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ABSTRACT 

Mechanical and Microstructure Study of Nickel-Based ODS Alloys Processed by Mechano-

Chemical Bonding and Ball Milling 

Belachew N. Amare 

Due to the need to increase the efficiency of modern power plants, land-based gas turbines 

are designed to operate at high temperature creating harsh environments for structural materials. 

The elevated turbine inlet temperature directly affects the materials at the hottest sections, which 

includes combustion chamber, blades, and vanes. Therefore, the hottest sections should satisfy a 

number of material requirements such as high creep strength, ductility at low temperature, high 

temperature oxidation and corrosion resistance. Such requirements are nowadays satisfied by 

implementing superalloys coated by high temperature thermal barrier coating (TBC) systems to 

protect from high operating temperature required to obtain an increased efficiency. Oxide 

dispersive strengthened (ODS) alloys are being considered due to their high temperature creep 

strength, good oxidation and corrosion resistance for high temperature applications in advanced 

power plants. These alloys operating at high temperature are subjected to different loading systems 

such as thermal, mechanical, and thermo-mechanical combined loads at operation. Thus, it is 

critical to study the high temperature mechanical and microstructure properties of such alloys for 

their structural integrity.  

The primary objective of this research work is to investigate the mechanical and 

microstructure properties of nickel-based ODS alloys produced by combined mechano-chemical 

bonding (MCB) and ball milling subjected to high temperature oxidation, which are expected to 

be applied for high temperature turbine coating with micro-channel cooling system. Stiffness 

response and microstructure evaluation of such alloy systems was studied along with their 

oxidation mechanism and structural integrity through thermal cyclic exposure. Another objective 

is to analyze the heat transfer of ODS alloy coatings with micro-channel cooling system using 

finite element analysis (FEA) to determine their feasibility as a stand-alone structural coating.  

During this project it was found that stiffness response to increase and remain stable to a 

certain level and reduce at latter stages of thermal cyclic exposure. The predominant growth and 

adherent Ni-rich outer oxide scale was found on top of the alumina scale throughout the oxidation 

cycles. The FEA analysis revealed that ODS alloys could be potential high temperature turbine 

coating materials if micro-channel cooling system is implemented.  
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1. INTRODUCTION 

The growing demand for energy consumption related to increasing of world population 

and the need to addressing environmental consciousness should be complemented by increasing 

the efficiency of modern power plants and reducing wastes released from such plants. To increase 

the efficiency of modern power plants such as gas turbines and nuclear power plants are designed 

to operate at high temperatures creating harsh environments for structural materials exposed to the 

operating temperatures [1-3]. For gas turbines, the temperature of the exhaust gas entering the 

turbine (turbine inlet temperature) can be as high as 1200 oC-1400 oC. 

The elevated turbine inlet temperature directly affects the materials at the hottest sections, 

such as combustion chamber, blades and vanes. Therefore, the hottest sections should satisfy a 

number of material requirements such as high creep strength, ductility at low temperature, high 

temperature oxidation and corrosion resistance. Such requirements are nowadays satisfied by 

implementing superalloys [4-10]. The development of new chemical composition and different 

processing routes of superalloys and implementing turbine blade coating (TBC) system let to 

increase turbine inlet temperature, which therefore increases the net efficiency of gas turbines. 

Superalloys are known for their many high temperature applications. There are three types 

of superalloys: nickel-based, iron-based and cobalt-based superalloys [1, 4]. Oxide dispersion 

strengthened (ODS) superalloys such as MA 956 or MA 6000, produced through mechanical 

alloying and consolidation process are generally used at temperatures above 800 oC, which 

satisfies the intermediate strength as well as elevated temperature strength near to the alloy melting 

temperature [11-14]. Nickel-based ODS superalloys are the most widely used and the most 

complex high temperature materials strengthened by gamma prime precipitates (𝛾-Ni matrix and 

𝛾 ′-Ni3Al) and nano-sized yttrium oxide particles. Yttrium oxide particles serve for interfacial 
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pinning of the moving dislocations. ODS alloys, such as ferritic-martensite (F/M) Fe-Ni-based 

alloys offer low void swelling at conditions of high energy high speed neutron irradiation and a 

candidate structural materials in super critical water reactor withstanding not only high 

temperature creep, corrosion, and oxidation but also radiation damage and other degradation 

mechanisms [5, 15-16]. Like Ni-based and Fe-based alloys, Co-based ODS alloys strengthened by 

nanosized oxide dispersion and 𝛾 ′ precipitates are potential high temperature structural materials 

[17]. Mechanical alloying (MA) is a main technique employed to synthesize advanced ODS alloys, 

which plays an important role on the microstructure formation and the resulting properties. 

General processing of all ODS alloys involved a complicated, costly and time-consuming 

process of mechanical alloying (MA) powder metallurgical process, compaction, and extrusion by 

hot deformation and post heat treatment process for final geometry and recrystallization [16, 18-

19]. Mechanical alloying is a powerful powder processing method, which is a solid-state synthesis 

using ball milling process [20-21] in which elemental alloy powders or oxide compounds are 

subjected to high energy ball milling or rod milling for anywhere between 24 to 72 hours to 

produce homogeneously mixed, heavily deformed, cold welded composite particles. A 

homogeneous distribution of oxide dispersion provides the materials more stability at elevated 

temperatures by which the nano-sized yttrium oxide particles are expected to form the dispersion 

throughout the master particles. After MA processing, the mixed and alloyed powders are then 

canned and consolidated by a number of compacting methods which includes cold isostatic 

pressing (CIP), hot isostatic pressing (HIP) or hot extrusion [22]. A final annealing and aging 

process at very high temperature is required to develop a stable and recrystallized microstructure 

including the coarse and highly elongated grain structure and strengthening precipitates [3].  
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Nickel-based ODS alloys produced by MA process attract great attention as advanced high 

temperature structural materials. More importantly, ODS alloys can be used as coating [23-24] on 

superalloys at the hottest sections of modern gas turbines as the inlet temperature is increased to 

values exceeding the capabilities of superalloys with respect to mechanical strength and 

environmental stability. They retain useful strength up to a relatively high temperature due to direct 

strengthening of fine, uniformly dispersed and stable oxide particles which acts as a dislocation 

motion barriers and their ability to form a protective Cr-oxide and Al-oxide surface layer during 

exposure [25-28]. Moreover, the ability to exhibit improved scale adherence, decreased oxide 

growth rates, enhanced selective oxidation and decreased oxide grain size compared to 

corresponding non-ODS alloys [28] made ODS alloys potentially a suitable structural materials 

for components facing hostile service conditions.  
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2. LITERATURE REVIEW 

2.1 TBC System 

A major factor supporting research within engineering fields is the desire to improve the 

performance of devices. One such device is the gas turbine (GT), forms of which are used as land-

based electrical power generations and aerospace engines, Fig. 2.1. In some recent gas turbines, 

the inlet temperature reaches a peak value that can exceed 1500 °C. However, the maximum 

operating temperature among the metallic components within a GT is near 1100 °C. To reduce or 

prevent the degradation and failure of these parts, they must be protected from the heat flux 

produced by the combustion gases during engine operation. The employed protection typically 

consists of two types: an internal airflow to cool the component convectively and a thermal barrier 

coating (TBC) deposited on the component to insulate it from the combustion heat flux. 

 

Fig. 2.1 Gas turbine - SIEMENS SGT5-8000H (340MW) [1]. 
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TBC systems [29-30] are widely used in gas turbines to protect superalloy blades and 

components from high operating temperatures that may routinely exceed the superalloy melting 

temperature. TBC systems consist of four different materials with specific properties and functions 

(i) a ceramic top coat (TC), most commonly yttria-stablized zirconia (YSZ), (ii) thermally grown 

oxide (TGO), (iii) metallic bond coat (BC) residing between and applied onto (iv) a superalloy 

component in the gas turbine. Combined with internal cooling, modern TBCs are required to not 

only limit heat transfer through the coating but to also protect engine components from oxidation 

and hot corrosion. Research in the past decades has led to a preferred coating system consisting of 

three separate layers [31] to achieve long term effectiveness in the high temperature, oxidative and 

corrosive use environment for which they are intended to function.  Fig. 2.2 shows a schematic 

illustration of a modern TBC system consisting of a thermally insulating thermal barrier coating, 

a thermally grown oxide, and a bond coat with internally cooled superalloy turbine blade. 

 

Fig. 2.2 Cross-sectional scanning electron micrograph (SEM) of typical TBC system [31]. 
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2.1.1 Ceramic Top Coat 

The outer layer in a TBC system is a ceramic top coat with a low thermal conductivity 

which is required to maximize the thermal drop across the thickness of the coating as it is exposed 

to the high temperature combustion gasses. This layer is therefore required to possess a high 

melting temperature, a high thermal reflectivity, low thermal conductivity, high coefficient of 

thermal expansion, and chemical stability. However, the thermal expansion coefficient differs 

from the component to which it is applied. Therefore, it should have a high in-plane compliance 

to accommodate the thermal expansion mismatch between the TBC and the underlying nickel 

superalloy component. Based on the above requirements, ZrO2 stabilized with 6-8% Y2O3 is 

commonly used as TBC top coat [29-30]. 

Two processing technologies are widely accepted to deposit ceramic topcoats [32-34], 

which include air plasma spraying (APS) [35-36] and electron-beam physical vapor deposition 

(EB-PVD) [37-38]. APS coatings are built up from the continuous impact of molten particles 

directed at high velocity on to the substrate, and rapidly solidifying to form a “splat” (a flattened 

particle). The deposit developed by successive impingement and inter-bonding among the splats 

result in a lamellar structure. The adhesion behavior between the molten particles and the substrate 

is primarily mechanical as the molten particles flatten and solidify very rapidly. Void formation is 

a typical behavior of APS coating, which includes (10-20% porosity), Fig. 2.3(a). The porosity 

reduces the thermal conductivity and increase the strain tolerance.  

In EB-PVD process, vapors are produced by heating the source material with an electron 

beam in a vacuum chamber, and the evaporated atoms condense on the substrate. The EB-PVD 

processing has shown an industrial application due to its high deposition rate, high strain tolerance 

during thermal cyclic exposure, and good surface finish. However, EB-PVD TBC has high thermal 
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conductivity as compared to APS TBC. A typical EB-PVD processed TBC has a columnar 

microstructure with elongated inter columnar pores that become predominantly aligned 

perpendicular to the plane of the coating as its thickness increases, Fig. 2.3(b). 

  

Fig. 2.3 Microstructure of YSZ TBC deposited by (a) EB-PVD, (b) APS [32]. 

The thermal expansion mismatch between ceramic and metallic components is better 

accommodated by the columnar morphology than by the porosity and micro cracks of APS YSZ-

TBCs. The adhesive strength between the substrate and YSZ is 10 times higher for EB-PVD than 

for APS YSZ-TBCs, which is an important factor in preventing premature spallation of the YSZ 

layer.  

2.1.2 Metallic Bond Coat 

The ceramic top coat in a TBC system is permeable to oxygen which leads to oxidation of 

the underlying substrate. In protecting the oxidation of the base material, which typically reduces 

the spallation of the ceramic top coat, should be protected against oxidation and corrosion by using 

a bond coat (BC) [39-40]. This metallic BC deposited between ceramic top coat and superalloy 

substrate plays a vital role in TBC life by supplying a slow growing,  uniform and defect free oxide 

layer (such as α-Al2O3) in protecting the top coat spallation and the substrate from oxidation and 

a) b) 
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high temperature corrosion. Moreover, a small coefficient of thermal expansion (CTE) difference 

between substrate and TBC is required. 

The bond coat composition is designed to obtain highly adherent thermally grown oxides. 

The bond coat is required to have sufficient amount of aluminum (Al) in the reservoir so that the 

formation of a slow growing and adherent α-Al2O3 is maintained. Otherwise, fast growing Ni and 

Cr-rich oxide scales dominate the oxide scale, the case when Al is depleted [41], Fig. 2.4(a) and 

(b). The significant contribution of the bond coat to the oxidation protection and adherence in a 

TBC system is illustrated in Fig. 2.4(c). A cross-section of superalloy IN738 partially coated with 

TBC system with NiCoCrAlY bond coat after oxidation for 2835 hrs in air at 1050°C. As can be 

seen on the cross-section micrographs, on the side where the surface covered by a BC, a thin 

protective alumina scale is formed and the ceramic coating is still adherent, whereas, on the 

uncoated side the spallation of non-protective oxide scales lead to fast metal consumption. 

 

Fig. 2.4 Cross-sections of Ni-based superalloys a) IN738 and b) CMSX-4 after exposure in air for 

24 hrs  at 1050 °C; c) IN738 after oxidation for 2835 hrs in air at 1050 °C [1]. 
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Two types of bond coats are commonly accepted for TBC systems containing sufficient Al 

content: MCrAlY, where (M=Ni, Co) [42-45] and diffusion aluminide coating [46-49]. Due to the 

ability to form dense and adherent Al2O3 scales, MCrAlY bond coats are commonly used in gas-

turbine and aircraft engine components as an intermediate layer between the Ni-based superalloy 

and the YSZ TBC. Platinum modified diffusion aluminide coatings (β-NiAl) are commonly 

applied to provide oxidation and corrosion resistance to high strength superalloys whose protective 

capacity is based on their ability to form an adherent layer of slow-growing Al2O3. 

MCrAlY coatings can be classified into NiCrAlY, CoCrAlY and NiCoCrAlY with 

different corrosion and oxidation resistance at high temperature. NiCrAlY coatings are designed 

for high oxidation resistance but with poor corrosion resistance, CoCrAlY coatings for high 

corrosion resistance and NiCoCrAlY/CoNiCrAlY coatings to obtain an optimum balance of both 

properties [50]. Fig. 2.5 shows schematically the corrosion and oxidation resistance of different 

MCrAlY bond coats. There are usually two phases in the MCrAlY bond coat: β-NiAl and γ-Ni 

(fcc) solid solutions. A higher Cr and Al contents in MCrAlY bond coats are beneficial with respect 

to oxidation and corrosion resistance. However, there is an adverse effect observed in the ductility 

of the coating which necessitates the optimization of Al and Cr contents [1]. 

The MCrAlY coating are manufactured and deposited to the superalloy surface using 

different methods, such as atmospheric plasma spray (APS), which results in a porous metallic 

coating with moderate oxidation resistance, vacuum plasma-spray (VPS), which provides a bond 

coat with minimal porosity and superior oxidation resistance [51], EB-PVD, which provides 

comparable clean bond coats to APS [52], and high velocity oxy-fuel spraying (HVOF) [53]. A 

thin protective Al2O3 scale during high-temperature exposure, which is the basis for the oxidation 

resistance of the bond coat formed along the rough bond coat-YSZ interface by selective oxidation 



  
 

10 
 

of Al in the metallic coating. Additions of reactive elements such as Hf, La, Ce, and Zr enhance 

the oxidation resistance via oxide scale adherence.  

 

Fig. 2.5 Relative oxidation and corrosion resistance of high temperature coating systems [50]. 

