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Abstract

A Novel Computational System for Identification

of Biological Processes from Multi-dimensional

High-throughput Genomic Data

Julian Marshall Dymacek

Identifying potential toxicity signaling pathways could guide future animal studies
and support human risk assessment and intervention efforts. This thesis describes a
novel computational approach for identifying biological processes and pathways that
are significantly associated with a disease pathology from time series, dose response,
gene expression data.

Our system employs a novel constrained non-negative matrix factorization algo-
rithm and Monte Carlo Markov chain simulation to identify underlying patterns in
mRNA gene expression data. Quantitative pathology can be used as a pattern con-
straint. The found patterns can be thought of as functions that influence a gene’s
expression. Using a database of curated gene sets, we can identify biological processes
that are significantly related to a pathology.

We also developed a computational model for integrating miRNA with mRNA
time series microarray data along with disease pathology. The dynamic temporal
regulatory effects of miRNA are not well known and a single miRNA may regu-
late many mRNA. The integrated analysis includes identifying both mRNA and
miRNA that are significantly similar to the quantitative pathology. Potential reg-
ulatory miRNA/mRNA target pairs are then identified through databases of both
predicted and validated pairs. Finally, potential target pairs are filtered, keeping
only pairs that demonstrate regulatory effects in the expression data.

Multi-walled carbon nanotubes (MWCNT) are known for their transient inflam-
matory and progressive fibrotic pulmonary effects; however, the mechanisms under-
lying these pathologies are unknown. In this thesis, we used time series microarray
data of global lung mRNA and miRNA expression isolated from 160 C57BL/6J mice
exposed by pharyngeal aspiration to vehicle or 10, 20, 40, or 80 µg MWCNT at 1, 7,
28, or 56 days post-exposure. Quantitative pathology patterns of MWCNT-induced
inflammation (bronchoalveolar lavage score) and fibrosis (Sirius Red staining, quan-
titative morphometric analysis) were obtained from separate studies.

Understanding the regulatory networks between mRNA and miRNA in different
stages would be beneficial for understanding the complex path of disease develop-
ment. These identified genes and pathways may be useful for determining biomarkers
of MWCNT-induced lung inflammation and fibrosis for early detection of disease.
Our computational approach detects biologically relevant processes with and without
pathology information. The identified significant processes and genes are supported
by evidence in the literature and with biological validation.
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Chapter 1

Introduction

Due to limited time and money, biological research has traditionally utilized a com-

partmental approach, focusing on a few targeted genes. These genes may have been

identified from literature, previous experience, or a hypothesis. As genome-wide

analysis has matured, data can be collected from tens of thousands of genes simulta-

neously. This makes identifying genes and biological functions for closer study akin

to finding a needle in a haystack. These identification problems are well suited for

computational approaches and require the application of computer algorithms.

Nanotechnology is an emerging discipline in both industrial and medical fields.

While various nanoparticles have been incorporated into diverse applications, the use

of multi-walled carbon nanotubes (MWCNT) for both industrial and medical pur-

poses is a quickly growing trend. The high surface area/mass and low density of

MWCNT makes them easily aerosolized, thus a potential inhalation hazard during

synthesis, product use and disposal. MWCNT have been widely used for various

industrial applications [92] and exposure has been found to cause rapid onset lung

inflammation, fibrosis and toxicity in treated mice [96, 83]. However, molecular mech-

anisms underlying MWCNT-induced pathogenesis are unknown.
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Identifying biologically relevant processes and functions from time series dose-

response toxicogenomics data is important to reveal toxicity mechanisms and assist

in mechanistic studies by finding significantly changing genes [1, 52]. While microar-

ray data is noisy and protein levels do not necessarily correspond to mRNA gene

expression levels [47], our system finds novel hypotheses about involvement of dis-

eases, processes, and functions from time series dose response microarray data.

Our system for identifying relevant pathways from time series microarray data

includes several features. First, an analysis should be able to incorporate prior bio-

logical knowledge such as known pathways and relationships between genes. Second,

the system should be able generate hypotheses about potential gene interactions.

Finally, the system should be able to incorporate phenotypical data.

Analyzing time series microarray expression is a difficult task, as many time series

experiments have few time points and are usually noisy [10]. Temporal information

available from time series data is useful for discovering functional mechanisms and

causal relationships. Many techniques have been developed to analyze time series

microarray data [5, 74, 1]. Likewise, microarray data from multiple doses may reveal

potential changes in toxicity and functional mechanisms.

Previously, benchmark dose (BMD)[39] methods have been used to identify a dose

range for response in toxicity tests. By combining BMD with both Gene Ontology

annotations and mRNA expression data, dose range estimates for the response of a bi-

ological processes can be found [119, 120, 121] Different models can be used, including

power, linear, second degree polynomial, and third degree polynomial; with the best

fit model being used to calculate the safe dose range. For a given biological process

the response was calculated as the median BMD of the genes in the process. Addi-

tional parametric dose response models could be used including Gaussian, quadratic,

and sigmoid [16, 70]. None of these studies included the use of histopathological data.
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Clustering has widely been used for microarray analysis and many techniques

have been tried [5, 4]. Clustering techniques group coexpressed genes based on a

distance metric. Traditional distance based clustering methods can be extended by

creating new metrics that include biological function information [57] and can use

gene annotations [114] from the Gene Ontology annotation tree. However, genes are

still placed into a single coexpression group even though the gene’s expression might

be influenced by multiple processes.

Non-negative matrix factorization(NMF) is a technique developed by Lee and Se-

ung [71] that identifies underlying basis patterns used to reconstruct the original data.

NMF has previously been used in microarray analysis [28], however prior information

has not been used in generating the patterns. Like NMF, Bayesian Decomposition

(BD) [88] attempts to find patterns and coefficients that can reconstruct the original

data. However, BD allows for prior biological information to be encoded and influence

the patterns found. BD has also been used to identify potentially activated pathways

in drug treated time-series microarray data [90] but is not computationally efficient

on the genome wide scale.

While dynamic temporal regulatory effects of microRNA (miRNA) are not well

known, a single miRNA helps regulate many mRNA and therefore act on a multitude

of proteins [8, 78]. The expression of over half of the genes in the human genome

may be regulated by miRNA [41]. Compared to mRNA, miRNA are more stable

and can be isolated from a wide variety of clinical samples while still being measured

by microarray analysis and real-time PCR. These properties make miRNA useful as

potential biomarkers [86].

Unfortunately, miRNA analysis is relatively new and curated annotation databases

are still being created. Integration of well studied mRNA and regulatory miRNA pro-

vide a powerful analysis technique. Traditional integrated methods such as negative
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correlation or simple up- or down-regulation may produce more potential target pairs

especially when using predicted miRNA/mRNA pairs [19, 32, 60, 128]. Unfortunately,

these additional pairs may have no relevance to the known disease pathology. Addi-

tionally, negative correlation rewards pairs that are consistently in opposite directions.

The complex relationship between miRNA and mRNA is not well understood. A sin-

gle miRNA may regulate many mRNA and not consistently negatively correlate with

any single mRNA. An integrated system should allow for miRNA/mRNA pairs that

demonstrate a negative relationship over a subset of the time points.

When dealing with exposure, response time is an important factor. Previously,

non-negative matrix factorization algorithms have been applied to integrated analy-

sis [139, 140] but did not include quantitative pathology data or focus on time series

data. Some new systems are being developed to identify regulator networks from

time series data [102]. These techniques do not focus on analyzing a specific pathol-

ogy. Pathologies, such as exposure response, suggest that miRNA levels should be

consistently changing with the pathology especially if regulating a consistent mRNA

response. Our integrated method allows both divergence between miRNA/mRNA at

individual time points and consistence with the pathology.

This document is organized as follows: Chapter 2 is a discussion of related work

on identifying gene sets from time-series dose-response microarray data; Chapter 3

describes our methodology, the MEGPath system, and results from the application of

our system on mRNA data; Chapter 4 includes an extension of the MEGPath system

for integrating time series dose response miRNA with mRNA; Chapter 5 a description

of in vitro validation and an Ingenuity Pathway Analysis evaluation of the integrated

analysis; finally, Chapter 6 discusses the contributions of our research and potential

future works.
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Chapter 2

Related Work

Microarrays are a standard technique for measuring genome wide expression values.

Many microarray experiments involve a static snapshot of the genome for a specific

condition with multiple conditions being compared such as a normal sample versus

a cancer sample. Time series experiments involve static samples at various intervals.

These intervals help analyze the temporal process of gene regulation [10] and reveal

underlying functional mechanisms. Various techniques have been used to analyze

time series microarray data [74, 1].

A system for identifying relevant pathways from time series dose response microar-

ray data needs to include several features. First, the analysis system should be able

to incorporate prior biological knowledge linking genes to their functions. Second, the

system should allow genes to be influenced by multiple underlying functions. Finally,

the system should be able to incorporate phenotypical or pathological data.

This chapter provides a review of the methods and tools related to our study.

An overview of methods for identifying functions and processes is in Section 2.1.

Section 2.2 discusses distance-based clustering methods. A few additional techniques

are discussed in Section 2.3 . A discussion of matrix decomposition methods is in

5



Section 2.4. Finally, Section 2.5 gives a summary of the chapter.

2.1 Pathway Analysis

Identifying the biological processes and functions related to a set of genes requires

semantic information linking genes to their functions. This semantic information is

often in the form of gene annotations. There are several databases of gene annota-

tions including the Gene Ontology (GO) project [6], the Kyoto Encyclopedia of Genes

and Genomes (KEGG) [64], and the Reactome project [25]. The Molecular Signa-

tures Database (MSigDB) [76] contains curated sets of genes designed specifically for

enrichment analysis and includes large portions of other databases including KEGG,

GO, and Reactome.

Techniques for taking a set of genes and identifying significant annotations are

called enrichment analysis techniques. Huang [58] surveyed 68 enrichment analysis

techniques and identified three general classes: singular enrichment analysis, modu-

lar enrichment analysis, and gene set enrichment analysis. Khatri [66] uses slightly

different nomenclature but identifies similar classes.

The class of singular enrichment techniques identifies significant genes and then

the enriched annotation terms. GoMiner [138] is an example of this technique. Genes

with significantly changing expression are identified, usually using p < 0.05 and a

fold change greater than 1.5. Each annotation term is then checked for significance

using Fisher’s exact test by comparing the number of significant genes involved with

the annotation term versus the number of significant genes in the genome. These

techniques often lead to an over abundance of significant genes and terms.

Modular enrichment techniques incorporate singular enrichment analysis tech-

niques while utilizing the relationships between annotation terms. An example of a

6



modular enrichment technique is the DAVID algorithm [59]. DAVID works by creat-

ing pairwise kappa statistics of gene-gene and term-term interactions. Cohen’s kappa

statistic is a measure for agreement of categorical terms while adjusting for chance.

The categorical annotation terms come from the DAVID Knowledgebase [105] which

provides an integration of various gene annotation databases while also handling var-

ious gene IDs.

Gene Set Enrichment Analysis (GSEA) [111] is a technique for identifying biolog-

ical functions and pathways from both expression data and annotation data. GSEA

works on the expression data for the genome and does not require identifying a set of

interesting genes instead identifying a subset of genes which are over represented in

a process or function. Through label permutation GSEA can identify processes that

significantly differ over conditions. The standard GSEA algorithm is not well suited

for time series data as the time points must be treated as separate conditions.

2.2 Point-Wise Distance-Based Clustering

Clustering has been widely used for microarray analysis for many years with multiple

techniques having been tried [5, 4]. Point-wise distance-based clustering methods are

used to describe the distance between two genes. Thresholds can be set to group

similar genes into clusters. Many different distance metrics have been used, some of

which are listed in Table 2.1. Some distance methods, such as linear correlation [95],

do not work particularly well for time-series microarray data.

Once a distance metric has been decided upon, a clustering algorithm must be

used. The traditional clustering algorithm that has been used for analyzing microar-

ray data is k-means analysis [115]. In k-means, genes are partitioned into k clusters

with each gene belonging to the cluster with the closest mean. Lloyd’s algorithm [80]
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Table 2.1: Point-wise distance metrics. Let E be a matrix where E(i, t) is the expres-
sion value of gene i at time point t. Let there be Ng total genes and Nt total time
points.

L1-norm dij =
∑Nt

t=1 |E(i, t)− E(j, t)|

L2-norm dij =
√∑Nt

t=1(E(i, t)− E(j, t))2

Mahalanoblis d2ij = (Ei − Ej)
t
∑−1(Ei − Ej)

Correlation dij = 1− rij

rij =
∑Nt

t=1(E(i,t)−Ē(i))((E(j,t)−Ē(j))√∑Nt
t=1(E(i,t)−Ē(i))2·

∑Nt
t=1(E(j,t)−Ē(j))2

is the standard iterative approach for implementation. In Lloyd’s algorithm, genes are

iteratively assigned to the closest cluster and then the cluster means are recalculated.

A related algorithm is the k-median algorithm where a gene is assigned to the cluster

with the closest median. Extensions to k-means have been explored, such as incorpo-

rating the temporal dimension of time-series data [110]. Point-wise techniques work

with time-series data but do not allow genes to be influenced by multiple underlying

functions.

2.2.1 Self-organizing Maps

Another clustering algorithm that has been used is called self-organizing maps (SOMs)

[113]. A SOM is a set of interconnected nodes and a distance function on the nodes.

The map nodes are initially placed at random, and then are iteratively adjusted.

Genes are added to the SOM in a random order, with the distance between each gene

and each map node being calculated. Then, the closest map node N is moved the

most towards the gene. Other nodes are moved towards the gene based on the map

distance to N . Recently SOMs have been applied to time series microarray data [17].
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procedure CAST
repeat

Choose a gene not in a cluster and assign it to a cluster C
repeat

add to C unassigned genes
remove and genes

until C has converged
until All genes are assigned to a cluster

end procedure

procedure Partitioning Around Medoids
assign each gene to the closest medoids
for all medoid m do

for all data point o do
swap m and o and compute the total

end for
end for

end procedure

procedure k-means
repeat

for all gene do
associate gene with a cluster

end for
for all cluster do

calculate the new centroid of the cluster
end for

until Convergence
end procedure

Figure 2.1: Clustering algorithms

Neither, annotation information or pathology constraints were used.

2.2.2 Biclustering

Biclustering [20] aims to cluster not only the rows (genes) but also the columns

(conditions) of the microarray expression matrix. Biclustering algorithms typically

work iteratively in two stages: a deletion stage and an addition stage. The deletion
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stage removes rows or columns that do not decrease a fitness function. After deletion,

previously excluded columns and rows may now lower the fitness function. After a

cluster is found, the included conditions are replaced with random data. The cc-

Biclustering algorithm [22] performs biclustering on genes divided by groups instead

of columns. A group might consist of biological replicates or conditions on a given

dose. In general biclustering is NP-hard [81].

One issue with traditional biclustering is that clusters are subsets of the data

and potential temporal effects may be lost. For time-series data, restrictions could

be made to keep contiguous columns [82]. However, expression values are often dis-

cretized into {DownRegulated, NoChange, and UpRegulated}, however pathology

constraints would be difficult to add.

2.2.3 Fuzzy C-means

Fuzzy c-means clustering [27] is a clustering algorithm where each gene has a degree of

belonging to a cluster. The centroid of a cluster is the average of all genes weighted

by the gene’s degree of belonging to that cluster. The degree of belonging allows

genes to belong to multiple co-expression groups, defined by weights. Similar to k-

means clustering, the initial cluster assignments strongly influence the final clusters.

Prior biological knowledge can be incorporated [114] by deriving initial assignments

from the Gene Ontology annotation tree. Additionally, the annotation information

is utilized in distance calculation. These techniques allow for genes to be associated

with multiple functions but pathology constraints could be difficult to incorporate.
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2.2.4 Extensions to Distance Methods

Distance based clustering methods can be extended by creating new distance metrics

based on biological function information. A shrinking distance metric is used by

Huang [57] where a parameter r allows for distances to shrink if two genes share

a biological annotation. The r parameter can range between 0 and 1 with only

annotation information being used to no annotation information being used. As with

the number of clusters, a value for r must be tuned to best describe the data.

The SICAGO system [65] utilizes a semantic distance between gene annotations

in the GO project. The semantic distance measures used are based on how much

information the genes share in common. Multiple information content theory metrics

are included with the final distance incorporating the euclidean distance between

expression. Unfortunately, SICAGO has no way of including known pathological

information.

2.3 Additional Techniques

Additional techniques such as EPIG [23] and ASTRO [116] have been developed for

finding patterns and co-expressed genes.

The EPIG[23] algorithm uses local clusters to help identify patterns for clustering.

All gene profiles are initially considered as patterns. A pair-wise correlation is per-

formed amongst all profiles, with highly correlated profiles being grouped together.

