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ABSTRACT 
 

Non-Intrusive Anomaly Detection for Encrypted Networks 
 

Luis C. Armendariz, Jr. 
 

 

The use of encryption is steadily increasing. Packet payloads that are encrypted are 

becoming increasingly difficult to analyze using IDSs. This investigation uses a new non-

intrusive IDS approach to detect network intrusions using a K-Means clustering methodology.  

It was found that this approach was able to detect many intrusions for these datasets while 

maintaining the encrypted confidentiality of packet information. This work utilized the KDD 

'99 and NSL-KDD evaluation datasets for testing. 
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"We assumed the digital footprints we left behind  

- our clickstream exhaust, so to speak -  

were as ephemeral as a phone call,  

fleeting, passing, unrecorded... 

 

 

Our tracks through the digital sand are [in fact] eternal." 

 

- Tom Zeller Jr.
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Chapter 1: Introduction 

1.1 Introduction 

One method of detecting an intrusion is to use an intrusion detection system 

(IDS). The IDS has the ability to monitor system or network traffic and compare 

it to a standard for analysis. Generally, a standard may be differentiated by an 

anomaly-based process utilizing behavior models or a signature-based process 

containing signatures of attack descriptions. In recent years, an effort to design 

and build systems that analyze network traffic over a variety of mediums has 

emerged. Most of the solutions utilize a type of anomaly or signature based 

approach that analyzes packet payloads for additional data. 

 

The issue with these systems is that they are unable to analyze network traffic that 

is sent over an encrypted channel, due to the payload of the packets being 

inaccessible. Only a limited quantity of IDS systems are designed to handle 

encrypted information. Many of these systems require protocol modifications or 

special infrastructures because of abnormally high false alarm rates. This paper 

will investigate a methodology to analyze encrypted network traffic with a K-

Means clustering algorithm. Additionally, it will utilize TCP traffic properties to 

evaluate the possibility of an intrusion. An intrusion detection system (IDS) can 

thus monitor network traffic for potential intrusions while maintaining the 

confidentiality of the packet information. 

 

In order to validate the effectiveness of detecting intrusions with the proposed 

methodology, the investigation will implement the proposed system using the 

KDD '99 and NSL-KDD evaluation datasets. Furthermore, the results of the 

evaluation will be compared against additional methodologies from similar 

research experiments. By doing this, the effectiveness of this strategy can be 

analyzed. 
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1.2 Statement of Problem 

Intrusion Detection systems typically utilize either a signature-based or anomaly-

based approach to analyze in-the-clear network traffic connected to a network or 

host machine. However, encrypted communications deny use of payload-related 

data. One approach to analyze encrypted networks is non-intrusive. A non-

intrusive approach will be examined to determine if utilizing a K-Means 

clustering model and TCP traffic properties will provide high precision and recall 

with a lower false rate than the only other known existing non-intrusive 

methodology. [1,49] This will be accomplished by validating the effectiveness of 

the algorithm using the KDD '99 and NSL-KDD evaluation datasets. 
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1.3 Organization 

This paper is separated into six chapters. The first chapter provides an 

introduction to intrusion detection and the initial problem statement. The second 

chapter provides a more detailed background to intrusion detection as well the 

current research in this field of study. The third chapter discusses the proposed 

intrusion detection system and the evaluation of the proposed system. The fourth 

chapter examines the data collected to either support or refute the initial theory, as 

well as discusses the final conclusions and where this work can be expanded in 

the future. Finally, the fifth and sixth chapters list the bibliography and additional 

appendices. 
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Chapter 2: Literary Review 

This chapter provides a review of the current research in the area of intrusion detection. 

The first section discusses the background and evolution of intrusion detection to its 

current methodologies. The second section provides a brief review of encryption and the 

current research related to detecting intrusions over encrypted channels. The third section 

discusses clustering methodologies. Finally, the fourth section discusses goals for next 

generation Intrusion Detection Systems (IDSs). 

 

2.1 Intrusion Detection 

 2.1.1 Specification 

Intrusion Detection is the process of monitoring a network or system for 

potential signs of malicious activities or policy violations. Possible types 

of incidents include violations or imminent threats of violation of 

computer security policies, acceptable use policies, or standard security 

practices. [2]. 

 

2.1.2 Background 

In the beginning, intrusion detection was first performed by system 

administrators. The process consisted of sitting in front of a user console 

and monitoring user activities for potential intrusions. Although this 

methodology was effective at the time, this form of detection was very ad 

hoc and did not allow for scalability.  [22] 

 

However, the awareness of intrusion detection began to spread when a 

United States Air Force (USAF) paper written by James P. Anderson was 

published in 1972. This paper identified how the USAF had "become 

increasingly aware of computer security problems" and spurred people to 

begin asking questions on how to safely secure information without 

compromising security. [16][17] From this study, James P. Anderson 

published a paper in 1980 called How to use accounting audit files to detect 

unauthorized access. [18] This paper outlined many ways to improve 

computer security auditing and surveillance at customer sites, as well as 

paved a way for misuse detection in mainframe systems [16]. 

 

From here, Dorothy Denning and Peter Neumann developed the first model 

of a real-time IDS called the Intrusion Detection Expert System (IDES) 

between 1984 and 1986. [19] Initially, this system was a rule-based system, 

trained to detect known malicious activity. However, the system was 
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refined to incorporate the statistical analysis of user profiles, becoming the 

Next-Generation Intrusion Detection Expert System (NIDES) [20]. Over 

time, the system was further enhanced to become the Event Monitoring 

Enabling Responses to Anomalous Live Disturbances (EMERALD) 

project. [21] 

 

Throughout the 1980s and 1990s, much of the intrusion detection research 

was based on these initial models and designs. Many projects thrived due to 

funding from the United States (U.S.) government. Projects such as 

Discovery, Haystack, Multics Intrusion Detection and Alerting System 

(MIDAS), Network Audit Director and Intrusion Reporter (NADIR), 

Netranger, RealSecure, and Snort were developed during this period [16]. 
  

2.1.3 Detection Techniques 

Today, there are two types of detection techniques that are commonly used to 

design Intrusion Detection Systems: Misuse Detection (MD-IDS) and Anomaly 

Detection (AD-IDS). [1] 

 

2.1.3.1 Classifications 

It is important to note though that no single IDS is perfect. [2] Each IDS 

faces unique problems and challenges, primarily due to the fact that 

network traffic continues to increase in complexity. [2] As such, erroneous 

results produced by an IDS are divided into two categories: false positives 

and false negatives. [2] 
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 Alert not generated Alert is generated 

Passive Activity 

  

Intrusive Activity 

  

Table 1: False Positives and False Negatives 

 

A false positive is a sequence of innocuous events that an IDS erroneously 

classifies as intrusive. [2][15] However, a false negative is a sequence of 

unwanted traffic or intrusion attempts that an IDS fails to detect or report. 

[2][15] 

Above all, the reduction of both false positives and false negatives is a 

critical component in intrusion detection. [15] Both create problems for 

system and security administrators and may require additional system 

calibration. [2] However, while false positives can create the burden of 

sifting through cumbersome amounts of data, they are generally more 

acceptable than false negatives. [2] This is because false negatives, as 

undetected, do not provide a security administrator with the opportunity to 

review the data. [2] 

 

2.1.3.2 Misuse Detection 

The first technique, known as Misuse Detection, focuses on identifying 

intrusions using a predetermined knowledge base [15]. Usually, this is done 

by utilizing a signature-based approach in order to search for well-known 

attack patterns. [1]  

 

True Positive 

False Positive True Negative 

False Negative 
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Figure 1: Misuse Detection Model [24][25] 

 

Each attack signature, or fingerprint, is compared with the current system 

activities in order to find strange or abusive use of a network or system.  

 

 

Figure 2: Detecting a Signature [26] 

 

As such, MD-IDSs have shown to have quick detection speeds and 

manageable configurations [2], as well as produce a low number of false 

positives [15]. Commercial implementations have also seen widespread 

adoption and success. [16][20]  

However, signature-based systems and approaches are reactive by nature 

[10][11] and thus restricted to recognizing only known attacks. 

Additionally, an attacker has the ability to modify an attack, rendering it 

undetectable by a MD-IDS. [2]  
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Figure 3: Detection of Signature Modifications [23] 

 

As a result, MD-IDSs often produce a high number of false negatives, and 

their efficiency is dependent upon continuous updates and response times. 

[1] 
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2.1.3.3 Anomaly Detection 

The second technique is known as Anomaly Detection. This process 

utilizes a heuristic-based approach, in order to build a model of the 

"normal" system or network behavior. [1] Using this model, or profile, 

intrusions can be detected as anomalies, or deviations, from the expected 

behavior of the system. [1] 

 

 

Figure 4: Anomaly Detection [27] 

 

The primary advantage of this approach is that AD-IDSs are able to detect 

new and yet unknown threats. [1] This provides additional support that 

signature-based systems are unable to supply. 

 



  

10 
 

 

Figure 5: New and Unknown Threats [28] 

 

As such, a wide variety of methods have been explored in order to 

approach the anomaly detection issue, including neural networks, artificial 

intelligence, data mining algorithms, genetic algorithms, and statistical 

models. [15]  

However, AD-IDSs are prone to an increased amount of false positives, 

since a variety of factors can contribute to producing an anomalous 

behavior (e.g. implementation errors). [15]  Furthermore, the allocation of a 

training phase to develop the analysis model may also be required, 

depending upon the approach. 

