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ABSTRACT 

Tuning the Thermoelectric Performance of Complex Oxides through Multiscale 

Microstructure Engineering  

Paulo Sergio Calvillo-Gonzalez 

 

The need for energy nowadays is causing a heated debate in our society. One way to increase 

the energy sustainability is to harvest waste energy from current processes. For example, industrial 

processes, home heating and automotive exhaust, all generate copious amounts of heat that is 

usually wasted. In the diesel powered automobiles, up to 65% of the chemical fuel is lost as waste 

heat that is mostly rejected through the cooling radiator and exhaust systems with the temperature 

normally exceeding 600 °C. Thermoelectric materials have the ability of converting wasted heat 

and temperature difference into electricity. Thermoelectric materials need to possess high energy 

conversion efficiency (Figure of merit (ZT)) to be viable for thermoelectric devices. Current 

available high performance thermoelectric materials are mostly heavy metal based materials and 

they are not suitable for operating at high temperatures due to oxidation, decomposition, 

vaporization, and harmful environmental impact.  

This thesis is focused on the investigation of the oxide thermoelectric materials of Ca3Co4O9 

for harvesting the waste heat, such as those from the diesel powered vehicles, at high temperatures 

in the air. Layered Calcium Cobalt Oxide Ca3Co4O9 is a promising thermoelectric material for TE 

devices with a reported energy conversion efficiency ZT=0.83 at 700 °C for single crystal. This 

performance of single crystal Ca3Co4O9 is outstanding, but, producing single crystals is expensive, 

and not realistic for practical large scale applications. A more practical production process from 

the economic perspective, is the development of polycrystalline Ca3Co4O9. Current Ca3Co4O9 

polycrystalline ceramics have low performance, achieving ZT of ~0.10-0.20. This thesis details 

the multiscale microstructure engineering performed on polycrystal Ca3Co4O9 to improve its 

thermoelectric performance. The first part describes the approach of cation stoichiometric 

substitution of Ca or Co to increase the phonon scattering and improve the thermoelectric 

properties. The second part reports the effect of minute amount of Cation non-stoichiometric 

addition on the microstructure of the polycrystal Ca3Co4O9 samples and their electrical and thermal 

transport properties. The final part reports a novel approach to introduce metallic nano-inclusions 

to Ca3Co4O9 to improve the electrical conductivity of polycrystal Ca3Co4O9. 
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Chapter 1                                                              

Introduction to Thermoelectric Materials 

 

The Industrial Revolution was a cornerstone for developing a solid and reliable production of 

goods and it marked the transition from hand production to machines. It greatly affected the 

lifestyle at that time and it provided many benefits in several areas [1]; it also generated an 

exponential growth of energy demand in the public, industrial and private sector. At that time, 

most of the industries were mesmerized by the fossil fuels era, and the general thought was that 

these resources were unlimited, but as current information has shown, fossil fuels are finite non-

renewable resources [2]; another problem with fossil fuels is that they are not clean, and their use 

according to scientists, [3] is a factor causing the greenhouse gases and global warming. Even 

though it is clear that the use of fossil fuels is generating serious problems, their use represents 

more than the 80% of the total world energy consumption[4].  

There is a clear need for developing clean technologies using renewable sources, and it is 

foreseeable that this kind of technology will play a significant role in the future, providing security 

and sustainability for future generations. There are several alternative technology to replace fossil 

fuels, for example, biomass, solar, nuclear, wind, geothermal and some others. As new 
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technologies  for clean energy are required, it is also necessary to improve the efficiency of current 

devices since most of the power generation systems have very low efficiencies, and most of the 

energy is wasted as heat, for example in an internal combustion engine for an automobile only 

about 14% to 30% of the energy from the fuel is used to move it down the road, and the thermal 

losses go to 58% to 62% [5].  

A thermoelectric material is a material that has the ability to convert temperature differences 

to electric voltage and viceversa. During the last decade thermoelectric materials have gained a 

position as a viable alternative environmental friendly, driven by the requirements of more 

efficient and clean materials for power generation and electronic refrigeration [6]. In a 

thermoelectric material there are free electrons or holes, which carry both charge and heat. To be 

able to use the thermoelectric effect is necessary to use devices, these devices usually formed by 

two dissimilar materials, do a direct conversion of a temperature gradient into electricity and 

viceversa. The thermoelectric effect is based on a combination of two different effects, the Seebeck 

effect and the Peltier effect. 

 

1.1 History of Thermoelectric Materials 

 

The history of thermoelectric devices can be traced to the early 19th century, when in 1821 

Thomas Johann Seebeck was researching a relation between electricity and heat, he designed 

several experiments and he observed a deviation of a compass needle by changing the temperature 

of the two junctions made of dissimilar metals, at this point he did not recognize or report that an 

electrical current was being generated when heat was applied to one of the two metals, he used a 
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different term, he called it thermomagnetic currents or thermomagnetism [7]. This was because he 

thought that the effect was related to the Earth’s magnetic field, later he realized that as a matter 

of fact, the temperature difference produces an electrical potential which can drive an electric 

current in a closed circuit, and this is known as the Seebeck effect. In 1834, Jean Charles Athanase 

Peltier, discovered that if an electrical current is driven through a junction of two dissimilar metals, 

it causes a temperature change at the junction [8] nevertheless in 1838 Heinrich Lenz showed that 

the direction of the current flow can be changed to either remove heat from a junction to freeze 

water into ice, or reverse the current to generate heat to melt ice; at the end, the heat produced or 

absorbed at the junction, is proportional to the electrical current, this is known as the Peltier 

effect[9]. In 1851 William Thomson (Lord Kelvin)  [10] described the relationship between the 

Seebeck and Peltier coefficients using the framework of thermodynamics; he showed that the 

Peltier coefficient is actually the Seebeck coefficient times the absolute temperature. This 

relationship led to another thermoelectric effect known as the Thomson effect, where heat is 

absorbed or produced when current flows in a material with a temperature gradient, the heat is 

directly proportional to the electric current and the temperature gradient, this constant is known as 

the Thomson coefficient  [11]. At this point, three effects on thermoelectric materials were clear 

but it was until the beginning of the 1900’s that Edmund Altenkirch used for the first time the 

properties of the constants to derive the maximum efficiency of a thermoelectric generator by 

optimizing the operations conditions [12], the conclusion of his work was that high quality 

thermoelectric materials have three properties, large Seebeck coefficients, high electrical 

conductivities minimizing Joule heating due to electrical resistance, and low thermal 

conductivities to minimize heat loss; this later become the base for the figure of merit. Following 

this discoveries Eucken [13] found that point defects in solid alloys help to reduce lattice thermal 
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conductivity, this discovery is a solid strategy to improve the properties of thermoelectric 

materials. The concept of the Thermoelectric Figure of Merit (ZT) was introduced in 1949 by 

Abram Fedorovich Ioffe, and is a value that shows the maximum efficiency of a thermoelectric 

material depending on two terms; the first one is the Carnot efficiency and the second is a term 

that depends on the Seebeck coefficient, electrical resistivity and thermal conductivity [14].  

Thermoelectric materials have played an important role in several critical applications and 

have been actively studied as power generation for military and civilian use too. Unfortunately by 

the end of the 1960’s the progress on thermoelectric materials had slowed down since there is big 

limitation as most of the proposed materials do not achieve ZT values over 1. Most of the time the 

thermoelectric materials are used on applications where reliability is more important than cost, for 

example space missions. Nevertheless a lot of work and research has been conducted to improve 

the ZT and using techniques as Nano-structured [15] and quantum well materials [16] figures of  

merit above 2 had been reported for materials with special design. 

 

1.2 Thermoelectric Materials Properties 

Thermoelectric materials are basically based on by two different effects, the Seebeck effect 

and the Peltier effect; their ability to produce thermoelectric power is intrinsically related to a 

factor known as figure of merit. 

 

1.2.1 Seebeck Effect 

If a thermoelectric material is under a temperature gradient, with one side cold and the other 

side hot, the carriers which transfer both charge and heat will move faster at the hot end compared 
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Figure 1. Representation of the Seebeck Effect 

to the one at the cold end. Since the carriers from the hot end will diffuse further, there will be a 

higher density at the cold end, this buildup of charge will produce a repulsive electrostatic force to 

push the carriers back to the hot end and therefore electrical potential will be produced, this 

potential (Voltage) is known as the Seebeck effect. The proportionality constant is known as the 

Seebeck coefficient 𝛼 𝑜𝑟 𝑆. 

In general, materials can be divided in two different types, p-type (containing free holes) where 

positive charge will have a positive potential, and n-type (containing free electrons) where negative 

free charge will produce a negative potential. If an n-type and a p-type material are electrically 

connected and a load is connected across the ends, the voltage will cause current to flow through 

the load and that will produce electrical power. A thermocouple is a clear example of a 

thermoelectric generator, here heat is supplied into one side of the couple and rejected from the 

opposite side; the produced electrical current is proportional to the temperature gradient between 

the junctions, this is shown in fig. 1 [17]. 

 

 

 

 

 

 

The power factor is a measurement of the ability of a material to produce useful electrical 

power. Using the Seebeck coefficient and the electrical conductivity is possible to calculate the 

power factor of a material. The power factor is given by equation 1: 
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Figure 2. Representation of the Peltier Effect 

𝑃𝑜𝑤𝑒𝑟 𝑓𝑎𝑐𝑡𝑜𝑟 = 𝜎𝑆2 

Where 𝜎 is the electrical conductivity, and 𝑆 is the Seebeck coefficient. 

1.2.2 Peltier Effect 

The Peltier effect is the evolution or absorption of heat when current flows through an interface 

between dissimilar conductors. It can be seen as the reverse effect of the Seebeck effect, but the 

physical phenomenon is different since the Peltier effect will only be present if a current is applied 

to the system. Here the heat current is proportional to the charge current and the proportionality 

constant is the Peltier coefficient. 

If the Peltier coefficient is positive, high energy holes move from left to right and the thermal 

and electric current will flow in the same direction. If the Peltier coefficient is negative, high 

energy electrons move from right to left and the thermal and electric current will flow in opposite 

direction. 

The relationship between the Seebeck and Peltier coefficients is known as the Kelvin 

relationship and is given by equation 2:  

Π = 𝑆𝑥𝑇 

Where Π is the Peltier coefficient, 𝑆 is the Seebeck coefficient and 𝑇 is the absolute temperature 

[17]. 

 

 

 

 

(1) 

(2) 
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Figure 3. Figure of merit ZT of current thermoelectric materials. 

1.2.3 Figure of Merit 

In order to be able to evaluate the capabilities of a thermoelectric material, is necessary to take 

in consideration different factors, for example, the Seebeck coefficient, the electrical and thermal 

conductivity and look at them as a whole, there is a relationship between all these factors and is 

known as the figure of merit (𝑍𝑇) which is given by equation 3: 

𝑍𝑇 =
𝑆2𝜎

𝑘
𝑇 

Where 𝑆 is the Seebeck coefficient, 𝜎 is the electrical conductivity, 𝑇 is the absolute 

temperature and 𝑘 is the thermal conductivity.  The thermal conductivity comes from two different 

sources, 1) electrons and holes transporting heat (𝑘𝑐) and 2) phonons travelling through the lattice 

(𝑘1) transporting heat and leading the electronic thermal conductivity. Being aware of these 

effects, there is a great opportunity of enhancing the (𝑍𝑇) by minimizing the lattice thermal 

conductivity, this can achieved by increasing the phonon scattering by introducing heavy atoms, 

disorder, large unit cells, clusters and rattling atoms [18]. Figure 3 displays the 𝑧𝑇 for commonly 

used thermoelectric materials [19]. 

 

 

 

 

 

(3) 
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Figure 4. Schematic comparison of several thermoelectric materials 

1.3 Types of Thermoelectric Materials 

The best thermoelectric materials are heavily doped semiconductors with transport properties 

similar to metals; and the most widely used thermoelectric materials are alloys of 𝐵𝑖2𝑇𝑒3 and 

𝑆𝑏2𝑇𝑒3. In addition to different tellurides, skutterudites, silicon-germanium, oxides, are also used 

for thermoelectric applications. The material will be selected according to the conditions in which 

it will be used. Figure 4 [20] provides an overlook of the available materials and their most 

common applications. 

 

 

 

 

 

 

 

 

 

 

1.3.1 Tellurides 

𝐵𝑖2𝑇𝑒3 and 𝑆𝑏2𝑇𝑒3 are the most commercially available thermoelectric materials and they 

have been studied since 1950 showing a high potential for room temperature applications such as 
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Figure 5. Figure of Merit for n and p type materials [18] 

refrigeration (solid state refrigerators) and waste heat recovery [21]. These material share a 

common crystal structure, the unit cell is usually described as rhombohedral [22]  but some authors 

actually describe the structure as hexagonal [23]. They are usually alloyed with antimony or 

selenium to achieve higher thermoelectric properties. These materials are viable for applications 

with relatively low temperatures since the melting point of the 𝐵𝑖2𝑇𝑒3 is 585 ℃ and for the 𝑆𝑏2𝑇𝑒3 

is 580 ℃. 

For n-type materials, 𝐵𝑖2𝑇𝑒3 has demonstrated greater figure of merit for thermoelectric 

systems as shown in Fig. 4 and Fig 5, for a low temperature range. For mid-temperature range 

(500-900K), the viable materials are 𝑃𝑏𝑇𝑒 [24] or 𝐺𝑒𝑇𝑒 [25] and the 𝑍𝑇 is ranging from 0.35 to 

0.80 in the n-type. The concern with  𝑃𝑏𝑇𝑒 is the use of a toxic element.  

For p-type materials at low temperatures, 𝑆𝑏2𝑇𝑒3 has shown good performance achieving peak 

ZT values slightly above 1.  For mid-temperature range there is an alloy that has shown good 

results, the alloy is 𝐴𝑔6.52𝑆𝑏6.52𝐺𝑒36.96𝑇𝑒50 [26], this alloy shows a  𝑧𝑇 greater than 1.2 and is it 

has been used as a long-life thermoelectric material for generators [27]. For higher temperatures 

the most common materials are 𝑆𝑖𝐺𝑒 and different kind of oxides. 
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1.3.2 Skutterudites 

The skutterudite structure shows a cubic lattice and materials as 𝐶𝑜𝑆𝑏3, 𝐶𝑜𝐴𝑠3, 𝐼𝑟𝑆𝑏3, 𝑍𝑛3𝑆𝑏4 

are part of this family. Special attention has to be given to 𝐶𝑜𝑆𝑏3 since it exhibits a very efficient 

heat transport by the lattice and a considerable carrier mobility [28]. Unfortunately the figure of 

merit for pure 𝐶𝑜𝑆𝑏3 is only 0.17 [29]. To improve the figure of merit for this material Te has been 

reported as the most effective doping element for high electrical conductivity [30]. Other 

substitution elements such as Ni [31], Ge [32], Sn [33] have been used showing small 

improvements. One of the best results for the skutterudites n-type materials has been reported by 

doping it with Te and Sn, the chemical formula is 𝐶𝑜4𝑆𝑏11𝑇𝑒0.8𝑆𝑛0.2, the reported figure of merit 

was 0.65 [34] at 750 K which is a great improvement compared to the pure material. The main 

concern with the 𝐶𝑜𝑆𝑏3 is that it has to be doped with rare elements to achieve better results [35], 

which will translate in a more expensive option. 

 

1.3.3 Silicon-Germanium 

For high temperature applications 𝑆𝑖𝐺𝑒 alloys are viable thermoelectric materials and they 

have been used by NASA in electric generators since 1976. The (𝑧𝑇) for a p-type material is 0.5 

at 900 °C and for a n-type is ~ 1 at 900 °C [36]. Recently using a nano-composite approach and a 

modulation approach, the (𝑧𝑇) has been improved to 1.3 at 900℃ [37]. This is a material with a 

lot of potential for waste heat recovery, the big concern is the cost, since most of the successful 

experiments have been conducted using more germanium than silicon. Another concern with this 

material is the thermal oxidation which can lead to segregation of Ge atoms under the oxide, 

leading to unacceptable high interface state densities [38]. 
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1.3.4 Oxides 

Most of the state-of-the-art thermoelectric materials are made with heavy elements including 

Bi, Pb, Sb or Te, and as mentioned in previous sections their figure of merit ranges from 1~2. 

An oxide can be described as a chemical compound in which oxygen is bonded to one or more 

electropositive atoms, and in a metal oxide the cations are usually transition metals and the oxygen 

atoms act as the anions. The use of oxides is not something new, they have been under research as 

a thermoelectric material for a considerable time, but in the last 20 years their properties have been 

enhanced greatly. 

 Oxides were believed to make not viable thermoelectric materials because their figure of merit 

is considered low mostly because of the low carrier mobility and high lattice thermal conductivity, 

but lately with the discovery of the p-type layered cobaltites 𝑁𝑎𝑥𝐶𝑜𝑂2, 𝐶𝑎4𝐶𝑜3𝑂9, 𝐵𝑖2𝑆𝑟2𝐶𝑜2𝑂9  

and the n-type 𝐶𝑎𝑀𝑛𝑂3 𝑎𝑛𝑑 𝑆𝑟𝑇𝑖𝑂3 oxides have earned their place as good thermoelectric 

materials for high temperature applications. Oxides have the clear advantage of being cheaper, 

nontoxic and easy to manufacture; they are under research and the figure of merit is achieving 

extraordinary levels for this materials, by tuning their properties, and in some other cases, by 

following a nanostructure approach [20].   