All groups with fewer than six profiles are eliminated from consideration. Profiles

are again filtered by a signal to noise ratio. Finally, patterns are formed from the

averages of the profiles in the groups still remaining. The EPIG system eliminates

the random behavior of many clustering algorithms and finds patterns which correlate

closely with the data. The use of correlation limits a gene’s ability to be influenced
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by multiple functions.

ASTRO [116] is specifically designed to analyze time series expression data with

limited time points. The algorithm converts the gene expression matrix to a rank

matrix. A gene’s expression is transformed from lowest expression to highest by

ranks:

{5, 15, 10, 20} ⇒ {1, 3, 2, 4}{0, 7, 6, 20} ⇒ {1, 3, 2, 4}

The reduction of information enables ASTRO to have O(nm) complexity were n is

the number of genes and m is the number of samples. There is a loss of information

and rankings lose information about relative differences between genes.

2.3.1 Model-based Clustering Methods

Model-based clustering methods differ from distance based methods. Model clustering

is not performed on the similarity of gene expression but how closely the genes match

underlying model functions. The model functions can be based on previously known

distributions or prior biological information. Individual clusters of genes are assumed

to match a unique underlying function [93, 46]. Model-based methods are easily

extended to time-series data and are more robust in dealing with noisy data; however,

they are limited to predetermined functions.

Hidden Markov models(HMM) have also been used to analyze time series mi-

croarray data. Unlike traditional clustering techniques, HMMs can be used to cluster

genes [101] while including temporal information. HMMs can be described with the

following parameters: the states Si, πi the probability of starting in state Si, aij is

the transition probability from state Si to Sj, and bi(ω) is the emission probability

density of a symbol ω ∈ Σ in state Si. To cluster the genes, k HMMs are found that

maximize the likelihood. In order to find the parameters, an iterative algorithm can
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be used where each gene is assigned to a HMM and then the parameters of each HMM

are re-estimated using the genes assigned to it. Genes are limited to being described

by only one function.

2.4 Matrix Decomposition Methods

2.4.1 Principal Component Analysis

Principal component analysis (PCA) is a well known data analysis technique and

has been applied to gene expression data [33] and to time-series microarray data as

well [136]. Given that X is a gene expression matrix, PCA finds the eigenvalues

and eigenvectors of the covariance matrix. The covariance of X is 1
n
XX⊤ and the

following decomposition is possible [106] with D being a diagonal matrix andW being

the eigenvectors of X as columns.

XXT = WDW T

These eigenvectors form a set of orthonormal basis vectors representing underlying

functions in the original data. By using only the k eigenvectors with largest eigenval-

ues, clustering can be performed.

Singular value decomposition (SVD) is a standard solution technique for PCA and

has also been used in microarray analysis [2]. SVD works by factoring the original

expression matrix X into three component matrices:

X = UΣV ⊤
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The relationship between SVD and PCA can be seen as follows:

XXT = (UΣV T )(UΣV T )
T

= ([U ]ΣV T )(V ΣUT )

= [U ][Σ][I][Σ][U ]T

= UΣ2UT

Implementations for SVD are included in many numerical packages including R, Mat-

lab, and Numerical Recipes.

PCA and SVD remain standard techniques and identify underlying basis vectors

without requiring additional parameters to tune. The basis vectors are required to

be orthonormal, making pattern constraints impossible to add. There is also no way

to steer the solution through prior domain knowledge.

2.4.2 Independent Component Analysis

Independent component analysis (ICA) is another technique that has been applied

to time-series microarray data. Unlike PCA, the goal of ICA is to find a set of

components which are as statistically independent of one another as possible [69, 33].

In signal processing, ICA has been used for blind source separation [63], the problem

of identifyingM sound signals fromN microphones. Many biological signal processing

problems have been cast as blind source separation including processing EEGs[126].

ICA has been applied to microarray data[42, 77, 72]. Unlike PCA the goal is

to minimize the amount of mutual information [69], meaning that ICA finds func-

tions that are as different as possible not functions that reconstruct the data. This

constraint makes it difficult to incorporate pathological information or prior domain

knowledge.
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2.4.3 Network Component Analysis

Network component analysis (NCA) [75, 123] is a technique for identifying the bipar-

tite connectivity between regulatory signals and output data. The network derived by

NCA for microarray data, relates transcriptional factor activity (regulatory signals)

to gene expression (output data). The relationship can be defined by the decompo-

sition of a gene expression matrix G, consisting of m genes and n samples for each

gene.

Gm×n = CSm×p × TFp×n

The connectivity matrix, CS, contains the strength of each edge. The matrix TF

contains the regulatory nodes of the network. There are p transcriptional factor

activities. NCA requires three additional constraints:

1. CS has full column rank

2. Each column of CS has at least p− 1 zero values

3. TF must have full row rank

These constraints mean that G can be uniquely (up to a scaling factor) decomposed.

The second constraint allows for a regulatory node and its related output nodes to

be removed while still maintaining full column rank for CS.

2.4.4 Non-negative Matrix Factorization

Non-negative matrix factorization(NMF) is a technique developed by Lee and Seung

[71] for use in facial recognition and text mining. NMF attempts to generate a set

of basis vectors H and corresponding coefficients W that can be used to reconstruct
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the original data. Given that X is the original gene expression:

[X]n×m ≈ [W ]n×k × [H]k×m

There are n genes and m samples (time points). The variable k corresponds to the

number of basis vectors and is usually set to the m − 1. If k = m then H becomes

the trivial solution of the m×m identity matrix.

NMF algorithms impose the additional constraint that each entry in W , H, and

V must be non-negative. This constraint creates an additive nature to the basis

vectors and allows for intuitive functional meanings. Techniques such as PCA also

find basis vectors, but allow negative values. Without the non-negative constraint the

linear combinations of basis vectors in PCA can have complexities generated through

cancellations making functional interpretation difficult. Unlike PCA, the basis vectors

in NMF are not required to be orthonormal nor are they required to independent as

in ICA.

NMF has been explored in microarray analysis, for a review of techniques see [28].

Algorithms that generate sparse basis vectors have also been explored [67] as sparse

basis vectors identify specific functions particularly well.

A weakness of the NMF algorithms is the exclusion of prior information such as

pathology data. The iterative techniques of most methods make additional constraint

steps lead to numerical instability or loss of the central non-negative constraint. A

limited amount of prior information (cell type) can be incorporated by identifying

select marker genes and forcing their reconstruction to exactly one basis vector [45].

Similar techniques would be difficult to work for constraints on the basis vectors.
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2.4.5 Bayesian Decomposition

A difficulty with traditional NMF techniques is that prior information cannot be used

to help generate the patterns. Like NMF, Bayesian Decomposition (BD) [88] attempts

to find patterns and coefficients that can reconstruct the original data. However, BD

allows for prior biological information to be encoded and influence the patterns found.

BD works as a Monte Carlo Markov Chain, which explores the state space of possible

patterns and coefficients by updating probability density functions. By using Bayes’

formula prior information can be used to guide the exploration. BD has also been

used to identify potentially activated pathways in drug treated time-series microarray

data [90]. Unfortunately, BD has proven to be computationally inefficient in general

practice and provides no way of constraining an entire pattern to match pathology.

2.5 Summary

In this chapter we reviewed current methods and tools for analyzing time series, dose

response microarray data. We have identified some requirements for our method-

ology and have identified that no existing system currently implements all of our

requirements.

We propose a computational system, presented in Chapter 3, for identifying rel-

evant biological functions and processes from time series, dose response microarray

data. Our system incorporates prior biological knowledge linking genes to their func-

tions, phenotypical or pathological data, and allows genes to be related to multiple

functions.
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Chapter 3

The MEGPath System

In this chapter, we present our methodology for analyzing time series dose response

high throughput data. Our system for identifying relevant pathways from time series

microarray data includes several features: first, the ability to incorporate prior biolog-

ical knowledge such as known pathways and relationships between genes; second, the

ability to generate hypotheses about potential gene interactions; finally, the ability

to incorporate phenotypical data. As discussed in Chapter 2, there is a need for a

system capable of combining all of these elements.

Identifying biologically relevant processes and functions from time series dose-

response toxicogenomics data is important to reveal toxicity mechanisms and assist

in mechanistic studies by finding significantly changing genes [1, 52]. While microar-

ray data is noisy and protein levels do not necessarily correspond to mRNA gene

expression levels [47], our system finds novel hypotheses about involvement of dis-

eases, processes, and functions from time series, dose response microarray data. An

overview of our system can be seen in Figure 3.1.

Clustering has widely been used for microarray analysis and many techniques

have been tried [5, 4]. Clustering techniques group co-expressed genes based on a
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distance metric. Traditional distance based clustering methods can be extended by

creating new metrics which include biological function information [57] and can use

gene annotations [114] from the Gene Ontology annotation tree. However, clustered

genes are still placed into a single co-expression group even though a gene’s expression

might be influenced by multiple processes.

Non-negative matrix factorization(NMF) is a technique developed by Lee and

Seung [71] that identifies underlying basis patterns used to reconstruct the original

data. NMF has previously been used in microarray analysis [28] but prior information

has not been used in generating the patterns. Like NMF, Bayesian Decomposition

(BD) [88] attempts to find patterns and coefficients which can reconstruct the original

data. However, BD allows for prior biological information to be encoded and influence

the patterns found. BD has also been used to identify potentially activated pathways

in drug treated time-series microarray data [90] but is not computationally efficient

on the genome wide scale.

The MEGPath system identifies a set of non-negative patterns which represent

underlying biological functions. The patterns are used to relate each gene to the

underlying functions that direct its gene expression. The MEGPath system allows

for constraints to be added on to the patterns such as representing a known pathology.

This chapter describes the MEGPath system and its application to mRNA data.

Section 3.1 is a discussion of data sets and describes the four stages of our method-

ology. Section 3.2 is an algorithmic complexity analysis of the different parts of

the system. System verification is covered in Section 3.3. Results of our system on

mRNA data are described in Section 3.4 including the visualization and results with

and without pathological information. Finally, Section 3.5 gives a discussion of the

methodology and findings.
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Figure 3.1: Overview of the four steps in the algorithm. Step 1: Identify significantly
changing genes using SAM and linear model. Step 2: Find patterns and coefficients to
reconstruct the gene expression data. Step 3: Find coefficients for the entire genome.
Step 4: Using the patterns, coefficients, and pathways, we can identify significant
pathways. The results can be verified using both Ingenuity Pathway Analysis and
biological testing.
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3.1 Materials and Methods

Our system, MEGPath, as shown in Figure 3.1, is divided into four main components:

the Gene Identification component, the Pattern Finding component, the Coefficient

Expander component, and finally the Functional Process Evaluation component. The

MEGPath system is capable of generating novel hypotheses about genes by grouping

genes to system identified patterns. In addition, the MEGPath system allows for

constraints, such as a quantitative pathological data, to be added as prior informa-

tion. The additive nature of the system enables genes to be associated with multiple

patterns while maintaining understandable interactions. Finally, the Functional Pro-

cess Evaluation step allows prior biological information, such as gene interactions and

annotations, to be related to the expression data and tested for significance.

3.1.1 Data Sets

The data sets consisted of dose-dependent time series mRNA microarray expression

data as well as quantitative pathology scores from an aspiration experiment. In total

480 mice were randomized into three groups: genome-wide mRNA expression, lung

pathology scores, and fibrosis pathology scores. Scores were found for 1, 7, 28, and

56 days post-exposure with the mice exposed to 0, 10, 20, 40, or 80µg of MWCNT.

Total RNA was extracted from the mice at each dose condition. Agilent Mouse

Whole Genome Arrays were used for expression profiling. In total, our genome con-

sisted of 41,059 probes and the data has been deposited to the NCBI Gene Expression

Omnibus (GEO) repository using accession number GSE29042. The microarray data

were log-transformed for analysis. The expression of each gene at each treatment

condition can be visualized through a web-interface.1

1(http://www.mwcnttranscriptome.org)
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In addition to mRNA expression data, 160 mice were used for inflammation scores.

Inflammation scores (BAL polymorphonuclear leukocytes) were derived from the anal-

ysis of BAL fluid taken from the MWCNT exposed mice [96]. In total 4mL of lavage

fluid was collected and BAL cells were isolated by centrifugation. BAL cell counts

were obtained using a Coulter Multisizer 3.

An additional 160 MWCNT exposed mice were used for fibrosis scores. Scores

were found using morphometric analysis of Sirius Red staining for connective tissue

[83]. Paraffin sections of the left lung were sliced and then rehydrated. After Sirius

Red staining, the average thickness of connective tissue fibers in the alveolar region

were obtained through quantitative morphometric methods.

3.1.2 Gene Identification

For each dose and time point, a set of differentially expressed genes were identified

by performing a two-class unpaired Significance Analysis of Microarrays (SAM) [125]

between the treated samples and the zero dose samples from the corresponding time

point, using the Bioconductor package. A threshold delta value was chosen to produce

a false discovery rate of 1% using the findDelta function from the same package. The

list of significant probes was subsequently filtered, keeping probes that were at least

1.5 fold up- or down-regulated. Fold changes were computed from the data before

imputation of missing values.

Additionally, a linear model was fit to the data, modeling the log expression of each

gene as a function of time, dose, and the interaction of time with dose. We moderated

the t-statistic associated with the dose and interaction parameters following the SAM

algorithm and set a threshold to control for a false discovery rate of 0.1%. This

generated a list of genes with expression values that were significantly dependent on
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dose and a list of genes with expression values that were significantly dependent on

dose in a time-dependent fashion.

3.1.3 Pattern Finding

The Pattern Finding algorithm (Algorithm 3.2) is a non-negative matrix factorization

algorithm. Our algorithm identifies a set of non-orthogonal basis patterns (vectors)

which can be linearly combined to reconstruct the original gene expression data. In

addition to the patterns, the algorithm finds coefficients relating each gene to each

pattern. The most important feature of the Pattern Finding algorithm is the ability

for genes to be associated with multiple patterns.

Let D be the original data matrix, we wish to find the matrices P and C such

that, D = C · P . Gene expressions are normalized to be in the range [0, 1) so that D

contains the normalized fold change values.

The matrix P consists of the patterns that are used as the basis vectors. Each row

contains one pattern as expressed across the experiment conditions. For example, a

pattern is made of an expression value at each time point or an expression value for

each dose across a time point. Patterns are the average response of similar genes and

the patterns in P provide biologically relevant information.

The matrix C is the coefficient matrix, consisting of one row for each gene and one

column for each pattern. The coefficients represent how strongly a gene is associated

with a particular pattern.

The Pattern Finding algorithm works as a Monte Carlo Markov Chain. Each

entry in the coefficient and pattern matrices has an associated probability density

function (PDF). During each Monte Carlo Markov Chain step an entry is altered

and the overall error is computed. If the change reduces the overall error, then the

23



procedure FindPatterns
e← TotalError(D,C, P )
i← 0
while e > 0 and i < MaxIterations do

for all v ∈ P and C do
v ← Random(v’s PDF )
e1 ← TotalError(D,C, P )
if e >= e1 then

add r to the PDF
end if
e← e1
i← i+ 1

end for
end while

end procedure

Figure 3.2: The Pattern Finding algorithm.

PDF associated with the entry is updated. The pseudocode for the Pattern Finding

algorithm is listed in Figure 3.2.

Prior information can be used to constrain a search. The constraints are formed

by modifying an entry’s PDF. The PDF of an entry could be constrained to always

return the same value or pathological data could be encoded as a pattern constraint.

For a pathology constraint, it is important that the pattern entries maintain their

relative distances but be allowed to shift up or down as a group. This shifting can be

accomplished with a single variable and an associated PDF.

After generating the PDFs, the Pattern Finding algorithm uses simulated an-

nealing to minimize the overall error, using a standard annealing function [97]. The

simulated annealing process utilizes each entrys’s PDF and works in a similar manner

to the original Monte Carlo Markov Chain.
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3.1.4 Coefficient Expander

Coefficients are found using the Pattern Finding step. By using the Gene Identifica-

tion step to identify significantly changing genes, not all genes will have coefficients.

Genome-wide coefficients are insured by using the Coefficient Expander algorithm.

The Coefficient Expander step attempts, through the use of simulated annealing, to

find optimal coefficients for each gene in the genome. Each gene’s coefficients should,

when combined with the patterns, minimize the distance between the calculated ex-

pression and the actual expression.

3.1.5 Functional Pathway Evaluation

The final step is to calculate the Functional Process Evaluation (FPE) score for a given

set of genes. The FPE score is based on the score from Gene Set Enrichment Analysis

[111]. Each gene’s coefficients are normalized to obtain the relative importance of a

pattern to the gene. Genes that are not common to both the pathway and genome

are ignored and not used in computing the score. If a gene has multiple probes, the

probe with least reconstruction error is chosen.

The FPE score ranges from -1 to 1 with the scores being computed for each

pattern. Scores are calculated by first sorting the genome by the pattern coefficient.

After sorting, the genes with the highest coefficients for a pattern will be at the

beginning. Scores are computed by starting at the highest ranking genes and either

adding a value (for genes in the set) or subtracting a value (for genes not in the set).

