
Graduate Theses, Dissertations, and Problem Reports 

2014 

Investigation of Emission Characteristics during Low Temperature Investigation of Emission Characteristics during Low Temperature 

Combustion using Multivariate Adaptive Regression Splines Combustion using Multivariate Adaptive Regression Splines 

Mario Velardi 
West Virginia University 

Follow this and additional works at: https://researchrepository.wvu.edu/etd 

Recommended Citation Recommended Citation 
Velardi, Mario, "Investigation of Emission Characteristics during Low Temperature Combustion using 
Multivariate Adaptive Regression Splines" (2014). Graduate Theses, Dissertations, and Problem Reports. 
480. 
https://researchrepository.wvu.edu/etd/480 

This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research 
Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is 
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain 
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license 
in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses, 
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. 
For more information, please contact researchrepository@mail.wvu.edu. 

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F480&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/480?utm_source=researchrepository.wvu.edu%2Fetd%2F480&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu


Investigation of Emission Characteristics during Low

Temperature Combustion using Multivariate Adaptive

Regression Splines

by

Mario Velardi

Dissertation Thesis submitted to the
College of Engineering and Mineral Resources

at West Virginia University
in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy
in

Mechanical Engineering

Mridul Gautam, Ph.D., Chair
Mario Perhinschi, Ph.D.

Andrew Nix, Ph.D.
Hailin Li, Ph.D.

Arvind Thiruvengadam, Ph.D.
Lorenzo Mariti, Ph.D.

Department of Mechanical and Aerospace Engineering

Morgantown, West Virginia
2014



ABSTRACT

Investigation of Emission Characteristics during Low Temperature

Combustion using Multivariate Adaptive Regression Splines

Mario Velardi

Exhaust emissions from diesel engines operating in a low temperature combustion (LTC) regime

are significantly affected by fuel composition and injection strategy. The starting point of this study

is a collection of data correlating injection system parameters, and fuel characteristics, to response

parameters such as engine-out emissions (oxides of nitrogen (NOx), total particulate matter (TPM),

carbon monoxide (CO), hydrocarbons (HC)) and brake thermal efficiency (BTE).

The purpose of this work is to develop a statistical analysis tool to assist the emission analyst

in modeling problems in which a response of interest is influenced by several variables and the

objective is to optimize this response. The experimental data produced during LTC operation

have been analyzed using an approach commonly known as Response Surface Methodology (RSM).

Since the system under study may be responding to hidden inputs that are neither measured nor

controlled, regression analysis must be performed via a flexible procedure. The methodology that

will be used in this sense is called Multivariate Adaptive Regression Splines (MARS), which allows

to approximate functions of many input variables given the value of the function at a collection of

point in the input space.

Data was collected at West Virginia Universitys Engine and Emissions Research Laboratory for

the project CRC AVFL-16. The test engine was a turbo-charged GM 1.9L operated in the LTC

mode utilizing a split injection strategy. Main and pilot SOI timing and fuel split were varied

per a 5 X 3 X 3 full factorial design. Advanced Vehicle Fuel Lubricants (AVFL) Committee of the

Coordinating Research Council (CRC) defined a matrix of nine test Fuels for Advanced Combustion

Engines (FACE) based on the variation of three properties: cetane number, aromatic content, and

90 percent distillation temperature. The experimental data was used has a platform for the code

development, and for its validation.
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Using multivariate data analysis is not only useful in visualizing correlations that otherwise would

be hidden by the large amount of experimental data points, but it is also capable to predict the

behavior of those points inside the domain where no data are available. As suggested by the name

this is a regression methodology capable of adapting the shape of the regression splines to the data

analyzed. Validation datasets which were independent of the calibration datasets were used to

check the accuracy of the model predictions.
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Introduction

Diesel engines represent a convenient choice in terms of power density, reliability and durability

compared to the gasoline counterpart. The combustion process in diesel engines on the other hand

contributes to significantly high PM and NOx emissions , while HC and CO are relatively low.

Diesel exhaust gases were identified in the past to be a serious threat to human health and the

environment, and regarded as the main source of air pollution.On 17 October 2013, the World

Health Organizations International Agency for Research on Cancer (IARC) announced that it

has classified Outdoor Air Pollution as carcinogenic to humans [1]. After a review of available

literature, IARCs expert group concluded that there is sufficient evidence that exposure to outdoor

air pollution causes lung cancer [2]. They also noted a positive association with an increased risk of

bladder cancer. Particulate matter, as a major component of outdoor air pollution, was evaluated

separately and was also classified as carcinogenic to humans.

Due to tightening emissions regulations, both within the US and Europe, including concerns

regarding greenhouse gases, next-generation combustion strategies for diesel engines have drawn

increasing attention during recent years. One way to minimize NOx emissions is to limit the in-

cylinder temperature during the combustion process by means of fuel injection strategies. However,

fuel chemistry plays a significant role in the ignition delay; hence, influencing the overall combustion

characteristics and the resulting emissions. Much of the existing technical literature has focused

on the interaction of fuel properties and conventional diesel combustion, whereas studies of fuel

property effects on advanced combustion are less prevalent.

The present study analyze the data collected during the project AVFL-16 [3]. These data refer

to a light duty compression-ignition engine, operated at a fixed engine speed and load. Several split
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injection strategy were investigated by varying the start of fuel injection and fuel injection quantity

for two injection events. The fuel chemistry was taken into account by operating the engine with a

matrix of nine different fuels. The matrix of nine fuels for advanced combustion engine research was

defined by the Fuels for Advanced Combustion Engines (FACE) Working Group of the Advanced

Vehicle, Fuel, and Lubricants Committee (AVFL) of the Coordinating Research Council (CRC) [4].

Development of the FACE diesel fuel matrix centered around three important fuel characteristics:

auto-ignition quality, boiling range, and chemical composition. Respectively, these characteristics

are represented by CN, T90, and AC.

The analysis of the data collected is particularly challenging due to the nature of the problem.

Various engine operating parameters have conflicting effects on the NOx and PM emissions, for ex-

ample retarding the injection timing to reduce NOx production will result in higher soot levels. The

variations of NOx, and PM emissions introduced above involve tradeoffs that make achieving this

goal especially difficult [5]. Considering also different fuel characteristics makes the phenomenon

even more complex to analyze. Hence, only a systematic multivariate study can provide a clear

understanding of the combustion characteristics of the engine. Such multivariate problems require

a continuous quantitative mathematical model to link the factors to responses. In engine applica-

tions the relationship between the design or operating factors and the responses is highly nonlinear.

The underlying mechanisms in most cases cannot be condensed to one equation that still reflects

the physical laws and can be used as the objective or constraint function. Moreover, sometimes

the true functional relationships or physical models are not even understood or available, and the

governing equations of the processes are simply lacking.

A viable solution to approximate the underlying process is to create an empirical model. Such

model does not contain any physical meaning; it is instead obtained through regression of the avail-

able data. This approach to the problem is commonly referred to as response surface methodology

(RSM). This is a procedure in which the output variables are called responses and the independent

input variables are called factors. The response function forms a surface or hyper-surface (if there

are more than two factors) in the factor space. RSM refers to the analysis to be performed once

that an emulator model is obtained by data fitting. The determination of an emulator model is not

a trivial task in the case of multivariate, nonlinear problems.
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Commonly used linear regression techniques fail to assess the actual value of the operating

parameters in engine testing. This can be considered as one of the causes why the RSM approach is

not a standard analysis procedure for emission testing. In the present study a code based on MARS

algorithm, described by Friedman [6], has been developed in order to describe engine performance

and emission characterization. The main advantage of MARS is that this is a nonparametric

regression modeling procedure. Unlike better known linear regression techniques, MARS does

not assume that coefficients are stable across the entire domain of each variable and instead uses

splines to fit the response. By combining classical linear regression, and mathematical construction

of splines, MARS is ideally suitable for problems with high input dimensions where the course of

dimensionality would likely create problems for other techniques. This method has been successfully

employed for various prediction and data mining applications both in recent years [7].

The use of multivariate data analysis is not just confined to visual correlations of hidden data, but

also to predict behavior of data points within a domain. The MARS algorithm used for analyzing

the data will be developed in this study, and the development of the algorithm will constitute a

major portion and a significant outcome.

Objectives The focus of this work is to produce a statistical tool specifically designed to support

the analysis of empirical data related to emissions and combustion. The main objective is to develop

a regression tool capable to accommodating up to 6 engine and fuel parameters. In particular, the

tool will address highly nonlinear high-dimensional problems and background noise, maintain a low

computational cost and offer ease of interpretation. The analysis support code has to evaluate an

equation for each emission or performance output that needs to be studied.

Once that the regression equations are proved to be reliable in describing the data, meaning that

the fitting of the data is considered acceptable, these can be used to determine the importance of

the governing factors. The evaluation of the importance of each factor over the response is both

quantitative and graphical. The quantitative analysis is obtained by recasting the regression equa-

tion in a form that will allow to separate the contribution of each factor and their join interactions,

the output of this analysis will be an index that will quantify the importance of the given inde-

pendent variable (or group of variables) in relation to the given response. The data available on

3



LTC have been used has a platform to develop the analysis code described in this work. The main

reasons that led to the choice of a set of data related to LTC, can be summarized in the following

two points:

• A large set of data was available, in which multiple factors have been varied and different

responses have been sampled. This offers the opportunity to challenge the regression code in

a high dimensional domain, where the independent variables have conflicting effects on the

responses. Moreover having to perform regression for several types of responses is useful in

determining the flexibility of the modeling capability for different phenomenon.

• LTC represents a particularly challenging field of operation, characterized by high nonlinearity

in the relationship between injection and fuel factors with emission responses. Considering

that the purpose of the code described in this work will be to assess combustion and emission

problems, proving its capability in analyzing LTC data will guarantee the applicability of the

same method to conventional combustion problems.

The given data set has been used to perform an investigation on LTC and specifically the code

described in this work determined regression equations correlating engine and fuel parameters to

emission and performance values. In order to retain the investigation successful, and hence prove

the capability of RSM has analysis methodology, the following specific objectives should be meet:

• To show the existing interaction between the fuel chemistry and the injection strategies, to

further understand the phenomena that dominate Low Temperature Combustion.

• Represent the engine test data collected as surface plots that underline the correlations be-

tween the single variable and the output, and at the same time show the existing interactions

between the different variables.

• As knowledge is gained about the response surface, major interest can be directed toward

regions that appear to have greatest potential in terms of emission reduction. This will

ultimately lead to the determination of the optimal operating conditions to minimize emissions

while maintaining an acceptable thermal efficiency.
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Literature Review

Introduction

Conventional diesel combustion is broadly used because of its high thermal efficiency, at the cost of

high emissions in terms of PM and NOx. The significant NOx production is a direct consequence

of the high temperature zones in the flame due to the necessity of spontaneous ignition which

characterize diesel engines. Particulate matter formation instead is due to heterogeneous air fuel

mixtures, which in turn leads to locally fuel rich zones. The majority of energy released during

conventional combustion is at high temperatures, as a consequence of a diffusion flame [8]. Cooling

the flame reduces the formation of NOx at the expenses of higher PM , HC, and CO production.

Studies have attempted to determine which is the minimum temperature required to achieve

complete combustion [9]. Flyn et al. performed a study where the fuel specific NOx production

was measured at different levels of exhaust gas recirculation (EGR). Their results show a decrease

in NOx proportional to increased EGR rates, the limit is reached when combustion starts to deteri-

orate. The authors pointed out the minimum peak temperature for conventional diesel combustion

is 2300K.

Approaches that allow engines to successfully operate at combustion temperatures lower than

those encountered in conventional diesel are usually referred as LTC. Work on this family of strate-

gies proved that the NOx-PM trade off curve can change dramatically at low temperature levels

Figure 1 [10]. Altering the engine parameters that result in lower NOx and soot production will

invariably result in lower combustion temperatures. The main idea behind LTC is to produce spon-

taneous ignition throughout the combustion chamber at low temperature, i.e. by means of very

5



Figure 1: NOx PM trade off curve [10].

lean homogeneous air-fuel mixtures. The low cylinder temperature is useful in reducing NOx and

soot production, but, since it involves slow oxidation reactions that cause misfiring and quenching,

will result in higher HC and CO emissions compared with conventional diesel combustion.

Low Temperature Combustion

In order to generate the conditions to perform LTC an increased premixing between air and fuel

must be achieved, compared to conventional combustion. Higher levels of premixing can be obtained

by increasing the injection delay, which can be controlled by increasing the amount of EGR. Longer

ignition delay allows for more time available to fuel and air mixture to properly homogenize.

Start of Injection Timing One common method of promoting better mixing of the air and fuel

charge is to advance the start of injection (SOI) timing. This will increase the homogeneity of the

mixture allowing more time for air and fuel to mix. In conventional combustion NOx emissions

increase with advanced SOI, but researchers have demonstrated that advanced SOI timing pared

6



Figure 2: Emission characteristics at different injection timings [11]

with increased injection pressure can reduce NOx emissions for SOI timings greater than 30◦ before

top dead center (BTDC) [11]. This effect is likely a result of reduced diffusion flame zones, due to

the absence of near stoichiometric air and fuel mixtures. Figure 2 shows the trend of NOx, CO, HC

and fuel consumption with varying injection timing for different rail pressures. A decrease in NOx

is obtained by anticipating the SOI timing at high pressure as a consequence of low temperature

combustion. Marked increase in CO and HC is found under the same condition. The early fuel

injection causes the spray interaction with the cylinder liners or piston walls; the result is wall

quenching with resulting fuel problems and high concentrations of HC in the exhaust. Furthermore

low temperature combustion is a major cause for high CO emissions.
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Fuel Split Modern compression ignition (CI) engines equipped with electronically controlled

direct fuel injection system commonly use multiple pulse injections. The basic idea is to carry out

a pilot injection of a small quantity of fuel before the main injection event. The primary advantage

in using pilot injection is the ability to retard the main injection further than it would be possible

with a single injection event. This is related to the reduction in ignition delay consequent to a

higher temperature in the combustion chamber at the moment of the main injection. An important

parameter in this sense is the time interval between the pilot and main injection event. When this

time interval is too long the products of pilot injection mix sufficiently with the ambient gas in

the cylinder, consequently no difference is produced with respect to the single injection case. On

the other hand, when this interval is shorter a local high temperature zone is created near the fuel

nozzle with a consequent shorter ignition delay [12]. It is still important to maintain a sufficient

separation between pilot and main injection to ensure the main injection occurs after the injection

delay of the pilot event. Under a NOx perspective the pilot injection can produce an effect similar

to the one of an internal EGR, especially where the quantity of fuel injected during the pilot event

is higher than 10% of the total fuel [13]. The burned gas produced from the combustion of the

pilot injection will dilute the concentration of oxygen inside the combustion chamber for the main

injection, acting basically like an EGR system.

Hasegawa and Yanagihara explored the effects of a multiple injection strategy on a concept

engine named Uniform Bulky Combustion System (UNIBUS) [14]. During the development of the

UNIBUS concept, a number of tests were performed to compare and quantify the effects of a double

injection strategy with varying SOI timing versus a conventional diesel combustion strategy. For

the double injection tests, the main SOI was fixed at 13◦ after top dead center (ATDC) while the

pilot SOI was varied. The injection volume of fuel per cycle during the double injection strategy

was held at 15 mm3/st for both injection events. The plot of brake mean effective pressure (BMEP)

in Figure 3 shows that the UNIBUS strategy, as well as the majority of double injection strategy

tests, are capable of achieving a BMEP close to that of conventional combustion with the same fuel

quantity injected and while producing significantly lower NOX and smoke emissions. The main

idea behind the UNIBUS system is to disperse fuel in small droplets that, upon evaporation, would

form small fuel rich pockets uniformly distributed. An adequate spacing of these pockets will allow
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Figure 3: Performance and emissions comparison at different SOI [14]
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a first low temperature heat release (LTHR) stage in the compression stroke, during which the

combustion of each pocket will not interact with the adjacent ones. Under these conditions the

LTHR stage will be followed by a pause before the rest of the fuel is consumed. Further heating

of the mixture, due to compression, will then produce a second more rapid high temperature heat

release (HTHR) stage of combustion. The objective is to produce a premixed lean combustion

during the HTHR that complete the oxidation of the remaining fuel hence producing little NOx

and soot. An important feature to achieve the described combustion is early injection. It allows

adequate time for LTHR to complete before the beginning of the second stage of combustion. It

also ensures for maximum fuel penetration and dispersion as a consequence of the low density inside

the cylinder at these early injection timings.

A way to promote the desired combustion process also at high engine loads, where early injection

is not convenient, is using pilot injection. It was discovered that with the injection of about 30% of

the fuel 30◦ BTDC, combined with a second injection around TDC, the combustion process remain

premixed allowing for the tipical advantages of LTC without deficit in engine output [15]. The fuel

injected in the pilot event undergoes LTHR and the main event will complete the combustion in

the HTHR stage, as shown in Figure 4.

Figure 4 shows how the pilot injection allows postponing the main event, which in turn improves

the premixing of air and fuel. Injection timings of the main fuel as late as 13◦ ATDC have been

reported [14].

Control of combustion Early injection diesel LTC combustion has not been employed yet in

production engines, despite of its low NOx and PM emissions, principally for the difficulty to

control combustion under transient modes. Since the start of ignition is determined by in-cylinder

conditions, there is no direct control on the combustion phasing. There are several indirect ways to

influence the start of combustion, as excess air ratio, compress ratio, EGR rate and intake air charge

temperature. However, those parameters are difficult to tightly control under transient modes.

High load limit High load conditions are critical for LTC combustion; this constrain is related to

the premature start of heat release during compression stroke. A common approach to this problem

is the so called dual mode operation, which consists in a switch between advanced combustion and
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Figure 4: Injection Rate and Rate of Heat Release of Conventional Combustion vs. UNIBUS

Combustion [14]

conventional combustion. It is still desirable to be able to perform a broad range of loads with the

advanced combustion in order to avoid frequent transition between the two modes of operation.

Several paths are viable to expand the range of operation of advanced combustion during high

loads, for example applying high cooled EGR can postpone the ignition timing to crank angles

near TDC as shown in Figure 5 [16].
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Figure 5: Operating region and IMEP for a compression ratio of 18 and intake charge temperature

of 30◦ C [16]

Conceptual Combustion Model Results obtained through optical engine testing are useful

in visualizing of the combustion takes place during LTC [17]. The results showed in Figure 6 are

obtained on a heavy-duty diesel engine operated with a single early fuel-injection and with 12.7%

intake oxygen to simulate EGR. Panel 1 in Figure 6 shows how the low ambient temperature and

density during the early-injection condition produces a long liquid jet penetration (blue) before

a clear separation with the vapor phase becomes evident. The jet penetration during LTC can

reach a length which is twice the one that occurs in conventional diesel engine, this may impinge

in-cylinder surfaces and potentially degrade combustion efficiency and emissions. Panel 2 shows

the vaporization due to the energy release as a consequence of the start of ignition, it proceeds up

to panel 3. As the subsequent premixed combustion commences (panel 4), fluorescence appears

in the laser sheet indicating that the mixture is almost stoichiometric. Panel 5 and 6 shows the

areas where soot formation actually happens, i.e. in those areas where the fuel-air equivalence
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Figure 6: Schematic diagram of LTC combustion [17]
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ratio is greater than 2. The presence of soot in the head vortex of the jet indicates that the

mixing is poorest in these regions.The long jet penetration contributes to a better mixing between

fuel and air, which is the key feature leading to lower PM emissions compared to conventional

combustion. The combustion is also more evenly distributed, leading to lower peak temperatures

and consequently lower NOx emissions.

Fuel Influence on Combustion

Fuel properties are a key parameter in the combustion process, and consequently have a profound

impact on the performance and emissions of engines employing LTC. Methods of control and

necessary modification of engine hardware can be solely dependent on the properties of a selected

fuel. This has resulted in a considerable amount of research to determine which fuels are best suited

for advanced combustion [4]. Especially the capability of the fuel to mix with air and how easily

the mixture will ignite affect the combustion. The ignitability is related to the chemical kinetic

characteristics of the fuel when it mixes with air. CN is commonly used as a measure of fuel’s

ignitability. The fuel volatility is the main index of how the fuel is able to vaporize in the air,

combined with the temperature of the air flow interacting with the fuel. Higher levels of volatility

guarantee a better mixing, and this parameter is described with distillation characteristics.

Auto Ignition In LTC engines the delay between injection of fuel into the air and ignition is

much longer than that typically encountered in conventional diesel engines. A longer delay allows

for higher rate of mixing and homogenizing, at the same time the temperature of the mixture

reaches a point where it can auto-ignite making the process of conversion of the fuel air mixture

into combustion product particularly rapid. The ignition delay is the main parameter of control

for mixture homogeneity and combustion phasing, which has a strong impact on performance and

emissions. The factors that mostly affect ignition delay are the temperature and pressure field,

and the fuel characteristics. Figure 7 shows a comparison between diesel (CN=54) and gasoline

(RON=95) engines in terms of heat release profiles [19]. It is interesting to notice how a LTHR

stage is experienced by the diesel engine at 25◦BTDC while gasoline does not. According to Shibata

and Urushiahara [20] he LTHR stage can be inhibited, in some fuels, due to the following reasons:

1. Some fuels may contain only compounds that form stable radicals upon abstraction and do
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Figure 7: Heat Release Rate comparison between Diesel and Gasoline [19]

not undergo LTHR.

2. Radicals that form fuel components, such as olefins and oxygenetes, react with OH radicals

that are important for the start of LTHR.

In most cases, LTHR can be attributed mainly to n-paraffins and to a lesser extent to branched

paraffins. Aromatics have a LTHR inhibiting effect while compounds such as olefins and naphthenes

both undergo LTHR and have a LTHR inhibiting effect [20]. Fuels that exhibit LTHR include diesel

fuels with a cetane number above about 35-40. Fuels with a higher tendency to auto-ignite will

generally have a more pronounced LTHR (Figure 8 ) [21].

While LTHR is not a requirement for successful premixed LTC operation, it can have a signif-

icant impact on the HTHR. Impacts include:

• a lower HTHR rates (see Figure 7 ). The HTHR rate can influence the combustion noise and

the maximum load that can be achieved by the engine.

• a lower initial mixture temperature requirement to achieve optimal combustion phasing.

• a need for more advanced combustion phasing to achieve maximum power.

• increased tendency to misfire at retarded combustion phasing.

A fuel with a large LTHR tend to knock easily and is better suited for high speed and low torque

operation. Fuels with a small LTHR are less likely to knock, hence they are better suited for low
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Figure 8: Dependency of LTHR on Fuel Ignitability for Different Fueling Rates [21]

speed and high torque operation [22].

Measures of fuel Ignitability Cetane number is the most commonly used index to correlate

well diesel-like fuels and ignition quality. Is widely proved that a decrease in Cetane number produce

a delay in the ignition of the air-fuel mixture [23]. Other factors have strong influence on ignition

delay and have to be considered when comparing fuel properties, for example [24] showed in their

work that the relationship between different Cetane number diesel fuels and ignition delay was not

constant at different temperatures and intake pressure. Other researchers [25] showed the ignition

delay did not increase with low Cetane number when the engine is running at high loads without

pilot injection.

Fuel volatility Fuel volatility is another key parameter in LTC; it has to be high enough to

guarantee fuel evaporation before impingement of the combustion chamber surfaces occurs. This

explains the difference in behavior that occurs between gasoline and diesel when the start of injection

is advanced. Emission strongly increase for early injection strategy that use diesel fuel because this

kind of combustible is not enough volatile at low temperature. When the injection start earlier

than 50◦ BTDC the temperature in the combustion chamber is not high enough to vaporize diesel

fuels, this brings to impingement on the surfaces with consequent high values of emissions. On the
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other hand gasoline fuels high volatility guarantee for vaporization also at the lower temperatures

that characterize early injection [26].