The diffusion aluminide coatings are commonly used in high pressure turbine blades and 

nozzles in jet engines. Platinum is applied by electrolytic deposition on to the Ni-based superalloy 

with 7~9μm Pt layer, which is usually followed by heat treatment at 1000 °C under vacuum before 

aluminizing via pack cementation. Then aluminide coatings obtained via the pack cementation, a 

modified chemical vapor deposition (CVD) process is frequently applied on the nickel-based 

superalloys to protect them against high-temperature oxidation, which facilitates the formation of 

a nickel aluminide (β-NiAl) layer [47]. Depending on the processing conditions for further 

improvement in oxidation and hot corrosion resistance, platinum is commonly added to the 

diffusion. Compared to MCrAlY bond coats, NiPtAl bond coats exhibited superior oxidation 

resistance and provide longer life time for TBCs.  
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2.1.3 Turbine Blade Superalloy (Substrate)  

The development of superalloys for high temperature applications dated back to 1940, 

where the first wrought alloys were produced. In recent years the elemental compositions and 

structures of the superalloys have been changed from Fe-based, and (Ni, Fe)-based to a purely Ni-

based and also with an inclusion of oxide dispersion strengthening. Use of Fe and (Fe, Ni)-based 

alloys in an industrial settings are still considered in areas where weight is not a major issue, but 

where cost is. In addition to Fe and (Fe, Ni)-based alloys, Co-based alloys are also considered in 

areas where corrosion is a problem [54].  

These alloys were developed with high temperature requirements to possess the most 

important properties of resistance to high temperature corrosion, creep and fatigue. To get these 

properties, the method of processing has been changed through time with the first generation 

superalloys, which generally were strengthened by solid-solutions (Fe, Ni)-based alloys having a 

similar behavior to stainless steel. Conventional cast (CC), directional solidification (DS), single 

crystal (SC) fabrication, and oxide dispersion strengthening are among the processes implemented 

to improve the high temperature creep resistance, dislocation movement, oxidation, and corrosion 

resistance of such superalloys [54-57]. 

The directional solidification process greatly improved the creep strength, ductility and 

fatigue properties in the longitudinal direction of the turbine blades. The single crystal alloys 

developed in 1980 has helped, due to the removal of the grain boundaries in raising the incipient 

melting point as well as enabling solution treatment at higher temperature of 1300 oC or more. 

Whereas ODS superalloys, due to the dispersion hardening by Y2O3 enhanced the high temperature 

creep exceeding 1100 oC.  



  
 

12 
 

Nickel-based superalloys have an exceptional combined high temperature strength, 

toughness, and resistance to degradation in high temperature oxidation and corrosive environments, 

which is a typical condition in high-temperature components (e.g., combustors and high-pressure 

turbine blades and vanes), with recent emphasis given to ODS superalloys for their exceptional 

creep properties as compared to conventional superalloys. Nickel-based superalloys are 

strengthened by 𝛾 -matrix and 𝛾 ′ -Ni3Al precipitates. The precipitates are used to prevent 

dislocation movement through the alloy, a creep mechanism after the grain boundaries are 

removed from the alloy as in a single crystal superalloy [54]. In addition, these Ni-based materials 

are commonly alloyed with Cr and Al to promote the formation of protective oxide layers Cr2O3 

and Al2O3 for providing corrosion and oxidation resistance, respectively. The chemical 

composition and their processing of four commercial superalloys used in gas turbine blades are 

presented in Table 1. 

Table 1 Chemical composition of typical Ni-based superalloys for turbine blades and vanes [56]. 

Process Alloy Composition (wt%, Ni balance) 

Co Cr Mo  W Al Ti Nb Ta Hf Re C B Zr Others  

CC IN 738 8.5 16 1.7 2.6 3.4 3.4 - 1.7 - - 0.17 0.01 0.1 - 

DS PWA1426 12 6.5 1.7 6.5 6 - - 4 1.5 3 0.1 0.015 0.015 - 

SC TMS-162   5.8 2.9 3.9 5.8 5.8 - - 5.6 0.09 4.9 - - - 6.0Ru 

ODS MA-6000 2 15 2 4 4.5 2.5 - 2 - - 0.05 0.01 0.15 1.1Y2O3 

 

2.1.4 Failure Mechanisms of TBC Systems 

While there are many mechanisms by which YSZ-TBCs can fail, residual stress caused by 

the oxidation of BC has been repeatedly identified as one of the important factors affecting the 

durability of YSZ-TBCs during service and a portion of the coating either buckle or delaminate 
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and spalled away to expose a portion of the underlying component [58-62]. Residual stresses 

develop in TBCs due to the thermal expansion mismatch between the different layers of the TBC 

system which gives rise to deformation of the coated specimen and initiate micro cracks at the 

BC/TC interface and thus lead to spallation of the coatings. Thermally grown oxide (TGO) scales, 

mainly consisting of α-Al2O3 and Cr2O3, forming along the irregular BC/TC interface at elevated 

temperatures are considered to be the main cause to create stress at the BC/TC interface [52, 63-

64].  

 

Fig. 2.6 Schematic illustrations showing the progressive microstructural evolution and damage 

accumulation during cyclic oxidation leading to the spallation failure of TBC [62]. 

The TGO film for durable YSZ-TBCs should consist of a fine grained, low growth, 

uniformly thick, and dense mixed-oxide zone in addition to a uniform and smooth microstructural 

transition into the continuous oxide zone. Fig. 2.6 illustrates a sequential schematic of 

microstructural development from as deposited to the failure of  EB-PVD produced TBC with  (a) 
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as-coated; (b) YSZ/TGO interface damage due to rumpling, and formation of TGO rich in Ni/Co 

due to embedded oxide; (c) void formation and internal oxidation; and (d) final spallation. 

2.2 ODS Alloys 

Oxide dispersion strengthened (ODS) alloys are the most promising class of high 

temperature materials. Compared to precipitation-strengthened alloys, the ODS alloys have much 

higher strength and creep resistance at high temperatures. The existence of fine uniformly 

dispersed and stable oxide, usually Y2O3 particles which act as barriers to dislocation motion at 

high temperatures increases the strength of ODS alloys by direct strengthening.  According to the 

application areas of ODS alloys, there are different ways of processing to the final product where 

the microstructure and average grain size are controlled [3, 65]. Hence, in addition to the direct 

strengthening of fine dispersed oxides, the grain aspect ratio (GAR) is also an important parameter 

affecting high temperature strength of ODS alloys [3, 57, 66]. The formation of protecting oxide 

layers at elevated temperature, such as alumina (α-Al2O3) and chromia (Cr2O3) are the 

characteristic behavior of ODS alloys for which they can be applied in high temperature severe 

corrosion and oxidation environments [67]. These two common oxide layers have specific 

protection capabilities as chromia scale is an ideal against the oxidation below 1000 °C and hot 

corrosion (700-800 °C). However, alumina scale in α phase is excellent against the high-

temperature oxidation above 1000 °C and hot corrosion (800-950 °C).  

2.2.1 ODS Alloy Types 

Depending on the base metal there are a number of different ODS alloys for turbine system 

material applications. Among them, the major commercial and experimental ODS alloys are Ni-

based, Fe-based, and Co-based alloys having a basic alloy systems of NiCrAl, FeCrAl, and CoCrAl 

respectively [16-17, 68-73].  
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The addition of reactive elements (RE) (mostly yttrium and yttria) changes the oxidation 

kinetics of chromia and alumina forming alloys, which normally decreases than the cases of non-

ODS alloys. This phenomenon can be interpreted by using a grain boundary (GB) segregation 

model, by which the addition of RE dispersoid suppresses the outward diffusion of cations [25]. 

This is more pronounced in chromia forming alloys than alumina forming alloys. The reason is 

normally associated with the fact that the alloys form α-alumina scales, whose growth is in any 

case dominated by oxygen transport. However, this usually depends on the oxidation temperature 

for which at around 1000 °C or below, θ-alumina is formed by diffusion of aluminum cations. 

2.2.1.1 ODS-NiCrAl Alloy 

The oxidation resistance behavior of nickel-based superalloys mainly depends on the 

contents of chromium and aluminum. Practically, the ability to form continuous layers of chromia 

and alumina and the time required for the formation of these layers rely on the actual concentration 

of chromium and aluminum in ODS-NiCrAl alloy system as well as oxidation conditions 

(temperature and oxygen pressure in the environment). Commercial ODS-NiCrAl alloy has been 

under intense investigation for the past decades [3, 25, 57].  In as extruded condition, it has been 

highlighted that the GAR played the crucial role in affecting the microstructural feature and 

strength of ODS-NiCrAl alloy at elevated temperature. The fatigue behavior of commercial ODS 

superalloys, Inconel  MA  754 and  MA  6000  as compared with  that  of  conventional  (non-

ODS)  superalloys of nearly  identical  elemental  composition showed behavioral  differences  on  

the  basis of   two primary  microstructural  differences, grain  structure and the fine  particle  

dispersion. The recrystallization  defects  in  the form  of fine  grains  are the  primary  cause  of  

crack  initiation  in  the ODS  materials.   
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A few examples of ODS-NiCrAl alloys include MA754, MA 6000 (INCO Alloys 

International, Ltd.), and PM 3030 (PM Hochtemperatur-Metall GmbH), each with a different 

strengthening mechanism. The composition, strengthening mechanisms, and oxidation protection 

information are summarized in Table 2. 

Table 2 Nominal composition of ODS-NiCrAl alloy [14, 74]. 

 MA 754 MA 6000 PM 3030 

Composition (wt.%)  Ni-20Cr-0.2Al-

0.2Ti-0.5Y2O3 

Ni-15Cr-4.5Al-2Ti-2W-

2Mo-2Ta-1Y2O3 

Ni-17Cr-6Al-3.5W-2Mo-

2Ta-0.95Si-1.1Y2O3 

Oxide Protective 

Scale (Primary) 

Cr2O3 Al2O3 Al2O3 

Strengthening 

Mechanism 

ODS Precipitation (γ’) +ODS Precipitation (γ’) +ODS 

 

In addition to the commercial available ODS-NiCrAl alloy compositions, experimentally 

designed compositions tailored to improving the corrosion, erosion, oxidation, and creep 

challenges imposed by the operating environment of components such as gas turbines are under 

investigation. The dispersion strengthening is capable of raising the operating temperature up to 

0.9 of melting temperature (TM) of the alloy. He et al. [23] studied the phase composition and 

microstructure  of a Y2O3 dispersion strengthened Ni-based ODS alloy with composition of Ni-

28.2Fe-20.2Cr-5.2Al-1.1Y2O3 in wt.% having 0.1 mm thickness deposited by EB-PVD technology 

and followed by HIP treatment, performed on the as-deposited and HIPed specimen.  

A typical microstructure of HIPed ODS-NiCrAl alloys cross-section observation is shown 

in Fig. 2.7, in which particles of Y2O3 homogeneously dispersed in the alloy. It is a typical 

phenomenon to observe elongated, coarse columnar crystals having an equiaxed grains in extruded 

specimens [70]. Fig 2.7 depicts typical grains of as-deposited SEM microstructure (a), oxide 
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dispersions of as-deposited alloy (b), grains of HIPed alloy (c), and oxide dispersions of HIPed 

ODS alloy (d).  

 

Fig. 2.7 Microstructure of Y2O3 dispersed Ni-based alloys [23]. 

2.2.1.2 ODS-FeCrAl Alloy 

There are a number of commercial and experimental ODS-FeCrAl alloys being developed 

and investigated for their resistance in high temperature oxidation, hot corrosion and erosion. 

Commercial ODS products are available and include MA 956 and PM 2000 from Special Metals 

Corporation in the United States and Metallwerk Plansee GmbH in Germany, respectively [16]. 

The long-term isothermal oxidation behaviors of some ODS-FeCrAl alloys have been studied [11], 

which indicated the microstructure appear to depend on the contents of alloying elements. Thus, 

MA 956 showed the alumina scale formed was equiaxed containing irregularly shaped titanium-

rich oxide particle, whereas ODM 751 showed distinctly columnar and contained elongated 



  
 

18 
 

yttrium-rich oxide particles. A detailed review works on ODS-FeCrAl can be found [16]. Some 

commercial ODS-FeCrAl alloy compositions are summarized in Table 3. 

Table 3 Nominal chemical composition ODS-FeCrAl alloy [8, 11]. 

 MA 956 PM 2000 ODM 751 

Composition 

(wt.%)  

Fe-20Cr-4.5Al-

0.5Ti-0.5Y2O3 

Fe-20Cr-5.5Al-0.5Ti-

0.5Y2O3 

Fe-16.5Cr-4.5Al-0.6Ti-

1.5Mo-0.5Y2O3 

 

 

Fig. 2.8 Fracture surface of alumina scale formed on MA 956 sheet [11]. 

In addition to commercial ODS-FeCrAl, experimental investigation continued to fully 

exploit their application including developing of ODS alloy coatings due to their excellent high 

temperature strength and oxidation resistance [24]. A creep mechanism study based on high 

temperature tensile/compression tests [8], effect of mechanical alloying and consolidation 

processes on the microstructure and properties [20, 76-77], and the investigation of the degradation 

mechanism due to oxidation and hot corrosion and role of formation of protective oxide films of 

ODS-FeCrAl alloys [78] are among the vast experimental works to mention a few. The formation 

of stable oxide scale on ODS alloy surface is one of the requirements at high temperature to protect 
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the inner section. Fig. 2.8 showed an oxide scale grown on MA 956 sheet exposed at 1100 oC in 

air for 4800 hrs. It generally showed a fairly irregular but somehow equiaxed grain which depends 

on the exposure temperature and time. 

2.2.1.3 ODS-CoCrAl Alloy 

The increased demand for high temperature structural materials used in aerospace and 

power generation industries always look for new materials. Co-based ODS alloys are one of those 

developed for improving the oxidation resistance, strength and creep properties of conventional 

Co-based alloys as they  lack  sufficient high-temperature  mechanical  properties  because  of  the  

coarsening  or  dissolution  of  carbides  at  elevated  temperature [17, 79]. Oxide dispersion 

strengthened alloys are capable of operating at a relatively higher temperature as compared to 𝛾 ′ 

precipitates which are capable of intermediate temperature applications.  

Unlike the conventional Co-based superalloys comprising of CoCrAl main compositions, 

Co-based ODS alloys do not contain Cr. Instead of Cr, W is used and little known about Co-based 

ODS alloys [17, 79-80], but Al remains the most alloying element. The microstructural formation 

mechanism of Co-based ODS alloys are elaborated more in detail [79] with the main compositions 

of Co-based ODS alloy being Co-Al-W-Y2O3. 

 

Fig. 2.9 Grain structure of Co-based ODS alloy [79]. 
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Fig.  2.9  shows  grain  structure  of    heat  treated  Co-based  ODS alloy with two types of 

grain  size, small (S) and large (L) as in (a), which  is attributed  to  the  pinning  of  oxide  dispersion  

and  precipitates. Fig. 2.9(b) also indicates that the ultrafine grains are surrounded by the relatively 

large grains. The density, size, and local distribution of dispersoids affect the pinning of 

dislocations of ODS alloys, which is a major relevance to the creep resistance. 