The highest score generated is used as the FPE score. Higher FPE scores correspond

to sets of genes which are over-represented at the beginning. Leading sets are the

genes that are used to generate the FPE score and are the genes considered most

closely related to a pattern for the pathway. An overview of the FPE algorithm is
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phit, pmiss, score← 0
for all g ∈ G do

if g ∈ P then
phit ← phit + C(g)/S

else
pmiss ← pmiss + 1/(Ng −Np)

end if
if score < phit − pmiss then

score← phit − pmiss

end if
end for
return score

Figure 3.3: The FPE score is based on the positive score from Gene Set Enrichment
Analysis. Let the genome G contain Ng genes and P be gene set of Np genes. Also
let S be the sum of the coefficients of the genes in P and C(g) be the coefficient of a
gene g.

described in Figure 3.3.

A pathway’s p-value is found by comparing its FPE score to the score of thou-

sands of randomly generated gene sets of the same length and counting the number of

random sets with higher scores. After p-values have been calculated for all the path-

ways, the Benjamini-Hochberg [11] method is used to adjust for multiple hypothesis

testing. Gene sets with a p-value less than 0.05 are considered significant.

3.2 Algorithm Analysis

A complexity analysis of the MEGPath system involves looking at three components:

Pattern Finding, Coefficient Expander, and the Functional Pathway Evaluation. The

Gene Identification step, a single preprocess step utilizing the standard SAM algo-

rithm, is not analyzed here.
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3.2.1 Pattern Finding

The Pattern Finding algorithm tries to reduce the error difference between the original

data D and the product of the the coefficient matrix C and pattern matrix P . Let n

be the number of genes, m be the number of conditions, and m − 1 be the number

of patterns. A basic solution for finding the error involves a matrix multiplication,

an entry by entry subtraction, and a sum of all the entries. A standard worst case

complexity analysis of matrix multiplication involves counting the number of scalar

multiplications [24]. The basic solution would have n ∗m ∗ (m − 1) multiplications

for each change to the P or C matrices. In total, there would be n ∗m ∗ (m − 1) ∗

(n ∗ (m− 1) +m ∗ (m− 1)) multiplications, O(n2 ∗m3).

Now, we will consider our algorithm that limits the multiplications for each entry’s

update. First, note that when changing a gene’s coefficient, only one row will change

in the product of C and P . This one row will contain m values and will require

m ∗ (m− 1) multiplications. When changing an entry in P an entire column will be

changed. The column change requires n ∗ (m − 1) multiplications. The optimized

error procedure takes n ∗m ∗ (m− 1) ∗ (1 + (m− 1)) multiplications, O(n ∗m3). Our

data, n = 2, 996 and m = 4, is similar to most gene data where the number of genes

is much larger than the number of conditions. The entry subtraction and sum can be

reduced by caching entry error values and updating them during the multiplication

process. The total number of iterations can vary but is independent of the number

of genes or conditions.

3.2.2 Coefficient Expander

The Coefficient Expander algorithm attempts to find coefficients that minimize the

error in a gene’s reconstruction. Unlike the Pattern Finding algorithm, no changes
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are needed to the pattern entries. The m − 1 coefficients corresponding to the m

patterns are optimized. Each optimization step requires m ∗ (m− 1) multiplications.

The total number of optimizations can vary but is independent of the number of genes

or conditions.

3.2.3 Functional Pathway Evaluation

The Functional Pathway Evaluation algorithm attempts to find sets of genes signifi-

cantly related to a pattern. The algorithm must compute the FPE score for each gene

set and then compute FPE scores for 1,000 randomly generated sets. The FPE score

calculation requires a one time sorting of the genome and then an iteration through

the genome. Each gene is checked for inclusion in the set. If a hashtable is used to

store the set, the algorithm will run in linear time according to the size of the genome.

3.3 Verification of the Algorithm

No “gold standard” data sets exist that incorporate all of the features used by the

MEGPath system. Each of the components were individually evaluated to ensure

that each component worked as intended.

3.3.1 Pattern Finding

The Pattern Finding component was evaluated to ensure that known patterns could

be extracted from a generated data set. Expression values for three, randomly chosen

probes at 40 µg across the four time points were used as the underlying patterns.

These three patterns were then combined using randomly chosen weights to create

3,000 generated test expressions. By comparing the original patterns with the found
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patterns, we can determine if MEGPath is capable of revealing known underlying

patterns. A test set of 3,000 generated expressions were used with patterns found

from 16 consecutive runs.

To check if patterns were better than random, three randomly selected probes

were chosen as patterns and used for genome wide reconstruction. These probes were

normalized and then the Coefficient Expander step was run to compute the total

error. The results of this test suggest that the MEGPath system found patterns that

are better than randomly chosen patterns.

3.3.2 Comparison with other Non-negative Matrix Factor-

ization Algorithms

Since our system utilizes a NMF algorithm we tested our algorithm’s ability to iden-

tify data reconstruction patterns against other NMF algorithms. Algorithms were

used from the NMF package for R [44] that is designed for bioinformatics use and

for algorithm comparison. The NMF package includes eight standard algorithms:

Brunet, Frobenius, KL, Lee, Offset, SNMF/l, and SNFM/R. The Lee algorithm is

the original NMF algorithm. The SAM-Set of significantly changing probes was used

to generate 100 sets of 300 randomly selected genes. Patterns and reconstruction

error were found for each set of randomly selected genes. The pattern finding uti-

lized both the inflammation (dose 40) pathology constraint as well as no pathology.

The algorithms were run four times and the average reconstruction error was calcu-

lated. The algorithms were ranked in descending order of reconstruction error with

the largest error being ranked zero and the smallest error being ranked nine. The

Pattern Finding algorithm, both with (p < 0.01) and without (p < 0.01) pathology

information, had average ranks significantly higher than all other algorithms. As seen
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in Figure 3.4, both the constrained and unconstrained algorithms finished with an

average rank of more than eight.
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Figure 3.4: A comparison of the Pattern Finding algorithm to traditional NMF algo-
rithms by the average reconstruction error. Gene expression for dose 40 µg across the
four days was used to generate 100 sets of 300 genes each. Each algorithm was run
four times on each set with the rankings assigned by descending order of error. The
Pattern Finding algorithm (utilizing both pathology constraints and no constraints)
performed significantly (p < 0.01; Wilcoxon Signed-Rank Test and Mann-Whitney)
better than all other algorithms.

3.3.3 Functional Process Evaluation

The Functional Process Evaluation algorithm was also evaluated using a mock data

set. First, a “genome” of 2,500 genes was created with 100 of the genes being labeled

as interesting. Coefficients were randomly generated using a normal distribution with

the 100 highest coefficients being assigned to the interesting genes. A set consisting

of 50 randomly chosen interesting genes was generated and compared to 99 sets of

randomly chosen genes. Only the set consisting of the interesting genes was found to
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be significant (p < 0.01).

3.4 Results

In many in vivo experiments, disease pathologies may be observed. However, the

underlying molecular mechanisms may not be understood. As seen in Figure 3.1,

the MEGPath system is used in conjunction with dose response, time series mRNA

microarray data and quantitative pathology scores. In total, 480 mice were used to

generate data in an aspiration experiment with scores being found at 1, 7, 28, and 56

days post exposure and eight mice exposed to 0, 10, 20, 40 and 80µg of MWCNT at

each time point. The mice were divided into three groups: 1) genome-wide mRNA

expression profiling was performed on 160 mouse lung tissue, 2) BAL inflammation

scores found for 160 mice, and 3) morphometric analysis of Sirius red staining for

collagen on 160 mice [83, 96]. These data provided genome-wide expression data as

well as matching quantitative pathology for lung inflammation and lung fibrosis. The

combination of data allows the system to identify both pathways and genes which

may be directly related to the pathology. The MEGPath system consists of four

parts: Gene Identification, Pattern Finding, Coefficient Expansion, and Functional

Process Evaluation.

The Gene Identification step was run on the 41,059 mRNA probes and found a

total of 2,996 probes that were significantly changed. We call this set of significant

probes the SAM-Set. The Pattern Finding algorithm found patterns from the SAM-

Set. Pattern coefficients were then found for each gene in the genome.

The Functional Process Evaluation step was used to identify leading sets. Gene

sets from the MSigDB [111] C2 Canonical Pathways and C5 Gene Ontology databases

were used. The C2 and C5 databases consist of a combined 2,334 curated sets of genes
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corresponding to metabolic and signaling pathways as well as sets derived from the

GO project. These gene sets provide curated information on functional relationships

between genes.

3.4.1 Evaluation of the MEGPath system

To check if the MEGPath system was capable of identifying patterns from expres-

sion data, we generated 3,000 test expressions. All expressions were generated from

a random combination of the same three randomly chosen probes, A 51 P227275,

A 51 P454519, and A 52 P342202. The Pattern Finding algorithm was run 16 con-

secutive times, each time finding three patterns. The identified patterns closely re-

semble the original probes’ patterns as seen in Figure 3.5, demonstrating that the

system can identify patterns known to be in the data. In addition, this demonstrates

that the normalization of the gene expression does not affect the ability of the system

to find relevant patterns.

To compare if the patterns found by the system were better than randomly chosen

patterns, three probes were randomly chosen and used for data reconstruction. This

randomized process was run 100 consecutive times (Figure 3.6), each time with new

probes as patterns. Overall the random patterns produced an average reconstruc-

tion error of 1727.318. However, using patterns found while incorporating the Gene

Identification, Pattern Finding and Coefficient Expander steps yielded over eight con-

secutive runs an average reconstruction error of 998.515. The found patterns resulted

in a significant (p < 0.01) reduction in error over randomly chosen patterns with the

found patterns always performing better than the randomly chosen ones.

To justify using the Gene Identification step, the SAM-set patterns were checked

to see if they reduced the overall error. Patterns were found using the full genome
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Figure 3.5: Patterns were found in mock data generated from three actual probes.
The mock data consisted of 3,000 “genes” which were generated from three randomly
selected probes. Gene expression for dose 40 µg across the four days was used. The
patterns shown are the average of 16 consecutive runs.

and the total reconstruction error was computed. For comparison, patterns were

found using the SAM-Set only and the total error was computed after using the

Coefficient Expander step. Eight consecutive trials were performed and, using the

Gene Identification step, always led to lower total error as seen in Table 3.1. Using

an unpaired t-test, the means of the two groups significantly differed (p < 0.01).

Since the SAM-Set is always a strict subset of the whole genome this means that

using the Gene Identification step reduces pattern finding time while not increasing

reconstruction error.
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Figure 3.6: A comparison of the reconstruction error of both the Pattern Finding
algorithm and randomly chosen probes. Figure A shows the results of 100 consecutive
reconstructions each using randomly chosen probes as the patterns. Figure B shows
the results of eight consecutive runs with patterns identified from the MEGPath
system. The system identified patterns performed significantly (p < 0.01) better on
average than the randomly chosen probes.

Table 3.1: Comparison of error of reconstruction between patterns found using all
probes and the 2996 probes. Using an unpaired t-test, the two groups were found to
differ significantly with p < 0.01 .

All Probes 2996 Probes

1170.233 1131.003
1209.015 1032.582
1269.886 1086.619
1298.348 934.891
1170.796 907.779
1138.710 876.944
1182.705 887.915
1195.762 1130.390

3.4.2 Incorporating histopathological data

The MEGPath system can incorporate quantitative pathological data. Pathological

scores of pulmonary inflammation data (BAL polymorphonuclear leukocytes) for the

40 µg dose across the time points [96] were used to identify inflammation related
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Table 3.2: Selected Pathways found significant to Pattern 1 in Dose 40 µg, using an
constrained search and the C2 database.

Pathway Adjusted p-value

SIGNALING IN IMMUNE SYSTEM 0.0
REGULATION OF INSULIN SECRETION 0.0
SIGNALING IN IMMUNE SYSTEM 0.0
REGULATION OF INSULIN SECRETION 0.0
LYSOSOME 0.0
T CELL RECEPTOR SIGNALING PATHWAY 0.0
ECM RECEPTOR INTERACTION 0.0
PRIMARY IMMUNODEFICIENCY 0.0
G2 PATHWAY 0.0
CELL CYCLE MITOTIC 0.01318
CHEMOKINE SIGNALING PATHWAY 0.01318
G1 S TRANSITION 0.01318
PLATELET ACTIVATION TRIGGERS 0.01318
FMLP PATHWAY 0.01318
INTESTINAL IMMUNE NETWORK FOR IGA PRODUCTION 0.02292
FORMATION OF PLATELET PLUG 0.02726
IL2RB PATHWAY 0.02726

pathways. The leading set of a pathway is the subset of genes that are most closely

related to the pattern. Since genes are allowed in multiple co-expression groups, not

all genes in a pathway’s leading set have identical looking expression. However, as

seen in Figure 3.7, the average expression of the leading set closely resembles the

pattern. The pathological pattern was fixed as Pattern 1 with the other two patterns

being found automatically by the system. The SAM-Set probes were used in the

Pattern Finding component. In total, 111 gene sets were found to be significant with

Pattern 1 for 40 µg dose across the time points with a constrained search. Several

significant pathways are related to cell proliferation, immune response and chemokine,

which are reported to be relevant to inflammation in the literature (Table 3.2).
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Figure 3.7: Average of the genes in the leading set of Chemokine Activity from the C5
database (A), Reactome Signaling in Immune System (B) from the C2 database, and
Defense Response from the C5 database. The constrained histopathological patterns
are also shown: day 56 fibrosis (A), dose 40 µg inflammation (BAL polymorphonuclear
leukocytes) (B), and dose 80 µg fibrosis (C).

In order to identify mechanisms related to fibrosis, the average thickness of the

alveolar connective tissue [83] was used as a pathological pattern. Patterns were

found for the 80 µg dose across the time points and for day 56 across the doses. As

with the inflammation data, Pattern 1 was constrained to the pathological pattern

and was normalized to the range of 0 to 1 and the SAM-Set probes were used to find

patterns. In total, 69 gene sets were found to be significant with Pattern 1 for 80 µg

dose across the time points with a constrained search. Likewise, 85 gene sets were

found to be significant with Pattern 1 for day 56 across the doses using a constrained

search.

Experimental validation was achieved by first using Ingenuity Pathway Analysis

36



to identify, from the leading sets identified by our system, the genes with known

involvement in inflammation or fibrosis. In total, IPA found 67 genes that were

involved with inflammation with ccl2 occurring most frequently in leading sets. Ccl2

was selected for in vitro analysis. After treatment with MWCNT, protein levels were

significantly up-regulated, suggesting that ccl2 responded similarly in vitro as in vivo.

These results suggest that in vitro study may be used for future study of ccl2 and

MWCNT [37].

3.4.3 Without histopathological data

The MEGPath system can find pathways, functions and genes when using both

pathology data and expression data. Pathogenesis progress is important for toxicity

as affected organs may not be known. We further explored to see if we could identify

potential pathologies using only mRNA expression data. Patterns were found using

the different doses across days. As demonstrated in Figure 3.8, the system finds gene

sets whose expression may vary at points but as a group strongly resembles the pat-

tern, genes may be influenced by multiple functions and not have identical patterns

of expression. All patterns were found using the SAM-Set probes with coefficients

expanded to all probes using the Coefficient Expander algorithm.

Significant pathways, Table 3.3, were found to match Pattern 1 for the 40µg dose

across the time points. The average expression of the leading sets resembles the

lung inflammation pattern (BAL polymorphonuclear leukocytes) reported by Porter

et al.[96] in the same animal studies. The results show when no pathological data is

provided, our system finds potential pathological patterns and related pathways from

time series gene expression data.

The MEGPath system can also be used to identify patterns using multiple days
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Figure 3.8: (A) The average expression for the leading sets which matched Pattern
1 using an unconstrained search. (B) The average expression of the leading set for
KEGG Primary Immunodeficiency with the inflammation histopathology (BAL poly-
morphonuclear leukocytes) included for comparison.

Table 3.3: Pathways found significant to Pattern 1 in dose 40 µg, using an uncon-
strained search and the C2 database.

Pathway Adjusted p-value

KEGG LYSOSOME 0.0
KEGG PRIMARY IMMUNODEFICIENCY 0.04393
REACTOME CLASS A1 RHODOPSIN LIKE RECEPTORS 0.04393
REACTOME GPCR LIGAND BINDING 0.0
REACTOME INTEGRIN CELL SURFACE INTERACTIONS 0.0
REACTOME PEPTIDE LIGAND BINDING RECEPTORS 0.0

and multiple doses. Seven patterns were found from the SAM-Set of probes across

eight conditions, using the 40 µg dose and the 80 µg dose across the time points. Many

of the patterns exhibit strong similarity between the 40 µg dose sections and the 80 µg

dose section (Figure 3.9). The results suggest similar dose response in both the 40 µg

and 80 µg doses and the potential for future experiments not needing the higher dose.
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Figure 3.9: The seven patterns found using an unconstrained search and eight con-
ditions. The SAM-set was used but included the conditions for dose 40µg and dose
80 µg, both across the four time points. The patterns are split into the dose 40 µg
segment and dose 80 µg segment to show similarity.
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3.4.4 ClueGO Visualization

A visualization of the gene relationships in a leading set can be created with the

ClueGo [12] tool. For these gene lists, a functional analysis of only a single cluster

was conducted. The gene cluster list was populated using the model species as Homo

Sapiens and allowing ClueGO to automatically select correct identifiers. ClueGO

allows the user to specify the level of detail they wish to acquire from the analysis,

ranging from highly detailed results to a broader more general global setting. In this

analysis, the slider was placed upon the medium setting showing no favor towards

the global or detailed option. The GO biological process was selected as the ontology

of choice using all available codes. The leading sets for the Immune Response path-

way (Figure 3.10) and Response To External Stimulus pathway (Figure 3.11) were

visualized.