 

2.1.4 Implementations 

The placement of an Intrusion Detection System (IDS) is another vital aspect of 

the system's effectiveness. [1] Depending on whether the system is designed to 

monitor traffic to a single host or a network of devices, can also determine what 

types of intrusions the system may encounter. As such, many IDSs today often 

utilize one of two common implementation approaches. 
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2.1.4.1 Host-based Intrusion Detection System 

The first approach uses a host centric design, where an IDS requires a small 

program, or agent, to be installed on a single device or machine. This type 

of implementation is known as a Host-based Intrusion Detection System 

(HIDS). [2] 

 

 

Figure 6: Host-based Intrusion Detection System Setup [31] 

 

One primary advantage of this implementation is that it allows a HIDS to 

access and analyze system-specific settings and information in order to 

detect intrusions. [1][2] This includes the local security policy [2], the file 

system, network events, system calls [15], system commands, system logs, 

and security logs. [14] Thus, it is important for a HIDS to appropriately 

choose the system characteristics it will monitor. [15] 

However, the primary concern with this implementation is that a HIDS 

agent must be installed on the machine it intends to analyze. [2] As such, 

configuration settings must be specific to that machine, operating system, 

and software [2], limiting the HIDS in scalability and increasing the 

complexity of system management. 
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2.1.4.2 Network-based Intrusion Detection System 

The second approach utilizes a network centric design, where an IDS is 

placed on a network to monitor information that is passed between multiple 

hosts or to a unique device. This type of implementation is known as a 

Network-based Intrusion Detection System (NIDS). 

 

 

Figure 7: Network-based Intrusion Detection System Setup [31] 

 

Usually, this setup consists of a network application, or sensor, integrated 

together with a Network Interface Card (NIC). The NIC operates in 

promiscuous mode in order to collect the traffic or data, while a separate 

interface is used for management of the system. 

The primary advantage of a NIDS setup is that it is able to analyze traffic at 

all layers of the Open Systems Interconnection (OSI) model [2] and detect 

attacks against the network as a whole. [1] A few examples of this would 

be distributed denial-of-service (DDOS) attacks, policy violations, and 

various classes of malware. [14] 

However, a NIDS is limited to the data that is made available by the 

network. As such, unique system information such as audit logs is often 

restricted or unavailable for analysis. 
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2.1.5 Current Research 

  2.1.5.1 Threats 

Today, many well-known attacks and new types of threats can be detected 

and impeded from causing harm. [1] However, all systems suffer from 

security vulnerabilities and are subject to electronic attacks.  

With the commercial success of the Internet and the ability to carry out 

attacks from afar, e-Crime has evolved into a multi-billion dollar market. 

[1,32]. Malicious code has now proliferated through the development and 

distribution of attack kits, requiring no in-depth technical knowledge. [1] 

Each professional kit contributes to the growing numbers of new signatures 

with each set of new code. [1]  

As the world continues to connect with the cyberworld, attackers are 

becoming more sophisticated using automated tools to penetrate systems 

and organizing highly coordinated and intricate attacks. [2] As such, 

targeted attacks have also increased [32-33], including the most recent 

commercial attacks on Nintendo[3-4], Ubisoft[5], and Sony [6-9]. Small 

businesses have become more viable targets, accounting for fifty percent of 

all targeted attacks in 2012. [33] Furthermore, the number of cyber 

espionage attacks on military targets has also increased, such as the Flamer 

and Gauss worms [33] and recent Social Engineering exploits [34]. 

The dissemination of malicious software and packages is not restricted to 

networks anymore. Flash drives used as promotional prizes have become 

popular instruments for Trojans. [1] Once a device is connected to a 

computer, the Trojan installs itself onto the host system or network, 

bypassing the security systems. Additionally, formerly secure systems such 

as Supervisory Control And Data Acquisition Systems (SCADA) can be 

compromised with the use of offline-propagation. [1] Thus, protecting a 

system from only external threats is not enough. 

With the evolution of technology and the interconnectivity provided by the 

Internet, additional problems continue to arise. One important note is the 

shift from attacks directed at operating systems or network protocols to 

attacks utilizing vulnerabilities in the application layer. [1] As new 

applications are created and developed, the potential for flawed program 
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code to enter the market continues to increase. As such, the quantity of 

Zero-Day vulnerabilities has increased in recent years. [1] 

While vendors continue to supply consumers with patches and updates to 

discovered vulnerabilities, these updates may sometimes be delayed 

utilizing a fixed patch-day policy. [1] Even more so, many users may not 

take the appropriate safety precautions, due to often strenuous, complex, or 

often changing security configurations. As such, the most successful 

exploits are often utilizing vulnerabilities that were reported more than a 

year ago. [1]  

 

2.1.5.2 Increased Security Measures 

Based on these recent changes, more and more services are beginning to 

offer protected access, such as Transport Layer Security (TLS). This trend 

will continue to grow, through the use of IPv6 IPSec [1].  

However, many available systems will be unable to cope or scale to 

challenges like encryption, since it denies the use of payload data for 

evaluation. [1]   

As IDS technologies continue to evolve, encryption will continue to 

become a crucial factor to train the application of IDSs. [1,2] 
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2.2. Encryption Analysis 

 2.2.1 Encryption with Intrusion Detection 

Today, encryption is becoming a more common component and entity in data 

communications. Protocols such as TLS and IPSec offer services that help in  

safeguarding private information. However, as a result, common IDS structures 

and systems are unable to analyze packet payloads in order to detect intrusions. 

As such, new methodologies have been examined in order to integrate common 

intrusion detection designs with encrypted networks. 

 

 2.2.2 Methodologies 

2.2.2.1 Protocol-based 

The first methodology is a protocol-based approach, where malicious 

activity is detected based on misuse of the encryption protocol. [1] 

The primary advantage of this approach is that common attacks based on 

vulnerabilities in the protocol can be analyzed and detected. However, this 

approach is limited mainly to the misuse of the encryption protocol. As 

such, additional attack vectors such as application-level attacks (e.g. SQL 

injection, buffer overflow, cross-site request forgery) are usually not 

detected since the payload of the packets is not decrypted and analyzed. [1] 

For example, Joglekar et al. [46] developed an anomaly-based IDS for 

detecting malicious use of cryptographic and application-level protocols. 

This system, denoted as ProtoMon, instrumented shared libraries for these 

protocols in order to detect intrusions. As the monitoring was integrated 

into the protocol handling, attacks on the encryption protocol were able to 

be detected. However, malicious activities hidden within the encrypted 

channel remained undetected. 

  

2.2.2.2 Intrusive 

The next methodology is an intrusive approach, where modifications are 

implemented onto the network architecture or the encryption protocol. [1]  

The main advantage of this approach is that it provides a way to perform 

deep packet inspection of payloads while maintaining the confidentiality of 

the information. However, this approach strongly depends on modifications 
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to the protocols and the network infrastructure. As such, this creates heavy 

management overhead and is often  limited in scalability.  

For example, Goh et al. [47-48] proposed and developed a detection 

framework that allowed a NIDS to analyze network traffic without 

compromising the confidentiality of a VPN. This approach was able to 

detect application-level attacks and evasion attacks; however, it was limited 

in scalability due to increased network overhead and implementation 

challenges. 

 

2.2.2.3 Non-Intrusive 

The last methodology is a non-intrusive approach, where statistical models 

and analysis methods are applied to encrypted traffic. [1] 

The primary advantage with this approach is that it provides a way to 

analyze network traffic without relying on packet payloads. Furthermore,  

it maintains the confidentially of the information without modifications to 

the network infrastructure. However, application-level attacks may not be 

detected since the payload is not decrypted and analyzed. [1] Additionally, 

this strategy also has the potential to have a high false positive rate, 

decreasing its suitability to an online implementation. 

In one approach, Foroushani et al. [49] proposed a system to detect 

anomalous behaviors in SSH2 encrypted accesses, using intrusion 

signatures generated from traffic information (e.g. access frequency, TCP 

traffic specifications). This system was able to detect a variety of attacks 

with high accuracy; however, it was not suitable to online implementation 

due to a high false alarm rate. 

 

2.3 Clustering Analysis 

In this section, an introduction is given to common clustering methodologies and 

approaches. The first area gives an overview of clustering and a few of its main 

advantages for data analysis. The second area discusses clustering models and common 

algorithms and approaches that have been utilized in research. The third area discusses 

common clustering techniques that have been used to classify data. The last section 

discusses current clustering research specific to the K-Means algorithm. 
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 2.3.1 Clustering Overview 

Clustering is the process of organizing a set of objects in such a way that 

information in the same group, or cluster, is more similar than to information in 

other groups, or clusters. [35]  

It has a vast history, expanding across disciplines such as biology, psychology, 

geology, and marketing. [36] Today, this process of analyzing data and 

information is found in many fields, including machine learning, pattern 

recognition, and information retrieval. [36]  

One of the main advantages of clustering is that it allows the analysis of cluster  

groups containing similar objects rather than the analysis of each individual object 

from a respective data set. However, the notion of a “cluster” cannot be precisely 

defined, as the process of clustering is the general task to be solved. [35] As such, 

there are many different types of clustering models, with each model employing a 

different inductive principle for the definition of a cluster. Furthermore, each 

induction principle contains many clustering algorithms that may be used for data 

analysis. [35] 

 

2.3.2 Clustering Models 

A clustering model is the basic structure that is used to represent a cluster, or a 

group of data. This model usually relies on an inductive principle, in order to 

define a cluster, as well as a clustering criterion to select a “best fit” structure 

given a set of data. [35] By defining what the clustering criterion is, it also aids in 

accounting for the similarity between the cluster groups. [35]  

For example, one commonly implemented clustering model is the probabilistic 

model. This may utilize an inductive principle such as the Maximum Likelihood 

(ML) approach, which states to choose the model that maximizes the probability 

of the data being generated by such a model. [35] The clustering criterion would 

be the mathematical expression of the inductive principle, while the clustering 

algorithm would implement this criterion such as the Expectation Maximisation 

method. [35]  

However, it is also common for the names of clustering models to be used 

interchangeably with the inductive principle. As such, it has become difficult to 

identify if the clustering model name refers more to the model or the induction 

principle. [35] 
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A few common clustering methods are hierarchical clustering, partitional 

clustering, distribution clustering, and density clustering. 

 

2.3.2.1 Hierarchical Clustering 

Hierarchical Clustering, or connectivity models, builds a model based on 

the distance between connected objects. The core inductive principle is 

based on the guideline that objects are more related to nearby objects than 

to far away objects. As such, algorithms that utilize this model develop 

clusters based on object distances and represent clusters using a 

dendrogram, or tree diagram.  

