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Abstract 

 

SPACE USE AND HABITAT ASSOCIATIONS OF LONG-DISTANCE 

MIGRATORY FIRST-YEAR GOLDEN EAGLES (AQUILA CHRYSAETOS) 

FROM INTERIOR ALASKA IN A CHANGING LANDSCAPE 

 
Mark D. Paulson 

 

Understanding a species space use and habitat associations is integral to comprehensive 

wildlife management. Habitat associations change spatially and temporally and those changes 

may be especially dramatic for animals that cover long distances throughout their annual cycle. 

While many studies of habitat associations and space use concentrate on breeding season 

behavior, studies of migratory connectivity demonstrate how condition of habitats on non-

breeding ranges potentially affect key demographic parameters, such as survival, reproduction, 

and movement in other seasons. This is also important because wildlife habitats, especially land 

cover, are changing rapidly from both anthropogenic and natural forces in direct and indirect 

ways.  

The goal of this research was to describe (1) space use and habitat associations of a long-

distance migratory avian predator, the Golden Eagle (Aquila chrysaetos) during summer and 

winter, and (2) to assess land cover change in eagle use areas. I studied first-year Golden Eagles 

hatched in Denali National Park and Preserve, Alaska (Denali). Radio-tagged eagles spent winter 

in western North America and summer in Alaska and northwest Canada. The birds I studied were 

a subset of those radio-tagged as nestlings in Denali from 1997 to 1999. 

 I first used three different home range models to characterize winter space use of 15 first-

year Golden Eagles hatched in Denali. Size of home ranges in winter was most biologically 

reasonable when measured with Kernel Density Estimates (KDEs). KDE home ranges were 

4,429 to 69,478 km2 in size and did not differ between sexes. I used land cover, topography and 

physiographic data to test a priori defined hypotheses to evaluate drivers of movement behavior. 

Ranging behavior was best explained by the presence of steep slopes and canyons and degree of 

topographic roughness. The presence of topographic factors were, in general, more important 

than presence of land cover in explaining size of home range. Results from this study further the 

understanding of drivers of space use and habitat associations for young Golden Eagles on their 

wintering grounds 

To characterize how land cover change may influence these Golden Eagles, I also studied 

how land cover changed over an 11 year period (2001 – 2011) within summer and winter areas 

used in 1997 – 2000 (n=16 individuals; comprising 25 seasonal ranges, 15 winter, and 10 

summer). Summer home ranges calculated with Kernel Density Estimates were larger than those 

in winter, they ranged from 20,990 to 224,375 km2, and those of males were larger than those of 

females. Land cover within summer home ranges was predominantly shrublands (>48.0% cover). 

Land cover within winter eagle use areas was comprised mostly of grasslands (>47.9% cover). 

Change in land cover was more prevalent in areas eagles used in winter than in those they used 

in summer. From 2001 to 2011 in wintering areas, percent cover of Deciduous Forest decreased 

and percent cover of Evergreen Forest and Water increased. Over the same interval on summer 



 
 

range, percent cover of Evergreen Forest and Grasslands increased, and percent cover of Barren 

ground and Snow/Ice decreased.  

Previous work has shown long term declines in reproductive output of Golden Eagles in 

Denali but was not able to explain those declines based on conditions or changes on breeding 

grounds. This research is consistent with the earlier study because it shows that habitat eagles use 

may be changing faster on non-breeding grounds than on breeding grounds. This information 

may provide a useful starting point for further research to understand trends in populations of 

this apex avian predator.  
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Chapter 1 
 

INTRODUCTION 
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WILDLIFE-HABITAT ASSOCIATIONS AND HABITAT CHANGE 

Habitat is sometimes defined simply as vegetative structure (Morrison et al. 2012). As 

understanding of habitat and its importance expanded, the definition was broadened to include 

components such as topography, soils, elevation and latitude (Haegen et al. 2000, Kaboli et al. 

2006, Mitchell et al. 2006, Braham et al. 2015). For birds, the definition of habitat is more 

complex and also includes aerial environments, referred to as the aerosphere (Kunz et al. 2008, 

Swartz et al. 2008).  

Habitat use is a term that describes the way an animal uses the physical and biological 

resources within its ecosystem (Litvaitis et al. 1996, Hall et al. 1997). Different habitats may be 

used for foraging, cover, nesting, escape, denning, or other life history traits at different times of 

year or during different life stages (Litvaitis et al. 1996, Hall et al. 1997). Habitat selection by an 

animal is considered to be an active behavioral process, categorized in a hierarchical manner. 

Biologically, it involves a series of innate and learned behavioral decisions made by an animal 

about what resources it uses (Hutto 1985). Habitat use and selection are often viewed as 

hierarchical, with first-order selection defined as the geographical range of a species, second-

order selection determined by the home range of an individual or social group, third-order 

selection pertaining to the usage made of various habitat components within the home range, and 

fourth-order selection referencing the procurement of resources within these microsites (Johnson 

1980, Hall et al. 1997, Johnson et al. 2006). Incorporated into habitat selection are Resource 

Selection Functions (RSFs), in which use of resources by an animal or population of animals in a 

fixed period of time is compared to available resources within the area (Manly et al 2002).  

Habitat change is a defining feature of wildlife and landscape management in the modern 

era (Opdam and Wascher 2004, Parmesan and Yohe 2003, Parmesan 2006, Parry et al. 2007, 

Morris et al. 2013). Understanding the habitats of areas used throughout the lifespan of an 

organism has direct implications for wildlife management (Krausman 1999). For many species 

conditions on non-breeding seasonal ranges are linked to survival and reproductive output on 

breeding grounds (Steenhof et al. 1997, Marra et al. 1998, Greenberg and Marra 2005). Effective 

wildlife management, especially for long lived birds, requires incorporating studies across the 

entire annual cycle including migration and wintering grounds of all age classes (Kochert and 

Steenhof 2002, McIntyre et al. 2008). Understanding how the habitats these animals depend 
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upon are changing, and what drives the changes, can elucidate potential effects on wildlife 

species and is an important aspect of wildlife management and conservation.  

Change in habitat is variable in space and time, and some areas are transforming more 

rapidly and along different trajectories than are others (Serreze and Francis 2006, Parry et al. 

2007). There are numerous factors driving habitat change at different spatial scales. Among the 

most salient processes causing change are direct human-caused anthropogenic habitat alteration 

of land cover and land use and indirect alteration via global climate change (Parry et al. 2007, 

Theobald 2010, Burton et al. 2014, Raynolds et al. 2014). Climate change is projected to have 

numerous direct effects on bio-physical processes, water availability, and weather events, 

(Parmesan 2006, Parry et al. 2007). As a consequence of these changes, there may be significant 

indirect effects on wildlife population dynamics, species distributions and interactions, food web 

structure, biodiversity, and ecosystem processes (Convey and Smith 2006, Parmesan 2006, 

Grosbois et al. 2008, Keith et al. 2008, Hunter et al. 2010).  

As the structure and resources available in the habitat are altered, there are cascading 

effects for the communities of organisms that rely on the habitat. Some organisms are highly 

affected by landscape alteration or fragmentation that reduce habitable area, that increase 

distance between suitable patches, and that result in alterations in movements (Opdam and 

Wascher 2004, Schooley and Branch 2009, Gibson et al. 2013). Impacts to organisms and the 

ecological significance of cascading effects within the community may also be defined by the 

trophic position of the organism in question (Sergio et al. 2006).  

The degree to which habitat change impacts a species is a function of the organism’s 

ability to adapt to these changes. This adaptability is, in turn, a function of the species’ life 

history traits, trophic level, and movement capabilities (Dunning et al. 1992, Pope et al. 2000 

Prugh et al. 2008, Schooley and Branch 2009, Van de Pol et al. 2010, Gibson et al. 2013). Apex 

predators, with their generally small populations and more constrained ranges, may be especially 

vulnerable to change (Hunter et al. 2010). Because highly mobile organisms can move longer 

distances, it is easier for them to avoid habitats that are not suitable. They also have a better 

chance than a more sedentary species of encountering alternative suitable areas throughout their 

annual movements and as they mature (Wiens 1992a,b). 
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Because of the interacting effects of habitat and climate change on life history traits, 

demography, and movements, organism response to change is a central theme for modern 

wildlife management and conservation biology. Long-lived, long-distance migratory avian apex 

predators, such as Golden Eagles (Aquila chrysaetos) at northern latitudes, are a useful model to 

study this issue. Their mobility enables them to respond to local habitat change and to select 

habitats that they perceive are best suited to their survival and reproduction. Parameters of 

habitat change that may be biologically relevant to Golden Eagles include percent change in land 

cover, mean patch size, patch density, road density, urban development, mean shape polygon 

index of habitat characteristics, total edge length, nearest neighbor distances to suitable habitat 

and fragmentation indices (Marzluff et al. 1997, Whitfield et al. 2001, 2007, Gillanders et al. 

2008, Miller et al. 2014, Watson 2014).  

My research investigated space use and habitat associations for this long-lived, long-

distance migratory apex predator. I also investigated percent change in land cover due to natural 

and anthropogenic effects and potential impacts on Golden Eagles. This thesis is organized into 

two research chapters. 

 Winter home range size and correlates of ranging behavior of first-year migratory Golden 

Eagles from interior Alaska. 

 Land cover changes in historical home ranges of first-year migratory Golden Eagles from 

interior Alaska. 

 

STUDY SPECIES 

Golden Eagles are a large, long-lived apex predator with a Holarctic distribution (Watson 

2010). Across their entire range Golden Eagles nest on cliffs, in large trees, on the ground, and 

on infrastructure (Watson 2010). Golden Eagle diet includes medium to large birds and 

mammals, and carrion (Watson 2010).Within North America, the species breeds across Canada 

and Alaska and from the western Great Plains to California and into Mexico (Kochert et al. 

2002). Their winter range includes most of the contiguous USA and portions of Canada and 

Mexico (Kochert et al. 2002).  
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Golden Eagle life history traits differ temporally by latitude (Watson 2010). For example, 

egg laying in southern latitudes has been documented as early as November (Watson 2010) while 

northern latitude breeders do not begin egg laying until February or later (McIntyre and Adams 

1999). Additionally, Golden Eagles with natal areas at latitudes greater than 50 N in North 

America are usually migratory, whereas eagles at more southern latitudes appear not to engage in 

long-distance migration (Kochert et al. 2002, McIntyre and Adams 1999, McIntyre et al. 2008, 

Katzner et al. 2012) 

A population of Golden Eagles that breeds near the northern reaches of the species global 

range is found in the foothills of the Alaska Range in and around Denali National Park and 

Preserve (Denali) in interior Alaska. These birds migrate long distances between seasonal ranges. 

The duration of migration, on both fall and spring movements, by eagles from Denali can be >5 

months (McIntyre and Adams 1999, Kochert et al. 2002, McIntyre et al. 2008). Banding and 

telemetry data collected from the Denali population suggest that wintering areas extend from the 

Rockies in British Columbia and Washington to the central Great Plains and north-central 

Mexico (McIntyre et al. 2008, McIntyre 2012). 

Denali eagles are the subject of an ongoing long-term ecological study which began in 

1988 (McIntyre and Adams 1999, Kochert et al. 2002, McIntyre and Schmidt 2012). This area is 

home to one of the highest documented Golden Eagle breeding densities in North America 

(Kochert et al. 2002). Within Denali, eagles nest solely on cliffs, and feed primarily on snowshoe 

hare (Lepis americanus), ptarmigan (Lagopus sp), and Arctic ground squirrel (Spermophillis 

parryii) (McIntyre et al. 2006). Prey abundance cycles of snowshoe hare and ptarmigan species 

have been shown to affect laying rates and nestling productivity, as eagles depend on them 

before obligate hibernators emerge (McIntyre and Schmidt 2012).  

Although Golden Eagles are protected by two acts of Congress, the Bald and Golden 

Eagle Protection Act and the Migratory Bird Treaty Act, they are experiencing population 

declines to varying degrees, and they are exposed to threats through much of their range 

(Kochert et al. 2002, Watson 2010). The Denali population of Golden Eagles has shown long-

term declines in nesting rates and fledgling production while territory occupancy has remained 

steady (McIntyre and Schmidt 2012). These declines in reproductive output are not well 

explained by conditions on breeding grounds and previous work has suggested they may be 
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caused by deterioration of winter habitat (McIntyre and Schmidt 2012). Concerns about the 

effects of land cover and land use change, especially via energy development, have spurred 

substantial interest in new movement studies to evaluate these effects year-round (McIntyre 

2012). 

Pre-adult eagles of the Denali population begin fall migration around September when 

individuals move away from the summer or natal range (McIntyre et al. 2008). Fall migration 

initiation dates are usually similar, while variability of end dates suggests some individuals 

continue migrating until suitable resources are found on winter range (McIntyre et al. 2008). 

Both southward and northward migration paths for pre-adult eagles from Denali are broad, and 

different routes are used in fall and spring (McIntyre et al. 2008).  

Spring migration begins in late March and early April, and most pre-adult Golden Eagles 

do not return to Alaska until sometime between mid-May and mid-June. Variability of end dates 

for pre-adult eagles on spring migration suggest individuals continue migratory movements until 

adequate resources are found on summer range (McIntyre et al. 2008). In contrast, breeding 

Golden Eagles return to their territories in the Denali area in late March and complete their egg 

laying by mid-April (McIntyre and Adams 1999, McIntyre et al. 2008).  

 

STUDY AREA 

The study area for this research incorporates the annual range of the first-year Golden 

Eagles tagged in Denali. To clarify how behavior may change through the year, I partitioned the 

annual range into biologically important periods including winter and summer ranges. A brief 

description of natal range in Denali is also included.  

Natal range. Eagles used in this study hatched in a 2100 km2 study area centered at 63 

35.8’N, 149 38.2’W, in the northern foothills of the Alaska Range in Denali in central Alaska. 

Elevations in the natal study area range from 427-2590m. Topography in this area is rugged and 

mountainous, and is characterized by steep-sided mountains, swift-running glacial rivers, 

glacially-carved valleys, and extensive gravel bars (McIntyre et al. 2006). The majority of the 

study area is above tree line (800m). For a more detailed description of the natal study area see 

McIntyre et al. (2006), and Murie (1944, 1963).  
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Winter range. Areas first-year eagles use in winter include the western contiguous United 

States, from Washington State to the Great Plains, and western Canada, including British 

Columbia, Alberta, and Saskatchewan, and into northern Mexico (McIntyre et al. 2008). 

Topography on winter ranges is also highly variable as it includes the high peaks of the central 

and eastern Rocky Mountains, but also reaches to the flat Great Plains and Prairie Pothole 

regions. Land cover over this large area is also highly variable, namely due to the wide 

latitudinal band encompassing winter ranges. Land cover varies from southern New Mexico’s 

shrub desert, to large coniferous stands in the Rockies, and to the grasslands and agricultural 

areas of the plains (Goward et al. 1987, CEC 2013, NASA LP DAAC, 2013). 

Summer range. Areas eagles use in summer include large portions of south central, 

interior, and northern Alaska, western Yukon Territory, and just into Northwest Territories. 

Tagged individuals from Denali make extensive movements during the summer season, and do 

not appear to exhibit a strong degree of homing to their natal areas within Denali (McIntyre et al. 

2008). Many individuals use areas north of the Brooks Range in northern Yukon Territories and 

northern Alaska during their first few summers after hatch year (McIntyre et al. 2008). 

Topography across their summer range is highly variable, including the Alaska and Brooks 

Ranges, rolling hills between mountain ranges, and large flats of the coastal plain north of the 

Brooks Range (Gesch et al. 2002). Vegetative cover in the Arctic and sub-Arctic of these ranges 

is predominantly shrub cover with large tracts of forest in lower elevations and glaciated and 

barren mountains at higher elevations. Areas with less topographic variability in this area have 

relatively more wetlands and bodies of water (Goward et al. 1987, CEC 2013, NASA LP DAAC, 

2013). 

 

Literature Cited 

BRAHAM, M., T. MILLER, A.E. DUERR, M. LANZONE, A. FESNOCK, L. LAPRE, D. DRISCOLL, AND 

T. KATZNER. 2015. Home in the heat: dramatic seasonal variation in home range of desert 

golden eagles informs management for renewable energy development. Biological 

Conservation 186:225-232.  

BURTON, A.C., D. HUGGARD, E. BAYNE, J. SCHIECK, P. SOOLYMOS, T. MUHLY, D. FARR, S. 



8 

BOUTIN. 2014. A framework for adaptive monitoring of the cumulative effects of human 

footprint on biodiversity. Environmental Monitoring and Assessment. 186: 3605-3617. 

CONVEY, P., AND R.I.L. SMITH. 2006. Responses of terrestrial Antarctic ecosystems to climate 

change. Plant Ecology 182:1-10. 

CEC 2013. 2005 North American Land Cover at 250 m spatial resolution. Produced by Natural 

Resources Canada/Canadian Center for Remote Sensing (NRCan/CCRS), United States 

Geological Survey (USGS); Insituto Nacional de Estadística y Geografía (INEGI), 

Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO) and 

Comisión Nacional Forestal (CONAFOR). http://landcover.usgs.gov/nalcms.php (last 

accessed online 9 February 2016). 

