
Graduate Theses, Dissertations, and Problem Reports

2015

The Longest Common Subsequence via Generalized Suffix Trees The Longest Common Subsequence via Generalized Suffix Trees

Tazin Afrin

Follow this and additional works at: https://researchrepository.wvu.edu/etd

Recommended Citation Recommended Citation
Afrin, Tazin, "The Longest Common Subsequence via Generalized Suffix Trees" (2015). Graduate Theses,
Dissertations, and Problem Reports. 5031.
https://researchrepository.wvu.edu/etd/5031

This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research
Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license
in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses,
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU.
For more information, please contact researchrepository@mail.wvu.edu.

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F5031&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/5031?utm_source=researchrepository.wvu.edu%2Fetd%2F5031&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu

The Longest Common Subsequence via
Generalized Suffix Trees

Tazin Afrin

Thesis submitted to the

College of Engineering and Mineral Resources

at West Virginia University

in partial fulfillment of the requirements for the degree of

Master of Science in

Computer Science

Donald Adjeroh, Ph.D., Chair

Elaine Eschen, Ph.D.

Katerina Goseva Popstojanova, Ph.D.

Lane Department of Computer Science and Electrical Engineering

Morgantown, West Virginia

2015

Keywords: longest common subsequence, LCS, generalized suffix tree, compression

© 2015 Tazin Afrin

ABSTRACT

The Longest Common Subsequence via
Generalized Suffix Trees

by
Tazin Afrin

Given two strings S1 and S2, finding the longest common subsequence (LCS)
is a classical problem in computer science. Many algorithms have been pro-
posed to find the longest common subsequence between two strings. The
most common and widely used method is the dynamic programming ap-
proach, which runs in quadratic time and takes quadratic space. Other algo-
rithms have been introduced later to solve the LCS problem in less time and
space. In this work, we present a new algorithm to find the longest common
subsequence using the generalized suffix tree and directed acyclic graph.

The Generalized suffix tree (GST) is the combined suffix tree for
a set of strings {S1, S2, ..., Sn}. Both the suffix tree and the generalized
suffix tree can be calculated in linear time and linear space. One application
for generalized suffix tree is to find the longest common substring between
two strings. But finding the longest common subsequence is not straight
forward using the generalized suffix tree. Here we describe how we can use
the GST to find the common substrings between two strings and introduce a
new approach to calculate the longest common subsequence (LCS) from the
common substrings. This method takes a different view at the LCS problem,
shading more light at novel applications of the LCS. We also show how this
method can motivate the development of new compression techniques for
genome resequencing data.

Acknowledgements

I would like to express deepest gratitude to my MS thesis supervisor, Dr.
Donald A. Adjeroh. I am grateful for the seed of excitement and passion for
research he sowed in me. I thank him for his guidance and support and I
appreciate his knowledge and wit. I want to thank my committee members,
Dr. Elaine M. Eschen and Dr. Katerina Goseva Popstojanova, for their
suggestions and support throughout the coursework and my entire research
period. The knowledge I obtained from their courses have been fundamental
for my thesis. I also want to thank Dr. Richard Beal for helping me in
every aspect of this thesis. My deepest gratitude to my father Shahidul
Alam Akanda, and my mother Rokeya Alam for their unconditional love and
support. I want to thank my husband Syed Ashiqur Rahman, for I would not
be who I am today without his care and love, and for always being there for
me. I express my obedience and gratitude to my creator and my sustainer
Allah, for I believe His plans are better than my dreams.

iii

Contents

Acknowledgements iii

List of Figures vi

List of Tables vi

1 Introduction 1
1.1 Problem and Motivation . 1
1.2 Thesis Contribution . 2
1.3 Thesis Outline . 3

2 Background and Related Work 4
2.1 Suffix Trees and Pattern Matching 4

2.1.1 Suffix Tree . 5
2.1.2 Repeating Substrings 8
2.1.3 Generalized Suffix Tree 9

2.2 Longest Common Subsequence 11
2.2.1 LCS Algorithms . 11

2.3 Directed Acyclic Graph . 13
2.4 Genomic Sequence Compression 14

2.4.1 GRS Compression Technique 15
2.4.2 GReEn Compression Technique 16

3 Methodology 18
3.1 The New LCS Algorithm . 19

3.1.1 From GST to CSS . 19
3.1.2 From CSS to DAG . 21
3.1.3 From DAG to LCS . 30
3.1.4 Complexity Analysis 30

iv

3.2 Towards Variable length CSS 31
3.2.1 Determining CSSs of length ≥ 2 32
3.2.2 Handling overlaps . 32

3.3 Applications of LCS . 36
3.3.1 Compression Method 1 37
3.3.2 Compression Method 2 38
3.3.3 Compression Results 39

4 Conclusion 41
4.1 Summary . 41
4.2 Future work . 42

Bibliography 43

v

List of Figures

2.1 Suffix structures for the string S = xabxa$: (a) list of suffixes,
(b)suffix trie, (c)suffix tree, (d)ST with edge-lebel compres-
sion.(from [16]) . 6

2.2 Generalized suffix tree for the concatenated string S = S1$S2# =
xabxa$babxba# for S1 = xabxa and S2 = babxba(from [16]).
For brevity, the labels for each leaf node is cut at the position
of the special symbol. 10

2.3 Computing the LCS: (a): dynamic programming table and a
trace; (b): edit graph.(figures taken from [2]) 12

2.4 The GRS architechture (from [35]). 16

3.1 Generalized suffix trie for the concatenated string S = S1$S2# =
xabxa$babxba# for S1 = xabxa and S2 = babxba with suffix
numbers. 20

3.2 The backbone structure for S1 = xabxa and S2 = babxba with
CSS serial numbers on S1 and S2. 23

3.3 The directed acyclic graph from the backbone B. 24
3.4 The conflict table for the CSS from S1 and S2 with serial

numbers on A1 and A2. 25
3.5 Overlapping of substrings A and B. 33
3.6 Division of left-overlap. 33
3.7 Division of right-overlap. 34
3.8 Division of mid-overlap. 35
3.9 Division of mid-overlap with crossing. 35
3.10 Division of mid-overlap with containment. 36
3.11 Size of TAIR9 after compression vs k. 39

vi

List of Tables

3.1 Results (in bytes) for compressing the TAIR9 chromosome
(target), with respect to TAIR8 (reference) with k = 31. . . . 40

vii

Chapter 1

Introduction

1.1 Problem and Motivation

Measuring similarity between sequences, be it DNA, RNA, or protein se-
quences, is at the core of various problems in molecular biology. An impor-
tant approach to this problem is computing the longest common subsequence
between two strings. Given a string S of length n, a subsequence is a string
S[i1]S[i2] . . . S[ik] such that 1 ≤ i1 < i2 < . . . < ik ≤ n for some k ≤ n. A
substring is a subset of characters from S that are located contiguously, but
in a subsequence the characters are not necessarily contiguous, just in the
same order from left to right. Given S1 and S2, the longest common subse-
quence (LCS) problem is to find one or all the longest common subsequences
between them. As an example, there are two LCS’s for the pair of strings
(abba, abab), which are abb and aba. Since aba can be derived from abba

in two different ways, this gives three distinct solutions. Finding the LCS
between two strings is relatively easy, the real challenge is to do this in a
time- and space-efficient manner.

A generalization of the LCS problem is to find the LCS for a set
of three or more sequences. This is the multiple longest common subse-
quence problem, which is known to be NP-hard for an arbitrary number of
sequences [24]. Comparing biological sequences using the LCS can be done

1

in various ways, for instance, by using the length of the LCS directly, or
with some normalization [23], using the number of distinct LCS’s between
the sequences, analyzing the LCS itself, counting the number of all distinct
common subsequences between the sequences [12,36], etc.

The LCS problem is a classical problem in computer science (see
[2,16]), and has been used to study applications in various areas, such as text
analysis, pattern recognition, file comparison, efficient tree matching [23], etc.
Biological applications of the LCS, and similarity measurement in general,
are varied and numerous, from sequence alignment [30] in comparative ge-
nomics [1], to phylogenetic construction and analysis, to rapid search in huge
biological sequences [33], to compression and efficient storage of the rapidly
expanding genomic data sets [14, 34], to re-sequencing a set of strings given
a target string [21], which is important in efficient genome assembly.

1.2 Thesis Contribution

In this work we introduce an innovative and fundamentally different approach
to the LCS problem. We make the use of suffix data structures, and graph
algorithms. The generalized suffix tree (GST) is the core data structure
used to identify the common substrings (CSSs) between two strings S1 and
S2. Our main contribution is in exploiting the CSSs from the GST to
determine the LCS. First, we show how we can build a backbone structure
to represent all the CSSs between two strings. Then, based on the backbone
structure we construct a directed acyclic graph (DAG) to capture the partial
ordering inherent in the CSSs. Using the DAG, we compute the LCS as
the longest path in the DAG. Our main algorithm to construct directed
acyclic graph, DAG from CSSs runs in O(max{η2, η × (n + m)}) time in
the worst case and in O(max{η2, η × |Σ|}) on average. The worst case is as
good as other current algorithms. Our significant contribution is the average
case complexity, which is better than all the current methods for smaller size
alphabet like DNA, RNA, Protein alphabet. Another major contribution is
in the presentation of initial ideas towards the use of variable-length CSSs
for improved LCS computation. The final contribution is in the use of the
LCS in one specific application of the LCS: genomic data compression.
Specifically, we introduce an LCS-motivated reference-based approach to

2

compress genome re-sequencing data. We compared our results with those
from recently published genome re-sequencing data compression algorithms.

