
Graduate Theses, Dissertations, and Problem Reports

2013

Detection and Identification of Software Encryption Solutions in Detection and Identification of Software Encryption Solutions in

NT-based Microsoft Windows Operating Systems NT-based Microsoft Windows Operating Systems

Julian Breyer
West Virginia University

Follow this and additional works at: https://researchrepository.wvu.edu/etd

Recommended Citation Recommended Citation
Breyer, Julian, "Detection and Identification of Software Encryption Solutions in NT-based Microsoft
Windows Operating Systems" (2013). Graduate Theses, Dissertations, and Problem Reports. 337.
https://researchrepository.wvu.edu/etd/337

This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research
Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license
in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses,
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU.
For more information, please contact researchrepository@mail.wvu.edu.

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F337&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/337?utm_source=researchrepository.wvu.edu%2Fetd%2F337&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu

Detection and Identification of Software Encryption Solutions in NT-based
Microsoft Windows Operating Systems

Julian Breyer

Thesis submitted to the
Benjamin Statler College of Engineering and Mineral Resources

at West Virginia University
in partial fulfillment of the requirements

for the degree of

Master of Science
in

Computer Science

Dr. Roy Nutter, Ph.D., Chair
Dr. James Mooney, Ph.D.

Dr. Katerina Goseva-Popstojanova, Ph.D.

Lane Department of Computer Science and Electrical Engineering

Morgantown, West Virginia
2013

Keywords: Encryption; Hard Drive Encryption; Computer Forensics; Live Forensic
Analysis

Copyright 2013 Julian Breyer

ABSTRACT

Detection and Identification of Software Encryption Solutions in NT-based
Microsoft Windows Operating Systems

Julian Breyer

As encrypted information is very difficult or impossible to reconstruct, there are many
situations in which it is critical to detect the presence of encryption software before a computer is
shut down. Currently there is no solution that reliably identifies installed encryption software.

For this investigation, thirty encryption software products for Microsoft Windows based

on the NT-kernel have been identified and investigated. Operating system dependent factors such
as registry, file attributes, operating system attributes, process list analysis and independent
factors such as file headers, keyword search, Master Boot Record analysis as well as hashing of
software components were investigated and allow the identification of these programs. The most
reliable detection rate is achieved through a combination of the aforementioned factors.

To my family

iii

Acknowledgements

I would like to thank my advisor, Dr. Roy S. Nutter, for his encouragement and

assistance during my time as a graduate student as well as for many valuable insights into the

forensic process during the many courses I took with him.

I also owe many thanks to the other two members of my thesis committee, Dr. James

Mooney and Dr. Katerina Goseva-Popstojanova, for the great instruction in their respective

fields of interest and for kindly agreeing to serve on my thesis committee.

My research was partially funded by the National White Collar Crime Center (NW3C) as

part of their mission to provide free high-quality tools and training to law enforcement and I am

grateful for the opportunity their funding provided me with.

Last but not least, I would like to thank my lab partners, Sean Adam and Neil Bowman

for their open ears and invaluable advice.

iv

Table of Contents

ABSTRACT .. ii

Acknowledgements .. iv

Table of Contents .. v

Table of Figures ... viii

Index of Tables .. ix

Chapter 1 - Introduction .. 1

Thesis Statement ... 3

1.1 Predictions ... 3

1.1.1 Best Performance When a Signature Exists ... 3

1.1.2 Best Performance When no Signature Exists ... 3

1.1.3 Best Overall Performance ... 3

Chapter 2 - Background .. 4

2.1 Encryption ... 4

2.1.1 Historical Background .. 4

2.1.2 Encryption Algorithms Commonly Used in Storage Encryption 6

2.1.3 Complexity of Breaking Current Encryption Standards ... 9

2.1.4 Detecting and Identifying Encryption .. 10

2.1.5 Prior Attempts to Detect Encrypted Data Storage .. 10

2.2 Electronic Evidence and the Forensic Process .. 11

v

2.2.1 The Latency of Electronic Evidence .. 11

2.2.2 The Classical 4-phase Approach .. 12

2.2.3 Order of Volatility .. 15

2.3 Files and File Systems ... 15

2.3.1 Files .. 15

2.3.2 File Systems .. 15

2.3.3 File Attributes and Metadata .. 16

2.4 Measures of Reliability ... 16

2.4.1 Confusion Matrix .. 16

2.4.2 Precision ... 17

2.4.3 Recall .. 17

2.4.4 Accuracy ... 18

2.5 Software Detection .. 19

2.5.1 Signature Based Software Detection .. 19

2.5.2 Heuristic Software Detection.. 19

2.5.3 The Balance between False Positives and False Negatives .. 20

Chapter 3 - Experiments ... 21

3.1 Setup .. 21

3.1.1 Identified Encryption Software Packages ... 21

3.1.2 Derivation of Signature Values .. 21

vi

3.1.3 Heuristic Detection ... 24

3.2 Test Framework... 25

3.2.1 Windows Registry Analysis ... 26

3.2.2 File Headers .. 27

3.2.3 File Extensions ... 27

3.2.4 File Attributes ... 28

3.2.5 Master Boot Record .. 28

3.2.6 Operating System Attributes .. 29

3.2.7 Keyword Search ... 29

3.2.8 Process List Keyword Search ... 30

3.2.9 Cryptographic Hashing of Program Components .. 30

3.2.10 Heuristic Detection ... 31

3.3 Experiments ... 32

Chapter 4 – Results ... 36

Chapter 5 - Conclusion ... 57

Chapter 6 - Future Work ... 61

Bibliography ... 63

vii

Table of Figures

Figure 1 - Shift Cipher (Source: Wikipedia) ... 4

Figure 2 - Vigenère Table used for poly-alphabetic substitution. (Source: Wikipedia) 5

Figure 3 - Signature Derivation Process ... 21

Figure 4 - ALERT Encryption Recognition Tool ... 26

Figure 5 – Accuracy, Precision and Recall for the Windows Registry 38

Figure 6 - Precision, Accuracy and Recall for File Headers... 40

Figure 7 - Precision, Accuracy and Recall for File Extensions .. 42

Figure 8 - Precision, Accuracy and Recall for File Attributes .. 44

Figure 9 - Precision, Accuracy and Recall for the Master Boot Record........................... 46

Figure 10 - Precision, Accuracy and Recall for OS Attributes ... 48

Figure 11 - Precision, Accuracy and Recall for Keyword Analysis 50

Figure 12 - Precision, Accuracy and Recall for Combination 1 52

Figure 13 - Precision, Accuracy and Recall for Combination 2 54

Figure 14 - Precision, Accuracy and Recall for Combination 3 56

Figure 15 - Comparison of the Average Precision .. 58

Figure 16 - Comparison of the Average Accuracy ... 59

Figure 17 - Comparison of the Average Recall .. 59

viii

Index of Tables

Table 1 - Confusion Table for Encryption Detection ... 17

Table 2 - Encryption Software and Identifiable Factors. .. 23

Table 3 - Baseline Experiments .. 33

Table 4 - Experiments against Software with Known Signature 34

Table 5 - Experiments after 12 Months without Updated Signatures 35

Table 6 - Results for Windows Registry Analysis .. 37

Table 7 - Results for File Header Analysis ... 39

Table 8 - Results for File Extension Analysis .. 41

Table 9 - Results for File Attribute Analysis .. 43

Table 10 - Results for Master Boot Record Analysis ... 45

Table 11 - Results for Operating System Attribute Analysis ... 47

Table 12 - Results for Keyword Analysis ... 49

Table 13 - Results for Combination 1 (Registry, File Extensions, File Attributes, MBR,

OS Attributes and Keywords) ... 51

Table 14 - Results for Combination 2 (Registry, File Extensions, File Headers, File

Attributes, MBR, OS Attributes, Keywords) .. 53

Table 15 - Results for Combination 3 (Registry, File Extensions, File Attributes, MBR

and OS Attributes) ... 55

ix

Chapter 1 - Introduction

The most common computer forensics analysis technique is known as “post-mortem

analysis” or “dead analysis”. Responders disconnect any computer they suspect may contain

evidence from its power source to prevent any accidental or malicious disposal or alteration of

evidence and subsequently remove the disk drive from the computer [1]. The disk is then

examined on a “trusted” computer using one of the many available computer forensic tools, such

as EnCase, FTK or Autopsy [2]. The intent behind this “dead analysis” process is to examine the

contents of the suspect’s hard disk using a write blocker and another computer. This eliminates

the risk that the “trusted” computer used for forensic analysis will write anything to the disk

under examination [3].

While this method has proven value for digital forensics, it also has a caveat: if the

contents of a hard drive, or a portion thereof, were encrypted prior to the original computer’s

shutdown, the contents of that hard drive may be irretrievably lost [4].

Live forensic analysis, on the other hand, is performed directly on the suspect’s

computer. The computer is not shut down and volatile evidence, such as memory content, that is

lost during shutdown is preserved. While this method allows investigators to examine the

computer in the exact state in which it was seized, it also bears the risk that volatile and stored

evidence might be changed or destroyed. This can be the result of faulty software used for the

investigation or of a deliberate attempt to hide or destroy evidence.

Currently there is no comprehensive solution available that reliably detects a variety of

encryption software products and can be adapted to discover new or changed software products.

This investigation identifies and examines a number of operating system dependent and

independent factors by which known Windows encryption packages can be detected and

1

identified and which can be employed in a signature-based approach. A framework termed

ALERT (Automated Live Encryption Recognition Tool) has been developed as a proof of

concept that encryption software can be reliably detected with minimal human intervention

during a live forensic investigation. To examine the reliability and effectiveness of each factor by

itself and of combinations of factors in unison, 25 experiments have been conducted and

analyzed.

2

Thesis Statement

This investigation examines if all of the thirty most common software encryption solutions

identified for NT-based versions of Microsoft Windows are reliably identifiable through the live

analysis of a combination of operating system dependent and independent factors. It furthermore

analyzes whether one or more combinations of factors exists that is more reliable in terms of

precision, recall and accuracy than any single factors in isolation.

1.1 Predictions

1.1.1 Best Performance When a Signature Exists

It is expected that the Operating System dependent factors will produce the best results in terms

of precision for cases in which a signature is available for the particular version to be detected. File

Header analysis is expected to perform as well or better than any other factor in terms of recall but at the

expense of execution speed.

1.1.2 Best Performance When no Signature Exists

Overall, it is expected that the keyword search will perform as well or better than any other factor

in terms of recall when no signature exists for the software product. For Full Disk Encryption programs,

the heuristic approach is expected to yield the best results in terms of recall while the Operating System

dependent measures should yield very low recall but high precision values.

1.1.3 Best Overall Performance

It is expected that there exists a combination of factors C such that for any factor F in isolation

recallC >= recallF because encryption software, like viruses, attempt to hide their presence by using

leaving as few detectable traces in the Operating System as possible.

