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ABSTRACT 
 
 

SIMULATED ANNEALING HEURISTICS FOR  
THE DYNAMIC FACILITY LAYOUT PROBLEM 

 
 

 Saravanan Kuppusamy 
 

 
Today’s consumer market demands that manufacturers must be competitive. This 
requires the efficient operation of manufacturing plants and their ability to quickly 
respond to changes in product mix and demand. Studies show that material handling cost 
makes up between 20 and 50 percent of the total operating cost. Therefore, this thesis 
considers the problem of arranging and rearranging (when there are changes in product 
mix and demand) manufacturing facilities such that material handling and rearrangement 
costs are minimized. This problem is called the dynamic facility layout problem. In this 
thesis, three simulated annealing heuristics are presented for the dynamic facility layout 
problem. The first is the direct implementation of the simulated annealing algorithm. The 
second heuristic uses a reheating strategy within simulated annealing. The third heuristic 
combines the simulated annealing algorithm, time windows concept, and the backward 
pairwise exchange method. The performance of the heuristics was evaluated using two 
measures: solution quality and computational time. Results obtained show that the 
proposed heuristics are effective for the dynamic facility layout problem. 
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CHAPTER 1 
 

INTRODUCTION 
 
 
1.1 The Facility Layout Problem 
 

The facility layout problem is the determination of the most efficient arrangement 

of departments within a facility.  The facility can be manufacturing plants, administrative 

office buildings, or service facilities.  The efficient arrangement of resources (e.g., 

machines, departments, or workforce) within the facility results in a well-coordinated 

workflow between the resources.  An efficient layout helps other operations, which are 

dependent on workflow, to perform well.  For instance, in a manufacturing plant, an 

efficient layout coordinates the material flow between the machines such that the right 

amounts of materials is supplied to the machines at the right time in a manner that is safe 

for workers and avoids the accumulation of work-in-process inventory.  It also avoids the 

over-utilization of the material handling systems and reduces the material handling costs.  

Thus, an efficient layout assists a company and contributes to the overall efficiency of 

operations.  In this research, the layout of a manufacturing plant is studied, and its 

material handling cost is used to measure the efficiency of the layout. However, Francis 

et al. (1992) mentioned other objectives that can be considered, and they are given below: 

1. Minimize overall production time. 

2. Minimize investment in equipment. 

3. Utilize the space available effectively. 

4. Facilitate the manufacturing process. 

5. Promote effective utilization of manpower. 

6. Maintain flexibility of arrangement and operation. 
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7. Provide for employee convenience, safety and comfort. 

8. Minimize variation in types of material handling equipment utilized. 

Material handling cost is the most significant measure for determining the 

efficiency of a layout and is most often considered, since it represents 20 to 50% of the 

total operating cost and 15 to 70% of the total cost of manufacturing a product (Tompkins 

et al., 1996, p.138).  The material handling cost is based on the flow of materials and the 

distances between departments.  Also, material handling costs depend on the material 

handling system being used.  In other words, the type and the design of the material 

handling system influence the layout of the facility and vice versa.  The traditional way of 

thinking forces one to believe that material handling systems should be designed after 

finalizing the layout or vice versa.  On the contrary, the layout and the handling system 

should be designed simultaneously.  Meller and Gau (1996a) point out that there exists a 

lack of concurrent engineering in designing the material handling system with respect to 

the facility layout, because material handling decisions are made before the layout is 

designed.  Lack of concurrent engineering causes incompatibility between the facility 

layout and material handling design.  That is, when the decisions based on the facility 

layout and material handling design are taken sequentially (without concurrency), it may 

result in a good layout with incompatible material handling equipment.  In this research, 

the problem of determining the arrangement of departments within a manufacturing plant 

with respect to minimizing material handling cost is considered, and it is assumed that the 

material handling equipment is known. 
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1.2 Some Factors that can affect the Facility Layout 

Tompkins et al. (1996, p. 287) mention some of the material handling decisions 

that affect the layout of a facility, and the major ones are: material handling equipment, 

material handling path, and handling unit size (unit load size).  The material handling 

equipment and the material-handling path are not mutually exclusive.  For instance, 

conveyors are material handling equipment used in a manufacturing plant to move the 

materials between specific points, such that the material-handling path is fixed.  On the 

other hand, material handling equipment like forklifts, trucks and Automated Guided 

Vehicles (AGVs) are used to transport materials between various points, whereas the 

material-handling path is not fixed.  Therefore, the decision of determining what type of 

material handling system (equipment) should be used has a significant impact on the 

effectiveness and flexibility of the facility layout.  For instance, using forklifts in a flow 

shop is not economical since the volume of workflow between the machines is very high.  

Therefore, using forklifts can increase both work in process inventory and material flow 

congestion.  

Another factor, which affects the layout, is the unit load.  The number of units 

handled at a time is called the unit load.  By handling batches of material at a time, it 

reduces the number of trips needed to transfer the material, material handling costs, and 

damage to the material while transferring.  Containers, pallets, tote boxes, and cartons are 

some of the unit load containers used in industry.  The size and weight of the unit load 

containers can influence and be influenced by the material handling equipment, which in 

turn influences and is influenced by the layout.  For example, a forklift cannot be used to 

lift a container which is heavier than its lifting capacity. Also, a roller conveyor cannot be 
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used to transfer a tote box  which is dimensionally incompatible. Thus, the unit load size 

is closely related to the material handling equipment being used, which is in turn 

associated with the facility layout. 

Apart from the material handling decisions, there are some other factors that can 

also affect the layout, and they are as follows: change in the product design, the addition 

or deletion of a product, changes in the production methods, replacing obsolete 

equipment, and the adoption of new safety standards. A change in the product design 

calls for changes in the processes or operations to be performed. This change may require 

minor alterations in the existing layout or it may result in an extensive re-layout. When a 

new product is added, which is not considerably different from those in production, it 

may require minor alterations of the existing layout. Otherwise, new machines may be 

brought in for production, and the layout has to be changed in order to accommodate the 

new machines. This is also the case when there are changes in the production methods. 

When deleting a product, the material flow between departments (machines) may 

decrease. This reduction in the flow requires the layout planner to re-evaluate the layout. 

The evaluation may or may not result in changing the existing layout. In the case of 

obsolete equipment, additional space may be required to move the equipment. After 

removing the equipment more space may be available, and the layout may be altered to 

use this additional space. The extent of the layout alteration depends on the number of 

machines moved and their sizes. Last, when new safety standards are adopted, it may 

increase the space available for worker movement. The increased space requirement may 

burden the layout, and it may lead to changing the existing layout. 
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Gradual changes over time display themselves in terms of production bottlenecks, 

material flow congestion, failure to meet schedules, unexplainable delays, and increased 

idle time (Francis et al, 1992, pg. 25). Furthermore, over a period of time, demand 

changes. When the changes are left unattended, this may cause either a burden on the 

machinery and workforce needed to meet demand or to operate efficiently or under 

utilization of both machinery and workforce. In the former case, increased material flow 

increases space required to move the material; thus, causing flow congestion on the shop 

floor and burdening the capacity of the material handling equipment. In the latter case, 

reduced material flow reduces the utilization of the material handling equipment, 

machinery and workforce. As mentioned in the previous paragraph, it may result in 

under-utilization of resources. Therefore, the existing layout should be re-evaluated. 

The re-evaluation of the existing layout takes place when there is either an 

increase or decrease in the material flow. Factors that cause the increase/decrease in the 

material flow were discussed in the previous paragraphs. Anticipating the changes in the 

material flow is imperative because these changes may lead to an extensive re-layout, 

which incurs high rearrangement costs (shifting costs) of machines. In addition, material 

handling cost will also vary. The problem of rearranging the layout of a facility when the 

material flow changes such that material handling and rearrangement costs are minimized 

is called the dynamic facility layout problem. This problem is studied in this research and 

is discussed in section 1.5.  

1.3 Classification of facility layout problems 

The objective function, distance measure, layout representation, and nature of the 

flow data are used to classify layout problems. Typically, there are two types of 
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objectives considered in the literature: distance-based and adjacency-based. Objectives 

(1)-(5) mentioned in section 1.1 are distance-based objectives and (6)-(8) are adjacency 

based.  Minimization of the material handling costs is a distance-based objective since it 

is based on the interdepartmental flows and distances between departments. An 

adjacency-based objective is based on departments closeness ratings. The closeness 

rating is a numerical value, which indicates the preference between two departments 

being adjacent. By maximizing the adjacency score between preferred departments, the 

objective is achieved. This research uses a distance-based objective (i.e., minimization of 

the material handling cost) to arrange departments within a facility. 

When considering distance-based objectives, a distance measure and the locations 

of the departments are required to determine the distance between two departments. The 

location of a department can be defined by its centroid or P/D (pick-up and drop-off) 

points. Pick-up points are the points where the materials are loaded onto material 

handling equipment, and drop-off points are the points where the materials are delivered.  

The distance between P/D points is the actual distance that affects the material handling 

cost. The locations of P/D points are not known until the detailed layout is developed and 

the material handling system is known. This leads to the widely used centroid to centriod 

approximation. Geometrically, the centroid can be defined as the center of gravity or 

center of mass of an object.  In the facility layout domain, the centroid of a department is 

the center of the department, and it represents both the P/D points. Furthermore, 

rectilinear and Euclidean are the most commonly used distance measures.  Rectilinear 

distance between any two points (x1, y1) and (x2, y2) is given by  x1-x2 + y1-y2 , and 

Euclidean distance between two points is defined by 2
21

2
21 )()( yyxx −+− . This 
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research uses the centriod to centriod rectilinear distance measure to determine the 

distance between two departments. However, any distance measure can be used to obtain 

distances between departments. 

After selecting the distance measure, the representation of the solution to the 

facility layout problem needs to be addressed. There are two ways in which the facility 

layout can be represented: block layout and detailed layout. A block layout specifies the 

relative location and size of each department within a facility. In addition, the block 

layout can be represented in either a discrete or continuous fashion. A discrete block 

layout representation uses a collection of grids to represent the departments, and a 

continuous representation uses the centroids, areas (or perimeters) and the widths (and/or 

lengths) of the departments to specify the exact locations of the departments. A layout, 

which specifies P/D points, aisle structures, and the layout within each department is 

called the detailed layout.  A detailed layout can be represented in a continuous fashion. 

However, this research focuses on developing discrete block layouts. 

The flow data used for determining the layout classifies the layout problem into 

two categories: static and dynamic. If the flow data between the departments does not 

change over time, then the problem is defined as the static facility layout problem 

(SFLP). A review of the SFLP approaches can be found in Kusiak and Heragu (1987) and 

more recently in Meller and Gau (1996a). When the flow changes over time, then the 

problem is defined as the dynamic facility layout problem (DFLP). Rosenblatt (1986) 

was the first to define the DFLP. A review of the DFLP approaches can be found in 

Balakrishanan and Cheng (1998). Furthermore, the nature of the flow data can be 

characterized as deterministic or probabilistic. Deterministic flow data is fixed and 
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known with certainty. That is, during the planning horizon, material flow between the 

departments is known with certainty. When the flow data are not known with certainty, 

they can be represented as random variables. That is, the behavior of the flow data can be 

approximated by a probability distribution. In other words, the flow data are said to be 

probabilistic. Kouvelis et al. (1992) addressed the probabilistic nature of the flow data for 

the facility layout problem. The flow data for the facility layout problem defined in this 

research are deterministic and dynamic. The classification of the layout problems is 

summarized in figure 1.1. 

This research considers the facility layout problem, which uses the distance-based 

objective: minimization of material handling costs. The distance between departments is 

measured from centroid to centroid in a rectilinear fashion. In other words, the relative 

locations of the departments (block layout) are determined such that material handling 

cost is minimized. The block layout is represented in a discrete fashion, and the flow data 

for the problem considered is dynamic and deterministic. This problem will be defined 

and referred to as the DFLP. 
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1.4 The Static Facility Layout Problem 

For the SFLP, the flow between the departments does not change over time. The 

models presented in the literature for the SFLPs can be classified into discrete and 

continuous models, as mentioned in the previous section. That is, these models are 

classified based on the way in which the layout is represented. As previously stated, this 

research focuses on the discrete representation. 

1.4.1 The Quadratic Assignment Problem 

The Quadratic Assignment problem (QAP) model is a popular model and is used 

extensively in the literature.  It has numerous real world applications such as the 

placement of electronic components on a printed circuit board, assignment of storage 

spaces on a computer disc, routing problems, assignment of departments to locations, to 

mention a few (Wilhelm and Ward, 1987). The QAP model is easy to comprehend, but it 

is computationally intractable. In other words, as the problem size increases, finding an 

optimal solution in reasonable time becomes extremely hard. The literature indicates that 

the largest problem for which an optimal solution has been found is for a 16-department 

problem (Urban, 1993).  A review of the QAP based formulations and algorithms for 

solving SFLPs can be found in Kusiak and Heragu (1987).  

The QAP model is used to assign facilities (departments) to locations such that 

the distance materials travel is minimized. The number of departments to be located and 

the number of locations are equal, and all the locations are of equal size. The location site 

diagram of a 6-department problem is given in figure 1.2.  

 1 2 3

4 5 6

Figure 1.2: Location site diagram
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The distance between any two adjacent sites is one distance unit, and distance is 

measured from the centroid of one department to the centroid of another using the 

rectilinear distance measure.  

The QAP formulation for the SFLP presented below is a similar version of the 

one presented in Koopmans and Beckman (1957). 

Minimize Z = xxdf klijjl
N

i

N

k

N

j

N

l
ik� � ��

= = = =1 1 1 1
                                                                   (1) 

 Subject  to  

                      ,1
1

=�
=

N

j
ijx i = 1, . . . , N                                                                          (2)   

                      ,1
1

=�
=

N

i
ijx  j = 1, . . . , N                                                                         (3)   

                      }1,0{=xij  i = 1, . . . , N ;  j = 1, . . . , N  

where 

N  =  Number of departments and locations. 

fik   =  Flow between department i and department k. 

djl  =  Distance between locations (sites) j and l. 

xij = 
�
�
�

Otherwise0
locationtoassignedisdepartmentif1 ji

 

The objective function (1) is used to minimize the distance materials travel.  

Constraint set (2) ensures that one location is assigned to each department, and constraint 

set (3) ensures that exactly one department is assigned to each location. The following 

section discusses the DFLP and the extension of the QAP model for the DFLP. 
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1.5 The Dynamic Facility Layout Problem 

This research focuses on the Dynamic Facility Layout Problem (DFLP) with 

deterministic flow data. As discussed previously, when the flow data change over time, 

the facility layout problem is dynamic. The DFLP is based on the anticipated changes in 

flow that can occur in the future. The prospective future is divided into a number of time 

periods. In reality, the future can be divided into any number of periods and the time 

period may be defined in weeks, months or years. The flow data for each period are 

forecasted, and it is assumed that the flow data remain constant throughout the period. 

Therefore, the facility layout problem for each period can be considered as a SFLP and 

solved separately. However, after each period, a layout rearrangement may be necessary, 

and the rearrangement costs are not considered when solving the SFLP for each period 

seperately. As a result, the series of SFLPs has to be extended to the DFLP. Hence, a 

solution for the SFLP is a single layout, and a solution for the DFLP is a layout plan. See 

figure 1.3. 

 

 

 

 

 

 

A layout plan for the DFLP is a series of layouts, and each layout is associated 

with a period. Therefore, the total cost of a layout plan consists of the sum of the material 

handling costs (flow costs) in all the periods and the rearrangement costs. The 

Layout for the first period 

Layout for the second period

Layout for the third period 

DFLP- layout plan 

Figure 1.3: DFLP layout plan when the number of time periods is equal to 3 
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rearrangement costs are incurred when the departments are rearranged in order to 

minimize the material handling costs. In a manufacturing environment, the rearrangement 

cost is incurred when moving machines from one place to another. The rearrangement of 

departments may cause production loss, and it may also necessitate the movement of 

machines adjacent to the machines moved. The rearrangement of machines may also 

require specialized labor and equipment. Thus, rearrangement cost comprises labor cost, 

equipment cost, and the cost of production loss (if necessary). Locally, rearrangement 

takes place in a period only if there is an improvement in the flow cost in that period, 

such that the improvement in the flow cost offsets the rearrangement costs. Globally, the 

total sum of rearrangement costs and flow costs are minimized. Therefore, a tradeoff 

exists between the flow costs and the rearrangement costs. 

When compared to the SFLP, the DFLP is very recent. Rosenblatt (1986) was the 

first to address the DFLP. Like the SFLP, the DFLP is also computationally intractable. 

For this reason, most of the DFLP approaches in the literature use heuristics and the 

discrete representation of the layout. A review of the problem assumptions and solution 

approaches for DFLP can be found in Balakrishnan and Cheng (1998). The formulation 

of the DFLP is given below and is adapted from Balakrishnan et al. (1992).  

Minimize Z = YA tijl
T
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l
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                         Y tijl  =  X (t-1)ij   X til ,   i, j, l, = 1, . . . , N,  t = 2, . . . , T                     (4)      

                        }1,0{=X tij  for  all  i, j, t 

                        }1,0{=Y tijl  for  all  i, j, l, t 

Where 

   N        =  Number of departments and locations. 

       T         =  Number of time periods. 

        A tijl    =  Cost of shifting department i from location j to l in period t (where Atijj = 0). 

       Ctijkl   =  Cost of material flow between department i located at location (site)  

                   j and  k located at l in period t. 

  X tij     =  
�
�
�

Otherwise0
periodatlocationtoassignedisdepartmentif1 tji

    

   Y tijl    =  
�
�
�

Otherwise0
periodofbeginningattolocationfromshiftedisdepartmentif1 tlji

    

 

The objective function (1) is used to minimize the sum of the rearrangement  and 

flow costs between the departments. Constraint set (2) ensures that each location is 

assigned only one department at each time period, and constraint set (3) ensures that 

exactly one department is assigned to each location at each time period. Constraint set (4) 

helps to add the rearrangement costs with the material flow cost if a department is shifted 

between locations in consecutive periods.  

The above formulation is simple enough to capture the flow cost and 

rearrangement costs. The rearrangement costs are incurred when the departments are 

shifted. The layout rearrangement is necessary when the consumer demand and product 
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mix changes. Other factors may also lead to layout rearrangement as discussed at the end 

of section 1.2. All these changes need to be anticipated in order to accommodate those 

changes. It is important to note that the DFLP relies on the accuracy of the flow data 

when considering these changes. 

In summary, the DFLP minimizes the sum of the layout rearrangement costs and 

the material handling costs (flow costs) over the planning horizon. Any changes in the 

flow of materials between departments may necessitate layout rearrangement. Layout 

rearrangement costs are incurred and these costs must be traded-off against the benefits 

(improved flow costs) derived from the modified layout. This research focuses on 

developing effective methodologies to solve the DFLP.  

Chapter 2 reviews the SFLP and the DFLP literature. Chapter 3 presents the 

definition of the DFLP and the problem assumptions. Chapter 4 introduces the solution 

methodologies to solve the DFLP. The computational results are given in chapter 5, and 

chapter 6 concludes the research. 
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CHAPTER 2 

LITERATURE REVIEW 

 
2.1 Introduction 

The SFLP is a well-studied problem, and the literature dates back to almost five 

decades. Most recently, the focus has been on developing heuristics for this combinatorial 

optimization problem. On the other hand, the DFLP literature is very recent, and began in 

the mid-1980s. Since the foundation and methodologies for solving the DFLP developed 

from the SFLP literature, the SFLP literature is reviewed. Afterwards, the DFLP 

literature is reviewed. 

2.2 The Static Facility Layout Problem 

Generally, the methodologies for the Static Facility Layout Problem (SFLP) can 

be classified as optimal (exact) algorithms and heuristic (sub-optimal) algorithms. Branch 

and bound and cutting plane algorithms are used to solve the SFLP. Branch and bound 

algorithms were developed and implemented by Gilmore (1962), Lawler (1963), and 

Kaku and Thompson (1986), to mention a few. Bazaraa and Sherali (1980) developed a 

cutting plane algorithm based on Bender’s partitioning scheme and later Burkard and 

Bonninger (1983) also developed cutting plane algorithms. For a review of the exact 

algorithms for the SFLP see Kusiak and Heragu (1987). 

Montreuil (1990) presented a mixed integer programming formulation for the 

SFLP. Similarly, Heragu and Kusiak (1991) presented two new models for the SFLP:  

Linear continuous and linear mixed integer models. The main disadvantage of these exact 

algorithms is that they entail heavy computational requirements when applied even to 

small size problems.  
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In order to obtain good (near optimal) solutions in a reasonable amount of time, 

heuristic algorithms were developed. A heuristic can be defined as a well-defined set of 

steps for quickly identifying good quality solutions. The quality of a solution is defined 

by an evaluation criterion (e.g., minimize material handling cost), and the solution must 

satisfy the problem constraints. Basically, heuristic algorithms for the SFLP can be 

classified into four classes (Heragu, 1992): 

o Graph Theoretic Algorithms 
 
o Construction Algorithms 

 
o Improvement Algorithms 

 
o Hybrid Algorithms 

 
The subsequent sections are devoted to heuristic algorithms, since this research 

proposes a heuristic methodology. 