Oxides could be single and polycrystal n-type materials and single and polycrystal p-type 

materials. For  n-type single crystal materials, the highest ZT reported in 2005 for 𝑆𝑟𝑇𝑖𝑂3 doped 

with 𝐿𝑎/𝑁𝑏 was ~0.3  [39]. For n-type polycrystal materials several figures of merit have been 

reported for different materials, the most common and highest are for (𝐿𝑎, 𝑆𝑟)𝐶𝑜𝑂3 with ~0.18 

[40], 𝑆𝑟𝑇𝑖𝑂3 / 𝑁𝑏 with ~0.3 [41], 𝐶𝑎𝑀𝑛𝑂3 / 𝑁𝑏 with ~0.33 [42] and (𝐺𝑎, 𝐴𝑙)𝑍𝑛𝑂 with ~0.8 

[43]. For single crystal p-type materials is possible to mention 𝑁𝑎𝑥𝐶𝑜𝑂2 with a ZT of ~1 [44], 
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Figure 6. Evolution of p- and n-type TE materials and their respective ZT 

𝐵𝑖2𝑆𝑟2𝐶𝑜2𝑂 with a ZT of ~1.1 [45] and 𝐶𝑎3𝐶𝑜4𝑂9 with an extrapolated ZT of ~0.87 [46]. For 

polycrystal p-type materials the values reported are for 𝑁𝑎𝑥𝐶𝑜𝑂2 with a ZT of ~0.8 [47] and 

𝐶𝑎3𝐶𝑜4𝑂9 doped with 𝐺𝑎 with figure of merit of ~0.33 [48]. All this information is summarized 

in Fig. 6 [20]. 

 

 

 

 

 

 

 

 

 

 

 

1.3.4.1 Misfit Cobaltites 

 The misfit structure in oxides and in cobaltites was discovered in 1998 with the synthesis of 

𝑇𝑙0.41(𝑆𝑟0.9𝑂)1.12𝐶𝑜𝑂2 [49] and they are composite structures consisting of two different layers 

with different crystal lattices. The first crystal lattice forms a square or pseudo-square lattice, which 

shows a rock salt type structure. The second crystal lattice is triangular, so is pseudo-hexagonal 
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Figure 7. Schematic crystal structure of nanoscale misfit-layered Ca3Co4O9 along b-axis 

and corresponds to the cobalt-oxygen lattice [50]. One of the most promising misfit cobaltites is 

the 𝐶𝑎3𝐶𝑜4𝑂9 expressed in different ways but in fact the formulation corresponds to 

[𝐶𝑎2𝐶𝑜𝑂3][𝐶𝑜𝑂2]1.62. The schematic crystal structure along the b axis is shown in Fig. 7 [51]. 

 

  

 

 

 

 

 

 

 

The simplest representation is based on two monoclinic subsystems, the first subsystem is 

composed of single 𝐶𝑜𝑂2 sheets of the 𝐶𝑑𝐼2 type and the second subsystem is composed of triple 

𝐶𝑎2𝐶𝑜𝑂3 layers of the rock salt-type. The 𝐶𝑜𝑂2 sheets act as the conduction plane [50]. Cobalt 

oxides offer a wide range of options for the creation of frameworks, not only stoichiometric oxides 

but also nonstoichiometric, involving the mixing of valences and the presence of oxygen 

vacancies. The stacking of the triangular lattice with a square lattice results in significant 

distortions at the interface since the b-axis dimensions in each layer are very different, because of 

that reason, these oxides are called misfits [50].  
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Ca3Co4O9 is a material with several desirable properties including high thermal stability, high 

tolerance to oxidation, relatively low toxicity, easy to manufacture, availability of the precursors 

and high figure of merit [46]. The crystal structure of Ca3Co4O9 is a misfit layered structure 

composed of two monoclinic subsystems, the first subsystem is composed of single 𝐶𝑜𝑂2 sheets 

of the 𝐶𝑑𝐼2 type and the second subsystem is composed of triple 𝐶𝑎2𝐶𝑜𝑂3 layers of the rock salt-

type. The 𝐶𝑜𝑂2 sheets act as the conduction plane and the misfit 𝐶𝑎2𝐶𝑜𝑂3 layers serve as phonon 

scattering centers for reducing thermal conductivity. 

A value of ZT=0.83 at 973 K has been reported by Funahashi [46] for CCO single crystal. 

However, the use of single crystals for practical applications is not viable since it is too expensive, 

and they are also hard to produce. Based on those constraints, an option that has been under 

analysis and review, is the use of polycrystalline CCO which is cheaper and easier to produce. The 

problem with the polycrystalline CCO is the high structural anisotropy which leads to the 

formation of plate-like grains during the crystallization process [52]. This anisotropy will translate 

in lower performance. Current polycrystalline CCO performance of ZT ~0.1 − 0.25 [48, 53, 54] 

have been reported. Based on those results it is clear the difference in performance by using single 

or polycrystalline CCO.  

The anisotropy of the material is intrinsically related to the fabrication process, ranging from 

the powder synthesis to the ceramic formation and sintering.  

For the powder synthesis, there are several different methods, the most common ones are the 

solid-state reaction and sol-gel chemical route.  

In the solid-state reaction method, the precursor powders react at high temperatures to form 

the material. The advantages of this method are mostly from the economics point of view since 
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there is no need for solvents and it is possible to bypass the need of a purification process. The 

disadvantages are possible high viscosity in reactant system, the need of mixing the reactants in a 

homogeneous system, powder size and morphology, incomplete reactions and inhomogeneity may 

occur.   

The sol-gel chemical route is another option to synthetize CCO. The principle behind the sol-

gel method is to dissolve the compound in a liquid in order to bring it back as a solid in a controlled 

manner. The steps involved are hydrolysis, condensation and pyrolytic decomposition of the metal 

precursors producing fine and monodispersed metal oxides [55]. The advantages of this method 

are that is possible to control the shape and morphology of the synthesized solid particles. Can 

easily shape materials into complex geometries in a gel state. It is possible to use low temperature 

sintering. Can produce thin bond-coating to provide excellent adhesion between the metallic 

substrate and the top coat. The disadvantages are weak bonding, low wear-resistance, high 

permeability and difficulty to control the porosity of the materials. 

To improve the alignment of the grains several physical, mechanical and chemical processes 

are available. Hot-pressing and spark plasma sintering are the most common methods used to 

produce well aligned bulk materials in anisotropic systems. There are some other methods such as 

template grain growth, microwave texturing and laser floating zone melting. 

Hot pressing is a high-pressure process for forming a compact powder at a temperature high 

enough to induce sintering and creep processes. This method allows the control of the 

microstructure of the ceramics. This method greatly improves the grain alignment and produces a 

homogenous and low porosity products with better mechanical properties [55]. 
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The spark plasma sintering is a consolidation sintering process where high amperage pulsed 

DC current activates the consolidation and reaction-sintering of materials. This methods offers 

several advantages such as full density, controlled porosity, minimal grain growth, ease of use, no 

binders necessary and it retains nanometric particle structure [55]. 

All the techniques described before will improve the thermoelectric performance of CCO. 

There are more techniques that can be used to improve the thermoelectric performance of CCO 

such as ion doping and the incorporation of nanoinclusions. 

Ion doping is a method used to enhance the thermoelectric properties of the CCO. Here ions 

are doped at the Ca and Co cations. For Ca-cation most of the time rare-earth elements are used 

such as Lu [56], Yb [57], Gd [58], also La, Pr, Dy and Y [59], the reason behind doping the Ca-

cation is because this doping increases or decreases the carrier concentration of the system and it 

will increase the Seebeck coefficient due to the decrease in hole concentration, also it is believed 

that doping with heavy ions can enhance phonon scattering and suppress the lattice contribution 

to the thermal conductivity. The substituting on the Ca site may modify the Co oxidation state in 

two different ways: introducing trivalent elements could decrease the cobalt valence and also the 

carrier concentration, and increasing the distortion of lattice parameters  by doping smaller ionic 

radii rare-earth elements could increase the oxygen stoichiometry more quickly than the Co 

stoichiometry thus increasing the Co valence [57]. In the case of the Co-cation the effect of doping 

is more significative but more complex since the structural arrangement of the  𝐶𝑜𝑂2 layers 

contains cations with valences of 3+ 𝑎𝑛𝑑 4+ and since those layers are responsible for transporting 

the charge carriers the results can be difficult to predict [51], nevertheless several experiments 

have been performed using Ga [60], Ni, Fe, Mn, Cu [61]. 
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The final method considered on this review is the incorporation of nanoinclusions. This 

technique has been successfully implemented by using metal nanoinclusions. The nano-inclusions 

will act on the carrier concentration and the lattice parameter of the material, this will improve the 

electrical connections between the ceramic grains and may reduce the thermal conductivity by 

phonon scattering effects. Significant improvements have been reported by different authors using 

this method [37, 55]. 
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Chapter 2                                        

Enhancement of Electrical Transport 

Properties of Ca3Co4O9 by cation 

substitution. 

Ca3Co4O9 is a thermoelectric material with excellent properties for single crystal. 

Polycrystalline performance is still too low and needs to be improved. One of the approaches used  

is by doping the different available cations of the material. If the Ca-cation is doped (usually with 

a rare-earth material), the Seebeck coefficient may increase due to the reduction in hole 

concentration by the substitution of the rare-earth element for Ca. If the Co-cation is doped, the 

unique structural arrangement of the 𝐶𝑜𝑂2 which is responsible for the transport of the charge 

carriers, will generate significant changes in the properties [50]. In chapter 2, in order to 

corroborate the effect of the substitution in the different cations, four series of experiments were 

conducted by doping Ca3Co4O9 with Lu, Ga, Cu and a dual substitution of Ga+Cu. 
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2.1 Thermoelectric Properties of pure Ca3Co4O9 

Ca3Co4O9 powder precursors were prepared by the chemical sol-gel route and calcined at 

973 𝐾 [62], after that, a series of pellets were prepared and sintered at different temperatures. The 

prepared material was later characterized by several techniques, with special focus on the electrical 

and thermal characterizations, since they will provide the combined performance and the figure of 

merit for the material. 

 

2.1.1 Introduction 

In most of the production processes that include energy conversion or require heat, a significant 

percentage of the total energy applied is wasted as heat, this is a field that can be exploited by 

thermoelectric materials since they are capable of use that heat and convert it to electricity, using 

solid-state devices without moving parts and maintenance-free.  

Ca3Co4O9 is a material with several desirable properties including high thermal stability, high 

tolerance to oxidation, relatively low toxicity, easy to manufacture, availability of the precursors 

and high figure of merit [46]. The crystal structure of Ca3Co4O9 is a misfit layered structure 

composed of two monoclinic subsystems, the first subsystem is composed of single 𝐶𝑜𝑂2 sheets 

of the 𝐶𝑑𝐼2 type and the second subsystem is composed of triple 𝐶𝑎2𝐶𝑜𝑂3 layers of the rock salt-

type. The 𝐶𝑜𝑂2 sheets act as the conduction plane and the misfit 𝐶𝑎2𝐶𝑜𝑂3 layers serve as phonon 

scattering centers for reducing thermal conductivity. 

The production of Ca3Co4O9 is mostly based in solid state reaction or a solid-gel method. Each 

method has their benefits but for the experiments conducted in this thesis a solid-gel method was 

used, since it offers lower fabrication cost and a simpler control of stoichiometry [62]. 
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2.1.2 Experimental Procedure 

CCO was prepared using a sol-gel method using the formula 𝐶𝑎3𝐶𝑜4𝑂9 and different 

precursors. First citric acid and polyethylene glycol were dissolved in deionized water, then 

𝐶𝑎(𝑁𝑂3)2𝑥𝐻2𝑂  (Calcium nitrate) and 𝐶𝑜(𝑁𝑂3)2𝑥𝐻2𝑂 (Cobalt nitrate) were added to the mix in 

stoichiometric amounts, and finally ethylene glycol and nitric acid were added to the mix. The mix 

then was manually stirred until all the precursors were dissolved and a homogenous mix was 

obtained. Once the mix was homogenous, the mix was put in a hot stage heated at ~353 𝐾and 

stirred during 3 hours, in order to remove the water from the solution. After 3 hours a gel. Then, 

the gel was ashed at 773 𝐾 for 2 h in a Lindberg/Blue ThermoScientific box furnace. The obtained 

ash was put in a planetary ball milling machine (Retsch PM 100) with ethyl alcohol for 30 minutes. 

The obtained liquid was dried for 8 hrs. The result was a thin layer of powder, then it was manually 

ground to obtain a fine powder. The powder was later calcined at 973 𝐾 for 4 hours using a 

10 𝐾/𝑚𝑖𝑛 ramp for heating and cooling in a tube furnace with oxygen flow. The calcined powder 

was uniaxially pressed into pellets (0.6 g for LSR and 6 g for LFA) at 1 GPa for 10 minutes at 

298 𝐾. The pellets were sintered at two different temperatures at 1193 𝐾 𝑎𝑛𝑑 1233 𝐾 to observe 

the effect in the thermoelectrical properties; the pellets were sintered in a tube furnace with oxygen 

flow. The sintering program used two different ramps, 10 𝐾/𝑚𝑖𝑛 for heating and a 4 𝐾/𝑚𝑖𝑛 for 

cooling. The desired sintering temperature was held for 9 hrs. The preparation process is 

summarized in figure 8. Once the pellets were ready, a rectangular piece of 4 mm width was cut 

for the LSR machine and for the LFA machine a rectangular piece of 11 mm width was cut. 

For the electrical properties of the material, the samples were examined in the parallel direction 

to the pressed plane using Linseis LSR-1100 in a low pressure He environment [62] using a 

temperature range from 298 𝑡𝑜 1073 𝐾. The characterization provided the absolute Seebeck 
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Figure 8. Flowchart of the experiments with Ca3Co4O9 

coefficient and the electrical resistivity of the material. For the thermal properties of the samples 

a Laser Flash Analyzer Linseis-1200 was used to characterize the thermal diffusivity and the 

specific heat in the parallel direction to the pressed plane within a temperature range from 

298 𝑡𝑜 1073 𝐾.  

 

 

 

 

 

 

 

 

 

 

 

The morphology of the samples was examined using a JEOL JSM-7600F scanning electron 

microscope which combines ultra-high resolution imaging with optimized analytic functionality. 

The phase identification of the material was obtained using a 𝑃𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙 𝑋′𝑃𝑒𝑟𝑡𝑃𝑟𝑜 𝑋𝑅𝐷 with  

𝐶𝑢 𝐾 − 𝑎𝑙𝑝ℎ𝑎 at room temperature. 
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2.1.3 Results and Discussion 

The density of the different sintered pellets of Ca3Co4O9 prepared using a sol-gel method 

achieved a considerable high density compared to the theoretical value. Table 1 summarizes the 

density information where, apparent density is the density measured using the Archimedes method; 

the calculated density for single crystal is calculated assuming a superlattice of 10 to 11 Ca3Co4O9 

units per supercell and 𝑏 ≈ 8𝑏1 ≈ 13𝑏2 as proposed by Masset et al. [63]. An idealization of the 

lattice parameters was considered based on the values reported by Masset et al. [63] for Ca3Co4O9  

where 𝑎 = 4.8376 Å, 𝑏1 = 4.5565, 𝑏2 = 2.8189, 𝑏 = 36.479 Å, 𝑐 = 10.833 Å and 𝛽 = 98.06. 

The theoretical density was calculated using equation 4.  

𝜌 =
𝑛𝑀𝑤

𝑉𝑐𝑒𝑙𝑙𝐴𝑁
 

Where 𝑛 is the number of molecules in the unit cell, 𝑀𝑤 is the molecular weight, 𝑉𝑐𝑒𝑙𝑙 is the 

volume of the cell and 𝐴𝑁 is the Avogadro’s Number (6.022x1023 𝑚𝑜𝑙−1); the volume of the cell 

is calculated using the unit cell lattice parameters and is equal to 𝑉𝑐𝑒𝑙𝑙 = 𝑎𝑏𝑐𝑠𝑖𝑛𝛽;  the relative 

density to single crystal of column  4 is the apparent density compared to the theoretical density 

of 4.68 𝑔 ∗ 𝑐𝑚−3 [63].  

Table 1. Apparent densities of Ca3Co4O9 sintered pellets 

Sample 
CCO Pure 
 

Apparent 
density 𝑔 ∗

𝑐𝑚−3 

Calculated* 
Density for 

Single Crystal 
(g/cm3) 

Relative Density to 
single crystal 
Ca3Co4O9 (%) 
(A.C.Masset) 

 LSR 
1193 K 

3.23 4.68 69 

1233 K 3.64 4.68 78 

LFA 
1193 K 

3.32 4.68 71 

1233 K 3.77 4.68 81 
Single crystal (Masset) 4.68 100 

(4) 



Chapter 2: Enhancement of Electrical Transport Properties of Ca3Co4O9 by cation substitution      

23 

 

Figure 9. XRD patterns of Ca3Co4 O9 at different sintering temperatures 

The density is reported for two different types of pellets. First the pellets for the LSR machine, 

which provided the electrical characterization of the material, these pellets are 9 mm in diameter 

and they are made using 0.6 g of material; the second pellets are for the LFA machine which 

provided the thermal characterization of the material, these pellets are 13 mm in diameter and they 

are made using 6 g of material. 