 

 

Figure 8: Hierarchical clustering points within 3 clusters [36] 
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Figure 9: Hierarchical clustering dendrogram from single-link algorithm [36] 

 

However, each algorithm differs by how the distances for each object are 

computed. A few common algorithms for connectivity models are the 

Linkage Clustering algorithms, including single-link, complete-link, and 

average link clustering. Of these algorithms, single-link clustering and 

complete-link clustering are most common. [36] 

In single-link clustering, the distance between two clusters is the minimum 

of the distances between all pairs of patterns drawn from the two clusters. 

[36] However, in complete-link clustering, the distance is the maximum of 

all pairs of patterns derived from the two clusters. [36] As such, complete-

link clustering produces tightly bound clusters, while single-link clustering 

suffers from a chaining effect. In contrast, single-link clustering is more 

versatile than complete-link clustering, even though noisy patterns may 

develop. [36] 
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Figure 10: Single-link clustering with 2 data sets connected by noisy patterns [36] 

 

 

Figure 11: Complete-link clustering with 2 data sets connected by noisy patterns [36] 

 

While this clustering methodology is useful in organizing a set of objects 

into a dendrogram, it does have its disadvantages. First, most hierarchical 

algorithms’ results are not produced as a unique partitioning of a data set 

but as a hierarchy. As such, a user would still need to choose the 

appropriate clusters from the results. Second, this methodology is not 
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robust against outliers and can cause either additional clusters to form or 

other clusters to merge (i.e. Chaining Phenomenon). [36] Lastly, the 

complexity for most connectivity model algorithms is usually on the scale 

of O(n
3
). Even optimized methods for these algorithms are on a scale of 

O(n
2
). As such, many of these algorithms are too slow for large data sets. 

[36] 

 

2.3.2.2 Partitional Clustering 

In partitional clustering, or centroid models, a single partition of the data is 

obtained instead of utilizing a clustering structure. [36] The primary 

inductive principle in this approach is that a cluster is represented by a 

central vector, which may or may not be a member of the original data set. 

A few algorithms that are common in this approach are the squared error 

algorithms and the graph-based algorithms. [36]  

 

2.3.2.2.1 Squared Error Algorithms 

The squared error algorithms utilize one of the most frequently used 

criterion functions in partitional clustering. This technique is known 

as the squared error criterion.  

In this methodology, an initial partition is selected with a fixed 

number of clusters and cluster centers. Each data object or pattern is 

assigned to a cluster center, while cluster centers are continuously 

recomputed. Clusters are continuously split and merged again using 

heuristics information  [36], until the algorithm converges or cannot 

be improved. 

The primary goal of this operation is to obtain a partition for a fixed 

number of clusters that minimizes the squared-error value, or the 

objective function. [39,40] This value is the sum of the distances 

between each individual object or pattern and its cluster center. [39] 

An example of the clustering equation may be found in the figure 

below.  
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Figure 12: Example of Squared Error Criterion Equation [40] 

     

For a clustering of a pattern set ( ) containing K clusters, the value 

  
   

 is the i
th

 pattern belonging to the j
th

 cluster and cj is the centroid 

of the j
th

 cluster. 

The squared error criterion function is often effective with isolated 

and compact clusters. Furthermore, the Euclidean distance function 

is commonly used in conjunction with this approach. One of the 

most commonly used squared error algorithms is the K-Means 

clustering algorithm. [36] 

 

2.3.2.2.2 K-Means Clustering 

For the K-Means algorithm (i.e. Lloyd's algorithm), the methodology 

builds upon the basic principles of squared error algorithms. First, a 

random initial partition is selected with n objects and k cluster 

centers. Then, each data object is assigned to the closest cluster 

center, or the cluster with the nearest mean.  Once this is 

accomplished, each cluster center is recomputed and a new set of k 

cluster centers are utilized to reassign objects. Convergence is 

achieved when no or minimal objects are reassigned to new cluster 

centers or when the squared error value ceases to decrease 

significantly. [36,40] 

The K-Means algorithm is used quite often due to its implementation 

ease and its O(n) time complexity. However, one disadvantage with 

this technique is that it is sensitive to the selection of the initial 
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partition and may converge at a local minimum of the criterion 

function value instead of the global minimum. [36]  

There are also several variations to the K-Means algorithm strategy. 

For example, some implementations allow the separation and 

aggregation of resulting clusters in order to select a more optimal 

partition. [36] Other variations may utilize different criterion 

functions in order to optimize the results, such as the dynamic 

clustering algorithm. [36]  

Additional discussions for variations, modifications, and 

optimizations to the K-Means algorithm may be found in Section 

2.3.3 Clustering Research. 

 

2.3.2.2.2 Graph-Theoretic Clustering 

In graph-based algorithms, the main approach is to construct a  

minimal spanning tree (MST) for the data. Using this tree, the MST 

edges with the largest lengths may be removed one-by-one, in order 

to generate the appropriate clusters. [36] An example of this process 

may be found in the figure below. 

 

Figure 13: Graph-Theoretic Clustering MST [36] 
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One interesting point to note is that hierarchical clustering 

approaches are also related to graph-theoretic clustering models. For 

example, single-link clusters are subgraphs of the MST, while 

complete-link clusters are maximal complete subgraphs, considered 

the strictest definition of a cluster. [36] 

 

2.3.2.3 Distribution Clustering 

In Distribution Clustering, or distribution models, the primary inductive 

principle is that the patterns to be clustered are part of one or more 

distributions. Thus, the goal is to identify each of the input parameters and 

their corresponding number. [36] As such, this methodology is closely 

related to statistical approaches. 

The most prominent algorithm used in this approach is the Expectation-

Maximization (EM) algorithm, also referred to as EM-Clustering.  

 

2.3.2.3.1 EM Clustering 

In EM-Clustering, the data set is often modeled using a fixed number 

of Gaussian distributions. Each distribution is randomly initialized 

using a set of mixing parameters. With each iterative pass, the 

parameters are rescored and optimized in order to better match the 

data set. [36] 

Overall, this methodology produces a set of clusters and complex 

models for these clusters that are able to capture correlation and 

dependence attributes. However, one key issue with this strategy is 

that it may suffer from overfitting, or when the statistical model may 

describe a random error or noise instead of the underlying 

relationship. Additionally, many real data sets may not have a 

mathematical model available for the algorithm to optimize. Thus, an 

additional burden is placed on the user to choose the appropriate data 

models for the analysis. 

 

2.3.2.4 Density Clustering 

In Density Clustering, or density models, the core inductive principle 

defines a cluster as a region in a data set with higher object density. Objects 
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that may be found or located near sparse areas are defined as noise or 

cluster border points. [37] A few algorithms that are common in this 

approach are the DBSCAN, OPTICS, and the DeLi-Clu algorithms.  

The DBSCAN algorithm, or density-based spatial clustering of applications 

with noise, is one of the most commonly used density-clustering methods 

and utilizes the notion of density-reachability. Likewise, the OPTICS 

algorithm, or ordering points to identify the clustering structure, may be 

viewed as a generalization of the DBSCAN algorithm to multiple ranges. 

While each algorithm offers advantages similar to those of the Linkage 

Clustering algorithms, the primary drawback is that the algorithms expect a 

type of density drop in order to detect cluster borders. As such, they are not 

able to detect intrinsic cluster structures which are commonly prevalent in 

real-time data sets.  

The DeLi-Clu, or Density Link-Clustering, algorithm, merges ideas found 

in both OPTICS and Single-Link clustering. This reduces the required 

amount of defined parameters and offers performance improvements over 

OPTICS by using an R-tree index. 

 

2.3.3 Clustering Techniques  

Similar to clustering models, there are also a variety of clustering techniques that 

can be applied to various clustering algorithms. These techniques may aid in 

defining the guidelines for the algorithm or clustering criterion.  

 

2.3.3.1 Agglomerative vs Divisive 

This technique relates to the algorithmic structure and operation. In an 

agglomerative approach, each pattern is defined within a distinct cluster 

and continuously merged until a specified stopping criterion is reached. 

However, in a divisive approach, all patterns are defined within a single 

cluster and continuously split until a specified stopping criterion is 

satisfied. [36] 

 

2.3.3.1 Hard vs Soft Clustering 

This technique relates to the how the algorithm places objects or patterns 

within defined clusters. A hard clustering approach places each data object 
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within a single cluster, during operation and output. However, a soft 

clustering (i.e. fuzzy clustering) approach assigns each data object to a set 

of clusters using relative degrees of memberships. [36] 

 

2.3.4 Clustering Research  

Recently, there have been many new research developments with regards to 

improvements or modifications to the K-Means clustering strategy. Many of these 

variations offer additional insight as to how to improve the accuracy of the 

detection algorithm and reduce the computational expenses. 

For example,  Xiao et. al. [38,50] proposed an approach where the K-Means 

algorithm was associated with the Particle Swarm Optimization (PSO) algorithm. 

This approach, denoted as PSO-KM, produced results that maintained a high 

accuracy when detecting probe attacks, denial-of-service (DoS) attacks, and user-

to-root (U2R) attacks. It was also effective in converging towards a global 

optimum rather than a K-Means local optimum. However, the approach produced 

low results in detecting root-to-local (R2L) attacks and was unable to overcome 

the K-Means dependency on the number of clusters. 

In another study, Gaddam et al. [41] proposed a supervised anomaly detection 

approach, known as K-Means+ID3, which cascaded K-Means clustering with ID3 

decision tree learning methods. This combined approach showed improved 

performance measures relative to its individual counterparts. A similar study was 

done by Yasami et al. [44] where the approach was refined to provide an  

unsupervised classification for ARP anomaly detection.  

Additional variations include K-Medoids, which represents clusters with the data 

median value rather than the mean [42], and Fuzzy c-means (i.e. Soft K-Means, 

Fuzzy K-Means) which is an extension of the K-Means algorithm that allows data 

points to be associated with multiple clusters using membership values. [42]  An 

improved methodology was proposed by Ensafi et al. [43] which associated Fuzzy 

K-Means with PSO, denoted as SFK-means. This approach provided solutions to 

the local convergence problem in Fuzzy K-Means and the sharp boundary 

problem in Swarm K-Means. However, the SFK-means algorithm suffered from a 

high false positive rate, as well as a high computation overhead in terms of 

memory requirements and CPU times.  

