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Abstract 

Recharge Processes within the Cacapon Mountain Aquifer, Ridge and Valley Province, 
West Virginia 

 

Cristine M. Vinciguerra 

During the 2006-2007 water year, apparent recharge rates for three streams 

draining the Cacapon Mountain Aquifer, in the Valley and Ridge Province of northern 

West Virginia, were estimated using hydrograph separation techniques.  The techniques 

use stream baseflow, dominated by groundwater discharge, as a surrogate for 

groundwater recharge.  Two of the streams draining the aquifer were strike-normal (Rock 

Gap Run and Breakneck Run) and one was strike-parallel (Sir Johns Run).  The strike-

normal streams had significantly lower apparent recharge rates (Rock Gap Run: 2.52 

in/yr; Breakneck Run: 6.57 in/yr) than the strike-parallel stream (Sir Johns Run: 13.31 

in/yr).  The large variations in recharge rate are interpreted to be due to water lost to the 

Helderberg Limestone, a local conduit-forming unit, in the two former drainages.  In this 

particular geologic setting, apparent recharge rates of strike-parallel and strike-normal 

streams draining the same aquifer may differ substantially.  Estimating recharge rates 

from stream flow data may give inaccurate numbers if the stream flows over highly 

transmissive conduit forming limestone or extensive fractures.      
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1 Introduction 

Recharge is any addition of water to an aquifer via vertical infiltration to the water 

table, occurring as a result of either natural processes or anthropogenic influences 

(Kellers, 1996).  Over large periods of time, recharge is equal to groundwater discharge 

minus evapotranspiration and utilization, plus or minus any change in aquifer storage 

(Rutledge, 1998).  As a result, groundwater discharge measurements are frequently the 

basis for estimation of groundwater recharge. 

Groundwater discharge from karst aquifers commonly differs in flow mechanisms 

from that of clastic aquifers.  Much of the discharge from karst aquifers is from 

concentrated outflows (e.g., springs), with a “quickflow” (Atkinson, 1977) component, in 

addition to the more diffuse discharge directly to streams that dominates non-karstic 

aquifers (White, 1988).  Measuring baseflow recession of streams sustained by a karst 

aquifer utilizes both concentrated and diffuse flow components to assess total recharge 

(Meyboom, 1961).  Hydrographs of baseflow recession may be fitted using an 

exponential decline with respect to time, yielding a parameter that describes recession 

rate (Vogel and Kroll, 1996). 

In montane karst aquifers, both recharge and discharge rates can differ in 

magnitude from those in lowland settings (Petric, 2004).  Relatively deformed and/or 

faulted strata often underlie montane karst settings.  Steeply sloping topography allows 

for the potential for higher hydraulic gradients, and correspondingly higher flow rates 

than in areas of low relief.  Montane karst settings also tend to have elevated recharge 

rates as a result of greater precipitation, greater snow pack and/or decreased 

evapotranspiration. 
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Factors affecting recharge to any aquifer are rates of runoff, snowmelt, 

precipitation, infiltration, vadose and phreatic evapotranspiration, pumping, and stream 

loss to the aquifer (Petric, 2001).  Recharge can occur both through and outside of 

sinkholes (Petric, 2001).  Montane karst aquifers exhibit discharge time series that are 

very similar to time series of precipitation except during the spring months when 

discharges are normally highest due to snowmelt and increased precipitation (Petric, 

2001). 

Recharge to karst aquifers may occur either as quickflow or as matrix flow.  

Quickflow can refer to conduit flow, induced when runoff flows directly into a sinkhole 

or sinking stream reach (Felton, 1994) but can also refer to other accelerated pathway to 

the water table.  It may also represent bank storage effects that have little to do with 

groundwater.  Matrix flow represents water moving through the aquifer through openings 

at lower velocity.  Information about flow and storage characteristics of an aquifer can be 

obtained through studying the recharge-discharge relationship of that aquifer (Petric, 

2001). 

Measurement of recharge rates is necessary to quantify the amount of inflow to an 

aquifer.  A better understanding of the aquifer’s recharge rate is a required to develop 

groundwater flow models.   

Estimating recharge from streamflow records assumes negligible underflow 

because of that the term apparent recharge rate will be used to describe the recharge rate 

estimated from streamflow. 
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1.2 Purpose  

The purpose of this study is to estimate recharge to an eastern montane karst aquifer 

and to compare its observed recharge characteristics – including rate, spatial variability, 

and temporal variability -- to geologically similar eastern U.S. settings.   This involved 

the following objectives: 

• Objective 1. A one-year (2006-2007) estimate of apparent recharge flux to the 

aquifer, performed by time-integration of groundwater discharge 

• Objective 2. Testing of the hypothesis that there is a significant difference in 

apparent recharge rates between (a) different portions of the Cacapon Mountain 

aquifer and (b) other karst aquifers in the humid east. 

• Objective 3. Physical examination of recharge mechanisms during 2007, by 

measurement of gain and loss rates along mountainside tributaries in the study 

area. 

1.3 Study Area  

The study area for this investigation consists of the Cacapon Mountain aquifer in 

Morgan County, located in West Virginia’s eastern panhandle (Figure 1).  The term 

“Cacapon Mountain aquifer” (Donovan et al., 2006) refers to the Silurian bedrock aquifer 

extending between the Tuscarora Formation and the Oriskany Formation, the lower 40% 

of which is carbonate rocks.  Warm Springs Ridge (Oriskany sandstone) bounds the 

aquifer on the east and the crest of Cacapon Mountain (Tuscarora quartzite) on the west.  

The aquifer extends north to the Potomac River, and south to near the intersection of U.S. 

route 522 with the VA-WV border.  Locally this valley is known as Cold Run Valley. 
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Figure 1. Location map of the Cacapon Mountain aquifer, Morgan County, 

WV. 
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1.4 Geology 

The study area is located within the Valley and Ridge Physiographic Province, of 

the Appalachian Highlands.  The Valley and Ridge is characterized by a series of parallel 

ridges underlain by resistant lithologies and lowland valleys underlain by non-resistant 

lithologies.  The structure of the province is dominated by thrust faulting and folding, 

which largely took place during the Alleghanian Orogeny (Fenneman, 1928).  The flow 

of groundwater within the Valley and Ridge is generally restricted by parallel ridges and  

is dominantly shallow, with discharge to local streams (Swain, 1991).  Ridges and 

alternating canoe-shaped valleys formed from the erosion along folds of alternating 

resistant and weak strata (Fenneman, 1928).  Although large amounts of water are being 

withdrawn from aquifers in the Valley and Ridge, recharge processes that dominate here 

are still poorly understood (Rutledge, 1996).   