The phase identification of the material was obtained using XRD. In order to obtain peaks with 

good intensity and be able to identify any possible phase, the sintered pellets were ground until a 

fine powder was obtained. The Ca3Co4O9 diffraction peaks can be indexed as those reported by 

Masset et al.[63] with monoclinic symmetry. Fig. 9 shows the XRD powder patterns. The peaks 

with highest intensity are the ones that belong to the (00𝑙) plane family. 
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Figure 10. SEM micrographs Ca3Co4O9 at 920 °C. a) Pressed plane, b) cross section 

Figure 11. SEM micrographs Ca3Co4O9 at 960 °C. a) Pressed plane, b) cross section 

SEM micrographs for Ca3Co4O9 powder precursors sintered at different temperatures are 

shown in Figures 10 and 11. 10(a) and 11 (a) show the morphologies of the corresponding pressed 

planes, and 10(b) and 11 (b) show the fractured cross section of the pellets. The crystal grains in 

the SEM images consists of bundles of nano-lamellas. Another feature that can be observed, is the 

fact that, all the powder contains facetted rectangular shaped crystal grains, tending to be aligned 

perpendicular to the applied stress axis, and with higher sintering temperature a more compact 

structure can be observed and this is reassured by the reported densities. Looking at the SEM 

micrographs is clear that the alignment is poor and that will have a negative effect on the 

thermoelectric properties of the material. 
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Fig. 12 displays the electrical resistivity (𝜌) 𝜇Ω𝑚, the Seebeck coefficient (𝑆) 𝜇𝑉𝐾−1 and the 

power factor 𝑚𝑊𝑚−1𝐾−2 of the sintered samples of 𝐶𝑎3𝐶𝑜4𝑂9 at different temperatures. The 

lowest 𝜌 for the sample sintered at 1193 K was 85.45 𝜇Ω𝑚 at 321 K and for the sample sintered 

at 1233K was 69.18 𝜇Ω𝑚 at 316 K. The maximum 𝜌 for the sample sintered at 1193 K was 122.76 

𝜇Ω𝑚 at 1082 K and for the sample sintered at 1233K was 91.25 𝜇Ω𝑚 at 1082 K. In the case of the 

Seebeck coefficient the maximum value for the sample sintered at 1193 K was 175.67 𝜇𝑉𝐾−1at 

1057 K and for the sample sintered at 1233K was 173.68 𝜇𝑉𝐾−1 at 1083 K. The power factor was 

calculated by 𝑃 = 𝑠2

𝜌⁄ . The maximum power factor of the sample sintered at 1193 K was 

0.265 𝑚𝑊𝑚−1𝐾−2 at 1057 K and for the sample sintered at 1233 K was 0.338 𝑚𝑊𝑚−1𝐾−2 at 

1034 K. The different electrical properties values of these samples will be used as a baseline to all 

the other experiments reported in this thesis. 

Thermal conductivity is calculated using the equation 𝑘 = 𝐶𝑝𝜆𝜌, where 𝐶𝑝 is the specific heat, 

𝜆 is the thermal diffusivity and 𝜌 is the density. The experiments were conducted parallel to the 

pressed plane, thermal conductivity as a function of temperature is shown in Fig. 13.  
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Figure 12. Electrical transport properties of Ca3Co4O9+d 
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Figure 13. Thermoelectric properties and Figure of Merit of Ca3Co4O9+d 

 

 

 

 

 

 

 

 

 

 

 

 

 

For the sample sintered at 1233 K the thermal conductivity showed a maximum value of 

2.661 𝑊𝑚−1𝐾−1 and a minimum of  2.187 𝑊𝑚−1𝐾−1 at 973 K. For the sample sintered at 1193 

K the thermal conductivity showed a maximum value of 1.783 𝑊𝑚−1𝐾−1 and a minimum of  

1.595 𝑊𝑚−1𝐾−1 at 973 K. A lower sintering temperature will have a more positive effect in the 

thermal properties of the material but will have a negative effect on the electrical properties. In 

order to be able to make a comparison between the two sets, is necessary to look at the figure of 

merit, which combines the thermoelectric properties of the material. The maximum ZT for the 
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sample sintered at 1193 K was 0.1611 at 1073 K. For the sample sintered at 1233 K the maximum 

ZT was 0.1574 at 1073 K. According to this experiment, there is no a considerable difference 

between the overall ZT of samples sintered at 1193 K and 1233 K. 

 

2.1.4 Conclusion 

Based on the reported results it is possible to conclude that the sintering temperature will 

influence the thermoelectric properties of the material. Sintering temperature of 1193 K, will affect 

the electrical properties, by having a higher resistivity and a lower power factor compared to the 

sample sintered at 1233 K. For the thermal conductivity, a lower sintering temperature will 

translate in a lower thermal conductivity. In this case, the ZT for both materials is similar, and that 

is the reason why, through the design of experiments conducted, to improve the thermoelectric 

properties of Ca3Co4O9, special attention was put to the possible effect of the changes that were 

designed, and based on the need of improving the electrical or thermal properties, a suitable 

temperature was selected. There are several microstructural factors that will affect the performance 

of the material, for example the SEM images show a very porous structure and poor alignment that 

will translate in poor performance. It is necessary to improve the alignment of the material and 

facilitate the formation of a well-structured and layered Ca3Co4O9, once that goal is achieved, the 

performance will be considerable higher. The results reported on this section will be used to 

compare the effects of the substitution of Ca or Co cations and also the addition of several different 

elements. 
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2.2 Lu Substitution of Ca 

A series of experiments were conducted in order to observe the effect of Ca-cation substitution 

by Lu in Ca3Co4O9 using the chemical formula 𝐶𝑎3−𝑥𝐿𝑢𝑥𝐶𝑜4𝑂9 where 𝑥 =

0, 0.05, 0.10, 0.15, 0.20. The material was prepared by sol-gel method. The electrical properties 

were investigated from 298K to 1073K. The substitution provided a significant improvement to 

the electrical properties of the material, it also contributed to achieve pellets with higher density. 

The highest power factor was 0.415 𝑚𝑊𝑚−1𝐾−2 at 1059 K with 𝑥 = 0.10 which represents an 

improvement of 26% compared to a sample without doping. The Seebeck coefficient remained 

increasing with increased doping concentration. The major contribution was observed in the 

resistivity where a minimum of 46.7 𝜇Ω𝑚 at 336 K was achieved, which represents an average 

improvement of 32%. The results of these experiments clearly showed that the substitution of Lu 

in the Ca-cation for Ca3Co4O9,will benefit the electrical transport properties of the material. 

 

2.2.1 Introduction 

The effects of human activities and the industrialization are clear in the climate changes that 

the world has been experiencing, there is an effect that is escalating and it really represents a threat 

to the world; it is possible to list problems like global warming, greenhouse effect and several 

others, but the consensus is that is necessary to reduce the amount of 𝐶𝑂2 in the atmosphere. 

Technology is improving quickly, but not at the required rate, so it is necessary to optimize what 

is currently available. The majority of the processes that include heat nowadays are thermally 

inefficient since most of the energy used is wasted as radiation, and just a small fraction of the 

energy applied is directly used in the process. This can change and thermoelectric materials are a 

viable option. Unfortunately the energy conversion efficiency is low and there is a need for more 
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efficient thermoelectric materials that is the reason why these materials have been under research 

for a considerable and great improvements have been achieved. An option that has attracted a lot 

of attention is the use of layered cobalt oxides, especially 𝐶𝑎3𝐶𝑜4𝑂9 a misfit cobalt oxide with an 

extrapolated figure of merit of 0.87 [46]. The doping of the Ca-cation in Ca3Co4O9 is something 

that has been done extensively [26, 56, 57] in order to increase the Seebeck coefficient and reduce 

the thermal conductivity of a material, this is usually achieved by using rare-earth elements. The 

use of Lutetium for this experiment is solely based in the fact that is believed that doping a 

thermoelectric material with heavy ions, it is possible to enhance the phonon scattering and reduce 

the lattice contribution to the thermal conductivity [56]. 

 

2.2.2 Experimental Procedure 

𝐶𝑎3−𝑥𝐿𝑢𝑥𝐶𝑜4𝑂9 was prepared using a sol-gel method, with 𝑥 = 0, 0.05, 0.10, 0.15 𝑎𝑛𝑑 0.20. 

First citric acid and polyethylene glycol were dissolved in deionized water, then 𝐶𝑎(𝑁𝑂3)2𝑥𝐻2𝑂  

(Calcium nitrate), 𝐶𝑜(𝑁𝑂3)2𝑥𝐻2𝑂 (Cobalt nitrate) and 𝐿𝑢(𝑁𝑂3)3𝑥𝐻2𝑂 (Lutetium nitrate 

hydrate) were added to the mix in stoichiometric amounts and finally ethylene glycol and nitric 

acid were added to the mix. The mix then was manually stirred until all the precursors were 

dissolved and a homogenous mix was obtained. Once the mix was homogenous, the mix was put 

in a hot stage heated at ~353 𝐾and stirred during 3 hours in order to remove the water from the 

solution. After 3 hours a gel was formed. Then the gel was ashed at 773 𝐾 for 2 h in a 

Lindberg/Blue ThermoScientific box furnace. The obtained ash was put in a planetary ball milling 

machine (Retsch PM 100) with ethyl alcohol for 30 minutes. The obtained liquid was dried for 8 

hrs. The result was a thin layer of powder, then it was manually grounded to obtain a fine powder. 

The powder was later calcined at 973 𝐾 for 4 hours using a 10 𝐾/𝑚𝑖𝑛 ramp for heating and 
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cooling in a tube furnace with oxygen flow. The calcined powder was uniaxially pressed into 

pellets (0.6 g)  at 1 GPa for 10 minutes at 298 𝐾. The pellets were sintered at 1233 𝐾 in a tube 

furnace with oxygen flow. The sintering program used two different ramps, 10 𝐾/𝑚𝑖𝑛 for heating 

and a 4 𝐾/𝑚𝑖𝑛 for cooling. The desired sintering temperature was held for 9 hrs. Once the pellets 

were ready a rectangular piece of 4 mm width was cut for the LSR machine. 

The electrical characterization of the material was performed in the parallel direction to the 

pressed plane using Linseis LSR-1100 in a He environment using a temperature range from 

298 𝑡𝑜 1073 𝐾. The characterization provided the absolute Seebeck coefficient, the electrical 

resistivity of the material and the power factor. 

 

2.2.3 Results and Discussion 

The substitution of Ca by Lu as expected, improved the density of the sintered pellets by a 

considerable percentage (10% for the samples with 0.10 and 0.15 concentrations). Table 2 

summarizes the density information where apparent density is the density measured using the 

Archimedes method; the calculated density for single crystal is calculated assuming a superlattice 

of 10 to 11 𝐶𝑎3𝐶𝑜4𝑂9 units per supercell and 𝑏 ≈ 8𝑏1 ≈ 13𝑏2 as proposed by Masset et al. [63]. 

An idealization of the lattice parameters was considered based on the values reported by Masset 

et al. [63] for 𝐶𝑎3𝐶𝑜4𝑂9 where 𝑎 = 4.8376 Å, 𝑏1 = 4.5565, 𝑏2 = 2.8189, 𝑏 = 36.479 Å, 𝑐 =

10.833 Å and 𝛽 = 98.06, this idealization disregards any possible change in the volume of the 

unit cell with the substitution of Ca by Lu. For future work it is recommended to obtain the lattice 

parameters of the Lu set in order to obtain a more comprehensive study and obtain a more accurate 

density value. The theoretical density was calculated using equation 4. The relative density to 
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single crystal of column 5 is the apparent density divided by the calculated density 

for 𝐶𝑎3−𝑥𝐿𝑢𝑥𝐶𝑜4𝑂9.  

Table 2. Apparent densities of Ca(3-x)LuxCo4O9 sintered pellets 

Sample 
Lu 

Apparent 
density 𝑔 ∗

𝑐𝑚−3 

Calculated* 
Density for 

Single Crystal 
(g/cm3) 

Relative Density to 
single crystal 
Ca3Co4O9 (%) 
(A.C.Masset) 

Relative Density to 
single crystal  

Ca(3-x)LuxCo4O9 (%) 
Calculated 

 x=0 3.64 4.68 78 78 
 x=0.5 3.98 4.74 85 84 

 x=0.10 4.10 4.80 88 85 
 x=0.15 4.07 4.87 87 84 

 x=0.20 3.99 4.93 85 81 
Single crystal (Masset) 4.68 100 100 

 

Fig. 14 displays the electrical resistivity (𝜌) 𝜇Ω𝑚, the Seebeck coefficient (𝑆) 𝜇𝑉𝐾−1 and the 

power factor 𝑚𝑊𝑚−1𝐾−2 of the different doped samples. The resistivity 𝜌 showed a positive 

trend, the addition of Lu decreased the 𝜌 of the material until 0.15, for 0.20 the resistivity increased, 

this is because the substitution of trivalent 𝐿𝑢+3 for divalent 𝐶𝑎+2 decreases the concentration of 

holes in the material [56]. The lowest 𝜌 was achieved at 0.05 with a minimum of 46.7 𝜇Ω𝑚 at 336 

K which represents an improvement of 52% compared to the baseline at that point, the average 

improvement represents 32%.  The Seebeck coefficient clearly shows a trend where it increases 

along with the increase of the Lu doping but for samples doped with 0.05 and 0.10 the Seebeck 

coefficient starts higher than the baseline but at the final stage of the experiment, for values over 

900 K the Seebeck coefficient is smaller than the baseline. For the set the 𝑆 is higher at 

temperatures from 950 K to 1070 K. The highest 𝑆 was 179.19 𝜇𝑉𝐾−1 at 1058 K with a Lu 

concentration of 0.20, which represents an improvement of 3.5% compared to the baseline at that 

point, the average improvement using the maximum and minimum values represents 4.4%. The 

power factor was also greatly increased by the Lu substitution where for most of the different 
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concentrations a higher power factor was obtained just excluding the 0.20 concentration where at 

temperatures above 1000 K the power factor was lower than the baseline. The highest power factor 

was achieved at 0.10 with 0.415 𝑚𝑊𝑚−1𝐾−2 at 1059 K which represents an improvement of 

23% compared to the baseline at that point, the average improvement represents 26%. These 

results can be improved by using a nanostructure control and by improving the morphology of the 

microstructural features of the material. The results showed a positive effect of Lu substitution on 

Ca3Co4O9 but it is still necessary to look at the thermal properties of the material in order to observe 

the final figure of merit of the material; it has been reported that Lu will decrease the thermal 

conductivity of the material [56, 64] that can be demonstrated in future work.   
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Figure 14. Electrical transport properties of Ca3-xLuxCo4O9+d, x=0, 0.05, 0.10. 0.15, 0.20. 
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2.2.4 Conclusions 

It is possible to conclude that the use of Lu as a doping element in Ca3Co4O9 will benefit the 

overall electrical properties of the material. The use of Lu will greatly affect the density of the 

material, the Seebeck coefficient and also the resistivity. Using a 0.10 concentration of Lu in 

Ca3Co4O9 will translate in an improvement of 26% compared to a Ca3Co4O9 sample without any 

doping, the maximum power factor obtained for the series of experiments was 0.415 𝑚𝑊𝑚−1𝐾−2 

at 1059 K. This work shows that doping Ca3Co4O9 with Lu, is a verifiable way of improving the 

electrical properties of the material and a deeper study of the nanostructure could further improve 

this results. It is important to make an analysis and consider the cost of using Lu for Ca3Co4O9 

since Lu is a rare-earth element and the economic cost of the material is relatively high. 
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2.3 Ga Substitution of Co 

A series of experiments were conducted in order to observe the effect of Co-cation substitution 

by Ga in Ca3Co4O9 using the chemical formula 𝐶𝑎3𝐶𝑜4−𝑥𝐺𝑎𝑥𝑂9 where 𝑥 =

0, 0.05, 0.10, 0.15, 0.20. The material was prepared by sol-gel method. The electrical properties 

were investigated from 298K to 1073K. The substitution provided a small improvement to the 

electrical properties of the material, and greatly affected the density of the sintered pellets. An 

unexpected effect on the electrical resistivity was observed at 0.10 where the resistivity had an 

inconsistency compared to the overall behavior of the set. The highest power factor was 

0.364 𝑚𝑊𝑚−1𝐾−2 at 837 K with 𝑥 = 0.15 which represents an improvement of 19.2% compared 

to a sample without doping. The Seebeck coefficient started with low values from 300 K to 700 

K, above 700 K it showed higher values for all concentrations, the overall improvement with a Ga 

concentration of 0.10 represents 3.1%. The major contribution was observed in the resistivity 

where a minimum of 47.7 𝜇Ω𝑚 at 317 K which represents an improvement of 45% at that point, 

but the overall resistivity improvement using the maximum and minimum values represents 6.8%. 

The results of these experiments clearly show that the substitution of Ga in the Co-cation for 

Ca3Co4O9 will benefit the electrical transport properties of the material. 

 

2.3.1 Introduction 

The discovery and understanding of the Seebeck coefficient led to an extensive search for 

thermoelectric materials with outstanding performance, misfit-layered Calcium Cobalt Oxides is 

one of them [63]. The idea of using energy that is usually wasted as a result of a process is really 

attractive and Ca3Co4O9 can be considered as a potential candidate for power generation at high 

temperatures [48]. The thermoelectric properties of Ca3Co4O9 can be further improved by several 
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methods, the one proposed in this section is based in the Co-cation partial substitution by Ga. 

Considerable improvement of the electrical properties was achieved. 

 

2.3.2 Experimental Procedure 

𝐶𝑎3𝐶𝑜4−𝑥𝐺𝑎𝑥𝑂9 was prepared using a sol-gel method, with 𝑥 = 0, 0.05, 0.10, 0.15 𝑎𝑛𝑑 0.20. 

First citric acid and polyethylene glycol were dissolved in deionized water, then 𝐶𝑎(𝑁𝑂3)2𝑥𝐻2𝑂  

(Calcium nitrate), 𝐶𝑜(𝑁𝑂3)2𝑥𝐻2𝑂 (Cobalt nitrate) and 𝐺𝑎(𝑁𝑂3)3𝑥𝐻2𝑂 (Gallium nitrate hydrate) 

were added to the mix in stoichiometric amounts and finally ethylene glycol and nitric acid were 

added to the mix. The mix then was manually stirred until all the precursors were dissolved and a 

homogenous mix was obtained. Once the mix was homogenous, the mix was put in a hot stage 

heated at ~353 𝐾and stirred during 3 hours in order to remove the water from the solution. After 

3 hours a gel was formed. Then the gel was ashed at 773 𝐾 for 2 h in a Lindberg/Blue 

ThermoScientific box furnace. The obtained ash was put in a planetary ball milling machine 

(Retsch PM 100) with ethyl alcohol for 30 minutes. The obtained liquid was dried for 8 hrs. The 

result was a thin layer of powder, then it was manually grounded to obtain a fine powder. The 

powder was later calcined at 973 𝐾 for 4 hours using a 10 𝐾/𝑚𝑖𝑛 ramp for heating and cooling 

in a tube furnace with oxygen flow. The calcined powder was uniaxially pressed into pellets at 1 

GPa for 10 minutes at 298 𝐾. The pellets were sintered at 1233 𝐾 in a tube furnace with oxygen 

flow. The sintering program used two different ramps, 10 𝐾/𝑚𝑖𝑛 for heating and a 4 𝐾/𝑚𝑖𝑛 for 

cooling. The desired sintering temperature was held for 9 hrs. 