3

Chapter 2 - Background

2.1 Encryption

2.1.1 Historical Background

The protection of sensitive information has been important to societies since the inception

of written communication. One of the first documented ciphers is the Caesar Cipher used by

Julius Caesar to protect his correspondence from the prying eyes of his enemies. In this simple

encryption system, letters of the alphabet are shifted, or transposed, by a certain number of steps.

The sender and receiver might, for example, agree that all letters are transposed by three. As

illustrated in Figure 1, a “B” would become an “E”, a “C” would become and “F” and so forth.

The word “FILE” would become “ILOG”. What has not changed is the length of the “encrypted”

word. Additionally, if one had access to a large enough sample of the encrypted text and knew

which language it was written in and with which frequency certain letters occur in that language,

it would be a trivial task to decipher the message.

 While this might seem insecure today, the fact that few people could read even

unencrypted communications at the time this cipher was conceived provided a certain amount of

security. Today, this type of cipher is generally known as a “shift cipher” or “mono-alphabetic

substitution” [5].

Figure 1 - Shift Cipher (Source: Wikipedia)

As time progressed, new and more secure ciphers, as well as ways to break them, were

devised. It was not until World War II, however, that computers were first used to attack cipher

text. The Nazis had devised an encryption machine (the Enigma machine) to safeguard their

4

correspondence. Unlike the early shift ciphers, the Enigma relied on a more intricate form of

cryptography known as “Poly-alphabetic Substitution” that had been developed in the 15th

century. Poly-alphabetic substitution ciphers rely, as the name suggests, on multiple different

alphabets and a key. The substitution is based on the alphabet belonging to a particular part of

the key, the numerical value assigned to a letter (e.g. 1 for an “a”) and the corresponding

substitution [5].

Figure 2 - Vigenère Table used for poly-alphabetic substitution. (Source: Wikipedia)

Since messages were commonly transmitted via wire or radio, the Allied Forces were

able to intercept great amounts of cipher text. Dr. Alan Turing, a well-known English

mathematician then working at a military facility in Bletchley Park, England, devised a method

to use mechanical computers to decrypt the intercepted messages as part of a project named

“Ultra”. While this was laborious and often did not lead to the successful decryption of a

message, it built the foundation of much of today’s cryptanalysis [6].

In the light of the Cold War, the necessity to secure national secrets against opposing

forces eventually led to the development of a National Institute of Standards and Technology

(NIST) endorsed encryption standard now known as Data Encryption Standard (DES) [7]. While

the standard was regarded as secure at the time, it used a secret key that had to be shared with

others authorized to access data encrypted in this manner. Additionally, as shown by Diffie and

5

Hellman, its key length of 56 bits was too short to keep information secure for long when the

computers used to attack the data were becoming more powerful every year [5].

The widespread access to computer networks and networks of networks, such as the

internet, eventually led to a call for a new and improved standard. This occurred with the

replacement of DES by the Advanced Encryption Standard (AES) in 2001 [8]. At the same time

other mechanisms for communications, such as Secure Socket Layer (SSL) / Transport Layer

Security (TLS) encryption were designed. New encryption algorithms using massively long

encryption keys that are based on the complexity of factoring relatively prime numbers as well as

the advent of asymmetric encryption have made today’s encryption easy to use, virtually

transparent and ubiquitous.

Most of today’s operating systems are equipped with powerful encryption software that

can be used to encrypt single files or an entire file system and require virtually no technical

knowledge. Additionally, several third party solutions are available to both private individuals

and the industrial world [5]. In addition to software-based encryption, many manufacturers of

storage and computing equipment offer hardware implementations of current encryption

algorithms that are faster and more difficult to circumvent than their software equivalents.

2.1.2 Encryption Algorithms Commonly Used in Storage Encryption

2.1.2.1 Advanced Encryption Standard (AES)

The Advanced Encryption Standard (AES) was first published in 1998 as “Rijndael” by

Rijmen and Daemen and later standardized in 2001 as a replacement for the aging Data

Encryption Standard (DES). The algorithm employs a Substitution-Permutation network with a

block size of 128 bit and a key length of 128, 192 or 256 bit. It further uses a symmetric key; i.e.

6

the same key is used for encryption and decryption. AES is currently approved by the National

Security Agency (NSA) for information classified as Top Secret [9].

A Substitution-Permutation network applies a number of logic or algebraic operations to

transform the input data. These operations are then repeated a number of times. The number of

cycles depends on the length of the key. In AES, 10 cycles are used for 128 bit keys, 12 cycles

for 192 bit keys and 14 cycles for 256 bit keys. Each cycle follows the following format:

1. Key Expansion; round keys are derived using Rijndael’s key schedule.

2. Initial Round

- AddRoundKey: Bitwise operation that performs [𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑘𝑘𝑘𝑘𝑘𝑘] ⊕ [𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖] .

3. Rounds

1. SubBytes: Each byte of input is replaced with another one according to a lookup

table.

2. ShiftRows: Each row of the block is shifted cyclically.

3. MixColumns: Exchanges the order of the columns of the block cyclically.

4. AddRoundKey

4. Final Round

1. SubBytes

2. ShiftRows

3. AddRoundKey

2.1.2.2 Serpent

The Serpent algorithm, proposed in 1998 by Anderson, Biham and Knudsen, is a 32-

round Substitution-Permutation network that utilizes a 128 bit block size and a key length of 128,

192 and 256 bit. Like Rijndael, Serpent was a finalist for the AES standard. All steps of the

7

algorithm can be performed in parallel, which improves its performance but also renders it more

susceptible to cryptanalysis [10].

The algorithm consists of

1. An initial permutation

2. 32 rounds of

- key mixing

- a pass through S-Boxes (substitution boxes)

- a linear transformation in all but the last round

3. A final permutation

2.1.2.3 Twofish

Twofish was proposed by Schneier, Wagner, Hall, Kelsey, Whiting and Ferguson in 1998

– also in competition for the AES standard. Just as Rijndael and Serpent, it uses a block length of

128 bits and a key length of 128, 192 or 256 bits but unlike the other two, it is implemented as a

Feistel Network [11].

The algorithm consists of

1. An initial input whitening

2. 16 rounds of

- 4 S-Boxes

- maximum distance separable (MDS) mapping

- Pseudo-Hadamard transforms (PHT)

- a bitwise shift

- multiple XOR-operations

3. Undo of the last swap operation

8

4. Output whitening

2.1.3 Complexity of Breaking Current Encryption Standards

The difficulty of breaking modern day encryption is best illustrated with a case

investigated by the Federal Bureau of Investigation (FBI) and the Brazilian National Institute of

Criminology in 2009. While investigating a Brazilian banker charged with money laundering, the

authorities seized five hard drives that all exhibited military-grade AES 256-Bit encryption

through a common Full Disk Encryption tool called TrueCrypt [12]. Since in Brazil as well as

the United States, a suspect cannot be compelled to surrender an encryption key or password, the

FBI attempted to decrypt the contents of the hard drive using various brute-force methods such

as dictionary attacks. Twelve months later, the agents gave up having made no progress and

returned the hard drive to the Brazilian authorities [13].

All of the algorithms described in this section were deemed sufficiently secure by NIST

to be accepted as finalists for the AES standard. While Rijndael ultimately won the contest, all

three algorithms are thought to be very resilient against short-cut attacks, leaving brute force

attacks (such as dictionary attacks) as the only viable option to decrypt the hard drive.

Most hard- and software implementations today recommend a key length of 256 bits for

confidential information. Breaking a key of this length by brute force would require

approximately 2255 operations. Given 50 of the most powerful super-computer available in 2012

(the 20-peta-FLOP Cray Titan at Oak Ridge National Labs) these machines could process a

combined 1018 operations per second. At that rate, all 50 super-computers would require

1.86*1051 years to attempt every possible combination. For AES, it has been shown that the

complexity for a 256-bit key can theoretically be reduced to 2176 operations, reducing the time to

9

3*1027 years which is still far beyond feasible. The longest key successfully broken by this

method had a length of 60 bits.

2.1.4 Detecting and Identifying Encryption

A method commonly employed in cryptanalysis is the analysis of the frequency with

which symbols and characters occur in cipher text. If a simple cipher is employed, the frequency

with which certain letters occur might provide useful information regarding the language of the

clear text as well as a possible starting point for the decryption of the message. To avoid this,

strong encryption methods strive for a roughly uniform distribution of all symbols so that no

conclusion about the encryption system, the plain text message or even just the presence of

encryption can be drawn. This makes the detection and identification of a particular encryption

algorithm very difficult if not impossible.

2.1.5 Prior Attempts to Detect Encrypted Data Storage

Due to the inherent difficulty of detecting and classifying the presence of encryption

itself, a number of companies have developed software tools to detect a small subset of

commonly used encryption programs through alternate means, such as a search for a particular

dynamically linked library (DLL) known to be used by the programs. JADsoftware’s “Encrypted

Disk Detector” (EDD) [14] is capable of detecting TrueCrypt, PGP and BitLocker through

analysis of the Master Boot Record (MBR). TechPathWay’s “ProDiscover” [4] does not detect

any particular encryption suite but presents a user with the contents of the Master Boot Record

(MBR). LEAP, a live encryption analysis program developed by another Master’s candidate at

West Virginia University, can detect a number of encryption programs, including Microsoft

BitLocker, but relies mainly on the analysis of file names in particular locations on the hard

drive. Furthermore, there are several websites that claim to offer software that can classify the

10

algorithm used to encrypt a hard drive from patterns formed by the use of different algorithms

but within the forensics community, these are widely regarded as a fraud. Other solutions may

exist but were unavailable for analysis as they are often proprietary and classified and no

information about their existence or functionality is made available to the general public.

2.2 Electronic Evidence and the Forensic Process

2.2.1 The Latency of Electronic Evidence

Digital computers are state machines. This means that at any given moment, a computer

has a well-defined state that constantly changes based on the previous state, inputs and outputs

and operations that need to be performed on those data. This state can contain valuable

information about the prior and present use of the computer but it is also constantly under threat

of change and therefore must be preserved to the greatest extent possible given the time available

to an investigator to prevent information from being destroyed. In less abstract terms,

information about programs and data currently executing on the computer as well as time stamps

and administrative data can change at any given moment and may make the recovery of previous

information difficult or impossible.

Some of the computer’s data resides on long-term / semi-permanent storage usually

referred to as “hard-drives”, while other information is stored in the computer’s volatile registers

or its Random Access Memory (RAM). This type of memory relies on the presence of an electric

current to preserve the information stored within it. Once this current is lost (e.g. due to a loss of

power or controlled shutdown), the information quickly dissipates and becomes irretrievable.

