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ABSTRACT

An Exploration of Diversity and Inclusion in Introductory Physics

Rachel J. Henderson

Diversity and inclusion has been a concern for the physics community for nearly 50
years. Despite significant efforts including the American Physical Society (APS) Con-
ferences for Undergraduate Women in Physics (CUWiP) and the APS Bridge Program,
women, African Americans, and Hispanics continue to be substantially underrepresented in
the physics profession. Similar efforts within the field of engineering, whose students make
up the majority of students in the introductory calculus-based physics courses, have also
met with limited success. With the introduction of research-based instruments such as the
Force Concept Inventory (FCI), the Force and Motion Conceptual Evaluation (FMCE), and
the Conceptual Survey of Electricity and Magnetism (CSEM), differences in performance by
gender began to be reported. Researchers have yet to come to an agreement as to why these
“gender gaps” exist in the conceptual inventories that are widely used in physics education
research and/or how to reduce the gaps.

The “gender gap” has been extensively studied; on average, for the mechanics con-
ceptual inventories, male students outperform female students by 13% on the pretest and
by 12% post instruction. While much of the gender gap research has been geared toward
the mechanics conceptual inventories, there have been few studies exploring the gender gap
in the electricity and magnetism conceptual inventories. Overall, male students outperform
female students by 3.7% on the pretest and 8.5% on the post-test; however, these studies
have much more variation including one study showing female students outperforming male
students on the CSEM.

Many factors have been proposed that may influence the gender gap, from differences
in background and preparation to various psychological and sociocultural effects. A parallel
but largely disconnected set of research has identified gender biased questions within the
FCI. This research has produced sporadic results and has only been performed on the FCI.
The work performed in this manuscript will seek to synthesize these strands and use large
datasets and deep demographic data to understand the persistent differences in male and
female performance.
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Chapter 1

Introduction to Physics Education Research
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Physics Education Research (PER), which began in the 1980s, is a relatively new field

of study. Over the course of approximately 50 years, discipline-based educational research

(DBER) has made many strides toward understanding the teaching and learning of physics.

A recent synthesis divided the majority of the research done in physics education into six

topical areas: conceptual understanding, problem solving, curriculum and instruction, as-

sessment, cognitive psychology, and attitudes and beliefs about learning and teaching [1].

This chapter will review the history of PER, specifically the events leading up to the de-

velopment of research-based materials, as well as discuss some of the most commonly used

materials within the physics education community.

1.1 Prior to the 1980s

Prior to the 1980s, there was much debate on what influenced student success in

a physics course. Mostly, researchers agreed that mathematical skills are correlated with

success with physics content [2–5]. After determining that students could only answer 80%

of basic math questions correctly, Larkin and Brackett saw the need to develop a math-review

unit. Students, prior to entering the physics course, received materials with the essential

mathematics topics needed to be successful in the course [2]. Hudson and McIntire provided

evidence that success in a physics course is influenced by certain math skills [3].

Although there was significant agreement about the correlation between basic math

skills and success in the physics classroom, there was substantial disagreement about the

role of logical reasoning in physics success [4, 6]. Cohen, Hillman and Agne presented a

study of 195 students at the University of Vermont that showed that the Piagetian level of

2



four specific tasks (Floating, Pendulum, Shadows, and Chemicals [7]) was weakly correlated

with student success [6]; however, Liberman and Hudson found that both students’ logical

test scores and students’ SAT scores were correlated with the final examination scores [4].

1.2 Student Conceptual Understanding of Physics

In the late 1970s, researchers were also beginning to realize that students develop

preconceived notions about the physical world around them [8–10]. In 1980, Champagne,

Klopfer, and Anderson conducted a study on the factors that influenced the learning of clas-

sical mechanics, which included variables such as these preconceptions, logical reasoning, and

mathematical skill [5]. The authors developed an assessment, called the Demonstration, Ob-

servation, and Explanation of Motion test (D.O.E), to evaluate the student’s preconceptions

about motion. This, along with logical reasoning and mathematical skills, were then used to

study how these variables influenced students’ mastery of classical mechanics. In agreement

with prior studies, math skills were highly correlated with achievement in classical mechan-

ics; however, in addition to math skills, both logical reasoning scores and students’ D.O.E.

test scores demonstrated significant correlations with success in classical mechanics [5]. This

study led physics educators to begin to not only focus on students’ prior math skills but to

also emphasize the importance of students’ conceptual understanding of physical concepts

[11–16].

In 1982, John Clement performed a qualitative study showing that many students have

an alternate view of the relationship between force and acceleration [17]. Through three ex-

amples of common physical systems (a swinging pendulum, a coin toss, and a moving rocket),
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Clement showed that students believe that “motion implies a force.” This misconception was

also shown to be extremely stable; post-instruction results showed that many students were

still providing incorrect explanations for the three systems. Clement suggested “further

development of innovative instruction techniques that emphasize rigorous understanding of

qualitative principles” [17]. Following this study, McDermott suggested that physics instruc-

tion needed to explicitly address students’ difficulty with conceptual understanding [18].

The PER community had a “breakthrough” in 1985; Halloun and Hestenes constructed

a “mechanics diagnostic test” to explore the initial knowledge state of college physics stu-

dents [19]. This instrument, designed to assess students’ qualitative conceptions of physics,

consisted of basic kinematic and dynamic conceptual questions. An analysis of the scores,

in relation to student performance in physics, showed that the initial beliefs students have

about the world around them have a large effect on their success in the classroom. This idea

of developing an assessment to evaluate student conceptual understanding of physics was

the beginning of research-based materials.

1.2.1 Physics Conceptual Inventories

Because student success in the classroom was related to conceptual understanding of

physical systems and students came into the classroom with these misconceptions about

the physical world, the PER community began to develop research-based assessments in an

attempt to measure the change in students’ conceptual understanding of physics, specifically,

how instruction affects student’s alternative conceptions of the world around them.

In 1985, Halloun and Hestenes conducted a study where they interviewed students

about their views of motion while taking the “mechanics diagnostic test” [19, 20]. The
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interviews consisted of conversations about general concepts of motion, free particle mo-

tion, and one- and two-dimensional motion under a constant force. After analyzing student

comments, the authors organized students’ common sense concepts about motion into two

general categories: principles of motion and influences on motion.

In 1992, the first physics conceptual inventory, the Force Concept Inventory (FCI),

was developed by Hestenes, Wells, and Swackhamer using the qualitative information on

the common sense beliefs that students have about physical systems [21]. Although the

FCI is the most commonly used physics conceptual inventory, other assessments have been

developed to try to gain insight into students’ alternate conceptions of physics. The most

popular of these assessments are the Force and Motion Conceptual Evaluation (FMCE) [22],

the Conceptual Survey of Electricity and Magnetism (CSEM) [23], and the Brief Electricity

and Magnetism Assessment (BEMA) [24].

Force Concept Inventory

The FCI is a 30-item assessment which measures conceptual understanding of one- and

two-dimensional kinematics, Newton’s laws, and the understanding of forces [21]. Each item

has five possible responses and incorrect responses were constructed to match commonly

held misconceptions. The FCI was revised after its initial publication; this thesis work will

use the revised instrument published with Mazur [25] which is available at PhysPort [26].

Force and Motion Conceptual Evaluation

The FMCE is a 43-item conceptual inventory evaluating students’ conceptual under-

standing of Newton’s Laws of Motion [22]. The assessment uses extensive blocking of items
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referencing common physical systems to probe students’ views of force and motion concepts.

Such systems include, but are not limited to, “Force Sled” questions, “Cart on Ramp” ques-

tions, “Coin Toss” questions, and “Force Graph” questions. Each block of items includes at

least seven possible responses, some of which were constructed to match students’ common

misconceptions about force and motion. A revised version was published and includes four

additional questions on energy concepts; however, typically these items are not included in

the scoring of the FMCE. The second version of the FMCE is available at PhysPort [26].

Conceptual Survey of Electricity and Magnetism

The CSEM is a 32-item conceptual inventory evaluating students’ conceptual under-

standing of electricity and magnetism [23]. Maloney et al. developed the CSEM based upon

the list of concepts that were initially constructed by Hieggelke and O’Kuma from two prelim-

inary versions measuring conceptual understanding of electricity and magnetism separately

[27]. After many iterations, along with open-ended versions to identify common misconcep-

tions, the two separate inventories were combined into one assessment designed to measure

electricity and magnetism together. The instrument contains questions on Coulomb’s force

law, vector addition of electric forces, electric field, and magnetic field, as well as induc-

tion. The CSEM does not cover Gauss’ or Ampere’s law, electric circuits, or electromagnetic

waves. For a list of all of the concepts evaluated by the CSEM, see Maloney et al. [23]. The

final version of the CSEM is also available at PhysPort [26].
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1.2.2 Formalized Research-Based Materials

In 1992, research-based materials in PER were beginning to become formalized. Mc-

Dermott and Shaffer wrote a two-part investigation that supported the use of research as a

guide for curriculum development in the physics classroom [28, 29]. In agreement with prior

studies [17], Part I of McDermott and Shaffer’s investigation found that students’ conceptual

difficulties with basic electrical concepts remained after a “standard presentation of material

in the tradition lecture and laboratory format” [28]. The authors suggested that it is ex-

tremely valuable for students to actively engage in the learning process in order to overcome

their conceptual difficulties; a hands-on experiment in the laboratory is simply not enough.

Part II discussed the process which the authors took in designing and developing specific

instructional materials to address student conceptual difficulties [29]. In this work, Shaffer

and McDermott used an electric circuit module (previously developed by the University of

Washington Physics Education Group) to (1) understand student thinking and difficulties

with circuits and (2) develop, through many iterations, an instructional material to guide

students through their conceptual understanding of circuits. The authors called for this

process to be performed for all topics that are covered in a standard introductory physics

course.

In 1997, Hake quantitatively investigated the use of interactive engagement on student

conceptual understanding [30]. From student pre- and post-instruction FCI scores, Hake

defined a measure of course effectiveness: normalized gain. Normalized gain 〈g〉 is defined

as the ratio of the average gain from pre- to post-instruction to the maximum average gain
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Figure 1.1: Gain vs. pretest for traditional instruction and interactive engagement [30].

possible,

〈g〉 =
〈Sf〉 − 〈Si〉

1− 〈Si〉
, (1.1)

where 〈Si〉 is the class pretest average and 〈Sf〉 is the class post-test average. Hake classified

high-g as 〈g〉 ≥ 0.7, medium-g as 0.7 > 〈g〉 ≥ 0.3, and low-g as 〈g〉 < 0.3.

Hake analyzed the average normalized gains in 64 introductory physics courses, 14 of

which were “traditional” courses and 48 of which applied the use of “interactive-engagement”

methods. Figure 1.1 plots gain vs. pretest score; the slope is the normalized gain and shows

that traditional methods, in general, produce smaller gains than interactive methods [30].

Figure 1.1 quantitatively supports the research program proposed by McDermott and Shaffer

[28, 29]; the use of interactive-engagement methods in the physics classroom helps student

conceptual understanding of physics.
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1.3 Common PER Research-Based Resources

Since the seminal research performed by McDermott and Shaffer [28], Shaffer and

McDermott [29] and Hake [30], the PER community has been developing and implementing

various teaching methods in the attempt to positively impact student success in the physics

classroom. This section will provide an introduction to some of the commonly used PER

research-based materials and instructional methods used to increase students’ conceptual

understanding. The resources discussed below are ones that are, or have been, employed in

the Department of Physics & Astronomy at West Virginia University. Additional resources,

including expert recommendations along with other teaching methods and assessments are

available on PhysPort [26].

1.3.1 Tutorials

Tutorials are the most well-known research-based materials used in the PER commu-

nity. Following the call from McDermott and Shaffer suggesting a systematic process for

the development of research-based materials for all areas of physics, the Physics Education

Group at the University of Washington developed the Tutorials in Introductory Physics [31].

Based on more than 20 years of research, these materials were designed as guided-inquiry

worksheets for small groups in introductory calculus-based physics. They “contain questions

that try to break the reasoning process into steps of just the right size for students to stay

actively involved” [32]. The Tutorials in Introductory Physics were written to be a supple-

ment to lectures, labs, and textbooks with teaching assistants guiding students through the

worksheets using the Socratic method to help students build their conceptual understanding
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of physics. More recently, the University of Maryland has developed open source tutorials in

an attempt to make it easier for physics educators to adapt this resource to their instructional

environment [33–35].

1.3.2 Learning Assistant Model

The University of Colorado at Boulder developed a program in which Learning As-

sistants (LAs), typically undergraduate students, assist faculty members in the teaching of

physics in large-enrollment introductory physics courses [36]. The LAs are trained through

a pedagogy course to lead discussions between students to encourage interactive engagement

in the physics classroom [37]. The goals of this program are the following: “(1) to improve

the education of all science and mathematics students through transformed undergradu-

ate education and improved K-12 teacher education, (2) to recruit more future science and

math teachers, (3) to engage science faculty more in the preparation of future teachers and

discipline-based educational research, and (4) to transform science departmental cultures to

value research-based teaching as a legitimate activity for professors and our students” [36].

Overall, the model has been successful in both improving student conceptual knowledge of

physics along with increasing a student’s physics identity [38, 39]. The model is also thought

to aid in recruiting future physics teachers.

1.3.3 Interactive Lecture Demonstrations and Clickers

Interactive Lecture Demonstrations (ILDs) and Peer Instruction [25, 40] using clickers

are tools to get students talking about physics in a large lecture class. The goal of this

practice is first to elicit students’ misconceptions then to allow them to talk through the
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difficulties they have about a physical concept in a collaborative manner. With both re-

sources, prior to either a demonstration or a written physics question, students are asked

to individually predict the result followed by discussing their predictions with their peers in

small groups. Since students commit to a prediction, the demonstration or the solution to a

physics problem can help them confront their misconceptions. In the end, either the demon-

stration is carried out or the answer to the question is given (or provided by the class) and,

collectively, the class compares their predictions with the outcome. There are many varia-

tions which may involve students reporting their selected answers and reasoning, re-voting,

or re-voting after some instructor intervention. In practice, both of these research-based

resources could be used as part of the process. Many studies have found that ILDs and

clickers are excellent ways to improve the learning of fundamental physics concepts [41–45].

1.3.4 Physics and Everyday Thinking

Physics and Everyday Thinking (PET) is a curriculum designed for a one-semester,

conceptual-based physics course, generally targeted at future elementary teachers [46]. Stu-

dents enrolled in this course are guided through a deep understanding of conceptual physics

topics and are expected to engage in small group discussions, whole-class discussions, and

hand-on laboratories. Many resources, including an instructor resource DVD, teacher guides,

and introductory workshops, are available to assist instructors with implementing this cur-

riculum in their classroom [47]. The development of PET is ongoing but has been shown to

improve student success, both in understanding the conceptual content as well as improving

their attitudes about science [48].
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Overall, the implementation of research-based methods in the physics classroom has

been shown to improve student success [38–45, 48, 49]; however, research has also been

performed to investigate the barriers to the use of research-based instructional strategies

[50]. Sustaining these educational reforms within a physics department with a variety of

physics educators can be more challenging than one may expect [51].

PER has many other areas of emphasis including problem solving [2, 52], cognitive

psychology [53] and attitudes and beliefs about teaching and learning [54, 55]. These topical

areas, along with conceptual understanding and assessment, have also been investigated in

both precollege physics students [56, 57] and upper-division physics students [58–60]. While

this chapter introduced the relevant history of the conceptual inventories and other research-

based resources needed for the research studies in this manuscript, there exists an extensive

body of research in many other topics in PER. These topics will not be discussed in detail;

however, the following section will discuss the role of gender in relation to the differences in

introductory physics.
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Chapter 2

The Gender Gap∗

This chapter will review the relevant literature of performance differences in physics

between male and female students. All of the research studies treat gender as a binary

variable and while this treatment may obscure the complicated nature of gender identity

[62], the following research in this manuscript will also treat gender as a binary variable, as

is common practice in PER studies.

∗This summary is drawn from “Exploring the gender gap in the Conceptual Survey of Electricity and
Magnetism” published in Physical Review Physics Education Research [61]. This work was constructed with
collaborative efforts from Adrienne Traxler, Lynnette Michaluk, and Gay Stewart.
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The difference in the performance of male and female students on many of the con-

ceptual evaluations commonly used in PER is well-documented and pervasive. Madsen,

McKagan, and Sayre provided an overview and analysis of the “gender gap” [63]. Most of

the research has focused on instruments measuring conceptual knowledge of Newtonian me-

chanics including the FCI [21] and the FMCE [22]. On average, male students outperform

female students on the mechanics conceptual inventories by 13% on the pretest and by 12%

on the post-test. For example, in a large study (N = 5, 500) Docktor and Heller reported

that male students outperformed female students by 15% on the FCI pretest and 13% on

the post-test [64] even though there was no difference in course grade.

Electricity and magnetism evaluations such as the CSEM [23] and the BEMA [24] are

less well studied. In aggregate, these instruments have demonstrated a gender gap of 3.7%

on the pretest and 8.5% on the post-test [63]. The gender gap on these instruments is less

consistent with Pollock [51] reporting a negative gender gap.

Factors that might be related to the gender gap include prior preparation in physics,

performance on standardized tests, cognitive differences in learning, math and or/science

anxiety, and stereotype threat. Additionally, high school course-taking patterns, and other

sources of conceptual prior knowledge such as informal learning experiences are subject to

broad patterns of gender socialization. These patterns have been found to be significant in

other male-dominated fields such as computer science [65]. The following sections will ex-

plore possible explanations advanced to explain the consistent gender gap seen in conceptual

physics performance.
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2.1 Prior Knowledge

Differences in prior preparation in physics between male and female students are well

documented. Using data drawn from a nationally representative sample [66], a 2015 National

Center for Education Statistics report showed that women enroll in high school physics

classes at a lower rate than men with male students receiving high school physics credit at

a 5.6% higher rate than female students [67]. Women take chemistry and advanced biology

at significantly higher rates than men. The ACT, the company that administers one of the

two major US college entrance examinations, reports (N = 1, 009, 232) that, in 2016, 21% of

women and 30% of men met the ACT College Readiness in Science, Technology, Engineering,

and Mathematics (STEM) benchmark [68]. Taking physics in high school has been shown to

increase physics grades in college [69, 70] and, therefore, might improve scores on conceptual

evaluations.

Antimirova, Noack, and Milner-Bolotin reported that taking high school physics pre-

dicted more variation in FCI pretest score than in FCI post-test score but did not find

gender predictive of FCI post-test score [71]. Kost, Pollock, and Finkelstein looked at prior

physics knowledge by binning students by their FMCE pretest scores and compared FMCE

post-test scores between men and women. A “bin” is defined as range of pretest scores;

scores are “binned” if divided into groups by ranges of scores. They found no difference be-

tween men and women in any of the pretest bins [72]. In contrast, Kohl and Kuo binned on

CSEM pretest scores and found gender differences in normalized gain in most of the pretest

score bins [73]. Kost-Smith, Pollock, and Finkelstein found that male students outperformed

female students by 1.5% on the BEMA pretest, a gap that grew to 6% on the post-test [74].
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Kost-Smith, Pollock, and Finkelstein also explored using the FMCE post-test score

from the previous class as a measure of prior knowledge. They separated students into five

FMCE post-test bins. A higher proportion of women than men were found in the lower

FMCE post-test score bins while more men than women were found in the higher bins [74].

Bates et al. also found that the lowest performing quartile of students on the FCI pretest

consisted of approximately half of the female student population. Most of these female

students remained in the lowest performing quartile on the FCI post-test [75].

2.2 Gender in Standardized Testing and Grades

Gender gaps between male and female student performance on standardized examina-

tions such as the Scholastic Aptitude Test (SAT) or Graduate Record Examination (GRE)

have also been documented. The Educational Testing Service’s (ETS) Gender Study (1997)

provided a nuanced analysis showing gender differences varied by subject and that differences

were not uniform within the same subject (male students were better at some mathemat-

ics skills, female students at other skills) and that a large gender gap between male and

female students that had existed in math and science in 1960 had largely closed by 1990

[76]. The female advantage in language skills had not closed. More recently, the College

Board reported that in 2006 male and female students scored approximately equally on

the SAT Verbal/Critical Reasoning sub-test; however, male students averaged 536 on the

Mathematics sub-test while female students averaged 502 [77]. This difference represented

approximately one-third of one standard deviation. The difference had been approximately

constant for the previous decade. The ETS concluded that “Gender differences are not eas-
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ily explained by single variables such as course-taking patterns or types of tests. They not

only occur before course-taking patterns begin to differ and across a wide variety of tests and

other measures, but they are also reflected in different interests and out-of-school activities,

suggesting a complex story of how gender differences emerge” [76].

The differences observed in standardized test performance are counter to a generally

consistent higher performance on course grades by women [76]. Voyer and Voyer provide

an overview of this body of research in a meta-analysis of studies involving over one million

students at all academic levels K-20 [78]. The female academic advantage was strongest in

language classes and weakest in science and mathematics; however, for classes where female

students outnumbered male students, the advantage in math and science was reduced. The

female advantage in mathematics and science grades also became smaller with time from

middle school through college.

The gender gap on standardized examinations may be related to the gender gap on

conceptual evaluations. Kost, Pollock, and Finkelstein used an analysis to show that com-

bining the FMCE pretest score along with a math placement exam score, Colorado Learning

Attitudes about Science Survey [79] pretest and the semester the physics course was taken,

explained 70% of the gender gap in the FMCE post-test [72]. A similar analysis explained

62% of the gender gap in BEMA post-test scores [74]. Men also outperform women on the

FCI post-test when using SAT math score as a covariate [80]. The gender gap has been

shown to be the greatest for students with high reasoning skills (Lawson scores) [81].
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2.3 Cognitive Factors

Differences in physics prior knowledge may imply that male students are more likely

to be relearning the material than female students. This could have differing effects on

the pretest and the post-test. The relation of relearning a complex task to learning it for

the first time has been extensively studied [82], was central to the development of early

theories of memory [83], and more recently has been shown to have a physiological origin

[84]. In foundational experiments, Ebbinghaus demonstrated that the more thoroughly a

task is initially learned, the more quickly it can be relearned [83]. Patterns of learning and

forgetting have also been measured within a physics class finding substantial fluctuations in

student knowledge levels on the same topic within a semester [85].

A large body of literature exists exploring the differences in numerous cognitive abilities

between men and women [86]. The evidence for superior male spatial reasoning abilities

[87, 88] and superior female verbal abilities [89, 90] is fairly robust, but these constructs are

multi-dimensional and advantages are not uniform across all sub-facets. Conceptual physics

problems often involve a mixture of verbal, graphical, and logical reasoning. Cognitive

researchers have not yet investigated whether there is a gender-based cognition advantage

for either sex in the processes needed to solve conceptual physics problems. Some evidence

for a cognitive effect on physics performance has been demonstrated; a program of spatial

training was shown to result in improved test performance in introductory mechanics [38].

As such, if cognitive differences are the origin of the gender gap, targeted training may

alleviate the differences. Spatial training has proven effective in improving spatial reasoning

and shows promise for improving retention of women to STEM [91]. Miller and Halpern
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recently published a review of current research on cognitive sex differences [92].

2.4 Science and Math Anxiety

Mathematics anxiety can cause students of both genders to perform more weakly on

quantitative assessments. Differences in math anxiety by gender have been investigated

[93, 94]. The difference in mathematics anxiety between boys and girls had approximately

the same effect as the difference in mathematics self-efficacy. These differences were sub-

stantially larger than the differences in mathematics performance [94]. Mathematics anxiety

has been shown to have a negative relationship with performance [93], a relationship that is

independent of gender.

The phenomenon of science anxiety and its relationship to gender has also been ex-

plored [95–98]. Mathematics and science majors have lower levels of science anxiety when

compared to non-science majors [99]; however, within these mathematics and science majors,

female students were more anxious than male students.

Within the physics classroom, students with more communication apprehension achieved

lower gains on the FCI [100]. Physics students that see their instructors as allowing more

autonomy had lower anxiety about taking a physics course and demonstrated higher perfor-

mance [101].

2.5 Testing Conditions

Testing conditions may also influence the gender gap. Conceptual evaluations are often

given under low stakes testing conditions where students receive credit for good faith efforts.
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It is possible that male and female students react differently to testing conditions and that

their performance would be changed if the evaluation was given as part of a higher stakes

in-semester examination. Significant differences in exam performance for “low stakes” and

“high stakes” applications of the same instrument have been demonstrated with small effect

sizes [102]. Higher exam stakes have been shown to be positively correlated with student

motivation and performance [102]. The relation of interest and effort on low-stakes science

and mathematics test performance has also been demonstrated [103] with interest positively

correlated with performance. Unfortunately, these studies have controlled for gender rather

than investigated differences by gender. Other testing conditions such as the time limit

placed on the examination have not been shown to have a significant effect on performance

[76].

2.6 Stereotype Threat

Women are substantially underrepresented in physics [104] and in the engineering dis-

ciplines that provide the majority of the enrollment in many calculus-based physics classes

[105]. The National Science Foundation reported that in 2014, while women received 57% of

all bachelor degrees in the US, they received only 19% of those awarded in physics and 20%

of those awarded in engineering [106]. As a substantially underrepresented population, the

performance of women in physics classes may be influenced by stereotype threat. The effect

of stereotype threat on academic performance has been investigated as an explanation of

differences in performance of men and women in STEM disciplines [107–109]. Shapiro and

Williams define stereotype threat as “a concern or anxiety that one’s performance or actions
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can be seen through the lens of a negative stereotype – a concern that disrupts and undermines

performance in negatively stereotyped domains” [110]. Studies have shown that stereotype

threat does indeed have a negative effect on both women’s performance and women’s interest

in STEM fields [110]. Picho, Rodriguez and Finnie’s meta-analysis examined over 15 years

of research, specifically about female performance in mathematics under stereotype threat

[111]. The research showed an overall negative effect on the quantitative performance of

female students; however, this effect was greater for middle school and high school students

compared to college students. Gunderson et al. investigated how parents’ and teachers’

gender-related math attitudes can have a negative effect on women when choosing a STEM

or math-related career [112]. Within physics, Koul, Lerdpornkulrat, and Poondej demon-

strated a three-way interaction between gender typicality, gender contentedness, and gender

stereotypes on physics self-concept [113]. Women who had strong math gender stereotypes

and a combination of high gender typicality and gender contentedness had a negative physics

self-concept. Maries, Karim, and Singh investigated stereotype threat in relation to male

and female performance on the FCI and the CSEM [114]. The authors found that asking

the students to report their gender prior to taking the FCI and the CSEM did not impact

their overall performance on the conceptual inventories.

2.7 Instrumental and Other Effects

Multiple authors have suggested that some items within the FCI [21] exhibit a gender

bias [115–118]; however, these results have been inconsistent. The FMCE and the CSEM

are substantially less well studied than the FCI and similar studies have not yet been carried
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out. The item contexts in the CSEM are often fairly abstract (point charges, field maps)

unlike the more concrete contexts of the FCI (rockets, planes) and may be less susceptible to

gender bias. The item contexts in the FMCE are equally as concrete as the FCI. Differences

in the gender gap by item have also been identified in in-semester physics assessments [119]

and in problems used in physics competitions [120].

Finally, other factors that may contribute to the gender gap on physics conceptual

inventories include method of instruction and the use of a standardized instrument. Multiple

studies have shown interactive engagement instructional methods are beneficial in reducing

the gender gap on conceptual evaluations [25, 121, 122] and improving success in physics

classes [123]; however, the reduction of the gender gap has not been replicated in all settings

[73, 124–126]. The use of a standardized instrument may cause mismatches in coverage

between the instrument and the class tested, presenting students with problems on which

they have received little instruction. This could produce gender differences either through

differences in prior knowledge or through differences in the psychological response to being

asked to solve problems one should not be expected to answer correctly. The psychological

response could interact with stereotype threat.

Overall, there exists a large number of research studies that explore the differences

in physics performance between male and female students; however, physics education re-

searchers have yet to come to an agreement on why a gender gap exists on the commonly used

conceptual inventories or how to reduce this gap. The research presented in this manuscript

will demonstrate features of the conceptual inventories that are not equally fair for male and

female students and suggest ways to remove this unfairness.
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Chapter 3

Statistical Methods

Prior to presenting analyses and results, this chapter will summarize the quantitative

statistical methods used throughout this manuscript.
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3.1 Descriptive Statistics

Descriptive statistics are typically the first step to analyzing data and are used to

quantify what is being measured in the dataset. More often than not, descriptive statistics

are summarized as a table, graph, or a single-value statistic, such as an average or stan-

dard deviation. The following sections will describe the descriptive statistics used in this

manuscript.

3.1.1 Central Tendency

Measures of central tendency are used to characterize the most representative observa-

tions in a dataset. Mean, median, and mode are common measures of central tendency. A

population mean µ is defined as the sum of a set of observations divided by the total number

of observations. The median is defined as the middle value of an ordered list of data. The

mode is defined as the observation that appears most often.

When describing data, scientists often use the sample mean M to summarize the data.

The sample mean has three characteristics: (1) the sample mean is an unbiased estimator of

the population mean µ, (2) a distribution of sample means obeys the central limit theorem

and (3) a distribution of sample means has minimum variance [127].

3.1.2 Variability

Variability is characterized as how observations vary from the mean. Variance σ2

and standard deviation σ, which is the square root of the variance, are common measures of

variability. Sample variance s2 is defined as the sum of the squared deviations of observations
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from the sample mean divided by the degrees of freedom (df = n− 1, where n is the number

of observations), which makes it an unbiased estimator.

3.2 Inferential Statistics

Inferential statistics are statistical techniques used to predict population outcomes

based upon the results from sample data. Hypothesis testing, also known as significance

testing, is a method used to determine the likelihood that an observation happened by

chance. In behavioral research, the level of significance is set to 5% for significant outcomes;

an outcome is significant if there is a 5% probability or less that the observed outcome

happened by chance. A significance level less than 5% (p < 0.05) is considered statistically

significant and should be investigated further [128]. The following sections in this chapter

will describe techniques that use inferential statistics to analyze data.

3.2.1 t-tests

A basic inferential statistic used to compare means between two groups is called a t-test

[129]. This statistic can be used for either two independent groups (e.g., male and female

students) or when an observation is repeated twice for the same subject (repeated-measures

design). The t-statistic for a two-independent-sample t-test is

t =
M1 −M2

sM1−M2

, (3.1)

where M1 is the sample mean of the first independent group, M2 is the sample mean of

the second independent group, and sM1−M2 is the estimated standard error of the difference.
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This standard error is defined as

sM1−M2 =

√
s2
p

n1

+
s2
p

n2

, (3.2)

where

s2
p =

s2
1(df1) + s2

2(df2)

df1 + df2

(3.3)

is the pooled sample variance with sample variance s2
1 of the first independent group, sample

variance s2
2 of the second independent group, and df1 and df2 are the degrees of freedom of

the first and second independent groups, respectively. For equal sample sizes, the pooled

sample variance simplifies to s2
p =

s21+s22
2

.

To determine if the two independent sample means are statistically different, the calcu-

lated t-statistic is compared to the critical values of the t-distribution [129] with df = df1+df2

degrees of freedom. If the difference is reported as statistically significant (p < 0.05), then

the difference between the two independent sample means is taken to be a real effect; there

is a small probability the difference happened by chance.