The electrical characterization of the material was performed in the parallel direction to the 

pressed plane using Linseis LSR-1100 in a He environment using a temperature range from 
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298 𝑡𝑜 1073 𝐾. The characterization provided the absolute Seebeck coefficient, the electrical 

resistivity of the material and the power factor. 

 

2.3.3 Results and Discussion 

The substitution of Co by Ga had an unexpected effect on the density of the sintered pellets. 

With Ga concentration of 0.5 the density remained almost constant compared to the baseline; after 

higher concentrations were reached (0.10 and 0.20) the density decreased by 4 and 6% respectively 

but an interesting effect happened at 0.15 where the density was increased by 2%, this happened 

to be the sample with the best electrical performance from this set. This behavior contradicts the 

effect reported by Nong et al. [65] where the density is improved by the substitution of Ga.  Table 

3 summarizes the density information where apparent density is the density measured using the 

Archimedes method; the calculated density for single crystal is calculated assuming a superlattice 

of 10 to 11 𝐶𝑎3𝐶𝑜4𝑂9 units per supercell and 𝑏 ≈ 8𝑏1 ≈ 13𝑏2 as proposed by Masset et al. [63]. 

An idealization of the lattice parameters was considered based on the values reported by Masset 

et al. [63] for 𝐶𝑎3𝐶𝑜4𝑂9 where 𝑎 = 4.8376 Å, 𝑏1 = 4.5565, 𝑏2 = 2.8189, 𝑏 = 36.479 Å, 𝑐 =

10.833 Å and 𝛽 = 98.06, this idealization disregards any possible change in the volume of the 

unit cell with the substitution of Co by Ga, since the molecular weight of Gallium is similar to the 

molecular weight of Cobalt the expected variations will be minimal. The theoretical density was 

calculated using equation 4. The relative density to single crystal of column  4 is the apparent 

density compared to the theoretical density of 4.68 𝑔 ∗ 𝑐𝑚−3 [63]; the relative density to single 

crystal of column 5 is the apparent density divided by the calculated density for 𝐶𝑎3𝐶𝑜4−𝑥𝐺𝑎𝑥𝑂9. 
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Figure 15. TEM micrograph for Ca3Co(4-x)GaxO9 

Table 3. Apparent densities of Ca3Co(4-x)GaxO9 sintered pellets 

Sample 
Ga 

Apparent 
density 𝑔 ∗

𝑐𝑚−3 

Calculated* 
Density for 

Single Crystal 
(g/cm3) 

Relative Density to 
single crystal 
Ca3Co4O9 (%) 
(A.C.Masset) 

Relative Density to 
single crystal 

 Ca3Co(4-x)GaxO9  
(%) 

Calculated 

 x=0 3.64 4.68 78 78 
 x=0.5 3.63 4.68 78 78 

 x=0.10 3.41 4.69 73 73 
 x=0.15 3.71 4.69 79 79 

 x=0.20 3.32 4.70 71 71 
Single crystal (Masset) 4.68 100 99 

 

Fig. 15 shows that there is no a significant lamella thickness increase as the Ga substitution 

increases. 

 

 

 

 

 

 

Fig. 16 shows the electron diffraction patterns from systematic tilting of the TEM sample. 

From here is possible to conclude that, there is no a secondary phase formation with different Ga 

substitution, and that Ga is in the CCO lattice. Fig. 17 is a HRTEM image of the lattice with Ga 

substitution x=0.20, this image corroborates that there is no a secondary phase formation with 

different Ga substitution. 
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Figure 16. Electron diffraction patterns from systematic tilting of TEM sample 

Figure 17. HRTEM image of the lattice with Ga substitution Ca3Co4-xGaxO9 (x=0.20) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 18 displays the electrical resistivity (𝜌) 𝜇Ω𝑚, the Seebeck coefficient (𝑆) 𝜇𝑉𝐾−1 and the 

power factor 𝑚𝑊𝑚−1𝐾−2 of the different doped samples. Resistivity had an unprecedented 

behavior, oscillating with variations under different concentrations. For 0.05 and 0.15 the 

resistivity decreased which is consistent with literature [48] but for 0.10 and 0.20 (low density, 

possible bad alignment) the resistivity increased. It is expected to observe an increase of resistivity 
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with the substitution of Ga by Co [65] but in this case the increase is inconsistent for sample 0.10. 

For the concentration 0.20 the values are showing a possible saturation produced by Ga, and in 

that case the higher density is normal. The decrease in the electrical resistivity can be explained 

with a possible change in charge carrier concentrations, since the introduction of Ga will produce 

more hole carriers [60]. The concentration 0.10 showed a very low density and that could explain 

the high resistivity; several samples were prepared in order to corroborate this effect and the 

density was always around the same values. Even with these results, the resistivity for all the set 

is lower than the resistivity reported by Nong et al. [65] in the 300 to 700 K range by an average 

of 30%, at higher temperature the resistivity of this set is higher by an average of 19%. The lowest 

𝜌 was achieved at 0.15 with a minimum of 47.7 𝜇Ω𝑚 at 317 K which represents an improvement 

of 45% compared to the baseline at that point, the average improvement represents 6.8%. In order 

to be able to explain with more details the variation of the resistivity it will be necessary to perform 

Hall measurements to observe the hole carrier concentration. The Seebeck coefficient showed an 

slight increase compared to the baseline at high temperatures for all the set. From 300 to 700 K 

the 𝑆 was lower than the baseline. For the set the 𝑆 is higher at temperatures from 700 K to 1070 

K. The highest 𝑆 was 179 𝜇𝑉𝐾−1 at 1059 K with a Ga concentration of 0.10, which represents an 

improvement of 3.1% compared to the baseline at that point, the average improvement using the 

maximum and minimum values represents 1.2%. The power factor showed a considerable increase 

for 0.05 and 0.15 concentrations and for 0.10 and 0.20 a lower power factor was achieved. The 

highest power factor was achieved at 0.15 with 0.364 𝑚𝑊𝑚−1𝐾−2 at 837 K which represents an 

improvement of 17.6% compared to the baseline at that point, the average improvement represents 

19.2%. These results can be improved by using a nanostructure control and by improving the 

morphology of the microstructural features of the material. 
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Figure 18. Electrical transport properties of Ca3Co4-xGaxO9+d, x=0, 0.05, 0.10. 0.15, 0.20 
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2.3.4 Conclusions 

As a result of these experiments is possible to conclude that the effect of Ga in Co-cation 

substitution will overall benefit the electrical properties of Ca3Co4O9. Based on the TEM images, 

Ga will go to the CCO lattice, and no secondary phase is present with different Ga substitution. 

The best concentration for 𝐶𝑎3𝐶𝑜4−𝑥𝐺𝑎𝑥𝑂9 according to the experiments is 0.15 where an average 

improvement of 19.2% for the power factor compared to the baseline was achieved. The maximum 

power factor value was 0.364 𝑚𝑊𝑚−1𝐾−2 at 837 K. To obtain a more detailed characterization 

of this material and be able to explain some of the variations, it will be necessary to observe the 

microstructure of the material and characterize the crystallographic texture, and finish the thermal 

characterization in order to be able to obtain the figure of merit, and observe if the electrical 

properties are being affected, but the thermal properties are being favored by Ga substitution. 

According to Nong et al. [48] the partial substitution of heavier ions with trivalence or tetravalence 

in the Co cation, could reduce the thermal conductivity, since heavier mass will reduce the lattice 

thermal conductivity.  
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2.4 Cu Substitution of Co 

A series of experiments were conducted in order to observe the effect of Cu substitution on the 

Co-cation. The electric properties were investigated from 298K to 1073K. The Cu substitution 

showed a positive effect on the Ca3Co4O9 by improving the resistivity and the power factor. The 

Cu substitution did not have a significant effect on the Seebeck coefficient of the material. The 

highest power factor was 0.365 𝑚𝑊𝑚−1𝐾−2 at 932 K which represents an improvement of 11.9% 

compared to the baseline.  

 

2.4.1 Introduction 

Because of the outstanding electrical performance of Cu, the use of Cu is justified in order to 

improve the electrical properties of Ca3Co4O9. 

 

2.4.2 Experimental Procedure 

𝐶𝑎3𝐶𝑜4−𝑥𝐶𝑢𝑥𝑂9 was prepared using a sol-gel method with 𝑥 = 0, 0.01, 0.05 𝑎𝑛𝑑 0.10. First 

citric acid and polyethylene glycol were dissolved in deionized water, then 𝐶𝑎(𝑁𝑂3)2𝑥𝐻2𝑂  

(Calcium nitrate), 𝐶𝑜(𝑁𝑂3)2𝑥𝐻2𝑂 (Cobalt nitrate) and 𝐶𝑢(𝑁𝑂3)2𝑥 3𝐻2𝑂 (Copper nitrate 

trihydrate) were added to the mix in stoichiometric amounts and finally ethylene glycol and nitric 

acid were added to the mix. The mix then was manually stirred until all the precursors were 

dissolved and a homogenous mix was obtained. Once the mix was homogenous, the mix was put 

in a hot stage heated at ~353 𝐾and stirred during 3 hours in order to remove the water from the 

solution. After the 3 hours the a gel was formed. Then the gel was ashed at 773 𝐾 for 2 h in a 

Lindberg/Blue ThermoScientific box furnace. The obtained ash was put in a planetary ball milling 
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machine (Retsch PM 100) with ethyl alcohol for 30 minutes. The obtained liquid was dried for 8 

hrs. The result was a thin layer of powder, then it was manually grounded to obtain a fine powder. 

The powder was later calcined at 973 𝐾 for 4 hours using a 10 𝐾/𝑚𝑖𝑛 ramp for heating and 

cooling in a tube furnace with oxygen flow. The calcined powder was uniaxially pressed into 

pellets (0.6 g for LSR and 6 g for LFA) at 1 GPa for 10 minutes at 298 𝐾. The pellets were sintered 

at 1233 𝐾 in a tube furnace with oxygen flow. The sintering program used two different ramps, 

10 𝐾/𝑚𝑖𝑛 for heating and a 4 𝐾/𝑚𝑖𝑛 for cooling. The desired sintering temperature was held for 

9 hrs. Once the pellets were ready a rectangular piece of 4 mm width was cut for the LSR machine. 

The electrical characterization of the material was performed in the parallel direction to the 

pressed plane using Linseis LSR-1100 in a He environment using a temperature range from 

298 𝑡𝑜 1073 𝐾. The characterization provided the absolute Seebeck coefficient, the electrical 

resistivity of the material and the power factor. For the thermal properties of the samples a Laser 

Flash Analyzer Linseis-1200 was used to characterize the thermal diffusivity and the specific heat 

in the parallel direction to the pressed plane within a temperature range from 298 𝑡𝑜 1073 𝐾. 

The morphology of the samples was examined using a JEOL JSM-7600F scanning electron 

microscope which combines ultra-high resolution imaging with optimized analytic 

functionalityThe phase identification of the material and the quantitative determination of amounts 

of different phased were obtained using a 𝑃𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙 𝑋′𝑃𝑒𝑟𝑡𝑃𝑟𝑜 𝑋𝑅𝐷 with  𝐶𝑢 𝐾 − 𝑎𝑙𝑝ℎ𝑎 at 

room temperature. To analyze the structure of the sintered pellets a JEM-2100 LaB6 Transmission 

Electron Microscope (TEM) operated at 200 kV was used. The samples were prepared by 

mechanically polishing and ion milling the pellets in a liquid-nitrogen cooled holder [62]. Electron 

diffraction, diffraction contrast and high-resolution TEM imaging analysis were performed for 

different samples. 
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2.4.3 Results and Discussion 

The Cu substitution in the Co-cation had a small effect on the density of the sintered pellets 

were for the 0.01 and 0.05 the density was almost the same as the baseline with a small decrease, 

except for the 0.10 concentration where density was increased by 2.5%. Table 4 summarizes the 

density information, where apparent density is the density measured using the Archimedes method; 

the calculated density for single crystal is calculated assuming a superlattice of 10 to 11 𝐶𝑎3𝐶𝑜4𝑂9 

units per supercell and 𝑏 ≈ 8𝑏1 ≈ 13𝑏2 as proposed by Masset et al. [63]. An idealization of the 

lattice parameters was considered based on the values reported by Masset et al. [63] for 𝐶𝑎3𝐶𝑜4𝑂9 

where 𝑎 = 4.8376 Å, 𝑏1 = 4.5565, 𝑏2 = 2.8189, 𝑏 = 36.479 Å, 𝑐 = 10.833 Å and 𝛽 = 98.06, 

this idealization disregards any possible change in the volume of the unit cell with the substitution 

of Co by Cu. The theoretical density was calculated using equation 4. The relative density to single 

crystal of column  4 is the apparent density compared to the theoretical density of 4.68 𝑔 ∗ 𝑐𝑚−3 

[63]; the relative density to single crystal of column 5 is the apparent density divided by the 

calculated density for 𝐶𝑎3𝐶𝑜4−𝑥𝐶𝑢𝑥𝑂9.  

Table 4. Apparent densities of Ca3Co(4-x)CuxO9 sintered pellets 

Sample 
Cu 

Apparent 
density 𝑔 ∗

𝑐𝑚−3 

Calculated* 
Density for 

Single Crystal 
(g/cm3) 

Relative Density to 
single crystal 
Ca3Co4O9 (%) 
(A.C.Masset) 

Relative Density to 
single crystal 

Ca3Co(4-x) CuxO9 
(%) Calculated 

 x=0 3.64 4.68 78 78 
 x=0.01 3.51 4.68 75 75 

 x=0.05 3.57 4.68 76 76 
 x=0.10 3.70 4.68 79 79 

Single crystal (Masset) 4.68 100 99 

 

The phase identification of the material was obtained using XRD. In order to obtain peaks with 

good intensity and be able to identify any possible phase, the sintered pellets were ground until a 
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Figure 19. XRD patterns of  Ca3Co(4-x)CuxO9  (x=0, 0.01, 0.05 & 0.10) 

fine powder was obtained. The Ca3Co(4-x) CuxO9 diffraction peaks can be indexed as those reported 

by Masset et al.[63] with monoclinic symmetry. Fig. 19 shows the XRD powder patterns. The 

peaks with highest intensity are the ones that belong to the (00𝑙) plane family. 

 

 

 

 

 

 

 

 

 

 

Fig.20 shows the microstructure of the pressed plane and Fig. 21 shows the microstructure of 

the fractured cross-section. The pressed plane shows the characteristic rounded shape of the 

pressed ceramic grains observed from the top. From that image, is difficult to observe a tendency 

in the alignment. Fig 21, provides a better perspective in regard of the alignment, and it is possible 

to see that the elongated ceramic grains are aligned perpendicular to the applied stress direction. 

The substitution of Co by Cu, improved the alignment of the grains. The difference between the 

surfaces denotes the texture produced by the stress exerted to the powders. 
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Figure 20. SEM Ca3Co(4-x) CuxO9 micrographs- Pressed plane 

Figure 21.  SEM Ca3Co(4-x) CuxO9 micrographs- Cross section 
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Figure 22. TEM micrograph for Ca3Co(4-x) CuxO9 

Figure 23. TEM diffraction patters from Ca3Co(4-x)CuxO9 with different Cu concentrations 

 Fig. 22 shows that there is no a significant lamella thickness increase as the Cu substitution 

increases. 

 

 

 

 

 

 

 

 

Fig. 23 shows the diffraction patterns from different Cu concentrations. There is no difference 

between samples with different Cu concentration, no extra phases were detected. 

 

 

 

 

 

Fig. 24 displays the electrical resistivity (𝜌) 𝜇Ω𝑚, the Seebeck coefficient (𝑆) 𝜇𝑉𝐾−1 and the 

power factor 𝑚𝑊𝑚−1𝐾−2 of the different doped samples. The  𝜌 was decreased for the 0.01 and 
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0.05 concentrations compared to the baseline and it was increased for the 0.10 concentration. The 

reduction in the resistivity is associated with the lower oxidation state of 𝐶𝑢+2 compared to 

𝐶𝑜+3,+4, this will greatly increase the hole concentration and as a result the resistivity will decrease 

[66]. For higher concentrations the raise in the resistivity can be related to the grain boundary since 

the substitution of Cu will increase the grain size which will translate in an increase in the 

possibility of electrons moving toward neighboring sites and producing an increase in the electrical 

conductivity [67]. The lowest 𝜌 was achieved at 0.01 with a minimum of 44.27 𝜇Ω𝑚 at 323 K 

which represents an improvement of 60% compared to the baseline at that point, the average 

improvement represents 18%. The Seebeck coefficient remained almost constant with small 

variations. At the beginning of the test, all samples showed a smaller 𝑆 than the undoped sample; 

the 0.05 and 0.10 kept that behavior during all the temperature range, just the 0.01 concentration 

showed a higher 𝑆 than the baseline at temperatures above 800 𝐾. The fact that most of the samples 

showed a similar 𝑆 is possible to conclude that the Cu addition does not have a great effect on the 

conduction band or carrier concentration [66]. The highest 𝑆 was 175.74 𝜇𝑉𝐾−1 at 1055 K with 

a Cu concentration of 0.01, which represents an improvement of 1.7% compared to the baseline 

at that point, the average improvement using the maximum and minimum values represents 0.26%. 