1.3 Thesis Outline

Before jumping into our original thesis contribution, in Chapter 2 we in-
troduce some basic concepts in the area of string algorithms. We describe
a powerful data structure, the suffix tree and its variation the generalized
suffix tree. We also discuss some related algorithms introduced by other
researchers to solve the longest common subsequence problem.

Chapter 3 is our main contribution in the report. We introduce
the new algorithm to calculate the longest common subsequence using gen-
eralized suffix tree and analyze the worst case and average case complexity.
At the end of this chapter, we also give some ideas on how to improve our
current algorithm that is based on length-1 common substrings, and how to
improve it to use substrings for length more than or equal to 2. We also
show how LCS influences the compression of genomic resequencing data.
Two new compression methods are described here and we give compression
results using one of the methods. Chapter 4 summerizes our contribution
and concludes the report with a proposal for future work.

3

Chapter 2

Background and Related Work

In this Chapter, we describe some basic concepts and terminology of string
algorithms. First, the suffix tree data structure is described and we show it’s
important application in pattern matching. Then the generalized suffix tree
(GST) and its applications are discussed. The GST is the basis for our new
algorithm introduced in Chapter 3. The basic idea of compressing genomic
resequencing data is described here, because our algorithm inspires some new
technique for the compression. We also describe other efforts related to the
thesis.

2.1 Suffix Trees and Pattern Matching

The suffix tree is a special and interesting data structure. It is well known
for its simplicity, compactness and ease of computation. Pattern matching,
maximal repetitions, sequence alignments are among several important ap-
plications of the suffix tree. In this section, we describe the suffix tree data
structure, its variations, and applications.

4

2.1.1 Suffix Tree

Suffix tree is a compressed trie data structure that is used to represent all
the suffixes of a given string S. The nodes of the tree contains the given
text as their keys and the starting position of the suffixes in the text as their
values. The suffix tree provides more compact representation of the suffixes
of a string and exposes the internal structure of a string in a deeper way
[16]. In fact, the suffix tree is better than the trie in terms of space. While
trie could be quadratic, the suffix tree always takes linear space with respect
to the length of the string. Here is the definition of the suffix tree from Dan
Gusfield’s book [16]:

Definition. A suffix tree T for an n-character string S is a rooted directed
tree with exactly n leaves numbered 1 to n . Each internal node, other than
the root, has at least two children and each edge is labeled with a nonempty
substring of S. No two edges out of a node can have edge-labels beginning
with the same character. The key feature of the suffix tree is that for any
leaf i , the concatenation of the edge-labels on the path from the root to leaf
i exactly spells out the suffix of S that starts at position i. That is, it spells
out S[i...n] [16].

For simplicity in constructing the suffix tree, it is ensured that no
suffix is a proper prefix of the string. This can be done by adding a sentinel
character, for example $, where $ /∈ Σ, $ < σ, ∀σ ∈ Σ, at the end of the string
S. This makes sure each suffix has its unique branch till the leaf node. Thus
the given string S = S[1..n]$ of length n becomes of length n + 1 with the
$ symbol concatenated at the end. Here we represent some properties of the
suffix tree T of S from [2]:

• The suffix tree T has exactly n+ 1 leaf nodes;

• T has at most n internal nodes, considering the root node as an internal
node

• No two edges out of a given internal node can have edge-labels that
start with the same symbol.

5

(a) (b)

(c) (d)

Figure 2.1: Suffix structures for the string S = xabxa$: (a) list of suffixes,
(b)suffix trie, (c)suffix tree, (d)ST with edge-lebel compression.(from [16])

• Every internal node has at least 2 outgoing edges and at most |Σ|+ 1
outgoing edges.

• Every distinct substring of T is encoded exactly once in the suffix tree
and is spelled out by traveling from the root node to the leaf node.

• The edge label is the corresponding substring in S. It is denoted with
the numbers of the starting and ending points of the substring.

• Pointers to the suffix of the original string is used for edge-label com-
pression.

• The path from the root to the i-th leaf represents the i-th suffix S[i....n−
1].

The list of the suffixes and the suffix tree for the string S = xabxa$
is shown in Figure 2.1. On the figure, if we spell out the path from root to
leaf number 2, it spells abxa$. This is equal to the suffix starting at position

6

2 of the string S. From the figure we can understand the key point of suffix
tree, that it captures the repitition in the text. The numbers on the leaf
nodes give all the occurrence position of the suffixes of the string S.

History of suffix tree

The suffix tree was first introduced by Weiner in 1973. He called it a bi-
tree or position tree associated with a string. He presented a linear time
algorithm for the construction of the compacted version of bi-tree and also
showed how to solve some interesting pattern matching problem using the
then new data structure [37]. Few years later in 1976, McCreight gave a more
space efficient algorithm to construct the suffix tree in linear time [25]. Then
in 1995 Ukkonen developed a conceptually different algorithm for building
the suffix tree in linear time [31]. This is the most popular algorithm to
build the suffix tree because of its simplicity. It is easy to understand and
implement. Ukkonen’s algorithm takes relatively smaller memory than the
other suffix tree algorithms. Also it is an online algorithm to contruct the
suffix tree, that means one can build the suffix tree for streaming data.

Complexity

Suffix trees are very space efficient and give solutions to a wide range of
complex string problems. If the length of the given string |S| = n, the
average depth of a suffix tree is log n and the upper bound on the number of
nodes in a suffix tree is 2n − 1. Suffix tree will only store the original text
S, node labels for both branching and leaf nodes, edge-labels, the space to
indicate the parent for each node and the suffix links [2]. So it requires n
bytes for ASCII text. The edge labels are represented by a pair of indices
that specify the beginning and end positions of a substring of the text, so it
takes 2n integer pointers for edge labels. It is the same for the node parents,
2n integer pointers, 2n integer pointers for node labels for both branching
and leaf nodes and 2n integer pointers for suffix links. Thus to store the
suffix tree we need 33n bytes in total. A pointer is represented using an
integer which is 4 bytes long and 1 byte is used to represent each character
of the text. Hence if there are O(n) pointers and log n bits are required to

7

encode each pointer, then the space consumed by a suffix tree is O(n log n)
bits [2].

2.1.2 Repeating Substrings

The longest repeated substring problem is a classical string matching problem
in computer science. It is to find the longest substring of a string that occurs
repeatedly, or at least twice in the string. The suffix tree data structure is
used to solve this problem in linear time and space. This can be done by
building a suffix tree for the string and finding the deepest internal node in
the tree. The path from the root to that deepest internal node is the desired
repeating substring for the given string. Also the suffix tree can be used to
find a substring with at least k-occurrences [16].

Repetitive Structure of Biological Sequences

There are various kinds of repititive structures in a string. The principle
interest of finding these structures lies in the repetitive structure of biological
sequences - DNA, RNA, and protein. The extent of repeated substrings
occurrence in DNA (or other genome) is surprisingly high. Most of huge and
long genome sequences consists of comparatively shorter repeating genome
strings. The repetition structure contains various biological functions that
are very interesting for many researchers. Another advent of the repetitive
structure is to find out how to store the biological sequence in smaller space,
that is, the problem of compression of the biological sequences [2]. Here we
give some definition of the repititive structures:

Palindrome A palindrome is a sequence of characters that reads the same
backward or forward [16].

A − T are complements and C − G are complements in DNA se-
quence. Also in RNA sequence A−U and C−G are complements. Comple-
mented Palindrome is determined based on this characteristics of DNA and
RNA.

8

Complemented Palindrome If each character in one half of the DNA
or RNA string is changed to its complement character, then the sequence
becomes a complimented palindrome. For example, AGCTCGCGAGCT is
a complemented palindrome [16].

Tandem Repeat A substring α contained in string S is called a tandem
array of β if α consists of more than one consecutive copy of β. For example,
if S = aaatactactacggga, then α = tactactac is a tandem array of β = tac.

When a pattern of one or more nucleotides is repeated in the DNA
and the repetitions are directly adjacent to each other, then it is called the
tandem repeats in the genomic sequences. Variable number of tandem re-
peats have become an important marker of individuals [16]. Sometimes tan-
dem repeats consists of very short substrings, and they have become preffered
marker for many genetic marking applications.

Maximal Pair A maximal pair in a string S is a pair of identical substrings
α and β in S such that extending α and β in either direction would destroy
the equality of the two strings [16].

A maximal pair is represented by a triple (starting position of α,
starting position of β, length of match). For a string of length n, it is possible
to find all the maximal repeats in O(n) time using the suffix tree. Also if there
are ηocc-maximal pairs, then finding all the maximal pairs takes O(n + ηocc)
time [16].