2.2.1 Graph Theoretic Algorithms 

Seppanen and Moore (1970) introduced the graph theoretic concepts applied to 

the layout design. Hassan and Hogg (1989) outline the graph theoretic approach into 

three stages: In the first stage, an adjacency graph (also called a maximal planar weighted 

graph) is developed from the relationships between departments; the dual graph of the 

departmental relationships is constructed in the second stage; and the third stage converts 

the dual graph into a block layout. See Hassan and Hogg (1987) for the details of the 

graph theoretic procedure. 

Graph theoretic algorithms can be found in Seppannen and Moore (1975), Foulds 

and Robinson (1976), Foulds and Robinson (1978), Carrie et al. (1978), Montreuil et al. 
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(1987), Goetschalckx (1992), and Eades et al. (1982). A review of the graph theoretic 

algorithms is presented in Hassan and Hogg (1987).  

The graph theoretic procedure does not guarantee that departments having strong 

relationships will be adjacent (Hassan and Hogg, 1987). Added to the above limitation, it 

may produce irregular shape departments.  

2.2.2 Construction Algorithms 

A construction algorithm consists of successive selection and placement of 

departments until a layout design is achieved. Some of the construction algorithms are:  

HC66 (Hillier and Connors, 1966), ALDEP (Seehof and Evans, 1967), CORELAP (Lee 

and Moore, 1967), RMA Comp I (Muther and McPherson, 1970), MAT  (Edwards et al., 

1970), PLANET (Deisenroth and Apple, 1972), LSP (Zoller and Adendorff, 1972), Linear 

placement algorithm (Neghabat, 1974), FATE (Block, 1978), INLAYT (O’brien and 

Abdel Barr, 1980), SHAPE (Hassan et al., 1986), NLT (Van Camp et al., 1991), and 

QLAARP (Banerjee et al., 1992). These algorithms can be used to provide initial 

solutions for improvement algorithms. 

2.2.3 Improvement Algorithms 

An improvement algorithm starts with an initial solution (existing layout). This 

existing layout is improved by exchanging the locations of a pair of departments. The 

exchange, which produces the best solution, is retained and the procedure continues until 

the solution cannot be improved any further or until a stopping criterion is reached. 

Hence, the solution quality of improvement algorithms often depends on the initial layout 

given. The above heuristic is called a pairwise exchange heuristic.  
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The following example is given to explain the pairwise exchange heuristic. 

Consider an assignment vector (i.e., initial layout) a = {2, 3, 5, 1, 6, 4} for a six 

department (N = 6) SFLP. The assignment vector gives the location of each department. 

That is, the first department is located at site 2, the second department is located at site 3, 

and the sixth department is located at site 4. The pairwise exchange heuristic starts with 

the above initial layout and evaluates the neighborhood to select the best pair of 

departments to exchange. The neighborhood can be defined as the set of solutions that 

can be obtained from a solution by exchanging the locations of any two departments. For 

instance, given the above initial layout (solution) there are fifteen solutions in its 

neighborhood. These fifteen solutions can be obtained by exchanging the following 

fifteen pairs of departments: (1,2), (1,3), (1,4), (1,5), (1,6), (2,3), (2,4), (2,5), (2,6), (3,4), 

(3,5), (3,6), (4,5), (4,6), (5,6). For example, the first pair of departments, (1,2), is selected 

for the exchange based on the fact that this pair improves the flow cost more than any of 

the other pairs. Therefore, after the exchange, the assignment vector is given as a’ = {3, 

2, 5, 1, 6, 4}. At this point, the pairwise exchange heuristic evaluates the neighborhood of 

a’ (the current solution) and selects the best pair based on the improvement in the flow 

cost. This procedure continues until the solution cannot be improved any further. This 

strategy of the pairwise exchange heuristic is called the steepest descent strategy. It is 

obvious that the performance of the pairwise exchange heuristic depends on the initial 

layout. Also, it often converges to a local optimum. The greedy nature of the pairwise 

exchange heuristic impedes the heuristic from escaping the local optimal solution and 

from finding the global optimum.  
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When the locations of two departments are considered for an exchange, then the 

pairwise exchange heuristic is called a 2-opt exchange. The 3-opt exchange is similar to 

the 2-opt  exchange except that it considers changing the position of three departments at 

a time. For a 6-department problem (N = 6), the 2-opt exchange heuristic has 15 

neighboring solutions that are in the neighborhood of the current solution. In the case of 

the 3-opt exchange heuristics 40 neighboring solutions are in the neighborhood of the 

current solution. Since the implementation of the 3-opt is more complex, the 2-opt 

exchange heuristic is widely used in the literature. The proposed research uses the 2-opt 

(pairwise) exchange heuristic (imbedded within a simulated annealing heuristics) to solve 

the DFLP. 

Armour and Buffa (1963) developed CRAFT (Computerized Relative Allocation 

of Facilities Technique) based on the 2-opt exchange heuristic. CRAFT is the first 

computerized technique used for the facility layout problem. CRAFT starts with the initial 

layout and evaluates all possible pairs of location exchanges. The location exchange, 

which results in the greatest cost reduction, is selected. This procedure continues until no 

further improvements can be made. CRAFT greatly depends on the initial layout 

(solution) provided, and the greedy nature of the pairwise exchange makes it susceptible 

to converge to a local optimum. Some more improvement algorithms for the SFLP are: 

H63 (Hillier, 1963), H63-66 (Hillier and Connors, 1966), COL (Vollman et al., 1968), 

Sampling algorithms (Nugent et al., 1968), FRAT (Khalil, 1973), and COFAD (Tompkins 

and Reed, 1976). All of these algorithms use the 2-opt (pairwise) exchange heuristic. 

Picone and Wilhelm (1984) developed the Revised Hillier algorithm whereas 3-opt and 

4-opt exchanges are considered. LOGIC (Tam, 1992), MULTIPLE (Bozer and Meller, 
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1994), FLEX-BAY (Tate and Smith, 1995b), and SABLE (Meller and Bozer, 1996) are 

some of the other improvement algorithms for the SFLP. 

As mentioned earlier, improvement algorithms rely on the initial solutions 

provided, and they employ a systematic procedure of location exchanges. The 

shortcomings of the improvement algorithms originate from the greedy nature of the 

systematic exchange procedure. “The greedy nature” of the procedure is exposed because 

only the location exchanges, which result in the greatest cost reduction, are accepted. 

Hence, the nature of the exchange procedure often impedes the algorithm from finding 

the global optimum and causes the algorithm to converge to a local optimum. 

The recent developments of meta-heuristics like simulated annealing, tabu search, 

and genetic algorithms has greatly influenced the performance of improvement 

algorithms. These heuristics use a general search strategy like the pairwise exchange 

heuristic. However, they allow for uphill moves (i.e., accept non-improving exchanges or 

solutions) so as to escape from local optimal solutions such that the global optimal 

solution can be obtained. 

2.2.3.1 Tabu Search  

The tabu search (TS) heuristic can be described as a local search technique guided 

by the adaptive or the flexible memory structures (Pirlot, 1996). The adaptive memory of 

TS is implemented with reference to short term and long term components. Generally 

short-term memory prevents cycling  (i.e., revisiting the same solution), and long-term 

memory is used for diversification (i.e., the diverse exploration of the solution space). 

Short-term memory records the moves that result in cycling, and those moves are 

forbidden (taboo) for a certain number of iterations. The number of iterations that the 
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moves are forbidden is called the tabu size. Additionally, an aspiration criterion is used to 

override the tabu restriction, if a restricted move gives the minimum cost ever in the 

search process. Long-term memory records the frequency of the moves and forces the 

algorithm to explore the solution space not yet visited. The way in which the neighbor is 

selected in the TS heuristic is quiet different from the simulated annealing (SA) heuristic. 

Unlike SA (random search strategy), all the members of the neighborhood are evaluated, 

and the best solution is selected. In summary, TS takes advantage of the history of the 

search process and embeds it into the search process (Chiang and Chiang, 1998).  

Seminal papers presented by Glover (1989 and 1990) on TS spurred researchers 

to use this technique to solve a vast number of combinatorial optimization problems. 

Skorin-Kopov (1990) was the first to apply the TS heuristic to the QAP. Taillard (1991) 

applied TS to the QAP and used the parallelization methods to improve the speed of the 

TS heuristic. Skorin-Kopov (1994) refined the TS heuristic using target analysis and 

dynamic tabu size strategies. Kelly et al. (1994) applied various diversification strategies 

to find high quality solutions. Battiti and Tecchioli (1994) did a comparative study on SA 

and TS performance on the QAP. They presented a general discussion about fundamental 

differences between SA and TS and conducted numerical experiments for the QAP 

problem. The authors concluded that SA outperforms TS when a limited number of 

iterations are executed, and they also claim that the efficient memory usage of TS can 

obtain good solutions. Chiang and Kouvelis (1996) implemented TS with dynamic tabu 

list size strategies, intensification criteria and diversification strategies involving a 

penalty function (long-term memory structure).  
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2.2.3.2 Genetic Algorithms 

The Genetic algorithm (GA) imitates the process of evolution. Each feasible 

solution is treated as an individual, and the fitness of an individual is measured by the 

cost function. A population is equivalent to a set of solutions. Two of the solutions 

(parents) are selected and subjected to breed. A crossover operator makes this possible. 

The healthy (having good fitness) offspring replaces the weaker parent. The mutation 

operator is used to improve the solution space by diversifying it. The algorithm continues 

until a predetermined number of generations is reached. 

The following authors used GA to solve the QAP. Fluerent and Ferland (1994) 

implemented GA, which uses local search methods to improve the fitness of individuals. 

Tate and Smith (1995a) implemented genetic algorithm, and tested it on problem 

instances given by Nugent et al. (1968). Suresh et al. (1995) tested three standard 

crossover operators and proposed a new crossover operator to avoid infeasible solutions 

in the population. Ahuja et al. (2000) employed the greedy GA with new crossover 

schemes and an immigration scheme to promote diversity. 

Generally, GA has not gained the acceptance of the operations research 

community as did TS and SA. The reason for this is often times it may generate 

infeasible solutions (Bean, 1994). More often then not, SA and TS perform better than 

GA. 

2.2.3.3 Simulated Annealing  

Until the seminal paper presented by Kirkpatrick et al. (1983) on the Simulated 

Annealing (SA) algorithm, improvement heuristics often times could not escape from 

converging to poor quality solutions or poor local optima. One example of this type of 
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heuristic is the pairwise exchange heuristic, as mentioned previously. However, SA 

overcame the greedy nature of the pairwise exchange heuristic by imbedding 

probabilistic features.  

In statistical mechanics, the annealing process can be viewed as the gradual 

decrease in the temperature of a heated solid until the solid reaches the ground state. In 

other words, when the solid attains the ground state, it is said to be “frozen.” Each state or 

configuration of a solid is defined by the set of arrangements of its atoms. The ground 

state is the lowest energy of all. The temperature should be reduced continuously and 

carefully so that at each temperature level thermal equilibrium is achieved. Otherwise, the 

final state of the solid will have many defects because of locally optimal structures (e.g., 

the structure of the glass, whereas crystal structure is a globally optimal one). The 

process, which gives locally optimal structures, is called rapid quenching. 

The concept of statistical mechanics is summarized and compared with 

optimization problems. The following analogy in figure 2.1 is adapted from Johnson et 

al. (1989). 

 
PHYSICAL SYSTEM                                                                    OPTIMIZATION 
 
State                                                                                                   Feasible solution 
Energy                                                                                               Cost 
Ground state                                                                                      Optimal solution 
Rapid quenching                                                                                Local search  
Careful annealing                                                                               Simulated annealing 

 

 

 

Figure 2.1: Annealing analogy
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The SA procedure used to solve the SFLP is given in figure 2.2 and is modified 

from Chiang and Chiang (1998). The initial feasible configuration is the initial assignment 

of departments to locations. Often times this layout is generated randomly. However, some 

heuristic approaches use a construction heuristic to obtain an initial solution (or layout). 

The cost of an assignment is the total material handling cost, and a cooling schedule is a 

set of values assigned to the SA parameters. The SA parameters are the initial temperature, 

maximum number of iterations, the epoch length e, and a rule specifying how the 

temperature is reduced.                      

Given an initial layout, the cost of the initial layout is calculated. Next, a 

neighborhood solution is selected randomly, and then the cost of the neighbor is 

ascertained. If the cost of the neighbor is less than the current solution (i.e., ∆ < 0), the 

neighbor is accepted. If the cost of the neighbor is equal the current solution (i.e., ∆ = 0), 

randomly select another neighbor and repeat the process. Otherwise, the probability P(∆) 

= e- ∆/ T is calculated.  A random number x is generated from the uniform distribution 

U(0,1). If the generated x is less than the P(∆), then the move is accepted, otherwise it is 

rejected. These steps are repeated until a predetermined number e (epoch length) is 

reached. Then the temperature level is reduced, and the whole procedure is repeated until 

the maximum number of iterations is reached. The value of the initial temperature is 

chosen such that the probability of accepting uphill moves (i.e., ∆ > 0) is high. The idea 

behind this is to avoid getting trapped at a local minimum early in the search process. 

When the temperature has been reduced and becomes low, the probability of accepting 

uphill moves becomes low. The heuristic terminates once the specified number of 

iterations has been reached. 
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1. Obtain an initial feasible configuration (solution) S. Set Min_cost = Cost (S) and 
     Min_assign = S; 
2. Set the cooling parameters including the initial temperature, T, the cooling ratio r, the 
epoch length e, maximum number of iterations, max, and iteration counter, iter = 1.  
3.1 For 1 < i < e, do  
      3.1.1 Pick a random neighbor S’ ∈  N(S); 
      3.1.2 Let ∆ = Cost (S’) - Cost (S); 
      3.1.3 If ∆ < 0,  
                    set S = S’; 
                             If (Cost (S’) < Min_cost),  
                                       set  Min_cost = Cost (S’);  
                                              Min_assign = S’; 
                                              go to 3.1.1; 
               Else 
                    If  ∆ > 0, 
                           Calculate P(∆) =  e- ∆/ T  (probability based on the ∆); 
                           Generate random number x ~ U(0,1); 
                            If (x < P(∆)) 
                                    Set S = S’, go to 3.1.1; 
                            Else 
                                    go to 3.1.1;                   
                    Else 
                            go to  3.1.1; 
              
3.2  If (iter = = max) 
            Return Min_cost and Min_assign; 
            STOP; 
       Else 
            Set T = rT;        
            iter = iter + +;   
            go to step 3.1;      
 

 

 

Burkard and Rendl (1984) were the first to apply the SA algorithm to the facility 

layout problem. Also, Wilhelm and Ward (1987) presented a SA algorithm for solving the 

facility layout problem. In this paper, the authors undertook an experimental evaluation for 

setting the parameters, and the equilibrium condition of the system was tested at each 

epoch based on the mean total costs of the assignments. Heragu and Alfa (1992) applied 

Figure 2.2: SA algorithm 
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the Hybrid Simulated Annealing (HAS) algorithm (uses a penalty algorithm to generate an 

initial solution and then improves the solution using SA) for the QAP and compared its 

results with their version of the SA algorithm, 2-opt algorithm, 3-opt algorithm, and 

Wilhelm and Ward (1987) version of SA. Results show that HSA and Heragu and Alfa 

(1992) version of SA performed better than Wilhelm and Ward (1987) SA algorithm. 

Chiang and Chiang (1998) presented the probabilistic tabu search and the hybrid tabu 

search applied to the QAP. Also, they implemented a SA algorithm and a TS heuristic to 

solve the QAP. Additionally, extensive computational experiments were conducted with 

all four heuristics: SA, TS, probabilistic TS, and hybrid TS. The authors concluded that the 

heuristics produce competitive and superior results. Last, Dowsland (1993) used the SA 

algorithm to solve packing problems. This article is mentioned here since the author used a 

reheating strategy, which is used in this research.  

This research uses SA and SA with reheating as tools to solve the DFLP. Later in 

the methodologies section of this paper, the proposed simulated annealing heuristics 

applied to the DFLP are given and explained. Next, heuristics using a combination of 

heuristics to solve the SFLP are discussed. 

2.2.4 Hybrid Algorithms 

Bazaraa and Kirca (1983) classified hybrid algorithms, and define hybrid 

algorithms as algorithms that have the characteristics of both optimal and sub-optimal 

algorithms. As mentioned previously, optimal algorithms such as branch and bound and 

cutting plane methods are used to solve the SFLP. Any improvement, or graph theoretic 

algorithms are suboptimal algorithms. In general, hybrid algorithms are aimed at 
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capturing the characteristics of optimal algorithms, which produce optimal solutions, and 

the congenital quality of heuristics which solve problems quickly. 

Hybrid algorithms can be found in Burkard and Stratman (1978), Bazaraa and 

Sherali (1980), and Bazarra and Kirca (1983). Kusiak and Heragu (1987) extended the 

above definition of hybrid algorithms to include algorithms that used construction and 

improvement methodologies. These algorithms can be found in Elshafei (1977), Scriabin 

and Vergin (1985), and Drezner (1980). 

In the literature, the practice of combining available heuristics is very common. 

Yip and Pao (1994) combined genetic search and SA algorithms, and they use it to solve 

the QAP. Chiang and Chiang (1998) combined the TS with SA to add the probabilistic 

component to the TS technique, and they called the technique hybrid TS. For more hybrid 

techniques, see Pirlot (1996).  

2.2.5 Static Facility Layout Extensions 

Kusiak and Heragu (1987) reviewed the facility layout problem literature, which 

served as a foundation for this literature review for the SFLP. More recently, Meller and 

Gau (1996a) reviewed the facility layout problem literature. This literature review 

discussed the extensions of the facility layout problem (i.e., dynamic layout, stochastic 

layout, and multiple objective criteria).  

Balakrishnan and Cheng (1998) reviewed the DFLP literature. More specifically, 

they reviewed the algorithms used to solve the DFLP. Most of the algorithms were 

heuristics except the Dynamic Programming algorithm proposed by Rosenblatt (1986). In 

the next section, these algorithms are discussed in detail. 
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2.3 The Dynamic Facility Layout Problem 

2.3.1 Introduction 
 

Based on the literature available, the solution approaches for the DFLP can be 

divided into exact (optimal) algorithms and heuristic (suboptimal) algorithms. Since the 

DFLP is computationally intractable, heuristic approaches are mostly presented for this 

problem. Most recently, Balakrishnan and Cheng (1998) reviewed the DFLP literature. 

As mentioned previously, most of the approaches reviewed were heuristics except the 

algorithm presented by Rosenblatt (1986). This is an exact approach, and it is 

computationally intractable when the problem size increases. Also, Rosenblatt (1986) 

used two approaches (to be discussed in subsequent section) to evade the computational 

difficulty. Lacksonen and Enscore (1993) applied exact algorithms like cutting planes and 

branch and bound algorithms for the DFLP. To tackle the computational complexity of 

solving large problems, the authors combined the above algorithms and presented 

heuristics to solve large problems. The computational burden associated with larger 

problems solidified the need for heuristics which can produce good solutions in 

reasonable time. Heuristics like the pairwise exchange heuristic (Urban, 1993 and 

Balakrishnan and Cheng, 2000b), GAs (Conway and Venkataraman, 1994 and 

Balakrishnan and Cheng, 2000a), TS (Kaku and Mazzola, 1997), and SA (Baykosaglu 

and Gindy, 2001) were proposed recently. Next, a brief discussion of the methodologies 

presented in the aforementioned articles is given. 

2.3.2 Exact algorithms 
 

Rosenblatt (1986) used dynamic programming to solve the DFLP. In the dynamic 

programming technique, each period is considered to be a “stage” and a static solution for 
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each period (stage) is called a “state”. The dynamic programming algorithm is solved 

using a recursive formula. A layout is selected for each period from a pre-specified set of 

layouts corresponding to the period such that the sum of the flowcosts and the 

rearrangements costs is minimized through the planning horizon.  In order to find a 

globally optimum solution, the pre-specified set of layouts for each period must contain 

all possible layouts corresponding to the period. Thus, the dynamic programming 

approach is computationally intractable for larger size problems. 

Rosenblatt (1986) considered two approaches to make the dynamic programming, 

a computationally viable technique for larger size problems. The first approach is based 

on the Ballou (1968) heuristic (used to solve the dynamic warehouse location problem), 

and the second approach considers generating the layouts randomly. Both approaches 

were tested on a small problem (N = 6, T = 5) and the results were reported. The results 

show that the first approach yields better solutions. 

