and k respectively,
the del operator in the three-dimensional Cartesian coordinate system is given as

V=—i+—j+=—k (3.1)

This can also be expressed as

0 0
V= (5o (3.2)

Or

v=|— (3.3)

14



3.1. Gradient of Scalar Fields

At any point of a scalar field, the gradient of the scalar field is a vector field which points
in the direction of the greatest rate of change, and whose magnitude is the greatest rate of

change.

For a scalar field f{x, v, z) in Cartesian space, the gradient is given as

0 0 d af of o
grad(f) =Vf =%i+£j+£k = (%,%,a—];

) (3.4)
where each of the partial derivatives is evaluated at the point (x, y, z). The gradient of the
scalar field becomes a vector field. The gradient of a scalar field is simply the product of
a scalar field such as f(x, y, z) by the del operator. Here, f(x, y, z) can be referred to as the
potential field.

3.2. Vector Field Operator

Besides the usual operations of vector-vector addition and scalar-vector multiplication,
there are two types of multiplication of vectors by other vectors. These include the dot

product and cross product.

The dot product of vector field is the sum of the products of corresponding paris of vector
components. The result of the dot product of two vectors is a scalar. In Cartesian space,
the dot product of two vectors u = (uq, Uy, u3) and v = (v, v,,v3) is defined as:

UV =U Uy + UV, + UzV3 3.5

Also the dot product can be obtained via transposition and matrix multiplication,

u-v=ulv (3.6)

15



The cross product results in another vector which is perpendicular to the plane containing
the two input vectors. This is also referred as the vector product because it yields a new
vector.

i j ok
Uy Uz U
Vi Uy U3

UXv= = (Uyv3 — U3Vy) T — (U V3 — U3Vy)j + (v, —uyv)k (3.7)

where i, j and k are the basis of unit vectors. Here, u X v is always perpendicular to both
u and v, with the orientation is determined by the right-hand rule. The cross product of

two vectors contains more valuable information about the two vectors themselves.

If we multiply a vector field by the del/ operator, we will get two different multiplication
results. One is called the divergence of a vector field, and other is called the curl of vector

field. Divergence and curl will be introduced in detail in the following two sections.

3.2.1. Vector Divergence

The physical meaning of divergence is flux density, which reflects the rate of flux
expansion and contraction at a point. We can define divergence as the rate of increase or
decrease in the direction of the vector at a point of a vector field. The divergence of a
vector field is the dot product of the del operator and the vector field. Therefore, the

divergence of a vector field is a scalar. Given a vector fieldv(x,y,z) = (vxi +v,j+

v, k), the divergence of a vector field v is given as

. _ _(9f. of  of . .
div(v) =V v—(al+@] +£k) (vxl+vy]+vzk)

= (52)+ () + (2)

v, 0v, 0,
_ 3.8
ax "oy oz (38)

16



The divergence of the vector field becomes a scalar field by applying the dot product of
vector operator V to the vector field. At a given point, the divergence of a vector field is a

single number that represents how much the flow is expanding at that point.

..........

\ Source —

(a) div(v)> 0, expanding (b) source

,>< >\(

_;_‘ Sk ._’_
Rl il puodng b /
F11TAATANANY >< n X
LB BB S B b b |

(¢) div(v) <0, shrinking (d) sink

Fig 3.1. (a) and (b) indicate the source and its expanding direction, (b) and (c) represent

the sink and its shrinking direction

A positive value of V- v at a point means that the integral lines of the vector field v

diverge there. We can also say that v has a source there, whose volume density is V - v.

A negative value of V- v at a point means that the integral lines of the vector field v

converge there. We say that v has a sink, whose volume density is V - v.
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If V-v=0, v has neither a source nor a sink. A vector field v, where V- v = 0 at all
points is referred to as solenoidal. A solenoidal field is also sometimes called

incompressible.

We use the velocity field to illustrate the divergence of vector field. The divergence of a
vector field is relatively easy to understand intuitively. Imagine that the vector field v
(Figure (3.1.a)) provides the velocity of a fluid flow. It appears that the fluid is expanding
outward from the origin. Its expansion of fluid flowing with velocity field v is captured
by the divergence of v, which we denote div(v) (V- v). The divergence of the above
vector field is positive (V - v > 0) since the flow is expanding. In contrast, the vector field
(Figure (3.1.c)) represents fluid flowing so that it compresses as it moves toward the
origin. Since this compression of fluid is the opposite of expansion, the divergence of this

vector field is negative (V - v <0).

Divergence is distributive, and therefore satisfies V- (v; + v,) =V-v; + V- v, . Ifvis

an incompressible fluid, it satisfies V- v =0.

3.2.2. Vector Curl

Curl (also called rotor or rotation) is defined as the rate of increase or decrease
perpendicular to the vector field, which reflects the rotational tendency at a point of a
vector field. The curl of a vector field is the cross product of the del operator and a vector

field, and therefore the curl of a vector field is still a vector field. Given a vector

fieldv(x,y,z) = (vxi +vyj + vzk) , the curl of a vector field is given as
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d d d d d d
) =vxv=|2 2 2 :<&_ﬁ>i_<ﬁ_&)j+<ﬁ_ﬁ>k

dx 0y 0z dy 0z ox 0z dx  0dy
Ve Uy Uy
) 0 0
dz 0dy
0 0
= PR E—— Y] 39
0z 0 0x (39)
g 0
Jdy Ox

where v is the vector field, v,, v,, v, are functions of the variables x, y and z, and 7, j and k
are the unit basis vectors. In fluid mechanics, the curl of the fluid velocity field is called

the rotation because it measures the field's degree of rotation around a given point.

Based on the above definitions of divergence and curl definition, we can analyze the

properties of the divergence and curl of a vector field.

~ dv, O0vy\.K (0v, O0vy\. K [0v, Ovy
=y ((W E)l G5+ (5 ay )"
_ 0 [0y, v, _i(%_%%i My ) _o (310
ox\dy 0z ) Ody\dx 0z 0z\0x Ody

The divergence of the curl of a vector field is always zero. Therefore, the curl of a vector

field is described as divergent-free or solenoidal.

Similarly,
i j k
VX(VU):% % %:<62v_62v>_<62v_62v>+<62v_62v>
ov v ov dydz 0zdy 0z0x 0x0z 0xdy 0yox
dx Jdy o0z
=0 (3.11)
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The curl of the gradient of a scalar field is always zero. The gradient field is described as

irrotational, or curl-free.

3.3. Tensor Field

The properties of a tensor have been described in Chapter2. A tensor field, a concept
which has been applied in mathematics, physics and engineering, is defined as a
Cartesian space, each point of which has a tensor value. Tensor divergence and tensor
curl will be related through discrete partial derivatives, which are denoted by the symbol

d,

9 = — (3.12)

Therefore, tensor equations such as divergence and curl can be expressed in a simple and

compact manner based on the above equation.