Additionally, magnetic storage can easily be altered or destroyed if the storage medium is

handled improperly. A drop and even moderate impact can damage the fragile magnetic platter

11

on which information is stored. Electromagnetic fields can also alter the data stored on the

magnetic disk [15].

This inherent volatility of electronic evidence, just as the volatility of fingerprints or other

trace evidence requires that the evidence be collected, handled, examined and preserved with the

utmost care and in a way that holds up in a court of law. This requires training and reliable and

well-tested tools and processes.

2.2.2 The Classical 4-phase Approach

To accommodate the stringent requirements for the permissibility of electronic evidence

at trial, digital forensics typically employs a four-phase approach. It consists of collection,

examination, analysis and reporting phases.

2.2.2.1 The Collection Phase

Typically, the collection phase takes place at the site of the incident. Investigators first

document the site. This may include accounts of what technology was found at the scene and

what the devices looked like or displayed when they were found. This account is usually

augmented by photographs and possibly screens shots. Once the original state of the site has

been documented, the incident responder will either conduct a live analysis of the device or

disconnect it from its power source. The live analysis will be discussed in a later section of this

chapter. Once the computer has been separated from its power supply, all incoming and outgoing

connections to peripherals are labeled and documented [16]. It has become increasingly difficult

to identify and recognize all relevant devices since many of them look inconspicuous or require

training to be recognized. The computerization and networking of seemingly benign items (cars,

12

phones, copy machines, coffee makers etc.) that may contain important evidence further

complicates this task.

2.2.2.2 The Examination Phase

The examination phase concentrates on the extraction of evidence from the seized

devices. This includes the detection and identification of the evidence as well as the explanation

of its origin and significance [15]. The work in this phase is commonly conducted by forensic

examiners with the help of well-tested software suites such as Guidance Software’s “EnCase”

[2]. Since in a computer most evidence such as artifacts of a user’s visited websites or a timeline

of tasks conducted on the computer in a 24 hour window cannot be seen with the bare eye, it

must be made visible by the forensic examiner so that its significance can later be determined by

a criminal investigator.

The volatile nature of the evidence again becomes important. If a tool or method used by

the examiner were to alter, erase or add information to the secured evidence, the evidence would

be useless in court. Therefore, all tools, physical or software, must be subjected to thorough

testing to demonstrate that they do not alter the evidence in any way. Likewise, the examiner

must have a thorough understanding of the function of a computer and how the evidence might

have been produced as it would otherwise be easy for an investigator to interpret the results of

the examination incorrectly and mistake benign data for incriminating evidence or vice-versa.

Examination is commonly conducted in one of two different ways: as “live” analysis on a

running system or as “dead” or “post-mortem” analysis of the secured storage device via a

second, trusted set of hardware and software. “Post-mortem” analysis should generally be

regarded as favorable as the use of a separate trusted system offers more safeguards against the

inadvertent alteration of evidence. Furthermore, the fact that the computer under investigation is

13

shut down guarantees that no program on it can be executed that would hide, alter or dispose of

incriminating evidence.

As Brian Carrier notes [1], there is virtually nothing that “live” analysis can accomplish

that cannot also be accomplished via “post-mortem” analysis. This, however, is only true with

certain qualifications. If the computer system is an essential production system, the cost of

removing and replacing it might be prohibitive. Furthermore, if the contents of the computer

system’s hard drive are encrypted, “post-mortem” analysis of its stored contents is only possible

if the encryption key or password can be obtained. Without this, the information stored on the

computer becomes inaccessible as soon as the computer is shutdown or its operating system is

locked due to inactivity.

2.2.2.3 The Analysis Phase

The analysis phase is conducted by the criminal investigator and interprets the findings of

the examination phase. While the examiner and investigator may be the same person, the two

phases serve essentially different purposes. The examination phase concentrates on the technical

abstraction of evidence from the seized computer(s) while the analysis phase attempts to relate

the evidence secured from the computer to the crime under investigation.

2.2.2.4 The Reporting Phase

The reporting phase creates a seamless report of all of the actions performed during the

previous three phases. During discovery or at trial, forensic examiners should not only present

the results of their examination but must also convince all parties involved that their method was

sound and that they were qualified to conduct the analysis.

14

2.2.3 Order of Volatility

The Internet Engineering Task Force (IETF) has published in RFC 3227 the order in

which evidence decays and therefore should be secured [17]:

- registers, cache

- routing table, arp cache, process table, kernel statistics, memory

- temporary file systems

- disk

- remote logging and monitoring data that is relevant to the system in question

- physical configuration, network topology

- archival media

2.3 Files and File Systems

2.3.1 Files

A file is, in its simplest form, a logical collection of characters of which a physical

representation is stored in volatile or non-volatile memory. In ASCII, one of the most common

character sets in use today, each character is represented by seven bits for a total of 128 different

representable characters. On magnetic devices, each bit comprising a character is simply

described as being represented by the polarity of a particular storage cell on the magnetic platter.

In volatile and solid state memory, it is often represented as the presence or absence of a charge

in a storage cell.

2.3.2 File Systems

Files are not usually stored in coherent units on the storage device but are often spread

out across a storage device for efficiency reasons.

15

In order to manage the physical space available and to locate and retrieve the various

pieces of a file, Operating Systems commonly employ file systems as another abstraction. A file

system is a collection of files and a set of functions to store, modify, delete, identify and locate

any particular file. Commonly, file systems also contain means to protect files and to manage

and compact storage units and thus increase the efficiency, usability and security of the storage

device [3].

2.3.3 File Attributes and Metadata

Files are often augmented by meta-information; i.e. information about the file. The most

common metadata are the filename and the modified, accessed and created time stamps

associated with each file. These are usually set by the file system but may be altered manually.

Other file attributes can express that a file is write-protected, hidden, encrypted or compressed.

While all of these attributes or metadata are easy to falsify or alter, they can contain vital

information about the file [3].

2.4 Measures of Reliability

2.4.1 Confusion Matrix

A confusion matrix or confusion table is an illustration of the performance of an

algorithm typically employed in artificial intelligence and machine learning. Each column

represents an expectation while each row represents actual results. These results can be grouped

into four categories: true positives, false positives, true negatives and false negatives. Presented

with an algorithm that is supposed to classify cats in a group of cats or dogs, true positives would

be the instances in which a cat was correctly classified as a cat, true negatives would be cases in

which a dog was not classified as a cat, false positives would be cases in which a dog was

16

classified as a cat and false negatives would be cases in which a cat was not classified as a cat.

With regards to this investigation, true positives are considered cases in which encryption

software was present and detected, false positives are cases in which encryption software was not

present but is detected, true negatives are cases in which no encryption software was present and

none was recognized and false negatives are cases in which encryption software was present but

not detected.

 Predicted
Actual

Encryption Software No Encryption Software

Encryption Software True Positive False Negative

No Encryption Software False Positive True Negative

Table 1 - Confusion Table for Encryption Detection

2.4.2 Precision

Precision is the ratio of the number of true positives to the sum of the numbers of true and

false positives. For the work at hand, precision plays a minor role as it is more important to

identify all true positives and minimize the false negatives than it is to identify only the true

positives and minimize the false positives.

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =
𝐴𝐴

𝐴𝐴 + 𝐵𝐵

Equation 1 – Precision

A here denotes the number of True Positives and B the number of False Positives.

2.4.3 Recall

Recall measures the ratio of the number of true positives to the sum of the numbers of

true positives and false negatives. This value is important for this investigation because it

indicates the predictive value of each factor under investigation. The recall will be the primary

quality measure for each factor.

17

𝑝𝑝𝑝𝑝 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =
𝐴𝐴

𝐴𝐴 + 𝐶𝐶

Equation 2 – Recall

A here denotes the number of True Positives and C the number of False Negatives.

2.4.4 Accuracy

Accuracy expresses the ratio of the sum of the numbers of true positives and true

negatives to the sum of the numbers of true negatives, true positives, false negatives and false

positives. While it has no particular relevance to this investigation it will be computed for

completeness.

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =
𝐴𝐴 + 𝐷𝐷

𝐴𝐴 + 𝐵𝐵 + 𝐶𝐶 + 𝐷𝐷

Equation 3 – Accuracy

A here denotes the number of True Positives, B the number of False Positives, C the

number of False Negatives and D the number of True Negatives.

18

2.5 Software Detection

2.5.1 Signature Based Software Detection

In the context of virus and malware detection and identification, signatures are

abstractions of one or more factors by which a particular program can be identified. To obtain

these signatures, a piece of software is analyzed for common behavior or artifacts that are

consistently created by the software and can that be detected. This may encompass file header

values, code signatures, checksums or other criteria that can be contained in a file, the operating

system, a directory, the boot sector, or any other detectable location.

This approach is very efficient in that multiple criteria can be combined into an

abstraction that indicates the presence of a particular piece of software. Its major drawback is

that only known programs can be identified this way. Even minor changes to the software may

require the derivation of a new or alternate signature to guarantee that the alternate version is still

detected.

2.5.2 Heuristic Software Detection

 To mitigate the problems that may arise from outdated signature databases and yet

unknown viruses, heuristic methods are often employed. A heuristic method does not detect any

particular security threat but rather monitors the Operating System for suspicious behavior that is

common for particular attacks. If, for example, a program requests to execute a certain sequence

of suspicious commands or a kernel-level function that is normally reserved for the Operating

System, the heuristic monitor can use this information to deduce the likelihood that the behavior

is an indicator of malicious software.

19

2.5.3 The Balance between False Positives and False Negatives

Most consumer and enterprise grade software is expected to reduce the number of false

positives to reduce user confusion and frustration. If a user is permanently alerted to security

threats that turn out to be false positives, he will be more inclined to ignore all warnings. Thus,

for this type of software it is preferable to miss a small percentage of possible threats in order to

reduce the number of false positives.

For the detection of encryption software, the impact of false positives is assumed to be

reversed: in order to minimize the risk of missing an encrypted volume even a considerable

number of false positives is acceptable as long as the number of false negatives approaches zero.

This is believed to be the case because the consequences of any false negative could be

catastrophic and result in the loss of evidence. False positives, however, are negligible because

computers are not routinely scanned for encryption software and thus the false positives do not

amount to a persistent nuisance for the forensic analyst.

20

Chapter 3 - Experiments

3.1 Setup

3.1.1 Identified Encryption Software Packages

First, a list of common Full Disk Encryption (FDE) programs and container-based

encryption software was compiled. This list encompasses a total of 30 programs and can be

found in Table 2, section 3.1.2.

3.1.2 Derivation of Signature Values

In order to derive signatures for all of the thirty programs, a uniform approach was

followed as shown below.

Figure 3 - Signature Derivation Process

Each of the thirty programs was installed in a clean Windows XP Virtual Machine (VM).