DUNNING, J.B., B.J. DANIELSON, AND H.R. PULLIAM. 1992. Ecological processes that affect 

populations in complex landscapes. Oikos 65(1): 169-175. 

GESCH, D., M. OIMOEN, S. GREENLEE, C. NELSON, M. STEUCK, AND D. TYLER. 2002. The national 

elevation dataset. Photogrammetric Engineering and Remote Sensing 68: 5-32. 

GIBSON, L., A.J. LYNAM, C.J.A. BRADSHAW, F. HE, D.P. BICKFORD, D.S. WOODRUFF, S. 

BUMRUNGSRI, W.F. LAURENCE. 2013. Near-complete extinction of native small mammal 

fauna 25 years after forest fragmentation. Science. 341: 1508-1510. 

GILLANDERS, S.N., N.C. COOPS, M.A. WULDER, S.E. GERGEL, AND T. NELSON. 2008. 

Multitemporal remote sensing of landscape dynamics and pattern change: describing 

natural and anthropogenic trends. Progress in Physical Geography, 32(5), 503-528. 

GOWARD, S. N., DYE, D., KERBER, A., & KALB, V. (1987). Comparison of North and South 

American biomes from AVHRR observations. Geocarto International, 2. 27-39. 

GREENBERG, R, AND P.P. MARRA EDS. 2005. Birds of two worlds: the ecology and evolution of 

migration. Baltimore, MD. John Hopkins University Press. 

GROSBOIS, V., O GIMENEZ, J.M. GAILLARD, R. PRADEL, C. BARBRAUD, J. CLOBERT, A.P. 

MOLLER, AND H. WEIMERSKIRCH. 2008. Assessing the impact of climate variation on 

survival in vertebrate populations. Biological Reviews. 83:357-399. 



9 

HAEGEN, W., F.C. DOBLER, AND D.J. PIERCE. 2000. Shrubsteppe bird response to habitat and 

landscape variables in eastern Washington, USA. Conservation Biology 14: 1145-1160. 

HALL, L.S., P.R. KRAUSMAN, AND M.L. MORRISON. 1997. The habitat concept and a plea for 

standard terminology. Wildlife Society Bulletin. 25:173-182. 

HUNTER, C.M., H. CASWELL, M.C. RUNGE, E.V. REGEHR, S.C. AMSTRUP, I. STIRLING. 2010. 

Climate change threatens polar bear populations: a stochastic demographic analysis. 

Ecology. 91(10): 2883-2897. 

JOHNSON, C. J., S.E. NIELSEN, E.H. MERRILL, T.L. MCDONALD, M.S. BOYCE. 2006. Resource 

Selection Functions Based on Use-Availability Data: Theoretical Motivation and 

Evaluation Methods. Journal or Wildlife Management. 70 (2): 347-357. 

JOHNSON, D.H. 1980. The comparison of usage and availability measurements for evaluating 

resource preference. Ecology. 61: 65-71. 

KABOLI, M., A. GUILLAUMET, AND R. PRODON. 2006. Avifaunal gradients in two arid zones of 

central Iran in relation to vegetation, climate, and topography. Journal of 

Biogeography 33: 133-144. 

KATZNER, T., B.W. SMITH, T.A. MILLER, D. BRANDES, J. COOPER, M. LANZONE, D. BRAUNING, 

C. FARMER, S. HARDING, D.E. KRAMAR, C. KOPPIE, C. MAISONNEUVE, M. MARTELL, E.K. 

MOJICA, C. TODD, J.A. TREMBLAY, M. WHEELER, D.F. BRINKER, T.E. CHUBBS, R. 

GUBLER, K. O’MALLEY, S. MEHUS, B. PORTER, R.P. BROOKS, B.D. WATTS, AND K.L. 

BILDSTEIN. 2012. Status, biology, and conservation priorities for North America's Eastern 

Golden Eagle (Aquila chrysaetos) population. The Auk. 129(1), 168-176. 

KEITH, D.A., H.R. AKCAKAYA, W. THUILLER, G.F. MIDGLEY, R.G. PEARSON, S.J. PHILLIPS, H.M. 

REGAN, M.B. ARAUJO, AND T.G. REBELO. 2008. Predicting extinction risks under climate 

change: coupling stochastic population models with dynamic bioclimatic habitat models. 

Biology Letters. 4: 560-563. 

KOCHERT, M.N., AND K. STEENHOF. 2002. Golden Eagles in the US and Canada: status, trends, 

and conservation challenges. Journal of Raptor Research 36: 32-40. 



10 

------, K. STEENHOF, C.L. MCINTYRE, AND E.H. CRAIG. 2002. Golden Eagle (Aquila chrysaetos). 

Number 684 in The Birds of North America. A. Poole and G. Gill, editors. The Birds of 

North America, Incorporated. Philadelphia, Pennsylvania.  

KRAUSMAN, P.R. 1999. Some Basic Principles of Habitat Use. Grazing Behavior of Livestock 

and Wildlife 85-90. 

KUNZ, T.H., S.A. GAUTHREAUX, N.I. HRISTOV, J.W. HORN, G. JONES, E.K. KALKO, R.P. LARKIN, 

G.F. MCCRACKEN, R.B. SRYGLEY, AND R. DUDLEY. 2008. Aeroecology: probing and 

modeling the aerosphere. Integrative and Comparative Biology 48, 1-11. 

LITVAITIS, J.A. TITUS AND E.M. ANDERSON. 1994. Measuring vertebrate use of territorial habitats 

and foods. P. 254-74. In: T.A. Bookhout (Ed.). Research and Management Techniques 

for Wildlife and Habitats. 5th ed. The Wildlife Society. Bethesda, MD. 

MANLY, B.F.J., L.L. MCDONALD, D.L. THOMAS, T.L. MCDONALD, AND W.P. ERICKSON. 2002. 

Resource selection by animals: statistical analysis and design for field studies. 

Nordrecht, the Netherlands: Kluwer. 

MARRA, P.P., K.A. HOBSON, AND R.T. HOLMES. 1998. Linking winter and summer events in a 

migratory bird by using stable-carbon isotopes. Science 282: 1884-1886. 

MARZLUFF, J.M., S.T. KNICK, M.S. VEKASY, L.S. SCHUECK, AND T.J. ZARRIELLO. 1997. Spatial 

use and habitat selection of golden eagles in southwestern Idaho. The Auk 114(4): 673-

687. 

MCINTYRE, C.L., L.G. ADAMS. 1999. Reproductive Characteristics of Migratory Golden Eagles 

in Denali National Park, Alaska. Condor. 101:115-123. 

------, AND M.W. COLLOPY. 2006. Postfledging dependence period of migratory golden eagles 

(Aquila chrysaetos) in Denali National Park and Preserve, Alaska. The Auk 123: 877-884. 

------, D.C. DOUGLAS, M.W. COLLOPY. 2008. Movements of Golden Eagles (Aquila chrysaetos) 

from Interior Alaska during Their First-year of Independence. Auk 125: 214-224.  



11 

------. 2012. Quantifying Sources of Mortality and Wintering Ranges of Golden Eagles from 

Interior Alaska Using Banding and Satellite Tracking. Journal of Raptor Research 

46:129-134.  

------, AND J.H. SCHMIDT. 2012. Ecological and environmental correlates of territory occupancy 

and breeding performance of migratory Golden Eagles Aquila chrysaetos in interior 

Alaska. Ibis 154: 124-135. 

MILLER, T.A., R.P. BROOKS, M.J. LANZONE, J. COOPER, J.A. TREMBLAY, C. MAISONNEUVE, K. 

O’MALLEY, D. BRANDES, J. WILHELM, A. DUERR, T.E. KATZNER. 2014 in review. 

Selective pressures and resource availability drive space use and movement patterns of a 

long-lived migratory avian predator. Journal of Avian Biology. In review. 

MITCHELL, M.S., S.H. RUTZMOSER, T.B. WIGLEY, C. LOEHLE, J.A. GERWIN, P.D. KEYSER, R.A. 

LANCIA, R.W. PERRY, C.J. REYNOLDS, R.E. THILL, AND R WEIH. 2006. Relationships 

between avian richness and landscape structure at multiple scales using multiple 

landscapes. Forest Ecology and Management 221: 155-169. 

MORRIS, D. L., P.A. PORNELUZI, J. HASLERIG, R.L. CLAWSON, AND J. FAABORG. 2013. Results of 

20 years of experimental forest management on breeding birds in Ozark forests of 

Missouri, USA. Forest Ecology and Management 310: 747-760. 

MORRISON, M.L., B. MARCOT, AND W. MANNAN. 2012. Wildlife-habitat relationships: concepts 

and applications. Island Press. 

MURIE, A. 1944. The wolves of Mount McKinley (Vol. 5). Washington, DC: US Government 

Printing Office. 

MURIE, A. 1963. Birds of Mount McKinley National Park, Alaska. Mount McKinley Natural 

History Association. 

NASA LP DAAC. 2013. MODIS Terra + Aqua Land Cover Type 5 Yearly L3 Global 500m 

NASA EOSDIS Land Processes DAAC, USGS Earth Resources Observation and 

Science (EROS) Center, Sioux Falls, South Dakota (https://lpdaac.usgs.gov), accessed 

January 24, 2017, at https://lpdaac.usgs.gov/data_access/reverb. 



12 

PARRY, M.L. Editor. 2007. Climate Change 2007: Impacts, adaptation and vulnerability: 

contribution of Working Group II to the fourth assessment report of the 

Intergovernmental Panel on Climate Change 4. Cambridge University Press. 

OPDAM, P., AND D. WASCHER. 2004. Climate change meets habitat fragmentation, linking 

landscape and biogeographical scale levels in research and conservation. Biological 

Conservation 117(3): 285-297. 

PARMESAN, C., G. YOHE. 2003. A globally coherent fingerprint of climate change impacts across 

natural systems. Nature 421: 37– 42. 

------. 2006. Ecological and evolutionary responses to recent climate change. Annual Review of 

Ecology Evolution and Systematics 37: 637-669. 

POPE, S.E., L. FAHRIG, H.G. MERRIAM. 2000. Landscape complementation and metapopulation 

effects on leopard frog populations. Ecology. 81(9): 2498-2508. 

PRUGH, L.R., K.E. HODGES, A.R.E. SINCLAIR, J.S. BRASHARES. 2008. Effect of habitat area 

isolation on fragmented animal populations. Proceedings of the National Academy of 

Sciences. 105(52): 20770-20775. 

RAYNOLDS, M.K., D.A. WALKER, K.J. AMBROSIUS, J. BROWN, K.R. EVERETT, M. KANEVSKIY, 

G.P. KOFINAS, V.E. ROMANOVSKY, Y. WHUR, P.J. WEBBER. 2014. Cumulative 

geoecological effects of 62 years of infrastructure and climate change in ice-rich 

permafrost landscapes, Prudhoe Bay Oilfield, Alaska. Global Change Biology. 20: 1211-

1224. 

SCHOOLEY, R L., AND L.C. BRANCH. 2009. Enhancing the area-isolation paradigm: habitat 

heterogeneity and metapopulation dynamics of a rare wetland mammal. Ecological 

Applications. 19(7): 1708-1722. 

SERGIO, F., P. PEDRINI, F. RIZZOLLI, L. MARCHESI. 2006. Adaptive range selection by Golden 

Eagles in a changing landscape: A multiple modelling approach. Biological 

Conservation. 133(1): 32-41. 

SERREZE, M.C., AND J.A. FRANCIS. 2006. The Arctic amplification debate. Climatic Change 76: 

241-264. 



13 

STEENHOF, K., M.N. KOCHERT, AND T.L. MCDONALD. 1997. Interactive effects of prey and 

weather on golden eagle reproduction. Journal of Animal Ecology, 350-362. 

SWARTZ, S.M., K.S. BREUER, D.J. WILLIS. 2008. Aeromechanics in aeroecology: flight biology in 

the aerosphere. Integrative and Comparative Biology. 48. 85-98.  

THEOBALD, D.M. 2010. Estimating natural landscape changes from 1992 to 2030 in the 

conterminous US. Landscape Ecology. 25: 999-1011. 

VAN DE POL, M., Y. VINDENES, B.E. SAETHER, S. ENGEN, B.J. ENS, K. OOSTERBEEK, J. M. 

TINBERGEN. 2010. Effects of climate change and variability on population dynamics in a 

long-lived shorebird. Ecology. 91(4): 1192-1204. 

WATSON, J. 2010. The Golden Eagle. Second Ed. T. and A.D. Poyser, London, U.K. 

WATSON, J.W., A.A. DUFF, AND R.W. DAVIES. 2014. Home range and resource selection by 

GPS‐monitored adult golden eagles in the Columbia Plateau Ecoregion: Implications for 

wind power development. The Journal of Wildlife Management, 78(6), 1012-1021. 

WHITFIELD, D.P., D.R.A. MCLEOD, A.H. FIELDING, R.A. BROAD, R.J. EVANS, P.F. HAWORTH. 

2001. The effects of forestry on Golden Eagles on the island of Mull, western Scotland. 

Journal of Applied Ecology. 38: 1208-1220. 

WHITFIELD, D.P., A.H. FIELDING, M.J. GREGORY, A.G. GORDON, D.R. MCLEOD, AND P.E. 

HAWORTH. 2007. Complex effects of habitat loss on Golden Eagles Aquila chrysaetos. 

Ibis. 149: 26-36. 

WIENS, J. A. (Ed.). 1992a. The ecology of bird communities Vol. 1. Cambridge University Press 

WIENS, J. A. 1992b. Ecological flows across landscape boundaries: a conceptual overview. 

In Landscape boundaries pp. 217-235. Springer New York. 

 



14 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 2 
 

WHAT EXPLAINS WINTER HOME RANGE SIZE OF FIRST-YEAR MIGRATORY 

GOLDEN EAGLES FROM INTERIOR ALASKA? 

 

 

Formatted in the style of Journal of Raptor Research 



15 
 

ABSTRACT 

Understanding a species space use and associations with its environment is integral to 

comprehensive wildlife management. However, for some species these associations change 

spatially and temporally, especially for animals that cover long distances throughout their annual 

cycle. While many studies of habitat associations and space use concentrate on breeding season 

behavior, recent studies of migratory connectivity demonstrate the significance of understanding 

these patterns in the non-breeding season as well. We used three different home range models to 

investigate space use of 15 first-year Golden Eagles (Aquila chrysaetos) hatched in Denali 

National Park and Preserve, Alaska, and wintering in western North America. Subsequently, we 

used land cover, topography and physiographic data to test a priori hypotheses to evaluate 

drivers of movement behavior. Size of home ranges in winter ranged from 4429 to 69 478 km2 

and did not differ between sexes. Ranging behavior was best explained by the presence of steep 

slopes and canyons and degree of topographic roughness. Topographic variables, as well as the 

presence of broadleaf forest, were influential in explaining size of the home range and core use 

area, and the presence of topographic factors were, in general, more important than presence of 

land cover in explaining size of home range. Results from this study further the understanding of 

drivers of space use and habitat associations for young Golden Eagles on their wintering 

grounds. These results may also aid the “no net loss” conservation and management strategies 

for this species in a changing landscape. 

  

Keywords: Aquila chrysaetos, Denali, first-year, Golden Eagle, habitat association, home range, 

winter   
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Wildlife management requires an understanding of species associations with their 

environment (Morrison et al. 2012). These associations are commonly based on habitat, 

traditionally defined as vegetative structure (Morrison et al. 2012). Recently, the concept of 

habitat was expanded to include factors such as topography, soils, elevation and latitude (Haegen 

et al. 2000, Kaboli et al. 2006, Mitchell et al. 2006, Braham et al. 2015). For birds, the definition 

of habitat is more complex and now often includes aerial environments, sometimes called the 

aerosphere (Kunz et al. 2008, Swartz et al. 2008), and strongly influenced by topography.  

Understanding habitat associations becomes even more challenging because numerous 

birds make seasonal migratory movements, across elevational, latitudinal, or longitudinal 

gradients (Newton 2010). Understanding habitat associations throughout the year is important 

because, for many bird species, conditions on winter range are linked to survivorship and 

reproductive output on breeding grounds (Marra et al. 1998, Greenberg and Marra 2005). 

Although several studies of birds focus on breeding habitat of adults (Opdam 1991, Fletcher and 

Koford 2002), effective understanding of biology and consequent management, especially for 

long lived birds, requires extending studies to migration and wintering grounds of all age classes 

(Kochert and Steenhof 2002, McIntyre et al. 2008).  

Many Golden Eagles (Aquila chrysaetos) that breed at northern latitudes in North 

America are long distance migrants (Kochert et al. 2002). Their seasonal movements can span 

continents (McIntyre et al. 2008, Miller 2012) and they spend much of the year (often >5 

months) away from breeding and summer ranges (Kochert et al. 2002, Watson 2010). The 

biomes that these eagles occupy across these different seasons vary dramatically (Goward et al. 

1987). Golden Eagles can breed for multiple decades and they have a long (~5 yr) and 

demographically important life stage that precedes breeding (Watson 2010). Unravelling the 

influence of migratory connectivity on non-breeding eagles across those diverse landscapes is 

important for understanding the broader relationships between their habitats and their 

demography (Marra et al. 1998, Kochert and Steenhof 2002, Watson 2010).  