The t-statistic for a repeated-measures design is similar to the two-independent-sample

t-test; however, to eliminate between-person error, the difference between the paired obser-

vations is calculated prior to calculating the t-statistic.

Prior to analyzing a t-test, four assumptions are made: (1) the data is normally dis-

tributed, (2) the data was taken from a random sample, (3) each observation is independent

from one another, and (4) the variance of the two samples is equal [127].
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3.2.2 Effect Size

Significance testing is a process of showing whether or not an effect exists; however, it

does not describe the magnitude of the effect. Along with a significant outcome, an effect size

is typically calculated and reported. A common effect size that is reported with a significant

t-test in educational literature is Cohen’s d [130]. Cohen’s d is defined as

d =
M1 −M2√

s2
p

, (3.4)

where s2
p is defined in Eqn. 3.3. Cohen classified a small effect as d = 0.2, a medium

effect as d = 0.5, and a large effect as d = 0.8 [130]. Cohen suggested that results of

statistical analyses must be interpreted in terms of practical as well as statistical significance

[131]. More recent analysis has suggested that Cohen’s original effect size criteria should be

adjusted for educational research with medium effects as d = 0.4 and large effects as d = 0.6

[132]; however, the research presented in this manuscript will report effect size in terms of

Cohen’s original criteria.

3.2.3 Error and Power

Using a significance level of 5% leaves the possibility of error in the decisions researchers

make about an observed outcome. Error is categorized in two types: Type I error and Type

II error. Table 3.1 summarizes Type I and Type II error.

Type I error is defined as an outcome that is classified as statistically significant when

it is actually false in the population (“false positive”). Researchers have set a standard that

a 5% false positive rate is acceptable. Most analyses report multiple statistical tests and as
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Significance

Significant Non-Significant

Truth in the
True

Power Type II Error
Population 1− β β

False
Type I Error

α

Table 3.1: Summary of Type I and Type II Error

such, inflation of the Type I error rate

should be considered. A Bonferroni cor-

rection adjusts the significance levels for

the number of statistical tests by divid-

ing the critical p value by the number of

statistical tests performed [133–135].

Type II error is defined as an outcome that is classified as statistically non-significant

when it is actually true in the population (“false negative”). Statistical power is related to

Type II error by 1 − β, which is the rate a statistically significant outcome is actually true

in the population. If statistical power is low then there is a greater probability of making

Type II error.

3.3 Analysis of Variance (ANOVA)

In the previous section, t-tests were used to compare means between two different

groups; however, studies often have more than two groups. An analysis of variance, or

ANOVA, is a statistical technique used to compare means across more than two groups of

subjects. The statistic used to determine if the group means vary is called the F -statistic.

The F -statistic takes the general form of

F =
explained variance

unexplained variance
(3.5)

and is compared to critical values on the F -distribution.

The type of ANOVA depends on how the observations were collected. A between-
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subjects ANOVA is an analysis of variance where different subjects are observed at each level

of the factors. A factor is a categorical variable identifying the groups of subjects measured.

The sources of variation in a between-subjects ANOVA are the variability between the groups

and the variability within the groups. A within-subjects, or repeated-measures ANOVA, is

an analysis of variance where the same subjects are measured at each level of the factors.

Because the same subject is measured in each group, a variability also exists between the

means of each individual subject, a between-persons variability; this becomes an additional

source of variability.

The four assumptions made prior to calculating an ANOVA are the same as the assump-

tions of a t-test [127]. However, a repeated-measures ANOVA has an important additional

assumption: the subject’s observations in each group are related. Both this assumption and

the assumption of equal variances between groups is known as sphericity. A violation of

sphericity can increase the probability of committing Type I error.

ANOVA can also be described by the complexity of the research design. For example,

a one-way ANOVA compares means between groups of a single factor (e.g., High School

Class Ranking). ANOVA can also be used to analyze means between groups of more than

one factor (e.g., High School Class Ranking and Gender), a two-way ANOVA. Increasing the

complexity of the research design increases the sources of variability. For example, in a two-

way between subjects ANOVA, the between-group variability now stems from the variability

of the first factor (main effect), the variability of the second factor (main effect), and the

variability of the interaction between the first and second factor (interaction effect). Overall,

ANOVA can be expanded to more than two factors (three-way ANOVA, etc.) but the type

of ANOVA is always determined by the research design.
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3.4 Linear Regression

Linear regression is a statistical method used to model the linear relationship between

variables. Simple regression estimates a model of a continuous outcome with one single

independent variable. However, the model can be extended to multiple regression, which

estimates the model of a continuous outcome with more than one independent variable.

Multiple regression considers the model of the form

Yi = β0 + β1Xi1 + β2Xi2 + ...+ βp−1Xi,p−1 + εi (3.6)

where Yi is the value of the observed data for the ith participant, εi is the residual or error

of the ith observation, βj is the regression coefficient of the jth independent variable, and

Xij is the value of the ith observation of the jth independent variable [136]. The goal of

multiple linear regression is to estimate βj so that the error between the observed data and

the estimated model is at a minimum; in other words, find the model which maximizes the

variability explained in the continuous outcome by the multiple independent variables. The

explained variability R2 is characterized by

R2 = 1−
∑
ε2i∑

(Yi − Ȳ )2
, (3.7)

where Ȳ is the mean of the observed data [136].

In regression, significance testing is also used to assess the strength of the relationship

between two variables. Typically, the estimated regression coefficients are compared to

a value of zero (no relationship between the dependent and independent variables). For

30



example, if an estimated regression coefficient is statistically significant (p < 0.05) then the

independent variable has a linear relationship with the outcome variable.

Regression analysis has five major assumptions: (1) linear relationship between vari-

ables, (2) all variables, including the residuals, are normally distributed, (3) no, or little,

multicollinearity (an independent variable cannot be predicted by another independent vari-

able), (4) the residuals are independent from each other, and (5) homoscedasticity (the

variance of the residuals does not depend on the independent variables) [136].

One of the goals of linear regression is to estimate a model to maximize the explained

variability in the outcome variable of interest. Hierarchical linear regression (HLR) is a

regression technique to determine if the addition of an independent variable significantly

improves the proportion of explained variance in the dependent variable. This technique

adds one additional independent variable in a step-wise fashion and assesses the differences

between the successive models.

3.5 Psychometric Theory

In general, psychometric theory, or test theory, is a collection of statistical models

used to develop and evaluate the structure of an evaluation instrument [137]. The following

sections will describe some methods used in test theory: Factor Analysis and Item Analysis,

including Classical Test Theory, Item Response Theory, and Differential Item Functioning.

Table 3.2 summarizes the commonly used statistics within these paradigms.
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Classical Test Theory (CTT)

P Item difficulty Values from 0 (hardest) to 1 (easiest); consider rejecting items with P < 0.2 or P > 0.8
D Item discrimination Values from -1 (least discriminating) to 1 (most); consider rejecting items with D < 0.2
α Cronbach’s alpha Values in [0, 1]; α > 0.7 indicates acceptable reliability [138].
φ Phi coefficient Pearson correlation effect: 0.1 small, 0.3 medium, 0.5 large

Item Response Theory (IRT)

b Item difficulty Typical range of −4 (easiest) to 4 (hardest)
a Item discrimination Typical range of −4 (least discriminating) to 4 (most discriminating)
V Cramer’s V Goodness-of-fit; 0.1 small misfit, 0.3 medium, 0.5 large

Differential Item Functioning (DIF)

∆αMH Mantel-Haenszel |∆αMH | < 1, negligible; [1, 1.5), small to moderate; > 1.5, large
L Lord’s statistic |L| < 1, negligible; [1, 1.5), small to moderate; > 1.5, large

Confirmatory Factor Analysis (CFA)/Structural Equation Modeling (SEM)

Model-Fit Indicies

Kline’s Rule of Thumb [139]: χ2/df ≤ 3
Comparative Fit Index: CFI ≥ 0.95
Root-Mean-Square Error of Approximation: RMSEA ≤ 0.05
Standardized Root-Mean-Square Residual: SRMR ≤ 0.08

Table 3.2: Summary of commonly used statistics in Psychometric Theory.

3.5.1 Validity and Reliability

Determining the validity (accuracy) and reliability (precision) of an instrument is es-

sential prior to discussing the various statistical procedures used in the development of an

instrument. Validity is defined as “empirical evidence [...] to support the use of test scores

for a stated purpose” [140]; in other words, whether the instrument measures what it is

intended to measure. There are three types of validity discussed in instrument develop-

ment: construct validity, content validity, and criterion validity. Construct validity refers to

the degree to which the empirical evidence supports the theoretical purpose of the instru-

ment. When researchers are discussing a “valid” instrument, they are typically referring to

construct validity. Content validity refers to an examination of the overall content of an

instrument; the extent to which the instrument covers all of the necessary content related

to the intended construct that is to be measured. Criterion validity refers to the level of

correlation between the measured construct of the instrument and a measure that is valid

and should be related to that construct. The most important type of validity is construct
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validity because, if not identified, content and criterion validity will not exist.

Reliability is defined as “an indication of the consistency, stability, or precision of

scores” [141]. Cronbach’s α is a common measure of reliability and will be discussed in

section 3.5.2. It is important to note that although scores may be reliable, the instrument

may not be valid; however, a test cannot be valid unless the scores are reliable. The following

sections will discuss statistics used to assess the validity and reliability of an instrument.

3.5.2 Classical Test Theory

Classical Test Theory (CTT) is an important component of test theory. Under the

assumption that test score T is equal to the sum of a hypothetical true score X plus random

error E, the goal of CTT is to evaluate item and test reliability and validity [140]. Through

an analysis of item difficulty, item discrimination, and correlations, CTT provides a basic

way to evaluate the structure, reliability and validity of a test.

Item difficulty P measures how “easy” an item is for students. It is defined as the

proportion of correct responses for a given population (the higher the item difficulty, the

easier the item) [140]. Item discrimination D measures how well an item can distinguish

between students who have strong knowledge of the subject matter from those who do not.

Discrimination is defined as

D = Pu − Pl, (3.8)

where Pu is the proportion of participants in the top 27% of the total score distribution

answering the question correctly and Pl is the proportion of participants in the bottom 27%

answering the item correctly [140].
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An item with difficulty or discrimination that are either too high or too low can pro-

vide inaccurate information about the population; such items are called “problematic.” The

validity framework for evaluating concept inventories proposed by Jorion et al. suggests

items with D < 0.2, P < 0.2, or P > 0.8 as problematic for distractor-driven instruments

[142–144].

In addition to item difficulty and item discrimination, overall test reliability and inter-

item correlations are typically analyzed in CTT. Under the assumption of unidimensionality,

Cronbach’s alpha (α) is calculated to provide a measure of internal consistency reliability of

an instrument [138, 141]. It is calculated using

α =
k

k − 1

(
1−

∑k
1 σ

2
k

σ2
Total

)
, (3.9)

where k is the number of items,
∑
σ2
k is the sum of the item variances, and σ2

Total is the

variance of the total scores [141]. Cronbach’s α of 0.7 is considered acceptable reliability and

0.9 as excellent [138]. Cronbach’s α is sensitive to test length; as test length increases, α

should increase as well. An item is problematic and should be eliminated if α increases with

the removal of that item [142].

The relationship between the responses of two different items is called the inter-item

correlation [140]; a Pearson correlation coefficient φ is commonly used. This statistic is

calculated as

φjk =
pjk − pjpk√
pjqjpkqk

, (3.10)

where pj is the proportion of individuals answering item j correctly, qj = 1 − pj is the
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proportion of individuals answering item j incorrectly, and pjk is the joint proportion of

individuals answering both item j and k correctly [140]. If the correlation between two

different items is negative, elimination of this item should be considered.

To determine if two independent groups of individuals on the same dichotomously

scored item are statistically significantly different, a χ2 test of independence on a two-by-

two contingency table of correct and incorrect answers for each population can be analyzed.

A measure of effect size can then be calculated by φ =
√

χ2

N
, where N is the total number of

individuals. The criteria for this effect size are φ = 0.1 is a small effect, φ = 0.3 is a medium

effect, and φ = 0.5 is a large effect.

3.5.3 Item Response Theory

Item Response Theory (IRT) is a system of models used to predict a binary outcome

with a continuous latent variable, typically a characteristic of an individual such as ability

[145, 146]. A latent variable is a variable that is not directly observed. Because the test is the

unit of analysis, CTT ignores the repeated-measures nature of an instrument. IRT, however,

treats the individual item as a unit of analysis to allow for item and person parameters to be

measured on the same metric. Therefore, an individual’s ability can be interpreted relative

to the item and not just relative to the other individuals in the sample [137].

The goal of IRT is to model the probability of success for person i on item j, in terms

of the individuals’ latent ability trait and item parameters. Because of the binary outcome

variable, IRT models take the form of a logistic function [145, 146]. There are three commonly

used IRT models: the one-parameter logistic model (1PL) and the related Rasch model, the

two-parameter logistic model (2PL), and the three-parameter logistic model (3PL). Many
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other models exist.

In a 1PL model, the probability of success πij is modeled in terms of the individuals’

ability θi, the item difficulty bj, and a constant item discrimination a. The 1PL model is

πij =
exp[a(θi − bj)]

1 + exp[a(θi − bj)]
. (3.11)

Item difficulty is defined as the value of θi at which an individual has a 50% chance of success

[145, 146]. Item discrimination is the slope of the tangent line at the item’s difficulty; the

degree to which an item discriminates between an individual with knowledge and one without

knowledge [145, 146]. If the discrimination is constrained to one, a = 1, the 1PL is called

the Rasch model [147]. The model that is most closely related to CTT is the 2PL model.

This model assumes that each item has a discrimination aj and a difficulty bj:

πij =
exp[aj(θi − bj)]

1 + exp[aj(θi − bj)]
. (3.12)

The 3PL model adds an additional parameter, called the guessing parameter cj. This param-

eter is defined as the value of πij when θi approaches −∞. In other words, if an individual

has extremely low ability, the probability of success is solely reliant on guessing. The 3PL

model is

πij = cj + (1− cj)
exp[aj(θi − bj)]

1 + exp[aj(θi − bj)]
. (3.13)

IRT has two important assumptions: (1) unidimensionality and (2) local independence

[145, 146]. Unidimensionality assumes that a single latent trait is being measured; this

assumption provides evidence for construct validity. Local independence assumes that the

36



responses to an item are independent of any other item. These assumptions tend to come

hand in hand because if only one trait is being measured then an individual’s response only

depends on the single trait and nothing else.

IRT introduces a model for student responses and therefore model fit should be as-

sessed. A common way to investigate model fit is to divide the individuals into G groups and

then compare the predicted mean of the group, given by the IRT model, with the observed

mean of the group [148–150]. An effect size is typically reported along with goodness-of-fit.

The model fit is evaluated with a χ2 distribution with df = G − n, where n is the num-

ber of parameters in the IRT model. An effect size, Cramer’s V , can also be calculated as

V =
√

χ2

(df ·N)
. The item characteristic curves (the plots of the logistic functions) should still

be examined for all items.

In addition to model fit, the certainty of the estimated parameter can be calculated

for IRT models; the certainty is known as information [145]. In general, since the error in

an item’s estimated parameter can be calculated, the amount of information is defined as

I =
1

σ2
, (3.14)

where σ2 is the variance of the item parameters. In other words, the more precise the

item parameter is (i.e., the smaller the variability in the estimated parameter), the more

information is given by the value of the parameter. Typically in IRT, the item information

Ii(θ) function is computed for each individual item i and the test information is the sum

of all item information functions. The test information function provides the amount of

information given from the overall test at any level of ability θ.
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3.5.4 Differential Item Functioning

In test development, the concept of instrumental bias toward a certain group of in-

dividuals is typically explored. More recently, the focus of instrumental bias has revolved

around item-level statistics rather than overall differences between group means. Differential

Item Functioning (DIF) analysis is a technique to detect items that are functioning differ-

ently across different groups of individuals [145]. DIF analysis detects differences in item

performance under the assumption that the total instrument score is an accurate measure of

each group’s proficiency with the material. DIF analysis cannot detect overall instrumental

bias; it cannot detect if the majority of items in an instrument favor one group. For this

manuscript, DIF statistics will be used to compare difficulty parameters across two groups:

male and female students. The DIF statistics will only focus on differences in difficulty

parameters rather than both the difficulty and discrimination parameters.

A common measure of DIF is the Mantel-Haenszel (MH) statistic [151–153] which

has been employed by the Educational Testing Service (ETS) for 25 years to examine item

fairness in high-stakes exams [154]. The MH statistic uses the total score on the instrument

to divide the students into groups and then calculates a common odds ratio αiMH comparing

the odds of answering an item i correctly for female students to the odds of answering an

item i correctly for male students:

αiMH =

∑S
k=0

NCM
ik NIF

ik

Nk∑S
k=0

NCF
ik NIM

ik

Nk

, (3.15)

where NCM
ik is the number of male students with total score k who answered item i correctly,

N IM
ik is the number of male students with total score k who answered item i incorrectly, NCF

ik
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is the number of female students with total score k who answered item i correctly, N IF
ik is

the number of female students with total score k who answered item i incorrectly, S is the

total score on the instrument, and Nk is the total number of students with score k [155].

While relatively complicated, if only one group was formed this reduces to the odds ratio of

men answering the item correctly to women answering correctly,

oddsM

oddsF
=
pM(1− pF )

pF (1− pM)
(3.16)

where pM is the probability male students answer the item correctly and pF is the probability

female students answer the item correctly. Eqn. 3.15 generalizes Eqn. 3.16 by separating

the odds ratios by total test score.

DIF statistics can also be calculated in terms of the item parameters measured by IRT.

Many statistics have been constructed; however, this manuscript will report Lord’s statistic

which compares the difference in difficulty parameters between male and female students

with the average difference in difficulty [156]. This statistic uses the difficulties estimated

from the Rasch model. The Lord’s statistic Li is

Li = bF
i − bM

i −
1

n

n∑
j=1

(bF
j − bM

j ), (3.17)

where bF
i is the item difficulty of the female students on item i, bM

i is the difficulty of the

male students on item i, and n is the number of items on the instrument.

The two DIF statistics presented can be transformed into an effect size ∆αMH . αMH is

transformed to ∆αMH by ∆αMH = −2.35 ln(αMH) [154]. Lord’s statistic can be transformed
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by multiplying Li by 2.35 [151, 155]. Male students have an advantage when the DIF statistic

is less than zero and female students have an advantage when the DIF statistic is greater

than zero. The ETS classifies a DIF statistic with magnitude less than 1 as negligible DIF,

a DIF statistic with magnitude between 1 and 1.5 as small to moderate DIF, and a DIF

statistic with magnitude greater than 1.5 as large DIF [157].

3.5.5 Factor Analysis

Factor analysis is a method used to assess the internal structure of an instrument

[158, 141]. In instrument development, two types of factor analysis are examined: exploratory

factor analysis (EFA) [159–161] and confirmatory factor analysis (CFA) [161, 162]. Both of

these analytic techniques are important to establishing the validity of an instrument.

Exploratory Factor Analysis

Following the initial data collection, EFA is used to analyze the dimensionality of the

instrument [141]. This method assumes no prior relationship between the items and the

measured constructs (factors), hence, the name exploratory. This implies that all variables

are allowed to correlate with every factor. The goal of EFA is to maximize the explained

variance shared among the individual items with the smallest number of factors [163, 141].

The most common method to extract the appropriate number of factors in EFA is

called principal component analysis (PCA) [164], which tries to explain the variance in the

set of items. A factor solution is estimated by removing the maximum amount of variance

explained from the original correlation matrix between items and in turn, leaving a residual

correlation matrix. This process is continued with the new residual correlation matrix until
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all of the variability in the set of items is explained [141]. In PCA, the eigenvalues (proportion

of variance accounted for by each factor) of the correlation matrix are analyzed and a decision

is made on how many factors to extract. A common method to assess how many factors

to extract is called parallel analysis [141]. This method compares the eigenvalues from the

sample data to the eigenvalues estimated from a random dataset [160]. A large number of

factor selection methods exist.

The other decision researchers have to make when performing an EFA is the type of

rotation to use. Factor rotation refers to the alignment of the reference axes of the extracted

factors [165, 141]. There are many types of rotation: varimax rotation and promax rotation

are used in this manuscript. Varimax rotation assumes the extracted factors are orthogonal,

or uncorrelated, and promax rotation assumes that the extracted factors are correlated.

Confirmatory Factor Analysis

In instrument development, EFA and CFA are typically used hand-in-hand. After EFA,

CFA is used to confirm an a priori model proposed by the researcher and, therefore, gives

the researcher more control [141]. The a priori model involves the hypothetical constructs

that the instrument was trying to measure. In a standard CFA model, each item can be

explained by a single factor and measurement error, which is independent of any other item’s

measurement error. Factor loadings, which are simply regression coefficients between a latent

variable and an observed variable, are then estimated and the model-fit is assessed.

A χ2-statistic and Kline’s rule of thumb for good model fit χ2/df ≤ 3 [139] are typically

reported. However, the weaknesses of a chi-squared test at large N as well as its sensitivity

to the features of the underlying distribution and the size of the model correlations [139] have
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led to a number of additional statistics with superior performance and extensive research

into combinations of statistics [166]. This continues to be an active area of research and

general rules for model fit are still under development [167].

A wide variety of indices exist; among the most used are the Root Mean Square Error

of Approximation (RMSEA), the Standardized Root Mean Square Residual (SRMR), and

the Comparative Fit Index (CFI). Hu and Bentler [166] found that a combination of two

fit statistics dramatically improve the probability of retaining a correct model or rejecting

an incorrect model. They suggest RMSEA< 0.05, SRMR< 0.09, and CFI > 0.96 for an

acceptable model fit.

Structural Equation Modeling

Structural Equation Modeling (SEM) is an extension to CFA where a combination of

multiple linear regression models and confirmatory factor analysis models are analyzed [168].

This allows for complex data to be modeled with multiple observed and latent variables.

SEM begins with model specification, followed by model identification, model estima-

tion, model testing, and model modification. Model specification involves all of the relevant

theoretical variables of interest. Model identification, estimation, and testing uses the same

techniques as confirmatory factor analysis; χ2, CFI, RMSEA, and SRMR are examined.

Model modification is the technique used to remove parameters that are not significant in

the fitted model. This process is done by iteratively removing the parameters with the

worst statistical significance followed by refitting and comparing the two nested models.

The removal of a parameter must also make sense in the theoretical framework of the study.

SEM allows for more advanced models to be analyzed when trying to explain a theoretical
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framework.

The research presented in this manuscript used these statistical methods to answer the

relevant research questions.
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Chapter 4

Learning Assistants in the Introductory Laboratory

Setting∗

This chapter will present a case study of the adoption of a Learning Assistant model.

The results of this analysis were the motivation to explore the gender gap within the con-

ceptual inventories in the future chapters of this manuscript.

∗This work was supported by the National Science Foundation under Grant No. EPS-1003907.
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4.1 Introduction

Substantial evidence suggests that replacing traditional instruction with methods that

engage students in their own learning can produce substantial improvements in the concep-

tual mastery of physics [30]. However, the adoption of reform teaching methods is incomplete

and many instructors abandon these methods after trying them [169]. The purpose of this

chapter is to explore one possible implementation of reformed teaching strategies that might

insulate student conceptual learning from the changes in course personnel brought on by the

growth of the number temporary teaching faculty. This section will also examine the imple-

menting department’s experiences with the reform methods to shed light on the decision to

abandon a reform.

4.2 Research Questions

• R1: Can an implementation of a Learning Assistant (LA) program in the introduc-

tory laboratory setting using the Tutorials in Introductory Physics effectively support

conceptual learning and improved attitudes toward science?

• R2: Is its effectiveness independent of the instruction in the lecture part of the course?

Is the effectiveness dependent on the individual teaching assistants and learning assis-

tants?

• R3: Is it equally effective for all student populations?

• R4: What is the minimum dataset required to understand the effectiveness of the

program?
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Beyond answering these questions, this chapter will present a case study of a well-

resourced attempt to adapt some of the most widely deployed PER pedagogies to the local

educational environment and the struggles of the department to understand and manage the

outcomes of the program. The program was ultimately abandoned because, while it showed

positive outcomes, these outcomes were clinically relatively weak and not identified in time

to secure funding for the program’s continuation.

4.3 Implementation

The research was conducted at a large eastern land-grant university serving approx-

imately 30,000 students. The LA program, modeled after the program developed at the

University of Colorado [36], was implemented in both the introductory, calculus-based me-

chanics class (Physics 1) and the introductory electricity and magnetism class (Physics 2).

This research will focus on the educational impact of the program on the students in the

reformed classes.

The impetus for the reform was a department culture that valued teaching and a

growing departmental awareness of the proven effectiveness of reform teaching methods. This

impetus was catalyzed into action by the funding of a large five-year traditional science grant

that had a substantial educational component supporting the reform. Although non-lecture-

based structures have been proven to be more effective in physics instruction [170, 171],

there was insufficient space and financial resources available to support a studio format. To

maintain consistent lab space and TA staffing levels, an implementation of the University

of Washington Tutorials in Introductory Physics [31] presented by LAs in the laboratory
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environment was enacted.

Both Physics 1 and 2 were presented with four hours of lecture per week (four days

per week) in large lecture theaters. Students also co-enrolled in a two-hour, once-per-week

laboratory class. This course structure was not changed through the implementation of the

LA program. The lecture was presented by 14 different instructors over the project; these

instructors established their own lecture pedagogy, pacing of lecture, homework and exam-

ination policies. The lecture portion of the course was often not well timed to support the

laboratory; with labs investigating material not yet covered in lecture. For most instructors,

their teaching of the course was decoupled from the student’s laboratory experience. Lec-

ture instructors were of varying standings within the department from late-career graduate

students to tenured professors and had a wide range of teaching experience.

Prior to the introduction of the LA program, students performed traditional two-hour

cookbook experiments in the laboratory supervised by graduate teaching assistants (TAs).

Students completed lab reports on the experiments in a graded lab notebook and completed

weekly laboratory quizzes. The lab reports and lab quizzes were graded by the TAs. Students

received a lab grade that formed 10% of their course grade.

After the introduction of the LA program, the first hour of the laboratory was dedicated

to small group work using the Tutorials ; the LA acted as lead lab instructor during this

time. The LA received training in the general pedagogy of engaged science instruction

during a one-credit class taught by an expert in science education during his or her first LA

semester. This science pedagogy course was also modeled after the University of Colorado

Learning Assistant course [36]. The elements of the Colorado model were recreated to the

extent possible. Specific instruction on the presentation of the upcoming week’s tutorial was
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provided by the program lead in a weekly meeting separate from the pedagogy class. During

this meeting, the LAs worked the upcoming Tutorial, were encouraged to reflect on their

previous week’s teaching experience, and received pedagogical advice about the instruction

of next week’s Tutorial. In the second hour of the lab, the students worked in the same lab

group on a traditional laboratory experiment with the TA acting as the lead lab instructor.

The homework associated with the Tutorial was assigned as lab homework; the laboratory

exercise in the second hour also had associated homework questions. Students’ written

laboratory and tutorial homework were graded by the TA. Students continued to receive a

grade for the laboratory that accounted for 10% of their course grade. The LA was assigned

to three laboratories per week and was required to hold office hours. All laboratory sessions

received LA support. Each LA was compensated with a stipend ($1,500/semester). The

university has a flat tuition model, and therefore the additional pedagogy course credit did

not cause the students to incur additional costs. The LAs were much more gender balanced

than the student or TA populations in the classes (Students: 80% male, TAs: 87% male,

LAs: 64% male).

4.4 Methodology

This research was conducted between the spring 2011 and spring 2015 semesters in the

introductory, calculus-based physics sequence. In Physics 1, the LA program was introduced

in the fall 2011 semester using the spring 2011 semester as a control semester. In Physics 2,

the program began in the fall 2012 semester using three control semesters, spring 2011, fall

2011, and spring 2012.
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Conceptual learning was evaluated with the FMCE [22] in Physics 1 and with the

CSEM [23] in Physics 2. Both examinations were taken in lecture as a pretest and a post-

test. Students received credit for good faith efforts on each examination. Attitudes towards

science were measured using the Colorado Learning Attitudes about Science Survey (CLASS)

[79], also taken as a pretest and a post-test within the lecture environment. This instru-

ment was designed to measure how well students’ self-reported beliefs and attitudes about

physics aligned with “expert” beliefs and attitudes about physics. The CLASS was scored

as suggested by the developers by measuring the number of questions on which students

expressed an attitude similar to those of experts (favorable responses) or responses opposite

to those of experts (unfavorable responses). The change in both the number of favorable

and unfavorable responses between the pretest and post-test will be reported.

Only students who completed the course, completed both the conceptual pretest and

post-test, completed the CLASS pretest and post-test, and who had reported a SAT or ACT

score to the university were included in the study. During the period studied, 3,531 students

completed Physics 1. Of these students, 3,180 had reported ACT or SAT scores, of these,

2,263 completed both the FMCE pretest and post-test, and of these, 2,025 also completed

the CLASS pretest and post-test. These N = 2, 025 students form the Physics 1 sample. For

Physics 2, 2,507 students completed the class, of these, 2,230 reported ACT or SAT scores,

of these, 1,357 completed the CSEM pretest and post-test, and of these, 1,454 completed

the CLASS pretest and post-test. These N = 1, 454 students form the Physics 2 sample.

Over the nine semesters studied, class enrollment for Physics 1 averaged 390 students

per semester and Physics 2 averaged 280 students per semester. Both classes consisted of

80% male students, 20% female students, 85% engineering majors and 15% non-engineering
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Instructor Standing Involvement PER Physics 1 Physics 2 Physics 1 Physics 2
(N) (N) Semesters Semesters

1 TF Y Y 1168 199 1, 3, 4, 5, 6, 7, 8 9
2 F N N 38 0 1H
3 F N N 41 0 1
4 A N N 95 0 2
5 F N N 50 320 2 1, 3, 5
6 F N N 44 0 3H, 5H
7 A N N 86 66 4 2
8 A N N 410 387 6, 8, 9 7, 8
9 A N N 35 0 7H
10 A Y Y 206 40 7, 9, 9H 8H
11 F Y Y 0 103 2H, 4H, 6H
12 A Y N 0 214 2, 4
13 F Y N 0 147 6, 7
14 A Y N 0 121 6

Table 4.1: Instructor standing codes: F=Tenure/Tenure-track Faculty, TF=Permanent teaching faculty,
A=Temporarly instructors. The code H indicates honors sections.

majors. Honors sections of the classes were offered during the spring semesters for Physics

1 and during the fall semesters for Physics 2. Honors students had substantially higher

standardized test scores and received instruction in smaller classes. Because they represent

a distinct, and relatively small population, they were excluded from the analysis for this

study.

A total of 14 different instructors of various standing from full professors to late career

graduate students taught lecture sections of the courses during the period studied. The

program lead was also the lecture instructor for Physics 1 or 2 during some semesters (In-

structor 1 in the analysis). These classes were offered with two to three lecture sections each

semester. All instructors were invited to participate in the LA training sessions, but only

some accepted. Many lecture instructors taught multiple lecture sections in a semester. The

teaching assignments and some properties of the instructors are summarized in Table 4.1.