Emissions

The main reasons that lead to the study of LTC engines is their capability to lead to significant

reduction in thermal NO formation. While total NOx emissions from engines using LTC are lower

than conventional diesel engines; it was reported that the fraction of NO2 in NOx is consistently

higher [27].

Soot Describing soot production in internal combustion engines can be extremely complex. Tao

et al [28] were able to incorporate a soot generation model into KIVA-3V simulation code to model

LTC engine operation with high EGR rates. The results suggested that the model is able to predict

soot controlling mechanisms over a wide range of operating conditions including a EGR sweep from

0% to 68% combined with a split injection around TDC. As depicted from Figure 9; sufficiently

high EGR rates will significantly lower the soot formation rate by mean of lower temperature

combustion.

Increasing moderately EGR rates brings to increase in soot production especially in the final

part of the crank motion. The increase is mainly due to lower soot oxidation, which is related

to lower temperatures due to EGR flow. At EGR rates in excess of 65% the trend is reversed

and a significant decrease in soot production is observed. This is probably due to lower rates

of soot formation, as we can deduce observing that both the initial and final decrease has the

same magnitude. Increase in the amount of EGR, combined with other measures, is used to lower

emission, for example high injection pressure, high intake boost pressure, variable valve timing and

variable compression ratio [29].

Carbon Monoxide LTC systems exhibit high carbon monoxide (CO) emissions, particularly at

high dilution levels. CO is one of the intermediate species generated from the burning process

of hydrocarbon in the fuel, when complete combustion is achieved this is oxidized to CO2. The

efficiency of the oxidation depends on the local temperature and oxygen concentration [30].
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Figure 9: Smoke production for different level of EGR [28]

Hydrocarbons Like for CO the hydrocarbons (HC) produced by LTC are higher than those

produced by conventional diesel operations [8]. The factors that cause this phenomenon can be

listed has follows:

• The long spray penetration which characterize LTC operation bring fuel to accumulate on

the combustion chamber surfaces

• Fuel lean zones inside the combustion chamber are more common in LTC operations rather

than in conventional diesel. Fuel in these areas is more prone to escape combustion leading

to the production of unburned HC.

• Since the local peak temperatures are lower than conventional diesel, the fuel near the wall

does not burn especially at low loads.
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Experimental Setup

All measurements in this study were conducted at the Engine and Emission Research Laboratory

(EERL) at West Virginia University for the project CRC AVFL-16 [31] [3]. The EERL test cell

follows the recommendations outlined in the Code of Federal Regulations (CFR), Title 40, Part

1065 [32]. Figure 10 shows an overview of the EERL sampling capabilities for regulated and

unregulated diesel exhaust emissions.

Figure 10: Schematic Overview of EERL Measurement System
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The sampling system consists of a variable speed blower and a subsonic venture constant vol-

ume sampling system (CVS). Diluted gaseous sampling were analyzed using the Horiba R© MEXA

7200D system. Primary data collected by the Horiba system comprised CO and CO2 acquired by

the non-dispersive infrared (NDIR) method, NO and NOx using the Chemi-luminescence (CLD)

method, HC by using a heated flame ionization detector (HFID). Particulate matter characteriza-

tion downstream the aftertreatment system was quantified both using the gravimetric method as

outlined in Title 40 CFR Part 1065 [32], and by photo-acoustic method [33]. Diluted exhaust gas

was sampled from the main dilution tunnel through a secondary dilution system and subsequently

sampled onto a Pallflex 47 mm Teflon filter. Filters were weighed in an environmentally controlled

clean room (Class 1000) using a Sartorius microbalance with an accuracy of 1 µg .

Test Engine

The test engine used for this study was an in-line 4-cylinder common rail diesel engine model

Z19DTH from General Motors, depicted in Figure 11. The intake air pressure was controlled via a

variable turbine geometry (VTG) turbocharger. The engine was instrumented with thermocouples

measuring engine lubricant, coolant, intake manifold and exhaust manifold temperatures. Inlet

depression, intake manifold pressure and exhaust backpressure were measured as well by pressure

transducers.

Since EGR rates that were adopted for the advanced combustion research on this engine were

higher than the original equipment manufacturer (OEM) specifications, a larger EGR cooler was

fitted to the engine in order to reduce inherent higher intake manifold temperatures. An overview

of the test engine specifications are shown in Table 1.
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Figure 11: Test Engine GM Z19DTH in the EERL

Type CDTi Diesel Engine Bore 82mm

Manufacturer General Motors Stroke 90.4mm

Model Z19DTH Compression Ratio 17.5:1

Valve Configuration 4 Valves per Cylinder Turbocharger Garret VGT

Year 2005 Injection System Common Rail

Configuration In-Line 4 Cylinder EGR Cooled, External

Displacement 1.9L Rated Power 110 kW at 4000 rpm

Table 1: Test Engine Specifications

Laboratory Instrumentation

This section describes the laboratory instrumentation in the EERL that was used for this study. The

exhaust dilution system, gaseous emissions measurement instrumentation and particulate matter

sampling system and technique, as well as in-cylinder pressure measurement and the engine and
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dynamometer control system are presented.

Constant Volume Sampling Dilution Tunnel A total-exhaust dilution, CVS tunnel, designed

to simulate the mixing of exhaust gas with ambient air conditions, maintains a nominally constant

total molar flow rate of the diluted exhaust, as outlined in the Code of Federal Regulations (CFR),

Title 40, Part 1065, Subpart 140 [32]. To accurately measure and actively control the flow rate

maintaining proportional sampling of the exhaust constituents, a subsonic venturi (SSV) flow meter

is used, see Figure 12. The SSV was calibrated for a Reynolds number at the throat greater than

the maximum Reynolds number expected during testing and used only between the minimum and

maximum calibrated flow rates.

Figure 12: CVS tunnel in the EERL

Gaseous Emission Measurement Diluted exhaust gas emissions extracted from the CVS tun-

nel were measured continuously using a HORIBA MEXA 7200D gaseous emission analyzer and

included HC, CO as well as CO2 and NOx and O2. The same emission characteristics were also

sampled in the raw exhaust and intake manifold still using an HORIBA MEXA 7200D NOx ana-

lyzer.
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Horiba Automotive Emission Analyzer System MEXA 7200D The Horiba automotive

emission analyzer system MEXA 7200D is a modular components system consisting of a main

control unit, an interface controller, an analyzer rack with up to five analyzer modules, a heated

analyzer module for THC, THC/CH4, NOx and NO/N0x analyzers, a power supply unit, as well

as a solenoid supply unit, which routes to zero, span and samples gas to the analyzer modules,

and a sample handling system dehumidifying the sample gas and directing it to the analyzers. A

separate heated oven unit cart contains up to three heated analyzers (THC, NOx and CH4) with

heated lines, pumps and solenoid valves. The analyzer system is shown in Figure 13.

Figure 13: Horiba Automotive Emission Analyzer System MEXA 7200D

The analyzer modules measuring the concentration of CO and CO2 (cold dry sample) use

the non-dispersive infrared (NDIR) principle. Infrared energy at specific wavelengths is absorbed

by a molecule consisting of different atoms and the degree of absorption is proportional to the

concentration at constant pressure [34]. In a NDIR analyzer, an infrared beam is passed through

a sample and a comparison cell by a light source. The comparison cell is filled with a gas non-

absorbent to infrared radiation (such as nitrogen). Figure 14 shows an example of an NDIR
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configuration.

Figure 14: Example of NDIR Configuration

A sealed capacitor type detector, consisting of two cells separated by a movable membrane and

filled with the gas to be measured, transforms the displacement of the membrane, which moves

as a result of the differential pressure generated by the difference in quantity of radiation each

gas received and therefore heated up and expanded, into an electrical output signal. To prevent

interference with another gas component absorbing infrared radiation in the same wavelength range,

an optical filter in front of the detector is used to eliminate the absorption area of the interfering

component [35].

The concentration of total hydrocarbons is measured employing hydrogen (H2) flame ionization

detection (FID) (heated wet sample). Hydrocarbons introduced into a hydrogen flame generate ions,

which are proportional to the number of carbon atoms in the sample. This measurement principle

is sensitive to almost all hydrocarbon compounds [36]. Figure 15 shows a FID configuration.

The sample gas is mixed with H2 and directed into the H2 flame. Ions in the high-temperature

area are generated according to the following the reaction:

CH∗ +O∗ → CHO∗ + e− (1)
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Figure 15: Example of FID Configuration

where the stars (∗) denote radicals. A DC voltage is applied on two electrodes in the ion collector

which causes a migration of ions towards them and a current can be measured and amplified. Due

to the proportionality of the current to the number of carbon atoms, this is a measure of the total

hydrocarbons (THC), but no information of different hydrocarbon components can be obtained

by this method [36]. The analyzer module measuring NO and NOx concentration (heated dry

atmospheric sample) uses a chemiluminescence detector (CLD). Sample gas containing NO is mixed

with ozone gas (O3) in a reactor to be oxidized into nitrogen dioxide (NO2), whereas part of the

NO2 is in excited state, releasing excited energy as light (radiation) when returning to the ground

state, as shown in Equations 2 and 3:

NO +O3 → NO∗2 +O2 (2)

NO∗2 → NO2 + hv (3)

where the star (∗) denotes the NO2 molecules in excited state. The light released is directly

proportional to the NO molecule quantity before the reaction and therefore a measure of the NO

concentration. This chemiluminescence signal is detected photo-electrically. ExcitedNO2 molecules

can also return to ground state without radiation emission due to collision with other molecules

(H2O, CO2, N2 or O2). This interference can be reduced by reducing the pressure in the reaction

chamber. Since there is also NO2 in the initial sample that does not have chemiluminescence, it has
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to be converted to NO by means of a NOx converter. The measurement of the converted NO2 and

the aforementioned NO measurement can therefore be added up to yield the NOx concentration.

Horiba MEXA-720 NOx Analyzer Two heated zirconia-ceramic (ZrO2) sensors were installed

in the intake manifold and exhaust pipe directly as parts of MEXA-720 NOx analyzer units (see

Figure 16), which are capable of measuring NOx concentrations, air/fuel ratio, excess air ratio

(lambda) and O2 concentrations simultaneously. The measurement principle of a zirconia sensor

is depicted in Figure 51. It is based on the oxygen conducting properties of zirconia [37]. Zirconia

is used as an ion pump lowering the oxygen concentration from the sample gas to approximately

10ppm in the first internal cavity, where nitrogen dioxide is reduced to nitric oxide and oxygen.

The pump current, depending on the amount of oxygen pumped, is measured and used to calculate

the oxygen concentration in the sample gas. Further lowering the oxygen concentration to nearly

zero ppm (1ppb) is achieved by an auxiliary oxygen pump (not showed in schema). Nitric oxide is

further split into nitrogen and oxygen. A measure of the oxygen generated is the current created

by the zirconia ion pump and can be used to calculate the NO concentration, which is an indicator

of the NOx concentration in the exhaust stream, since NO2 is reduced to NO in the first internal

cavity [38]. Intake oxygen concentration was one of the primary controlled operating parameters

Figure 16: Horiba MEXA-720 NOx and principle of Zirconia Sensor

in this study and raw exhaust O2 concentration was used along with intake O2 concentration to

determine actual EGR fractions.
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Particulate Matter Sampling

Nanoparticle number concentration and size distributions were determined using the Exhaust Emis-

sions Particle Sizer (EEPS), a spectrometer from TSI Inc. (model 3090) as well as the Differential

Mobility Spectrometer (DMS) from Cambustion (model DMS500). Continuous exhaust gas sam-

ples were extracted from the CVS tunnel (dilution ratio DR = 10) and routed through a double

stage dilution system using ejector type dilutors, see Figure 17. The first stage was maintained at

140◦C (DR = 6) in order to suppress condensation and particle nucleation phenomena, while the

second stage utilized dilution air at ambient temperatures (25C, DR = 11).

Figure 17: Experimental Setup for Nanoparticle Sampling

Control of Engine Operating Parameters

In order to have full control on the engine operating parameters, an open engine controller from

Drivven Inc. was used. The controller is based on National Instruments hardware. Operating

parameters such as main SOI, number and duration of fuel injection events, turbocharger boost

(by controlling VGT vane position), EGR rate, rail pressure, throttle, and more, were accessed and

controlled to obtain advanced combustion regimes.
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Laboratory and Dynamometer Control The GM Z19DTH engine was coupled to a Medsker

Electric Inc. (MEI) alternate current (AC) dynamometer operated in speed mode (see Figure

18). Engine torque was controlled by means of a proportional-integral-derivative (PID) throttle

controller integrated into the laboratorys data acquisition system (DAQ). The EERLs DAQ system

is an in-house solution using NI hardware and software developed by CAFEE with high-grade

automation capabilities for engine testing as well as calibration and quality control. The DAQ

system follows the recommendations outlined in 40 CFR, Part 1065 [32].

Figure 18: Medsker Electric Inc. alternate current dynamometer

Fuel Properties

The Advanced Vehicles, Fuels, and Lubricants committee of the Coordinating Research Council

specified and formulated a matrix of nine test fuels for advanced combustion engines (FACE) [4]

based on the variation of three properties:

• Cetane number, a measure of ignition quality;

• Aromatic content, a measure of chemistry; and

• The 90 percent distillation temperature, a measure of volatility.

Table 2 displays the nine fuels used in this study.
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Property FACE 4 FACE 1 FACE 3 ULSD FACE 7 FACE 9 FACE 8 FACE 6 FACE 5

Cetane

Number

28.4 29.9 32.0 44.0 44.3 45.0 50.0 53.3 54.2

Aromatic

Content

(Mass %)

40.7 26.1 50.0 34.7 46.2 37.0 43.5 21.1 22.2

90 % Dis-

tillation

Tempera-

ture (◦F )

639 517 518 582 513 610 648 646 528

Specific

Gravity

0.8355 0.8084 0.8401 0.8496 0.8375 0.8465 0.8682 0.8411 0.8086

HC Ratio 1.819 1.956 1.749 1.796 1.773 1.788 1.704 1.871 1.967

Net Heat of

Combustion

(BTU/lb)

0.8355 0.8084 0.8401 0.8496 0.8375 0.8465 0.8682 0.8411 0.8086

Table 2: Analysis of FACE fuels characteristics

These properties were obtained by fuel blending and determined to be of primary importance

to the performance of advanced combustion engines. The target values built up a full factorial

statistical design with a center run representing average marketplace values of the design variables.

This design theoretically allows investigation of each combination of the fuel properties and the

injection strategies. A graphical representation of the design matrix is shown in Figure 19, where

target values (in blue) of the three factors at two levels build a design cube. The actual values of

the formulated fuels are represented, as well (in red).

Repeatability Study

As part of the AVFL-16 project [3] a study of the repeatability of test data generated from two

split injection control strategies was performed with the ULSD fuel. The purpose of this effort
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Figure 19: FACE Diesel Fuels Design Matrix: Target (Blue) vs. Actual (red)

was to develop a standard by which emissions and performance changes among the fuels could be

attributed to fuel property differences and not to the variability associated with the equipment or

control strategy.

The selected test was repeated three times in the morning and evening. This daily routine was

repeated for three days providing data for 18 repeats of each test. From this data, the percent

difference of the original test and average of the repeated tests was quantified. The standard

deviation and coefficient of variation (COV) was also calculated for the repeat tests and is presented

in the subsequent section. It should be noted that the original test was conducted four months

prior to the 18 repeat tests and consisted of one test.
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Characteristic NOx (g/kW-hr) PM (mg/kW-hr) CO (g/kW-hr) HC (g/kW-hr) BTE %

Original Test 0.352 104.5 14.5 2.74 29.7

Repeted Test 0.350 88.4 13.47 2.72 29.7

Standard Devi-

ation

0.010 7.73 0.48 0.06 0.3

COV 2.81 % 8.75 % 3.58 % 2.35 % 0.99 %

Original vs Re-

peated

0.7 % 18.2 % 7.4 % 0.7 % 0.04 %

Table 3: Repetability analysis

Based on the results of this repeatability study, it was determined that any difference in HC

emissions or NOX emissions greater than 3% could be deemed significant and thus attributed to

differences in the fuels rather than variability associated with the data. While BTE should be

greater than 1%. Similarly for CO emissions and soot emissions, a difference greater than 8% and

19% respectively, could also be deemed significant. These values were determined by selecting the

maximum between COV and the percent difference between original and repeated study, and then

rounded.
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Regression Analysis

Introduction

When selecting the engine parameters for testing, it is not always known what impact each

will have on performance and emissions, because the underlying function is implicit. Obtaining a

regression model plays an important role in the data analysis, providing prediction and classification

rules, and data analytic tools to understand the importance of different inputs. This may be a

difficult task when the underlying function is non-smooth and highly non-linear. This is often the

case when performing an experimental emission characterization in IC engines.

For each data point there is a set of variables that might be denoted as inputs (also called

predictors or in general independent variables), which are measured or preset. These have some

influence on one or more outputs (also called responses or dependent variables). The goal of

regression analysis is to use the inputs to predict values of the outputs. The branch of statistics

which study how to obtain prediction functions is also called machine learning or data mining.

This section gives a description of the theory behind the algorithm used in this work, based

on [6] and [42]. In the statistical literature plenty of methods are described. In order to motivate

why a certain approach have been preferred over others a brief description regarding the theory of

machine learning is given in this chapter.

Two Simple Approaches to Prediction

Linear models and Least Square Linear model has been a mainstay of statistics, and still

remain the basic tool for many prediction models [43]. Given a vector of inputs X the output Y is
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predicted using the following model:

Ŷ = β̂0 +

p∑
j=1

Xmβ̂j (4)

The coefficients of equation 4 can be determined using several methods, but by far the most popular

is the method of least squares. The idea is to pick the coefficients that minimize the residual sum

of squares:

RSS(β) =

n∑
i=1

(yi −XT
i β)2 (5)

Since this is a quadratic function the solution to the minimization problem always exist, even

if might not be unique. The resulting equation will be characterized by the p parameters β̂. This

method will produce smooth equations, but it does appear to rely on the assumption that the degree

of the model is appropriate to fit the data. In the language of machine learning it is described as

a low variance, and high bias method.

Nearest-Neighbor Methods The model function Ŷ is determined by the closest observation it

he input space to x. The k-nearest method is defined as follows:

Ŷ = 1/k
∑

xi∈Nk(x)

yi (6)

Where Nk(x) is the set of k closest points to xi. The output is then the average of the k closest

observations to xi in the input space. The parameter to be selected when utilizing this method is

the number of neighborhoods k. It is clear that off the shelf least square methods cannot be used to

determine k, since we would always pick k = 1. The k-nearest-neighbor procedures do not appear

to rely on any stringent assumption about the underlying data, and can adapt to any situation.

The drawback of this approach is that every sub region depends strongly on a handful of input

points and their positions, and is thus wiggly, unstable, high variance and low bias.

Each method has its own situation for which it works best. The linear models are suited for

those scenarios where the data are affected by large variability; hence a general behavior wants to

be detected at the cost of lost in local accuracy. Linear methods are often referred as model based,

because the general model selection determines the fitting over the entire domain. The nearest

neighbors methods are more appropriate when the information deriving from each training data
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point is considered very relevant. Hence a locally accurate fitting is necessary, and that is why this

family of mythology is often referred to as local. Large subsets of the most popular techniques are

variants of these two simple procedures, and often are a combination of the two.

Curse of Dimensionality

Local methods like k-nearest-neighbor seem able to approximate the data optimally, as long as we

are able to find a fairly large neighborhood of observations close to every x. It can be proved that

with an infinite number of samples the nearest neighbor method will produce the best possible

function in term of average squared error. In dealing with high dimensional problems this intuition

breaks, as a consequence of the phenomenon commonly refereed to as course of dimensionality [39].

In a p-dimensional problem suppose we are interested in a fraction r of the observations. Assuming

that the inputs are uniformly distributed in a p-dimensional unit hypercube, r will also be the

fraction of volume captured by our neighborhood. The expected length of the edge we are sampling

will be proportional to r1/p. So to cover just a small portion of the data in a high dimensional

space we need to span on a very wide range of each input variable, as in Figure 20.

Another manifestation of the course is that the sampling density is proportional to N1/p, where

N is the sample size. Thus in higher dimension the density of the data will be naturally lower. As

the complexity of functions of many variables grow exponentially with the dimension, the number of

responses necessary to determine those functions accurately grows exponentially too. We have seen

that although local methods focus directly on estimating the function at a point, they face problems

at high dimensions. It is also possible that local methods are inappropriate in low dimensions cases

where a more efficient use of the data can be achieved by structured approaches.

Tree Based Methods

These, conceptually simple, family of methods partition the feature space into a set of rectangles,

and then fit a model in each subspace. These methods use an approach which is intermediate

between model based, and local methods. The simplest method belonging to this family is the

recursive binary partitions method. The input space is first divided into two regions, and the
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Figure 20: Length of the subcube edge needed to capture a fraction r of the volume of the data,

for different dimensions p.
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Figure 21: Partition of a two dimensional space, and corresponding binary tree diagram

response is modeled by the mean Y in each region. The variable and the split point are selected to

achieve the best fit. Then one or both of these regions are split into two or more regions, and so

on until some stopping rule is applied. A simplified bi-dimensional case is displayed in Figure (21)

. In the example the entire domain is divided into five regions, the diagram on the right side of

Figure (21) shows the binary selection tree. The upper part of the binary tree is where the entire

set is located. Observation satisfying at each junction are assigned to the left branch, and the sub

division is arrested when the region satisfy a certain criteria. The partitioning algorithm needs to

determine which splitting variable and splitting point to use, hence to determine the shape of the

final tree. Starting from the entire data set a splitting variable and a splitting point will define the

two regions:

R1(j, s) = {X|Xj ≤ s} and R2(j, s) = {X|Xj > s} (7)
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Which are determined by solving:

min
j,s

[min
c1

∑
xi∈R1(j,s)

(yi − c1)2 + min
c2

∑
xi∈R2(j,s)

(yi − c2)2] (8)

Which consist in identifying two areas of the domain where the data are as less inhomogeneous as

possible. For any choice of j and s, the inner minimization is solved by:

ĉ1 = ave(yi|xi ∈ R1(j, s)) and ĉ2 = ave(yi|xi ∈ R2(j, s)) (9)

The tree size is determined by a tuning parameter, which represent the maximum number of

branches.

MARS: Multivariate Adaptive Regression Splines

MARS is a nonparametric method for flexible regression modeling of multidimensional data, this

means that the predictor does not take a predetermined form but is constructed according to

information derived from the data. An expansion in product spline basis functions is carried over,

but differently from other regression methodologies the number of basis functions as well as the

parameters associated with each one are related to the data. Mars approximation takes the following

form:

f̂(x1, x2, ..., xp) =
M∑

m=0

amBm(x1, x2, ..., xp) (10)

Where Bm(x1, x2, ..., xp) are the basis functions. They take the form:

Bm(x1, x2, ..., xp) =

Km∏
k=1

bkm(xv(k,m)|Pkm) (11)

This is the product of elementary functions bkm(·), each one using just one input variable and

characterized by a set of parameters Pkm.