2.2.2 ODS Alloy Processing Methods 

As discussed above in the ODS alloy types section, the two common classes of alloys, 

which are commercially significant are the ODS-NiCrAl and ODS-FeCrAl alloys. Both contain 

chromium and/or aluminum for corrosion and oxidation resistance, and yttrium or titanium oxides 

for creep strength. With yttrium oxide cannot be introduced into either iron or nickel by any 

method other than mechanical alloying (MA), which is the main driving force behind the 1968 

development of mechanical alloying by the International Nickel Company [19].  

With the main target of producing complex oxide dispersion strengthened alloys, 

mechanical alloying is a solid state alloying process which produces alloys that are difficult or 

impossible to produce by conventional melting and casting techniques. The Mechanical alloying 

is usually directed to producing high temperature strength materials from a fine homogeneous 

oxide particles (typically Y2O3) and elemental powders of chromium, aluminum, and titanium for 

corrosion and oxidation resistance, milled together with base metals (iron, nickel) in high-energy 

ball mill to complete solid state alloying of the resulting particulate agglomerates. MA is a very 

time consuming and energy intensive process. In contrast, conventional ball milling can be used 

to reduce the size of powders which has the competing process of cold-welding in lower energy 

environments. This requires the use of process control agents (PCA) to obtain a balanced cold-

welding and fracturing. Detail review works of MA can be found [18-19]. 



  
 

21 
 

However, the ball milling time can be reduced by using Hosokawa mechano-chemical 

bonding (MCB), a technique that can bond elemental particles together using only mechanical 

energy in a dry phase without needing solvents or external heating. This can avoid potential 

contaminations and reactions to the powder. It is an effective approach to blend alloying powders, 

forming composite particles consisting of hosting particles as core and small particles or fibers that 

are coated around the core particles [81]. During MCB processing, the starting powder mixtures 

are subjected to high compression, shear, and impact forces as they pass through a narrow gap in 

a high speed rotating device, for which the elemental particles are dispersed, mixed, shaped, and 

bonded together forming composite particles of the starting ingredients. So far, the green MCB 

technology has been utilized to make various composite particles used in the fields of functional 

gradient materials, batteries, cermets, fuel cells, polymers, cosmetics, and pharmaceuticals [81-

83]. Preliminary studies showed that utilization of MCB processing to blend nickel-based ODS 

alloying powders was able to homogenously disperse yttrium oxide particles on the base hosting 

particles to form  composite structure, generating a nano-sized Y-Al-O enriched film around the 

hosting particles [84-85]. 

After performing mechanical alloying, which produces controlled extremely fine 

microstructure with repeated welding, fracturing, and swelling of mixtures of powder particles in 

a high energy ball milling,  subsequent steps of powder consolidation and thermal-mechanical 

processing are needed to get the final ODS alloy products. Fig. 2.10 explains a typical process 

steps to get to the final steps of obtaining high temperature ODS alloys [86]. The steps of 

processing include, but not limited to milling of metal powders, canning, hot consolidation, and 

post consolidation thermal-mechanical treatment. The milled powders are commonly canned and 

vacuum degassed before consolidation by fabrication processes, such as hot isostatic pressing 
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(HIPing), cold die compaction, hydrostatic compaction, vacuum sintering or hot extrusion, 

producing high density products. The fabrication processes are reviewed in detail by Moyer [22]. 

 

Fig 2.10 Typical processing steps of ODS powder to reach final products [86]. 

Usually for experimental investigation of ODS alloys different routes of consolidation is 

followed than the one presented in Fig. 2.10, which it is usually applicable for ODS superalloy 

processing. After MA or ball milling (typical experimental setup), ODS powders consolidated by 

HIPing or hydrostatic pressing can be heat treated by using sintering in conventional furnaces 

without passing through extrusion step. 

2.2.3 ODS Alloy Applications 

Compared to conventional superalloys, ODS alloys have distinct advantages in that they 

exhibit high temperature creep strength, exceptional inherent resistance to high-temperature 

corrosion and oxidation, low swelling and no embrittlement with exposure to high-energy neutrons. 

Because of these properties, ODS alloys provide alternative structural material choices for power 
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plants such as land based and aerospace turbine components (blades, vanes, and heat exchangers) 

[3, 11, 87-88], and for advanced fission and fusion technologies (advanced fast reactor fuel 

cladding materials, fusion reactor materials) [89-98]. 

Most of the main material requirements in ODS alloys for power plants were discussed in 

the previous sections. Yvon and Carre [90] reviewed the material requirements for advanced 

nuclear systems, which covers high temperature structural materials, fast neutron resistant core 

materials, and reactor and power conversion technologies, such as intermediate heat exchanger, 

turbo-machinery, high temperature electrolytic etc. The main requirements for which these reactor 

system materials should satisfy are: (a) dimensional stability of in-core materials under irradiation, 

which may be under stress (irradiation creep or relaxation) or without stress (swelling, growth), (b) 

acceptable mechanical properties after aging (tensile strength, ductility, creep resistance, fracture 

toughness, resilience), and (c) retain material properties in corrosive environments (reactor coolant 

or process fluid). The materials which satisfy the above requirements include ferritic/martensitic 

and nickel based ODS alloys.   

2.3 ODS Alloy Mechanical and Microstructure Characterization Methods 

Due to ODS alloy applications in severe high temperature environments, they are subjected 

to high temperature creep, fatigue loading, corrosion and oxidation. In gas turbine components 

either aircraft propulsion or land-based power generation plants, high temperature creep and 

fatigue loadings occur simultaneously in the root sections [99]. These alloys, on commercial 

products have been studied extensively for their resistance to such environments for their full 

implementation either in real time environments or in laboratory scale facilities, but experimental 

works are still exploring new ways of manufacturing and testing methods. Some of the tests 

implemented very often are described in the subsequent sections.  
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2.3.1 Oxidation Test (Cyclic Testing, Isothermal Testing) 

The two major environmental effects at high temperature on ODS alloys are oxidation and 

hot corrosion. Below 980 oC, the level of oxidation resistance is a function of the chromium content 

as Cr2O3 is formed as a protective oxide. However, above 980 oC the aluminum content becomes 

crucial for the formation of a dominant protective Al2O3 [100]. Hot corrosion usually called as 

sulfidation, occurs due to the presence of sulfur in the fuel combined with salt from the 

environment (eg. Na2SO4).  The combined protective oxide forming nature of chromium and 

aluminum is very important in ODS alloy application for long term corrosion and oxidation 

resistance. Oxidation and corrosion tests are among the common ODS alloy characterization tests 

implemented at higher temperature. 

There are a number of research works conducted on the oxidation of nickel based ODS 

alloy at elevated temperatures [101-106]. The oxidation kinetics, which is found from the weight 

gain, microstructure, and mechanical properties are the main focus while conducting oxidation 

tests, such as cyclic and isothermal in air or laboratory air at high temperature. The oxidation 

kinetics is one of the most important factors for high temperature materials exposed for longer 

times at elevated temperatures [11]. The change in oxidation rate is related to the consumption of 

protective scale forming elements from the matrix, which affects the external oxide scale formation 

and hence the life of the materials.  

Angermann et al. [14] investigated the oxidation behavior of commercial nickel based MA 

6000 and  PM 3030  at 1150 °C  for different holding times up to 200 hrs to see the initial oxidation 

impact on the formation of protective oxides. It was concluded that the protectiveness of secondary 

Al2O3 at a later stage is determined by initial stages of oxidation. In addition, Guttmann et al. [26] 

investigated the cyclic and isothermal oxidation of commercial nickel based MA 6000 in the 
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temperature range of 900-1050 oC, with emphasis given at 1050 oC. Excellent oxidation resistance 

based on the formation of an internal continuous Al2O3 layer was evident. It was noted that the 

oxidation involved complex mechanisms and alteration of the oxidation behavior occurred after 

long term exposure.  

Furthermore, Weinbruch et al. [25] studied the oxidation behavior of two ODS superalloys, 

the chromia-forming PM 1000 (nickel-based) and the alumina-forming PM 2000 (iron-based) at 

temperatures between 900 and 1300 °C in air. They reported a subparabolic time dependence and 

an Arrhenius-type temperature dependence rate constants for oxide scale growth rates of both 

alloys. It is concluded that complete depletion of yttrium within the oxide scales indicated the 

diffusion of yttrium to the surface of the oxide scales for both alloys. Moreover, after the depletion 

of yttrium,  scale growth takes place by simultaneous inward diffusion of oxygen and outward 

diffusion of cations, which makes the oxidation process similar to conventional (non ODS) alloys 

of the same base composition, at least in a qualitative way. The mechanism of yttrium depletion is 

shown as in Fig. 2.11. 

 

Fig. 2.11 Schematic illustration showing different stages of yttrium distribution within the oxide 

scale [25]. 
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Moreover, Pint et al. [102] characterized the alumina scales formed during cyclic oxidation 

at 1200 oC on three Y2O3-Al2O3-dispersed alloys: Ni3Al, β -NiAl, and FeCrAl (Inco alloy MA956). 

It is reported that in each case, the Y2O3 dispersion improved the α-Al2O3 scale adhesion. However, 

in the case of Ni3Al, an external Ni-rich oxide spalled and regrew, indicating a less-adherent scale. 

Furthermore in their study of using scanning-transmission electron microscope (STEM) analysis 

of the scale near the metal-scale interface revealed that the scale formed on ODS FeCrAl showed 

no base metal-oxide formation, but the scale formed on ODS Ni3Al showed evidence of cracking 

and Ni-rich oxide formation. They suggested a diagram showing the different oxide scales formed 

on both ODS Ni3Al and ODS FeCrAl alloys, Fig. 2.12.   

 

Fig. 2.12 Schematic of the scale formed on (a) ODS Ni3Al and (b) OD NiAl and ODS FeCrAl 

[102]. 

Additionally, they suggested a mechanism of Ni-rich outer scale spallation and regrowth 

on ODS Ni3Al, shown in Fig. 2.13. The underlying Al2O3 scale cracks but remains adherent to the 

metal, Fig. 2.13(b). Due to the low Al content, Ni-rich oxide is able to form in the cracks before a 

healing alumina layer forms and under continued thermal cycling, the layer grows back. 
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Fig. 2.13 Schematic mechanism of spallation and regrowth of the Ni-rich outer scale on ODS 

Ni3Al [102]. 

2.3.2 Thermo-Mechanical Test  

High temperature materials usually subjected to thermal, mechanical, and thermo-

mechanical combined loads at operation. Thus, it is critical to study these loading systems for ODS 

alloys at high temperature environments. The common tests in combination with microscopy and 

spectroscopy observation includes tensile, compression, hardness, fatigue, creep tests and a 

combination of the latter two. 
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Eastrin et al. [107] studied the high temperature tensile creep behavior of ODS nickel-

based alloy PM 1000 at 900 °C in air so as to investigate the effect of grain orientation and grain 

aspect ratio (GAR). They tested three different heats of PM 1000 (i) a (100)-fiber structured bar 

material with a grain aspect ratio of 10 along the longitudinal direction, (ii) a (111)-fiber structured 

bar material with a GAR of 4 and (iii) a pancake structured sheet material with a GAR of 4 and 

(100) {011} cube on edge texture deformed in the (110) axial direction.  They reported at high 

strain rate the creep resistance dependence on texture. But at low creep rates instead of the texture 

effect; its dependence was on tertiary creep processes (such as void formation and void growth on 

transverse grain boundaries and in fine grained enclaves) and the creep life being controlled by 

creep ductility. 

In addition, Heilmaier et al. [108] studied the cyclic stress-strain behavior of ODS nickel-

based alloy PM 1000 under constant and variable amplitude loading conditions. They carried 

single-step tests with constant total strain amplitude and incremental step tests with the same 

amplitude range at 850 and 1000 oC. It was indicated that the interaction of the dislocations with 

the fine, homogeneously distributed oxide dispersoids found to suppress the formation of 

dislocation cell structures.  Moreover, it was reported that the presence of slight deviation in the 

cyclic stress-strain curve obtained from constant amplitude tests and the incremental step tests 

despite of the similar microstructures.  

Furthermore, Ngala and Maier [99] studied the creep-fatigue interaction of ODS nickel-

based superalloy PM 1000. They used, fully reversed symmetrical push-pull isothermal fatigue, 

thermo-mechanical fatigue (TMF), slow-fast and tensile hold time tests in the temperature range 

of 450 to 1050 oC. They reported that TMF tests resulted in unexpectedly low fatigue lives and 
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grain boundary cavitation observation in the in-phase TMF tests which indicates creep damage to 

play an important role under TMF loading conditions.  

Moreover, Kovan et al. [109] studied the cyclic deformation and lifetime behavior of 

nickel-based ODS superalloy, PM 1000 under thermal-mechanical fatigue conditions in the 

temperature range of 450-850 °C. They indicated that isothermal fatigue from literature exhibited 

a longer life time than thermal-mechanical fatigue at corresponding mechanical strain amplitude. 

Also in thermal-mechanical fatigue loading, cracks tended to initiate intergranularly and propagate 

transgranularly. Moreover they developed life prediction models to evaluate the possibility of 

predicting both thermal-mechanical fatigue and isothermal fatigue lifetimes. 

Finally, He et al. [23] studied ODS nickel-based superalloy foil 0.1 mm thick deposited by 

EB-PVD technology and followed by HIP treatment. They reported the results of room 

temperature tensile tests, which indicates the increase in ultimate tensile strength and plastic 

properties of the foil after HIP compared to the as-deposited. 

2.3.3 Indentation (Microhardness, Nanoindentation) Testing 

Indentation tests like the rest of the tests mentioned above is used to evaluate the 

mechanical properties, especially the hardness and stiffness responses of high temperature 

materials at room temperature using commercial nanoindentation and microindentation techniques 

[110-118] or at elevated temperature using in house made micro indentation system [119]. In 

indentation system the information on material behaviors or properties are obtained from the 

indenter load and depth, measured continuously during loading and unloading by using pointed or 

spherical indenters, Fig 2.14.  
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Fig. 2.14 Typical experimental load-displacement curve obtained with multiple partial unloading 

[117]. 

Formation of stable and adherent protective oxide scales, on high temperature materials are 

very important aspects to withstand degradation from reaction with gases and condensed products. 

The mechanical properties of such thermally grown surface oxides are very important for the 

integration and protectiveness of the underlying materials. Tortorelli et al. [110] reviewed and 

discussed the use of mechanical property microprobe (MPM) based on low-load, depth-sensing 

submicrometer indentation testing for examining surface mechanical properties such as 

determination of elastic and plastic properties of oxide scales. 

Yang and Vehoff [112] systematically studied the dependence of nanohardness indentation 

size and grain size on pulse-electrodeposited nanocrystalline nickel specimen and heat-treated to 

produce grain sizes from the nanoscale to microscale. They reported quantitatively the relative 

dependence of plastic zone size to indentation size. Also reported the local interaction between 

dislocations and grain boundaries in single grains led the different dependences of hardness upon 

indentation depth. Moreover, they related the dislocations, which nucleate below the indenter tip, 
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to only interact directly with the surrounding interfaces for grains below 900 nm for which the 

nanohardness and pop-in width are grain size dependent.  