Each program was then used to create an encrypted container (virtual drive) or file system. For

Install
•Install program in a clean Microsoft Windows XP Virtual Machine.

Container

•Create an encrypted container
•Create a second encrypted container - if possible with a different password and algorithm.
•Analyze file extension and header of resulting container files.
•Analyze Windows Registry entry for program.

FDE

•Create encrypted File System.
•Create a second encrypted File System.
•Analyze MBR
•Analyze Windows Registry entry for program.

Other
•Many encryption programs have names or files that contain "crypt", "krupt", "krypt", "safe" "key" and "private".
•Search for file names and processes that contain these sub-strings.

21

the full disk encryption programs, the Master Boot Record and Windows Registry were analyzed

while for container based programs, the header and extension of the resulting encrypted

container and Windows Registry were analyzed. Next, another container or File System was

created (if possible, using a different encryption algorithm and password) and the

aforementioned values were analyzed again for the new file container or File System.

 If a factor remained constant between the two tests, it was recorded and the program was

deemed identifiable by this particular factor. The two outliers are Microsoft’s Encrypting File

System, which can be identified only through a file attribute, and Microsoft BitLocker, which

can be identified solely via an Operating System attribute.

Lastly, the entire File System and Process List were searched for file names and

processes containing the sub-strings “crypt” although the list has since been expanded to also

include the terms “krupt”, “krypt”, “safe”, “key” and “private”. Table 2 shows the results of this

process.

22

Software File
Header

File
Extension

File
Attribute

Keyword
Search

Master
Boot
Record

OS
Attribute

Process
List

Windows
Registry

AdvancedFileSecurity X  X  X X 
ArchicryptLive5  X X  X X 
BestCrypt   X  X X X
BestCrypt_FDE X X X   X X
BitLocker X X X X X  X
CompuSec X X X X X X 
CryptArchiveLite  X X  X X 
CypherixLE  X X  X X 
drivecrypt X X X  X X 
E4M X X X X X X 
EFS X X  X X X 
FreeOTFE X  X X X X 
GilliSoftFDE X X X X X X 
LetEncrypt X X X  X X 
Loop-aes X  X X X X X
Keyparc X X X X X X 
Kruptos2Professional X  X  X X 
MyWinLocker  X X X X X 
n-CryptPro X X X  X X 
NCrypt X X X  X X 
PGPDisk   X X X X 
PGP WDE X X X X  X 
PrivateDisk X  X  X X 
PrivateSafeHD X X X  X X 
R-Crypto X  X  X X 
SafeBoot X X X   X X
SafeticaPersonal X  X  X X 
SafeHousePro X  X  X X 
Sentry2020  X X X X X X
TrueCrypt X X X   X 

Checkmarks () denote that the software can be identified by the corresponding factor while X denotes that this

is not the case.

Table 2 - Encryption Software and Identifiable Factors.

23

3.1.3 Heuristic Detection

In addition to the factors identified before, Full Disk encryption should be detectable

through the sampling of multiple megabytes of data in various pseudo-random locations across

the hard drive and a subsequent frequency analysis of clear-text strings in these samples.

Unencrypted Operating Systems exhibit considerable numbers of plain text strings (e.g. in user

files, linker libraries etc.) while an encrypted hard drive should exhibit drastically fewer strings.

Samples were obtained from several encrypted and unencrypted hard drives.

24

3.2 Test Framework

 In order to test the five hypotheses, a sample implementation for Microsoft Windows was

developed. The resulting framework, termed ALERT (Automated Live Encryption Recognition Tool),

integrates all of the tests listed below (with the exception of file hashes) with a simple-to-use Graphical

User Interface. It runs the various tests in sequence and logs the start time, results and stop time for each

test. It uses a signature file that contains all factors by which a particular program can be identified (see

Table 2). Additionally, the Modified/Accessed/Created (MAC) times are saved before and after the

execution to allow conclusions about the changes to MAC times resulting from the Live analysis. The

framework was developed for users with minimal technical knowledge. It only requires a small number of

options to be set by the user. The drive to be examined must be chosen from a drop-down menu. In

addition, the user has to choose one of two modes of operation. The concise quick-scan performs all tests

except for the file-header analysis. The full-scan option is more thorough but potentially very time-

consuming.

 Once the examination has been completed, the user is presented with four categories in which

possible indicators of encryption software may fall as well as a tab that presents basic information about

the computer and Operating System in use as well as some volatile information. This information is

recorded to preserve as much information about the computer at the time of the analysis as possible as this

information may become inaccessible if the computer is rebooted or used even if no encryption software

is used. The user is presented with a color-coded dialog box that informs him whether the computer is

exhibiting sure or probable signs of encryption software. All information is saved in a log file on a

separate USB drive. This drive is also used to store the MAC times for all files on the examined drive.

Together, these two files permit a forensic examiner to draw conclusions about the use of the computer

without even having access to the contents of the drive.

25

 Figure 4 - ALERT Encryption Recognition Tool

3.2.1 Windows Registry Analysis

The Registry is a small, embedded database that has been part of every Microsoft

Windows Operating System. It is used to store information about the current configuration of the

Windows instance as well as the software installed in it. Virtually every program that is installed

on a Windows computer stores key information relating to its configuration in the Registry. By

examining the Registry for a key or value known to belong to a particular program one can very

reliably deduce that the software was present at least at some point in the past. Programs are

supposed to remove their keys during uninstallation. However, this is often not performed

adequately and the presence of the key therefore does not necessarily indicate that the software is

still present.

No information is available about how the registry database is implemented. The

algorithm used for this framework can be assumed to require Θ(n) operations where n is the

number of keys to be queried.

26

3.2.2 File Headers

Many file formats use a short sequence of constant values at the beginning of the file to

enable consistency checks between the file’s file extension and its content. This is, however, not

a requirement and many non-standardized file formats do not utilize a constant header. In fact,

many encryption programs deliberately avoid the use of a header to make it more difficult to

identify a file as an encrypted container. When used consistently by a program, file headers are a

good identifying factor but the fact that not many of the identified programs utilize them and that

this is a very time-consuming check (every file on the drive must be opened for read-access and

its first bytes compared to every signature in a file of known signatures) make it a non-optimal

choice as a sole factor. The algorithm used for this framework can be assumed to require Θ(k*m)

operations where k is the number of signature values and m is the number of files in the file

system to be queried. This can take an extremely long time for a large file system.

3.2.3 File Extensions

In most modern operating systems, file names consist of a variable length name followed

by a period character and a usually three to four character long file extension. In many cases, this

file extension identifies the file as one of a particular format (e.g. docx for Microsoft’s XML

Word Document Format). Most of the identified encryption programs allow the user to choose

any file extension for an encrypted container or none at all. Additionally, the file extension can

usually be changed without consequences for the functionality of the program. This examination

can be performed in a slightly faster fashion than the File Header analysis because most modern

file systems treat file names as meta-information that is stored in a very efficient data structure

that allows for fast access to this information without the necessity to traverse the relatively slow

mechanical drive.

27

The algorithm used for this framework can be assumed to require Θ(k*m) operations

where k is the number of signature values and m is the number of files in the file system to be

queried.

3.2.4 File Attributes

File attributes, much like the File Name, are considered meta-information – information

about the file. Common file attributes in current Operating Systems are the “hidden”,”write-

protect” and “archive” flags. Microsoft Encrypting File System (EFS) utilizes this technique to

flag files as “Encrypted”. EFS itself is simply a NTFS implementation that utilizes encryption for

particular files or folders. In Microsoft Operating Systems, this test is very limited because no

other program uses flag values to indicate encrypted files. However, this test is fairly fast

(especially when combined with tests for other meta-information), reliable and it is entirely

possible that other Operating or File Systems use this technique more extensively.

The algorithm used for this framework can be assumed to require Θ(m) operations where

m is the number of files in the file system to be queried.

3.2.5 Master Boot Record

The Master Boot Record (MBR) is the boot code in the first 512 bytes of a hard drive.It

contains some assembly code as well as signature values. Many of the Full Disk Encryption

programs that were analyzed for this experiment stored an ASCII text-string or signature value in

the MBR. In theory, this value can be overwritten without consequences but this requires at least

moderate technical knowledge and, more importantly, knowledge that this signature value exists

in the Master Boot Record. Since the amount of data that must be retrieved for this test and the

28

number of comparisons to be made are relatively small, this test is a fast and reliable indicator

for the presence of Full Disk Encryption.

The algorithm used for this framework can be assumed to require Θ(k) operations where

k is the number of signature values.

3.2.6 Operating System Attributes

With Windows Vista, Microsoft introduced an encryption mechanism called BitLocker

that utilizes the presence of a hardware Trusted Platform Module (TPM) chip to encrypt the hard

drive. Since the TPM chip is a part of the motherboard and cannot easily be moved, the hard

drive becomes inaccessible if it is moved outside of the computer with which it was encrypted.

Windows provides a convenient way of querying not only the use of BitLocker but also what its

current state is (encrypting, decrypting, encrypted or decrypted). As it is implemented and

maintained by the Operating System, this factor is very fast and reliable but can only be used to

identify BitLocker.

The algorithm used for this framework can be assumed to require Θ(k*m) operations

where k is the number of signature values and m is the number of files in the file system to be

queried.

3.2.7 Keyword Search

Many encryption files have the words “crypt”, “safe” or “private” (or variations thereof)

in their name or use these in file names. By searching for files that contain these substrings in

their file name, programs that are unidentified or cannot be identified by other means may be

found. Using the same mechanism as for the File Extension and File Attribute analyses, the

process is relatively fast (however, due to the large number of comparisons slightly less so than

29

the other two meta-factors). It does produce large numbers of false positives as many off-the-

shelf software products also contain files that fit the above pattern but it can help identify files

and programs that may otherwise remain unnoticed. This is one of two checks employed by most

of the other forensic software packages that claim to perform encryption detection.

The algorithm used for this framework can be assumed to require Θ(k*m) operations

where k is the number of keywords and m is the number of files in the file system to be queried.

3.2.8 Process List Keyword Search

In Windows, Unix, Linux and MacOS, the process list contains the name and some other

information about all non-kernel level programs that are currently running in the Operating

System. Relying on the same keywords used in 3.3.7, many identified and unidentified

encryption programs can be identified. Additionally, with the exception of BitLocker, there is

usually no other way to identify whether or not the program is currently running. The benefits of

this are assumed to outweigh the relatively modest number of false positives this method may

yield.

The algorithm used for this framework can be assumed to require Θ(k*p) operations

where k is the number of keywords and p is the number of processes currently running.

3.2.9 Cryptographic Hashing of Program Components

For this factor, a cryptographic checksum is computed for every file that the software is

comprised of. If an appropriate hashing algorithm (such as SHA-256) is used, the likelihood of

two files producing the same checksum is approaching zero.