2.1.3 Generalized Suffix Tree

When applications involve mutiple strings, suffix tree could be implemented
for each string seperately. But it will take more time and space. Hence the
notion of generalized sufffix tree has been introduced. It is a better approach
than creating suffix trees for each string. A generalized suffix tree (GST) is
a suffix tree for a set of strings {S1, S2, ..., Sn}. It contains all the suffixes of
all the strings. It can also be built in linear time and space and can be used
to find all occurrences of the common substrings between the given strings.

9

Figure 2.2: Generalized suffix tree for the concatenated string S = S1$S2# =
xabxa$babxba# for S1 = xabxa and S2 = babxba(from [16]). For brevity, the
labels for each leaf node is cut at the position of the special symbol.

Constructing the generalized suffix tree is very simple and it uses
the same approach as normal suffix tree. Each string in the set is padded
with a unique end of string marker (different marker for each string). The
concatenated string will look like, S = S1$1S2$2...Sn$n. Then a suffix tree is
built for S, which will be the generalized suffix tree for {S1, S2, ..., Sn}. In
the generalized suffix tree, a path label should have substring from only one
input string. So if there are path labels having substrings from multiple input
strings, we can keep only the initial portion corresponding to one string and
remove all the later portion. Because each end of string marker is distinct
and is not in any of the original strings. The label on any path from the
root to an internal node must be a substring of both original strings. Hence
by reducing the second index of the label on leaf edges, without changing
any other parts of the tree, all the unwanted synthetic suffixes are removed.
Hence, GST guarantees that each suffix is represented by a unique path on
the tree [2, 16].

An example of the generalized suffix tree is shown in Figure 2.2.
Given S1 = xabxa and S2 = babxba, the strings are padded with ter-
minal symbols $ and #. So the final string becomes, S = S1$S2# =
xabxa$babxba#. Then we build the suffix tree for S, and that is the gen-
eralized suffix tree for S1 and S2. The well established traditional suffix
tree algorithms can be used to build the GST . Ukkonen’s and McCreight’s
[25,31] algorithms can be used to construct the generalized suffix tree. GST
is still linear with respect to the length of the string.

10

2.2 Longest Common Subsequence

Given a set of strings or sequences, the longest common subsequence (LCS)
problem is to find the longest consecutive subsequences common to all the
strings. This problem is different from that of finding substrings between
strings, since in longest common sequence problem the subsequences need
not to be adjacent to each other in each string. Rather we can say the
longest common subsequence is a combination of common substrings. The
longest common sequence is often calculated between two strings S1 and S2.
There are several methods to compute the LCS between two strings. In this
section we describe some of the approaches.

2.2.1 LCS Algorithms

The LCS problem is a special case of the general edit distance problem,
which is also used to measure similarity between strings. Depending on the
edit cost for the three basic edit operations, the edit distance is related to the
LCS using the simple relation: d = m+ n− 2l, where d is the edit distance,
and l is the length of the LCS. For instance, the edit distance between abba
and abab is 2 (= 4 + 4− 2× 3). However, a direct computation of the LCS
using dynamic programming is more efficient than going through the edit
distance computation first, although the asymptotic complexity of O(mn)
remains the same.

The basic approach to compute the LCS, between the n-length
S1 and m-length S2, is via dynamic programming (DP). The formulation is
given as follows:

LCS(0, 0) = 0, LCS(i, 0) = 0, LCS(0, j) = 0
LCS(i, j) = 1 + LCS(i− 1, j − 1) if S1[i] = S2[j]

LCS(i, j) = max{LCS(i, j − 1), LCS(i− 1, j)} if S1[i] 6= S2[j]

The above computes the length of the LCS in the last position of
the table (LCS(n,m)). As with the edit distance, the actual string forming
the LCS can be obtained by using a trace back on the DP table. This

11

55433210b7

44432210a6

43332100d5

43332100c4

33332100c3

22222100b2

11111100a1

00000000φ0

cbacbabφi

76543210j

S
1

S
2

Trace

cbacbabS2

badccbaS1

0 1 2 3 4

0

1

2

3

4

a b b a

a

b

a

b

Figure 2.3: Computing the LCS: (a): dynamic programming table and a
trace; (b): edit graph.(figures taken from [2])

requires O(mn) time and O(mn) space. See Figure 2.3(a) for an example.
The LCS matrix has some interesting properties: the entries in any row or in
any column are monotonically increasing, and between any two consecutive
entries in any row or column, the difference is either 0 or 1.

An improved approach is to formulate the problem on a two di-
mensional grid, where the goal is to find the minimal cost (or maximal cost,
depending on the formulation) path, from the start position on the grid (typ-
ically, (0,0)), to the end position (m,n). Myers et al. [26] and Ukkonen [31]
used this idea to propose a minimum cost path determination problem on
the grid, where the path takes a diagonal line from (i − 1, j − 1) to (i, j)
if S1[i] = S2[j] with cost 0, and takes a horizontal or vertical line with a
cost of 1, corresponding respectively to insert or delete operations. Hunt and
Szymanski [19] earlier used an essentially similar approach to solve the LCS
problem in (r+n) log n time, with m < n, where r is the number of pairwise
symbol matches (S1[i] = S2[j]). When two non-similar files are compared,
we will have r � mn, or r in O(n), leading to a practical O(n log n) time al-
gorithm. However, for very similar files, we have r ≈ mn, or an O(mn log n)
algorithm. This worst case occurs, for instance, when S1 = an and S2 = am.
The grid-based approaches can be easily visualized with the aid of an edit
graph as shown in Figure 2.3(b) for the sequences S1=abba and S2=abab.

12

The end points of the diagonals then define an LCS. Hirschberg [18] pro-
posed space-efficient approaches to compute the LCS using DP in O(mn)
time and O(n+m) space, rather than O(nm). More recently, Yang et al. [38]
used the observation on monotonically increasing values in the LCS table to
identify the “corner points”, where the values on the diagonals change from
one row to the next. The corners define a more sparse 2D grid, based on
which they determine the LCS.

Another interesting view of the LCS problem is in terms of the
longest increasing subsequence (LIS) problem, suggested earlier in [4,20,28],
and described in detail in [16]. The LIS approach also solves the LCS
problem in O(r log n) time (where m ≤ n), the same time complexity as the
grid based methods. In most practical scenarios, r < mn.

2.3 Directed Acyclic Graph

A graph G is a set of vertices V and edges E, where vertices are a finite
set and edges are a binary relation on vertices. A directed graph is a graph
where the edges are directional, going in one direction from one vertex to
another. A cycle in graph is when we can start from one vertex and come
back to that after visiting other vertices. An acyclic graph does not have
any graph cycles. A directed acyclic graph (DAG) is a directed graph with
no cycles. So a DAG is a graph G(V,E), where it is not possible to start
at some vertex u ∈ V and looping back to u again. A good example of a
directed acyclic graph is a tree.

The DAG is a very useful data structure to model various types of
information. For example, partial ordering may be represented by a DAG
using reachability. DAGs are also used in many applications to indicate
precedence among events by running a topological sort to order all of its
vertices linearly. Directed acyclic graphs can be used as a space-efficient
representation of a collection of sequences with overlapping subsequences.
The edges of a DAG can be weighted or unweighted.

13

Longest Path in a DAG

The longest path problem in a graph is to find the longest path from a
starting vertex to an ending vertex. This is an NP-hard problem for general
graph. But for a directed acyclic graph there is solution for given starting
and ending points. Infact for DAG it can be done in linear time. We need the
edges to be weighted to calculate the longest path from one node to another.

To find the longest path in a weighted DAG, we need to run a
topological sort on the graph. It produces a linear ordering of vertices such
that for every directed edge (u, v), vertex u comes before v in the ordering.
We initialize distances to all vertices as minus infinite and distance to source
as 0, then we find a topological sorting of the graph. Topological sorting of
a graph represents a linear ordering of the graph. Once we have topological
order (or linear representation), we process all vertices one by one in topo-
logical order. As we process the vertices, for each one, we update distances
to the adjacent vertices using distance of current vertex. The running time
of this algorithm is linear with respect to the number of vertices and edges.
If the total number of vertices are |V | and total number of edges are |E|,
then the algorithm runs in O(|V |+ |E|) time [8].

This is the time to compute one longest path. Finding all the possi-
ble longest paths from start to end will take more time. If all the path length
is L, then the algorithm will run in O(|V |+ |L|) time [8].

2.4 Genomic Sequence Compression

Compression of biological sequences is an important but difficult problem,
which has been studied for decades by various authors [3,9,27]. See [14,15,32]
for recent surveys. Most of the earlier studies focused on lossless compression,
as it was believed that biological sequences should not admit any data loss,
as that could impact later use of the compressed data. The earlier methods
also generally exploited self-contained redundancies, without using a refer-
ence sequence. The advent of high-throughput next generation sequencing,
with massive datasets that are easily generated for one experiment, have

14

challenged both compression paradigms. Thus, lossy compression of high
throughput sequences admitting limited errors have been proposed in [13,17]
for significant compression. Further, with the compilation of several reference
genomes for different species, more recent methods have considered lossless
compression of re-sequencing data by exploiting the significant redundan-
cies between the genomes from related species. This observation is the basis
of various recently proposed methods for reference-based lossless compres-
sion [22, 29, 35], whereby some available standard reference genome is used
as the dictionary. Compression ratios in the order of 80 to 18,000 without
loss have been reported [29, 35]. Here we describe the GRS and GReEN
compression techniques that used LCS.