The basis functions in the MARS method have the following form:

bkm(x|s, t) = [s(x− t)]+ (12)

Where the subscript + indicates that only the positive part of the argument is taken, i.e.:

(x− t)+ =


x− t, if x > t

0, if x ≤ t
and (t− x)+ =


t− x, if x < t

0, if x ≥ t
(13)
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Figure 22: Basis functions (x− t)+ (broken) and (t− x)+ (solid)

The sample case with t = 0.5 is shown in Figure 22. The goal of the algorithm is to produce a

minimal set of basis functions Bm for approximating each output function. This is accomplished

through a two phase iterative approach. The first phase, also called forward part, generate a super

set of basis functions. The data are then over-fitted and the number of basis functions is larger than

optimal. The second phase, called backward procedure, selectively deletes basis functions with the

goal of producing an acceptable fitting with the minimum number of basis.

Forward Phase A collection of basis functions is generated by assigning a reflected pair for each

input Xj with knots at each observed value xij of that input. This set of basis functions will be

called C and has the following form:

C = {(Xj − t)+, (t−Xj)+}t∈{x1j ,x2j ,...,xNj},j=1,2,...,p (14)

Although each basis functions depends only on a single input it will represent a function over the

entire domain Rp. The model-building strategy adds one by one a function from the set C and

their products. Each term in equation 10 is a function in C, or a product of two or more functions
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contained in C. The main scope of the forward phase is to select which of those functions will be

included in the model.

The selection is performed iteratively. Starting with a constant function bm and all the set C as

candidate as shown in Figure 23. The pair of basis function selected from the set C will be inserted

in the model set M . At each stage the candidate functions for M are composed by all the products

between the reflected functions in C and the function already present in M . The term that will be

added to M will have the following form:

aM+1bl(X)(Xj − t)+ + aM+2bl(X)(t−Xj)+, bl ∈M (15)

The selection among all the possible outcomes is performed by minimization of the squared error.

The coefficients that will multiply the new basis function are selected by least square method. Once

the winning products are added to the model the process is continued until the model set M reach

the maximum number of terms. Figure 23 is a scheme of the forward model building procedure. On

the left are the basis functions currently in the model M , at the first iteration this consists of only

a constant. On the right are all the candidate basis functions belonging to C. These are reflected

pairs of linear splines with knots at all observed values xij of each predictor Xj . At each stage

we consider all products of a candidate pair with a basis function already in the model. The logic

for selecting which candidate function to use is described by the inner loop of the forward phase

algorithm, Figure 24. Once a reflected pair is added to M the algorithm must determine which of

the basis functions already present in the model must be multiplied by the new term. The outer

loop in Figure 24, determines which basis function bl(X) in equation 15 must be multiplied by the

new term in the model. There is one restriction regarding the formation of the model set M ; each

input variable can appear at most once in a product. This is in order to avoid the formation of

higher order powers of an input, which would be complex to govern in the forward model building

phase. At the end of this process the result is a large model, which typically overfits the data,

hence a deletion procedure is needed.

The MARS forward procedure approach can be seen as an evolution of the tree growing algorithm

previously discussed. In the tree based methods at each iteration a node was split, a similar

result is obtained in MARS multiplying a step function by a pair of reflected step functions. The
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Figure 23: Schematic of the MARS forward model-building procedure.

main improvement achieved by MARS with respect to tree based methods is the ability to capture

additive effects. This is due to the fact that a knot location can be used as many times as necessary,

while tree methods cannot split a node more than once. A key property of the functions shown

in Figure 22 is their local behavior. They have a zero value over a large part of their range and

nonzero only over a small part of the feature space. As a result the regression surface can be built

up parsimoniously, because adding a basis function to improve the fitting in a certain area does not

affect the entire domain. The use of higher order basis functions would produce a nonzero product

everywhere, and would not work as well.
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Backward phase The backward stepwise procedure is applied to the final set produced by the

forward phase in order to selectively delete individual basis functions whose contribution to the

fitting is judged (by a certain criterion) to be negligible.

The criterion used to judge the contribution of each basis function is the Generalized Cross Vali-

dation (GCV). This method is used instead of the more common Residual Sum of Squares (RSS)

because otherwise the most complex model would always be considered the best. In any case the

RSS is included in the GCV valuation, as follow:

GCV =
RSS

f(N)
(16)

Where f(N) is a function function which value is proportional to the number of basis functions,

and RSS is defined as follow:

RSS =

n∑
i=1

(yi − f(xi))
2 (17)

In order to avoid an excessively noisy fit, i.e. roughness in the response function, an auxiliary term

is added to the standard RSS. With this extra parameter the modified RSS function will look as

follows:

RSS∗ =

n∑
i=1

(yi − f(xi))
2 + λJ(f) (18)

Where J(f) is a function describing the roughness of the response function, and λ is a roughness

penalty parameter which value can vary between 0 and 1. The roughness penalty parameter is left

as a tuning degree of freedom to the user depending on the kind of fitting desired; in the following

work it has been set to 0.5. At the end of the backward phase the model having the lowest GCV

is selected as the final one.

ANOVA

The representation of the model given by equation 10 is useful in understanding the construction

logic of the algorithm but does not provide very much insight into the nature of the approximation.

The objective function can be rearranged into a form that reveals useful information about the

predicted relationship between the response y and the covariates x. This is done by collecting

together all basis functions that pertain to the same predictor variable, so that the model can be
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recast in the following form:

f̂(x1, x2, ..., xp) = a0 +
∑

Km=1

fi(xi) +
∑

Km=2

fij(xi, xj) +

+
∑

Km=3

fijk(xi, xj , xk) + ... (19)

In equation 19 the first sum includes all the basis functions that involve only a single variable.

The second sum does the same thing for the two variables interaction, and so on until the maximum

degree of interaction present in the model is represented. The ANOVA decomposition is then

performed by grouping each of the particular variables that enter into the model. Depending on

the degree of interaction present in the final model the output can be related to one or more

variables. For example the first sum in equation 19 can be expressed as:

fi(xi) =
∑

Km=1

amBm(xi) (20)

Equation 20 is a sum over a single variable basis functions involving only xi, similarly each

bivariate function in the second sum of equation 19 can be expressed as:

fij(xi, xj) =
∑

Km=2

amBm(xi, xj) (21)

Equation 21 is a sum over all two variable basis functions involving the particular pair of

variables xi and xj . Adding this to the corresponding univariate functions provides the joint

contribution of these variables to the model. Terms involving more variables can be collected

together and represented similarly.

Interpretation of the MARS model is greatly facilitate through this ANOVA decomposition.

This representation identifies the particular variables that enter into the model, whether they enter

purely additively or are involved in interactions. The ANOVA tables presented in this work address

the importance of the single variables, or of their interactions, composing the model by reporting

the value of the coefficient am appearing in equations like 20 21.

Case Study

To determine that the code developed here works properly a case study has been performed. The

purpose of this study is to test the ability of MARS algorithm, and in particular the specific code
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here produced, to uncover interaction effects that are present in data. The test example is taken

from [40]. They considered trying to model the function:

F (x) = 10 ∗ sin(pi ∗ x1 ∗ x2) + 20(x3 − 1/2)2 + 10 ∗ x4 + 5 ∗ x5 (22)

In the n=6 dimensional hypercube using N=200 points. The covariates were randomly gener-

ated from a uniform distribution and the responses were assigned using the given equation with the

addition of a standard error. In this section we consider the same function but with an increase in

dimensionality; n=10. Instead of one noise variable, there are now five such variables that are in-

dependent of f(x).The following table summarize the ANOVA decomposition obtained by modeling

the given equation with MARS.

Function STD GCV # of basis Variables

1 4.761 62.542 2 1

2 5.512 153.263 1 2

3 1.514 104.319 2 3

4 2.739 33.806 2 4

5 1.415 3.164 2 5

6 5.155 44.224 5 1 2

Table 4: ANOVA Decomposition

The first column lists the function number. The second gives the value of standard deviation

of the function. This gives one indication of its relative importance to the overall model and can

be interpreted in a manner similar to the regression coefficient in a linear model. The third column

gives another indication of the importance of the corresponding ANOVA function, by listing the

GCV score for a model with the entire basis functions corresponding to that particular ANOVA

function removed. This is used to judge if this function is making an important contribution to the

model. The fourth columns gives the number of basis functions comprising the ANOVA function

while the last column gives the particular predictor variables associated with the ANOVA function.
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From Table 4 we see that the first five functions involve only one variable, and just one involves

two variables. Judging from the second and third column of the ANOVA table all the indicated

variables are important, and there is no indication in the model to the last five variables (pure

noise). With respect to the originating function we see that MARS is able to uncover the presence

of an interaction between the x1 and x2 variables. It also rank the variables in terms of importance,

x4 has twice a stronger effect than x5. Figure 25 shows a graphical representation of the functions

that have a stronger impact. The three additive contributions are plotted in the first three frames,

while the joint contribution of x1 and x2 is plotted in the surface plot on the bottom. The graphical

representation is a key feature of the MARS analysis because together with the ANOVA analysis

allows to uncover the nature of the effect that each independent variable has on the analyzed output.

For example we can determine that x4 and x5 have a linear effect while x3 is parabolic.

Figure 25: Single variable plot and interaction surface

Comparing the results of the MARS fit to these data with the true underlying function, shows

that the resulting model provides a fairly accurate and interpretable description. This is especially

noteworthy given the high dimensionality (n=10) and the small sample size (N=100).
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Preliminary Results

A preliminary version of the code has been developed using data that was generated on the FACE

5 fuel, and the experimental study was focused on injection strategy. The following plots (Figures

26, 27, 28, 29, 30) are produced to demonstrate the capability of this method to generate flexible

functions that are capable to follow the trend of the experimental values even when the behavior

is far from monotone. This result is a direct consequence of the nature of the functions used for

approximation; unlike linear regression the objective function is composed of Heaviside functions

rather than polynomial functions. A source of flexibility for this model is the possibility to perform

tuning on the objective function. That is, a penalty parameter to avoid excessive roughness in the

objective functions, and the maximum number of basis functions used for regression are set before

performing the analysis.

Figure 26 shows the trend of NOx concentrations versus two injection characteristics at the time.

The plots are organized in such a way that those in the same row are characterized by the same

variables. The x and y axes represent two set of injection characteristics, with the third one used as

a parameter to which are assigned three equally spaced values. Both the regression surfaces and the

experimental points are displayed in order to visually evaluate the fitting capability of the MARS

model. In all the panels composing Figure 26 the regression surfaces fit the experimental values

except for the subplot (H), where the predicted value at 40 % fuel split and 40 Pilot SOI is not

consistent with the experimental correspondent. The local lack of fitting (LOF) is a consequence of

MARS being a compromise between a model based, and local methods. The model based algorithm

are more oriented in finding a regression function which globally reproduce the trend of the data,

consequently paying a price in terms of local fitting.
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Figure 26: NOx emission from FACE 5 fuel as a function of pilot and main SOI on the first row,

fuel split and main SOI on the second, fuel split and pilot SOI on the last row

Surface plots reveal how retarding the main SOI is beneficial in terms of NOx reduction, due to

the lower temperature reached in the combustion chamber. Varying the pilot injection we observe

a less significant (compared to Main SOI) but more complex effect on NOx emissions. The key

for analyzing this parameter is to look at the relative position of pilot and main injection. When

the two are close the burning pilot fuel quantity will overlap the main injection event, leading to

higher temperatures and consequently higher NOx emissions. A substantial separation between the

pilot and main injection event may quench the pilot quantity ignition. Minami et al. [13] explained

this phenomenon comparing the effect of pilot injection to an internal EGR, especially when the

quantity of fuel injected during the pilot event is higher than 10% of the total fuel. The burned gas

produced from the combustion of the pilot injection will dilute the concentration of oxygen inside

the combustion chamber for the main injection, acting basically like an EGR system. The fuel split

among pilot and main injection works as a scale effect for the considerations that have just been

made, this can be easily observed by looking at the different planes in Figure 26.
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Figure 27 shows the regression surface in regards to the PM emissions. The complex phenomena

that bring to PM production and oxidation during combustion make the correlation with the

injection strategy not as predictable as other emission characteristics, making the regression of this

emission characteristic is the most challenging for the model.

Figure 27: PM emission from FACE 5 fuel as a function of pilot and main SOI on the first row,

fuel split and main SOI on the second, fuel split and pilot SOI on the last row

The regression surfaces show the advantage in using pilot injection, which allows to retard the

main injection further than it would be possible with a single injection event. This is related to

the reduction in ignition delay consequent to a higher temperature in the combustion chamber

at the moment of the main injection. An important parameter in this sense is the time interval

between the pilot and main injection event. When this time interval is too long the products of

pilot injection mix sufficiently with the ambient gas in the cylinder, consequently no difference is

produced with respect to the single injection case. On the other hand, when this interval is shorter

a local high temperature zone is created near the fuel nozzle with a consequent shorter ignition

delay [13]. It is still important to maintain a sufficient separation between pilot and main injection

to ensure the main injection occurs after the injection delay of the pilot event.
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Looking at the plots in Figure 27, especially at those where pilot SOI is varied (first and last

row), it can be noticed that the highest values of soot concentration are produced when the pilot

injection is started at 30◦ BTDC. One way to interpret this result is by examining the mechanism

of soot formation by fuel rich regions of burning diesel jets. Having the pilot injection close to the

main injection event bring part of the fuel injected to be still unburned when the main injection

starts. The fuel-rich pockets which do not have time to mix and burn prior to exhaust valve opening

are among the main cause of soot generation. Another key parameter to consider, strongly related

to injection timing, is the temperature evolution during combustion. While high temperatures at

the end of the combustion enhance the oxidation of soot, having high temperatures at the time of

injection reduce air entrainment and increase soot formation.

The importance of the pilot injection in PM production is further underlined by considering the

fuel split; this is indeed a parameter that represents the intensity of the pilot injection. Looking at

the second and third rows in Figure 27 we notice that larger amount of fuel delivered during the

pilot injection brings to higher PM production. This can be related to an increase in temperature

and decrease of oxygen concentration before the main injection event starts. These conditions

usually lead to higher PM production. Generally an increase in temperature inside the combustion

chamber leads to a reduction in lift-off length, which is well known to increase soot emissions [48].

Figures 29 and 28 show the behavior of HC and CO represented in the same manner as for the

previous plots. These two characteristics show a similar trend with respect to injection timing

and in both cases low temperature combustion represents a penalty. The low cylinder temperature

is useful in reducing NOx and soot production, but, since it involves slow oxidation reactions

that cause misfiring and quenching, will result in higher HC and CO emissions compared with

conventional diesel combustion.
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Figure 28: CO emission from FACE 5 fuel as a function of pilot and main SOI on the first row,

fuel split and main SOI on the second, fuel split and pilot SOI on the last row

Figure 29: HC emission from FACE 5 fuel as a function of pilot and main SOI on the first row,

fuel split and main SOI on the second, fuel split and pilot SOI on the last row
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Figure 29 and 28 show the negative effect of advancing Pilot injection in terms of CO and HC

production. The early fuel injection causes the spray interaction with the cylinder liners or piston

walls; the result is wall quenching with resulting fuel problems and high concentrations of HC in

the exhaust. Furthermore low temperature combustion is a major cause for high CO emissions.

The low temperature of the exhaust is also to be considered as an issue for the after-treatment

of HC and CO. In general the factors that bring to higher production of CO and HC can be listed

as follows [5]:

• The long spray penetrations which characterize LTC operation bring fuel to accumulate on

the combustion chamber surfaces.

• Fuel lean zones inside the combustion chamber are more common in LTC operations rather

than in conventional diesel. Fuel in these areas is more prone to escape combustion leading

to the production of unburned HC.

• Since the local peak temperatures are lower than conventional diesel, the fuel near the wall

does not burn.

The plots in Figure 30 show the trend of Brake Thermal Efficiency (BTE) with respect to the

emission characteristics. The points analyzed in this study have a range of efficiency in the interval

29%− 31%, which makes the regression on this characteristic challenging to perform.

The pattern obtained using the regression surfaces regarding the BTE resemble the one obtained

for NOx. This is physically meaningful considering that both NOx production and thermal efficiency

increase with temperature, hence will reach higher value in correspondence of an injection strategy

that guarantees high temperature.

When analyzing the best trade off in terms of emissions and performance it must be considered

what is the threshold value to associate at each emission characteristics. Under this point of view

the most critical characteristics among those that have been presented is the soot concentration.

In this sense it is advantageous to inject a small quantity of fuel (30% of the total) at 40◦ BTDC

as depicted from Figure 26. Advancing the start of the pilot injection event is beneficial in terms

of PM but will produce an increase in HC and CO production for the reasons previously discussed.
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Figure 30: BTE from FACE 5 fuel as a function of pilot and main SOI on the first row, fuel split

and main SOI on the second, fuel split and pilot SOI on the last row

Those characteristics still fall in the acceptable range. Regarding the start of the main injection

event two choices are possible, both allowing for acceptable range of emission. It can be located at

4◦ BTDC or -2◦ BTDC, in the first case the engine shows better efficiency and lower PM emissions,

while the latter case is more performing in terms of NOx reduction.

Experiment Reduction

In this section the potential use of MARS algorithm for optimizing the number of test necessary

to characterize a given phenomenon is analyzed. The main idea is to use the regression capability

of MARS within the classical Taguchi methodology.

Taguchi Standard Taguchi method applied to engine testing contemplates the selection of the

levels of variation for the engine parameters. Three levels are the least number that can be used

in order to study nonlinear responses of the parameter effects. Then a so called orthogonal matrix

of tests is determined.

52



The orthogonal matrix testing makes use of an orthogonal array design to isolate the main effects

of a single parameter on the response function. Orthogonality is intended in a combinatoric sense:

for any pair of columns- in the array- all combinations of factors occur an equal number of times

[50]. It is based on the assumption of no interactions between parameters, which in other terms

implies that models used to fit the data collected do not include cross product terms between the

parameters. However, the validity of this assumption needs to be proved, and this was done by

comparing the model predictions with the measured points. The first step to estimate the factor

effect is to calculate the overall means, which in the case of NOx for a three level and three factors

is:

NOxexp = 1/9
9∑

i=1

NOxi (23)

The factor level response for each level is calculated using analysis of means (ANOM) as follows:

NOxMainSOI = 1/3
3∑

i=1

NOxi;NOxPilotSOI = 1/3
6∑

i=4

NOxi;NOxMainSOI = 1/3
3∑

i=1

NOxi (24)

Then the actual effect of the factor level is determined by its deviation from the overall mean, for

instance:

∆NOxMainSOI = NOxMainSOI −NOxexp (25)

The predictive model is derived for the data collected according to the orthogonal array design.

This model consists of the simple sum of the individual factor effects and does not include cross-

terms. The empirical model produced by this technique is compared to the results of a validation

test. The verification test is performed to confirm the reliability of the prediction model. If the

validation test confirms the model prediction then the set of engine tests selected is descriptive of

the engine behavior.

MARS The approach suggested in this work makes use of the MARS algorithm to produce the

predictive model. In this case the assumption of no interactions between the input parameters

can be eliminated. The flexibility of the regression algorithm allows for use of scattered data

for determining the prediction models. In selecting the test the entire range of variation of each

parameter should be used, and like for the Taguchi method, at least three levels for each parameter
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should be considered. The approach suggested in this section is displayed by using an example

based on the data presented in this work. The control parameters that we are considering are

the three injection parameters (Main SOI, Pilot SOI, and Fuel Split). A subset of data points is

considered, those are distributed according to a central composite design. This subset includes just

half of the total data available, distributed according to the prescriptions described above. Figure

31 shows the distribution of the tests in a three dimensional space where each of the axis represent

one of the input parameters, and the intensity of the output is described by the dimension and

color intensity of the spheres.

Figure 31: NOx data subset

Using this smaller data set an emulator model is generated using MARS to predict the NOx

emissions. At this point the equation obtained is interrogated in all the points corresponding to the

original dataset. The results are compared with the experimental values in the original complete
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dataset. Figure 32 shows the comparison result.

Figure 32: NOx comparison between MARS results and experimental values

The difference between the emulator model and the actual values can be quantified by the

residual sum of squares, which in this case is R2 = 0.93. The same procedure is applied to soot

concentration, CO, HC, and BTE. The results are summarized in table 5, while the rest of the

describing plots are collected in Appendix . Table 5 also presents the results obtained using the

classical Taguchi methodology.

Characteristic R2 MARS R2 Taguchi

NOx 0.93 0.86

PM 0.69 0.29

CO 0.92 0.67

HC 0.93 0.92

BTE 0.73 0.69

Table 5: Residual sum of squares for each characteristic predicted

The results in table 5 show a good prediction quality for NOx, CO, and HC. It is weaker for

PM, and BTE which are also the characteristics with lower regression quality. This analysis proves
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that with half of the tests a similar characterization of the phenomenon would have been possible.
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Results

To achieve LTC the most important requirement is to generate homogeneous mixture formation

prior to spontaneous ignition. This requires a longer ignition delay, which can be achieved or

by proper selection of injection strategies or fuel selection strategy. The boiling ranges of the

fuel and its volatility will strongly affect the outcome of a certain injection strategy, making the

fuel characteristics a key parameter in the combustion process. Also the use of a split injection

strategy is very important, because it will reduce the PRR and hence limit the soot production.

The split injection strategy has to be developed accordingly to the CN category of the fuel under

consideration.

The fuel injection parameters (namely main SOI timing and pilot SOI timing) comprising the

split injection test matrices were then applied according to CN category. In the shown data, 50

percent mass fraction burned (CA50) was not held constant and varied among all fuels tested. A

more advanced range of main SOI timing for the low CN fuels (30) (when compared to medium

(40) and high (50) CN fuels) was established to limit misfire at retarded main SOI timing resulting

from the longer ignition delay provided by these fuels. The shorter ignition delay exhibited by the

medium and higher CN fuels required that the range of main SOI timing be retarded (from that

of low CN fuels) . Pilot SOI timings were also adjusted for each CN category to limit heat release

before the main injection event; low CN fuels tolerated a more advanced range of pilot SOI timing,

while the range of pilot SOI timing for medium and high CN fuels had to be retarded.

The approach used in this study to investigate these correlations is the one described in the

Regression Analysis chapter. The performance parameters are then analyzed one at the time, in

order to show how the variables of interests combine. The physical meaning of each performance
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parameters can be very different from another, hence only a separate study can lead to an inter-

pretability of the results. In a second stage a strategy to combine all the underlined outputs will

be defined, in order to define an optimal set of variables for the multivariate optimization.

Independently from the parameters analyzed a preliminary manual screening of the training data

is necessary in order to not spoil the model with unrealistic data. The experimental points where

improper combustion was identified will not be used as training data. Only those tests where

reliable and consistent data are produced will be fed in the model. Both the independent and

dependent variables are adimensionalized based on the maximum and minimum value obtained in

the entire range. The adimensionalization has to be carried out in order to allow model generation,

and to simplify the optimization process.

The rest of this section will be organized as follows; one performance parameter at the time will

be analyzed. For each characteristic a report on the quality of the regression will be provided, both

in graphical and quantitative way, in order to evaluate how much we can relay on the regression

results. Then an ANOVA analysis will be performed over the regressed equations, in order scale the

input variables based on their effect on the specific characteristic under consideration, and to the

determine the key interactions between the given parameters. At this point a graphical evidence of

those interactions will be produced; the response surface will be used to understand the correlation

between the variables used to perform the study and the output under analysis.

After analyzing the single output one at the time, a global study will be performed. The objective

is to perform a multivariate optimization study in order to determine the combination of engine and

fuel parameters able to produce the best trade-off relatively to the parameters analyzed (namely

NOx, PM, CO, HC, BTE). Before combining all the engine output analyzed it is necessary to

determine which set of parameters should compose the computation domain. The input parameters

are screened in order to make sure the combustion produced falls within the scope of this work.