The power factor showed a great improve compared to the baseline; 0.01 and 0.05 concentrations 

had a higher power factor, only the 0.10 concentration showed a lower power factor, this is easily 

explained by the high resistivity and low Seebeck coefficient. The highest power factor was 

achieved at 0.05 with 0.365 𝑚𝑊𝑚−1𝐾−2 at 932 K which represents an improvement of 11.9% 

compared to the baseline at that point, the average improvement represents 9.6%. The best average 

power factor was achieved at 0.01 concentration where the power factor was 0.35 which represents 

a 27% increase compared to the baseline. 
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Figure 24. Electrical transport properties of Ca3Co4-xCuxO9+d, x=0, 0.01, 0.05, 0.10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 2: Enhancement of Electrical Transport Properties of Ca3Co4O9 by cation substitution      

52 

 

2.4.4 Conclusion 

These experiments concluded that the effect of Cu in Co-cation substitution will overall benefit 

the electrical properties of Ca3Co4O9. Based on the TEM images, Cu will not have a significant 

impact increasing the lamellar width of the samples, also, the substitution of Co by Cu will not 

generate a secondary phase. The reduction in the resistivity is associated with the lower oxidation 

state of 𝐶𝑢+2 compared to 𝐶𝑜+3,+4, this will greatly increase the hole concentration and as a result 

the resistivity will decrease [66]. For higher concentrations the raise in the resistivity can be related 

to the grain boundary since the substitution of Cu will increase the grain size which will translate 

in an increase in the possibility of electrons moving toward neighboring sites and producing an 

increase in the electrical conductivity [67]. Also there is grain growth with different 

concentrations, which will translate in a reduction of the grain boundaries. A reduction in the 

density was also present on the experiments. The best concentration for 𝐶𝑎3𝐶𝑜4−𝑥𝐶𝑢𝑥𝑂9 

according to the experiments is 0.01 where an average improvement of 27% for the power factor 

compared to the baseline was achieved. The maximum power factor value was 0.365 𝑚𝑊𝑚−1𝐾−2 

at 932 K. To obtain a more detailed characterization of this material  is necessary to complete the 

thermal characterization in order to be able to obtain the figure of merit. 
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2.5 Cu + Ga Dual Substitution of Co 

A series of experiments were conducted in order to observe the effect of Co-cation substitution 

by Cu and Ga dual substitution in Ca3Co4O9 using the chemical formula 𝐶𝑎3𝐶𝑜4−𝑥−𝑦𝐶𝑢𝑥𝐺𝑎𝑦𝑂9 

where 𝑥 = 0, 0.05, 𝑎𝑛𝑑 𝑦 = 0, 0.15. The electrical properties were investigated from 298K to 

1073K. The dual substitution provided a significant improvement to the electrical properties of the 

material. The highest power factor was 0.422 𝑚𝑊𝑚−1𝐾−2 at 1033 K which represents an 

improvement of 25% compared to a sample without doping. The Seebeck coefficient showed a 

decrease by a 2.9%. The major contribution was observed in the resistivity where a minimum of 

51.37 𝜇Ω𝑚 at 331 K was achieved which represents an average improvement of 35%. A systematic 

analysis on the characterized properties is reported on the following sections. 

 

2.5.1 Introduction 

The use of thermoelectric materials as a waste heat recovery is an idea that has been under 

serious consideration for the last decade, the big concern is that most of the available materials are 

expensive, in some cases they are toxic, and in top of that, their efficiency is low. The need of 

more efficient thermoelectric materials is a concern, since their massive use can contribute to 

improve the way energy is consumed in processes where heat is involved, and wasted as a result. 

The use of ceramic oxides is an option, and current research has shown that their properties can be 

improved by several different methods, one of them is the Co-cation substitution. The use of dual 

substitution in a common practice in oxides [68]. 
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2.5.2 Experimental Procedure 

𝐶𝑎3𝐶𝑜4−𝑥−𝑦𝐶𝑢𝑥𝐺𝑎𝑦𝑂9 was prepared using a sol-gel method with 𝑥 = 0, 0.05, 𝑎𝑛𝑑 𝑦 =

0, 0.15. First citric acid and polyethylene glycol were dissolved in deionized water, then 

𝐶𝑎(𝑁𝑂3)2𝑥𝐻2𝑂  (Calcium nitrate), 𝐶𝑜(𝑁𝑂3)2𝑥𝐻2𝑂 (Cobalt nitrate) and 𝐶𝑢(𝑁𝑂3)2𝑥 3𝐻2𝑂 

(Copper nitrate trihydrate) were added to the mix in stoichiometric amounts, and finally ethylene 

glycol and nitric acid were added to the mix. The mix then was manually stirred until all the 

precursors were dissolved and a homogenous mix was obtained. Once the mix was homogenous, 

the mix was put in a hot stage heated at ~353 𝐾and stirred during 3 hours in order to remove the 

water from the solution. After 3 hours a gel was formed. Then the gel was ashed at 773 𝐾 for 2 h 

in a Lindberg/Blue ThermoScientific box furnace. The obtained ash was put in a planetary ball 

milling machine (Retsch PM 100) with ethyl alcohol for 30 minutes. The obtained liquid was dried 

for 8 hrs. The result was a thin layer of powder, then it was manually grounded to obtain a fine 

powder. The powder was later calcined at 973 𝐾 for 4 hours using a 10 𝐾/𝑚𝑖𝑛 ramp for heating 

and cooling in a tube furnace with oxygen flow. The calcined powder was uniaxially pressed into 

pellets (0.6 g) at 1 GPa for 10 minutes at 298 𝐾. The pellets were sintered at 1233 𝐾 in a tube 

furnace with oxygen flow. The sintering program used two different ramps, 10 𝐾/𝑚𝑖𝑛 for heating 

and a 4 𝐾/𝑚𝑖𝑛 for cooling. The desired sintering temperature was held for 9 hrs. Once the pellets 

were ready a rectangular piece of 4 mm width was cut for the LSR machine. 

 The electrical characterization of the material was performed in the parallel direction to the 

pressed plane using Linseis LSR-1100 in a He environment using a temperature range from 

298 𝑡𝑜 1073 𝐾. The characterization provided the absolute Seebeck coefficient, the electrical 

resistivity of the material and the power factor.  
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2.5.3 Results and Discussion 

For this experiment the concentrations with the best results for Cu and Ga were selected in 

order to perform a dual substitution. The substitution of Co by Cu and Ga had a small effect on the 

density of the pellets by reducing it by 1%.  Table 5 summarizes the density information where 

apparent density is the density measured using the Archimedes method; the calculated density for 

single crystal is calculated assuming a superlattice of 10 to 11 𝐶𝑎3𝐶𝑜4𝑂9 units per supercell and 

𝑏 ≈ 8𝑏1 ≈ 13𝑏2 as proposed by Masset et al. [63]. An idealization of the lattice parameters was 

considered based on the values reported by Masset et al. [63] for 𝐶𝑎3𝐶𝑜4𝑂9 where 𝑎 = 4.8376 Å, 

𝑏1 = 4.5565, 𝑏2 = 2.8189, 𝑏 = 36.479 Å, 𝑐 = 10.833 Å and 𝛽 = 98.06, this idealization 

disregards any possible change in the volume of the unit cell with the substitution of Co by Cu and 

Ga, since the molecular weight of Copper and Gallium are similar to the molecular weight of 

Cobalt the expected variation will be minimal. The theoretical density was calculated using 

equation 4. The relative density to single crystal of column  4 is the apparent density compared to 

the theoretical density of 4.68 𝑔 ∗ 𝑐𝑚−3 [63]; the relative density to single crystal of column 5 is 

the apparent density divided by the calculated density for 𝐶𝑎3𝐶𝑜4−𝑥−𝑦𝐶𝑢𝑥𝐺𝑎𝑦𝑂9. 

 

Table 5. Apparent densities of Ca3Co(4-x-y)CuxGayO9 Dual Substitution sintered pellets 

Sample 
X=Cu 
Y=Ga 

Apparent 
density 𝑔 ∗

𝑐𝑚−3 

Calculated* 
Density for Single 
Crystal (g/cm3) 

Relative Density to 
single crystal 
Ca3Co4O9 (%) 
(A.C.Masset) 

Relative Density to single 
crystal  

Ca3Co(4-x-y)CuxGayO9 (%) 
Calculated 

 x=0 y=0 3.64 4.68 78 78 
 x=0.5 
y=0.15 

3.57 4.70 76 76 

Single crystal (Masset) 4.68 100 99 
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Fig. 25 displays the electrical resistivity (𝜌) 𝜇Ω𝑚, the Seebeck coefficient (𝑆) 𝜇𝑉𝐾−1 and the 

power factor 𝑚𝑊𝑚−1𝐾−2 of the baseline and the sample with dual substitution. The resistivity 

showed a great decrease through all the range of temperatures. This effect can be attributed to the 

lower oxidation state of 𝐶𝑢+2 compared to 𝐶𝑜+3 increasing the hole concentration and decreasing 

the resistivity [52], this theory is consistent with the lower 𝑆. The lowest 𝜌 was 51.37 𝜇Ω𝑚 at 321 

K which represents an improvement of 35% compared to the baseline at that point, the average 

improvement represents 28%. The Seebeck coefficient showed a decrease along all the 

temperature ranges compared to the baseline. The highest 𝑆 was 168.50 𝜇𝑉𝐾−1 at 1081 K, which 

represents a decrease of 2.9% compared to the baseline at that point, the average decrease of the 

𝑆 using the maximum and minimum values represents 3.2% . The lower 𝑆 can be generated by an 

increase in the carrier concentration caused by the substitution of Co in the transport layers [60] or 

it can be because of an increase in hole concentration due to Cu and Ga doping [69] . The power 

factor was also greatly increased by the dual substitution. The highest power factor was 

0.422 𝑚𝑊𝑚−1𝐾−2 at 1033 K which represents an improvement of 25% compared to the baseline 

at that point, the average improvement represents 26%.  
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Figure 25. Electrical transport properties of Ca3Co(4-x-y)CuxGayO9+d, x=0, 0.05. y=0, 0.15. 
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2.5.4 Conclusion 

The use of dual Cu and Ga substitution in the Co-cation in Ca3Co4O9 will benefit the electrical 

properties of the material by a considerable increase in the power factor, and a lower resistivity. 

The density is not really affected by the dual substitution. The highest power factor was 

0.422 𝑚𝑊𝑚−1𝐾−2 at 1033 K which represents an improvement of 25% compared to a sample 

without doping. The major contribution was observed in the resistivity where a minimum of 51.37 

𝜇Ω𝑚 at 331 K was achieved which represents an average improvement of 35%. The Seebeck 

coefficient showed a decrease by a 2.9%.  These results can be improved by using a nanostructure 

control and by improving the morphology of the microstructural features of the material. It is still 

necessary to look at the thermal properties of the material in order to observe the final figure of 

merit of the dual substitution.   
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Chapter 3                              

Enhancement of Thermoelectric 

Properties of Ca3Co4O9 by Co Addition 

 

At the time when Ca3Co4O9 was being sintered and characterized, there was something that 

was noticeable, the trays where the pellets were sintered had a blue coloration, that coloration was 

in fact cobalt oxide. It was clear that during the process some cobalt was not being used in the 

material, and since according to the design of experiments, all the precursors were added in 

stoichiometric amounts. Based on this observation, another experiment was designed, were besides 

the stoichiometric amount of cobalt required, and extra amount of cobalt was added, with the 

intention of providing enough cobalt to form as much Ca3Co4O9 as possible. The results of this 

experiment are reported in the following sections. 
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3.1 Co Addition 

A series of experiments were conducted in order to observe the effect of adding Co to the 

Ca3Co4O9. The thermoelectric properties were investigated from 298K to 1073K. The addition of 

Co showed a positive effect on the Ca3Co4O9 by improving the electrical and thermal properties 

of the material. The highest power factor was 0.37 𝑚𝑊𝑚−1𝐾−2 at 982 K which represents an 

improvement of 12% compared to a sample without doping. The thermal conductivity was also 

reduced with the addition of Co for all the range of concentrations used on the experiments. The 

maximum ZT observed for this set was 0.1920 at 1073 K for x=0.01. This value represents an 

increase of 22% compared to the baseline. A systematic analysis on the characterized properties is 

reported on the following sections. 

 

3.1.1 Introduction 

The need of improving the thermoelectric performance of Ca3Co4O9 is something that is clear 

to the people that is familiar with the material. An inexpensive and easy approach is to use the 

elements that are already on Ca3Co4O9, in this case, compensate the possible need of more Co to 

produce a high quality Ca3Co4O9 as a result of the likely formation of a CoO phase. 

 

3.1.2 Experimental Procedure 

𝐶𝑎3𝐶𝑜4𝑂9 + 𝐶𝑜𝑥 was prepared using a sol-gel method with 𝑥 = 0, 0.01, 0.05 𝑎𝑛𝑑 0.10. First 

citric acid and polyethylene glycol were dissolved in deionized water, then 𝐶𝑎(𝑁𝑂3)2𝑥𝐻2𝑂  

(Calcium nitrate) and 𝐶𝑜(𝑁𝑂3)2𝑥𝐻2𝑂 (Cobalt nitrate) were added to the mix in stoichiometric 

amounts and finally ethylene glycol and nitric acid were added to the mix. The mix then was 
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manually stirred until all the precursors were dissolved and a homogenous mix was obtained. Once 

the mix was homogenous, the mix was put in a hot stage heated at ~353 𝐾and stirred during 3 

hours in order to remove the water from the solution. After 3 hours a gel was formed. Then the gel 

was ashed at 773 𝐾 for 2 h in a Lindberg/Blue ThermoScientific box furnace. The obtained ash 

was put in a planetary ball milling machine (Retsch PM 100) with ethyl alcohol for 30 minutes. 

The obtained liquid was dried for 8 hrs. The result was a thin layer of powder, then it was manually 

grounded to obtain a fine powder. The powder was later calcined at 973 𝐾 for 4 hours using a 

10 𝐾/𝑚𝑖𝑛 ramp for heating and cooling in a tube furnace with oxygen flow. The calcined powder 

was uniaxially pressed into pellets at 1 GPa for 10 minutes at 298 𝐾. The pellets were sintered at 

1233 𝐾 in a tube furnace with oxygen flow. The sintering program used two different ramps, 

10 𝐾/𝑚𝑖𝑛 for heating and a 4 𝐾/𝑚𝑖𝑛 for cooling. The desired sintering temperature was held for 

9 hrs. Once the pellets were ready a rectangular piece of 4 mm width was cut for the LSR machine 

and for the LFA machine a rectangular piece of 11 mm width was cut. 

The electrical characterization of the material was performed in the parallel direction to the 

pressed plane using Linseis LSR-1100 in a He environment using a temperature range from 

298 𝑡𝑜 1073 𝐾. The characterization provided the absolute Seebeck coefficient, the electrical 

resistivity of the material and the power factor. For the thermal properties of the samples a Laser 

Flash Analyzer Linseis-1200 was used to characterize the thermal diffusivity and the specific heat 

in the parallel direction to the pressed plane within a temperature range from 298 𝑡𝑜 1073 𝐾.  

The morphology of the samples was examined using a JEOL JSM-7600F scanning electron 

microscope which combines ultra-high resolution imaging with optimized analytic functionality. 

The phase identification of the material was obtained using a 𝑃𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙 𝑋′𝑃𝑒𝑟𝑡𝑃𝑟𝑜 𝑋𝑅𝐷 with  

𝐶𝑢 𝐾 − 𝑎𝑙𝑝ℎ𝑎 at room temperature.  
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3.1.3 Results and Discussion 

The addition of Co showed a consistent increase in the densities for each one of the samples. 

Table 6 summarizes the density information where apparent density is the density measured using 

the Archimedes method; the calculated density for single crystal is calculated assuming a 

superlattice of 10 to 11 𝐶𝑎3𝐶𝑜4𝑂9 units per supercell and 𝑏 ≈ 8𝑏1 ≈ 13𝑏2 as proposed by Masset 

et al. [63]. An idealization of the lattice parameters was considered based on the values reported 

by Masset et al. [63] for 𝐶𝑎3𝐶𝑜4𝑂9 where 𝑎 = 4.8376 Å, 𝑏1 = 4.5565, 𝑏2 = 2.8189, 𝑏 =

36.479 Å, 𝑐 = 10.833 Å and 𝛽 = 98.06, this idealization disregards any possible change in the 

volume of the unit cell by the addition of Co.  The theoretical density was calculated using equation 

4. The relative density to single crystal of column  4 is the apparent density compared to the 

theoretical density of 4.68 𝑔 ∗ 𝑐𝑚−3 [63]; the relative density to single crystal of column 5 is the 

apparent density divided by the calculated density for 𝐶𝑎3𝐶𝑜4𝑂9 + 𝐶𝑜𝑥. 