3.5 Discussion

Dose response and time series experiments are an important tool for identifying toxi-

city and disease progression. Previous studies have used in vivo and in vitro genome-

wide mRNA expression data to infer toxicity. In addition to microarray data, bench-

mark dose techniques have been combined with Gene Ontology annotations, to iden-

tify biological processes related to toxicity. However, even if quantitative pathology

is observed, the underlying molecular mechanisms may be difficult to reveal.

Our system, Figure 3.1, uses both mRNA expression data and quantitative pathol-

ogy scores to identify significantly changing pathways and interesting genes. We were

able to identify results that are able to be experimentally validated [37].

The MEGPath system, involving a combination of Gene Identification, Pattern

Finding, Coefficient Expansion and Functional Process Evaluation methods, is a com-
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Figure 3.10: The Immune Response leading set as visualized by ClueGO.
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Figure 3.11: The Response to External Stimulus leading set as visualized by ClueGO.
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putationally efficient technique to model dose dependent time series microarray data

on the genome-scale. Our system identifies non-parametric patterns capable of re-

constructing both dose dependent and time series microarray data, while also in-

corporating quantitative pathological data and known biological interactions. Genes

are allowed in multiple co-expression groups and so can be significantly related with

multiple functions and patterns.

However, the MEGPath system is not suited for working with data consisting of

less than three treatment conditions. Also, unlike parametric systems, no information

can be implied from unobserved experimental conditions. While our system suggests

that two doses may behave the same, we can make no claim about unobserved middle

doses. The system also depends on curated gene sets, which depending on granularity,

may be too general.

When no pathological data is available, this system is able to identify potential

pathological phenomena and related pathways. Future experiments can be developed

for testing potential pathologies by observing trends in the identified significant path-

ways. The MEGPath system has potential applications in areas outside of toxicology

such as chemo response, chemo sensitivity, and pharmacogenomics. For instance, us-

ing mRNA expression data from blood could reveal the effects of unobserved diseases

or organs with potential diseases. Observing patterns across multiple days or doses

could help reduce the number of conditions needed in future experiments. Repetitive

higher doses could be removed, or long durations might be shortened.

3.6 Publications

Some the work described in this chapter has been published in proceedings of the IEEE

International Conference on Bioinformatics and Biomedicine. In addition a journal
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manuscript has been prepared for submission to PLOS Computational Biology.

J. Dymacek and N. L. Guo. Systems approach to identifying relevant path-
ways from phenotype information in dose-dependent time series microarray data.
In Proceedings of the 2011 IEEE International Conference on Bioinformatics and
Biomedicine, BIBM ’11, pages 290293, Atlanta, GA, USA, 2011. IEEE Computer
Society.
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Chapter 4

Integrated miRNA/mRNA

Analysis

In this chapter we will explore the integration of miRNA with mRNA. The integrated

mRNA and miRNA analysis (Figure 4.1) of time series microarray data will involve

separate processing of both the expression data sets described in Chapter 3. Central

to the analysis is the identification of genes (miRNA and mRNA) that correspond

with the given quantitative pathology. After identifying genes, only genes that are

either predicted or known target pairs will be kept. In addition, for each target

pair there must be gene expression evidence of regulation. In Chapter 5, the results

will be analyzed with Ingenuity Pathway Analysis and pathology involvement will be

validated from the literature.

The dynamic temporal regulatory effects of microRNA are not well known. We

introduce a technique for integrating miRNA and mRNA time series microarray data

with known disease pathology. The integrated analysis includes identifying both

mRNA and miRNA that are significantly similar to the quantitative pathology. Po-

tential regulatory miRNA/mRNA target pairs are identified through databases of
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both predicted and validated pairs. Finally, potential target pairs are filtered by

examining the second derivatives of the fold changes over time. Our system was

used on genome-wide microarray expression data of mouse lungs (n = 160) following

aspiration of multi-walled carbon nanotubes. This system shows promise of readily

identifying miRNA for further study as potential biomarker use.

The remainder of this chapter is organized as follows. Section 4.1 describes the

methods used to analyze both the mRNA and miRNA data. Results are described in

Section 4.2.

4.1 Methods

The integrated mRNA and miRNA analysis (Figure 4.1) of time series microarray

data involves separate processing of both the expression data sets. Central to the

analysis is the identification of genes (miRNA and mRNA) that correspond with

the given quantitative pathology. After identifying genes, only genes that are either

predicted or known target pairs are kept. In addition, for each target pair there must

be gene expression evidence of regulation.

4.1.1 Non-negative Matrix Factorization

Non-negative matrix factorization [71] (NMF) allows for the identification of underly-

ing patterns in multi-dimensional microarray data. These patterns can be thought of

as biological functions responding to a disease or exposure. By fixing, or constraining,

one pattern to a known pathology, we can identify genes that are strongly influenced

by a function resembling the pathology.

Let D be the original fold change data (either mRNA or miRNA expression data),

containing values at multiple conditions for each probe. The NMF algorithm tries

46



miRNA

MSigDB 
Functions & 
Processes

miRNA & mRNA

Target 

Databases

C57BL/6J 
mice(n=160)!

MWCNT aspiration!
(10,20,40 or ug)!

(1,7,28, or 56 days) 
post-exposure

Expression divergence 
(2nd derivative test)

mRNA

Gene expression Inflammation & 
Fibrosis pathology

Gene sets significant 
to pathology

MEGPath 
System

Non-negative matrix 
factorization system

Genes significant 
to pathology

IPA Validation

Target pairs

Figure 4.1: Flow diagram of an integrated miRNA/mRNA analysis. Both microar-
ray data and pathology data are used in the miRNA and mRNA analysis. Genes
significant with the pathology are identified and then potential target pairs analyzed.
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to find matrices P and C such D = C ∗ P . The pattern matrix, P , consists of

underlying biological functions that can be used to reconstruct the expression data.

The coefficient matrix, C, relates each probe to the each pattern. Due to noise, it

is unlikely that an exact solution can be found. The algorithm tries to minimize the

difference between the original fold change matrix (D) and the reconstructed fold

change (C ∗ P ).

Our NMF algorithm works as a Monte-Carlo Markov Chain, where a probability

density function is associated with each entry in the P and C matrices. To satisfy

the non-negative constraint the fold change data is normalized to the [0− 1) domain.

The density functions are updated at each algorithm step and final entry values are

found using a simulated annealing process.

Unlike traditional NMF algorithms, our algorithm allows constraints to be added.

Constraints are implemented through manipulation of the density functions. A den-

sity function can be shared across multiple entries or constrained to always return

a specific value. Pathology patterns are encoded as a single density function with a

time series pathology constraint encoding each constraint entry as a relative offset

from the previous time point.

4.1.2 mRNA Analysis

The MEGPath [34] system was used to identify mRNA genes potentially involved

with the pathology. The MEGPath system was designed to identify sets of genes

that, as a group, are significantly related to a known pathology pattern. The first

step was to identify a subset of genes which were significantly changing. Since most of

the genes change very little over time, the patterns should be found from genes with

more noticeable changes. Genes with fold changes that were changing significantly
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were identified at each dose and time condition and considered significant.

The MEGPath system uses the significant genes and constraint pathology along

with the described NMF algorithm to identify underlying biological patterns. The

identified patterns are then used to find genome wide coefficients. These coefficients

(C) relate each gene to each of the patterns (P ) and are used to identify sets of genes

that are significantly related to the pattern. The gene sets used are from the curated

MSigDB [111] database allowing for annotations for each gene’s function. Genes may

be contained in multiple gene sets. The gene sets are functionally related and are

not required to be co-expressed. An example of a pathology pattern and some of the

identified mRNA genes can be seen in Figure 4.2.

Figure 4.2: The dose 80 µg fibrosis pathology and significantly related mRNA. The
fibrosis pathology was used as a constraint in the NMF algorithm for both miRNA
and mRNA. The mRNA were found to be related to fibrosis by both the pathology
and IPA.
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4.1.3 miRNA Analysis

The MEGPath system identifies mRNA that are functionally involved with a con-

straint pathology. Unfortunately, the MEGPath system relies on functional annota-

tions from the MSigDB for each mRNA gene and there are currently no similar func-

tional annotation databases for miRNA. Our methodology identifies miRNA that are

functionally involved with the pathology by utilizing known potential miRNA targets

and both mRNA and miRNA expression data to select pairs that show signs of being

regulated.

The described constrained NMF algorithm was used to relate the constraint

pathology to the miRNA. Patterns (P ) and each probe’s corresponding coefficients

(C) were computed from the time series miRNA microarray data. The first pat-

tern was constrained to match the pathology. A probe’s error was calculated as the

absolute difference between the normalized reconstructed probe expression and the

normalized original probe expression.

Coefficients corresponding to the constrained pathology pattern were considered

for significance. The probe’s error values were subtracted from the probe’s coeffi-

cients to eliminate probes with high reconstruction error. This step reduces the op-

portunity for false positives generated from probes with noisy data. These modified

genome-wide coefficients were then plotted to visibly check for a normal distribution

(Figure 4.4). A normal distribution was fitted to the modified coefficients and probes

with coefficients with a probability less than 5% were kept. Only the coefficients for

the pathology pattern were used. An example of a miRNA, let-7c, and related lung

fibrosis pathology can be seen in Figure 4.3.
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Figure 4.3: The dose 80 µg fibrosis pathology and significantly related miRNA. The
fibrosis pathology was used as a constraint in the NMF algorithm for both miRNA
and mRNA.

4.1.4 Integrated Analysis

After identifying both mRNA and miRNA for further study, an integrated analysis

was applied. The integrated analysis was performed in two steps.

Potential target pairs were identified from databases. Three databases were

used: miRTarBase [56], miRecords [131], and TargetScan [73]. The TargetScan

database provides predicted regulatory miRNA/mRNA pairs. Both miRTarBase and

miRecords provide a mix of published validated pairs as well as predicted pairs. Both

validated human and mouse pairs were kept. The miRBase [48] website was used to

translate a probe’s gene name into the most recent form.

The potential target pairs were then filtered according to the gene expression data.

Traditionally, a negative correlation analysis is performed as the miRNA and mRNA
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distribution was fitted to the data.

expressions should be in opposite directions to signify regulation. Each miRNA may

target many mRNA; hence, over the course of time a miRNA’s expression may be

changing to help regulate multiple mRNA and not be “opposite” of a targeted mRNA.

In addition, the discrete time points of time series data may miss critical moments

where a miRNA’s expression changes. These issues were addressed by using the

second derivatives of the fold change. The second derivative is the “change of the

change”, or given a gene G’s fold change Gi at times i = 1 . . . (n− 1):

G′
i = (Gi+1 −Gi)− (Gi −Gi−1).

The second derivative is not defined for the first time point so the first fold change is
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duplicated:

G′
0 = (G1 −G0)− (G0 −G0) = (G1 −G0).

A miRNA/mRNA pair are considered targeted pairs if the second derivatives at

the same time point are opposite signs; hence, for miRNA R and mRNA M to be a

targeted pair:

∃ i = 0 . . . (n− 1) where R′
i ∗M ′

i ≤ 0.

An example of target pairs, between let-7c and three mRNA, found through this

analysis can be seen in Figure 4.5. The target pairs have differing second derivatives

in at least one time point.

Figure 4.5: The miRNA let-7c was found to be significantly related to the fibrosis
pathology. The mRNA were found to be related to fibrosis by both the pathology
and IPA. All mRNA and let-7c were identified as target pairs, with differing second
derivatives in at least one time point.
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Table 4.1: mRNA genes that were found to be significantly related to the time series
dose 80 µg fibrosis pathology. Genes were filtered by IPA to be involved in fibrosis.

ACTC1 EGFR LGALS3 S100A4
ADORA1 EGR1 LGMN SELE
ADORA3 F11 MMP8 SELP
ADORA2B FAS MMP9 SERPINE1
AGO1 FCGR2B MMP12 SLC4A1
ARG1 FN1 MMP13 SLC8A1
ARID4A GCLC MMP14 SMAD4
ATF3 GSK3B MYD88 SMURF2
BDKRB2 HBEGF NFKBIA SOAT1
BMPR2 HIF1A OSM SOCS1
C3 HMGCS1 PDGFRA SOCS3
CCL2 HPX PLA2G10 SOD2
CCL17 IGF1 PLAT STAB1
CCL24 IL5 PLAUR TIMP1
CCR1 IL6 PROC TLR2
CD74 IL11 PTGIR TNF
CEBPB IL12B PTGS2 TNFAIP3
CSF3 IL1B PTK2 TNFRSF1B
CTSB IL1R1 PTX3 TNNC1
CTSK IL1RN RASSF1 VEGFA
CX3CL1 INHBA RELB VIM
DAG1 KCNN4 RGS16 WRN
EDNRB

4.2 Results and Implementation

Results were obtained from an in vivo dose-response time series multi-wall carbon

nano-tube (MWCNT) aspiration exposure experiment [96]. The experimental results

indicated lung damage, inflammation, and fibrosis.

All code was written in Java and the analyses were run on a standard laptop

computer.
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Table 4.2: mRNA genes that were found to be significantly related to the time series
dose 40 µg inflammation pathology. Genes were filtered by IPA to only those involved
in inflammation.

ABCC1 ADAM8 ADORA1 ADORA3 AGT
AGTR2 AHSG AIF1 ANGPTL2 ANXA1
AOC3 BLNK C3AR1 CAPG CCDC88A
CCL2 CCL3 CCL4 CCL5 CCL7
CCL17 CCL20 CCL24 CCR1 CD9
CD14 CD44 CD63 CD69 CD74
CDKN1A CEBPB CHRNA7 CLEC5A CLEC7A
CSF3 CX3CL1 CXADR CXCL1 CXCL2
CXCL3 CXCL5 CXCL10 CXCL12 CYBA
CYSLTR1 DPP4 EGR1 EPAS1 FCER1G
FCGR2B FN1 FOS FOXP3 GHRL
GIT2 GNAI2 HYAL1 IGF1 IKBKG
IL5 IL6 IL16 IL24 IL12B
IL1B IL1R1 IL1RN IL23A IL2RA
INHBA ISG15 ITGB2 ITGB6 ITGB7
LGALS3 LITAF LUM LY75 MCL1
MDK MEFV MMP8 MMP9 MMP14
MSR1 MYD88 NAD+ NCKAP1L NCL
NFIL3 NPY NR1D1 NR2C2 OLR1
OSM PIK3R5 PLA2G7 PLA2G10 PLAUR
PPBP PRG2 PRKCD PROC PROCR
PTGER3 PTGS1 PTGS2 PTN PTPN2
PTX3 RGS1 RIPK3 S100A8 SDC4
SELE SELP SERPINE1 SFRP1 SLC11A1
SOCS1 SOCS3 SPACA3 SPHK1 SPP1
STEAP2 TNF TNFAIP3 TNFRSF4 TNFRSF9
VAV1 VEGFA WNT5A XCR1
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4.2.1 Data

The data set consisted of dose-dependent time series mRNA and miRNA microarray

expression data. Microarray data came from 160 MWCNT exposed mice (C57BL/6J).

The doses were 0(dm), 10, 20, 40, or 80 µg of MWCNT. Total RNA was extracted

from the mouse lungs at 1, 7, 28, and 56 days post-exposure for each dose condition.

Agilent Mouse Whole Genome Arrays were used for mRNA expression profiling. In

total the mRNA genome contained 41,059 probes and the miRNA genome consisted

of 484 probes. Our mRNA data has been deposited to the NCBI Gene Expression

Omnibus (GEO) repository with accession number GSE29042, miRNA data is in the

process of being deposited. We also maintain a website for browsing both data sets

on the web.1 The microarray data were log-transformed for analysis. In addition to

mRNA and miRNA data, 160 mice were used for quantitative inflammation scores and

160 mice were used for quantitative fibrosis scores. Inflammation scores were derived

from the analysis of BAL fluid [96]. The average thickness of the alveolar connection

tissue was used for fibrosis scores. These were found from the morphometric analysis

of Sirius Red staining for connective tissue [83].