With regard to the application of indentation tests on ODS alloys, Liu et al. [113] studied 

the radiation-hardening of ODS alloys exposed to ion irradiation using microindentation. They 

reported the microhardness measurements carried out on ion-irradiated three ODS specimens with 

ultra-low load indention for which the indentation results mentioned an increase in hardness after 

irradiation on all the three samples. In addition, Kasada et al. [119] investigated the irradiation 

hardening of Fe-based model ferritic alloys after Fe-ion irradiation experiments in order to deduce 

mechanistically based nominal hardness from the nano-indentation tests on the ion-irradiated 

surface. 

Furthermore, Tannenbaum [120] developed a load-based micro-indentation method for 

nondestructive evaluation (NDE) of high temperature materials exposed to thermal loads in air and 

laboratory air and evaluated TBC coating surface stiffness responses capable of assessing damage 

accumulation and macroscopic debonding failure sites following thermal exposure to elevated 

temperatures. He followed a classical Hertzian contact mechanics approach, a micro-indentation 

technique that does not require system compliance calibration or the use of high precision depth 

sensors, which led to the development of both portable and high-temperature micro-indentation 

system for TBC and in general high temperature materials mechanical property evaluation up to 

1100 °C. 

More recently, Lin et al. [121] fabricated ferritic ODS  alloy  foils  with  high  oxide  

contents,  as  high  as  8.5  wt.% in which the  dispersoids  in  the  ODS  alloy fabricated  by  this  

method  are  mainly  composed  of  bcc  structured  yttria and with  no Y-Al-O  nanocluster  

detected. They obtained that the hardness was found to increase linearly with the yttria content.   
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2.4 ODS Alloy Coating 

Research indicated that ODS alloys are not only used in their bulk form produced in mass 

by extrusion, they can also be used as coatings produced by deposition due to their excellent high 

temperature property. Therefore, ODS alloy coatings are believed to enhance the high temperature 

oxidation and corrosion resistances of high temperature materials with their dispersion 

strengthening and microcrystalline structure [23-24, 75].  

He et al. [75] used special electro-spark deposition technique to deposit Ni-20Cr-Y2O3 

ODS alloy coatings on the surface of Ni-20Cr alloy. They reported that the ODS coatings 

possessed micro-crystalline structure and good metallurgical bonding with the substrates studied. 

In addition, the experimental results of high-temperature oxidation in air at 1000 oC were reported 

that the formation of Cr2O3 scale has been promoted on these coatings with excellent scale 

spallation resistance by selective oxidation of Cr. In another paper with the same author [24], Fe-

Cr-Ni-Al-Y2O3 ODS alloy coatings were deposited on the surface of 1Cr18Ni9Ti stainless steel 

by using high-frequency electric-spark technique. As reported these ODS coatings possessed 

micro or nano-crystalline structure with metallurgical bonding to the substrates observed by 

transmission electron microscopy (TEM).  The results of high-temperature oxidation performed in 

air at 1000 °C indicated that the selective oxidation of Cr was greatly promoted and the scale 

spallation resistance significantly improved.  

In addition, Hongmei et al. [122] used a simple but more efficient technique high-

frequency electropulse deposition technique to produce microcrystalline MGH754 ODS alloy (Ni-

20Cr-0.5Ti-0.3Al-0.6Y2O3) coatings on 1Cr18Ni9Ti stainless steel substrate. The result obtained 

indicated that their coating has a very fine grain size of 30-300 nm and good metallurgical bonding 

with the substrate. It is also reported that the isothermal oxidation in air at 1000 °C for 100 hrs 
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showed micro-crystallization and dispersed oxide particles promoted the selective oxidation of Cr 

to form a protective and continuous Cr2O3 scale. This scale reported to greatly improve the scale 

spallation resistance and increasing the oxidation resistance of the 1Cr18Ni9Ti substrate.  

Furthermore, He et al. [23] studied Y2O3 dispersion strengthened Ni-based superalloy foil 

0.1 mm thick deposited by EB-PVD technology and followed by HIP treatment. The 

microstructure investigations on as-deposited and HIPed superalloy foils were reported as 

columnar crystals formed on the evaporation side and equiaxed grains formed on the substrate side. 

In addition, the cross-section observation was reported to contain 150-300 nm grains of matrix 

with 10-25 nm particles of Y2O3 homogeneously dispersed in the matrix. Furthermore, after HIP 

treatment the columnar crystals were reported to be turned into equiaxed grains and little growth 

of oxide dispersoids observed. Additionally, they studied room temperature tensile tests and 

compared the as deposited with HIP treated foils. It is reported that the ultimate tensile strength 

and elongation percentage were 1230 MPa and 0.92 for HIPed and 725 MPa and 0.49 for as-

deposited foil, respectively. 

Moreover, Song et al. [123] studied a Y2O3 dispersion strengthened nickel-based 

superalloy sheet (0.15 mm thick) prepared by EB-PVD technology. They used different heat 

treatments to improve the mechanical properties of the alloy sheet and conducted tensile tests at 

room temperature on specimens of as-deposited and heat treated. It is reported that the results 

showed equiaxed grains on the substrate side and columnar grains on the evaporation side of the 

as deposited sheet. In addition, the as-deposited sheet was reported to have poor ductility due to 

micro-pores between columnar grains. It was mentioned that the strength and ductility were found 

to be improved effectively by annealing at 800 °C for 3 hrs. However, for samples treated at 

1100°C, the strength found to drop down due to the precipitates of Y3Al5O12 (YAG). 
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Finally, Liu et al. [124] studied newly designed and laser cladded cobalt-free, nickel-based 

ODS alloy coating (Ni-3)  as a further step in obtaining high temperature wear and corrosion 

performances used for sealing surfaces of nuclear power valves. It was reported that the micro 

hardness of the Ni-3 coating is about HV500. After high temperature wear and corrosion study, 

they concluded that this newly designed and laser cladded Ni-3 alloy coating appeared to be the 

viable alternative material and technique for Co-free alloy, especially used in the nuclear valve 

sealing surfaces. 

2.5 Motivation 

In the survey of TBC systems, it is indicated that TBC systems are good protective 

materials in severe high temperature environments, however their complicated failure mechanisms 

especially the TGO formation makes their life shorter. The search for high temperature structural 

materials supporting or replacing TBC systems is always active and ODS alloys are receiving great 

attention due to their exceptional high temperature properties and their ability to be used as a 

coating system in high temperature environments. Due to these ODS alloy properties, they can be 

a candidate material for coating of advanced turbine components with the possibility of 

implementing micro-channel cooling system within or beneath the ODS alloy coating system.  

Therefore, the motivation of this research work is to investigate MCB plus ball milled 

nickel-based ODS alloys mechanical and microstructure properties at high temperature 

environments for their structural integrity in their intended application as a structural coating 

system in advanced gas turbine components.  Further motivation is implementing finite element 

analysis (FEA) of ODS alloy coating with micro-channel cooling system as a possible means of 

implementing ODS alloy applications as a stand-alone structural coating, which compares the 

thermal protectiveness with TBC systems. 
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2.6 Objective 

The objective of this research work is to investigate the mechanical and microstructure 

property of ODS alloys processed by combined MCB technique and ball milling subjected to high 

temperature exposure for their structural integrity applicable to high temperature ODS alloy 

coating capable of implementing micro-channel cooling system. 

The specific objectives are: 

 Analysis of the microstructure and elemental distribution of ODS alloys subjected to high 

temperature oxidation at 1100 oC, matrix and oxide scale. 

 Investigation of the mechanical property (stiffness response) of ODS alloys subjected to 

high temperature oxidation at 1100 oC.  

 Simulation of heat transfer through ODS alloy coating with micro-channel cooing system 

using finite element method. 

 Compare the thermal distribution of ODS alloy coating with micro-channel cooling system 

and TBC system using finite element method. 

 

 

 

 

 

 

 

 

 



  
 

36 
 

3. MATERIALS AND EXPERIMENTAL METHODS  

3.1 Materials  

The raw materials used in this study were commercial metal and ceramics powders 

including Y2O3 (<50 nm, 99.99% pure), Al (4.5-7 μm, 97.5% pure) and Ni (4~8μm, 99.9% pure) 

purchased from Sigma Aldrich Inc., Alfa Aesar and Atlantic Equipment Engineers respectively. 

Cr (7.5~10μm and 8~12μm, 99.5% pure,), W (0.5~1μm and 2~4μm, 99.95% pure) and high 

density Ni powder (8~15μm) were provided by F.W. Winter Inc. & Co., Buffalo Tungsten Inc., 

and Inco Special Products respectively. These powders were stored separately in an inert 

environment in sealed bottles full of argon gas. Four batches of ODS alloying powder samples 

were prepared according to master alloy powder size (Ni and Cr) with an addition of trace 

refractory powder, tungsten powder, to explore the effects of master powder size and trace 

refractory powder on mechanical alloying produced by the MCB process. Considering the short 

time milling as well as no ball-powder-ball collision involved during MCB process [125], the 

average sizes of all starting powder constituents ranged from 0.5 to 15 microns. For conventional 

ball milling or rod milling MA process, however, the starting powders usually have average 

diameters ranging from 1 to 500 micron [126]. Since aluminum powder is usually soft and easy to 

deform, the size of aluminum powder was kept constant. In order to examine the dispersion effect 

caused by MCB-induced mechanical alloying, the composition and particle size of yttrium oxide 

nanoparticle were kept constant in all powder samples. Early studies showed that the addition of 

hard-to-deform refractory elements, such as Mo, Ta, or W, to ODS alloys could stabilize the 

yttrium oxide particles in ODS alloys at elevated temperatures [127]. The high chromium content 

was added to increase strength and improve corrosion resistance. The aluminum content enhances 

the formation of a stable and adherent α-Al2O3 scale providing excellent high temperature 
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oxidation resistance. For each ODS powder sample, the powder components were weighted 

according to the designed composition, initially mechanically blended , and then placed into a 

bottle that was sealed and filled with argon gas to prevent oxidation of powders. All these 

operations were done under argon gas environment inside a glove box chamber. Each bottle 

containing ODS powder sample weighed approximately 200 gm. Table 4 lists the sample 

identification number, element composition (wt.%), and powder sizes. Specifically for this 

research work powder samples A1 and B1 are used for further analysis.   

Table 4 Starting chemical composition of ODS powders before MCB process [125]. 

 Cr (7.5~10 µm) Al (4.5 ~ 7 µm) Y2O3 < 50nm W  (~1 µm) Ni (4 ~ 8 µm) 

A1 20 5 1.5 0 73.5 

A2 20 5 1.5 3 70.5 

 Cr  (8~12  µm) Al (4.5 ~ 7 µm) Y2O3 < 50nm W (2~4  µm) Ni (8~15 µm) 

B1 20 5 1.5 0 73.5 

B2 20 5 1.5 3 70.5 

 

3.2 Experimental Methods  

In order to investigate the microstructure and mechanical properties of ODS alloys, 

experimental setups including ball milling of MCB processed powders, powder compacting and 

sintering, high temperature thermal cyclic testing, and microindentation testing  procedures were 

performed. Also, surface and metallographic cross-section characterization methods were 

employed.  Furthermore, thermal analysis was conducted using finite element analysis (FEA) for 

a procedure which may enhance the application and capability of ODS alloys as high temperature 

coating by implementing micro-channel cooling system within the ODS coating or between ODS 

coating and substrate. 
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3.2.1 ODS Powder Processing by MCB and Mechanical Alloying 

The as-initially-blended powder samples were stored in bottles filled with argon gas and 

sent to Hosokawa Micron Powder Systems, Summit, NJ, for the preparation of ODS powders using 

MCB technique. The MCB technology was developed by Hosokawa Micron Corporation, Osaka, 

Japan and has been utilized to make various composite particles used in the fields of functional 

gradient materials, batteries, cermets, fuel cells, polymers, cosmetics, and pharmaceuticals. It is 

often considered as an enhancement or alternative to the conventional mechanical alloying (MA) 

process using ball milling or rod milling [128-129]. Also, the newly developed MCB processing 

technique is simple, environmentally friendly, and can be scaled up to 300 liters per batch. The 

MCB particle bonding process takes place in the solid state without needing solvents or external 

heating. During MCB processing, the starting powder mixtures were subjected to high 

compression, shear, and impact forces as they pass through a narrow gap in a high speed rotating 

device (typically around 4000 rpm). As a result, the particles were dispersed, mixed, shaped, and 

bonded together. Consequently, the composite particles consisting of various combinations of the 

starting ingredients were formed. In this study, the starting powder mixtures were MCB processed 

for only 30 minutes. It was expected to have Y2O3 nanoparticles dispersed and bonded onto the 

surfaces of larger hosting particles such as Ni and Cr particles, which in turn creating oxide 

dispersion effects. After MCB processing, the powders were stored in sealed bottles filled with 

argon gas. Small amounts of MCB-processed (5 gm) powders were taken for analysis using 

transmission electron microscopy (TEM), scanning electron microscopy (SEM) and X-ray 

diffraction (XRD). 

In order to obtain ODS alloy powders with good microstructure and optimum oxide 

dispersion powder size, mechanical alloying was performed on MCB processed powders discussed 
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above in a planetary ball mill for different time durations with three different sized stainless steel 

balls (20, 10 and 6 mm in diameter) having a ball to powder ratio (BPR) of 30:1 and a speed of 

300 rpm. The steel jars loaded with powders were sealed in a glove box under argon atmosphere 

in order to avoid oxidation of powders during ball milling. Mechanical alloying experiments on 

MCB processed powders were carried out for 5, 40, 60, 80 and 120 hrs to identify the optimum  

ball milling time to produce the desirable ODS composite particles.  0.5 wt.% stearic acid was 

used as a process control agent (PCA) to minimize cold welding between powder particles and 

inhibit agglomeration. 

3.2.2 ODS Powder Compacting and Sintering 

After mechanical alloying, ODS powders were compacted into cylindrical pellets. Before 

ODS alloy powders were compacted in to cylindrical pellets, the powders were pre-heated in a 

conventional tube furnace for 60 min at a temperature of 800 oC under an inert argon gas 

environment. This pre-heating at a lower temperature helped to avoid the use of binding chemicals 

while compacting the pellets and also burned out some chemicals (such as PCA) that were incurred 

during the ball milling process. To consolidate the ball-milled ODS alloy powders, cylindrical 

pellets (diameter 12.7 mm and height 2 mm) were pressed at 10.5 ton using a uniaxial semi-

automatic hydraulic press (model #3912 CARVER laboratory equipment, 11 ton capacity). The 

powders were held under the press for about 10 min to obtain uniform compaction. The compacted 

pellets were sintered in the same furnace and argon gas environment for 60 min (specimen group 

designated by A and C) and 120 min (specimen group designated by B and D) at a temperature of 

1300 oC with a heating rate of 5 oC/min and cooling rate of 3 oC/min (Fig. 3.1) to get fully 

consolidated ODS alloy compacts suitable for thermal exposure testing, microstructure evaluation 
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and mechanical property determination. Table 5 describes the specimens sintering conditions and 

their purposes. 

 

Fig. 3.1 Powder pre-heating and specimen sintering temperature profile; specimen group A and C, 

B and D sintered for one and two hrs, respectively.  