A first step towards understanding migratory connectivity is categorizing habitat 

associations and drivers of animal movement (Marra et al. 1998). Towards this goal, we studied 
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winter habitat associations of radio-tagged first-year Golden Eagles from interior Alaska. 

Previous work on these eagles has focused on their probability of survival, the causes of their 

fatalities (McIntyre et al. 2006b), and their seasonal movements (McIntyre et al. 2008, McIntyre 

2012). To provide insight on potential drivers of winter survival, we characterized the size of 

their winter home ranges and the habitat associations of those ranges. Specifically, we asked 1) 

how much space (home ranges and core use areas) do first-year migrant Golden Eagles use in 

winter, and is the amount of space used influenced by sex of the bird; 2) what habitats are 

characteristic of spaces they use; and 3) how does variation in habitat parameters explain 

variation in their ranging behavior.  

METHODS 

Nestling Golden Eagles were captured and tagged in a 2100 km2 study area centered at 

63 35.8’N, 149 38.2’W, in the northern foothills of the Alaska Range in Denali National Park 

and Preserve (Denali). This area is characterized by steep-sided mountains, swift-running glacial 

rivers, glacially-carved valleys, and extensive gravel bars (McIntyre et al. 2006a). Elevations 

were 427 – 2590 m above sea level and most of the study area was above current tree line 

(800m).  

Denali has one of the highest reported densities of breeding Golden Eagles in North 

America (Kochert et al. 2002). Golden Eagles at Denali complete clutches by mid-April and 

nestlings fledge from mid-July through early August (McIntyre and Adams 1999, McIntyre et al. 

2006a). Golden Eagles within the park nest solely on cliffs in mountainous terrain and feed 

primarily on snowshoe hare (Lepis americanus), ptarmigan (Lagopus spp), and Arctic ground 

squirrel (Spermophillis parryii; McIntyre et al. 2006a). 

The winter range of Denali’s Golden Eagles spans a large portion of western North 

America from northern Alberta to north-central Mexico (see McIntyre et al. 2008, McIntyre 

2012). Land cover, land use, and topography vary considerably over this expansive area (Goward 

et al. 1987, Gesch et al. 2002). During winter, Golden Eagle diet includes carrion from wild or 

domestic large mammals (Marr and Knight 1983, Watson 2010), and small or medium-sized 
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mammals (including Lepus spp and Marmota spp), and medium-sized birds (Phasianus 

colchicus and Tetraonidae) (Kochert et al. 2002, Watson 2010).  

Data Collection. Golden Eagle nestlings >56 d of age were radio-tagged in late July and 

early August in 1997, 1998, and 1999 (McIntyre et al. 2008). Eagles were fitted with a 95g 

satellite Platform Terminal Transmitter (PTTs; Microwave Telemetry, Columbia, Maryland, 

U.S.A.) attached with Teflon ribbon in a backpack configuration. These PTTs used the Argos 

satellite tracking system to record locations estimated based on Doppler shift and to transmit data 

(McIntyre et al. 2008). Duty cycles for the transmitters were 8 hr on and 72 hr off in 1997, and 8 

hr on and 48 hr off in 1998 and 1999 (McIntyre et al. 2008). For our analyses, we had sufficient 

winter data (> three weeks) to model home ranges of 15 individuals (8 males, 7 females); 7 were 

tagged in 1997 and 8 in 1999.  

Data Processing and Management. Each Argos telemetry fix is associated with a 

location class indicating a precision that ranges from 125 m (class 3) to 12 km (class Z) (Argos 

1996). Argos locations are categorized as standard-class (3, 2, 1), and auxiliary-class (0, A, B, Z) 

(Argos 1996). We applied the Douglas Argos Filter (Douglas et al. 2012) to reduce error of 

location fixes using the filter parameters from McIntyre et al. (2008). We then manually filtered 

data further, removing implausible movement spikes (e.g., three sequential points where the first 

and last locations were close in proximity but the middle point was >200 km away with an 

atypically acute internal turning angle). The unfiltered telemetry data collected on individuals 

used in these analyses were comprised of 19.1% standard-class and 80.9% auxiliary-class Argos 

location quality class fixes. After accuracy filtering the telemetry data used in these analyses 

were comprised of 49.3% standard-class and 50.7% auxiliary-class fixes (Appendix A.1 SI Table 

1). Filtering removed 60% of the available telemetry data. 

 We focused analyses on data collected during the winter season. We defined arrival on 

winter range as data points that had <200 km between consecutive telemetry fixes and that were 

not in the direction of migration (primarily in a southeast direction; McIntyre et al. 2008). 

Conversely, we defined the end of the winter season as movements between consecutive 

telemetry locations that exceeded 200 km that occurred in the direction of migration (primarily 
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northwest). Because it is difficult to separate migratory stopovers from wintering locations as 

eagles reach the end of their first autumn migration, the 200 km movement threshold we used 

meant that arrival and departure dates are slightly different than those previously reported in 

McIntyre et al. (2008) and our home ranges may include some locations on migration. To adjust 

for the possible inclusion of migration locations in the winter range dataset we used two different 

home range isopleths (95 % and 50% isopleth see below), and completed habitat associations at 

two spatial scales.  

Golden Eagle Winter Home Range and Core Use Estimation. We tested three 

different approaches to model winter home range and space use of first-year Golden Eagles 

including minimum convex polygon (MCP), kernel density estimation (KDE) and Brownian 

bridge movement models (BBMM) (Worton 1989, Horne et al. 2007). We calculated MCP home 

ranges to allow comparisons to historical studies. Kernel density estimates (KDEs) are used more 

frequently than MCPs because they are generally viewed as more informative and biologically 

relevant and they also allow estimation of core areas within home ranges (Worton 1989). 

BBMMs are kernel derived and appropriate for use on species that make long-distance 

movements within their seasonal range (Fischer et al. 2013). They are unique in that they 

incorporate temporal autocorrelation and error estimation of telemetry fixes in home range 

calculation.  

We calculated MCPs and KDEs in the Geospatial Modeling Environment (Spatial 

Ecology LLC, Beyer 2012) within R and ArcMap. We also estimated home ranges with 

Brownian Bridge Movement Models (with the R package BBMM; Nielson et al. 2011). For 

KDEs and BBMMs, we constructed both home ranges (95% isopleth) and core use areas (50% 

isopleth).  

Habitat Association. Of the three home range models evaluated, KDEs seemed most 

biologically appropriate (see discussion). Thus we report home range sizes for all models (KDEs, 

MCPs, and BBMMs) but focus our interpretation of results and habitat modeling exclusively on 

the KDEs. We used ArcMap 10.2.2 to calculate the latitudinal centroid of the individual winter 
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home ranges and core use areas to associate winter home ranges and core use areas with land 

cover, land use, topography, and physiography. 

For each winter home range and core use area, we extracted land cover and land use data 

from the Commission for Environmental Cooperation 2005 land cover dataset (CEC 2013). 

These land cover data were those available that were collected closest to the time of telemetry 

data collection and were the most comprehensive and highest resolution (250 m) available for all 

of the countries wintering eagles used. To simplify the land cover and land use dataset, we 

converted the 19 CEC classes of vegetative cover into 7 broader classes used for analyses (Table 

1). Within the CEC dataset many of the land cover categories have three regional types (tropical, 

temperate, and sub-polar), thus we combined each regional type together to create a broader land 

cover category. For example ‘temperate or sub-polar needleleaf forest’ and ‘sub-polar taiga 

needleleaf forest’ were combined into the broader ‘coniferous forest’ land cover category. 

Classes that appeared only in very small parts (𝑥 ̅ < 2.4 %) of eagle ranges were combined into 

an ‘other’ category.  

We calculated three topographic characteristics for each home range and core use area 

(Braham et al. 2015) including mean topographic roughness ratio (mean TRI; DEM Surface 

Tools; Jenness 2013), categorical topographic position index (TPI; Land Facet Corridor 

Designer; Jenness 2013), and elevation range (max - min elevation to calculate range). TRI is a 

ratio of surface area to planar area that provides a relative measure of roughness in a defined 

area. Mean TRI values calculated with DEM Surface Tools are continuous, and range, for 

example, from 1.0041 for flat areas such as eastern Montana, to 1.0395 for rugged mountainous 

areas such as western Montana. We selected a four-category TPI (canyon, steep slope, gentle 

slope, and ridge; Jenness 2013, Braham et al. 2015) to describe topography within Golden Eagle 

ranges and we measured the proportion of home range and core areas that was composed of each 

TPI category. In each case, topography data were calculated directly from (in the case of 

elevation) or derived from (in the case of TRI and TPI) 30m USGS digital elevation models 

(DEM/NED; Gesch et al. 2002).  
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Data Analyses. We used a Mann-Whitney U-test to compare winter range arrival and 

departure dates and size of KDE winter home ranges and core use areas between male and 

female eagles. We then characterized habitat associations (topography and land cover) within 

individual home ranges and core use areas, again with descriptive statistics (e.g., percent land 

cover, elevation range, mean TRI, and categorical TPI variables). 

To identify habitat parameters that may explain variation in home range size of eagles, 

we developed a set of generalized linear mixed models (GLMMs) that evaluated relationships of 

land cover and topographic parameters to Golden Eagle home range and core area size in winter. 

We tested variables for collinearity with all other model variables using variance inflation factors 

and we removed highly correlated variables from model development. In each model, we used 

the number of days of telemetry data, binned into 50 d intervals, as a random effect to control for 

variation in eagle and telemetry unit lifespans. We first created a global model with all 

parameters (Combined Full model) and we then compared the explanatory value of that model to 

a set of a priori defined sub-models to answer specific questions regarding land cover, 

topography, and physiography variables that may influence home range size (see below for 

questions). We performed model selection using Akaike Information Criterion adjusted for small 

sample size (AICc) and we model averaged results (Burnham and Anderson 2002). We report 

models that had support in the data as those with model likelihood of > 0.10 (Braham et al. 

2015). 

Our first group of hypotheses about eagle home range sizes were based on expectations 

about known characteristics of eagle biology and land cover associations. Golden Eagles are 

commonly thought to associate with Lagomorph prey (Watson 2010), and Lagomorphs with 

shrub habitat (Knick and Dyer 1997, Marzluff et al. 1997, Kochert and Steenhof 2002). 

Therefore, to test if home range size of wintering Golden Eagles was determined by potential 

Lagomorph-shrub habitat associations, we modeled the response of eagle home range size to 

shrub cover within home ranges (we named this the Lagomorph Prey model).  

Other types of land cover may provide multiple benefits to eagles. For example, Golden 

Eagles may benefit by associating with land cover classes that provide thermal protection or 
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protection from predators or mobbing birds (other raptor species demonstrate this “sheltering” 

behavior; Forsman et al. 1984, Yackel Adams et al. 2000). Sheltering habitats for eagles during 

winter may include either conifer forest or broadleaf forest. Both forest land cover types offer 

protection from predators and mobbing birds, while coniferous forest may offer better thermal 

protection during winter. Both of these types of forests are also associated with native ungulates 

(e.g., elk (Cervus elaphus), and white-tailed (Odocoileus virginianus) and black-tailed (O. 

hemionus) deer; Telfer 1970; Unsworth et al. 1998; Mysterud and Ostbye 1999; Poole and 

Mowat 2005) whose carcasses are important carrion resources for wintering eagles (Watson 

2010). To evaluate support for these three potential drivers of eagle resource use, we modeled 

the response of eagle home range size to cover of both forest types alone (Broadleaf Forest and 

Coniferous Forest models) and the two combined (Combined Forest model).  

Wintering Golden Eagles also may feed on carrion of wild or domestic ungulates 

associated with grassland habitats (e.g., pronghorn (Antilocapra americana; Barrett 1984), 

American bison (Bison bison; Knapp et al. 1999) and cattle (Bos taurus)). Therefore, to test if 

home range size of wintering Golden Eagles was determined by potential grazer-grassland 

habitat associations, we modeled the response of eagle home range size to grassland cover within 

home ranges (Grassland Ungulate model). Finally, we compared all of these habitat sub-models 

to a full model for all land cover variables together (Land Cover model). The land cover variable 

‘mixed forest’ was highly correlated with the other forest types in the model (coniferous and 

broadleaf forests) and so we removed it from the model. We also removed the land cover 

category ‘other’ as it was non-descriptive (i.e., difficult to biologically interpret) and the least 

influential variable in the model set. This left a total of five land cover variables in the models. 

We developed a second group of hypotheses about eagle home range size that we could 

test with topography data. Golden Eagles use orographic updraft extensively to subsidize their 

migration (Brandes and Ombalski 2004) and flight at other times of the year (Duerr et al. 2014, 

Braham et al. 2015, and Poessel et al. 2016). Areas with higher values of mean TRI or with steep 

slopes have the potential to provide orographic updraft. Therefore, to test if winter home range 

size was determined by potential for orographic updraft, we modeled the response of eagle home 

range size to two different estimates of topographic roughness within home ranges: the 
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proportion of the home range made up of the TPI category ‘steep slopes’ (Orographic Updraft 1 

model), and the mean TRI of the home range (Orographic Updraft 2 model).  

It seems plausible that Golden Eagles may search out similar topographic habitat in 

winter as in summer as it supplies essential features for eagles. Golden Eagle nests in Denali are 

primarily on cliffs near steep slopes (McIntyre et al. 2006a). To test if home range size of 

wintering Golden Eagles was determined by topographic variables, we modeled the response of 

eagle home range size to the proportion of the home range made up of the two TPI categories 

‘canyon’ and ‘steep slope’ together (Natal Range Characteristics model).  

Finally, it also seems possible that Golden Eagle ranging behavior responds to the 

latitude at which they settle. We know, for example, that land cover varies by latitude, and thus 

eagle response to land cover may reflect these trends. To test this idea, we modeled the response 

of eagle home range size to the latitude at the centroid of the eagle’s core use area (50% KDE 

isopleth; Latitude model). We also compared all of these sub-models to a full model for 

physiography including mean TRI, two TPI categories (canyon, steep slope), elevation range, 

and latitude variables (Physiography model). We removed the two topographic positions 

categories gentle slope and ridge because they were highly correlated with the categories steep 

slope and canyon, respectively. 

RESULTS 

Winter distribution of the 15 tracked Golden Eagles included much of the Rocky 

Mountain region of central North America, from northern Alberta to southern New Mexico (Fig. 

1a). On average, we tracked these birds for 𝑥̅ = 152.5 ± 34.6 d (89 – 184 d) during their first 

winter. Average arrival date on winter range was 11 November ± 22 d (range: 24 October – 28 

December) for females and 13 November ± 23 d (23 October – 02 January) for males. Average 

departure from winter range by females (n = 7) was 19 April ± 14 d (25 March – 08 May) and by 

males (n = 6) was on 1 April ± 31 d (10 February – 30 April). There was no significant 

difference between the sexes in arrival (W = 32.5, p = 0.64) or departure dates (W = 19.0, p = 

0.32).  
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Size of Winter Ranges. Size of winter home ranges of first-year eagles varied widely 

from 4429 to 69 478 km2. We did not detect a difference between sexes in size of first winter 

home range (males 𝑥 ̅= 23 581 km2, females 𝑥 ̅= 26 724 km2, W = 31.0, p = 0.78 or core use 

areas (males 𝑥̅ = 3544 km2, females 𝑥̅ = 4899 km2, W = 32.0, p = 0.69; Appendix A.1 SI Table 

2).  

Characteristics of Winter Home Ranges. Land cover within winter home ranges (KDE 

95% isopleth) was dominated by grassland (𝑥 ̅= 28.1 ± 28.8 %), shrub (𝑥 ̅= 24.9 ± 26.3%), 

coniferous forest (𝑥̅ = 21.0 ± 22.1%), and cropland (𝑥 ̅= 15.86 ± 23.59%). Land cover categories 

that were least well represented in eagle home ranges included broadleaf forest (𝑥̅= 4.0% ± 

10.0%), mixed forest (𝑥̅ = 3.7 ± 9.6%), and ‘other’ (𝑥̅ = 2.4 ± 2.6%; Fig. 2a; Appendix A.1 SI 

Table 3a). 

TPI measurements suggested that winter home ranges were composed predominantly of 

ridges (𝑥 ̅= 35.4 ± 10.4%), canyons (𝑥 ̅= 39.4 ± 13.2%) and gentle slopes (𝑥̅ = 24.2 ± 24.0%), 

with very little steep slope (𝑥̅ = 0.9 ± 0.7%). TRI in home ranges was moderately flat (mean TRI 

𝑥 ̅= 1.019 ± 0.021). Actual elevation within home ranges ranged from 239 to 4199m ASL and the 

elevational range within home ranges also tended to be highly variable (max – min elevation 

within home ranges, 𝑥 ̅= 1560 ± 1141m). 