2.4.1 GRS Compression Technique

Wang et.al. [35] introduced a novel approach to compression and efficient
storage of genomic resequencing data. They called their tool Genomic Re-
Sequencing (GRS) data compression. Other available tools for compressing
genomic sequence data has the limitation of requiring the single neucleotide
polymorphism (SNP) map for the reference genome. But GRS does not
need the SNP map or other variation information of the sequence.

The main module of GRS takes the genome chromosome files as
input and ouputs the compressed target file and decompression command
file. In Figure 2.4 we showed the GRS architechture. GRS first evaluated
the varied sequence percentage (δ) of the target chromosome based on the
reference chromosome. GRS can only compress the file if the δ value is≤ 0.03.
If δ ≥ 0.1 GRS cannot compress the file, otherwise the method modifies the
input chromosome file and then run the compression. At first GRS filters the
longest common sequence between the target and the reference files. This
can be done effectively using the matrix graph [26]. GRS finds the minimal
changes between two files using a modified UNIX diff program. They modify
the UNIX diff program to remove redundant information and to reduce the
file size. Then Huffman coding is used to encode the processed individual
sequence data.

GRS was run on Korean personal genome sequence data (KO-

15

Figure 2.4: The GRS architechture (from [35]).

REF 20090131, KOREF 20090224), data from rice (TIGR5 and TIGR6) and
Arabidopsis Thaliana (TAIR8 and TAIR9). GRS achieved 159 fold com-
pression on the Korean genome data, 82 on rice genome and 18132 on the
A. Thaliana genome [35]. They used LCS and modified UNIX diff func-
tion in their compression technique. Their compression methods and results
inspired us to focus on longest common subsequence and use for compression.

2.4.2 GReEn Compression Technique

GReEN (Genome Resequencing Encoding) is also a tool for reference base
genomic data compression. GReEN have been proposed to overcome some of
the drawbacks of the GRS method. GRS cannot compress data when the tar-
get sequence is very different from the reference sequence. GReEN proposed
a probabilistic copy model and have gained faster and better compression for
some sequences. It performs compression when the target sequence is not
very similar to the reference sequence, even when the species is different.In

16

general, the reference is only slightly different from the target sequence, but
it is not a mandatory rule that it has to be from the same species. In fact
target from different species is possible to use because genomic sequences are
usually very similar to each other and the alphabet is same for most cases.
For example, DNA will always have A, T, C,G in it. Though the reference
need to be same when decompressing the sequence. The GReEN code is able
to handle even arbitrary alphabets.

GReEN compression tool is based on arithmetic coding. Each char-
acter of target sequence is encoded. It is necessary to provide probability
ditribution of each character to the arithmetic encoder. But the encoder can
adjust the probability as it proceeds. This method estimates the probability
of a character while encoding, which changes along the encoding process.
GReEN uses the adaptive copy model for probability estimation first, then
gradually it fixes itselt to the static probability distribution model. GReEN
runs in linear time with respect to the size of the sequences. They have
used the same dataset used in GRS. GReEN have achieved over 100-fold
compression for some datasets compared to GRS [29].

17

Chapter 3

Methodology

In this chapter, we propose a new algorithm to find the longest common
subsequence (LCS) between two strings S1 and S2. The new algorithm uses
the generalized suffix tree (GST) to compute all the common substrings
(CSSs) between the two strings. Then we sort the CSSs based on the
starting positions on S1 and S2 and build a table named ConflictTable that
stores if one CSS conflicts with another. Then from all common substrings
we construct a directed acyclic graph (DAG) with starting and ending points,
with the help of the ConflictTable. From the directed acyclic graph we
directly find the longest path for the given starting to ending position, which
is our desired longest common subsequence LCS. The overall algorithm is
summerized as follows: (i) From GST to CSS, (ii) From CSS to DAG, and
(iii) From DAG to LCS. Our current algorithm is based on length-1 common
substrings extracted from the generalized suffix tree. In the second part of
this chapter, we proposed how to increase the length of common substrings
(CSSs) and how it can help us to gain a faster algorithm to calculate LCS
in practice.

18

3.1 The New LCS Algorithm

First, we give definition of CSS between two given strings S1 and S2 and
then the definition LCS in terms of the common substrings.

Definition 1. Common substrings (CSS): Given two strings, n-length
S1 and m-length S2, CSSs between S1 and S2 is the set of strings V =
{v1, ..., vV }, where vi = S1[p11 . . . p12] = S2[p21 . . . p22] for some p11 ≤ p12 ≤ n
and p21 ≤ p22 ≤ m.

Definition 2. Longest common subsequence (LCS): For S1 and S2,
the LCS between S1 and S2 is the longest sequence of string pairs M =
{m1, ...,mM}, where M ⊂ V and mi = S1[p11 . . . p12] = S2[p21 . . . p22] for
1 ≤ i ≤M and mi.p1 < mi+1.p1 ∧ mi.p2 < mi+1.p2 for ∀(p1, p2).

3.1.1 From GST to CSS

Here we describe how to compute the common substrings from the general-
ized suffix tree. From Section 2.1.3 we know that, a generalized suffix tree
is used when more than one string is involved. For string S1 and S2 we can
build a generalized suffix tree GST using the same construction method for
suffix tree. There are several well known algorithms that constructs the suf-
fix tree in linear time w.r.t. the length of the string [25, 31]. We can use
Ukkonen’s algorithm [31] to build the GST . Then on the GST we traverse
to find the CSSs and their positions in S1 and S2.

Here we use the same example as in Section 2.1.3. Given, S1 =
xabxa and S2 = babxba. We concatenate terminal strings $ and # at the end
of S1 and S2 respectively. Then concatenate S1 and S2 and get the string
S = S1$ ◦ S2#. We construct the generalized suffix tree using Ukkonen’s
Algorithm [31]. The GST is shown in Figure 3.1 with the suffix numbers for
the strings S1 and S2. We do a pre-order traversal of the generalized suffix
tree to get the CSSs. At each internal node N of the GST , we find all the
suffix indices that starts with the node. The leaf nodes descending from the
node-N represent the suffix numbers and terminal symbols $ or # to indicate
whether it is from S1 or S2. We can get variable number of suffix indices from

19

Figure 3.1: Generalized suffix trie for the concatenated string S = S1$S2# =
xabxa$babxba# for S1 = xabxa and S2 = babxba with suffix numbers.

S1 and S2. The string from root to node-N is the substring shared between
the suffixes from S1 and S2.

In Figure 3.1 we can see that there is a branch with string b at the
root of the tree. We go to depth-1 node along that path, we start collecting
the suffixes descending that node. At this point, we have the suffix indices
{3} from S1 and {1, 3, 5} from S2. We can see that the suffixes at these
positions in S1 = xabxa and S2 = babxba starts with b. Let p1 denote the
suffix position in S1 and p2 denote the suffix position in S2. So for previous
example for the suffixes starting with b in depth-1 node we get three suffixes
{(3, 1), (3, 3), (3, 5)}. So we have found three matches between S1 and S2, in
other words we have found three CSSs with length-1.

We declare an empty set A = ∅, that will store all the CSSs we
collect. In A we store all the CSS with the suffix positions in S1 and S2. By
traversing all the depth-1 nodes we can collect all the length-1 CSS matches
between S1 and S2 and add them in A.

If we want length-k CSSs, we need to traverse the nodes at depth-k

20

in the GST . Then we can collect all the suffixes shared between S1 and S2.
Any length CSS list can be calculated by traversing all the nodes in the
generalized suffix tree. However if a node-N contains suffixes from only one
string, then the string from root to that node-N is not a shared or common
string between S1 and S2. Hence it will not be included in the common
substrings list in A.

Algorithm 1 Compute the common substrings list from GST

1: Compute CSS List(S1,S2)
2: G ←Construct GST(S1,S2) /∗ using Ukkonen’s Algorithm ∗/
3: A = ∅
4: while G do
5: Identify suffix indices descending at each node at depth-1
6: while indices form a matching CSS do
7: c← CSS
8: A ← A∪ c
9: end while

10: end while
11: return A

From the above description and Algorithm 1, it is clear that the
running time is the maximum of the generalized suffix tree construction and
the number of length-1 CSSs. The GST is linear w.r.t. the length of S1 and
S2. If the length of S1 is n and S2 is m, then the running time for GST is
O(n + m). Let the total number of CSSs be η. Then Algorithm 1 running
time is the maximum of (n+m) and η.

Lemma 3. For n-length S1 and m-length S2, computing the η number of
CSSs requires O(max{n+m, η}) time.

3.1.2 From CSS to DAG

From the previous step, all the CSS matches are given in A. Now we can
calculate the directed acyclic graph from the set of CSSs. In our DAG we
need a starting and ending point to calculate the longest path. The starting

21

point S will precede all the CSSs in A and ending point E will succeed all
matching CSSs. The paths from S to E in the DAG will represent all the
maximal common sequences between S1 and S2. From the paths we can find
the longest one and that will be the longest common sequence between S1

and S2.