While this method is extremely accurate, it suffers from two grave problems: every time

a file is changed, the checksum changes which necessitates the computation of new reference

30

values. Secondly, the time to compute a cryptographic hash of every file in the File System as

well as the time required for the comparison against the signature database could potentially take

a very long time. For this reason, this factor was not included in ALERT.

3.2.10 Heuristic Detection

 As described before, the basic properties of encryption suggest that one should be able to

detect the use of encryption by examining collections of a few megabytes each from various

places across the hard drive and analyzing the number of plain text strings in the samples.

Theoretically, an encrypted hard drive should exhibit few, if any, plain text strings while they

should be relatively abundant on a non-encrypted drive.

This method has the benefit that the software used to encrypt a full volume or hard drive

does not even have to be present on the drive and the encryption could still be detected.

Unfortunately, experiments conducted for this thesis showed that this is infeasible in practice as

it clashes with another common property of current Full Disk Encryption: transparency. As long

as the computer is in use, the presence of the encryption is completely transparent to both, the

user and Operating System. The samples drawn from the test systems were virtually identical

regardless of whether or not the volume was encrypted.

If one was able to examine the drive through a hypervisor that runs underneath the

encryption software (e.g. in a Virtual Machine) or during a dead analysis, the contents of the

hard drive are expected to confirm the hypothesis that encrypted drives can be identified by the

low number of plain text strings observed on the drive. Since this work is geared towards Live

Analysis, however, no further attempts in this direction were made and the analysis tools were

not included in the ALERT framework.

31

3.3 Experiments

The detectability of encryption software was tested through three different sets of

experiments. First, baseline experiments were conducted in which the test framework was run

against a clean installation of Microsoft Windows XP, Windows 7 and Windows 8 as shown in

table 3.

Next, the test framework was used to examine 18 installations of Microsoft Windows

each of which contained one or more encrypted containers or hard disks. Programs for which a

signature was available to the test framework were used to create the encrypted containers and

partitions. Table 4 shows the exact configuration for each of the 18 experiments.

Last, tests were conducted approximately twelve months after the initial experiment.

Each installation contained one of the previously identified programs but in the then-current

version as listed in table 5.

To ensure the accuracy of the results, two trials were conducted for each experiment. The

deviation between the experiments was recorded if the results between the two trials differed.

32

 Baseline
Experiment 1

Baseline
Experiment 2

Baseline
Experiment 3

Hardware Intel Core i5 3.30 GHz CPU, 8GB of RAM, 500GB Seagate HDD
Operating System Microsoft Windows

XP SP 3
Microsoft Windows 7

SP 1
Microsoft Windows 8

Encryption Software none none none
Table 3 - Baseline Experiments

33

 Exp
1

Exp
2

Exp
3

Exp
4

Exp
5

Exp
6

Exp
7

Exp
8

Exp
9

Exp
10

Exp
11

Exp
12

Exp
13

Exp
14

Exp
15

Exp
16

Exp
17

Hardware Intel Core i5 3.30 GHz CPU, 8GB of RAM, 500GB Seagate HDD

Operating System Microsoft Windows XP SP 3 Microsof
t
Windows
7 SP 1

Advanced File
Security

  

ArchiCrypt Live 5     
BestCrypt  
Compusec  
CryptArchiveLite 
Cypherix LE  
FreeOTFE 
Keyparc  
Kruptos 2
Professional

 

LoopAES    
MyWinLocker 
PGP Disk  
PrivateDisk   
R-Crypto  
Safetica Personal   
Sentry2020 
TrueCrypt   (FDE)

A checkmark () denotes that the software or an encrypted container created with it was present in the experiment.

Table 4 - Experiments against Software with Known Signature

34

 Exp 18 Exp 19 Exp 20 Exp 21 Exp 22 Exp 23 Exp 24 Exp 25
Hardware Intel Core i7 2.9GHz CPU, 500GB HDD, 8GB RAM

Operating System Microsoft Windows 7 SP 1
Advanced File Security 
ArchiCrypt Live 5 
BestCrypt 
Microsoft BitLocker 
PGP Disk 
PrivateDisk
PrivateSafe HD 
R-Crypto 
TrueCrypt  (FDE)

A checkmark () denotes that the software or an encrypted container created with it was present in the experiment.

Table 5 - Experiments after 12 Months without Updated Signatures

35

Chapter 4 – Results

The following ten tables list the results for each of the 25 experiments. The first seven

tables show the results obtained when using a particular factor in isolation. The final three tables

show the results obtained with three different combinations of factors.

For each experiment, each table contains the number of True Positives, False Positives,

True Negatives and False Negatives that were obtained as well as the Accuracy, Precision and

Recall values that were calculated based on these results.

If there had been any differences between the results obtained in each of the two trials for

each experiment, these would be noted in the table as well. Finally, the mean Precision, Recall and

Accuracy values for the experiment and the standard deviation for each of the three values can be

found at the end of each table.

36

Following are the results obtained for each of the experiments listed in Section 3.3 for the analysis of the Windows Registry.

 True
Positives

True
Negatives

Type I Error
(False Positive)

Type II Error
(False Negative)

Precision Std. Dev. Accuracy Std. Dev. Recall Std. Dev.

Base 1 0 30 0 0
Base 2 0 30 0 0
Base 3 0 30 0 0
Exp 1 1 29 0 0 1 0 1 0 1 0
Exp 2 1 29 0 0 1 0 1 0 1 0
Exp 3 2 28 0 0 1 0 1 0 1 0
Exp 4 2 28 0 0 1 0 1 0 1 0
Exp 5 2 28 0 0 1 0 1 0 1 0
Exp 6 3 27 0 0 1 0 1 0 1 0
Exp 7 2 28 0 0 1 0 1 0 1 0
Exp 8 1 29 0 0 1 0 1 0 1 0
Exp 9 2 28 0 0 1 0 1 0 1 0
Exp 10 4 26 0 0 1 0 1 0 1 0
Exp 11 2 28 0 0 1 0 1 0 1 0
Exp 12 3 27 0 0 1 0 1 0 1 0
Exp 13 1 29 0 0 1 0 1 0 1 0
Exp 14 1 29 0 0 1 0 1 0 1 0
Exp 15 2 28 0 0 1 0 1 0 1 0
Exp 16 6 24 0 0 1 0 1 0 1 0
Exp 17 1 29 0 0 1 0 1 0 1 0
Exp 18 1 29 0 0 1 0 1 0 1 0
Exp 19 1 29 0 0 1 0 1 0 1 0
Exp 20 0 29 0 1 0 0 0.96 0 0 0
Exp 21 0 29 0 1 0 0 0.96 0 0 0
Exp 22 1 29 0 0 1 0 1 0 1 0
Exp 23 1 29 0 0 1 0 1 0 1 0
Exp 24 1 29 0 0 1 0 1 0 1 0
Exp 25 0 29 0 1 0 0 0.96 0 0 0
Avg. 0.8800 0.3250 0.9952 0.0130 0.8800 0.3250

Table 6 - Results for Windows Registry Analysis

37

Figure 5 – Accuracy, Precision and Recall for the Windows Registry

0

0.2

0.4

0.6

0.8

1

1.2

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 E15 E16 E17 E18 E19 E20 E21 E22 E23 E24 E25

Prec.

Acc.

Recall

38

Following are the results obtained for each of the experiments listed in Section 3.3 for the analysis of File Headers.

 True
Positives

True
Negatives

Type I Error
(False Positive)

Type II Error
(False Negative)

Precision Std. Dev. Accuracy Std. Dev. Recall Std. Dev.

Base 1 0 30 0 0
Base 2 0 30 0 0
Base 3 0 30 0 0
Exp 1 1 29 0 0 1 0 1 0 1 0
Exp 2 1 29 0 0 1 0 1 0 1 0
Exp 3 2 27 1 0 0.660 0 0.966 0 1 0
Exp 4 0 27 1 2 0 0 0.900 0 0 0
Exp 5 0 27 1 2 0 0 0.900 0 0 0
Exp 6 2 26 1 1 0.660 0 0.930 0 0.500 0
Exp 7 1 27 1 1 0.500 0 0.930 0 0.500 0
Exp 8 1 27 1 0 0.500 0 0.960 0 1 0
Exp 9 1 27 1 1 0.500 0 0.930 0 0.500 0
Exp 10 2 25 1 2 0.660 0 0.900 0 0.500 0
Exp 11 0 27 1 2 0 0 0.900 0 0 0
Exp 12 0 26 1 3 0 0 0.860 0 0 0
Exp 13 0 28 1 1 0 0 0.900 0 0 0
Exp 14 1 29 0 0 1 0 1 0 1 0
Exp 15 1 27 1 1 0.500 0 0.900 0 0.500 0
Exp 16 1 25 1 5 0.500 0 0.800 0 0.160 0
Exp 17 0 29 0 1 0 0 0.966 0 0 0
Exp 18 0 29 0 1 0 0 0.966 0 0 0
Exp 19 0 29 0 1 0 0 0.966 0 0 0
Exp 20 1 29 0 0 1 0 1 0 1 0
Exp 21 0 29 0 1 0 0 0.966 0 0 0
Exp 22 0 29 0 1 0 0 0.966 0 0 0
Exp 23 0 29 0 1 0 0 0.966 0 0 0
Exp 24 0 29 0 1 0 0 0.966 0 0 0
Exp 25 0 29 0 1 0 0 0.966 0 0 0
Avg. 0.2992 0.3837 0.9374 0.0477 0.2992 0.4136

Table 7 - Results for File Header Analysis

39

Figure 6 - Precision, Accuracy and Recall for File Headers

0

0.2

0.4

0.6

0.8

1

1.2

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 E15 E16 E17 E18 E19 E20 E21 E22 E23 E24 E25

Prec.

Acc.

Recall

40

Following are the results obtained for each of the experiments listed in Section 3.3 for the analysis of File Extensions.

 True
Positives

True
Negatives

Type I Error
(False Positive)

Type II Error
(False Negative)

Precision Std. Dev. Accuracy Std. Dev. Recall Std. Dev.