Another methodology offered by Tian et. al. [45], proposed an improved K-

Means algorithm that utilized the K-Medoids cyclic method and the improved 

trilateral relations theorem. This approach produced results that improved the 
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false detection rate of abnormality and reduced computation time to a certain 

extent. 

 

2.4 Goals of Next-Generation IDS 

Based on the shortcomings of current IDSs, Koch[1] identified a set of unique goals that 

aid in the development of a Next-Generation IDS. A few of these goals that the proposed 

methodology focuses on are given below: 

1. First, an IDS must aim to support a behavior-based analysis. Due to the increase 

in the number of Zero Days, targeted attacks, and encrypted communications, it is 

often not feasible to rely on the availability of signatures. [1] Furthermore, the 

efficiency of near-real time evaluation of patterns in server systems is limited to 

both the amount of traffic as well as the size of integrated databases and the 

quantity of patterns. [1] 

 

2. Second, an IDS must aim to support the exclusion of a learning phase. Many IDSs 

using Anomaly Detection techniques often require the inclusion of a learning 

phase; however, retrieving clean labeled data based on a production environment 

is often unavailable. Thus, Koch[1] recommends the implementation of other 

techniques that provide solutions for this issue such as unsupervised learning or 

neural networks.  

 

3. Third, the evaluation of a packet's payload must be abstained, if not prohibited. 

As the use of encryption increases, the ability to analyze packet payloads becomes 

very elaborate. Data becomes inaccessible or requires great computational 

complexity to evaluate. Thus, reliance on the availability of packet payloads 

becomes increasingly infeasible.[1] 

 

4. Fourth, an IDS must aim to support the implementation of a network-centric 

design. While host-based implementations hold several advantages with regard to 

the availability of information (e.g. decrypted data; log files), the management is 

often complex, error-prone, and limited in scalability. However, network-based 

installations are able to recognize distributed and sophisticated attacks against the 

network as a whole. [1] 
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2.5 Comparison to Works 

All of the approaches discussed in the above sections, except Foroushani [49], do not 

meet all of the goals identified by Koch [1] above for a next-generation intrusion 

detection system. Foroushani [49] is the only known existing non-intrusive approach that 

meets all of these goals to date. 

This paper will analyze a new non-intrusive approach that is consistent with each of the 

four goals above required for a next-generation intrusion detection system and compare 

with Foroushani [49]. [see Fig. 14 pg. 24] 

 

2.6 Contributions 

The contributions of the paper are enumerated as follows:  

1. The paper presents a non-intrusive approach to detect network intrusions across 

encrypted accesses using a K-Means clustering algorithm and TCP traffic 

properties, while maintaining the confidentiality of packet payload information. 

 

2. The paper evaluates the performance of the proposed methodology and compares 

it with the only other known existing non-intrusive approach using five 

performance measures. [1,49] 

 

3. The paper presents a non-intrusive approach for analyzing information that is 

consistent with four of the goals required for a next-generation intrusion detection 

system. 
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Chapter 3: Setup and Evaluation 

3.1 Setup 

For this investigation, a Windows 7 setup will be utilized running a Java 1.7 

environment. The specifications of the investigation setup may be found in the table 

below. 

 

Operating System Windows 7 Home Premium SP 1 

System Type 64-bit 

Memory 8.00 GB 

Processor Intel
®

 Core
TM

 i7-2820QM CPU 

@ 2.30GHz 2.30GHz 

Hard Drive 700 GB 
Table 2: System Information 

 

3.2 Data Sets 

During the investigation, two evaluation datasets will be used: the KDD Cup '99 dataset 

and the NSL-KDD dataset. 

  

3.2.1 KDD Cup '99 Dataset  

The Knowledge Discovery and Data Mining (KDD) 1999 dataset is derived from 

the 1998 DARPA Intrusion Detection Evaluation datasets. Under the sponsorship 

of the Defense Advanced Research Projects Agency (DARPA) and the Air Force 

Research Laboratory (AFRL), MIT Lincoln Labs collected and distributed the 

DARPA datasets for the evaluation of network intrusion detection systems.  

The KDD '99 dataset consists of 41 features and one class attribute for each 

connection record.  Of these 41 features, nine are basic features of individual TCP 

connections. These features may be found in the table below.  
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Feature Name Description Type 
Duration Length (number of seconds of the connection) Continuous 

Protocol_type Type of the protocol (e.g. tcp, udp, etc.) Discrete 

Service Network service on the destination (e.g. http, telnet, etc.) Discrete 

Src_bytes Number of data bytes from source to destination Continuous 

Dst_bytes Number of data bytes from destination to source Continuous 

Flag Normal or error status of the connection Discrete 

Land 1 if connection is from/to the same host/port; 0 otherwise Discrete 

Wrong_fragment Number of "wrong" fragments Continuous 

Urgent Number of Urgent packets Continuous 

Table 3: Basic features of individual TCP connections [56] 

The remaining fields are higher-level features defined by Stolfo et. al. to help in 

distinguishing normal connections from attacks. [56] These features are grouped 

in one of several categories. 

The first category consists of  same-host features. These features examine only 

connections within the past two second interval that have the same destination 

host as the current connection and calculate statistics related to protocol behavior, 

service, and more. [56] Likewise, same-service features examine only connections 

within the past two second interval that have the same service as the current 

connection. [56] The same-host and same-service features together are called 

time-based traffic features of the connection records. [56] These features may be 

found in the table below. 

 

Feature Name Description Type 
Count Number of connections to the same host as the current 

connection in the past two seconds 

Continuous 

Note: The following features refer to these same-host connections. 

Serror_rate % of connections that have "SYN" errors Continuous 

Rerror_rate % of connections that have "REJ" errors Continuous 

Same_srv_rate % of connections to the same service Continuous 

Diff_srv_rate % of connections to different services Continuous 

Srv_count Number of connections to the same service as the current 

connection in the past two seconds 

Continuous 

Note: The following features refer to these same-service connections. 

Srv_serror_rate % of connections that have "SYN" errors Continuous 

Srv_rerror_rate % of connections that have "REJ" errors Continuous 

Srv_diff_host_rate % of connections that have different hosts Continuous 

Table 4: Time-based traffic features [56] 

 

The second category contains host-based traffic features. [56] These features were 

derived with respect to attacks that use a much larger time interval than two 

seconds (e.g. probing attacks scanning once per minute). As such connection 

records were sorted by destination host, and features were constructed using a 



  

31 
 

window of 100 connections to the same host instead of a time window. [56] These 

features may be found in the table below. 

 

Feature Name Description Type 
Dst_host_count Number of connections to the same host as the current 

connection. 

Continuous 

Dst_host_srerror_rate % of connections that have "SYN" errors Continuous 

Dst_host_rerror_rate % of connections that have "REJ" errors Continuous 

Dst_host_same_srv_rate % of connections to the same service Continuous 

Dst_host_diff_srv_rate % of connections to different services Continuous 

Dst_host_srv_count Number of connections to the same service as the current 

connection. 

Continuous 

Dst_host_srv_serror_rate % of connections to same service that have "SYN" errors Continuous 

Dst_host_srv_rerror_rate % of connections to same service that have "REJ" errors Continuous 

Dst_host_srv_diff_host_rate % of connections to different hosts Continuous 

Dst_host_same_src_port_rate % of connections that were to the same source port Continuous 

Table 5: Host-based traffic features [71] 

 

The last category consists of content features. [56] Unlike DoS and Probing 

attacks, R2L and U2R attacks do not have intrusion frequent sequential patterns. 

[54] This is mainly due in part to DoS and Probing attacks utilizing many 

connections to some host(s) in a short period of time, while R2L and U2R attacks 

are embedded in the data portions of the packets utilizing only a single 

connection. [54] Thus, in order to detect these kinds of attacks, content features 

were added using domain knowledge, in order to look for suspicious behavior in 

the data portions (e.g. number of failed login attempts). [56] A list of these 

features may be found in the table below.  

 

Feature Name Description Type 
Hot Number of "hot" indicators Continuous 

Num_failed_logins Number of failed login attempts Continuous 

Logged_in 1 if successfully logged in; 0 otherwise Discrete 

Num_compromised Number of "compromised" conditions Continuous 

Root_shell 1 if root shell is obtained; 0 otherwise Discrete 

Su_attempted 1 if "su root" command attempted; 0 otherwise Discrete 

Num_root Number of "root" accesses Continuous 

Num_file_creations Number of file creation operations Continuous 

Num_shells Number of shell prompts Continuous 

Num_access_files Number of operations on access control files Continuous 

Num_outbound_cmds Number of outbound commands in an ftp session Continuous 

Is_hot_login 1 if the login belongs to the "hot" list; 0 otherwise Discrete 

Is_guest_login 1 if the login is a "guest" login; 0 otherwise Discrete 

Table 6: Content features within a connection suggested by domain knowledge [56] 
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Lastly, the class attribute consists of 1 of 21 classes that fall under four types of 

attacks [55-56]. These classes and attack types may be found in the tables below. 