In the DAG each node will represent a length-1 CSS string. Ac-
cording to Definition 1, each v ∈ V will be a node in the DAG. A link
from node v1 to v2 presents that, S1[v1.p1] = S2[v1.p2] is substring followed
by S1[v2.p1] = S2[v2.p2]. And these substrings are chosen for those maximal
common subsequences, that contains the link v1 → v2. And obviously ac-
cording to Definition 2, v1.p1 ≤ v2.p1 and v1.p2 ≤ v2.p2. Because LCS is an
ordered list of substrings and we cannot choose a vi ∈ V and then choose
vj ∈ V with j < i. Hence we can say that, there exists no cycle in the DAG.
The main task in constructing the DAG is to set the links between the CSSs.

For the clarity of understanding how we get a directed acyclic graph
DAG from the CSSs, here we represent the CSSs as a backbone structure
on S1 and S2. Then using the previous example we explain how to construct
the DAG. The backbone structure is purely conceptual, we do not construct
the actual structure in our algorithms.

Backbone structure

For S1 = xabxa and S2 = babxba we can think of a structure B shown in
Figure 3.2. On B, S1 and S2 are shown as two straight lines. We can present
the letters on S1 and S2 as circles. The links from one circle on S1 to another
circle on S2 represents that there is a matching CSS from S1 to S2. Thus
all the links represnts the CSSs in A. We add the starting point S as a
dotted line on the left of the structure and ending point E to the right of the
structure.

The goal in using this backbone B is to represent and clearly un-
derstand which CSSs conflicts with each other and which does not. After
choosing one CSS v, we cannot add a link from v to those CSSs that con-
flicts with v while we construct the directed acyclic graph. We need to find
the CSSs that do not conflict with v and put a link on DAG from v to

22

Figure 3.2: The backbone structure for S1 = xabxa and S2 = babxba with
CSS serial numbers on S1 and S2.

those non-conflicting CSSs. By conflict we mean that two CSSs v1 and v2
crosses each other on the backbone. We can give a clear definition of conflict
in terms of the CSS position (p1, p2) on S1 and S2 respectively.

Definition 4. Conflict: Given two length-1 CSS, v1 and v2 and their
positions in S1 and S2, if v1.p1 < v2.p1 and v1.p2 > v2.p2, or v1.p1 > v2.p1
and v1.p2 < v2.p2, or v1.p1 = v2.p1 and v1.p2 6= v2.p2 or v1.p1 6= v2.p1 and
v1.p2 = v2.p2 then v1 and v2 conflicts with each other.

For each matching CSS, we put a serial number on S1 and S2

based on their starting sequence, because multiple CSS can start from the
same position (see Fig. 3.2). The numbers are shown on the backbone B.
We denote each CSS by a serial number pair (sequence in S1, sequence
in S2)=(r1, r2) . Note that this is different from the starting positions of
CSSs in the strings which we denoted as p1 and p2 before. We show this
representation in the directed acyclic graph figure. Now we need to calculate
the end block for each CSS.

End block

For each common substring, CSS on B we need to calculate the end block to
find out the outgoing links on the directed acyclic graph (DAG). For a CSS
v, the end block boundary of v consists of the closest CSS y1 of v on S1 that
does not conflict with v and the closest CSS y2 on S2 that does not conflict

23

Figure 3.3: The directed acyclic graph from the backbone B.

with v. y1 and y2 should conflict with each other, otherwise they are the
same. y1 and y2 will have a link from v on the directed acyclic graph DAG.
Now in the boundary of y1 and y2, which is bounded by y1.p1 to y2.p1 on S1

and y2.p2 to y1.p2 on S2, may contain other CSSs z that does not conflict
with v, but conflicts with y1 and y2. Those z’s will also have links from v on
DAG. All these CSSs having a link from v on DAG build up the end block
of v.

But we need to be very careful when choosing z’s, because some z’s
will be parallel to each other on B but both conflicting y1 and y2. In those
cases, we only need to consider the left z on B, because the right one may
have an incoming link from the left z. In that case, putting another link
from v to the right z will be redundant. Other matching substrings outside
the endblock need not to be considered because they will have link from the
substrings in the end block.

In Figure 3.2 the starting CSS S’s end block boundary consists of
the CSSs (0, 4) and (3, 0) (represented with (r1, r2)). These have a link from
S on the DAG. In the boundary, we find (1, 1) which also has a link from S.
So the end block of S consists of (0, 4), (3, 0), and (1, 1). S has an outgoing
link to all these three CSSs.

24

Figure 3.4: The conflict table for the CSS from S1 and S2 with serial numbers
on A1 and A2.

In Figure 3.3 the directed acyclic graph from the backbone B for S1

and S2 is shown. The longest path from S to E is shown with dark lines. The
longest path is [S, (1, 1), (4, 3), (6, 5), (8, 8), E]. If we spell out the letters in
the path, it is abxa, which is the longest common subsequence LCS between
S1 and S2.

Computing the conflict table

In the DAG construction process, first we sort the list of CSSs in A w.r.t.
the starting position in S1 and number them serially as on backbone and
store them in A1. Then we do the same sorting on S2 and number the CSSs
based on their starting position in S2 and store them in A2. We have shown
the numbering in Figure 3.2. Using A1 and A2 we calculate the conflict table
T .

Conflict table T contains information on whether a substring start-
ing at r1 in A1 conflicts with a substing starting in r2 in A2. In Figure 3.4 we

25

show the conflict table for the CSSs from Figure 3.2. Each row represents
the CSS serial number on A1 or on S1 on B and each column represents the
CSS serial number on A2 or on S2 on B. A cross mark (7) represents that
those CSSs conflict with each other, and a check mark (3) represents that
they do not conflict. The green boxes represent that those CSSs from S1 and
S2 that are the same indentity. Hence they do not conflict with themselves.
A conflict table is not a symmetric, because for a CSS the starting position
in S1 may not be same in S2.

In Algorithm 2 we show how to calculate the conflict table. We
have calculated the CSS list A1 from n-length S1 and A2 from m-length S2.
So the conflict table can be constructed in O(|A1| × |A2|) time. A1 and A2

contains the sequentially numbered CSSs and are of same length, |CSS| = η.

Theorem 5. For the n-length S1 and m-length S2, and the sorted set of
CSSs A1 and A2, the conflict table T on A1 and A2 is constructed in O(η2)
time.

Algorithm 2 Compute the conflict table values from A1 and A2

1: Compute ConflictTable(A1, A2)
2: for each a1 in A1 do
3: for each a2 in A2 do
4: if a1 and a2 conflict then T [a1][a2] = 7

5: elseT [a1][a2] = 3

6: end if
7: end for
8: end for
9: return T

Calculate end block

In section 3.1.2, we have described the end block. Here we give an algorithm
to calculate the end block. This algorithm uses the help of the conflict table
T . For a CSS v, we can find the next CSS with which v is not conflicting,
from the conflict table. First we find the sequence position of v on S1 from
A1 and sequence position of v on S2 from A2. Then we go to that block on

26

T . These blocks are marked with green on T . Let y1 on S1 and y2 on S2 be
the next CSSs that does not conflict with v. On T , we go to the right of
v, the first CSS that v does not conflict with is the y2, if we go down, the
first CSS that v does not conflict with is the y1. Once we find y1 and y2, we
store them in set EB.

To calculate the next non-conflicting CSS we use the function End
Block Boundary. Here we give the CSS v and a boundary on A1 or A2.
This boundary is defined by y1 and y2. Once we find y1 and y2 we only try
to find next non-conflicting CSS in between y1.p1 to y2.p1 on S1 and y2.p2
to y1.p2 on S2. We try to find a new y1 and a new y2 in this boundary. If
we find one we add it to the EB set. We search until y1 = y2 or y1 and
y2 is null. We show the algorithms below. Algorithm 5 shows the DAG
construction process. it uses Algorithms 2 and 4, Compute ConflictTable
and Compute EndBlock. Algorithm 4 uses the Algorithm 3, Compute End
Block Boundary.