Instructors were classified by their standing as either tenure/tenure-track faculty, permanent

teaching faculty, and temporary instructors which included adjuncts, late career graduate

students, and research professors. Instructors who attended the LA training sessions are
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marked as “Involved.” Instructors with significant interest or knowledge of PER as de-

noted as “PER.” Only the program lead (Instructor 1) taught in both pre-LA and post-LA

semesters in Physics 1. Instructors 5, 11, and 12 taught in pre- and post-LA sections in

Physics 2, but Instructor 11 taught exclusively honors students.

The efficacy of this implementation of the Tutorials in Introductory Physics using

LAs in the laboratory setting was investigated using the normalized gain on the FMCE in

Physics 1 and the CSEM in Physics 2. The normalized gain was calculated and converted to

a percentile to aid in interpretation of regression coefficients. Students’ demographic char-

acteristics were characterized using a number of variables: Gender (Female=0, Male=1),

Race/Ethicity (Non-Caucasian/Hispanic=0, Caucasian Non-Hispanic=1), and whether the

student was a first generation college student (FirstGen=0 for non-first generation students,

FirstGen=1 for first generation students). The sample was not sufficiently diverse to explore

race and ethnicity more fully. The student’s general ability was characterized using their

score on the ACT or Scholastic Aptitude Test (SAT). Both the SAT Mathematics and Verbal

scores were used. For the ACT, the Mathematics subscore and English subscore were used. In

both cases, these scores were converted to percentile ranks using the guidelines published by

the testing companies. For students reporting both ACT and SAT scores, the average of the

two percentile scores was used. The resulting variables will be designated ACT/SAT Math

and ACT/SAT Verbal. The analysis will identify a strong difference between spring and

fall semesters showing spring semesters with stronger results in Physics 1 and fall semesters

with stronger results in Physics 2. This spring/fall variation may have resulted from stu-

dents taking Calculus 1 in their entering freshman semester matriculating to Physics 1 in

their spring, freshman semester and then to Physics 2 in their fall, sophomore semester.
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These students were calculus-ready upon entering the university and were matriculating fol-

lowing the prescribed plan of their departments; they were “on sequence.” To capture this

effect in the analysis, the variable “Fall Semester” was introduced (Fall Semester=1 for fall

semesters, Fall Semester=0 for spring semesters). Students are on-sequence in Physics 1 if

Fall Semester= 0 and on-sequence in Physics 2 if Fall Semester= 1.

4.5 Results

Table 4.2 shows the overall averages for Physics 1 and Physics 2. The difference be-

tween the average of the male students and the female students is presented in parentheses

(a positive number means that the male students had a higher average than the female stu-

dents). A t-test was performed for the gender difference in each quantity; the significance of

the differences are presented as superscripts. A t-test aggregating all non-honors students

in each class showed that there was no statistically significant difference between male and

female students in their incoming ACT/SAT Math percentile scores or in the final course

grade for either class. In both classes, female students had a significantly higher ACT/SAT

Verbal percentile.

Overall, Table 4.2 shows a small increase in post-test scores in Physics 1 with the

introduction of the LA program accompanied by a somewhat larger, but still small increase

in normalized gain. Physics 2 also showed a small increase in post-test scores and normalized

gains. CLASS scores degraded with the introduction of the LA program in both classes.
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Physics 1 Physics 2

Control Semesters LA Semesters Control Semesters LA Semesters
N (Male, Female) 162 (127, 35) 1863 (1509, 354) 321 (257, 64) 1133 (944, 189)

Pretest (%) 29± 19(5.5) 27± 17(5.8)c 25± 10(2.8)a 26± 10(4.2)c

Post-test (%) 47± 25(1.0) 53± 26(11)c 35± 16(5.1)b 42± 16(7.9)c

Normalized Gain (%) 26± 32(−0.7) 39± 34(11)c 13± 17(4.1) 20± 18(6.0)c

ACT/SAT Verbal 71± 18(−13)c 69± 20(−5.7)c 72± 20(−9.0)b 69± 20(−3.7)a

ACT/SAT Math 81± 15(−3.4) 77± 16(.10) 80± 15(−2.7) 78± 16(2.0)
Course Grade 3.1± .94(−.38) 3.0± .94(.05) 3.1± 0.91(−.17) 3.1± 0.83(−.09)

CLASS Fav. Change −2.4± 17(−4.9)a −2.8± 17(2.0)a −2.8± 16(.78) −4.5± 16(.14)
CLASS Unfav. Change 2.4± 13(4.2) 3.9± 14(−2.3)b 3.3± 14(.40) 3.7± 13(−.06)

Table 4.2: Physics 1 and Physics 2 Averages. The number in parentheses represents the difference between
the average for male students and female students. The superscript indicates whether the gender difference
is significant. Superscript “a” denotes p < 0.05, “b” p < 0.01, and “c” p < 0.001.

4.5.1 Preliminary Analysis

Initially, ANOVA was used to explore the effect of the program and any differential

effects on students of different gender, race/ethnicity, or first generation status. In Physics

1, the LA program was a significant treatment effect for the normalized gain on the FMCE

[F (1, 2023) = 20.57, p < 0.001]. A two-way ANOVA with the LA treatment and gender

showed both to be significant main effects (p < 0.001). The interaction between LA and

gender was not significant. An interaction plot is shown in Figure 4.1. While the LA program

did have a positive effect on male students, it had very little effect on female students. A
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Figure 4.1: Interaction Plot of LA Program and Gen-
der for Physics 1 FMCE post-test percentage.

two-way ANOVA using race/ethnicity and

the LA program found significant main ef-

fects of the LA program (p < 0.001) and

race/ethnicity (p < 0.001) but no significant

interactions. An ANOVA for first generation

status and the LA program found the main

effect was significant for the LA treatment
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[F (1, 2021) = 20.58, p < 0.001]; however, the first generation status main effect and the

interaction were not significant.

The results for Physics 2 were somewhat different. The LA program was still a signif-

icant treatment effect on the normalized gain on the CSEM [F (1, 1452) = 45.73, p < 0.001].

Like Physics 1, both the LA program and gender were significant main effects, but their

interaction was not significant. The main effect of race/ethnicity was not significant but

the LA program main effect was significant [F (1, 1450) = 45.85, p < 0.001]; the interaction

was also significant [F (1, 1450) = 4.35, p = 0.04]. The LA program was a significant main

effect [F (1, 1450) = 45.93, p < 0.001] in a two-way ANOVA with first generation status,

but the first generation status was not. The interaction between the LA program and first

generation status was a significant interaction [F (1, 1450) = 5.27, p = 0.02]. Exploration of

this interaction showed the normalized gain of first generation students decreased with the

introduction of the LA program.

Many of these findings were counter to what was expected by the program and could

not be explained by the replacement of cookbook laboratories with well-vetted PER de-

veloped materials and providing well-trained, near-peer, more gender balanced support of

these activities. Further, the apparent differential effect of the program on male and fe-

male students was unacceptable; the department could not support a curricular reform that

preferentially benefited the overrepresented population.

4.5.2 The Role of Ability

To shed light on the initial observations, alternate explanations were explored. The

normalized gain scores on the FMCE in Physics 1 exhibited a strong variation between
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Figure 4.2: FMCE Normalized Gain vs. Semester in Physics 1. The open circles are independent lecture
sections numbered by instructor. The triangle represents the semester mean.

spring (odd numbers) and fall (even numbers) semesters as shown in Figure 4.2. While

Table 4.2 shows a relatively small increase in normalized gain comparing all LA semesters

to the control semester, the increase in normalized gain considering only the spring (odd)

semesters was more pronounced. The average normalized gain for the spring LA semesters

was 47% as compared to 27% for the control semester. The LA program was presented in

the same format and managed by the same program lead in each semester, and therefore this

variation in conceptual learning outcomes could not be explained in terms of the instruction

the LAs presented.

Focusing on only the spring semesters did not explain the gender disparity identified

in the previous section. In the control semester, the normalized gain of male students was

28% which rose to 50% after this implementation of the LA program. For female students,
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Figure 4.3: ACT/SAT Total vs. Semester in Physics 1. The open circles are independent lecture sections
numbered by instructor. The triangle represents the semester mean.

the control semester produced normalized gains of 27% which rose to only 35% with the LA

program.

The standardized testing scores of the students also varied substantially from spring

to fall. ACT/SAT Math and ACT/SAT Verbal percentiles were summed to form the to-

tal standardized test score, ACT/SAT Total; this variable had a maximum walue of 200.

ACT/SAT Total is plotted by semester in Figure 4.3. The figure shows the same pattern of

spring/fall semester variation as the normalized gain scores. Figure 4.4 plots the normalized

gain vs. the ACT/SAT Total for semesters after the implementation of the LA program and

shows a correlation between the variables. The central line represents the regression line

for all instructors. Instructor 1 taught many of the lecture sections in the sample and on

average out-performed other instructors; Instructor 1 is represented by the upper line and
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Figure 4.4: Normalized Gain vs. ACT/SAT Total in (a) Physics 1 and (b) Physics 2 for semesters after the
implementation of the LA program. In (a), the top line represents Instructor 1, the center line all instructors,
and the lower line instructors other than Instructor 1. In (b), the line represents all instructors.

all other instructors the lower line. While Instructor 1 was, in general, the most successful,

other instructors were also successful with some outperforming the ability-corrected gains of

Instructor 1.

Physics 2 exhibited the same pattern of oscillation of ability and normalized gain scores

as did Physics 1, except that while the spring semesters were the high ability semesters in

Physics 1, the fall semesters were the high ability semesters in Physics 2. This adds support to

the interpretation of the oscillation as an on-sequence/off-sequence effect. The Physics 2 data

demonstrated a weaker trend when normalized gain was plotted against ACT/SAT Total as

shown in Figure 4.4. The weaker linear relationship was influenced by the both the more

restricted range of CSEM results and the range of the ACT/SAT Total percentile. Multiple

regression results will find both ACT/SAT percentile scores were significant variables for

both Physics 1 and 2, with a somewhat weaker effect in Physics 2.
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A relationship between ACT/SAT Total percentile and FCI [21] normalized gain had

previously been reported by Coletta, Phillips, and Steinert [172]. The correlation r of

ACT/SAT Total with normalized gain was calculated. Aggregating all semesters (includ-

ing the control semesters) yielded FMCE, r = 0.37 [t(2023) = 17.97, p < 0.001], CSEM,

r = 0.32 [t(1452) = 12.75, p < 0.001]. If only the LA treatment semesters are included

these values become FMCE, r = 0.39 [t(1861) = 18.07, p < 0.001], CSEM, r = 0.33

[t(1131) = 11.88, p < 0.001]. The FMCE correlations are similar to the r = 0.46 reported by

Coletta et al. for university students using the FCI; the CSEM correlations are somewhat

smaller.

4.5.3 Regression Analysis

Hierarchical linear regression analysis allowed the exploration of the many variables

associated with the program while controlling for the variability in student ability and de-

mographic composition. Variables were added to regression models as shown in Table 4.3.

Regression coefficients are reported: unstandardized (B) and standardized (β). Model fit

was characterized with the adjusted-R2 (R2
adj) and SE is the standard error of B.

At each step, the new model was tested using ANOVA to determine if the added

variables explained significantly larger variance. Only models demonstrating significant im-

provement are reported. Most reported steps produced a model which ANOVA identified as

explaining additional variance at the p < 0.001 level of significance. The effect of the fall

semester was weaker in Physics 2 and the addition of this variable produced a model that

significantly improved on the previous model but with a significance level of p = 0.02.

After Model 2, models were fit that added the race/ethnicity or the first generation
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Physics 1 (n=2,025) Physics 2 (n=1,454)

B SE β R2
adj B SE β R2

adj

Model 1 ACT/SAT Math 0.56c 0.06 0.26c 0.14c 0.24c 0.04 0.21c 0.11c
ACT/SAT Verbal 0.26c 0.04 0.15c 0.13c 0.03 0.14c

Model 2
ACT/SAT Math 0.53c 0.06 0.25c

0.16c
0.22c 0.04 0.20c

0.12cACT/SAT Verbal 0.31c 0.04 0.18c 0.15c 0.03 0.16c

Gender 11.95c 1.80 0.35c 6.38c 1.19 0.35c

Model 3
ACT/SAT Math 0.47c 0.06 0.22c

0.17c
0.21c 0.04 0.19c

0.12aACT/SAT Verbal 0.31c 0.04 0.18c 0.15c 0.03 0.17c

Gender 12.01c 1.78 0.35c 6.31c 1.19 0.35c

Fall Semester −8.44c 1.44 −0.25c 2.17a 0.90 0.12a

Model 4

ACT/SAT Math 0.47c 0.06 0.22c

0.20c
0.22c 0.03 0.19c

0.16cACT/SAT Verbal 0.31c 0.04 0.18c 0.16c 0.03 0.18c

Gender 11.77c 1.76 0.34c 6.04c 1.17 0.33c

Fall Semester −11.16c 1.46 −0.33c 1.68 0.89 0.09
LA Treatment 19.60c 2.60 0.57c 8.27c 1.06 0.45c

Model 5

ACT/SAT Math 0.45c 0.05 0.21c

0.24c
0.21c 0.03 0.19c

0.19cACT/SAT Verbal 0.32c 0.04 0.19c 0.17c 0.03 0.19c

Gender 12.17c 1.72 0.35c 6.26c 1.14 0.34c

Fall Semester −6.43c 1.62 −0.19c 3.05a 1.44 0.17a

LA Semester 15.90c 2.95 0.46c 5.38c 1.48 0.30c

Instructor (−26, 0)c (5.42, 0) (−0.77, 0)c (−11, 0)c (1.72, 0) (−0.62, 0)c

Model 6

ACT/SAT Math 0.45c 0.05 0.21c 0.21c 0.03 0.19c

ACT/SAT Verbal 0.31c 0.04 0.19c 0.17c 0.03 0.19c

Gender 12.16c 1.72 0.35c 6.24c 1.14 0.34c

Fall Semester −6.08c 1.60 −0.20c 2.81a 1.34 0.15a

LA Semester 16.80c 2.87 0.49c 5.75c 1.41 0.32c

Instructor SD 9.49 0.28 4.00 0.22

Model 7

ACT/SAT Math 0.35c 0.05 0.17c

0.26c
0.21c 0.03 0.19c

0.19cACT/SAT Verbal 0.28c 0.04 0.17c 0.17c 0.03 0.19c

Gender 9.78c 1.70 0.28c 6.42c 1.16 0.35c

Fall Semester −6.08c 1.59 −0.18c 2.98a 1.44 0.16a

LA Semester 16.91c 2.90 0.49c 5.47c 1.48 0.30c

Pretest Percent 0.37c 0.04 0.18c −0.04 0.04 −0.02
Instructor (−24, 0)c (5.33, 0) (−0.69, 0)c (−11, 0)c (1.72, 0) (−0.61, 0)c

ACT/SAT Math 0.28c 0.05 0.13c

0.23

0.14c 0.04 0.13c

0.22ACT/SAT Verbal 0.14c 0.04 0.08c 0.11c 0.03 0.12c

Model 8 Gender 6.47c 1.50 0.19c 4.08c 1.23 0.222c

Restricted Fall Semester −8.39c 1.50 −0.24c 7.19c 1.63 0.39c

Sample LA Semester 11.83c 2.98 0.34c 5.36b 1.84 0.29b

Pretest Percent 0.14 0.15 0.07 −0.23 0.13 −0.13
Instructor (−25, 0)c (4.90, 0) (−0.73, 0)c (−13, 0)c (2.64, 0) (−0.74, 0)c

Table 4.3: Hierarchical Linear Regression Model Predicting Normalized Gain. Gender was coded with male
as one, female as zero. Normalized gain was expressed as a percentage. In Model 5, 7, and 8, the range of
instructor coefficients are presented with Instructor 1 set to zero. Superscript “a” denotes p < 0.05, “b”
p < 0.01, and “c” p < 0.001.
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status of the students. These additional variables did not produce a significantly improved

model. Additional models were explored building on Model 6 by the addition of the LA or

TA as a random effect; these additions did not significantly improve model fit. Figure 4.2

shows Instructor 3 in Semester 1 to be a potential outlier; removing this instructor had very

little effect of the regression coefficients.

After the optimal model, Model 5, was identified, interaction terms were added for the

LA treatment, gender, race/ethnicity, and first generation status. No combination of these

interaction terms produced a model that was statistically significantly superior to Model 5.

The apparent interaction between the LA treatment and gender was lifted with the addition

of the other variables.

Model 5 was fit with the instructor as a fixed effect and Model 6 with the instructor

as a random effect. The results for Models 5, 7, and 8 in Table 4.3 report the range of

coefficients for the individual instructors measured against the effect of Instructor 1, which

was set to 0. The parameter estimate in Model 6 for the instructor is the standard deviation

of the distribution of intercepts. Bootstrapping showed that Model 6 was also a significant

improvement over Model 4 (p < 0.001). There are features of the data that suggest both

models. The relatively large number of course sections suggest the instructor can be treated

as a random variable; however, the wide range of outcomes suggest the data does not fully

explore instructor differences. The fixed and random effects models produced very similar

regression coefficients.

Regression models were also produced for the post-test percentage with similar re-

sults with the LA treatment producing a significant regression coefficient of 8.53 for the LA

Semesters for Model 5 in Physics 1 and 6.19 for Physics 2. This represents the amount the
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LA treatment increased post-test scores controlling for the other variables in Model 5.

Overall, focusing on either Model 5 or 6, the LA program produced an increase of nor-

malized gain of 16% in Physics 1 and a smaller increase of 5% in Physics 2. The difference

was smaller if the coefficients were normalized producing a 0.5 standard deviation increase in

Physics 1 and a 0.3 standard deviation increase in Physics 2. The inclusion of the ACT/SAT

variables was significant, but did not fully explain the spring/fall variation. There was a sub-

stantial, significant effect of gender in all models; this effect was not explained by differential

abilities of the male and female populations. In fact, as shown in Table 4.2, female students

actually outperformed male students on their overall course grade. Neither race/ethnicity

nor first generation status was significant in predicting normalized gain after controlling for

ACT/SAT scores. While the LA program improved student conceptual learning, it was not

sufficient to insulate students from the effect of the lecture instructor. The weakest perform-

ing lecture instructors had the effect of lowering student learning gains more than the LA

program could raise them.

4.5.4 The Role of Gender

The regression results in Table 4.3 show gender as a consistently significant regressor.

This result has been reported elsewhere and has been extensively explored as discussed in the

introduction. One explanation considered has been that pre-preparation, measured by the

pretest score, could explain the difference in conceptual performance. Pretest score is used to

calculate normalized gain and contains a measure of facility with conceptual physics problems

and, as such, is of concern as an explanatory variable. Including the pretest percentage in

Model 7 did lower the effect of gender somewhat in Physics 1 but did not eliminate it; it
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had little effect in Physics 2. Model 7 was a statistically significant improvement on Model

5 (p < 0.001) for both classes. Because pretest scores also show gender differences, it is

unclear whether this result is informative about the differences in performance.

To examine whether pre-preparation in physics could explain the different outcomes

of students of different gender, a sub-sample of students who scored less than 25% on the

pretest was examined in Model 8. Female students compose 23% of this subgroup while

composing only 13% of the sub-group with pretest scores greater than 25%. The sub-sample

contained 1, 189 students. Model 8 shows focusing only on students who demonstrated little

preparation in the subject decreased the effect of gender, but did not eliminate it. Pretest

score was not a significant regressor for this model.

A similar analysis was carried out for Physics 2 using a pretest threshold of 25%; this

produced a sub-sample containing 665 students of which 23% were female; female students

composed only 15% of the students scoring over 25%. Again, the effect of gender was

reduced but not eliminated. Female students’ under-representation in the group of students

with higher pre-preparation accounts for some but not all of the differential performance on

both the FMCE and CSEM.

4.5.5 CLASS Results

Hierarchical linear regression was repeated for the CLASS. Models 4 and 5 in Table

4.3 were analyzed for both the change in Favorable attitude toward scientist-like thinking

and the change in Unfavorable attitude toward scientist-like thinking. In Physics 1, the

regression model explained little of the variance in these variables. Model 4, with the change

in CLASS Favorable responses as the dependent variable, produced R2 = 0.00 [F (5, 2000) =
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1.01, p = 0.40] and the change in Unfavorable attitudes produced R2 = 0.00 [F (5, 2000) =

2.95, p = 0.02]. While the model for change in Unfavorable attitude was significant, only

the ACT/SAT variables were significant regressors. The LA treatment was not a significant

regression variable for either dependent variable. Adding Instructor as a fixed effect, Model

5 produced models that explained substantially more variance: change in Favorable attitude

R2 = 0.02 [F (11, 1994) = 5.04, p < 0.001] and change in Unfavorable attitude R2 = 0.02

[F (11, 1994) = 4.84, p < 0.001] with many instructors as significant regression coefficients.

The unstandardized beta coefficients for the different instructors ranged from −11.18 to 0

for the change in Favorable and 0 to 7.58 for the change in Unfavorable with Instructor

1 as the 0 in each case. As such, the effect of the LA program on students’ scientist-like

thinking was very small, much smaller than the differential effects of the range of lecture

instructors. ANOVA confirmed that Instructor was a significant treatment effect for both

variables in Physics 1: change in Favorable attitudes [F (6, 1994) = 8.38, p < 0.001] and

change in Unfavorable attitudes [F (6, 1994) = 6.59, p < 0.001].

For Physics 2, Model 4 was not statistically significant for either Favorable or Un-

favorable changes (Favorable R2 = 0.00, Unfavorable R2 = 0.00). Model 5 including the

instructor as a fixed effect was significant, but more weakly so than in Physics 1: change

in Favorable attitudes R2 = 0.01 [F (11, 1440) = 2.90, p < 0.001] and change in Unfavorable

attitudes R2 = 0.01 [F (11, 1440) = 2.42, p < 0.01]. Instructor was the only significant effect

in Physics 2 for both dependent variables. The range of unstandardized beta coefficients for

the instructors, with Instructor 1 as the zero reference, was from −6.87 to 2.4 for Favorable

change and −1.21 to 4.81 for Unfavorable change. ANOVA confirmed that Instructor was

a significant treatment effect in Physics 2 as well: Favorable [F (6, 1438) = 4.44, p < 0.001]

63



and Unfavorable [F (6, 1438) = 3.92, p < 0.001].

4.5.6 Instructor Effects

Table 4.1 shows that the instructors of the classes varied in their level of involvement in

the LA program, their standing within the department, and their PER knowledge. Different

instructors also had greatly different conceptual learning gains and CLASS changes; the

effect of the lecture instructor was often much larger than the effect of the LA program.

Only three instructors were classified as having strong PER knowledge, the program lead,

Instructor 1 (permanent teaching faculty), Instructor 10 (temporary faculty), and Instructor

11 (tenure-track faculty). Instructor 11 taught only honors students and was not included

in this analysis; however, he or she achieved comparably excellent results with a normalized

gain of 33% in Physics 2. Instructors 1 and 10 produced excellent results with normalized

gains of 43% and 44% in Physics 1, respectively. Permanent teaching faculty (Instructor 1)

and temporary faculty outperformed tenure-track faculty in Physics 1 with temporary faculty

achieving gains of 29% while tenure-track faculty achieved gains of 9%. If Instructor 10 is

removed from the analysis, temporary faculty achieved gains of 24%. The low gains by tenure

track faculty in Physics 1 may be influenced by small sample size; only 91 students included

in the sample were taught by tenure-track faculty. In Physics 2, Instructor 1 produced a

normalized gain of 25%, tenure-track faculty a gain of 17% and temporary faculty 20%.

For Physics 2 tenure-track faculty that actively involved themselves in the LA program by

coming to the LA training session achieved normalized gains of 23% while actively involved

temporary faculty achieved gains of 22%. The number of instructors, the distribution of PER

knowledge, and involvement in the program make general conclusions difficult, but it does

64



not appear that instruction by non-tenure-track faculty degraded the learning experience in

these classes.

4.6 Discussion

This study sought to investigate four research questions which will be discussed in the order

proposed.

R1: Can an implementation of an LA program in the introductory laboratory setting

using the Tutorials in Introductory Physics effectively support conceptual learning and im-

proved attitudes toward science? The implementation of an LA program using the Tutorials

in Introductory Physics was partially successful and showed some promise as a mechanism

to expose students to research-based materials in an instructional environment where a large

number of instructors rotate through the lecture component of the course and where some,

but not complete, support of reformed education exists. The implementation generated

statistically significant improvements in normalized gain in both Physics 1 and 2 with an

increase of 16% in Physics 1 and 5% in Physics 2 (Model 5); this represents 0.5 standard

deviations in normalized gain in Physics 1 and 0.33 standard deviations in Physics 2. While

a significant effect, the FMCE post-test score of 53% and the CSEM post-test score of 42%

suggest that there is substantial additional room for improvement.

R2: Is its effectiveness independent of the instruction in the lecture part of the course?

Is the effectiveness dependent on the individual teaching assistants and learning assistants?

The program was unsuccessful at eliminating the effect of the lecture portion of the course

on conceptual learning. The effect of the lecture instructor was commensurate or larger than
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the effect of the LA program in many cases. Neither the individual teaching assistant, nor

the learning assistant, was a significant random effect in the regression models.

R3: Is it equally effective for all student populations? While there appeared to be

an interaction between the gender of the student and the LA program in Physics 1, this

interaction ceased to be significant when the ability of the student measured by ACT/SAT

percentile and whether the student was on-sequence were added to the models. No effect

of race/ethnicity or first generation status was identified. The LA program improved the

conceptual learning of all populations equally; however, it was not sufficient to close a signif-

icant gap in conceptual learning between male and female students. The gender interaction

identified in the preliminary analysis was the result of the female students in the control

semester of Physics 1 having higher than average ACT/SAT scores which translated into

higher normalized gain scores on the FMCE. Once ability was controlled, the interaction

disappeared.

R4: What was the minimum dataset required to understand the effectiveness of the pro-

gram? The variables used in Model 5, ACT/SAT Math and Verbal percentile, gender, and

spring/fall semester were the minimum set of descriptive control variables needed to under-

stand the program. Preliminary analysis without these variables produced spurious results

that were later contradicted when more complete models were investigated. To accumulate

the spring/fall control variable, a minimum of two consecutive semesters of control data

should have been collected. Although race/ethnicity and first generation status were not

significant variables in this study after controlling for ability, it would be remiss to exclude

them from future analysis.

The failure to achieve the same level of improvement in Physics 2 as was observed in
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Physics 1 requires further examination. In both classes, the LAs were prepared through the

same process which was overseen by the project leader. Both classes performed the same

number of Tutorial exercises which were graded using the same policy; as such, both LA

treatments were extremely similar. We hypothesize, but can offer little additional support

beyond the similarity of the treatments, that the actual learning outcomes were equivalent.

The second semester course covers many topics that are poorly represented on the CSEM:

Gauss’ Law, Ampere’s Law, circuits, and optics. All of these important topics were however

covered by the Tutorials. The weak performance of students on the CSEM may have resulted

from a mis-match of the topics covered in the Tutorials and the conceptual coverage of the

CSEM.

The analysis used to investigate the program identified a significant relation between

normalized gain and student ability measured by the ACT/SAT Math and Verbal percentiles.

The relation of FCI normalized gain scores and ability had been reported [172]; this study

serves to confirm that similar effects exist in other conceptual instruments. The strong cor-

relation of ability and normalized gain suggests that, when comparing the same educational

intervention at different institutions or in different semesters at the same institution, student

ability should be used as a control variable.

Controlling for ability failed to fully explain the large differences between the spring

and fall semesters. The spring/fall variation involves factors not fully accounted for by

standardized test scores. As such, the Fall Semester variable should be included in analyses

comparing multiple semesters.

This study provided additional evidence of a differential performance by gender on

conceptual instruments even when male and female students performed equivalently on other
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course measures such as test scores. The effect of gender on normalized gain was of the same

size as the LA treatment.

The desired increases in student attitudes measured by the CLASS and the positive

effects on underrepresented populations weren’t realized. In fact, CLASS scores degraded,

but not significantly.

4.7 Case Study

The purpose of this study was not only to describe the results of implementing two

of the most well-vetted PER innovations in a laboratory setting, but also to describe the

department’s experience using PER materials. This experience ultimately resulted in the

department replacing the LA/Tutorial program with another PER inspired set of materials

and a restricted implementation of LAs in the laboratory setting where the LA earned course

credit instead of receiving monetary compensation. The results did not allow the department

to argue for the continued funding of the LA program, nor did they argue for the continued

use of the Tutorials which added to the already heavy cost of textbooks for the students.

The LA program was part of a larger five-year funded scientific project. This encour-

aged the department to persevere when initial results were discouraging. The LA program

was initially implemented in Physics 1, and therefore the first feedback on the program re-

ceived was the normalized gains shown in Figure 4.2. The net effect of the LA program in

Semester 2 appeared to be a substantial reduction in normalized gain.

Further, until Semester 9, the last semester of the project, it appeared that only In-

structor 1 and 10 could produce exemplary results; Instructor 1 was the program lead and
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Instructor 10 taught only in the high ability spring semesters. Instructor 10 had shadowed

Instructor 1’s lecture presentation and presented it with little modification. It was only

when Instructor 8 moved from lower performing fall semesters to a higher performing spring

semester in Semester 9 that it became clear that other instructors less closely related to

Instructor 1 could achieve significant gains for the higher achieving population. Instructor

8 reported no change in his or her lecture presentation in Semester 9.

The results in Physics 2 were clinically mediocre. While the regression results ulti-

mately demonstrated an increased normalized gain, the post-test scores did not suggest a

clinical effect that could be interpreted as substantially improving student learning. With

the data from Physics 1 being initially negative and then mixed, and Physics 2 producing

limited gains it is unlikely the department would have sustained the program past its initial

year were it not part of a larger funded project.

The program only became fully understood with the analysis of Semester 9; previous

to this semester the department hypothesized that the primary effect on conceptual learning

was the exemplary lecture presentation of Instructors 1 and 10. By this time, substantial

plans for the modification of the program post funding (beginning Semester 10) were in place

and no work had been initiated to secure additional funding for the LA program.

4.8 Implications for Instruction

The implementation of a Learning Assistant program using the Tutorials in Introduc-

tory Physics in the laboratory setting was successful for students in introductory, calculus-

based mechanics. It was less successful for students in introductory, calculus-based electricity
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and magnetism. Implementing the program in the laboratory setting was not sufficient to

inoculate students from other factors in the course design outside of the laboratory; sub-

stantially different outcomes were identified for different lecture instructors. As such, it is

critical to have coherent support across all course elements for lab-based reforms.