Hence all those combinations of fuel characteristics and injection timings that produce either misfire

or a combustion clearly not definable as low temperature. To perform this kind of analysis a

modification of the core of the MARS algorithm is needed. The regression in this case must

be operated over categorical variables instead of numerical, to represent the nature of the problem
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where the combustion is either acceptable or not. The methodology leading to this study is reported

in the optimization section.

NOx

Following the procedure described above the first characteristic to be analyzed is the NOx .Figure 33

compares the experimental points and the regression results obtained using the MARS algorithm.

The plot wants to show the accuracy of the model to fit the training data. It does not lead to any

physical interpretation, and the division in areas corresponding to different fuel characteristics is

only produced to motivate the strong discontinuities in the data.
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Figure 33: Comparison between experimental data and regression results

Once that it is established an acceptable level in the regression performance the equations

obtained (in appendix A the explicit form is reported) are studied. The analysis method is based

on ANOVA analysis, and the results are shown in table 6. The final equation is composed of 9

basis functions. These can be organized in the following table to underline the importance of the

single variable on the final outcome.
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Function STD GCV # of basis Variables

1 5.1 56.7 2 1

2 2.5 48.5 1 3

3 9.2 75.6 3 4

4 10.3 76.3 2 1 4

5 1.4 16.5 1 3 5

6 5.2 44.2 2 4 5

7 1.1 4.2 1 4 6

8 4.6 14.6 1 5 6

9 5.2 39.7 1 1 3 4

10 10.3 64.8 1 1 4 5

11 0.5 2.1 1 2 3 4

12 0.3 1.5 1 3 4 5

Table 6: ANOVA Decomposition NOx

The columns represent summary quantities for each one. The first column lists the function

number. The second gives the standard deviation of the function. This gives one indication of

its (relative) importance to the overall model and can be interpreted in a manner similar to a

standardized regression coefficient in a linear model. The third column gives the associated value

of GCV while the fourth column provides the number of basis functions comprising the ANOVA

function. The last column gives the particular predictor variables associated with the ANOVA

function (1: Main SOI, 2: Pilot SOI, 3: Fuel split, 4: Cetane number, 5: Aromatic content, 6:

Distillation temperature).

The ANOVA table shows that the interaction effects among the independent variables have a

stronger effect on the output than the same variables alone. These values are obtained analyzing

the regression equation using the methodology described in the ANOVA section of the regression

methods chapter. In particular entry 4, 5, and 8 indicate an important effect given by the joined

contribution of fuel characteristics and engine parameters. The following plots give a graphical

representation of the results presented in table 6.

60



Figure 34 represents the effect of Cetane number on NOx emissions, corresponding to entry 1 in

Table 6. The plot includes three curves corresponding to three different values of Main SOI, this is

done to account for the interaction effect between those variables depicted by the ANOVA analysis.
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Figure 34: Dependence of NOx production on Cetane Number

From Figure 34 we see how there is a general increase in NOx production with CN. In order to

understand the sharp change in slope of the regression plots in correspondence with high CN the

characteristics of the regression algorithm should be considered. As a global method MARS tries

to determine a general behavior of the objective function inside the domain. Where this global

trend does not fit the data an extra basis function is added in order to reduce the lack of fit. In

this case the extra basis function is activated at high CN to make up for the lack of fit that would

be produced by a monotone function.

When analyzing the plots from figure 34 it must be underlined that dependently on the Cetane

number a different injection strategy musty be selected, making the effect of these two characteristics

possibly confounded. Low CN fuels require a more advanced range of main SOI timing, in order to

limit the misfire resulting from a longer ignition delay. The shorter ignition delay exhibited by the

medium and higher CN fuels required that the range of main SOI timing be retarded. Accordingly
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to the main SOI also the pilot injection was adjusted, in order to avoid quenching phenomena

between the two events. With respect to these considerations the results shown in Figure 34 gain

even more importance. From what we have seen in FigureNOx , advancing injection does not have

beneficial effect on NOx reduction. Since lower CN fuels show lower NOx production despite of a

more advanced range of SOI timing, we can infer that low CN is beneficial for NOx production.This

can be physically motivated assuming that, at equal conditions, higher ignition delays lead to lower

combustion temperature, and consequently less NOx.
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Figure 35: Dependence of NOx production on Distillation Temperature

Figure 35 represents the NOx production as a function of distillation temperature. The plot

shows clearly an increase in NOx production proportional to T90. A possible explication for this

phenomenon is that higher distillation temperature involves a higher volatility of the fuels, which

hence will lead to higher temperature during the combustion.

The third single variable with the strongest influence on NOx emission is the main SOI which

has been broadly discussed in the chapter relative to the injection parameters .

In terms of interaction the ANOVA table suggests that the first two variables to variables

to analyze are CN and main SOI. Figure 36 shows the surface plot relative to the interaction
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between these two parameters in terms of NOx production. The regression surface obtained through

regression is compared with the experimental data represented by the scatter points. The blue

points are relative to the same set of parameters which characterize the plotted surface; the green

points instead are relative to a different set of parameters. These extra points have been added in

order to justify the trend of the regression surface.

Figure 36: Dependence of NOx production on CN and Main SOI

The graphical representation of the interaction between CN and Main SOI shows that the second

variable has a stronger impact on NOx emissions. Except for a peak corresponding to the most

advanced Main SOI timing with the lowest CN fuel the trend of NOx emissions is rather monotone,

showing a quadratic increase proportional to the distance from low CN and Main SOI. The surface

in Figure 36 represents the regression equation obtained through MARS, where the variables that

are not included in the plot assume a constant value. This value has been selected as the mean of

the independent variable over its range of variation, and then these parameters are varied one at the

time to check that they do not influence the morphology of the regression surface. In this case there

is no relevant change in the shape of the surface but there is a change in the NOx scale. For this

reason the surfaces corresponding to other set of parameters are not presented in this report, and
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the same presenting strategy is adopted for those circumstances were the parameterized variables

do not influence the shape of the surface.

Figure 37: Dependence of NOx production on T90 and Main SOI

Figure 37 shows the contribution of distillation temperature and main SOI to NOx emissions.

The blue scatter point represent the experimental data which share the same set of parameters used

to produce the surface, green and red points are instead data points which characteristics are similar

to the one in the equation but not equal. The surface obtained shows once again the dominant

effect of Main SOI; the effect of distillation temperature is a light increase in NOx production.

The next two level interactions all refer to injection strategy parameters, which results are re-

dundant with those shown in the preliminary results. The most important three level interactions

according to the ANOVA table 6 is the one correlating the two fuel characteristics CN, and T90

with the main SOI timing. Figure 38 shows a three dimensional plot of the NOx emissions, where

the three axis represent the independent variables, namely T90, Main SOI, and Cetane Number.

The intensity of NOx production is represented by the color scale, and in order to make it visible

inside the domain, it is sliced over five different planes judged to be representative of the overall

behavior.
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Figure 38: Dependence of NOx production on CN, T90, and Main SOI

The results presented in Figure 38 show that among the variable presented Main SOI is the

strongest, and can only slightly be tempered by fuel characteristics as Cetane Number and distil-

lation temperature. This plot also shows how an increase in Cetane Number leads to higher NOx

production. This statement is in contradiction with the conclusions drawn by recent studies [18].

The effect of CN on emissions has been misinterpreted as a consequence of the confounding effect

of Main SOI. As we explained before the use of higher CN fuels imply the necessity of using more

advanced injection timings. When the raw data are compared the effect of Main SOI can mask the

other factors influence. The second strongest interaction depicted by the ANOVA table is between

CN, main SOI and Pilot SOI. This three variable joint interaction is shown in Figure 39.
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Figure 39: Dependence of NOx production on CN, Main SOI, and Pilot SOI

The response displayed in Figure 39 is the same of Figure 38 except for the pilot SOI instead

of distillation temperature. The influence of pilot SOI on NOx production is similar to the one of

main SOI. The other interactions are either not very significant or already displayed in the section

relative to injection characteristics, the plots are reported in appendix .

Soot Concentration

In this section the results relative to PM analysis will be displayed. Following the same structure

of the previous section the first step is to analyze the quality of the regression. Figure 40 shows

the experimental results compared with the emulator model. The first thing to notice is the high

variability in the data, the analysis of the training data showed a standard deviation over 18%,
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which clearly represent a challenge for the regression algorithm. The R2 value obtained is 75%

which is still in the range of acceptability.
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Figure 40: Comparison between experimental data and regression results

Figure 40 shows how widely the soot emissions vary among the fuels tested, with FACE 8 and

FACE 6 being the ones producing by far more soot. The emulator model is then analyzed using

the ANOVA procedure; the results of such analysis are summarized in the following table 7.
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Function STD GCV # of basis Variables

1 8.4 87.3 2 1

2 7.5 78.5 2 4

3 5.6 57.6 2 5

4 1.3 20.9 1 3 4

5 6.2 44.5 2 1 2

6 5.2 76.5 1 2 5

7 1.1 18.2 1 4 5

8 0.6 14.6 1 4 6

9 5.2 39.7 1 1 2 4

10 1.3 4.4 1 1 4 5

11 0.5 2.1 1 1 4 6

Table 7: ANOVA Decomposition PM

The two single variables with the strongest impact on Soot emissions are Cetane number and

main SOI as expect. Figure 41 and figure 42 show the contribution of those variables to the total

PM emitted; in both cases three different trends have been produced.
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Figure 41: Dependence of soot production on Cetane number
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Figure 42: Dependence of soot production on main SOI

The soot emissions increase with Cetane number, as depicted from figure 41. A noticeable

69



interaction appears at high Cetane number with the Main SOI. Figure 42 shows the dependence

of soot production from main SOI, it shows that the lowest values of PM are achieved at the most

advanced injection timing. The combination low Cetane number and advanced injection produce

the minimal soot value. When analyzing join interaction between variables the one to show the

strongest effect is between CN and T90. Several studies confirmed the observation that T90 plays a

significant role in soot formation( [44] [45] [46]); its increase leads to higher soot emissions. Figure43

shows the interaction between T90 and Main SOI.

Figure 43: Dependence of soot production on distillation temperature and main SOI

The second strongest interaction is between Cetane number and aromatic content. Figure 44

shows that the effect of CN is very marked, and it also strongly affects the way other parameters

act on soot formation.
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Figure 44: Dependence of soot production on Cetane number and aromatic content

The following two figures (45 46) show the behavior with respect to pilot SOI and aromatic

content. A distinction has been made between results produced setting a high Cetane number (50)

and low Cetane number (30). This is done because, as it is noticeable from figures 45 46, the

interactions between those variables change significantly with different levels of CN. In both cases

an advanced pilot injection is beneficial, while in general higher aromatic content lead to higher PM

emissions. The influence of the aromatic content is stronger and less linear in the low CN number,

and becomes more important for retarded pilot injections.

71



Figure 45: Dependence of soot production on aromatic content and pilot SOI at low Cetane number

(CN=30)

Figure 46: Dependence of soot production on aromatic content and pilot SOI at high Cetane

number (CN=50)
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The figures shown in this section are the one where more significant aspects of PM production

are underlined, the rest of the plots are collected in the appendix .

Carbon Oxide

The quality of the fitting regarding the CO emissions is displayed in figure 47. The R2 value

obtained is of 71%, but as we can see from figure 47 the regression is optimal everywhere except

for FACE 5 and FACE 6 fuels. Those fuels are characterized by a combination of high Cetane

number and low aromatic content which generates a disagreement between the model results and

the experimental data. Another source of uncertainty is non repeatability of the experimental data

as depicted in section .
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Figure 47: Comparison between experimental data and regression results

Table 8 summarize the results of ANOVA analysis regarding the CO emulator model.
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Function STD GCV # of basis Variables

1 4.3 54.4 2 1

2 0.5 5.8 1 4

3 2.6 2.6 2 5

4 1.3 20.9 1 1 4

5 6.2 24.5 2 4 5

6 5.2 36.7 1 4 6

7 1.1 18.2 1 1 4 5

8 0.6 14.6 1 1 5 6

9 5.2 39.7 1 4 5 6

Table 8: ANOVA Decomposition CO

The fuel characteristic with the strongest impact on CO emissions appears to be CN. The

following plot (figure 48) shows the response in terms of CO to different levels of CN. Lower CN

lead to higher CO production, confirming the observations of other studies [3].
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Figure 48: Dependence of CO from Cetane number
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The other single variables to have an impact on CO emissions are all injection characteristics

which have already been covered in the section . The two variable with the most relevant interaction

are CN and main SOI, the surface plot is displayed in Figure 49

Figure 49: Dependence of CO on Cetane number and main SOI

The same interaction including also pilot injection is visualized in figure 50. It is interesting to

notice that pilot SOI has an impact which is stronger than main SOI.
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Figure 50: Dependence of CO from Cetane number, pilot SOI, and main SOI

Hydrocarbon

This section describes the modeling of hydrocarbons. The regression quality for this variable is

very accurate as depicted from figure 51, and also by a R2 value of 90%.
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Figure 51: Comparison between experimental data and regression results

Function STD GCV # of basis Variables

1 6.4 74.3 2 1

2 2.5 28.5 2 2

3 5.6 12.6 3 4

4 1.3 2.9 1 5

5 0.7 1.5 1 6

6 4.2 36.7 1 1 4

7 1.1 18.2 1 2 4

8 5.6 14.6 2 2 3 4

9 4.5 39.7 1 1 4 5

Table 9: ANOVA Decomposition HC

The first characteristic listed in table 9 is the Cetane number, which is displayed in figure 52 for

three different values. The plot shows a peak in HC at low CN numbers, which rapidly decreases.
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Figure 52: Dependence of HC on Cetane number

The curves in figure 52 are representative of three values of main SOI, and it shows the impact

of this factor on the response is nonlinear. According to the ANOVA analysis the second most

influential parameter is the aromatic content. From figure 53 we notice the negative impact of

high AC on HC. Considering that AC represent the specific amount of energy in the fuel and that

HC are leftover of unburned fuel, this behavior can be considered to be as an incapacity of the

combustion to utilize all the energy available in the fuel.
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Figure 53: Dependence of HC on aromatic content

The deduction of a nonlinear effect of the main SOI is confirmed by plotting the HC response

with respect to this factor (figure 54).
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Figure 54: Dependence of HC on main SOI
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It is now interesting to look at the join interaction between those two factors. Figure 55 shows

how higher CN leads to lower emissions of HC and also to a less significant impact of the main

SOI.

Figure 55: Dependence of HC on main SOI, and cetane number

From a three way prospective the most interesting results are obtained looking at the interaction

between main SOI, distillation temperature and aromatic content as depicted in figure 56.
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Figure 56: Dependence of HC on main SOI, distillation temperature, and aromatic content

Verification Study

The model built to analyze the full interaction between fuel characteristics and injection strategy has

been analyzed in comparison with the experimental data used to train the model itself. A rigorous

validation of the model would require the comparison with experimental points not included in

the training set. This kind of validation is aimed to judge the prediction capability of the model.

Since the model is generated through regression of the data, it is necessary to determine if the

behavior of the emission characteristics can be extrapolated or it is completely unrelated to the

data surrounding it.
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In this section the validation of the model is performed using an unconventional approach. Instead

of building the model using less than all the data available, and then using the remaining for

validation, here the model presented was trained using all the information available. A mockup

model is then generated just for validation purposes excluding some of the available data, and in

this section the prediction capability of this secondary model is investigated. The justification for

this approach is related to the pursuit of the most refined model to describe the LTC process, while

the exclusion of some of the data from the training process would have led to a lost in accuracy.

The mockup model was generated using all the data except for seven points that will be used

for validation. The validation subset is determined by randomly selecting seven points belonging

to the original dataset. The only constrain applied to the data selection is that each point should

pertain to a different fuel in order to guarantee the generality of the validation, and to make sure

that the regression is effective on each fuel. Table 10 lists the points selected for validation, and

their respective factor levels, in the rest of this section each of this points will be referred to using

the fuel name.

CN AC T90 Main SOI Pilot SOI Fuel Split Fuel name

29.93 26.1 269 8 50 40 FACE 1

32.02 50 270 6 50 40 FACE 3

28.44 40.7 337 4 45 35 FACE 4

54.2 22.2 279 -4 30 30 FACE 5

53.3 21.1 341 -4 30 40 FACE 6

50 43.5 342 0 30 30 FACE 8

44.95 37 321 2 235 40 ULSD

Table 10: Data points used for calibration

Figure 57 shows the comparison between the experimental points selected for the verification,

and the values obtained using the mockup model. The response in figure 57 is NOx, and the plot

clearly shows a good fitting between the predicted values and the experimental points.
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Figure 57: Comparison between NOx experimental values and predicted results

Figure 58 displays the prediction accuracy for the other four responses.
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Figure 58: Comparison between experimental values and predicted results for CO, HC, PM, and

BTE

Table 11 summarize the prediction performance with reference to the results displayed above.

For each characteristic the maximum difference between the predicted value and the experimental

value is displayed. Max err. % is the ratio between the error and the range of variation of the

response. R2 is conventionally defined as the ratio between the residual sum of squares and the

total sum of square. These two parameters are usually proportional one to the other. The last

column collects the values determined during the repeatability study.

Response Max err Max err. % R2 Repeatability %

NOx (ppm) 4.8 7.6 0.91 3

PM (mg/m3) 23.3 20.6 0.81 19

BTE (%) 0.69 11.9 0.91 1

CO (ppm) 666.3 19.2 0.83 8

HC (ppm) 225.12 6.1 0.98 3

Table 11: Prediction model errors
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Comparing the results of this verification study with the threshold values defined during the

repeatability study, we notice that there is a strong correlation between the quality of the model

and the repeatability of the data. The repeatability indicates a variation in the output which is

not controllable in the experimental apparatus used to collect the data. The regression model is

generated starting from these same data; hence its prediction capability could never overcome the

data quality.

Optimization

Once the emulator model is obtained by surface fit, it can be used to predict responses inside the

factor space. It should be noted that the regression model should not be used for extrapolation

outside the factor range. Most importantly, the model can be used to conduct optimization to

search for the optima located on the response surface. In the optimization, the stationary point

refers to the point of factor settings corresponding to zero partial derivatives of the response with

respect to all the factors.

Multi-Objective Optimization Engine optimization is a multi-objective problem (MOP), as

several objective functions are of interest. Hence a multi-objective solution always represents a

trade-off in the MOP. In this family of problem the notion of optimum is referred as the Pareto

optimum [47].

A visual interpretation of the Pareto optima can be given by considering just two variables, so

to be able to plot it on a plane. The data collected are plotted in Pareto chart (figure 59), the two

axes represent the quantity to minimize, i.e. NOx and Soot concentration. This representation of

the output is useful to have a rapid perception of the optima points, those will be the closest to

the origin.
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Figure 59: Distribution of the experimental points on a PM-NOx Pareto chart

Weighted sum method A traditional method for multi-objective optimization is the weighted

sum method, which seeks the Pareto optimal solution by combining several objective functions into

one. We can formulate a general MOP in the following form:


minY (x, β)

g(x, β) < 0

(26)

Where Y = [y1, ..., yz]
T is an objective function vector, x is the factors vector, β is the regression
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coefficients vector, and g is an inequality constraint vector. The weighted sum method consists in

reducing the objective function vector to a scalar of the form:

Ŷ =
z∑

i=1

λi/sifiyi (27)

Where s, fi, and λi are the scale factors and the of the i-th objective, respectively. Typically,

weights are chosen in such a way that their norm is one, and that none is negative.

The main drawback of this relatively simple method is that an even distribution of weights among

objective functions does not always result in an even distribution of solutions on the Pareto front.

This issue is particularly relevant in the problem studied in this work since the objective functions

are expressed in different unit. In order to overcome this problem the weights have been chosen

proportionally to the magnitude of the response for the given objective function, i.e.:

λi = (

z∑
j=1

max(yj)−max(yi))/(

z∑
j=1

max(yj)) (28)

With this weight selection the two objective functions assume equal importance in Ŷ .

The parameter s instead is chosen based on the results obtained from the compatibility study.

A categorical function is associated with every set of independent variables in order to account

for improper combustion. Its value is 1 in case of proper combustion and 0 when the combustion

process is not achievable. By inserting this value at the denominator of the cumulative objective

function it is guaranteed that the minimum will correspond to an allowable combustion process.

The weight factor fiis used to determine the relative importance of each emulator function in

the global model. For each output the factor fi is determined by evaluating the density of each

response above a certain threshold. For example the fi relative to the NOx response corresponds

to the percentage of experimental data above the value of 50 ppm, which is determined to be the

threshold for acceptable NOx emissions. This parameter is then used to express how critical is

each response to the overall optimization, because those characteristics with a larger distribution

of points above the allowable level will be considered more important.
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Once that we defined a scalar function that accounts for both objective the optimum can be

determined using standard multivariate analysis. The global optima is determined by the following

factors:

Cetane Number 30

Aromatic Content 26

Distillation temperature (◦C) 276

Main SOI (◦BTDC) 2

Pilot SOI ( ◦BTDC) 45

Fuel Split 30

Table 12: Set of parameters producing a global unconstrained optima in emission characteristics

The corresponding emission and performance responses are summarized in table 13. The %

difference from the target represent the ratio between the result and the range of values that the

given characteristic assume among the available data.

Characteristc MOP values % difference from target

NOx (ppm) 30.5 6.1

Soot Concentration (mg/m3) 1.2 0.7

CO (ppm) 4000 0.7

HC (ppm) 2650 62

BTE % 29.1 63.8

Table 13: Responses corresponding to the global unconstrained optima

The values obtained represent the optima when no constrain is applied to the minimization

method. This means that the characteristics which contribute the most to the global function have

a stronger impact, namely NOx and PM, while the other are out of the range of acceptability. When

describing low temperature combustion it is often accepted to produce high CO and HC, especially

considering that those characteristics are easily retrofitted with a diesel oxidation catalyst (DOC).

It is important to underline that the optimal point is refered to the load conditions reported in the
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experimental setup section.

Constrained Optimization In the attempt to obtain an optima which will represent a better

compromise among all the characteristics under examination a constrained optimization was per-

formed. This means that the candidate set of factors for optimization must produce responses that

lay within a range of acceptability. The threshold for the acceptability are reported in table 15.

The set of factors corresponding to this optimization process is displayed in table 14. The CN in

this case is much higher than the one obtained by unconstrained optimization, which according

to the results displayed in this study leads to leaner HC and CO emissions. To compensate the

increase in NOx and PM related to the selection of this fuel chemistry the Main SOI is retarded

considerably.

Cetane Number 54

Aromatic Content 22

Distillation temperature (◦C) 270

Main SOI (◦BTDC) -4

Pilot SOI ( ◦BTDC) 40

Fuel Split 30

Table 14: Set of parameters producing a global constrained optima in emission characteristics

Characteristc Threshold MOP values % difference from target

NOx (ppm) 50 26.6 0.5

Soot Concentration (mg/m3) 10 4.1 3.5

CO (ppm) 3000 2410 48.6

HC (ppm) 1000 735 10.1

BTE % 29 29.5 67.2

Table 15: Responses corresponding to the global constrained optima

Table 15 shows the results of applying constrained optimization. Except for PM production all
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the other characteristics lay closer to the target value. The soot formation is still largely below the

threshold, making the result of constrained optimization a better candidate for this scope.
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Further studies based on MARS

The code described in this work has been developed with the specific objective to help the emission

analyst in studying a given problem in the field of engines and emissions. In this chapter two

studies where MARS has been successfully applied are reported.

The first one consists in the development of a simulation tool for engine testing, aimed to un-

cover engine map behavior dependently on the operation regime. This scenario is not drastically

different from the one addressed in this work, merely from a regression point of view. The output

corresponding to a set of tests is analyzed and based on the outcome some deduction can be made.