Using Equation (3.4), the gradient tensor for the 2" order is simply the product of the del

operator and tensor, which is given as

0D, 9D, 0D,
ox ox Ox
0 0 0 oD, 0D, oD
dD2=VD2=<—' —j —k)D' D,j+ D, k) === Y z
grad(D?) 6xl+6y]+6z (Dyi + Dyj + D,k) 5 oy Oy
oD, 9D, 0D,
L 0z 0z 0z
0Dy, 0Dy, 0D,
0x 0x dx
_ Dy, dD,, dD,, (3.13)

ay dy ay
dD,, 0D,, 9D,

L 0z 0z dz A

or
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grad(D?) = 9;Dy, (3.14)

where superscripts denote tensor order. Similarly, the gradient tensor for the 4™ order can
be expressed as,

grad(D*) = 0;Djjm (3.15)

where the notation indicates that for all possible values of index i, the tensor components

are differentiated with respect to that index.

3.3.1. Tensor Divergence

In general, the divergence of an order n tensor field is an order (n-1) tensor field. If the

order of tensor field is 2,

dD,, 0D,, 8D,,

_ _ ya
(V-D)o = VgDgq T2 + Jy + 9 (3.16)
Therefore, the divergence of the 2™ tensor field is given as,
(0D N 0D, N daD,,
0x ady 0z
Pix Dy Dz oD aD oD
div(D) =V-|Dyy Dy, D,,|=|="24+ 24 2~ (3.17)
0x dy dz
sz Dzy DZZ
aD,, N oDy, N aD,,
| Ox dy 0z |

Therefore, the divergence of the tensor field can be expressed in Einstein notation as,

Similarly, if the order of tensor field is 4, the divergence of the tensor field can be
expressed in Einstein notation as,

dlU(D4) = aiDijkl (319)
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Where the notation indicates that for all possible values of index i, the tensor components
are differentiated with respect to that index and summed over. If the field consists of

totally symmetric tensors, the divergence tensor will also be completely symmetric.

If we apply the product rule for differentiation, the divergence for Dv will be,

dlU(DU) = al(DUU]) = UjaiDij + DUUJ ai (320)

From the Equation (3.20), we find the divergence of Dv is split into two parts. The first
term v;0;D;; relies on the divergence of D(9;D;j). The second component D;;d;v;
depends on the gradient of v (9;v;). The divergence of D contains all of the information

regarding how spatially varying D influences the div(Dv).

The divergence often appears in conservation laws such as Fick’s second law,

div(DVc) = div(D)Vc + DV?c =0 (3.21)

which is a statement of conservation of mass for the diffusion process governed by the
concentration gradient and diffusion tensor field D. Expanding div(DVc) using the
product rule, it becomes apparent that if the concentration gradient is nonzero and

constant, then mass can only be conserved if the divergence of the tensor field is zero.

3.3.2. Tensor Curl

Similarly, the curl of a tensor field can be derived from the product rule. The curl of a
tensor field is a rotation operator. The magnitude of each point of the tensor field is the
rotation magnitude, and the direction of curl is perpendicular to the rotation plane at each
point. The curl of tensor field is denoted cur/ Y or V X .

dD,, 9Dy, aD,, 0dD,, 9D,, 0JD,,]
dy 0z dy 0z dy 0z
curl(D) = Vx D = 0D, B dD,, 0Dy, B oD,, 0dD,, B aD,, (3.22)
0z ox 0z 0x 0z ox
D, 09D, 0Dy, 0Dy, 0D,, 09D,,

| Ox dy 0x dy d0x dy |
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The curl of the 2™ order case in 3 dimensions is defined as

curl(D) = & (9;Dy;)

Also the curl of the 4™ order case in 3 dimensions is defined as

curl(D) = &;jx(0;Dyimn)

where ;. is the permutation tensor (Levi-Civita symbol),

+1, (i,j, k) is an even permutation of indices
&jk =3—1, (i,j,k) is an odd permutation of indices
0, otherwise

(3.23)

(3.24)

(3.25)

The permutation tensor is often used to define the vector cross product u X v = &;;,u;vy.

Therefore, the curl is usually used to characterize vortices and shear in flows.
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CHAPTER 4:
THE HELMHOLTZ DECOMPOSITION OF
VECTOR AND TENSOR FIELDS

4.1. The Helmholtz Decomposition of Vector Fields

A general vector field may contain features such as sources and sinks which are
characterized by divergence. They may also contain other features, such as vortices,
which are characterized by the curl. If we can separate the field into two components, in
which one part contains the sources and sinks, and the other part contains the vortices we

can simplify the processing and visualization of the field.

Fortunately, in the mathematical theory of fluid dynamics, a method exists which can
separate the divergence-free and curl-free components. This method is the well known
Helmholtz decomposition (also referred to as the Helmholtz-Hodge decomposition).
Hermann von Helmholtz found that any sufficiently smooth, rapidly decaying vector field
in 3 dimensions can be decomposed into three components, including a curl-free vector
field, a divergence-free vector field, and a harmonic vector field. The equation
representing this is given as,

v=Vp+VXp+h (4.1)

where v is a vector, V¢ is the gradient of a scalar potential field ¢p, V X 1 is the curl of a

vector stream field 1, and % represents a harmonic vector field.

Chapter 3 describes the characteristics of gradient, divergence, and curl of vector fields.
The properties of these concepts can be applied in Equation (4.1). The gradient of a scalar
potential field ¢ is curl free, and therefore we have

curl(Vep) =V xVep =0 (4.2)

Similarly, the curl of a vector stream field 1 is divergent free, and therefore we have
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div(Vx ) =V- (VX ) =0 (4.3)

If a vector field possesses both solenoidal and potential features, it is said to be a
Laplacian field, which is common in vector analysis. The symbol of the Laplacian
operator isV - V , also written as A. The Laplacian of a scalar field is given as,
d*v, 0%*v, 0%y,

v=V-Vv= 2 + 3y? + 372

(4.4)

The Laplacian field is satisfies the conditions cur/(v)=0 and div(v)=0.

Harmonic vector field 4, is both solenoidal and irrotational, so the harmonic vector field
also has the following properties,

curl(h) = div(h) =0 (4.5)

V¢ is called the curl-free or divergence component, V X 1 is the divergence-free part or
rotation component, and the remaining / is the harmonic component. Also ¢ can be
referred to as the rotation potential and 1 can be referred to as the divergence potential. If
the curl operator is applied to the Helmholtz decomposition equation, the result is

curl(v) = curl(Vep) + curl(Vx ) + curl(h) = curl(V X ¢) (4.6)

The curl of the divergence-free component is the same as the curl of the original vector

field. The curl-free and harmonic components are eliminated from the equation.
If the divergence operator is also applied to the Helmholtz decomposition equation, the
result is

div(v) = div(Ve) + div(V x ¢) + div(h) = div(Ve) 4.7)

The divergence of the curl-free part is equal to the divergence of the original vector field.