4.2.2 Significantly Changing Probes

Significant mRNA and miRNA probes were found using the same procedure. Missing

data were imputed using the K-means nearest neighbor algorithm as implemented

by the impute.knn function in the impute R package from Bioconductor (Seattle,

WA). Using the Bioconductor package, a set of differentially expressed genes for each

dose and time point were identified by performing a two-class unpaired Significance

Analysis of Microarrays (SAM) between the treated samples and the dose zero samples

1http://www.mwcnttranscriptome.org
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from the corresponding time point. A threshold delta value was chosen to produce a

false discovery rate of 1%(mRNA) and 5%(miRNA) using the findDelta function from

the same package. The list of significant probes was filtered by only keeping probes

that were at least 1.5 fold up- or down-regulated. Fold changes were computed from

the data before imputation of missing values.

4.2.3 mRNA Results

Gene sets significantly related to the time series 80µg dose fibrosis and the time series

40 µg dose inflammation pathologies were obtained from the mRNA microarray data.

The SAM analysis was run on all conditions to obtain significantly changing mRNA at

either a dose or time condition. In addition, genes significant with linear models [49]

were used. The 2,996 significant probes were used with the NMF algorithm to identify

three underlying patterns from the four time points for both pathologies. Genome-

wide coefficients were then found relating each gene to the pathologies, coefficient

error influence was minimized by identifying sets of genes. All gene sets were from

the MSigDB curated databases.

The fibrosis pathology coefficients were used to identify significantly represented

sets of genes, identifying 30 gene sets found from the C2 database and 39 sets from

the C5 database. The inflammation pathology coefficients were used to identify sig-

nificantly represented sets of inflammation genes, with 50 gene sets found from the

C2 database and 61 sets from the C5 database. Many genes were found in multiple

gene sets, two such genes CCL2 and VEGFA were validated in vitro as changing

expression when exposed to MWCNT [37].

All genes from the gene sets associated with the fibrosis pathology were screened

through Ingenuity Pathway Analysis (IPA), an online curated literature based tool
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Table 4.3: miRNAs associated with the fibrotic pathology and their associated mRNA
binding partners. Each pair passes the second derivative test. Significantly changed
miRNAs are highlighted in bold.

miRNA miRTarBase, miRecords TargetScan
Experimentally Confirmed Predicted

let-7c-5p AGO1, IL6, RGS16,
PTK2 TNFAIP3, TNFRSF1B

miR-205-5p VEGFA IL1R1, PTX3

miR-23b-3p SMAD4 EDNRB, FAS,
GSK3B, IL11

miR-31-5p HIF1A, HBEGF
SELE

miR-326-3p AGO1 RASSF1

miR-328-3p AGO1

miR-330-3p AGO1, RASSF1
VEGFA

miR-34c-3p PDGFRA,
SERPINE1,
SMAD4

miR-375-3p KCNN4 BMPR2, EDNRB,
RGS16

miR-455-3p AGO1

miR-652-3p AGO1

miR-92b-3p

(ingenuity.com). The 89 mRNA genes related to fibrosis found by IPA were kept for

further analysis and are listed in Table 4.1. Likewise, genes from the inflammation

associated gene sets were screened through IPA. The 125 mRNA genes related to

inflammation are listed in Table 4.2.
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Table 4.4: miRNAs associated with the inflammation pathology and their associated
mRNA binding partners. Each pair passes the second derivative test. Significantly
changed miRNAs are highlighted in bold.

miRNA miRTarBase, miRecords TargetScan
Experimentally Confirmed Predicted

miR-1224-5p

miR-147-3p VEGFA

miR-188-5p

miR-290a-5p

miR-327

miR-3474

miR-380-3p

miR-449a-5p GNAI2,
SERPINE1

miR-494-3p TNFRSF9

miR-551b-3p

miR-667-3p

miR-696

miR-703

miR-877-5p

miR-881-5p

miR-92a-2-5p MCL1, WNT5A
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Table 4.5: All miRNAs significantly changed from controls identified from mice ex-
posed to 10, 20, 40, or 80 µg MWCNT at 1, 7, 28, and 56 days post-exposure. There
were no significant miRNAs identified at Dose 10.

miR-103 miR-1188 miR-125b-3p miR-125b-5p
miR-126-3p miR-129-5p miR-1306 miR-130b
miR-132 miR-142-5p miR-146a miR-146b
miR-147 miR-149 miR-15a miR-15a*
miR-15b miR-16 miR-16* miR-188-5p
miR-1892 miR-1897-5p miR-18b miR-1902
miR-1903 miR-1904 miR-1906 miR-1932
miR-1935 miR-1937c miR-195 miR-1951
miR-196a miR-196b miR-1982* miR-199a-3p
miR-199a-5p miR-200a miR-200b miR-21
miR-2132 miR-2133 miR-2140 miR-22
miR-221 miR-222 miR-223 miR-26b
miR-296-3p miR-297a miR-297c miR-29b*
miR-30c miR-30c-1* miR-30e miR-31
miR-322 miR-323-5p miR-327 miR-328
miR-330 miR-341 miR-342-3p miR-3470b
miR-3473 miR-34a miR-34b-3p miR-34c
miR-370 miR-382 miR-429 miR-434-3p
miR-449a miR-449b miR-449c miR-450a-3p
miR-466b-5p miR-466h miR-467e miR-467h
miR-471 miR-486 miR-669a miR-669e
miR-673-3p miR-679 miR-696 miR-711
miR-714 miR-720 miR-744 miR-92a*

4.2.4 miRNA and Integrated Results

The SAM analysis was performed on the miRNA microarray data and identified 92

probes which were significantly changed in at least one dose time condition (Table 4.5).

The NMF algorithm was run with the 80 µg dose fibrosis time series constraint.

Three patterns were found over the four time points. Since individual miRNA were

being identified, the coefficients relating miRNA to the fibrosis pattern were modified

by subtracting the reconstruction error to penalize noisy genes.

A normal distribution was fitted to the modified coefficients with a mean of
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0.318 and a standard deviation of 0.128. Coefficients with scores greater than 0.5285

(p < 0.05) were considered to be related to the pathology and are listed in Table 4.3.

Similarly, the NMF algorithm was run with the 40µg dose inflammation time se-

ries constraint. Three patterns were found over the four time points. The coefficients

relating miRNA to the fibrosis pattern were modified by subtracting the reconstruc-

tion error to penalize noisy genes. A normal distribution was fitted to the modified

coefficients with a mean of 0.271 and a standard deviation of 0.0849. Coefficients with

scores greater than 0.4108 (p < 0.05) were considered to be related to the pathology

and are listed in Table 4.4.

After identifying the significant miRNA, potential mRNA targets were filtered

by using three databases. Additional databases could be used. Finally, potential

pairs needed to have a differing second derivative in at least one time point. Only

one of the miRNA significant with the fibrosis pathology did not end with a target,

miR-92b. Two miRNA were both significantly changed in the SAM analysis and

related to the pathology: miR-31 and miR-328. Only four of the miRNA significant

with the inflammation pathology had targets: miR-147-3p, miR-449a-5p, miR-494-

3p, and miR-92a-2-5p. Five miRNA changed significantly in the SAM analysis and

were related to the inflammation pathology: miR-147-3p, miR-188-5p, miR-327, miR-

449a-5p, and miR-696.

4.3 Discussion

This study presents a methodology for integrating both miRNA and mRNA time

series data along with quantitative pathology information for identifying important

miRNA regulated biological processes underlying pathogenesis. The use of a con-

strained NMF algorithm allows for the identification of miRNA significantly related

61



to the pathology while still allowing gene expression to be influenced by multiple

functions. The integration of mRNA provides additional functional annotation infor-

mation from IPA and MSigDB. Potential miRNA regulated mRNAs can be identified

by the second derivative test, encompassing both negative correlation aspects and

temporal responses.

Our system has been able to identify pairs of miRNA and potentially regulated

mRNA. All of the identified miRNA were related to the quantitative pathology pat-

terns and potential regulators of mRNA identified with fibrosis or inflammation. In

particular the miRNA let-7c may have implications in lung fibrosis [9] and was shown,

with potential mRNA targets, in Figure 4.5. Likewise, mir-31 has been shown to be

a involved in lung fibrosis regulation [133], suggesting an active role in attempting to

suppress MWCNT caused lung fibrosis. Other identified miRNA with potential lung

fibrosis involvement are mir-326 [26] and mir-375 [129]. In addition, miR-449a and

miR-92a have been shown to change expression with titanium dioxide nanoparticle

exposure and have potential involvement with lung inflammation [51]. The predicted

miRNA /mRNA targets could be validated in vitro or biological connections explored

using IPA [36]. Although demonstrated on MWCNT toxicity data, this integrated

approach could be used in other applications.

4.4 Publications

Some the work described in this chapter has been published in proceedings of the

ACM International Conference on Bioinformatics and Computational Biology. In

addition, a journal manuscript has been prepared for submission to Bioinformatics.

J. Dymacek and N. L. Guo. Integrated mirna and mrna analysis of time series
microarray data. In Proceedings of the 5th ACM Conference on Bioinformatics, Com-
putational Biology, and Health Informatics, BCB ’14, pages 122127, Newport Beach,
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Chapter 5

Results Analysis

5.1 Biological Validation of the MEGPath System

Integrating in vivo, in vitro studies, and in silico analysis is a recent endeavor in

toxicological sciences. Novel methods for the analysis of current in vivo data are

needed to develop predictive in vitro models so as to determine the toxicity profile of

multiple material variants, such as various types of carbon nano-tubes. By identifying

the leading gene sets of the significant functions and pathways, our system can extract

genes that are strongly associated with the inflammation and fibrosis pathologies and

that have potential involvement in inflammation and collagen production. The use of

Ingenuity Pathway Analysis 1 allows for global analysis of our leading sets throughout

the body of accepted scientific literature so as to target our results to those genes

known to be involved in inflammation and fibrosis.

1(Ingenuity R⃝Systems, www.ingenuity.com)
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5.1.1 Ingenuity Pathway Analysis

Data were analyzed through the use of Ingenuity Pathway Analysis (IPA). A net-

work/My Pathway is a graphical representation of the molecular relationships be-

tween molecules. Molecules are represented as nodes and the biological relationship

between two nodes is represented as an edge (line). All edges are supported by at

least one reference from the literature, from a textbook, or from canonical informa-

tion stored in the Ingenuity R⃝ Knowledge Base. Human, mouse, and rat orthologs

of a gene are stored as separate objects in the Ingenuity R⃝ Knowledge Base but are

represented as a single node in the network. Nodes are displayed using various shapes

that represent the functional class of the gene product.

A total of 773 significant inflammation genes identified in the computational sys-

tem were subjected to an Inflammatory Response Inflammation overlay to determine

which genes in the significant inflammation leading set were directly involved in in-

flammation according to IPA (Table 5.2). A total of 890 significant fibrosis genes were

subjected to an Organismal Injury and Abnormalities Fibrosis overlay to determine

which genes in the significant fibrosis leading set were directly involved in fibrosis

according to IPA (Table 5.1). To determine the interactions between genes which

have only been experimentally observed in the lung, the Build-Trim tool of IPA was

used. Direct and indirect interactions were trimmed to a Confidence Level of Experi-

mentally Observed, and Tissue & Cell Lines were trimmed to Organ Systems of Lung

and Cell Line as Lung Cancer Cell Line.

5.1.2 Cell Culture

Small airway epithelial cells (SAEC) were cultured in SABM media (Lonza) sup-

plemented with a SingleQuot Kit (Lonza). Cells were maintained at 37 ◦C with 5%
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Table 5.1: mRNA genes that were found to be significantly related to the time series
dose 80 µg fibrosis pathology. Genes were filtered by IPA to be involved in fibrosis.

ACTC1 ADORA1 ADORA2B ADORA3 ADRA2A
ARG1 BDKRB2 BMPR2 C3 CCL17
CCL2 CCL8 CCR1 CEBPB CXCL10
CXCL12 EDNRB EIF2C1 EPHA2 F11
FAS FCGR2B FLT3 FN1 GSK3B
HIF1A HMGCR HMGCS1 HPX IGF1
IL11 IL12B IL1B IL1R1 IL1RN
IL2RA IL5 IL6 IRF7 LGALS3
LYVE1 MDK MMP12 MMP13 MMP14
MX1 MYD88 OAS2 OSM PDE3A
PDPN PLA2G10 PROC PTGIR PTGS2
PTK2 S100A4 SELE SELP SMAD4
SMURF2 SOCS1 SSTR4 THBS1 TIMP1
TNF TNFAIP3 TNFRSF1B VEGFA

Table 5.2: mRNA genes that were found to be significantly related to the time series
dose 40 µg inflammation pathology. Genes were filtered by IPA to only those involved
in inflammation.

ABCC1 ADORA2B ADORA3 AGT APP
C3AR1 CARD11 CCL2 CCL4 CCL5
CD14 CD44 CD48 CD86 CEBPB
CORT CTSD CTSS CXCL12 CYBA
EGFR FCER1G FCGR2B FN1 GHRL
GJA1 ICOS IGF1 IKBKG IL12B
IL1B IL1R1 IL1RN IL21R IL23A
IL24 IL2RA IL6 ITGB2 JUNB
MC2R MMP9 MYD88 NFKBIA OLR1
OSM PBK PGF PLA2G10 PLA2G7
PTGER3 PTGS1 PTGS2 RIPK3 SELP
SLC11A1 SOCS1 SOD2 SPHK1 SPP1
THBS1 TNF TNFAIP3 TNFRSF4 TNFRSF9
TNFSF10 VCAM1
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CO2.

Enzyme-Linked Immunosorbent Assay (ELISA)

SAEC were plated at 60,000 cells per well in a 24-well dish and grown at 37 ◦C for

48 hours. Cells were serum starved overnight followed by exposure to 1 µg/ml or

2.5 µg/ml MWCNT for 24 hours. Conditioned media were collected and assayed for

vascular endothelial growth factor A (vegfa) and C-C motif chemokine 2 (ccl2 ) protein

expression levels using DuoSet ELISA Development Systems from R & D Systems

(Minneapolis, MN) according to manufacturer’s protocol. Statistical analysis was

done using a two-sample t-test assuming unequal variances.

Cellular RNA isolation

RNA was isolated from SAEC using RNAprotect Cell Reagent and an RNeasy Mini

Kit from Qiagen according to the manufacturer’s protocol (Qiagen, Valencia, CA).

RNA concentrations were determined using a NanoDrop 1000 Spectrophotometer

(NanoDrop Technologies, Wilmington, DE) and RNA quality was assessed using an

Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA).

Real-Time Polymerase Chain Reaction

Total RNA (1 µg) was converted into complementary DNA (cDNA) using a High Ca-

pacity cDNA Reverse Transcription Kit from Applied Biosystems (Life Technologies,

Carlsbad, CA). All quantitative real-time PCR (qRT-PCR) reactions were performed

on a 7500 Real-Time PCR system from Applied Biosystems. Each treatment group

consisted of three biological replicates. qRT-PCR analysis for each biological repli-

cate was performed in triplicate, and the Ct values obtained were normalized to the

18s housekeeping gene. Validated gene expression assays from Applied Biosystems
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were employed to carry out the mRNA expression profiling. The following gene ex-

pression assays were used: vegfa (Hs00900055 m1); ccl2 (Hs00234140 m1); and 18s

(Hs99999901 s1). Thermal cycling conditions were as follows: 50 ◦C for 2 minutes,

95 ◦C for 10 minutes, followed by 40 cycles of 95 ◦C for 15 seconds and 60 ◦C for 10

minutes.

5.1.3 Results

Identification of biological processes with expression patterns resembling

MWCNT-induced inflammation or fibrosis pathology

The MEGPath system was used to identify genes and biological processes with tran-

scriptional activities, which matched the observed pathological patterns of lung in-

flammation or fibrotic collagen in the alveolar wall in the MWCNT-exposed mice.

The Gene Identification step found 2,996 unique probes which were significantly up-

regulated or down-regulated using Significance Analysis of Microarrays (SAM) or a

linear model showing significant dose-response or dose and time interactions. Using

this set of 2,996 genes, quantitative BAL and pathological data of MWCNT-induced

inflammation or quantitative morphometric analysis of fibrosis were used as input pat-

terns to find gene coefficients for reconstruction of the gene expression. Specifically,

results for three sets of data were found, two sets relating to fibrosis (morphometri-

cally determined changes in collagen within the alveolar wall) [83] and one relating

to inflammation (BAL) [96]. Pathology data for fibrosis at dose 80µg across the four

time points was fitted as an input pattern. The computational system found 69 total

significant leading sets, the subset of genes that was used to compute the Functional

Process Evaluation (FPE) score, representing the level of correlation with the fibrosis

morphometric data for each biological process in the databases. Morphometric data
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for fibrosis occurring on day 56 across four doses was fit in the computational system

with 85 significant leading sets found. Lastly, inflammation BAL scores at dose 40 µg

across four time points was used, and 111 leading sets were found to be significantly

correlated with the inflammation pattern.