4.9 Implications for the Adoption of Research-based Materials

Overall, the department’s experience with LAs presenting the Tutorials in Introductory

Physics curriculum was mixed. Their persistence was largely a result of the program’s role

as part of a larger funded project. Because of the fluctuation in student ability, the initial

results of the project (Semester 2 in Physics 1) indicated that it was having a negative effect

on learning. The project also seemed to help female students less than male students. In

general, a few guidelines for the adoption of a research-based curriculum would have made

the program more successful and allowed the department to solicit funds to continue the

program:

1. The research-based materials were introduced into a traditional course structure that

was not working well. The project would have proceeded very differently if the courses

had first been modified to produce coordinated instruction between different instructors

in the same semester, the instructors and the laboratory, and instructors over multiple

semesters. This would have allowed each instructor to support the value of conceptual

learning with their examinations and made sure each student had the information

needed to get the most out of lab.

2. The program used some of the most well-known products of PER, but it is unclear if the
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curricular elements (the Tutorials) were well aligned with the assessment elements (the

FMCE and the CSEM). The department would have benefitted from a packaging of

elements so that all worked well together. We note that there are assessments aligned

with the Tutorials, but these are not multiple-choice instruments and could not be

deployed for classes of the sizes at the implementing institution.

3. The department underestimated the number of control semesters and the amount of

background data necessary to understand the program. The variables in Model 5

represent the minimum background/demographic information and a minimum of two

semesters of control data should have been collected.

4. The assessment instruments (the FMCE and CSEM) showed the program needed some

modification, but did not give any indication of what that modification should be.

Assessments designed to help educators fine-tune educational reform could have trans-

formed the project.

4.10 Implications for Research Methodology

The normalized gain was introduced to allow comparison of educational data across

different student populations. The results of this study support previous work that showed

it is only partially effective for this purpose and that additional data is required to compare

student outcomes for populations with substantially different academic preparation and abil-

ity. This study also strongly suggests the need for multiple semesters of control data. This

study also shows that ability data in itself is not enough to fully account for the differences in

student populations between the spring and fall semesters. The observation that normalized
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gain is correlated with student ability measures may suggest a reevaluation of the normalized

gain results at institutions that feature an academically diverse population or studies that

compare the normalized gain between different institutions.

4.11 Limitations

This work was performed at a single institution and, therefore, only the effect of the

range of ability and preparation available at that institution was explored. While 14 instruc-

tors were included in the dataset, this cannot be viewed as a fully representative sample of

all instructors, and therefore, the range of the effect of instructor is probably understated.

4.12 Future Work

The differences in the normalized gain score by gender without corresponding differ-

ences in course grade have been reported previously [124]; however, this work extended those

findings to show there was also no underlying differences in ability measured by ACT/SAT

score. The differences by gender were also not explained by the student matriculating on the

preferred sequence for graduation, taking the class in the correct semester. While student

pre-preparation was shown to explain some of these gender differences additional work is

needed to fully understand this effect and how the differences can be moderated.

4.13 Conclusion

A Learning Assistant program using the Tutorials in Introductory Physics in a tradi-

tional laboratory setting showed significant conceptual learning gains in introductory calculus-
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based physics classes at a large land-grant university. These learning gains were significantly

related to student ability (ACT/SAT score), gender, and whether the student was “on-

sequence.” Controlling for ACT/SAT scores, no significant relation with either race/ethnicity

or first generation status was identified. While the program was implemented in the labora-

tory setting, the learning gains were significantly affected by the lecture instructor.

73



Chapter 5

Exploring the Gender Gap in the Conceptual Survey

of Electricity and Magnetism∗

∗This chapter presents the work published in Physical Review Physics Education Research [61]. This
work was constructed with collaborative efforts from Adrienne Traxler, Lynnette Michaluk, and Gay Stewart.
It was supported in part by the National Science Foundation as part of the evaluation of improved learning
for the Physics Teacher Education Coalition, PHY-0108787, and through the TOPP: Taxonomy of Physics
Problems grant, DUE-0535928.
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5.1 Introduction

This research adds to the extensive literature on gender gaps in performance on PER

conceptual instruments by providing a study featuring a large sample performed at an insti-

tution with a less well academically prepared population than many other studies. It also

adds to the literature on gender gaps in electricity and magnetism that have not received the

same level of attention as gender gaps in mechanics. This study furthers the understanding

of the gender gap by comparing gender gaps observed in the CSEM to student performance

on both quantitative and qualitative problems assigned in the course studied. These ad-

ditional problems were assigned in both higher stakes in-semester examinations and lower

stakes quizzes allowing the analysis of the effect of testing conditions on the gender gap.

5.2 Research Questions

• RQ1: Does student performance on the CSEM show evidence of a gender gap in the

course studied?

• RQ2: How does the difference in male and female performance on the CSEM compare

with those observed in other problems assigned in the course? Are differences consistent

between qualitative and quantitative problems? Are differences consistent between low

and high stakes testing conditions?

• RQ3: Are these differences dependent on the student’s CSEM pretest score?

• RQ4: If a single latent variable is constructed to measure the difference in qualitative

and quantitative performance, how does this variable differ by testing conditions? How
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does this variable differ for male and female students?

5.3 Methods

5.3.1 Context for Research

The research was conducted in the second-semester, calculus-based physics course at

a large southern land-grant university serving approximately 25,000 students in the United

States. The institution had a Carnegie classification of “highest research activity” through

the period studied. The institution, however, had lower national stature and featured en-

gineering and science graduate programs that ranked lower than those found in many PER

studies [173]. At the time of the analysis, the undergraduate engineering program was

ranked 105th [174]; this ranking was fairly consistent for all semesters studied. Engineering

students form the majority of the students (80%) in the class studied. Much of the PER

research cited in Chapter 2 was performed at more highly ranked institutions. For example,

the University of Colorado-Boulder’s undergraduate engineering program was ranked 32 and

Colorado School of Mines 44 at the time the data was accessed [174]. As such, the students

studied should be somewhat less academically prepared than those in many previous studies

of gender differences in physics. The course studied covered electricity, magnetism, and op-

tics. Most students taking the course were enrolled in engineering or physical science degree

programs and took the course because it was required for their major.

While there was some spring/fall fluctuation of overall class size, the gender composi-

tion of participating students was fairly consistent for the 10 semesters studied. The class

size and the percentage of male and female students is shown for each semester in Table 5.1.
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Women were substantially underrepresented in the course for all semesters studied.

Semester N Men (%) Women (%)

Fall 2007 73 78 22
Spring 2008 180 74 26
Fall 2008 71 79 21
Spring 2009 200 75 25
Fall 2009 69 80 20
Spring 2010 179 75 25
Fall 2010 87 78 22
Spring 2011 204 73 27
Fall 2011 117 83 17
Spring 2012 227 81 19

Table 5.1: Class size and gender composition by
semester.

Students were required to attend two

50-minute lectures each week and two two-

hour laboratory sessions. Lectures were

presented traditionally with attendance

managed with an in-class quiz. Home-

work was due before each lecture session.

Homework assignments were divided into

an open-response assignment collected on

paper before each lecture and a multiple-choice assignment entered electronically before

each lecture. Four in-semester examinations and a final examination were used to assess

student learning. Laboratory sessions featured a mixture of TA-led demonstrations, small

group problem solving, inquiry-based explorations, and traditional laboratories. Students

were given a quiz during each laboratory session, a lab quiz, to assess their understanding

of the previous homework assignment. The CSEM was used to measure student conceptual

understanding gains and was given as a lab quiz pre and post instruction; both were graded

for credit just as any other lab quiz. All course assignments featured a mixture of concep-

tual and quantitative problems. The course was presented with few modifications during the

period studied. The course was considered effective by the physics department, producing

strong learning gains on the CSEM, high course evaluation scores for the lead lecturer and

teaching assistants, and encouraged many students to elect physics as a major leading to a

strong growth in the number of physics majors graduated [175].

The course studied was both designed to be an excellent learning experience for students
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and a stable research environment for PER. The same lead instructor presented all lectures,

designed all assignments, and oversaw TA training during the time studied. As such, much

of the variation present in many courses was minimized.

5.3.2 Identifying Non-Quantitative Problems

Each problem presented in the course was classified as either quantitative or non-

quantitative using a rubric developed for a National Science Foundation project (DUE-

0535928). This rubric was developed to allow reliable classification while also identifying

all problems presented in popular PER conceptual evaluations as non-quantitative. The

identification of non-quantitative problems was complicated by the existence of conceptual

inventory problems requiring some mathematics (for example, if the distance between two

point charges is doubled, how does the electric force change?) or problems that were only

superficially quantitative (for example, an object with radius 4 cm and volume charge density

3µ C/m3 is stationary at the origin, what is the magnetic field at a point 10 cm along the

positive y axis?). The last example contains numbers but requires no calculation and could

be converted into a problem that would be identified as quantitative by modifying it to

require numeric calculation (for example, an object with radius 4 cm and volume charge

density 3µ C/m3 is stationary at the origin, what is the electric field at a point 10 cm along

the positive y axis?). The rubric was constructed and tested on problems found in popular

textbooks. Three raters applied the rubric to problems found in seven textbooks achieving

96% agreement. One rater then used the rubric to classify all problems presented in the

course studied.
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5.3.3 Evaluation Environment

The class required students to complete a variety of assignments: homework, quizzes

completed in lecture (lecture quizzes), quizzes completed in the laboratory (lab quizzes),

and in-semester examinations. Lecture quizzes and homework were often completed coop-

eratively and, therefore, could not be used as individual measures of understanding. Lab

quizzes and in-semester examinations were administered so that each student worked individ-

ually. In-semester examinations were composed of both open-response and multiple-choice

problems; only the multiple-choice test problems were analyzed in this study. The multiple-

choice test problems were fairly evenly divided between qualitative (non-quantitative by the

above rubric) and quantitative problems. The average of the qualitative multiple-choice

test problems is denoted as “Test Qualitative” or “TestQual.” The average of the quantita-

tive multiple-choice test problems is denoted as “Test Quantitative” or “TestQuant.” Lab

quizzes were composed primarily of conceptual problems designed to evaluate the student’s

understanding of the previous homework assignment (not the lab they had just completed).

They were taken on computers in the lab room during the lab session. The average of the

qualitative lab quiz problems is denoted by “Lab Qualitative” or “LabQual.” There were

insufficient numbers of quantitative lab quiz problems for analysis. The CSEM pretest and

post-test were administered and graded as lab quizzes, and therefore, the Lab Qualitative av-

erage measured a second set of qualitative problems given under the same testing conditions

as the CSEM.

This study will, then, evaluate the average score for male and female students on five

collections of problems: the CSEM pretest, CSEM post-test, qualitative lab quiz problems,
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qualitative test problems, and quantitative test problems. These problems were administered

to students in two testing environments: the lab quiz environment and the in-semester

examination environment.

All problems were given post-instruction and were specifically designed for the course

(except CSEM problems). As such, all test and lab quiz problems were problems the instruc-

tor believed had been covered during the course. The tests formed approximately 70% of the

course grade, were administered in large lecture theaters, and were therefore a moderately

high pressure experience. Lab quizzes formed only 5% of the course grade, were administered

in lab, and were believed to be a much lower pressure experience.

In the class studied, four in-semester examinations were administrated; only the first

three are included in this study. The last three weeks of the class and the fourth in-semester

examination were devoted to ray optics which is not covered by the CSEM. All ray optics

problems were removed from the analysis so that the coverage of the analyzed lab quiz and

test problems was the same general coverage as the CSEM. No CSEM problem was used in

either the non-CSEM lab quizzes, the in-semester tests, or any other material or assignment

in the class.

5.3.4 Sample

The data was collected from the fall 2007 semester to the spring 2012 semester. Dur-

ing this time, 1,851 students completed the class for a grade (77% male and 23% female).

Students who did not complete all problems on the CSEM pretest or post-test were elim-

inated leaving N = 1, 407 students which formed the sample for the analysis which fol-

lows. Multiple-choice responses to all CSEM pretest, post-test, qualitative lab quiz, and test
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problems were collected from these students which resulted in a dataset containing 199,483

responses: CSEM pretest 45,024, CSEM post-test 45,024, qualitative lab quiz 70,749, quali-

tative test 18,993, and quantitative test 19,693.

5.3.5 Bonferroni Correction

This work will report multiple statistical tests and as such inflation of the Type I error

rate should be considered. The large sample size also makes interpretation of significance

tests problematic and effect sizes will be reported when possible. This work will employ

15 statistical tests. A Bonferroni correction would adjust significance levels with p < .05

becoming p < .0033, p < .01 becoming p < .00067, and p < .001 becoming p < .000067.

Few results will be changed by this correction. Most tests produced significance levels of

p < .001; these results were also significant at the p < .000067 level. Uncorrected p values

will be reported. Tests that would be modified by the correction will be noted as they

are presented in the text. The SEM analysis and the many statistical tests implied by the

analysis were treated as independent and not included in this correction.

5.4 Results

Table 5.2 summarizes the overall averages separated by gender for each problem col-

lection. On average, male students outperformed female students on each set of qualitative

problems including the CSEM pretest (5%), the CSEM post-test (6%), the laboratory quizzes

(3%), and the qualitative problems on the in-semester tests (3%). Male and female students

performed equally on in-semester quantitative test problems. The gender differences were

examined using t-tests. Significant differences between male and female students were found
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Problem Male Students Female Students
Collection (M ± SD)% (M ± SD)%

CSEM Pretest 29± 11 24± 8
CSEM post-test 66± 16 60± 16

Lab Quiz Qualitative 73± 12 70± 13
Test Qualitative 75± 16 72± 18

Test Quantitative 79± 16 79± 16

N 1084 323

Table 5.2: Male and female student averages for different problem collections.

on the CSEM pretest [t(729) = 8.59, p < .001, d = .46], the CSEM post-test [t(531) = 5.92,

p < .001, d = .37], qualitative laboratory quiz problems [t(508) = 3.37, p < .001, d = .22]

and qualitative test problems [t(495) = 2.80, p = .005, d = .19]. Cohen’s d was used to

characterize the effect size for each collection of problems. Effect sizes ranged from a small

effect size for qualitative test average and lab quiz average to small to medium effect sizes

for the CSEM pretest and post-test score. There was no significant difference between male

and female students on the quantitative test problems. The difference between male and

female students on qualitative test problems would not be significant and the difference in

the qualitative lab quiz problems would be significant at the p < .05 level if corrected for

the number of statistical tests performed using a Bonferroni correction.

The dataset was reduced from the 1,851 students who completed the course for a grade

to the 1,407 student sample for this study by the restriction to students who completed all

problems on both the pretest and post-test. If this restriction is relaxed, the pretest and

post-test averages change little. For the 1,788 students who answered any problem on the

pretest, the mean pretest percentage was 27.7% [men 28.6%; women 24.4%] which was very

similar to the scores of the 1,613 students who answered all pretest problems 27.8% [men

28.9%; women 24.4%]. These values are also very similar to the results for students who
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answered all pretest and post-test questions in Table 5.2. For the post-test, 1,665 students

answered any question with an average percentage correct of 64.0% [men 65.2%; women

59.8%]. Of these, 1,582 answered all questions with an average percentage of 64.6% [men

65.8%; women 60.3%], also very similar to the paired results in Table 5.2. Blank questions

were treated as incorrect in this analysis.

5.4.1 The Effect of Pretest Score
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Figure 5.1: The distribution of CSEM pretest scores
for male and female students.

Prior conceptual knowledge was mea-

sured by giving the CSEM as a pretest. A

density distribution of male and female pretest

scores is presented in Fig. 5.1. The male and

female histograms are displaced by the width

of one bar so that the histograms do not over-

lap. The density plots are not displaced. Ta-

ble 5.2 and Fig. 5.1 show that male students have a higher pretest average, but also that
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Figure 5.2: The distribution of CSEM post-test scores
for male and female students.

the male pretest distribution is skewed with

a substantial number of men receiving high

pretest scores. The post-test density distri-

bution is plotted in Fig. 5.2.

To explore the effects of these differ-

ences in pretest scores on students’ perfor-

mance post instruction, the sample was di-

vided into subgroups. The CSEM is a 32-
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problem, 5-response evaluation and, therefore, a student should answer 6.4 problems cor-

rectly if he or she guesses randomly. To produce groups that contained enough female

students for analysis, students were grouped into pretest score ranges (bins) 0-6, 7-8, 9-10,

and 11-12. Too few female students scored 13 or above on the pretest for analysis.

Figure 5.3 presents the average score within each pretest range for male and female

students for each problem collection. Female averages were shifted to the right to increase

readability. The number printed next to the point is the number of students within each

pretest range. For pretest scores between 0 and 8 (bin 0-6 and 7-8), a t-test found no

significant difference between male and female students in the number of correct responses

for any problem collection; therefore, no gender gap exists for pretest scores of 25% or less.

Although a small gap of approximately 2% was observed in the CSEM post-test scores for

students scoring 25% or less on the pretest, this difference was not significant. The gender

gap in CSEM post-test grew rapidly with pretest score. A similar, but weaker, relationship

between pretest score and gender gap was found in both the qualitative test and lab quiz

problem scores. No significant gender gap was found for quantitative test problems; female

students outperformed male students particularly, at the lowest levels of preparation. The

equal quantitative test averages resulted from a greater number of male students with higher

levels of preparation who were not plotted in Fig. 5.3.

5.4.2 Latent Variable Analysis

The qualitative outcomes measured by CSEM post-test score, lab quiz average, and

qualitative test average showed similar behavior when plotted against CSEM pretest score

as plotted in Fig. 5.3. All have small differences at the lowest pretest scores, but a growing
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Figure 5.3: Evaluation Average vs. CSEM pretest: (a) the CSEM post-test, (b) qualitative lab quiz
problems, (c) qualitative test problems, and (d) the quantitative test problems.

difference between male and female outcomes becomes apparent as pretest score increases.

This pattern of increasing gender difference in performance was not observed in the quan-

titative test results. The similarity of the qualitative results suggested that the difference

in qualitative and quantitative performance may be explained by a common latent variable.

This variable should be related to the prior conceptual knowledge required for higher pretest

scores and any cognitive ability that aids in the solution of qualitative problems but does not

contribute to the solution of quantitative problems. As Meltzer noted [176], pretest scores

combine prior knowledge with academic ability. We called the latent variable “Conceptual

Physics Performance/Non-Quantitative” or CPP/NonQnt. CPP/NonQnt was functional-

ized as the part of conceptual performance not explained by overall physics quantitative
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performance measured by quantitative test average. CPP/NonQnt measures the part of the

effect of prior knowledge and conceptual ability that does not result in improved quantitative

performance.

Structural Equation Modeling was used to extract CPP/NonQnt and to assess whether

it is a productive variable for understanding the differences in conceptual performance ob-

served. First, to control for general physics ability, the quantitative test average was used as

the independent variable in regressions against the qualitative dependent variables: CSEM

pretest score, CSEM post-test score, qualitative lab quiz average, and qualitative test aver-

age. A latent variable, CPP/NonQnt, was then introduced and used to predict the qualitative

variables. CPP/NonQnt was required to be orthogonal to the quantitative test average. The

CSEM

Pretest

Test

Qual

Lab

Qual

CSEM

Posttest

0.83 0.63 0.61 0.17

Test

Quant

CPP/

NonQnt
0.19 0.400.380.46

1.12 1.41 2.301.00

0.13

1.00

Figure 5.4: Structural Equation Model for CPP/NonQnt’s
relation to qualitative problem performance.

“laavan” package in the “R” statistical

software system was then used to fit the

model and the result is shown in Fig.

5.4. The rectangles represent measured

variables and the oval an unmeasured

latent variable. The weighting of lines

between observed variables are the lin-

ear regression coefficients. The weight-

ing of lines between latent and observed

variables are the factor loadings. The curved lines represent the variance in each variable.

The resulting model had generally good fit parameters. The chi-squared statistic,

[χ2(2) = 6.21, p = .045], was on the border of that required for rejecting the null hypothesis

of perfect model fit, and near Kline’s χ2/df ≤ 3.0 [139] rule of thumb for good model fit.
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The null model for the chi-squared test of perfect model fit is not well aligned with the

research question which explores the efficacy of a single latent CPP/NonQnt variable; this

assumption is expected to be only approximately true as CPP/NonQnt must certainly be a

multidimensional construct. All other criteria were well within the range of good model fit:

RMSEA = .039, SRMR = .012, and CFI = .997. The 90% confidence interval of the RMSEA

was .005 to .075. All regression coefficients, factor loadings, and variances were significant

(ps < .001). As such, the model fit statistics suggest the latent variable CPP/NonQnt

produced a model that improves upon a model without the latent variable.

Male

Female
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Figure 5.5: The distribution of male and female stu-
dents’ CPP/NonQnt.

The distribution of male and female

CPP/NonQnt is shown in Fig. 5.5; a den-

sity plot of each distribution is also included.

The CPP/NonQnt calculated by SEM was

normalized by subtracting the mean and di-

viding by the standard deviation. The dif-

ference in CPP/NonQnt between male and

female students shown in Fig. 5.5 was sig-

nificant [t(517) = 7.0, p < .001; male students M = .10, SD = 1.00 and female students

M = −.34, SD = .98]. Because CPP/NonQnt is normalized, differences may be inter-

preted as Cohen’s d effect size and, therefore, the difference between the male and female

CPP/NonQnt, .44, represents a small to medium effect size.

The binning used in Sect. 5.4.1 was repeated in Fig. 5.6 which demonstrated a growing

difference in CPP/NonQnt with CSEM pretest score, as well as an approximately linear

relation between male pretest scores and CPP/NonQnt. The relation of pretest score to
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Figure 5.6: CPP/NonQnt vs. CSEM pretest score.

CPP/NonQnt for women was approximately

flat for pretest scores of 7 or more. Correla-

tion analysis was used to explore this quali-

tative difference. The correlation r between

between pretest score and CPP/NonQnt was

smaller for women, r = .20 [t(321) =

3.57, p < .001], than for men, r = .41

[t(1082) = 14.86, p < .001]. As such, pretest

score explained 17% of the variance in CPP/NonQnt for men, but only 4% for women. The

correlation between CPP/NonQnt and pretest score for female students would not be signif-

icant if corrected for the number of statistical tests performed using a Bonferroni correction.

The differences in CPP/NonQnt were compared for the students with the lowest pretest

scores. Combining students with pretest scores of 0 to 8, male and female students had

significantly different CPP/NonQnt [t(400) = 2.4, p = .018]; however, this would not be

significant if the p threshold was corrected for the number of statistical tests performed with

a Bonferroni correction.

While the plots in Fig. 5.3 and 5.6 are similar, their interpretation is quite different.

Fig. 5.6, and the correlation analysis, suggests that the CSEM pretest scores should be

interpreted differently for male and female students with the same pretest score indicating

higher CPP/NonQnt for male students.

Figure 5.7 presents a plot of the CSEM post-test percentage for men and women for

each CPP/NonQnt quartile; the quartile was calculated aggregating male and female scores.
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Figure 5.7: CPP/NonQnt Quartile vs. CSEM post-
test score.

Male and female students’ post-test scores

were indistinguishable in each quartile. As

such, the growing gender gap observed for

all sets of conceptual problems is identified

as a result of the differences in the degree

to which the CSEM pretest accurately mea-

sures CPP/NonQnt for men and women.

If the overall distribution of CPP/

NonQnt aggregating male and female students is divided into quartiles, 15% of female stu-

dents and 28% of male students fall in the highest quartile as shown in Table 5.3.

A t-test comparing women in the 1st quartile and women in the 2nd and 3rd quartile

did not demonstrate a significant difference; therefore, lower and moderately prepared female

students are statistically indistinguishable by pretest scores. These students represent 85%

of all female participants.

1st Quartile 2nd/3rd Quartile 4th Quartile

Male Students

N 230 550 304
Percentage 21% 51% 28%
M ± SD 7.4± 2 9.0± 3 11.1± 4

Female Students

N 122 153 48
Percentage 38% 47% 15%
M ± SD 7.3± 3 7.7± 2 9.0± 3

Table 5.3: Male and female student CPP/NonQnt by quartile.
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5.4.3 Distribution Analysis

The observation that pretest scores were more correlated with CPP/NonQnt for male

students than female students—that pretest scores measure CPP/NonQnt differently for

men and women—warrants further investigation. Figure 5.1 shows the density distribution

of CSEM pretest scores for both male and female students. The pretest scores were very

low and, as such, it should be expected that some of the students, who have little knowledge

of the material, were guessing. To attempt to understand the differing correlations for men

and women, a sequence of models combining binomial distributions representing guessing

behavior and normal distributions representing prior knowledge were fit to the distribution

of male and female students’ pretest scores as shown in Fig. 5.8(a) and (b), respectively.
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Figure 5.8: Model fits for the probability distributions of CSEM pretest scores for (a) male students and (b)
female students.

The dashed lines in Fig. 5.8 show the result of fitting only a binomial distribution,

B(x; p = .2), representing pure guessing with probability of success p = .2 and pretest score

x. The pure guessing model was a relatively good fit for female pretest scores. While the fit
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was not perfect for men, the mean and standard deviation were not that dissimilar from the

observed distribution for male students. The solid lines in Fig. 5.8 plot the result of fitting

the model

P (x) = pb ·B(x; p = .2) + pn ·N(x;µn, σn) (5.1)

which mixes a binomial distribution with a normal distribution where pb is the fraction

of students who are guessing, pn are the fraction of students demonstrating some prior

knowledge, and N(x;µn, σn) is a normal distribution with mean µn and standard deviation

σn.

Fitting Eqn. 5.1 with pb + pn = 1 yielded pb = .40, pn = .60, µn = 8.83, and σn = 2.99

for the male students. For the female students the fit resulted in pb = .23, pn = .77,

µn = 6.67, and σn = 2.36. The curve representing Eqn. 5.1 substantially improves the fit to

the male distribution of pretest scores, as shown in Fig. 5.8(a); however, this model did little

to improve model fit over the binomial distribution for female students. The mean extracted

for the normal distribution for women, 6.67, was very close the mean of the binomial guessing

distribution, 6.40. The difference between the binomial and binomial/normal distribution

fit for male students suggests that the CSEM can discriminate between male students who

exhibit some prior knowledge and those who are guessing. However, for female students the

CSEM pretest could not discriminate between those with some prior knowledge and those

who were guessing. This analysis explains the qualitative differences in the male and female

plots in Fig. 5.6 and the differences in the correlation of CPP/NonQnt and pretest score.

The somewhat lower preparation of women shifts their distribution of pretest scores slightly
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so that it was less distinguishable from guessing than the male pretest score distribution.

As such, the pretest scores of female students provide less information about the incoming

knowledge state of the student because of the similarity of pretest results of students with

moderate prior knowledge to those with no prior knowledge. This result is almost certainly

dependent on the student population; a student body with higher average levels of prior

preparation might produce different results.

5.5 Discussion

This study sought to answer four research questions; these will be addressed in the order

proposed.

RQ1: Does student performance on the CSEM show evidence of a gender gap in the

course studied? A gender gap of 5% was found in the CSEM pretest and 6% on the post-test.

Both these gaps represented small to medium effect sizes. These gaps were consistent with

the gaps observed in a large study (N = 2, 000) [74] of the BEMA, but inconsistent with the

negative gender gap observed by Pollock (N = 168) [51]. The growth of the gender gap from

pretest to post-test was consistent with Kohl and Kuo, but of a smaller magnitude [73]. The

failure of this study to reproduce the negative gender gap in Pollock could be the result of

the less well academically prepared population in this study or differences in instruction.

RQ2: How does the difference in male and female performance on the CSEM compare

with those observed in other problems assigned in the course? Are differences consistent be-

tween qualitative and quantitative problems? Are differences consistent between low and high

stakes testing conditions? Table 5.2 shows the gender differences found in CSEM pretest
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and post-test scores were also present in the other qualitative problems presented in the

class; however, the differences were smaller for the other problems (3% for both lab quiz

and qualitative test problems). Both these differences represented a small effect size. Male

students outperformed female students on qualitative problems in both the low stakes lab

quiz environment and the higher stakes in-semester test environment at about equal rates

suggesting that neither the testing rules (low or high stakes) nor the stress of the testing

situation were the cause of the gender gap. There was no significant gender gap in the stu-

dents’ quantitative test performance which provides evidence that the gender gaps observed

in the qualitative performance were not the result of general differences in physics ability

between male and female students. The CSEM was given in the lab quiz environment, and

as such, the larger CSEM post-test gap cannot be attributed to the testing environment.

RQ3: Are these differences dependent on the student’s CSEM pretest score? Figure 5.3

shows that the gender gap was very small at lowest levels of pretest score. No statistically

significant difference in CSEM post-test, qualitative lab quiz average, or qualitative test

average was found for students with CSEM pretest scores of 25% or less. The gender gap

grew with pretest score for all qualitative problem collections. The growth of the gender gap

was most pronounced in the CSEM post-test. This result was completely different than that

observed by Kost-Smith, Pollock, and Finkelstein [74] where the gender gap disappeared

if students were binned by FMCE post-test scores. It was also different than the CSEM

normalized gain results of Kohl and Kuo who found a fairly consistent gender gap, except in

the lowest pretest bin [73]. The growth of achievement gaps with increasing student ability

has been well documented [86]; however, the failure to observe any gap in quantitative test

scores suggests the growing gender gap observed for qualitative problems had an origin other
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than in cognitive differences. The students in the Kost-Smith, Pollock, and Finkelstein study

should be substantially more academically prepared than those in this study; in fact, Kost-

Smith, Pollock, and Finkelstein [74] report a very small pretest gap. Their failure to observe

the growth of the gender gap with pretest score could possibly be explained by a somewhat

better prepared female student population which pushed the pretest scores into a range

where they were equally predictive of CPP/NonQnt for men and women. The distribution

analysis indicates that a small shift in pretest score (Figure 5.8) could be enough to greatly

change the predictive power of the CSEM pretest.

RQ4: If a single latent variable is constructed to measure the difference in qualitative

and quantitative performance, how does this variable differ by testing conditions? How does

this variable differ for male and female students? SEM demonstrated that a latent variable,

CPP/NonQnt, which captured the part of performance on qualitative problems that was not

explained by quantitative test average produced a model with good fit. The latent variable

had approximately equal effect on qualitative test average, lab quiz average, and CSEM

pretest. The variable had a much stronger relation with CSEM post-test scores.

Average male CPP/NonQnt was .44 standard deviations higher than female CPP/NonQnt.

If the distribution of CPP/NonQnt was divided into quartiles, 13% more male students were

in the highest quartile and 17% more female students were in the lowest quartile. This

overrepresentation of women in the lowest CPP/NonQnt quartiles is consistent with other

research binning students by pretest scores [74, 75].

The CSEM pretest score was more weakly correlated with CPP/NonQnt for female

students, r = .20, than for male students, r = .41. Analysis of the pretest probability distri-

bution suggested that this resulted from the somewhat lower level of female prior knowledge
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shifting the pretest distribution of moderately prepared women closer to the the pure guess-

ing distribution. If CPP/NonQnt rather than pretest score is employed to bin students no

post-test gender gap exists (Fig. 5.7).

The growing gender gap with pretest score for all qualitative problem collections is well

explained by the differential predictive power of CSEM pretest scores for men and women.

This also explains the variability in the pretest binning results as the CSEM is applied to

academic populations with different levels of preparation. The different correlation of the

CSEM pretest scores with CPP/NonQnt for men and women, however, cannot explain the

gender differences in the averages of the CSEM pretest, post-test, qualitative lab quizzes,

and qualitative tests.