The second study instead does not relate to engine lab, instead it is aimed to the description

of plume emitted from heavy duty diesel truck. Data are collected in a wind tunnel specifically

designed to conduct experiments on plume evolution in the atmosphere. Several points behind a

mockup heavy-duty truck were sampled in a three dimensional domain. MARS is used to produce

a map of particulate matter plume starting from experimental points. Once the discrete data set

is converted into continuous functions a better visualization and analysis of the plume evolution is

possible. The main focus of the analysis is on the influence that dilution ratio and cooling velocity

have on the particle size and distribution.

Diesel Engine Modeling Development for ICCT Heavy-Duty Ve-

hicle Simulation Tool

This study is aimed to the characterization of the fuel consumption in a MY 2005 Mercedes depend-

ing on operation parameters. Dynamometer testing was performed over four test cycles; namely
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Federal Test Procedure (FTP) test cycle, European Stationary Cycle (ESC), and two space filling

designs matrix. The space filling design matrixes were generated using respectively Latin Hy-

percube and Gaussian process. Figure 60 shows the tested points under the lug curve. Engine

was instrumented for coolant temp, oil temp, oil pressure, EGR circuit temperature, coolant flow,

in-cylinder pressure, turbo enthalpy drop. Figure 61 shows the laboratory setup.

Figure 60: Distribution of the experimental points on a load-speed chart

Figure 61: MY 2005 Mercedes engine
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Using the data relative only to the FTP cycle an emulator equation was obtained using the

MARS code. The equation was then interrogated over the points tested over all of the four test

cycles. Figure 62 shows the comparison between the model results and the ESC data. The emulator

equation fits 100% of the data, both those used to generate the model and the validation data.

Figure 62: Comparison between MARS results and ESC data

Figure 63 shows the behavior of fuel consumption with respect to engine load and speed. The

blue scattered points represent the experimental data. The quality of the fitting suggests that

MARS could be used to generate engine maps, by substituting lookup table with the emulator

function.
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Figure 63: Fuel consumption surface plot

The next step of this study will be to compare the MARS results obtained using stationary test

points with transient results. The aim is to have a reverse engineering tool able to extrapolate the

engine map used by the data. This phase of the project is still in progress.

Analyze Dispersing Plume from Heavy Duty Diesel Trucks

The objective of this work is to investigate evolution of particle number distributions in the tailpipe

plume of a vehicle using experimental data collected at WVU‘s wind tunnel (WT) facility coupled

with the regression analysis method. Diesel PM remains in a state of continuous transformation

(unstable) for some time after it is emitted into the atmosphere. The fate of these condensable

organics/inorganics is significantly affected by the dilution and atmospheric aging of the exhaust
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stream. A number of processes occur during atmospheric aging that can alter the size distribution

of an aerosol, including homogeneous nucleation, binary homogeneous nucleation and coagulation.

Experimental Setup The WVU wind tunnel is a full-scale, open-circuit, suction tunnel. The

open-circuit configuration is the key feature that guarantees fresh ambient background air flow

over the vehicle and therefore, approximately constant dilution air composition and conditions for

the entire test duration. It is capable to accommodate a full scale class 8 heavy-duty diesel truck,

matching as closely as possible real world conditions. The test section is 16ft (5m) high, 16ft (5m)

wide and 115ft (35m) long.

The instrumentation required to characterize the exhaust plume could not be placed within the

flow field without strongly influencing it. However a single sampling probe could extract a localized

fraction of the plume and redirect the sample to the instruments. In order to minimize the length

of the transfer line connecting sampling probe and instrumentation and hence, the particulate

matter losses, a novel solution has been adopted by implementing a cart carrying the entire suite

of instruments and moving longitudinally within the ceiling of the tunnel.

In order to supply a continuous stream of exhaust for the exhaust plume interrogation within

the tunnel, a vehicle is installed on a heavy-duty chassis-dynamometer, located outside the wind

tunnel, and operated at a pre-defined vehicle speed. Inside the WVU wind tunnel a mock up cabin

is used to generate the truck aerodynamics. Figure 64 shows the layout of the experimental setup.
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Figure 64: Lay out of the wind tunnel experimental setup

The WVU wind tunnel is capable to capture the first seconds of plume formation and evolution,

from a single vehicle with parameterized input, thus give the capability of discern the weight on real

world emission of different aftertreatment technologies. To achieve a detailed plume investigation

130 sampling points divided into 10 planes were used to capture PM characteristics. Each plane

presents the same sampling pattern, with different vertical dimension and position, to better focus-

ing on the plume shape and dimension evolution. The pattern is composed of 2 nested hexagons,

rotated by 90, and an additional center point (see Figure 65).
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Figure 65: Sampling pattern

The experimental data were analyzed using a modified version of the MARS code presented in

this work. The input variables in this case were the three Cartesian coordinates representing a

point inside the wind tunnel. Several outputs were modeled, ranging from temperature to particle

size distribution. A total of 48 different outputs were considered, 32 of them being the channels of

the EEPS. Figure 66 shows the R2 value of each variable.
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Figure 66: Residual sum of square for each samling channel

Figure 67 shows a comparison between two contour plots representing NOx values at 5 cm from

the exhaust stack. The one on the left was obtained using MARS, the one on the right is obtained

from the original data.

Figure 67: Comparison between MARS and experimental values
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The goal of this analysis is to produce curves representing isovalues of nucleation PM inside this

tunnel. The same typology of curves will be produced for those characteristics that are suspected

to influence PM nucleation, such as temperature or turbulence intensity. In the opinion of the

author this way to display the problem will help in determining the physical phenomena leading to

nucleation.
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Conclusions

The study presented in this work consisted in an analysis tool to support engine testing. Based

on the study of regression modeling techniques presented in the regression analysis chapter, the

MARS algorithm was reputed a viable basis for emission analysis. The features that led to the

selection of MARS as the base algorithm can be listed as:

• Accuracy: When dealing with non-linearity in the training data, MARS is more accurate

than polynomial regression. A comparison between these two methodologies is presented in

the experiment reduction section.

• Transparency: The contribution of each input factor, and the interaction between them can

be evaluated. The ANOVA tables are a synthetic way to display it.

• Robustness: The MARS model has been tested over different problem types and sampling

sizes, proving a fair accuracy.

• Efficiency: The MARS algorithm does not require high computation effort to generate a

model.

The main drawbacks of MARS compared to other regression algorithms are the conceptual

complexity, and the constrain in the sample size. Compared to other regression strategies MARS

require more time to be implemented, a version of the code produced is presented in Appendix C.

The user of this analysis tool will not have to change the algorithm but just to recall the functions

in Appendix C in a Matlab environment. The sample used to train the model must include at least

30 data points in order for MARS to operate correctly.

The analysis tool was developed and tested on data collected during the project AVFL-16 [3].

These experimental data describe the response of an engine to changes in the injection strategy and
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fuel properties. To investigate the effect of fuel properties on advanced combustion a systematic

multivariate analysis based on the MARS algorithm was carried on. The varying fuel characteristics

were CN, aromatic content, and T90 coupled with a split injection control strategy on a GM

Z19DTH light-duty compression-ignition engine.

A single engine operating condition consisting of a fixed engine speed of 2100 rpm and 3.5

bar BMEP was utilized. The split injection control strategy involved varying the start of the pilot

injection, start of the main injection, and fuel split. A repeatability study was performed to develop

a standard by which emissions and performance changes among the fuels could be attributed to fuel

property differences and not to the variability associated with the equipment or control strategy.

The analysis performed lead to the following conclusions regarding low temperature combustion:

• A quadratic correlation exists between NOx and main SOI. As expected, NOX decreased as

the main SOI was retarded.

• Increasing the Cetane number per se leads to higher NOx emissions, despite the effect can be

masked as a consequence of Main SOI.

• An increase in CN also leads to higher soot concentrations in the exhaust.

• Higher values of CN are beneficial in reducing CO and HC.

• Regarding CO emissions, CN has a stronger impact than injection strategies.

• Aromatic content and distillation temperature lead to less soot emissions. Their effect is less

noticeable compared to CN and injection strategies.

• AC has a strong impact on hydrocarbons production.

• Efficiency is increased by advancing the injection timing, and higher CN.

Using the equation obtained through the regression analysis a simple optimization procedure was

performed. Based on this study the fuel characteristics that best suit low temperature combustion

are; very low CN, low aromatic content, and low distillation temperature. This combination of

characteristics is such to inhibit the combustion to happen too fast, giving the mixture enough

time to homogenize completely.
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Regarding the methodology itself we can draw the following conclusions. Since the MARS model

is not a physical model it strongly relies on the data used to educate it. The regression equations

quality depends strongly on the accuracy of the data used to generate them. Overall, the technique

applied to develop the illustrative conceptual model was useful in screening the data, in determining

the optimal solution, and the minimum number of tests necessary to characterize the phenomenon.

The use of MARS to generate regression equations can lead to much wider use of RSM in the

field of engine testing, both for analysis purposes and procedure development. Below are some

recommendations for additional testing and further analysis of the existing data.

• It would be beneficial to include engine modifications in a further study. Certain fuels lend

themselves to different engine conditions. Engine conditions and hardware of special interest

include intake temperature, intake pressure, intake oxygen, and compression ratio, EGR flow,

and EGR temperature.

• Investigation of additional engine operating conditions would assist in better understanding

the effects of fuel properties on engine emissions and performance while operating in advanced

combustion regimes.
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APPENDIX A

NOx = 0.27472∗heaviside(0.9650−1.0∗x1)∗ (x1−0.9650)−0.7595∗heaviside(x3−0.9333)∗

(x3−0.9333)−2.1436∗heaviside(x1−0.9650)∗(x1−0.9650)+2.5809∗heaviside(0.42857−1.0∗x4)∗

(x4−0.4285)−2.4005∗heaviside(0.85714−1.0∗x4)∗(x4−0.8571)+2.9457∗heaviside(x4−0.4285)∗

(x4−0.4285)+0.78919∗heaviside(x5−0.5)∗heaviside(0.85714−1.0∗x4)∗(x4−0.8571)∗(x5−0.5)+

0.1814∗heaviside(x5−0.25)∗heaviside(x6−0.5)∗(x5−0.25)∗(x6−0.5)−11.9976∗heaviside(x3−

0.9333)∗heaviside(x4−0.4285)∗ (x3−0.9333)∗ (x4−0.4285)−0.24074∗heaviside(0.42857−1.0∗

x4) ∗ heaviside(0.98667− 1.0 ∗ x3) ∗ (x3− 0.98667) ∗ (x4− 0.4285)− 0.1974 ∗ heaviside(1.0− 1.0 ∗

x6) ∗ heaviside(0.85714− 1.0 ∗ x4) ∗ (x4− 0.8571) ∗ (x6− 1.0)− 23.5635 ∗ heaviside(x4− 0.8571) ∗

heaviside(0.057842− 1.0 ∗ x1) ∗ (x1− 0.0578) ∗ (x4− 0.8571)− 1.0005 ∗ heaviside(0.75− 1.0 ∗ x5) ∗

heaviside(x4−0.4285)∗(x4−0.4285)∗(x5−0.75)+4.2008∗heaviside(0.75−1.0∗x5)∗heaviside(x4−

0.8571) ∗ (x4− 0.8571) ∗ (x5− 0.75)− 8.0998 ∗heaviside(x4− 0.8571) ∗heaviside(x5− 0.75) ∗ (x4−

0.85713)∗(x5−0.75)−0.2378∗heaviside(0.5−1.0∗x5)∗heaviside(1.0−1.0∗x6)∗heaviside(0.85714−

1.0∗x4)∗(x4−0.8571)∗(x5−0.5)∗(x6−1.0)−2.548∗heaviside(x2−0.8685)∗heaviside(x4−0.4285)∗

heaviside(0.93333−1.0∗x3)∗ (x3−0.9333)∗ (x2−0.8685)∗ (x4−0.4285)−3.8785∗heaviside(x4−

0.8571)∗heaviside(0.93333−1.0∗x3)∗heaviside(x5−0.75)∗ (x3−0.93332)∗ (x4−0.8571)∗ (x5−

0.75) + 0.87591 ∗ heaviside(x5 − 0.5) ∗ heaviside(1.0 − 1.0 ∗ x6) ∗ heaviside(0.85714 − 1.0 ∗ x4) ∗

(x4− 0.8571) ∗ (x5− 0.5) ∗ (x6− 1.0)− 13.0159 ∗ heaviside(x6− 0.5) ∗ heaviside(0.25− 1.0 ∗ x5) ∗

heaviside(x4−0.4285)∗(x4−0.4285)∗(x5−0.25)∗(x6−0.5)−175.6666∗heaviside(x1−0.96505)∗

heaviside(x3− 0.9333) ∗ heaviside(x4− 0.4285) ∗ (x1− 0.96505) ∗ (x3− 0.9333) ∗ (x4− 0.4285)−

154.7285∗heaviside(0.5−1.0∗x5)∗heaviside(x1−0.05784)∗heaviside(x4−0.8571)∗(x1−0.05784)∗

(x4−0.8571)∗ (x5−0.5) + 6.9722∗heaviside(x6−0.5)∗heaviside(0.25−1.0∗x5)∗heaviside(x4−
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0.4285) ∗ heaviside(x2− 0.0380) ∗ (x4− 0.42856) ∗ (x2− 0.03806) ∗ (x5− 0.25) ∗ (x6− 0.5)− 0.6137

(29)

PM = 0.2306 ∗ heaviside(0.96506− 1.0 ∗ x1) ∗ (x1− 0.9650)− 8.563 ∗ heaviside(x1− 0.9650) ∗

(x1−0.9650)−0.2494∗heaviside(0.28571−1.0∗x4)∗ (x4−0.2857)−0.4434∗heaviside(0.25−1.0∗

x5) ∗ (x5− 0.25)− 0.1739 ∗ heaviside(x4− 0.2857) ∗ (x4− 0.2857)− 0.1560 ∗ heaviside(x5− 0.25) ∗

(x5−0.25)+4.5442∗heaviside(x3−0.9333)∗heaviside(x4−0.2857)∗(x3−0.9333)∗(x4−0.2857)−

0.5418∗heaviside(0.77509−1.0∗x2)∗heaviside(x1−0.6156)∗(x2−0.7750)∗(x1−0.6156)+9.4347∗

heaviside(x2−0.7750)∗heaviside(x1−0.6156)∗(x2−0.7750)∗(x1−0.6156)+6.2743∗heaviside(x5−

0.25) ∗ heaviside(0.14286− 1.0 ∗ x4) ∗ (x4− 0.1428) ∗ (x5− 0.25)− 16.3151 ∗ heaviside(x5− 0.5) ∗

heaviside(0.28571−1.0∗x4)∗(x4−0.2857)∗(x5−0.5)+0.20789∗heaviside(x5−0.25)∗heaviside(x4−

0.1428) ∗ (x4 − 0.1428) ∗ (x5 − 0.25) + 4.4402 ∗ heaviside(0.25 − 1.0 ∗ x5) ∗ heaviside(0.038062 −

1.0 ∗ x2) ∗ (x2− 0.038) ∗ (x5− 0.25) + 2.3423 ∗ heaviside(0.5− 1.0 ∗ x5) ∗ heaviside(0.28571− 1.0 ∗

x4) ∗ (x4− 0.2857) ∗ (x5− 0.5)− 0.4680 ∗ heaviside(0.5− 1.0 ∗ x6) ∗ heaviside(0.28571− 1.0 ∗ x4) ∗

(x4 − 0.2857) ∗ (x6 − 0.5) + 66.319 ∗ heaviside(0.25 − 1.0 ∗ x5) ∗ heaviside(0.57143 − 1.0 ∗ x4) ∗

heaviside(0.12−1.0∗x3)∗(x3−0.1199)∗(x4−0.5714)∗(x5−0.25)−22.6751∗heaviside(0.25−1.0∗

x5)∗heaviside(0.5−1.0∗x6)∗heaviside(0.038062−1.0∗x2)∗(x2−0.0380)∗(x5−0.25)∗(x6−0.5)−

19.8129 ∗ heaviside(0.75− 1.0 ∗ x5) ∗ heaviside(0.42857− 1.0 ∗ x4) ∗ heaviside(x1− 0.6156) ∗ (x4−

0.4285)∗(x5−0.75)∗(x1−0.6156)+117.61∗heaviside(0.038062−1.0∗x2)∗heaviside(x4−0.4285)∗

heaviside(x1− 0.6156) ∗ (x4− 0.4285) ∗ (x1− 0.6156) ∗ (x2− 0.0380)− 197.8254 ∗ heaviside(x5−

0.5) ∗ heaviside(0.28571− 1.0 ∗ x4) ∗ heaviside(0.61568− 1.0 ∗ x1) ∗ (x1− 0.6156) ∗ (x4− 0.2857) ∗

(x5−0.5) + 605.14∗heaviside(0.42857−1.0∗x4)∗heaviside(x5−0.75)∗heaviside(x1−0.61567)∗

(x4−0.4285)∗(x5−0.75)∗(x1−0.6156)−9.8699∗heaviside(x4−0.4285)∗heaviside(x1−0.6156)∗

heaviside(x2−0.0380)∗ (x4−0.4285)∗ (x1−0.6156)∗ (x2−0.0380)−2.7928∗heaviside(x6−0.5)∗

heaviside(x4−0.4285)∗heaviside(x1−0.6156)∗(x4−0.4285)∗(x1−0.6156)∗(x6−0.5)+0.95225∗

heaviside(x5− 0.25) ∗ heaviside(x6− 0.5) ∗ heaviside(x1− 0.0578) ∗ (x1− 0.0578) ∗ (x5− 0.25) ∗

(x6−0.5) + 8.3351∗heaviside(x5−0.5)∗heaviside(x6−0.5)∗heaviside(0.28571−1.0∗x4)∗ (x4−
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0.2857) ∗ (x5− 0.5) ∗ (x6− 0.5) + 1.5384 ∗heaviside(0.25− 1.0 ∗x5) ∗heaviside(0.57143− 1.0 ∗x4) ∗

heaviside(x3−0.1199)∗ (x3−0.1199)∗ (x4−0.5714)∗ (x5−0.25)−29.0101∗heaviside(0.72−1.0∗

x3)∗heaviside(0.75−1.0∗x5)∗heaviside(0.42857−1.0∗x4)∗heaviside(x1−0.61567)∗(x4−0.4285)∗

(x5− 0.75) ∗ (x3− 0.7199) ∗ (x1− 0.6156) + 65.23 ∗heaviside(0.75− 1.0 ∗x5) ∗heaviside(0.42857−

1.0 ∗ x4) ∗ heaviside(x3 − 0.7199) ∗ heaviside(x1 − 0.6156) ∗ (x4 − 0.42856) ∗ (x5 − 0.75) ∗ (x3 −

0.7199) ∗ (x1 − 0.6156) + 188.45 ∗ heaviside(x4 − 0.4285) ∗ heaviside(x5 − 0.75) ∗ heaviside(x1 −

0.61567)∗heaviside(x2−0.0380)∗(x4−0.4285)∗(x5−0.75)∗(x1−0.6156)∗(x2−0.0380)+0.31094

(30)

CO = 0.5714∗heaviside(0.75−1.0∗x5)∗ (x5−0.75)−0.46230∗heaviside(0.96506−1.0∗x1)∗

(x1−0.9650)−0.2902∗heaviside(0.57143−1.0∗x4)∗(x4−0.5714)−4.4475∗heaviside(x1−0.9650)∗

(x1 − 0.9650) − 0.3894 ∗ heaviside(x5 − 0.75) ∗ (x5 − 0.75) − 0.1014 ∗ heaviside(x6 − 0.5) ∗ (x6 −

0.5)−0.0528∗heaviside(0.96506−1.0∗x1)∗heaviside(x3−0.0399)∗ (x1−0.9650)∗ (x3−0.0399)−

2.0822 ∗x1 ∗heaviside(x5− 0.75) ∗heaviside(x1) ∗ (x5− 0.75)− 1.8265 ∗heaviside(0.5− 1.0 ∗x5) ∗

heaviside(x4−0.5714)∗(x4−0.5714)∗(x5−0.5)+1.0074∗heaviside(0.5−1.0∗x6)∗heaviside(x4−

0.5714)∗ (x4−0.5714)∗ (x6−0.5)+0.78575∗heaviside(x6−0.5)∗heaviside(0.25−1.0∗x5)∗ (x5−

0.25) ∗ (x6− 0.5)− 0.5787 ∗heaviside(x6− 0.5) ∗heaviside(0.5− 1.0 ∗x5) ∗ (x5− 0.5) ∗ (x6− 0.5) +

2.0172∗heaviside(x6−0.5)∗heaviside(x5−0.75)∗ (x5−0.75)∗ (x6−0.5)+1.2819∗heaviside(x5−

0.5)∗heaviside(x4−0.5714)∗(x4−0.5714)∗(x5−0.5)−0.9081∗heaviside(x6−0.5)∗heaviside(x4−

0.5714) ∗ (x4− 0.5714) ∗ (x6− 0.5)− 2.5193 ∗heaviside(x5− 0.5) ∗heaviside(x6− 0.5) ∗ (x5− 0.5) ∗

(x6 − 0.5) − 1994.7080 ∗ heaviside(0.038062 − 1.0 ∗ x2) ∗ heaviside(x1 − 0.9650) ∗ (x1 − 0.9650) ∗

(x2−0.0380)+0.28194∗heaviside(0.57143−1.0∗x4)∗heaviside(x3−0.1199)∗(x3−0.1199)∗(x4−

0.5714) + 1.6451 ∗ heaviside(0.04− 1.0 ∗ x3) ∗ heaviside(0.96506− 1.0 ∗ x1) ∗ (x1− 0.9650) ∗ (x3−

0.0399)+0.5423∗heaviside(0.85714−1.0∗x4)∗heaviside(0.96506−1.0∗x1)∗ (x1−0.9650)∗ (x4−

0.8571)− 1.7001 ∗ heaviside(0.57143− 1.0 ∗ x4) ∗ heaviside(0.12− 1.0 ∗ x3) ∗ (x3− 0.1199) ∗ (x4−

0.5714)−0.4711∗heaviside(0.5−1.0∗x6)∗heaviside(0.64092−1.0∗x1)∗(x1−0.6409)∗(x6−0.5)+

5.5008∗heaviside(0.75−1.0∗x5)∗heaviside(0.026667−1.0∗x3)∗(x3−0.0266)∗(x5−0.75)+0.89697∗
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heaviside(x4 − 0.8571) ∗ heaviside(0.96506 − 1.0 ∗ x1) ∗ (x1 − 0.9650) ∗ (x4 − 0.8571) − 2.25205 ∗

heaviside(0.75−1.0∗x5)∗heaviside(x4−0.8571)∗(x4−0.8571)∗(x5−0.75)−0.0680∗heaviside(0.75−

1.0∗x5)∗heaviside(x3−0.0266)∗(x3−0.0266)∗(x5−0.75)−3.8196∗heaviside(0.85714−1.0∗x4)∗

heaviside(x5−0.75)∗ (x4−0.8571)∗ (x5−0.75)−3.8293∗heaviside(x4−0.8571)∗heaviside(x5−

0.75) ∗ (x4 − 0.8571) ∗ (x5 − 0.75) − 31.9873 ∗ heaviside(x1 − 0.9650) ∗ heaviside(x2 − 0.0380) ∗

(x1− 0.9650) ∗ (x2− 0.0380)− 1.5163 ∗ heaviside(0.61568− 1.0 ∗ x1) ∗ heaviside(0.75− 1.0 ∗ x5) ∗

heaviside(0.85714−1.0∗x4)∗(x4−0.85713)∗(x5−0.75)∗(x1−0.6156)−54.16799∗heaviside(0.04−