Table 5 Sintering conditions (pre-heated at 800 oC and sintered at 1300 oC) 

ODS Alloy Milling time  Pre-heat Sintering time Purpose  

Specimen group A 40 hrs 60 min 60 min Microstructure, mechanical property 

Specimen group B 40 hrs 60 min 120 min Microstructure, mechanical property 

Specimen group C 40 hrs 60 min 60 min Weight gain 

Specimen group D 40 hrs 60 min 120 min Weight gain 

 

3.2.3 Thermal Cyclic Testing 

Thermal cyclic oxidation testing was conducted in air at a temperature of 1100 oC in a 

horizontal tube furnace controlled by external electronic controller. The cyclic exposure were 

designed in such a way that, during each cycle the specimens were brought to a temperature of 

1100 oC within 15 min, held at that temperature for 45 min, subsequently the specimens were 
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removed from the furnace within 15 min and cooled for 45 min at room temperature. The testing 

sequence was controlled by a pre-programmed external electronic controller, Fig. 3.2. Group of 

specimens (A, B) were exposed together so that same test environments were maintained to 

identify the 60 min and 120 min sintering effect on the mechanical and microstructure properties 

of the studied specimens. Specimens group C and D were exposed for 20-24 cycles each time and 

the weight gain were measured with a precision balance of accuracy 0.1 mg.  

 

Fig. 3.2 Schematic of the thermal exposure apparatus setup. 

3.2.4 Microindentation Testing 

The mechanical properties of ODS alloys before and after thermal cyclic exposure was 

studied by in-house made microindentation instrument technique. The in-house made 

microindentation system is capable of measuring room temperature stiffness response. Indicated 

in Fig 3.3 is a table top room temperature indentation system comprises of (i) 3.6 nm resolution 

physik Instrumente P-239.9S 180 μm piezoelectric actuator, (ii) ±0.15% accuracy honeywell 

(model 31) 100 lb load cell, (iii) spherical tungsten carbide (WC) 750 μm radius indenter, and (iv) 

specimen stage [120]. For indentation tests, the ODS specimens were polished after thermal cyclic 
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exposure to get the stiffness response on the oxide free surface or directly on the oxide surface to 

get the stiffness response of the oxide scale and its adhesion property to the ODS alloy it grows 

on.  

Fig. 3.3 Table top room temperature microindentation system [120]. 

3.2.5 Microstructure Characterization  

3.2.5.1 Electron Microscope (EM) Analysis 

The surface morphology of ODS alloy powders after MCB, ball milling, sintering, and 

thermal cyclic exposure testing were studied using a JEOL JSM-7600F and Hitachi S-4700F 

scanning electron microscopy (SEM) with a field emission gun. The elemental distribution was 

studied by using energy dispersive X-ray spectroscopy (EDX). Before SEM and EDX analysis, 

the as-sintered and thermal cycled coupons were polished to 1 μm surface finish. All specimens’ 

cross-sections were sputter coated by AuPd prior to viewing as it was required to reduce the 

amount of specimen charging throughout imaging. A TECNAI-G2-F30 transmission electron 

microscope with a 300 KeV field emission gun was used to characterize the MCB processed 

powders. Samples were analyzed using the conventional bright field (BF) and selected-area 

diffraction (SAD). The elemental distribution was also determined using the corresponding X-ray 
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energy dispersive sepectrometry (EDX) under the STEM mode. For STEM/EDX mode, the 

electron probe with a size of 0.2 nm was used to examine the dedicated area of sample. 

3.2.5.2 X-Ray Diffraction Analysis 

The different phases of ODS alloy powders after MCB, ball milling, pre-heating and ODS 

alloy specimens after sintering and thermal cyclic exposure testing were analyzed using 

PANALYTICAL X’PERT PRO  X-ray  diffraction (XRD)  with  Cu Kα. 

3.2.6 Heat Transfer Analysis of ODS Alloy Coating with Micro-Channel Cooling System 

using FEA  

In order to demonstrate the application of ODS alloy coatings with micro-channel cooling 

system and without the use of TBC system to protect the underlying superalloy substrate in harsh 

high temperature environments, the heat transfer property of ODS alloy coating with micro-

channel cooling system was studied by using finite element analysis (FEA). The following outline 

was followed in the FEA analysis. 

 The thermal property (thermal conductivity, convective heat transfer coefficient) was 

collected from similar experimental works on related ODS alloy materials. 

 A simple geometry including the substrate, ODS alloy coating with micro-channel cooling 

systems, and oxide scales on the coating was modeled and heat transfer analysis carried. 

 The thermal contour plots were obtained and discussed on each three material systems 

subjected to conductive and convective heat source on the ODS alloy coating and inside 

the micro-channel cooling systems. 

 For comparison purpose, a typical TBC system and ODS alloy without micro-channel 

cooling system were also modeled and results were analyzed accordingly. 
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4. RESULTS AND DISSCUSSIONS  

4.1 ODS Powder Processing and Consolidation 

In this section results obtained from experimental works on ODS powders processed by 

MCB, MCB plus ball milling, pre-heated and consolidated ODS alloy coupons are discussed. 

4.1.1 Mechano-Chemical Bonding (MCB) Processed Powders 

Fig. 4.1(a) presented the XRD patterns of as-blended and 30 min MCB processed Ni-Cr-

Al-Y2O3 powders. The diffraction peaks of all alloying elements Al, Cr, and Ni were observed in 

the XRD spectrum of MCB processed powders. However, the peak of Y2O3 was not present, 

suggesting the MCB process would change the crystallographic structure of the nano-sized Y2O3 

particle. Compared to the starting as-blended powders, the MCB-processed powders showed the 

diffraction peaks with similar width at the same diffraction angels, 2, as well as absence of new 

detectable peaks, indicating that the end products processed by MCB were still intact mixture of 

starting ingredients without any undesirable reactions occurring among the elemental powders. 

The XRD analysis performed on both as-blended and MCB processed powders indicated that the 

MCB process in this study would not change the crystallographic structure and particle size of 

process elemental powders Al, Cr, and Ni, but change the crystallographic structure of nano-sized 

Y2O3 particle, resulting in the disappearance of Y2O3 peak from XRD spectrum.  

Additionally, SEM micrographs of MCB processed powders as seen in Fig. 4.1(b) 

indicated the near spherical shapes of the major particles, with the exception of some minor 

particles formed as fragments with random shape and size. Furthermore, SEM EDX element 

mapping and spectrum were utilized to examine the elemental distribution of the MCB processed 

powders as shown in Fig. 4.1(c-g). As seen in the elemental mapping Fig. 4.1(c-f), the master 

elemental particles identified by EDX analysis as Ni and Cr kept spherical shapes and minor 
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particles identified as mostly Al formed the fragments with random shape and size.  The minor 

particles such as Al tended to attach on the surface of the large particles to form the composite 

particles. As SEM EDX mapping micrographs exhibited the master elemental powders such as Ni 

and Cr particles played the role of hosting particles to entrap the minor elemental powders such as 

Y2O3 and Al particles. Mapping micrographs evidently showed that Y2O3 has been dispersed 

homogeneously throughout the host particles after MCB processing. Smaller size deformed Al 

fragments were found attached on the hosting particles or separately distributed in mixture of 

powders. The distribution of Al fragments appeared heterogeneous among the powders, suggesting 

that the soft Al particles were subjected to mechanical deformation and fracturing, forming 

fragments with reduced size during MCB processing. The Al fragments were randomly distributed 

or bonded on to the hosting particles. The inter-diffusion of Y2O3 and Al on hosting particles was 

observed in the mapping micrographs. As can be seen in Fig. 4.1 (g), the aluminum wt.% is higher 

than the starting composition indicating the non-uniform distribution due to its soft nature. 
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Fig.  4.1 MCB processed powders (a) XRD spectrum, (b)  SEM  micrograph,  (c-f)  EDX  mapping 

micrographs, and (g) EDX element spectrum and wt.%. 
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Therefore, SEM microscopic and spectroscopic characterization of MCB processed 

powders summarized that elemental powder Y2O3 had been mixed homogeneously and the 

composite particles hosted by the master elemental particles such as Ni and Cr could be created 

through the MCB processing. The composite particles contained elements Y and O which had been 

dispersed and mixed with hosting particles through MCB processing. The soft Al powders were 

deformed and fractured to form fragments and attached on to the hosting particles or became 

discrete particles after MCB processing. 

However, the presence of elemental Y and O confirmed by SEM EDX mapping and 

spectrum, Fig. 4.1(g) of MCB processed powders showed the discrepancy with the results of XRD, 

wherein the Y2O3 peak was not detected, Fig. 4.1(a). To explore reasons for the absence of Y2O3 

peak in the XRD spectrum and to identify the microstructures of composite particles induced by 

MCB processing, the powders were subjected to transmission electron microscopy (TEM) and 

high resolution transmission electron microscopy (HRTEM) analysis. Fig. 4.2(a) and 4.2(b) 

presented the TEM BF (bright field) and HRTEM images of MCB processed powders, respectively. 

The low magnification of TEM BF image, Fig. 4.2(a), showed that the hosting particles displayed 

in dark contrast due to their thickness with limited detailed information. Increasing the 

magnification of TEM imaging revealed a thin film with thickness of 20-25 nm around the hosting 

particles, Ni and Cr. As can be seen in Fig. 4.2(b), the HRTEM image indicated the thin film to be 

amorphous and very few crystalline structures were evident. The embedded FFT (fast Fourier 

transform) image revealed diffusive features and spots associated with amorphous and crystalline 

structures, respectively. Moreover, the thin film around the hosting particle was observed in Z-

contrast image, generated in STEM mode, as shown in the inset image of Fig. 4.2(c), wherein the 

thin film showed the bright contrast around the particle. As expected, STEM EDX examination of 
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these thin film regions confirmed that the thin film contained elements of Ni, Cr, Al, Y and O at 

which the convergent electron beam with a probe size of 0.2 nm was located in the particle edge 

marked in Fig. 2(c) to examine the chemical composition of the dedicated location. Therefore, 

based on the SEM EDX, TEM, HRTEM, STEM EDX analysis, it could be concluded that Y2O3 

was manifested as the amorphous thin film dispersed and coated on the hosting particles after MCB 

processing, resulting in disappearance of Y2O3 peak in the XRD spectrum. However, tiny fraction 

of Y2O3 crystalline particles might still exist within the film which was too weak to be detected by 

XRD. 

  

 

Fig. 4.2 MCB processed powders (a) TEM BF image, (b) HRTEM image, (c) STEM EDX image. 
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4.1.2 Mechano-Chemical Bonding (MCB) plus Ball Milled Processed Powders 

To further improve the alloying properties, MCB processed powders were subjected to ball 

milling for 5, 40, 60, and 120 hrs with their SEM micrographs depicted in Fig. 4.3(a-d). As can be 

seen in Fig. 4.3(a) after 5 hrs, the milled powders showed irregular shape and fragments with 

lamellate structures, suggesting that large deformation, cold welding and fracturing of particles 

occurred during processing. After 40 hrs of milling shown in Fig. 4.3(b), the particles became more 

spherical and some of the smaller fragmented particles appeared to be cold welded on to the larger 

particles. After 60 hrs of milling indicated in Fig. 4.3(c), most of the particles appeared to have 

uniform particle size and spherical in shape with less smaller particles observed on larger particles. 

At longer milling time of 120 hrs observed in Fig. 4.3(d), the particles became smaller in size with 

rough surfaces, which indicated fracturing and separation of the already cold welded particles. A 

ball milled FeCrAl ODS alloy powder reported by Chen and Dong [20], indicated decreasing in 

particle size through ball milling. A similar manner was observed in this study as the particles 

morphology exhibited a progressive change with ball milling time. At a lower milling time the 

particles appeared to be more of lamellate structure and irregular in shape, while at an intermediate 

milling time the shape became more of spherical and uniform, indicating the balanced cold welding 

and fracturing. However, at longer milling time the particles became more severely fractured. 

Furthermore, to study the phases evolved during ball milling, XRD analysis was performed 

at different stages of milling 30, 40, 60, 80, and 120 hrs as indicated in Fig. 4.3(e). The XRD 

spectrum revealed peak changes with ball milling time, for which some of the spectrum peaks were 

disappeared, and then reappeared, indicating the process of cold welding and fracturing of particles 

that could affect the crystallographic structure of the powders. This could indicate the presence of 

an optimum ball milling time to obtain an ODS composite alloy with desirable particle size and 
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crystalline structure. After 30 hrs of ball milling the Al peak observed in the MCB processed 

powders disappeared from the XRD spectrum and Ni solid solution was observed, to be explained 

later and this usually happens at lower ball milling time. At 40 hrs of ball milling, the XRD 

spectrum of additional peaks started to disappear and at 60 hrs only one spectrum observed. At 

longer ball milling of beyond 80 hrs, the smaller peaks started to appear again. Based on the XRD 

analysis and the SEM microstructure study, it could be summarized that the optimum ball milling 

time to get a good particle size, shape and phase distribution after MCB plus ball milling process 

was 40 to 60 hrs and 40 hrs was adopted for further study.  
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Fig. 4.3 SEM micrographs of milled powders for (a) 5 hrs, (b) 40 hrs, (c) 60 hrs, and (d) 120 hrs, 

and (e) XRD spectrum. 

Moreover, SEM EDX analysis was performed on 40 hrs processed powders as indicated in 

Fig. 4.4(a-g). The uniform distribution of alloying elements with the host elements (Ni and Cr) is 

evident from EDX mapping micrographs after ball milling process, Fig. 4.4(b-f). Elemental Al, 

which was observed fragmented and randomly distributed or bonded on to the hosting particles 

after MCB process, is now appeared to be uniformly distributed as indicated in the EDX mapping, 

Fig. 4.4(d) and EDX line scan, Fig. 4.4(g). The wt.% of each elemental powders  are more closer 

to the starting powders, indicating uniform distribution of elements after MCB plus ball milling 

process. Additionally, to study the polycrystalline nature of ball milled powders, TEM SAD 

(selected area diffraction) image was taken as seen in Fig 4.4(h). It showed heavy deformation, 

well mixed, and polycrystalline structure of powders after combined MCB and ball milling process. 
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Fig. 4.4 40 hrs milled powders (a) SEM micrograph, (b-f) EDX mapping micrographs, (g) EDX 

spectrum and line scan across elements, and (h) TEM SAD image. 

4.1.3 Low Temperature Pre-Heat Treatment and Powder Consolidation  

To avoid the usage of binding chemicals while performing powder compacting, powder 

pre-heating methodology was implemented at lower temperature indicated in the experimental 

procedures section. The SEM microstructure and EDX elemental mapping of the pre-heated 

powders, Fig. 4.5(a-f) appeared to be similar to that of 40 hrs milled powders, but the pre-heating 

is believed to relieve the strains associated with cold welding and fracturing of powders imposed 

during ball milling in addition to burning out the chemicals such as PCA. This could also make 

the powders more manageable while performing powder pressing as compared to non-pre-heated 

powders. Fig. 4.5(g) indicated EDX elemental spectrum and line scan on pre-heated powders 

including the wt.% of each elemental powders. The wt.% is now much more closer to the starting 

powders indicating uniformity of powder distribution.  Fig. 4.5(h) presented the XRD spectrum 

comparison of MCB processed, 40 hrs ball milled, pre-heated powders, and as sintered ODS alloy 

coupons. As indicated in Fig. 4.5(h) the peak positions of 40 hrs milled powders showed a slight 

shift to a lower 2θ angles with broadened and reduced peak intensities compared to MCB 

g) 
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processed powders, which could be a result of grain refinement and/or increasing lattice strains 

associated with cold welding and fracturing during longer ball milling [20]. The disappearance of 

Al peak in the MCB plus ball milled powders compared to only MCB processed powders suggests 

that the matrix contains (Ni, Cr) solid solution with Al as the main solute. The pre-heated powders 

showed the same XRD peaks as that of the 40 hrs processed powders, but with narrow and stronger 

peak intensity. The narrow and stronger peak intensity could be the result of strain relaxation 

provided by pre-heating. However, the XRD peaks of the as-sintered samples showed a slight shift 

to a lower 2θ angles with reduced peak intensities compared to the 40 hrs processed and pre-heated 

powders indicating Ni3Al precipitate formation. 
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Fig. 4.5  Pre-heated powders (a) SEM  micrograph,  (b-f)  EDX  mapping micrographs,  (g) EDX 

spectrum and line scan across particles with wt.%, and (h) XRD spectrum comparisons of different 

hrs of milling and sintering. 