Lacksonen and Enscore (1993) presented five algorithms to solve the DFLP, and 

they are: CRAFT, Cutting planes, Branch and bound, dynamic programming, and cut 

trees. Cutting planes, branch and bound, and dynamic programming approaches are exact 

algorithms, and they demand high computational effort for larger size problems. In order 

to make them computationally tractable for larger size problems, they were combined 

with heuristics. The cutting plane algorithm was combined with an iterative exchange 

routine heuristic. The exchange routine was used to consider rearrangements, while the 

cutting plane portion was used to estimate the best assignment. Furthermore, a parallel 

branch and bound algorithm was modified to handle the multiple time periods. This 

algorithm terminates after 50,000 nodes are obtained and it stores the 25 most promising 
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nodes. Also, Rosenblatt’s (1986) dynamic programming algorithm was used. The best n-

states (layouts) are selected for each time period, in order to make the algorithm 

computationally tractable. The CRAFT algorithm, which handles the varying department 

sizes, was modified for the DFLP. Cut trees, one of the graphical layout techniques, was 

extended to model the DFLP. The authors developed a new set of data based on the 

factors which could affect the performance of the algorithm. All five algorithms were 

tested using this data. The DFLP test problems were for N = 6, 12, 20, and 30 

departments and the time periods considered were T = 3 and 5. The cutting plane 

algorithm performed the best solution for all 32 problems. The exchange algorithm 

obtained the optimal solutions for N = 6, T = 3 test problems (4 instances). However, it’s 

performance deteriorated as the problem size increases. The branch and bound algorithm 

was used to verify the optimal solutions for all N = 6, T = 3 test problems but was unable 

to obtain solutions in reasonable time for the larger test problems. The dynamic 

programming algorithm generally produced the worst solutions. The cut tree algorithm 

found optimal solutions for N = 6, T = 3 test problems but performed significantly worse 

as N and T increased. 

2.3.3 Heuristic algorithms 
 
2.3.3.1 Pairwise exchange heuristic 
 

Urban (1993) used the pairwise exchange heuristic to solve the DFLP. This 

heuristic was completely different from the earlier approach presented by Rosenblatt 

(1986). Urban (1993) used the principle of forecasting windows for solving the DFLP. 

The idea behind this technique is to allow a layout to be used for any given block of 

periods, to avoid rearrangement costs. The flow data for one or more periods are 
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combined and used to determine a layout for the current period. In this technique an 

initial layout is given, only for the first period. For instance, when the time window = 1 

and the current period is 1, this technique uses the flow data of the first period to improve 

the given initial layout. This improved layout (layout of the first period) is used as an 

initial layout for the second period along with the flow data of the second period, and an 

improved layout for the second period is obtained. This process is continued until the 

layout of the last period is improved. Similarly, when the time window = 2, and the 

current period is 1, the flow data of first and second periods are combined to improve the 

given initial layout. This improved layout (layout of the first period) is used as an initial 

layout for the second period along with the combined flow data of the second and third 

periods. Thus, the improved layout of the second period is obtained and used with the 

combined flow data of the third and fourth periods to obtain an improved layout for the 

third period. The process is continued until the layout of the last period is improved. 

Therefore, for m time windows there would be m solutions (layout plans) and the solution 

with the minimum cost is selected. This methodology is computationally tractable since it 

uses only a pairwise exchange heuristic. As a result, even when the problem size 

increases, a solution can be obtained in reasonable time. The author compared the 

proposed methodology with Ballou (1968) and the random heuristic presented by 

Rosenblatt (1986). Computational results indicates that Ballou (1968) method performs 

slightly better than the proposed heuristic for smaller size problems, but when the 

problem increases (more than 12 departments), Ballou’s (1968) heuristic is not applicable 

due to the computational requirements. In all the instances, the proposed heuristic gave 

better results than the random heuristic. 
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Balakrishnan and Cheng (2000b) proposed two heuristics which improved 

Urban’s (1993) pairwise exchange heuristic. The first heuristic uses the final solutions (m 

solutions) of Urban’s (1993) heuristic and works backward to search for better solutions. 

The second heuristic combines Urban’s (1993) heuristic with dynamic programming.  

As stated earlier, the first heuristic produces “m” backward pass solutions based 

on the “m” solutions produced by Urban’s (1993) heuristic. The backward pass pairwise 

exchange starts at T-1 period and continues on to the first period. In this heuristic, the 

rearrangement costs between periods T-1 and T, and the rearrangement costs between 

periods T and T+1 were considered. In this technique, each of the m solutions is at least 

as good as Urban’s (1993) heuristic solutions. However, the flow data are not combined 

like in Urban’s (1993) heuristic. 

In the second heuristic, Urban’s solutions were used as initial layouts for the 

dynamic programming algorithm. Similar to the first approach, Urban’s (1993) solutions 

were embedded within dynamic programming, and the authors claim that dynamic 

programming would give solutions at least as good as Urban’s (1993) heuristic. The 

proposed heuristics were tested on N = 6, 15, 30 departments and T = 5, 10 period 

problems. Results show that these heuristics improve the solutions given by Urban’s 

(1993) heuristic. 

2.3.3.2 Genetic Algorithms 
 

Conway and Venkataramanan (1994) presented a solution technique based on GA 

to solve the DFLP. In this approach, feasible solutions, called strings, are generated 

randomly for the first generation. Thus, a string represents one entire layout plan for the 

planning horizon. These strings were selected with some probability increasing with their 
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fitness value. Then a random splicing position was generated and the strings were split 

into sub-strings. These sub-strings were then swapped. When infeasible solutions 

occurred as the result of swapping, additional swaps were made to restore feasibility. The 

strongest string (highest fitness value) is retained throughout generations. All of the other 

strings are replaced every generation. The proposed GA was tested on the data set 

presented in Rosenblatt (1986). The algorithm has a population size of 400 and 50 

generations, and optimal solutions were obtained. Additionally, the algorithm was tested 

on a data set generated by the authors, and the best solutions were reported. Overall, this 

was an attempt to explore the suitability of GAs for solving the DFLP. 

Balakrishnan and Cheng (2000a) refined the GA approach presented by Conway 

and Venkataramanan (1994). The authors employed the point-to-point crossover operator 

to crossbreed the two strong strings (based on the fitness function). Unlike all the 

members of every generation replaced (the approach followed by Conway and 

Venkataramanan, 1994), the proposed technique replaces only some individuals of the 

population. The proposed technique is called the “ Nested loop Genetic algorithm”. It 

consists of two loops: inner and outer loops. In the inner loop, crossover and mutation 

operators are used to breed the children (layouts). A feasibility test is applied to eliminate 

illegal children (infeasible solutions). The minimum cost legal child (feasible solution) 

layout replaces the maximum cost parent in the population. Also, a diversification 

strategy such as mutation is employed to drive the algorithm to search areas needed to be 

explored. Mutation may occur with minimum cost legal child layout. The mutated child 

replaces the maximum cost parent. Finally, the outer loop replaces some of the poor 

parents (having lower fitness values) of the population by layouts that were generated 



 

 

35

randomly. By replacing the solutions, the outer loop prevents the inner loop from 

working on the same population for several generations. In other words, the outer loop 

actually diversifies the population. The termination of the algorithm is based on a 

threshold value.  When the difference between the best child layouts in two successive 

generations is less than a threshold value, the algorithm is terminated. The proposed 

technique was tested on N = 6, 15, 30 departments and T = 5, 10 period problems. The 

proposed technique was compared with the technique proposed by Conway and 

Venkataramanan (1994). The former performed better than the latter for the 10 period test 

problems. 

2.3.3.3 Tabu Search 

Kaku and Mazzola (1997) applied the TS heuristic to the DFLP. In this paper, TS 

was applied in a two-stage search process that incorporates the diversification and 

intensification strategies. Three diversification strategies were discussed: random 

generation of initial layouts, construction of initial layouts using a construction heuristic 

and diversification using frequency-based tabu critieria. The second strategy was 

incorporated into the algorithm. The intensification strategy is implemented by the 

adaptive tabu list. In the adaptive tabu strategy, the tabu size reduces to half of its value 

when there is no significant improvement for pre-specified number of iterations. 

During the first stage of the search procedure, a number of initial solutions are 

constructed using the diversification strategy, and a basic tabu search (with fixed tabu 

size ) was applied on each constructed initial solution. At the end of the first stage, n-best 

solutions are selected for the intensification process in the second stage. In the second 

stage, a modified tabu search (adaptive tabu size) is applied to the initial solutions 
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corresponding to each of the n-best solutions. The proposed technique was tested on the 

data set provided by Lacksonen and Enscore (1993). The authors compared the results 

with the best-known solutions given by Lacksonen and Enscore (1993) and with the 

results obtained from Urban (1993) heuristic. The results show that the relative 

performance of the proposed technique was improved when the problem size is 

increased. 

2.3.3.4 Simulated Annealing 
 

Baykosaglu and Gindy (2001) were the first to apply SA to the DFLP. The 

approach taken by the authors is a straightforward implementation of SA to solve the 

DFLP.  A randomly generated layout plan (i.e., layout for each period) is given as an 

initial solution. The SA algorithm improves the initial layout plan. As mentioned in 

section 2.2.3.3, the SA uses the pairwise exchange heuristic to determine and select a 

neighborhood solution. The pairwise exchange heuristic used in SA to solve SFLPs is 

modified for the DFLP. In the modified pairwise exchange heuristic, a neighboring 

solution is selected in two steps. In the first step, a period is selected, and in the second 

step, a pair of departments is determined randomly, from the period selected. After a 

period and a pair of departments are selected, the change in the total cost of the layout is 

calculated. This neighborhood solution is accepted based on the calculated change in the 

total cost. See section 2.2.3.3 for the SA procedure. 

In Baykosaglu and Gindy (2001), the parameters such as initial temperature, final 

temperature, cooling rate, and maximum number of iterations are determined through an 

iterative procedure that is based on the upper and lower bounds of the solution of a given 

problem instance. Therefore, the authors performed several trial runs for each problem 
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instance to estimate the upper and lower bounds. The proposed SA was tested on the set 

of test problems (N = 6, 15, 30 for T = 5, 10) given by Balakrishnan and Cheng (2000a). 

The results obtained indicate that the proposed SA performs better than genetic 

algorithms. 

As mentioned previously, the DFLP is computationally intractable, and it is 

evident that much of the research effort has been spent on developing heuristic 

approaches to solve the DFLP. This research proposes three heuristic approaches to solve 

the DFLP. These approaches are based on the SA algorithm. The first approach is a 

straightforward implementation of SA for the DFLP, the second uses the first approach 

with reheating, and the third approach is a combination of the forecasting windows 

technique (Urban, 1993), SA, and the backward pass pairwise exchange algorithm 

(Balakrishnan and Cheng, 2000b). Next, chapter 3 defines the DFLP and the problem 

assumptions. 
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CHAPTER 3 

STATEMENT OF THE PROBLEM 

 

3.1 Introduction 

Today’s consumer market demands that manufacturing companies need to be 

competitive. Every manufacturing company wants to prevail over the uncertainties of the 

demand. Moreover, when the demand changes with time, the burden to meet the demand 

increases. Being able to meet the demand determines the success of a manufacturing 

company. Naturally, companies have to find a way to meet demand that is cost effective 

and efficient. A company can look for improvements (cost savings) in planning, 

manufacturing, distributing, marketing, as well as other areas.  

Within a manufacturing system, the layout of a facility can be explored to reduce 

costs. For instance, an inefficient layout will increase material handling costs, since the 

layout establishes a relationship between the departments based on the flow of materials 

between them. The material handling costs are linear functions of distance and flow 

volumes. Thus, an inefficient layout provides a good opportunity for cost saving (i.e., the 

opportunity to reduce material handling costs).  

 Material handling cost depends on the arrangement of the departments. More 

importantly, material handling cost associated with the layout has been estimated to be 

between 20% to 50% of the total operating expenses within manufacturing, and this cost 

can be reduced by at least 10% to 30% with effective facilities planning (Tompkins et al., 

1996, p. 5). Since material handling cost is the function of distance and flow volumes, an 
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increase in flow volume will increase material handling cost. Thus, a layout, which is not 

ready to accommodate the changes in flow, will considerably lose its effectiveness.  

When there is no change in the material flow over time, then the environment is 

said to be static. In today’s consumer market, which is characterized by uncertainty, static 

environments are non-existent. The following section briefly discusses the static 

environment. 

3.1.1 Static Environment 

In the static environment, the flow of materials between the departments and the 

cost of handling materials per distance unit are used to evaluate a layout design. The flow 

of materials are assumed to be constant. However, in reality, the flow of materials 

between departments is not constant due to the volatile business environment. 

Arguably, the facility layout in the static environment is designed in a reactive 

mode. In the reactive mode, future changes in the flow of materials are not taken into 

consideration, and the facility layout reacts to the change once it occurs. The static 

approach uses the long planning horizon and disregards changes in the flow (single 

period). That is, any changes in the flow during this planning horizon are left unattended. 

Therefore, an efficient layout at the start of the planning horizon may not be efficient 

throughout the time horizon.  

3.1.2   Dynamic Environment 

In a dynamic environment, the flow between departments changes with time. 

When the flow changes, the layout of the facility has to change since the changes in the 

flow with the current layout may increase material handling cost. Therefore, departments 

have to be rearranged in order to reduce material handling costs. When departments are 
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rearranged, the cost of shifting or rearranging the departments needs to be considered. 

The cost of physically moving machines (departments) from their existing location to 

their new location is called rearrangement cost. This rearrangement cost includes 

planning, dismantling, construction, movement and installation costs. 

In the dynamic environment, the focus is to arrange the departments for each 

period with respect to minimizing the sum of material handling costs and rearrangement 

costs. Therefore, there is a tradeoff between minimizing material handling costs (flow 

costs) and rearrangement costs. In other words, if rearrangement costs exceeds the 

reduction in material handling costs when considering relayout, then the current layout is 

sufficient. However, if there is a reduction in material handling cost when considering re-

layout, such that it exceeds rearrangement costs, the decision to relayout the facility is 

chosen. Since the flow data is extremely important for the relayout of facilities, the flow 

data need to be forecasted well in advance and need to accurate. 

In the dynamic environment, the layout plan (layout for each period) is devised 

based on the multi-time period horizon. The flow data changes at discrete intervals. In 

this research, we assume that these changes are anticipated and are known in advance. 

The layout for each time period is designed based on the changes in the flow data and the 

rearrangement costs. The layout may be rearranged in one or more periods if the 

rearrangement cost does not counteract with the material handling costs in those periods. 

The output of the dynamic facility layout problem (DFLP) is a series of layouts, and each 

layout is associated with a time period. In summary, the objective of the DFLP is to 

obtain layouts for each time period such that the sum of rearrangement costs and flow 

costs (material handling costs) are minimized. 
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Lacksonen and Enscore (1993) state two limiting cases for the DFLP. First, when 

the rearrangement costs are much higher (prohibitive) than the flow costs, then any 

attempt to rearrange the departments (or facilities) would end up in a disaster. In this 

case, the flows for each time period can be summed up and solved as a SFLP. Second, 

when the converse is true, the DFLP can be solved as a series of independent static layout 

problems since the rearrangement costs are trivial. This research avoids these two 

extreme cases and concentrates on the transitional settings (rearrangement costs are 

neither trivial nor prohibitive) of the rearrangement costs. 

3.2 Problem Statement 

This research focuses on the DFLP where the flow data are deterministic and of 

course dynamic (flow data changes over the planning horizon). Changes in the flow are 

the results of many factors such as: the change in the design of an existing product; the 

elimination of products from a product line; the introduction of new products; 

replacements of existing production equipments; shorter life cycle products; and changes 

in the production quantities and associated production schedule. All these changes affect 

the flow of materials between departments. When the layout is rearranged to reduce the 

effect of changes in the flow of materials, material handling and rearrangement costs are 

incurred. In a manufacturing environment, the rearrangement cost is incurred when 

moving machines from one department to another. As mentioned earlier, there exists a 

trade-off between rearrangement cost and the improvement in the flow cost (material 

handling cost). The solution for the DFLP is a layout plan for the entire planning horizon. 

This layout plan is a series of layouts, and each layout is associated with a time period. 

The cost of a layout plan is the sum of the material handling and rearrangement costs.  
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At each time period T, a layout is one of the N! (N factorial) arrangements of 

facilities, where N is the number of departments. A solution to the DFLP is one of the 

(N!)T layout plans available. Ironically, the problem stated here is very simple to explain 

but hard to solve optimally. For example, for N = 6 (six departments) and T = 5 (five 

periods), there are (6!)5 ≅  1.93 x 1014 possible (feasible) arrangements. An extension of 

the QAP formulation is used to model this problem (see section 1.5). 

3.3 Problem Assumptions 

The assumptions for the DFLP are as follows: 

o The type of layout is known. See figure 3.1 for an example of a 6 

department problem. The layout is referred to as a 2 x 3 layout, and a 

department will be assigned to each location (or site) at each time period. 

The distance between sites and the flow between departments are used to 

obtain the objective function value (more specifically, material handling 

costs). Therefore, the type of layout must be known a priori.      

o The distances between departments are determined a priori. 

o Flow between departments is dynamic and deterministic. 

o Departments and locations are of equal size. 

o The assignment cost of a department to a location is ignored but can easily 

be considered. 
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3.4 Research Objectives 

The major objectives of this research are as follows: 

o To develop heuristics to obtain good solutions for large-size DFLPs. 

i. A straightforward implementation of SA algorithm. 

ii. A straightforward implementation of SA algorithm with reheating. 

iii. A combination of heuristics (SA algorithm with time windows and 

backward pass pairwise exchange heuristic). 

o To evaluate the heuristics by comparing their results to results obtained 

from the best-known heuristics in the literature. 

 

 

 

 

 

 

 

 

 

  

 

Figure 3.1: Layout of Sites 
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CHAPTER 4 
 

METHODOLOGIES 
 
 
4.1 Introduction 
 

The DFLP is a computationally intractable problem. In other words, the 

computational effort to find the optimal solution for this problem grows exponentially 

with the size of the problem. It is known that exact algorithms entail high computational 

effort. Therefore, the need for heuristics to provide good solutions in reasonable time has 

increased. For the DFLP, there are several exact algorithms (Rosenblatt, 1986 and 

Lacksonen and Enscore, 1993), and the rest are heuristics (see section 2.3.1). More 

recently, SA was used to solve the DFLP (see Baykosaglu and Gindy, 2001). In this 

research, three heuristics based on SA are used to solve the DFLP, and they are as 

follows: a straightforward implementation of SA (SA I); SA I with reheating (SA II); and 

a SA algorithm combined with the pairwise exchange heuristic with time windows and a 

backward pairwise exchange heuristic (SA COMBO). These methodologies will be 

explained in the following manner: general idea (concepts), nomenclature, algorithm 

exposition, and illustration (numerical examples).  

4.2 Simulated Annealing Algorithm (SA I) 
 

This algorithm is a straightforward implementation of SA for the DFLP. This 

algorithm improves a given initial layout plan. The layout plan is a series of layouts (i.e., 

a layout is given for each period). Each period has its own flow data. Therefore, the input 

data for this algorithm consist of an initial layout plan, a series of flow data associated 

with each period, distance matrix (distances between locations), and rearrangement costs. 
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SA is a meta-heuristic, since it uses a general search strategy like the pairwise 

exchange heuristic within the SA algorithm. The way this meta-heuristic works can be 

divided into two loops: inner loop and outer loop. In the inner loop, a period is randomly 

selected. Next, a pair of departments for exchange is selected randomly. If the exchange 

yields a better solution than the initial solution (reduces material handling cost), then the 

exchange is made. In the outer loop, a decision to accept nonimproving exchanges is 

determined. This loop contains parameter initialization, stopping rules, and the 

probability assignment for accepting nonimprovement exchanges. The SA algorithm 

proposed, for the straightforward implementation, is adapted from Heragu and Alfa 

(1991) and Wilhelm and Ward (1987) and modified for the DFLP.  

4.2.1 General Nomenclature 
 
The following nomenclature is common for all of the proposed heuristics. 

N   =  Number of departments.  

T    =  Number of periods. 

ax  =  [a(1), a(2), . . . , a(N)], a layout is represented by the n-vector; whereas the 

element a(i) in the assignment vector ax denotes the site (or location) the 

department (or facility) i  is located (or assigned). 

layout _ plan  =  [ax(1), ax(2), . . . , ax(T)], where the element ax(t) denotes the layout 

   vector for the tth  period.    

lyo   =    The initial layout_ plan. 

ly     =    The current layout_plan at any iteration. 

ly'    =    The layout_plan considering a pairwise exchange. 

 



 

 

46

 

Rep_cost            =    Total rearrangement cost for a layout_plan. That is, the sum of the 

                                     rearrangement costs for all periods. 

Flow_cost          =    The sum of the flow costs for all the periods. 

Total_cost          =   Total cost of a layout plan; that is, the sum of the rearrangement  

costs (Rep_cost) and the material flow costs (Flow_cost). 

Total_cost(ly)     =      Total cost of the current layout_plan.   

Min_cost             =   The current best  Total_cost. 

Min_assign         =   The current best  assignment of departments to  

locations in all periods (i.e., layout_plan). 

Min_iter             =        Best Total_cost just before the last iteration. 

∆flow                 =    Change in flow cost in a given period. 

∆Rep                   =    Change in the total replacement cost (Rep_cost).  

∆Total_cost        =     Change in the  Total_cost ; evidently, change in the Total_cost  has  

two components ∆flow and  ∆Rep and can be represented by 

(∆flow + ∆Rep).  

flow [i][j]            =   Material flow between departments i and j in a given period. 

loc [i]                  =   The location of department i.    

d [loc[i]][loc[j]]  =   Distance between the locations of departments i and j. 