Characteristics of Winter Core Use Areas. Land cover within winter core use areas 

(KDE 50% isopleth) were nearly identical to those within home ranges. Core use areas were 

dominated by grassland (𝑥̅ = 29.5 ± 32.7%), shrub (𝑥 ̅= 24.8 ± 28.3%), coniferous forest (𝑥̅ = 

20.2 ± 26.3 %), and cropland (𝑥̅ = 14.4 ± 22.9%). Land cover categories that were least well 

represented again included broadleaf forest (𝑥 ̅= 6.1 ± 14.7%), mixed forest (𝑥̅ = 2.77 ± 7.1%), 

and ‘other’ (𝑥 ̅= 2.2 ± 3.4%; Fig. 2b; Appendix A.1 SI Table 3b). 

TPI of winter core use areas also were similar to those of home ranges. Core use areas 

were dominated by canyons (𝑥 ̅= 45.2 ± 16.1%) and ridges (𝑥̅ = 42.3 ± 17.9%). Gentle slopes 

were common in core areas (𝑥 ̅= 17.6 ± 16.2%) and steep slopes were uncommon (𝑥̅ = 6.8 ± 

25.7%). Topographic roughness in core use areas was moderately flat (mean TRI 𝑥̅ = 1.022 ± 
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0.026), with similar mean TRI values to home ranges. Actual elevation within core use areas 

varied from 248 to 4,199m, and elevation range within core use areas were highly variable (min 

– max within core use areas 𝑥 ̅= 1366 ± 966m). 

Determinants of Winter Home Range Size. Our best model of habitat associations for 

home range size, the first Orographic Updraft model, suggested that the proportion of home 

range composed of steep slopes (TPI) had the strongest influence on determining area of home 

range of first-year Golden Eagles in winter (Table 2). Three other models that had support in the 

data included variables for TPI category canyon, cover of broadleaf forests, and mean TRI within 

the home range. All other models we tested were generally less effective predictors of home 

range size, with AICc weights < 0.10. These included the Coniferous Forest model, the Land 

Cover model, and the Physiography model. Likewise, models based on latitude, shrub, grassland, 

cropland, combined forest (coniferous and broadleaf combined) land cover variables, as well as 

the full model, were relatively poor predictors of home range size (Table 2a).  

Model averaged results suggested that home range size was positively associated with the 

proportion of TPI category steep slopes (Table 3a, Fig 3a), and mean TRI (Table 3a). Likewise, 

they indicated that home range size was negatively associated with the proportion of TPI 

category canyon and the proportion of home range with broadleaf forest land cover (Table 3a). 

Determinants of Winter Core Use Area Size. Our best models of habitat associations for 

core use area (KDE 50% isopleth) suggested similar trends to the home range models. Again, 

models with TPI canyon, TPI steep slopes, and broadleaf forest land cover variables best 

explained size of core areas of first-year Golden Eagles in winter (Table 2b). Although broadleaf 

forest land cover only comprised a small percentage of the overall land cover within core use 

areas, and models with broadleaf forest were only weakly supported, this variable was more 

influential in determining space use than any other land cover variables (Table 2b). All other 

models we tested were generally poor predictors of core use area size, with AICc weights < 0.10. 

Once again, models based on latitude, shrub, grassland, cropland, combined forest (coniferous 

and broadleaf combined), elevation range, and all full models were generally poor predictors of 

core use area size (Table 2b).  
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Model averaged results suggested that core use area size was negatively associated with the 

proportion of core use area with broadleaf forest land cover (Table 3b; Fig 3b), and presence of 

TPI canyon. Core use area size was positively associated with mean TRI (Fig 3c), and presence 

of TPI steep slope (Table 3b).  

DISCUSSION 

Our analyses provided information on space use and the drivers of variation in space use of 

wintering first-year Golden Eagles from interior Alaska. Although winter home range and core 

use area size of first-year Golden Eagles showed strong responses to topographical variables that 

likely assist orographic soaring, home range and core use area size showed only limited 

responses to land cover. These data provide a context for interpreting patterns in winter habitat 

use and insight into potential conservation strategies for the species in the face of potential 

habitat changes. 

Space Use and Habitat Association. In general, home ranges modeled with KDEs 

represented movements of the tagged eagles in a manner more biologically reasonably than did 

home ranges estimated with the other modeling approaches (Fig. 1b, Appendix A.1 SI Table 2). 

We therefore used KDEs for subsequent analyses.  

First-year Golden Eagles showed great variation in space use in winter. Home ranges and 

core use areas we calculated tended to be larger than those reported for non-migrant populations 

(Marzluff et al. 1997, Watson et al. 2014, Braham et al. 2015, Poessel et al. 2016), but were more 

similar to those of other migrant populations (Miller 2012, Domenech et al. 2015). Home ranges 

we measured also tended to be larger than those of older, territorial birds (Marzluff et al. 1997, 

Braham et al. 2015, Poessel et al. 2016), and more similar to reported home range size for 

younger eagles (Weston et al. 2013). The difference in space use by the eagles we studied and 

those reported for non-migratory and adult Golden Eagles elsewhere may be due to several 

factors. First, eagles of this young age-class are not defending breeding territories, nor are they 

familiar with the landscape, and thus they wander more (Watson 2010). Nevertheless, birds from 

the Alaska population in particular are known to wander more in the summer than winter 
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(McIntyre et al. 2008). Second, these birds are at the youngest end of the age range of pre-adult 

eagles and thus they may tend to use more space than would slightly more experienced birds 

(Watson 2010).  

 We observed a great deal of variation in land cover associations within winter home 

range and core use areas of the first-year Golden Eagles we monitored. This is not surprising 

given the wide range of latitudes (from central Canada to near Mexico) and biomes across which 

these birds wintered. In contrast, topographic characteristics were less variable than land cover 

characteristics within winter home range and core use areas. These patterns are not surprising 

given the generalist nature of this species, but they provide insight into the habitat features that 

may affect eagle ranging behavior. 

Drivers of Variation in Space Use. Our averaged models describing variation in eagle 

ranging behavior always included important roles for measures of topographic position and 

roughness, consistent with hypotheses linking orographic updraft to ranging behavior. The 

presence of steep slopes in particular had a strong, positive influence on home range size, and a 

stronger positive influence on core use area size. The presence of canyons had a small negative 

influence on home range size and on core area size, but this parameter was still relatively more 

influential than land cover variables at both spatial scales (home range and core use area).  

Our results demonstrate the importance of including topographic variables in habitat 

associations for this species. This pattern was important in both core areas and home ranges, 

suggesting that topography provides critical features important regardless of the spatial scale at 

which eagles are selecting habitat. Furthermore, when land cover variables did show up in 

models, they did so in unexpected ways. For example, although broadleaf forest land cover was a 

small percentage of overall land cover it was influential to both core use areas and home ranges. 

This pattern runs contrary to reports that this species is primarily an open-country bird (Watson 

1991, Haller and Sackl 1997, Pedrini and Sergio 2001) and it may suggest that wintering eagles 

use these forested habitats for roosting or some other critical behavior such as protection from 

mobbing birds.  
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There are several potential reasons why topography may matter more than land cover in 

determining eagle ranging behavior. At a basic level, topography may be important in providing 

favorable opportunities for hunting, and suitable perching. Likewise, topographic characteristics 

have a strong influence on the aerosphere (Kunz et al. 2008), especially because winds interact 

with topographic features to create potential orographic updraft. This matters to Golden Eagles 

because they rely heavily on updraft to subsidize their flight and reduce costly energetic output 

(Katzner et al. 2015). Thus it is not surprising that regardless of spatial scale, Golden Eagle 

ranging behavior would be strongly influenced by availability of orographic updraft. 

The relative significance of a priori sub models we tested also are informative about 

other aspects of eagle biology. For example, latitude and proportion of shrub and most forest 

cover parameters generally poorly explained variation in home range size. By inference, this 

suggests that vegetative land cover, regardless of type, is of relatively low importance to habitat 

selection by eagles. This is unexpected since there are many reports of resource selection by 

eagles that have found associations between eagles and vegetative land cover (e.g., Whitfield et 

al. 2007, Watson et al. 2014). Our analyses suggest that these parameters are relatively less 

important to eagles than are topographic characteristics.  

Conclusion. There are several consequences to understanding the tight relationship 

between topography and eagle ranging behavior. First, this knowledge contextualizes limits to 

eagles and illustrates how eagle ranging behavior is driven by energetics and the availability of 

flight subsidy. This may suggest that first-year eagles in winter are more constrained by 

energetic expenditures (the costs of flight) than by energetic incomes (food acquisition). Second, 

this knowledge contextualizes mechanisms by which eagles may be affected by climate change. 

Topography, and even updraft, will likely change less than land cover in response to climate 

change. Thus, the mechanisms by which wintering first-year eagles may be affected by climate 

change are likely via availability of their prey, many species of which rely on land cover types 

that rapidly are changing throughout much of western North America (for example Lagomorphs 

and shrub cover; Anderson and Inouye 2001, Knick et al. 2003, Chambers and Pellant 2008, 

Xian et al. 2012). Thus, it may be that the energetic limitations eagles face, currently driven 
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especially by expenditures and flight subsidy, could change to be more strongly influenced by 

income and food acquisition.   

The US Fish and Wildlife Service manages Golden Eagle populations for no net loss in 

eagle population size (US Fish and Wildlife Service 2016). Understanding the relative role of 

topography, land cover, and energetics in eagle ranging behavior may be relevant in support of 

this goal. Although this study focused on wintering first-year Alaskan eagles, it likely also is 

relevant to non-migratory and non-breeding eagles, all of which have similar flight behavior and 

may also use similar roosting resources during winter.  
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Table 1. Commission for Environmental Cooperation (CEC) land cover classes, and the 

reclassified variables used in analyses of winter habitat associations of first-year Golden Eagles 

from Denali National Park and Preserve, Alaska. Percent land cover per individual winter range 

is in Appendix A.1 SI Table 3.  

 

ORIGINAL LAND COVER CLASS RECLASSIFIED 

Temperate or sub-polar needleleaf forest Coniferous Forest 

Sub-polar taiga needleleaf forest Coniferous Forest 

Tropical or sub-tropical broadleaf evergreen forest Broadleaf Forest 

Tropical or sub-tropical broadleaf deciduous forest Broadleaf Forest 

Temperate or sub-polar broadleaf deciduous forest Broadleaf Forest 

Mixed forest Mixed Forest 

Tropical or sub-tropical shrubland Shrub 

Temperate or sub-polar shrubland Shrub 

Tropical or sub-tropical grassland Grassland 

Temperate or sub-polar grassland Grassland 

Sub-polar or polar shrubland-lichen-moss Shrub 

Sub-polar or polar grassland-lichen-moss Grassland 

Sub-polar or polar barren-lichen-moss Other 

Wetland Other 

Cropland Cropland 

Barren land Other 

Urban and built-up Other 

Water Other 

Snow and ice Other 

NUMBER OF CLASSES = 19 7 
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Table 2. Models used to describe variables that influence winter home range (HR) size (a; KDE 95% isopleth) and winter core use 

area (CUA) size (b; KDE 50% isopleth) of first-year Golden Eagles from Denali National Park and Preserve, Alaska. Models are 

listed in rank order from the most to least supported (Akaike’s information criterion adjusted for small sample size (AICc) weight ≥ 

0). Physiography model variables include Mean Elevation of HR or CUA, latitude of centroid of HR or CUA, % of HR or CUA made 

up of TPI category “canyon”, % of HR or CUA made up of TPI category “steep slope”, Mean TRI of HR or CUA. Land Cover model 

variables include % cover of broadleaf forest within HR or CUA, % cover of coniferous forest within HR or CUA, % cover of 

cropland within HR or CUA, % cover of grassland within HR or CUA, % cover of shrub within HR or CUA. 
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MODEL EXPLANATORY VARIABLES AICc ∆ AICc 

AICc 

weight 

Model 

Likelihood 

      

(A) Home Range      

Orographic Updraft 1 % of HR made up of TPI category “steep slope” 40.39 0.00 0.34 1.00 

Natal Range Characteristics % of HR made up of TPI categories “steep slope” + “canyon” 41.10 0.71 0.24 0.70 

Broadleaf Forest % cover broadleaf forest within HR 41.12 0.72 0.24 0.70 

Orographic Updraft 2 Mean TRI of HR 42.70 2.30 0.11 0.32 

Combined Forest % cover of coniferous forest + broadleaf forest within HR 44.79 4.39 0.04 0.11 

Coniferous Forest % cover of coniferous forest within HR 47.04 6.65 0.01 0.04 

Lagomorph Prey % cover of shrub within HR  47.13 6.73 0.01 0.03 

Grassland Ungulate % cover of grassland within HR  47.48 7.08 0.01 0.03 

Latitude Latitude of centroid of HR  49.48 9.08 0.00 0.01 

Physiography Full Physiography model 55.83 15.44 0.00 0.00 

Land Cover Full Land Cover model 56.26 15.86 0.00 0.00 

Combined Full Full Physiography Model + Full Land Cover model 369.96 329.56 0.00 0.00 

      

(B) Core Use Area      

Natal Range Characteristics % of CUA made up of TPI categories “steep slope” + “canyon” 40.76 0.00 0.43 1.00 

Orographic Updraft 1 % of CUA made up of TPI category “steep slope” 41.49 0.73 0.30 0.69 

Broadleaf Forest % cover broadleaf forest within CUA 43.32 2.57 0.12 0.28 

Orographic Updraft 2 Mean TRI of CUA 43.82 3.06 0.09 0.22 

Combined Forest % cover of coniferous forest + broadleaf forest within CUA 46.63 5.87 0.02 0.05 

Coniferous Forest % cover of coniferous forest within CUA 48.71 7.95 0.01 0.02 

Grassland Ungulate % Grassland 48.80 8.04 0.01 0.02 

Lagomorph Prey % cover of shrub within CUA  48.85 8.09 0.01 0.02 

Latitude Latitude of centroid of CUA  50.74 9.98 0.00 0.01 

Physiography Model Full Physiography model 54.51 13.75 0.00 0.00 

Land Cover Model Full Land Cover model 58.44 17.68 0.00 0.00 

Combined Full Model Full Physiography Model + Full Land Cover model 373.78 333.02 0.00 0.00 
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Table 3. Model averaged effect sizes and standard errors for fixed effects describing response of 

size of winter home range (HR) size (A; KDE 95% isopleth) and winter core use area (CUA) 

size (B; KDE 50% isopleth) of first-year Golden Eagles from Denali National Park and Preserve, 

Alaska. (1997-1999). Effects measured using linear mixed effects models. 

 

 

MODEL DESCRIPTION PARAMETER VALUE SE 

(A) Variation in HR Size Intercept 9.225 3.816 

 % Steep Slope 7.485 36.630  
% Canyon -0.047 1.439  
% Broadleaf Forest -1.105 2.195  
mean TRI 0.565 3.695  
% combined Forest -0.062 0.361  
% Coniferous Forest -0.009 0.146  
% Shrub 0.009 0.128  
% Grassland 0.006 0.106  
Centroid Latitude -0.001 0.020  
Elevation Range 0.000 0.007  
Cropland 0.000 0.042 

    

(B) Variation in CUA Size Intercept 7.713 3.678 

` % Canyon -0.930 3.845 

 % Steep Slope 12.513 48.415 

 % Broadleaf Forest -0.447 1.314 

 mean TRI 0.584 3.269 

 % combined Forest -0.030 0.234 

 % Coniferous Forest -0.003 0.094 

 % Grassland 0.004 0.083 

 % Shrub 0.003 0.085 

 Centroid Latitude -0.001 0.019 

 Elevation Range 0.000 0.016 

 Cropland 0.000 0.032 
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Fig 1. Telemetry data from winter home ranges of first-year Golden Eagles tracked from nests in 

Denali National Park and Preserve, Alaska in 1997 and 1999. Panels are a) Individual winter 

season Argos telemetry locations; and b) winter home range of one individual (2688) estimated 

with Brownian Bridge Movement Models (BBMM; 95 % isopleth), Kernel Density Estimates 

(KDE; 95 % isopleth) and Minimum Convex Polygon (MCP). The 95% KDE home range of 

Individual 2688 also is shown in map panel a.  
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Fig 2. Average proportion of seven land cover classes (described in Table 1) within a) winter 

home ranges (KDE 95% isopleth) and b) winter core use areas (KDE 50% isopleth) for first-year 

Golden Eagles from Denali National Park and Preserve, Alaska (1997-1999).  
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Fig 3. Model averaged results of relationship between key habitat variables and size of winter 

home ranges (HR; 95% KDE isopleth) and core use areas (CUA; 50% KDE isopleth) of first-

year Golden Eagles from Denali National Park and Preserve, Alaska, (1997 – 1999). Results 

suggested that a) HR size increased as the proportion of TPI steep slopes increased; b) CUA size 

decreased as the proportion of broadleaf forest land cover increased; and c) CUA size increased 

as the mean TRI increased. 
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APPENDIX A.1 

SUPPLEMENTARY INFORMATION 

 

SI Table 1. Argos satellite locations by location-quality class before and after Douglas Argos 

accuracy filtering, and only filtered winter season locations used in analyses, obtained from 

radio-tagged first-year Golden Eagles born in Denali. 