The structure of Morgan County is dominated by the Cacapon Mountain anticline 

(Figure 2), the eastern side of which is the focus of this study.  The Cacapon Mountain 

anticlinorium is made up of folded and faulted rocks from Upper Ordovician to Middle 

Devonian age (Kulander, 1995).  The structure formed over a duplex bounded by an 

imbricate fault ramping upward from the Lower Cambrian, and an upper décollement 

layer in the Upper Ordovician Martinsburg shale (Kulander, 1995).  The anticline is 

gradually north plunging towards the Potomac (Donovan et al., 2006).  From oldest to 

youngest, the major rock units involved are the Juniata Formation (Ordovician); the 

Tuscarora Formation, Clinton Group/McKenzie Formation, and Wills Creek / Tonoloway  
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Figure 2. Shaded relief map of Cold Run Valley from the 10 m digital 

elevation model (DEM). 
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formations, all Silurian; and the Devonian Helderberg and Oriskany formations.  The 

center of the anticline and ridge former of Cacapon Mountain is the Tuscarora Formation.   

Silurian rocks here include:  

• the Tuscarora Formation, 150-250 ft, a white to light gray, resistant marine 

sandstone, silica cemented, visible cross beds, thin conglomerate layers common, 

sparsely fossiliferous (Dean, 1995);  

• the Clinton Group, 400-450 ft thick, gray and black shales and siltstones, contains 

a resistant 20-30 foot thick gray or iron stained thinly bedded marine sandstone 

layer known as the Keefer and a 400-450 ft thick yellow tan and red marine shale, 

fossiliferous, with sandstone and siltstone layers, known as the Rose Hill 

Formation (Kulander, 1995);  

• the Mackenzie Formation, 175-225 ft thick, a gray to tan calcareous shale 

interbedded with thin dark blue limestones and calcareous sandstones (Minke, 

1964)  

• the Wills Creek Formation, 350-450 ft thick, non-fissile gray shale with some 

redbeds, thin bedded limestone, and a friable, yellow tan sandstone in the top 10-

15 feet,  

• the Tonoloway Formation, 300-400 ft thick, a fine grained, laminated, gray 

argillaceous marine limestone, some thin shale layers; mud cracks common on 

bedding surface, fossiliferous (Kulander, 1995). 

Devonian age rocks include:  
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• the Helderberg Group, 400-450 ft thick, a massively bedded, coarse-grained gray 

limestone; abundant fossils; dark and light colored chert layers, minor karst 

development (Kulander, 1995), conduits form parallel to strike,  

• the Oriskany Formation, 200-300 ft thick, white to light gray, medium to coarse 

grained, quartz sandstone with zones of quartz conglomerates, cross beds, 

abundant marine fossils; both carbonate and silicate cements common (Kulander, 

1995) 

The Clinton Group and the MacKenzie, Wills Creek, Tonoloway, and Helderberg 

formations underlie the Cacapon Mountain aquifer (Figure 3).  The Helderberg limestone 

is in most locations the most transmissive rock unit in this sequence due to its tendency to 

form conduits.     

1.41 Bouldery Colluvial Aquifer 

In the headwaters of both Rock Gap Run and Breakneck Run there are boulder 

deposits along the flanks of the mountain.  These bouldery deposits act as unconfined 

aquifers that intercept and store infiltration (Figure 4).  The sandstone boulders that make 

up the deposits are primarily sandstones derived from the Tuscarora or Keefer 

Formations. 

1.5 Previous Investigations 

The Cacapon Mountain aquifer lies within the study area for the Regional 

Aquifer-System Analysis (RASA) study done by the USGS from 1978-1988 in the 

Appalachian Valleys and Piedmont (Swain et al., 1991).  The analysis gave a sweeping 

overview of aquifer characteristics in the Valley and Ridge in general, but no specific 

information describing recharge processes. 
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Figure 3. Geology of Cacapon Mountain aquifer after Grimsley (1916). 

 9



 

 

 

 

 

 

Figure 4.  Recharge pathways for Cold Run Valley, after Houston (2002), 

Figure 9. 
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A geochemical and hydrologic assessment of the eastern side of Cacapon 

Mountain (Donovan et al., 2006) provided basic hydrogeologic data (well and spring 

locations, groundwater divides, potentiometric contours) for the Cacapon Mountain 

aquifer.  No data were presented regarding aquifer storage or recharge. 

Kozar and Mathis (2001) compiled aquifer characteristics for the state of West 

Virginia.  Reported characteristic included estimates of transmissivity, saturated aquifer 

thickness, hydraulic conductivity, storage coefficients, specific yield, and recharge rates.  

Values for stratigraphic units within the Cacapon Mountain aquifer were included in the 

study.  Recharge rates were estimated using long-term average streamflow data, 

calculated using both RORA (a computer program based on the Rorabaugh method) and 

other hydrograph separation methods.  Recharge estimates were reported for the 

catchment of the Cacapon River, west of the Cacapon Mountain anticline (Kozar and 

Mathies, 2001). 

Boughton (2006) reported ground-water geochemical data for aquifers of Morgan 

County, including the Silurian Cacapon Mountain units as well as the overlying 

Devonian clastic formations.  She also described the general hydrogeology of Morgan 

County (Boughton, 2006). 

2 Elements of hydrograph analysis for recharge estimation 

One of the first to use streamflow hydrographs for estimating recharge was 

Meyboom (1961), utilizing the water budget relationship that groundwater recharge 

equals groundwater discharge plus or minus changes in storage.  During extended periods 

with no precipitation, streamflow is maintained solely by groundwater discharge 
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(Meyboom, 1961).  Time-integrated groundwater discharge during such periods is 

approximately equal to groundwater recharge. 

The Meyboom (1961) method was designed to be useful in areas where there was 

a good record of streamflow and precipitation but where a detailed hydrogeologic survey 

would be difficult or uneconomical.  The technique is based on the assumption that there 

is a log-linear relationship between groundwater discharge and time (Rutledge, 1998).  If 

log of discharge is plotted against time, a straight-line relationship for the individual 

storm event commonly indicates groundwater recession (Meyboom, 1961).  The slope of 

this straight line with respect to time is the first-order recession constant α, first defined 

by Maillet (1905):  

-αt
oQ(t)=Q e      (1) 

where Qo is an initial discharge (L3/T), and α is the recession constant (1/T).  It is best to 

estimate the recession constant during months when plants are not growing to minimize 

the impact of transpiration on the observed slope (Rutledge, 1994).  Another parameter of 

interest in analysis of hydrographs is the recession index K (T/log cycle), equivalent 

to 1
α

.  Based on the value of K, Meyboom (1961) indicated the total potential volume of 

ground-water discharge over any arbitrary time period V could by calculated as: 

 Q*KV=
2.3026

      (2) 