4.2.2 Pairwise exchange heuristic 

4.2.2.1 Concept 

The pairwise exchange heuristic is an important component of the SA algorithm. 

In the DFLP, the pairwise exchange heuristic is implemented in two sequential steps: 
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1. The random selection of a period. 

2.  The random selection of  two departments (u and v), in the selected 

   period. 

A swap (or exchange) between two departments in any given period is related to 

the flow cost in that period, and the rearrangement costs are calculated from 

rearrangement costs from the previous period to this period and from this period to the 

next period. This relation can be symbolically represented. See figure 4.1. In figure 4.1, if 

a swap occurred in period 2, then the flow cost of period 2 may change, and the 

replacement cost from periods 1 to 2, and from periods 2 to 3 may also change. An 

illustration is given in section 4.2.2.3 

 
 
 
 
 
 
 
 
 
4.2.2.2 Formulas 
 
4.2.2.2.1 Flow cost formulas 
 

The flow cost of any layout can be calculated by using the following formulas:  

            flow cost  of a  layout at any period       = ��
= =

n

i

n

i
jlocilocdjiflow

1 1
]][[]][[*][][  

Generally, the above formula is suitable for both types of flow matrices 

(symmetric or asymmetric). In the case of a symmetric flow matrix, flow[i][j] = flow[j][i], 

the above formula can be adjusted as  follows: 

flow cost of a layout at any period       =  �
≤<≤ nji

jlocilocdjiflow
1

]][[]][[*][][  

 

PERIOD 1 

PERIOD 2 

PERIOD 3 

Swap

Rearrangement cost from period 1 to period 2

Flow cost of period 2 

Rearrangement cost from period 2 to period 3

Figure 4.1: Relationship between flow and rearrangement costs 
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4.2.2.2.2 Change in Flow (∆∆∆∆ flow) formulas 
 

Once two departments are selected for interchange, the change in the flow cost is 

calculated. This computational formula is provided by Francis et al. (1992). When the 

flow matrix is symmetric, the following formula is used: 

∆flow =  �
=

−−
N

i
vlocilocdulocilocdviflowuiflow

1
]])[]][[[]][]][[[(*])][[]][[( - 

                                   ]][]][[[*]][[*2 vloculocdvuflow  

When the flow matrix is asymmetric, 

∆flow =   −+−−�
=

]][]][[[(*])][[]][[]][[]][[(
1

ulocilocduiflowivflowviflowiuflow
N

i
 

                                  ])][[]][[(*]][]][[[*2]])[]][[[ uvwvuwvloculocdvlocilocd +−  

where  u and v  are the departments selected for the exchange. 

4.2.2.2.3 Change in Total Cost (∆∆∆∆Total_cost) formulas 

An exchange (swap) of departments in any period changes the Total_cost in two 

ways: changes the total replacement cost (∆Rep) and changes the total flow cost (∆flow). 

Since the flow cost in any period is not going to change except at the period where the 

swap takes place, the change in the Total_cost is ∆Total_cost = ∆flow + ∆Rep.  

4.2.2.3 Illustration of calculating change in total cost 
 

Consider the following layout_plan, (see figure 4.2), where T = 3, N = 6. The 

layout for the first period can be interpreted as the first department is located at site 2, the 

second department is located at site 3, the third department is located at site 4, and so on. 

For instance, period 2 is randomly selected and departments 5 and 6 (u = 5, and v = 6) are 

randomly selected for exchange. If the exchange reduces the total cost, then the location 
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of the departments are exchanged. The layout_ plan after the exchanges is given in figure 

4.3. 

2  3  4  6  1  5 
1  2  3  4  5  6 
4  5  6  1  3  2 

 

 
In figure 4.3, the layout shows that the replacement cost is reduced, since 

department 6 is assigned to location 5 during periods 1 and 2. However, department 5 is 

assigned to locations 1, 6, and 3 for periods 1, 2, and 3, respectively. Therefore, there is 

no reduction in replacement cost with respect to department 5. In this example, ∆Rep = 

(Replacement cost of departments 5 and 6 in the previous layout_plan) – (Replacement 

cost of departments 5 and 6 in the current layout_plan). 

 Since there are reductions in the replacement cost of the current layout_plan (i.e., 

∆Rep > 0) and the flow cost (∆flow > 0), the total cost is reduced (i.e., ∆Total_cost = 

(∆flow in period 2) + ∆Rep > 0).   

2  3  4  6  1  5 
1  2  3  4  6  5 
4  5  6  1  3  2 

 

 

4.2.3 SA I Nomenclature 
 
The following are the parameters for the SA I algorithm and are also used for the  SA II 

algorithm: 

step       =  is a constant, which when multiplied by the temperature at a given 

      iteration, determines the temperature used at the next iteration. 

ini_temp =  initial temperature. 

iter_max =  is a constant, that indicates the maximum number of iterations 

Figure 4.2: Layout_ plan before the exchange

Figure 4.3: Layout_ plan after the exchange (current layout) 
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 executed without improvement in the Total_cost. 

r              =   current iteration.    

temp        =   current temperature. 

                       =   (ini_temp ) * (step )(r-1)     

NN          =    a constant which when multiplied by N  defines the epoch length.  

e              =    a constant that denotes the epoch length. The epoch length is  

 defined as the number of accepted pairwise  exchanges at each  

 temperature (i.e., e = NN*N).   

NS           =    a constant which when multiplied by N (number of departments)   

                      defines the maximum number of attempted pairwise exchanges in 

                      an epoch. 

NS*N =         a constant that denotes the maximum number of attempted pairwise  

                                  exchanges in an epoch. 

  The SA parameters step, ini_temp, iter_max, r, and temp are collectively 

called the “annealing schedule.” The annealing schedule is also called the cooling 

schedule, and it dictates how the temperature is reduced from start to finish. The 

equation that is used to calculate the current temperature (temp) is adapted from 

Wilhelm and Ward (1987). Initially r is set equal to 1, so that temp is equal to 

ini_temp at the first iteration. Before the temperature is reduced, a sufficient 

number of pairwise exchanges needs to be attempted. The number of accepted 

pairwise exchanges at a given temperature temp is called the epoch length. The 

parameters NN and NS are used to define the epoch length. The following are the 

counters, which are used to count the number of accepted pairwise exchanges, the 
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number of the attempted pairwise exchanges, and the number of non-

improvement iterations, respectively: 

ep         =    counter used to count the number of  accepted pairwise exchanges in 

                      an epoch. The maximum limit of this counter is set equal to NN*N.  

J             = counter used to count the number of exchanges attempted at any 

temperature temp. The maximum limit of this counter is set equal 

to  NS*N.  

iter_no    =      counter used to count the number of  iterations without  

                        improvement. The maximum limit of this counter is set equal to  

                        iter_max. 

When the counters ep or J reaches the maximum limit, the temperature is reduced. 

Furthermore, when the counter iter_no reaches its maximum value, the algorithm is 

terminated. 

 
4.2.4 SA I algorithm exposition 
 

See figure 4.4 for the SA I algorithm. Generally, initial layout_plans are randomly 

generated. In this case, rather a simple layout _plan is given as an initial layout_plan. 

Basically, a layout for the first period (i.e., ax(1) = [1,2,3,4,5,6,7,8,9]) is used for all the 

periods. Note, that the layout for the first period is not generated randomly, but by simply 

assigning the first department to the first location, the second department to the second 

location, and so on. 

Step 1: 

The flow matrices for all the periods, distance matrix, and rearrangement costs are 

given as input. The simple initial layout_ plan (lyo) is assigned to ly (i.e., set ly = lyo). 
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Step 2: 

Total cost of the initial assignment, Total_cost(ly) is calculated; Total_cost(ly) is 

the sum of the rearrangement costs (Rep_cost) and the flow costs (Flow_cost). 

Set      Min_cost =  Total_cost(ly); 

         Min_assign  =  ly;    

         Min_iter  =  Min_cost,   

          r = 1 and iter_no = 0; 

Step 3: 

  If Min_iter > Min_cost, then the number of non-improvement iterations (i.e., 

iter_no) is set equal to zero and the Min_iter is set equal to Min_cost. Otherwise, go to 

step 4. 

Step 4: 

In this step, iter_no is checked against the maximum non-improvement iterations 

allowed (i.e., iter_max). If counter iter_no reaches the iter_max, then stop, and Min_cost 

and Min_assign are returned. Otherwise, counter iter_no is incremented by one, and then 

go to step 5. 

Step 5: 

At every temperature reduction, the following parameters have to be initialized: J 

= 0 and ep = 1. Temperature is reduced according to the annealing schedule and is 

defined by temp  =   (ini_temp) * (step)(r-1);    

Step 6: 

 First, the period is selected randomly, and then two departments  (u and v) are 

randomly selected in this period. The resulting assignment (i.e., with the exchange)  is 
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denoted as ly’. The change in the total cost is evaluated (i.e., ∆Total_cost = Total_cost(ly) 

– Total_cost(ly’)). Last, J is incremented by one.   

Step 7: 

If   ∆Total_cost = 0, then go to step 15 where the value of J is checked against the 

maximum limit NS*N. Otherwise, go to step 8. 

Step 8:  

If  ∆Total_cost  > 0, then go to step 11 where the selected pair of departments are 

accepted for the exchange. Otherwise, go to step 9 where the acceptance probability of 

the selected pair is determined. 

Step 9: 

If  ∆Total_cost < 0, a random variable x is selected from a uniform distribution 

defined between 0 and 1 (i.e., U(0,1)). The acceptance probability of the selected pair is 

calculated based on the ∆Total_cost and the temperature (i.e., temp). In other words, 

P(∆Total_cost)  = exp(-∆Total_cost /temp); 

where,  

P(∆Total_cost)  = acceptance probability. 

Step 10: 

If x < P(∆Total_cost), go to step 11 where the selected pair of departments are 

accepted for the exchange. Otherwise, go to step 15 where the value of J is checked 

against the maximum limit NS*N. 

Step 11: 

In this step, the accepted pair of departments is exchanged and the counter (i.e., 

ep) for the number of accepted pairwise exchanges is incremented by one. The current 
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layout_plan (ly) is set equal to the layout_ plan considering the exchange (ly’) and the 

Total_cost is updated. In other words, 

set  ep  = ep + 1; 

ly  =  ly’; 

Total_cost(ly) = Total_cost - ∆Total_cost;  

Go to step 12. 

Step 12: 
 

This step is to track the least cost assignment obtained considering the previous 

iterations. If Min_cost > Total_cost, then go to step 13. Otherwise, go to step 14. 

Step 13: 

If the condition stated in step 12 is satisfied, then the Min_cost is set equal to the 

Total_cost of the current layout_plan (ly) and the Min_assign is set equal to current 

layout_plan. Simply stated, 

set Min_cost = Total_cost = Total_cost(ly); 

Min_assign =  ly; 

Go to Step 14. 

Step 14 

In this step, the value of the counter ep is checked against the epoch length, e. If 

both are equal, then this denotes the end of the epoch. The parameter r is incremented, 

and go to step 3. If the condition is not satisfied, then go to step 15. 

Step 15 

This step ensures that the algorithm attempted a predetermined number of 

exchanges (i.e., NS*N) at each temperature. The counter J is checked against its 
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maximum limit. If J  > NS*N, then r is incremented. Then, go to step 3. Otherwise, go to 

step 6 where the algorithm selects a period and a pair of departments for exchange, and 

the algorithm continues in this fashion until iter_no equals iter_max. 
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Step 1:  
o Input: Initial layout_ plan, flow matrices, distance matrix, rearrangement costs; 
o Set ly = lyo; 

Step 2:                           
o Compute the total cost of the initial layout plan 

(Total_cost(ly) = Total_cost(lyo)); 
o Min_Cost = Total_ cost(ly);  
o Min _assign = ly; 
o Min_iter = Min_cost,  r = 1, and  iter_no = 0; 

Step 5:    
o Parameter Initialization: J = 0, ep =1; 
o Temperature reduction: temp  = (ini_temp) * step (r -1);  

Step 6: 
o Random selection of a period; 
o Random selection of departments; 
o Set ly’= ly considering the exchange; 
o Calculation of the ∆Total_cost; 
o J = J + 1; 

Step 9:  
o Compute P(∆Total_cost); 
o Generate random number  x

~ U(0,1); 

Go to Step 15; 

o iter_no = 0; 
o Min_iter = Min_cost; 
 

 Step 3: 
If  (Min_iter  >  

Min_cost) 

 Step 4: 
If  (iter_no  = =  

iter_max) 

STOP; 
Return Min_cost and 

Min_assign;  

iter_no + + ;

 Step 7: 
If (∆Total_cost  = 
= 0) 

 

 Step 8: 
If (∆Total_cost  

> 0) 
   

Go to Step 10; Go to Step 11;

Figure 4.4: Simulated annealing algorithm (SA I) 
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Continue Figure 4.4: Simulated Annealing algorithm (SA I) 

No

Yes 

No

Yes

Yes 

No

YesStep 11: 
o ep = ep + 1; 
o ly  =  ly’; 
o Total_cost(ly) = Total_cost - ∆Total_cost;

 

Step 13: 
o Min_cost     = Total_cost(ly); 
o Min_assign = Current layout_plan = ly; 

Go to Step 6;o r ++; 
o Go to Step 3;

 Step 10: 
 If  (x <  
P(∆Total_cost)) 

 Step 12: 
          If (Min_cost
> Total_cost) 
  

 Step 14: 
       If (ep = = e)
  

 Step 15: 
       If (J  > NS*N)
 
  

No
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4.2.5 Illustration of the SA I algorithm 
 

For illustration, a problem instance is taken from Conway and Venkataramanan 

(1994). This problem instance is a nine department problem (N = 9) with five periods (T 

= 5). The data for the problem instance is given in appendix A. This data contains the 

flow matrix associated with each period and a distance matrix (for a 3 x 3 layout). The 

parameters of the SA I are set at the following levels: Step = 0.99, ini_temp = 200000, 

epoch (e) = NN*N = 90 (NN = constant = 10 and N = 9), maximum limit on J = NS*N = 

900 (NS = constant = 100), and iter_max = 1000. Note, the parameter setting is done for 

the purpose of illustration and is not based on the experimental evaluation. The level for 

the parameter step is chosen very close to 1 to ensure slow annealing. In other words, the 

temperature is reduced gradually. Moreover, slow annealing is possible only when a 

sufficient number of pairwise exchanges is allowed at each temperature. Thus, the 

maximum limit on the parameter J is set as high as possible. The level for the parameter e 

is set arbitrarily. Also, ep indicates the number of accepted pairwise exchanges at a given 

temperature. Whenever ep or J reaches the maximum limit (i.e., e and NS*N*T, 

respectively) the temperature is reduced. The initial temperature (ini_temp) is set equal to 

a high value (i.e., 200,000) to accept the nonimprovement pairwise exchanges initially. 

Figure 4.5 represents the layout site (or locations) for the problem instance. The 

distances between locations are measured in rectilinear fashion, and the squares represent 

the sites (or locations), which are numbered. 
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Step 1: 

The initial layout_plan (lyo), flow matrices for all the periods, distance matrix and 

replacement costs for all the departments are given in appendix A. The initial layout_plan 

is as follows:  

layout_plan =  [1,2 3,4,5,6,7,8,9] 

 [1,2 3,4,5,6,7,8,9] 

 [1,2 3,4,5,6,7,8,9] 

 [1,2 3,4,5,6,7,8,9] 

 [1,2 3,4,5,6,7,8,9] 

Note this layout_plan is not randomly generated. The first period layout is 

obtained by assigning the first department to the first location, the second department to 

the second location and so on. Also, the layout for the first period is used for all the 

periods. Thus, the layout_plan is simple and has no rearrangement costs, and the current 

layout_plan is set equal to initial layout_plan (i.e., ly = lyo).  

Step 2: 

The total cost of the layout_plan is calculated by using the formula discussed in 

section 4.2.2.2.1. Therefore, the following settings are made. 

1 2 3 

4 5 6 

7 8 9 

Figure 4.5: 3 x 3 layout for problem instance 
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Total_cost(ly)  =    674,479; 

Min_cost          =    674,479; 

Min_assign       =     ly; 

Min_iter = Min_cost = 674,479; 

r = 1 and iter _no = 0; 

Step 3: 

Since Min_iter = Min_cost, go to step 4. 

Step 4: 

Since iter_no = 0 and is less than iter_max = 500, iter_no is incremented (i.e., 

iter_no = 1). Go to step 5. 

  Step 5: 

At every temperature reduction, the following parameters are initialized: ep = 1, 

and J = 0. The temperature is reduced according to the annealing schedule. Since r = 1, 

temp = (ini_temp)* (step) * (r-1) = ini_temp = 200,000. 

Steps 6, 7, and 8: 

Period = 3 is selected randomly. The first and sixth departments (u = 1, v = 6) are 

selected randomly for exchange. That is, ly’ = [ax(1), ax(2), ax’(3), ax(4), ax(5)], where 

ax’(3) = [6,2,3,4,5,1,7,8,9]. This exchange improves the flow cost in the third period, and 

reduces the total flow costs (Flow_cost) by 1075 (i.e., ∆flow = 1075).  However, this 

exchange increases the total replacement cost (Rep_cost) of ly’ by 3424 (i.e., ∆Rep = 

- 3424). By exchanging the first and the sixth departments, it incurs rearrangement costs 

from periods 2 and 3 (i.e., 802 + 910 = 1712) and from periods 3 and 4 (i.e., 802 + 910 = 

1712). Furthermore, the total rearrangement cost for the current layout_plan (i.e., ly) is 
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zero. Thus, the change in the Total_cost is given by ∆Total_cost = 1075 – 3424 = - 2349. 

The counter J is incremented (i.e., J = 1). Since ∆Total_cost < 0, the conditions at steps 7 

and 8 are not satisfied. Therefore, go to step 9. 

Step 9: 

In this step, the acceptance probability of the exchange is calculated based on the 

change in the objective function value. 

P(∆Total_cost)  = exp(∆Total_cost/temp) 

           = exp (-2349/200,000) = 0.9883.      

Then, a random variable x = 0.8620 is generated from U(0,1). Go to step 10. 

Step 10: 

In this step, a decision is made whether to accept the exchange. Since x < 

P(∆Total_cost), the exchange is accepted; else, it is rejected. Since x = 0.8620 < 

P(∆Total_cost) = 0.9883, the exchange is accepted. Go to step 11. 

Step 11: 

The assignment considering the exchange is denoted as ly’. After this exchange, 

ax(3) = [6,2,3,4,5,1,7,8,9]. The current assignment ly is set equal to ly’ (i.e., ly = ly’). The 

counter ep is incremented (i.e., ep = ep + 1 = 2), and the Total_cost is updated,   

Total_cost  = Total_cost - ∆Total_cost   = 674,479 – (- 2349) = 676,828. Go to 

step 12. 

Steps 12, 13: 

As mentioned earlier, this step is to track the least Total_cost assignment. Since 

Min_cost (674,479) < Total_cost (676,828), step 13 is bypassed. Go to step 14. 
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Step 14: 

At this point (i.e., ep = 2), ep is compared with the epoch length (e = 90). Since ep 

< e, go to step 15. 

Step 15: 

The value of the counter J is compared with its maximum limit which is 900 (i.e., 

NS*N = 900). Since J < 900, go to step 6. Therefore, the algorithm continues and begins 

another iteration at step 6. After several iterations and the number of attempted exchanges 

is 900 (i.e., J = NS*N = 900) at the current temperature, the outer loop counter is 

increased by 1 (i.e., r = 2) and the temperature (i.e., temp) is reduced. The algorithm is 

repeated as above at the new current temperature, and the algorithm continues in this 

fashion until the stopping criterion is met (i.e., when iter_no = iter_max).  

4.3 SA with reheating (SA II) 

The SA algorithm with reheating (SA II) is another one of the proposed heuristics. 

It is believed that reheating improves the quality of the solutions (Dowsland, 1993). In the 

SA algorithm, reheating can be considered at the stage where SA slowly converges to a 

local optimum. In other words, reheating should occur when the temperature is very low, 

and the probability of accepting up-hill moves is very low. Therefore, reheating increases 

the temperature enough so that up-hill moves may be accepted. 

The following are the parameters specific to the SA II algorithm: 

rehe_max  =  a constant that denotes the maximum number of non-improvement  

                                   iterations that can be executed before reheating commences.  

temp_inc    =  a constant that is deducted from the current iteration number r, when 

reheating commences. 
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In addition, to the counter iter_no, which is used to count the overall number of 

non-improvement iterations, reheat is a similar counter used within the reheating strategy:  

reheat        =  counter used to count the consecutive number of iterations  without  

 improvement within the reheating strategy. The maximum limit of 

 of this counter is set equal to rehe_max. If a solution obtained 

 improves the Total_cost, then reheat is initialized to zero. 