The divergence-free part and harmonic components are eliminated from the equation.
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Fig 4.1. The results of Helmholtz decomposition of vector fields,

4.2. The Helmholtz Decomposition for tensor field

The above section has described the Helmholtz decomposition for vector fields in detail.
However, the Helmholtz decomposition of tensor fields can be extended from the vector
field to a tensor field. The Helmholtz decomposition can split a tensor field into three
parts: divergence-free, curl-free and harmonic tensor field components. The Helmholtz
decomposition of a tensor field is represented by,

D=V +Vxyp+H (4.8)

where D is a tensor field, V¢ is the gradient of a scalar potential field ¢, V X 1 is the curl
of a tensor stream field i and H is a harmonic tensor field. Similarly with the vector
field, V¢ is irrotational, V X i is solenoidal, and H is both solenoidal and irrotational
with a typically small amplitude. The tensor field has the following properties, which will
greatly aid in computing the values of ¢ and 1 in future computations,

div(curl@)) =V-(Vxy) =0 (4.9)
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curl(grad(q.'))) =Vx(Vp)=0 (4.10)
V-H=VxH=0 (4.11)

Combining Chapter 3 definitions of tensor divergence, curl and gradient of Cartesian
tensors given by Heinbockel [36] with the above equation for Helmholtz decomposition
of tensor field, the Helmholtz decomposition of the 2™ order tensor fields is given in

Einstein notation as,

Dij = 0;¢; + &imn(OmPnj) + Hij (4.12)

Similarly, the equation for the Helmholtz decomposition of the 4™ order tensor field in

Einstein notation is given as,

Dijrr = 0i®jrt + Eimn(OmWnjir) + Hijra (4.13)

The formulation of the Helmholtz decomposition for tensor fields can be made for
tensors of arbitrary order, however, we only present the 2™ order and the 4™ order

decompositions due to the fact that these provide the basis for the experiments in Chapter

7.
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CHAPTER 5:
NUMERICAL IMPLEMENTATION

5.1. Taylor Series Expansion

We have indicated how to extend the Helmholtz decomposition from the vector fields to
the tensor fields in Chapter 4. From the description of Equation (4.12) and (4.13), we find
that both the 2" order tensor and the 4™ order tensor have first derivative. In order to
compute the first derivative of the tensor data, the Taylor series expansion for
approximating a derivative will be applied. This concept provides the basis for many
numerical methods, such as numerical differentiation. Taylor series is a series expansion
of a function about a point with derivative of continuously increasing order derivatives.
Therefore, we can apply Taylor series expansion for approximating the derivative. The

Taylor series is given by

fQ) = fxo) + (x = x0) f' (x0) + -+ + % (e = x0)"f ™ (%) + - D

where n! denotes the factorial of # and f™ (x,) denotes the nth derivative of f evaluated

at the point x,. And the first order Taylor series expansion can be expressed as,

fQ) = fxo) + (x = x0) f' (x0) + 0(x — xo) (5.2)

Evaluating at x = x, +h yields,
f(xo+h) = fxg) + hf'(x0) + 0(x — xp) (5.3)

Replacing # with —4 in the previous equations gives,

flxo —h) = f(xo) = hf"(x0) + 0(x — xo) (54

Using Equation (5.3) to subtract Equation (5.4) provides the following approximation,
f(xo+h) — f(xg —h) = 2hf'(x0) (5.5)
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Equation (5.5) divided by 24 provides the centered difference:

f(xo+h)—f(xo —h)

f'(xo) = h

5.2. Kronecker product

(5.6)

In order to represent the discretized operators as block matrices, where the blocks

correspond to finite difference operators applied to a single tensor component. We use the

Kronecker tensor product, denoted by symbol &).

If given 4 is a m X n matrix and B is a k X | matrix,

aiq Ain
A=| ¢ : & B=

mxn

Am1 - Amn

b11 aes bll]
bkl e bkl le

Then the Kronecker product A @ B is the mk X nl block matrix as following,

a1B ... auB
A®B=|a;B]=| ¢ - '

amB ... am,B

mkxnl

(5.7)

(5.8)

Now, when we extend every element of matrix B in the above Equation (5.8), we will get

the Kronecker product of 4 and B as following Expression (5.9),

[a11b11 agibez aq1by, Ainb11  Ainbiz Agpnbq; T
ay1by1  aq1by; ay11by; Ainba1  Aipba A1nbyy
a11bx1  a11bk; a11by; Ainbrr  Ainby: A1nby

A ® B — . . . . .

Amib11  amibia Am1by; Amnb11  Amnbiz Amn b1y
Ami1bz1  Amiby; am1by Amnba1  Amnbaz Amnbay

-amlbkl amlbkz amlbkl amnbkl amnbkz amnbkl-
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The Kronecker product is a special case of the tensor product, and therefore, it is bilinear

and associative. The Kronecker product follows several laws similar to scalars and

vectors,

Distributive Law: A ® (B + C) = A®B + A®C
(A+B)®C =A®C + B®C

k is a scalar: (kA) ® B = A®(kB) = k(A ® B)

Associative Law: (A®B)®C = AQ(B ® C)

Transposition: (A ® B)T = AT®BT

Mixed-product property: (AQB) 1 = A71 ® B~1

However, the Kronecker product is not commutative, so the Kronecker product A @ B

and B @ A are different matrices. Therefore, A @ B +# B®A

A simple example can be used to illustrate that the Kronecker products A ® B and

B ® A are different matrices,

1 1 1 1 0 0
X=l1 1 1| &Y = [0 1 0]
1 1 1 0 0 1
Plot the Kronecker (X, Y), Kronecker (Y, X)
0 0
1 . » . 1 . s s
2 » * » 2 - - -
3 . . . ] ST
I . . 4 . e s
5 . . . 5 .o s
B - - » g » LI
7 - - - 7
8 . . . 8
9t * » s - Ir
UL e R
Kronecker (X, Y) Kronecker (Y, X)

Fig. 5.1. A simple example of the comparison of Kronecker (X, Y) and Kronecker(Y, X)
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5.3. Center Difference

The above section applies Taylor series to compute the first derivative by using centered
difference. In the case of 1 X n vector data, the following illustration can be used to
demonstrate the computation of the 1-dimensional gradient. Using matrices, the data will

be transformed into a n X 1 column vector,

L %
%1 X x+i
(@)

dx—l
dy
dyt1
(b)

Fig. 5.2. (a) Plot of the relationship of the target neighbor pixels in one dimension. (x) is

the target pixel. (b) Transform the vector to one column vector

0 +1 0 .. 0
-1 o +1 :
A=210 -1 0 - 0 (5.10)
0 0 -1 0

A*= A is the operator to compute the first derivative of one dimension data, and the

Figure (5.3) can show us the operator.