V (L3) is the total volume of baseflow that would drain from the aquifer in an infinite 

timeframe with no further recharge (Rutledge, 1998).  This was expanded upon by 

Rorabaugh (1964) and Rutledge (1998) to show that the total potential groundwater 

discharge at a “critical time” after peak flow is equal to about one half of the recharge 
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during the peak period interval (Chen, 2003).  The “critical time” is estimated by an 

equation that gives the logarithm of groundwater discharge as a linear function of time 

(Rutledge, 1998) 

Multiple recession slopes are common in many stream hydrographs.  According 

to Meyboom (1961), all stream runoff is composed of three elements; direct runoff, 

interflow, and baseflow.  In karst aquifers, intermediate slopes in the recession have been 

attributed to "quickflow" (Figure 5).  Semi-log plots are commonly used for baseflow 

separation in the hydrologic literature (Szilagyi, 1999).  
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Figure 5.  Stream hydrograph from a Mid-April storm event on Rock Gap 

Run. 
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3 Methodology 

3.1 A one-year estimate of recharge flux 

In this investigation, three stilling wells were installed to house dataloggers at 

locations along Rock Gap, Sir Johns, and Breakneck runs (Figure 6).  Here, the stilling 

wells were located in pools with a minimum of large boulders.  Wells were fabricated 

from four-inch diameter Schedule 40 PVC pipe, as shown in Figure 6.  The horizontal 

pipe was installed beneath the creek bed, low enough to remain immersed during low 

flows.  The vertical portion of the stilling well was installed a few feet back from the 

stream within bank material.  An eyebolt was attached about six inches below the casing 

top of the well and a datalogger was suspended to measure water level.   

Dataloggers installed at these three stations continually measured water level in 

these stilling basins, for translation to discharge using rating curves.  Sealed water level 

loggers (Onset Computer® model U20-001-04 and U20-001-01) were used at all three 

locations.  The loggers measure absolute pressure (reported in pounds per square inch 

absolute, or psia) and temperature.  The time interval between measurements was hourly.  

A sealed Solinst® BaroLogger, that measures atmospheric pressure variations in feet of 

water around a zero datum of 13.51 psi, was placed at the Ridge logger station in order to 

correct the loggers for barometric fluctuations.  Occasional flow measurements were 

made using a pygmy-type flow meter and an AquaCalc Pro ® data collection unit.  

During each flow measurement, a minimum of twelve current-velocity measurements 

was taken across each channel cross section at 0.5-foot intervals.  To develop a rating 

curve, pressure variations were correlated to flow measurements at each site (Figure 7). 
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Figure 6.  Installing stilling well at Rock Gap Run, July 2006 (photo Matt 

Finkenbinder). 
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Figure 7.  Rating curves for (a) Breakneck Run, (b) Rock Gap Run, and (c) Sir 

Johns Run. 
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Recharge was estimated using three hydrograph separation techniques, two 

manual methods and one computer model. 

The first manual method is a Direct Separation (DS) of each stream's discharge 

hydrograph.  The discharge for a full year was plotted versus time and integrated using 

the midpoint technique, yielding Vt, the total volume of streamflow for the reference 

period.  The water budget for this flow may be written as: 

Vt = VR + Vgw

where VR is stormflow and Vgw is baseflow, including both slow and quick components.  

Calculation of recharge requires separation of the storm runoff component from the 

baseflow component.  To accomplish this in the DS method, the following steps were 

followed:  

1. In a plot of log discharge versus time, straight line (i.e., log-linear) 

segments were fitted to the steepest early slope of the hydrograph, 

interpreted as storm runoff, and the shallowest recessional slope, 

considered baseflow, 

2.  the slopes and intercepts of these two lines were calculated for each storm 

event, 

3. the lines were anti-logged and integrated to estimate (a) the total potential 

runoff, and (b) the estimated actual runoff, defined as the forward-

extrapolated potential stormflow minus the reverse-extrapolated baseflow 

(Figure 8)  

4.   the volume of runoff was subtracted from the volume of total flow and 

normalized to drainage area to give recharge.    
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Figure 8.  Typical Breakneck Run discharge hydrograph, showing slopes of 

storm runoff and baseflow components.

 19



The DS method only excludes runoff from the recharge estimate.  Both baseflow 

and quickflow are included as recharge.  The gaging stations on the streams in the study 

area are all located in the headwaters. Therefore, all stormflow passes the streamflow 

station within a couple of hours.  The hydrographs can, therefore, be relatively easily 

distinguished into different flow components including quickflow.  

The second method was the Recession Curve Displacement (RCD) method, based 

on the Meyboom (1961) technique.  The RCD method uses a summation of the upward 

shifts in the streamflow recession curve that takes place after recharge events to estimate 

recharge (Chen, 2003).  The method consists of the following six steps (Figure 9; 

Rutledge 1998):  

1. Determination of the recession index (K) from the hydrograph during a time 

of little to no recharge, for use in calculation of the critical time after peak 

flow ,  cT =0.2144*K

2. Location of Tc on the hydrograph,  

3. Determination of Q1 (hypothetical groundwater discharge to the stream at Tc) 

based on pre-event recession,  

4. Determination of Q2 (hypothetical groundwater discharge to the stream at Tc) 

based on post-event recession,  

5. Estimation of recharge for each discrete recharge event (L3) as follows: 

2 12(Q -Q )KR=
2.3026

     (4) 

The final method used was direct calculation using RORA (Rutledge, 1998).  This 

method minimizes subjectivity in separating baseflow during long periods of multiple  
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Figure 9.  Calculating recharge using the recession curve displacement 

method, after Rutledge (1993). 
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frequent precipitation events, when visual separation is difficult (Kozar and Mathes, 

2001). 

All streamflow-based methods for estimating recharge implicitly assume that 

groundwater recharge is equal to streamflow; in reality, it is possible for several other 

sources of groundwater discharge (i.e., evapotranspiration, abstraction, and underflow) 

that are all part of recharge to go unmeasured in those techniques (Rutledge, 1996).  

Underflow could be occurring beneath the aquifer of this study because of its karst 

nature.  Underflow may be occurring as deep artesian flow through the Helderberg to 

locations outside of Cold Run Valley.  The chemical signature of Ladies Spring, a 

thermal spring at Berkeley Springs on the east side of Warm Spring Ridge, is identical to 

that of springs in the Helderberg formation in Cold Run Valley (Donovan et al., 2006).  

The similarities in spring chemistry suggest that the recharge area for Ladies Spring 

could lie within Cold Run Valley.  In order for recharge from Cold Run Valley to reach 

Ladies Spring on the opposite side of Warm Spring Ridge, underflow would be a 

prerequisite. 

Seepage runs were done on Rock Gap to note any significant gains or losses but 

no quantification of the volume of underflow will be done.  The recharge estimations 

may be low if losses are occurring upstream of the measuring point.   