1.0∗x3)∗heaviside(x4−0.8571)∗heaviside(0.96506−1.0∗x1)∗(x1−0.96505)∗(x4−0.8571)∗(x3−

0.0399) + 10.595 ∗ heaviside(0.5− 1.0 ∗ x6) ∗ heaviside(0.75− 1.0 ∗ x5) ∗ heaviside(x4− 0.85713) ∗

(x4−0.8571)∗ (x5−0.75)∗ (x6−0.5)−8.1382∗heaviside(0.5−1.0∗x6)∗heaviside(0.85714−1.0∗

x4) ∗ heaviside(x5− 0.75) ∗ (x4− 0.85713) ∗ (x5− 0.75) ∗ (x6− 0.5)− 8.0255 ∗ heaviside(0.5− 1.0 ∗

x6)∗heaviside(x4−0.85713)∗heaviside(x5−0.75)∗(x4−0.8571)∗(x5−0.75)∗(x6−0.5)−0.1639∗

heaviside(0.85714−1.0∗x4)∗heaviside(0.96506−1.0∗x1)∗heaviside(x2−0.1730)∗(x1−0.9650)∗

(x4 − 0.8571) ∗ (x2 − 0.1730) + 0.92503 ∗ heaviside(x4 − 0.8571) ∗ heaviside(0.96506 − 1.0 ∗ x1) ∗

heaviside(x3−0.0399)∗(x1−0.9650)∗(x4−0.8571)∗(x3−0.0399)−11.2077∗heaviside(x5−0.25)∗

heaviside(0.5− 1.0 ∗x6) ∗heaviside(x1− 0.9650) ∗ (x1− 0.9650) ∗ (x5− 0.25) ∗ (x6− 0.5) + 1.0864 ∗

heaviside(x5−0.25)∗heaviside(0.5−1.0∗x6)∗heaviside(0.96506−1.0∗x1)∗(x1−0.9650)∗(x5−0.25)∗

(x6−0.5)+1.3151∗heaviside(x5−0.25)∗heaviside(x6−0.5)∗heaviside(0.42857−1.0∗x4)∗ (x4−

0.4285)∗(x5−0.25)∗(x6−0.5)−5.9924∗heaviside(x5−0.5)∗heaviside(x6−0.5)∗heaviside(0.71429−

1.0∗x4)∗ (x4−0.7142)∗ (x5−0.5)∗ (x6−0.5) + 3.735∗heaviside(x5−0.25)∗heaviside(x6−0.5)∗

heaviside(x4 − 0.4285) ∗ (x4 − 0.4285) ∗ (x5 − 0.25) ∗ (x6 − 0.5) − 4.3952 ∗ heaviside(x6 − 0.5) ∗

heaviside(x5− 0.75) ∗ heaviside(x4− 0.5714) ∗ (x5− 0.75) ∗ (x4− 0.5714) ∗ (x6− 0.5) + 0.2122

(31)

HC = 0.0693 ∗ heaviside(0.8685− 1.0 ∗ x2) ∗ (x2− 0.8685)− 5.3652 ∗ heaviside(0.13898− 1.0 ∗

x1)∗(x1−0.1389)+5.9501∗heaviside(0.57143−1.0∗x4)∗(x4−0.5714)−0.5384∗heaviside(0.25−

1.0∗x5)∗(x5−0.25)+7.4159∗heaviside(0.75−1.0∗x5)∗(x5−0.75)+0.08863∗heaviside(0.5−1.0∗
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x6) ∗ (x6− 0.5) + 1.2671 ∗heaviside(x2− 0.8685) ∗ (x2− 0.8685)− 1.0368 ∗heaviside(x4− 0.8571) ∗

(x4− 0.8571)− 0.6098 ∗heaviside(x5− 0.75) ∗ (x5− 0.75) + 5.6406 ∗heaviside(x4− 0.5714) ∗ (x4−

0.5714) + 0.075051 ∗ heaviside(x1 − 0.138) ∗ (x1 − 0.1389) − 27.1994 ∗ heaviside(0.5 − 1.0 ∗ x5) ∗

heaviside(x4−0.5714)∗(x4−0.5714)∗(x5−0.5)−0.0822∗heaviside(0.5−1.0∗x6)∗heaviside(x1−

0.1389) ∗ (x1− 0.1389) ∗ (x6− 0.5)− 0.5774 ∗ heaviside(x5− 0.25) ∗ heaviside(0.13898− 1.0 ∗ x1) ∗

(x1− 0.13898) ∗ (x5− 0.25)− 0.3734 ∗ heaviside(x5− 0.25) ∗ heaviside(0.85714− 1.0 ∗ x4) ∗ (x4−

0.8571)∗(x5−0.25)−19.8611∗heaviside(x5−0.5)∗heaviside(0.5714−1.0∗x4)∗(x4−0.5714)∗(x5−

0.5) + 24.629∗heaviside(x5−0.75)∗heaviside(x4−0.5714)∗ (x5−0.75)∗ (x4−0.5714)−21.6816∗

heaviside(x5− 0.5) ∗heaviside(x4− 0.5714) ∗ (x4− 0.5714) ∗ (x5− 0.5) + 0.37334 ∗heaviside(x6−

0.5)∗heaviside(x4−0.5714)∗(x4−0.5714)∗(x6−0.5)−0.2914∗heaviside(x5−0.25)∗heaviside(x1−

0.1389) ∗ (x1− 0.1389) ∗ (x5− 0.25) + 1.13 ∗ heaviside(0.75− 1.0 ∗ x5) ∗ heaviside(x3− 0.9333) ∗

(x3− 0.9333) ∗ (x5− 0.75) + 0.1953 ∗ heaviside(0.8571− 1.0 ∗ x4) ∗ heaviside(0.8685− 1.0 ∗ x2) ∗

(x2− 0.8685) ∗ (x4− 0.8571)− 1.2463 ∗ heaviside(0.5− 1.0 ∗ x6) ∗ heaviside(0.13898− 1.0 ∗ x1) ∗

(x1− 0.1389) ∗ (x6− 0.5)− 0.0869 ∗heaviside(0.75− 1.0 ∗ x5) ∗heaviside(0.9333− 1.0 ∗ x3) ∗ (x3−

0.9333) ∗ (x5 − 0.75) − 24.7899 ∗ heaviside(0.5 − 1.0 ∗ x5) ∗ heaviside(0.57143 − 1.0 ∗ x4) ∗ (x4 −

0.5714) ∗ (x5 − 0.5) + 24.499 ∗ heaviside(0.75 − 1.0 ∗ x5) ∗ heaviside(0.85714 − 1.0 ∗ x4) ∗ (x4 −

0.8571) ∗ (x5− 0.75) + 5.8 ∗ heaviside(0.13898− 1.0 ∗ x1) ∗ heaviside(x4− 0.4285) ∗ (x4− 0.4285) ∗

(x1− 0.1389) + 17.358 ∗ heaviside(0.75− 1.0 ∗ x5) ∗ heaviside(x4− 0.8571) ∗ (x4− 0.8571) ∗ (x5−

0.75) + 112.32 ∗heaviside(0.85714− 1.0 ∗x4) ∗heaviside(0.86851− 1.0 ∗x2) ∗heaviside(0.057842−

1.0∗x1)∗ (x1−0.0578)∗ (x2−0.8685)∗ (x4−0.8571)−0.9164∗heaviside(x5−0.5)∗heaviside(x6−

0.5)∗heaviside(x4−0.5714)∗ (x4−0.5714)∗ (x5−0.5)∗ (x6−0.5)+ 0.2957∗heaviside(x5−0.25)∗

heaviside(x6 − 0.5) ∗ heaviside(x1 − 0.1389) ∗ (x1 − 0.1389) ∗ (x5 − 0.25) ∗ (x6 − 0.5) + 2.3854 ∗

heaviside(x5− 0.25) ∗heaviside(0.5− 1.0 ∗x6) ∗heaviside(0.1389− 1.0 ∗x1) ∗ (x1− 0.1389) ∗ (x5−

0.25)∗(x6−0.5)+0.3531∗heaviside(x5−0.25)∗heaviside(0.8571−1.0∗x4)∗heaviside(0.933−1.0∗

x3)∗(x3−0.933)∗(x4−0.8571)∗(x5−0.25)−1.3942∗heaviside(x5−0.5)∗heaviside(0.5714−1.0∗

x4) ∗heaviside(0.72− 1.0 ∗x3) ∗ (x3− 0.7199) ∗ (x4− 0.5714) ∗ (x5− 0.5) + 0.8340 ∗heaviside(x5−

0.25) ∗ heaviside(0.2857− 1.0 ∗ x4) ∗ heaviside(x1− 0.1389) ∗ (x4− 0.2857) ∗ (x1− 0.1389) ∗ (x5−

0.25) + 0.1671 ∗ heaviside(x5 − 0.25) ∗ heaviside(0.5 − 1.0 ∗ x6) ∗ heaviside(x1 − 0.1389) ∗ (x1 −

0.1389) ∗ (x5− 0.25) ∗ (x6− 0.5)− 0.2448 ∗ heaviside(x1− 0.0578) ∗ heaviside(0.8571− 1.0 ∗ x4) ∗

heaviside(0.8685−1.0∗x2)∗ (x1−0.0578)∗ (x2−0.8685)∗ (x4−0.8571) + 1440.3∗heaviside(0.5−
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1.0 ∗ x5) ∗ heaviside(0.8571 − 1.0 ∗ x4) ∗ heaviside(0.8685 − 1.0 ∗ x2) ∗ heaviside(0.0578 − 1.0 ∗

x1) ∗ (x1− 0.0578) ∗ (x2− 0.8685) ∗ (x4− 0.8571) ∗ (x5− 0.5) + 60.853 ∗ heaviside(0.5− 1.0 ∗ x6) ∗

heaviside(0.85714−1.0∗x4)∗heaviside(0.8685−1.0∗x2)∗heaviside(0.0578−1.0∗x1)∗(x1−0.0578)∗

(x2−0.8685)∗ (x4−0.8571)∗ (x6−0.5)−190.0494∗heaviside(x5−0.5)∗heaviside(0.85714−1.0∗

x4)∗heaviside(0.8685−1.0∗x2)∗heaviside(0.0578−1.0∗x1)∗ (x1−0.0578)∗ (x2−0.8685)∗ (x4−

0.8571)∗ (x5−0.5)+28.671∗heaviside(x6−0.5)∗heaviside(0.8571−1.0∗x4)∗heaviside(0.8685−

1.0∗x2)∗heaviside(0.0578−1.0∗x1)∗(x1−0.0578)∗(x2−0.8685)∗(x4−0.8571)∗(x6−0.5)+0.2426

(32)

BTE = 0.20364 ∗heaviside(x1− 0.0578) ∗ (x1− 0.0578) + 6.282 ∗heaviside(0.0578− 1.0 ∗x1) ∗

(x1−0.0578)+0.0708∗heaviside(0.7750−1.0∗x2)∗(x2−0.7750)+1.0573∗heaviside(0.4285−1.0∗

x4) ∗ (x4− 0.4285)− 0.5192 ∗heaviside(0.75− 1.0 ∗x5) ∗ (x5− 0.75)− 0.1017 ∗heaviside(0.5− 1.0 ∗

x6)∗ (x6−0.5)−1.309∗heaviside(x2−0.7750)∗ (x2−0.7750)−0.3092∗heaviside(x6−0.5)∗ (x6−

0.5)−0.4131∗heaviside(x6−0.5)∗heaviside(0.8369−1.0∗x1)∗ (x1−0.8369)∗ (x6−0.5)−0.8066∗

heaviside(x6−0.5)∗heaviside(0.5−1.0∗x5)∗(x5−0.5)∗(x6−0.5)−0.4730∗heaviside(x5−0.25)∗

heaviside(x4−0.4285)∗(x4−0.4285)∗(x5−0.25)+0.8492∗heaviside(x3−0.1199)∗heaviside(x4−

0.4285)∗(x3−0.1199)∗(x4−0.4285)+0.57063∗heaviside(0.7750−1.0∗x2)∗heaviside(0.4285−1.0∗

x4)∗ (x4−0.4285)∗ (x2−0.7750)−0.5143∗heaviside(0.25−1.0∗x5)∗heaviside(0.7750−1.0∗x2)∗

(x2−0.7750)∗(x5−0.25)−5.3919∗heaviside(x4−0.4285)∗heaviside(0.12−1.0∗x3)∗(x3−0.1199)∗

(x4−0.4285)+4.8437∗heaviside(0.25−1.0∗x5)∗heaviside(x4−0.4285)∗(x4−0.4285)∗(x5−0.25)−

5.4912∗heaviside(0.42857−1.0∗x4)∗heaviside(x2−0.7750)∗(x4−0.4285)∗(x2−0.7750)−16.1963∗

heaviside(0.4285−1.0∗x4)∗heaviside(x5−0.75)∗(x4−0.4285)∗(x5−0.75)+11.712∗heaviside(x6−

0.5)∗heaviside(0.5−1.0∗x5)∗heaviside(x4−0.5714)∗(x4−0.5714)∗(x5−0.5)∗(x6−0.5)+0.3896

(33)
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APPENDIX B

NOx

Figure 68: Dependence of NOx from main SOI, and pilot SOI
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Figure 69: Dependence of NOx from main SOI, and fuel split
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Soot Concentration

Figure 70: Dependence of PM from cetane number, aromatic content, and main SOI
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Figure 71: Dependence of PM from cetane number, fuel split, and main SOI
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CO

Figure 72: Dependence of CO from pilot SOI, and main SOI
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Figure 73: Dependence of CO from fuel split, and main SOI
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Figure 74: Dependence of CO from distillation temperature, pilot SOI, and main SOI
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Figure 75: Dependence of CO from aromatic content, distillation temperature, and main SOI
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HC

Figure 76: Dependence of HC from aromatic content, and main SOI
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Figure 77: Dependence of HC from cetane number, pilot SOI, and main SOI
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APPENDIX C

1 clc

2 close a l l

3 clear a l l

4

5

6 load FuelComp1 . csv %Studio C a r a t t e r i s t i c h e c o m b u s t i b i l e e parametri

d i i g n i e z i o n e

7 x1=FuelComp1 ( : , 1 ) ; %Cetane Number

8 x2=FuelComp1 ( : , 2 ) ; %Aromatic Content

9 x3=FuelComp1 ( : , 3 ) ; %T90

10 x4=FuelComp1 ( : , 4 ) ; %Main SOI

11 x5=FuelComp1 ( : , 5 ) ; %P i l o t SOI

12 x6=FuelComp1 ( : , 6 ) ; %Fuel S p l i t

13 y1=FuelComp1 ( : , 7 ) ; %NOx

14 y2=FuelComp1 ( : , 8 ) ; %Soot Concentrat ion

15 y3=FuelComp1 ( : , 9 ) ; % BTE (%)

16 y4=FuelComp1 ( : , 1 0 ) ; %CO (ppm)

17 y5=FuelComp1 ( : , 1 1 ) ; %HC (ppm)

18

19 %Store the uncoded v a r i a b l e

20 Xp = [ x1 x2 x3 x4 x5 x6 ] ;

21 Yp=y5 ; % ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
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22

23 %Coded V a r i a b l e s

24 coded=s t r u c t ( ’ x1 l ’ ,{min( x1 ) } , ’ x1h ’ ,{max( x1 ) } , ’ x2 l ’ ,{min( x2 ) } , ’ x2h ’ ,{max

( x2 ) } , ’ x3 l ’ ,{min( x3 ) } , ’ x3h ’ ,{max( x3 ) } , . . .

25 ’ x4 l ’ ,{min( x4 ) } , ’ x4h ’ ,{max( x4 ) } , ’ x5 l ’ ,{min( x5 ) } , ’ x5h ’ ,{max( x5 ) } , ’

x6 l ’ ,{min( x6 ) } , ’ x6h ’ ,{max( x6 ) } , . . .

26 ’ y1 l ’ ,{min( y1 ) } , ’ y1h ’ ,{max( y1 ) } , ’ y2 l ’ ,{min( y2 ) } , ’ y2h ’ ,{max( y2 ) } , ’

y3 l ’ ,{min( y3 ) } , ’ y3h ’ ,max( y3 ) , ’ y4 l ’ ,{min( y4 ) } , . . .

27 ’ y4h ’ ,{max( y4 ) } , ’ y5 l ’ ,{min( y5 ) } , ’ y5h ’ ,{max( y5 ) }) ;

28

29 x1=(x1−coded . x1 l ) . / ( coded . x1h−coded . x1 l ) ;

30 x2=(x2−coded . x2 l ) . / ( coded . x2h−coded . x2 l ) ;

31 x3=(x3−coded . x3 l ) . / ( coded . x3h−coded . x3 l ) ;

32 x4=(x4−coded . x4 l ) . / ( coded . x4h−coded . x4 l ) ;

33 x5=(x5−coded . x5 l ) . / ( coded . x5h−coded . x5 l ) ;

34 x6=(x6−coded . x6 l ) . / ( coded . x6h−coded . x6 l ) ;

35 %Coded Output

36

37 y1=(y1−coded . y1 l ) . / ( coded . y1h−coded . y1 l ) ;

38 y2=(y2−coded . y2 l ) . / ( coded . y2h−coded . y2 l ) ;

39 y3=(y3−coded . y3 l ) . / ( coded . y3h−coded . y3 l ) ;

40 y4=(y4−coded . y4 l ) . / ( coded . y4h−coded . y4 l ) ;

41 y5=(y5−coded . y5 l ) . / ( coded . y5h−coded . y5 l ) ;

42

43

44 X = [ x1 x2 x3 x4 x5 x6 ] ;

45 Y=y5 ;

46

47 %Use MARS model

48
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49 %Set the parameters

50 params = params (56 , [ ] , [ ] , 0 , [ ] , 4) ;

51

52 %Bui ld the model

53 model = bu i ld (X, Y, params )

54

55

56 % %Evaluate the e q u a t i o n s

57 % X=a l l u n g a (X) ;

58

59 yp=PROVAequationBis (X, model ) ;

60

61 %UNCODE THE VARIABLES

62 X( : , 1 )=X( : , 1 ) . ∗ ( coded . x1h−coded . x1 l )+coded . x1 l ;

63 X( : , 2 )=X( : , 2 ) . ∗ ( coded . x2h−coded . x2 l )+coded . x2 l ;

64 X( : , 3 )=X( : , 3 ) . ∗ ( coded . x3h−coded . x3 l )+coded . x3 l ;

65 X( : , 4 )=X( : , 4 ) . ∗ ( coded . x4h−coded . x4 l )+coded . x4 l ;

66 X( : , 5 )=X( : , 5 ) . ∗ ( coded . x5h−coded . x5 l )+coded . x5 l ;

67 X( : , 6 )=X( : , 6 ) . ∗ ( coded . x6h−coded . x6 l )+coded . x6 l ;

68

69 yp ( : )=yp ( : ) . ∗ ( coded . y5h−coded . y5 l )+coded . y5 l ; %THE UNCODING PARAMETERS

HAVE TO CORRESPOND TO THE VARIABLE OF INTEREST

70

71 % %Plot pair−wise c o n t r i b u t i o n o f v a r i a b l e s

72 % Graphics (X, yp , Xp, Yp)

73

74 save ( ’FuelComp1HC ’ )

75

76 anova ( model ,X,Yp)

77
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78

79 %CHeck

80 plot (Yp, ’ DisplayName ’ , ’Yp ’ , ’ YDataSource ’ , ’Yp ’ ) ; f igure ( gcf )

81 hold on

82 plot (yp , ’ r ’ , ’ DisplayName ’ , ’ yp ’ , ’ YDataSource ’ , ’ yp ’ ) ; f igure ( gcf )

83

84

85

86 function yp=PROVAequationBis (X, model )

87 % Create the equat ion us ing the c o e f f i c i e n t s and the knot determined by

the

88 % MARS a lg or i t hm

89 %

90 yp=zeros ( length (X) , length ( model . c o e f s ) ) ;

91 yp ( : , 1 )=model . c o e f s (1 ) ;

92 i =1;

93 papa =[0; model . parents ( : ) ] ;

94

95 for i =1: length ( model . c o e f s )−1 % I c o e f f i c i e n t i sono uno in piu

r i s p e t t o a l l e BF

96

97 %S c r i v e l a u l t ima BF, che non e ‘ mai imparentata

98 x = X( : , model . knotdims{ i }( length ( model . knotdims{ i }) ) ) ;

99 BF( : , i )= max(0 , ( x − model . k n o t s i t e s { i }( length ( model . k n o t s i t e s { i }) )

) ∗model . kno td i r s { i }( length ( model . kno td i r s { i }) ) ) ;

100

101

102 %Stdudia l e p a r e n t e l e

103

104 f i f i ( i )=length ( model . k n o t s i t e s { i }) ;
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105 p i p i ( i )=length ( model . k n o t s i t e s { i }) ’ ;

106

107 i f f i f i ( i )>1

108

109

110 i f model . parents ( i )>0

111 x = X( : , model . knotdims{ i }( length ( model . knotdims{ i }) ) ) ;

112 BF( : , i )=BF( : , papa ( i +1) ) .∗max(0 , ( x − model . k n o t s i t e s { i }( f i f i ( i )

) ) ∗model . kno td i r s { i }( f i f i ( i ) ) ) ;

113 %Se due BF sono i m p a r e n t a t a t i i l BF parente s i prende t a l e e

q u a l e senza cambiare neanche l a d i r e z i o n e

114 p i p i ( i )= p i p i ( i )− f i f i ( papa ( i +1) ) ;

115 %papa ( i +1)=0;

116 end

117

118

119 i f p i p i ( i )>1

120

121

122 i f papa ( model . parents ( i ) +1)==0 %Studia i l caso in cu i non

c ‘ e ‘ p a r a n t e l a ma c i sono piu v a r i a b i l i

123 for j =1: p i p i ( i )−1; %Ci possono e s s e r e piu v a r i a b i l i

dentro l a BF( i )

124

125 x2 = X( : , model . knotdims{ i }( j ) ) ;

126 BF( : , i )=BF( : , i ) .∗max( 0 , ( x2 − model . k n o t s i t e s { i }( j ) ) ∗

model . kno td i r s { i }( j ) ) ;

127 %BF( : , i )= max (0 , ( x − model . k n o t s i t e s { i }( f i f i ( i ) ) )∗

model . k n o t d i r s { i }( f i f i ( i ) ) ) .∗max (0 , ( x2 − model .

k n o t s i t e s { i }(1) )∗model . k n o t d i r s { i }(1) ) ;
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128 end

129 end

130 end

131 end

132

133 yp ( : , i +1)=yp ( : , i )+ model . c o e f s ( i +1) .∗BF( : , i ) ;

134 end

135 yp=yp ( : , length ( model . knotdims ) +1) ;

136

137 return

138

139

140

141 function trainParams = params ( maxFuncs , c , cubic , cubicFastLeve l , . . .

142 s e l f I n t e r a c t i o n s , maxInteract ions , thresho ld , prune , useMinSpan , . . .