31



I L L I L I I L
0 2 4 6 8 10 12 14 16

Fig. 5.3. The result of plotting A* operator based on m =16

Now we use a 2-dimensional pixel map to explain how to design the matrix to compute
the 2D gradient, divergence, and curl. The pixel relationship of the image can be
expressed by a simple map. The density of any pixel is dy,. The center pixel is the
output pixel (x, y). It depends on its neighbor pixels in 4 directions. The following
coordinate table shows the relationship of the target neighbor pixels,

xy-d
L~

x-f}y ¥ . 4 # .x+..'.il,_}’
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dx,y—l

dx-1y
dyy
dx+ 1,y

dx,y+ 1

(b)

Fig. 5.4. (a) Plot of the relationship of the target neighbor pixels in two dimensions. (x) is

the target pixel. (b) Transform the 2D matrix data to one column vector

Still we need to transform the m X n matrix data a to a mn X 1 rows vector. Also,

A= Lxm @D psn (5.11)
AV = Dpyym @l xn (5.12)

A*and A”Y are the operators to compute the first derivatives of x and y directions of two

dimensions data, and the Figure (5.5) can show us the two operators in one map.

0

10

12+

14+

16

J’_

» deltax

+ deltay

0

Fig. 5.5. The result of plotting A¥, AYoperators based on m X n = 4 X 4
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xy-dz

et

x-iyz @ + x+i vz
XV

xonz-i

ny+iz
(a)

dx,y,z—l

dx,y—l,z

dx-1y,z
dx,y,z

dx+ 1,y,z

dx,y+1,z

dx,y,z+1
(b)
Fig. 5.6. (a) Plot of the relationship of the target neighbor pixels in three dimensions. (x)

is the target pixel. (b) Transform the 3D matrix data to one column vector

To compute the 3-dimensional matrix data,

A= Ipo @ Lnsxm®LDpxn (5.13)
AY= Ipxp & Dpxm ®lnxn (5.14)
A= Ap><p & Inxm®lLyxn (5.15)

where I,,, is a n X n identity matrix, and A, v, is an X n finite difference matrix, and

®& is the Kronecker product,
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A*, AY, and A# are the operators to compute the first derivatives of x, y, and z directions

of three dimensions data, and the Figure (5.7) can show us the three operators in one map.

0 T T T T T

. +
“+++ *  delta,
+Jr ‘t. ++ + deltay
+, e+

L delta,

10 +,o® . 4 n
+ & % +
e T
+ e
++--
'-'-+++
20 Lt ‘++ 1
EDCEN
+ +
+ . +
+++'-:- *
+ .
30 +Jr -, g
+ .
-+
‘-‘- ++
- +
+ LG
++ ‘-.a ++
40+ L A b
++-‘-‘ ++
+ +
+ -
++‘u'n
+ = . 4
20 LI e 1
LN
+ L
+, . ® +
+ & % +
L.t
+ & ® +

+ &%
60 - e

..
Lot

1 1 1 1 | *

0 10 20 30 40 50 60

Fig. 5.7. The result of plotting A*, AY, A% operators basedonm XnXp =4 X4 X 4

In order to illustrate how the numerical implementation works, the following sections
will use the 2™ order tensor data to indicate the entire numerical implementation

procedure.

For computational convenience, we will reshape the 2™ tensor fields where

Dy ny Dy,
D =|Dyx Dy, Dy,
D,y Dzy D,,

into a column vector to arrive at the following Equation (5.16)

T
Dz[Dxx ny sz Dyx Dyy Dyz sz Dzy Dzz] (516)
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It becomes apparent that the column has 9 rows. The above expression tells us that both
the elements (for example, D,,, -+ ) of each tensor component (for example,
[Dxx» Dyys Dyz,+++ 1) and the tensor components are vectorized in lexical order of the
spatial coordinates (x, y, z). If the size of the input, the 2™ order tensor field, is m X n X

p, the resultis 9 X m X n X p rows.

5.4. Gradient of the 2" Order Tensor Field G

According to the central differences for approximately derivatives Equation (5.6), we can

compute the gradient of the 2™ order tensor field ¢

)
><I

RQ
<

‘<Q RQ
8 N

bx
=G |o, (5.17)

‘<C3
<

D Q0
< RN
RSa
N

o
h

G represents the gradient matrix, G = V -. Multiplying the gradient matrix by ¢ will get
result in the gradient of the tensor field, ¢.

A0 07
0 A% 0
0 0 A%

A 00

G=|0 AY 0 (5.18)

0 0 AY

AZ 0 0
0 A7 0

Lo 0 AZl
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0 S0 100

Fig. 5.8. Plot of the gradient of the 2™ order tensor field, m x n X p = 4 X 4 x 4

5.5 Curl of the 2" Order Tensor Field C

150

Similarly, we can compute the curl of the second tensor field 1 based on the operators

described above,

_Cxx i _l/)xx ]
ny lpxy
CXZ lpr
ny lpyx
ny =C 'vl’yy
Cyz l/)yz
CZJC l/)ZX
Czy l/)zy

- CZZ - - l/)ZZ -
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C represents for the curl matrix C = V X, which is the sparse block matrix. Also, the
above equation can be rewritten as Cip = V X 1. Using the product of the curl matrix and

vy will provide the curl of the tensor field .

0 0 0 -—-A* 0 0 AY 0 0 7
0 0 0 0 —-A* 0 0 AY 0
0 0 0 0 0 A% 0 0 AY
A 0 0 0 0 0 -A* 0 0
C=]0 i 0 0 0 0 0 -—-A* 0 (5.20)
0 0 z 0 0 0 0 0 A
-AY 0 0 A* 0 0 0 0 0
0o =AY 0 0 A* 0 0 0 0
L0 0o =AY 0 0 A* 0 0 0

100

200

300

400

500

0 100 200 300 400 500

Fig. 5.9. Plot of the Curl of the 2™ order tensor field, m X n X p = 4 x 4 X 4
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As a matter of fact, the 4™ order tensor data can also be computed by using the
discretized operators, which are similar to the discretized operators of the 2™ order
tensor. Because each tensor contains 81 rows, the matrices will not be provided, however,

codes will be used to realize the 4™ order tensor decomposition.