During 2006-2007, Rock Gap Run was intermittent.  Therefore, the Rock Gap 

Run data were cropped at 0.25 cfs (the smallest flow measurable with a flow meter on 

Rock Gap Run) to allow discharges to be plotted on a logarithmic scale (Figure 10).     
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Figure 10.  Rock Gap Run was cropped at 0.25 cfs, the detection limit of the 

flow meter. 
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Streamflow data show daily fluctuations at the Breakneck Run station due to 

diversion from the stilling basin to a West Virginia Division of Natural Resources 

(WVDNR) Fish Hatchery downstream.  Diversion occurs at all seasons, but only during 

low flow is nearly all of the streamflow diverted.  To correct these data for gaps due to 

disturbance of pool levels at the weir, Breakneck Run flow during periods of flow 

diversion was correlated to those at Rock Gap Run to smooth out these fluctuations due 

to the streamflow diversion (Figure 11).  Plotting the discharge of Rock Gap Run versus 

Breakneck Run yielded a R2 value of 0.91, suggesting a strong correlation. 

3.2 Analysis of recharge rate variations  

3.21 Cacapon Mountain aquifer 

The data collected from the three streamflow stations were compared to each 

other to explain differences in discharge, recession constants, and hydrograph 

characteristics.  Differences were based on size and geologic characteristics of each 

drainage area.  The assumption was made that topographic divides correspond to 

groundwater divides.  The drainage areas of streams were delineated in ArcGIS 9.2, using 

10-meter digital elevation models (DEMs).  Spatial variations in climate were examined 

by comparing precipitation data from the rain gages at Cacapon State Park; Winchester, 

VA; Hancock, MD; and at Falling Waters, WV. 

3.22 Montane and lowland karst (humid east) 

The data collected from the Cacapon Mountain aquifer were also compared to 

existing data in a carbonate aquifer of similar settings and in a lowland setting.  Flow data 

were obtained from the USGS National Water Information System database for Back 

Creek near Jones, WV (# 01614000), Cacapon River near Great Cacapon, WV  
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Figure 11.  Raw total pressure data for Rock Gap Run and Breakneck Run 

from July 2006-July 2007. 
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(#01611500), and Patterson Creek near Headsville, WV (#01604500) (Figure 12).  The 

data employed were daily average discharge from July 2006-July 2007.  The discharge 

data from these sites were used to estimate recharge using the same methodology as the 

streams in the aquifer. 

3.3 Physical examination of recharge mechanisms  

The most important recharge period for the Cacapon Mountain aquifer is in late 

winter and early spring, as in most humid temperate climates.  Two types of seepage runs 

were performed on Rock Gap Run in early spring when snowmelt was at a maximum.  

The first seepage run on 4/15/07 involved two operators measuring flow along one of the 

major tributaries of Rock Gap Run over approximate 150-meter intervals.  The second 

type of seepage run was done on 4/25/07 and 4/27/07.  These runs involved a 

reconnaissance team walking the recharge area during a snowmelt event and marking 

locations, either visually or based on flow measurements, where water is lost to the 

subsurface.  Starting at the base of the mountain working downstream sampling was done 

at 150-meter intervals.  All locations where flows emerged, intersected, or submerged 

were marked with a Garmin GPS.  Both types of survey were done with a pygmy style 

flow meter and an AquaCalc Pro data collection unit.  Instrumentation accuracy on the 

AquaCalc Pro is 0.005%.  Replicating flow measurements assessed user error; the 

standard deviation was 0.097.  Identifying areas where water is entering or exiting the 

ground gives a better understanding of recharge mechanisms. 
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Figure 12.  Streams catchments for which recharge rates were calculated in 

this study, Eastern Panhandle, WV.  USGS gageing stations 

denoted with red stars. 
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4 Results 

4.1 Hydrograph Analysis 

4.12 Multiple Recession Slopes 

The hydrographs of karst streams traversing Cacapon Mountain aquifer have three 

distinct recession slopes, representing storm runoff, interflow and/or quickflow, and 

baseflow, from early to late time.  Interflow represents infiltration and lateral flow 

through the subsurface to the channel that reports to the stream more slowly than surface 

runoff but more quickly than baseflow (Ramirez, 2000).  Quickflow, a term applied 

exclusively to karst aquifers, refers to flow through a network of high velocity subsurface 

drains (Padilla, 1994).  Due to similar speed of their flow regimes, it is difficult to 

separate quickflow from baseflow and stormflow in a hydrograph with complete 

confidence.  Additionally, each method of baseflow separation has, depending on the 

nature of the hydrograph, potentially considerable subjectivity (Szilagyi, 1999). 

Stream and spring hydrographs both display quickflow and baseflow, but only 

stream hydrographs display runoff.  Tonoloway Spring (Figure 13) is located in the 

headwaters of the Sir Johns Run watershed, roughly 2.4 kilometers from the streamflow 

station on Rock Gap Run.  In Figure 14, Tonoloway Spring and Rock Gap Run flow 

hydrographs are plotted semi-logarithmically against time for a storm event in mid-April 

2007, chosen because it shows evident recession following a single intense rainfall event.  

The springflow data were rescaled to align baseflows of the two hydrographs.  Both 

hydrographs display quickflow (the lines of intermediate slope in Figure 14)  
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Figure 13.  Location of Tonoloway Spring in the Cacapon Mountain Aquifer. 
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Figure 14. Hydrographs from Rock Gap Run and Tonoloway Spring, showing 

three distinct recession segments. 

 30



and baseflow components but only the stream hydrograph displays a runoff component.  

This figure is interpreted to show the unit hydrograph for Rock Gap Run (as well as 

Tonoloway Spring) and the approximate partition between baseflow and quickflow. 

Tonoloway Spring flow data is useful for breaking down the quickflow in 

comparison to Rock Gap Run because of runoff overlapping with quickflow, in this as 

well as other events.  These quickflow slopes can be used to separate out stormflow 

during multiple recharge events where visual separation is difficult.  

Using this approach to distinguish between the three flow components, the 

hydrographs of each stream in the study were separated.  The earliest hydrograph portion 

after the onset of precipitation, up to and including the steep stormflow recession, was 

interpreted as storm runoff.  In some cases, this storm recession was log-linear, but its 

slope varied from event to event. Similarly, the late log-linear slope was interpreted as 

baseflow; baseflow slope was generally uniform from event to event at individual 

stations.  The intermediate streamflow between storm runoff and baseflow was 

interpreted as "quickflow" and had a slope intermediate between these two.  The 

percentage of total flow in each of these three components was estimated by integration 

using the DS method (Figures 15-17).   