In figure 4.6, the reheating loop is inserted between steps 2 and 3 of the SA I 

algorithm. Initially, at step 2 the counter reheat is initialized to zero, along with the other 

counters r and iter_no. At the start of the algorithm, since the value of the counter reheat 

is not equal to rehe_max, go to step 3. As discussed in section 4.2.4 (SA I algorithm), the 

conditions at steps 3 and 4 will be evaluated. If the conditions are not satisfied, the 

counters iter_no and reheat will be incremented (i.e., iter_no = 1 and reheat = 1). At each 

non-improvement iteration, the counters iter_no and reheat are incremented. When the 

value of the counter reheat is equal to rehe_max, the reheating commences. In other 

words, the temperature (i.e., temp) is increased when temp_inc is subtracted from the 

current iteration number r. For instance, following are the levels of parameters when 

reheating commences: step = 0.99, ini_temp = 100, r = 500, temp ≅  0.6636, reheat = 400, 

rehe_max = 400 and temp_inc = 200. Since reheat = rehe_max = 400, reheating 

commences, and the temp_inc is subtracted from r (i.e., r = r – temp_inc = 500 - 200 = 

300). By substituting the value of r in the formula temp = (ini_temp) * (step)(r-1), the temp 

is increased from 0.6636 to  4.9356 (i.e., temp = 100 * 0.99(300-1) ≅  4.9356). After the 

temperature increases, the counter reheat is set equal to zero (i.e., reheat = 0). If the 

condition at step 3 is satisfied (i.e., there was an improvement in the Total_cost in the last 
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iteration), the counters reheat and iter_no are set equal to zero, and Min_iter is set equal 

to Min_cost (i.e., reheat = iter_no = 0 and Min_iter = Min_cost). If the condition at step 4 

is true (i.e., iter_no = iter_max), the algorithm stops and returns minimum cost and 

assignment (i.e., Min_cost and Min_assign). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.6: Reheating steps for the SA II algorithm 

Yes

NoNo

Yes Yes

Step5:    
o Parameter Initialization: J = 0, ep =1; 
o Temperature reduction: temp  = (ini_temp) * step (r -1);   

o Min_iter = Min_cost; 
o iter_no = 0; 
o reheat = 0; 

 Step 3: 
If  (Min_iter  >  

Min_cost) 

 Step 4: 
If  (iter_no  = =  

iter_max) 

STOP; 
Return Min_cost 
and Min_assign; 

o iter_no + + ; 
o reheat ++; 

 REHEATING 
 

If  (reheat = =  
rehe_max) 

o r  = r – temp_inc;
o reheat = 0; 

No

Step 2:                           
o Compute the total cost of the initial layout_ plan (lyo); 
o Min_Cost = Total_ cost;  
o Min _assign = Initial assignment; 
o Min_iter = Min_cost, r = 1, iter_no = 0, and reheat = 0; 
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4.4 SA COMBO algorithm 
 

The SA COMBO algorithm is a combination of heuristics such as the pairwise 

exchange heuristic with time windows (Urban, 1993), the SA algorithm, and the 

backward pass pairwise exchange heuristic (Balakrishnan and Cheng, 2000b). Urban 

(1993) pairwise exchange heuristic uses the forecasting window technique. In this 

heuristic, the flow data of the periods are combined and used to determine a layout 

arrangement for a particular period.  Balakrishnan and Cheng (2000b) used a backward 

pass pairwise exchange heuristic to improve the solutions obtained by Urban (1993) 

heuristic. The general block diagram of the SA COMBO algorithm is given in figure 4.7.  

                
                                                     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                       
 
 
4.4.1 Concepts 
 
4.4.1.1 Forecasting windows and the SA algorithm 
 

The forecasting window size is the number of flow matrices combined prior to the 

implementation of the SA algorithm. The window size ranges from one to the number of 

periods, T. Given an initial layout, the SA algorithm improves the initial layout using the 

combined flow matrices.  

Forecasting Windows 

Simulated Annealing 
Algorithm 

Backward Pairwise 
Exchange 

Figure 4.7: Block Diagram of SA COMBO
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An illustration of when the window size = 1 is given in figure 4.8. To improve an 

initial layout at period 1, the SA algorithm uses the flow data of the first period. 

Similarly, for the second period, the SA algorithm uses the flow data of the second period 

to improve the initial layout of period 2 (i.e., final layout of the first period). This 

procedure is continued until the final layout of the last period (i.e., fifth period) is 

obtained. For the fifth period, the SA algorithm uses the flow data of the fifth period to 

improve the initial layout of period 5 (i.e., final layout of the fourth period). Thus, a 

layout_plan is obtained when the window size = 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.9 illustrates the case when window size = 3. In period 1, the SA 

algorithm uses the combined flow matrices of periods 1, 2, and 3 to improve the given 

initial layout for period 1. Similarly, in period 2, the SA algorithm uses the combined 

flow matrices of periods 2, 3, and 4 to improve the initial layout for period 2 (i.e., final 

layout of the first period). Note, for the fourth period, the SA algorithm uses the 

combined flow matrices of periods 4 and 5 to improve the initial layout for period 4 (i.e., 

final layout of the third period). However, in period 5, the SA algorithm uses only the 

Initial Layout 1st period 
layout

2nd period 
layout 

5th period 
layout  

Simulated  
Annealing  

Simulated  
Annealing  

Simulated  
Annealing  

Material 
flow of 
period 1 

Material 
flow of 
period 2 

Material 
flow of 
period 5 

Figure 4.8: SA algorithm with forecast window size =1 
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flow data of the fifth period to improve the final layout of period 4 (i.e., initial layout of 

period 5). Therefore, for T windows (number of periods = T) there are T layout_ plans, 

one for each window size. The layout_plan with the minimum cost is selected.  

 
 
 
                                               
 
 
 
 
 
 
 
   
 
 
 
 
 
 
4.4.1.2 A modification of the SA Algorithm 
 

The SA algorithm used with forecasting windows is similar to the SA algorithm 

for the SFLP (See section 2.2.3.3). In the SFLP, there are no rearrangements of 

departments. Therefore, the change in total cost is based only on the change in the flow 

cost. The computational formulas given in section 4.2.2.2.2 can be used to calculate the 

change in flow (∆flow). However, in the SA algorithm with forecast windows, when two 

departments are exchanged, the calculation of the change in total cost is based on the 

change of the flow and rearrangement costs. An illustration is given in figure 4.10. The 

final layout of the first period of a 6-department problem is given where the window size 

= 1 and T = 3. The SA algorithm uses the flow matrix of period 2 to improve the final 

layout of the first period (i.e., initial layout of the second period). For instance, if 

departments 2 and 6 are selected randomly for exchange. The change in the flow cost can 

Initial 
Layout 

1st period 
layout 

2nd period 
layout 

5th period 
layout  

Simulated  
Annealing  

Simulated  
Annealing  

Simulated  
Annealing  

Material 
flow of 
period 1-3 

Material 
flow of 
period 2-4

Material 
flow of 
period 5 

Figure 4.9: SA algorithm with forecast window size = 3 
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be calculated. If these departments, departments 2 and 6, are exchange in the second 

period, these departments are going to be shifted (rearranged). Therefore, the 

rearrangement costs should be less than the improvement in the flow cost for period 2. In 

other words, ∆Total_cost  =  ∆flow – ( rearrangement costs of departments 2 and 6) > 0. 

 
2  3  4  6  1  5 

 
 
 
 
 
4.4.1.3 Backward Pass Pairwise Exchange Heuristic 
 

Balakrishnan and Cheng (2000b) proposed the backward pairwise exchange 

heuristic which may improve the results obtained by Urban’s (1993) pairwise exchange 

heuristic with time windows. This heuristic produces “m” backward pass solutions 

(layout_plans) based on “m” solutions (layout_plans) produced by Urban’s (1993) 

heuristic.  

Similar to SA I and SA II, an initial layout plan (series of layouts) is given as 

input.  The backward pass pairwise exchange starts at period T-1 and goes until the first 

period is reached. An illustration is given in figure 4.11. Figure 4.11 considers a 3-period 

(T = 3) layout_plan and explains the backward pass mechanism. The backward pass 

pairwise exchange heuristic starts with the second period (i.e., T-1). In the second period, 

the entire neighborhood is evaluated. In other words, for a 6-department problem, 15 

neighborhood solutions are evaluated. The pair of departments selected for the exchange 

is the pair which gives the best improvement in the Total_cost (i.e., largest ∆Total_cost). 

Recall in section 4.2.2.3, ∆Total_cost is based on the flow cost in the selected period and 

the rearrangement costs. The rearrangement costs from  periods 2 and 3 (i.e., T and T+1), 

Fig 4.10 Initial layout for the second period 
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and from periods 1 and 2 (i.e., T-1 and T) are considered. Thus, the backward pass 

mechanism considers two periods (previous and future) while evaluating the current 

period. Hence, each of the m solutions is at least as good as Urban’s (1993) heuristic 

solutions.  

 

 

 

 

 

 

 

 

 

 

The Backward pass differs from Urban’s (1993) heuristic in another aspect. In 

figure 4.12, a block diagram of both Urban’s (1993) heuristic and backward pass pairwise 

exchange heuristic of  (Balakrishnan and Cheng, 2000b) for a 3-period (T = 3) problem is 

given. In Urban’s heuristic, the material flow is added (combined) according to the 

window size. However, in the backward pass, only the material flow associated with the 

respective period is used. In other words, the window size is always equal to one in the 

backward pass method.  

 
 
 
 
 

Layout in Period 1 
from forward pass 

Layout in Period 3 
from forward pass 
(Last period) 

Layout in Period 2 
from forward pass

New Layout in 
period 2 after 
backward pass 

Old shifting cost 1 to 2 
Old shifting cost 2 to 3 

New shifting cost from 
period 1 to 2 

New shifting cost from 
period 2 to 3 

Old flow cost in 
period 2 from 
forward pass 

New flow cost in 
period 2 from 
backward pass 

Figure 4.11: Backward Exchange Mechanism 
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4.4.1.4 An illustration of the backward pass mechanism 

 
Consider a problem instance where N = 6 and T = 3. Since T = 3, there are three 

layout_ plans provided by the forward pass algorithm (i.e., by the SA algorithm with 

forecast windows). Figure 4.13 represents one of the layout plans. The backward pass 

pairwise exchange heuristic starts in the second period. For instance, the exchange of 

departments 1 and 2 (u = 1 and v = 2) improves the flow cost in the second period. 

Moreover, this exchange reduces the total rearrangement costs. Hence, Total_cost is 

reduced. Therefore, the exchange is made. As mentioned in the previous section, a swap 

in the second period is related to the flow cost of the second period and the rearrangement 

costs from period 1 to 2 and from period 2 to 3. The total cost of a layout_plan consists of 

the flow cost of all the periods and the total rearrangement cost incurred from period to 

period. Thus, the swap that improves the flow cost of any period actually improves the 

total flow cost but it may or may not decrease the total rearrangement cost.  

 

window = 1

window = 2

window = 3

Forward 
Pass 

Material flow considered 

1 2 3

1-2 2-3 3

1-3 2-3 3

1 2 3Backward Pass 

Figure 4.12: Backward pass with window size = 3 
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2  3  4  6  1  5  -  Period 1 
1  2  3  4  5  6  -  Period 2 
4  5  6  1  3  2  -  Period 3 

 

 

As previously mentioned, since the exchange of departments 1 and 2 in period 2 

reduces the Total_cost, the exchange is made. See figure 4.14, which represents the 

layout_plan after the exchange. The current layout_plan shows that the total 

rearrangement cost is reduced, since department 1 is assigned to location 2 during periods 

1 and 2.  

2  3  4  6  1  5  -  Period 1 
2  1  3  4  5  6  -  Period 2 
4  5  6  1  3  2  -  Period 3 

 
 

 

4.4.2   SA COMBO   Nomenclature  
 

The parameters of the SA algorithm in SA COMBO is the same as the SA I 

algorithm discussed in section 4.2.3. The following are additional notation for the SA 

COMBO algorithm. 

window =  number of windows = T  = number of periods; 

w_size     =   counter used to count the window size. Maximum limit on this  

         counter is set equal to window; 

p_ size     =   counter used to count the number of the periods. Maximum limit on  

         this counter is set equal to T; 

bwp_size  =   counter which represents the period considered in the  backward  

                                  pairwise exchange heuristic; 

 

Figure 4.13: Before the exchange 

Figure 4.14: After the exchange (current layout_ plan) 
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4.4.3 Algorithm Exposition 
 

See figure 4.15 for the SA COMBO algorithm, and the steps for the algorithm are 

as follows: 

Step 1: 

The algorithm starts with setting w_size = p_size = 1. An initial layout (i.e., initial 

layout of the first period) is given. The SA algorithm improves the initial layout to obtain 

the final layout of the first period. 

Step 2:   
 

Flow matrices are added according to  p_size and w_size.  Since w_size = p_size = 

1, only one matrix is considered (i.e., flow matrix of the first period). 

Step 3: 
 

The SA algorithm (SA I) is applied to the initial layout. The parameters: epoch 

(e), initial temperature (ini_temp), number of non-improvement iterations (iter_max), step 

length (step), and the maximum limit on J are set at the correct levels (i.e., parameters 

must be fine-tuned). As mentioned in section 4.4.1.2, this SA algorithm is modified to 

calculate the change in the total cost.  

Step 4: 
 

The final layout is added to the layout_ plan with respect to the p_size. For 

instance, when p_size = 1, layout _ plan  =  [ax(1)] (i.e., only the final layout of the first 

period is obtained). This layout is used as an initial layout for the second period (i.e., 

when p_size = 2).  
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Step 5: 

The counter p_size is compared with the number of time periods (T). If   p_size < 

T, then the p_size is incremented by one. Then, go to step 2. If the condition is not 

satisfied, then go to step 6 (i.e., the complete layout_plan is obtained and it is given as 

input for the backward pass pairwise exchange heuristic). 

Step 6: 
 

The layout_plan constructed is used as input for the backward pass pairwise 

exchange algorithm. This algorithm starts at  period T –1. The period is decremented 

(backward) by one. The counter bwp_size is used to count the period inside the backward 

pass algorithm, and it is set equal to T – 1 (i.e., bwp_size = T –1). 

 Step 7: 
 

Note, only the flow matrix corresponding to bwp_size is considered. In other 

words, the time windows concept is not used in the backward pass pairwise exchange 

heuristic.  

Step 8:  

The neighborhood of the current solution (layout at bwp_size period) is evaluated. 

All possible pairs of departments are evaluated, and the pair which results in the largest 

Total_cost reduction is selected. The  ∆Total_cost (i.e., the rearrangement costs with 

respect to the exchange is deducted from the ∆flow) is obtained. 

Step 9: 
 

If  ∆Total_cost > 0, then the exchange is implemented. Go to step 8. Otherwise, 

go to step 10. 
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Step 10: 

 The bwp_size is checked to verify the conclusion of the backward pass algorithm 

(i.e., when bwp_size reaches 1). If bwp_size = 1, go to step 11. Otherwise, bwp_size is 

decremented by one.  

Step 11: 
 

If w_size < window, then the p_size is initialized to one, and the w_size is 

incremented. Go to step 2. The entire process is repeated for the new w_size. Otherwise, 

all the window sizes have been explored; therefore, go to step 12.  

Step 12: 
 

For each w_size, a layout_plan is obtained. Therefore, for T windows, T 

layout_plans are obtained. The layout_plan with the minimum cost is selected and the 

algorithm terminates. 
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Step 11: 
If w_size <window

Step 12: Best layout_plan is selected; 
STOP; 

p_size =1; 
w_size + + ; 

Step 10: 
If bwp_size >1 

Step 1: 
w_ size = 1; p_size = 1; Initial layout;

Step 2: 
Add the flow matrices according to 
the window size;

Step 3: 
Apply the simulated annealing 
algorithm; 

Step 4: 
Final layout is added to the layout 
plan;

Step 5: 
If  p_size < T 

Step 6: 
layout _ plan for the backward pass pairwise 
exchange; bwp_size  = T  - 1; 

Step 7: 
Consider the flow matrix corresponding 
to the bwp_size;  

Step 8: 
Evaluate the neighborhood of  the current solution and obtain 
the best neighboring solution;  

Step 9: 
If  ∆Total_cost > 0

bwp_size - -; 

Figure 4.15: SA COMBO algorithm 

Selected pair of departments 
is exchanged; 

p_size + +; 
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4.4.4 The Results obtained from the SA COMBO algorithm 

The output obtained by implementing the SA COMBO algorithm on the problem 

instance used in section 4.2.5 is given in figure 4.16. The problem instance has 9 

departments (N = 9) and 5 time periods (T = 5). The parameters of the SA algorithm such 

as NN, NS, iter_max, step, and ini_temp are set at levels 10, 500, 1000, 0.95, 200,000, 

respectively. Also, an initial assignment is given for the first period. Note the levels of the 

above parameters are not obtained from experimental evaluation. The levels are for the 

purpose of illustration.   

The solution of the SA COMBO algorithm for the problem instance has five 

different layout_plans. As mentioned previously, the SA algorithm with time windows 

produces a layout_plan for each window size, and the layout_plan is improved by using 

the backward pass pairwise exchange heuristic. For instance, when w_size = 2, the 

backward pass pairwise exchange heuristic starts at period 4. The backward pass pairwise 

exchange heuristic evaluates the entire neighborhood of solutions (36 solutions) for 

exchange. Since none of the pair of departments improves the total cost, the layout 

remains unchanged. However, at period 1, the pair of departments 3 and 9 is selected for 

exchange, since it improves the total cost of the layout_plan. See figure 4.16. Similarly, 

when the window size = 3, the backward pass heuristic improves the total cost of the 

layout_plan by improving the layout of the first period. In conclusion, four layout_plans 

(i.e., w_size = 2, 3, 4, and 5) obtained by SA with time windows are improved by the 

backward pass algorithm except the layout_plan obtained when w_size = 1. 

In the next chapter, the proposed algorithms are tested on a set of test problems 

taken from the literature. Also, the results are discussed.  
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Figure 4.16: Output from the SA COMBO algorithm 

  Initial assignment for the first period
 1  2  3  4  5  6  7  8  9 

Continue layout_plan  by SA with time window = 3
layout_plan  by SA with time window = 1 layout_plan  after the backward pass heuristic
 3  5  6  9  2  1  4  7  8  6  5  4  3  8  9  7  1  2 
 8  6  5  3  2  1  9  7  4  9  4  8  2  5  1  3  6  7 
 1  6  7  5  8  9  2  3  4  9  4  8  5  2  1  3  6  7 
 8  4  5  6  2  1  3  9  7  3  4  9  6  8  5  7  2  1 
 9  4  5  3  6  2  7  8  1  3  4  8  6  9  5  7  2  1 
 Totalcost = 613229  Totalcost = 621662 
layout_plan after the backward pass heuristic
 3  5  6  9  2  1  4  7  8 layout_plan  by SA with time window = 4
 8  6  5  3  2  1  9  7  4  7  5  4  8  6  3  9  2  1 
 1  6  7  5  8  9  2  3  4  3  4  2  5  8  7  9  6  1 
 8  4  5  6  2  1  3  9  7  3  4  2  5  8  7  9  6  1 
 9  4  5  3  6  2  7  8  1  1  8  3  2  6  5  9  4  7 
 Totalcost = 613229  3  4  5  9  6  8  1  2  7 
  Totalcost = 630086 
layout_plan  by SA with time window = 2 layout_plan  after the backward pass heuristic
 3  5  2  8  6  9  7  1  4  7  5  2  8  6  3  9  1  4 
 8  1  5  4  6  3  7  9  2  3  4  2  8  5  7  9  6  1 
 7  6  8  5  2  3  1  4  9  3  4  2  5  8  7  9  6  1 
 9  2  7  8  4  5  1  6  3  1  8  3  2  6  5  9  4  7 
 1  8  5  3  2  6  7  4  9  3  4  5  9  6  8  1  2  7 
 Totalcost = 623741  Totalcost = 621327 
layout_plan after the backward pass heuristic  
 3  5  4  8  6  9  7  1  2 layout_plan  by SA with time window = 5 
 8  1  5  4  6  3  7  9  2  1  5  2  6  8  9  7  4  3 
 7  6  8  5  2  3  1  4  9  3  8  6  5  4  7  1  2  9 
 9  2  7  8  4  5  1  6  3  3  8  6  5  4  7  1  2  9 
 1  8  5  3  2  6  7  4  9  7  2  9  8  6  5  3  4  1 
 Totalcost = 621666  3  4  5  9  6  8  1  2  7 
  Totalcost = 634856 
layout_plan  by SA with time window = 3 layout_plan  after the backward pass heuristic
 1  5  4  2  8  9  3  6  7  3  5  4  6  8  9  7  1  2 
 9  4  8  5  2  1  3  6  7  3  8  6  4  5  7  1  2  9 
 9  4  8  5  2  1  3  6  7  3  8  6  5  4  7  1  2  9 
 3  4  9  6  8  5  7  2  1  7  2  9  8  6  5  3  4  1 
 3  4  8  6  9  5  7  2  1  3  4  5  9  6  8  1  2  7 
 Totalcost = 631452  Totalcost = 622711 
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                                                            CHAPTER 5  
 

COMPUTATIONAL EXPERIMENTS AND RESULTS 
 
 
5.1 Data Set 
 

The computational experiments were conducted on the data set provided by 

Lacksonen and Enscore (1993). The data set was constructed based on several factors: 

percentage of new departments/period, number of departments, number of time periods, 

ratio of rearrangement cost and flow cost (rearrangement/flow cost), percentage of 

positive flow, and maximum value of flow changes per period. In this data set, the 

rearrangement cost is the same for all departments and is constant across all periods. 