In the introduction, many potential causes for the gender gap observed in the average

scores on conceptual instruments in physics were reviewed. This study was not experimen-

tal and cannot conclusively eliminate many of these causes, but pattern of averages of the

different problem collections makes many of these explanations difficult to support. Psycho-

logical explanations involving differing responses to testing by gender through math anxiety

[93, 94], science anxiety [97], or stereotype threat [110] cannot explain why these reactions

would occur for qualitative test problems but not quantitative problems on the same test.

The failure to find evidence for stereotype threat for this student population further explains

the inability to reliably reproduce the effects of interventions to eliminate stereotype threat

[177–179] and the failure to detect a relationship between the fraction of women in a class and

gender gaps [63]. It seems likely that if efforts to reduce stereotype threat were implemented

in the class studied, the gender gap would not be affected.

The observed differences are also difficult to explain by the intrinsic gender fairness
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of the CSEM instrument. The gender fairness of some FCI items has been questioned

[117, 118], and in Chapter 6 we will show that CSEM items are generally fair. At pretest

scores of 25% or less, no significant gender gap was found. Students who scored less than

25% on the pretest performed more weakly on other class assessments, but the effect was

fairly small. It is possible that an intrinsic CSEM gender bias that impacts only the highest

performing pretest students exists. This possibility is made less likely by the observation of

approximately similar gender gaps in qualitative lab quiz and test scores which did not use

CSEM problems.

It is also difficult to resolve the results of this study with an explanation involving

cognitive differences between men and women in the ability to solve qualitative physics

problems. Cognitive differences vary strongly with the kind of cognitive task [76]. It is

possible that men are intrinsically, either through biology or socialization, superior at the

combination of verbal, logical, and graphical skills required to solve qualitative physics prob-

lems. This explanation seems unlikely; quantitative physics problems like those given in the

class studied also require verbal, logical, and graphical reasoning skills, but no gender gap

was observed in quantitative problem solving. The quantitative test problems represented a

spectrum from problems solvable by substituting numbers into the correct formula to chal-

lenging applications of Gauss’ law where abstract symbolic and graphical reasoning were

required. Further, while male superiority in spatial reasoning [87, 88] could impact some

qualitative items, one would expect that female superiority at verbal reasoning [89] would

be the most important cognitive aspect which differed between qualitative and quantitative

problems. As such, one would expect female students to have a cognitive advantage over

male students on conceptual problems. No evidence of cognitive abilities differentiated by
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gender and unique to conceptual physics problems currently exists; however, research into

this aspect of cognition is sparse.

There is at least one explanation for which the observed pattern of averages would be

expected. The CSEM pretest is a test of prior knowledge of electricity and magnetism; the

problems cannot be answered intuitively without knowing the physical laws. Naturally, a

student’s academic ability also plays a role, but even a very highly performing student would

do poorly on the CSEM if they had no knowledge of the physics tested. The gender gap

could be explained by the differences in physics class taking patterns of male and female

high school students [66] and differences in informal learning experiences. Both the large

CSEM post-test gap and the weaker relation between CPP/NonQnt and qualitative quiz and

test averages than with CSEM post-test score could be explained by women overcoming the

differences in background while in the class, but men having an advantage on a standardized

instrument where coverage was not fully aligned with the class. The large CSEM post-test

factor loading in the SEM model could also result if the opportunity to relearn the material

instead of learning it for the first time was important in post-test results [83]. Further

research should be able to test this conjecture. This interpretation is not fully supported

by the work of Kost-Smith, Pollock, and Finkelstein [74] who did not find the years of high

school physics taken as a productive variable in predicting post-test scores; however, their

analysis used pretest score as a independent variable and, as the authors suggest, high school

physics may already have been accounted for in this variable.

Either formal or informal prior physics learning experiences could affect physics per-

formance in many ways. These experiences may produce higher pretest scores, but they

may also allow students to master conceptual material more easily by relearning instead of

97



learning for the first time [83]. They may produce higher post-test scores on standardized

instruments by filling in holes in coverage. They may also produce more complex interactions

such as allowing students retaining misconceptions to confront them again from a different

perspective.

This study contributed additional support to previous work showing that mastering

quantitative and qualitative problem solving require different learning processes. Students

in this sample performed differently on quantitative and qualitative problems given in the

same testing environment. The prevalence of poor conceptual performance in non-interactive

classes [30] as well as specific experiments investigating the effect of quantitative problem

solving on conceptual learning suggest conceptual and quantitative learning are somewhat

different processes [180].

5.6 Implications for Instruction

The observation that CSEM pretest scores predict CPP/NonQnt and outcomes on

qualitative assignments differently for male and female students suggests that pretest scores

should be used with caution for instructional decisions such as establishing lab groups or

assigning remedial material. The observation that pretest scores are more highly correlated

with CPP/NonQnt for men than for women also suggests that the CSEM pretest may be less

accurate for women than for men [140, 142]; that is, a pretest score provides less information

about female students than male students. This conclusion is supported by the analysis of

the pretest distributions in Sec. 5.4.3.

The persistence of gender gaps for all qualitative problem collections within the course
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presents a substantial challenge for instruction. Higher levels of CPP/NonQnt benefit stu-

dents at all points in the course; however, the differences in CPP/NonQnt observed in

men and women imply this benefit is not equally distributed for students of different gen-

ders. Whether differences in CPP/NonQnt arise from documented differences in high school

course taking or less well understood differences in informal education or cognitive processing,

women in this dataset on average have a disadvantage in the physics class when presented

with a qualitative problem. CPP/NonQnt loads as strongly on qualitative test average as

it loads on pretest score; therefore, differences in CPP/NonQnt have lasting negative effects

for women even post instruction. It is possible that some optional or adaptive remedial

strategies could allow women to close the conceptual gap with men. For example, additional

qualitative homework problems could be recommended as exam study aids to the entire class.

More practice in this area would benefit most students, but could disproportionately help

those with lower CPP/NonQnt, which would include many women in this sample but also

students who had less high school preparation or less access to informal learning experiences.

The reality is that students in introductory physics courses have extremely variable

levels of preparation. The differences identified in CPP/NonQnt between men and women

present additional instructional challenges because of a potential interaction between self-

efficacy [181] and CPP/NonQnt where male students seem to learn the material more easily

because of prior preparation in physics. This could cause women, already with lower self-

efficacy toward science [182], to fail to develop self-beliefs consistent with their accomplish-

ments and ability; these women may choose to leave science or engineering careers. This

effect has been found in computer science, a field with comparably poor performance in

attracting and retaining women [65]. Self-efficacy has been demonstrated to be important
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in retention [183] and is one of the strongest psychological correlates with academic perfor-

mance [184]; therefore, it is important as instructional strategies mix students with differing

prior knowledge that appropriate support is provided for students who come to the class

with less prior knowledge.

5.7 Limitations and Future Directions

This study was performed at a single institution and therefore its results may be specific

to the student population or instructional strategy at that institution. The analysis was

correlational rather than experimental; additional work is required to understand the relation

of CPP/NonQnt to high school preparation, informal learning experiences, and college class

taking. Furthermore, additional research is needed to explore whether differences exist in

conceptual physics ability differentiated from general physics ability.

The observation that differences in conceptual performance are not related to differ-

ences in performance on quantitative problems requires further research. It is unclear if

the results of this study would be altered if the pretest and post-test were quantitative and

qualitative test performance was used as the control.

The lead instructor of the course was male for all semesters studied. Some research

suggests a significant, but weak relationship between the instructor’s race or gender and the

persistence of students in STEM for students of the same race or gender [185]. Instructor

gender effects were also observed in one of the course sections in the Kost-Smith et al. study

in which female students outscored male students on participation and homework, but male

students scored higher on exams for most semesters studied [74]. In the only lecture section
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taught by a female instructor, gender differences in exam scores were insignificant. Additional

research is needed to determine if the results of the current study would be modified if the

lead instructor were female.

5.8 Conclusions

In this study, gender differences in the CSEM were examined and a 5% gender gap

on the pretest was found; the gender gap was 6% on the post-test. This gender gap was

also analyzed in other assignments throughout the course: qualitative lab quiz problems,

qualitative test problems, and quantitative test problems. The gender gap that was present

in the CSEM was also present for the other qualitative problem collections studied. Male

students outperformed female students by 3% on both qualitative lab quiz problems and

qualitative test problems suggesting that testing environment was not an important source

of the gender gap. Male and female students performed equally on quantitative test problems

and, therefore, the gender gaps were not a result of general differences in physics ability. The

equal performance of men and women on the quantitative test questions also suggests the

differences observed in the qualitative questions do not result from psychological factors

such as math or science anxiety or stereotype threat. The gender gap for all qualitative

problem collections was insignificant for students with a pretest score of 25% or less. The

failure to identify a gender gap in either the CSEM pretest or post-test for the least prepared

students suggests that there is not an intrinsic gender bias in the CSEM instrument. The

gender gap grew with CSEM pretest scores. SEM showed that a latent variable called

Conceptual Physics Performance/Non-Quantitative, CPP/NonQnt, which captured the part
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of qualitative physics performance not explained by quantitative test average, was productive

in explaining the variance in the four qualitative problem sets studied: CSEM pretest, CSEM

post-test, lab quiz, and in-semester examination. Male pretest scores were more highly

correlated with CPP/NonQnt than female pretest scores and, as such, the pretest is more

predictive of CPP/NonQnt for men than for women.
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Chapter 6

Gender Fairness of Physics Conceptual Inventories∗

While the previous chapters explored differences in performance between male and

female students, this chapter will explore intrinsic bias in the conceptual inventories them-

selves.

∗This project was supported in part by the National Science Foundation as part of the evaluation of
improved learning for the Physics Teacher Education Coalition, PHY-0108787 and Grant No. EPS-1003907.
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The properties and performance of the most commonly used conceptual inventories

constructed by physics education researchers have been studied through factor analysis [186–

188], item response theory [189–192], and network analysis [193]. Most of these studies,

however, have been performed using the FCI [21] and have only explored the structure and

validity of undifferentiated samples. Substantially less research has been performed exploring

the structure and validity of the FMCE [22], the CSEM [23], or the BEMA [24].

This chapter will examine the validity and fairness of the FCI, FMCE and CSEM using

the validation framework proposed by Jorion et al. [142] for the evaluation of the validity of

engineering conceptual inventories. The Jorion et al. framework begins with an examination

of CTT difficulty and discrimination to identify items outside of the suggested range on these

measures; these items pose reliability and validity problems for the instrument. IRT is then

applied to further understand item functioning. Reliability is assessed with Cronbach alpha

and inter-item correlations. Although not presented in this manuscript, factor analysis is

then applied to understand sub-scale reliability.

This work will suggest an extension of the framework to include an item fairness analysis

using Differential Item Functioning (DIF) analysis. The Educational Testing Service [194,

195], the American Educational Research Association (AERA), the American Psychological

Association, and National Council on Measurement in Education [196] suggest that fairness

analysis is a crucial step in instrument construction and, further, suggest DIF analysis as

one part of fairness analysis. Item and instrument fairness is a sometimes contentious topic

[197]. This work will adopt a narrow definition of fairness; an item will be considered fair

if it demonstrates negligible DIF; that is, if the item performs identically for two groups of

students with equal ability on the material tested.
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6.1 Gender Fairness within the Force Concept Inventory∗

6.1.1 Introduction

Soon after the publication of the FCI, the reliability and validity of the instrument

was questioned because the factor structure suggested by the authors was not recovered by

exploratory factor analysis [186, 199, 200]. Exploration of the FCI factor structure has con-

tinued. In 2012, Scott, Schumayer, and Gray performed an exploratory factor analysis [187]

which suggested a five-factor solution. Scott and Schumayer [192] supported this analysis

on the same dataset with multitrait item response theory (MIRT).

CTT item difficulty and discrimination have been examined for the FCI. Wang and

Bao identified three items to be problematic because they were too easy (P > 0.8) (items

1, 6, and 12) and two items were problematic because they were too challenging (P < 0.2)

(items 17 and 26) [190]. Morris et al. also examined the FCI post-test items and found items

5, 17, and 26 were too challenging [201]. A study performed by Osborn Popp, Meltzer, and

Megowan-Romanowicz was the only study to report item-level statistics for male and female

students separately; post instruction, items 1, 6, and 16 were too easy for male students

while item 26 was too challenging for female students [202].

The item-level properties of the FCI have also been examined using IRT [191, 202,

190, 192]. Wang and Bao explored the FCI at the item level using a three-parameter item

response model (3PL model) [190]. In general, the 3PL IRT model fit the FCI data well.

Planinic analyzed the FCI using the Rasch model and also found the FCI items functioned

∗This manuscript is the first of two papers in Physical Review Physics Education Research. The research
on this section has been published [198]. My role for the publication consisted of performing the various
analyses and writing the results and discussion. I had primary responsibility for the production of this part
of the work; however, the full publication was a collaborative effort with the co-authors.
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properly [191].

The reliability of the FCI has been explored as well. Lasry et al. found the FCI

demonstrated high internal consistency for both the initial application and the combination

of the initial application and a retest that was given a week later [203]. Henderson also

showed that the FCI has high test-retest reliability by examining the reliability between a

graded post-test during the first quarter of introductory physics and an ungraded test given

three weeks later during the second quarter of introductory physics [204].

Overall, while the structure and validity of the FCI is still a topic of active research,

most studies have shown that most FCI items perform properly and can be well-modeled by

IRT; however, most studies treat the sample as undifferentiated and do not examine male

and female students separately.

6.1.2 Research Questions

• RQ1: Are there FCI items with difficulty, discrimination, or reliability values that

would be identified as problematic within CTT or IRT? If so, are the problematic

items consistent for male and female students?

• RQ2: Are there FCI items where the CTT or IRT difficulty is substantially different

for male and female students?

• RQ3: Are there FCI items which DIF analysis identifies as substantially unfair to men

or women?

• RQ4: Are unfair FCI items identified by item analysis?
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• RQ5: Can differences in answering by men and women for problematic items be ex-

plained by an underlying physical principle or misconception?

• RQ6: If small to moderate and large effect DIF items are removed from the FCI, how

does the gender gap change?

6.1.3 Methods

Samples

This study employs three datasets collected at four US universities. Racial/ethnic

demographics were not available for individual students in the data and therefore, will be

reported at the university level.

Sample 1: Sample 1 was collected from a large, southern land-grant university en-

rolling approximately 25,000 students. In 2012, university demographics by race/ethnicity

were 79% white, 5% African American, 6% Hispanic, with other groups each 3% or less of the

undergraduate population. It had a Carnegie classification of “Highest Research Activity”

(or its precursor, “R1”) for the entire period studied. The range of ACT scores (25th per-

centile to 75th percentile) for the undergraduate population was 23-29 [173]. The sample was

collected from the spring 2002 semester to the fall 2012 semester. The dataset contains 4,509

complete pretest responses (22.8% female) and 4,716 complete post-test responses (23.1%

female).

The FCI was applied as a pretest and post-test in the introductory calculus-based

mechanics class taken by scientists and engineers. Students received credit for a good faith

effort on the pretest and received a grade on the post-test. The course was presented in
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the same format over the period studied and was overseen by the same lead instructor

for all semesters studied. This instructor created all course materials including tests and

homework assignments and was the lead lecturer for approximately 75% of the semesters

studied. For the other semesters, a graduate student or visiting instructor familiar with

the course delivered the lecture from the overall lead’s notes. The course was presented

with two 50-minute lectures and two 2-hour laboratory sessions each week. The lecture

and laboratory components were tightly integrated. The lecture was traditional while the

laboratory featured a combination of research-based methods including small -group problem

solving, hands-on open or guided inquiry, and TA-led demonstrations, as well as traditional

experiments. The course was revised to employ research-based techniques two years before

the data collection for this study began. The revised course produced strong conceptual

learning gains (Table 6.1) and was presented with few additional changes for the period

studied. Because of the longitudinal stability of course oversight, content, and structure,

this sample does not contain some of the confounding factors such as varying instructors

bringing different coverage and class policy that might be present in other large datasets.

Sample 2: Sample 2 was drawn from two large urban public universities in the mid-

western United States with similar student profiles (primarily regional commuter students

with a moderate range of admission test scores). In 2014-2015, the first university in the

sample had racial/ethnic demographics of 71% white, 13% African American, 7% interna-

tional, with other groups 4% or less. The second university was 72% white, 10% African

American, 6% Hispanic/Latino, with other groups 4% or less. The combined data contained

901 complete pretest responses (23.5% female) and 649 complete post-test responses (25.3%

female). This sample includes data from fall 2014 to spring 2016 from several instructors.

108



Instructional styles ranged from traditional lecture, to moderately interactive lectures us-

ing Peer Instruction [25], to heavily interactive classes using Peer Instruction, Just-in-Time

Teaching [205], and cooperative group problem-solving. Neither institution held a Carnegie

classification of “Highest Research Activity” for the period studied. The range of ACT scores

(25th percentile to 75th percentile) for one of the two institutions was 18-25 [173]. The other

institution had a range of SAT scores (25th percentile to 75 percentile) of 890-1,130 which

is equivalent to the 18-25 range of ACT scores [173].

Sample 3: Sample 3 was collected from a large eastern land-grant university en-

rolling approximately 30,000 students in the spring 2015 semester. In 2015, the university’s

racial/ethnic demographics for undergraduates were 81% white, 5% African American, 6%

international, with all other categories 4% or less. Data collection was part of an effort

to produce cross-norming data with an alternate mechanics conceptual evaluation routinely

given at the institution and to explore the effects of distractor patterns on test performance

[206]. Students received course credit for a good faith effort. Minor modifications (reordering

the distractors) were applied to the FCI and found to have no significant effect. The FCI was

applied to both the introductory, calculus-based mechanics and electricity and magnetism

classes and therefore this sample contains a longitudinal component; the electricity and

magnetism students had a larger time gap between instruction and testing than the mechan-

ics students. The dataset contains 443 complete post-test responses (19% female); pretest

data were not collected for Sample 3. This institution received the Carnegie classification

of “Highest Research Activity” in the semester following the collection of the sample. The

range of ACT scores (25th percentile to 75th percentile) for the undergraduate population

was 21-26 [173].
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The samples will be examined separately. The different post-test scores, instructional

environments, and student populations (measured by ACT scores) did not suggest aggre-

gating the samples would be productive. Further, because Sample 1 was much larger than

Sample 2 and 3 combined, the aggregated dataset would largely produce the same results as

Sample 1.

FCI Items

This and other studies have identified items which may be unfair either to men or

women; a brief description of the most consistently identified items is provided. Item 6 is a

Newton’s 1st law problem about a ball after it has exited a circular track. Item 9 is a part of

a group of items referring to a hockey puck sliding on a frictionless horizontal surface with

a constant velocity. Item 9 asks about the speed of the puck just after it receives a kick.

Item 12 asks about the trajectory of a cannon ball fired with initial velocity parallel to the

ground. Item 14 asks about the trajectory of a bowling ball dropped from an airplane. Item

15 is a Newton’s 3rd law problem involving a small car pushing a large truck. Items 21-24

are a group of questions about a rocket that is drifting sideways as its engine is turned on;

the problems ask for the trajectory and change in speed with the engine on (21 and 22) and

with the engine off (23 and 24). Item 27 asks how a box being pushed across the floor comes

to a stop when the pushing force is removed.

Bonferroni correction

This work reports the statistical significance of many quantities and thus performs

many statistical tests. A Bonferroni correction was applied to each set of analyses: p < 0.05
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to p < 0.0017, p < 0.01 to p < 0.00033, and p < 0.001 to p < 0.000033 to correct for the 30

statistical tests performed for the 30 FCI items.

6.1.4 Results

Male Students Female Students

N N (M ± SD)% N (M ± SD)% d

Sample 1

Pretest 4509 3482 43± 18 1027 32± 14 0.69
Post-test 4716 3628 73± 17 1088 65± 18 0.46

Sample 2

Pretest 882 673 43± 20 209 31± 15 0.66
Post-test 610 464 57± 24 146 45± 18 0.56

Sample 3

Post-test 443 361 64± 20 82 51± 19 0.69

Table 6.1: Pretest and post-test averages for all samples. Mean M and standard deviation SD are reported
as percentages. No pretest was given in the Sample 3 classes. Cohen’s d measures the effect size of the
difference between male and female scores.

Table 6.1 presents overall FCI pretest and post-test averages for the three samples.

Significant gender differences (ps < 0.001) were measured for all applications of the FCI, with

Cohen’s d [130] indicating small to medium effect sizes. For Sample 1, course letter grades

were available for about two-thirds of the participants. For this subset, female students (M =

3.43, SD = 0.75) had somewhat higher grades measured on a four-point scale than male

students (M = 3.24, SD = 0.89) whereM is the mean and SD the standard deviation. While

there is substantial literature showing superior female performance on class grades [78] and

superior male performance on standardized quantitative instruments [207, 86], this provides

evidence that there was not a substantial disparity between male and female academic ability

in Sample 1. The three samples present a spectrum of course outcomes with Sample 1
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generating the highest scores on the FCI and Sample 2 the lowest. For Sample 1, female

students closed the pretest gender gap of 11% somewhat to a post-test gap of 8%, while the

gap changed little in Sample 2 from 12% on the pretest to 11% on the post-test.

Reliability and Correlation Analysis

As discussed in Chapter 3, Cronbach’s alpha provides a measure of the overall reliability

of an instrument. For Sample 1, the FCI was reliable with α = 0.84 overall, male students

α = 0.84, and female students α = 0.83. For male students, dropping item 29 increased

alpha, while there was no item that could be removed to increase alpha for female students.

For Sample 2, overall α = 0.90 with α = 0.91 for men and α = 0.81 for women. For male and

female students, there was no item whose removal increased alpha. For Sample 3, overall

α = 0.86: with α = 0.85 for male students and α = 0.82 for female students. Removing item

15 increased the overall alpha for both male and female students. These reliability values

were consistent with those reported in Lasry et al. [203] and show that the FCI has strong

internal consistency across a variety of instructional settings.

To further investigate reliability, the Pearson correlation coefficient between items was

calculated. In general, if a student answers one item on a test correctly, the probability of an-

swering a second item correctly should increase; item scores should be positively correlated.

Jorion et al. [142] calculated tetrachoric correlations which assume the dichotomous vari-

able, whether the question was correct or incorrect, was derived from an underlying normal

continuum. This assumption seems unnatural for multiple-choice physics questions where

the student must either answer completely correctly or incorrectly. Instead, the Pearson

correlation was calculated for two dichotomous variables; the Pearson correlation is the φ
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coefficient [140]. Tetrachoric correlations were also calculated and in all cases had absolute

values greater than |φ|. The significantly negatively correlated (p < 0.05) item pairs in

Sample 1 were: male students, {23, 29} and {29, 30} and female students {8, 21}, {15, 27},

and {29, 30}. In Sample 2, there were no significantly negatively correlated item pairs for

male students; for female students, only items {12, 29} were significantly negatively corre-

lated. For Sample 3, no question pairs were negatively correlated for men, while {7, 15} and

{9, 12} were significantly negatively correlated for women. Both the correlation analysis and

Cronbach’s alpha support the identification of item 29 as problematic. Many of the items

which were negatively correlated are identified as unfair in subsequent DIF analysis: items

9, 12, 15, 21, 23, and 27.

Difficulty and Discrimination

CTT and IRT were employed to examine the difficulty and discrimination of the FCI.

Item-level post-test results for Sample 1 are presented in Table 6.3 and difficulty plotted

in Fig. 6.1. The table presents the mean CTT difficulty P , CTT discrimination D, IRT

difficulty b, and IRT discrimination a, for each FCI item. The CTT difficulties for Sample

2 and 3 are plotted in Fig. 6.2. Male and female students were investigated separately. The

standard deviations for the CTT parameters were calculated by bootstrapping using 1000

sub-samples. Table 6.2 presents the problematic items identified in the FCI for each sample.

Critically, many of the problematic items flagged for female students in Table 6.2 were not

detected when the data remained aggregated over gender.

For Sample 1, all problematic items in the pretest had P < 0.2 (very hard) while all

problematic post-test items had P > 0.8 (very easy). In Sample 2, all problematic pretest
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items had P < 0.2 while problematic post-test items for male students had P > 0.8 and

problematic post-test items for female students had P < 0.2 (items 17 and 26) or D < 0.2

(item 29). For Sample 3, all problematic items had P > 0.8.

Examination of the gender-disaggregated post-test results in Table 6.2 identifies item

6 as problematic in 5 of the 6 samples while items 1, 12, and 29 were problematic in 4 of

the 6 samples. Items 5, 17, 18, and 26 were problematic in all gender-disaggregated pretest

samples. There was little additional commonality between the items flagged as problematic

Gender Pre/Post Problematic Items

Sample 1

Female
Pre 5, 11, 13, 15, 17, 18, 25, 26, 28, 30
Post 1, 3, 6, 7, 8, 9, 10, 12, 16, 19, 24, 29

Male
Pre 5, 6, 17, 18, 25, 26
Post 1, 3, 6, 7, 8, 9, 10, 12, 13, 16, 19, 24, 29

Overall
Pre 5, 11, 17, 18, 25, 26
Post 1, 3, 6, 7, 8, 9, 10, 12, 13, 16, 19, 24, 29

Sample 2

Female
Pre 2, 5, 11, 13, 17, 18, 20, 25, 26, 28, 30
Post 17, 26, 29

Male
Pre 5, 17, 18, 26
Post 6, 12

Overall
Pre 5, 11, 13, 17, 18, 26
Post 12

Sample 3

Female Post 1, 4, 6, 29

Male Post 1, 4, 6, 7, 12, 16, 24

Overall Post 1, 4, 6, 7, 12, 16, 24

Table 6.2: CTT problematic items with P < 0.2, P > 0.8, or
D < 0.2.

across all samples. The problem-

atic items in the Sample 1 post-

test all had very high scores. If

the data was aggregated, item 12

was identified as problematic in

all post-test samples.

IRT results can also be used

to identify problematic items.

One FCI item, item 29, pro-

duced difficulty parameters indi-

cating the IRT model was a poor

fit for that item. None of the FCI

items showed the dramatic depar-

tures from model fit including negative discrimination parameters identified in some of the

inventories examined by Jorion et al. [142]. As such, IRT supports the identification of item

29 as problematic.
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Item Fairness

An item is “fair” if students of the same ability from two populations produce equal

scores on the item. We first investigate item fairness under the assumption that male and

female students are of equal abilities, then apply DIF analysis to explore fairness without

the assumption of equal abilities. For this analysis, Samples 2 and 3 contain an insufficient

number of female students to draw strong statistical conclusions. The results for these

samples are examined only in reference to Sample 1.

This work uses the terms “ability” and “fairness,” which are common within the test

development literature [194]. Both terms have broad colloquial meanings outside this lit-

erature, and as such, it is important that the reader interpret these terms by their narrow

meaning. Ability is used to mean only the proficiency with which students answer test

items—in this case, conceptual physics problems on the FCI. Fairness analysis depends on

the assumptions made about ability. If two groups have the same proficiency in conceptual

physics, then items where the groups score differently do not test the two groups in the

same way: the items are unfair. If the assumption of equal proficiency is not true, then

items can score differently because of the differences in the groups and a difference in score

does not imply an unfair problem. DIF analysis does not assume the two groups have equal

proficiency in conceptual physics, but uses the score on the FCI as a measure of proficiency.

In DIF analysis, an item is unfair if the two groups have a larger difference in score than one

would predict from the difference in overall test score.

DIF analysis uses the overall test score as a measure of ability and, therefore, cannot

detect if items in an instrument are generally unfair. It can only detect when an item is
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Figure 6.1: CTT and IRT post-test results for Sample 1. Items 14, 21, 22, 23, and 27 are marked in red and
labeled. A line of slope one is drawn to allow comparison of male and female difficulty. Error bars represent
one standard deviation in each direction.

functioning differently than the overall instrument.

Graphical Analysis If one assumes that male and female students have an equal ability

to answer conceptual physics questions correctly, then a fair FCI item is one where the

difficulty is equal for male and female students. Under this assumption, which is supported

by the higher course grades of female students, item fairness can be explored by plotting

the difficulty for male students against the difficulty for female students. Figure 6.1 shows

this plot for the Sample 1 post-test. A line of slope one is drawn on all plots; perfectly fair

questions would fall on this line (the fairness line). Items unfair to women fall above the

fairness line for the CTT plots and below the line for IRT plots. Fig. 6.1 has three striking

features: (1) most items are significantly unfair to women (the error bars do not overlap the

fairness line); (2) five items, 14, 21, 22, 23, and 27, stand out as substantially unfair to women

by falling well off the fairness line; and (3) most other items fell fairly close, but on the unfair
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to women side, of the post-test fairness line. The substantially unfair items are plotted in

red and numbered in the figure. Similar plots were explored for item discrimination and did

not show any pattern of item bias; therefore, the remainder of the study will focus on item

difficulty.

To determine if the differences in performance in the CTT plot in Fig. 6.1 were statis-

tically significant and to estimate effect sizes, the φ coefficient was calculated for each item

and is included in Table 6.3. The significance values for φ were calculated using a χ2 test

of independence between male and female correct and incorrect answers for each item. For

many items, male and female scores were significantly different. For items 6, 12, 14, 21, 22,

23, 24 and 27, male and female difficulty scores were significantly different with a small effect

size. This set of items contains most of the items which will be identified as significantly

unfair by DIF analysis.

The φ coefficient above is mathematically similar to the φ coefficient described previ-

ously in the reliability and correlation analysis; however, their use is conceptually different.

Above, φ is used as a measure of independence and large φ indicates that the item difficulty

is different for men and women (small φ indicates the difficulty is independent of gender).

In the previous reliability and correlation analysis, φ is used as a measure of association, so

large φ indicates strongly correlated items.

A similar analysis was used to explore whether differences in the IRT difficulty coeffi-

cients were significant. The differences are characterized by Cohen’s d (listed in Table 6.3).

The results were similar to those using the CTT difficulty; the gender difference in items

14, 21, 22, 23, 26 and 27 was significant (ps< 0.001) with a small to medium effect size.

Table 6.3 also presents measures of the goodness-of-fit of the IRT model for men and women

118



0.00

0.25

0.50

0.75

1.00

CTT Difficulty Female Students

C
T

T
 D

if
fi

cu
lt

y
 M

al
e 

S
tu

d
en

ts

14

21

2223
27

0.00

0.25

0.50

0.75

1.00

CTT Difficulty Female Students

C
T

T
 D

if
fi

cu
lt

y
 M

al
e 

S
tu

d
en

ts

14

21

22

23

27

Sample 3Sample 2

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

Figure 6.2: CTT post-test difficulty results for Sample 2 and 3. Items 14, 21, 22, 23, and 27 are marked in
red. A line of slope one is drawn to allow comparison of male and female difficulty.

through Cramer’s V statistic.

One item, item 29, produced difficulty and discrimination parameters that suggest

the underlying IRT model was a poor approximation for this item. The model was re-fit

removing this item. Parameter estimates changed very little; as such, the values for the

original model including item 29 are reported.

Figure 6.2 presents a plot of CTT post-test difficulty for Samples 2 and 3 with items

14, 21, 22, 23, and 27 also colored in red and labeled. The much smaller sample size caused

the error bars of many points to overlap, but many of the five most problematic items in

Sample 1 were also at the outside of the item envelope in Samples 2 and 3.