 

ARGOS LOCATION-

QUALITY CLASS 

ALL ARGOS 

LOCATIONS 

BEST FILTERED 

LOCATION PER 

DUTY CYCLE 

WINTER LOCATIONS 

USED 

 n (%) n (%) n (%) 

3 102 1.2 87 5.5 34 4.4 

2 320 3.7 234 14.7 96 12.5 

1 1213 14.1 568 35.7 249 32.4 

0 4312 50.3 559 35.1 335 43.6 

A 907 10.6 50 3.1 23 3.0 

B 1176 13.7 82 5.2 27 3.5 

Z 544 6.3 12 0.8 5 0.7 

Total 8574 100.0 1592 100.0 769 100.0 

 

 



 

45 

SI Table 2. Area (km2) of winter home ranges (95% isopleth) and CUAs (50% isopleth) for (a) female and (b) male Golden Eagles 

telemetered in their first-year from Denali National Park and Preserve using three estimation methods (Brownian bridge movement 

model (BBMM), kernel density estimate (KDE), and minimum convex polygon (MCP)). An asterisk (*) in the “BBMM” columns 

indicates that we were unable to calculate the home range for these individuals An asterisk (*) in the “winter end” column denotes a 

radio failure, and (D) denotes mortality before departing winter range. 

SI Table 2a. FEMALES 

ID 

BIRD 

YR KDE 95 KDE 50 BBMM 95 BBMM 50 MCP 

WINTER 

START 

WINTER 

END DAYS LOCATIONS 

2632 1 9865 1865 33 022 4922 11 221 2 Nov 97 15 Apr 98 165 51 

2634 1 13 887 3081 24 419 5414 10 838 26 Oct 97 21 Apr 98* 178 57 

2635 1 14 895 2240 26 016 3730 14 032 24 Oct 97 25 Apr 98 184 56 

2647 1 69 478 13 701 * * 47 765 5 Nov 97 7 May 98 184 56 

2670 1 4429 595 16 325 2690 3630 29 Nov 99 18 Apr 00 142 53 

2681 1 60 471 11 773 * * 29 281 28 Dec 99 25 Mar 00 89 34 

2685 1 11 399 1761 25 084 4229 12 195 30 Oct 99 10 Apr 00 164 63 

2697 1 29 371 4178 * * 30 981 11 Nov 99 8 May 00 180 60 

TOTALS 

26 724     

± 24 769  

4899 

± 4974 

24 973 

± 5937 

4197 

± 1060 

19 993 

± 14 654 

11 Nov 

± 22d 

19 Apr 

± 14d 

161 

± 32d 

54 

± 9 

 

SI Table 2b. MALES 

ID 

BIRD 

YR KDE 95 KDE 50 BBMM 95 BBMM 50 MCP 

WINTER 

START 

WINTER 

END DAYS LOCATIONS 

2636 1 56 051 5569 54 103 6146 72 086 2 Nov 97 15 Apr 98 165 53 

2641 1 9401 1371 * * 8460 12 Nov 97 18 Apr 98 180 56 

2646 1 47 545 8664 33 819 6543 25 145 23 Oct 97 24 Feb 98 D 125 37 

2688 1 13 017 2696 24 676 5105 5848 2 Jan 00 4 Apr 00 94 29 

2689 1 12 010 1719 18 574 3423 11 940 17 Nov 99 26 Apr 00 162 54 

2692 1 19 126 3341 23 612 5168 20 207 4 Nov 99 30 Apr 00 179 73 

2699 1 7915 1449 15 666 2811 4170 6 Nov 99 10 Feb 00 97 33 

TOTALS 

23 581 

± 19 750 

3544 

± 2693 

28 408 

± 14 039 

4866 

± 1477 

21 122 

± 23 733 

13 Nov 

± 23d 

1 Apr 

± 31d 

143 

± 37d 

48 

± 16 
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SI Table 3. Winter land cover per home range (KDE 95% isopleth) and core use area (KDE 50% 

isopleth). Land cover variables were derived from the 2005 CEC North American land cover 

dataset (CEC 2013). CEC land cover categories were simplified and grouped according to text 

and Table 1 for analyses. Land cover values shown are percent cover per individual home range. 

 

BIRD ID 

AREA 

(km2) 

CONIFEROUS 

FOREST 

BROADLEAF 

FOREST 

MIXED 

FOREST SHRUB GRASSLAND CROPLAND OTHER 

(A) Home Range             

2632 9865 63.81 1.49 12.76 7.60 3.79 0.02 10.54 

2634 13887 25.10 0.02 0.00 24.29 41.58 8.09 0.93 

2635 14895 18.81 0.03 0.00 50.51 23.49 6.26 0.89 

2636 56051 21.75 0.07 0.00 28.60 40.26 7.78 1.54 

2641 9401 63.75 0.81 0.02 23.07 8.07 0.80 3.48 

2646 47545 45.84 0.02 0.00 37.55 12.83 3.29 0.47 

2647 69478 12.37 0.74 0.00 69.93 11.99 2.38 2.60 

2670 4429 15.42 29.35 35.87 1.14 1.18 16.48 0.56 

2681 60471 0.00 0.01 0.05 0.09 18.77 78.91 2.17 

2685 11399 34.37 0.15 0.01 48.58 12.53 1.91 2.44 

2688 13017 0.01 0.00 0.00 0.01 92.17 6.33 1.48 

2689 12010 12.50 0.04 0.00 76.17 10.73 0.10 0.47 

2692 19126 0.02 0.04 0.00 0.00 55.06 43.08 1.80 

2697 29371 0.16 0.00 0.00 5.24 83.72 8.49 2.38 

2699 7915 0.27 27.78 6.45 1.32 5.39 53.91 4.89 

 TOTALS 

25 257    

± 21 830 

20.95 

± 22.11 

4.04 

± 9.97 

3.68 

± 9.59 

24.94 

± 26.34 

28.10 

± 28.83 

15.86 

± 23.59 

2.44 

± 2.55 

(B) Core Use Area              

2632 1865 64.30 0.74 10.43 8.65 3.29 0.00 12.59 

2634 3081 17.11 0.05 0.00 21.42 53.08 7.81 0.52 

2635 2240 9.88 0.04 0.00 66.06 17.35 6.60 0.08 

2636 5569 28.19 0.04 0.00 25.55 40.08 4.31 1.83 

2641 1308 86.24 0.81 0.02 12.21 0.58 0.07 0.06 

2646 8664 47.91 0.08 0.00 36.97 11.56 2.98 0.49 

2647 13701 15.43 0.03 0.00 58.68 16.21 4.50 5.15 

2670 595 5.55 44.56 26.25 0.18 0.38 22.25 0.83 

2681 11773 0.10 5.89 0.37 0.42 8.66 82.32 2.24 

2685 1761 20.55 0.00 0.00 57.71 16.76 3.71 1.27 

2688 2696 0.00 0.00 0.00 0.01 96.23 2.78 0.98 

2689 1719 7.65 0.00 0.00 81.06 11.17 0.00 0.12 

2692 3341 0.00 0.00 0.00 0.00 63.62 36.25 0.13 

2697 4178 0.01 0.00 0.00 2.06 94.94 1.98 1.02 

2699 1449 0.09 39.30 4.45 0.59 8.67 41.00 5.90 

TOTALS 

4263 

± 4000 

20.20 

± 26.30 

6.10 

± 14.66 

2.77 

± 7.08 

24.77 

± 28.30 

29.51 

± 32.68 

14.44 

± 22.86 

2.21 

± 3.38 
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ABSTRACT 

 Land cover is being altered in numerous direct and indirect ways from both 

anthropogenic and natural forces. The effects of these changes may be especially relevant to 

species that make long distance movements between two often dramatically different landscapes. 

To characterize how habitat alteration may influence a long distance migratory species, we 

studied how land cover changed over an 11 year period within summer and winter areas used by 

Golden Eagles (Aquila chrysaetos). The eagles we studied, spent winter in western North 

America and summer in Alaska and northwest Canada. Land cover within areas used in summer 

at northern latitudes was predominantly shrublands. Land cover within winter eagle use areas at 

southern latitudes was comprised mostly of grasslands. At both spatial scales we studies, we 

found greater differences in percent land cover in winter use areas than in summer use areas. 

From 2001 to 2011, on winter range we detected losses in percent cover in Deciduous Forest, 

gains in Evergreen Forest and Water, and both gains and losses in Croplands and Urban cover. 

Over the same interval, on summer range we detected gains in percent cover of Evergreen Forest 

and Grasslands, and losses in Barren ground cover and Snow/Ice cover. Previous work has 

shown that long term declines in reproductive output of Golden Eagles in Denali is not well 

explained by conditions on breeding grounds. This work provides potential insight into what may 

be indirectly influencing these declines and may also assist with conservation of other migratory 

and non-migratory eagles that use these same locations by providing understanding on how land 

cover in these areas has changed.  

Keywords: Aquila chrysaetos, Denali, first-year, Golden Eagle, land cover change, seasonal 
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Both natural and anthropogenic forces are modifying habitats globally (McBean et al. 

2005, Parmesan 2006, Raynolds et al. 2014) with substantial direct and indirect consequences for 

ecosystems (Walter et al. 2002, Parry et al. 2007, Moritz et al. 2008, Both et al. 2010). 

Anthropogenic forces are directly affecting ecosystems with land cover and land use alterations, 

and they are affecting habitats indirectly by influencing natural systems and ecosystem processes 

(Walther et al. 2002, Parmesan 2006). Documented transformations in habitat attributed to 

anthropogenic influence include altered vegetative structure and shifts in vegetation and 

vertebrate species distribution and abundance (Root et al. 2003, Parmesan and Yohe 2003, Sturm 

et al. 2005, Moritz et al. 2008). These changes impact the phenology of plants, insects, and 

vertebrates that are important as food for many herbivores and predators (altered synchrony; 

Inouye et al. 2000, Visser and Both 2005, Both et al. 2010). Climate change is also increasing the 

spread of introduced species and pathogens as well as modifying wildfire regimens (Dale et al. 

2001, Brooks et al. 2014, Van Hemert et al. 2014).  

Land cover is a potential proxy for ecosystem-level changes (Lambin and Strahler 1994, 

Turner et al. 2007, Tapia et al. 2017). North American land cover transformation, driven by a 

suite of bio-physical habitat parameters, is exacerbated and accelerated by climate change, 

particularly at northern latitudes (Serreze and Francis 2006, Screen and Simmonds 2010). These 

bio-physical changes are especially prominent at northern latitudes, where warmer temperatures 

and a longer growing season (Kozlov and Berlina 2002, Linderholm 2006) have resulted in an 

expansion of woody shrubs in previously shrub-free elevational and latitudinal zones (Sturm et 

al. 2005).  

As vegetative structure is altered, available resources in those habitats, such as food and 

cover, are transformed. There are cascading effects for the communities of organisms which rely 

on those resources, and these effects potentially can influence population dynamics, species 

distributions and interactions, food web structure, biodiversity, and ecosystem processes (Logan 

et al. 2003, Convey and Smith 2006, Parmesan and Yohe 2003, Grosbois et al. 2008, Harms et a. 

2017). Such changes in vegetative structure may be especially relevant to species that are long 

distance migrants and who rely on multiple, often dramatically different, landscapes during 

breeding, non-breeding and migration seasons (Both et al. 2010, Newton 2004, 2010). 
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There are many ways to measure how land cover change could affect wildlife. One way 

would be to track different individuals to measure land cover in different time periods, and then 

to evaluate changes in land cover types used. While informative, this method requires long term 

tracking, detailed seasonal land cover data and large sample sizes that allow separation of 

individual and temporal variability. A second, more simple way is to evaluate land cover change 

over time within areas used by animals at one of those times. This approach requires fewer data 

and yet still may provide insight into how wildlife may be influenced by land cover change.  

To understand how changing land cover may affect a long distance migratory apex 

predator, we evaluated land cover change over time in historical home ranges of first-year 

migratory Golden Eagles (Aquila chrysaetos) hatched in interior Alaska and tracked 20 years 

ago. These eagles migrate thousands of kilometers between summer and winter ranges (McIntyre 

et al. 2008) and thus the land cover they encounter in those two seasons should be distinct and 

subject to dramatically different, sometimes climate-driven, pressures. We focused on three 

research questions: 1) Has there been change over time in the land cover characteristics of areas 

Golden Eagles once used? 2) Which land cover characteristics have changed most rapidly within 

those historical Golden Eagle use areas? 3) Within historical eagle use areas, is land cover 

change greater within summer ranges or winter ranges?  

METHODS 

Golden Eagles tracked in this study hatched in a 2100 km2 study area centered at 63 

35.8’N, 149 38.2’W, in the northern foothills of the Alaska Range in Denali National Park and 

Preserve (Denali; Fig 1). Nestling eagles from Denali fledged in July to August and initiated 

migration in September or October (McIntyre and Collopy 2006). They arrived on wintering 

grounds approximately in late October to early January, stayed through February to May, and 

then they summered in Alaska, Yukon and Northwest Territories between mid-May and 

September (McIntyre et al. 2008, Chapter 2 of this thesis).  

Summer range for Denali’s radio-tagged first-year Golden Eagles encompassed portions 

of Alaska and western Yukon Territories (Fig 1; see also McIntyre et al. 2008). General 
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descriptions of land cover at northern latitudes within and surrounding summer eagle ranges is 

predominantly high alpine, tundra and boreal forest (Goward et al. 1987, NASA LP DAAC, 

2013). Topography varies greatly in summer ranges, with rugged, glaciated, mountainous terrain 

interspersed with vast flat areas and transitioning to coastal plain north of the Brooks Range 

(Gesch et al. 2002). Summer diet of breeding and nestling eagles in Denali is composed 

primarily of snowshoe hare (Lepis americanus), ptarmigan (Lagopus spp), and Arctic ground 

squirrel (Spermophillis parryii) (McIntyre et al. 2006). Summer diet of Golden Eagles elsewhere 

at northern latitudes is similar depending on availability, and also includes waterfowl (Brodeur et 

al. 1996). 

The winter range of the sample of radio-tagged eagles spanned a large portion of western 

North America from northern Alberta to southern New Mexico (Fig 1) (see McIntyre et al. 

2008). Topography also varies considerably over eagle winter ranges, with rugged, mountainous 

terrain in the Rocky Mountains and expansive flat areas in the Great Plains (Goward et al. 1987, 

Gesch et al. 2002, NASA LP DAAC, 2013). During winter, diet for this species includes carrion 

from wild or domestic large mammals such as ungulates (Marr and Knight 1983, Watson 2010), 

and small or medium-sized mammals (including Lepus spp and Marmota spp), and medium-

sized birds (Phasianus colchicus and Tetraonidae; Kochert et al. 2002, Watson 2010). 

Data Collection. McIntyre et al. (2008) radio-tagged nestlings in late July and early 

August in 1997 and 1999. Eagles >56 d of age were fitted with a 95g satellite Platform Terminal 

Transmitter (PTTs; Microwave Telemetry, Columbia, Maryland, U.S.A.). These PTTs used the 

Argos satellite tracking system to record locations (McIntyre et al. 2008). Duty cycles for the 

transmitters were 8 hr on and 72 hr off in 1997, and 8 hr on and 48 hr off in 1999 (McIntyre et al. 

2008).  

Data Processing and Management. To reduce error associated with the Argos telemetry 

locations, we applied the Douglas Argos Filter (DAF; Douglas et al. 2012) using the DAF filter 

parameters from McIntyre et al. (2008). Filter application reduced auxiliary-class location fixes 

(0, A, B, Z; up to 12km error; Argos 1996). The resulting locations were comprised of higher 

proportion of standard class location fixes (3, 2, 1; from 125m error; Argos 1996). We further 



 

52 

manually filtered telemetry data, removing implausible movement spikes (e.g., three sequential 

points where the first and last locations were close in proximity but the middle point was >200 

km away with an atypically acute internal turning angle). The unfiltered telemetry data collected 

on individuals used in these analyses were comprised of 18.5% standard-class and 81.5% 

auxiliary-class Argos location quality class fixes. After accuracy filtering the telemetry data used 

in these analyses were comprised of 48.9% standard-class and 51.1% auxiliary-class fixes 

(Appendix B.1 SI Table 1). 

We focused analyses on winter and summer of the first-year of data collection for each 

bird. We calculated start and end dates of the winter and summer season based on the following 

criteria. We defined arrival on each seasonal range as data points that had <200 km between 

consecutive telemetry fixes and that were not in the direction of migration (primarily in a 

southeast direction in autumn, northwest in spring; McIntyre et al. 2008). Conversely, we 

defined the end of each season as distances between consecutive telemetry locations > 200 km 

with movements that occurred in the direction of migration (primarily northwest in spring, 

southeast in autumn). For individuals that did not survive or had transmitter failure during the 

season, we used the last date of recorded data as the season end date. For these analyses, we only 

considered birds for which we had sufficient telemetry data for reasonable space use estimation 

while having a minimum of data (> 30 days of data and > 13 telemetry locations), in a single 

non-migratory season (summer and winter). From this telemetry selection criteria, dates on 

winter range for individuals in this study ranged from 23 October – 25 March, and dates on 

summer range spanned 3 May – 20September. 

Space Use, Golden Eagle Home Range and Core Use Estimation. We used kernel 

density estimation (KDE) to model winter and summer space use of first-year Golden Eagles 

(Worton 1989). We calculated KDEs in the Geospatial Modeling Environment (Spatial Ecology 

LLC, Beyer 2012) within R (3.1.3) and ArcMap (10.2.2).  