4.2 Recharge rate for Cacapon Mountain Aquifer 

4.21 Variations between Cacapon Mountain drainages 

Table 1 shows variation in interpreted stormflow, quickflow, and baseflow for the 

three Cacapon Mountain stations.  Each of the three watersheds displayed different 

proportions of these components.  Sir Johns Run and Breakneck Run are both dominantly  
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Figure 15. Base flow separation, Sir Johns Run.
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Figure 16. Base flow separation, Rock Gap Run.
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Figure 17.  Base flow separation, Breakneck Run.
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Table 1.  Flow components for the streams in Cold Run Valley. 
Sir Johns Run Breakneck Run Rock Gap Run

Total Flow (in) 18.51 7.36 5.60
Total Baseflow (in) 9.85 5.81 1.63

Total Runoff (in) 5.21 0.79 3.08
Total Quickflow (in) 3.46 0.76 0.89  
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baseflow (51% and 77%, respectively).  Rock Gap Run, on the other hand, is runoff-

dominated (55%).  Quickflow was a minor component in all three streams. 

4.22 Differences between baseflow-separation methods: 

Estimates of the recharge rates by different techniques at each watershed are 

shown in Table 2 for Direct Separation (DS), Meyboom (MB), Recession Curve 

Displacement (RCD) and RORA.  These methods differ in (a) which flow components 

are included in the recharge estimates and (b) the techniques used to resolve components. 

Recharge estimates are lowest (Table 2) for the MB and RCD methods, neither of 

which incorporates quickflow into recharge.  The DS method, which includes quickflow, 

gives higher recharge estimates.  The magnitude of difference between the MB-RCD and 

DS estimates appears related to the magnitude of quickflow at each station.  RORA, 

which is a numerical implementation of the RCD method, yielded the highest recharge 

estimates for all streams. 

4.3 Spatial variations in recharge rates within the Cacapon Mountain Aquifer 

Daily precipitation accumulations between July 2006 and July 2007 from 

Cacapon State Park were plotted against precipitation from several surrounding weather 

stations: Winchester, VA, Hancock, MD, and at Falling Waters, WV.  This was done to 

check for spatial variation in the precipitation on Cacapon Mountain (Figure 18).  These 

data indicate that there was insignificant spatial variation in precipitation over this time 

period.   

Geological differences between the watersheds in Cold Run Valley are minor.  

All the units from the Tuscarora up-section to the Helderberg/Oriskany underlie all three 

catchments.  There is, however, some difference in the orientation and position of the  
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Table 2.  Estimated recharge rates for 2006-07 water year. 

 

 

 

Total Recharge (in) Sir Johns Run Breakneck Run Rock Gap Run Back Creek Patterson CreekCacapon River
NI(in) 13.31 6.57 2.52 10.29 6.17 7.05

RCD (in) 8.66 5.44 1.77 8.78 7.39 10.35
RORA(in) 13.16 7.52 3.67 11.34 9.18 8.35

Meyboom (in) 9.86 5.82 1.63 7.21 5.50 3.84
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Figure 18. Cumulative precipitation versus time for Cacapon State Park and 

the surrounding areas.
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streams themselves, as opposed to their catchments.  Sir Johns Run flows parallel to 

strike only and flows primarily over the middle Silurian Tonoloway, Wills Creek, and 

Clinton-Mackenzie formations.  It does not cross the conduit-forming Helderberg 

limestone.  On the other hand, Rock Gap Run and Breakneck Run are strike-normal and 

cross the Helderberg flowing perpendicular to strike. 

4.4 Comparison of recharge rates to other regional aquifers  

All watersheds chosen for comparison are located in the eastern panhandle of 

West Virginia, in similar geologic /topographic settings.  The same methods (DS, RCD, 

RORA) used for recharge estimates in Cold Run Valley were used with the comparison 

streams; results are shown in Table 2.  Cacapon River watershed (Figure 12) is much 

larger and higher in flow than any of the watersheds in Cold Run Valley.  Despite being 

of higher stream order, this watershed was selected because it is located on the western 

flank of Cacapon Mountain and drains some areas of similar geology to Cold Run valley, 

although clastic rocks dominate its watershed. 

Patterson Creek watershed (Figure 12) is underlain largely by the Brallier and 

Harrell shales (Devonian).  Nonetheless, the setting is structurally similar to Cacapon 

Mountain.  It also, however, drains Knobley Mountain, similar to Cacapon Mountain, an 

anticline exposing Silurian rocks at its core.  The stream valley lies between Knobley and 

Patterson Creek mountains. 

Back Creek watershed (Figure 12) includes North Mountain, to the east of the 

creek, and Sleepy Creek Mountain, to its west.  North Mountain is a thrust fault with 

Tuscarora sandstone along its footwall near the crest of the mountain.  Along the western  
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flank of the mountain toward Back Creek, the geology is very similar to Cold Run Valley 

although Back Creek is synclinal and flows mainly over Mahantango shale (Devonian). 

In agreement with the streams in Cold Run Valley, the MB methods gave lowest 

recharge estimates. However, in contrast to the Cacapon Mountain results, the RCD-MB 

estimates were not lower than the DS estimate.  This may be a result of the minor role of 

quickflow in these other streams. 

4.5 Water Budget 

A simple water budget was calculated for Sir Johns Run.  The total measured 

precipitation between July 2006 and July 2007 at Cacapon State Park was 32.10 inches.  

The average annual precipitation, averaged between 1961-1990, is between 36 and 40 

inches (Spatial Climate Analysis Service, 2000).  According to the DS method, total 

runoff (stormflow) in the Sir Johns run watershed was 5.4 inches and total recharge was 

13.04 inches.  Applying a water budget to these values: 

runoffP-R-Q -ET-U=0  

where P is precipitation, R is recharge, Q is runoff, ET is evapotranspiration, and U is 

utilization (abstraction).  Assuming zero storage change in aquifers, this estimates 13.66 

inches/year lost to evapotranspiration and abstraction.  The average evapotranspiration 

for the eastern panhandle of West Virginia is 15-25 inches/year (Hanson, 1990).  These 

results are credible; as ET should diminish in periods of lower than average flows. 

4.6 Recharge Mechanisms of the Aquifer 

4.61 Hydrogeology of Cold Run Valley  

The hydrology and hydrogeology of the three drainages in Cold Run Valley are 

all distinct (Plate 1).  Coarse colluvium dominates the watersheds at both Breakneck and 
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Rock Gap Run.  Sporadic sinks and springs occur across the boulder fields and 

subsurface flow can be heard while walking the area.  Both watersheds have known 

sinks, associated with Helderberg conduits, that discharge during intense storm events 

(Plate 1).  The conduit diameter in the Rock Gap Run watershed is large enough to 

transmit golf balls from an up gradient golf course.   