Base 1 0 30 0 0
Base 2 0 30 0 0
Base 3 0 30 0 0
Exp 1 0 29 0 1 0 0 0.966 0 0 0
Exp 2 0 29 0 1 0 0 0.966 0 0 0
Exp 3 1 28 0 1 1 0 0.930 0 0.500 0
Exp 4 0 28 0 2 0 0 0.930 0 0 0
Exp 5 1 28 0 1 1 0 0.930 0 0.500 0
Exp 6 0 27 0 3 0 0 0.900 0 0 0
Exp 7 2 28 0 0 1 0 1 0 1 0
Exp 8 1 29 0 0 1 0 1 0 1 0
Exp 9 2 28 0 0 1 0 1 0 1 0
Exp 10 3 26 0 1 1 0 0.930 0 0.750 0
Exp 11 1 28 0 1 1 0 0.930 0 0.500 0
Exp 12 0 27 0 3 0 0 0.900 0 0 0
Exp 13 1 29 0 0 1 0 1 0 1 0
Exp 14 1 29 0 0 1 0 1 0 1 0
Exp 15 1 28 0 1 1 0 0.930 0 0.500 0
Exp 16 1 24 0 5 1 0 0.800 0 0.160 0
Exp 17 0 29 0 1 0 0 0.966 0 0 0
Exp 18 1 29 2 0 0.33 0 0.9375 0 1 0
Exp 19 0 29 2 1 0 0 0.9063 0 0 0
Exp 20 1 29 2 0 0.33 0 0.9375 0 1 0
Exp 21 0 29 2 1 0 0 0.9063 0 0 0
Exp 22 0 29 2 1 0 0 0.9063 0 0 0
Exp 23 0 29 2 1 0 0 0.9063 0 0 0
Exp 24 1 29 2 0 0.33 0 0.9375 0 1 0
Exp 25 0 29 2 1 0 0 0.9063 0 0 0
Avg. 0.4796 0.4723 0.9366 0.0442 0.4364 0.4394

Table 8 - Results for File Extension Analysis

41

Figure 7 - Precision, Accuracy and Recall for File Extensions

0

0.2

0.4

0.6

0.8

1

1.2

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 E15 E16 E17 E18 E19 E20 E21 E22 E23 E24 E25

Prec.

Acc.

Recall

42

Following are the results obtained for each of the experiments listed in Section 3.3 for the analysis of File Attributes.

 True
Positives

True
Negatives

Type I Error
(False Positive)

Type II Error
(False Negative)

Precision Std. Dev. Accuracy Std. Dev. Recall Std. Dev.

Base 1 0 30 0 0
Base 2 0 30 0 0
Base 3 0 30 0 0
Exp 1 0 29 0 1 0 0 0.966 0 0 0
Exp 2 0 29 0 1 0 0 0.966 0 0 0
Exp 3 0 28 0 2 0 0 0.930 0 0 0
Exp 4 0 28 0 2 0 0 0.930 0 0 0
Exp 5 0 28 0 2 0 0 0.930 0 0 0
Exp 6 0 27 0 3 0 0 0.900 0 0 0
Exp 7 0 28 0 2 0 0 0.930 0 0 0
Exp 8 0 29 0 1 0 0 0.930 0 0 0
Exp 9 0 28 0 2 0 0 0.930 0 0 0
Exp 10 0 26 0 4 0 0 0.860 0 0 0
Exp 11 0 28 0 2 0 0 0.930 0 0 0
Exp 12 0 27 0 3 0 0 0.900 0 0 0
Exp 13 0 29 0 1 0 0 0.960 0 0 0
Exp 14 0 29 0 1 0 0 0.960 0 0 0
Exp 15 0 28 0 2 0 0 0.930 0 0 0
Exp 16 0 24 0 6 0 0 0.800 0 0 0
Exp 17 0 29 0 1 0 0 0.966 0 0 0
Exp 18 0 29 0 1 0 0 0.966 0 0 0
Exp 19 0 29 0 1 0 0 0.966 0 0 0
Exp 20 0 29 0 1 0 0 0.966 0 0 0
Exp 21 0 29 0 1 0 0 0.966 0 0 0
Exp 22 0 29 0 1 0 0 0.966 0 0 0
Exp 23 0 29 0 1 0 0 0.966 0 0 0
Exp 24 0 29 0 1 0 0 0.966 0 0 0
Exp 25 0 29 0 1 0 0 0.966 0 0 0
Avg. 0 0 0.9356 0.0390 0 0

Table 9 - Results for File Attribute Analysis

43

Figure 8 - Precision, Accuracy and Recall for File Attributes

*none of the test cases utilized EFS leading to a constant zero-detection rate

0

0.2

0.4

0.6

0.8

1

1.2

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 E15 E16 E17 E18 E19 E20 E21 E22 E23 E24 E25

Prec.

Acc.

Recall

44

Following are the results obtained for each of the experiments listed in Section 3.3 for the analysis of the Master Boot Record.

 True
Positives

True
Negatives

Type I Error
(False Positive)

Type II Error
(False Negative)

Precision Std. Dev. Accuracy Std. Dev. Recall Std. Dev.

Base 1 0 30 0 0
Base 2 0 30 0 0
Base 3 0 30 0 0
Exp 1 1 29 0 0 1 0 1 0 1 0
Exp 2 0 29 0 1 0 0 0.966 0 0 0
Exp 3 1 28 0 1 1 0 0.930 0 0.500 0
Exp 4 0 28 0 2 0 0 0.930 0 0 0
Exp 5 0 28 0 2 0 0 0.930 0 0 0
Exp 6 0 27 0 3 0 0 0.900 0 0 0
Exp 7 1 28 0 1 1 0 0.966 0 0.500 0
Exp 8 0 29 0 1 0 0 0.966 0 0 0
Exp 9 0 28 0 2 0 0 0.930 0 0 0
Exp 10 0 26 0 4 0 0 0.860 0 0 0
Exp 11 0 28 0 2 0 0 0.930 0 0 0
Exp 12 0 27 0 3 0 0 0.900 0 0 0
Exp 13 0 29 0 1 0 0 0.966 0 0 0
Exp 14 0 29 0 1 0 0 0.966 0 0 0
Exp 15 0 28 0 2 0 0 0.930 0 0 0
Exp 16 1 24 0 5 1 0 0.800 0 0.160 0
Exp 17 1 29 0 0 1 0 1 0 1 0
Exp 18 0 29 0 1 0 0 0.966 0 0 0
Exp 19 0 29 0 1 0 0 0.966 0 0 0
Exp 20 1 29 0 0 1 0 1 0 1 0
Exp 21 0 29 0 1 0 0 0.966 0 0 0
Exp 22 0 29 0 1 0 0 0.966 0 0 0
Exp 23 0 29 0 1 0 0 0.966 0 0 0
Exp 24 0 29 0 1 0 0 0.966 0 0 0
Exp 25 0 29 0 1 0 0 0.966 0 0 0
Avg. 0.2400 0.4271 0.9443 0.0438 0.1680 0.3367

Table 10 - Results for Master Boot Record Analysis

45

Figure 9 - Precision, Accuracy and Recall for the Master Boot Record

0

0.2

0.4

0.6

0.8

1

1.2

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 E15 E16 E17 E18 E19 E20 E21 E22 E23 E24 E25

Prec.

Acc.

Recall

46

Following are the results obtained for each of the experiments listed in Section 3.3 for the analysis of Operating System Attributes.

 True
Positives

True
Negatives

Type I Error
(False Positive)

Type II Error
(False Negative)

Precision Std. Dev. Accuracy Std. Dev. Recall Std. Dev.

Base 1 0 30 0 0
Base 2 0 30 0 0
Base 3 0 30 0 0
Exp 1 0 29 0 1 0 0 0.966 0 0 0
Exp 2 0 29 0 1 0 0 0.966 0 0 0
Exp 3 0 28 0 2 0 0 0.930 0 0 0
Exp 4 0 28 0 2 0 0 0.930 0 0 0
Exp 5 0 28 0 2 0 0 0.930 0 0 0
Exp 6 0 27 0 3 0 0 0.900 0 0 0
Exp 7 0 28 0 2 0 0 0.930 0 0 0
Exp 8 0 29 0 1 0 0 0.966 0 0 0
Exp 9 0 28 0 2 0 0 0.930 0 0 0
Exp 10 0 26 0 4 0 0 0.860 0 0 0
Exp 11 0 28 0 2 0 0 0.930 0 0 0
Exp 12 0 27 0 3 0 0 0.900 0 0 0
Exp 13 0 29 0 1 0 0 0.960 0 0 0
Exp 14 0 29 0 1 0 0 0.960 0 0 0
Exp 15 0 28 0 2 0 0 0.930 0 0 0
Exp 16 0 24 0 6 0 0 0.800 0 0 0
Exp 17 0 29 0 1 0 0 0.966 0 0 0
Exp 18 0 29 0 1 0 0 0.966 0 0 0
Exp 19 0 29 0 1 0 0 0.966 0 0 0
Exp 20 0 29 0 1 0 0 0.966 0 0 0
Exp 21 1 29 0 0 1 0 1 0 1 0
Exp 22 0 29 0 1 0 0 0.966 0 0 0
Exp 23 0 29 0 1 0 0 0.966 0 0 0
Exp 24 0 29 0 1 0 0 0.966 0 0 0
Exp 25 0 29 0 1 0 0 0.966 0 0 0
Avg. 0.0400 0.1960 0.9373 0.0409 0.0400 0.1960

Table 11 - Results for Operating System Attribute Analysis

47

Figure 10 - Precision, Accuracy and Recall for OS Attributes

0

0.2

0.4

0.6

0.8

1

1.2

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 E15 E16 E17 E18 E19 E20 E21 E22 E23 E24 E25

Prec.

Acc.

Recall

48

Following are the results obtained for each of the experiments listed in Section 3.3 for the analysis of Keywords.

 True
Positives

True
Negatives

Type I Error
(False Positive)

Type II Error
(False Negative)

Precision Std. Dev. Accuracy Std. Dev. Recall Std. Dev.

Base 1 0 30 28 0
Base 2 0 30 29 0
Base 3 0 30 29 0
Exp 1 1 29 38 0 0.026 0 0.441 0 1 0
Exp 2 1 29 21 0 0.047 0 0.588 0 1 0
Exp 3 2 28 22 0 0.091 0 0.566 0 1 0
Exp 4 2 28 22 0 0.091 0 0.566 0 1 0
Exp 5 1 28 26 1 0.037 0 0.509 0 0.500 0
Exp 6 2 27 29 1 0.065 0 0.491 0 0.666 0
Exp 7 1 28 22 1 0.046 0 0.558 0 0.500 0
Exp 8 0 29 32 1 0 0 0.468 0 0 0
Exp 9 1 28 29 1 0.033 0 0.491 0 0.500 0
Exp 10 2 26 23 2 0.087 0 0.528 0 0.500 0
Exp 11 0 28 23 2 0 0 0.528 0 0 0
Exp 12 0 27 31 3 0 0 0.443 0 0 0
Exp 13 0 29 32 1 0 0 0.468 0 0 0
Exp 14 0 29 32 1 0 0 0.468 0 0 0
Exp 15 0 28 31 2 0 0 0.459 0 0 0
Exp 16 2 24 40 4 0.050 0 0.371 0 0.333 0
Exp 17 1 29 28 0 0.034 0 0.517 0 1 0
Exp 18 0 29 292 1 0 0 0.089 0 0 0
Exp 19 1 29 292 0 0.003 0 0.093 0 1 0
Exp 20 1 29 292 0 0.003 0 0.093 0 1 0
Exp 21 0 29 292 1 0 0 0.089 0 0 0
Exp 22 1 29 292 0 0.003 0 0.093 0 1 0
Exp 23 0 29 292 1 0 0 0.089 0 0 0
Exp 24 1 29 292 0 0.003 0 0.093 0 1 0
Exp 25 0 29 292 1 0 0 0.089 0 0 0
Avg. 0.0247 0.0311 0.3684 0.1949 0.4799 0.4380

Table 12 - Results for Keyword Analysis

49

Figure 11 - Precision, Accuracy and Recall for Keyword Analysis

0

0.2

0.4

0.6

0.8

1

1.2

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 E15 E16 E17 E18 E19 E20 E21 E22 E23 E24 E25

Prec.