Powder consolidation as discussed in the experimental setup was performed by using 

uniaxial pressing at 10.5 ton. The as consolidated (green) compacts were sintered for 60 and 120 

min in a horizontal tube furnace using argon gas environment. The relative densities of the as 

sintered coupons were measured by using the Archimedes method. The measured densities from 

this compacting and sintering method were in the ranges of 60-65% theoretical. This density range 

makes the ODS alloy coupons to be porous as most characterization tests at room temperature and 
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elevated temperature are expected to be performed on homogeneous and dense materials (usually 

greater than 95% theoretical density) [22]. However, the intended application of this research work 

is mainly developing the MCB plus ball milled ODS alloys for high temperature oxidation and 

corrosion protection coatings on superalloy substrates [130]. Furthermore, the implementation of 

micro-channel cooling systems beneath or within these porous ODS alloy systems may enhance 

the heat removal capabilities of the cooling system by permitting diffusion of coolants through the 

porous mediums to some extent. Moreover, oxidation behavior of porous or inhomogeneous 

coating has not been widely reported and it might provide some useful information for potential 

application of this material on more reactive metallic substrates besides superalloys [131] or 3D 

additive manufacturing [132-133], which is difficult to achieve high dense products due to 

manufacturing defects and gas entrapments. 

4.2 ODS Alloy Thermal Cyclic Testing and Microindentation  

ODS alloy coupons subjected to thermal cyclic exposure at 1100 oC in air are discussed in 

this section for microstructure and mechanical property evaluations.  

4.2.1 Polished Surface Analysis of Thermal Cycled  ODS Alloys  

The SEM images for as-sintered specimens of A and B were indicated in Fig. 4.6(a) and 

(b), respectively. Both specimens showed uniform microstructure with fewer pores. The difference 

in the sintering time between the two specimens show little microstructure differences at this stage. 

It should be noted that the dark spots shown on both specimens are a combination of micro-pores 

and fine second phase of carbides (Cr-rich), as it will be confirmed by EDX analysis.  
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Fig. 4.6 SEM micrographs of as sintered (a) specimen A (b) specimen B. 

Furthermore, longer cyclic oxidation tests were performed and Fig. 4.7(a-g) and (h-i) 

revealed the surface microstructure, EDX elemental mapping and line scan along with wt.% of 

specimen A and B after 160 thermal cycles. As can be observed in Fig. 4.7(a) and (h) the 

microstructure for both specimens were formed with interwoven dark and grey spots with micro-

pores, where the dark spot was growing into the grey matrix. To investigate the element 

distribution across the grey matrix and dark spots, EDX elemental mapping for specimen A and 

line scan for both specimens were performed after 160 thermal cycles. It was shown for specimen 

A as in Fig. 4.7(b-f), that all the starting elements were distributed all over the grey matrix and 

dark spots. However, the distribution of nickel is more dominant on the grey spots and chromium 

on the dark spot. The EDX element scan depicted in Fig. 4.7(g), indicated specifically that on the 

dark spot the elemental counts for Cr, Al and O were higher compared to the Ni concentration 

indicating the combination of Cr-rich secondary phase and 𝛾 ′-Ni3Al precipitates [14, 103, 135-

136]. Primary recrystallization of the 𝛾 ′phase was judged to have happened dynamically during 

pre-heating of powders or immediately following sintering.
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Moreover, the grey portion belongs to the 𝛾-phase matrix. The dark region usually contains 

carbides (Cr-rich), which is formed by the presence of carbon probably from mill contamination 

during ball milling [16] in combination with micro-pores. Yttrium, which was considered as a 

trace element in wt.% among the starting elements was found nicely distributed in the EDX 

mapping and along the line scan plotted in Fig 4.7(e) and (g), respectively. Similar observation is 

also seen for specimen B as indicated in Fig 4.7(h-i). 
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Fig. 4.7 SEM micrographs after 160 cycles of specimen A (a-g), and specimen B (h-i) along with 

EDX spectrum, line scans and wt.%. 

i) 
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4.2.2 Cross-Sectional Analysis of Thermal Cycled  ODS Alloys  

More detailed phenomenon can be observed on the metallographic cross-sections of ODS 

alloys. This includes the microstructure and element distribution of the metallographic matrix, 

metal-oxide scale interface, and oxide scales. In order to investigate the metallographic cross-

section of thermal cycle exposed ODS alloy coupons, specimen B were polished after 40 cycles as 

indicated in Fig. 4.8(a-c). Fig. 4.8(a) indicated the metallographic cross-sectional matrix 

microstructure with grey and dark spots, a similar observation as specimens polished parallel to 

the oxide scale discussed in the previous section. Oxide scale formation is observed in Fig. 4.8(b). 

The damage on the oxide scale is from specimen preparation. As depicted in Fig. 4.8(c), the EDX 

element spectrum and wt.% indicated that all elements are present in the matrix and near oxide 

scale. However, near the oxide scale the element Y presence is higher than that of the matrix, with 

a clear EDX spectrum. This could be the result of Y depletion from within the oxide scale to the 

surface of oxide scale [25] or Y segregation near oxide scale/grain boundary [102, 135-137] in Ni-

based ODS superalloy.  
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Fig. 4.8 SEM metallographic cross-section micrographs of specimen B after 40 cycles (a) matrix, 

(b) near oxide scale, (c) EDX spectrum of (a) and (b) with wt.%. 

Furthermore, Fig. 4.9(a-d) shows the SEM metallographic cross-section micrographs with 

EDX spectrum of specimen A after 120 thermal cycles. The oxide scale visibly indicated two 

distinct scales as depicted in Fig. 4.9(b). The outer part of the oxide scale is dominated by Ni-rich 

transient oxide scale [14] and the one below this transient Ni-rich oxide scale is an oxide scale 

dominated by aluminum and chromium as shown in the EDX elemental maps, depicted in Fig.  

4.9(c). It should be noted that Y is found to be distributed uniformly in the oxide scale, Fig.  4.9(c). 

This uniform Y distribution in the oxide scale, especially on the grain boundaries [101, 134] 

contributes to the selective oxidation of alumina and chromia forming ODS alloys. In this study, 

the presence of Ni-rich oxide scale was not unexpected because of the lower Al content in the ODS 

alloys and the porous nature of the specimens. A similar Ni-rich oxide scales were found on Ni-

based ODS alloys [102, 136]. As seen in the micrograph, the Ni-rich oxide scale is dominated by 

micro-pores, but it is nicely adhered to the below Al and Cr-rich oxide scale without any oxide 
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scale debonding. The EDX element spectrum and wt.% indicated that all elements are present in 

the matrix and near oxide scale, depicted in Fig. 4.9(d).

 

 

 

 

Fig. 4.9 SEM metallographic cross-section micrographs of specimen A after 120 cycles (a) matrix, 

(b) near oxide scale, (c) EDX maps of (b), and (d) EDX spectrum of (a) and (b) with wt.%. 

Additionally, specimen B was studied for further analysis on the oxide scale and matrix 

microstructure with elemental distribution after 120 cycles depicted in Fig. 4.10(a-e). Fig. 4.10(a) 

and (b) shows the SEM metallographic matrix microstructure and EDX element spectrum and line 

scan with the element wt.%, respectively. The dark spots are characterized by higher element 

counts of Cr, Al, Y and O, while the grey matrix being dominated by Ni shown by the EDX line 
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scan, Fig. 4.10(b). The oxide scale indicated in Fig. 4.10(c), shows crack which runs through the 

scale down to the metal-oxide scale interface, which could have been caused by the outer Ni-rich 

oxide scale cracking during thermal cyclic cooling, or minor oxide surface crack could be 

worsened during specimen preparation. However, if this is a through the oxide thickness cracking, 

it indicated that the outer Ni-rich oxide scale has very good adherence to the inner Al and Cr-rich 

oxide scale without any spallation occurred during thermal cyclic exposure.  

The inset picture shown in Fig. 4.10(d) along with its EDX spectrum, line scan and wt.% 

of Fig. 4.10(e), indicated that the outer scale is indeed the Ni-rich transient oxide while the inner 

scale is Al and Cr-rich oxides. A closer look on the EDX line scan shows that the inner oxide scale 

between the outer Ni-rich transient oxide scale (NiO) [14, 25, 102, 136-137] and the matrix is α-

Al2O3 [14, 102]. This Ni-rich oxide scale could also contain Ni(Cr,Al)2O4 spinel-type structure 

[136-137] as there are some Cr counts observed in the EDX spectrum. Moreover, voids are visible 

on outer Ni-rich oxide scale. Cr-rich oxide is also evidently present between the outer Ni-rich 

oxide scale and α-Al2O3, which could have been the result of fast Cr-rich oxide scale growth at the 

beginning of oxidation [14]. This could also indicate that there is no any outer Ni-rich oxide scale 

spallation and regrowth discussed by Pint et al. [102] formed on ODS Ni3Al during thermal cyclic 

oxidation. In general, this could lead to the formation of a total of three layers with different 

chemical compositions for the oxide scale. Starting from the metal, the oxide scales consisted of 

Al-rich layer, mixed layer, and Ni-rich outer layer. The existence of the outermost layer of NiO 

was common to the Ni-based alloys [137]. The intermediate layer contained main elements of Cr 

and O with trace elements of Ni and Al.  The mixed oxides could possibly consist of mainly Cr2O3 

and Ni(Cr,Al)2O4 spinel. The innermost layer was α-Al2O3-rich layer. 
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Fig. 4.10 SEM cross-section micrographs of specimen B after 120 cycles (a) matrix, (b) matrix 

EDX spectrum and its line scan with wt.%, (c) near oxide scale, (d) near oxide scale inset picture, 

and (e) its EDX spectra and line scan with wt.%. 

Furthermore, metallographic cross-section study was taken on specimen A after longer 

thermal cycles of 360, depicted in Fig. 4.11(a-d). A similar distribution of elements in the matrix 

and oxide scale are observed, but the thickness of the transient Ni-rich oxide scale (about 60 µm) 

is higher than the 120 cycles of oxidation (about 40 µm). This confirmed that no outer Ni-rich 

transient oxide scale spallation has happened up to this stage of oxidation.  Similarly, after 600 

cycles of oxidation the outer Ni-rich oxide scale remains intact to ODS structure as indicated above 

the solid arrows in Fig. 4.11(e).  This time the thickness is about 100 µm with micro-pores (voids) 

indicated by dashed arrows all over the microstructure. The mechanism that led to the good 

adhesion of this scale could be related to the porous nature of the ODS alloy coupons and the MCB 

plus ball milling process unique to this study. That means this technique has the capacity of 

uniformly distributing yttria in the powder which is key to the high temperature strength of ODS 

alloys. 
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Fig. 4.11 SEM cross-section micrographs of specimen A (a-b) matrix with EDX spectrum, line 

scan and wt.%, (c-d) near oxide scale with  EDX spectrum, line scan and wt.%  after 360 cycles, 

and (e) near oxide scale after 600 cycles. 

4.2.3 Oxide Scale Analysis of Thermal Cycled  ODS Alloy 

The as sintered specimen B is covered with rough surface containing all the starting 

elements, shown in Fig. 4.12(a-b), with a significant Al content. However, it is difficult to refer 

oxide scale formation at this stage because the sintering is performed in a flowing argon gas 

environment. The ridge surfaces could be the products of sintering and it should be noted that the 

d) 
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thermal cyclic oxidation is performed on the as sintered surfaces without performing any surface 

polishing. 

  

Fig. 4.12 As sintered specimen B outer surface SEM micrograph (a), EDX spectrum with wt.% 

(b). 

After 80 thermal cycles of exposure at 1100 °C the surface of the oxide scale was observed 

visually to contain two portions: (1) oxide scale surface with greenish color similar to the as 

sintered surface and (2) oxide scale with dark color, which appeared to grow replacing the greenish 

surfaces. SEM microstructure analysis was performed on both sections (1) and (2) indicated in Fig. 

4.13(a) and (c) with the respective EDX spectrum and wt.% shown in Fig. 4.13(b) and (d), 

respectively. The growth of new oxide scale could have taken place at the alloy-scale interface 

[105], which causes the formation of ridges or intrusions of oxide indicated as in Fig 4.13(a), 

giving rise to roughened interface between the alloy and oxide scales as seen in the cross-sectional 

micrographs of the previous section, such as Fig. 4.10(d). The greenish portion of the oxide scale 

contains high Cr and Al contents formed on each ridge (no. 1 and 2 in Fig.  4.13(a) with EDX line 

scan and wt.% in Fig. 4.13(b)). According to the EDX line scan, the ridge near no. 1 is dominated 

by Cr and near no. 2 by Al. It could be possible that these nodules are composed of Y-containing 
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oxides [14, 101] on top of a primary oxide scale formed as chromia and alumina. This could be 

true due to the significant number of Y content on the scale indicated by the wt.%., Fig. 4.13(b). 

A detailed analysis of the oxidation of Ni-based ODS superalloy by Angerman et al. [14], indicated 

the presence of α-Al2O3 both on the metallographic cross-section and oxide surface at lower 

oxidation time of 5 hrs. 

The dark portion of the scale which is mostly covered by Ni-rich oxide scale as in Fig. 

4.13(c) appeared to grow with the expense of the greenish outer scale and could have replaced and 

covered it underneath. This is because there is no ground for oxide scale spallation as the weight 

gain is never reduced, which will be discussed later. Oxide scale formed during transient oxidation 

has a tendency to remain at the oxide scale and it has been claimed that the presence of yttria as 

an important factor for the improved adherence of oxide scales on ODS alloys [5, 11, 26, 75, 101]. 

However, Cr2O3 could be oxidized in to volatile CrO3 [14]. It can be noted that the presence of 

some small oxide scale crack observed at this stage of oxidation and the presence of Al and Cr is 

very small to be detected by EDX analysis on the surface indicated in Fig. 4.13(d) by wt.%. 
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Fig. 4.13 Oxide scale SEM micrographs of specimen A after 80 cycles (a-b) grey portion and (c-

d) dark portion with EDX spectrum, line scan and wt.%, respectively. 