As we used a subset of radio-tagged individuals with sufficient seasonal telemetry data 

for home range analysis, and we used a liberal 200 km movement threshold to define the start 

and end of the winter period (see above). The resulting arrival and departure dates used in this 
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study differ slightly from those previously reported for these eagles that had been defined with a 

more conservative threshold by McIntyre et al. (2008). To account for the possible inclusion of 

migration locations in our seasonal range dataset, we performed our analysis on two different 

home range isopleths (95% and 50%). The more liberal 95% isopleth estimates (hereafter home 

ranges) likely contain a small number of points that others might consider migratory. The more 

conservative 50% isopleth estimates (hereafter core use areas) do not contain points collected 

during migration and are tightly constrained estimates of space use. We used a Mann-Whitney 

U-test to compare area of home ranges and core use areas between summer and winter and 

between sexes by each season, summer and winter. 

Land Cover Habitat Associations Over Time. We used ArcMap 10.2.2 to associate 

winter home ranges and core use areas with land cover and land use data. For each winter and 

summer home range and core use area, we extracted land cover and land use data from the 

Moderate Resolution Imaging Spectroradiometer (MODIS) 500 m land cover dataset 

(MCD12Q1; Friedl et al. 2010, NASA LP DAAC 2013). MODIS multiple-pass annual average 

imagery provide the most comprehensive, highest resolution, and longest temporal scale dataset 

available for locations of our eagle home ranges which fell in both Canada and the USA. Other 

long term datasets with higher resolution data stop at the US-Canada border. We used annual 

average land use and land cover data collected at five year intervals (2001, 2006, 2011). The 

2001 land cover data used were closest to the time of telemetry data collection (1997 – 2000) and 

describe habitat associations for first-year Golden Eagles, while the other two time stamps were 

used to elucidate change in those areas after eagles had used them.  

To simplify interpretation of change in land cover and land use, we reduced the number 

of land cover classes from twelve to nine by combining similar classes (Table 1). To do this, we 

combined the classes named Evergreen Needleleaf Trees and Evergreen Broadleaf Trees into a 

combined Evergreen Forest category. We also combined the classes named Deciduous Broadleaf 

Trees and Deciduous Needleleaf Trees into a combined Deciduous Forest category and we 

combined the categories named Cereal Crops and Broadleaf Crops, into a combined Croplands 

category. The land cover category Urban comprised a small portion (𝑥 ̅ < 0.9 %) of eagle ranges 
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but it was not combined into another category because we wanted to be able to distinguish urban 

land cover from both croplands and non-anthropogenic categories.  

The telemetry data and KDEs, especially those from Alaska, tended to include areas over 

open water. Although Golden Eagles usually avoid large expanses of open water (Watson et al. 

1992, Watson 2010), we did not exclude these locations from our analyses because water at 

northern latitudes and the Rocky Mountain West may be frozen during some or all of the time 

eagles are present in both winter and summer season.  

Data Analyses. To understand if land cover has changed within areas Golden Eagles 

used historically, we used descriptive statistics (sample means and standard deviations) to 

characterize land cover habitat associations from each time stamp at two spatial scales (home 

ranges and core use areas). Statistics were calculated as percent cover per individual range and 

separately by season (summer and winter) and spatial scale (home range and core use area). 

We used a Mann-Whitney U-test with sequential Bonferroni correction (Rice 1989) to 

adjust the critical value to compare percent land cover of each category among the three years 

within seasonal home ranges and core use areas. We chose critical values based on k = 9 tests 

because Rice (1989) states that there is no minimum number of tests for a sequential Bonferroni 

correction and determining the number is difficult and depends on the question presented. 

Comparing among the three years of land cover data resulted in three temporal comparisons 

(2001-2006, 2006-2011, and 2001-2011). Using multiple time intervals allows a more detailed 

description of the change over time than does measuring change between only two time periods 

(Gillanders et al. 2008). We performed this analysis separately between each time period for 

each season (summer and winter) and for each spatial scale (home ranges and core use areas). 

There was no Urban land cover within summer core use areas at any time and so we only 

performed k=8 tests for summer core use areas. To describe the differences in percent cover 

across time intervals, we calculated percent change in land cover variables of eagle use areas that 

were statistically significant. 
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Due to the importance of snow cover and its effects on water availability (Barnett et al. 

2005, Stewart et al. 2005), vegetation structure and land cover, we were especially interested in 

snow cover change. In winter eagle ranges in western North America, snow fall and snow cover 

are prominent drivers of water availability and drought potential in all seasons (Stewart et al. 

2005). In summer eagle use areas at northern latitudes, snow cover not only is important in 

driving water availability and drought potential, but it also has an important role in energy 

reflection of UV radiation, albedo effect, and accelerated warming known as Arctic amplification 

(Serreze and Francis 2006, Screen and Simmonds 2010). With less energy reflected from snow 

cover, more is absorbed, thus rapidly increasing near surface air and soil temperatures and in turn 

amplifying warming effects at nearly twice the rate as other latitudes (Serreze and Francis 2006, 

Screen and Simmonds 2010).To examine if snow and ice cover within eagle use areas changed 

over time, we separately evaluated Snow/Ice cover for change in both summer and winter ranges 

between time stamps using a Mann-Whitney U-test.  

RESULTS 

Space Use. Winter Range. Winter distribution of this sample of Golden Eagles reported 

by McIntyre et al. (2008) included much of the Rocky Mountain region of central North 

America, from northern Alberta to southern New Mexico (Figure 1). We had sufficient data (> 

30d on range with > 13 telemetry locations) to model 15 individual winter use areas (female = 8, 

male = 7; n = 7 from 1997 and n = 8 from 1999). For additional details on winter eagle ranges, 

including arrival and departure dates, see Chapter 2 of this thesis. 

Summer Range. Summer distribution of this sample of Golden Eagles reported by 

McIntyre et al. (2008) included much of northern, central, and eastern Alaska, into northern and 

western Yukon Territories, reaching into the northwest-most portion of Northwest Territories 

(Figure 1). We had sufficient data (> 30d on range with > 13 telemetry locations) to model ten 

individual summer use areas (female = 6, male = 4; n = 4 from 1997, and n = 6 from 1999) 

(Appendix B.1 SI Table 2). Females arrived to summer ranges, on average, on 21 May ±16 d (3 

May – 7 June). Males arrived, on average, on 23 May ± 10 d (12 May – 3 June). Females 
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departed summer ranges, on average, on 9 August ± 30 d (31 July – 20 Sept). Males departed, on 

average, on 19 August ± 29 d (11 July – 18 Sept). 

Golden Eagle Home Range and Core Use Estimation. Winter Range. Winter home 

range size of Golden Eagles varied from 4429 to 69 478 km2 and was similar between the sexes 

(see Chapter 2, this thesis). Winter core use area size varied from 595 to 13 701 km2 and also did 

not vary among the sexes. See Chapter 2 of this thesis for additional details and statistical 

comparisons on winter eagle ranges.  

Summer Range. Summer eagle home ranges were larger than winter home ranges on 

average (p = 0.001), and varied in size from 20 990 to 224 376 km2 (𝑥 ̅= 101 238 ± 74 922 km2). 

Summer home ranges of males were larger than those of females (females 𝑥 ̅= 55 706 ± 31 623 

km2; males 𝑥 ̅= 169 537 ± 69 334 km2; p = 0.038). Summer core use areas were larger than 

winter core use areas on average (p = 0.001), and for all individuals in this study varied from 

3190 to 38 652 km2 (𝑥̅ = 17 567 ± 13 165 km2). Summer core use areas were on average larger 

for males (females 𝑥̅ = 15 567 ± 13 165 km2; males 𝑥̅ = 28 492 ± 13 281 km2; p = 0.038). 

Land Cover Habitat Associations Over Time. Winter Home Ranges and Core Use 

Areas. Land cover within winter home ranges and core areas in 2001, nearest to when eagles 

were present, and in other years when eagles are not present, averaged about 50% Grasslands 

(Table 2). The only other land cover types that composed >10% of winter home ranges were 

Evergreen Forest and Croplands (although Croplands comprised slightly less percent cover in 

core use areas in 2011). All other land cover categories comprised, on average, small percentages 

of core use areas or of home ranges, although variability among individual birds was high 

(Appendix B.1 SI Table 3). 

Summer Home Range and Core Use Areas. Land cover within eagle summer home 

ranges and core use areas was different from that in winter. Land cover within summer eagle 

home ranges consistently averaged approximately 50% Shrublands, with >10% average land 

cover comprised of Grasslands and Evergreen Forest (core use areas were similar except there 

tended to be less Evergreen forest). All other land cover categories comprised, on average, small 
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percentages of core use areas or of home ranges in summer, although variability among 

individual birds was high (Appendix B.1 SI Table 3). Alaska and northern Canada are sparsely 

populated and the land cover category Urban did not appear in any individual summer core use 

area at any time. 

Land Cover Change. Winter Home Range. Change in land cover variables within 

historical eagle winter home ranges was most prevalent across the longer interval between 2001 

and 2011. During this period, there were statistically significant differences in five of the nine 

categories of land cover within home ranges (Table 3). Over this longer period Deciduous Forest 

and Croplands decreased substantially in percent cover (30.1% and 37.1% loss respectively), 

while Evergreen Forest (29.3% gain) and Water increased (67.1% gain; Table 2, Table 3). 

Change in percent cover of category Urban had statistically significant differences across this 

longer time interval, although it only comprised very small percentages (<0.3%) of winter home 

ranges. During the period 2006 and 2011, two land cover categories changed significantly, both 

increasing in percent land cover (Evergreen Forest 15.0% gain; Water 101.5% gain: Table 2, 

Table 3). Comparisons across the earliest time interval (2001-2006) showed significant decreases 

in percent cover of the land cover categories Croplands (22.2% loss), Deciduous Forest (18.9% 

loss), and increases in the category Evergreen Forest (12.5% gain).  

Winter Core Use Area. Change in land cover variables on winter core use areas was most 

prevalent across the longer time interval from 2001 to 2011. During this period there were 

statistically significant differences in four of the nine land cover categories within core use areas 

(Table 2, Table 3). From 2001 – 2011 statistically significant changes in land cover were 

detected in categories Deciduous Forest (26.7% loss) and Croplands (36.7% loss), Evergreen 

Forest 34.2% gain) and Water (116.8% gain; Table 2, Table 3). During the period 2001 to 2006, 

there were no land cover categories with statistically significant differences (Table 3). During the 

period 2006 to 2011, percent cover of Croplands decreased by 27.9%, while Evergreen Forest 

and Water increased (by 15.5%, and 237.5% respectively; Table 2, Table 3). 

Summer Home Range. Change in land cover variables within summer home ranges was 

most prevalent between the 2001 and 2006 imagery. During this period there were statistically 
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significant differences in two of the nine land cover categories (Table 3). Evergreen Forest 

increased in percent cover by 23.0%, while the land cover category Snow/Ice decreased by 

17.8%; Table 2). During the period 2006 – 2011, there were no statistically significant changes 

in land cover. Across the longer interval from 2001 - 2011, we detected only a statistically 

significant change in the land cover category Barren (82.5% loss; Table 3).  

Summer Core Use Area. Change in land cover variables in summer core use areas was 

generally small. Comparing 2001 – 2011 data, we detected statistically significant decreases in 

percent cover of the land cover categories Snow/Ice (22.3% loss) and Barren (84.4% loss; Table 

2; Table 3). During the period 2006 – 2011, only the land cover category Grasslands changed 

significantly (14.8% gain; Table 2, Table 3). During the period 2001 – 2006, the land cover 

category Snow/Ice decreased significantly (25.2% loss; Table 2, Table 3). All other land cover 

categories did not statistically significantly change within summer core use areas across the time 

frame studied (Table 3). 

DISCUSSION 

Land Cover Within Historical Eagle Use Areas. There was high among-individual 

variability of land cover composition in both summer and winter eagle use areas. In some cases 

the dominant land cover type in an individual’s seasonal use area was not a prevalent land cover 

type when averaged across individuals. For example, while on average Shrublands were not 

prevalent in winter use areas, they were the dominant land cover type for one individual’s 

historical winter use areas (Shrublands comprised 89.3 % of the home range and 99.8% of the 

core area; both calculated from 2011 land cover data). Likewise, summer use areas included 

individual outliers in land cover composition. For example, for one individual land cover 

category Water comprised 25.0% of the summer home range and 39.2% of the core use area 

(calculated from the 2001 land cover data). When averaged across individuals, summer use 

percent land cover category Water comprised < 8.0%.  

Land Cover Change Over Time. We detected more prevalent change in land cover 

composition on eagle winter range than we did on summer range. Although there are numerous 
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drivers of land cover change, our results were intriguing as much of the published literature 

suggests that due to climate change, the bio-physical characteristics of habitats at northern 

latitudes, are changing more rapidly than at southern latitudes (McBean et al. 2005, Serreze and 

Francis 2006, Screen and Simmonds 2010). This is largely because snow and ice cover at 

northern latitudes is an especially important driver of potential land cover change over extended 

time frames. As climate changes, growing season length and number of frost free days at 

northern latitudes are increasing (Kozlov and Berlina 2002, Linderholm 2006), and there are an 

increasing number of rain events in winter affecting snowpack and water availability (Regonda 

et al. 2005). Changes in precipitation regimes are affecting changes in land cover. These shifting 

parameters have substantial effects on bio-physical systems including increasing soil 

temperatures and modifying water availability (Hinzman et al. 2003), in turn altering the 

phenology and distribution of plant species (Cleland et al. 2007). Terrestrial permafrost, snow 

cover, glaciation, and sea ice have all shown marked declines at northern latitudes (Regonda et 

al. 2005, McBean 2005, Parry et al. 2007). The effects of decreasing snow and ice cover are 

especially important aspects of Arctic amplification at northern latitudes in which the albedo 

effect of snow and ice on UV radiation reflection is reduced (Serreze and Francis 2006, Screen 

and Simmonds 2010).  

We observed several changes in land cover parameters over the 11 year time frame of the 

study that were likely driven by natural processes. Water availability, and thus potential water 

and snow and ice cover, in winter eagle use areas of western North America is driven by 

annually and spatially variable winter precipitation (Barnett et al. 2005, Stewart et al. 2005). 

Natural processes such as the El Niño and La Niña oscillations affect winter precipitation and 

thus potential annual average water and snow and ice cover throughout this region (Holmgren et 

al. 2001, Hamlet et al. 2005). Likewise, in summer eagle use areas, snow and ice land cover are 

critically important variables in albedo effect on Arctic amplification and changes in these land 

cover classes creates accelerated potential for land cover change. The patterns we detected in 

snow and ice cover in summer use areas were consistent with those reported in other studies at 

northern latitudes (Regonda et al. 2005, McBean et al. 2005, Parry et al. 2007, Lindsay et al. 

2016). 
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Another natural change in land cover reported in other studies includes spatially variable 

alterations in shrublands land cover. Throughout much of western North America shrublands 

cover is decreasing at temperate latitudes (Anderson and Inouye 2001, Knick et al. 2003, Xian et 

al. 2012), and increasing at northern latitudes (Sturm et al. 2005). This is especially prominent in 

the western US near winter eagle ranges in sagebrush habitat (Anderson and Inouye 2001, Knick 

et al. 2003, Xian et al. 2012). At northern latitudes shrub cover is encroaching into areas where 

they were previously not found, including expansion poleward, into meadows, and into higher 

elevations (Sturm et al. 2005, Roland and Stehn 2013). We were therefore surprised that, we did 

not detect change in the MODIS data for the land cover category Shrublands in either summer or 

winter eagle use areas. We suspect this may be due to the relatively short temporal scale and 

resolution of our study.  

Several of the changes we observed are likely driven by anthropogenic forces such as 

energy development and agriculture. Changes in cover of the category Croplands in winter use 

areas likely are driven by food and commodity pricing (Lobell et al. 2011) and agricultural 

management practices (e.g., USDA Farm Service Agency Conservation Reserve Programs; 

Delisle and Savidge 1997). Likewise, during the time frame studied, human population in the 

western US, and thus potential urban development, has increased by 13.8% in and surrounding 

winter eagle use areas (US Census Bureau 2000 and 2010 intercensal census; Mackun et al. 

2011). While population has also increased in Alaska during this time (Mackun et al. 2011), 

similar changes from urbanization and agricultural forces were not as prevalent within and 

surrounding summer eagle use areas compared to winter eagle use areas. 

There are non-biological explanations for our observation that land cover in eagle use 

areas is changing more in southern than northern latitudes in our study area. Our land cover 

results show the effect of latitudinal range of eagle use areas. Space use in winter spanned a 

much greater latitudinal range (32 5.6’N to 54 33.2’N) than did space use in summer (from 59 

52.6’N to 70 48.9’N). Likewise, land cover in winter use areas is subject to large-scale changes 

in land cover classifications caused by fire (McKenzie et al. 2004), drought (Wan et al. 2004), 

and agricultural practices (Karlen et al. 1994) that are less prevalent and have different effects in 

summer use areas.  
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It is also possible that the differences we observed in change in land cover between 

summer and winter use areas are a reflection of the scale of land cover data that we used and the 

time span in which we attempted to measure change. Although they were the best data available 

to us, the 500m resolution and the relatively short temporal extent of the MODIS land cover data 

may not accurately reflect small scale changes in land cover at the scale of eagle home ranges. 