Additionally, when new departments replaced old departments, the replacement costs are 

considered, and the cost of replacing a department is equal to the rearrangement cost.  

The data set includes DFLP instances involving 6, 12, 20, and 30 departments 

(i.e., N = 6, 12, 20, and 30), with 3 and 5 periods (i.e., T = 3 and 5). Each problem with 

department size (N) has four 3-period problem instances and four 5-period problem 

instances (Lacksonen and Enscore, 1993). Thus, 32 problem instances are available in 

this data set. These test problems are labeled from P01 to P32. Sample input data, for 

problem instance P01, are given in appendix B. 

 5.2 Algorithms 
 

The proposed heuristics (i.e., the SA algorithm, SA I; the SA algorithm with 

reheating, SA II; and the SA algorithm combined with other heuristics, SA COMBO) 

were tested on the set of test problems. All these algorithms were coded in C and solved 

on a Pentium 300Mhz PC. The C code for the algorithms proposed in this research (SA I, 

SA II, and SA COMBO) are given in appendix C. The initial solutions (layouts) for all 



 

 

79

these algorithms are as follows: the initial layout for the first period is given as ax(1) = (1, 

2, 3, 4, 5,…, N), and the same layout is given for the rest of the periods. Therefore, the 

total replacement cost (Rep_cost) of the layout_plan is zero. For the SA COMBO 

algorithm, the same layout (i.e., ax(0) = (1, 2, 3, 4, 5,…, N)) is given as an initial layout 

for the first period. The improved solution for the first period layout is used as the initial 

solution for the second period layout and so on. This process continues until the final 

layout of the last period is obtained. 

5.3 Parameter Settings 
 

The parameters such as epoch length, maximum number of non-improvement 

iterations, and step length (cooling rate) were kept at the same level for both the SA I and 

the SA II algorithms. However, the SA II algorithm differs from SA I since it has 

additional parameters such as rehe_max and temp_inc. The SA COMBO heuristic was 

tested using two different settings: the number of non-improvement iterations, epoch 

length, and step length were set at the lower levels (SA COMBOa) and these parameters 

were set at the higher levels (SA COMBOb). See table 5.1 for the parameter settings. The 

parameter levels were determined based on an extensive experimental evaluation of the 

proposed heuristics. Note, for the 30-department problems the SA II algorithm used the 

following settings: rehe_max = 300 and temp_inc = 100, and for the other problems, 

rehe_max = 100 and temp_inc = 50. 
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5.4 Experimental results 
 

Each setting of the proposed heuristics was implemented three times for each 

problem instance and the best out of the three trials were reported. Table 5.2 summarizes 

the results obtained from solving the set of test problems using the proposed heuristics. 

The results obtained by the TS heuristic (Kaku and Mazzola, 1997), cutting planes (CP) 

algorithm (Lacksonen and Enscore, 1993), and UB  (Kaku and Mazzola’s (1997) version 

of Urban’s (1993) heuristic) are also given in Table 5.2. The shaded areas, before the ‘SA 

Best’ column, in Table 5.2 highlight the ‘SA best’ solutions found by one of the 

algorithms (SA I, SA II or SA COMBO). If all of the algorithms obtained the ‘SA Best’ 

solution, then no area is shaded for that problem instance. The shaded areas, after the ‘SA 

Best’ column, highlight the best-found solutions obtained by one of the algorithms (CP or 

TS).  If both the algorithms obtained the best-found solution, then no area is shaded for 

that problem instance. For the P31 problem instance, the solutions obtained by the SA I, 

SA II, SA COMBOa and SA COMBOb are: 12404, 12461, 12148, and 12148, 

respectively. Since SA COMBOa and SA COMBOb give the best solution (‘SA Best’), 

both of the solutions are shaded. Also, for the same problem instance, CP and TS 

Table 5.1 Parameter Settings
Parameters SA I SA II SA COMBOa SA COMBOb
ini_temp initial_cost initial_cost initial_cost initial_cost
Step 0.99 0.99 0.95 0.99
NN 10 10 10 10
NS 900 900 500 900
iter_max 1900 1900 1000 1900
rehe_max - 100 \ 300 - -
temp_inc - 50 \ 100 - -
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obtained the following solutions: 12351 and 12163, respectively. Since the solution 

obtained by TS is better than the CP solution, the TS solution is shaded. Note for this 

problem instance, one of the proposed heuristics obtained the best-found solution ever 

(i.e., SA best is lesser than the Best-found). 

The best-found solutions are largely obtained using the TS and the CP algorithms. 

Although the CP method performed as well as or better than TS for problem instances 

with 6, 12, and 20 departments, TS clearly outperformed the CP method for problem 

instances with 30 departments. For most of the problem instances, the SA COMBO 

algorithm performed better than the SA I and SA II algorithms. More specifically, for the 

20 department problem instances, the SA COMBO obtained better results than the SA I 

and SA II algorithms.  The best solutions obtained by the proposed heuristics (i.e., SA I, 

SA II, and SA COMBO) were compared to the best-found solutions available in the 

literature. The proposed heuristics obtained the best-found solution for 17 problem 

instances and found the best solution ever for one of the problem instances P31. Also, in  

problem instance P27, SA COMBO outperformed TS, but did not obtain a better solution 

than the CP algorithm. For 8 problem instances, the solutions obtained by the proposed 

heuristics were within 1% of the best-found solutions. Also, for 6 problem instances, the 

solutions obtained were within 1-2% of the best-found solutions.  

 In problem instances P06, P14, P22, and P30, the SA I and SA II algorithms gave 

better results than the SA COMBO algorithm. Note these problems are considered to be 

the most complex problem instances in the data set because of the high number of time 

periods, high percentage of new departments, high percentage of positive flows, 
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maximum value of flow changes, and low ratio of rearrangement cost and flow cost (i.e., 

require most rearrangements).  

The proposed heuristics outperformed the TS heuristic in two problem instances 

(P27 and P31) and performed equally as well for 57% of the test problems. Furthermore, 

the proposed heuristics performed as well as or better than TS for 59% of the test 

problems. Moreover, the computational times required for the proposed heuristics is 

much less than the TS heuristic (See Table 5.3).  The computational times given in table 

5.3 are the average time required to solve the 3 and 5 period test problems. Note, the TS 

(Kaku and Mazzola, 1997) heuristic were tested on a Pentium 200MHz PC and the 

proposed heuristics were tested on Pentium 300 MHz PC.  In the next chapter, the 

research concludes with the areas for future research. 
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Problem Size
Size Time period

P01 267 267 267 267 267 291 267 267 267 0
3 P02 260 260 260 260 260 281 260 260 260 0

6 P03 363 363 363 363 363 385 363 363 363 0
P04 299 299 299 299 299 312 299 299 299 0
P05 442 442 442 442 442 472 442 442 442 0

5 P06 596 596 597 597 596 617 589 586 586 -1.706
P07 424 424 424 424 424 500 424 424 424 0
P08 428 428 428 428 428 452 428 428 428 0
P09 1624 1624 1624 1624 1624 1676 1624 1624 1624 0

3 P10 1980 1973 1973 1973 1973 2000 1973 1973 1973 0
12 P11 1661 1661 1661 1661 1661 1779 1661 1661 1661 0

P12 2106 2105 2105 2105 2105 2298 2097 2097 2097 -0.381
P13 2966 2966 2977 2977 2966 3050 2930 2930 2930 -1.229

5 P14 3715 3715 3738 3748 3715 3886 3726 3701 3701 -0.378
P15 2756 2756 2756 2756 2756 3125 2756 2756 2756 0
P16 3382 3364 3364 3364 3364 3730 3364 3364 3364 0
P17 2764 2761 2761 2758 2758 2925 2763 2758 2758 0

3 P18 5342 5352 5318 5318 5318 5363 5318 5318 5318 0
20 P19 3151 3102 3064 3064 3064 3924 3048 3056 3048 -0.525

P20 6036 6042 5947 5947 5947 7147 5873 5903 5873 -1.26
P21 4749 4702 4663 4676 4663 4964 4581 4605 4581 -1.76

5 P22 9963 9897 9929 9929 9897 10530 9825 9746 9746 -1.549
P23 4945 4738 4654 4654 4654 6512 4654 4654 4654 0
P24 9188 9075 8979 8979 8979 10816 8985 8979 8979 0
P25 7185 7131 7131 7131 7131 7516 7163 7130 7130 -0.014

3 P26 14519 14538 15123 15142 14519 14729 14583 14478 14478 -0.283
30 P27 8184 8185 8122 8093 8093 10465 8066 8115 8066 -0.335

P28 15219 15192 15095 15074 15074 15285 14940 14925 14925 -0.998
P29 13753 13761 13772 13760 13753 14103 13719 13606 13606 -1.08

5 P30 25754 25721 26094 26084 25721 26223 26027 25583 25583 -0.539
P31 12404 12461 12148 12148 12148 15738 12351 12163 12163 0.123
P32 24402 24498 24200 24200 24200 27680 24409 24200 24200 0

SA COMBObP No
Best 

Found
%  within best-
found solution

Table 5.2  Results from the proposed, UB, CP, and TS heuristics

SA Best UB CP TSSA I SA II SA COMBOa
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Problem Size
Size Time period

P01
3 P02

6 P03 0.814 0.7438 1.3646 3.6684 0.0133
P04
P05

5 P06
P07 0.8831 0.847 3.775 10.4763 0.0133
P08
P09

3 P10
12 P11 2.6275 5.4683 3.143 8.9147 1.7

P12
P13

5 P14
P15 2.8613 2.909 9.4816 24.0217 3.8167
P16
P17

3 P18
20 P19 7.9152 8.0109 5.9763 17.4302 16.233

P20
P21

5 P22
P23 8.94 8.545 16.4471 46.9112 35.7667
P24
P25

3 P26
30 P27 20.8897 20.7302 10.3933 30.4552 70.7167

P28
P29

5 P30
P31 20.3738 23.5472 28.3577 80.3775 167.15
P32

TSP No SA I

Table 5.3 Computaional time of proposed and TS heuristics (time is given minutes)

SA II SA COMBOa SA COMBOb
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CHAPTER 6 
 

CONCLUSIONS  
 

 
6.1 Introduction  
 

The objective of this research was to develop heuristics to obtain good solutions 

for the DFLP.  Three heuristics (SA I, SA II and SA COMBO) were used to solve the 

DFLP. The performance of these algorithms was compared with recent heuristics such as 

the TS heuristic and the pairwise exchange heuristics with time windows. The next 

section summarizes the research, and the subsequent sections conclude the research with 

its contributions and recommendations for future research.   

6.2 Summary of the Research 
 

The DFLP is defined, and the assumptions of the problem are given. In the DFLP, 

the layout plan is a series of layouts for a specified time horizon. During this time 

horizon, if material flow changes several times (e.g., 5 times), then the facility may be 

rearranged for each period. The analysis is based on the tradeoffs between the costs of 

excess material handling (occurs if a layout is not rearranged when it is required) and the 

costs of such rearrangements. Thus, the objective is to minimize the sum of the flow costs 

and rearrangement costs throughout the planning horizon.  

Three heuristics (SA I, SA II, and SA COMBO) are presented in details. The SA I 

algorithm is a straightforward implementation of SA, and the SA II algorithm is the same 

as the SA I algorithm but with reheating. Given an initial solution (layout plan), SA I and 

SA II algorithms improve the initial solution to obtain better solutions. The SA COMBO 

algorithm is the combination of the pairwise exchange heuristic with time windows, SA, 

and the backward pass pairwise exchange heuristics. The time windows technique is used 
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to combine (sum) the flow matrices for 1 or more periods. Then the SA heuristic is 

implemented using the combined flow matrix. For each length of the forecast window (m 

= 1, . . . , T  where T = number of periods),  the SA algorithm obtains a layout plan, and 

this layout plan is improved by the backward pass pairwise exchange heuristic. 

The proposed heuristics were tested on a data set of 32 problem instances taken 

from the literature, and the results are presented. The performance of the proposed 

heuristics is evaluated using two measures: solution quality and time. The results show 

that the proposed heuristics are efficient. The proposed heuristics obtained the best-found 

solutions for 17 problem instances and obtained the best solution ever for one problem 

instance. Furthermore, in 8 problem instances, solutions obtained are within 1% of the 

best-found solutions, and for 6 problem instances, solutions obtained are within 1-1.8% 

of the best-found solutions. Also, the proposed heuristics obtained the solutions in 

reasonable time. 

6.3 Contribution of the Research  

The SA COMBO algorithm is a combination of the pairwise exchange 

heuristic with time windows technique, SA algorithm, and the backward pass 

pairwise exchange heuristic. Computational experience showed that this is an 

efficient heuristic for solving the DFLP. Moreover, the comparison of the proposed 

heuristics with other heuristics such as the pairwise exchange heuristic with time 

windows, TS heuristic, and the cutting plane algorithm shows that the heuristics 

developed perform well. 
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6.4 Recommendations for Future Research 
 
The following recommendations are given for future research: 
 

• Rearrangement costs that depend on time periods (time-value of money), 

locations (distance), and number of machines moved can be considered. 

• The development of hybrid techniques for the DFLP can be considered. The 

combination of key elements of the TS heuristic and SA algorithm may produce 

better results. Furthermore, the elements of the genetic algorithm can be 

combined with the key elements of the SA algorithm or TS heuristic. 

• Neural network techniques and recent heuristics such as the Ant colony system 

have not yet been applied to the DFLP and can be considered.  

• The dynamic layout problem where the flow between departments is stochastic is 

rarely considered. This is another area for future research. 
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APPENDIX A 
 

Following are the data for the problem instance that is used for the illustrations in 

section 4.2.5 and in section 4.4.4. The problem instance is taken from Conway and 

Venkataramanan (1994).  

N = 9, T = 5; 

Rearrangement cost = {802, 985, 517, 500, 736, 910, 768, 564, 923}; 

Flow matrix, T = 1; 
 
  0        3622      258    493      697       296     627        552       287 
  991     0           316    443      570       684     334        283     1043 
  673    6522     0         484      114       324     611        762       762 
  791    4369     203       0        170     1031     598        923       788 
  867    5146       56     203       0        1121     309        154       361 
  894    3264       71       62      769      0          664        343       282 
  714    3113     240     506      831     1183      0         1144       311 
  588    1319     319     161      826     1194     744        0           773 
  1096    6521     335     317      459       439     416       1222       0 
 
Flow matrix, T = 2; 
 
  0       136     6371     886    1596      213    499   1378     476 
 657     0        3461   1275      567      254    405     263     449 
 590    528      0          488      498      273    311   1277     486 
 179    684     1305     0        1748      101    462   1008     559 
 772    550     6113     478      0           261     53   1134   1285 
 511    822     2046   1105    1404        0      384     405     875 
 577    690     2362     925      944       139     0       847     312 
 300    461     3343     514      676       128   487      0        214 
 291    560     6306     397      235       243   466     963      0    
 
Flow matrix, T = 3; 
 
  0         265    720    3275    361     230    580      221    1433 
  695      0       816    5276    636     683    637    1877      203 
  901   1535      0      2322    323     592    129      857      979 
1138     298    987       0       400   1051    163      238      924 
  619     478    856    4205        0     615      81      991      990 
  647   1373    441      722    608      0       128      603    1040 



 

 

97

1008   1383    772    3552    497     836      0       1795     211 
1348     682    233      892    206     600    448      0          679 
1291   2281    595    3972      89     840    257       348       0   
 
Flow matrix, T = 4; 
 
    0       753     632    1686      722     241     192      510        63 
  840       0       897      795    3331   1274     426      611      442 
2138     895      0       1277    3019     693       88      470      514 
  561     445   1444       0       1123     385     523    2015      428 
  335     421   1549      560      0         820     251    1480      455 
  636     515     776    1590    5257      0        781      504      416 
  571     625     765    1304    5312     954      0         647        82 
1675     297     176    1137    1240   1313     715        0        321 
1187   1550     751      441      840     336     252     1695       0  
 
Flow matrix, T = 5; 
 
  0       1017      663    1460     1118    804     256   1291     246 
  854    0         1102    1476     1109   2931    975   1032     403 
  850   1017     0         1503       412   4102    613   1083     140 
  525     205      792       0        1060   3647    196     591     981 
1653     113    1133    1501       0       2160    203     706     695 
  981     686      184     852        450     0        155     560     962 
  781   1010      353     319        648   2043     0        914     185 
2031     701      930     755      1113   1883    772      0        175 
  867     580      377     478        284   4879    106     325       0            
       
Distance matrix (3 x 3 layout) 
 
0   1   2   1   2   3   2   3   4 
1   0   1   2   1   2   3   2   3 
2   1   0   3   2   1   4   3   2 
1   2   3   0   1   2   1   2   3 
2   1   2   1   0   1   2   1   2 
3   2   1   2   1   0   3   2   1 
2   3   4   1   2   3   0   1   2 
3   2   3   2   1   2   1   0   1 
4   3   2   3   2   1   2   1   0 
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APPENDIX B 
  

Problem instance PO1 from Lacksonen and Enscore (1993) set of test problems 

(32 problem instances). 

  N = 6, T = 3;  

Rearrangement cost = 50; 

Because of the symmetry, only lower triangular part of the flow matrix is given;  

 
 Flow matrix , T = 1;  
  8 
  4  2                                                                           
  8  1  4                                                                        
  6  0  8  1                                                                     
  7  3  4  7  5 
  
Flow matrix , T = 2; 
  7 
  8  1                                                                           
  7  1  1                                                                        
  6  0  7  1                                                                     
  7  5  1  3  6 
 
Flow matrix , T = 3; 
  10 
  10 1                                                                           
   8  1  1                                                                        
   5  0  4  1                                                                     
  10 1  1  6  5 
 
Distance matrix (2 x 3 layout) 
  1 
  2  1                                                                           
  1  2  3                                                                        
  2  1  2  1                                                                     
  3  2  1  2  1 
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APPENDIX C 
 
Following is the C code for the SA II (reheating) algorithm. The C code for SA I 

(with out reheating) can be derived from this C code by making the reheating parameter 

(i.e., temp_inc) equal to zero.   