Several ideas had been proposed relating the mechanisms of oxide scale formation on ODS 

alloys reviewed by Prescott et al. [105] on the basis of observations of scale morphologies. The 

growth of new oxide scale by some is considered to take place at the alloy-scale interface or at 

scale-gas interface causing the formation of ridges/intrusions or ridges/protrusions of oxide, 

extending inward at the alloy-scale interface or extending outward at the scale-gas interface, 

respectively. The inward protrusion suggests that the oxidation takes place by inward oxygen 

diffusion, whereas the outward extension is caused by cation diffusion. Sometimes the ridges could 

be found extending both ways, indicating the counter diffusion of oxygen and cation. Based on the 

cross-section micrographs in the previous section and the outer oxide scale ridge/oxide nodule 

formation in this section, the oxidation mechanism in this study could be governed by cation 

diffusion at least for Ni-rich transient oxide formation. 

At longer 440 cycles of oxidation specimen A and B were analyzed by SEM as shown in 

Fig. 4.14(a) and (b) with their EDX spectrum and wt.% indicated in Fig. 4.14(c), respectively. It 

should be noted that the presence of alloying elements other than Ni and O are very trace on the 
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oxide scale. The Ni-rich oxide scale consisted of complex differently oriented sandwiched splats 

on both specimens that strongly adhered to the underneath alumina scale discussed in the previous 

section (Fig. 4.10(c) and 4.11(c)). As discussed on the metallographic cross-section, the 

composition of the outer oxide scale was dominated by oxides of Ni (NiO) as confirmed by XRD 

analysis observed on the oxide surface shown in Fig. 4.14(d) after 600 thermal cycles. A similar 

observation of small amounts of iron on alumina forming Fe-based superalloy MA 956 and 

dominant amount of NiO scale on chromia forming Ni-based superalloy MA 754 [28], ODS-Ni3Al 

[102], and uncoated  Ni-based superalloy [136, 138] were reported. Moreover, the XRD analysis 

performed on the oxide surfaces indicated the presence of Cr2O3 and α-Al2O3. This could probably 

be the result of X-ray penetration through the outer NiO surface and characterizes the underneath 

chromia and alumina scales [42]. 
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Fig. 4.14 Oxide scale SEM micrographs after 440 cycles (a) specimen A, (b) specimen B with 

their EDX spectrum and wt.% (c), and (d) XRD spectrum of specimen A after 600 cycles. 

Based on the observation of cross-sectional micrographs and oxide scale surfaces, the oxide 

scale formation throughout the cyclic oxidation could be presented in the following simple 

schematic, Fig. 4.15. As discussed above below 100 thermal cycles, Al and Cr-rich oxide scales 

together with Y-rich oxide nodules were observed initially and subsequently Ni-rich oxide scale 

grows covering them underneath, Fig. 4.15(a-b). The Ni-rich oxide scale started to fully cover the 

surface at about 100 thermal cycles. At an intermediate, up to 500 thermal cycles, Fig. 4.15(c), the 

oxide scale has a wave shape with uniform alumina scale. The adherent outer NiO at longer thermal 

cycles showed surface cracks which grows down to the alumina scale leaving the alumina scale to 

have a non-uniform thickness. These cracks may simply be thermal (cooling) stresses [102] 

observed on ODS Ni3Al and compressive stresses [104] on FeAl ODS alloys. Ni-rich oxide scale 

spallation and subsequent regrowth [102] is not unfamiliar on Ni-based ODS alloys. However, its 

adherence to the underneath alumina scale without any spallation observed even up to longer 

thermal cycles, above 700 cycles is a unique and an interesting finding of this study. 
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Fig. 4.15 Schematic illustrations: The outer Ni-rich oxide cracks together with alumina scale at 

longer oxidation cycles above, 500 cycles (d-e) but remains adherent. Upon insertion and heating 

Ni-rich oxide is able to form in the cracks before alumina re-heals at higher temperature.    

While there is some degree of speculation as to why NiO did not spall away, it has been 

observed that the alumina scale undulation and some level of through-scale cracks at longer 

thermal cycles. This could happen when the specimen is cooled to room temperature and the fast 

Ni-rich oxide grows through the cracks immediately after the specimen is inserted and heated, Fig. 
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4.15(d). When the temperature increased and reach to a certain value the cracked alumina scale is 

believed to re-heal and close the cracks, Fig. 4.15(e). In the present study, however, there is no 

outer NiO scale spallation and regrowth reported by Pint et al. [102] on ODS Ni3Al during thermal 

cyclic exposure. 

The possible importance to future high temperature alloy development is why this NiO 

adherence phenomenon is unique to MCB plus ball milling process. The most likely is (1) the 

uniform distribution of reactive yttria throughout the alloying powders imparted by MCB plus ball 

milling process and the associated room temperature uniaxial pressing to form the ODS alloy with 

porosity, and (2) the presence of oxide nodules (Y-rich) together with Al and Cr-oxide at the 

beginning of oxidation, which could act as oxide keying or pegging of NiO scale to the underneath 

stable alumina scale.  

The formation of this adherent outer NiO scale on top of the stable α-Al2O3 scale and its 

effect on the oxidation mechanisms of high temperature ODS alloys were neither determined in 

this study nor by other groups [14, 25-26, 102], it is unclear and further investigation is needed. 

However, due to the fast growth of NiO compared to α-Al2O3 [55] there is a possibility of reduced 

O anions diffusion down to the interfaces of NiO/α-Al2O3 due to its interaction with Ni cations to 

form NiO. This could enhance the stable and flawless formation of α-Al2O3 through longer thermal 

cyclic exposure. Moreover, the strong adhesion of NiO on this alloy system could be additional 

benefit as high temperature corrosion resistance for ODS alloy coating sytems [139], if its purity 

can be controlled. 

To address why the Ni-rich oxide scale still remains adhered without spallation up to these 

longer thermal cycles, finite element analysis (FEA) is done. Some research works conducted on 

the mechanisms of spallation of oxide scales on ODS alloys suggested that oxide scale spallation 
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is by either surface cracks [102] or biaxial compression leading to bending [104] occurred during 

cooling due to the difference in thermal expansion coefficient between the scale and the underlying 

matrix with an assumption of good oxide adherence and smooth interface. However, based on Fig. 

4.10(d) the outer Ni-rich oxide scale and the underlying alumina scale has sinusoidal rather than 

smooth interface.  

Finite element analysis (FEA) is performed to see the difference in residual stress 

distribution between this sinusoidal and smooth interface geometry and relate on the spallation 

mechanism. To accomplish this, sinusoidal interface, Fig. 4.16 and simple smooth interface, Fig. 

4.17 were implemented for both the NiO/alumina as well as the alumina/ODS matrix interface. 

The sinusoidal interface was modeled in such a way that an equal amplitude of 5 µm and a wave 

length of 100 µm for both interfaces. Enhancing resolution of the resultant stress distribution, 

minimum element sizes of 2.5 µm were implemented within the alumina and increased to a value 

of 10 µm when entering to the NiO and ODS matrix. Plane182 axisymmetric element is employed 

with thermal dependent elastic isotropic material behavior, table 6. Some of the material properties 

are taken as an average values. 

 

Fig. 4.16 Modeling parameters for sinusoidal interface and FEA mesh 
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Table 6 Material properties of oxides and ODS matrix [140-142] 

 

The axisymmetric geometry is modeled in ANSYS™ v14.0 containing all layers with 

thicknesses of each being 100 µm, 10 µm and 2000 µm for the NiO, alumina, and ODS matrix, 

respectively. A film coefficient of 100 W/m K at a bulk temperature of 30 °C was applied to the 

outer surfaces of the model after an initial temperature of 1100 °C was given and transient analysis 

was performed for 600 seconds to store temperature results for the structural analysis part. 

 

Fig. 4.17 Modeling parameters of smooth interface and boundary conditions for structural analysis. 
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After the transient analysis was performed and results stored at each time step structural 

analysis was performed by calling the temperature effect from the transient analysis. To avoid 

singularity and obtain a semi-infinite domain for the structural analysis fixed boundary is used 

with nodes at the bottom origin of the axisymmetric model and simple support along the x-axis, 

Fig. 4.17. The temperature distribution in the model after the transient analysis is depicted in Fig. 

4.18, showing the temperature gradient reaching steady state condition. 

 

Fig. 4.18 Temperature distribution after transient analysis and model coordinate system. 

To investigate the failure mechanisms of the oxide scales in both smooth and sinusoidal 

interfaces, different location were investigated numbered in Fig. 4.16 and Fig. 4.17. Of the five 

locations in the sinusoidal interface, four reside at the apex and base of the NiO/alumina (locations 

1 and 2) and alumina/ODS matrix (locations 3 and 4) interfaces, in addition to one at the alumina 

wave’s midline (location 5). Similarly location 6 and 7 are investigated at the NiO/alumina and 

alumina/ODS matrix interface for the smooth interfaces. Although in-plane residual stress states 

have been reviewed, their overall magnitude was found to be well below that needed to cause 

compressive or tensile failure. Furthermore, recent studies in TBC systems indicated that it is not 
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the in-plane but rather that out-of-plane tensile stresses that are directly responsible for micro-

cracking and spallation failure [143]. However, in-plane bi-axial compressive stress and shear 

stress [104] were found to cause bending failure of the scale in ODS FeAl alloy and wrinkles [144] 

caused by oxidation induced compressive stress in aluminum containing alloys at high temperature. 

Due to this, out-of-plane tensile and compressive stresses at interface locations 1, 2, 3 and 4, as 

well as shear stress at node 5 for sinusoidal interfaces and interface locations 6 and 7 for smooth 

interfaces are presented below for both NiO and alumina scales. 

The out-of-plane stresses developed in the NiO and alumina scale at the NiO/alumina 

interfaces, Fig. 4.19(a-b) for the case of smooth interface (location 6) are found to be tensile and 

compressive, respectively throughout the length of the model. The alumina scale at alumina/ODS 

matrix interfaces (location 7) is also found to be in compression, Fig. 4.19(b). For the sinusoidal 

interface in the NiO scale, the residual stress is in tension, Fig. 4.19(c). However, the residual 

stress distribution for the sinusoidal interface in the alumina scale is different at different locations. 

At the top and bottom apex (locations 1 and 4) the residual state of stress is compressive, while at 

locations 2 and 3 it is in tension, Fig. 4.19(d).  These contrasting states of stress at nodes 1 and 2, 

3 and 4 act to prevent localized cracking that may develop at either locations from propagating 

beyond by closing it. As a result, this could be the reason why NiO scale did not spall in this study, 

while NiO scale spallation and regrowth [102] and oxide scale spallation observed [104], as the 

interface was mentioned to be smooth. Moreover, in this study the NiO scale for both interfaces 

was predominantly subjected to tensile stresses throughout the length of the model, Fig. 19(b and 

d).  These tensile stresses developed in the NiO scale could exacerbate NiO spallation for smooth 

interface as there is no contrasting states of stresses at NiO/alumina interface compared to the 

sinusoidal interface. However for the sinusoidal interface, compressive stresses produced at 
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location 1 are not favorable to micro-crack development and those tensile stresses developing at 

location 2 typically do not propagate along the NiO/alumina interface and do not result in NiO 

large scale spallation failure either. 

 

Fig. 4.19 Residual stress distributions in the NiO (a and c) and alumina scale (b and d) for both 

smooth and sinusoidal interfaces, respectively. 

The shear stress distribution in the alumina scale is depicted as in Fig. 4.20. The shear stress 

in the smooth interfaces Fig. 4.20(a) appeared to be less localized, except at the extreme outer 

edges where edge effect could be dominant. For the sinusoidal interfaces, Fig. 4.20(b) the shear 

stress distribution appeared to be localized at location 5. Cracks developing at location 5, unlike 

that of locations 1, 2, 3, and 4 are not easily explained by considering only the out-of-plane residual 

a) 

b) 

c) 

d) 
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stresses. The out-of-plane residual stress acting in this region is in a compressive state of stress 

throughout the model. However, if there is a crack in this region the cause of cracking could be 

become evident upon considering the systems maximum shear stress due to its high magnitude 

and localized nature. 

 

Fig. 4.20 Shear stress distributions in an alumina scale for both smooth and sinusoidal interfaces. 

In addition to sinusoidal interfaces of the oxide scale, oxide nodules grown at the beginning 

of oxidation could played the role of pining the outer NiO scale to the underlying alumina scale. 

Moreover, the higher wt.% of the Ni in the alloy and its transport through the porous ODS matrix 

could have played the role for the strong adherence of this scale to such a longer thermal cycles. 

4.2.4 Elastic Modulus Determination Based on Microindentation 

To understand more about the oxidation behavior, weight gain analysis was performed on 

specimens C and D as seen in Fig. 4.21(a), which indicated an increase in the weight gain during 

the oxidation process. There were two regimes observed in the process, an initial rapid weight gain 

followed by slow and smooth increment. Almost 50% of the total weight gain was obtained in the 

first 150 thermal cycles in both specimens. The fast weight gain at the beginning of the cycles 

a) 

b) 
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could be related to the fast growth of oxides due to the presence of micro-pores. When comparison 

was done on both specimens with similar dimensions, specimen C sintered for 60 min showed a 

lower weight gain than D sintered for 120 min. This could be the result of grain size difference 

between the two specimens as oxygen anion diffusion is mainly through grain boundary transport 

[23, 75, 106] and grain size could increase with increasing sintering time or increasing sintering 

temperature [20, 123] for both Ni-based and Fe-based ODS alloys. Additionally, the longer 

sintering time in specimen D could increase yttrium depletion [25] and hence increase oxidation 

of specimen D. This is because, one purpose of yttrium presence in ODS alloys is to suppress the 

cations diffusion paths so that only selective oxidation is formed by the inward grain boundary 

diffusion of oxygen [28]. However, it could be difficult to identify the differences in the oxidation 

mechanisms of the two specimens based on such a small amount of sintering time variation. 

Notably, the trend of the weight gain curves obtained in this work was in agreement with reported 

in [25, 28, 145]. 

  

Fig. 4.21 Cyclic oxidation at 1100 oC in air: (a) weight gain, (b) microindentation stiffness response. 

The performance of oxide scales developed on specimens A and B were investigated by 

microindentation technique having a capability of performing nondestructive testing. It was 
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coupled with a multiple-partial unloading procedure during indentation process, resulting in a load-

depth sensing indentation system capable of determining elastic modulus of metallic alloys with 

flat, tubular, or curved architectures [117]. Test results showed consistent and correct elastic 

modulus values when performing indentation tests on standard alloys such as steel, aluminum, 

bronze, and single crystal superalloys having a precision with coefficient of variation less than 

4.5%.  

Fig. 4.21(b) showed the variation in elastic modulus (E) of the specimens A and B. The 

results indicated three distinctive regimes in E values with the number of thermal cycles for both 

specimens. In the first regime an increase of E was observed for both specimens up to 100 thermal 

cycles and the longest and second regime with stable maximum values for about 400 thermal 

cycles, while the third regime where E was reducing after 500 cycles. Based on the microstructures 

of the ODS alloys in the as-sintered and after some thermal cycles it was observed precipitation 

strengthening by 𝛾 ′ -Ni3Al formation. Additionally, particle size increase with thermal cyclic 

exposure could reduce the porosity due to sintering of ODS alloys and could be the reason for E 

to increase at the first regime. The stiffness response is constantly higher at the second regime for 

longer thermal cycles, indicating that the oxide scale has very good adherence to the ODS matrix 

in addition to the precipitation of the 𝛾 ′-phase [101, 135]. However, the stiffness response starts to 

drop at latter stages beyond 500 thermal cycles of oxidation. This reduction could have an 

indication of oxide scale failure. However, the interface between oxide scale and ODS matrix were 

strongly adhered up to longer thermal cycles (600 cycles, Fig. 4.11(e)), albeit oxide scale surface 

rumpling was visually observed at mid-section of the specimens at this stage of oxidation which 

could happen due to compressive stresses developed [104] during repeated heating and cooling. 