27

Algorithm 3 Compute the end block boundary from v

1: Compute End Block Boundary(v, p1, p2, flag)
2: Map p1 to r1 and p2 to r2 using A1 and A2

3: if flag == false then
4: i ← v’s position in A1

5: if r2 ≤ r1 then
6: y ← null
7: end if
8: for r = r1 to r2 do
9: if T [i][r] == 3 then

10: y ← get rth pos CSS from A2

11: break;
12: end if
13: end for
14: else
15: i ← v’s position in A2

16: if r2 ≤ r1 then
17: y ← null
18: end if
19: for r = r1 to r2 do
20: if T [r][i] == 3 then
21: y ← get rth pos CSS from A1

22: break;
23: end if
24: end for
25: end if
26: return y

28

Algorithm 4 Compute end block of a CSS

1: Compute EndBlock(v)
2: y1 ← Compute End Block Boundary(v, v.p1 + 1, n, true)
3: y2 ← Compute End Block Boundary(v, v.p2 + 1, m, true)
4: EB = ∅
5: if y1==y2 then EB ← EB ∪ y1
6: else if y1==null || y2==null then break;
7: else
8: EB ← EB ∪ y1 ∪ y2
9: while (1) do

10: y1 ← Compute End Block Boundary(v, y1.p1 + 1, y2.p1 − 1, true)
11: y2 ← Compute End Block Boundary(v, y1.p2 + 1, y2.p2 − 1, true)
12: if y1==y2 then EB ← EB ∪ y1
13: else if y1=null || y2 == null then break;
14: else
15: EB ← EB ∪ y1 ∪ y2
16: end if
17: end while
18: end if
19: return EB

Algorithm 5 Constructing the directed acyclic graph

1: Construct DAG(A)
2: A1 ← Sort A according to starting position in S1

3: A2 ← Sort A according to starting position in S2

4: T ← Compute ConflictTable(A1, A2)
5: DAG← ∅
6: for each a in A do
7: EB = Compute EndBlock(a)
8: for each e in EB do
9: DAG.add(a→ e)

10: end for
11: end for
12: return DAG

29

3.1.3 From DAG to LCS

Each node in the DAG is a substring occuring in the given strings. Since our
DAG has a single source S, we start from the S and take different paths to
reach the end E . While traversing the graph we concatenate the substrings
of the nodes we are traversing. Thus the length from start to end will be
the length of the subsequence. So the longest path from start to end will
give us our desired longest common subsequence between S1 and S2. This is
equivalent to the reknowned longest path problem in a directed acyclic graph.
In a general graph, the longest path problem in NP-hard. However there is
linear time solution for directed acyclic graph via topological sorting [8].

3.1.4 Complexity Analysis

As indicated before, our LCS algorithm has three main steps. (i) From
GST to CSS, (ii) From CSS to DAG, and (iii) From DAG to LCS. Here
we present the overall time complexity of the algorithm.

(i) By Lemma 3, computing the η number of length-1 CSSs requires
O(max{n+m, η}) time.

(ii) Then we construct the DAG from the list of CSSs a ∈ A using
Construct DAG. In the Construct DAG function, we initially sort the
CSSs based on their starting positions in S1 or S2 and the we com-
pute the conflict T in O(η2) time by Theorem 5. This is shown in
Algorithm 2.

After computing T , the Construct DAG iterates through every CSS a
in A and calculates the end block for each a. The Compute EndBlock

function computes finds all the nodes in DAG that has an incoming
node from a. End block is bounded by substrings y1 and y2 described
in Section 3.1.2. So the running time of end block is O((y2.p1−y1.p1)+
(y2.p2 − y1.p2)). But it might be the case that, y1.p1 = 1 and y2.p1 = n
and y1.p2 = 1 and y2.p2 = m. In that case, the Compute EndBlock

function runs in O(n+m) time.

30

Lemma 6. For n-length S1 and m-length S2, computing the end block
for each CSS requires O(n+m) time.

For a uniformly distributed string, we can more precisely bound the
running time to compute the end block. As described in Section 3.1.2,
y1 and y2 are the end block boundary of a. Since S1 and S2 are uniformly
distributed, that means for a symbol σ at position i in S1, we can
find every σ ∈ Σ in the range of positions (i − ∆...i + ∆) in S2 with
∆ ∈ O(|Σ|), then (y2.p1 − y1.p1) ∈ O(|Σ|) and (y2.p2 − y1.p2) ∈ O(|Σ|).
Which follows, n,m ∈ O(|Σ|)

Lemma 7. Given S1 and S2 with symbols uniformly drawn from alpha-
bet Σ, the Compute EndBlock function requires O(|Σ|) time.

So, the overall Construct DAG time follows.

Theorem 8. Given |A| = η, |S1| = n and |S2| = m, the Construct DAG

function requires O(max{η2, η × (n + m)}) time in the worst case and
O(max{η2, η × |Σ|}) time on average.

(iii) If the number of vertices in the DAG is V and number of edges E,
finding longest path in DAG = G(V,E) is linear to the DAG size,
which is O(|V |+ |E|).

The computation of CSS fromGST in Step (i) and calculating LCS
from DAG in Step (iii) does not add to the complexity of constructing DAG
from CSSs. So the overall complexity of finding the LCS is the complexity
of constructing the DAG.

Theorem 9. Given n-length S1 and m-length S2, the LCS can be computed
in O(max{η2, η× (n+m)}) time in the worst case and O(max{η2, η× |Σ|})
time on average.

3.2 Towards Variable length CSS

In the previous section, we have seen how to compute the LCS for length-1
CSSs from the strings S1 and S2. From the generalized suffix tree we have

31

only extracted length-1 common substrings. But we can get all the variable
length common substrings from the GST . In this section, we describe how
to approach calculating LCS from variable length CSSs.

3.2.1 Determining CSSs of length ≥ 2

In Section 3.1.1 we have described how to build a generalized suffix tree for
the string S = S1$ ◦ S2#. We can use the same tree to calculate all the
CSSs with |CSS| ≥ 2 between S1 and S2. For length-1 CSS we went to
only depth-1 of the tree. Now for length-k CSSs we can go down to depth-k
of the tree, and calculate the suffix numbers descending that node. We do a
pre-order traversal of the tree and collect the suffix numbers at each internal
node. Then we match the common substrings from S1 and S2 and add them
in A. This process takes the same time as length-1 CSSs (See Lemma 3)
O(max{(n+m), η}).

3.2.2 Handling overlaps

Now that we have |CSS| ≥ 2, some pairs of common substrings will overlap
with each other. When using length-1 CSS, we describe how to handle them
when they cross with each other or conflict with each other. We used (p1, p2)
to represent the position of a CSS v on S1 and S2 respectively. Now that
our |CSS| ≥ 2, we need four points to represent them. The starting and
ending points on S1 and the starting and ending position on S2. We denote
them by (p11, p12, p21, p22) respectively. In Figure 3.5 we show an example
of overlapping substrings. From the figure we can see that B starts before A
ends on S1.

Definition 10. Overlap: Given two strings, S1 and S2, and two CSSs A
and B between S1 and S2. Assuming A is on left of B on S1, we say A
and B overlaps if the right edge of A conflicts with the left edge of B, or
A.p12 ≥ B.p11 or A.p22 ≥ B.p21.

If two CSS overlaps we divide them in a way so that the overlapped
portion becomes an independent CSS, and the other parts become separated

32

Figure 3.5: Overlapping of substrings A and B.

from the overlapped portion. Based on A and B’s conflicting edge we can
divide the overlaps in five categories. Here we describe the types and how to
divide them into multiple CSS:

Left-overlap

Figure 3.6: Division of left-overlap.

In Figure 3.6 we can see that the left side of B overlaps with A.
We call this type of overlap left-overlap when a CSS overlaps with the left
side of another CSS. In this case we can divide B into two parts B1 and
B2 so that B1 = A. So now from 3.6(b) we can see that we have 3 CSSs,
A,B1, B2. A and B1 conflict with each other but there is no overlap. Now
we know how to solve them for DAG using our LCS algorithm. In 3.6(c)
we have shown that part of the DAG.

33

Right-overlap

Figure 3.7: Division of right-overlap.

In Figure 3.7 we can see that the right side of A overlaps with B.
We call this type of overlap right-overlap when a CSS overlaps with the right
side of another CSS. In this case we can divide A into two parts A1 and A2

so that A2 = B. So now from Figure 3.7(b) we have 3 CSSs, A1, A2, B. A2

and B conflicts with each other but there is no overlap. The DAG is shown
in Figure 3.7(c).

Mid-overlap (no crossing)

In Figure 3.8 we can see that the right side of A overlaps with the left side
of B. We call this type of overlap mid-overlap. In this case we can divide A
into two parts A1 and A2 and B into two parts B1 and B2. After dividing
we can see from Figure 3.8(b) that, A2 = B1. So now we have 4 CSSs,
A1, A2, B1, B2. A2 and B1 conflicts with each other but there is no overlap.
The DAG is shown in Figure 3.8(c).

34

Figure 3.8: Division of mid-overlap.

Figure 3.9: Division of mid-overlap with crossing.

Mid-overlap (with crossing)

In Figure 3.9 we can see that the left side of A overlaps with the right side
of B. We call this type of overlap mid-overlap with crossing. In this case we
can again divide A into two parts A1 and A2 and B into two parts B1 and
B2. After dividing we can see from Figure 3.9(b) that, A1 = B2. So now we
have 4 CSSs, A1, A2, B1, B2. A1 and A2 conflicts with B1 and B2 but there
is no overlap. The DAG is shown in Figure 3.9(c).

35

Mid-overlap (with containment)

Figure 3.10: Division of mid-overlap with containment.

In Figure 3.10 we can see that B is inside of A on S2 but outside on
S1. We call this type of overlap mid-overlap with containment. In this case
we can divide A into three parts A1, A2 and A3. After dividing we can see
from Figure 3.10(b) that, A2 = B. So now we have 4 CSSs, A1, A2, A3, B.
A2 and A3 conflicts with B but there is no overlap remaining. The DAG is
shown in Figure 3.10(c).