 
SA II ALGORITHM C CODE 

 
#include <stdio.h> 
#include <iostream.h> 
#include <conio.h> 
#include <stdlib.h> 
#include <math.h> 
#include <dos.h> 
#include <time.h> 
/* by simply making the parameter temp_inc zero, the SA II                        
can be converted into SA I algorithm*/ 
 
intN=10,NS=900,factor=1,iter_max=1900,rehe_max=1000,temp_inc=800;/*par
ameters */ 
double step=0.99;  /* parameters */ 
int *p1,*p2,*p3,*p4,*p5,**ar,*re,**pr,*mino,d[30][30],n=30,r_cost=20,jez=0; 
int last(),u,v,J=0,r=0,T_per=5,period=0; 
long Repcost=0, rep_delta=0, subro(long), total(int t), TFA, *dum, 
dummy[30][30]; 
int  
w1[30][30],w2[30][30],w3[30][30],w4[30][30],w5[30][30],rep[30],a1[30],a2[30],
a3[30],a4[30],a5[30]; 
 
FILE *fp,*fp1,*fp2,*fpw1,*fpw2,*fpw3,*fpw4,*fpw5; 
int attem_mo=NS*n; 
 
void main() 
                                                         
{ 
randomize(); 
clrscr(); 
int ep=1,swiss,iter=1,iter_no=0,i,reheat=0; 
int count,pcount,ncount,no_accp,shilpa; 
int *prr[5]={&w1[0][0],&w2[0][0],&w3[0][0],&w4[0][0],&w5[0][0]}; 
pr=&prr[0]; 
double pdelf,varx,TI,initial; 
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long Min,Min_iter,ramba,Cost,Totalcost=0; 
                        
int b,epoch=NN*n; 
 
for(i=0;i<=n-1;i++)  /* initial layout_plan */  
   { 
    a1[i]=i+1; 
    a2[i]=i+1; 
    a3[i]=i+1; 
    a4[i]=i+1; 
    a5[i]=i+1; 
    } 
p1=&a1[0],p4=&a4[0]; 
p2=&a2[0],p5=&a5[0]; 
p3=&a3[0]; 
int *arr[5]={p1,p2,p3,p4,p5}; 
ar=&arr[0]; 
for(i=0;i<=n-1;i++) /*assigning replacement cost to each element of rep[] array*/ 
rep[i]=r_cost; 
re=&rep[0];  
dum=&dummy[0][0]; 
int MinP[200]; 
mino=&MinP[0]; 
int buf,j,k,h,x,y,ii; 
 
  if ((fp=fopen("d:\\nilaa\\data\\dist30c.cpp","r")) / * input distance matrix */ 
       == NULL) 
   { 
      printf( "Cannot open input file.\n"); 
      exit (1); 
   } 
 
 
fp2=fopen("d:\\nilaa\\saro\\out.cpp","w"); // output file 
 
fpw1=fopen("d:\\nilaa\\data\\dt305_p1.cpp","r"); /* input: flow matrix T =1; */ 
fpw2=fopen("d:\\nilaa\\data\\dt305_p2.cpp","r"); /* input: flow matrix T =2; */ 
fpw3=fopen("d:\\nilaa\\data\\dt305_p3.cpp","r"); /* input: flow matrix T =3; */ 
fpw4=fopen("d:\\nilaa\\data\\dt305_p4.cpp","r"); /* input: flow matrix T =4; */ 
fpw5=fopen("d:\\nilaa\\data\\dt305_p5.cpp","r"); /* input: flow matrix T =5; */ 
 
for(k=1;k<=n-1;k++) 
        { 
   for(h=0;h<=k-1;h++) 
            { 
            fscanf(fp,"%d",&d[h][k]); 
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     d[k][h]=d[h][k]; 
     }  
   } 
fclose(fp); 
 
for(k=0;k<=n-1;k++) 
    { 
    d[k][k]=0; 
    w1[k][k]=0; 
    w2[k][k]=0; 
    w3[k][k]=0; 
    w4[k][k]=0; 
    w5[k][k]=0; 
    } 
 
for(x=1;x<=n-1;x++) 
         { 
         for(y=0;y<=x-1;y++) 
         { 
         fscanf(fpw1,"%d",&w1[y][x]); 
  w1[x][y]=w1[y][x]; 
         } 
         } 
fclose(fpw1); 
for (x=1;x<=n-1;x++) 
         { 
         for(y=0;y<=x-1;y++) 
         { 
         fscanf(fpw2,"%d",&w2[y][x]); 
  w2[x][y]=w2[y][x]; 
         } 
         } 
fclose(fpw2); 
for (x=1;x<=n-1;x++) 
         { 
         for(y=0;y<=x-1;y++) 
         { 
         fscanf(fpw3,"%d",&w3[y][x]); 
  w3[x][y]=w3[y][x]; 
         } 
         } 
fclose(fpw3); 
 
for (x=1;x<=n-1;x++) 
         { 
         for(y=0;y<=x-1;y++) 
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         { 
         fscanf(fpw4,"%d",&w4[y][x]); 
  w4[x][y]=w4[y][x]; 
         } 
         } 
fclose(fpw4); 
 
for (x=1;x<=n-1;x++) 
         { 
         for(y=0;y<=x-1;y++) 
         { 
         fscanf(fpw5,"%d",&w5[y][x]); 
  w5[x][y]=w5[y][x]; 
         } 
         } 
fclose(fpw5); 
                                                                                       
/* initialization of dummy array & MinP array */ 
 for (x=0;x<=n-1;x++) 
         { 
          
         for(y=0;y<=n-1;y++) 
         { 
         dummy[x][y]=0; 
         } 
  } 
 
  b=0; 
  for(k=0;k<=(T_per-1);k++) 
      { 
       for(i=0;i<=n-1;i++) 
          { 
           *(mino+b)= *(*(ar+k)+i); 
           b=b+1; 
          } 
      } 
 
/* END*/ 
 
b=0; 
for(k=0;k<=(T_per-1);k++) 
    { 
    printf("\n"); 
    for(i=0;i<=n-1;i++) 
            { 
          printf(" %d ",*(mino+b)); 
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          b=b+1; 
     } 
    } 
 
 
 
 
/* Calculation of the total flow cost */ 
for(k=0;k<=T_per-1;k++) 
   { 
    b=0; 
       for(x=0;x<=n-1;x++) 
   { 
    for(y=0;y<=n-1;y++) 
        { 
  dummy[x][y]= *(*(pr+k)+b); 
         b=b+1; 
                 
        } 
    } 
      
  Cost=total(k);                                                    
  Totalcost=Cost+Totalcost; 
    } 
 
 /* Calculation of the total replacement cost */ 
 
 for(k=0;k<=T_per-2;k++) 
     { 
      for(x=0;x<=n-1;x++) 
   { 
     
    if(( *(*(ar+k)+x))==(*(*(ar+(k+1))+x)) ) 
        { 
               } 
    
    else 
        { 
                   Repcost=Repcost+ *(re+x); 
                
        } 
    
           } 
      } 
 
Totalcost=Totalcost+Repcost; 



 

 

104

Min=Totalcost; 
Min_iter=Min; 
fprintf(fp2," Simulated Annealing applied to DFLP"); 
fprintf(fp2,"\n"); 
fprintf(fp2,"\n settings:"); 
fprintf(fp2,"\n"); 
fprintf(fp2,"\n temperature factor=%d and step size =%lf",factor,step); 
fprintf(fp2,"\n No of attempted moves J =%d and epoch length=%d 
",attem_mo,epoch ); 
fprintf(fp2,"\nMax#ofiterations=%d,rehe_max=%d&  
                                                                   
temp_inc=%d",iter_max,rehe_max,temp_inc); 
fprintf(fp2,"\n" ); 
fprintf(fp2,"\n initial assignment"); 
fprintf(fp2,"\n" ); 
for(k=0;k<=(T_per-1);k++) 
      { 
        fprintf(fp2,"\n"); 
           for(i=0;i<=n-1;i++) 
              { 
                fprintf(fp2,"%d ",*(*(ar+k)+i)); 
      
                                       
        } 
       } 
fprintf(fp2,"\n Totalcost=%ld",Totalcost); 
fprintf(fp2,"\n" ); 
initial=float(Totalcost)/factor; 
time_t first, second; 
first = time(NULL); 
    
/*!!!!!!!!!!!!!!!!!!!! ALGORITHM STARTS HERE!!!!!!!!!!!!!!!!!!!!!!!!!!!! */ 
 
g1: 
    if(reheat = = rehe_max)   
 
       { 
        reheat = 0; 
        r = r-temp_inc;   
       TI = initial*pow(step,(r-1)); 
       } 
    else 
      { 
        r = r+1; 
 TI = initial*pow(step,(r-1)); 
       } 
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  if (Min_iter>Min) 
      { 
       iter_no = 0; 
       reheat = 0; 
       Min_iter = Min; 
       } 
 else 
     { 
       if(iter_no = =iter_max) 
   { 
    printf("\n Solution Reached"); 
           printf("\n"); 
           for(k = 0;k<=(T_per-1);k++) 
              { 
               printf("\n"); 
               for(i = 0;i<=n-1;i++) 
                       { 
                         printf(" %d ", *(*(ar+k)+i) ) ; 
     
   } 
               } 
       printf("\n Totalcost = %ld ",Totalcost); 
       goto g3; 
    } 
       else 
          { 
   iter_no++; 
          reheat++; 
          } 
 
    } 
  
/* Parameter initialization */ 
J=0;ep=1,count=0,pcount=0,ncount=0,no_accp=0; 
 
g2: 
 
ramba = subro(Repcost); 
 
Repcost = Repcost- rep_delta; 
J = J+1; 
 
if(ramba = = 0) 
          { 
   buf = *(*(ar+period)+u); 
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    *(*(ar+period)+u) = *(*(ar+period)+v); 
    *(*(ar+period)+v) = buf; 
           Repcost = Repcost+rep_delta; 
           count = count+1; 
    swiss = last(); 
           switch(swiss) 
        { 
        case 1:              
        goto g1; 
        case 2: 
        goto g2; 
         } 
   } 
else 
   { 
          if( ramba>0) 
      {  
                    pcount = pcount+1; 
      ep = ep+1; 
                     
                    TFA=Totalcost-ramba; 
       
      Totalcost = TFA; 
                                                                        
      if(Min>Totalcost) 
        { 
         Min = Totalcost; 
         iter = r; 
                       b = 0; 
         for(k = 0;k<=(T_per-1);k++) 
     { 
                        for(i = 0;i<=n-1;i++) 
        { 
                              *(mino+b) = *(*(ar+k)+i); 
                              b = b+1; 
        } 
     } 
           
                        } 
       
                   if(ep = = epoch) 
                              { 
         goto g1; 
                    } 
                   else 
                              { 
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                 swiss = last(); 
            switch(swiss) 
                                    { 
                                     case 1: 
         
                                            goto g1; 
                                     case 2: 
          
                                     goto g2; 
                                    } 
                               } 
 
    } 
 
         else 
      {  
      
                     
      pdelf = exp(float(ramba)/TI); 
             varx = rand()/32768.0; 
                                                      
      if(varx<pdelf) 
     { 
      ncount = ncount+1; 
      ep = ep+1; 
                                 
      TFA = Totalcost-ramba; 
 
      Totalcost = TFA; 
                                                
      if(Min>Totalcost) 
                                 { 
                                 Min = Totalcost; 
                                 iter = r; 
            b = 0; 
                                 for (k = 0;k<=(T_per-1);k++) 
                                 { 
                                                        for(i = 0;i<=n-1;i++) 
                                      { 
                                                             *(mino+b) = *(*(ar+k)+i); 
                                                             b = b+1; 
                                       } 
             } 
                                                  } 
     else 
       { 
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                                   } 
     
                                 if(ep = = epoch) 
                                            goto g1; 
 
                                 else 
                                              { 
           swiss = last(); 
        switch(swiss) 
                                                    { 
                                                     case 1: 
                                                            goto g1; 
                                                     case 2: 
                                                     goto g2; 
                                                    } 
        
 
                                               } 
 
 
                                  } 
   else 
                                  { 
 
          buf = *(*(ar+period)+u); 
                    *(*(ar+period)+u)  = *(*(ar+period)+v); 
         *(*(ar+period)+v) = buf; 
                                  Repcost = Repcost+rep_delta; 
                                  no_accp = no_accp+1;   
      swiss = last(); 
      switch(swiss) 
                               { 
                                case 1: 
          goto g1; 
           case 2: 
          goto g2; 
          } 
                                  } 
 
     } 
 
 
} 
 
 
g3: 
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b=0; 
for(k = 0;k<=(T_per-1);k++) 
   { 
    fprintf(fp2,"\n"); 
    for(i = 0;i<=n-1;i++) 
   { 
          fprintf(fp2,"%d ",*(mino+b)); 
   b = b+1; 
   } 
    } 
second = time(NULL); 
 
fprintf(fp2,"\n Solution reached in %f minutes ",difftime(second,first)/60.0); 
fprintf(fp2,"\n Minimum cost= %ld found at the iteration=%d",Min,iter); 
fclose(fp2); 
return; 
 
} 
 
/ * SUBROUTINES * / 
 
long subro( long r_cost)  /* subroutine for pairwise exchange */ 
{ 
 
int i,j,l,f,mo,zo,dtc,b,buf,x,y,k; 
long calc,diff,imp,costy = 0,delta = 0; 
      period = random(T_per); 
      b = 0; 
      for(i = 0;i<=n-1;i++) 
 { 
  for(j = 0;j<=n-1;j++) 
    { 
      dummy[i][j] =  *(*(pr+period)+b); 
      b = b+1; 
     } 
        } 
       
do 
       { 
 i = random(n); 
 j = random(n); 
        }while(i = = j); 
          
          zo = *(*(ar+period)+i); 
         mo = *(*(ar+period)+j); 
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         diff = 0; 
         for(l = 0;l<=n-1;l++)  
               { 
               f = *(*(ar+period)+l); 
        //dtc = (dummy[i][l]-dummy[l][j]-dummy[j][l]+dummy[l][i])*(d[f- 

1][zo-1]-d[f- 1][mo-1]); /* asymmetric */ 
        dtc = (dummy[l][i]-dummy[l][j])*(d[f-1][zo-1]-d[f-1][mo-1]);  

/*symmetric*/ 
                  diff = diff+dtc; 
 
               } 
         
         calc = 2*dummy[i][j]*d[zo-1][mo-1]; /* symmetric */ 
       //calc =  2*d[zo-1][mo-1]*(dummy[i][j]+dummy[j][i]); /* asymmetric 
*/ 
       delta = diff-calc; 
       
u = i; 
v = j; 
buf = *(*(ar+period)+u); 
*(*(ar+period)+u) = *(*(ar+period)+v); 
*(*(ar+period)+v) = buf; 
 
 
for(k = 0;k<=T_per-2;k++) 
     { 
      for(x = 0;x<=n-1;x++) 
   { 
     
    if(( *(*(ar+k)+x)) = = (*(*(ar+(k+1))+x)) ) 
        { 
                    } 
   else 
          costy = costy+ *(re+x); 
     } 
      } 
 
rep_delta = r_cost-costy; /* old repcost(r_cost) - new repcost(cost) */ 
imp = delta+rep_delta; 
jez++; 
return(imp); 
} 
 
long total ( int t)  /* subroutine for total cost * and the value of period is 
passed to t */ 
{int z,m,j,k; 
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long TC = 0,prod; 
      for(j = 0;j<=n-2;j++) 
           { 
    for(k = j+1;k<=n-1;k++) 
               { 
                   z = *(*(ar+t)+j); 
                   m = *(*(ar+t)+k); 
     //prod = (dummy[j][k]+dummy[k][j])*d[z-1][m-1]; /*  

asymmetric*/  
                   prod = dummy[j][k]*d[z-1][m-1]; / *symmetric */ 
                   TC  = TC+prod; 
               } 
    } 
return (TC); 
} 
 
 
int last( )  /* subroutine to check the number of attempted exchanges in an 
epoch */ 
        { 
        int varg = 0; 
          if(J>attem_mo) 
                                 varg = 1; 
                                                                
                      else 
                                 varg = 2; 
        return (varg); 
        } 
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SA COMBO  ALGORITHM C CODE 
 
#include<stdio.h> 
#include<iostream.h> 
#include<conio.h> 
#include<stdlib.h> 
#include<math.h> 
#include<dos.h> 
#include<time.h> 
 
int NN=10,NS=500,iter_max=1000,rehe_max=100,temp_inc=0; /* parameters*/ 
int step = 0.95; /* parameters*/ 
int*p,*p1,*p2,*p3,*p4,*p5,**ar,*re,**pr,*mino,*ap,d[30][30],n=30,r_cost= 0,jez 
= 0; 
int last(),u,v,u_b,v_b,delta,IT,J=0,r=1,R=500,T_per =  

5,period,peri,window,rey[30]; 
int w1[30][30],w2[30][30],w3[30][30],w4[30][30],w5[30][30]; 
longsubro(),total(),total_b(),total1(int),subro_b(),total_b1(int),*dum,dummy[30][ 

30]; 
int  rey_b[30], rey_b1[30], dummy_b[30][30],back[5][30]; 
FILE *fp,*fp1,*fp2,*fpw1,*fpw2,*fpw3,*fpw4,*fpw5; 
 
int attem_mo = NS*n; 
void main() 
{ 
randomize(); 
clrscr(); 
int ep = 1,swiss,swiss1,finalcost,iter = 1,big,big1,big2,t,t_b,reheat = 0; 
int count = 0,pcount = 0,ncount = 0,no_accp = 0,shilpa,ini_te,iter_no = 0,i; 
 
double pdelf, varx; 
double TI, initial; 
long 
TFA,Cost,Repcost=0,Totalcost=0,Totalcost_b=0,Repcost_b=0,ramba,ramba_b,gil
ma_b,sum_b,Min,Min_iter; 
int pair_no = n*(n-1)/2,bim; 
int b,epoch = 10*n; 
int a[30];  
 
for(i = 0;i<=n-1;i++) /* initial layout */ 
a[i] = i+1; 
 
p = &a[0]; 
int abb[30]; 
int a1[30],a2[30],a3[30],a4[30],a5[30],ape[30]; 
p1 = &a1[0],p4 = &a4[0]; 
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p2 = &a2[0],p5 = &a5[0]; 
p3 = &a3[0]; 
int *arr[5]={p1,p2,p3,p4,p5}; 
ar = &arr[0]; 
int rep[30]; 
for(i = 0;i<=n-1;i++) 
rep[i] = r_cost; 
re = &rep[0]; 
dum=&dummy[0][0]; 
int *prr[5] = { &w1[0][0],&w2[0][0],&w3[0][0],&w4[0][0],&w5[0][0]}; 
pr = &prr[0]; 
int MinP[100]; 
mino=&MinP[0]; 
long Costy[5]; 
int buf,j,k,h,x,y,ii,o=0; 
 
  if ((fp=fopen("d:\\nilaa\\data\\dist30c.cpp","r")) /* distance matrix input */ 
       == NULL) 
   { 
      printf( "Cannot open input file.\n"); 
      exit (1); 
   } 
fp2 = fopen("d:\\nilaa\\saro\\out.cpp","w");  / * output file */ 
fpw1 = fopen("d:\\nilaa\\data\\dt307_p1.cpp","r"); /* input flow matrix for T = 
1*/ 
fpw2 = fopen("d:\\nilaa\\data\\dt307_p2.cpp","r"); /* input flow matrix for T = 
2*/ 
fpw3 = fopen("d:\\nilaa\\data\\dt307_p3.cpp","r"); /* input flow matrix for T = 
3*/ 
fpw4 = fopen("d:\\nilaa\\data\\dt307_p4.cpp","r"); /* input flow matrix for T = 
4*/ 
fpw5 = fopen("d:\\nilaa\\data\\dt307_p5.cpp","r"); /* input flow matrix for T = 
5*/ 
 
for(k = 1;k<=n-1;k++) 
         {        
          for(h = 0;h<=k-1;h++) 
            { 
            fscanf(fp,"%d",&d[h][k]); 
     d[k][h] = d[h][k]; 
     }  
   } 
fclose(fp); 
 
for(k= 0;k<=n-1;k++) 
    { 
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    d[k][k]  = 0; 
    w1[k][k] = 0; 
    w2[k][k] = 0; 
    w3[k][k] = 0; 
    w4[k][k] = 0; 
    w5[k][k] = 0; 
    } 
 
 
for(x=1;x<=n-1;x++) 
         { 
         for(y=0;y<=x-1;y++) 
         { 
         fscanf(fpw1,"%d",&w1[y][x]); 
  w1[x][y]=w1[y][x]; 
         } 
         } 
fclose(fpw1); 
for (x=1;x<=n-1;x++) 
         { 
         for(y=0;y<=x-1;y++) 
         { 
         fscanf(fpw2,"%d",&w2[y][x]); 
  w2[x][y]=w2[y][x]; 
         } 
         } 
fclose(fpw2); 
for (x=1;x<=n-1;x++) 
         { 
         for(y=0;y<=x-1;y++) 
         { 
         fscanf(fpw3,"%d",&w3[y][x]); 
  w3[x][y]=w3[y][x]; 
         } 
         } 
fclose(fpw3); 
 
for (x=1;x<=n-1;x++) 
         { 
         for(y=0;y<=x-1;y++) 
         { 
         fscanf(fpw4,"%d",&w4[y][x]); 
  w4[x][y]=w4[y][x]; 
         } 
         } 
fclose(fpw4); 



 

 

115

 
for (x=1;x<=n-1;x++) 
         { 
         for(y=0;y<=x-1;y++) 
         { 
         fscanf(fpw5,"%d",&w5[y][x]); 
  w5[x][y]=w5[y][x]; 
         } 
         } 
fclose(fpw5); 
fprintf(fp2," SA with forecasting windows & Backward Pairwise");  
fprintf(fp2,"\n"); 
fprintf(fp2,"\n settings:"); 
fprintf(fp2,"\n"); 
fprintf(fp2,"\n initial temperature=%lf and step size =%lf",initial,step); 
fprintf(fp2,"\n No of attempted moves J =%d and epoch length=%d 
",attem_mo,epoch ); 
fprintf(fp2,"\n Max # of iterations=%d",R); 
fprintf(fp2,"\n" ); 
fprintf(fp2,"\n initial assignment"); 
fprintf(fp2,"\n" ); 
 for (x=0;x<=n-1;x++) 
        { 
 fprintf(fp2," %d ",a[x]); 
 ape[x]=a[x]; 
        } 
fprintf(fp2,"\n" ); 
 
/* initialization of dummy array and rey array*/ 
 for (x=0;x<=n-1;x++) 
         { 
         for(y=0;y<=n-1;y++) 
         { 
         dummy[x][y]=0; 
         } 
  } 
  for (x=0;x<=n-1;x++) 
            rey[x]=0; 
time_t first, second; 
   first = time(NULL);   
 
/* !!!!!!!!!!SA  COMBO ALGORITHM  STARTS   HERE!!!!!!!!!!!!!!!!!!!*/ 
 
for (window = 0;window<=T_per-1;window++) 
    { 
           for(period = 0;period<=T_per-1;period++) 
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  { 
       if(period<=(T_per-1-window)) 
  { 
   big1 = period;  
                 big2 = period+window; 
                } 
              else 
                { 
                 big1 = period; 
                 big2 = T_per-1; 
                 } 
   for(big = big1;big<=big2;big++) 
    { 
    b = 0; 
     for(x = 0;x<=n-1;x++) 
       { 
        for(y = 0;y<=n-1;y++) 
    { 
     dummy[x][y] = dummy[x][y]+ *(*(pr+big)+b); 
     b = b+1; 
    } 
 