143 useEndSpan , maxFinalFuncs )

144

145 i f ( nargin < 1) | | ( isempty ( maxFuncs ) )

146 trainParams . maxFuncs = 21 ;

147 else

148 trainParams . maxFuncs = maxFuncs ;

149 end

150

151 i f ( nargin < 2) | | ( isempty ( c ) )

152 trainParams . c = 3 ;

153 else

154 trainParams . c = c ;

155 end

156

157 i f ( nargin < 3) | | ( isempty ( cub ic ) )

124



158 trainParams . cubic = true ;

159 else

160 trainParams . cubic = cubic ;

161 end

162

163 i f ( nargin < 4) | | ( isempty ( cub icFastLeve l ) )

164 trainParams . cub icFastLeve l = 2 ;

165 else

166 trainParams . cub icFastLeve l = cub icFastLeve l ;

167 end

168

169 i f ( nargin < 5) | | ( isempty ( s e l f I n t e r a c t i o n s ) )

170 trainParams . s e l f I n t e r a c t i o n s = 1 ;

171 else

172 trainParams . s e l f I n t e r a c t i o n s = s e l f I n t e r a c t i o n s ;

173 end

174 i f ( trainParams . cubic ) && ( trainParams . s e l f I n t e r a c t i o n s > 1)

175 trainParams . s e l f I n t e r a c t i o n s = 1 ;

176 end

177

178 i f ( nargin < 6) | | ( isempty ( maxInteract ions ) )

179 trainParams . maxInteract ions = 1 ; % a p p l i c a b l e maximum i s d ∗

trainParams . s e l f I n t e r a c t i o n s

180 else

181 trainParams . maxInteract ions = maxInteract ions ;

182 end

183

184 i f ( nargin < 7) | | ( isempty ( th r e sho ld ) )

185 trainParams . th r e sho ld = 1e−4;

186 else
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187 trainParams . th r e sho ld = thre sho ld ;

188 end

189

190 i f ( nargin < 8) | | ( isempty ( prune ) )

191 trainParams . prune = true ;

192 else

193 trainParams . prune = prune ;

194 end

195

196 i f ( nargin < 9) | | ( isempty ( useMinSpan ) )

197 trainParams . useMinSpan = −1; % d e f a u l t = −1 = automatic

198 else

199 i f useMinSpan == 0

200 trainParams . useMinSpan = 1 ; % 1 and 0 i s the same here ( no

endspan )

201 else

202 trainParams . useMinSpan = useMinSpan ;

203 end

204 end

205

206 i f ( nargin < 10) | | ( isempty ( useEndSpan ) )

207 trainParams . useEndSpan = −1; % d e f a u l t = −1 = automatic

208 else

209 i f useEndSpan == 0

210 trainParams . useEndSpan = 1 ; % 1 and 0 i s the same here ( no

endspan )

211 else

212 trainParams . useEndSpan = useEndSpan ;

213 end

214 end
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215

216 i f ( nargin < 11) | | ( isempty ( maxFinalFuncs ) )

217 trainParams . maxFinalFuncs = Inf ;

218 else

219 trainParams . maxFinalFuncs = maxFinalFuncs ;

220 end

221

222 return

223

224

225 function [ model , time ] = bu i ld ( Xtr , Ytr , trainParams , weights )

226

227

228 i f trainParams . maxInteract ions >= 2

229 t ra inParams ac tua l c = trainParams . c ;

230 else

231 t ra inParams ac tua l c = 2∗ trainParams . c /3 ; % p e n a l t y c o e f f i c i e n t f o r

a d d i t i v e mode l l ing

232 end

233

234

235 i f trainParams . useMinSpan == 0

236 trainParams . useMinSpan = 1 ; % 1 and 0 i s the same here ( no endspan )

237 end

238 i f trainParams . useEndSpan == 0

239 trainParams . useEndSpan = 1 ; % 1 and 0 i s the same here ( no endspan )

240 end

241 i f ( nargin < 4)

242 weights = [ ] ;

243 else
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244

245 end

246 wd = diag ( weights ) ;

247 i f nargin < 5

248 modelOld = [ ] ;

249 end

250

251

252 fpr intf ( ’ Bui ld ing model . . . \ n ’ ) ;

253 ws = warning ( ’ o f f ’ ) ;

254 t ic ;

255

256 maxIters = f loor ( trainParams . maxFuncs / 2) ; % because b a s i s f u n c t i o n s

are added two at a time

257 YtrMean = mean( Ytr ) ;

258 YtrSS = sum( ( Ytr − YtrMean) . ˆ 2) ;

259 minX = min( Xtr ) ;

260 maxX = max( Xtr ) ;

261

262 i f trainParams . useEndSpan < 0

263 endSpan = getEndSpan (d) ;

264 else

265 endSpan = trainParams . useEndSpan ;

266 end

267

268 i f isempty ( modelOld )

269 X = ones (n , 1 ) ;

270 e r r = 1 ; % e r r o r e norma l i z za to a l l i v e l l o c o s t a n t e

271 model . c o e f s = YtrMean ;

272 model . knotdims = {} ;
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273 model . k n o t s i t e s = {} ;

274 model . kno td i r s = {} ;

275 model . parents = [ ] ;

276 model . trainParams = [ ] ;

277 model .MSE = Inf ;

278 model .GCV = Inf ;

279 else

280 model = modelOld ; % Usa modelOld come model lo i n i z i a l e

281 end

282

283 i f endSpan∗2 >= n

284 i f isempty ( modelOld )

285 model .MSE = YtrSS / n ;

286 model .GCV = gcv ( model , model .MSE, n , t ra inParams ac tua l c ) ;

287 i f trainParams . cubic

288 model . t1 = [ ] ;

289 model . t2 = [ ] ;

290 end

291 end

292 else

293

294 % FORWARD PHASE

295

296 i f isempty ( modelOld ) % no forward phase when modelOld i s used

297

298 fpr intf ( ’ Forward phase . ’ ) ;

299

300 % crea una l i s t a ord ina ta d i e l eme nt i

301 [ o rd ina t iXt r o rd inat iXt r Ind ] = sort ( Xtr ) ;

302 i f trainParams . useEndSpan ˜= 1
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303 % el imina i d a t i i n i z i a l i e f i n a l i

304 o rd ina t iXt r = ord ina t iXt r ( endSpan : end−(endSpan−1) , : ) ;

305 ord inat iXt r Ind = ord inat iXt r Ind ( endSpan : end−(endSpan−1) , : ) ;

306 end

307

308 i f trainParams . cubic

309 tmp t1 = [ ] ;

310 tmp t2 = [ ] ;

311 end

312 bas i sFunc t i onL i s t = [ ] ; % b a s i s f u n c t i o n s candida te

313 BasisAggiunte = 0 ; % b a s i s f u n c t i o n s a g g i u n t e a l l u l t ima

i t e r a z i o n e

314

315 % the main loop o f the forward phase

316 for depth = 1 : maxIters

317 bas i sFunc t i onL i s t = c r e a t e L i s t ( bas i sFunct i onL i s t , Xtr ,

o rd inat iXtr , ord inat iXtr Ind , . . .

318 n , d , model , BasisAggiunte ,

trainParams , endSpan ) ;

319

320 % ferma l a forward phase se non c i sono c a n d i d a t i

321 i f isempty ( ba s i sFunc t i onL i s t )

322 i f trainParams . cubic

323 t1 = tmp t1 ;

324 t2 = tmp t2 ;

325 end

326 break ;

327 end

328

329 tmpErr = i n f (1 , s ize ( bas i sFunct i onL i s t , 2 ) ) ;
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330 tmpCoefs = i n f ( length ( model . c o e f s ) +2, s ize (

bas i sFunct i onL i s t , 2 ) ) ;

331 Xtmp = zeros (n , s ize (X, 2 ) +2) ;

332 i f ˜ trainParams . cub ic

333 Xtmp ( : , 1 : end−2) = X;

334 end

335

336 % prova t u t t e l e a c c o p p i a t e d i b a s i s f u n c t i o n s

337 for i = 1 : s ize ( bas i sFunct i onL i s t , 2 )

338 i f trainParams . cubic

339 [ t1 t2 d i f ] = KnotsEstremi ( model , ba s i sFunc t i onL i s t

{1 , i } , ba s i sFunc t i onL i s t {2 , i } , . . .

340 d , minX , maxX, tmp t1 , tmp t2 ) ;

341 Xtmp ( : , 1 : end−2) = X;

342 % update b a s i s f u n c t i o n s wi th the updated s i d e

knots

343 for j = 1 : length ( model . knotdims )

344 i f d i f ( j )

345 Xtmp ( : , j +1) = c r e a t e b a s i s f u n c t i o n ( Xtr , Xtmp

, model . knotdims{ j } , model . k n o t s i t e s { j } ,

. . .

346 model . kno td i r s { j } , model .

parents ( j ) , minX , maxX, t1

( j , : ) , t2 ( j , : ) ) ;

347 end

348 end

349 % New b a s i s f u n c t i o n

350 d i r s = bas i sFunc t i onL i s t {3 , i } ;

351 Xtmp ( : , end−1) = c r e a t e b a s i s f u n c t i o n ( Xtr , Xtmp,

ba s i sFunc t i onL i s t {1 , i } , ba s i sFunc t i onL i s t {2 , i } ,
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. . .

352 d i r s , ba s i sFunc t i onL i s t {4 , i } , minX ,

maxX, t1 (end , : ) , t2 (end , : ) ) ;

353 i f isnan (Xtmp(1 ,end−1) ) , Xtmp ( : , end−1) = [ ] ; end

354 % R e f l e c t e d par tner

355 d i r s (end) = −d i r s (end) ;

356 Xtmp ( : , end) = c r e a t e b a s i s f u n c t i o n ( Xtr , Xtmp,

ba s i sFunc t i onL i s t {1 , i } , ba s i sFunc t i onL i s t {2 , i } ,

. . .

357 d i r s , ba s i sFunc t i onL i s t {4 , i } , minX ,

maxX, t1 (end , : ) , t2 (end , : ) ) ;

358 i f isnan (Xtmp(1 ,end) ) , Xtmp ( : , end) = [ ] ; end

359 else

360 % New b a s i s f u n c t i o n

361 d i r s = bas i sFunc t i onL i s t {3 , i } ;

362 Xtmp ( : , end−1) = c r e a t e b a s i s f u n c t i o n ( Xtr , Xtmp,

ba s i sFunc t i onL i s t {1 , i } , . . .

363 bas i sFunc t i onL i s t {2 , i } , d i r s ,

ba s i sFunc t i onL i s t {4 , i } , minX ,

maxX) ;

364 i f isnan (Xtmp(1 ,end−1) ) , Xtmp ( : , end−1) = [ ] ; end

365 % R e f l e c t e d par tner

366 d i r s (end) = −d i r s (end) ;

367 Xtmp ( : , end) = c r e a t e b a s i s f u n c t i o n ( Xtr , Xtmp,

ba s i sFunc t i onL i s t {1 , i } , . . .

368 bas i sFunc t i onL i s t {2 , i } , d i r s ,

ba s i sFunc t i onL i s t {4 , i } , minX , maxX

) ;

369 i f isnan (Xtmp(1 ,end) ) , Xtmp ( : , end) = [ ] ; end

370 end
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371 i f s ize (Xtmp, 2 ) == s ize (X, 2 )+2 % crea una coppia d i

b a s i s f u n c t i o n s

372 [ c o e f s tmpErr ( i ) ] = l r e g (Xtmp, Ytr , weights , wd) ;

373 tmpErr ( i ) = tmpErr ( i ) / YtrSS ;

374 tmpCoefs ( : , i ) = c o e f s ;

375 e l s e i f s ize (Xtmp, 2 ) == s ize (X, 2 )+1 % crea una s o l a

b a s i s f u n c t i o n

376 [ c o e f s tmpErr ( i ) ] = l r e g (Xtmp, Ytr , weights , wd) ;

377 tmpErr ( i ) = tmpErr ( i ) / YtrSS ;

378 tmpCoefs ( : , i ) = [ c o e f s ; NaN] ;

379 Xtmp = [Xtmp zeros (n , 1 ) ] ;

380 else % no b a s i s f u n c t i o n c r e a t e d ( s i z e (Xtmp , 2 ) == s i z e (

X, 2 ) )

381 tmpErr ( i ) = Inf ;

382 Xtmp = [Xtmp zeros (n , 2 ) ] ;

383 end

384 end

385

386 [ newErr , ind ] = min( tmpErr ) ; % a n a l i z z a i l c o n t r i b u t o d e l l a

base agg iunta

387

388 %Ferma l a forward phase se non s t a dando c o n t r i b u t o

389 i f ( isnan ( newErr ) ) | | ( e r r (end) − newErr < trainParams .

th r e sho ld )

390 i f trainParams . cubic

391 t1 = tmp t1 ;

392 t2 = tmp t2 ;

393 end

394 break ;

395 end
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396 %Update the model wi th new b a s i s f u n c t i o n

397

398 i f trainParams . cubic

399 [ t1 t2 d i f ] = KnotsEstremi ( model , ba s i sFunc t i onL i s t {1 ,

ind } , ba s i sFunc t i onL i s t {2 , ind } , . . .

400 d , minX , maxX, tmp t1 , tmp t2 ) ;

401 % update b a s i s f u n c t i o n s wi th the updated s i d e knots

402 for j = 1 : length ( model . knotdims )

403 i f d i f ( j )

404 X( : , j +1) = c r e a t e b a s i s f u n c t i o n ( Xtr , X, model .

knotdims{ j } , model . k n o t s i t e s { j } , . . .

405 model . kno td i r s { j } , model . parents ( j ) ,

minX , maxX, t1 ( j , : ) , t2 ( j , : ) ) ;

406 end

407 end

408 % Add the new b a s i s f u n c t i o n

409 d i r s = bas i sFunc t i onL i s t {3 , ind } ;

410 Xn = c r e a t e b a s i s f u n c t i o n ( Xtr , X, ba s i sFunc t i onL i s t {1 ,

ind } , ba s i sFunc t i onL i s t {2 , ind } , . . .

411 d i r s , ba s i sFunc t i onL i s t {4 , ind } , minX , maxX, t1 (end

, : ) , t2 (end , : ) ) ;

412 i f isnan (Xn(1) ) , Xn = [ ] ; end

413 % aggiunge una coppia d i b a s i s f u n c t i o n s

414 d i r s (end) = −d i r s (end) ;

415 Xn2 = c r e a t e b a s i s f u n c t i o n ( Xtr , X, ba s i sFunc t i onL i s t {1 ,

ind } , ba s i sFunc t i onL i s t {2 , ind } , . . .

416 d i r s , ba s i sFunc t i onL i s t {4 , ind } , minX , maxX, t1 (

end , : ) , t2 (end , : ) ) ;

417 i f isnan (Xn2(1 ) ) , Xn2 = [ ] ; end

418 X = [X Xn Xn2 ] ;
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419 i f ˜isempty (Xn) && ˜isempty (Xn2) % aggiunge una s o l a

b a s i s f u n c t i o n

420 t1 (end+1 , :) = t1 (end , : ) ;

421 t2 (end+1 , :) = t2 (end , : ) ;

422 end

423 else

424 d i r s = bas i sFunc t i onL i s t {3 , ind } ;

425 % Add the new b a s i s f u n c t i o n

426 Xn = c r e a t e b a s i s f u n c t i o n ( Xtr , X, ba s i sFunc t i onL i s t {1 ,

ind } , . . .

427 bas i sFunc t i onL i s t {2 , ind } , d i r s , ba s i sFunc t i onL i s t

{4 , ind } , minX , maxX) ;

428 i f isnan (Xn(1) ) , Xn = [ ] ; end

429 % Add the r e f l e c t e d par tner

430 d i r s (end) = −d i r s (end) ;

431 Xn2 = c r e a t e b a s i s f u n c t i o n ( Xtr , X, ba s i sFunc t i onL i s t {1 ,

ind } , . . .

432 bas i sFunc t i onL i s t {2 , ind } , d i r s , ba s i sFunc t i onL i s t

{4 , ind } , minX , maxX) ;

433 i f isnan (Xn2(1 ) ) , Xn2 = [ ] ; end

434 X = [X Xn Xn2 ] ;

435 end

436

437 model . c o e f s = tmpCoefs ( : , ind ) ;

438

439 % add the b a s i s f u n c t i o n s to the model

440 BasisAggiunte = 0 ;

441 d i r s = bas i sFunc t i onL i s t {3 , ind } ;

442 i f ˜isempty (Xn)

443 model . knotdims{end+1,1} = bas i sFunc t i onL i s t {1 , ind } ;
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444 model . k n o t s i t e s {end+1,1} = bas i sFunc t i onL i s t {2 , ind } ;

445 model . kno td i r s {end+1,1} = d i r s ;

446 model . parents (end+1 ,1) = bas i sFunc t i onL i s t {4 , ind } ;

447 BasisAggiunte = BasisAggiunte + 1 ;

448 else

449 model . c o e f s (end) = [ ] ;

450 end

451 i f ˜isempty (Xn2)

452 d i r s (end) = −d i r s (end) ;

453 model . knotdims{end+1,1} = bas i sFunc t i onL i s t {1 , ind } ;

454 model . k n o t s i t e s {end+1,1} = bas i sFunc t i onL i s t {2 , ind } ;

455 model . kno td i r s {end+1,1} = d i r s ;

456 model . parents (end+1 ,1) = bas i sFunc t i onL i s t {4 , ind } ;

457 BasisAggiunte = BasisAggiunte + 1 ;

458 else

459 model . c o e f s (end) = [ ] ;

460 end

461

462

463

464

465 e r r (end+1) = newErr ;

466 i f ( newErr < trainParams . th r e sho ld ) | | . . .

467 ( length ( model . c o e f s ) + 2 > n)

468 break ;

469 end

470

471 i f trainParams . cubic

472 tmp t1 = t1 ;

473 tmp t2 = t2 ;
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474 end

475 bas i sFunc t i onL i s t ( : , ind ) = [ ] ;

476 end % end o f the main loop

477

478 i f verbose , fpr intf ( ’ \n ’ ) ; end

479

480 end % end o f ” isempty ( modelOld ) ”

481

482

483

484 % BACKWARD PHASE

485

486 i f trainParams . prune

487

488 fpr intf ( ’ Backward phase . ’ ) ;

489

490 i f ˜isempty ( modelOld ) % Se non c ‘ e ‘ un model lo g i a scremato

r i a n a l i z z a t u t t e l e b a s i

491 i f ( doCubicFastLevel == −1) | | ( doCubicFastLevel >= 2)

492

493 X = ones (n , length ( model . knotdims ) +1) ;

494 for i = 1 : length ( model . knotdims )

495 X( : , i +1) = c r e a t e b a s i s f u n c t i o n ( Xtr , X, model .

knotdims{ i } , model . k n o t s i t e s { i } , . . .

496 model . kno td i r s { i } , model . parents ( i ) ,

minX , maxX) ;

497 end

498 [ model . c o e f s model .MSE] = l r e g (X, Ytr , weights , wd) ;

499 model .MSE = model .MSE / n ;
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500 model .GCV = gcv ( model , model .MSE, n ,

t ra inParams ac tua l c ) ;

501 else

502 % c r e a t e a l l the b a s i s f u n c t i o n s ( c u b i c ) from s c r a t c h

503 t1 = model . t1 ;

504 t2 = model . t2 ;

505 X = ones (n , length ( model . knotdims ) +1) ;

506 for i = 1 : length ( model . knotdims )

507 X( : , i +1) = c r e a t e b a s i s f u n c t i o n ( Xtr , X, model .

knotdims{ i } , model . k n o t s i t e s { i } , . . .

508 model . kno td i r s { i } , model . parents ( i ) ,

minX , maxX, t1 ( i , : ) , t2 ( i , : ) ) ;

509 end

510 end

511 end

512

513 models = {model } ;

514 mses = model .MSE;

515 gcvs = model .GCV;

516

517 % the main loop o f the backward phase

518 for j = 1 : length ( model . knotdims )

519 tmpErr = i n f (1 , length ( model . knotdims ) ) ;

520 tmpCoefs = i n f ( length ( model . c o e f s )−1, length ( model . knotdims

) ) ;

521

522 % c a n c e l l a l e b a s i s f u n c t i o n s una a l l a v o l t a

523

524 for k = 1 : length ( model . knotdims )

525 Xtmp = X;
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526 Xtmp ( : , k+1) = [ ] ;

527 i f trainParams . cubic

528 % c r e a t e temporary t1 , t2 , and model wi th a d e l e t e d

b a s i s f u n c t i o n

529 tmp t1 = t1 ;

530 tmp t1 (k , : ) = [ ] ;

531 tmp t2 = t2 ;

532 tmp t2 (k , : ) = [ ] ;

533 tmp model . knotdims = model . knotdims ;

534 tmp model . knotdims ( k ) = [ ] ;

535 tmp model . k n o t s i t e s = model . k n o t s i t e s ;

536 tmp model . k n o t s i t e s ( k ) = [ ] ;

537 tmp model . kno td i r s = model . kno td i r s ;

538 tmp model . kno td i r s ( k ) = [ ] ;

539 tmp model . parents = model . parents ;

540 tmp model . parents ( k ) = [ ] ;

541 tmp model . parents = updateParents ( tmp model . parents

, k ) ;

542 [ tmp t1 tmp t2 d i f ] = KnotsEstremi ( tmp model , [ ] ,

[ ] , d , minX , maxX, tmp t1 , tmp t2 ) ;

543 % update b a s i s f u n c t i o n s wi th the updated s i d e

knots

544 for i = 1 : length ( tmp model . knotdims )

545 i f d i f ( i )

546 Xtmp ( : , i +1) = c r e a t e b a s i s f u n c t i o n ( Xtr , Xtmp

, tmp model . knotdims{ i } , tmp model .

k n o t s i t e s { i } , . . .

547 tmp model . kno td i r s { i } ,

tmp model . parents ( i ) , minX

, maxX, tmp t1 ( i , : ) ,
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tmp t2 ( i , : ) ) ;

548 end

549 end

550 end

551 [ c o e f s tmpErr ( k ) ] = l r e g (Xtmp, Ytr , weights , wd) ;

552 tmpCoefs ( : , k ) = c o e f s ;

553 end

554

555 [dummy, ind ] = min( tmpErr ) ; % f i n d out the b e s t

m o d i f i c a t i o n

556 X( : , ind+1) = [ ] ;

557 model . c o e f s = tmpCoefs ( : , ind ) ;

558 model . knotdims ( ind ) = [ ] ;

559 model . k n o t s i t e s ( ind ) = [ ] ;

560 model . kno td i r s ( ind ) = [ ] ;

561 model . parents ( ind ) = [ ] ;

562 model . parents = updateParents ( model . parents , ind ) ;

563

564 i f trainParams . cubic

565 t1 ( ind , : ) = [ ] ;

566 t2 ( ind , : ) = [ ] ;

567 [ t1 t2 d i f ] = KnotsEstremi ( model , [ ] , [ ] , d , minX , maxX

, t1 , t2 ) ;

568 % update b a s i s f u n c t i o n s wi th the updated s i d e knots

569 for i = 1 : length ( model . knotdims )

570 i f d i f ( i )

571 X( : , i +1) = c r e a t e b a s i s f u n c t i o n ( Xtr , X, model .

knotdims{ i } , model . k n o t s i t e s { i } , . . .