Example results for each of the pathology data are shown in Figure 5.1. The

average of the mRNA expression of genes in the leading set closely resembled the

pathology data, indicating that in general, the transcriptional activities of the lead-

ing set genes correlated with changes in the pathology. The leading set Reactome

Hemostsasis (Figure 5.1E) was found in the C2 Canonical Pathways database and

consisted of 147 genes. The leading sets of Immune System Process (Figure 5.1C)

and Response To External Stimulus (Figure 5.1F) were found in the C5 database

and consisted of 163 genes and 103 genes. Ccl2 (Figure 5.1A) was contained in the

leading set of Immune System Process. Although the ccl2 expression does not exactly

follow the pattern, the average of all gene expression in the leading set does. The

same can be seen for vegfa (Figure 5.1B). Importantly, our computational system

does not constrain genes to being in only one leading set, allowing for genes to be

involved in multiple processes. For instance, ccl2 was found to be involved in both

MWNCT-induced fibrosis (Figure 5.1F) and inflammation (Figure 5.1D).

Determination of genes functionally involved in inflammation and fibrosis

To determine which genes were significantly altered in response to MWCNT expo-

sure, leading set genes which attained a fold change of 1.5-fold or greater were input

into IPA to determine if they were functionally involved in inflammation or fibrosis

according to currently accepted literature.

The inflammation and fibrosis biological processes consisted of 773 and 890 unique

genes, respectively, identified to be significantly altered (≥ 1.5 fold change) after
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Figure 5.1: Three leading sets found to be significant in a search of the C5 and C2
Canonical Pathway databases using pathological data. Computations were based on
the observed experimental data points only; lines have been added to emphasize the
patterns used in the computational system. For each pathway, (D) Immune System
Process , (E) Reactome Hemostasis, and (F) Response to External Stimulus, the
average of all the genes in the leading set shows strong similarity to the pathology
data. Expression fold change values are shown for ccl2, which was found in the leading
sets in (D) and (F), at (C) day 56 and (A) dose 40. Vegfa, found in the leading set
from (E), fold change is shown in (B).
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MWCNT exposure (significant inflammation) with a false discovery rate (FDR) of

1% in SAM analysis. Of the 773 significant inflammation genes, 67 were determined to

be directly involved in inflammation by IPA (Table 5.2). Of the 890 significant fibrosis

genes, 69 were determined to be directly involved in fibrosis by IPA (Table 5.1).

A heat map of gene expression for the 67 significant inflammation genes (Fig-

ure 5.2) suggested the up- and down-regulation of multiple genes in response to

MWCNT exposure. Expression of c3ar1, fcgr2b, pbk, pla2g10, il2ra, il1rn, ptgs1,

cd14, igf1, ccl2, ccl4, il1b, pla2g7, tnfrsf4, ghrl, slc11a1, tnfaip3, cd44, adora2b, gja1,

tnf, ptgs2, junb, cd86, cyba, fcer1g, ripk3, and socs1 was up-regulated on all days

at almost all doses. Expression of itgb2, icos, il12b, ctss, ctsd, cd48, and il21r was

down-regulated at day 1 but increased in expression at almost all doses on days 7 and

28 and all doses on day 56. Expression of fn1, osm, selp, thbs1, pgf, tnfsf9, adora3,

il23a, myd88, il1r1, sod2, cebpb, and nfkbia was up-regulated at all doses on day 1

with a decrease in expression over time and down-regulation at most doses on day 56.

Spp1 was highly up-regulated on all days, particularly at doses 40 and 80µg, while

il6 was highly up-regulated on Day 1 and had a sustained increase in expression over

time. Expression of ptger3, ikbkg, cxcl12, ccl5, tnfsf10, card11, il24, mc2r, cort, mmp9,

vcam1, agt, sphk1, app, egfr, and abcc1 was down-regulated across all days at most

doses.

Of the 69 significant fibrosis genes (Figure 5.3), il1rn, lgals3, pla2g10, ccl17,

adra2a, cxcl12, fcgr2b, s100a4, igf1, mx1, ccl8, arg1, mmp13, il1b, sele, hpx, timp1,

ccl2, adora2b, hmgcr, hmgcs1, tnfaip3, tnfrsf1b, adora3, c3, tnf, tpgs2, and hif1a were

up-regulated on all days at almost all doses. Expression of il12b, flt3, mdk, adora1,

and il2ra was decreased on day 1 but increased over time, while expression of pdpn,

myd88, il1r1, cebpb, mmp14, fn1, socs1, irf7, selp, osm, thbs1, oas2, ptgir, and sstr4

was increased on day 1 and decreased over time. Il6, cxcl10, ccr1, and mmp12 were

71



highly expressed on day 1 and remained up-regulated over time, while fas, smad4,

vegfa, eif2c1, epha2, ptk2, gsk3b, proc, f11, lyve1, pde3a, ednrb, bdkrb2, actc1, bmpr2,

and smurf2 were down-regulated across all days at almost all doses.
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Figure 5.2: Heatmap representation of genes significantly altered above 1.5-fold with
an FDR of 1% in SAM analysis in inflammation. In vivo gene expression of 67
significant inflammation genes across days 1, 7, 28 and 56 at doses 10, 20, 40, and
80 µg.

Using IPA and these 67 inflammation genes and 69 fibrosis genes, we determined

those genes which were significantly involved in IPA Function and Disease Annota-

tions associated with MWCNT-induced fibrosis. A recent report by Mishra et al. [84]
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Figure 5.3: Heatmap representation of genes significantly altered above 1.5-fold with
an FDR of 1% in SAM analysis in fibrosis. In vivo gene expression of 69 significant
fibrosis genes across days 1, 7, 28 and 56 at doses 10, 20, 40, and 80 µg
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determined that low, physiologically relevant doses of MWCNT equivalent to those in

our mouse study could significantly elevate the levels of transforming growth factor β

(tgf-β) and matrix metalloproteinase-9 (mmp-9 ) in lung epithelial cells, as well as in-

crease mechanisms of collagen production and cellular activation. Therefore, we used

IPA to determine which genes in our significant inflammation and fibrosis gene sets

were involved in these processes (Tables 5.1 and 5.2). Many inflammation genes were

involved in general cell activation by functional association with the IPA function and

disease annotations, including Cell Movement, Proliferation of Cells, and Morphology

of Cells. Genes found in the significant inflammation set were also involved in the

function and disease annotations, including Injury of Lung (ccl2, cd14, il6, il1r1, olr1,

ptgs1, ptgs2, selp, sphk1, and tnf ), Degradation of Connective Tissue (fn1, il6, il1b,

il1rn, osm, ptgs1, ptgs2, and tnf ), as well as the signaling pathway vegf Signaling

(pgf ). No significant inflammatory genes were found in the tgf-β signaling pathway

according to IPA. Many fibrosis genes were also involved in the general cell activa-

tion function and disease annotations, such as Cell Movement, Proliferation of cells,

and Morphology of Cells. Several genes in the significant fibrosis set were involved

in the function and disease annotations, including Injury of Lung (adra2a, c3, ccl2,

hif1a, il5, il6, il1r1, mmp12, ptgs2, selp, tnf, and vegfa), Degradation of Connective

Tissue (fcgr2b,fn1,il6, il1b, il1rn, mmp13, osm, ptgir, tnf, and tnfrsf1b), as well as

the signaling pathway vegf Signaling (actc1, hif1a, ptk2, and vegfa). Interestingly,

three genes in the significant fibrosis set, bmpr2, smad4, and smurf2, were involved in

the IPA tgf-β Signaling pathway, again suggesting that tgf-β signaling may play an

important role in the progression of fibrosis and that the computational system was

efficient in determining those biological processes which were functionally related to

MWCNT-induced inflammation and fibrosis. An additional analysis of the significant

inflammation (Figure 5.4) and fibrosis (Figure 5.5) genes by IPA determined those
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genes that have been experimentally shown to have an interaction specifically in the

lung.

Figure 5.4: IPA analysis of the 67 significant inflammation genes to determine those
interactions, which specifically occur in the lung.

5.1.4 Vegfa and ccl2 in vivo and in vitro RNA expression

The 67 inflammation genes and 69 fibrosis genes were ranked by their frequency of

inclusion in the biological processes significantly correlated with the pathological data

(Figure 5.6). Two genes, ccl2 and vegfa, were selected for in vitro validation. Ccl2

was the top ranked gene that was involved in the most biological processes correlated

with the inflammation and among the top 20 genes involved in the most biological

processes correlated with the fibrosis. Consistently, in the IPA lung interaction net-
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Figure 5.5: IPA analysis of the 69 significant fibrosis genes to determine those inter-
actions, which specifically occur in the lung.

works (Figure 5.4 and 5.5), ccl2 is in a hub that interacts with both tnf and il1β

hubs in the inflammation and fibrosis networks. Vegfa was found to be functionally

associated with the fibrosis leading set and is integral in the formation of new blood

vessels [38].

Neovascularization is necessary for the formation of fibrotic tissue, and vegf has

been suggested as a serum biomarker for ranking the severity of idiopathic pulmonary

fibrosis [108, 118, 3]. In a separate study, angiogenesis was observed after MWCNT

exposure in human endothelial cells and in a coculture of both human epithelial and

endothelial cells following epithelial exposure [107]. Based on these results, ccl2 and

vegfa were analyzed for their in vitro mRNA and protein expression levels following

MWCNT exposure to validate the in vivo analysis.
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Figure 5.6: (A) Ranking of significant fibrosis genes by their frequency of appearance
in biological processes significantly correlated with histopathological data. (B) Rank-
ing of significant inflammation genes by their frequency of appearance in biological
processes significantly correlated with histopathological data.
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In vivo mRNA levels of vegfa showed stable expression levels across all days and

doses with a significant decrease in expression on day 56 at dose 40µg (Figure 5.1B)

and closely resembled the time-course of the morphometric collagen score data and

leading set average of the biological process Reactome Hemostasis (Figure 5.1E). Ccl2

showed a consistent dose-dependent increase in mRNA expression on all days with

significant increases at all doses on day 1, doses 20, 40, and 80 µg on day 7 and doses

40 and 80 µg on day 56 (Figure 5.1C). Ccl2 in vivo mRNA expression data closely

resembled the fibrosis day 56 dose-response morphometric analysis and leading set

average of biological process Response to External Stimulus (Figure 5.1F) and was

similar to the inflammation BAL pattern and leading set average for Immune System

Process (Figure 5.1D).

To assess the ability of MWCNT to induce similar RNA expression changes in

vitro, SAEC were exposed to MWCNT at either 1 µg/ml (approximately equivalent

to the in vivo dose of 20-40 µg [96]) or 2.5µg/ml (approximately equivalent to the

in vivo dose of 80 µg [96]) for 24 hours, and their mRNA expression levels analyzed.

MWCNT exposure at both 1 µg/ml and 2.5µg/ml exposure levels induced modest but

significant increases in vegfa mRNA expression in vitro in a dose-dependent manner.

MWCNT exposure at both 1 µg/ml and 2.5 µg/ml levels induced an increase in ccl2

mRNA expression with a significant increase at 1 µg/ml.

5.1.5 Vegfa and ccl2 in vitro protein expression

To determine if the change in in vitro mRNA expression levels after exposure to

MWCNT resulted in an increase in protein expression, conditioned media from cells

exposed to either 1 µg/ml or 2.5 µg/ml MWCNT for 24 h was collected and analyzed

by ELISA for vegfa and ccl2 protein expression. Vegfa showed significant increases
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in protein expression levels over control after 24 h of MWCNT exposure. Ccl2 also

showed significant increases in protein expression levels after 24 h of exposure. This

demonstrated that the increase in mRNA expression levels of vegfa and ccl2 after

MWCNT exposure in vitro resulted in a concordant increase in protein expression

and indicated that a similar increase may occur after in vivo exposure.

5.1.6 Discussion

Using a novel computational system, the correlation of global mRNA expression pro-

files to the changes in BAL score and morphometric analysis was analyzed. This iden-

tified transcription-related biological processes with expression patterns resembling

the pathological patterns of inflammation and fibrosis in MWCNT-exposed mice, al-

lowing for the identification of critical toxicity pathways and potential mechanisms for

intervention. The results showed that this systematic analysis could identify relevant

genes and pathways in MWCNT-induced lung injury from in vivo studies, which were

further validated in in vitro experiments.

The use of IPA to determine if genes significantly altered in the leading sets were

involved in inflammation or fibrosis allowed for an in depth analysis based upon data

derived from relationships between genes and disease states taken from the currently

accepted literature knowledge base. These analyses were rooted in and verified by ex-

perimental results collated from numerous sources. A total of 67 significantly altered

genes were determined by IPA to be directly involved in the inflammatory process

while 69 significantly altered genes were determine by IPA to be directly involved in

fibrosis. Of the significantly altered genes, two genes, ccl2 and vegfa, were chosen to

determine their in vivo and in vitro expression levels due to their roles in the cell

during the development of inflammation and fibrosis as well as their rankings during
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gene profiling.

The dose-dependent increase in ccl2 mRNA expression at all days and doses in

vivo suggests its role in the initial inflammatory process. Although the in vivo mRNA

levels of vegfa remained relatively constant across all days and doses, the in vivo

protein levels are unknown and may enhance collagen production. In vitro levels of

ccl2 and vegfa mRNA also increased with increasing dose, reflecting what is seen in

the in vivo analysis. In vitro analysis of the protein levels of ccl2 and vegfa suggests

that even modest increases in mRNA levels were able to significantly up-regulate

protein expression, and a similar increase in protein expression may occur in vivo.

The analogous changes to vegfa mRNA levels in vitro, with subsequent increases in

protein levels, suggest that MWCNT may have a similar effect in vitro to that seen in

vivo. This may allow for potentially significant cellular processes to be identified by

computational means and for the analysis of the mechanisms and signaling cascades

behind MWCNT-induced effects to be validated in an in vitro manner.

5.2 Integrated mRNA and miRNA Analysis

mRNA significantly associated with MWCNT-induced inflammatory and fibrotic patho-

logical patterns and functionally involved in lung inflammation and fibrosis in IPA

analysis were used to identify miRNA targets and mRNA/miRNA regulatory net-

works. There were two sets of miRNA used in the analysis. One set consists of

miRNA that were significantly changed after MWCNT exposure and found by IPA

to be functionally involved in inflammation and fibrosis. The second set of miRNA

were associated with the pathological patterns [35]. Both sets were used in the in-

tegrated miRNA/mRNA analysis. Potential mRNA targets of significant miRNA

were identified using the miRTarBase [56], miRecords [131], and TargetScan [73]
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databases. To be considered as a potential mRNA/miRNA target pair, the expres-

sion profiles of each mRNA/miRNA pair needed to have a differing second derivative

in at least one time point, indicating a divergence in expression during miRNA reg-

ulated post-transcriptional activities. The integrated pathways of identified miRNAs

and mRNAs were then analyzed and visualized with IPA. The results are provided

in Tables 5.3-5.5, listing miRNA/mRNA regulations identified through our analysis

that were either experimentally confirmed (Column 3 in Tables 5.3-5.5) or predicted

as highly conserved target pairs (Column 4 in Tables 5.3-5.5). In comparison, the

miRNA-mediated regulations retrieved from the IPA database are listed in the last

column in Tables 5.3-5.5. It is worth noting that the regulations stored in the IPA

database may or may not overlap with the results identified with our algorithms.