Table 6. Apparent densities of Ca3Co4O9 + Cox Addition sintered pellets 

Sample 
Co 

Apparent 
density 𝑔 ∗

𝑐𝑚−3 

Calculated* 
Density for 

Single Crystal 
(g/cm3) 

Relative Density to 
single crystal 
Ca3Co4O9 (%) 
(A.C.Masset) 

Relative Density to 
single crystal  

Ca3Co4O9+Cox (%) 
Calculated 

 x=0 LSR 3.64 4.68 78 78 
 x=0.01 3.79 4.68 81 81 

 x=0.05 3.65 4.71 78 78 
 x=0.10 3.36 4.73 72 71 

 x=0 LFA 3.77 4.68 81 81 

 x=0.01 3.49 4.68 75 75 

 x=0.05 3.39 4.71 72 72 

 x=0.10 3.42 4.73 73 72 
Single crystal (Masset) 4.68 100 100 

 

The phase identification of the material was obtained using XRD. In order to obtain peaks with 

good intensity and be able to identify any possible phase, the sintered pellets were ground until a 
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Figure 26. XRD patterns of Ca3Co4O9 + Cox (x=0, 0.01, 0.05 & 0.10) 

fine powder was obtained. The Ca3Co4O9 + Cox diffraction peaks can be indexed as those reported 

by Masset et al.[63] with monoclinic symmetry. Fig. 26 shows the XRD powder patterns. The 

peaks with highest intensity are the ones that belong to the (00𝑙) plane family. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.27 shows the microstructure of the pressed plane and Fig. 28 shows the microstructure of 

the fractured cross-section. The pressed plane shows the characteristic rounded shape of the 

pressed ceramic grains observed from the top. From that image, is difficult to observe a tendency 

in the alignment, Fig 28, provides a better perspective in regard of the alignment, and it is possible 

to see that the elongated ceramic grains are aligned perpendicular to the applied stress direction, 
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Figure 27. SEM Ca3Co4O9 + Cox micrographs- Pressed plane 

Figure 28. SEM Ca3Co4O9 + Cox micrographs- Cross section 

and also the alignment is poor. For these experiments, only the sample with the best 

thermoelectrical performance was observed under the scanning electron microscope. It is 

interesting to observe the alignment of this sample, based on the results, a good alignment was 

expected, but as a matter of fact, the alignment is poor. If the alignment is improved, the 

performance of the material, will be better, this is something to consider in future work. 
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Fig. 29 displays the electrical resistivity (𝜌) 𝜇Ω𝑚, the Seebeck coefficient (𝑆) 𝜇𝑉𝐾−1 and the 

power factor 𝑚𝑊𝑚−1𝐾−2 of the different doped samples. The  𝜌 was decreased for the 0.01 

concentration, above that concentration the reported 𝜌 was higher than the baseline. The lowest 𝜌 

was achieved at 0.01 with a minimum of 59.42 𝜇Ω𝑚 at 315 K which represents an improvement 

of 16.4% compared to the baseline at that point. The average improvement represents 7.7%. The 

Seebeck coefficient was not greatly affected, showing similar values. The highest 𝑆 was 

176.49 𝜇𝑉𝐾−1 at 1034 K with a Co concentration of 0.10, which represents an improvement of 

3.1% compared to the baseline at that point, the average 𝑆  improvement represents 0.8%. The 

power factor showed a great improve compared to the baseline for the 0.01 concentration; the 

highest power factor was achieved at 0.01 with 0.37 𝑚𝑊𝑚−1𝐾−2 at 982 K which represents an 

improvement of 12.7% compared to the baseline at that point, the average improvement represents 

13.5%.  
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Figure 29. Electrical transport properties of Ca3Co4O9 + Cox,  x=0, 0.01,  0.05, 0.10 
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Figure 30. Thermoelectric properties and Figure of Merit of  Ca3Co4O9 + Cox 

Fig. 30 displays the thermal conductivity 𝑊𝑚−1𝐾−1 and the figure of merit of the different 

doped samples. The maximum ZT observed for this set was 0.1920 at 1073 K for x=0.01. This 

value represents an increase of 21.9% compared to the baseline. The lowest thermal conductivity 

was achieved using x=0.01. A maximum value of 2.272 𝑊𝑚−1𝐾−1 at 100 K and a minimum of  

1.903 𝑊𝑚−1𝐾−1 at 1073 K. 
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3.1.4 Conclusion 

Based on the results from the experiments conducted, the addition of Co will greatly improve 

the thermoelectrical properties of Ca3Co4O9. A reduction in the resistivity was observed for the 

0.01 concentration; that can be explained by the fact that at the time the material is being formed 

some Co becomes CoO and stays on the trays at the time the pellets are sintered, if more Co is 

added, the extra Co will satisfy the need of Co to achieve a stoichiometric balance. For the Co 

concentration 0.01, the power factor was 0.37 𝑚𝑊𝑚−1𝐾−2 at 982 K which represents an 

improvement of 12.7% compared to the baseline.  In the case of the thermal properties, Co addition 

decreased the thermal conductivity for all the different concentrations used, so the addition of Co 

might improve the phonon scattering effect. The maximum ZT observed for this set was 0.1920 at 

1073 K for x=0.01. This value represents an increase of 21.9% compared to the baseline. Adding 

Co with a concentration of x=0.01 will make Ca3Co4O9 a more suitable material for TE devices. 

The approach is simple and relatively inexpensive, since it is not necessary to add any other 

elements, just using the basic elements of Ca3Co4O9 the material will have better thermoelectric 

performance. 
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Chapter 4                              

Enhancement of Thermoelectric 

Properties of Ca3Co4O9 by Cu Addition 

 

The use of Copper (Cu) as a doping agent for Ca3Co4O9 is standard and several authors have 

tried it [52, 54, 67, 70-72], but usually Cu is added to the Ca3Co4O9 using substitution which 

increases the electrical performance of the material. In this chapter the effect of addition of Cu is 

studied and provides a base for a comparison between Cu addition and Cu substitution. The 

decision of adding Cu to the Ca3Co4O9 was an honest mistake at the time the chemical design of 

the Ca3Co4O9 Cu substitution was being made, at that time the Cu was not subtracted from the Co 

and two batches were prepared until the mistake was observed. The prepared batches were studied 

and outstanding properties were observed. Based on that, a series of experiments using Cu addition 

were performed. 
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4.1 Cu Addition 

A series of experiments were conducted in order to observe the effect of adding Cu to the 

Ca3Co4O9. The thermoelectric properties were investigated from 298K to 1073K. The addition of 

Cu showed a positive effect on the Ca3Co4O9 by improving the electrical and thermal properties 

of the material. The highest power factor was 0.46 𝑚𝑊𝑚−1𝐾−2 at 1010 K which represents an 

improvement of 38% compared to a sample without doping. The thermal conductivity was reduced 

as an effect of adding Cu for all the range of concentrations used on the experiments. The 

maximum ZT observed for this set was 0.2288 at 1073 K for x=0.05. This value represents an 

increase of 45% compared to the baseline. A systematic analysis is reported on the following 

sections. 

 

4.1.1 Introduction 

The use of addition instead of substitution to improve the thermoelectric properties of 

Ca3Co4O9, is something that has not been reported extensively yet. This study will provide a fresh 

contribution to characterize the effect of an approach using addition. 

 

4.1.2 Experimental Procedure 

𝐶𝑎3𝐶𝑜4𝑂9 + 𝐶𝑢𝑥 was prepared using a sol-gel method with 𝑥 = 0, 0.01, 0.05 𝑎𝑛𝑑 0.10. First 

citric acid and polyethylene glycol were dissolved in deionized water, then 𝐶𝑎(𝑁𝑂3)2𝑥𝐻2𝑂  

(Calcium nitrate), 𝐶𝑜(𝑁𝑂3)2𝑥𝐻2𝑂 (Cobalt nitrate) and 𝐶𝑢(𝑁𝑂3)2𝑥 3𝐻2𝑂 (Copper nitrate) were 

added to the mix in stoichiometric amounts and finally ethylene glycol and nitric acid were added 

to the mix. The mix then was manually stirred until all the precursors were dissolved and a 
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homogenous mix was obtained. Once the mix was homogenous, the mix was put in a hot stage 

heated at ~353 𝐾and stirred during 3 hours in order to remove the water from the solution. After 

3 hours the result was a gel. Then the gel was ashed at 773 𝐾 for 2 h in a box furnace. The obtained 

ash was put in a planetary ball milling machine with ethyl alcohol for 30 minutes. The obtained 

liquid was dried for 8 hrs. The result was a thin layer of powder, then it was manually grounded to 

obtain a fine powder. The powder was later calcined at 973 𝐾 for 4 hours using a 10 𝐾/𝑚𝑖𝑛 ramp 

for heating and cooling in a tube furnace with oxygen flow. The calcined powder was uniaxially 

pressed into pellets (0.6 g for LSR and 6 g for LFA) at 1 GPa for 10 minutes at 298 𝐾. The pellets 

were sintered at 1233 𝐾 in a tube furnace with oxygen flow. The sintering program used two 

different ramps, 10 𝐾/𝑚𝑖𝑛 for heating and a 4 𝐾/𝑚𝑖𝑛 for cooling. The desired sintering 

temperature was held for 9 hrs. Once the pellets were ready a rectangular piece of 4 mm width was 

cut for the LSR machine and for the LFA machine a rectangular piece of 11 mm width was cut.  

The electrical characterization of the material was performed in the parallel direction to the 

pressed plane using Linseis LSR-1100 in a He environment using a temperature range from 

298 𝑡𝑜 1073 𝐾. For the thermal properties of the samples a Laser Flash Analyzer Linseis-1200 

was used to characterize the thermal diffusivity and the specific heat in the parallel direction to the 

pressed plane within a temperature range from 298 𝑡𝑜 1073 𝐾.  

The morphology of the samples was examined using a JEOL JSM-7600F scanning electron 

microscope which combines ultra-high resolution imaging. The phase identification of the material 

was obtained using a 𝑃𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙 𝑋′𝑃𝑒𝑟𝑡𝑃𝑟𝑜 𝑋𝑅𝐷 with  𝐶𝑢 𝐾 − 𝑎𝑙𝑝ℎ𝑎 at room temperature. To 

analyze the structure of the sintered pellets a JEM-2100 LaB6 Transmission Electron Microscope 

(TEM) operated at 200 kV was used. The samples were prepared by mechanically polishing and 

ion milling the pellets in a liquid-nitrogen cooled holder [62].  
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4.1.3 Results and Discussion 

The addition of Cu to the Ca3Co4O9 had contributed to obtain higher densities. Table 7 

summarizes the density information where apparent density is the density measured using the 

Archimedes method; the calculated density for single crystal is calculated assuming a superlattice 

of 10 to 11 𝐶𝑎3𝐶𝑜4𝑂9 units per supercell and 𝑏 ≈ 8𝑏1 ≈ 13𝑏2 as proposed by Masset et al. [63]. 

An idealization of the lattice parameters was considered based on the values reported by Masset 

et al. [63] for 𝐶𝑎3𝐶𝑜4𝑂9 where 𝑎 = 4.8376 Å, 𝑏1 = 4.5565, 𝑏2 = 2.8189, 𝑏 = 36.479 Å, 𝑐 =

10.833 Å and 𝛽 = 98.06, this idealization disregards any possible change in the volume of the 

unit cell by the addition of Cu.  The theoretical density was calculated using equation 4. The 

relative density to single crystal of column  4 is the apparent density compared to the theoretical 

density of 4.68 𝑔 ∗ 𝑐𝑚−3 [63]; the relative density to single crystal of column 5 is the apparent 

density divided by the calculated density for 𝐶𝑎3𝐶𝑜4𝑂9 + 𝐶𝑢𝑥. 

Table 7. Apparent densities of Ca3Co4O9+Cux Addition sintered pellets 

Sample 
Cu 

Apparent 
density 𝑔 ∗

𝑐𝑚−3 

Calculated* 
Density for Single 
Crystal (g/cm3) 

Relative Density to 
single crystal 
Ca3Co4O9 (%) 
(A.C.Masset) 

Relative Density to 
single crystal  

Ca3Co4O9+Cux (%) 
Calculated 

 x=0 LSR 3.64 4.68 78 78 
 x=0.01 3.7 4.68 79 79 

 x=0.05 3.96 4.71 85 84 
 x=0.10 3.98 4.74 85 84 

 x=0 LFA 3.77 4.68 81 81 

 x=0.01 3.32 4.68 71 71 

 x=0.05 3.61 4.71 77 77 

 x=0.10 3.85 4.74 82 81 
Single crystal (Masset) 4.68 100 100 

 

The phase identification of the material was obtained using XRD. In order to obtain peaks with 

good intensity and be able to identify any possible phase, the sintered pellets were ground until a 
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Figure 31. XRD patterns of Ca3Co4O9 + Cux (x=0, 0.01, 0.05 & 0.10) 

fine powder was obtained. The Ca3Co4O9+Cux diffraction peaks can be indexed as those reported 

by Masset et al.[63] with monoclinic symmetry. Fig. 31 shows the XRD powder patterns. The 

peaks with highest intensity are the ones that belong to the (00𝑙) plane family. 

 

 

 

 

 

 

 

 

 

 

Fig.32 shows the microstructure of the pressed plane and Fig. 33 shows the microstructure of 

the fractured cross-section. The pressed plane shows the characteristic rounded shape of the 

pressed ceramic grains observed from the top. From that image, is difficult to observe a tendency 

in the alignment, but it is easy to see that the size of the grains. Cu addition triggers the grain 

growth. Fig 33, provides a better perspective in regard of the alignment, and it is possible to see 

that the elongated ceramic grains are aligned perpendicular to the applied stress direction. 
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Figure 33. SEM Ca3Co4O9 + Cux micrographs- Cross section 

Figure 32. SEM Ca3Co4O9+Cux micrographs- Pressed plane 
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Figure 35 TEM diffraction patters from [110] direction of Ca3Co4O9 + Cux (x=0, 0.01, 0.05 and 0.1) samples with different Cu addition 

Fig. 34 shows the lamellar width increase with the increment of Cu addition and no apparent 

formation of a large scale secondary phase in 𝐶𝑎3𝐶𝑜4𝐶𝑢𝑥𝑂9. 

 

 

 

 

 

 

 

Figure 34 TEM micrograph for Ca3Co4O9 + Cux 
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Figure 36 HREM from [110] direction of Ca3Co4O9 + Cux (x=0.01 and x=0.1) 

Fig. 35 shows the existence of an extra diffraction pattern from the samples with x=0.05 and 

x=0.1, no extra diffraction from the samples x=0 and x=0.01. The extra diffraction could be 

indexed as those from [110] direction CaO phase with cubic structure. Both the primary diffraction 

from CaO (circled in purple) and the double diffraction (in green) were present in the diffraction. 

 

 

 

 

 

 

 

 

 

 

The additional lattice from CaO phase and the extra diffraction from the diffraction patterns in 

the sample with x=0.1 is indicated using the arrows in Fig. 36. 

Fig. 37 displays the electrical resistivity (𝜌) 𝜇Ω𝑚, the Seebeck coefficient (𝑆) 𝜇𝑉𝐾−1 and the 

power factor 𝑚𝑊𝑚−1𝐾−2 of the different doped samples. The  𝜌 was decreased for the 0.01 and 

0.05 concentrations compared to the baseline for temperatures below 973 K, for higher 

temperatures, the resistivity for these concentrations was higher than the one from the baseline. In 
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contrast, the 0.10 concentration showed a higher resistivity for temperatures below 1073 K and a 

lower resistivity for temperatures above that value. The reduction in the resistivity can be 

associated with the lower oxidation state of 𝐶𝑢+2 compared to 𝐶𝑜+3,+4, this will greatly increase 

the hole concentration and as a result the resistivity will decrease [66]. For higher concentrations 

the raise in the resistivity can be related to the grain boundary since Cu will increase the grain size 

which will translate in an increase in the possibility of electrons moving toward neighboring sites 

and producing an increase in the electrical conductivity [67]. The lowest 𝜌 was achieved at 0.01 

with a minimum of 55.95 𝜇Ω𝑚 at 318 K which represents an improvement of 24% compared to 

the baseline at that point. The average improvement represents 2.4%. Looking at the average 

improvement in the resistivity, the 0.05 will have a better performance showing an improvement 

of 19.2% compared to the baseline. The Seebeck coefficient for the 0.01 concentration was almost 

the same as the baseline, but for the other concentrations the starting point was higher. 0.05 showed 

a higher 𝑆 for all the range of temperatures used for testing. The 0.10 sample started higher than 

the baseline but above 1000 K the 𝑆 was lower than the baseline. Based on the 𝑆 is possible to 

conclude that the Cu addition has an effect on the conduction band [66], at Cu x=0.05, Cu addition 

decrease the carrier concentration. The highest 𝑆 was 175.48 𝜇𝑉𝐾−1 at 1032 K with a Cu 

concentration of 0.05, which represents an improvement of 2.4% compared to the baseline at that 

point, but the greatest effect can be noticed using the average 𝑆 which represents 7.8%. The power 

factor showed a great improve compared to the baseline for the 0.05 concentration; The highest 

power factor was achieved at 0.05 with 0.46 𝑚𝑊𝑚−1𝐾−2 at 1010 K which represents an 

improvement of 38.5% compared to the baseline at that point, the average improvement represents 

38.2%. Based on these results it is clear that the addition of Cu to Ca3Co4O9 will greatly improve 

the electrical properties, especially at low temperatures regimes. 
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Figure 37. Electrical transport properties of Ca3Co4O9 + Cux,  x=0, 0.01,  0.05, 0.10 
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Figure 38. Thermoelectric properties and Figure of Merit of Ca3Co4O9 + Cux 

Fig. 38 displays the thermal conductivity 𝑊𝑚−1𝐾−1 and the figure of merit of the different 

doped samples. The maximum ZT observed for this set was 0.2288 at 1073 K for x=0.05. This 

value represents an increase of 45% compared to the baseline. The lowest thermal conductivity 

was achieved using x=0.01. A maximum value of 2.036 𝑊𝑚−1𝐾−1 and a minimum of  

1.774 𝑊𝑚−1𝐾−1 at 973 K, but the overall thermoelectric performance was lower than the overall 

thermoelectric performance of the concentration with x=0.05. It is important to mention that for 

all the concentrations used for this experiment, the thermoelectric properties of Ca3Co4O9 showed 

an increase. 
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4.1.4 Conclusion 

Based on the results from the several experiments conducted, the addition of Cu will increase 

in a considerable amount the thermoelectric properties of Ca3Co4O9. A reduction in the resistivity 

was observed for the 0.01 and 0.05 concentrations; that can be explained by the lower oxidation 

state of 𝐶𝑢+2 compared to 𝐶𝑜+3,+4, this will translate in an increase in the hole concentration. 

Also, the addition of Cu to the Ca3Co4O9, showed an interesting effect with a transition from a 

semiconductor behavior to a metallic behavior [18]. The XRD peaks from the Cu addition and Cu 

substitution have the same positions, so there is no difference between them. The 𝑆 was increased 

for 0.05 and 0.10, that can be explained by the CaCoO phase observed on the diffraction patterns. 