Structure and geomorphology play an important role in the groundwater flow 

paths and flow patterns within Cold Run Valley.  During baseflow, the streams in Cold 

Run Valley are completely groundwater-fed.  Two categories of springs are present in the 

recharge area, based on elevation (Plate 1).  First, at higher elevation, springs discharge 

from clastic rocks along the high flanks of Cacapon Mountain.   Second, springs at lower 

elevations discharge from colluvial deposits, clastic rocks, or limestone.   

The high-elevation springs are associated with a series of strike-normal fractures 

spacing at approximately 250-300 meter intervals (Figure 19).  The fractures can be seen 

both on the aerial photos and in the 10-meter digital elevation models (Figure 20).  The 

high spring elevations are evidence that recharge is occurring on or around the crest of 

the mountain.  These springs infiltrate into colluvial deposits that blanket the eastern 

flank of Cacapon Mountain and slowly drain the water either to the stream or underflow.  

These deposits retain this groundwater sufficiently long that baseflow drains into these  
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Figure 19.  Lineament spacing in the Rock Gap Run watershed 
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Figure 20.  Digital elevation model of Cold Run Valley, Lineaments traced in 

white. 
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drainage channels throughout the summer months.  These discharges are a major source 

of water in times of limited precipitation. 

In the Valley and Ridge physiographic province, resistant ridges often confine 

strike-parallel streams to lowland valleys between them.  This occurs in Sir Johns Run.  

However, Rock Gap and Breakneck runs both have a trellis drainage pattern 

perpendicular to the valley-bounding ridges and exit the valley through water gaps.  This 

trellis drainage pattern is aligned parallel to the strike-normal fractures crossing Cacapon 

Mountain. 

4.62 Seepage run along Rock Gap Run 

A seepage run was done along an unnamed northern tributary of Rock Gap Run 

that measures roughly 1000m in length (labeled "Trib #1" on Figure 21).  This stream 

channel is rocky and extensively braided.  Flow either gains or loses when crossing 

bouldery sections.  In one location, between the fourth and fifth measuring point moving 

down stream, nearly a quarter of the flow drains into a sinkhole.  Moving downstream 

from the headwaters flow generally increased (Table 3).  Flows on the tributary ranged 

from 0.13 to 0.8 cfs before joining a larger tributary discharging 3.42 cfs (labeled Trib #2 

on Figure 21).  Three more flow measurements were taken at 150 m intervals after the 

confluence of the two tributaries.  The flow in this reach increased from 4.23 to 5.88 cfs.  

The elevation difference between the first and final stations is 112 m. 

The second seepage run was conducted to measure any major sinks or gains along 

the entire Rock Gap Run watershed.  This seepage run started at high-elevation springs 

coming off the base of the mountain and measured flows on the confluences of all 

tributaries (Figure 22).  The purpose of this was to note any major losses or gains.    
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Table 3.  Flow measurements during seepage run on Rock Gap Run. 

  Seepage Run Trib 1 Gains/Losses Trib 2 Gains/Losses
Flow (cfs) Flow (cfs) Flow (cfs) Flow (cfs)

1 0.13 0.47 3.68 -0.26
2 0.6 0.05 3.42 1.89
3 0.65 0.14 5.31 0.2
4 0.79 -0.14 5.51 0.37
5 0.65 0.08 5.88
6 0.73 0.07
7 0.8 3.48
8 4.28 1.23
9 5.51 0.37

10 5.88
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Figure 21.  Rock Gap Run tributary seepage run. 
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Figure 22.  Results of seepage run performed on April 25th 2007on Rock Gap 

Run. 
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Although both springs and sinks were observed, no major losses or gains were 

measured.  Flows ranged from 0.1 cfs, at the springs near the top of Cacapon Mountain, 

to 4.75 cfs at the Rock Gap Run gaging station.  The stream gained flow in a downstream 

direction.  The elevation difference between the first and final measuring point is 131 m. 
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5 Analysis 

5.1 Hydrograph analysis 

Statistical analysis was done to see if the recharge rates for the three montane 

streams in Cold Run Valley are significantly different than other streams in the 

Appalachian Mountains.  Twenty streams from the Valley and Ridge physiographic 

province in WV, VA, PA, and MD were selected for comparison (Figure 23).  Daily 

average discharge data from the USGS between July 2006 and July 2007 was used to 

estimate recharge using RORA.  A dataset was compiled including recharge rate, average 

precipitation, normalized recharge, elevation above sea level, and general geology (Table 

4).  Normalized recharge was calculated by dividing the recharge rate by average annual 

precipitation.    

Test 1 compared the means of normalized recharge between the Cold Run Valley 

streams and other streams in the Valley and Ridge.  The test employed the T distribution 

for comparing means of two samples of unequal variance.   It may be inferred from the 

test result (Table 5) that the two sample means are significantly different at a 95% 

confidence level.   

Test 2 was done on just the streams in the Valley and Ridge, setting upper and 

lower confidence limits on the normalized recharge data (Table 6).  Both year 2007 

means of the strike-normal drainages of this study (Rock Gap and Breakneck Run) fell 

outside these confidence limits, while 2007 normalized recharge of Sir Johns Run fell 

within the limits.  This suggests that, for 2006-2007, Sir Johns Run was not significantly 

different from the other streams in the Valley and Ridge, but Rock Gap and Breakneck 

Run were.   
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Figure 23.  Streams in the Valley and Ridge physiographic province used for 

statistical comparison. 
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Table 4.  Baseline data for streams in the Valley and Ridge physiographic province. 

Stream Drainage Area (mi2) Recharge (in/yr) Average Precipatation (in/yr) Normailized Recharge Elevation (ft) General Geology
Cacapon River at Great Cacapon, WV 675 8.35 38.9 0.21 457 Silurian-Devonian
Patterson Creek near Headsville, WV 211 9.18 35.7 0.26 625 Silurian-Devonian
Back Creek near Jones Spring, WV 235 11.34 39.39 0.29 416 Silurian-Devonian

Opequon Creek near Martinsburg, WV 273 10.76 39.39 0.27 355 Cambrian-Ordovician
F. S. Branch Potomac River near Moorefield, W 277 7.98 32.87 0.24 862 Silurian-Devonian

Waites Run near Wardensville, WV 11.6 17.56 35.33 0.50 1250 Silurian-Devonian
Marsh Run at Grimes, MD 18.9 7.91 39.45 0.20 355 Cambrian-Ordovician

Antietam Creek near Sharpsburg, MD 281 12.09 40.4 0.30 311 Cambrian-Ordovician
Conococheague Creek at Fairview, MD 494 10.77 39.45 0.27 392 Cambrian-Ordovician
Tonoloway Creek near Needmore, PA 10.7 10.74 38.06 0.28 689 Silurian-Devonian