5.6. Numerical Implementation of the Helmholtz Decomposition

Using the above definitions for the C and G matrices we can numerically implement the
Helmholtz decomposition by solving for ¢ and Y. If we simply change the Helmholtz
decomposition expression, then we will get the following equation,

H=D—-G¢—Cy (5.21)

Now the Helmholtz decomposition is given by the solution to the least squares problem,

min||D — G¢ — CyY||2 (5.22)
oY
Where || ||z denotes the Frobenius norm of the tensor, and || X || = trace(X ijX jk).
I = 7 (523)

Therefore, Equation (5.20) can be converted to
H(¢,¥) = IID — Gp — CllF = (D — Gp — CY)" (D — G — Cy)
=" =¢"GCT —ypTCH(D - G — CYP)
=DTD — DT (G + Cy) — (¢TGT +YTCT)D
+ (PTGTGh + dTGTCY + YTCTGPp + YT CTC) (5.24)

Because G is the compact operator of the gradient, and C is the compact operator of curl,
and stemming from the fact div (curl(y)) = 0, and curl (grad(¢)) = 0, we obtain the
following fact,

CTG=GCT =0 (5.25)
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Therefore, Equation (5.24) can be simplified to,
H(¢, ) =DT'D — DT (Gp + Cyp) — (¢TGT + YTCT)D + (¢TGTGp + YT CTCy) (5.24)

The goal is to find values of ¢ and y which minimize the error. In multivariable calculus

this requires us to find the values of (¢, y) such that

(90 _,
igfl (5.26)
ap =0

Applying Equation (5.26) to Equation (5.24), and considering that ¢p and y are

independent, two new equations are used in order to calculate ¢ and y individually,

oH
= —2GTD +2GTG¢p = 0

gd’ (5.27)
M o _2cTD 4 2¢7Cy = 0
oy

Simplifying the Equation (5.27) will obtain the new expression
{GTqu =G'D

5.28
CTCy = C™D (5:28)

5.7 Conjugate Gradient Algorithm

Section 5.5 has described how to calculate the matrix equation of ¢p and Y. The format of
the matrix equations of ¢ and y can be generally described using,

Ax =b (5.29)
Usually, we will use the inverse matrix transformation to compute the unknown vector x,

due to the fact that A714A = |
x=A"1p (5.30)
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Given a matrix 4 equal to

_Ja b
A= [C J (5.31)
The inverse matrix is given by,
1 _1[d —=bl_ 1 -b
A= 4] [—c a ] T ad-bcl—c ¢ ] (5.32)

If the size of matrix 4 is small, the computation speed is fast. If the size of matrix 4 is

large or the matrix is ill-conditioned, the matrix inversion method does not work. For

example,
tensors dataset size is 64 X 64 X 5(n X m X p)
Order | Elements No. Size of G Size of C
5 9 (9nmp) x (3nmp) (9nmp) x (9nmp)
1.1325e+010 3.3974e+010

Table 5.1. The matrix size of G and C for the 2™ and the 4™ order tensors

From Table (5.2), we find that the sizes of grad(G) and curl(C) of tensor fields are very
large. If we still use the inverse matrix method to compute ¢ and 1, the computation will
be extremely time-consuming. If the order is 4, the sizes of G and C will be even greater

than those of the 2™ order.

Therefore solving large systems of linear Equations (5.25) can be agonizing pain for
many. Fortunately, Hestenes and Stiefel [12] created the Conjugate Gradient Method
(CQ), and the JR Shewchuk [31] describes the algorithm, which is effective to solve large

systems of equations.
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Fig. 5.10. The image of method for the conjugate gradients and gradient descent (wiki)

Green lines: iterations of gradient descent.
» Subsequent search directions , v, are perpendicular v;

T —
> Vv =0

Red lines: iterations of conjugate gradient method.
» In CG methods the search directions are conjugate v;

> ViAvi+1 =0

Now we can resolve the linear system equationAx = b by using conjugate gradient

method, where 4 is an X n symmetric and positive-define matrix.

Suppose that {v, } is a sequence of n mutually conjugate directions, therefore, they are

orthogonal each other and linear independently. We can expand them

n
x= Z a;v; (5.33)

i=1

and
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n
b=Ax = Z a;Av; (5.34)
i=1
Using the character of mutually conjugate of v, to obtain the following equation,

n

vib = Ax = Z a; vl Av; = a, vl Avy, (5.35)
i=1
Therefore,
_ b 5.36
% = vl Avy (5.36)

We have describe how conjugate gradient method works, in fact conjugate gradients is an
iterative method, the result of which approaches real value gradually. The name
“Conjugate Gradients” is a bit of a misnomer, because the gradients are not conjugate,
and the conjugate directions are not all gradients. “Conjugated Gradients” would be more

accurate.

We can give an initial guess x, to search for the solution and stop when the value is

close to the real solution.

Let 73, be the residual at the kth iteration:
"y = b— Axk (537)

Because the conjugate constraint is an orthonormal type constraint, the Gram-Schmidt
orthonomalization gives the following equation:

v! Ary,
Vk+1 =T — Z T A, Vi (5.38)
i<k L0

The next optimal point following this direction is given as,

Vi1 = Xg + AUk (539)
T
Tk Tk

43



If 4 is a symmetric, positive —definite matrix, the conjugate gradient method works very

well. (4 is real positive definite if and only if for all x # 0, xT Ax > 0)

However, the conjugate gradient method is not suitable for asymmetric linear systems.
Therefore, the biconjugate gradient (BiCG) method designed to solve asymmetric linear
systems, can be used. The BiCG method delivers the same results as the conjugate
gradient method for symmetric positive definite systems, but at twice the cost per

iteration.

BiCG can be used to solve systems where 4 is not symmetric, positive-definite, square. 4
solution to the least squares problem

min, ||Ax — b||? (5.41)

can be found by setting the derivative of Equation (5.41) to zero:

ATAx = ATh (5.42)

If 4 is square and nonsingular, the solution to Equation () is the solution to Ax = b. If 4
is not square, and Ax = b is overconstrained, --that is, has more linearly independent
equations than variables -- then there may or may not be a solution to Ax = b. However,
it is always possible to find a value of x that minimizes Equation (5.42), the sum of the

squares of the errors of each linear equation.