Acc.

Recall

50

Following are the results obtained for each of the experiments listed in Section 3.3 for the first combination of different factors.

 True
Positives

True
Negatives

Type I Error
(False Positive)

Type II Error
(False Negative)

Precision Std. Dev. Accuracy Std. Dev. Recall Std. Dev.

Base 1 0 30 28 0
Base 2 0 30 29 0
Base 3 0 30 29 0
Exp 1 1 29 38 0 0.026 0 0.441 0 1 0
Exp 2 1 29 21 0 0.047 0 0.588 0 1 0
Exp 3 2 28 22 0 0.091 0 0.566 0 1 0
Exp 4 2 28 22 0 0.091 0 0.566 0 1 0
Exp 5 2 28 27 0 0.069 0 0.526 0 1 0
Exp 6 2 27 30 1 0.063 0 0.483 0 0.666 0
Exp 7 2 28 23 0 0.080 0 0.566 0 1 0
Exp 8 1 29 33 0 0.029 0 0.476 0 1 0
Exp 9 2 28 30 0 0.063 0 0.500 0 1 0
Exp 10 3 26 24 1 0.111 0 0.537 0 0.750 0
Exp 11 2 28 24 0 0.077 0 0.555 0 1 0
Exp 12 3 27 32 0 0.086 0 0.484 0 1 0
Exp 13 1 29 33 0 0.029 0 0.476 0 1 0
Exp 14 1 29 33 0 0.029 0 0.476 0 1 0
Exp 15 2 28 32 0 0.059 0 0.484 0 1 0
Exp 16 4 24 42 2 0.087 0 0.388 0 0.666 0
Exp 17 1 29 28 0 0.034 0 0.517 0 1 0
Exp 18 1 29 292 0 0.003 0 0.093 0 1 0
Exp 19 1 29 292 0 0.003 0 0.093 0 1 0
Exp 20 1 29 292 0 0.003 0 0.093 0 1 0
Exp 21 1 29 292 0 0.003 0 0.093 0 1 0
Exp 22 1 29 292 0 0.003 0 0.093 0 1 0
Exp 23 1 29 292 0 0.003 0 0.093 0 1 0
Exp 24 1 29 292 0 0.003 0 0.093 0 1 0
Exp 25 0 29 292 1 0 0 0.090 0 0 0
Avg. 0.0428 0.0354 0.3748 0.1980 0.9233 0.2134

Table 13 - Results for Combination 1 (Registry, File Extensions, File Attributes, MBR, OS Attributes and Keywords)

51

Figure 12 - Precision, Accuracy and Recall for Combination 1

0

0.2

0.4

0.6

0.8

1

1.2

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 E15 E16 E17 E18 E19 E20 E21 E22 E23 E24 E25

Prec.

Acc.

Recall

52

Following are the results obtained for each of the experiments listed in Section 3.3 for the second combination of different factors.

 True
Positives

True
Negatives

Type I Error
(False Positive)

Type II Error
(False Negative)

Precision Std. Dev. Accuracy Std. Dev. Recall Std. Dev.

Base 1 0 30 28 0
Base 2 0 30 29 0
Base 3 0 30 29 0
Exp 1 1 29 38 0 0.026 0 0.441 0 1 0
Exp 2 1 29 21 0 0.047 0 0.588 0 1 0
Exp 3 2 28 23 0 0.080 0 0.566 0 1 0
Exp 4 2 28 23 0 0.080 0 0.566 0 1 0
Exp 5 2 28 27 0 0.069 0 0.526 0 1 0
Exp 6 3 27 30 0 0.091 0 0.500 0 1 0
Exp 7 2 28 23 0 0.080 0 0.566 0 1 0
Exp 8 1 29 33 0 0.029 0 0.476 0 1 0
Exp 9 2 28 30 0 0.063 0 0.500 0 1 0
Exp 10 4 26 24 0 0.143 0 0.555 0 1 0
Exp 11 2 28 24 0 0.077 0 0.555 0 1 0
Exp 12 3 27 32 0 0.086 0 0.484 0 1 0
Exp 13 1 29 33 0 0.029 0 0.476 0 1 0
Exp 14 1 29 33 0 0.029 0 0.476 0 1 0
Exp 15 2 28 32 0 0.059 0 0.484 0 1 0
Exp 16 5 24 42 1 0.106 0 0.403 0 0.833 0
Exp 17 1 29 28 0 0.034 0 0.517 0 1 0
Exp 18 1 29 292 0 0.003 0 0.093 0 1 0
Exp 19 1 29 292 0 0.003 0 0.093 0 1 0
Exp 20 1 29 292 0 0.003 0 0.093 0 1 0
Exp 21 1 29 292 0 0.003 0 0.093 0 1 0
Exp 22 1 29 292 0 0.003 0 0.093 0 1 0
Exp 23 1 29 292 0 0.003 0 0.093 0 1 0
Exp 24 1 29 292 0 0.003 0 0.093 0 1 0
Exp 25 0 29 292 1 0 0 0.090 0 0 0
Avg. 0.0459 0.0393 0.3768 0.1991 0.9533 0.1973

Table 14 - Results for Combination 2 (Registry, File Extensions, File Headers, File Attributes, MBR, OS Attributes,
Keywords)

53

Figure 13 - Precision, Accuracy and Recall for Combination 2

0

0.2

0.4

0.6

0.8

1

1.2

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 E15 E16 E17 E18 E19 E20 E21 E22 E23 E24 E25

Prec.

Acc.

Recall

54

Following are the results obtained for each of the experiments listed in Section 3.3 for the third combination of different factors.

 True
Positives

True
Negatives

Type I Error
(False Positive)

Type II Error
(False Negative)

Precision Std. Dev. Accuracy Std. Dev. Recall Std. Dev.

Base 1 0 30 0 0
Base 2 0 30 0 0
Base 3 0 30 0 0
Exp 1 1 29 1 0 0.500 0 0.968 0 1 0
Exp 2 1 29 0 0 1 0 1 0 1 0
Exp 3 2 28 0 0 1 0 1 0 1 0
Exp 4 2 28 0 0 1 0 1 0 1 0
Exp 5 2 28 0 0 1 0 1 0 1 0
Exp 6 2 27 0 1 1 0 0.966 0 0.666 0
Exp 7 2 28 0 0 1 0 1 0 1 0
Exp 8 1 29 0 0 1 0 1 0 1 0
Exp 9 2 28 0 0 1 0 1 0 1 0
Exp 10 3 26 0 0 1 0 0.966 0 0.750 0
Exp 11 2 28 0 0 1 0 1 0 1 0
Exp 12 3 27 0 0 1 0 1 0 1 0
Exp 13 1 29 0 0 1 0 1 0 1 0
Exp 14 1 29 0 0 1 0 1 0 1 0
Exp 15 2 28 0 0 1 0 1 0 1 0
Exp 16 5 24 0 1 1 0 0.966 0 0.833 0
Exp 17 1 29 0 0 1 0 1 0 1 0
Exp 18 1 29 0 0 1 0 1 0 1 0
Exp 19 1 29 0 0 1 0 1 0 1 0
Exp 20 1 29 0 0 1 0 1 0 1 0
Exp 21 1 29 0 0 1 0 1 0 1 0
Exp 22 1 29 0 0 1 0 1 0 1 0
Exp 23 1 29 0 0 1 0 1 0 1 0
Exp 24 1 29 0 0 1 0 1 0 1 0
Exp 25 0 29 0 1 0 0 0 0 0 0
Avg. 0.9400 0.2154 0.9546 0.1952 0.9299 0.2078

Table 15 - Results for Combination 3 (Registry, File Extensions, File Attributes, MBR and OS Attributes)

55

Figure 14 - Precision, Accuracy and Recall for Combination 3

0

0.2

0.4

0.6

0.8

1

1.2

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 E15 E16 E17 E18 E19 E20 E21 E22 E23 E24 E25

Prec.

Acc.

Recall

56

Chapter 5 - Conclusion

The results obtained during the experiments suggest that it is indeed possible to detect the

most common Windows encryption programs with a signature based approach. As can be seen in

Table 4.9, a mean recall value of 0.95 was achieved with one of the combinations. This means that

on average, 95% of the encryption programs, file systems or containers present in the test cases

were detected.

Contrary to prediction 1.1.1, the inclusion of File Header analysis improves the results

minutely, if at all, and increases the runtime exponentially. The null-hypothesis (H0 = There exists

one or more factor such that recallF >= recallheader) must therefore be accepted.

Without the header analysis, all of the file system attributes can be analyzed without an

additional increase in runtime rendering the exclusion of a particular attribute neutral in terms of

execution time and negative in terms of recall.

Due to the lack of a heuristic detection method that can be executed during a live analysis

(i.e. on a running computer), prediction 1.1.2 could not be tested in its entirety and consequently,

no conclusions can be drawn about the performance of heuristic predictors. Contrary to prediction

1.1.2, the results suggest that the Keyword Analysis does not improve the results even if no

signature for the particular version of the software is available. The null-hypothesis (H0 = There

exists a factor F such that recallF >= recallkeyword for software products for which no accurate

signature exists) must therefore be accepted.

Additionally, the method has very high false positive rates that degrade precision and

accuracy measures. While not necessarily negative in this context, false positives present a

nuisance to the investigator that outweighs the little benefit this method provides.

57

As can be seen in Figures 15, 16 and 17, Registry Analysis is more reliable in terms of

recall than any other single predictor and itself performs nearly as well as any combination of

factors. Yet, the alternate hypothesis H1 stated in section 1.1.3 narrowly holds up as the results

obtained with combinations C1-C3 improve the detection rate for a small set of the trials. Based on

the experiments, the most useful combination C includes the following factors: Windows Registry,

Operating System Attributes, File Attributes, File Extensions, and Master Boot Record.