Figure 6.3 overlays plots of items 14, 21, 22, 23, and 27 for all samples; the similarities,

particularly in the CTT plot, are quite strong. This supports the identification of these five

questions as generally unfair, not simply unfair because of some artifact of either student
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overlays that of Sample 2, item 22.

population or instruction in Sample 1. IRT results for Samples 2 and 3 are included in Fig.

6.3, but should be interpreted with caution, as these samples were too small for reliable IRT

parameter estimation.

Differential Item Functioning Analysis The analysis of the previous section compared

male and female students and found significant differences in difficulty for many FCI items

under the assumption of equal male and female ability. The clustering of many items near

the fairness line in Fig. 6.1 suggests that, while there may be some overall difference in

conceptual performance between men and women, most items were only somewhat more

difficult for women than men.

DIF analysis relaxes the assumption of equal ability and replaces it with the assumption

that the overall score on the instrument is an accurate measure of ability. Table 6.3 reports
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∆αMH for each item in Sample 1. Eight FCI items demonstrated large DIF (9, 12, 14, 15,

21, 22, 23, 27), where 9 and 15 were biased in favor of female students. This set includes

most items identified as significantly unfair with a small effect size in the previous section.

Seven additional questions demonstrated small to moderate DIF.

DIF analysis can also be carried out using the results of IRT. We used Lord’s statistic

L, which is mapped to the same range as ∆αMH and reported in Table 6.3. The Lord’s

statistic results agreed with the high DIF classification provided by ∆αMH except that item

29 was also flagged as high DIF favoring women. The small to moderate DIF results were

less consistent, and the two statistics disagreed on items 3, 11, 13, and 18. None of these

four items were ultimately identified as biased in the reduced FCI instrument constructed

to answer RQ6. This provides evidence of the efficacy of employing both CTT and IRT

analysis to complement one another.

DIF analysis was also attempted for Samples 2 and 3 by stratifying students into five

quantiles to reproduce the analysis of Dietz et al. [117]. The stratification into 5 quantiles

left only a few women in the highest scoring quantile and the results were strongly dependent

on the number of quantiles selected. We concluded that the number of female students in

Samples 2 and 3 was insufficient for accurate DIF analysis.

Item-level Analysis

The distribution of student answers for the five most unfair items of Sample 1 are

shown in Table 6.4. Female students preferentially selected one of the distractors for each

item. For Samples 2 and 3, the selection of distractors was less uniform, possibly because of

the relatively small number of female students in Samples 2 and 3 or because of the lower
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overall FCI scores for these samples. The differences in responses observed between male

and female students in Sample 1 may have resulted from one or more physics concepts that

were not mastered by female students or from surface features of the problem’s context that

made the problem more difficult for female students. Examination of these problems does

not immediately suggest a common physics concept underlying the incorrect answers.

Response

# Gender (a) (b) (c) (d) (e)

14
Male 10% 4% 18% 67% 0%

Female 30% 12% 17% 40% 0%

21
Male 2% 5% 39% 7% 47%

Female 3% 16% 53% 5% 23%

22
Male 31% 58% 1% 9% 0%

Female 55% 34% 1% 9% 0%

23
Male 7% 77% 6% 8% 1%

Female 25% 45% 13% 14% 2%

27
Male 19% 3% 77% 1% 0%

Female 40% 6% 53% 1% 0%

Table 6.4: Answer distribution for problems with large gen-
der differences in CTT and IRT difficulty in Sample 1. Cor-
rect answers are bolded.

For item 14 (bowling ball falling

out of an airplane), the most popular

distractor for female students was the

rearward parabolic trajectory, while the

most popular distractor for male stu-

dents was a linear forward trajectory.

Item group 21–24 concerns a scenario

where a sideways-drifting rocket turns

on its engine for a period and then off

again. The differences in items 21 to 23

seemed to result from students answering the question correctly for the assumption that the

force was an impulse force. The preferentially selected distractor for items 21 and 22, for

both men and women, was correct for an impulse force. The relatively random pattern of

incorrect answers on item 23 (turning off the engine) might result because the question does

not make sense if one is assuming the engine is already off. The question group does state

that the engine is on for the entirety of items 21 and 22. The text employs the verb “thrust”;

colloquially, the verb “to thrust” means to “push or drive quickly and forcibly” [208]. Item

27 concerns a large box being pushed across a horizontal floor, and the preferred distractor
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across genders was that the box comes immediately to a stop.

The problem contexts described above might be more familiar on average to men

through everyday experience (item 27) or through greater exposure to physically realistic

video games and movies (items 14, 21–23). Wilson et al. showed that gender differences in

physics questions used in physics competitions were particularly large for two-dimensional

motion and projectile motion problems [120]. However, questions identified in the current

study as unfair to both men and women fall in these categories. Without the identification

of a physical principle or common misconception that unifies the items, the determination

of the origin of the gender difference must be left for a future study.

An Unbiased Force Concept Inventory

To construct an unbiased version of the FCI, items were iteratively removed, ∆αMH

recalculated, and additional items removed until no item in the FCI showed small to moderate

or large DIF for Sample 1. This process removed the 8 questions with large DIF as well as

items 6 and 24, producing a reduced instrument containing FCI questions: 1, 2, 3, 4, 5,

7, 8, 10, 11, 13, 16, 17, 18, 19, 20, 25, 26, 28, 29, and 30. For Sample 1, this 20-item

instrument reduced the gender gap on the post-test to 4.3% from the original 8.0%, with

men scoring (73.1±19)% and women scoring (68.7±19)%. The difference was still significant

[t(1761) = 6.55, p < 0.001] but with a substantially smaller effect size, d = 0.23. The total

scores on the original and reduced instruments were highly correlated for both male and

female students (Pearson correlation r = 0.96). If the instrument is further reduced by

removing item 29, which was flagged by item analysis and by Lord’s statistic, the gender

gap increases slightly to 4.7%. The reduced instrument still contains a number of items
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originally calculated to have small to moderate DIF (see Table 6.3). The DIF of these items

became negligible after the higher DIF items were removed.

For Samples 2 and 3, the reduced instrument did not substantially reduce the gender

gap. For Sample 2, the original gender gap of 12.9% became 11.4% for the 20-item instrument

and 12.2% with the further removal of item 29. For Sample 3, the original gender gap of

13.5% was reduced to 12.7% for the 20-item instrument, but increased to 13.8% with the

removal of item 29.

Pretest Results

The FCI pretest was analyzed using the same methods as the post-test. Fig. 6.4 shows

the FCI pretest results for Sample 1. The five substantially unfair questions identified in

the post-test (14, 21, 22, 23, 27) were among the most unfair questions in the pretest plots.

However, many additional questions were also substantially more difficult for women. The

IRT variance for women was also substantially higher than in the post-test. Many pretest

differences were reduced by instruction and many questions moved substantially closer to

the fairness line in the post-test, except items 14, 21, 22, 23, and 27.

DIF analysis was also performed on the Sample 1 pretest. With the much larger vari-

ance seen in Fig. 6.4 and the generally weaker pretest performance of women, few items were

detected as significantly biased. The DIF results for the FCI pretest for Sample 1 detected

only item 14 as having large DIF; items 4, 12, 19, and 26 demonstrated small to moderate

DIF. This difference between pretest and post-test is consistent with the observation that

women close the score gap with men on many problems post instruction. Because DIF strat-

ifies by overall test score, a smaller gap can be considered unfair on the post-test than the
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Figure 6.4: CTT and IRT pretest results for Sample 1. Items 14, 21, 22, 23, and 27 are marked in red and
labeled. A line of slope one is drawn to allow comparison of male and female difficulty. Error bars represent
one standard deviation in each direction.

pretest if the overall post-test gap is smaller than the pretest gap.

This study found a 20-item unbiased version of the FCI. The pretest gender gaps

changed little on the reduced unbiased instruments. For Sample 1, the pretest gender gap

on the 20-item FCI was 9.9% which was somewhat smaller than the gender gap of 11.9% on

the original 30-item FCI. Further removing item 29 increased the gap to 10.1%. For Sample

2, the gender gap on the 20-item instrument was 10.3% which was somewhat smaller than

the gender gap of 12.3% on the original 30-item FCI. Further removing item 29 increased

the gap to 10.6%.

6.1.5 Discussion

This study sought to answer six research questions; these are addressed in the order proposed.
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RQ1: Are there FCI items with difficulty, discrimination, or reliability values that

would be identified as problematic within CTT or IRT? If so, are the problematic items

consistent for male and female students? CTT identified few areas where the FCI or items

within the FCI were uniformly problematic across all samples. Aggregating men and women,

item 12 was flagged as problematic in all post-test samples. Items 5, 11, 17, 18, and 26 were

identified as problematic in both aggregated pretest samples. Item 6 was problematic in

5 of the 6 gender-disaggregated post-test samples. Items 1, 12, and 29 were identified as

problematic in 4 of the 6 gender-disaggregated post-test samples. Items 5, 17, 18, and 26

were identified as problematic in all gender-disaggregated pretest samples. Identification of

difficulty parameters outside the desired range likely resulted from the application of the FCI

at multiple institutions with differing student populations as both a pretest and post-test.

This caused some items to be flagged on the pretest with P < 0.2 and on the post-test

with P > 0.8. IRT and reliability analyses further supported the identification of item 29 as

problematic.

The items and the number of items identified as problematic differed between male

and female students. More items were problematic for female students in Sample 1 and

Sample 2 on the pretest. More items were problematic for male students in Sample 3 on

the post-test. Crucially, an analysis that aggregated men and women, the “Overall” rows in

Table 6.2, would reach conclusions accurate for male students but often very inaccurate for

female students.

The problematic CTT and IRT items provide less accurate information about the

knowledge of the student than non-problematic items by either being too hard, too easy, or

too likely to answered correctly by weak students (or incorrectly by strong students). Many
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items on the FCI provide less information about female students than male students in the

Sample 1 and 2 pretest; the FCI contains many items that provide less information about

male students in the Sample 3 post-test. While these problems almost certainly resulted from

using one instrument in multiple environments both as a pretest and post-test, instructors

should be aware that the FCI can provide results with different levels of validity for different

student populations even in the same testing conditions. As such, its results should used

with caution for these populations.

RQ2: Are there FCI post-test items where the difficulty is substantially different for

male and female students? FCI items 6, 12, 14, 21, 22, 23, 24, and 27 in Sample 1 demon-

strated a significant gender bias in item difficulty (Table 6.3) in CTT with a small effect size.

IRT identified items 14, 21, 22, 23, 26, and 27 as significantly unfair with a small effect size.

The interpretation of items 14, 21, 22, 23, and 27 as substantially unfair was supported by

graphical analysis of Samples 2 and 3 (Fig. 6.3).

RQ3: Are there FCI items which DIF analysis identifies as substantially unfair to men

or women? In Sample 1, DIF analysis confirmed the unfairness of items 12, 14, 21, 22,

23, and 27 and further identified items 9 and 15 as having large DIF; items 9 and 15 were

biased in favor of women. Iteratively removing high DIF items also showed items 6 and 24

with high DIF once the highly biased items were removed. Because DIF depends on overall

test score, the DIF of an item changes as unfairly functioning items are removed from an

instrument. Items 3, 4, 11, and 18 demonstrated small to moderate DIF; however, the DIF

of these items became negligible as the more unfair items were removed to form the 20-item

unbiased FCI.

The Sample 1 post-test results of this study were fairly consistent with those of other
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work. The Sample 1 results of this study supported the advantage for women in item 9

found in Deitz et al. [117] (large DIF) and Osborn Popp et al. [202] (small to moderate

DIF). This study also supported the large DIF toward men of item 23 found in both of these

previous studies. Deitz et al. did not report small to moderate DIF items; however, from

the graph presented [117, Fig. 4] it seems likely item 15 would be found biased towards

women and items 12, 14, and 27 biased towards men, consistent with this work. The graph

also suggests item 30 may also be biased toward men. Osborn Popp et al. also identified

items 4, 9, 15, and 29 with small to moderate DIF toward women and items 6 and 14 with

small to moderate DIF toward men. The current study identified item 4 as unfair (small to

moderate DIF) in Sample 1, as was reported in Deitz et al. (large DIF) and Osborn Popp et

al. (small to moderate DIF); however, the DIF of this item became negligible as more highly

biased items were removed from the FCI. Items 14, 22, 23, and 29 were also identified by

McCullough and Meltzer as demonstrating significant differences between male and female

answering patterns when the context of the question was modified to be more stereotypically

female oriented [116].

Combining the results of this study with those of previous research strongly identifies

a set of unfair items in the FCI. The relatively consistent pattern of items 6, 9, 12, 14, 15,

22, 23, and 27 being identified as gender biased in multiple studies strongly indicates the

use of these questions should be reconsidered. This study additionally suggests that items

21 and 24 should be reconsidered because of bias and item 29 because of recurring reliability

issues. Removing all these items would produce a 19-item instrument. Because the FCI

has not demonstrated a consistent factor structure [186] and therefore is primarily a single

factor instrument measuring the degree to which a student possesses a “Newtonian Force
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Concept,” a 19-item instrument should measure this construct with approximately the same

accuracy as a 30-item instrument.

RQ4: Are unfair FCI items identified by item analysis? Most items ultimately iden-

tified as unfair in the FCI were not uniformly flagged as problematic by CTT or IRT item

analysis. Only items 6 and 12 were detected as problematic in both DIF and item analysis

using discrimination and difficulty cutoffs. Item fairness analysis is therefore a complemen-

tary method that provides additional information beyond item analysis methods. CTT and

IRT difficulty, discrimination, and reliability checks do not guarantee item score fairness.

RQ5: Can differences in answering by men and women for problematic items be ex-

plained by an underlying physical principle or misconception? Examining answer patterns

for the biased questions in Sample 1 did not identify an underlying physical principle or

misconception that was shared by all or some combination of the questions. This makes

it unlikely a general failure of instruction either by the course studied or within the aca-

demic background of the students studied accounted for the differences identified. Further

experimental investigation such as that performed by McCullough and Meltzer [116] will be

required to determine the origin of the gender differences.

RQ6: If small to moderate and large effect DIF items are removed from the FCI, how

does the gender gap change? For Sample 1, removal of all questions with small to large

DIF resulted in a 20-item instrument. The gender gap on the post-test using this reduced

instrument was 4.3% (d = 0.23) which was substantially smaller than the original post-

test gender gap of 8.0% (d = 0.46) with half the effect size. Item fairness, then, does not

explain all the gender gap in the FCI but accounts for about half of the gap in this sample.

The gender gap on the 20-item gender-neutral instrument’s post-test would be the second

129



smallest FCI gap reported [63].

The reduced instrument did not significantly reduce the gender gap in Samples 2 and

3. An explanation to this result may be found by comparing Fig. 6.1, Fig. 6.2, and Fig.

6.4. In Sample 1, female students improved on many items that were substantially unfair

in the pretest, leaving only a few items where women were substantially off the fairness line

on the post-test. Sample 2 and 3 students did not demonstrate the same degree of progress,

and women in these samples do not show a substantial number of nearly fair questions

post-instruction.

Some studies have suggested that more interactive teaching methods lower the gender

gap [72, 73, 122]; however, this effect has not been consistently reproduced [124–126]. Some

research-based instructional methods were employed in the lecture portions of Sample 2 and 3

while Sample 1 combined a traditional lecture with an interactive, inquiry-based laboratory

experience. While the courses from which all three samples were drawn presented some

interactive or research-based instruction, the primary differences between the courses seems

to be the overall conceptual learning outcome measured by FCI post-test scores. Excluding

the items showing substantial gender bias, the course measured in Sample 1 produced post-

test results where the performance of male and female students were more similar (most

results fell near the fairness line). The post-test results for Sample 2 and 3 have many more

items substantially off the fairness line. Examination of the Sample 1 pretest plots showed

many more items substantially off the fairness line; the instruction in the class moved female

students nearer the fairness line on many items (except the gender biased items). This

comparison suggests that it is not only the interactivity of the instruction that matters in

reducing the gender gap but also its overall effectiveness. It seems possible that the gender
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gap closes for interactive courses only if they produce superior learning outcomes, measured

by FCI post-test scores. This could explain the inconsistent relationship between interactive

instruction and lowering the gender gap [122, 72, 73, 124–126].

Comparing results for Samples 1, 2, and 3 illuminates the variability of previous re-

search into item fairness. While not as large as Sample 1, Samples 2 and 3 contain as many or

more students than some of the other studies of item fairness. Difficulty measures for these

samples had large error bars, particularly for female students. Both samples also involved

confounding factors such as multiple instructors and pedagogies or a longitudinal application

of the FCI which would also increase variability. The gender biased items were hidden by the

noise in these samples and were probably partially obscured by variation in other studies.

Experiments sub-sampling Sample 1 suggest 1000–1500 as a minimum sample size to clearly

resolve gender disparities in FCI datasets where women are significantly underrepresented.

The inclusion of many unfair items calls into question the practical application of the

FCI instrument as well as research based on the FCI. Examples of the threat to research

validity can be found in two recent studies. In a factor analysis of the FCI [187], gender

biased items 21, 22, 23, and 27 factored together while item 14 failed to be included in any

factor. This raises the question of whether the gender bias of the questions influenced the

factor structure.

Han et al. [209] investigated dividing the FCI into two shorter tests (half-tests) to lower

the time burdens of testing. Gender fairness was not considered in their analysis. Randomly,

four of the five highly unfair to women questions (14, 21, 22, and 23) were included in the

second half-test while none of the highly unfair questions were included in the first. The

second half-test also included item 24 which was identified as unfair after highly unfair
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items were removed from the FCI. The first half-test also contained the two questions that

DIF identified as biased toward women (9 and 15) and two of the additional questions DIF

identified as biased toward men (6 and 12). As such, it is likely that the second half-test is

more gender unfair than the FCI and the first half-test is more gender neutral.

This study identified a reliable and fair 19-item version of the FCI. It seems likely,

however, that if this instrument were deployed in diverse educational settings as both a

pretest and post-test that it would produce results with differing levels of validity for men

and women in some situations by posing questions that are either too easy or too hard

for the student population. As such, instructors using this instrument should be aware of

the possibility of unfairness and either confirm the fairness of the instrument independently

or restrict the kinds of decisions made from the results of the instrument. For example,

using the FCI pretest as a baseline measurement without instructional consequences may be

appropriate, but using pretest scores to assign lab groups may not be.

6.1.6 Implications

This work identified multiple questions within the FCI which were unfair to either men

and women; this finding was supported by multiple samples and is consistent with other

studies reporting unfair items. As such, we suggest the use of the score on the full 30-item

FCI be discontinued and the 19-item unbiased score used in the future. Institutions with

longitudinal FCI datasets should convert FCI scores to the 19-item unbiased scoring. The

full 30-item score should continue to be reported to allow comparison with previous research.
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6.1.7 Limitations

While this research used data from four institutions combined to form three datasets,

two of the datasets were too small to provide adequate statistical power to determine if some

conclusions were general. The analysis should be conducted with additional large datasets to

determine whether the conclusions are widely replicated. In addition, the fairness analyses

were not sensitive to differences in slopes. An alternative approach would be to use muli-

group IRT to test for both difficulty and discrimination.

6.1.8 Conclusions

The FCI is broadly used to assess physics instruction and conceptual learning. The

above analysis demonstrated that it contains a number of items that are not fair to women

and a few items unfair to men. The prevalence of the FCI and large longitudinal datasets

that have been collected make it difficult to suggest that its use should be discontinued;

however, the 30-item score should not be used for any purpose from which a student might

benefit. We suggest the continued reporting of the full FCI score along with the score on

the reduced unbiased instrument. The reduced unbiased instrument score should be used

for instructional decisions and to assign course credit.

The reporting of gender composition is uneven in PER. Researchers referencing FCI

scores at multiple institutions should be aware that these scores may contain variation that

results from gender differences that were not reported.

By most measures available to conceptual inventory developers where limited initial

deployment is possible, the FCI performs exceptionally well. The identification of the unfair
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items required multiple studies and very large samples. As such, future developers of con-

ceptual instruments should plan for a second level of validation which can only be carried

out if their instrument achieves broad deployment. This validation might identify items

with unexpected biases, reliability, or validity problems. The overall instrument and any

sub-scales should be sufficiently robust that the removal of some items leaves the validity

and reliability of the instrument intact.
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6.2 Gender Fairness within the Force and Motion Conceptual

Evaluation∗

6.2.1 Introduction

While there is a substantial body of research investigating the gender gap of the FCI,

little research into the gender fairness of the FMCE exists. Although most of the research on

the FMCE examines overall scores pre- and post-instruction, some studies have investigated

individual items on the FMCE. Talbot investigated the change in Newtonian thinking at the

item level arguing that this would give more detailed insight into student understanding of

Newtonian mechanics [210]. Items 36 and 38 were too difficult (P < 0.2) on the pretest and

items 40, 41, 42, and 43 were too easy (P > 0.8) on both the pretest and the post-test.

In a study comparing the performance of Japanese students to American students on

the FMCE, each of the FMCE items was translated to Japanese [211]. CTT item difficulty

P and item discrimination D were analyzed for the Japanese students showing that the

majority of the FMCE items fell in the range of the desired difficulty. In addition, items

36 and 38 were classified as difficult items and items 40 through 43 were identified as easy

items, which was consistent with the study performed by Talbot. Because the difficulty and

discrimination were similar to those of the American students, the authors concluded that

the FMCE could be used to compare American and Japanese students.

While performing a comparison between FCI and the FMCE, Thornton et al. classified

certain groups of items on the FMCE as “distinct clusters” [212]. For example, the three

∗This section is a portion of the second of the two-part manuscript in Physical Review Physics Education
Research. This manuscript is currently under review. I am the primary author of this work; however, the
final product was produced in collaboration with the co-authors.

135



items assessing student understanding of acceleration of a tossed coin (items 27, 28, and 29)

were defined as one cluster, 27 29. The notation 27 29 indicates the group of items 27, 28,

and 29.

The three distinct clusters described by Thornton et al. have been studied at the item

level [213, 214]. In 2008, Smith and Wittmann introduced revised clusters and investigated

student response patterns on those sets of items. This work suggested that the two distinct

clusters defined by Thornton et al., 8 13 and 27 29, should be combined into one cluster

described as Reversing Direction. They also introduced cluster 40 43 as Velocity Graphs

[213]. In 2014, Smith, Wittmann, and Carter used these revised clusters to provide insight

into the effectiveness of interactive classroom techniques [214].

Only one study examined the factor structure of the FMCE. Ramlo found the factor

structure of the FMCE pretest was undefined but that a three-factor solution existed for the

FMCE post-test [215]. To our knowledge, little research has been performed investigating

the reliability, validity, or fairness of the FMCE.

Overall, the analyses of the FMCE at the item-level treat the students as an undif-

ferentiated sample; the comparison of CTT difficulty and discrimination between male and

female students for the FMCE has not yet been reported.

6.2.2 Research Questions

• RQ1: Are there items in the FMCE which CTT would identify as problematic? Are

the problematic items the same for male and female students?

• RQ2: Are there items in the FMCE which are substantially unfair to men or women?
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6.2.3 Methods

Samples

Sample 1: Sample 1 was collected for four semesters in the calculus-based intro-

ductory mechanics class at a large western land-grant university in the US serving 34,000

students. The university had a Carnegie Classification of “Highest Research Activity” for

the period studied [216]. The general undergraduate population had a range of ACT scores

from 25-30 (25th to 75th percentile range) [173]. The general undergraduate population had

a demographic composition of 69% White, 11% Hispanic, 7% International, 5% Asian, and

5% two or more races with all other groups with representation of less than 5% [173].

The course was taught by four faculty members and shared a common format through-

out each semester. Each week, the course consisted of three 50-minute lectures and one

50-minute tutorial section where the University of Washington Tutorials in Introductory

Physics [31] were led by a graduate teaching assistant and an undergraduate learning assis-

tant. Lecture instructors used peer-instruction with clickers. Students were assigned weekly

homework as well as pre-lecture videos. Students were assessed with three in-semester ex-

aminations and a final examination. The FMCE pretest and post-test were administered

during the tutorial section; while attendance was required, the pretest and post-test did not

count toward the student’s final grade. No laboratory was associated with the course. The

aggregated sample consisted of 3,511 FMCE pretest responses (74% male) and 3,016 FMCE

post-test responses (73% male).

Sample 2: Sample 2 was collected during 13 semesters at a large eastern land-grant

university serving approximately 30,000 students. In 2016, this institution first achieved
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a Carnegie Classification of “Highest Research Activity” [216]. The undergraduate ACT

range for this institution was 21-26 (25th to 75th percentile range). The overall undergrad-

uate demographics were 79% White, 6% International, 5% African American, 4% Hispanic,

2% Asian with other groups each 4% or less [173]. The students in Sample 2, who were

primarily engineering majors (85%), were enrolled in the introductory, calculus-based me-

chanics course. Only the students who completed the course for a grade and completed both

the FMCE pretest and FMCE post-test were included. The Sample 2 dataset included 3,956

pretest responses (80% male) and 3,719 post-test responses (80% male).

The instructional environment for Sample 2 was quite variable for the period studied

and may, therefore, be representative of a sample drawn from multiple institutions with

the same student characteristics. Between the fall 2011 and spring 2015 semesters, the

LA program [36], that was presented in Chapter 4, was implemented as a tool to improve

conceptual understanding of students in the introductory calculus-based sequence (refer to

Sections 4.3 and 4.4).

The LA program was discontinued after the spring 2015 semester because it had

reached the end of its funding. After the LA program, between the fall 2015 and spring

2017 semesters, the course was team-taught by a pair of experienced educators. The course

consisted of three one-hour lectures and one three-hour laboratory each week. All sections of

this course used the same in-class examination policies and similar homework policies. All

lecture sections employed clickers to engage students in conceptual learning. Credit for the

completion of the FMCE was given for a good faith effort.

As such, the two samples are drawn from two diverse institutions with Sample 1 having

the most academically prepared students measured by ACT scores and Sample 2 having the
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least well-prepared students.

FMCE Scoring

A modified scoring method for the FMCE proposed by Thornton et al. was employed

in this study [212]. A composite score of the original FMCE 43 items is formed to produce

a score out of 33 possible points. Items 5, 15, 33, 35, 37, and 39 were eliminated because

students could “expertly” answer these items prior to becoming a consistent Newtonian

thinker [22, 217]. Item 6 was also eliminated because physics experts frequently answered

this item incorrectly.

In addition to eliminating these items, Thornton et al. proposed an “all-or-nothing”

scoring method for the three clusters of items examining acceleration (items 8 10, 11 13,

and 27 29). The authors argued that a student does not fully understand the concept of

acceleration unless he or she answers all three parts of the cluster correctly. For students

who do answer all three parts correctly, two points are given toward their overall score and

zero points otherwise.

In the following analysis, the method of an all-or-nothing scoring system was employed;

however, only one point was rewarded to the students who answered each of the three

parts correctly. With the elimination of the 7 items and the modified all-or-nothing scoring

method, the students’ FMCE score was out of 30 possible points. This modification was

made to conform with the requirements of DIF analysis (i.e., the assumption that all items

are equally weighted).
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Male Students Female Students

N N (M ± SD)% N (M ± SD)%

Sample 1

FMCE Pretest 3511 2607 45± 28 904 30± 22
FMCE Post-test 3016 2192 74± 26 824 59± 28

Sample 2

FMCE Pretest 3956 3146 25± 19 810 20± 14
FMCE Post-test 3719 2947 53± 28 772 41± 24

Table 6.5: FMCE pretest and post-test averages for Sample 1 and 2. Averages are reported as percentages.

Bonferroni Correction

Because of the number of statistical tests performed in this work, a Bonferroni cor-

rection was applied to adjust for the inflation of Type I error rate. For this analysis, 30

statistical tests were used for each analysis, adjusting p < 0.05 to p < 0.0017, p < 0.01 to

p < 0.0003, and p < 0.001 to p < 0.00003.

6.2.4 Results

The differences in performance between male and female students were measured with

t-tests. Cohen’s d was used to characterize the effect size for each test. Similar to Section

6.1, item fairness will be examined graphically and with DIF analysis.

Table 6.5 presents the FMCE pretest and post-test averages for Sample 1 and Sample

2. In Sample 1, male students outperformed female students by 15% on the FMCE pretest

and by 14% on the FMCE post-test. These differences were significant for both the FMCE

pretest [t(2059) = 16.69, p < 0.001, d = 0.57] and the FMCE post-test [t(1408) = 12.60,

p < 0.001, d = 0.53] with medium effect sizes. In Sample 2, significant gender differences

were detected on both the FMCE pretest and post-test; however, these differences were
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smaller than those of Sample 1. Male students outperformed female students by 6% on the

pretest [t(1739) = 16.69, p < 0.001, d = 0.31] and by 12% on the post-test [t(1367) = 11.69,

p < 0.001, d = 0.43] each with small effect sizes.

Difficulty and Discrimination

The problematic items in the FMCE for Sample 1 and Sample 2 are presented in Table

6.6. Table 6.7 presents the CTT item-level statistics for all of the FMCE items. For Sample

1, nearly half of the items on the FMCE pretest were problematic for female students with

P < 0.2 except for items 40 and 43 with P > 0.8. Fewer problematic items were identified

for male students; items 36 and 38 (P < 0.2) and items 40, 42, and 43 (P > 0.8) were

Gender Pre/Post Problematic Items

Sample 1

Female Pre
2, 4, 8 10, 11 13, 14, 17, 18, 19, 20, 27 29,
36, 38, 40, 43

Post 40, 43

Male
Pre 36, 38, 40, 42, 43
Post 22, 24, 26, 31, 40, 41, 42, 43

Overall
Pre 8 10, 36, 38, 40, 42, 43
Post 15, 24, 26, 40, 41, 42, 43

Sample 2

Female
Pre

1, 2, 3, 4, 7, 8 10, 11 13, 14, 16, 17, 18,
19, 20, 21, 23, 25, 27 29, 30, 32, 34, 36,
38, 40, 43

Post 8 10, 11 13, 40, 43

Male Pre
1, 2, 4, 8 10, 11 13, 14, 16, 17, 18, 19, 20,
21, 27 29, 30, 32, 34, 36, 38, 40, 43

Post 40, 42, 43

Overall Pre
1, 2, 4, 8 10, 11 13, 14, 16, 17, 18, 19, 20,
21, 27 29, 30, 32, 34, 36, 38, 40, 43

Post 40, 42, 43

Table 6.6: CTT problematic items with P < 0.2, P > 0.8, or
D < 0.2 for the FMCE.

problematic for men. For female

students in Sample 1, only items

40 and 43 were problematic post-

instruction (P > 0.8). While the

number of problematic items de-

creased for female students from

pretest to post-test, male students

had more problematic items after

instruction. All of the items iden-

tified as problematic for male stu-

dents post-instruction had a diffi-

culty of P > 0.8.
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The results of the FMCE for Sample 2 were fairly similar to those in Sample 1. In

Sample 2, however, both male and female students had many pretest items that were prob-

lematic; nearly half of the FMCE pretest items were problematic with P < 0.2 for both men

and women. As in Sample 1, items 40 and 43 were problematic with P > 0.8 on the FMCE

pretest. The number of problematic items after instruction was reduced for both male and

female students in Sample 2. Items 40 and 43 continued to be problematic for students

on the FMCE post-test. For female students, in addition to items 40 and 43, two of the

three clustered items identified by Thornton et al. [212], 8 10 and 11 13, were problematic

(P < 0.2). For male students, in addition to items 40 and 43, item 42 was a problematic

item with P > 0.8.