572 model . kno td i r s { i } , model . parents ( i ) ,

minX , maxX, t1 ( i , : ) , t2 ( i , : ) ) ;
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573 end

574 end

575 model . t1 = t1 ;

576 model . t2 = t2 ;

577 end

578

579 models{end+1} = model ;

580 mses (end+1) = tmpErr ( ind ) / n ;

581 gcvs (end+1) = gcv ( model , mses (end) , n , t ra inParams ac tua l c

) ;

582

583 % end o f the main loop

584

585 i f trainParams . maxFinalFuncs >= length ( models {1} . c o e f s )

586 [ g , ind ] = min( gcvs ) ;

587 e l s e i f trainParams . maxFinalFuncs > 1

588 [ g , ind ] = min( gcvs (end−trainParams . maxFinalFuncs+1:end) ) ;

589 ind = ind + length ( gcvs ) − trainParams . maxFinalFuncs ;

590 else

591 g = gcvs (end) ;

592 ind = length ( gcvs ) ;

593 end

594 model = models{ ind } ;

595

596 i f doCubicFastLevel >= 2

597 % turn the c u b i c mode l l ing on

598 trainParams . cubic = true ;

599 [ t1 t2 ] = KnotsEstremi ( model , [ ] , [ ] , d , minX , maxX, [ ] ,

[ ] ) ;

600 % update a l l the b a s i s f u n c t i o n s
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601 X = ones (n , length ( model . c o e f s ) ) ;

602 for i = 1 : length ( model . knotdims )

603 X( : , i +1) = c r e a t e b a s i s f u n c t i o n ( Xtr , X, model . knotdims{ i

} , model . k n o t s i t e s { i } , . . .

604 model . kno td i r s { i } , model . parents ( i ) , minX ,

maxX, t1 ( i , : ) , t2 ( i , : ) ) ;

605 end

606 model . t1 = t1 ;

607 model . t2 = t2 ;

608 [ model . c o e f s model .MSE] = l r e g (X, Ytr , weights , wd) ;

609 model .MSE = model .MSE / n ;

610 model .GCV = gcv ( model , model .MSE, n , t ra inParams ac tua l c ) ;

611 else

612 model .MSE = mses ( ind ) ;

613 model .GCV = g ;

614 end

615

616 i f verbose , fpr intf ( ’ \n ’ ) ; end

617

618 end % end o f ” trainParams . prune”

619

620 end % end o f ” i f endSpan∗2 >= n”

621

622 model . trainParams = trainParams ;

623 model . minX = minX ;

624 model .maxX = maxX;

625 model . endSpan = endSpan ;

626

627 time = toc ;

628 i f verbose
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629 fpr intf ( ’Number o f b a s i s f u n c t i o n s in the f i n a l model : %d\n ’ ,

length ( model . c o e f s ) ) ;

630 fpr intf ( ’ Total e f f e c t i v e number o f parameters : %0.1 f \n ’ , . . .

631 length ( model . c o e f s ) + model . trainParams . c ∗ length ( model .

knotdims ) / 2) ;

632 maxDeg = 0 ;

633 i f length ( model . knotdims ) > 0

634 for i = 1 : length ( model . knotdims )

635 i f length ( model . knotdims{ i }) > maxDeg

636 maxDeg = length ( model . knotdims{ i }) ;

637 end

638 end

639 end

640

641 end

642 warning (ws ) ;

643 return

644

645

646 %%%%%%%%%%%%%%%% A u x i l i a r y f u n c t i o n s

647

648 function g = gcv ( model , MSE, n , c )

649 % C a l c u l a t e s GCV

650

651 enp = length ( model . c o e f s ) + c ∗ length ( model . knotdims ) / 2 ; % parametri

n e l model lo

652 i f enp >= n

653 g = Inf ;

654 else

655 p = 1 − enp / n ;
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656 g = MSE / (p ∗ p) ;

657 end

658 return

659

660 function parents = updateParents ( parents , de l e t ed Ind )

661 % Updates d i r e c t parent i n d e x e s a f t e r d e l e t i o n o f a b a s i s f u n c t i o n .

662 parents ( parents == de l e t ed Ind ) = 0 ;

663 tmp = parents > de l e t ed Ind ;

664 parents (tmp) = parents (tmp) − 1 ;

665 return

666

667 function bas i sFunc t i onL i s t = c r e a t e L i s t ( ba s i sFunc t i onL i s t o ld , Xtr , . . .

668 ord inat iXtr , ord inat iXtr Ind , n , d , model , BasisAggiunte , trainParams ,

endSpan )

669 % Takes the o l d l i s t o f b a s i s f u n c t i o n s and adds new ones accord ing to

the

670 % current model . I f the o l d l i s t i s empty , adds on ly l i n e a r b a s i s

671 % f u n c t i o n s . I f i t i s non−empty , adds on ly b a s i s f u n c t i o n s wi th

672 % i n t e r a c t i o n s which r e s u l t from the l a s t BasisAggiunte b a s i s f u n c t i o n s

673

674

675

676 % Create l i n e a r b a s i s f u n c t i o n s

677

678 i f ( isempty ( b a s i s F u n c t i o n L i s t o l d ) ) && ( BasisAggiunte == 0)

679 bas i sFunc t i onL i s t = c e l l ( 3 , 0 ) ;

680 counter = 1 ;

681 i f trainParams . useMinSpan ˜= 1

682 % g e t the l i s t o f knot s i t e s a l l o w e d due to minSpan
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683 massimi = mod( 1 : n , getMinSpan (d , n , trainParams . useMinSpan ) ) ==

0 ;

684 end

685 for di = 1 : d %f o r each dimension

686 i f trainParams . useMinSpan ˜= 1

687 massimiPos = ord ina t iXt r ( : , d i ) ;

688 else

689 massimiPos = unique ( o rd ina t iXt r ( : , d i ) ) ;

690 end

691 l a s t k n o t = Inf ;

692 %aggiunge l e b a s i s f u n c t i o n s a l l a l i s t a

693 for i = 1 : s ize ( massimiPos , 1 )

694 i f ( trainParams . useMinSpan == 1) | | . . .

695 ( ( massimi ( i + endSpan−1) ) && ( l a s t k n o t ˜= massimiPos ( i ) )

)

696 l a s t k n o t = massimiPos ( i ) ;

697 bas i sFunc t i onL i s t {1 , counter } = di ;

698 bas i sFunc t i onL i s t {2 , counter } = l a s t k n o t ;

699 bas i sFunc t i onL i s t {3 , counter } = 1 ;

700 bas i sFunc t i onL i s t {4 , counter } = 0 ;

701 counter = counter + 1 ;

702 end

703 end

704 end

705 return

706 end

707

708 i f ( trainParams . maxInteract ions < 2) | | ( Bas isAggiunte < 1)

709 bas i sFunc t i onL i s t = b a s i s F u n c t i o n L i s t o l d ;

710 return
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711 end

712

713 % Create b a s i s f u n c t i o n s wi th i n t e r a c t i o n s

714

715 bas i sFunc t i onL i s t = b a s i s F u n c t i o n L i s t o l d ;

716 counter = s ize ( ba s i sFunc t i onL i s t o ld , 2 ) + 1 ;

717 s t a r t = length ( model . knotdims )−(BasisAggiunte −1) ;

718

719 % loop through a l l the b a s i s f u n c t i o n s a l r e a d y in the model

720 for j = s t a r t : length ( model . knotdims )

721 i f length ( model . knotdims{ j }) < trainParams . maxInteract ions

722 al loweddims = 1 : d ;

723 i f trainParams . s e l f I n t e r a c t i o n s <= 1

724 % w i l l not c o n s i d e r the a l r e a d y used dimensions

725 al loweddims = s e t d i f f ( al loweddims , model . knotdims{ j }) ;

726 else

727 for i = 1 : d

728 i f length ( find ( model . knotdims{ j } == i ) ) >= trainParams .

s e l f I n t e r a c t i o n s

729 al loweddims = s e t d i f f ( al loweddims , i ) ;

730 end

731 end

732 end

733 i f isempty ( al loweddims )

734 cont inue

735 end

736

737 i f trainParams . useMinSpan ˜= 1

738
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739 nonzero = l i s tNonZero ( Xtr , model . knotdims{ j } , model .

k n o t s i t e s { j } , model . kno td i r s { j }) ;

740 minSpan = getMinSpan (d , length ( find ( nonzero ) ) , trainParams .

useMinSpan ) ;

741 i f ˜ i s f i n i t e ( minSpan )

742 cont inue

743 end

744 massimi = mod( 1 : n , minSpan ) == 0 ;

745 for di = al loweddims %f o r each dimension

746 l a s t k n o t = Inf ;

747

748 ind = ord inat iXt r Ind ( nonzero ( o rd inat iXt r Ind ( : , d i ) ) , d i ) ;

749 ind = ind ( massimi ( ind ) ) ’ ;

750 for i = ind

751 i f l a s t k n o t ˜= Xtr ( i , d i )

752 l a s t k n o t = Xtr ( i , d i ) ;

753 bas i sFunc t i onL i s t {1 , counter } = [ model . knotdims

{ j } di ] ;

754 bas i sFunc t i onL i s t {2 , counter } = [ model .

k n o t s i t e s { j } l a s t k n o t ] ;

755 bas i sFunc t i onL i s t {3 , counter } = [ model . kno td i r s

{ j } 1 ] ;

756 bas i sFunc t i onL i s t {4 , counter } = j ;

757 counter = counter + 1 ;

758 end

759 end

760 end

761

762 else

763
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764 nonzero = l i s tNonZero ( Xtr , model . knotdims{ j } , model .

k n o t s i t e s { j } , model . kno td i r s { j }) ;

765 for di = al loweddims %aggiunge una base per ogni dimensione

766

767 massimiPos = unique ( o rd ina t iXt r ( nonzero ( o rd inat iXt r Ind

( : , d i ) ) , d i ) ) ;

768 for i = 1 : s ize ( massimiPos , 1 )

769 bas i sFunc t i onL i s t {1 , counter } = [ model . knotdims{ j }

di ] ;

770 bas i sFunc t i onL i s t {2 , counter } = [ model . k n o t s i t e s { j }

massimiPos ( i ) ] ;

771 bas i sFunc t i onL i s t {3 , counter } = [ model . kno td i r s { j }

1 ] ;

772 bas i sFunc t i onL i s t {4 , counter } = j ;

773 counter = counter + 1 ;

774 end

775 end

776

777 end

778

779 end

780 end

781 return

782

783 function nonzero = l i s tNonZero ( Xtr , knotdims , k n o t s i t e s , kno td i r s )

784 % L i s t s nonzero ( accord ing to the parent b a s i s f u n c t i o n ) s i t e s where

knots

785 % may be p l aced .

786 nonzero = true ( s ize ( Xtr , 1 ) ,1 ) ;

787 for j = 1 : s ize ( Xtr , 1 )
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788 for i = 1 : length ( knotdims )

789 z = Xtr ( j , knotdims ( i ) ) − k n o t s i t e s ( i ) ;

790 i f ( ( z >= 0) && ( knotd i r s ( i ) < 0) ) | | . . .

791 ( ( z <= 0) && ( knotd i r s ( i ) > 0) )

792 nonzero ( j ) = f a l s e ;

793 break ;

794 end

795 end

796 end

797 return

798

799 function s = getEndSpan (d)

800 % C a l c u l a t i o n o f endSpan so t h a t p o t e n t i a l knot s i t e s t h a t are too

c l o s e to

801 % the ends o f data i n t e r v a l s are not cons idered .

802 %s = f l o o r (3 − l o g 2 (0 .05/ d ) ) ;

803 s = f loor (7 .32193 + log (d) / 0 .69315) ; % precomputed v e r s i o n

804 i f s < 1 , s = 1 ; end

805 return

806

807 function s = getMinSpan (d , nz , param )

808 %Determina l a p o s i z i o n e per i nuovi knot

809 i f nz == 0

810 s = Inf ;

811 else

812 i f param < 0 % automatic

813 %s = f l o o r (− l o g 2 (− l o g (1−0.05) /( d∗nz ) ) / 2 . 5 ) ;

814 s = f loor ( ( 2 . 97 02 + log (d∗nz ) ) / 1 .7329) ;

815 else

816 s = param ;
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817 i f s > nz

818 s = Inf ;

819 end

820 end

821 i f s < 1 , s = 1 ; end

822 end

823 return

824

825 function [ c o e f s e r r ] = l r e g (x , y , w, wd)

826 % Linear r e g r e s s i o n ( unweighted and weighted )

827 i f isempty (wd)

828 c o e f s = (x ’ ∗ x ) \ (x ’ ∗ y ) ;

829 e r r = sum( ( y−x∗ c o e f s ) . ˆ 2 ) ;

830 else

831 x wd = x ’ ∗ wd;

832 c o e f s = ( x wd ∗ x ) \ ( x wd ∗ y ) ;

833 e r r = sum( ( y−x∗ c o e f s ) . ˆ 2 . ∗w) ;

834 end

835 return

836

837

838

839 function graFICA (X, yp ,Xp,Yp)

840 %%%%%%Graf ica

841

842

843 %Plot y as a f u n c t i o n o f X1 and X2 with X3 l o c k e d at 0 .1

844 i =1:11: length ( yp ) ;

845 y=yp ( i ) ;

846 x1=X( 1 : 1 2 1 : length ( yp ) ,1 ) ;
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847 x2=X( 1 : 1 1 : 1 2 1 , 2 ) ;

848 YYY=reshape (y , 1 1 , 1 1 ) ;

849

850 f igure (1 )

851 surfc ( x1 , x2 ,YYY)

852 hold on

853

854 j =1:3 : length (Yp) ; %Takes on ly the 30% f u e l s p l i t p o i n t s

855 Xs=Xp( j , : ) ;

856 Ys=Yp( j ) ;

857

858 s c a t t e r 3 (Xs ( : , 1 ) ,Xs ( : , 2 ) ,Ys , ’ f i l l e d ’ )

859 t i t l e ( ’ HC (ppm) f o r 30% f u e l s p l i t ’ ) ;

860 xlabel ( ’Main SOI ( BTDC) ’ )

861 ylabel ( ’ P i l o t SOI ( BTDC) ’ )

862 zlabel ( ’HC (ppm) ’ )

863

864

865 % 35% f u e l s p l i t

866 clear y x1 x2 YYY Xs Ys i j

867

868 i =6:11: length ( yp ) ;

869 y=yp ( i ) ;

870 x1=X( 6 : 1 2 1 : length ( yp ) ,1 ) ;

871 x2=X( 6 : 1 1 : 1 2 1 , 2 ) ;

872 YYY=reshape (y , 1 1 , 1 1 ) ;

873

874 f igure (2 )

875 surfc ( x1 , x2 ,YYY)

876 hold on
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877

878 j =2:3 : length (Yp) ; %Takes on ly the 35% f u e l s p l i t p o i n t s

879 Xs=Xp( j , : ) ;

880 Ys=Yp( j ) ;

881

882 s c a t t e r 3 (Xs ( : , 1 ) ,Xs ( : , 2 ) ,Ys , ’ f i l l e d ’ )

883 t i t l e ( ’ HC (ppm) f o r 35% f u e l s p l i t ’ ) ;

884 xlabel ( ’Main SOI ( BTDC) ’ )

885 ylabel ( ’ P i l o t SOI ( BTDC) ’ )

886 zlabel ( ’HC (ppm) ’ )

887

888 % 40% f u e l s p l i t

889 clear y x1 x2 YYY Xs Ys i j

890

891 i =11:11: length ( yp ) ;

892 y=yp ( i ) ;

893 x1=X( 1 1 : 1 2 1 : length ( yp ) ,1 ) ;

894 x2=X( 1 1 : 1 1 : 1 2 1 , 2 ) ;

895 YYY=reshape (y , 1 1 , 1 1 ) ;

896

897 f igure (3 )

898 surfc ( x1 , x2 ,YYY)

899 hold on

900

901 j =3:3 : length (Yp) ; %Takes on ly the 40% f u e l s p l i t p o i n t s

902 Xs=Xp( j , : ) ;

903 Ys=Yp( j ) ;

904

905 s c a t t e r 3 (Xs ( : , 1 ) ,Xs ( : , 2 ) ,Ys , ’ f i l l e d ’ )

906 t i t l e ( ’ HC (ppm) f o r 40% f u e l s p l i t ’ ) ;
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907 xlabel ( ’Main SOI ( BTDC) ’ )

908 ylabel ( ’ P i l o t SOI ( BTDC) ’ )

909 zlabel ( ’HC (ppm) ’ )

910

911 %%%%% MAIN SOI & FUEL SPLIT

912 clear y x1 x2 YYY Xs Ys i j

913 clear i k j l d A

914 %genera te the index f o r s e l e c t i n g the a p r o p r i a t e p o i n t s

915 i =12:121: length ( yp ) ;

916 i=i ’ ;

917 k =0:10;

918 k=k ’ ;

919 k=repmat (k , length ( i ) , 1 ) ;

920 l =1: length ( k ) ;

921 l=l ’ ;

922 j ( l , 1 )=i ( f loor ( ( l −1)/11+1) )+k ( l ) ;

923

924 %s e l e c t the p o i n t s

925 y=yp ( j ) ;

926 x1=X( 1 : 1 2 1 : length ( yp ) ,1 ) ;

927 x3=X( 1 : 1 1 , 3 ) ;

928 YYY=reshape (y , 1 1 , 1 1 ) ;

929

930 f igure (4 )

931 surfc ( x1 , x3 ,YYY)

932 hold on

933

934 clear j

935

936 b=1:9: length (Yp) ; %Takes on ly the lower P i l o t i n j e c t i o n p o i n t s
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937 b=b ’ ;

938 v =0:2;

939 v=v ’ ;

940 v=repmat (v , length (b) ,1 ) ;

941 m=1: length ( v ) ;

942 m=m’ ;

943 j (m)=b( f loor ( (m−1)/3+1) )+v (m) ;

944

945

946 Xs=Xp( j , : ) ;

947 Ys=Yp( j ) ;

948

949 s c a t t e r 3 (Xs ( : , 1 ) ,Xs ( : , 3 ) ,Ys , ’ f i l l e d ’ )

950 t i t l e ( ’ HC (ppm) f o r 40 BTDC p i l o t i n j e c t i o n ’ ) ;

951 xlabel ( ’Main SOI ( BTDC) ’ )

952 ylabel ( ’ Fuel S p l i t (%) ’ )

953 zlabel ( ’HC (ppm) ’ )

954

955 %%%%% 45 deg BTDC P i l o t I n j e c t i o n

956 clear y x1 x2 YYY Xs Ys i j

957 clear i k j l d A

958 %genera te the index f o r s e l e c t i n g the a p r o p r i a t e p o i n t s

959 i =56:121: length ( yp ) ;

960 i=i ’ ;

961 k =0:10;

962 k=k ’ ;

963 k=repmat (k , length ( i ) , 1 ) ;

964 l =1: length ( k ) ;

965 l=l ’ ;

966 j ( l , 1 )=i ( f loor ( ( l −1)/11+1) )+k ( l ) ;
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967

968 %s e l e c t the p o i n t s

969 y=yp ( j ) ;

970 x1=X( 5 6 : 1 2 1 : length ( yp ) ,1 ) ;

971 x3=X( 1 : 1 1 , 3 ) ;

972 YYY=reshape (y , 1 1 , 1 1 ) ;

973

974 f igure (5 )

975 surfc ( x1 , x3 ,YYY)

976 hold on

977

978 clear j

979

980 b=4:9: length (Yp) ; %Takes on ly the medium P i l o t i n j e c t i o n p o i n t s

981 b=b ’ ;

982 v =0:2;

983 v=v ’ ;

984 v=repmat (v , length (b) ,1 ) ;

985 m=1: length ( v ) ;

986 m=m’ ;

987 j (m)=b( f loor ( (m−1)/3+1) )+v (m) ;

988

989

990 Xs=Xp( j , : ) ;

991 Ys=Yp( j ) ;

992

993 s c a t t e r 3 (Xs ( : , 1 ) ,Xs ( : , 3 ) ,Ys , ’ f i l l e d ’ )

994 t i t l e ( ’ HC (ppm) f o r 45 BTDC p i l o t i n j e c t i o n ’ ) ;

995 xlabel ( ’Main SOI ( BTDC) ’ )

996 ylabel ( ’ Fuel S p l i t (%) ’ )
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997 zlabel ( ’HC (ppm) ’ )

998

999 %50 deg BTDC P i l o t I n j e c t i o n

1000 clear y x1 x2 YYY Xs Ys i j

1001 clear i k j l d A

1002 %genera te the index f o r s e l e c t i n g the a p r o p r i a t e p o i n t s

1003 i =111:121: length ( yp ) ;

1004 i=i ’ ;

1005 k =0:10;

1006 k=k ’ ;

1007 k=repmat (k , length ( i ) , 1 ) ;

1008 l =1: length ( k ) ;

1009 l=l ’ ;

1010 j ( l , 1 )=i ( f loor ( ( l −1)/11+1) )+k ( l ) ;

1011

1012 %s e l e c t the p o i n t s

1013 y=yp ( j ) ;

1014 x1=X( 1 1 1 : 1 2 1 : length ( yp ) ,1 ) ;

1015 x3=X( 1 : 1 1 , 3 ) ;

1016 YYY=reshape (y , 1 1 , 1 1 ) ;

1017

1018 f igure (6 )

1019 surfc ( x1 , x3 ,YYY)

1020 hold on

1021

1022 clear j

1023

1024 b=7:9: length (Yp) ; %Takes on ly the medium P i l o t i n j e c t i o n p o i n t s

1025 b=b ’ ;

1026 v =0:2;
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1027 v=v ’ ;

1028 v=repmat (v , length (b) ,1 ) ;

1029 m=1: length ( v ) ;

1030 m=m’ ;

1031 j (m)=b( f loor ( (m−1)/3+1) )+v (m) ;

1032

1033

1034 Xs=Xp( j , : ) ;

1035 Ys=Yp( j ) ;

1036

1037 s c a t t e r 3 (Xs ( : , 1 ) ,Xs ( : , 3 ) ,Ys , ’ f i l l e d ’ )

1038 t i t l e ( ’ HC (ppm) f o r 50 BTDC p i l o t i n j e c t i o n ’ ) ;

1039 xlabel ( ’Main SOI ( BTDC) ’ )

1040 ylabel ( ’ Fuel S p l i t (%) ’ )

1041 zlabel ( ’HC (ppm) ’ )

1042

1043 %%%%% 2D Parametric p l o t

1044 clear y x1 x2 YYY Xs Ys i j

1045 clear i k j l d A

1046

1047 f igure (7 )

1048 i =11:121: length ( yp ) ;

1049 i=i ’ ;

1050 y1=yp ( i ) ;

1051 x=X( i , 1 ) ;

1052 i 2 =56:121: length ( yp ) ;

1053 i 2=i2 ’ ;

1054 y2=yp ( i 2 ) ;

1055 i 3 =121:121: length ( yp ) ;

1056 i 3=i3 ’ ;

157



1057 y3=yp ( i 3 ) ;

1058 plot (x , y1 , ’−.g+’ ) ;

1059 t i t l e ( ’ Experimental vs F i t t ed data po in t s ’ ) ;

1060 xlabel ( ’Main SOI ’ )

1061 ylabel ( ’HC (ppm) ’ )

1062 hold on

1063 plot (x , y2 , ’−. ro ’ ) ;

1064 hold on

1065 plot (x , y3 , ’−.ms ’ ) ;

1066 legend ( ’ 40 p i l o t SOI and 40% f u e l s p l i t ’ , ’ 45 p i l o t SOI and 40% f u e l

s p l i t ’ , ’ 50 p i l o t SOI and 40% f u e l s p l i t ’ )

1067 hold on

1068 j =3:9 : length (Yp) ;

1069 Xs=Xp( j , 1 ) ;

1070 Ys=Yp( j ) ;

1071 s c a t t e r (Xs , Ys , 100 , ’ g+’ ) ;

1072 hold on

1073 j =6:9 : length (Yp) ;

1074 Xs=Xp( j , 1 ) ;

1075 Ys=Yp( j ) ;

1076 s c a t t e r (Xs , Ys , 100 , ’ ro ’ ) ;

1077 j =9:9 : length (Yp) ;

1078 Xs=Xp( j , 1 ) ;

1079 Ys=Yp( j ) ;

1080 s c a t t e r (Xs , Ys , 100 , ’ms ’ ) ;
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