Class Name Attack Type 

Back DoS 

Buffer_overflow U2R 

ftp_write R2L 

Guess_passwd R2L 

Imap R2L 

Ipsweep Probe 

Land DoS 

Loadmodule U2R 

Multihop R2L 

Neptune DoS 

Nmap Probe 

Perl U2R 

Phf R2L 

Pod DoS 

Portsweep Probe 

Rootkit U2R 

Satan Probe 

Smurf DoS 

Spy R2L 

Teardrop DoS 

Warezclient R2L 

Warezmaster R2L 
Table 7: List of Classes [56] 

Attack Type Description 

Probing (Probe) Surveillance and other probing (e.g. port scanning) 

Remote-to-Local (R2L) Unauthorized access from a remote machine  

(e.g. guessing password) 

User-to-Root (U2R) Unauthorized access to local superuser (root) 

privileges (e.g. buffer overflow attacks) 

Denial-of-Service (DoS) Denial of Service (e.g. syn flood) 
Table 8: Types of attacks [56] 

 

Although the KDD Cup '99 dataset has become a widely used dataset for the 

evaluation of detection systems, it does suffer from a few shortcomings [54]. As 

such, a newer dataset was proposed to handle many of these issues, called the 

NSL-KDD dataset. [54] 
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3.2.2 NSL-KDD Dataset  

The NSL-KDD dataset is a reduced version of the original KDD '99 dataset to 

handle many of the KDD '99 shortcomings. [55] It was proposed by Tavallaee et 

al. [54] in 2009 and includes some of the following differences over the original 

KDD '99 dataset: 

1. First, the training set does not include redundant records. This aids in 

preventing the classifiers from being biased towards frequent records. [57] 

2. Second, the test sets do not include duplicate records. This prevents the 

performance of learning algorithms from being biased towards methods which 

yield better detection rates on frequent records. [57] 

3. Third, the number of selected records from each difficulty level group is 

inversely proportional to the percentage of records in the original KDD '99 

dataset. As a result, the classification rates of distinct learning methods vary in 

a wider range, increasing the accuracy of evaluation of different learning 

techniques. [57] 

4. Last, the number of records in both the training and test datasets are 

reasonable, allowing experiments to run the complete datasets without the 

need to randomly select a smaller portion. As such, this allows the evaluation 

results of different research works to be more consistent and comparable. [57] 

  

3.3 Proposed System 

The proposed intrusion detection system (IDS) will consist of three primary areas. [15] 

1. Data Initialization 

2. K-Means Clustering (Unsupervised) 

3. Intrusion Detection Analysis 

 

An overview of this process may be found in the figure below. 
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Figure 14: Overview of System Specifications 

 

First, the system will extract information from a respective dataset. This information 

includes intrinsic attributes from the header's area of network packets (i.e. TCP traffic 

properties), time-based attributes, host-based attributes, content attributes, and a class 

attribute each related to the network data. [71] A list of each of these attributes with their 

respective descriptions may be found above in the dataset section in Table 3 through 

Table 8.  

Then, once the information is retrieved, the K-Means Clustering algorithm will sort the 

data into cluster groups for analysis. This will allow for various actions to be identified 

based on the similarity of the information. In order to accomplish this task, four primary 

steps will be utilized: selecting K cluster centers to initialize each cluster group, assigning 

data patterns to cluster groups using the cluster centers, updating the cluster centers using 

the new pattern sets, and then checking for convergence of the algorithm based on a 

stopping criterion.  

Finally, attacks will be detected according to the TCP traffic properties of the cluster 

centers. This will include features such as the number of bytes from source to destination 

and vice-versa.  

The next set of subsections will discuss the applied methodology in more detail. 



  

35 
 

3.3.1 Data Initialization  

The first area of the proposed IDS is the data initialization module. In this phase, 

traffic data is extracted and formatted to be analyzed for the K-Means clustering 

algorithm.  An overview of this process may be found in the figure below.  

 

Figure 15: Overview of initializing variables and retrieving data for clustering 

In the first step, system variables are initialized for processing. This includes 

essential information such as the name and location of the dataset to be processed 

(e.g. KDD or NSL-KDD), the token for how the data is delimited, the volume to 

store the data patterns as they are retrieved, as well as additional variables that 

will be used throughout the experiment. 

Next, information from the selected dataset is retrieved through the use of a 

filereader. The "kddcup.data" file (KDD) and the "KDDTrain+" file (NSL-KDD) 

will be used to evaluate the proposed system, since they each contain the largest 

quantity of labeled evaluation data from their respective datasets. This will allow 

the data to be compared to a known standard of effectiveness in order to validate 
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the methodology, once the analysis phase has completed. Additionally, as each 

data element is retrieved, the service feature of the element is analyzed for 

protocols supporting encrypted communications during the collection of the 

original datasets. This will allow the system to analyze data features that 

supported encrypted communications, restricting use of the packet information. 

For this experiment, Secure Shell (i.e. SSH) traffic data will be focused on and 

extracted from each of the datasets. The details and information related to each of 

the specific dataset files may be found in the table below. 

 KDD Cup '99 NSL-KDD 

Total Data Lines 4,898,431 125,973 

Total Passive Activities 972,780 67,343 

Total Intrusive Activities 3,925,651 58,630 

Total DoS Attacks 3,883,370 45,927 

Total U2R Attacks 52 52 

Total R2L Attacks 1,126 995 

Total Probe Attacks 41,102 11,656 

Total SSH Data Lines 1,075 311 

Total SSH Passive Activities 7 5 

Total SSH Intrusive Activities 1,068 306 

Total SSH DoS Attacks 1,039 281 

Total SSH U2R Attacks 0 0 

Total SSH R2L Attacks 0 0 

Total SSH Probe Attacks 29 25 
Table 9: KDD and NSL-KDD Dataset Information 

 

As each data element is extracted, it is added to a preformatted array list, or 

volume. Once this operation has completed, each set of data is normalized using a 

log transform strategy. The equation for the log normalization may be found area 

below.  

                

Where Xij = the value of feature j for observation i before normalization 

X'ij = the value after normalization is applied 

By normalizing the data, it allows for the contributions of different data attributes 

to be weighed in a manner such that the distance between observations becomes 

meaningful. [75] This will allow the K-Means clustering algorithm to begin to 

process and group the extracted data.  
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3.3.2 K-Means Clustering (Unsupervised) 

In the second area of the proposed IDS, the K-Means clustering module sorts the 

data into cluster groups for analysis. The algorithm accomplishes this task through 

four steps, as seen in the figure below. 

 

 

Figure 16: Overview of K-Means Clustering Algorithm 
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First, k cluster centers are chosen to coincide with k randomly defined points from 

the respective dataset. In order to accomplish this task, a strategy similar to the 

Forgy methodology is implemented, where k pattern sets (i.e. data lines) are 

randomly selected from the volume containing the selected dataset and used as the 

initial cluster means, or centers. [58]  

 

 

Figure 17: Selection of K Cluster Centers 

For this experiment, the initial starting value of K will be set to the general rule of 

thumb proposed by Mardia et al. [59]:  

 

   
 

 
 

Where   = total number of data patterns 

 

As such, using the information provided in Table 9 above, the K values for each 

dataset can be calculated. These values may be found in the table below. 
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 Total Data 

Lines 

K  

(Total) 

Total SSH 

Data Lines 

K 

(SSH) 

KDD Cup '99 4,898,431 1,564 1,075 23 

NSL-KDD 125,973 250 311 12 
Table 10: KDD and NSL-KDD Dataset K Values 

 

The KDD Cup '99 dataset contains 4,898,431 total patterns with 1,075 SSH 

specific data patterns. This generates a K value of 1,564 clusters when operating 

on the complete data set, and a K value of 23 when examining the SSH specific 

information. Likewise, the NSL-KDD dataset contains 125,973 total patterns with 

311 SSH specific data patterns. As such, this generates a K value of 250 clusters 

when operating on the full data set, and a K value of 12 when examining the SSH 

information. 

Each cluster center, or centroid (c), is also associated with the mean value of that 

cluster's assigned pattern set. Thus, as patterns are assigned to clusters, the cluster 

centroids are able to be updated as needed. 

Next, each pattern from the respective dataset is assigned to a cluster. This is 

accomplished by comparing each pattern (p) to each cluster centroid (c) through 

the implementation of the Euclidean Distance function. An overview of the 

process may be found in the figure below. 
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Figure 18: Pattern Assignment 

 

As each pattern is examined, a fitness value is generated for each cluster, using 

the distance function. This fitness value relates the distance of a single data 

pattern to a cluster's centroid. As such, the cluster with the lowest fitness value is 

the one whose centroid produced the least Euclidean Distance to the pattern.   

In order to accomplish this task, each pattern (p) from the data volume is 

examined and compared with each respective cluster centroid (c), such that the 

Euclidean Distance is given as:  

                   
 

   

 

 Where    = total number of elements in a data pattern 

    = the i
th

 pattern element  

    = the i
th

 centroid element 

        = distance from pattern p to centroid c  
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For this experiment, the fitness values generated for each pattern will focus on the 

continuous intrinsic attributes from the header's area of the network packets (i.e. 

TCP traffic properties). These attributes may be found in the table below.  

 

Feature Name Description 
Duration Length (number of seconds of the connection) 

Src_bytes Number of data bytes from source to destination 

Dst_bytes Number of data bytes from destination to source 

Wrong_fragment Number of "wrong" fragments 

Urgent Number of Urgent packets 

Table 11: Continuous intrinsic attributes of KDD and NSL-KDD datasets [56] 

 

By utilizing this information, it will allow the algorithm to focus on core traffic 

features that are most relevant in detecting attacks [73], as well as features that are 

usually available in network packets during encrypted communications. 

Furthermore, it will mitigate the reliance on higher-level features that are less 

relevant in detecting attacks [73] and that would not usually be available without 

additional data analysis.  

Once each fitness value is obtained, a pattern can be assigned to its best matching 

cluster, or the cluster that produced the lowest distance to the pattern. If the 

pattern was previously assigned to a cluster, then this assignment can also be 

updated with each iteration of the algorithm. Lastly, a reassignment counter is 

also incremented as each pattern is assigned or reassigned. This will aid in 

determining if the clustering has reached a convergence criteria. 

After each pattern has been assigned, each cluster centroid is recomputed as the 

new average, or mean, of the respective cluster's assigned patterns, or pattern set. 

In order to accomplish this task, each cluster's pattern set is traversed, retrieving 

each pattern element and summing the value together with the complementary 

centroid element. Once this process is complete, each centroid element is divided 

by the total number of assigned patterns plus one for the centroid, in order to find 

the mean pattern set for that cluster. An overview of this process may be found in 

the figure below. 
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Figure 19: Updating a Cluster Centroid 
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Finally, the convergence criteria is checked to see if the algorithm has reached its 

stopping point. If this criteria has been met, then the K-Means clustering has 

completed sorting the data and the intrusion detection module may begin its 

analysis. Otherwise, the second and third steps of the K-Means algorithm are 

repeated until the convergence criteria has been met.  