Other studies which analyzed land cover change with higher resolution land cover data have 

been able to detect small yet significant changes (Xiubin 1996, Lindsay et al. 2016, Tapia et al. 

2017).  

Conclusion. Golden Eagles in Denali have shown long-term declines in nesting rates and 

fledgling production while territory occupancy has remained steady (McIntyre and Schmidt 

2012). These declines are not well explained by conditions on the breeding grounds and previous 

work has suggested that they may be caused by changes or deterioration of winter habitat 

(McIntyre and Schmidt 2012). Even across a relatively short time span from, 2001 to 2011, our 

results show statistically significant changes in land cover in areas used by first-year eagles, 

especially on wintering grounds. Migratory adult Golden Eagles also use similar areas of western 

North America in winter (Harmata 2002, McIntyre 2012, Domenech et al. 2015). Work in other 

systems has shown the relevance of carry over effects on avian demography (Webster 2002, 

Boulet and Norris 2006, Both et al. 2010, Newton 2004, 2010). Additional studies focused on 

winter behavior and movements of breeding age eagles could build on the results we report here 

to identify the mechanisms for these declines.  
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Table 1. MODIS annual land cover data (Terra + Aqua Type 5 Yearly L3 Global 500m SIN Grid 

MCD12Q1) Land Cover Classification: Type 5 Plant Functional Type (PFT) scheme and 

combined categories used in analyses of land cover change within seasonal home ranges of 

migratory first-year Golden Eagles hatched in Denali. 

 

 

MODIS LAND COVER 

CLASSIFICATION 
COMBINED 

CATEGORIES 

Barren or Sparse Vegetation Barren 

Cereal Crops Croplands 

Broadleaf Crops Croplands 

Deciduous Needleleaf Trees Deciduous Forest 

Deciduous Broadleaf Trees Deciduous Forest 

Evergreen Needleleaf Trees Evergreen Forest 

Evergreen Broadleaf Trees Evergreen Forest 

Grass Grasslands 

Shrub Shrublands 

Snow and Ice Snow/Ice 

Urban and Built-up Urban 

Water Water 

  Total          12          9 
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Table 2. Average percent land cover categories ± standard deviation within areas used by first-year Golden Eagles hatched in Denali, 

Alaska, on winter and summer home ranges and core use areas. Cover was estimated from MODIS imagery from 2001, 2006 and 

2011. Land cover classes are as in Table 1.  

 

                WINTER HOME RANGES                   SUMMER HOME RANGES 

LAND COVER  2001 2006 2011  2001 2006 2011 

Barren 0.5 ± 1.5 0.2 ± 0.3 0.1 ± 0.2  1.5 ± 0.9 1.3 ± 1.1 0.3 ± 0.2 

Croplands 16.4 ± 24.4 12.7 ± 21.8 10.3 ± 19.1  0.0 ± 0.0 0.0 ± 0.0 0.01 ± 0.0 

Deciduous Forest 4.6 ± 10.1 3.7 ± 8.7 3.2 ± 7.9  1.2 ± 1.0 1.4 ± 1.4 1.0 ± 1.0 

Evergreen Forest 21.9 ± 25.7 24.6 ± 28.1 28.3 ± 30.6  10.4 ± 9.1 12.8 ± 10.4 12.9 ± 10.7 

Grasslands 47.9 ± 33.9 51.6 ± 35.4 50.5 ± 35.3  25.5 ± 7.4 21.8 ± 7.5 23.1 ± 7.2 

Shrublands 8.0 ± 20.8 7.0 ± 22.5 6.5 ± 22.9  48.0 ± 14.2 50.9 ± 16.4 50.4 ± 15.6 

Snow/Ice 0.0 ± 0.0 0.0 ± 0.1 0.0 ± 0.0  3.8 ± 4.1 3.1 ± 4.1 2.7 ± 4.4 

Urban 0.2 ± 0.3 0.2 ± 0.3 0.2 ± 0.3  0.0 ± 0.0 0.0 ± 0.00 0.6 ± 1.8 

Water 0.5 ± 8.3 0.5 ± 0.6 0.9 ± 1.1  9.7 ± 8.3 9.2 ± 8.7 9.1 ± 8.6 

        

               WINTER CORE USE AREAS                     SUMMER CORE USE AREAS 

LAND COVER  2001 2006 2011  2001 2006 2011 

Barren 0.4 ± 1.4  0.1 ± 0.3 0.0 ± 0.1  1.7 ±1.5 1.2 ± 1.4 0.3 ± 0.3 

Croplands 14.6 ± 24.4 12.3 ± 21.8 8.8 ± 16.6  0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 

Deciduous Forest 5.7 ± 13.9 4.70 ± 11.4 4.1 ± 10.5  0.8 ± 0.9 0.9 ± 1.1 0.8 ± 0.8 

Evergreen Forest 20.3 ± 29.0 23.6 ± 31.1 27.2 ± 32.9  5.5 ± 6.1 8.6 ± 8.9 8.4 ± 8.8 

Grasslands 49.7 ± 37.5 51.7 ± 37.4 52.1 ± 38.0  26.7 ± 10.7 21.1 ± 8.9 24.2 ± 9.7 

Shrublands 8.8 ± 22.9 7.3 ± 23.3 7.0 ± 24.5  54.1 ± 16.5 57.5 ± 18.9 55.8 ± 18.0 

Snow/Ice 0.0 ± 0.0 0.0 ± 0.1 0.0 ± 0.0  4.3 ± 6.8 3.2 ± 5.4 3.3 ± 5.9 

Urban 0.2 ± 0.4 0.2 ± 0.4 0.1 ± 0.3  0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 

Water 0.3 ± 0.5 0.2 ± 03 0.6 ± 1.0  7.9 ± 12.0 7.5 ± 12.1 7.12 ± 12.8 
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Table 3. Changes in percent land cover within areas used by first-year Golden Eagles hatched in Denali, Alaska, on winter and 

summer home ranges and core use areas. Results shown are from Mann-Whitney U-test (V, p) with sequential Bonferroni correction 

adjusted critical value (Rice 1989) across three time intervals (2001 – 2006, 2006 – 2011, and 2001 – 2011). Land cover classes are as 

in Table 1. Within summer core use areas the land cover category Urban did not appear. 

 

 a.           WINTER HOME RANGES  b.                  SUMMER HOME RANGES 

 2001-2006 2006-2011 2001-2011  2001-2006 2006-2011 2001-2011 

LAND COVER  V p V p V p  V p V p V p 

Barren 61 0.616 76 0.149 78 0.025  43 0.131 53 0.006 55 0.002* 

Croplands 107 0.005* 104 0.010 105 0.008*  25 0.363 6 0.107 15 0.726 

Deciduous Forest 105 0.002* 81 0.014 100 0.003*  31 0.770 46 0.064 41 0.193 

Evergreen Forest 9 0.007* 0 0.002* 6 0.004*  0 0.002* 23 0.695 4 0.014 

Grasslands 29 0.083 104 0.010 54 0.762  50 0.020 8 0.049 46 0.064 

Shrublands 72 0.233 88 0.028 84 0.052  16 0.275 29 0.922 14 0.193 

Snow/Ice 54 0.068 30 0.839 58 0.029  55 0.002* 21 0.906 47 0.049 

Urban 48 0.041 3 0.371 55 0.006*  1 1.000 1 1.000 1 1.000 

Water 57 0.170 0 0.003* 0 0.003*  45 0.084 33 0.625 50 0.020 

 

 
c.         WINTER CORE USE AREAS  d.                 SUMMER CORE USE AREAS 

 2001-2006 2006-2011 2001-2011  2001-2006 2006-2011 2001-2011 

LAND COVER  V p V p V p  V p V p V p 

Barren 34 0.541 31 0.080 47 0.053  47 0.049 44 0.013 55 0.002* 

Croplands 105 0.008 114 0.001* 108 0.004*  14 0.529 14 0.529 10 0.590 

Deciduous Forest 64 0.055 81 0.012 87 0.004*  16 0.477 31.0 0.343 19.0 0.722 

Evergreen Forest 10 0.008 6 0.006* 7 0.005*  0 0.009 33 0.236 3 0.024 

Grasslands 37 0.208 67 0.720 50 0.600  47 0.049 1 0.004* 33 0.625 

Shrublands 76 0.149 75 0.043 76 0.149  15 0.232 52 0.010 17 0.322 

Snow/Ice 14 1.000 12 0.281 18 0.142  55 0.002* 13 0.933 55.0 0.002* 
Urban 36 0.014 1 1.000 36 0.014  - - - - - - 

Water 48 0.1973 0 0.006* 1 0.005*  37 0.097 29 0.922 44.0 0.106 
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Fig 1. First-year Golden Eagle core use areas (KDE 50% isopleth) across summer (n = 10) and 

winter seasons (n = 15), displayed over a shaded relief base map. Summer ranges are those in 

Alaska, U.S.A., Yukon Territory and Northwest Territories, Canada. Winter ranges are those that 

occur from central Alberta, Canada, to New Mexico, U.S.A., and from Washington State to 

South Dakota, U.S.A. The eagles’ natal area of Denali National Park and Preserve is shown in 

cross hatch in central Alaska. Map projected to North America Equal Area Conic projection. 

 

 



 

74 

 

Fig 1. 
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APPENDIX B.1 

SUPPLEMENTARY INFORMATIOION  

 

 

SI Table 1. Number of Argos satellite locations by location-quality class. Before and after 

Douglas Argos accuracy filtering, and only filtered non-migratory summer and winter season 

locations used in this study, obtained from radio-tagged first-year Golden Eagles from Denali. 

 

 

ARGOS LOCATION-

QUALITY CLASS 

ALL ARGOS 

LOCATIONS 

BEST FILTERED LOCATION 

PER DUTY CYCLE 

NON-MIGRATORY 

LOCATIONS USED 

 n (%) n (%) n (%) 

3 168 1.1 142 5.2 50 4.7 

2 538 3.6 390 14.2 137 12.9 

1 2041 13.7 945 34.5 334 31.4 

0 7639 51.4 978 35.7 433 40.7 

A 1502 10.1 96 3.5 42 3.9 

B 2046 13.8 170 6.2 42 3.9 

Z 935 6.3 22 0.8 27 2.5 

Total 14869 100.0 2743 100.0 1065 100.0 
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SI Table 2. Summary statistics for individual seasons used to calculate summer KDEs for (a) 

male and (b) female first-year Golden Eagles hatched in Denali. Data shown are individuals (ID), 

area of space used (km2) for summer home range size (KDE95) and summer core use area size 

(KDE50), season start and end date, number of days on summer range, and number of telemetry 

location fixes. A single asterisk (*) in season end date column denotes a radio failure, and (D) 

denotes mortality before departing summer range. For summary statistics on winter space use see 

Chapter 2 of this thesis.  

 

 

a       MALE       

ID KDE95 KDE50 
SEASON 

START 

SEASON 

END 
DAYS LOCATIONS 

2636 68 080.0 9175.8 12May1998 18Sept1998* 130 43 

2689 196 987.0 38 651.9 3June2000 11July2000 39 17 

2692 224 375.5 30 732.9 20May2000 20Aug2000 93 31 

2657 188 704.2 35 405.9 28May1998 28Aug1998 93 26 

AVERAGE 169 536.7 28 491.6 23-May 19-Aug 75 29.3 

SD ± 69 334.2 ± 13 281.1 ± 10d ± 29d ± 31d ± 10.8 

       

       

b      FEMALE      

ID KDE95 KDE50 
SEASON 

START 

SEASON 

END 
DAYS LOCATIONS 

2632 41 272.0 6717.3 17May1998 27June1998D 42 13 

2635 20 990.1 3190.1 7June1998 20Sept1998 106 35 

2670 75 279.7 15 775.6 24May2000 31July2000D 69 25 

2681 58 740.4 7951.6 3May2000 4Aug2000 94 33 

2685 106 672.9 21 389.4 9May2000 31July2000 84 35 

2697 31 280.2 6681.1 6June2000 2Sept2000 89 35 

AVERAGE 55 705.89 10 284.18 21-May 9-Aug 81 29.3 

SD ± 31 623.1 ± 6855.0 ± 14d ± 30d ± 23d ± 8.9 
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SI Table 3. Percent land cover categories ± standard deviation by individual on winter and summer 

home ranges and core use areas for first-year Golden Eagles at three time stamps (2001, 2006, 2011), 

reported in percent cover by combined MODIS land cover category as in Table 1.  

 

2001 SUMMER HOME RANGE 

 Barren Croplands 
Deciduous 

Forest 

Evergreen 

Forest 
Grasslands Shrublands Snow/Ice Urban Water 

2632 0.8 0.0 1.7 23.6 34.8 37.6 0.1 0.0 1.4 

2635 0.8 0.0 0.0 0.0 32.9 47.9 0.4 0.0 18.0 

2670 2.8 0.0 2.2 16.4 30.0 38.0 6.8 0.0 3.8 

2681 1.8 0.0 1.2 9.8 30.5 47.7 5.9 0.0 3.0 

2685 2.8 0.0 2.8 20.7 23.7 27.3 11.9 0.1 10.7 

2697 0.4 0.0 0.0 0.0 18.7 68.1 0.8 0.0 12.0 

2636 2.3 0.0 0.5 3.7 19.3 69.5 2.6 0.0 2.1 

2689 2.3 0.0 2.0 18.0 31.0 34.6 7.7 0.0 4.3 

2692 1.0 0.0 1.5 11.4 21.0 49.4 1.0 0.0 14.8 

2657 0.6 0.0 0.1 0.1 12.6 59.9 0.3 0.0 26.5 

 1.5 ± 0.9 0.0 ± 0.0 1.2 ± 1.0 10.4 ± 9.1 25.5 ± 7.4 48.0 ± 14.2 3.8 ± 4.1 0.0 ± 0.0 9.6 ± 8.3 

 

2006 SUMMER HOME RANGE 

 Barren Croplands 
Deciduous 

Forest 

Evergreen 

Forest 
Grasslands Shrublands Snow/Ice Urban Water 

2632 0.3 0.0 1.5 24.4 27.0 46.2 0.0 0.0 0.6 

2635 0.1 0.0 0.1 0.2 27.3 53.1 0.0 0.0 19.2 

2670 2.1 0.0 4.4 21.9 25.6 36.9 5.7 0.0 3.3 

2681 1.8 0.0 1.1 14.2 26.6 49.2 5.0 0.0 2.2 

2685 2.1 0.0 3.0 23.7 24.9 25.2 11.5 0.1 9.5 

2697 0.2 0.0 0.0 0.0 9.7 78.1 0.0 0.0 11.9 

2636 3.3 0.0 0.5 6.2 20.1 67.9 0.8 0.0 1.3 

2689 2.1 0.0 1.8 23.2 29.0 33.4 7.3 0.0 3.2 

2692 0.9 0.0 1.1 13.7 20.4 49.6 0.5 0.0 13.8 

2657 0.5 0.0 0.0 0.1 7.6 65.2 0.0 0.0 26.5 

 1.3 ± 1.1 0.0 ± 0.0 1.3 ± 1.4 12.8 ± 10.4 21.8 ± 7.5 50.5 ± 16.4 3.1 ± 4.1 0.0 ± 0.0 9.2 ± 8.7 

 

2011 SUMMER HOME RANGE 

 Barren Croplands 
Deciduous 

Forest 

Evergreen 

Forest 
Grasslands Shrublands Snow/Ice Urban Water 

2632 0.4 0.0 1.1 23.9 27.3 45.9 0.1 0.0 1.4 

2635 0.0 0.0 0.1 0.0 28.4 53.0 0.0 0.0 18.4 

2670 0.0 0.0 2.8 23.1 27.3 37.6 0.5 5.8 2.9 

2681 0.4 0.0 0.8 15.1 27.8 48.9 4.9 0.0 2.1 

2685 0.7 0.0 2.5 24.3 24.7 25.5 12.5 0.1 9.7 

2697 0.0 0.0 0.0 0.0 12.2 75.8 0.0 0.0 11.9 

2636 0.4 0.0 0.3 5.4 25.6 66.8 0.4 0.0 1.1 

2689 0.5 0.0 1.3 23.8 29.1 34.3 7.8 0.0 3.1 

2692 0.3 0.0 1.4 13.3 19.2 51.1 0.7 0.0 14.0 

2657 0.0 0.0 0.0 0.0 8.8 64.7 0.0 0.0 26.4 

 0.3 ± 0.2 0.0 ± 0.0 1.0 ± 1.0 12.9 ± 10.7 23.1 ± 7.2 50.4 ± 15.6 2.7 ± 4.4 0.6 ± 1.8 9.1 ±8.6 
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2001 SUMMER CORE USE AREA 