Using the approach mentioned above we can remove the overlaps
between common substrings, but as mentioned before conflict will exists. Af-
ter removing all the overlaps from the CSSs. Then our algorithms described
in Section 3.1 can be used to compute the longest common subsequence. In
that case we can use a weighted directed acyclic graph where the weight will
be the length of the CSS.

3.3 Applications of LCS

Comparing strings is a general and basic problem in computer science, be-
cause strings are everywhere. In Section 1.1 we have mentioned some ap-
plications of longest commmon subsequence between two strings. In general
it is used in similarity measurement, in particular file comparison, pattern

36

recognition in images, etc. LCS is a step in general compression, because
it compares two strings and gives us the similarity. So when comparing two
files we can get the similarity between them using LCS. So it is clear that
if we have a file for reference, we can compare the other file to compress and
based on the similarity we can compress and store the dissimilarity. This is
why LCS is a hallmark of reference based approaches to compressing genome
resequencing data and has been used in some recent algorithms [29,35]. Vol-
umes of genomic data are being generated each day and we know that human
genes have a significant similarity between individuals, so if we can extract
the similarity, we can easily handle and store the dissimilarity. In Section 2.4,
we have described what is genome data compression and some recent works
on genome data compression using LCS [29,35]. In this section, we describe
some new compression techniques using and inspired by LCS.

3.3.1 Compression Method 1

Assume we have two sequences S1 and S2. The length of S1 is n and the length
of S2 is m. Let S1 be the target sequence and S2 be the reference sequence.
The reference sequence can be stored as it is, and target sequence will be
compressed comparing with the reference based on their similarity. This is
what is done in most reference based genomic data compression methods.
The LCS between S1 and S2 can be found using our LCS algorithm. Or in
general, any LCS algorithm could be used.

We know that LCS between two strings may not contain con-
secutive positions. It is the sequence of common substrings CSSs. Let
M = {m1, ...,mM} be an LCS from S1 and S2, where mi is a common sub-
string. Here we do not limit ourselves to length-1 CSS, rather we can use
length-k CSS, k ≤ n. Denote mi’s starting poistion in S1 as mi.p1, and
in S2 as mi.p2 as before (see Section 3.1.1) and the length as |mi| = l. So
each CSS can be represented by a triplet (pos in target, pos in reference,
length)=(p1, p2, l). So the compression result will have two files, one for the
triplets and another to store the symbols not in the LCS. Then Huffman
coding or arithmetic coding can be applied to encode the files.

To decompress the target from the triplets and symbols files, we

37

need to start with the first target CSS position p1 from the triplet file. If it
starts from the first position, then we copy the CSS from the reference using
the reference position p2 and length l. If the CSS does not start from first
position, we copy symbols [1 . . . p1] from the symbols file. Thus we proceed
by copying matchings either from reference file or from the symbols file and
recreate the original target file.

We describe this method with an example. Let S1 = xabxa and
S2 = babxba. The longest common subsequence between S1 and S2 is
abxa, and the CSSs in this LCS are {abx, a}. The triplets file will be
{(2, 2, 3), (5, 6, 1)} and the symbols file will contain {x}. So when decom-
pressing we take {x} first, then take length-3 CSS from starting position 2
from reference S2 {abx} and add it with {x}. Then the current target will be
{xabx}. Then take length-1 CSS from starting position 6 from reference S2

{a} and add it with current target. Then the final target file will be {xabxa}.

3.3.2 Compression Method 2

Here we describe another compression technique which is inspired by the
LCS. We do not directly use the longest common subsequence LCS here,
but we use the components the of LCS, the CSSs. Also here length-k CSS
are considered. Let Z = S2 ◦ S1. Now we can calculate the starting position
of CSSs based on the length of Z. Suppose a CSS m starts at i on S1

(target) part of Z and starts at h on S2 (reference) part of Z. Obviously we
know that h < i and |S2| + 1 ≤ i ≤ |Z| and 1 ≤ h ≤ |S2|. Let the length
of the CSS at these poisiton |m| = k. These k’s and positions h’s can be
computed using the longest previous factor data structure (LPF) and POS
in linear time [5,6,10]. Now we can compress the CSS starting at position i
with reference at position h in the reference using LPF data structure. This
matches the dictionary compression [11].

To compress target S1 with respect to reference S2, we scan the
LPF and POS on Z in a left to right fashion. If LPF [i] ≥ k, we en-
code the CSS with triplets (pos in target, pos in reference, length)=(i −
|S2|, POS[i], LPF [i]). Where LPF [i] < k we simply write out the symbols.
We can write the triplets and symbols as bytes. The resulting file will be

38

a binary file which can be further compressed using standard compression
methods. To decompress the target we again scan left to right. We start
with the triplets file and we decompress with the same method described in
Compression Method 1(3.3.1).

3.3.3 Compression Results

Figure 3.11: Size of TAIR9 after compression vs k.

We implemented Method 1 and tested on the performance on Ara-
bidopsis thaliana genome chromosomes, TAIR9 (target) with respect to TAIR8
(reference) like Wang et al. [29,35]. The compression results were eligibly bet-
ter than those from tradition compression schemes (LZMA2, BZip2, PPMd
etc.). But it was not compatible with the recently published compression re-
sult from [29,35]. Method 2 have been implemented for the recent paper we
submitted to IEEE BIBM, 2015 [7]. We have tested it on the same dataset
(chromosome 1 − 5). We varied the length k described in section 3.3.2 over
0− 200 to find the best k for chromosome 1, and looked at the compression
result closely. On Figure 3.11 the results of variation of k vs size (in bytes)
after the compression is plotted. From the plot we can see that for lower k
values (close to 0) and for higher k value (close to 200), the compression re-
sult is not so good. We get the best k between 31−35 when the compression

39

Table 3.1: Results (in bytes) for compressing the TAIR9 chromosome (tar-
get), with respect to TAIR8 (reference) with k = 31.

Chromosome (C) Basic Compression c1 =Method 2(C, 31)) GRS GReEN
size lzma2 ppmd bzip2 c1 lzma2 ppmd bzip2 [35] [29]

1 30,427,671 7,175,593 7,263,093 7,994,719 1,086 963 1,037 1,227 715 1,551
2 19,698,289 4,701,866 4,756,604 5,264,059 504 584 605 720 385 937
3 23,459,830 5,554,174 5,660,957 6,242,349 746 759 803 947 2,989 1,097
4 18,585,056 4,362,107 4,475,662 4,911,401 4,555 2,507 3,156 3,580 1,951 2,356
5 26,975,502 6,409,741 6,485,115 7,140,759 433 502 520 613 604 618

Total 119,146,348 28,203,481 28,641,431 31,553,287 7,324 5,315 6,121 7,087 6,644 6,559

result is the lowest. So we fixed k = 31 and tested the compression method
on the chromosome dataset.

Table 3.1 shows the results for the compression of TAIR9 chro-
mosomes (1 − 5), with k = 31. Column 1 shows the chromosome numbers
(1−5) from the dataset. Column 2 is the size of the TAIR9 chromosome files.
Column 10 and 11 shows the results from the existing best results for com-
pression of these dataset [29,35]. Those methods are described in Section 2.4.
Column 3, 4, 5 shows the results using the basic compression schemes on the
dataset. We have used 7zip software and LZMA2, PPMd and BZip2 com-
pression methods. Column 6 shows the result using our compression method
2. We have ran the basic compression methods on top of our compression
and those results are shown in column 7, 8, and 9.

We can see that, all of the c1 = Method 2(C, 31) results are com-
petitive with the GRS and GReEN systems, except for chromosome 4. We
can explain it in terms of average CSS length. Because if the CSS length
is bigger, the reference and the target has more matching portions and our
symbols and triplets files are smaller. Chromosome 4 has the smallest aver-
age CSS length of about 326K, followed by chromosome 3 (≈455K), chro-
mosome 1 (≈458K), chromosome 2 (≈510K), and chromosome 5 (≈1,704K).
However, we are able to further compress the files after running our com-
pression method via standard compression schemes (in 7-zip) to make up for
chromosome 4. Chromosome 3 and 5 show the best results, we were able to
compress them in less bytes than needed by the GRS and GReEN. For each
chromosome best results are shown in bold.

40

Chapter 4

Conclusion

4.1 Summary

We proposed a novel method to compute the longest common subsequence
(LCS). The contruction of directed acyclic graph DAG via the general-
ized suffix tree (GST) is a creative approach to solving the LCS problem.
Our algorithm gives solution for common substrings (CSS) of length-1. We
have compiled all the CSSs and presented them on a conceptual backbone
structure. This backbone concept clears the main idea of our approach.
We sort the CSSs according to their starting position in S1 and S2 and
then calculate the conflict table. The pre-computed conflict table holds the
core information needed during the run-time of the algorithm. The we com-
pute the end− block by ruling out the redundant CSS links on the directed
acyclic graph (DAG). The DAG gives our desired solution in linear time.
Our overall algorithm runs in O(max{η2, η × (n + m)}) time in the worst
case and O(max{η2, η× |Σ|}) time on average. The average case complexity
has improved result over other LCS algorithms that are based on dynamic
programming.