Aughwick Creek near Three Springs, PA 205 9.05 38.25 0.24 619 Silurian-Devonian
Sherman Creek at Shermans Dale, PA 200 12.56 40.76 0.31 423 Silurian-Devonian
Kishacoquillas Creek at Reedsville, PA 164 16.02 40.85 0.39 551 Cambrian-Ordovician

Bixler Run near Loysville, PA 15 10.30 41.82 0.25 601 Silurian-Devonian
Yellow Breeches Creek near Camp Hill, PA 216 15.44 41.45 0.37 305 Cambrian-Ordovician

Bullpasture River at Williamsville, VA 110 17.42 42.91 0.41 1610 Silurian-Devonian
Jackson River near Bacova, VA 157 13.41 42.91 0.31 1639 Silurian-Devonian
North River near Stokesville, VA 17.3 21.15 36.12 0.59 2051 Silurian-Devonian

Muddy Creek at Mount Clinton, VA 14.3 9.23 36.12 0.26 1320 Cambrian-Ordovician
Hogue Creek near Hayfield, VA 15.9 8.78 36.4 0.24 669 Silurian-Devonian
Potts Creek near Covington, VA 153 11.56 37.23 0.31 1274 Silurian-Devonian

Sir Johns Run 8.27 13.32 38.06 0.35 Silurian-Devonian
Rock Gap Run 4.18 4.29 38.06 0.11 Silurian-Devonian
Breakneck Run 2.55 8.95 38.06 0.24 Silurian-Devonian
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Table 5.  Results of a T-Test comparing the means of the normalized recharge between 

streams in Cold Run Valley and comparison streams from the Valley and Ridge. 
Cold Run Valley Streams in V and R

n 3
Mean 0.23 0.31

Standard Deviation 0.12 0.09
Standard Error 0.07 0.02

Degree of freedom 2 20
X1-2 -18

Standard Error1-2 4.37
T1-2 4.12
Tcrit 2.07

Since T is greater than Tcrit Ho is rejected
Ho u1=u2 REJECTED

21
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Table 6.  T-Test results for the upper and lower confidence limits of normalized recharge 

for comparison streams from the Valley and Ridge. 

n 2
Mean: 0.31

Standard Deviation: 0.09
Standard error: 0.02

Degree of Freedom 20
T (95%) 2.09

Lower Confidence Limit 0.27
Upper Confidence Limit 0.35

1

At p(95%) 0.266 < t < 0.352
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A third t-test was done comparing the means of normalized recharge between the 

strike normal streams in Cold Run Valley and the other streams in the Valley and Ridge.  

The test shows that the means are significantly different (Table 7); removing Sir Johns 

Run from the Cold Run Valley dataset increased the gap between the means of the two 

groups.    

The normalized recharge for the sampled streams from the Valley and Ridge was 

plotted along with the normalized recharge numbers from Cold Run Valley (Figure 24).  

Breakneck and Sir Johns runs both fall within the range of normalized recharge for the 

Valley and Ridge streams but neither fall between the first and third quartile.  Rock Gap 

Run falls well below the range of normalized recharge for the Valley and Ridge Streams. 

The large majority of the Valley and Ridge streams chosen for comparison are 

strike-parallel.  One possible reason that Breakneck Run and Rock Gap Run differ in 

recharge rate from these other streams is that they are strike-normal, and hence cross the 

upper Silurian carbonate units perpendicular to the strike of these units.    

Differences in the composition of the total flow might be explained by the 

characteristics of each watershed.  Sir Johns Run is underlain by relatively little limestone 

and only in its upper 3 km of reach; it also does not flow directly over the conduit-

forming Helderberg limestone.  In comparison to other nearby watersheds (Cacapon 

River, Patterson Creek, and Back Creek), Sir Johns Run has similar flow component 

proportions (Table 8).  On average the streams used for comparison were comprised of 

50% baseflow, 20% quickflow, and 30 % runoff.  Sir Johns Run is the largest watershed 

in the aquifer, and therefore its measuring station is furthest from the headwaters.   
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Table 7.  Results of a T-Test comparing the means of the normalized recharge between 

the strike normal streams in Cold Run Valley and the sample streams from 

the Valley and Ridge. 

 

Strike Normal Streams Streams in V and R
n 2

Mean 0.17 0.31
Standard Deviation 0.09 0.09

Standard Error 0.06 0.02
Degree of freedom 1 20

X1-2 -19
Standard Error1-2 4.37

T1-2 4.35
Tcrit 2.08

Since T is greater than Tcrit Ho is rejected
Ho u1=u2 REJECTED

21
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Figure 24.  Whisker plot of normalized recharge values for sample streams in 

the Valley and Ridge showing relationship of study area streams. 

Legend: RGR = Rock Gap Run, BNR = Breakneck Run, SJR = 

Sir Johns Run. 
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Table 8.  Flow proportions for streams in West Virginia’s eastern panhandle. 

 

Sir Johns Run Breakneck Run Rock Gap Run Back Creek Patterson Creek Cacapon River
Total Flow (in) 18.51 7.36 5.60 13.44 9.24 11.63

Total Baseflow (in) 9.85 5.81 1.63 7.21 5.50 3.84
Total Runoff (in) 5.21 0.79 3.08 3.16 3.07 4.58

Total Quickflow (in) 3.46 0.76 0.89 3.08 0.67 3.21
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Baseflow on Breakneck run accounts for more that 75% of the total flow leaving 

the aquifer (Table 8).  Combined quickflow and runoff only account for about 20% of the 

total flow (Table 8).  This high proportion of baseflow suggests that some runoff may be 

being lost to exfiltration.  Extensive boulder fields make up large portions of the 

catchment area at Breakneck Run that may accommodate exfiltration.  If the exfiltration 

does reach the channel, it does so downstream of the measuring point.   

Rock Gap Run’s total flow is slightly more than half runoff.  This stream 

responds to and recovers from a storm faster than the other streams draining the aquifer.  

The fraction of total flow discharging as baseflow to Rock Gap Run is significantly less 

than the other streams in the aquifer.  During dry periods in 2007, the stream nearly dried 

up completely.  Groundwater discharge in this watershed may be lower than that of 

surrounding watersheds due to water loss either by infiltration/deep underflow or by 

lateral flow to another watershed. 

5.2 Methods for recharge rate estimation 

The integration techniques are more straightforward than the other techniques 

performed.  The difference between the MB and DS is small but significant.  The 

recharge calculated with the MB technique does not include quickflow.  Therefore, it 

underestimates the amount of recharge to karst aquifers if a quickflow component is 

present.  The numeric integration technique only excludes storm runoff from the 

calculation, so quickflow is included in the recharge estimation. 