ATA is symmetric and positive (for any x, xTATAx = ||Ax||? > 0). If Ax = b is not
underconstrained, then ATA is nonsingular, and methods CG can be used to solve
Equation (5.28). The only nuisance in doing so is that the condition number of AT A is the

square of that of A4, so convergence is significantly slower.
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Given the inputs 4, b, a starting vector value x, Xy, b , the number of iterations loops, and
an error tolerance € < 1, unlike the conjugate gradient method, biconjugate gradient
method needs to perform multiplications matrix 4. and residuals value » will reflect how
the approximate solutions x close to the real solution. The conjugate gradient and
biconjugate gradient methods are mature technique, I refer to this technique from internet
to apply in my method to compute asymmetric and non-positive define matrix from linear

equation system.
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Table 5.2. Pseudocode: the algorithm for the topological visualization using the
Helmholtz decomposition

Algorithm: topological visualization for diffusion tensor field

Using generalized Helmholtz Decomposition

Initializing
Compute theA*, AY, A* Matrix
Compute the C Matrix based onA*, AY, A* Matrix
Compute the G Matrix based on A*, AY, A* Matrix
Iterations
biconjugate gradients method phi = BiCG(G, D)
biconjugate gradients method psi = BiCG(C, D)
End

Subfunction BiCG()

T0=b—Ax0
7 =bh-%A

170 = TO
vy =T
k=0;
. T
while (U—k > tolerant value)
k
o = TTk
k=T
v Avy

X1 = X T Qg Vg
Xp+1 = Xg T Qg Vg
Tkt1 = Tk — A AV
Ter1 = To — QRATDR
k+1 = T — QA" Vg

717"
B, = Th+1Tk+1
k _——-—
T
Ty
V41 = Tiee1 T+ BrVk
Vks1 = Ties1 T BrAV

k+1
if k = max iteration then quit
end
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CHAPTER 6:
TOPOLOGICAL VISUALIZATION

Topological concepts are present in many areas of mathematics. Topology is a beautiful
field of mathematics dealing with the shapes of objects, without regard to distances.
Topology can be used to abstract inherent connectivity of objects while ignoring their

detailed form.

The 2™ and 4™ order tensors describe a wide range of physical phenomena. Tensors can
represent diffusivity [4, 19], the fiber orientation distribution function (ODF) in DT-MRI
[3], mechanical stress and strain [13], and so on. More abstractly, tensors may represent
covariance, skew, kurtosis and higher order moments of multivariate probability
distributions as well as homogeneous polynomials. In our experiments we explore the
topology of the diffusion tensor field (as opposed to the field of diffusion ODFs) due to
the fact that the divergence operator has an important physical meaning when applied to
the diffusion tensor. Zero divergence of the tensor field implies conservation of mass
under a constant concentration gradient. However, analysis of the ODF field represented
as the 4th order tensors, as described by Barmpoutis et al. [3] is a topic for future

investigation.

6.1 Critical Points and VVortices

In Chapter 4, we described how the Helmholtz decomposition can separate a tensor field
into divergence-free and curl-free components. The curl-free component is irrotational,
which can be used to isolate local maxima and minima of divergence (foci of sources and
sinks) in tensor fields. The divergence-free component is solenoidal, which can be used
to isolate the centers of vortexes in tensor field. Using critical points (as mentioned in
Chapter 4) and a few separating curves (separatrices) to visualize the tensor fields can

reduce a dense set of input data to provide a simple structure of the field.
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The critical points are called singularities, which are the only locations that streamlines in
a vector field can intersect. Critical points also are the locations at which the magnitude
of the vector vanishes. A first order critical point can be classified according to the
eigenvalue of the Jacobian matrix, and for the purpose of the experiments, we only focus
on the linear case. If the real part of an eigenvalue is positive, it indicates a repelling
nature in which the field is expanding from that point. This critical point is referred to as
a sink. If the real part of an eigenvalue is negative, it indicates an attracting nature in

which the field is shrinking to that point. This critical point is referred to as a source.

g @

s

a) (b)
Fig. 6.1 Vortices, (a) is the source, (b) is the sink

A vortex is defined as motion of a fluid which is swirling rapidly around a center which
is a critical point. If the critical point is a source, the vortex is expanding. Otherwise, the
critical point is a sink, the vortex is shrinking. Therefore, the critical points and vortex
can effectively be represented by the main structure of vector fields. We propose to

extend the same concepts to tensor fields.
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6.2. Degenerate Points and Separatrices

The streamlines in vector fields only intersect at critical points, and the hyperstreamlines
in tensor fields meet only at degenerate points. Degenerate points play an analogous role
to critical points of vector fields in the topological analysis of tensor fields. These points
are the basic singularities in the topology of tensor fields. Thierry and Lambertus’s [20]
define degenerate points, ‘A point x is a degenerate point of the tensor field D if the two
eigenvalues of D are equal to each other at x, , ie A;(xy) = 1,(xy)’. We can use this

idea to degenerate critical points.

We propose to extend the concept of degenerate points to tensor fields of arbitrary order

by defining them in terms of local extrema of the magnitude of divergence and curl.

6.3. Topological Segmentation

Helmholtz decomposition can be used to separate a tensor field into divergence-free and
curl-free components, which can simplify the rich and complex datasets and assist our
analysis. In order to apply the topological visualization, we classify critical points by
using the signed error function,

e =D — CplIE — IID — Gl (6.1)

Analyzing the above Equation (6.1) provides the following results. When e<0, ||D —
G¢||? becomes the dominant part, so the field is better approximated by curl. When >0,
ID — C||? becomes the dominant part, and the field is therefore better approximated by
grad(y). Liet al. [16] used a similar decision criterion through, b, which is a ratio of the
two errors. Here the contour line, e = 0, separates the field into relatively low divergence
and low curl regions. Therefore, this function can be used to roughly segment the field

into two regions. Within the low divergence region we characterize critical points in
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terms of the curl magnitude ||curl(curl(1/)))||, and in the low curl region we investigate

the divergence magnitude ||div( grad (gb)) ||

Even though topological visualization can be used to extract the skeleton of the datasets,
our approach is used to display the field in a way which reveals the topological features.
To reiterate, the Helmholtz decomposition can separate a dense tensor field into simple
divergence-free and curl-free parts, which is used to simplify the complex datasets into
two simple fields. We then use signed error functions to classify the low curl and low
divergence region, and it roughly splits this into irrotational and solenoidal regions. These

features give a concise representation of the global structure of the tensor field.
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CHAPTER 7:
EXPERIMENTAL RESULTS

The generalized Helmholtz decomposition was implemented in Matlab and run on a
system with Intel Quad Core QX6700 2.66 GHz CPU and 4 GB RAM. The algorithm
was applied to the synthetic and real datasets as described below. The fitting quality of
the decomposition can be analyzed in terms of the magnitude of the harmonic term

I|ID — grad(¢) — curl(y))|| which should be near zero.

7.1. Experiment 1: simple 2" and 4™ synthetic tensor fields
A synthetic 2™ order tensor field was generated from one source, one sink and two
vortices shown in Figure (7.1). The input data for test are generated by computing

D = (D, + D, + D; + D,)2.

The Figure (7.1) is the synthetic data for the 2™ order tensor fields, which generate the
results of Figure (7.2). The tensor fields in Figure (7.1) and Figure (7.2) are visualized by
plotting the radial surfaces r(v) = D;;v;v; for the basis of unit vectors v. The surface is
colored blue when r is positive and red when r is negative. The results of the generalized

Helmholtz decomposition are shown in Figure (7.2).
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Fig. 7.1. (a) and (d) illustrate vortices while (b) and (c) illustrate a source and sink

respectively, which are used to construct a synthetic 2™ order tensor field.
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Fig. 7.2. Helmholtz decomposition results for the 2™ order synthetic tensor field D

grad(¢) + curl(yp) + H

Also, the synthetic 4™ order tensor field was constructed from one source, one sink and

two vortices similar to those shown in Figure (7.1). The results of the generalized

Helmholtz decomposition of this field are shown in Figure (7.3). The tensor fields also

D jiiv;vjv v, for the basis of unit

are visualized by plotting the radial surfaces r(v)

vectors v. The surface is also colored blue when 7 is positive and red when 7 is negative.