We have also investigated genomic data compression. It attracted
our attention due to the contemporary research results related to LCS and
genomic data compression. We have proposed and narrated two new ref-

41

erenced based methodology for compression of biological data. The first
method directly uses the LCS and the second one uses CSS and LPF data
structure (see Section 3.3.2). Results of Method 2 on Arabidopsis thaliana
genome data is presented and compared with other compression techniques.

Before this thesis, longest common subsequence did not have any
direct relation with generalized suffix tree, although GST is a widely used
data structure for string matching problems. We took the challenge and
successfully made the connection between the LCS and the GST via the
DAG, which is our biggest achievement in this work.

4.2 Future work

Our main target was to find an algorithm that uses all the common substrings
of any length. Now we have fomulated our algorithm for length-1 CSSs. In
Section 3.2, we have described how to derive length-k CSSs and a divide
and conquer approach to make them usable in our algorithm. One direction
for future work would be to identify techniques to improve our algorithm to
make use of CSSs of various lengths. If we could use of various length CSS
then number of CSSs η will be smaller, because multiple length-1 CSSs
will be merged to create a single CSS of length-k. If η becomes reasonably
smaller our algorithm should run faster.

Another direction for future work would be to extend the LCS for
multiple strings. We know that for arbitrary number of sequences this is
NP-hard. But for a fixed number of sequences we could have a solution for
longest common subsequence between them. And we can again approach
it via generalized suffix tree, because we know how to construct GST for
multiple strings. Also we plan to improve our Compression Method 1 for
better compression and different genomic resequencing datasets could be used
to run the compression algorithm.

42

Bibliography

[1] John Aach, Martha Bulyk, George Church, Jason Comander, Adnan
Derti, and Jay Shendure. Computational comparison of two draft se-
quences of the human genome. Nature, 26(1):5–14, 2001.

[2] Donald Adjeroh, Timothy Bell, and Amar Mukherjee. The Burrows-
Wheeler Transform: Data Compression, Suffix Arrays, and Pattern
Matching. Springer Publishing Company, Incorporated, 1 edition, 2008.

[3] Donald Adjeroh and Fei Nan. On compressibility of protein sequences.
In DCC, pages 422–434. IEEE Computer Society, 2006.

[4] A. Apostolico and R. Giancarlo. The Boyer-Moore-Galil string searching
strategies revisited. SIAM Journal of Computing, 15(1):98–105, 1986.

[5] Richard Beal and Donald Adjeroh. Parameterized longest previous fac-
tor. Theoretical Computer Science, 437:21 – 34, 2012.

[6] Richard Beal and Donald Adjeroh. Variations of the parameterized
longest previous factor. Journal of Discrete Algorithms, 16:129 – 150,
2012. Selected papers from the 22nd International Workshop on Com-
binatorial Algorithms (IWOCA 2011).

[7] Richard Beal, Tazin Afrin, Aliya Farheen, and Don Adjeroh. A new
algorithm for the lcs problem with application in compressing genome
resequencing data. In IEEE International Conference on Bioinformatics
and Biomedicine (BIBM). IEEE, 2015, [Submitted].

[8] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E.
Leiserson. Introduction to Algorithms. McGraw-Hill, 2nd edition, 2001.

43

[9] Anthony J. Cox, Markus J. Bauer, Tobias Jakobi, and Giovanna
Rosone. Large-scale compression of genomic sequence databases with
the burrows-wheeler transform. Bioinformatics, 28(11):1415–1419, 2012.

[10] Maxime Crochemore and Lucian Ilie. Computing longest previous fac-
tor in linear time and applications. Information Processing Letters,
106(2):75 – 80, 2008.

[11] Maxime Crochemore, Lucian Ilie, and W. F. Smyth. A simple algorithm
for computing the lempel ziv factorization. In Proceedings of the Data
Compression Conference, DCC ’08, pages 482–488, Washington, DC,
USA, 2008. IEEE Computer Society.

[12] Cees Elzinga, Sven Rahmann, and Hui Wang. Algorithms for subse-
quence combinatorics. Theor. Comput. Sci., 409(3):394–404, Dec 2008.

[13] Cochrane G Fritz M, Leinonen R and Birney E. Efficient storage of high
throughput dna sequencing data using reference-based compression. In
Proceedings of the Conference on Data Compression, Epub 2011, pages
734–40. Cold Spring Harbor Laboratory Press, 2011.

[14] Raffaele Giancarlo, Davide Scaturro, and Filippo Utro. Textual data
compression in computational biology: a synopsis. Bioinformatics,
25(13):1575–1586, 2009.

[15] Raffaele Giancarlo, Davide Scaturro, and Filippo Utro. Textual data
compression in computational biology: Algorithmic techniques. Com-
puter Science Review, 6(1):1–25, 2012.

[16] Dan Gusfield. Algorithms on Strings, Trees and Sequences: Computer
Science and Computational Biology. Cambridge Univ. Press.

[17] Faraz Hach, Ibrahim Numanagic, Can Alkan, and Suleyman Cenk Sahi-
nalp. Scalce: boosting sequence compression algorithms using locally
consistent encoding. Bioinformatics, 28(23):3051–3057, 2012.

[18] D.S. Hirschberg. A linear space algorithm for computing maximal com-
mon subsequences. Communications of the ACM, 18(6):341–343, 1975.

[19] James W. Hunt and Thomas G. Szymanski. A fast algorithm for com-
puting longest subsequences. Commun. ACM, 20(5):350–353, 1977.

44

[20] Guy Jacobson and Kiem-Phong Vo. Heaviest increasing common sub-
sequence problems. In Proceedings of the Third Annual Symposium on
Combinatorial Pattern Matching, CPM ’92, pages 52–66, London, UK,
1992. Springer-Verlag.

[21] Chih-En Kuo, Yue-Li Wang, Jia-Jie Liu, and Ming-Tat Ko. Resequenc-
ing a set of strings based on a target string. Algorithmica, 72(2):430–449,
June 2015.

[22] Shanika Kuruppu, Simon J. Puglisi, and Justin Zobel. Optimized rela-
tive lempel-ziv compression of genomes. In Thirty-Fourth Australasian
Computer Science Conference, ACSC 2011, Perth, Australia, January
2011, pages 91–98, 2011.

[23] Zhiwei Lin, Hui Wang, and Sally I. McClean. A multidimensional se-
quence approach to measuring tree similarity. IEEE Trans. Knowl. Data
Eng., 24(2):197–208, 2012.

[24] David Maier. The complexity of some problems on subsequences and
supersequences. J. ACM, 25(2):322–336, April 1978.

[25] Edward M McCreight. A space-economical suffix tree construction al-
gorithm. Journal of the ACM (JACM), 23(2):262–272, 1976.

[26] Eugene W. Myers. An O(ND) difference algorithm and its variations.
Algorithmica, 1(2):251–266, 1986.

[27] Craig G. Nevill-Manning and Ian H. Witten. Protein is incompressible.
In Proceedings of the Conference on Data Compression, DCC ’99, pages
257–. IEEE Computer, 1999.

[28] P. A. Pevzner and M. S. Waterman. A fast filtration algorithm for
the substring matching problem. LNCS 684, Combinatorial Pattern
Matching, pages 197–214, 1993.

[29] Armando J. Pinho, Diogo Pratas, and Sara P. Garcia. Green: a tool
for efficient compression of genome resequencing data. Nucleic Acids
Research, 2011.

[30] Temple F. Smith and Michael S. Waterman. Identification of common
molecular subsequences. Journal of Molecular Biology, 147:195–197,
1981.

45

[31] E. Ukkonen. Algorithms for approximate string matching. Inform and
Control, 64:100–118, 1985.

[32] Sebastian Wandelt, Marc Bux, and Ulf Leser. Trends in genome com-
pression. Current Bioinformatics, 9(3):315 – 326, 2014.

[33] Sebastian Wandelt and Ulf Leser. Fresco: Referential compression of
highly similar sequences. IEEE/ACM Trans. Comput. Biol. Bioinfor-
matics, 10(5):1275–1288, September 2013.

[34] Sebastian Wandelt, Johannes Starlinger, Marc Bux, and Ulf Leser. Rcsi:
Scalable similarity search in thousand(s) of genomes. Proc. VLDB En-
dow., 6(13):1534–1545, August 2013.

[35] Congmao Wang and Dabing Zhang. A novel compression tool for effi-
cient storage of genome resequencing data. Nucleic Acids Res., 39(4),
2011.

[36] Hui Wang. All common subsequences. In Proceedings of the 20th In-
ternational Joint Conference on Artifical Intelligence, IJCAI’07, pages
635–640, 2007.

[37] Peter Weiner. Linear pattern matching algorithms. In Switching and
Automata Theory, 1973. SWAT’08. IEEE Conference Record of 14th
Annual Symposium on, pages 1–11. IEEE, 1973.

[38] Jiaoyun Yang, Yun Xu, Yi Shang, and Guoliang Chen. A space-bounded
anytime algorithm for the multiple longest common subsequence prob-
lem. IEEE Trans. Knowl. Data Eng., 26(11):2599–2609, 2014.

46

	The Longest Common Subsequence via Generalized Suffix Trees
	Recommended Citation

	tmp.1568148484.pdf.R70qO