For this experiment, the convergence criteria will be set to be a minimum number 

of pattern reassignments across each clustering iteration. That value will be 1/8 of 

the total number of patterns. 

Finally, Java 1.7 multithreading will also be implemented across pattern 

assignment and centroid updates, in order to fully utilize available setup 

resources.  

 

3.3.3 Intrusion Detection Analysis 

The third area of the proposed IDS is the intrusion detection module. In this 

phase, the final clustering of the dataset is analyzed to determine if each set of 

cluster patterns is normal or potentially intrusive. As such, a non-intrusive 

approach is taken that is similar to Foroushani et al. [49], where each cluster 

centroid is analyzed for abnormal activity based on the TCP traffic properties of 

the related network data (i.e. intrinsic attributes). Foroushani et al. [49] also 

discussed how SSH packet sizes may be computed based on the protocol's 

specifications. From this information, the traffic properties for incoming and 

outgoing data bytes can be used to analyze each cluster group without relying on 

detailed payload information. An overview of this process may be found in the 

figure below. 
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Figure 20: Intrusion Detection Analysis using TCP Traffic Properties 

 

As each cluster centroid is examined, the traffic properties for source and 

destination bytes are retrieved. The descriptions for each of these properties may 

be found in the table below. Additional information may also be found in Table 3 

of the data set section. 
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Feature Name Description 

src_bytes Number of data bytes from source to destination 

dst_bytes Number of data bytes from destination to source 

Table 12: Data byte features of individual TCP connections [56] 

 

Using this information, the TCP traffic properties can be examined based on the 

expected network behavior. For example, in normal SSH access, the request, or 

input traffic size, is usually small while the reply, or output traffic size, is large. 

[49] Thus, a request with a large input size and a reply with a small output size 

can possibly be an intrusion. [49] Likewise, in typical scanning or probe attacks, 

the replies are smaller than regular contents, even if the requests are similar to 

normal traffic. [49] This is because that a server that is not vulnerable typically 

sends a response that includes a small message with an error status. [49] 

As such, each cluster centroid's traffic properties are examined for potential 

intrusions using this criterion. [49] For this experiment, a factor ratio will be 

computed in order to relate the value of source bytes to the value of destination 

bytes. If the source bytes feature is greater than the destination bytes property 

(e.g. buffer overflow attacks), the cluster is flagged as potentially intrusive. 

Likewise, if the factor ratio is small (e.g. scanning attacks), a flag will also be set. 

However, if the centroid passes each of the traffic property evaluations, then it is 

classified as normal. For this experiment, the minimum factorial ratio value was 

set to ten. 

The java implementation of the proposed system may be found in Appendix B. 
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3.4 Evaluation 

During this investigation, the precision and recall of the proposed system will be 

collected and analyzed with each dataset implementation, in order to evaluate the 

system's effectiveness in detecting intrusions. [60]  The precision is denoted as the 

fraction of retrieved instances that are relevant, or the fraction of potentially intrusive 

activities that are flagged with respect to the total number of alerts that are generated. 

Likewise, the recall is the fraction of relevant instances that are retrieved, or the fraction 

of potentially intrusive activities that are flagged with respect to the total number of 

intrusive activities that are present.  

The false rate of the system will also be analyzed in order to evaluate the efficiency of the 

non-intrusive approach against the only other known existing non-intrusive methodology. 

[1,49] The false rate is denoted as the summation of both the false positive rate and the 

false negative rate. [49] As such, it is composed of the total number of false alarms with 

respect to the total number of passive activities, as well as the total number of false 

negatives with respect to the total number of intrusive activities. An overview of each of 

the measurements may be found in the table below. 

 

Measurement Name Description 

Precision Fraction of flagged intrusive activities 

w.r.t. the total number of generated alerts. 

Recall Fraction of flagged intrusive activities 

w.r.t. the total number of intrusive activities present. 

False Positive Rate 

(FPR) 

Fraction of false alarms generated  

(e.g. flagged passive activities) 

w.r.t. the total number of passive activities.  

False Negative Rate 

(FNR) 

Fraction of false negatives generated  

(e.g. intrusive activities that were not flagged) 

w.r.t. the total number of intrusive activities. 

False Rate The summation of both the  

false positive rate and the false negative rate. 
Table 13: Measurement Descriptions 

 

The precision, recall, and false rate values will be collected for 25 trials on each dataset, 

along with relative time values. Once the trials have been completed, the average 

precision, recall, and false rate values will be calculated. The equations for each of these 

measurements may be found below. 
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Chapter 4: Results and Conclusions 

This chapter is divided into three sections. The first section displays the results from the 

evaluation of the proposed system. This includes measurement values and discussions as 

to what can be inferred from the retrieved data. The second and third sections discuss the 

final conclusions that can be drawn from the results, the limitations with the system, and 

the recommendations for future work. 

 

4.1 Results 

4.1.1 Precision 

The following table reflects the precision data collected for 25 trials on each 

dataset. 

 

Dataset Average Precision Standard Deviation 

KDD 100.00% ±0.00% 

NSL-KDD 100.00% ±0.00% 
Table 14: Average Precision Values for KDD and NSL-KDD Datasets 

   

By examining this information, it shows that the fraction of retrieved instances 

that are relevant remained at a high value across each trial evaluation. As such, 

passive activities were able to be classified appropriately across each trial, 

minimizing false positives from the data. 

 

4.1.2 Recall 

The following table reflects the recall data collected for 25 trials on each dataset. 

 

Dataset Average Recall Standard Deviation 

KDD 99.06% ±0.60% 

NSL-KDD 97.86% ±1.79% 
Table 15: Average Recall Values for KDD and NSL-KDD Datasets 
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By examining this information, it shows that the fraction of relevant instances that 

were retrieved remained at a high value across most of the trials. However, while 

many intrusive activities were able to be classified correctly as anomalies, there 

were still a fair amount of false negatives, or intrusive activities that were not 

flagged. 

 

4.1.3 False Rate 

The following table reflects the false rate data collected for 25 trials on each 

dataset. 

 

Dataset Average False Rate Standard Deviation 

KDD 0.94% ±0.601% 

NSL-KDD 2.14% ±1.788 % 
Table 16: Average False Rate Values for KDD and NSL-KDD Datasets 

 

By examining this information, it shows that both the false positive rate and the 

false negative rate were able to remain within a small value range across each set 

of trials. As such, many of the passive activities and intrusive activities were able 

to be classified appropriately, containing only a small quantity of passive 

activities that were flagged or intrusive activities that were not flagged.  

 

4.1.4 Time 

The following table reflects the time data collected for 25 trials on each dataset. 

 

Dataset Average Time  

(in seconds) 

Standard Deviation 

(in milliseconds) 

Average  

# of Loops 

KDD 00:27:618 ±00:00:189 3 

NSL-KDD 00:01:191 ±00:00:017 3 
Table 17: Average Time Values for KDD and NSL-KDD Datasets 

 

By examining this information, it shows that average time required to perform 

each trial was within consistent time frames with respect to the average number of 

iterations used by the K-Means clustering algorithm. 
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4.1.5 Dataset Comparison 

The following table shows the relationship of the number of records to processing 

time for each dataset implementation. 

 

Dataset Total Records SSH Records Average Time 

KDD 4,898,431 1,075 00:27:618 seconds 

NSL-KDD 125,973 311 00:01:191 seconds 
Table 18: Number of Records and Processing Time 

 

The average results for each dataset are summarized in the table below. The 

confusion matrix for each dataset is also located below the summary table. 

 

 
KDD NSL-KDD 

Average Standard Deviation Average Standard Deviation 

Avg Precision 100.00% ±0.00% 100.00% ±0.00% 

Avg Recall 99.06% ±0.60% 97.86% ±1.79% 

Avg False Rate 0.94% ±0.601% 2.14% ±1.788 % 

Avg Time 00:27:618 ±00:00:189 00:01:191 ±00:00:017 
Table 19: Dataset Comparison Summary 

 

KDD Flagged Not Flagged 

Intrusive 1054 14 

Passive 0 7 
Table 20: Confusion Matrix for KDD 

 

NSL-KDD Flagged Not Flagged 

Intrusive 295 11 

Passive 0 5 
Table 21: Confusion Matrix for NSL-KDD 

 

4.1.6 Non-Intrusive Analysis Comparison 

The average false rate results from each non-intrusive methodology are 

summarized in the table below. 
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Proposed System 

Foroushani
[49]

 
KDD NSL 

Avg False Rate 0.94% 2.14% 15% 
Table 22: Non-Intrusive Analysis Comparison Summary 

 

By examining this information, it shows that the average false rate for the 

proposed non-intrusive approach performed well in comparison to the only other 

known existing non-intrusive methodology. 

 

4.2 Conclusions 

In this paper, a non-intrusive approach was proposed to detect network intrusions across 

encrypted accesses using a K-Means clustering model and TCP traffic properties. While 

many Intrusion Detection Systems will typically utilize a signature-based or anomaly-

based approach to analyze in-the-clear network traffic, the growing use of encrypted 

communications continues to deny the use of payload-related data. This non-intrusive 

methodology provides a potential solution to mitigate these issues, by complying with 

four goals required for next-generation intrusion detection systems. [1] 

 

This approach supports a behavior-based analysis, in contrast to the reliance on databases 

of attack signatures. Thus, this approach should provide support for the growing use of 

encrypted communications. An unsupervised K-Means clustering algorithm was used so 

that there is no learning phase. There was thus no evaluation of packet payload-related 

data. This also ensures the confidentiality of the packet information and reduces the 

computational complexity of the evaluation. This work used a non-intrusive approach 

similar to Foroushani et. al. [49]. This uses TCP traffic properties for evaluation of the 

data. Lastly, this approach supports the implementation of a network-centric design. 

There was thus no reliance on host-based implementation data for evaluation (e.g. log 

files). The KDD '99 and NSL-KDD evaluation datasets were used to test this new 

approach. 

 

This paper analyzes a new non-intrusive approach that is able to detect many intrusions in 

the used datasets. Furthermore, the average false detection rate of the tested system 

showed greatly improved results in comparison to other non-intrusive methodologies. 