               } 
  
            } 
Cost = total(); 
Min = Cost; 
Min_iter = Cost; 
for(i = 0;i<=n-1;i++) 
   { 
    MinP[i] = a[i]; 
   } 
 
initial = float(Cost); 
printf("\n initial=%f",initial); 
 
g1: 
 
 if(reheat==rehe_max) 
      { 
      reheat=0; 
      r=r-temp_inc; 
      } 
 r=r+1; 
 TI=initial*pow(step,(r-1)); 
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 if(Min_iter > Min) 
     { 
     iter_no=0; 
     Min_iter=Min; 
     } 
 else 
     { 
      if(iter_no==iter_max) 
  { 
   printf("\n STOP"); 
   goto g3; 
         } 
      else 
         { 
   iter_no=iter_no+1; 
          reheat = reheat+1; 
  } 
      } 
 
/* Parameter initialization */ 
J=0;ep=1,count=0,pcount=0,ncount=0,no_accp=0; 
g2: 
ramba= subro(); 
J=J+1; 
if(ramba==0) 
          { 
               count = count+1; 
    swiss = last(); 
           switch(swiss) 
        { 
        case 1:              
        goto g1; 
        case 2: 
        goto g2; 
         } 
   } 
else 
          { 
   if( ramba>0) 
                    { 
                    pcount = pcount+1; 
      ep = ep+1; 
                    TFA = Cost-ramba; 
      Cost = TFA; 
      /* updating the rey array */ 
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      if(rey[u]>0 && rey[v]>0) 
        { 
        } 
      else 
                       { 
           if(rey[u = =0 && rey[v]>0) 
       {  
        rey[u] = 1; 
       } 
         else 
                            {  
       if(rey[u]>0 && rey[v]= = 0) 
             { 
             rey[v] = 1; 
             } 
        else 
             { 
             rey[u] = 1; 
             rey[v] = 1; 
             } 
        } 
   } 
 
      t = *(u+p); 
                    *(u+p) = *(v+p); 
      *(v+p) = t; 
  if(Min>Cost) 
        { 
         Min = Cost; 
         iter = r; 
        
         for(I = 0;i<=n-1;i++) 
                            { 
                              MinP[i] = a[i]; 
      } 
         
                      } 
                 if(ep = = epoch) 
                              { 
         goto g1; 
 
                              } 
                   else 
                              { 
       swiss = last(); 
            switch(swiss) 
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                                    { 
                                     case 1: 
         
                                            goto g1; 
                                     case 2: 
          
                                     goto g2; 
                                    } 
                                                                               
        
                               } 
    }  
         else 
                    { 
      ncount = ncount+1; 
      pdelf = exp(float(ramba)/TI); 
                varx = rand()/32768.0; 
                                          
      if(varx<pdelf) 
     { 
 
      ep = ep+1; 
      TFA = Cost-ramba; 
      Cost = TFA; 
      /* updating the rey array */ 
                    if(rey[u]>0 && rey[v]>0) 
                        { 
                        } 
                    else 
                                             { 
                            if(rey[u] = = 0 && rey[v]>0) 
                             rey[u] = 1; 
    
                             else 
                                                         {  
                            if(rey[u]>0 && rey[v]==0) 
                                  rey[v]=1; 
                             else 
                                 { 
                                  rey[u]=1; 
                                  rey[v]=1; 
                                 }                 
                         } 
                    } 
      t = *(u+p); 
                                  *(u+p) = *(v+p); 
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                    *(v+p) = t; 
       
                                  if(ep = = epoch) 
                                             goto g1; 
 
                                     else 
                                              { 
            
             
              
                                                       swiss=last(); 
                    switch(swiss) 
                                                    { 
                                                     case 1: 
                                                            goto g1; 
                                                     case 2: 
                                                     goto g2; 
                                                    } 
                                                  } 
                                  } 
   else 
                                  { 
                                     no_accp=no_accp+1;   
      swiss=last(); 
      switch(swiss) 
                               { 
                                case 1: 
          goto g1; 
           case 2: 
          goto g2; 
          } 
                                  } 
                          } 
} 
g3: 
                                   
       for(i=0;i<=n-1;i++) 
   *(*(ar+period)+i)=MinP[i]; 
       
       for (x=0;x<=n-1;x++)  /*at every time, when period ends it dummy array& 
rey array 
                                                                                      has to be initialized to 
zero*/  
             { 
           for(y=0;y<=n-1;y++) 
                       dummy[x][y]=0; 
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              } 
         
      for (x=0;x<=n-1;x++)  
   rey[x]=0; 
                
     r=0; 
 iter_no=0; 
        reheat=0; 
 
    }/* PERIOD LOOP Ends */ 
 
 for (x=0;x<=n-1;x++) /*dummy array has to be initialized to zero */ 
         { 
          for(y=0;y<=n-1;y++) 
            { 
            dummy[x][y]=0; 
            } 
  } 
 for(x=0;x<=T_per-1;x++)/* Costy array need to be initialized*/ 
        Costy[x]=0;  
 for(x=0;x<=n-1;x++) 
 a[x]=ape[x]; 
 
 Totalcost=0;/*Totalcost and Repcost are intialized*/ 
 Repcost=0; 
            fprintf(fp2,"\n window=%d ",window); 
       
       for(k=0;k<=T_per-1;k++) /* calculation of the flow cost for a 
window */    
                      { 
                          b=0; 
                          for(x=0;x<=n-1;x++) 
                      { 
                       for(y=0;y<=n-1;y++) 
                          { 
                     dummy[x][y]= *(*(pr+k)+b); 
                     b=b+1; 
                                  } 
                        } 
    Costy[k]=total1(k); 
    Totalcost=Costy[k]+Totalcost; 
    
                       } 
       
                         for(k=0;k<=(T_per-1);k++) 
                              { 
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                                 fprintf(fp2,"\n"); 
                                 for(i=0;i<=n-1;i++) 
                                     { 
                                        fprintf(fp2,"%d ", *(*(ar+k)+i)); 
                         
                               } 
                              } 
                         for(k=0;k<=T_per-2;k++) /* calculation of the replacement cost  

for a    window */    
                                 { 
                               for(x=0;x<=n-1;x++) 
                               { 
     
                               if(( *(*(ar+k)+x))==(*(*(ar+(k+1))+x)) ) 
             
                               else 
                                   Repcost=Repcost+ *(re+x); 
                                                                               
                                       } 
                                  } 
                                                                                                 
    fprintf(fp2,"\n Totalcost =%ld ",(Totalcost+Repcost)); 
    fprintf(fp2,"\n"); 
     
     for (x=0;x<=n-1;x++) /*dummy array has to be initialized to  

zero*/ 
                         { 
                         for(y=0;y<=n-1;y++) 
                            { 
       dummy[x][y]=0; 
                             } 
    } 
/* !!!!!!!!!!!BACKWARD PASS WISE EXCHANGE!!!!!!!!!!!!!!!!!!!*/ 
      
     
     for(x = 0;x<=n-1;x++)  /* abb[] is initialized to last 
period's 
                                                                                                               assigment */ 
        { 
        back[T_per-1][x] = *(*(ar+T_per-1)+x);  /* last period 
layout is 
                                                                                     assigned to last row of back 
array*/ 
        } 
     
                          for(peri = (T_per-2);peri>=0;peri--) 
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          {  
     for(x = 0;x<=n-1;x++) 
     abb[x]=*(*(ar+peri)+x); /* T-1 period's assignment  

is taken*/ 
 
     ap = &abb[0];        /* pointer assigned to the abb []  

array* / 
 
     b = 0; 
                          for(x=0;x<=n-1;x++)/* assigning weight matrix to  

dummy_b array*/ 
                               { 
                                 for(y = 0;y<=n-1;y++) 
                             { 
                               dummy_b[x][y] =  *(*(pr+peri)+b); 
                               b=b+1; 
                              } 
 
          } 
          
                                      sum_b = total_b(); 
          ramba_b = subro_b(); 
           
          while (ramba_b>0) 
                                     { 
                                            sum_b = sum_b-ramba_b; 
                              ramba_b = 0; 
          
                                            /* updating the rey_b[] and rey_b1[] array*/ 
         if(peri = = 0) 
            { 
              if(*(*(ar+peri+1)+u_b) != *(ap+v_b)) 
                                                                                         /*replacement of dept i  

,previous*/ 
          rey_b[u_b] = 1; 
                            else 
          rey_b[u_b] = 0; 
 
       if(*(*(ar+peri+1)+v_b) !=  

*(ap+u_b))  
                                                                                       /*replacement of dept j  

,previous*/ 
          rey_b[v_b] = 1; 
                            else 
          rey_b[v_b] = 0; 
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            }  
         else 
                                                { 
                                               
              if( *(*(ar+peri-1)+u_b) != *(ap+v_b)) 
                                                                                            /*replacement of dept i  

,next*/ 
                 rey_b1[u_b] = 1; 
                            else 
                 rey_b1[u_b] = 0; 
                               
                                   if( *(*(ar+peri+1)+u_b) != *(ap+v_b) ) 
                                                                                      /*replacement of dept i  

,previous*/ 
          rey_b[u_b] = 1; 
                                                 else 
                 rey_b[u_b] = 0; 
 
                            if( *(*(ar+peri-1)+v_b) != *(ap+u_b) ) 
                                                                                           /*replacement of dept j  

,next*/ 
                 rey_b1[v_b] = 1; 
                            else 
                 rey_b1[v_b] = 0; 
 
                            if( *(*(ar+peri+1)+v_b) != *(ap+u_b) )  
                                                                               /*replacement of dept j  

,previous*/ 
                 rey_b[v_b] = 1; 
                            else 
                 rey_b[v_b] = 0; 
 
                                                   } 
 
                                     t_b = *(u_b+ap); 
                                     *(u_b+ap) = *(v_b+ap); 
                                     *(v_b+ap ) = t_b; 
          
                              gilma_b = subro_b(); 
        ramba_b =  ramba_b+gilma_b; 
      } 
    for(i=0;i<=n-1;i++) 
      { 
      back[peri][i] = abb[i]; 
      *(*(ar+peri)+i) = abb[i];/* ar array is  

updated*/ 
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                                         } 
                    
                                 for (x = 0;x<=n-1;x++) /*at every time , when perid_b ends it  

dummy array& rey array has to be initialized to zero*/ 
                                               { 
      rey_b[x] = 0; 
      rey_b1[x] = 0; 
                                                for(y = 0;y<=n-1;y++) 
                                                   { 
         dummy_b[x][y] = 0; 
                                                    } 
                                        } 
                                
      
          } /* peri loop ends here*/ 
                              
          for (x = 0;x<=n-1;x++) /*dummy array has to be  

initialized to zero*/ 
                                                { 
                                    for(y = 0;y<=n-1;y++) 
                                        dummy[x][y] = 0; 
                                                  } 
                          for(x = 0;x<=T_per-1;x++)/* Costy array need to be  

initialized*/ 
                                 Costy[x] = 0;  
                          Totalcost_b = 0;/*Totalcost and Repcost are intialized*/ 
                          Repcost_b = 0; 
     for(k = 0;k<=T_per-1;k++) /* calculation of the  

Totalcost */ 
                                       { 
                                        b = 0; 
                                        for(x = 0;x<=n-1;x++) 
                                    { 
                                     for(y = 0;y<=n-1;y++) 
                                        { 
                                  dummy_b[x][y] =  *(*(pr+k)+b); 
                                  b = b+1; 
            } 
        } 
 
 
                      Costy[k] = total_b1(k); 
                      Totalcost_b = Costy[k]+Totalcost_b; 
                          
                                        } 
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 for(k = 0;k<=T_per-2;k++) 
                                        { 
                                       for(x = 0;x<=n-1;x++) 
                                      { 
                                       if( back[k][x] = = back[k+1][x] ) 
                                         { 
      } 
                                else 
                                         { 
                                                 Repcost_b = Repcost_b+ *(re+x); 
                
                                         } 
    
                                             } 
                                        } 
     
 
                           for(k=0;k<=(T_per-1);k++) 
      { 
       printf("\n"); 
       fprintf(fp2,"\n"); 
                                          for(i=0;i<=n-1;i++) 
                                                 { 
                                                fprintf(fp2,"%d ",back[k][i]); 
                            } 
              } 
    fprintf(fp2,"\n Totalcost_b =%ld  

",Totalcost_b+Repcost_b); 
                                   
                                for(x=0;x<=T_per-1;x++) 
               Costy[x]=0; 
                  
 } /* WINDOW LOOP ENDS HERE*/ 
 
second = time(NULL); 
 
fprintf(fp2,"\n The total time is %f minutes \n", difftime(second,first)/60.0); 
printf("\n THE END"); 
fclose(fp2); 
 
return; 
 
} 
 
 
/*SUBROUTINES*/ 
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long subro()  /* subroutine for pairwise exchange*/ 
{ 
int i,j,l,f,mo,zo,b,x,y,k; 
long delta=0,imp,diff,dtc; 
         
      do 
       { 
 i = random(n); 
 j = random(n); 
        }while(i = = j); 
 
         zo = *(p+i); 
         mo = *(p+j); 
         diff = 0; 
  for(l = 0;l<=n-1;l++) 
               { 
        f = *(l+p); 
        //dtc=(dummy[i][l]-dummy[l][j]-dummy[j][l]+dummy[l][i])*(d[f- 

1][zo-1]-d[f-1][mo-1]); /* asymmetric */ 
        dtc = (dummy[l][i]-dummy[l][j])*(d[f-1][zo-1]-d[f-1][mo-1]); /*  

symmetric */ 
               diff=diff+dtc; 
 
               } 
        //delta=diff-2*d[zo-1][mo-1]*(dummy[i][j]+dummy[j][i]); /*  

asymmetric */ 
        delta=diff-2*dummy[i][j]*d[zo-1][mo-1]; /* symmetric */ 
                                   
u=i; 
v=j; 
      if(period = = 0) 
      { 
      imp = delta; 
      goto E1; 
      } 
   
      if(rey[u] = = 0 && rey[v] = = 0) 
        imp = delta-*(re+u)-*(re+v); 
      
     else  
       { 
       if(rey[u]>0 && rey[v] = = 0) 
            imp = delta- *(re+v); 
     
       else 
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   { 
     if(rey[u] = = 0 && rey[v]>0) 
               imp = delta- *(re+u); 
     else 
               imp = delta; 
       
          } 
       } 
 
E1: 
jez++; 
 
return(imp); 
} 
 
 
 
 
long total( ) /* subroutine for total cost and only once it is called in */ 
 
{                         
int z,m,hh,qq; 
long TC = 0,prod;                                                
      for(hh = 0;hh<=n-2;hh++) 
           { 
    for(qq = hh+1;qq<=n-1;qq++) 
        { 
     z = *(hh+p); 
                   m = *(qq+p); 
     //prod = (dummy[hh][qq]+dummy[qq][hh])*d[z-1][m-1];/*  

asymmetric */ 
     prod = dummy[hh][qq]*d[z-1][m-1];       /* symmetric */ 
     TC = TC+prod; 
      
                } 
    } 
return(TC); 
} 
 
 
int last() 
     { 
        int varg = 0; 
 
        if(J>attem_mo) 
               varg = 1; 
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         else 
               varg = 2; 
     
          return(varg); 
      } 
 
long total1(int t) /* subroutine for total cost */ 
 
{                        /* value of period is passed to t* / 
int z,m,j,k; 
long prod,TC = 0;  
                                                
      for(j = 0;j<=n-2;j++) 
           { 
    for(k = j+1;k<=n-1;k++) 
               { 
                   z = *(*(ar+t)+j); 
                   m = *(*(ar+t)+k); 
     //prod = (dummy[j][k]+dummy[k][j])*d[z-1][m-1];  

/*asymmetric/ 
     prod = dummy[j][k]*d[z-1][m-1];   /*symmetric */ 
                   TC = TC+prod; 
                } 
    } 
 
return(TC); 
} 
 
/*!!!!!!!!!! subroutines for the backward pass algorithm !!!!!!!!!!!!!!!!*/ 
 
long subro_b( )  /* subroutine for backward pairwise exchange*/ 
{ 
int i,j,l,f,mo,zo; 
int repi,repj,repi_b,repj_b,x; 
long e,diff, delta = 0,imp,dtc; 
e = 0; 
mo = 0; 
zo = 0; 
for(i = 0;i<=n-2;i++)                                       
 {                                                          
 for(j  = i+1;j<=n-1;j++) 
      { 
   zo = *(i+ap); 
   mo = *(j+ap); 
   diff = 0; 
   for(l = 0;l<=n-1;l++) /* to find out the delta for each  
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pairwise  exchange*/ 
         { 
     f=*(l+ap); 
     dtc = (dummy_b[l][i]-dummy_b[l][j])*(d[f-1][zo- 

1]-d[f-1][mo-1]); /* symmetric/ 
     //dtc=(dummy_b[i][l]-dummy_b[l][j]-   
                dummy_b[j][l]+dummy_b[l][i])*(d[f-1][zo-1]-d[f-1][mo-1]); /*  

asymmetric */ 
                                 diff=diff+dtc; 
                              } 
     delta=diff-2*dummy_b[i][j]*d[zo-1][mo-1]; /*  

symmetric */ 
    //delta=diff-2*d[zo-1][mo- 
                                                          1]*(dummy_b[i][j]+dummy_b[j][i]); /*  

asymmetric */ 
                   
      
    if(peri = = 0) 
                                    { 
       repi_b = 0;/* next period is not considered */ 
       repj_b = 0;/* next period is not considered */ 
  if(*(*(ar+peri+1)+i) != *(ap+j) ) /*replacement of dept i  

             ,previous */ 
                       repi = 1; 
        else 
                       repi = 0; 
         
  if(*(*(ar+peri+1)+j) != *(ap+i) ) /*replacement of dept                                            

j , previous */ 
                        repj = 1; 
                      else 
                        repj = 0; 
          
            goto tt1; 
                                     } 
                         else 
         { 
                                     } 
                                                                            
 
  if( *(*(ar+peri-1)+i) != *(ap+j) ) /*replacement of dept i ,next*/ 
         repi_b = 1; 
   else           
         repi_b = 0; 
                         
  if( *(*(ar+peri+1)+i) != *(ap+j) )/*replacement of dept i  
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        ,previous*/ 
         repi = 1; 
                                    else 
         repi = 0; 
          
             if( *(*(ar+peri-1)+j) != *(ap+i) ) /*replacement of dept j ,next*/ 
         repj_b = 1; 
   else 
         repj_b = 0; 
          
  if( *(*(ar+peri+1)+j) != *(ap+i) ) /*replacement of dept j  

,previous*/ 
         repj = 1; 
   else 
         repj = 0; 
          
    
 
     tt1: 
          
                        if(repi = = 1)/* decision taken to include the replacment cost*/ 
       { 
        if(rey_b[i]>0) 
    repi = 0;/* decision re evaluated and rep cost is not  

included*/ 
        else 
            repi = 1; 
      
        } 
   
  if(repi_b = =1)/* decision taken to include the replacment cost*/ 
       { 
   if(rey_b1[i]>0) 
                repi_b = 0;/* decision re evaluated and rep cost is not  
                                                                                                                 included*/ 
        else 
     repi_b = 1; 
        } 
   
   if(repj = = 1)/* decision taken to include the replacment  

cost*/ 
       { 
        if(rey_b[j]>0) 
    repj = 0;/* decision re evaluated and rep cost is not  

included*/ 
        else 
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           repj = 1; 
        } 
    if(repj_b = = 1)/* decision taken to include the replacment  

cost*/ 
       { 
        if(rey_b1[j]>0) 
     repj_b = 0;/* decision re evaluated and rep cost is  

not   included*/ 
        else 
     repj_b = 1; 
               } 
   
 
    
      imp = delta-*(re+i)*(repi+repi_b)-*(re+j)*(repj+repj_b); 
                 
             if(imp>e) 
   { 
    e = imp; 
    u_b = i; 
    v_b = j; 
  
    } 
   
      }/* for j loop ends*/ 
 
 
 }/*for i loop ends*/ 
 
return(e); 
 
} 
 
 
long total_b() /* subroutine for the total cost */ 
{ 
 int z,m,i,j; 
 long TC=0,prod; 
 
 for(i = 0;i<=n-2;i++) 
 { 
 for(j = i+1;j<=n-1;j++) 
  { 
  z = *(i+ap); 
  m = *(j+ap); 
        //prod = (dummy_b[i][j]+dummy_b[j][i])*d[z-1][m-1]; /*  
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asymmetric */ 
         prod = dummy_b[i][j]*d[z-1][m-1]; /* symmetric */ 
  TC = TC+prod; 
  } 
 } 
 
 return(TC); 
 
 } 
 
long total_b1(int t)  /* subroutine for total cost */ 
 
{                        /* value of period is passed to t */ 
int z,m,j,k; 
long TC = 0,prod; 
                                                
      for(j = 0;j<=n-2;j++) 
    { 
    for(k=j+1;k<=n-1;k++) 
               { 
        z = back[t][j]; 
                  m = back[t][k]; 
                   //z = *(*(ar+t)+j); 
                   //m = *(*(ar+t)+k); 
     //prod = (dummy_b[j][k]+dummy_b[k][j])*d[z-1][m-1]; /*  

asymmetric */ 
     prod = dummy_b[j][k]*d[z-1][m-1];       /* symmetric */ 
                   TC = TC+prod; 
                } 
    } 
 
return(TC); 
} 
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