The existence of the extra phase increased the 𝑆 at low temperatures. In the case of the thermal 

properties, Cu decreased the thermal conductivity for all the different concentrations used, so the 

addition of Cu might improve the phonon scattering effect. The maximum ZT observed for this 

set was 0.2288 at 1073 K for x=0.05. This value represents an increase of 45% compared to the 

baseline.  
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Chapter 5                              

Enhancement of Electrical Properties of 

Ca3Co4O9 by Co Addition + Au Nano-

inclusions 

 

Ca3Co4O9 is a thermoelectric material with outstanding performance for single crystal, but it 

is necessary to improve the polycrystalline performance in order to make it a viable material for 

TE devices. It is necessary to improve the electrical connections between the ceramic grains and 

it is also necessary to reduce the thermal conductivity by phonon scattering effects. A technique 

that has been successfully implemented is the use of metal nano-inclusions. The nano-inclusions 

will act on the carrier concentration and the lattice parameters of the material [55]. Ag has been 

used as a metallic nanoinclusions in CCO [73], here the Ag metallic nano-sized inclusions were 

formed within the grain interiors, greatly improving the thermoelectric performance. The average 

size for the nano-inclusions were 180 nm to 350 nm. 
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5.1 Co Addition + Au Nano-inclusions 

A series of experiments were conducted in order to observe the effect of using the best result 

from the Co addition experiment and adding Au nano-inclusions. The electrical properties were 

investigated from 298K to 1073K. The addition of Co and Au nano-inclusions had a positive effect 

on the on the electrical properties of Ca3Co4O9. The highest power factor was 0.376 𝑚𝑊𝑚−1𝐾−2 

at 908 K which represents an improvement of 55% compared to a sample without doping.  

 

5.1.1 Introduction 

The use of Ca3Co4O9 for TE devices is very limited because of the low ZT. The use of nano-

inclusions is an approach that has been used in order to improve the thermoelectric performance 

of Ca3Co4O9 [74], at that time Ag was used, in this experiment, Au will be used. The goal of using 

Au nano-inclusions is to develop nanostructured bulk TE materials by producing oriented lamellar 

nanostructures as embedded metallic nano-inclusions [73]. 

 

5.1.2 Experimental Procedure 

𝐶𝑎3𝐶𝑜4𝑂9 + 𝐶𝑜0.01 + 𝑥% 𝐴𝑢 was prepared using a sol-gel method with 𝑥 =

0, 1, 2, 3, 4 𝑎𝑛𝑑 5. First citric acid and polyethylene glycol were dissolved in deionized water, then 

𝐶𝑎(𝑁𝑂3)2𝑥𝐻2𝑂  (Calcium nitrate) and 𝐶𝑜(𝑁𝑂3)2𝑥𝐻2𝑂 (Cobalt nitrate) were added to the mix in 

stoichiometric amounts and finally ethylene glycol and nitric acid were added to the mix. The mix 

then was manually stirred until all the precursors were dissolved and a homogenous mix was 

obtained. Once the mix was homogenous, the mix was put in a hot stage heated at ~353 𝐾and 

stirred during 3 hours in order to remove the water from the solution. After 3 hours a gel was 
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formed. Then the gel was ashed at 773 𝐾 for 2 h in a Lindberg/Blue ThermoScientific box furnace. 

The obtained ash was put in a planetary ball milling machine (Retsch PM 100) with ethyl alcohol 

for 30 minutes. The obtained liquid was dried for 8 hrs. The result was a thin layer of powder, then 

it was manually grounded to obtain a fine powder. The powder was later calcined at 973 𝐾 for 4 

hours using a 10 𝐾/𝑚𝑖𝑛 ramp for heating and cooling in a tube furnace with oxygen flow. Then 

2 grams of this powder were mixed with 100 ml of DI water and the mix was sonicated during 30 

minutes, 0.399 grams of Hydrogen tetrachloroaurate trihydrate were dissolved in 50 ml of DI water 

and 6.093 grams of Urea were also dissolved in 50 ml of DI water, these two mixes were added to 

the original mix of Ca3Co4O9 + Cox and water. A homogeneous mix was obtained and it was 

subjected to a hydrothermal process where using a High Preactor reactor the mix was heated to 

90 ℃ and hold during 10 hrs. The ramp for heating was 1℃/𝑚𝑖𝑛 and for cooling 0.5 ℃/𝑚𝑖𝑛. 

After that, the excess of water was removed and the final powder was washed using a centrifuge 

machine for 5 times using DI water (2 times) and ethyl alcohol (3 times) using sets of 10 minutes 

at 14500 RPM. The final powder was dried in air for 8 hours; the dried powder was later manually 

grounded in a mortar. The addition of Au to the Ca3Co4O9 + Cox was calculated to represent 10% 

of the final mix. This powder was later mixed with Ca3Co4O9 + Cox powder to achieve different 

Au concentrations going from 0 to 5%, using the ball milling machine. The obtained liquid was 

dried for 8 hrs. The result was a thin layer of powder, then it was manually grounded to obtain a 

fine powder. The powder was later baked at 573 𝐾 for 4 hours using a 10 𝐾/𝑚𝑖𝑛 ramp for heating 

and a cooling rate of 2 𝐾/𝑚𝑖𝑛 in a tube furnace with oxygen flow. The baked powder was 

uniaxially pressed into pellets at 1 GPa for 10 minutes at 298 𝐾. The pellets were sintered at 

1193 𝐾 in a tube furnace with oxygen flow. The sintering program used two different ramps, 
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10 𝐾/𝑚𝑖𝑛 for heating and a 4 𝐾/𝑚𝑖𝑛 for cooling. The desired sintering temperature was held for 

9 hrs. Once the pellets were ready a rectangular piece of 4 mm width was cut for the LSR machine. 

The electrical characterization of the material was performed in the parallel direction to the 

pressed plane using Linseis LSR-1100 in a He environment using a temperature range from 

298 𝑡𝑜 1073 𝐾. The characterization provided the absolute Seebeck coefficient, the electrical 

resistivity of the material and the power factor.  

The morphology of the samples was examined using a JEOL JSM-7600F scanning electron 

microscope which combines ultra-high resolution imaging with optimized analytic functionality. 

The phase identification of the material was obtained using a 𝑃𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙 𝑋′𝑃𝑒𝑟𝑡𝑃𝑟𝑜 𝑋𝑅𝐷 with  

𝐶𝑢 𝐾 − 𝑎𝑙𝑝ℎ𝑎 at room temperature.  

 

5.1.3 Results and Discussion 

The addition of Co and Au to the Ca3Co4O9 showed a consistent increase in the densities for 

each one of the samples. Table 8 summarizes the density information where apparent density is 

the density measured using the Archimedes method; the calculated density for single crystal is 

calculated assuming a superlattice of 10 to 11 𝐶𝑎3𝐶𝑜4𝑂9 units per supercell and 𝑏 ≈ 8𝑏1 ≈ 13𝑏2 

as proposed by Masset et al. [63]. An idealization of the lattice parameters was considered based 

on the values reported by Masset et al. [63] for 𝐶𝑎3𝐶𝑜4𝑂9 where 𝑎 = 4.8376 Å, 𝑏1 = 4.5565, 

𝑏2 = 2.8189, 𝑏 = 36.479 Å, 𝑐 = 10.833 Å and 𝛽 = 98.06, this idealization disregards any 

possible change in the volume of the unit cell by the addition of Co and Au.  The theoretical density 

was calculated using equation 4. The relative density to single crystal of column  4 is the apparent 

density compared to the theoretical density of 4.68 𝑔 ∗ 𝑐𝑚−3 [63]; the relative density to single 
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crystal of column 5 is the apparent density divided by the calculated density for 𝐶𝑎3𝐶𝑜4𝑂9 +

𝐶𝑜0.01 + 𝑥% 𝐴𝑢. 

Table 8. Apparent densities of Ca3Co4O9 + Co0.01 + x% Au nano-inclusions sintered pellets 

Sample 
Co+Au 

Apparent 
density 𝑔 ∗

𝑐𝑚−3 

Calculated* 
Density for Single 
Crystal (g/cm3) 

Relative Density to 
single crystal 
Ca3Co4O9 (%) 
(A.C.Masset) 

Relative Density to single 
crystal  

Ca3Co4O9+Co0.01+x Au (%) 
Calculated 

  LSR 
Baseline 

3.23 4.68 69 69 

 x=0% 3.72 4.68 79 79 

 x=0.5% 3.68 4.69 79 78 
x=1% 3.60 4.70 77 77 

x=2% 3.45 4.72 74 73 

x=3% 3.47 4.74 74 73 

x=4% 3.41 4.76 73 72 

 x=5% 3.48 4.78 74 73 
Single crystal (Masset) 4.68 100 100 

 

The phase identification of the material was obtained using XRD. In order to obtain peaks with 

good intensity and be able to identify any possible phase, the sintered pellets were ground until a 

fine powder was obtained. The Ca3Co4O9 + Co0.01 + x% diffraction peaks can be indexed as those 

reported by Masset et al.[63] with monoclinic symmetry. Fig. 39 shows the XRD powder patterns. 

The peaks with highest intensity are the ones that belong to the (00𝑙) plane family. 
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Figure 39. XRD patterns of Ca3Co4O9+ Co0.01+ x% Au  (x=0, 0.5, 1, 2, 3, 4, and 5) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 40 shows as deposited state of the Au particles on CCO powders, this image can be a 

reference for what is expected with the Au deposition. Here, the Au particles have a size of 

approximately 5 nm, and the particles are randomly distributed on the surface of the CCO grains. 
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Figure 40. TEM micrographs for Ca3Co4O9 + 10% Au 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 41 displays the electrical resistivity (𝜌) 𝜇Ω𝑚, the Seebeck coefficient (𝑆) 𝜇𝑉𝐾−1 and the 

power factor 𝑚𝑊𝑚−1𝐾−2 of the different doped samples. The addition of Au nano-particles had 

a great positive effect on the electrical properties of the material. For almost all the different 

concentrations, the resistivity was lower than from the baseline for temperatures below 900 K. 

Above 900 K the resistivity was higher than the baseline for 2% and 5%. The reduction in the 
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resistivity can be directly associated to the electrical properties of Au. The reduction in the 𝜌 can 

also be explained by the electrical properties of the grain boundaries with the addition of Au. The 

lowest 𝜌 was achieved at x=0.5% with a minimum of 56.07 𝜇Ω𝑚 at 318 K which represents an 

improvement of 52.5% compared to Ca3Co4O9 at that point, and 11.9% compared to x=0%. The 

average improvement for Ca3Co4O9 represents 37.23%, and for x=0% represents 6.5%. The 

Seebeck coefficient for almost all the concentrations showed a similar 𝑆 than the baseline, so it is 

possible to conclude that the Co addition and Au do not have a significant effect on the conduction 

band [66] and carrier concentration. The highest 𝑆 was 177.84 𝜇𝑉𝐾−1 at 1033 K with an Au 

concentration of 2%, which represents an improvement of 2.2% compared to the baseline at that 

point and 3.3% compared to x=0%. The addition of the Au nano-inclusions did not show a positive 

effect on the 𝑆 of the material. The power factor was greatly affected because of the variation of 

the resistivity with the Au nano-inclusions; the highest power factor was achieved at x=0.5% with 

0.376 𝑚𝑊𝑚−1𝐾−2 at 908 K which represents an improvement of 55.2% compared to the baseline 

at that point, the average improvement represents 45.7%.  
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Figure 41. Electrical transport properties of Ca3Co4O9 + Co0.01 + x % Au  x=0,0.5,1,2,3,4,5 
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5.1.4 Conclusion 

Based on the results of the conducted experiments, the addition of Au nano-inclusions to the 

Ca3Co4O9 Co addition, will have a positive impact on the electrical properties of Ca3Co4O9. The 

reduction in the resistivity can be directly associated to the electrical properties of Au. The 

reduction in the 𝜌 can also be explained by the electrical properties of the grain boundaries with 

the addition of Au. The reduction in the resistivity can also be explained by a change the carrier 

mobility associated to the CCO/Au interface. The XRD peaks clearly show that Au is not in the 

CCO lattice, since no shift in the peak positions was detected. The highest power factor for these 

experiments was 0.376 𝑚𝑊𝑚−1𝐾−2, which represents an improvement of 55% compared to the 

baseline at that point. It is necessary to complete the thermal characterization in order to determine 

the ZT of the material. The results are very promising. 
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Chapter 6                              

Enhancement of Electrical Properties of 

Ca3Co4O9 by Cu Addition + Au Nano-

inclusions 

 

After the successful experiment of Ca3Co4O9 + Cu, using addition, instead of substitution, and 

where a 45% increase in the thermoelectric properties of the material was achieved, it was clear 

that this technique has a very positive effect on the performance of Ca3Co4O9. Based on that, the 

idea of using Au nano-inclusions was considered in order to improve the performance of CCO + 

Cu addition to Ca3Co4O9. A series of experiments were conducted, using different Au 

concentrations. The electrical properties of the different concentrations used in this experiment are 

reported and discussed in this chapter. 
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6.1 Cu Addition + Au Nano-inclusions 

A series of experiments were conducted in order to observe the dual addition effect of using 

the best result from the Cu addition experiment and Au nano-inclusions addition. The electrical 

properties were investigated from 298K to 1073K. The addition of Cu and Au nano-inclusions had 

a positive effect on the Ca3Co4O9 on the electrical properties of the material. The highest power 

factor was 0.451 𝑚𝑊𝑚−1𝐾−2 at 860 K which represents an improvement of 94% compared to a 

sample without doping. A systematic analysis on the characterized properties is reported on the 

following sections. 

 

6.1.1 Introduction 

As previously discussed in Chapter 5, the use of nano-inclusions is an approach that have been 

studied and characterized,  to improve the electrical connections between the ceramic grains and 

it to reduce the thermal conductivity by increasing phonon scattering effects, good results were 

obtained for Co addition, now Cu addition will be considered. 

 

6.1.2 Experimental Procedure 

𝐶𝑎3𝐶𝑜4𝑂9 + 𝐶𝑢0.05 + 𝑥% 𝐴𝑢 was prepared using a sol-gel method with 𝑥 =

0, 1, 2, 3, 4 𝑎𝑛𝑑 5. First citric acid and polyethylene glycol were dissolved in deionized water, then 

𝐶𝑎(𝑁𝑂3)2𝑥𝐻2𝑂  (Calcium nitrate), 𝐶𝑜(𝑁𝑂3)2𝑥𝐻2𝑂 (Cobalt nitrate) and 𝐶𝑢(𝑁𝑂3)2𝑥 3𝐻2𝑂 

(Copper nitrate trihydrate) were added to the mix in stoichiometric amounts and finally ethylene 

glycol and nitric acid were added to the mix. The mix then was manually stirred until all the 

precursors were dissolved and a homogenous mix was obtained. Once the mix was homogenous, 
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the mix was put in a hot stage heated at ~353 𝐾and stirred during 3 hours in order to remove the 

water from the solution. After 3 hours a gel was formed. Then the gel was ashed at 773 𝐾 for 2 h 

in a Lindberg/Blue ThermoScientific box furnace. The obtained ash was put in a planetary ball 

milling machine (Retsch PM 100) with ethyl alcohol for 30 minutes. The obtained liquid was dried 

for 8 hrs. The result was a thin layer of powder, then it was manually grounded to obtain a fine 

powder. The powder was later calcined at 973 𝐾 for 4 hours using a 10 𝐾/𝑚𝑖𝑛 ramp for heating 

and cooling in a tube furnace with oxygen flow. Then 2 grams of this powder were mixed with 

100 ml of DI water and the mix was sonicated during 30 minutes, 0.399 grams of Hydrogen 

tetrachloroaurate trihydrate were dissolved in 50 ml of DI water and 6.093 grams of Urea were 

also dissolved in 50 ml of DI water, these two mixes were added to the original mix of Ca3Co4O9 

+ Cux and water. A homogeneous mix was obtained and it was subjected to a hydrothermal process 

where using a High Preactor reactor the mix was heated to 90 ℃ and hold during 10 hrs. The ramp 

for heating was 1℃/𝑚𝑖𝑛 and for cooling 0.5 ℃/𝑚𝑖𝑛. After that, the excess of water was removed 

and the final powder was washed using a centrifuge machine for 5 times using DI water (2 times) 

and ethyl alcohol (3 times) using sets of 10 minutes at 14500 RPM. The final powder was dried in 

air for 8 hours; the dried powder was later manually grounded in a mortar. The addition of Au to 

the Ca3Co4O9+Cux was calculated to represent 10% of the final mix. This powder was later mixed 

with Ca3Co4O9+Cu powder to achieve different Au concentrations going from 0 to 5%, using the 

ball milling machine. The obtained liquid was dried for 8 hrs. The result was a thin layer of powder, 

then it was manually grounded to obtain a fine powder. The powder was later baked at 573 𝐾 for 

4 hours using a 10 𝐾/𝑚𝑖𝑛 ramp for heating and a cooling rate of 2 𝐾/𝑚𝑖𝑛 in a tube furnace with 

oxygen flow. The baked powder was uniaxially pressed into pellets (0.6 g for LSR and 6 g for 

LFA) at 1 GPa for 10 minutes at 298 𝐾. The pellets were sintered at 1193 𝐾 in a tube furnace with 
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oxygen flow. The sintering program used two different ramps, 10 𝐾/𝑚𝑖𝑛 for heating and a 

4 𝐾/𝑚𝑖𝑛 for cooling. The desired sintering temperature was held for 9 hrs. . Once the pellets were 

ready a rectangular piece of 4 mm width was cut for the LSR machine. 

The electrical characterization of the material was performed in the parallel direction to the 

pressed plane using Linseis LSR-1100 in a He environment using a temperature range from 

298 𝑡𝑜 1073 𝐾. The characterization provided the absolute Seebeck coefficient, the electrical 

resistivity of the material and the power factor.  

The phase identification of the material was obtained using a 𝑃𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙 𝑋′𝑃𝑒𝑟𝑡𝑃𝑟𝑜 𝑋𝑅𝐷 

with  𝐶𝑢 𝐾 − 𝑎𝑙𝑝ℎ𝑎 at room temperature. To analyze the structure of the sintered pellets a JEM-

2100 LaB6 Transmission Electron Microscope (TEM) operated at 200 kV was used. The samples 

were prepared by mechanically polishing and ion milling the pellets in a liquid-nitrogen cooled 

holder [62]. Electron diffraction, diffraction contrast and high-resolution TEM imaging analysis 

was performed for different samples. 