Furthermore, yttrium presence on oxide scales at the beginning of oxidation in this study as oxide 
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nodules, Fig. 13(a) indicated its depletion within the oxide scale to the top of the oxide layer [25] 

and the predominant growth of NiO as an outer oxide scale [74, 102, 146] including this work, 

indicated the minimization of constituent elements from the ODS matrix with thermal cyclic 

exposure. Moreover, the increase growth of outer Ni-rich oxide scale on top of the alumina scale 

and minor oxide scale cracks with thermal cyclic exposure and residual stresses [147] due to 

thermal expansion mismatch during cooling could weaken the oxide-metal interfaces that 

potentially cause gentle rumpling and could be the reasons behind the stiffness response reduction. 

Yield strength which is proportional to E was reported to decrease with an increase in grain size 

[123] for nickel-based ODS alloy. Thus, particle coarsening of the matrix with thermal cyclic 

oxidation could also affect the strength of the oxide scale to which it adhered. Moreover, the 

differences in stiffness between specimen A with higher E and specimen B with lower E could be 

related to the differences in particle size of the matrix caused by the 60 min and 120 min sintering. 

Microhardness of Fe-based ODS alloys was also found to decrease with increase in heat treatment 

time at the same temperature [20, 148].  

4.3 Heat Transfer Analysis of ODS Alloy Coating with Micro-Channel Cooling System using 

FEA  

4.3.1 Geometry and Models 

Due to the need to increase the efficiency of modern power plants, land-based gas turbines 

are designed to operate at high temperature, as well as under harsh environments [1, 3, 91]. Table 

7 lists the thermal load induced by high turbine inlet temperature (TIT), which will lead to immense 

challenge in maintaining material integrity of turbine components [149]. Future coal-based power 

generation systems would face new technical challenges in protecting turbine hot sections, 

particularly for intermediate pressure turbine (IPT) of the oxyfuel system when TIT reaches over 
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1750 oC [150] requiring efforts of developing high temperature substrate material, thermal barrier 

coatings (TBCs) with aerothermal cooling systems.  

Table 7 Projected advanced turbine operating parameters [151] 

 

If the heat transfer on external surface of a turbine is determined, the temperature of metal 

substrate of the blade can also be determined [149] for a given internal cooling condition. For a 

numerical characterization of the external thermal loads over a turbine foil to be possible a solution 

of transport equations for mass, momentum and energy is required over the flow around the airfoil 

[150]. The main focus of this section is to study the performance of ODS alloy coating thermal 

protection capability by implementing micro-channel cooling systems and compare the results 

with typical TBC system configuration for a hydrogen-fired turbines TIT conditions, Table 7. 

Steady state thermal analysis is performed using the commercial finite element package ANSYS. 

Fig. 4.22 gives a schematic of the multilayer thermal protection system for the metal substrate 

(base material). Exterior to the base material are the bond coat and the ceramic outer layer (TBC 

system, Fig. 4.22(a)) and ODS alloy layer with micro-channel cooling system (ODS alloy, Fig. 

4.22(b)). Table 8 and 9 list the properties of YSZ-based TBC and ODS alloy, respectively. In this 

simulation single crystal nickel-based superalloy CMSX-4 is used as a substrate material. 
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Fig. 4.22 Schematic of multilayer thermal and oxidation protection system: (a) TBC [145], (b) 

ODS alloy coating with micro-channel cooling. 

Substrate temperature distribution with constant local surface heat transfer coefficient (hg) 

over external gas-side surfaces, obtained [149] using the commercial CFD code Fluent, and over 

all internal heat transfer coefficient (hc) over cooling passage walls of the model are imposed. This 

obviously is an approximation, as external gas-side heat transfer coefficient obtained from CFD 

analysis varies depending on the suction and pressure side contours and the internal heat transfer 

coefficient depends strongly on the actual surface enhancement and how the coolant flows inside 

the airfoil. Based on CFD analysis [149-150] for hydrogen-fired turbine and TBC systems of Table 

8 at mid-span, the external heat transfer coefficient (hg) extreme values ranges from 2500 to 8500 

W/m2 K on both suction and pressure side, while internal heat transfer coefficient typically varies 

between 1000 W/m2K and 5000 W/m2K, whereas the coolant inlet temperature ranges between 

800 K (~530 °C) and 1000 K (~730 °C). The (hg) with values of 6000 W/m2K and gas-side 

temperature (Tg) of 1700 K(~1430 °C) and (hc) with values of 1000 W/m2K and coolant inlet 

temperature (Tc) of 800 K (~530 °C) is used for both TBC and ODS alloy coating system in this 

study. 
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Table 8 Thermal barrier coating properties [150] 

 

Table 9 ODS alloy coating system properties [150-152] 

 

The boundary conditions are in such a way that on the TBC system, hg and Tg are applied 

on the external surface at the top coat side and hc and Tc is applied on the substrate side, Fig. 4.23 

(a), while for ODS alloy coating system with micro-channel cooling system an additional hc and 

Tc is applied inside the micro-channels. The model is meshed with SOLID87, 3-D 10-Node 

tetrahedral thermal solid element [153]. 

4.3.2 Temperature Distribution in the Model and Substrate 

Fig. 4.23 illustrates the nodal temperature contour plots of TBC-coated substrate (b), ODS 

alloy coated substrate with micro-channel cooling system located at the edge of ODS alloy (c), 

and ODS alloy coated substrate with micro-channel cooling system located within ODS alloy (d). 

The plots indicated the maximum and minimum temperature distribution in the model, with the 

maximum temperature distribution observed on the TBC model and the minimum on the ODS 

alloy coated substrate with edge micro-channel cooling system. This temperature distribution 

 

Type Thermal conductivity (W/m K) Thickness (µm)  

TBC top coat 0.9 250 

Thermal grown oxide 0.9 10 

Bond coat 1.7 100 

 

Type Thermal conductivity (W/m K) Thickness  

α-Al2O3 0.9 10 µm 

ODS coat 30 1 mm 

CMSX-4 substrate 35 3 mm 

https://www.sharcnet.ca/Software/Fluent14/help/ans_elem/Hlp_E_SOLID87.html
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should be within the creep dictated operating limit of substrate materials, such as, Rene/ N5 and 

CMSX-4, which is 1050 °C (1320 K)-1150 °C (1420 K). 

 

Fig. 4.23 Heat transfer analysis comparison of TBC systems and ODS alloy coating with micro-

channel cooling system: (a) model boundary condition, nodal temperature distribution (b) TBC 

systems, (c) micro-channel cooling located at the edge of ODS alloy, and  (d) micro-channel 

cooling  located within ODS alloy. 

Fig. 4.24 illustrates the nodal temperature contour plots of the substrate for TBC system 

(a), ODS alloy coating without micro-channel cooling (b), ODS alloy coating with micro-channel 

cooling system located at the edge of ODS alloy (c), and ODS alloy coating with micro-channel 

cooling system located within ODS alloy (d) with a maximum substrate temperature 1405 K, 1543 

K, 1381 K, and 1373 K respectively. The substrate of both ODS alloy coating with micro-channel 

cooling system received the smallest maximum temperature distribution.  

a) b) 

d) c) 
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Fig. 4.24 Heat transfer analysis comparison of nodal temperature distribution in the substrate for 

TBC systems and ODS alloy coating with and without micro-channel cooling system: (a) TBC 

systems, (b) ODS alloy coating without micro-channel cooling  (c) micro-channel cooling located 

at the edge of ODS alloy, and  (d) micro-channel cooling located within ODS alloy. 

Furthermore, the temperature distribution across the top surface of the substrate along the 

length and across the thickness of the model is plotted as show in Fig. 4.25(a) and (b), respectively. 

The effect of micro-channel cooling system has an insightful impact on the substrate temperature 

distribution. The ODS alloys model with micro-channel cooling system exhibited a reduced 

substrate temperature distribution regardless of the higher thermal conductivity compared with 

lower TBC thermal conductivity. Fig. 4.25(a) shows an approximate of 30 °C difference between 

the TBC systems and ODS alloy coating with micro-channel cooling system. With the current 

simulation, the maximum substrate temperature for ODS alloy coating with micro-channel cooling 

d) 

b) 

c) 

a) 
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system is approximately 1381 K (1108 °C) for micro-channel cooling system located at the edge 

of ODS alloy, which is even lower for micro-channel cooling system located within ODS alloy, 

1373 K (1100 °C). This value is within the dedicated operating limit of substrate materials and it 

is below the substrate temperature distribution of TBC systems, which is 1405 K (1132 °C). 

However, ODS alloy coating without micro-channel cooling system has higher substrate 

temperature distribution 1543 K (1270 °C), far above the substrate temperature limit. 

  

Fig. 4.25 Nodal temperature distribution plot: (a) along the substrate top, (b) across the model 

thickness. 

Moreover, the temperature distribution across the thickness of the model, Fig. 4.25(b) 

indicated that the ODS alloy coating with micro-channel cooling system leads to a lower 

temperature differential from the outermost surface to the innermost wall. Specifically, for ODS 

alloy coating with micro-channel cooling system within ODS alloy, it is about 160 °C, but for TBC 

system it is about 230 °C. This greater temperature drop across the TBC system would induce 

additional thermal stress within the TBC layer, leading to TBC degradation [120]. 

Additional efforts were also addressed to establish the basis for enhanced stiffness response 

with extended high temperature cyclic testing of MCB plus ball milled ODS alloy systems in 
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comparison to current/previously developed HVOF ODS alloy coating [154] and thermal barrier 

coating (TBC) systems [120] as a possible means of implementing these MCB plus ball milled 

ODS alloys as a structural high temperature coating on turbine blades by implementing micro-

channel cooling system beneath or within the coating [155]. In a similar test condition of this study, 

TBC systems [120] showed spallation failure after 400 thermal cycles, whereas oxide scales on 

MCB plus ball milled ODS alloy specimens were very adherent to the metal matrix without any 

spallation up to longer thermal cycles, more than 700 cycles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

90 
 

5. CONCLUSIONS 

In this research work a combined mechano-chemical bonding (MCB) technique plus ball 

milling was used to homogenize nano-sized oxide in ODS powders and produce uniformly 

distributed ODS alloys. Initially, the powder samples were prepared by the MCB process and 

characterized using SEM, TEM, HRTEM and XRD. The results suggested that:  

 the MCB processing enabled the hosting particles such as Ni and Cr  particles to be coated 

with a nano-sized thin film containing elemental particles of Y2O3 

 during MCB processing, the soft aluminum particles were subjected to deformation and 

fragmentation and randomly bonded onto the hosting particles or existed as discrete 

particles in the mixture 

 small particle size of hosting powders such as Cr and Ni would improve the homogeneity 

of alloying powder mixture and help building up a smooth thin film around the hosting 

particles 

 MCB process could transform crystalline nano-sized Y2O3 particles to an amorphous thin 

film bonded on the surfaces of host particles, causing the disappearance of Y2O3 peak in 

the XRD spectrum 

The MCB processed powders were further processed by using ball milling to improve the 

distribution of discrete elements, such as aluminum to get uniform distributions through the alloys. 

Based on the MCB plus ball milling process it was observed that particle size to change through 

ball milling time. An optimum ball milling time of 40-60 hrs was deduced from the ball milling 

experiments in which this MCB plus ball milling technique has the capacity of reducing the typical 

ball milling time by about 10-30 hrs. Furthermore, the ODS powders processed by MCB plus ball 

milling were compacted by uniaxial pressing. The specimens were studied for microstructure, 
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stiffness response of oxide scale, and phase evolution subjected to thermal cyclic exposure at 1100 

oC. The following observation were noted: 

 the microstructures were found to be strengthened by 𝛾 ′ -precipitates throughout the 

oxidation process 

 a rapid increase in weight gain was observed at the beginning of the cycle and slow 

increase to the final cycles  

 the elastic modulus showed three distinctive regimes with a maximum average value of 

about 100 GPa 

 the increase in elastic modulus was found to be related to the precipitation strengthening 

by 𝛾 ′-Ni3Al formation and porosity reduction  

 the reduction in stiffness response was related to oxide scale rumpling due to thermal 

expansion mismatch and minimization of constituent elements from the matrix through 

thermal cycle 

 the oxide layer was found to be dominated by an outer NiO and an underneath α-Al2O3 

Moreover, the finite element analysis (FEA) performed to see the effectiveness of 

implementing ODS alloy coating with micro-channel cooling system was found to significantly 

influence on lowering the temperature profile along the substrate length and across the model 

thickness. Additionally, the temperature drop across the model thickness is lowered by 

implementing ODS alloy coating with micro-channel cooling system compared to the higher 

temperature drop by TBC systems. This lower temperature drop across the thickness of the model 

lowers the thermal stress within ODS alloy coating. 
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6. RECOMMENDATIONS FOR FURTHER WORK  

This work showed an explanatory and first time research done on MCB plus ball milled 

ODS alloys on their processing and thermal cyclic testing to investigate the mechanical and 

microstructure properties at high temperature in an air environment. One of the next work that can 

be performed on this ODS alloy system is investigating their performance in a thermo-chemical 

environment for understanding their combined corrosive and oxidation behaviors. 

Moreover, in this work it was investigated the possibility of applying ODS alloy as a 

coating by implementing micro-channel cooling system using finite element methods (FEA). This 

is done in order to demonstrate the application of ODS alloy coatings without the use of TBC 

system to protect the underlying superalloy substrate in harsh high temperature environment. Thus, 

the second recommended and future work will be depositing this ODS alloy systems on typical 

superalloy substrate by implementing micro-channel cooling system within or beneath the ODS 

alloy system and investigate their adhesion behaviors along with high temperature oxidation and 

corrosion tests. The following outline could be a recommended method for achieving this goal, 

Fig. 6.1. 

 superalloy substrate will be coated by patterned photoresist deposited by the principle of 

photolithography with the patterned size equivalent to the micro-channel cooling size 

 ODS powder will be coated on the photoresist patterned superalloy substrate by using 

appropriate coating mechanism such as cold spray coating 

 the ODS alloy coating on the substrate will be heat treated (sintered) at 1300-1350 oC in a 

tube furnace with reducing environment to prevent oxidation of the coating during the 

sintering process and this step will be expected to remove the photoresist layer, opening the 

micro-channel cooling system 
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 the sintered ODS alloy coating with the micro-channel cooling system will be subjected 

to high temperature oxidation and corrosion testing at 1100 oC 

 mechanical and microstructure property evaluation of the ODS alloy coating with micro-

channel cooling system during and after thermal exposure will be performed 

 

 

Fig 6.1 Schematic of implementing micro-channel cooling system using ODS alloy coating. 
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