Therefore, based on the tables in chapter 4, the proposed system operated effectively in 

detecting many of the network intrusions for these datasets while maintaining the 

encrypted confidentiality of the packet information. 

 

  



  

52 
 

4.3 Future Work 

Now that the investigation has concluded, there are some extensions of this work.  

First, implement an enhanced clustering algorithm that shortens the time to group the 

data. While the K-Means clustering provides a methodology to sort information into 

similar cluster groups, it has inherent drawbacks, including the ability to fall into a local 

optimum instead of a global optimum as well as potentially creating an exponential 

running-time as the dataset information continues to scale in size. [74] With this route, 

there are a few interesting areas of study analyzing clustering algorithms with real-time 

data. [61-63]  

Second, a different standardized dataset of traffic information should be tested. This 

should include a more balanced distribution of data between both passive and intrusive 

activities and a more diverse set of attacks. The KDD and NSL-KDD datasets are useful 

in analyzing the system against basic network-related data. However, each of the datasets 

used herein suffer from limitations. These include a strong correlation towards intrusive 

network behaviors and limited types of attack types for encrypted service protocols (e.g. 

SSH). Examples of these features may be seen in Table 9 above. 

Third, the use of additional traffic properties can also be examined. [49] 
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Chapter 6: Appendices 

Appendix A: Vocabulary Index 
 

Title Definition 

Anomalies  

(i.e. Outliers) 

Patterns in data that do not conform to a well-defined notion of normal 

behavior. [30]  

For example, a set of data points that is relatively different from the rest 

of the analyzed data set may be considered an anomaly.  

Anomaly Detection  

(i.e. Heuristic-based) 

Classifies traffic as normal or anomalous based on a set of heuristics, or 

rules. This technique attempts to detect misuse by monitoring a 

system’s activities for any behavior that deviates from the norm. [16] 

Address Resolution Protocol 

(ARP) 

A protocol used in telecommunications in order to map a network layer 

address (i.e. IP Address) into a link layer address (i.e. MAC address). 

Attack Toolkit A hacker kit that exploits client-side vulnerabilities in order to execute 

arbitrary code. [32] 

Botnets 

(i.e. Bot Networks) 

A network of compromised computers, known as drones or zombies, 

that are used by cyber criminals in order to transmit spam messages, 

spread malware, and/or for other criminal activities. [32] 

Clustering Criterion The mathematical formulation of the inductive principle. This criterion is 

used to differentiate various clustering models given the same data set. 

[35] 

Clustering Model A structure used to represent a cluster. [35] 

Cyberespionage 

(i.e. Cyber Espionage or  

The act or practice of obtaining confidential information, stored in 

digital formats on computers or IT networks, without the permission of 
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Cyber Spying) the holder through the use of cracking techniques or malicious software. 

[51]  

Dynamic Clustering 

Algorithm 

This algorithm formulates the clustering problem in terms of the 

Maximum-Likelihood Estimation framework and allows the use of  

representations other than the centroid for each cluster. [36] 

False Positive 

(i.e. Type I Error) 

A false positive is a sequence of innocuous events that an IDS 

erroneously classifies as intrusive [2][15].  

False Positive Rate 

(i.e. False Alarm Rate) 

The expectancy of producing a false positive. 

False Negative  

(i.e. Type II Error) 

A false negative is sequence of unwanted traffic or intrusion attempts 

that an IDS fails to detect or report. [2][15] 

False Negative Rate The expectancy of producing a false negative. 

Host-based The data, or set of packets, to and from a single host is used to detect 

signs of an intrusion. [16] 

Inductive Principle 

(i.e. Induction Principle) 

A mathematical formalization for the definition of a cluster. This 

principle is used to make explicit a clustering criterion, in order to select 

a “best fit” structure given a set of data [35] 

Intrusion Detection Intrusion Detection the process of monitoring a network or system for 

potential signs of malicious activities or policy violations.  

Intrusion Detection System 

(i.e. IDS) 

An intrusion detection system is a device that attempts to detect an 

intrusion into a network or system using observed information and/or 

audit data. It can be a piece of installed software or a physical 

component that monitors traffic in order to detect unwanted activities, 

events, and/or policy violations. [2] 
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Intrusion Prevention System 

(i.e. IPS) 

 An intrusion prevention system is a device that attempts to both detect 

and prevent an intrusion. [2]  

Misuse Detection  

(i.e. Signature-based) 

Classifies based on patterns or signatures. This detection technique can 

only detect an intrusion for which a signature already exists. [16] 

Network-based The data from a network is scrutinized against a database or model in 

order to flag packets that are potentially malicious. Audit data from one 

or multiple hosts may also be incorporated to detect signs of an 

intrusion. [16] 

Particle Swarm Optimization 

Algorithm  

(i.e. PSOA) 

An algorithm from the field of swarm intelligence. This algorithm was 

first introduced as a substitute for a genetic algorithm (i.e. GA). It 

operates on the basis that consecutive actions of respective individuals 

are influenced by their own movements and those of their companions. 

[38] 

Secure Sockets Layer  

(i.e. SSL)  

 A commonly-used protocol for managing the security of a message 

transmission between a server and a client. [68-69] It has been 

succeeded by Transport Layer Security (TLS), which is based on SSL. [70] 

Signature  

(i.e. Digital Fingerprint;  

Digital Footprint) 

Recorded evidence of a system intrusion (i.e. digital footprint). 

For example, the number of failed logins or the unauthorized execution 

of software may be an example of a signature. [52] 

Supervisory Control And 

Data Acquisition Systems 

(i.e. SCADA) 

A type of industrial control system used for gathering and analyzing real-

time data or information. Usually, they have been used to monitor and 

control industry equipment or plant infrastructures. (e.g. 

telecommunications, water and waste control, energy, oil, etc) [53] 

Transmission Control One of the main protocols in TCP/IP networks. TCP enables two hosts to 
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Protocol 

(i.e. TCP) 

establish a connection and exchange streams of data. It also provides a 

guarantee for the delivery of the data as well as maintaining the order in 

which the data packets were sent. [72] 

Transport Layer Security  

(i.e. TLS) 

A protocol that provides data encryption and authentication between 

applications and servers. [64] It is based on Netscape's SSL 3.0 protocol 

[65-66], and is considered to be the successor of SSL. [67] While the 

differences between TLS and SSL are minor and very technical [67], they 

are not interoperable.[65-66] 

Zero-Day Vulnerabilities A vulnerability that is unknown to others, undisclosed to the software 

developer, or for which no security fix is available. [32] 
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Appendix B: Java Implementation 

Appendix B.1: K-Means Clustering Algorithm 

/* 
 * Name: Luis C. Armendariz 
 * Program Name: K-Means Clustering Algorithm 
 * Advisor: Dr. Roy S. Nutter 
 * Date: 10/25/2013 
 * Program Description: Parses KDD & NSL-KDD datasets from input files and performs K-Means 
Clustering on SSH data 
*/ 
 
import java.util.Scanner;                   //Get scanner to parse input file into pieces 
import java.io.FileReader;                  //Get file reader to read input file as whole 
import java.io.FileNotFoundException;       //Error Handling 
import java.util.Arrays;                    //Gets static methods for Arrays 
import java.util.ArrayList;                 //Import ArrayList 
import java.util.Random;                    //Import Random for random # generator 
import java.util.concurrent.Executors; 
import java.util.concurrent.ExecutorService; 
import java.util.concurrent.TimeUnit; 
import java.util.concurrent.atomic.AtomicInteger; 
import java.math.BigDecimal;                //Allows rounding of double type values 
 
public class kMeans 
{ 
  static Scanner console = new Scanner(System.in);   //Initialize scanner for reading user input 
   
  public static void main(String[] args) throws FileNotFoundException 
  { 
    /*********************************************** 
      ************* DATA INITIALIZATION ************ 
      **********************************************/ 
     
    //Initialize run time 
    long startTime = System.currentTimeMillis(); 
    String runTime = ""; 
     
    //Initialize variables 
    String inFileName = "KDDTrain+";   //"kddcup.data"; //KDDTrain+";   //Input file name (w/o .txt) 
    String delimiter = "\\,";          //Delimiter token (comma) 
    String connType = "ssh";           //Type of connection to examine 
    boolean normCheck = true;          //Check to normalize input data from dataset 
     
    int[] fitPattern;                  //Pattern for continuous data locations 
    int labelDistance;                 //Pattern label distance to factor during fitness 
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    String inLine = "";                //Input line of data  
    String normLine = "";              //Input line of normalized data 
    ArrayList<String> volume;          //Volume of data values (Array List of Strings) 
    ArrayList<String> volumeNorm;      //Volume of normalized data values 
    ArrayList<String> volumeOrig;      //Volume of original data values 
    int totalPatterns = 0;             //Total # of Patterns 
     
    int k = 0;                         //Number of cluster centers (i.e. centroids) 
    String randomPattern = "";         //Random pattern 
    ArrayList<Cluster> clusterList;    //List of clusters 
    ArrayList<Integer> patternGuesses; //List of pattern selections 
    Random generator;                  //Random # generator 
    int randomNum;                     //Random Number 
     
    //Initialize Thread Pool Manager 
    ExecutorService es = Executors.newCachedThreadPool(); 
     
    int[] clusterAssign;               //Keyed Array of Pattern to Cluster assignments [Ex: Pattern1=>Cluster5] 
    AtomicInteger clusterReassigns;    //Number of cluster reassignments 
    int clusterLoops = 0;              //Number of clustering loops 
     
     
    //Get input file 
    Scanner inFile = new Scanner (new FileReader (inFileName + ".txt"));      //Get input file 
     