From the resulting images of ¢ and 1, we find that 1) has two vortices. Similarly, ¢ has

one source and one sink and flow direction.
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(d) Harmonic term H

for the 4™ order synthetic tensor field D =

Several interesting observations can be made from above results. As evidenced from the

negative (red-colored) lobes in Figure (7.2) and (7.3). It is obvious that the decomposition

does not only preserve positivity. The critical points in the original field shown in Figure

(7.2.a) and (7.3.a) are not clearly visible. However, they are quite evident in the
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decomposed fields. Also there seems to be a correspondence between sources of positive-
definite tensors and vortices of negative-definite tensors in the decomposition fields. The
harmonic field, which is typically of small magnitude for vector field decompositions,
can be substantial in terms of the tensor trace, but it is extremely smooth — nearly

constant in all of our synthetic field experiments.

7.2. Experiment 2: a 2" order MRI tensor data of human being

The Helmholtz decomposition was also applied to real datasets of a diffusion tensor MRI
of the human brain. The data were acquired on a 3.0 Tesla General Electric Medical
Systems Horizon LX imaging system with a diffusion weighted spin echo pulse
sequence. Imaging parameters were: effective TR = 9000 ms, TE = 78 ms, NEX = 1.

Diffusion-weighted images were acquired with 25 different gradient directions with

b =1000

N

— and a single image was acquired with b = 0. The image field of view was

24 x 24 cm and the acquisition matrix was 256 x 256 X 30. The 2" order tensors were
computed from the diffusion weighted images by performing a least squares fit to the
logarithm of the signal attenuation. Similarly, the tensor fields in Figure (7.4) are

visualized by plotting the radial surfaces r(v) = D;;v;v; for the basis of unit vectors v.

The surface is colored blue when r is positive and red when r is negative.
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(a) curl(y)

(b) grad(¢)
Fig. 7.4. Helmholtz decomposition results for the 2" order DT-MRI datasets of human

brain
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7.3. Experiment 3: more different 2" order and the 4" order synthetic

tensor fields

We display a few experiment results for the 2™ order and 4™ order synthetic tensor
datasets to test our idea and algorithms.
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Fig. 7.5. The left side images are various 2" order synthetic tensor fields, and the right
side images are the result of the topological visualization of left side tensor data

The magnitude of the residual after least-squares fitting to quantify how well the

decomposition fits the input data since the harmonic part, H, is defined as that residual.
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As a result we have zero fitting error. Instead, we analyze the quality of the fit by
examining how irrotational V¢ is, how solenoidal Vi is, and harmonic H. Ideally all of
the quantities in the table below should be zero. This compare and contrast methods have

been applied in the 2" order and 4™ order tensor fields.

lldiv(curl @) 11 | Neurl(grad@) 11 | 14w | (jeuri(H) ||
b ldiv(D)]] llcurl(D)]] NdvT | TJreari(dy]]
a 7.86E-017 8.66E-017 2.03E-015 1.99E-015
b 7.89E-017 8.42E-017 2.54E-015 2.61E-015
c 8.54E-017 8.63E-017 2.21E-015 2.39E-015
d 5.07E-017 4.71E-017 9.67E-015 1.05E-014
e 5.50E-017 4.65E-017 1.01E-014 1.02E-014
f 5.48E-017 4.82E-017 7.81E-015 7.81E-015

Table 7.1. Comparison of the various 2™ order synthetic tensor fields
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The synthetic tensor data (g1) has four sources at the four corners and one vortex at the
center.

Fig. 7.6. The left side images are various 4™ order synthetic tensor fields, and the right
side images are the result of the topological visualization of left side tensor data
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For the 4th order tensors we assess fitting quality in terms of the magnitude of the

divergence and curl where the magnitude is taken to be the Frobenius norm of the tensor.

lldiv(curl@p) 11 | lleurl(grad@) (1| Ndiv@ 1 | |jcurl() |
b 1div(D)]] llcurl(D)]] v | Jjearl )]
a 5.19E-008 3.24E-008 9.56E-007 9.59E-007
b 3.24E-008 5.19E-008 9.58E-007 9.56E-007
c 3.88E-008 3.63E-008 1.04E-006 1.02E-006
d 3.22E-008 4.53E-008 1.15E-006 9.34E-007
e 3.60E-008 5.98E-008 1.39E-006 1.11E-006
f 5.26E-008 4.09E-008 7.76E-007 1.13E-006
g 4.60E-008 2.13E-008 5.58E-007 7.10E-007

Table 7.2. Comparison of the various 4™ order synthetic tensor fields

The results of the signed error function given by Equation (6.1) are shown in Figure (7.5,
7.6) as a filled contour plot. Note that the "hot’ (red, orange, yellow) colored regions
represent the solenoidal part of the field and the cool’ (blue, green) colors represent the
irrotational part of the field. The smaller contour curves encircle the critical point in the
field. The contour at e = 0 was used to successfully segment the field into two regions,
and separate the nearby critical points in the center of the field. This function can be seen
as a simple classifier for the critical points, separating extrema of divergence from
extrema of curl. The e = 0 isocontour should not be interpreted as a hyperstreamline, but
instead as the boundary between solenoidal and irrotational regions in the field. Black
crosses denote local maxima in divergence magnitude (centers of sources / sinks), and
white crosses denote local maxima in curl (centers of vortices). Several synthetic 2™
order and 4™ order tensor datasets are shown above, as well as the generated response of

the topological visualization based on the Helmholtz decomposition.

From the above images, we can found the critical points appear in original data image are
not visible and clear, however it is very visible in the results of topological visualization
based on the Helmholtz decomposition method both in the 2™ order and 4™ order tensor

data image.. Compared the results of the 2" order and 4™ order tensor data, we can obtain
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that the results 4™ order tensor data provide more detailed local information than those of

2™ order tensor data.

Both of the above tables reflect a high quality of fit. For all datasets the decomposition
obeys the expected Helmholtz properties. The divergence of the solenoidal part is many
orders of magnitude smaller than the divergence of the input field. Likewise, the curl of
the irrotational part of the field is many orders of magnitude smaller than the input field.
The resulting harmonic part has very small divergence and curl. The same observations
hold when considering numerous randomly generated fields. The variance of the fitting
parameters is very small, suggesting that the decomposition has consistent behavior over

a large number of fields.