5.2.1 Inflammation pathology

In total, 16 miRNA were associated with the inflammatory pathology, five of which

(mir-147-3p, mir-188-5p, mir-327, mir-449a-5p, and mir-696 ) were significantly up-

or down-regulated after MWCNT exposure. Four miRNAs, mir-147-3p, mir-449a-

5p, mir-494-3p, and mir-92a-2-5p, had predicted or experimentally confirmed mRNA

targets that were also associated with the inflammatory pathology (Table 5.4). The

integrated inflammation pathway based upon miRNAs and mRNAs in Table 5.4 is

shown in Figure 5.7. The identified relationships highlighted with a red solid/dash

line were not available in the IPA database. Specifically, a regulatory relationship

between mir-147-3p and vegfa identified in our analysis was experimentally confirmed

[135] (designated as a solid red line in Figure 5.7). Our analysis also predicted highly

conserved target pairs between mir-92a-2-5p and mcl1 and wnt5a (dashed red lines in

Figure 5.7). The gene expression direction (up- or down-regulation relative to control)
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Table 5.3: miRNAs associated with the fibrotic pathology and their experimentally
confirmed and predicted mRNA binding partners. Significantly changed miRNAs are
highlighted in bold.

miRNA Experimentally TargetScan IPA
Confirmed Predicted Relationships

(miRTarBase, (highly conserved)
miRecords)

let-7c-5p AGO1 [53], IL6, RGS16, FAS, HBEGF,
PTK2 [53] TNFAIP3, IL6 [112], RGS16,

TNFRSF1B TNFRSF1B

miR-205-5p VEGFA [135] IL1R1, PTX3 IL1R1, SMAD4

miR-23b-3p SMAD4 [99] EDNRB, FAS, FAS, IL11,
GSK3B, IL11 GSK3B,

TNFAIP3

miR-31-5p HIF1A [104], HBEGF EDNRB, IL1R1
SELE [109] HBEGF

miR-326-3p AGO1 [53] RASSF1 RASSF1,
TNFAIP3

miR-328-3p AGO1 [53] TNFRSF1B

miR-330-3p AGO1 [53], RASSF1 BMPR2
VEGFA [135]

miR-34c-3p PDGFRA,
SERPINE1,
SMAD4

miR-375-3p KCNN4 [124] BMPR2, EDNRB, BMPR2,
RGS16 RGS16

miR-455-3p AGO1 [53]

miR-652-3p AGO1 [53]

miR-92b-3p BMPR2 [15], EDNRB
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Table 5.4: miRNA associated with the inflammatory pathology and their experimen-
tally confirmed and predicted mRNA binding partners. Significantly changed miRNA
are highlighted in bold.

miRNA Experimentally TargetScan IPA
Confirmed Predicted Relationships

(miRTarBase, (highly conserved)
miRecords)

miR-1224-5p

miR-147-3p VEGFA [135]

miR-188-5p

miR-290a-5p

miR-327

miR-3474

miR-380-3p

miR-449a-5p GNAI2,
SERPINE1

miR-494-3p TNFRSF9 SERPINE1,
WNT5A

miR-551b-3p

miR-667-3p

miR-696

miR-703

miR-877-5p

miR-881-5p

miR-92a-2-5p MCL1, WNT5A
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at doses 10, 20, 40 or 80 µg MWCNT on post-exposure Day 7 are shown for each

mRNA and miRNA. This time point was chosen because quantitative bronchoalveolar

lavage scores from post-exposure Day 7 [83, 96] were the peak of the inflammation

pathology.

Figure 5.7: Regulatory network of mRNAs and miRNAs transcriptionally related to
the dose 40 post-exposure bronchoalveolar lavage inflammatory pathological pattern.

5.2.2 Fibrosis pathology

Among the 12 miRNAs associated with the fibrotic patterns, two miRNAs (mir-31-5p

andmir-328-3p) were significantly (FDR< 5 %; SAM analysis) up- or down-regulated

after MWCNT exposure (Table 5.3). All 12 miRNAs had at least one mRNA tar-

get as based upon the miRTarBase, miRecords, TargetScan, or IPA databases (Ta-

ble 5.3). The integrated fibrotic pathway based upon miRNAs and mRNAs in Ta-

ble 5.3 is shown in Figure 5.8. In addition to the functional relationships found by
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IPA, our system identified experimentally confirmed regulations between ago1 and

let-7c-5p, mir-455-3p, mir-652-3p, mir-326-3p, mir-328-3p, and mir-330-3p [53] and

between vegfa and mir-330-3p [135]. Our system predicted highly conserved target

pairs between ednrb and mir-375-3p and mir-23b-3p; rassf1 and mir-330-3p; and

mir-34c-3p and pdgfr, smad4, and serpine1. The gene expression direction (up- or

down-regulation relative to control) at doses 10, 20, 40 or 80 µg MWCNT at post-

exposure Day 56 are shown for each mRNA and miRNA. This time point was chosen

because quantitative morphometric analysis of Sirius Red staining for collagen at Day

56 [83] were the peak of the fibrosis pathology.

Figure 5.8: Regulatory network of mRNAs and miRNAs transcriptionally related to
the dose 80 Sirius Red staining fibrotic pathological pattern.
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5.2.3 Ingenuity Pathway Analysis

Next, we used the set of mRNAs associated with the MWCNT-induced fibrotic patho-

logical patterns and functionally involved with fibrosis in IPA analysis to identify their

miRNA regulators. A total of 10 miRNAs were identified as potentially involved in

MWCNT-induced fibrosis (Table 5.5). Among them, seven miRNAs (mir-125b-5p,

mir-126a-3p, mir-16-5p, mir-199a-5p, mir-21-5p, mir-30c-5p, and mir-322 ) had a sig-

nificant (FDR < 5 %; SAM analysis) expression change after MWNCT exposure. All

10 miRNAs had at least one mRNA target based upon the miRTarBase, miRecords,

TargetScan, or IPA databases. The integrated fibrotic pathway for the miRNAs and

mRNAs listed in Table 5.3 is shown in Figure 5.9. In addition to the functional re-

lationships retrieved with IPA, our analysis identified numerous post-transcriptional

regulations that have been previously experimentally confirmed, including regulatory

relationships between mir-125-5p and il1rn [54], tnf [122], tnfaip3 [68], and mmp13

[132]; mir-126a-3p and vegfa [144]; mir-18a-3p and hif1a [50], smad4 [29], and hmgcs1

[50]; mir-26a-5p and egr1 [21], smad4 [30], gsk3b [87], il6 [134], ago1 [53]; mir-21a-5p

and fas [100], bmpr2 [94], egfr [143], plat, ptx3, tnfaip3, ccr1 [117], vegfa [79], mmp9

[89], ptk2 , arid4a [43], among many others listed in Table 5.5 (highlighted with solid

red lines in Figure 5.9). Our analysis predicted highly conserved target pairs between

mir-18a-3p and igf1 and tnfaip3 ; mir-322-5p and ptgs2, vegfa, kcnn4, cxcl1, and

smurf2 ; mir-30c-5p and ednrb; and mir-26a-5p and ptx3 (designated by dashed red

lines in Figure 5.9). The gene expression direction (up- or down-regulation relative

to control) at doses 10, 20, 40, or 80 µg MWCNT at post-exposure Day 56 are shown

for mRNAs and miRNAs in Figure 5.9.

These results indicate that our algorithms could identify miRNA-mediated post-

transcriptional regulations in MWCNT-treated mice, either experimentally confirmed

86



Table 5.5: miRNAs associated with fibrosis based upon IPA analysis and their ex-
perimentally confirmed and predicted mRNA binding partners. Significantly changed
miRNAs are highlighted in bold.

miRNA Experimentally TargetScan IPA
Confirmed Predicted Relationships

(miRTarBase, (highly conserved)
miRecords)

miR-125-5p IL1RN [54], BMPR2, SMAD4, BMPR2, SMAD4,
MMP13 [132], TNFRSF1B, TNFRSF1B
TNF [122], VEGFA , TNFRSF1B
TNFAIP3 [68]

miR-126a-3p VEGFA [144]

miR-141-3p CSF3 EGFR, HMGCS1,
TNFAIP3

miR-16-5p EGFR [103], KNCC4 [103], CXCL1 AGO1, IGF1,
SMURF2 [14], PTGS2 [103]
VIM [103], VEGFA

miR-18a-5p HIF1A [50], IGF1,
HMGCS1 [50], TNFAIP3
SMAD4 [29]

miR-199a-5p HIF1A [98], SMAD4 [142] GSK3B, VEGFA, AGO1, EDNRB,
SERPINE1 GSK3B, VEGFA,

SERPINE1

miR-21-5p ARID4A [43],CCR1 [117], SMURF2,
BMPR2 [94], EGFR [143], TNF [140]
MMP9 [89], PLAT [117],
PTK2 [43], PTX3 [117],
FAS [100], VEGFA [79],
TNFAIP3 [117]

miR-26a-5p AGO1 [53], EGR1 [21] MMP14, PTGS2, IGF1
GSK3B [87],IL6 [134] PTX3
SMAD4 [30]

miR-30c-5p AGO1 [53], ARID4A, ARID4A
SOCS1 [141], ACTC1, IGF1 ACTC1, IGF1,
VIM [14] EDNRB, IGF1 SERPINE1

mir-322 CX3CL1, KCNN4,
PTGS2, VEGFA,
SMURF2
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Figure 5.9: Regulatory network of mRNAs transcriptionally related to the dose 80 Sir-
ius Red staining fibrotic pathological pattern and miRNAs experimentally validated
to be involved in fibrosis according to the Ingenuity R⃝Knowledge Base.

interactions or highly conserved target pair predictions, many of which were not avail-

able in the Ingenuity R⃝Knowledge Base. The identified miRNAs and mRNAs were

significantly associated with MWCNT-induced pathological patterns and/or signifi-

cantly up- or down-regulated in the mouse lung following MWCNT exposure, indicat-

ing their potential involvement in pathogenesis and utility as biomarkers for disease.

The integrated pathway analysis of miRNA and mRNA and the revealing of their

regulatory interactions further elucidated their functional roles in molecular disease

mechanisms.
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5.2.4 Potential Signaling Pathways in MWCNT-induced Lung

Inflammation and Fibrosis

To determine signaling pathways potentially involved in the inflammatory and fi-

brotic pathological responses to MWCNT exposure, all functionally related mRNAs

and miRNAs were analyzed by IPA using a Core Analysis. The top five canon-

ical pathways significant to the mRNAs and miRNAs found in the integrated in-

flammation analysis (Table 5.4) were Axonal Guidance Signaling, IL-6 Signaling,

Corticotropin Releasing Hormone Signaling, Ovarian Cancer Signaling, and Hepatic

Fibrosis/Hepatic Stellate Cell Activation. The top five canonical pathways signifi-

cant to the mRNAs and miRNA found in the integrated fibrosis analysis using the

NMF algorithm (Table 5.3) were Hepatic Fibrosis/Hepatic Stellate Cell Activation;

Role of Osteoblasts, Osteoclasts, and Chondrocytes in Rheumatoid Arthritis; NF-κB

Signaling; Role of Macrophages, Fibroblasts, and Endothelial Cells in Rheumatoid

Arthritis; and HMGB1 Signaling. The top five canonical pathways significant to the

mRNAs and miRNAs found in the integrated fibrosis (IPA) analysis (Table 5.5) were

Hepatic Fibrosis/Hepatic Stellate Cell Activation; Role of Osteoblasts, Osteoclasts,

and Chondrocytes in Rheumatoid Arthritis; Colorectal Cancer Metastasis Signaling;

ILK Signaling; and Granulocyte Adhesion and Diapedesis. These results suggest that

the miRNA and mRNA regulatory networks identified in our analysis are reflective

of the inflammatory response and tissue remodeling biological processes during the

onset and progression of fibrosis following MWCNT exposure.

5.2.5 Discussion

After we used the second derivative analysis of expression profiles to identify po-

tential regulatory miRNA/mRNA pairs, mRNA and miRNA functional relationships
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were assessed through the Ingenuity R⃝Knowledge Base, as well as by the miRTarBase

[56], miRecords [131], and TargetScan [73] databases. The Ingenuity R⃝Knowledge

Base is based upon the collated findings of patient phenotypes and disease, cellu-

lar, molecular, and sequence mechanisms, and all connections between miRNAs and

mRNAs are supported by at least one reference in the scientific literature. The Tar-

getScan database provided predicted regulatory mRNA/miRNA pairs, whereas both

miRTarBase and miRecords provided a mix of published, experimentally validated,

and predicted mRNA and miRNA pairings. In our analysis, only those binding re-

lationships considered to be highly conserved by TargetScan were considered to be

predicted targets in our analysis (Tables 5.45.5). IPA considers all relationships,

both highly and poorly conserved; therefore, additional predicated relationships were

found through the TargetScan database using IPA that were not identified through

our second derivative analysis. It is worth noting that vegfa was experimentally con-

firmed in the fibrosis analysis to be an experimentally confirmed target of the tumor

suppressor miRNA mir-205-5p [130] and the oncogenic miRNA mir-330-3p [135]. In

our previous study, vegfa was predicted to be involved in both MWCNT-induced

lung inflammation and fibrosis using both in vivo and in vitro mRNA and protein

assays [37]. The interactions with these potential miRNA regulators could provide

new insights into post-transcriptional regulatory mechanisms involved in MWCNT-

induced lung angiogenesis, inflammation, and fibrosis. In addition, mir-23b-3p was

experimentally confirmed as regulator of smad4 [99], and mir-34c-3p was identified

as a potential regulator of smad4 in MWCNT-induced fibrosis (Table 5.3), revealing

potential involvement of the tgf-β signaling pathway.

The regulatory networks of mRNA and miRNA determined by both IPA analysis

and predicted binding due to sequence similarity in this study give a detailed view of

potential regulatory networks and signaling pathways involved in MWCNT-induced
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inflammation and fibrosis. Core analysis of the significant integrated inflammatory

mRNA and miRNA detected pathways involved cytoskeletal remodeling, acute-phase

and stress responses, cell adhesion and growth, and the accumulation of ECM pro-

teins. Core analysis of the integrated fibrotic mRNA and miRNA (both NFM and

IPA) detected pathways involved in the accumulation of ECM protein, chronic in-

flammation, innate and acquired immunity, cellular transcription and metastasis,

integrin/ECM signaling, and leukocyte migration, suggesting that the miRNA and

mRNA regulatory networks determined by our analysis are reflective of the inflam-

matory response and tissue remodeling that takes place during MWCNT exposure

and the onset of fibrosis.

5.3 Publications

The work described in this chapter has been published in two journal manuscripts

both as joint first author with Dr. Brandi Synder-Talkington.

J. Dymacek, B. N. Snyder-Talkington, D. W. Porter, M. G. Wolfarth, R. R.
Mercer, M. Pacurari, J. Denvir, V. Castranova, Y. Qian, and N. L. Guo. System based
identification of toxicity pathways associated with multi-walled carbon nanotube-
induced pathological responses. Toxicol Appl Pharmacol, 272(2):476 89, Oct 2013.

J. Dymacek, B. N. Snyder-Talkington, D. W. Porter, R. R. Mercer, M. G. Wol-
farth, V. Castranova, Y. Qian, and N. L. Guo. mrna and mirna regulatory networks
reflective of multi-walled carbon nanotube-induced lung inflammatory and fibrotic
pathologies in mice. Toxicol Sci, Dec 2014.
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Chapter 6

Summary and Future Work

6.1 Summary

This research focuses on developing algorithms to identify genes that are function-

ally related to our bodies’ response to disease. As genomic medical research evolves,

we continue to explore whether genes can predict disease or prescribe a cure. By

identifying gene response to certain stimuli, it may be possible to develop a standard

method for early prognosis of a disease and personalized treatment. Potential appli-

cations include early detection of lung disease in factory workers, early detection of

lung cancer, or early prognosis of chemotherapy drug treatment.

This thesis outlines a computational system for finding novel hypotheses about

involvement of diseases, processes, and functions from a combination of pathologi-

cal data, gene annotations, miRNA/mRNA regulatory information, and time series

dose response microarray data. The use of matrix factorization, optimization, and

randomized algorithms allows the computational system to reduce calculations from

days to hours while still running on a standard laptop. This research is a small step

towards successful personalized medicine.
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Analyzing time series microarray data is a difficult task; however, temporal in-

formation is useful for discovering functional mechanisms and causal relationships.

My system utilizes a non-negative matrix factorization (NMF) algorithm for extract-

ing underlying basis patterns in the gene expression data. These patterns represent

underlying functions guiding gene response. The patterns are then related to prior

biological knowledge in the form of known annotated pathways and relationships

between genes. The NMF algorithm incorporates pathological data and discovers

related sets of genes which are significantly correlated to the pathology.

This algorithm finds biologically relevant pathways and genes with and without

pathological information. It has been used on genome-wide expression profiles of

mouse lungs following aspiration of well dispersed multi-walled carbon nanotubes

(MWCNT), and has detected MWCNT-induced lung inflammation, lung fibrosis,

and related pathways. The identified significant pathways and genes are supported

by evidence in the literature and by biological validation (both in vitro and in vivo).

MWCNT are an important class of engineered nano-materials with broad applica-

tions in many industries [91]. Concerns over potential MWCNT-induced toxicity have

emerged, particularly due to the structural similarity between asbestos and MWCNT

[31]. Previous studies have shown that MWCNT induce lung damage, including in-

flammatory granulomas and substantial interstitial lung fibrosis [83, 96]. Pulmonary

fibrosis has a poor clinical outcome [13, 40] and may be a potential precursor to lung

cancer [137]. However, there are no clinically applicable biomarkers for early detec-

tion and no effective treatment for pulmonary fibrosis due to its late diagnosis and

poorly understood molecular mechanisms for initiation [55, 127].

Recently, there is emerging interest in exploring miRNAs as potential therapeutic

targets and biomarkers for diagnosis and prognosis. Advantages of miRNA biomark-

ers include their presence in various bodily fluids [18, 85] and greater stability in
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prepared tissue samples, including formalin fixation, relative to mRNA [62]. The use

of miRNA markers in the selection of appropriate treatments has the possibility for

improving patient outcomes by determining the best application of existing drugs.

Additionally, identifying miRNA biomarkers may aid in the development of novel

treatments through the elucidation of new pathways [7, 61]. Our computational sys-

tem could aid in the process of identifying miRNA biomarkers and in practice has

helped identify several miRNA for further studies.