Graphical Analysis

Similar to Section 6.1.4, Figure 6.5 shows differences in conceptual performance by

gender on the FMCE with the majority of items significantly off the fairness line. The error

bars in the figure represent one standard deviation in each direction.

For Sample 1, a chi-squared test showed that for all items in the FMCE pretest, the

differences in item difficulties between men and women were significant. The φ coefficient

was calculated for each item to characterize the effect size. Post-instruction, all items except

for items 30 and 43 were significantly different for male and female students with female

students scoring lower; however, none of the items showed more than a small effect size.

The FMCE pretest and post-test results for Sample 2 are presented in Fig. 6.5(c)

and (d). The results were generally similar to the Sample 1 results. The Sample 2 pretest

scores were substantially lower than the Sample 1 pretest scores which may have produced
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Figure 6.5: CTT difficulty results for the FMCE. The top two panels are Sample 1 (a) FMCE pretest and
(b) FMCE post-test. The bottom two panels are Sample 2 (c) FMCE pretest and (d) FMCE post-test.
A line of slope one is drawn to allow comparison of male and female difficulty. Error bars represent one
standard deviation in each direction.

the clustering near the fairness line at scores less than 25% seen in Fig. 6.5(c). After

instruction, the overall item difficulties for male and female students increased; however,

most of the items were still significantly different for male and female students. Only items

30, 31, 32, 34, 36, and 38 were not significantly different for male and female students. None

of the items had a difference representing greater than a small effect size.

The figures indicate an overall difference in performance by men and women on the
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FMCE, an observation that is supported by the significant differences in overall pretest

and post-test scores. Unlike the previous work on the FCI, there was no set of items that

performed significantly differently than most other items. In the FCI, while most items were

near the fairness line, five items were visually separate, many standard deviations from the

fairness line. The graphical analysis of this section, suggests that, at the item level, all of the

FCME items function approximately the same for men and women; however, overall, men

have a general advantage on the instrument.

DIF Analysis

Sample 1

Item PM PF DM DF φ ∆αMH

3 .74±.01 .52±.02 .67±.02 .75±.03 .21c -1.01b

8 10 .63±.01 .38±.02 .83±.02 .87±.02 .23c -1.27c

11 13 .75±.01 .52±.02 .70±.02 .86±.02 .22c -1.19c

21 .72±.01 .50±.02 .70±.02 .82±.03 .21c -1.09b

27 29 .77±.01 .53±.02 .65±.02 .89±.02 .23c -1.50c

30 .76±.01 .71±.02 .56±.02 .50±.04 .05 1.05c

Sample 2

Item PM PF DM DF φ ∆αMH

3 .51±.01 .29±.02 .81±.01 .60±.04 .18c -1.31c

7 .53±.01 .32±.02 .76±.02 .63±.04 .17c -1.25c

8 10 .25±.01 .10±.01 .74±.02 .33±.04 .14c -1.16

11 13 .37±.01 .18±.01 .83±.01 .51±.04 .16c -1.25b

27 29 .49±.01 .26±.02 .84±.01 .64±.03 .19c -1.66c

30 .64±.01 .63±.02 .58±.02 .50±.04 .01 1.09c

31 .69±.01 .67±.02 .58±.02 .53±.04 .02 1.03c

32 .65±.01 .61±.02 .69±.02 .68±.04 .03 1.10c

36 .30±.01 .29±.02 .56±.02 .51±.04 .01 1.39c

38 .31±.01 .28±.02 .56±.02 .52±.04 .03 1.03b

40 .94±.00 .86±.01 .16±.01 .32±.04 .12c -1.62c

42 .87±.01 .76±.02 .31±.02 .46±.04 .12c -1.03b

Table 6.8: CTT difficulty and discrimination and DIF ∆αMH for
the FMCE post-test items with small to moderate or large DIF.
The significant levels have been Bonferroni corrected: “a” denotes
p < 0.0016, “b” denotes p < 0.0003, and “c” denotes p < 0.00003.

Table 6.8 presents the FMCE

post-test ∆αMH statistic for items

in both samples that have either

small to moderate or large DIF;

these items function differently for

men and women taking into ac-

count the general difference in

post-test score. For Sample 1,

only one item, item 27 29, demon-

strated large DIF with an advan-

tage to male students. With a

value of ∆αMH = −1.50, this item

was on the border between a clas-

sification of small to moderate DIF and a classification of large DIF. The other 5 items in
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Sample 1 presented in Table 6.8 (3, 8 10, 11 13, 21, and 30) were measured to have small to

moderate DIF with the majority of these items with an advantage to male students.

The results for Sample 2 were similar; however, in addition to item 27 29, item 40 also

had large DIF with an advantage to male students. Items 3, 7, 8 10, 11 13, 30, 31, 32, 36,

38, and 42 demonstrated small to moderate DIF, half with an advantage to female students,

half to male students.

Because large DIF items influence the overall test score, the identification of items

with either large or small to moderate DIF can change as problematic items are removed.

Large and then small to moderate DIF items were iteratively removed from the FMCE and

DIF recalculated. For Sample 1, items 3, 7, 8 10, 11 13, 21, 25, and 27 29 were removed

to produce an instrument with no items with small to moderate or large DIF. Eliminating

these items reduced the gender gap in FMCE post-test scores by 2.5%. For Sample 2, items

3, 7, 8 10, 11 13, 27 29, 36, 40, and 42 were eliminated to produce a fair instrument. By

removing these items, the original gender gap in FMCE post-test scores for Sample 2 was

reduced by 1.1%.

6.2.5 Discussion

This section will discuss the two research questions in the order proposed.

RQ1: Are there items in the FMCE which CTT would identify as problematic? Are the

problematic items the same for male and female students? Prior to instruction, the majority

of the problematic items in the FMCE, including items 36 and 38, were identified as items

with difficulty P < 0.2; however, items 40 and 43 were identified as easy items (P > 0.8)

on the FMCE pretest. Overall, the FMCE problematic pretest items were consistent across
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gender within each of the samples and they were consistent between Sample 1 and Sample

2. These findings supported those of Talbot [210] and Ishimoto [211] who both found that

items 36 and 38 were too challenging on the pretest.

From the above analysis, which is supported by the work of Talbot [210] and Ishimoto

[211], students’ understanding of Newton’s 3rd law when one object is speeding up (item 36)

or slowing down (item 38) is weak prior to physics instruction. For comparison, item 15 on

the FCI also addresses the same concept as item 36 on the FMCE [21]. In Section 6.1, FCI

item 15 was identified as problematic pre-instruction.

Problematic items were also identified on the FMCE post-test. The majority of the

problematic items in both samples had a difficulty of P > 0.8; however, only items 40 and 43

were consistent between male and female students in both Sample 1 and Sample 2. Although

this result also agreed with the work presented by Talbot in which items 40 and 43 remained

easy FMCE items after instruction [210], only two out the four items in the Velocity Graphs

cluster proposed by Smith and Wittmann were identified as consistently problematic items.

In addition to demonstrating P > 0.8 on both the FMCE pretest and the FMCE post-test,

items 40 and 43 also showed poor discrimination in most student populations. This result

shows that students do tend to answer the velocity-time graph items correctly; however, it

is difficult to tell if these items are easier because students understand the physical concept

or if some other feature of the item is causing students to select the correct response.

The other cluster that was described by Smith and Wittmann (Reversing Direction)

[213], which assesses the concept of gravity as a constant downward force, was difficult for

female students prior to physics instruction for both Sample 1 and Sample 2. In Sample 2, two

of the three items (8 10 and 11 13) within this cluster remained difficult post-instruction.
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This result was not consistent across samples. For comparison, item 13 on the FCI also

evaluates student understanding of constant downward force of gravity regardless of the

motion of the object [21]. The previous section identified item 13 as problematic for female

students prior to physics instruction but not after instruction. In addition, item 27 29,

which was also within the Reversing Direction cluster, was not identified as problematic on

the FMCE post-test. This item is similar to the other two items; however, the answers are

presented in terms of acceleration rather than in terms of force.

RQ2: Are there items in the FMCE which are substantially unfair to men or women?

Although the incoming pretest scores were somewhat different for Sample 1 and Sample

2, the overall result that the majority of the FMCE items were more difficult for female

students was consistent between the two samples. Almost all of the items on the FMCE

post-test were significantly more difficult for women, but none with more than a small effect

size. The only item that was not significantly different in both samples was item 30. This

item addresses student understanding of Newton’s 3rd law for two objects travelling at the

same speed when they collide.

The graphical results for the FMCE were quite different than those in the previous

section for the FCI. Graphical analysis identified five substantially unfair items within the

FCI post-test; the majority of the FCI items moved toward the fairness line from FCI pretest

to FCI post-test. This was not the case for the FMCE; although all of the FMCE items

became easier items after instruction (as seen with the overall positive shift in item difficulty),

the majority of the FMCE items did not cluster around the fairness line post-instruction in

either Sample 1 or Sample 2.

DIF analysis allowed the comparison of item performance under the assumption that
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the total score on the FMCE was an accurate measure of the conceptual ability. In Sample

1, only item 27 29 demonstrated large DIF on the FMCE post-test. In Sample 2, items

27 29 and 40 had large DIF. Item 40 was also identified as problematic because it was too

easy; the “easiness” of the item was not the same for male and female students in Sample 2.

The other two clusters that were defined by Thornton et al. [212], items 8 10 and 11 13,

demonstrated small to moderate DIF against female students in both samples. Overall, all

three of the “all of nothing” clusters, which Smith and Wittmann defined as the Reversing

Direction cluster, showed some gender unfairness toward female students.

The number of items that demonstrated large DIF in the FMCE was much smaller

than the eight large DIF items initially identified in the FCI. Overall, the FMCE did not

demonstrate the substantial item-level gender unfairness reported for the FCI.

In general, the results for the FMCE presented in this study were quite different than

the results of a the previous analysis of the FCI. With this, the FMCE is substantially more

gender fair than the FCI at the item-level.

6.2.6 Implications

This work demonstrated that the FMCE has few items with large DIF while the pre-

vious section showed that the FCI contains multiple large-DIF items. As such, institu-

tions making decisions on the assessment of instructional practices should consider using the

FMCE for mechanics courses. The previous section constructed a reduced 19-item subset

of the FCI which was unbiased and had good reliability metrics; this reduced instrument

might also be a good option for assessing mechanics instruction. While the FMCE is a clear

choice if one wishes an unmodified published instrument in wide use, the choice between the
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19-item FCI and the FMCE is less clear. The FMCE demonstrated relatively large absolute

differences measured by the φ coefficient particularly in Sample 1; many of these differences

were larger than those for items detected as large DIF and eliminated from the reduced FCI.

The reduced 19-item FCI contains items with substantially smaller φ coefficients in Sample

1 from the previous section than the FMCE in either Sample 1 or Sample 2 in this work.

6.2.7 Conclusions

The previous section summarized an analysis on the item-level fairness between male

and female students on the FCI. This section extended that research to the FMCE. The

majority of the items were significantly more difficult for female students both pre- and

post-instruction; however, few items stood out as being substantially unfair. There was only

one item across both of the samples that demonstrated large DIF.

150



6.3 Gender Fairness within the Conceptual Survey of Electricity

& Magnetism∗

6.3.1 Introduction

There have been very few studies that have focused on the individual items of the

CSEM; no item level analysis of the CSEM has been reported differentiated by gender.

Maloney et al. reported that the difficulty of the items on the CSEM were between 0.1

and 0.9 [23]. This analysis was performed for both the algebra-based and calculus-based

introductory electricity and magnetism courses. Only one item, item 3, had a difficulty of

above 0.8 and three items seemed to be too challenging with a difficulty of less than 0.2 (items

14, 20 and 31). Item discrimination was also evaluated; only four items had a discrimination

less than 0.2; however, the authors did not specify which items.

Some studies have conducted analyses on a few specific items on the CSEM. Meltzer

explored the shifts from pretest to post-test in student responses and reasoning on items

18 and 20, which ask students to compare the magnitude and direction of electric field and

electric force, respectively, at two different points on equipotential lines [218]. Leppävirta

investigated students’ alternate ideas on the items that assess student understanding of

Newton’s 3rd law on the CSEM (items 4, 5, 7, and 24) [219]. One out of five students had

an alternate model of Newton’s 3rd law prior to any electricity and magnetism instruction;

however, post-instruction these students are likely to change their understanding to the

correct model.

∗This section is combined with the previous section for the second part of the two-part submitted
publication in Physical Review Physics Education Research.
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6.3.2 Research Questions

• RQ1: Are there items in the the CSEM which CTT would identify as problematic?

Are the problematic items the same for male and female students?

• RQ2: Are there items in the CSEM which are substantially unfair to men or women?

6.3.3 Methods

Samples

Sample 1: Sample 1 was collected for a total of 14 semesters in the calculus-based

electricity and magnetism course at a large southern land-grant university serving approxi-

mately 25,000 students. The general undergraduate population had a range of ACT scores

from 23-29 (25th to 75th percentile range) [173]. The university had a classification of

“Highest Research Activity” for the entire period studied [216]. The overall undergraduate

demographics were 77% White, 8% Hispanic, 5% African American, 2% Asian with other

groups each 3% or less [173].

The course was taught and overseen by one lead instructor over the time period studied.

The course consisted of two 50-minute lectures and two two-hour laboratory sessions each

week. Students completed four in-semester examinations, weekly homework assignments,

in-class lecture quizzes and laboratory quizzes. The CSEM was given as a laboratory quiz

pre- and post instruction. The score on the CSEM was counted toward the students’ course

grade. The aggregated dataset (npre = 2, 108, npost = 2, 014) consisted of only students who

completed the course for a grade and received credit for both the CSEM pretest and the

CSEM post-test. The sample was primarily male (77%) with the majority of the students
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enrolled in engineering majors (80%). The instructional environment was the same as the

sample described in Chapter 5.

Sample 2: Sample 2 was collected during the same 13 semesters at the same institution

as Sample 2 in Section 6.2; a large eastern land-grant university serving approximately 30,000

students. The students in this sample however were enrolled in the introductory, calculus-

based electricity and magnetism course. Only the students who completed the courses for a

grade and completed both the pretest and post-test were included. The Sample 2 dataset

included 3,185 pretest responses (83% male) and 2,657 post-test responses (81% male) from

the CSEM. The instructional environment was the same as Sample 2 described in the previous

section.

Bonferroni Correction

A Bonferroni correction was applied to adjust for the inflation of Type I error rate. For

this analysis, 32 statistical tests were performed, adjusting p < 0.05 to p < 0.0016, p < 0.01

to p < 0.0003, and p < 0.001 to p < 0.00003.

6.3.4 Results

Male Students Female Students

N N (M ± SD)% N (M ± SD)%

Sample 1

CSEM Pretest 2108 1618 29± 11 490 25± 8
CSEM Post-test 2014 1552 65± 16 462 59± 16

Sample 2

CSEM Pretest 3185 2642 27± 11 543 24± 9
CSEM Post-test 2657 2155 46± 18 502 41± 17

Table 6.9: CSEM pretest and post-test averages for Sample 1 and 2. Averages are reported as percentages.
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Sample 1 and Sample 2 were analyzed to explore gender differences on the CSEM.

Overall averages are presented in Table 6.9. For Sample 1, a gender difference of 4% and

6% was measured on the CSEM pretest and post-test, respectively. These differences in

performance were significant: CSEM pretest [t(1060) = 9.61, p < 0.001, d = 0.43] and

CSEM post-test [t(763) = 6.89, p < 0.001, d = 0.36] with small effect sizes. Results for

Sample 2 were similar with male students outperforming female students by 4% on the

CSEM pretest [t(895) = 8.30, p < 0.001, d = 0.35] and by 5% on the CSEM post-test

[t(780) = 6.06, p < 0.001, d = 0.29] also with small effect sizes.

Difficulty and Discrimination Gender Pre/Post Problematic Items

Sample 1

Female Pre
5, 7, 10, 11, 14, 15, 16, 20, 22, 23,
24, 25, 26, 28, 29, 31

Post 1, 12, 23, 26, 31, 32

Male Pre
7, 11, 14, 15, 20, 21, 22, 23, 24, 25,
26, 27, 29, 31

Post 1, 3, 6, 12, 19, 23, 26

Overall Pre
4, 7, 11, 14, 15, 20, 21, 22, 23, 24,
25, 26, 27, 29, 31

Post 1, 12, 19, 23, 26, 32

Sample 2

Female Pre
4, 7, 10, 11, 13, 14, 15, 16, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 31

Post 14, 21, 22, 29, 31

Male Pre
11, 13, 14, 15, 16, 20, 21, 22, 24, 25,
27, 29, 31

Post 12, 14, 20, 22, 31

Overall Pre
7, 11, 13, 14, 15, 16, 20, 21, 22, 24,
25, 27, 29, 31

Post 14, 22, 29, 31

Table 6.10: CTT problematic items with P < 0.2, P > 0.8, or
D < 0.2 for the CSEM.

Table 6.10 presents the

problematic items for Sample 1

and Sample 2 with item diffi-

culty and item discrimination out-

side the desired ranges. Table

6.11 presents the CTT item level

statistics for all of the CSEM

items.

In Sample 1, all of the prob-

lematic pretest items for female

students had P < 0.2, while the

majority of the problematic pretest items for male students had P < 0.2 except for items 21

and 27 which had D < 0.2. The results for the Sample 2 pretest were similar; the majority
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of problematic items had P < 0.2 for both male and female students, except for item 4

for female students and item 21 for male students which had D < 0.2. Overall, male and

female students demonstrated little incoming knowledge of electricity and magnetism in both

samples.

Table 6.10 also presents the problematic CSEM post-test items for Sample 1 and Sample

2. Post-instruction the number of problematic items was reduced for both male and female

students in both samples. Although there was very little commonality in the CSEM post-test

problematic items between Sample 1 and Sample 2, within each of the samples there were

many common problematic items between male and female students.

In the Sample 1 post-test, items 1, 12, 23, and 26 were problematic for both male

and female students (P > 0.8). In addition, for male students, items 3, 6, and 19 also had

P > 0.8. For female students, item 31 had P < 0.2 and item 32 had D < 0.2. Most of the

problematic CSEM post-test items in Sample 1 had P > 0.8. Only one item was identified

as too difficult for female students (item 31) and one item failed to discriminate between

female students who know the material and those that do not (item 32).

In the Sample 2 post-test, items 14, 22 and 31 were problematic for male and female

students post-instruction. Items 14 and 31 had P < 0.2 and item 22 had D < 0.2. The

other problematic items were less consistent for male and female students. For male students,

item 12 (P > 0.8) and item 20 (P < 0.2) were problematic. Item 29 (P < 0.2) and item 21

(D < 0.2) were problematic for female students.
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Figure 6.6: CTT difficulty results for the CSEM. The top two panels are Sample 1 (a) CSEM pretest and
(b) CSEM post-test. The bottom two panels are Sample 2 (c) CSEM pretest and (d) CSEM post-test. A line
of slope one is drawn to allow comparison of male and female difficulty. Error bars represent one standard
deviation in each direction.

Graphical Analysis

Figure 6.6 plots the mean difficulties for the CSEM for men and women. Fig. 6.6(a)

and 6.6(c) show many items with very low pretest scores. These scores were sufficiently low

to be consistent with random guessing; it seems likely that many of the pretest items that

overlap the fairness line do so because neither male nor female students could answer them.
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In both CSEM post-test samples (Fig. 6.6(b) and (d)), the majority of the error bars

do not overlap the fairness line; most items were significantly more challenging for female

students. In Sample 1, there were two items that fell significantly below the fairness line and

were more challenging to male students (items 18 and 20); however, in Sample 2, items more

challenging for male students were closer to the fairness line. For Sample 1, a chi-squared

test showed the difficulties for items 3, 5, 6, 20 and 29 were significantly different for male

and female students with small effect sizes measured by the φ coefficient. For Sample 2,

items 3, 5, 6, 7, 8, 9, 10, 25, and 29 were significantly different, also with small effect sizes.

DIF Analysis

Sample 1

Item PM PF DM DF φ ∆αMH

3 .74±.01 .52±.02 .67±.02 .75±.03 .14c -1.01b

6 .83±.01 .68±.02 .33±.03 .55±.05 .15c -1.29b

20 .38±.01 .50±.02 .32±.03 .49±.06 .11c 1.93c

Sample 2

Item PM PF DM DF φ ∆αMH

32 .37±.01 .43±.02 .25±.03 .33±.06 .08a 1.02b

Table 6.12: CTT difficulty and discrimination and DIF ∆αMH

for the CSEM items with small to moderate or large DIF. The
significant levels have been Bonferroni corrected: “a” denotes p <
0.0016, “b” denotes p < 0.0003, and “c” denotes p < 0.00003.

Table 6.12 presents the

items in the CSEM post-test that

have either small to moderate or

large DIF. In Sample 1, only item

20 demonstrated large DIF (un-

fair to male students), while two

other items, 3 and 6, showed small

to moderate DIF (unfair to female students). In Sample 2, only item 32 demonstrated small

to moderate DIF; this item was moderately unfair to male students.

To construct an unbiased instrument, for each sample, items were iteratively removed

and DIF was recalculated. Because item 20 was substantially unfair to male students in

Sample 1, removing items 3, 6, and 20 increased the original gender gap by 0.1%. Removing

item 32 increased the gender gap in Sample 2 by 0.4%.
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6.3.5 Discussion

This section will discuss the two research questions in the order proposed.

RQ1: Are there items in the CSEM which CTT would identify as problematic? Are

the problematic items the same for male and female students? Problematic items were

identified within the CSEM. The results for the CSEM were less consistent between Sample

1 and Sample 2 than between the two samples for the FMCE. Within each sample, the

identified problematic items in the CSEM were fairly consistent between male and female

students. Prior to any physics instruction, many of the CSEM items were identified to be

problematic. Within each sample, many of the problematic items were the same for male

and female students.

For the CSEM post-test, different problematic items were identified in Sample 1 and

Sample 2. In Sample 1, items 1, 12, 23, and 26 were easy problems for both male and female

students post instruction; these items went from being too difficult to too easy for both

genders. In Sample 2, items 14, 22 and 31 were identified as problematic for both male and

female students on the CSEM post-test. Items 14 and 31 were consistently challenging for

both genders on the CSEM pretest and the CSEM post-test. Item 22 was a difficult item on

the CSEM pretest and had a poor discrimination on the CSEM post-test for both genders.

There were only two items that were problematic on the CSEM post-test across the

two samples. Item 12 had a difficulty of P > 0.8 for male students and item 31 had a

difficulty of P < 0.2 for female students. The inconsistencies in problematic items on the

CSEM post-test between the two samples may be due to the large differences in post-test

scores between Sample 1 and Sample 2 (Table 6.9).
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RQ2: Are there items in the CSEM which are substantially unfair to men or women?

The item fairness of the CSEM was examined graphically. In both samples, students’ in-

coming pretest score was low. Overall, less than half of the items on the CSEM post-test

were significantly unfair with one item in each sample (item 20 in Sample 1 and item 32

in Sample 2) unfair to male students. Overall, the majority of the CSEM items were not

significantly different in difficulty for men and women.

DIF analysis was also performed for the CSEM. In both Sample 1 and Sample 2, only

one item, item 20, demonstrated large DIF; this item was biased toward female students.

In general, the results for the CSEM presented in this study were also quite different

than the results of the previous analysis of the FCI. Chapter 5 examined gender differences

in the CSEM and in other conceptual problems and found a 5% CSEM post-test gap and a

3% gap in both qualitative lab quiz and qualitative test questions. As such, no more than

2% of the gender gap could be the result of instrumental bias which is consistent with small

number of high DIF CSEM items identified in Chapter 6, Section 6.3. With this, the CSEM

is substantially more gender fair than the FCI at the item-level.

6.3.6 Implications

Like the FMCE, this work demonstrated that the CSEM has few items with large DIF.

As such, institutions making decisions on the assessment of instructional practices should

consider using the CSEM for electricity and magnetism courses. Future research on the

BEMA may also identify it as fair, but this research is still to be done.
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6.3.7 Conclusions

The previous sections performed an analysis on the item-level fairness between male

and female students on the FCI and the FMCE. This section extended that research to the

CSEM. For the CSEM, less than half of the items were of significantly different difficulty for

men and women. Only one item in either of the samples demonstrated large DIF; this item

was substantially unfair to male students.
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Chapter 7

An Overall Synthesis of the Gender Gap

Overall, the conclusions that can be drawn from the previous analyses taken together

are stronger than those that are drawn from the studies taken individually. This chapter

will synthesize the results from Chapters 5 and 6.
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7.1 Introduction

In the previous chapter, item-level analysis showed a number of unfair items in the FCI

but a substantially fewer unfair items in the FMCE or the CSEM; some FMCE and CSEM

items performed differently for men and women but most items performed consistently with

the overall difference in post-test score. However, DIF analysis cannot eliminate the pos-

sibility of overall instrumental unfairness; DIF can only detect differential fairness between

items. The possibility of a general bias in the instruments shared approximately equally by

all items still exists.

Chapter 5 demonstrated that the low female pretest scores (probably caused by the

large number of problematic pretest items identified in Table 6.10) shifted the female pretest

score distribution sufficiently that it substantially overlapped the pure guessing score distri-

bution and, therefore, compared to male pretest scores, the pretest scores of women were

less predictive of their post-test scores. The pretest was less valid for women than for men.

This chapter will combine the conclusions from Chapters 5 and 6 to further understand

the overall the gender gap in the conceptual inventories. The analysis will first explore the

possibility of a general bias in the conceptual inventories by using the same binning technique

as in Fig. 5.3. In addition, the analysis will analyze post-test gender gaps for populations

with equal preparation by constructing a valid pretest score (i.e., eliminating the problematic

pretest items on each of the conceptual inventories) and further suggest that the overall

gender gap can then be partitioned into an instrumental gender gap and a gender gap that

is attributed from sources other than instrumental effects.
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7.2 Research Questions

• RQ1: Are the differences in overall performance between male and female students on

physics conceptual inventories dependent on the student’s pretest score?

• RQ2: For the FCI, the FMCE, and the CSEM, how much of the overall gender gap

can be attributed to differences of equally prepared students?

7.3 Methods

7.3.1 Samples

This chapter will only report the results for each Sample 1 from Sections 6.1, 6.2,

and 6.3, which will be labeled FCI, FMCE, and CSEM, respectively. The FCI sample was

collected at the same institution as the CSEM sample. Many students matriculated from the

mechanics course which produced the FCI sample to the electricity and magnetism class that

produced the CSEM sample and, as such, the student population was similar. Further, the

classes that produced these samples shared the same structure and pedagogy. While different

instructors led each class, both instructors were educators recognized by their institution for

their teaching.

The FCI sample had 4, 187 matched pretest/post-test pairs, the FMCE had 2, 744

matched pretest/post-test pairs, and the CSEM had 1, 804 matched pretest/post-test pairs.

A limited number of female students had a raw pretest score above 15 on the FCI, above 14

on the FMCE pretest and above 12 on the CSEM and, therefore, the analysis is restricted

to students with pretest score below these thresholds. Table 7.1 shows the female post-test
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FCI

Bin 0-5 6-7 8-9 10-11 12-13 14-15 > 15

% Women 56 37 28 26 19 13 8

FMCE

Bin 0-4 5-6 7-8 9-10 11-12 13-14 > 14

% Women 45 38 32 29 25 25 15

CSEM

Bin 0-6 7-8 9-10 11-12 > 12

% Women 32 29 22 18 8

Table 7.1: The percentage of women in each pretest score bin for each sample. N = 1, 047 students had a
FCI pretest score > 15. N = 909 students had a FMCE pretest score > 14. N = 250 students had a CSEM
pretest score > 12.

score distribution binned by pretest score for the FCI, FMCE, and the CSEM.

7.3.2 Modified Conceptual Inventories

For the analysis, each of the conceptual inventories pretest and post-test scores will be

modified. The modifications will be based upon the results from the identified problematic

items on the FCI, the FMCE, and the CSEM pretest and unfair items on the post-tests in

Chapter 6. To construct valid pretest scores for each instrument, items that were identified as

problematic on the respective pretests for either male or female students will be eliminated.

The reduced post-test scores will eliminate the small to moderate and large DIF items

identified by the DIF analyses, leaving no item-level unfairness on the instrument. Table 7.2

summaries the included items on each of the valid pretests and the reduced post-tests.

7.3.3 The Instrumental Gender Gap

Removing gender unfair items from the instruments lowers the probability that the

overall gender gap stems from an instrumental factor. In addition, removing problematic
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Instrument Total Items

FCI

Valid Pretest 19
1, 2, 3, 4, 7, 8, 9, 10, 12, 14, 16, 19,
20, 21, 22, 23, 24, 27, 29

Reduced Post-test 19
1, 2, 3, 4, 5, 7, 8, 10, 11, 13, 16, 17,
18, 19, 20, 25, 26, 28, 30

FMCE

Valid Pretest 15
1, 3, 7, 16, 21, 22, 23, 24, 25, 26,
30, 31, 32, 34, 41

Reduced Post-test 23
1, 2, 4, 14, 16, 17, 18, 19, 20, 22,
23, 24, 26, 30, 31, 32, 34, 36, 38,
40, 41, 42, 43

CSEM

Valid Pretest 14
1, 2, 3, 4, 6, 8, 9, 12, 13, 17, 18, 19,
30, 32

Reduced Post-test 29
1, 2, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 21, 22, 23, 24, 25,
26, 27, 28, 29, 30, 31, 32

Table 7.2: The items included on the valid pretests and reduced post-tests for the FCI, the FMCE, and the
CSEM.

items for male and female students that were identified on the pretest produces a pretest

score that is equally valid for men and women; it measures men and women with equal

accuracy.

This chapter will compare fair (reduced) post-test scores produced by removing small

to moderate and large DIF items from the post-test to valid pretest scores produced by

eliminating problematic items from the pretest. The gender gap in the conceptual inventory

post-test scores can then be partitioned into an instrumental gender gap resulting from

performance differences of equally prepared students (measured by valid pretest scores) and
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a gap resulting from other factors,

Gred = Ginst +Gother, (7.1)

where Gred is the overall gender gap for the reduced conceptual inventory, Ginst is the mean

of the gender gaps for the valid pretest bins, and Gother is the gender gap not attributable

to instrumental effects. Ginst could result from a general post-test gender bias. It could also

result from differing responses to how the post-test or pretest was applied or incentivized.

The failure to detect a gender gap in the “TestQuant” environment for the CSEM (Figure

5.3) suggests that Ginst does not result in a differing response to post-testing conditions for

the FCI or the CSEM. In both cases, post-test performance was incentivized by making the

score part of the student’s grade.