Figure 15 - Comparison of the Average Precision

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Precision

Precision

58

Figure 16 - Comparison of the Average Accuracy

Figure 17 - Comparison of the Average Recall

 Beyond the predictions made in Section 1.1, one can conclude that recall, precision

and accuracy are all inadequate predictors for the utility of a particular detection factor. The

Operating System Attribute factor, for example, only detects one method of encryption and

therefore yields very low precision and recall values. However, it is the only means by which the

0

0.2

0.4

0.6

0.8

1

1.2

Accuracy

Accuracy

0

0.2

0.4

0.6

0.8

1

1.2

Recall

Recall

59

widely used encryption software Microsoft BitLocker can be detected and its practical utility is

therefore very high while its execution time is negligible.

Due to the fact that accuracy is the ratio of the sum of true positives and true negatives to

the sum of all four cells of the confusion matrix, its value is an even worse predictor. A factor

yielding neither true nor false positives can, and often does, attain a high accuracy value but may

be completely useless for the analysis.

Likewise, precision can be regarded as of very limited use because it considers only the

ratio of true positives to the sum of true and false positives while ignoring false negatives entirely.

As stated in the opening chapter of this examination, even elevated numbers of false positives may

be acceptable for the task at hand if they are accompanied by a minimum of false negatives as

these are typically catastrophic for the investigation.

60

Chapter 6 - Future Work

The framework that was developed as part of this work was targeted at the first responders

of our law enforcement agencies. These responders often have limited understanding of technology

and little access to specialists or specialized hardware and must determine whether a computer can

or should be analyzed in a laboratory without the risk of loss of data or evidence. The tools

provided to them should therefore minimize the amount of human intervention and the necessity

for human analysis. An important area of future work is therefore the development or application

of machine learning algorithms that can make reliable risk determinations based on the information

gathered during the automated analysis. The ALERT framework in its current form can only draw

on the type and number of indicia found to make a recommendation to the user. The first responder

still has to review all of the results and decide if she arrives at the same determination as the

analysis tool.

A second important area of focus is the development of heuristic predictors for the

presence of encryption. These predictors should be statistically verifiable. As shown in section 5,

most of the factors identified for this analysis work dependably only as long as a signature for the

exact version of the software exists. Anti-Virus software suffers from the same necessity to

constantly maintain a signature database and companies have developed alternate means that

observe the behavior of a process or program to identify possibly malign behavior. Similar means

are needed for the identification and detection of encryption programs as well.

Lastly, a good distribution mechanism for updates to the signature database must be

developed. For malware and Anti-virus software, this problem does not exist as the computer that

runs the software can usually be used to obtain updates and because the software is in constant use.

Live encryption detection, however, is an analysis that is usually performed from an external

61

medium rather than being installed on the computer and it must be ensured that no or minimal

changes are made to the computer to be analyzed so that the update can usually not be performed

using the target machine. This should be accompanied by regular health-checks to determine

whether or not attempts are made by the target computer to alter the analysis tool.

62

Bibliography

[1] B. D. Carrier, "Risks of Live Digital Forensic Analysis," Communications of the

ACM, vol. 49, no. 2, pp. 56-61, 2006.

[2] Guidance Software, "EnCase Forensic - The industry-standard computer forensic

solution. Fast, powerful, and proven in courts," [Online]. Available:

http://www.guidancesoftware.com/encase-forensic.htm. [Accessed 24 July 2012].

[3] B. Carrier, File System Forensic Analysis, Upper Saddle River, NJ: Addison-Wesley,

2005.

[4] C. L. T. Brown, "Detecting & Collecting Whole Disk Encryption Media,"

Technology Pathways, LLC, Coronado, CA, 2005.

[5] C. P. Pfleeger and S. L. Pfleeger, Security in Computing, 4th Edition, Upper Saddle

River, NJ: Addison-Wesley, 2006.

[6] R. Belfield, The Six Unsolved Ciphers: Inside the Mysterious Codes That Have

Confounded the World's Greatest Cryptographers, Berkeley, CA: Ulysses Press,

2007.

[7] U.S. DEPARTMENT OF COMMERCE/National Institute of Standards and

Technology, "DATA ENCRYPTION STANDARD (DES)," FEDERAL

INFORMATION PROCESSING STANDARDS PUBLICATION 46-3, pp. 1-26, 25

October 1999.

63

[8] National Institute of Standards and Technology, "Announcing the ADVANCED

ENCRYPTION STANDARD (AES)," Federal Information Processing Standards

Publication 197, pp. 1-51, 26 November 2001.

[9] National Security Agency, "NSA Suite B Cryptography," 8 June 2012. [Online].

Available: http://www.nsa.gov/ia/programs/suiteb_cryptography/. [Accessed 25 July

2012].

[10] R. Anderson, E. Biham and L. Knudsen, "Serpent: A Proposal for the Advanced

Encryption Standard," Cambridge, England, 1998.

[11] B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C. Hall and N. Ferguson, "Twofish:

A 128-bit Block Cipher," Minneapolis, MN, 1998.

[12] "TRUECRYPT OPEN-SOURCE ON-THE-FLY ENCRYPTION," [Online].

Available: http://www.truecrypt.org/docs. [Accessed 25 July 2012].

[13] J. Leyden, "Brazilian banker's crypto baffles FBI," The Register, 28 June 2010.

[Online]. Available:

http://www.theregister.co.uk/2010/06/28/brazil_banker_crypto_lock_out/. [Accessed

25 July 2012].

[14] JADsoftware Inc., "Encrypted Disk Detector," JADsoftware, [Online]. Available:

http://www.jadsoftware.com/encrypted-disk-detector. [Accessed 17 July 2012].

[15] U.S. Department of Justice, "NIJ Special Report - Electronic Crime Scene

Investigation: A Guide for First Responders, Second Edition," U.S. Department of

Justice, Office of Justice Programs, Washington, DC, 2008.

64

[16] K. Mandia and C. Prosise, Incident Response - Investigating Computer Crime (1st

Ed.), New York, NY: Osborne/McGraw-Hill, 2001.

[17] D. Brezinski and T. Killalea, "RFC 3227: Guidelines for Evidence Collection and

Archiving," Internet Engineering Task Force (IETF), 2002.

[18] D. Farmer and W. Venema, Forensic Discovery, Upper Saddle River, NJ: Addison-

Wesley, 2007.

[19] U.S. Department of Justice, "NIJ Special Report - Forensic Examination of Digital

Evidence: A Guide for Law Enforcement," U.S. Department of Justice - Office of

Justice Programs, Washington, DC, 2004.

[20] U.S. Department of Justice, "NIJ Guide - Electronic Crime Scene Investigation - A

Guide fpr First Responders," U.S. Department of Justice, Office of Justice Programs,

Washington, DC, 2001.

[21] J. Garrett, "Overcoming Reasonable Doubt in Computer Forensic Analysis," SANS

Institute, 2006.

[22] E. M. Chan, "A Framework for Live Forensics," University of Illinois at Urbana-

Champaign, Urbana, IL, 2011.

[23] R. Battistoni, A. Di Biagio, R. Di Pietro, M. Formica and L. V. Mancini, "A Live

Digital Forensic system for Windows networks," IFIP International Federation for

Information Processing, Processdings of the IFIP TC 11 23rd International

Information Security Conference, vol. 278, pp. 653-667, 2008.

65

[24] M. A. Caloyannides, N. Memon and W. Venema, "Digital Forensics," IEEE Security

& Privacy, no. March/April 2009, pp. 16-17, 2009.

[25] B. Hay, K. Nance and M. Bishop, "Live Analysis - Progress and Challenges," IEEE

Security & Privacy, no. March/April 2009, pp. 30-36, 2009.

[26] F. Adelstein, "Live Forensics: Diagnosing Your System Without Killing It First,"

Communications of the ACM, vol. 49, no. 2, pp. 63-66, 2006.

[27] K. J. Jones, R. Bejtlich and C. W. Rose, Real Digital Forensics, Upper Saddle River,

NJ: Addison-Wesley, 2005.

[28] H. M. Jarrett, M. W. Bailie, E. Hagan and S. Eltringham, Prosecuting Computer

Crimes, U.S. Department of Justice - Office of Legal Education, Executive Office for

United States Attorneys, 2010.

[29] T. Menzies, A. Dekhtyar, J. Distefano and J. Greenwald, "Problems with Precision,"

2007.

66

	Detection and Identification of Software Encryption Solutions in NT-based Microsoft Windows Operating Systems
	Recommended Citation

	ABSTRACT
	Acknowledgements
	Table of Contents
	Table of Figures
	Index of Tables
	Chapter 1 - Introduction
	Thesis Statement
	1.1 Predictions
	1.1.1 Best Performance When a Signature Exists
	1.1.2 Best Performance When no Signature Exists
	1.1.3 Best Overall Performance

	Chapter 2 - Background
	2.1 Encryption
	2.1.1 Historical Background
	2.1.2 Encryption Algorithms Commonly Used in Storage Encryption
	2.1.2.1 Advanced Encryption Standard (AES)
	2.1.2.2 Serpent
	2.1.2.3 Twofish

	2.1.3 Complexity of Breaking Current Encryption Standards
	2.1.4 Detecting and Identifying Encryption
	2.1.5 Prior Attempts to Detect Encrypted Data Storage

	2.2 Electronic Evidence and the Forensic Process
	2.2.1 The Latency of Electronic Evidence
	2.2.2 The Classical 4-phase Approach
	2.2.2.1 The Collection Phase
	2.2.2.2 The Examination Phase
	2.2.2.3 The Analysis Phase
	2.2.2.4 The Reporting Phase

	2.2.3 Order of Volatility

	2.3 Files and File Systems
	2.3.1 Files
	2.3.2 File Systems
	2.3.3 File Attributes and Metadata

	2.4 Measures of Reliability
	2.4.1 Confusion Matrix
	2.4.2 Precision
	2.4.3 Recall
	2.4.4 Accuracy

	2.5 Software Detection
	2.5.1 Signature Based Software Detection
	2.5.2 Heuristic Software Detection
	2.5.3 The Balance between False Positives and False Negatives

	Chapter 3 - Experiments
	3.1 Setup
	3.1.1 Identified Encryption Software Packages
	3.1.2 Derivation of Signature Values
	3.1.3 Heuristic Detection

	3.2 Test Framework
	3.2.1 Windows Registry Analysis
	3.2.2 File Headers
	3.2.3 File Extensions
	3.2.4 File Attributes
	3.2.5 Master Boot Record
	3.2.6 Operating System Attributes
	3.2.7 Keyword Search
	3.2.8 Process List Keyword Search
	3.2.9 Cryptographic Hashing of Program Components
	3.2.10 Heuristic Detection

	3.3 Experiments

	Chapter 4 – Results
	Chapter 5 - Conclusion
	Chapter 6 - Future Work
	Bibliography