The Helmholtz decomposition is not unique. We may add any constant tensor field to
curl(y) or grad(¢), and subtract that field from H, and obtain new fields which satisfy

the conditions of the decomposition.

The decomposition also does not preserve positivity, however we can make curl(y)) or
grad(¢) positive by adding an isotropic tensor field to each, and subtracting the

isotropic tensor fields from H.
7.4. Experiment 4: generating 100 2" order and 4" order random
tensor fields

We can also assess the fitting quality by generating 100 2™ order and 4™ order random
fields individually, with uniformly distributed tensor components in the range [-1, 1]. The

mean and variance of the each fitting parameter is shown in the table below.

66



ALY P YA RS R YIS R T AC Y VA VAY )
P S FhPh forQode ] xied et
tF LRI\ PPl F s\ 0 el
worm e R kbl tntargrnafy
Y AN EAY L S WLV LA LY L LW
L F IR R LY PR R AN TN Y
RIDEL it eorNnfohdrwn pire
re@ieeREE LI ERAL N A@DNER S oo
e Nflidbbbnne Gt @bt
Braitel wd Aot ReeFs it dn
@Rt LE;E FUBRNS XA LN f X8
FRiRép ] omrh Rt o Fodfove
N L L A A Y Y LY A Y I A LY
$ee@d i 0500 2% ¢ AP RPces
ekl FAA YT 23S YL LI LTS L ¥ AN
IASAT Y T RN P VLIS E S SN ARE LY XY
LN Yl A Y I WAY LW R T Y v
L RN AT I N LAY P AR T AN UL Y
PN AP AL fPF QPP
K#L8n 2l Riiiotukcafta Y ns
Podndntdkéldtreeritirftvin
RPNt rft@tort It s r@ff fodd
LReL X 1PN =1L 200603 ,Q@e s
thrats,Rlabarad Qi iumiact
(a)

(b)
Fig. 7.7. (a) is a synthetic 2" order random tensor field, (b) is the topological
visualization of the left side 2" order random tensor field.

[ i Ceurlp) I Tlewr Corad @) T NG T | jjeurt) |
ldiv(D)]] llcurl(D)]] v | Jearid)l]
mean 5.73E-017 3.09E-017 6.07E-016 5.11E-016
variance 7.12E-038 5.46E-038 4.23E-035 3.99E-035
max 5.77E-017 3.11E-017 6.17E-016 5.21E-016

Table 7.3. The comparison of the mean, variance, and max of the 2" order random tensor

fields
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Fig. 7.8. (a) is a synthetic 4™ order random tensor field, (b) is the topological

visualization of left side 4™ order random tensor field.

lldiv(curl@p) 1 leurl(grad@) 1 | Ndiv@ 1 | |jcurt(H) ||

b 1div(D)]] llcurl(D)]] v | Jearid)]|
mean 2.66E-008 1.35E-008 1.69E-007 1.48E-007
variance 2.80E-021 5.11E-022 2.13E-019 8.02E-020
max 2.67E-008 1.35E-008 1.70E-007 1.48E-007

Table 7.4. The comparison of the men, variance, max of the 4™ order random fields

It is apparent from these tables that the fitting quality of the generalized Helmholtz

decomposition for the 4™ order tensor fields are worse than the 2™ order tensor fields, but

still show a great reduction in divergence and curl compared to the input data.
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Fig. 7.9. The comparison of time consuming for different size and order tensor fields

A summary of timing results is presented in Figure (7.9). The red line shows the time to
compute the decomposition of a second-order tensor field by forming the sparse matrices
C and G in memory, and solving the normal equations using BiCG. The blue line shows
the computation time for the same data when implementing matrix multiplications by C
and G procedurally. For the 4™ order tensor field we do not attempt to construct the

matrices since they are so large.
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CHAPTER 8:
CONCLUSIONS AND FUTURE WORK

8.1 Conclusions

Topological approaches attempt to reduce a dense set of input data to a simple
representation of the structure of the field by using generalized Helmholtz Decomposition
for tensor field visualization. The Helmholtz Decomposition of a tensor field on
Cartesian grids allows a flow field to be separated into divergence-free, curl-free and
harmonic components. The curl-free component is irrotational, so it is useful for isolating
features such as local maxima and minima of divergence (foci of sources and sinks) in
tensor fields without interference from curl-based features. Similarly, divergence-free
component is solenoidal, and is useful for isolating centers of vortices in tensor field. The
harmonic term is both solenoidal and irrotational, and the amplitude of harmonic term is
typically small. Therefore, such methods can emphasize the locations of critical points
(foci of sources and sinks, or the centers of vortices) and a few separating streamlines
(separatrices) to generate a skeleton description of the field [11]. Such flow skeletons can
be concise and provide intuitive representations of tensor fields. In contrast, direct

visualization of the vector field may result in a great deal of visual clutter.

Topological feature extraction methods based on tensor field decomposition have been
developed in this thesis. Decomposition splits the field into constituents with
fundamentally different differential behavior, and permits the field to be segmented in
terms of this behavior. The separating curve and local extrema of differential operators
form a sparse skeleton representation of the field which still conveys much global
structure. Topological methods for analyzing and visualizing tensor fields hold promise
for simplifying these rich and complex datasets. Some developments in topological tensor
field visualization have proceeded by generalizing the concepts of vector field topology.

Degenerate points (in 2D tensor fields) and degenerate lines (in 3D tensor fields) have
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commonly been defined in terms of eigenvectors of the tensors. Separatrices in the tensor

case are hyperstreamlines, or integral curves of the eigenvector field.

Furthermore, our approach to topological tensor field visualization differs from previous
approaches in several other ways. We do not depend on the computation of eigenvalues
or eigenvectors. We do not trace deterministic or probabilistic hyperstreamlines. Instead
we generate scalar fields based on the Helmholtz decomposition and render images which
emphasize these features. This method does not need any preconditioner and has

relatively few parameters.

We also generate a single separating contour which roughly partitions the tensor field
into irrotational and solenoidal regions, which has the effect of classifying the critical
points in each region. Even though some critical points are very close to each other, the
signed error function still can effectively separate them. However, we do not address the

problem of extracting the exact locations of critical points or lines.

8.2. Future Work

We recommend that future investigations attempt to develop more efficient large-scale
optimization methods for decomposing higher order tensor fields. We also recommend
investigating regularized decomposition methods which can also impose smoothness
constraints. In analysis of DT-MRI it would also be interesting to compare the
topological features of the diffusion tensor field with the topology of the tensor field
representing fiber orientation distributions. We also wish to explore the potential field ¢
and stream field Y to see if useful information can be extracted directly from them.
Processing time for 4™ order tensor fields is high, and future work should investigate
exploiting symmetry to reduce the computational complexity of the problem. Moreover,
we can try to involve exploiting symmetry to reduce the computational complexity of the

problem.
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