All of the methods for obtaining recharge from streamflow, besides DS, were 

designed for situations in which a gaging station is located near the mouth of the stream 

or river on a gentler gradient.  In this study the gaging stations are located in the 

 58



headwaters adjacent to the recharge source.  Stormflow events move through within a 

couple of hours and are easily separated out visually.  Hydrographs of streams in the 

headwaters have a pronounced response to storm events.  These reasons suggest that the 

most accurate method for estimating recharge in this study is Direct Separation. 

5.3 Local spatial variations in recharge rate 

In Cold Run Valley, two strike normal drainages cross the Helderberg (Breakneck 

and Rock Gap Run) and one strike-parallel drainage (Sir Johns Run) does not.  Strike 

normal drainages in Cold Run Valley average less than 50% area-normalized recharge of 

the strike parallel drainage.  The differences in recharge could be attributed to several 

factors.   

The Sir Johns Run watershed is underlain by the least amount of carbonate 

bedrock, by percent area.  Its channel is also the only one of the three that does not flow 

directly over the Helderberg formation influencing recharge rates.  The watersheds with 

streams that flow over the Helderberg have significantly lower recharge rates.  The 

recharge rates could be lower due to water loss on Rock Gap or Breakneck Run that 

either resurfaces further downstream of the measuring point or is lost to deep underflow.  

Sir Johns Run is the largest watershed in the study area.  It would be convenient to say 

that the larger the watershed the higher the recharge rate, but the calculated recharge for 

the other two watersheds could be incorrect due to water losses so that conclusion cannot 

be made. 

Recharge rates on Rock Gap Run were significantly lower than for the other 

streams in the study area.  This suggests that Rock Gap Run may be a losing stream, and 
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that the apparent recharge rate is not close to the actual recharge rate, which is 

underestimated by the streamflow integration methods as a result of stream losses.   

It is possible that the lower recharge rate may be in part an artifact caused by an 

error in the assumption that the groundwater divide between Rock Gap Run and Indian 

Creek coincides with their surface drainage divide.  Cacapon State Park, located in the 

Indian Run watershed, pumped two high yield wells a combined amount of 22 to 38 

thousand gallons per day on weekdays and 38 to 53 thousand gallons per day on 

weekends in 2006.  This equates to about 0.3 inches of water over the Rock Gap Run 

watershed.  The pumping may cause some shift in the groundwater divide, diverting 

recharge from the Rock Gap watershed. 

Water could also be lost to a deeper flow path recharging a distant spring.  The 

recharge area for the springs at Berkeley Springs is not known.  It has been found that the 

chemistry of the springs at Berkeley Springs is the same as the chemistry of the springs 

within Cold Run Valley (Donovan et al., 2006).  It is possible that the water lost from 

Rock Gap Run could be recharging Berkeley Springs.     

The recharge rate for Breakneck Run is similar to average recharge rates of the 

comparison streams, Patterson Creek, Back Creek, and the Cacapon River.  Because 

Breakneck Run’s recharge area is in a montane setting, its recharge rate would be 

expected to be higher than "normal" due to increased snow pack and decreased 

evapotranspiration.  The apparent recharge rate estimated for Breakneck Run could be 

lower than expected due to the location of the measuring point.  During periods of high 

flow, a portion of the water is diverted to a secondary channel.  Therefore, downstream of 
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the measuring point, a tributary enters during high flow conditions that is not included in 

the recharge or drainage area calculation.  Losses to underflow may also be taking place. 

5.4 Comparison of recharge rates to other aquifers in the humid east 

The recharge rates estimated for Rock Gap Run and Breakneck Run both may be 

inaccurate due to stream losses.  Therefore, only the recharge rate for Sir Johns Run was 

compared to other selected watersheds in the humid east (Cacapon River, Back Creek, 

and Patterson Creek).  The recharge for Sir Johns Run was between three and six inches 

higher than the recharge in the surrounding watersheds in West Virginia’s Eastern 

Panhandle.  This may be due to the fact that the recharge catchment of Sir Johns Run is in 

a montane setting while the comparison streams are mainly in lowland settings. 

5.5 Recharge Mechanics of the Aquifer 

5.51 Structural and Geomorphic effects 

The quickflow portions of the stream hydrographs in Cold Run Valley could be 

associated with the delayed flow discharging from the colluvial deposits.  The storage 

capacity of these colluvial deposits would tend to increase recharge rates; water that 

would have otherwise been lost as storm runoff may be intercepted as recharge to these 

deposits, draining to streams later in the year. 

The strike-normal Rock Gap Run and Breakneck Run sections could both have 

lower recharge rates because they are losing water to the fracture associated with the 

lineaments that formed perpendicular to the Cacapon Mountain anticline.  Such fractures 

normal to folds tend to be open (Pollard, 2005) and are likely to be more permeable than 

fractures of other orientations. 
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5.6 Limitations-Future Investigation 

One obvious limitation of this study is the short duration of streamflow data.  

Continued monitoring at the gaging stations over a longer period of time will give a 

better idea of the long-term recharge rates. 

Further study of the bouldery deposits in the area would be helpful in obtaining a 

better overall cross section of the aquifer and Cold Run Valley.  Continued monitoring of 

the stream and installation of more data loggers in the boulder fields to observe flow 

paths continuously would also be helpful in understanding the true effect the deposits 

have on the recharge mechanics. 

A detailed groundwater model of the aquifer, especially of the Rock Gap Run 

watershed might illuminate further where the water lost at Rock Gap Run and Breakneck 

Run is emerging. 
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6 Conclusions 

Major conclusions of this research are that: 

1) For the 2006-2007 water year two of the streams in this study (Rock Gap Run 

and Breakneck Run) had significantly lower apparent recharge rates than the third stream 

(Sir Johns Run). Apparent recharge rates of the strike parallel and strike normal streams 

of this study may differ systematically.  In 2007, the strike parallel stream (Sir Johns 

Run) had higher recharge rates than strike normal streams (Rock Gap Run and Breakneck 

Run) due to water losses in the latter associated with the fractures.  Normalized recharge 

rates from these strike normal streams are also significantly different from a sample of 

strike-parallel streams used for comparison in the Valley and Ridge. 

2) Estimating recharge rates from streamflow may give inaccurate results if the 

channel flows over highly transmissive conduit forming or fractured limestone.  Stream 

losses upstream of the gaging station will induce lower apparent recharge rate estimates. 

3) Quickflow can be an important component of recharge.  To estimate recharge 

from stream flow records the topography and lithology of the watershed should be 

considered.  For gages located in the headwaters of small limestone watersheds in the 

humid eastern United States quickflow can be an important component of recharge.  

Therefore, methods that project baseflow back, cutting out the quickflow portion of the 

hydrograph may underestimate recharge in these watersheds. 
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