Results from this system were used as preliminary findings in a successful NIH

R01 grant application. (“Systematic assessment of multi-walled carbon nanotubes in

pulmonary disease” 1R01ES021764-01 Guo (PI) NIEHS/NHLBI $1,665,000)

Articles

J. Dymacek and N. L. Guo. Systems approach to identifying relevant pathways from
phenotype information in dose-dependent time series microarray data. In Proceed-
ings of the 2011 IEEE International Conference on Bioinformatics and Biomedicine,
BIBM ’11, pages 290293, Atlanta, GA, USA, 2011. IEEE Computer Society.

J. Dymacek and N. L. Guo. Integrated mirna and mrna analysis of time series
microarray data. In Proceedings of the 5th ACM Conference on Bioinformatics, Com-
putational Biology, and Health Informatics, BCB ’14, pages 122127, Newport Beach,
CA, USA, 2014. ACM.

J. Dymacek, B. N. Snyder-Talkington, D. W. Porter, M. G. Wolfarth, R. R.
Mercer, M. Pacurari, J. Denvir, V. Castranova, Y. Qian, and N. L. Guo. System based
identification of toxicity pathways associated with multi-walled carbon nanotube-
induced pathological responses. Toxicol Appl Pharmacol, 272(2):476 89, Oct 2013.

J. Dymacek, B. N. Snyder-Talkington, D. W. Porter, R. R. Mercer, M. G. Wol-
farth, V. Castranova, Y. Qian, and N. L. Guo. mrna and mirna regulatory networks
reflective of multi-walled carbon nanotube-induced lung inflammatory and fibrotic
pathologies in mice. Toxicol Sci, Dec 2014.
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Dymacek, Julian et al. Identifying Significant Biological Processes from Pathological
Information and mRNA Microarray Data. Poster at 27th Annual Meeting of the
Allegheny-Erie Society of Toxicology. 2013.

Support

NSF, “IGERT: Research and Education in Nanotoxicity” training grant, 2012-2014
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tion” training grant, 2011-2012

6.2 Limitations

The MEGPath system is not suited for modeling experimental data from experiments

with less than three conditions. The system runs in O(n∗m3) time for n genes and m

conditions meaning it is not ideal for experiments with high numbers of conditions.

Also, unlike parametric systems, no information can be implied from unobserved ex-

perimental conditions. While the system suggests that two doses may behave the

same, it can make no claim about unobserved middle doses. The system also de-

pends on curated gene sets, which depending on granularity, may be too general.

The use of second derivatives in the miRNA analysis detects rudimentary regulatory

relationships but implies a linear relationship over time or doses.

6.3 Future Work

Time Series Data Across Experiments

My collaborators at the National Institute of Occupational Safety and Health have

recently completed a year long MWCNT lung exposure experiment. This current ex-
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periment is a logical successor to the 56 day experiment I have worked on. Combining

microarray data from both experiments will provide a new, longer term data set use-

ful for the community at large. Unfortunately, changes in microarray technology and

slight experimental differences make a straight forward combination difficult.

Gold Standard Data Set

A new mock “gold” standard data set would be useful for future exploration and

comparison of similar systems. The new data set would need to have underlying

functions influencing genes and underlying networks connecting genes. In addition

the networks would need to be described as gene sets.

Better miRNA Integration

miRNA are a regulatory mechanism of mRNA. An integrated analysis of miRNA

and the mRNA targets provides a deeper understanding of the biological mechanisms

of disease response. There is the potential to relate miRNA back to the mRNA

annotated gene sets.

Distributed Implementation

A distributed implementation of the MEGPath matrix factorization algorithm can

reduce computation time from hours to minutes. There are many opportunities for

exploring distributed computing, parallel algorithms, and cloud computing. Obtain-

ing the probability density functions are trivially parallel.

Alternate Distance Measures

Currently, the Frobenius norm is used for distance calculations and for updating

the probability density functions in the MEGPath system. Possible improvements
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include the potential for limited sampling to find covariance. There is potential to

both increase accuracy and speed with direct tie-ins to a distributed implementation.

97



Bibliography

[1] C. A. Afshari, H. K. Hamadeh, and P. R. Bushel. The evolution of bioinformat-
ics in toxicology: Advancing toxicogenomics. Toxicological Sciences, 120(suppl
1):S225–S237, 2011.

[2] O. Alter, P. O. Brown, and D. Botstein. Singular value decomposition for
genome-wide expression data processing and modeling. Proc Natl Acad Sci U
S A, 97(18):10101–6, Aug 2000.

[3] M. Ando, E. Miyazaki, T. Ito, S. Hiroshige, S.-i. Nureki, T. Ueno, R. Take-
naka, T. Fukami, and T. Kumamoto. Significance of serum vascular endothe-
lial growth factor level in patients with idiopathic pulmonary fibrosis. Lung,
188(3):247–252, 2010.

[4] B. Andreopoulos, A. An, X. Wang, and M. Schroeder. A roadmap of clus-
tering algorithms: finding a match for a biomedical application. Briefings in
Bioinformatics, 10(3):297–314, 2009.

[5] I. Androulakis, E. Yang, and R. Almon. Analysis of time-series gene expression
data: Methods, challenges, and opportunities. Annual Review of Biomedical
Engineering, 9(1):205–228, 2007.

[6] M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. M. Cherry,
A. P. Davis, K. Dolinski, S. S. Dwight, J. T. Eppig, M. A. Harris, D. P. Hill,
L. Issel-Tarver, A. Kasarskis, S. Lewis, J. C. Matese, J. E. Richardson, M. Ring-
wald, G. M. Rubin, and G. Sherlock. Gene ontology: tool for the unification of
biology. The Gene Ontology Consortium. Nat. Genet., 25(1):25–29, May 2000.

[7] R. Avraham and Y. Yarden. Regulation of signalling by micrornas. Biochem
Soc Trans, 40(1):26–30, Feb 2012.

[8] D. Baek, J. Villén, C. Shin, F. D. Camargo, S. P. Gygi, and D. P. Bartel. The
impact of micrornas on protein output. Nature, 455(7209):64–71, Sep 2008.

[9] S. Banerjee, N. Xie, H. Cui, Z. Tan, S. Yang, M. Icyuz, E. Abraham, and G. Liu.
Microrna let-7c regulates macrophage polarization. J Immunol, 190(12):6542–9,
Jun 2013.

98



[10] Z. Bar-Joseph. Analyzing time series gene expression data. Bioinformatics,
20(16):2493–2503, 2004.

[11] Y. Benjamini and Y. Hochberg. Controlling the false discovery rate: a prac-
tical and powerful approach to multiple testing. J. Roy. Statist. Soc. Ser. B,
57(1):289–300, 1995.

[12] G. Bindea, B. Mlecnik, H. Hackl, P. Charoentong, M. Tosolini, A. Kirilovsky,
W.-H. Fridman, F. Pagès, Z. Trajanoski, and J. Galon. Cluego: a cytoscape
plug-in to decipher functionally grouped gene ontology and pathway annotation
networks. Bioinformatics, 25(8):1091–3, Apr 2009.

[13] J. A. Bjoraker, J. H. Ryu, M. K. Edwin, J. L. Myers, H. D. Tazelaar, D. R.
Schroeder, and K. P. Offord. Prognostic significance of histopathologic subsets
in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med, 157(1):199–203,
Jan 1998.

[14] J. Bockhorn, K. Yee, Y.-F. Chang, A. Prat, D. Huo, C. Nwachukwu, R. Dalton,
S. Huang, K. E. Swanson, C. M. Perou, O. I. Olopade, M. F. Clarke, G. L.
Greene, and H. Liu. Microrna-30c targets cytoskeleton genes involved in breast
cancer cell invasion. Breast Cancer Res Treat, 137(2):373–82, Jan 2013.

[15] M. Brock, M. Trenkmann, R. E. Gay, B. A. Michel, S. Gay, M. Fischler, S. Ul-
rich, R. Speich, and L. C. Huber. Interleukin-6 modulates the expression of
the bone morphogenic protein receptor type ii through a novel stat3-microrna
cluster 17/92 pathway. Circ Res, 104(10):1184–91, May 2009.

[16] L. D. Burgoon, Q. Ding, A. N’jai, E. Dere, A. R. Burg, J. C. Rowlands, R. A.
Budinsky, K. E. Stebbins, and T. R. Zacharewski. Automated dose-response
analysis of the relative hepatic gene expression potency of tcdf in c57bl/6 mice.
Toxicol Sci, 112(1):221–8, Nov 2009.

[17] R. Chavez-Alvarez, A. Chavoya, and A. Mendez-Vazquez. Discovery of possi-
ble gene relationships through the application of self-organizing maps to dna
microarray databases. PLoS One, 9(4):e93233, 2014.

[18] X. Chen, Z. Hu, W. Wang, Y. Ba, L. Ma, C. Zhang, C. Wang, Z. Ren, Y. Zhao,
S. Wu, R. Zhuang, Y. Zhang, H. Hu, C. Liu, L. Xu, J. Wang, H. Shen, J. Zhang,
K. Zen, and C.-Y. Zhang. Identification of ten serum micrornas from a genome-
wide serum microrna expression profile as novel noninvasive biomarkers for non-
small cell lung cancer diagnosis. Int J Cancer, 130(7):1620–8, Apr 2012.

[19] C. Cheng and L. M. Li. Inferring microrna activities by combining gene expres-
sion with microrna target prediction. PLoS One, 3(4):e1989, 2008.

99



[20] Y. Cheng and G. M. Church. Biclustering of expression data. Proc Int Conf
Intell Syst Mol Biol, 8:93–103, 2000.

[21] S. W. Chi, J. B. Zang, A. Mele, and R. B. Darnell. Argonaute hits-clip decodes
microrna-mrna interaction maps. Nature, 460(7254):479–86, Jul 2009.

[22] J. Chou and P. Bushel. Discernment of possible mechanisms of hepatotoxic-
ity via biological processes over-represented by co-expressed genes. BMC Ge-
nomics, 10(1):272, 2009.

[23] J. W. Chou, T. Zhou, W. K. Kaufmann, R. S. Paules, and P. R. Bushel. Ex-
tracting gene expression patterns and identifying co-expressed genes from mi-
croarray data reveals biologically responsive processes. BMC Bioinformatics,
8:427, 2007.

[24] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson. Introduction to
Algorithms. McGraw-Hill Higher Education, 2nd edition, 2001.

[25] D. Croft, A. F. Mundo, R. Haw, M. Milacic, J. Weiser, G. Wu, M. Caudy,
P. Garapati, M. Gillespie, M. R. Kamdar, B. Jassal, S. Jupe, L. Matthews,
B. May, S. Palatnik, K. Rothfels, V. Shamovsky, H. Song, M. Williams, E. Bir-
ney, H. Hermjakob, L. Stein, and P. D’Eustachio. The reactome pathway knowl-
edgebase. Nucleic Acids Res, 42(Database issue):D472–7, Jan 2014.

[26] S. Das, M. Kumar, V. Negi, B. Pattnaik, Y. S. Prakash, A. Agrawal, and
B. Ghosh. Microrna-326 regulates profibrotic functions of transforming growth
factor- in pulmonary fibrosis. Am J Respir Cell Mol Biol, 50(5):882–92, May
2014.
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component approach to the analysis of eeg and meg recordings. IEEE Trans
Biomed Eng, 47(5):589–93, May 2000.

[127] N. Walter, H. R. Collard, and T. E. King, Jr. Current perspectives on the
treatment of idiopathic pulmonary fibrosis. Proc Am Thorac Soc, 3(4):330–8,
Jun 2006.

[128] X. Wang and X. Wang. Systematic identification of microrna functions by com-
bining target prediction and expression profiling. Nucleic Acids Res, 34(5):1646–
52, 2006.

[129] Y. Wang, C. Huang, N. Reddy Chintagari, M. Bhaskaran, T. Weng, Y. Guo,
X. Xiao, and L. Liu. mir-375 regulates rat alveolar epithelial cell trans-
differentiation by inhibiting wnt/-catenin pathway. Nucleic Acids Res,
41(6):3833–44, Apr 2013.

[130] H. Wu, S. Zhu, and Y.-Y. Mo. Suppression of cell growth and invasion by
mir-205 in breast cancer. Cell Res, 19(4):439–48, Apr 2009.

[131] F. Xiao, Z. Zuo, G. Cai, S. Kang, X. Gao, and T. Li. mirecords: an integrated
resource for microrna-target interactions. Nucleic Acids Res, 37(Database
issue):D105–10, Jan 2009.

[132] N. Xu, L. Zhang, F. Meisgen, M. Harada, J. Heilborn, B. Homey, D. Grandér,
M. St̊ahle, E. Sonkoly, and A. Pivarcsi. Microrna-125b down-regulates ma-
trix metallopeptidase 13 and inhibits cutaneous squamous cell carcinoma cell
proliferation, migration, and invasion. J Biol Chem, 287(35):29899–908, Aug
2012.

[133] S. Yang, N. Xie, H. Cui, S. Banerjee, E. Abraham, V. J. Thannickal, and G. Liu.
mir-31 is a negative regulator of fibrogenesis and pulmonary fibrosis. FASEB
J, 26(9):3790–9, Sep 2012.

[134] X. Yang, L. Liang, X.-F. Zhang, H.-L. Jia, Y. Qin, X.-C. Zhu, X.-M. Gao,
P. Qiao, Y. Zheng, Y.-Y. Sheng, J.-W. Wei, H.-J. Zhou, N. Ren, Q.-H. Ye, Q.-
Z. Dong, and L.-X. Qin. Microrna-26a suppresses tumor growth and metastasis
of human hepatocellular carcinoma by targeting interleukin-6-stat3 pathway.
Hepatology, 58(1):158–70, Jul 2013.

110



[135] W. Ye, Q. Lv, C.-K. A. Wong, S. Hu, C. Fu, Z. Hua, G. Cai, G. Li, B. B.
Yang, and Y. Zhang. The effect of central loops in mirna:mre duplexes on the
efficiency of mirna-mediated gene regulation. PLoS One, 3(3):e1719, 2008.

[136] K. Y. Yeung and W. L. Ruzzo. Principal component analysis for clustering gene
expression data. Bioinformatics, 17(9):763–774, 2001.

[137] Y.-Y. Yu, P. F. Pinsky, N. E. Caporaso, N. Chatterjee, M. Baumgarten, P. Lan-
genberg, J. P. Furuno, Q. Lan, and E. A. Engels. Lung cancer risk following
detection of pulmonary scarring by chest radiography in the prostate, lung, col-
orectal, and ovarian cancer screening trial. Arch Intern Med, 168(21):2326–32;
discussion 2332, Nov 2008.

[138] B. R. Zeeberg, W. Feng, G. Wang, M. D. Wang, A. T. Fojo, M. Sunshine,
S. Narasimhan, D. W. Kane, W. C. Reinhold, S. Lababidi, K. J. Bussey, J. Riss,
J. C. Barrett, and J. N. Weinstein. Gominer: a resource for biological interpre-
tation of genomic and proteomic data. Genome Biol, 4(4):R28, 2003.

[139] S. Zhang, Q. Li, J. Liu, and X. J. Zhou. A novel computational framework for
simultaneous integration of multiple types of genomic data to identify microrna-
gene regulatory modules. Bioinformatics, 27(13):i401–9, Jul 2011.

[140] S. Zhang, C.-C. Liu, W. Li, H. Shen, P. W. Laird, and X. J. Zhou. Discovery
of multi-dimensional modules by integrative analysis of cancer genomic data.
Nucleic Acids Res, 40(19):9379–91, Oct 2012.

[141] X. Zhang, M. Daucher, D. Armistead, R. Russell, and S. Kottilil. Microrna
expression profiling in hcv-infected human hepatoma cells identifies potential
anti-viral targets induced by interferon-. PLoS One, 8(2):e55733, 2013.

[142] X. Zhang, W.-L. Ng, P. Wang, L. Tian, E. Werner, H. Wang, P. Doetsch,
and Y. Wang. Microrna-21 modulates the levels of reactive oxygen species by
targeting sod3 and tnf. Cancer Res, 72(18):4707–13, Sep 2012.

[143] X. Zhou, Y. Ren, L. Moore, M. Mei, Y. You, P. Xu, B. Wang, G. Wang,
Z. Jia, P. Pu, W. Zhang, and C. Kang. Downregulation of mir-21 inhibits egfr
pathway and suppresses the growth of human glioblastoma cells independent of
pten status. Lab Invest, 90(2):144–55, Feb 2010.

[144] N. Zhu, D. Zhang, H. Xie, Z. Zhou, H. Chen, T. Hu, Y. Bai, Y. Shen, W. Yuan,
Q. Jing, and Y. Qin. Endothelial-specific intron-derived mir-126 is down-
regulated in human breast cancer and targets both vegfa and pik3r2. Mol
Cell Biochem, 351(1-2):157–64, May 2011.

111


	A novel computational system for identification of biological processes from multi-dimensional high-throughput genomic data
	Recommended Citation

	tmp.1568233084.pdf.8Pie8