 

6.1.3 Results and Discussion 

The addition of Cu and Au to the Ca3Co4O9 showed a consistent increase in the densities for 

each one of the samples. Table 9 summarizes the density information where apparent density is 

the density measured using the Archimedes method; the calculated density for single crystal is 

calculated assuming a superlattice of 10 to 11 𝐶𝑎3𝐶𝑜4𝑂9 units per supercell and 𝑏 ≈ 8𝑏1 ≈ 13𝑏2 

as proposed by Masset et al. [63]. An idealization of the lattice parameters was considered based 

on the values reported by Masset et al. [63] for 𝐶𝑎3𝐶𝑜4𝑂9 where 𝑎 = 4.8376 Å, 𝑏1 = 4.5565, 

𝑏2 = 2.8189, 𝑏 = 36.479 Å, 𝑐 = 10.833 Å and 𝛽 = 98.06, this idealization disregards any 
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possible change in the volume of the unit cell by the addition of Cu.  The theoretical density was 

calculated using equation 4. The relative density to single crystal of column  4 is the apparent 

density compared to the theoretical density of 4.68 𝑔 ∗ 𝑐𝑚−3 [63]; the relative density to single 

crystal of column 5 is the apparent density divided by the calculated density for 𝐶𝑎3𝐶𝑜4𝑂9 +

𝐶𝑢0.05 + 𝑥% 𝐴𝑢. 

Table 9. Apparent densities of Ca3Co4O9+Cu0.05+x Au nano-inclusions sintered pellets 

Sample 
Cu+ Au 

Apparent 
density 𝑔 ∗

𝑐𝑚−3 

Calculated* 
Density for Single 
Crystal (g/cm3) 

Relative Density to 
single crystal 
Ca3Co4O9 (%) 
(A.C.Masset) 

Relative Density to single 
crystal  

Ca3Co4O9+Cu0.05+x Au (%) 
Calculated 

  LSR 
Baseline 

3.23 4.68 69 69 

 x=0% 3.51 4.71 75 75 

 x=0.5% 3.22 4.72 69 68 
x=1% 3.40 4.73 73 72 

x=2% 3.68 4.74 79 78 

x=3% 3.60 4.76 77 76 

x=4% 3.53 4.78 75 74 

 x=5% 3.71 4.80 79 77 
Single crystal (Masset) 4.68 100 100 

 

The phase identification of the material was obtained using XRD. In order to obtain peaks with 

good intensity and be able to identify any possible phase, the sintered pellets were ground until a 

fine powder was obtained. The Ca3Co4O9 + Cu0.05 + x Au diffraction peaks can be indexed as those 

reported by Masset et al.[63] with monoclinic symmetry. Fig. 42 shows the XRD powder patterns. 

The peaks with highest intensity are the ones that belong to the (00𝑙) plane family. 
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Figure 42. XRD patterns of Ca3Co4O9 + Cu0.05 + x Au %  (x=0, 0.5, 1, 2, 3, 4, and 5) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 43 shows the distribution, morphology and the chemistry of the nano-inclusions in the 

CCO-Cu matrix. The first noticeable feature is the fact that, significant particle growth can be 

detected; for CCO pure + Au, the Au nanoparticles are approximately 5 nm in size, but for this 

experiment the Au particles are approximately 100 nm. This growth is caused by the agglomeration 

of the Au particles and the alloying of Cu into particles, evidenced by the presence of high amounts 

of Cu in the particles. The chemistry analysis showed a higher than expected amount of Cu on the 

samples. 
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Figure 43. TEM micrograph Ca3Co4Cu0.05O9 + 2% Au. Distribution, morphology and chemistry of 

the inclusions in the CCO-Cu matrix 

Figure 44. Au-Cu alloy particle morphology and its electron diffraction pattern and indexing 

 

 

 

 

 

 

 

 

 

The size of these particles will not be beneficial for the thermal conductivity but it will help 

the electrical performance as demonstrated by the reported results. 
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Fig. 44 shows the Au-Cu alloy particle morphology and its electron diffraction pattern and 

indexing. The Cu-Au alloy particle can be indexed with the FCC structure.  

Fig. 45 displays the electrical resistivity (𝜌) 𝜇Ω𝑚, the Seebeck coefficient (𝑆) 𝜇𝑉𝐾−1 and the 

power factor 𝑚𝑊𝑚−1𝐾−2 of the different doped samples. The addition of Au nano-particles had 

a great effect on the resistivity of the material. For all the different concentrations, and all the range 

of temperatures, the resistivity was lower than the baseline. The reduction in the resistivity can be 

associated with the lower oxidation state of 𝐶𝑢+2 compared to 𝐶𝑜+3,+4, this will greatly increase 

the hole concentration and as a result the resistivity will decrease [66], as reported for Cu 

substitution and addition. The reduction in the resistivity can be directly associated to the electrical 

properties of Au. The reduction in the 𝜌 can also be explained by the electrical properties of the 

grain boundaries with the addition of Au. The lowest 𝜌 was achieved at x=2% with a minimum of 

39.26 𝜇Ω𝑚 at 322 K which represents an improvement of 118% compared to Ca3Co4O9 at that 

point, and 119% compared to x=0%. The average improvement for Ca3Co4O9 represents 30.75%, 

and for x=0% represents 8.9%. The Seebeck coefficient for almost all the concentrations showed 

a similar 𝑆 than the baseline, so it is possible to conclude that the Cu addition and Au do not have 

a significant effect on the conduction band [66]. The highest 𝑆 was 176.81 𝜇𝑉𝐾−1 at 1058 K with 

an Au concentration of 1%, which represents an improvement of 0.6% compared to the baseline 

at that point and 3.43% compared to x=0%. The addition of the Au nano-inclusions did not show 

a positive effect on the 𝑆 of the material. The power factor was greatly affected because of the 

variation of the resistivity with the Au nano-inclusions; the highest power factor was achieved at 

x=2% with 0.451 𝑚𝑊𝑚−1𝐾−2 at 860 K which represents an improvement of 94.6% compared to 

the baseline at that point, the average improvement represents 83.5%.  
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Figure 45. Electrical transport properties of Ca3Co4O(9+d) + Cu0.05+ x% Au,  (x=0,0.5,1,2,3,4,5) 
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6.1.4 Conclusion 

The goal of using Au nano-inclusions is to develop embedded metallic nano-inclusions in 

polycrystalline CCO. Based on the results of the conducted experiments, the addition of Au nano-

inclusions to the Ca3Co4O9 Cu addition, will improve the electrical properties of Ca3Co4O9. The 

reduction in the resistivity can be associated with the lower oxidation state of 𝐶𝑢+2 compared to 

𝐶𝑜+3,+4, this will greatly increase the hole concentration and as a result the resistivity will decrease 

[66], as reported for Cu substitution and addition. The reduction in the resistivity can be directly 

associated to the electrical properties of Au, it is important to mention that the sample with the 

best performance x=2% is also the sample with the highest resistivity in the set. The reduction in 

the 𝜌 can also be explained by the electrical properties of the grain boundaries with the addition of 

Au. The highest power factor for these experiments was 0.451 𝑚𝑊𝑚−1𝐾−2, which represents an 

improvement of 94% compared to the baseline at that point. It is necessary to complete the thermal 

characterization in order to determine the ZT of the material. The results are very promising. 
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Chapter 7                                

Conclusions and suggestions for future 

work 

7.1 Conclusions 

The present thesis summarizes different approaches followed in order to improve the 

thermoelectric properties of Ca3Co4O9, ranging from cation substitution, cation addition and Au 

nano-inclusions. 

Chapter 2 summarizes the cation substitution approach. Here the Ca and Co cations were 

substituted with different elements in order to improve the electrical properties of Ca3Co4O9. As a 

first candidate Lu was used, using a 0.10 concentration of Lu in Ca3Co4O9 will translate in an 

improvement of 26% of the power factor compared to a Ca3Co4O9 sample without any doping. 

The maximum power factor obtained for the series of experiments was 0.415 𝑚𝑊𝑚−1𝐾−2 at 

1059 K. This work shows that doping Ca3Co4O9 with Lu, is a verifiable way of improving the 

electrical properties of the material.  

After that, Ga was considered, the best concentration for 𝐶𝑎3𝐶𝑜4−𝑥𝐺𝑎𝑥𝑂9 according to the 

experiments is 0.15 where an average improvement of 19.2% for the power factor compared to the 

baseline was achieved. The maximum power factor value was 0.364 𝑚𝑊𝑚−1𝐾−2 at 837 K. 
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 Then Cu was used, as a result of these experiments is possible to conclude that the effect of 

Cu in Co-cation substitution will overall benefit the electrical properties of Ca3Co4O9. The best 

concentration for 𝐶𝑎3𝐶𝑜4−𝑥𝐶𝑢𝑥𝑂9 according to the experiments is 0.01 where an average 

improvement of 27% for the power factor compared to the baseline was achieved. The maximum 

power factor value was 0.365 𝑚𝑊𝑚−1𝐾−2 at 932 K.  

As a conclusion for this chapter a double substitution was considered, the best concentrations 

for Ga and Cu; the use of dual Cu and Ga substitution in the Co-cation in Ca3Co4O9 will benefit 

the electrical properties of the material by a considerable increase in the power factor, and a lower 

resistivity. The density is not really affected by the dual substitution. The highest power factor was 

0.422 𝑚𝑊𝑚−1𝐾−2 at 1033 K which represents an improvement of 25% compared to a sample 

without doping. The major contribution was observed in the resistivity where a minimum of 51.37 

𝜇Ω𝑚 at 331 K was achieved which represents an average improvement of 35%.  

Chapter 3 was based on the non-stoichiometric addition. The first element considered was Co, 

since during the sintering of the material some Co was being discarded. Based on the results from 

the experiments conducted, the addition of Co will greatly improve the thermoelectrical properties 

of Ca3Co4O9. A reduction in the resistivity was observed for the 0.01 concentration; that can be 

explained by the fact that at the time the material is being formed some Co becomes CoO and stays 

on the trays at the time the pellets are sintered, if more Co is added, the extra Co will satisfy the 

need of Co to achieve a stoichiometric balance. For the Co concentration 0.01, the power factor 

was 0.37 𝑚𝑊𝑚−1𝐾−2 at 982 K which represents an improvement of 12.7% compared to the 

baseline at that point.  In the case of the thermal properties, Co decreased the thermal conductivity 

for all the different concentrations used, so the addition of Co might improve the phonon scattering 

effect. The maximum ZT observed for this set was 0.1920 at 1073 K for x=0.01. This value 
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represents an increase of 21.9% compared to the baseline. Adding Co with a concentration of 

x=0.01 will make Ca3Co4O9 a more suitable material for TE devices. The approach is simple and 

relatively inexpensive, since it is not necessary to add any other elements, just using the basic 

elements of Ca3Co4O9 the material will have better thermoelectric performance. 

Chapter 4 summarizes the experiments conducted with Cu addition. Based on the results from 

the several experiments conducted, the addition of Cu will increase in a considerable amount the 

thermoelectric performance of Ca3Co4O9. A reduction in the resistivity was observed for the 0.01 

and 0.05 concentrations; that can be explained by the lower oxidation state of 𝐶𝑢+2 compared to 

𝐶𝑜+3,+4. Also, the addition of Cu to the Ca3Co4O9, showed an interesting effect with a transition 

from a semiconductor behavior to a metallic behavior [18]. The 𝑆 was increased for 0.05 and 0.10, 

that can be explained by the CaO phase observed on the double diffraction pattern. The existence 

of the extra phase increased the 𝑆 at low temperatures. In the case of the thermal properties, Cu 

decreased the thermal conductivity for all the different concentrations used, so the addition of Cu 

might improve the phonon scattering effect. The maximum ZT observed for this set was 0.2288 at 

1073 K for x=0.05. This value represents an increase of 45% compared to the baseline. 

Chapter 5 summarizes the experiments conducted with the addition of Au nano-inclusions to 

the best result from chapter 3. Based on the results of the conducted experiments, the addition of 

Au nano-inclusions to the Ca3Co4O9 Co addition, will have a positive impact on the electrical 

properties of Ca3Co4O9. The reduction in the resistivity can be directly associated to the electrical 

properties of Au. The reduction in the 𝜌 can also be explained by the electrical properties of the 

grain boundaries with the addition of Au. The highest power factor for these experiments was 

0.376 𝑚𝑊𝑚−1𝐾−2, which represents an improvement of 55% compared to the baseline at that 

point. 
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Figure 46. Best power factor performance for different elements. Cation substitution 

Chapter 6 summarizes the experiments conducted with the addition of Au nano-inclusions to 

the best result from chapter 4. Based on the results of the conducted experiments, the addition of 

Au nano-inclusions to the Ca3Co4O9 Cu addition, will have a positive impact on the electrical 

properties of Ca3Co4O9. The reduction in the resistivity can be associated with the lower oxidation 

state of 𝐶𝑢+2 compared to 𝐶𝑜+3,+4. The reduction in the resistivity can be directly associated to 

the electrical properties of Au. The reduction in the 𝜌 can also be explained by the electrical 

properties of the grain boundaries with the addition of Au. The highest power factor for these 

experiments was 0.451 𝑚𝑊𝑚−1𝐾−2, which represents an improvement of 94% compared to the 

baseline at that point. 

The following figures summarize the best performance obtained for all the experiments 

conducted on this thesis. 
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Figure 47. Best power factor performance for different elements. Cation addition + Au nano-inclusions 

Figure 48. Best ZT performance for different elements. Cation addition 
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7.2 Suggestions for future work 

Most of the suggestions for future work are related to the characterization of the material. 

During the experiments, some idealizations were considered and those will induce a small error, 

in order to avoid that error, it is necessary to finish all the characterization of the different sets. 

Also in some cases is necessary to finish the thermal characterization of the material, because on 

this thesis only the electrical properties were analyzed.  

For Ca3Co4O9 used as a baseline, it is necessary to find the actual lattice parameters of the 

material, to find the real volume of the unit cell. This calculation will provide a more accurate 

calculated density. 

For Ca(3-x)LuxCo4O9, it is necessary to find the actual lattice parameters of the material, to find 

the real volume of the unit cell. This calculation will provide a more accurate calculated density. 

It is suggested to perform XRD analysis on the different samples, in order to determine the phases. 

It is suggested to examine the samples using SEM in order to look at the morphology of the 

material. It is suggested to perform the thermal characterization to determine the ZT of the 

material. It is suggested to analyze the structure of the sintered pellets using TEM imaging. These 

suggestions would provide a more accurate overall description of the effect of using Ca(3-

x)LuxCo4O9. 

For Ca3Co(4-x)GaxO9, it is necessary to find the actual lattice parameters of the material, to find 

the real volume of the unit cell. This calculation will provide a more accurate calculated density. 

It is suggested to perform XRD analysis on the different samples, in order to determine the phases. 

It is suggested to examine the samples using SEM in order to look at the morphology of the 

material. It is suggested to perform the thermal characterization to determine the ZT of the 
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material. These suggestions would provide a more accurate overall description of the effect of 

using Ca3Co(4-x)GaxO9. 

For Ca3Co(4-x) CuxO9, it is necessary to find the actual lattice parameters of the material, to find 

the real volume of the unit cell. This calculation will provide a more accurate calculated density. 

It is suggested to perform the thermal characterization to determine the ZT of the material. These 

suggestions would provide a more accurate overall description of the effect of using Ca3Co(4-x) 

CuxO9. 

For Ca3Co(4-x-y)CuxGayO9, it is necessary to find the actual lattice parameters of the material, 

to find the real volume of the unit cell. This calculation will provide a more accurate calculated 

density. It is suggested to perform XRD analysis on the different samples, in order to determine 

the phases. It is suggested to examine the samples using SEM in order to look at the morphology 

of the material. It is suggested to perform the thermal characterization to determine the ZT of the 

material. It is suggested to analyze the structure of the sintered pellets using TEM imaging. These 

suggestions would provide a more accurate overall description of the effect of using Ca3Co(4-x-

y)CuxGayO9. 

For Ca3Co4O9+Cox, it is necessary to find the actual lattice parameters of the material, to find 

the real volume of the unit cell. This calculation will provide a more accurate calculated density. 

It is suggested to analyze the structure of the sintered pellets using TEM imaging. These 

suggestions would provide a more accurate overall description of the effect of using 

Ca3Co4O9+Cox. 

For Ca3Co4O9+Cux, it is necessary to find the actual lattice parameters of the material, to find 

the real volume of the unit cell. This calculation will provide a more accurate calculated density. 
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This suggestion would provide a more accurate overall description of the effect of using 

Ca3Co4O9+Cux. 

For Ca3Co4O9 + Co0.01 + x% Au, it is necessary to find the actual lattice parameters of the 

material, to find the real volume of the unit cell. This calculation will provide a more accurate 

calculated density. It is suggested to examine the samples using SEM in order to look at the 

morphology of the material. It is suggested to perform the thermal characterization to determine 

the ZT of the material. It is suggested to analyze the structure of the sintered pellets using TEM 

imaging. These suggestions would provide a more accurate overall description of the effect of 

using Ca3Co4O9 + Co0.01 + x% Au. 

For Ca3Co4O9 + Cu0.05 + x% Au, it is necessary to find the actual lattice parameters of the 

material, to find the real volume of the unit cell. This calculation will provide a more accurate 

calculated density. It is suggested to examine the samples using SEM in order to look at the 

morphology of the material. It is suggested to perform the thermal characterization to determine 

the ZT of the material. It is suggested to analyze the structure of the sintered pellets using TEM 

imaging. These suggestions would provide a more accurate overall description of the effect of 

using Ca3Co4O9 + Cu0.05 + x% Au. 

For future work, the non-stoichiometric addition of different elements has shown very 

promising results, and it is an open field for future research.
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