7.4 Results

This section will explore the instrumental gender gap in each of the conceptual inven-

tories separately by a series of steps:

1. In parallel with Chapter 5, overall instrumental fairness will be analyzed by binning

students by pretest score. This reproduces the binning already presented.

2. The unfair items identified in the DIF analysis in Chapter 6 will be removed and

the reduced post-test scores for male and female students will be analyzed by binned

pretest score.

3. The problematic pretest items identified in Chapter 6 will be eliminated to form a
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valid pretest score for all students. The reduced post-test scores will be analyzed with

respect to these new bins. Male and female reduced post-test scores will be analyzed

using a linear regression model and the instrumental gender gap will be calculated by

averaging the binned gender gaps.

To analyze the gender gap in each of the pretest bins in these figures, t-tests were used

and Cohen’s d effect sizes were calculated. A Bonferroni correction was applied to correct

for the number of statistical tests performed.

7.4.1 FCI

Figure 7.1(a) presents the FCI post-test scores for male and female students with

respect to binned FCI pretest scores. Overall, none of the bins demonstrated a significant

difference in post-test scores between male and female students. This result is flawed because

the pretest score mis-measures female students’ prior preparation; it is not valid.

To analyze the gender gap for the reduced FCI post-test, Figure 7.1(b) plots the male

and female reduced FCI post-test scores vs. the binned FCI pretest scores. The elimination

of the large number of unfair items identified in the FCI resulted in the female students

outperforming the male students on the reduced FCI post-test. With a Bonferroni correction,

only one of the pretest bins showed a significant difference in reduced post-test performance

between male and female students, bin 8-9 [t(390) = 2.86, p < 0.01, d = 0.23], with a small

effect size.

After eliminating the common problematic items identified in Section 6.1, the student’s

valid pretest score was made up of 19 items. Figure 7.1(c) presents the reduced FCI post-

test percentages for male and female student plotted against the valid FCI pretest bin. For
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Figure 7.1: The FCI synthesis: (a) post-test percentage vs. pretest bin, (b) reduced post-test percentage vs.
pretest bin, and (c) reduced post-test score vs. valid pretest bin. The number next to the data point is the
number of students within each pretest range.

the five bins, only one bin, bin 6-7, showed a significant difference in reduced FCI post-

test performance between male and female students with an advantage to female students

[t(478) = 2.68, p < 0.05, d = 0.21] with a small effect size. From Section 6.1, the overall

gender gap for the reduced FCI was Gred = 4.67% and the instrumental gender gap was

calculated to be Ginst = −1.95%, leaving Gother = 6.62%. This demonstrated that, after cor-

recting for the mis-measurement of pretest score, female students outperform male students
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on the reduced FCI post-test.

The post-test scores were fitted for both male and female students separately with the

female student fit indicated with the the solid line. The two fit lines are nearly parallel

showing the instrumental bias is independent of preparation measured by pretest score, as

expected. The vertical distance between the lines represents another measure of Ginst.

7.4.2 FMCE

Figure 7.2(a) plots the FMCE post-test percentage vs. the FMCE binned pretest

score. With a Bonferroni correction, the difference in post-test performance between male

and female students was not significant in any of the pretest bins.

In Section 6.2, DIF analysis identified a small number of items that were functioning

differently for male and female students. Figure 7.2(b) presents the reduced FMCE, measured

by a total of 23 items, vs. the binned FMCE pretest. Because of the small number of large

DIF items detected in the FMCE, the post-test percentages of the FMCE for both male and

female students were not as affected as they were for the reduced FCI. Correcting for Type

I error rate, none of the gender gaps in any of the pretest bins were significant.

In Section 6.2, 15 items were identified as problematic prior to physics instruction for

either male and female students; the valid FMCE pretest score was made up of the remaining

15 items of the FMCE. Figure 7.2(c) plots the reduced FMCE post-test percentage against

valid FMCE pretest scores for male and female students. Although none of gender gaps in

any of the valid pretest bins were significant, the linear fits demonstrated that, on average,

male students outperform the female students. The instrumental gender gap was calculated

to be Ginst = 3.69% and, with the reduced FMCE overall gender gap of Gred = 11.76%
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Figure 7.2: The FMCE synthesis: (a) post-test percentage vs. pretest bin, (b) reduced post-test percentage
vs. pretest bin, and (c) reduced post-test score vs. valid pretest bin. The number next to the data point is
the number of students within each pretest range.

reported in Section 6.2, the resulting gender gap due to other factors was Gother = 8.07%.

Approximately 70% (= 100 × Gother/Gred) of the overall gender gap in the FMCE must be

explained by differences other than instrumental bias leaving 30% of the gender gap explained

by differences in performance of equally prepared students.
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7.4.3 CSEM

Figure 7.3 presents a parallel analysis for the CSEM. With a Bonferroni correction,

there was a significant difference in post-test performance between male and female students

in bin 9-10 [t(143) = 2.60, p < 0.05, d = 0.32] with a small effect size.

In Section 6.3, to remove all item-level bias in the CSEM, only three items were elimi-

nated to produce a reduced CSEM post-test consisting of 29 items. Figure 7.3(b) shows the

gender gap of the reduced CSEM post-test by the students’ CSEM pretest bin. Just as for

the FMCE, since a small number of items were detected as highly unfair in the CSEM, the

CSEM post-test scores for both male and female students were less affected than those of

the FCI. For the reduced CSEM, differences in post-test scores were significant in bin 9-10

[t(150) = 2.79, p < 0.05, d = 0.33] and bin 11-12 [t(65) = 2.78, p < 0.05, d = 0.47].

Overall, Section 6.3 detected 18 problematic items on the CSEM pretest for either male

or female students. Removing these items left 14 items to form a valid CSEM pretest score.

Figure 7.3(c) plots the 29 items reduced CSEM post-test for each of the valid CSEM pretest

bins. The linear fits show that male students outperformed female students. Only bin 6-7

showed a significant difference in post-test performance between male and female students

[t(240) = 4.27, p < 0.001, d = 0.42]. The gender gap averaged over the valid pretest bins

was Ginst = 4.40%, leaving a non-instrumental gap of Gother = 1.48% (Gred = 5.88% from

Section 6.3). For the CSEM, the majority of the overall gap (75%) resulted from differences

in performance of equally prepared students.
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Figure 7.3: The CSEM synthesis: (a) post-test percentage vs. pretest bin, (b) reduced post-test percentage
vs. pretest bin, and (c) reduced post-test score vs. valid pretest bin. The number next to the data point is
the number of students within each pretest range.

7.5 Discussion and Conclusions

The above analysis showed that the 19-item FCI does not have an overall instrumental

bias; however, even after correcting for differences in pretest scores, an instrumental bias

remained on the reduced FMCE, and the reduced CSEM. A linear relation between valid
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pretest and reduced post-test was identified for men and women; in all samples, the linear

relation for women was nearly parallel to the linear relation for men but displaced by Ginst.

For the FCI, the instrumental gap was Ginst = −1.95, demonstrating that 100% of the overall

gender gap in the reduced FCI can be explained by differences other than instrumental bias;

the instrument is in fact slightly biased toward female students. However, this was not true

for the FMCE and the CSEM. For equally prepared students, the FMCE and the CSEM

showed a 4% instrumental gender gap. 30% and 75% of the overall gender gap in the FMCE

and the CSEM, respectively, was explained by instrumental bias. Table 7.3 summarizes the

results.

Gred (%) Ginst (%) Gother (%) Percentage due to Percentage due to
Instrumental Bias Other Factors

FCI 4.67 -1.95 6.62 0% 100%

FMCE 11.76 3.69 8.07 31% 69%

CSEM 5.88 4.40 1.48 75% 25%

Table 7.3: The reduced, instrumental, and non-instrumental gender gaps for the FCI, FMCE, and CSEM.

The FCI and CSEM samples were collected at the same institution. As such, differences

between the FCI sample and the CSEM sample are unlikely to be the result of differences

in either instruction or student population. The graphical plots, φ coefficients, and DIF

analysis of the full FCI and CSEM (Figures 6.1 and 6.6(b)) were, however, dramatically

different; a result of a substantial subset of large DIF items in the FCI and the small number

identified in the CSEM. If large DIF items are removed to produce the 19-item instrument

suggested by Section 6.1, the qualitative differences in Figure 6.1 and Figure 6.6(b) vanish.

To determine the degree of similarity, one can count the number of φ coefficients that are

smaller that 0.1, the threshold for small effect size. In the reduced 19-item FCI post-test,
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all items have φ < 0.1. In the CSEM sample, removing the large DIF item, 3 of 31 items

have φ ≥ 0.1. With the same student population and instructional environment, overall,

the reduced FCI and the reduced CSEM behave similarly; however, the question remains as

to the origin of the 4% instrumental bias seen on the CSEM. Because of the relation of the

samples, it is unlikely to reside in differences in the students.

The partitioning of the overall gender gap provides an explanation of the differences

in the φ coefficients between the FCI and the FMCE samples. While DIF analysis identified

few unfair items in the FMCE compared to the FCI, the φ coefficients in the FMCE sample

were much larger. However, qualitatively comparing the pretest results in Figures 6.4 and

6.5, the student population in the FMCE sample is more well prepared prior to physics

instruction than the student population for the FCI sample; this is also seen in the pretest

scores in Tables 6.1 and 6.5. Although the reduced post-test gap is much larger in the FMCE

sample compared to the FCI sample (12% vs. 4%), 70% of the FMCE gap is attributable

to factors other than the instrument. These “other” factors are almost certainly largely the

result of the differences in preparation of male and female students shown in Table 7.1. Like

the CSEM, the FMCE also shows a 4% instrumental gender gap. Further research should

investigate the source of this gap.

The gender composition of the pretest bins in Table 7.1 clearly demonstrates substan-

tial difference in preparation which may strongly influence the gap. While other factors may

influence Gother beyond differential preparation, it seems likely that a large part of Gother re-

sults from prior preparation differences of male and female students; however, more research

is needed to prove this hypothesis.

Overall, the percentage of the gender gap which could be attributed to instrumental
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effects varied widely by sample from 0% for the FCI to 4% for the FMCE and the CSEM. This

analysis suggests that, for equally prepared student populations, the reduced FCI seems to

be the most fair conceptual inventory to measure conceptual understanding of both male and

female students. As such, institutions making decisions on the assessment of research-based

instructional practices should consider using the reduced 19-item subset of the FCI.

176



Chapter 8

Racial and Ethnic Bias in the Force Concept

Inventory∗

The majority of this thesis work has explored the intersection of gender and physics.

This chapter contains some additional work published within conference proceedings to ex-

amine the effect of race and ethnicity.

∗This manuscript was published in the 2017 Physics Education Research Conference (PERC) proceedings.
This work was supported in part by the National Science Foundation, PHY-0108787.
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8.1 Introduction

While the gender gap in conceptual physics has been extensively studied, little research

has explored whether these gaps extend to other underrepresented populations such as stu-

dents of race or ethnicity different from the majority Caucasian population. In a recent

commentary, Scherr lamented the unbalanced focus of PER on gender when many other

populations are substantially underrepresented in physics [220]. A few studies have exam-

ined differences in post-test scores by race and ethnicity. Kost, Pollock and Finkelstein found

that ethnicity was not a significant factor in predicting FMCE post-test scores; however, they

warned that this could be due to the small number of students of non-majority ethnicity in

their sample [72]. In another study, Kost-Smith, Pollock, and Finkelstein added ethnicity

to their model when predicting Brief Electricity and Magnetism Assessment (BEMA) [24]

post-test scores. They also found that ethnicity did not explain additional variability in

post-test scores [74]. Hazari, Tai, and Sadler showed that there was a difference in intro-

ductory course performance, measured by grade, between Caucasian, African-American, and

Hispanic students [70]. To the authors’ knowledge, the validity and reliability of the FCI

has not been explored for any racial or ethnic groups other than the majority Caucasian

students.

The underrepresentation of women and minorities within Science, Technology, En-

gineering, and Mathematics (STEM) fields is a serious national concern. According the

National Science Foundation, in 2012, 60% of bachelor’s degrees awarded in science and

engineering went to Caucasian students, 8.4% to African-American students, and 9.9% to

Hispanic or Latino students [221]. Also in 2012, out of 5,557 awarded bachelor’s degrees in
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physics, only 142 and 314 degrees in were given to African-American and Hispanic students

respectively [221]. Although bachelor’s degrees in STEM awarded to African-Americans

grew from 1995 to 2004, an inverse relationship still exists between degree level and number

awarded to African-Americans [222].

African-American and Hispanic men and women are not as likely to attend and com-

plete college as Caucasian students. According to the ACT Policy Report, of the African-

American and Hispanic students enrolled in a four-year college, 41% completed a degree

within six years at the same institution compared to 59% of Caucasian students [223]. Brax-

ton, Milem, and Sullivan demonstrated that race had a significant direct effect on intent

to re-enroll in the upcoming semester [224]. Ishitani analyzed departure rates of transfer

students; minority transfer students were 68% more likely to depart than their Caucasian

transfer counterparts [225]. Toven-Lindsey et al. demonstrated that minority students who

enrolled in an academic support program were more likely to persist in a science major [226].

Sociocultural factors that have been shown to be important for retaining women in STEM

have also been investigated for underrepresented minorities [227, 228].

This study seeks to add to the sparse literature on the differences in conceptual physics

performance between Caucasian, African-American, and Hispanic introductory physics stu-

dents.

8.2 Research Questions

• RQ1: Are there differences in FCI post-test scores between male and female students?

• RQ2: Are there differences in course grades or FCI post-test scores between students
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of different race and ethnicity?

• RQ3: If a gender difference exists in FCI post-test scores, is this gender difference the

same for students of all races and ethnicities?

8.3 Methods

This research was conducted in the first-semester, calculus-based mechanics course at

a southern land-grant university serving approximately 25,000 students in the United States.

The instructional environment was described within Sample 1 in Section 6.1.

From the fall 2006 semester to spring 2012 semester, 3,273 students completed the

course for a grade. Of these students, 3,237 completed the FCI post-test. Students were also

asked to self-report race and ethnicity as part of a survey administered at a different time

than the FCI. Of the 3,237 students who completed the post-test, 2,038 reported their race or

ethnicity. Race and ethnicity was collected as “Caucasian” (n = 1, 665), “African-American”

(n = 85), “Asian/Pacific Islander” (n = 124), “Hispanic” (n = 82), and “Other” (n = 82).

Only students that reported African-American (4%), Caucasian (82%), or Hispanic (4%)

were included in this study, leaving a sample size of 1,832 students (74% male students). For

all analyses, gender was coded with female as 0 and male as 1 and Caucasian students were

coded as the reference group. Course letter grades were measured on a four-point scale with

A=4 and F=0. To explore the differences in FCI post-test scores between the various racial

and ethnic groups ANOVA and hierarchical linear regression were employed.
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8.4 Results

Table 8.1 summarizes FCI post-test scores and course letter grades; FCI scores are

presented as a percentage. Significance levels were Bonferroni corrected to adjust for inflation

of Type I error. Effect size was characterized by Cohen’s d.

Male Students Female Students
N M ± SD N M ± SD d

African-American (n = 85)

Physics Grade 61 2.9± 1.1 24 3.0± 0.7 0.11
FCI Post-test 61 63± 19 24 58± 13 0.32

Caucasian (n = 1665)

Physics Grade 1241 3.4± 0.8 424 3.5± 0.7 0.17
FCI Post-test 1241 78± 15 424 70± 15 0.52

Hispanic (n = 82)

Physics Grade 54 3.3± 0.8 28 3.1± 0.9 0.23
FCI Post-test 54 72± 15 28 66± 12 0.40

Table 8.1: Course letter grades and FCI post-test averages. Letter grades were measured on a four-point
scale and FCI post-test averages are reported as percentages.

Differences between the students of different race and ethnicity were analyzed using

a one-way between-subjects ANOVA. Results showed that there were significant differences

in both letter grade [F (2, 1829) = 16.67, p < 0.001] and FCI post-test score [F (2, 1829) =

36.86, p < 0.001].

A posthoc analysis showed that there were significant differences in course grade be-

tween Caucasian and African-American students (p < 0.01) with a medium effect size of

d = 0.63 and between Hispanic and African-American students (p < 0.05) with a small ef-

fect size of d = 0.43. There was no significant difference in course grade between Caucasian

and Hispanic students. For the FCI post-test score, posthoc analysis showed significant dif-

ferences between all races and ethnicities (ps < 0.01). There was a large effect size between
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Caucasian and African-American students (d = 0.90), a medium effect size between Hispanic

and African-American students (d = 0.52), and a small effect size between Caucasian and

Hispanic students (d = 0.36).

Within each racial and ethnic group, differences by gender were analyzed using t-

tests. For African-American students and Hispanic students there were no significant gender

differences in either course grade or FCI post-test score. However, for Caucasian students,

there was a significant gender difference in course grade [t(814) = 3.13, p < 0.05, d = 0.17]

and FCI post-test score [t(723) = 9.10, p < 0.001, d = 0.52]. While significant gender

differences were only measured for Caucasian students, the size of the differences were very

similar between the three groups. An increase in sample size for African-American and

Hispanic students may lead to the findings of significant gender differences.

To more thoroughly explore how the FCI post-test percentage was related to gender,

race, and ethnicity, hierarchical linear regression was employed. Table 8.2 presents the results

of this analysis.

In Model 1, course performance, measured by overall physics grade, was a significant

predictor of FCI post-test average. This independent variable alone explained 27% of the

variability in post-test scores.

Model 2 explored the relationship of gender and FCI post-test averages. There was a

significant gender gap with male students outperforming female students by 7.76%; however,

only 5% of the variance in FCI post-test average was explained by gender.

Model 3 examined the relationship of race and ethnicity with post-test average. This

model compares African-American and Hispanic students to Caucasian students; Caucasian

students form the baseline for the regression and the regression coefficient measures the
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Variables B SE β R2
adj

Model 1 Physics Grade 10.18c 0.39 0.52c .27c

Model 2 Gender 7.76c 0.83 0.49c .05c

Model 3 African-Amer. −14.03c 1.73 −0.88c .04c
Hispanic −5.64b 1.76 −0.36b

Model 4
Physics Grade 9.84c 0.39 0.50c

.28cAfrican-Amer. −9.07c 1.51 −0.57c

Hispanic −4.48b 1.52 −0.28b

Model 5

Step 1 Physics Grade 10.46c 0.38 0.53c .33c
Gender 8.88c 0.70 0.56c

Step 2
Physics Grade 10.14c 0.38 0.51c

.34cGender 8.73c 0.69 0.55c

African-Amer. −8.68c 1.45 −0.55c

Hispanic −3.68a 1.46 −0.23a

Step 3

Physics Grade 10.16c 0.38 0.52c

.34Gender 9.13c 0.73 0.58c

African-Amer. −6.88c 2.71 −0.43a

Hispanic −0.09 2.52 −0.01
Afr.-Amer. × Gend. −2.47 3.19 −0.16

Hisp. × Gend. −5.40 3.09 −0.34

Table 8.2: Hierarchical linear regression analysis predicting FCI post-test percentage. Female was coded
as 0 and male as 1. B is the regression coefficient, SE the standard error, and β the regression coefficient
normalizing the post-test percentage. Superscript “a” denotes p < 0.05, “b” denotes p < 0.01, and “c”
denotes p < 0.001. The R2

adj significance levels indicate the significance of the improved fit of the model over
the model in which it is nested.

change with respect to this baseline. On average, African-American students (14.03%) and

Hispanic students (5.64%) scored lower on the FCI post-test than Caucasian students. Race

and ethnicity explained only 4% of the variability in FCI post-test score.

Model 4 explored the effect of race and ethnicity controlling for course performance.

After controlling for physics grade, there were significant differences in FCI post-test scores

between students of different race and ethnicity; African-American students (9.07%) and His-

panic students (4.48%) performed more weakly than Caucasian students. These differences

were smaller than the uncorrected differences in Model 3. As such, some but not all of the

differences in post-test scores for these students were explained by overall class performance.

Model 5 examined the relationship between gender, race, and ethnicity while controlling
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for course grade. Model 5–Step 1 identified a significant overall gender gap (8.88%) on the

FCI post-test controlling for overall course performance measured by physics grade. Model

5–Step 1 significantly improved model fit (p < 0.001) over Model 1 and explained 33% of the

variability in post-test scores. Model 5–Step 2 added race and ethnicity to the model. There

was still a significant gender difference in post-test scores (8.73%) as well as significant

differences between each racial and ethnic group. Controlling for course grade, African-

American students still scored significantly lower than Caucasian students (8.68%) while

Hispanic students also scored significantly lower than Caucasian students (3.68%). Although

adding race and ethnicity to the model explained only an additional 1% of variability in

post-test average, Model 5–Step 2 was a significantly better model than Model 5–Step 1

(p < 0.001).

Model 5–Step 3 introduced interactions between gender, race, and ethnicity. This

model did not explain significantly more variability in post-test average and was not a sig-

nificantly better model when compared to Model 5–Step 2. The interaction terms in this

model were also not statistically significant. Although an overall gender gap exists in the

FCI post-test score, this gender gap was the same for African-American, Caucasian, and

Hispanic students correcting for course performance.

8.5 Discussion

RQ1: Are there differences in FCI post-test scores between male and female students?

A gender gap of 7.76% was found in FCI post-test scores with men outperforming women

(Table 8.2 Model 2). When controlling for course performance this difference in FCI post-
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test scores between male and female students was still found to be significant and relatively

unchanged (8.88%) (Table 8.2 Model 5 – Step 1). Although this gender gap was lower than

the overall average of 12% reported by Madsen, McKagen, and Sayre [63], the result was in

the range of gender differences in FCI post-test scores in their review.

RQ2: Are there differences in course grades or FCI post-test scores between students of

different race and ethnicity? The differences in course grades between Caucasian, African-

American, and Hispanic students were similar to those presented previously [70]. Differences

were also identified in FCI post-test scores. Controlling for course performance, these differ-

ences persisted but narrowed. Controlling for course grade, a 9.07% difference was measured

between African-American students and Caucasian students and a difference of 4.48% be-

tween Hispanic students and Caucasian students (Table 8.2 Model 4). This study detected

not only a gender gap in the FCI but also racial and ethnic differences not previously re-

ported [72, 74]. Only some of the racial and ethnic gaps were explained by course grades

while none of the gender gap was explained by grades.

RQ3: If a gender difference exists in FCI post-test scores, is this gender difference

the same for students of all races and ethnicities? Comparison of Model 4 and Model 5–

Step 2 in Table 8.2 showed that there was both an overall effect of gender (8.73%) and of

race/ethnicity [African-American 8.68%; Hispanic 3.68%] which coexisted. The failure to

find interactions between gender and race/ethnicity in Model 5–Step 3 suggests the gender

gap is consistent across students of all races and ethnicities. The gender gap was neither

localized in the majority Caucasian population, nor more or less severe for African-American

or Hispanic students.
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8.6 Implications and Limitations

The effect of gender was fairly orthogonal to the effect of race/ethnicity leading to the

concern that interventions or modifications to the FCI instrument intended to narrow the

gender gap might not help underrepresented students of non-majority race or ethnicity.

This work was performed at one institution and the results may be dependent on the

student population or the instructional environment. The work relied on self-reported race

and ethnicity information and forced students to identify a single race or ethnicity which

may miscount multi-race students. In the future, research will focus on the reasons for the

differences between the various racial and ethnic groups.

8.7 Conclusion

The gender gap on popular physics conceptual assessments has been thoroughly ex-

plored [63]. Race and ethnicity has been less studied. In this work, a gender gap (7.76%)

was found on the FCI post-test. Differences between students by race and ethnicity were

analyzed; Caucasian students outperformed both African-American and Hispanic students

by 14.03% and 5.64%, respectively. Controlling for course performance measured by overall

physics grade, the difference between male and female students was slightly increased. Differ-

ences between students by race and ethnicity were also significant after controlling for overall

physics grade, but somewhat reduced. Although main effects of gender and race/ethnicity

were present in this analysis, no significant race/ethnicity-by-gender interaction was mea-

sured. The gender gap was shared equally by students of all races and ethnicities.
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Chapter 9

Future Work
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Although this work suggested some of the overall gender gap in the conceptual inven-

tories was the result of instrumental bias, additional research is required to understand the

remaining performance differences to ensure that all students learn physics to the best of

their ability. Future research plans revolve around the development of instructional peda-

gogies and assessment tools that can be used for improving learning for all students while

at the same time proving additional support for underrepresented students. Some potential

future and ongoing projects are outlined below:

• Continue to explore the gender gap by using additional variables (collected at WVU)

to understand the latent CPP/NonQnt variable and thus understand the cause of

male/female performance differences.

• Perform a similar fairness analysis on the Brief Electricity and Magnetism Assessment.

• Extend the fairness analysis to investigate the different experiences in physics of all

underrepresented students (i.e., First Generation Status, Rural/non-rural, etc.).

• Qualitatively explore the 5 items that were identified as substantially unfair to female

students in the FCI.

• Create adaptive instructional tools with an eye to inclusion.

• Construct and validate other assessment tools that target reformed pedagogies and

materials making them sufficiently fine-grained that they allow instructors to identify

specific areas of instruction that could be improved.
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Conclusion
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With the introduction of research-based instruments such FCI [21], the FMCE [22], and

the CSEM [23], differences in performance by gender began to be reported. The “gender gap”

has been extensively studied in the mechanics inventories such as the FCI and the FMCE;

however, much less work exists exploring the gender gap in the CSEM. On average, male

students outperform female students by 13% on pretest scores and by 12% post instruction on

the mechanics conceptual inventories and by 3.7% on pretest scores and by 8.5% on post-test

scores on the electricity and magnetism conceptual inventories [63]. Many factors have been

proposed that may influence the gender gap, from differences in background and preparation

[72, 74] to various psychological and sociocultural effects, such as science anxiety [99] and

stereotype threat [110]. A parallel but largely disconnected set of research has identified

gender biased questions within the FCI [190, 201, 202]. This research has produced sporadic

results and has only been performed on the FCI. Although the research into exploring the

gender differences in physics is robust, researchers have yet to come to an agreement as to

why a “gender gap” exists in the various conceptual inventories that are widely used in PER

and/or how to reduce the gaps.

The motivation behind this work began first with seeking to understand the effects of

the implementation of a LA program. Over the course of nine semesters, a strong oscillation

of normalized gain between spring and fall semesters was measured. Hierarchical Linear

Regression, controlling for spring/fall semester and standardized test scores (ACT/SAT),

showed that the LA program increased normalized gain on the FMCE by approximately

20%; however, the effect of the 14 different instructors was much larger than the effect of

the LA program. Throughout this analysis, male students outperformed women by 10%; an

effect that was virtually unchanged by the addition of any other variable. Overall, this pro-
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gram had many departmental impacts and many valuable lessons were learned throughout

the evaluation: (1) the program initially demonstrated a negative effect on learning because

of the spring/fall fluctuation of student performance and preparation (ACT/SAT scores)

which suggests that multiple semesters of control data are needed to understand educational

reform, (2) different instructors produced different outcomes; therefore, it is critical to have

coherent support and buy-in across all elements of the course, (3) the Tutorials and Learn-

ing Assistant program were introduced prior to the effort to produce coordinated instruc-

tion which suggests that introducing research-based materials before establishing consistent

course structure may limit the effectiveness of reformed instruction, (4) the PER instruments

that were used to monitor the courses did not allow the adopters to identify places where

the innovations could be improved.

Knowing that little research exploring the overall gender gap in the electricity and

magnetism conceptual inventories existed, Chapter 5 analyzed differences in performance

between men and women on the CSEM. The data for this study was unique; it collected

item-level data for all assignments in a physics course for 5 years. Each item was coded

as either a qualitative or quantitative physics problem. This provided additional sources of

qualitative questions beyond the CSEM and a control sample of quantitative questions. An

overall gender gap existed in all of the qualitative environments: CSEM post-test, qualita-

tive lab quiz questions, and qualitative test questions. However, male and female students

performed equally on quantitative test questions. The failure to find performance differ-

ences on quantitative test questions suggested that the gender gap cannot be explained by

psychological mechanisms such as science anxiety or stereotype threat.

The gender gaps in the qualitative environments were dependent on CSEM pretest
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score. This difference between qualitative and quantitative performance suggested that

an underlying variable could be used to explain the differences. SEM was used to ex-

tract a latent variable which was called Conceptual Physics Performance/Non-Quantitative

(CPP/NonQnt). This variable was the part of the student’s conceptual performance that

was not explained by their quantitative test performance in the course. The correlation

between CPP/NonQnt and CSEM pretest score was larger for male students than it was

for female students, suggesting that the CSEM pretest is less predictive of CPP/NonQnt

for women than for men. To investigate this further, a sequence of models was fit to the

CSEM pretest distributions for both male and female students. For male students, the dif-

ferences in fit suggested that the CSEM pretest could discriminate between male students

who were guessing and those that had some prior knowledge of electricity and magnetism.

However, for female students this wasn’t the case and therefore, the pretest scores provided

less information about female students.

The analysis in Chapter 5 also suggested that the CSEM was not intrinsically biased.

This conclusion was later refined in Chapter 7. To further explore this conclusion, exploration

of intrinsic bias in the conceptual instruments themselves was performed. In Chapter 6,

Classical Test Theory and Item Response Theory were used to compare item difficulties

between male and female students on the FCI, FMCE, and the CSEM.

For the FCI post-test scores, most of the items were unfair and there were 5 items

that stood out as substantially unfair to female students. Differential Item Functioning

analysis using three academically diverse populations detected 10 items with high gender

bias; eliminating these 10 items reduced the overall gender gap by 50%. This analysis

suggested an extension to the validity framework published by Jorion et al. [142] which
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would add an item fairness analysis using DIF analysis to the validation process.

The item fairness analysis was extended to the FMCE and the CSEM. The results for

the FMCE and the CSEM were quite different than those from the FCI. For the FMCE and

CSEM post-test scores, most of the items were significantly more challenging for female stu-

dents than for male students; however, unlike in the FCI, no items stood out as substantially

unfair in the FMCE or the CSEM.

To synthesize the results in Chapter 5 and 6, valid pretest scores and reduced post-test

scores were constructed for each of the conceptual inventories. This analysis demonstrated

that the amount of instrumental bias attributing to the overall reduced post-test gaps varied

between the FCI, the FMCE, and the CSEM. The differences in reduced FCI post-test

performance between male and female students can be fully explained by factors other than

instrumental bias; however, only 70% and 30% of the overall gender gap is due to other factors

on the FMCE and CSEM, respectively. Due to the demonstrated differences in preparation

seen in Chapter 7, the “other” factors attributing to the gender gap are almost certainly a

result of these differences; however, further research is needed to prove this hypothesis. In

general, for equally prepared students, the reduced FCI seems to be the most fair instrument.

Overall, this work showed features of the PER conceptual instruments that were not

equally fair for men and women. It demonstrated ways to remove this unfairness and sug-

gested that institutions making decisions on the assessment of research-based instructional

practices should consider these features. In the big picture, to bring more women and other

underrepresented students into the STEM fields, science classrooms should ensure equal op-

portunity to show individual learning capabilities; without valid and fair assessment tools

and effective pedagogies that acknowledge diversity, there is not a guarantee to equal edu-
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cational access.
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