 Barren Croplands Deciduous 

Forest 

Evergreen 

Forest 

Grasslands Shrublands Snow/Ice Urban Water 

2632 0.2 0.0 0.9 12.5 36.2 49.5 0.0 0.0 0.7 

2635 1.9 0.0 0.0 0.0 45.4 50.2 0.2 0.0 2.3 

2670 4.1 0.0 1.7 6.6 27.0 38.8 15.9 0.0 5.8 

2681 0.8 0.0 0.1 2.0 28.9 63.9 3.6 0.0 0.8 

2685 3.7 0.1 2.0 14.7 23.5 29.0 17.9 0.0 9.1 

2697 0.0 0.0 0.0 0.0 19.8 80.1 0.1 0.0 0.0 

2636 2.6 0.0 0.7 5.1 22.9 65.5 1.0 0.0 2.2 

2689 2.7 0.0 2.1 14.0 30.4 43.5 4.4 0.0 2.9 

2692 1.0 0.0 0.4 0.5 7.0 75.2 0.1 0.0 15.8 

2657 0.3 0.0 0.0 0.0 15.5 44.8 0.3 0.0 39.2 

 1.7 ± 1.5 0.0 ± 0.0 0.8 ± 0.9 5.5 ± 6.1 25.6 ± 10.7 54.1 ± 16.5 4.3 ± 6.8 0.0 ± 0.0 7.9 ± 12.0 

 

2006 SUMMER CORE USE AREA 

 Barren Croplands Deciduous 

Forest 

Evergreen 

Forest 

Grasslands Shrublands Snow/Ice Urban Water 

2632 0.0 0.0 0.7 19.0 22.1 58.1 0.0 0.0 0.1 

2635 0.1 0.0 0.3 0.4 34.8 59.9 0.0 0.0 4.5 

2670 2.3 0.0 3.5 10.6 26.5 38.6 13.1 0.0 5.5 

2681 0.6 0.0 0.4 3.6 20.3 73.0 1.9 0.0 0.2 

2685 3.1 0.1 2.3 19.4 27.6 27.6 13.3 0.0 6.6 

2697 0.0 0.0 0.0 0.0 9.8 90.2 0.0 0.0 0.0 

2636 3.5 0.0 0.8 10.3 22.9 61.5 0.2 0.0 0.8 

2689 2.4 0.0 1.1 22.2 27.9 40.3 3.9 0.0 2.2 

2692 0.2 0.0 0.1 0.6 9.3 74.2 0.0 0.0 15.6 

2657 0.0 0.0 0.0 0.0 9.6 51.1 0.0 0.0 39.1 

 1.2 ± 1.4 0.0 ± 0.0 0.9 ± 1.1 8.6 ± 8.9 21.07 ± 8.9 57.5 ± 18.9 3.2 ± 5.4 0.0 ± 0.0 7.5 ± 12.1 

 

2011 SUMMER CORE USE AREA 

 Barren Croplands Deciduous 

Forest 

Evergreen 

Forest 

Grassland

s 

Shrublands Snow/Ice Urban Water 

2632 0.0 0.0 0.6 17.4 25.6 55.9 0.0 0.0 0.5 

2635 0.0 0.0 0.2 0.0 37.2 59.8 0.0 0.0 2.7 

2670 0.6 0.0 2.2 13.3 28.8 38.4 13.3 0.0 3.3 

2681 0.2 0.0 0.1 3.5 27.2 67.7 1.1 0.0 0.1 

2685 0.9 0.0 1.8 19.5 29.6 26.2 15.1 0.0 6.8 

2697 0.0 0.0 0.0 0.0 13.7 86.3 0.0 0.0 0.0 

2636 0.3 0.0 0.7 8.4 29.7 60.4 0.1 0.0 0.4 

2689 0.4 0.0 1.3 21.5 31.0 39.7 3.8 0.0 2.2 

2692 0.1 0.0 1.2 0.2 8.1 74.3 0.0 0.0 16.0 

2657 0.0 0.0 0.0 0.0 11.0 49.7 0.0 0.0 39.2 

 0.3 ± 0.3 0.0 ± 0.0 0.8 ± 0.8 8.4 ± 8.8 24.2 ± 9.7 55.9 ± 18.0 3.3 ± 5.9 0.0 ± 0.0 7.1 ± 12.3 
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2001 WINTER HOME RANGE 

 Barren Croplands Deciduous 

Forest 

Evergreen 

Forest 

Grasslands Shrublands Snow/Ice Urban Water 

2632 0.4 0.2 6.6 72.7 14.8 4.2 0.1 0.1 1.0 

2634 0.0 9.7 0.5 23.4 64.2 1.7 0.0 0.4 0.1 

2635 0.8 3.7 0.1 8.7 71.6 14.9 0.0 0.1 0.0 

2647 0.5 2.9 0.2 4.9 86.6 4.5 0.1 0.0 0.2 

2670 0.0 15.8 32.1 45.2 5.0 1.7 0.0 0.2 0.1 

2681 0.0 8.6 0.0 0.0 91.4 0.0 0.0 0.0 0.0 

2685 0.0 7.1 0.9 40.5 47.6 2.3 0.0 0.9 0.8 

2697 0.1 2.3 0.0 0.1 95.3 0.2 0.0 0.0 2.0 

2636 0.1 6.3 0.3 13.5 76.4 3.1 0.0 0.3 0.1 

2641 0.0 7.4 1.7 67.3 19.1 2.3 0.0 0.7 1.7 

2646 0.0 5.2 0.6 45.2 46.1 2.5 0.1 0.1 0.2 

2688 0.0 29.2 0.0 0.0 70.7 0.0 0.0 0.0 0.0 

2689 5.9 0.3 0.5 5.1 6.1 81.9 0.0 0.1 0.0 

2692 0.2 80.6 0.0 0.1 18.1 0.0 0.0 0.0 1.0 

2699 0.1 66.3 25.7 1.3 5.0 0.6 0.0 0.0 1.0 

 0.5 ± 1.5 16.4 ± 24.4 4.6 ± 10.1 21.9 ± 25.7 47.9 ± 33.8 8.0 ±20.8 0.0 ± 0.0 0.2 ± 0.3 0.5 ± 0.6 

 

 

2006 WINTER HOME RANGE 

 Barren Croplands Deciduous 

Forest 

Evergreen 

Forest 

Grasslands Shrublands Snow/Ice Urban Water 

2632 0.5 0.1 4.3 79.0 13.8 1.8 0.0 0.1 0.4 

2634 0.0 4.8 0.2 27.2 66.5 0.8 0.0 0.4 0.1 

2635 0.0 2.7 0.1 13.2 87.9 3.2 0.0 0.1 0.0 

2647 0.2 2.3 0.2 6.3 89.9 0.9 0.0 0.0 0.2 

2670 0.0 10.6 25.6 49.9 10.0 3.6 0.0 0.2 0.2 

2681 0.0 19.2 0.0 0.0 80.8 0.0 0.0 0.0 0.0 

2685 0.0 4.9 0.2 45.8 46.8 0.6 0.0 0.9 0.8 

2697 0.5 0.9 0.0 0.0 96.9 0.1 0.0 0.0 1.5 

2636 0.0 4.3 0.3 16.0 77.9 1.2 0.0 0.3 0.1 

2641 0.0 5.6 0.6 73.3 17.4 0.7 0.0 0.6 1.7 

2646 0.0 3.0 0.3 52.0 44.1 0.5 0.0 0.1 0.1 

2688 0.0 2.6 0.0 0.0 97.4 0.0 0.0 0.0 0.0 

2689 0.8 0.3 0.0 3.9 6.8 88.0 0.0 0.1 0.0 

2692 0.4 68.9 0.0 0.1 29.5 0.0 0.0 0.0 0.7 

2699 0.1 61.0 24.3 2.3 7.8 3.4 0.2 0.0 1.0 

 0.2 ± 0.3 12.7 ± 21.8 3.7 ± 8.7 24.6 ± 28.1 51.6 ± 35.4 7.0 ± 22.5 0.0 ± 0.1 0.2 ± 0.3 0.4 ± 0.6 
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2011 WINTER HOME RANGE 

 Barren Croplands Deciduous 

Forest 

Evergreen 

Forest 

Grasslands Shrublands Snow/Ice Urban Water 

2632 0.1 0.0 2.0 81.2 11.3 1.9 0.0 0.1 3.2 

2634 0.0 1.9 0.1 32.7 64.6 0.1 0.0 0.4 0.2 

2635 0.8 2.0 0.0 13.3 82.8 0.9 0.0 0.1 0.0 

2647 0.3 0.9 0.1 9.2 88.7 0.5 0.0 0.0 0.3 

2670 0.0 6.5 23.2 59.4 9.0 1.3 0.0 0.2 0.4 

2681 0.0 21.6 0.0 0.0 78.4 0.0 0.0 0.0 0.0 

2685 0.0 1.4 0.1 54.7 41.1 0.4 0.0 0.9 1.5 

2697 0.1 1.0 0.0 0.1 96.4 0.0 0.0 0.0 2.2 

2636 0.0 2.4 0.1 19.3 77.5 0.3 0.0 0.3 0.2 

2641 0.0 1.3 0.3 81.8 12.6 0.3 0.0 0.6 3.0 

2646 0.0 2.0 0.1 59.3 38.0 0.1 0.0 0.1 0.5 

2688 0.0 2.3 0.0 0.0 97.7 0.0 0.0 0.0 0.0 

2689 0.0 0.6 0.2 5.1 4.7 89.3 0.0 0.1 0.0 

2692 0.3 51.8 0.0 0.1 46.9 0.0 0.0 0.0 1.0 

2699 0.1 58.8 22.2 8.0 7.4 2.3 0.0 0.0 1.2 

 0.1 ± 0.2 10.3 ± 19.1 3.2 ± 7.9 28.3 ± 30.6 50.5 ± 35.3 6.5 ± 22.9 0.0 ± 0.0 0.2 ± 0.3 0.9 ± 1.1 

 

 

2001 WINTER CORE USE AREA 

 Barren Croplands Deciduous 

Forest 

Evergreen 

Forest 

Grasslands Shrublands Snow/Ice Urban Water 

2632 0.5 0.5 5.7 71.8 14.4 5.0 0.1 0.2 1.7 

2634 0.1 10.8 0.4 13.8 73.1 1.6 0.0 0.1 0.1 

2635 0.3 2.3 0.0 3.1 76.5 17.7 0.0 0.0 0.0 

2647 0.2 2.0 0.1 3.3 86.5 7.5 0.2 0.1 0.2 

2670 0.0 19.0 49.3 24.0 6.5 0.9 0.0 0.0 0.3 

2681 0.0 8.5 0.0 0.0 91.5 0.0 0.0 0.0 0.0 

2685 0.0 12.5 0.8 25.6 56.8 2.5 0.0 1.6 0.2 

2697 0.1 0.1 0.0 0.1 98.9 0.0 0.1 0.0 0.8 

2636 0.0 5.1 0.4 18.2 74.1 1.9 0.0 0.1 0.2 

2641 0.0 2.6 1.2 92.9 2.3 0.9 0.0 0.1 0.0 

2646 0.0 5.3 0.4 48.7 42.9 2.4 0.0 0.1 0.1 

2688 0.0 6.5 0.0 0.0 93.5 0.0 0.0 0.0 0.0 

2689 5.3 0.0 0.1 1.4 3.2 90.0 0.0 0.0 0.0 

2692 0.0 84.3 0.0 0.1 15.4 0.1 0.0 0.0 0.0 

2699 0.0 59.9 27.1 1.3 10.0 0.9 0.0 0.0 0.7 

 0.4 ± 1.4 14.6 ± 24.4 5.7 ± 13.9 20.3 ± 29.0 49.7 ± 37.5 8.8 ± 22.9 0.0 ± 0.0 0.2 ± 0.4 0.3 ± 0.5 
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2006 WINTER CORE USE AREA 

 Barren Croplands Deciduous 

Forest 

Evergreen 

Forest 

Grasslands Shrubland

s 

Snow/Ice Urban Water 

2632 1.0 0.1 4.0 79.6 12.0 2.4 0.0 0.2 0.7 

2634 0.0 5.2 0.2 18.9 74.3 1.2 0.0 0.1 0.1 

2635 0.0 2.1 0.1 4.5 90.7 2.6 0.0 0.0 0.0 

2647 0.1 1.7 0.1 6.5 90.6 0.6 0.2 0.1 0.2 

2670 0.0 17.3 35.6 31.3 12.1 3.3 0.0 0.0 0.4 

2681 0.0 16.1 0.0 0.0 83.9 0.0 0.0 0.0 0.0 

2685 0.0 9.2 0.4 34.3 53.6 0.8 0.0 1.6 0.2 

2697 0.4 0.0 0.0 0.0 99.2 0.0 0.0 0.0 0.4 

2636 0.0 2.8 0.2 22.4 73.0 1.4 0.0 0.1 0.1 

2641 0.0 0.5 0.3 95.5 3.3 0.2 0.0 0.1 0.1 

2646 0.0 2.7 0.2 57.7 38.9 0.3 0.0 0.0 0.1 

2688 0.0 0.1 0.0 0.0 99.9 0.0 0.0 0.0 0.0 

2689 0.1 0.1 0.0 0.7 7.8 91.3 0.0 0.0 0.0 

2692 0.0 74.6 0.0 0.0 25.2 0.0 0.0 0.0 0.0 

2699 0.1 51.3 29.3 2.1 11.2 5.1 0.2 0.0 0.7 

 0.1 ± 0.3 12.2 ±21.8 4.7 ± 11.4 23.6 ± 31.1 51.7 ± 37.4 7.3 ± 23.3 0.0 ± 0.1 0.1 ± 0.4 0.2 ± 0.2 

 

 

2011  WINTER CORE USE AREA 

 Barren Croplands Deciduous 

Forest 

Evergreen 

Forest 

Grasslands Shrubland

s 

Snow/Ice Urban Water 

2632 0.2 0.0 2.0 82.2 9.8 1.6 0.0 0.2 4.0 

2634 0.0 1.5 0.1 22.7 75.2 0.1 0.0 0.1 0.2 

2635 0.0 1.4 0.0 5.6 92.3 0.7 0.0 0.0 0.0 

2647 0.1 0.6 0.0 8.8 89.8 0.3 0.1 0.1 0.2 

2670 0.0 8.2 34.3 42.2 12.2 2.7 0.0 0.0 0.4 

2681 0.0 15.1 0.0 0.0 84.9 0.0 0.0 0.0 0.0 

2685 0.0 3.3 0.2 49.9 44.5 0.2 0.0 1.3 0.5 

2697 0.1 0.0 0.0 0.0 98.6 0.0 0.0 0.0 1.2 

2636 0.0 2.4 0.0 20.9 76.1 0.2 0.0 0.1 0.3 

2641 0.0 0.1 0.2 98.0 0.5 0.0 0.0 0.1 1.1 

2646 0.0 2.4 0.0 67.0 30.1 0.1 0.0 0.0 0.3 

2688 0.0 0.2 0.0 0.0 99.8 0.0 0.0 0.0 0.0 

2689 0.0 0.2 0.0 1.4 2.9 95.5 0.0 0.0 0.0 

2692 0.0 48.9 0.0 0.1 51.1 0.0 0.0 0.0 0.0 

2699 0.1 48.0 24.9 9.5 13.2 3.3 0.0 0.0 1.0 

 0.0 ± 0.1 8.8 ± 16.36 4.1 ± 10.5 27.2 ± 32.9 52.1 ± 38.0 7.0 ± 24.5 0.0 ± 0.0 0.1 ± 0.3 0.6 ± 1.0 
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APPENDIX A.2 

SUPPLEMENTARY INFORMATION 

SI Fig. 1. Maps showing home ranges of pre-adult Golden Eagles from Alaska. Home ranges were estimated with Kernel Density Estimate (KDE), 

Brownian Bridge Movement Model (BBMM), and Minimum Convex Polygon (MCP). Home ranges calculated at 95% isopleth (KDE95, BBMM95), 

and core use areas calculated at 50% isopleth (KDE50, BBMM50). Each displayed 1:2,200,000 scale. We were unable to calculate BBMMs for four 

individuals. KDEs were used for subsequent analyses. 

 

 

Female 2647 winter* (unable to calculate BBMM)   Female 2681 winter* (unable to calculate BBMM)   
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Female 2697 winter* (unable to calculate BBMM)   Male 2641 winter* (unable to calculate BBMM)  

    
 

 

Female 2632 winter        Female 2634 winter 
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Female 2635 winter        Female 2670 winter 

    
 

 

Female 2685 winter        Male 2636 winter 
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Male 2646 winter        Male 2688 winter  

    
 

 

Male 2689 winter        Male 2692 winter 
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Male 2699 winter 
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APPENDIX B.2 

SUPPLEMENTARY INFORAMTION 

SI Fig. 2. Space use estimation for pre-adult Golden Eagles summer use areas derived from Kernel Density Estimate (KDE), Home 

ranges calculated at 95% isopleth (KDE95), and core use areas calculated at 50% isopleth (KDE50). Denali National Park and 

Preserve is displayed for reference. Each displayed 1:5,000,000 scale. Maps projected in Alaska Albers for display purposes.  

 

 

 

 

Female 2632 summer       Female 2635 summer   
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Female 2670 summer       Female 2681 summer  

    
 

 

 

Female 2685 summer       Female 2697 summer 
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Male 2636 summer        Male 2689 summer 

    
 

 

 

Male 2692 summer        Male 2657 summer 
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