    //Set fitness pattern & label distance (for continous data analysis) 
    switch(inFileName) 
    { 
      //NSL-KDD 
      case "KDDTrain+": 
        //fitPattern = new 
int[]{0,4,5,7,8,9,10,12,13,14,15,16,17,18,19,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40};  
//All continuous elements 
        fitPattern = new int[]{0,4,5,7,8};  //Only continuous TCP elements 
        labelDistance = 2; 
        break; 
      //KDD 
      case "kddcup.data": 
        //fitPattern = new 
int[]{0,4,5,7,8,9,10,12,13,14,15,16,17,18,19,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40};  
//All continuous elements 
        fitPattern = new int[]{0,4,5,7,8}; 
        labelDistance = 1; 
        break; 
      case "kddcup.data_10_percent": 
        //fitPattern = new 
int[]{0,4,5,7,8,9,10,12,13,14,15,16,17,18,19,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40}; 
        fitPattern = new int[]{0,4,5,7,8}; 
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        labelDistance = 1; 
        break; 
      default: 
        fitPattern = new int[0]; 
        labelDistance = 1; 
        break; 
    } 
     
     
    //Traverse input file for SSH data 
    //volume = new ArrayList<String>(); 
    volumeNorm = new ArrayList<String>(); 
    volumeOrig = new ArrayList<String>(); 
    while (inFile.hasNext()) 
    {  
      //Get next line of data 
      inLine = inFile.nextLine(); 
       
      //Check if line contains SSH data 
      if(inLine.toLowerCase().contains(connType.toLowerCase())) 
      { 
        //Check to normalize the data 
        if(normCheck) 
        { 
          //Step C: If found, Normalize the data using Log Normalization 
          normLine = logNormalize(inLine, delimiter, fitPattern); 
          //System.out.println("In:   " + inLine); 
          //System.out.println("Norm: " + normLine); 
         
          //Add normalized SSH data to end of normalized volume 
          volumeNorm.add(normLine); 
        } 
        else 
        { 
          //Add original SSH data to end of volume 
          volumeOrig.add(inLine); 
        } 
      } 
    } 
     
    //Set volume for clustering (check for normalization) 
    if(normCheck) 
    { 
      volume = volumeNorm; 
    } 
    else 
    { 
      volume = volumeOrig; 
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    } 
     
    //Set total number of patterns 
    totalPatterns = volume.size(); 
     
     
     
     
    /************************************************* 
     *************** K-Means Clustering ************** 
     *************************************************/ 
     
    /************************************************* 
     ******************** STEP #1 ******************** 
     *************************************************/ 
    /* Instructions 
     * ------------ 
     * Choose k cluster centers to coincide with k  
     * randomly-chosen patterns or k randomly defined  
     * points inside the hyper volume containing the  
     * pattern set 
     */  
     
     
    //Set value of k 
    k = (int) Math.sqrt(totalPatterns/2);   //Rule of Thumb by Mardia et al.[59] 
     
    //Setup list variables and random number generator 
    clusterList = new ArrayList<Cluster>(); 
    patternGuesses = new ArrayList<Integer>(); 
    generator = new Random(); 
     
    //Choose k random patterns from volume to make k cluster centers 
    for(int i=0; i < k; i++) 
    { 
      //Get a pattern from volume 
      try  
      { 
        //Get a random unchosen pattern location 
        do 
        { 
          //Generate a "random" number from 0 to totalPatterns-1 
          randomNum = generator.nextInt(totalPatterns); 
         
          //Check if number was already chosen  (prevents selecting the same patterns as centroids) 
        }while(patternGuesses.contains(randomNum)); 
         
        //Add pattern location to list 
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        patternGuesses.add(randomNum); 
         
        //Get pattern 
        randomPattern = volume.get(randomNum);  
      } 
      catch(IndexOutOfBoundsException err) 
      { 
        System.err.println("An error occurred: " + err.getMessage()); 
      } 
       
      //Create cluster & assign centroid (Split pattern into element pieces) 
      Cluster cluster = new Cluster(randomPattern.split(delimiter), labelDistance, fitPattern); 
       
      //Add cluster to Cluster ArrayList 
      clusterList.add(cluster); 
    } 
     
     
    /***** Prepare for Looping *****/ 
    //Initialize cluster assignment array 
    clusterAssign = new int[totalPatterns]; 
     
     
     
     
    //Begin K-Means Clustering Loop 
    do 
    { 
      /************************************************* 
       ******************** STEP #2 ******************** 
       *************************************************/ 
      /* Instructions 
       * ------------ 
       * Assign each pattern to closest cluster center 
       */ 
     
      //Reset cluster reassignment count 
      clusterReassigns = new AtomicInteger(0); 
       
      //Initialize Thread Pool Manager (for RunnableCluster Threads) 
      es = Executors.newCachedThreadPool(); 
       
      //Loop through volume 
      for(int i=0; i < totalPatterns; i++) 
      { 
        //Create RunnableCluster Object 
        RunnableCluster threadAssign = new RunnableCluster(i, volume, clusterList, clusterAssign, 
clusterLoops, clusterReassigns, delimiter); 
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        //Execute thread to assign pattern to closest cluster centroid 
        es.execute(threadAssign); 
      } 
       
      //Shutdown thread pool & finish all queued threads 
      shutdownAndAwaitTermination(es); 
       
       
      //System.out.println("2 Done"); 
       
      /************************************************* 
        ******************** STEP #3 ******************** 
        *************************************************/ 
      /* Instructions 
       * ------------ 
       * Recompute the cluster centers  
       * using the current cluster memberships 
       */ 
     
      //Initialize Thread Pool Manager (for RunnableCentroid Threads) 
      es = Executors.newCachedThreadPool(); 
       
      //Loop through cluster list 
      for(int i=0, j=clusterList.size(); i < j; i++) 
      { 
        //Create RunnableCentroid Object 
        RunnableCentroid threadUpdate = new RunnableCentroid(clusterList.get(i), volume, delimiter); 
         
        //Execute thread to recompute cluster centroid 
        es.execute(threadUpdate); 
      } 
       
      //Shutdown thread pool & finish all queued threads 
      shutdownAndAwaitTermination(es); 
       
       
      //System.out.println("3 Done"); 
       
      /************************************************* 
        ******************** STEP #4 ******************** 
        *************************************************/ 
      /* Instructions 
       * ------------ 
       * If a convergence criterion is not met, go to step 2 
       *  
       * Typical convergence criteria are:  
       * * no (or minimal) reassignment of patterns to new cluster centers,  
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       * * or minimal decrease in squared error  
       */ 
       
      clusterLoops = clusterLoops + 1;  
       
      //System.out.println("4 Done = Reassigns: " + clusterReassigns.get() + " Ratio: " + (totalPatterns/16)); 
       
    }while(clusterReassigns.get() > (totalPatterns/8)); 
     
     
     
     
    /************************************************* 
     ***************** IDS Analysis ****************** 
     *************************************************/ 
    /* Instructions 
     * ------------ 
     * Uses Traffic Properties to Identify Centroids with Attack Traffic (High Level Analysis) 
     *  
     * Future Work: 
     * Scan each cluster pattern and make best attempts to identify individual attacks (Deep Level 
Analysis) 
     */ 
     
    //Initialize array to hold analysis results 
    String[] ids_results = new String[clusterList.size()]; 
     
    //Loop through cluster list 
    for(int i=0, j=clusterList.size(); i < j; i++) 
    { 
      //Analyze each cluster for probability of attacks 
      ids_results[i] = ids_analyze(clusterList.get(i), normCheck); 
    } 
     
     
     
     
    /*********************************************** 
      *************** ENDING CLEAN UP ************** 
      **********************************************/ 
     
    //Calculate run time 
    runTime = getRunTime(startTime); 
     
    //Completion message 
    System.out.println("The program has completed execution."); 
    System.out.println(); 
    System.out.println("File Name: " + inFileName); 



  

78 
 

    System.out.println("Total Run Time: " + runTime); 
    System.out.println("Total Patterns: " + totalPatterns); 
    System.out.println("Total Loops: " + clusterLoops); 
    System.out.println("K: " + k); 
    System.out.println(); 
     
    //printClusterListPatterns(clusterList); 
    //System.out.println(); 
    printClusterListPatternsWithLabelsAsSummary(clusterList,volume,delimiter); 
    System.out.println(); 
    //printClusterListCentroids(clusterList); 
    //System.out.println(); 
    printIDSAnalysis(ids_results); 
     
  }//end main 
   
   
   
   
   
  /********************************************* 
    *************** Function List ************** 
    ********************************************/ 
   
  private static String getRunTime(long sTime) 
  { 
    //Calculate run time 
    long endTime   = System.currentTimeMillis(); 
    long totalTime = endTime - sTime; 
    String runTime = millisecondsToStr(totalTime); 
     
    return runTime; 
  }//end getRunTime 
   
  private static String ids_analyze(Cluster cluster, boolean normCheck) 
  { 
    String retStr = "";                              //return value 
     
    //Get cluster centroid 
    String[] centroid = cluster.getCentroid(); 
     
    //System.out.print("Centroid: "); 
    //cluster.printCentroid(); 
    //System.out.println(); 
     
    //Check if cluster is empty 
    if(cluster.getPatternListSize() == 0) 
    { 
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      retStr =  "(empty)"; 
    } 
    else 
    { 
      /* Analyze cluster centroid based on traffic properties */ 
      //Analyze Flow Sizes [Based on Foroushani et al.[49] & NSL/KDD Datasets] 
      double src_size_dec = Double.valueOf(centroid[4]);  //number of data bytes from source to 
destination 
      double dst_size_dec = Double.valueOf(centroid[5]);  //number of data bytes from destination to 
source 
      double factor = 0;                              //factor ratio of source to dest. bytes 
       
      //Check for log normalization 
      if(normCheck) 
      { 
        //Denormalize values 
        src_size_dec = (Math.ceil(Math.pow(10,src_size_dec)) - 1); 
        dst_size_dec = (Math.ceil(Math.pow(10,src_size_dec)) - 1); 
      } 
       
      //Round values up to nearest whole number 
      float src_size = (float)Math.ceil(src_size_dec); 
      float dst_size = (float)Math.ceil(dst_size_dec); 
       
      //Get factor value 
      if((src_size != 0)) 
      { 
        factor = dst_size / src_size; 
        //System.out.println("Src Size: " + src_size + " Dst Size: " + dst_size + " Factor: " + factor); 
      } 
       
      //If small request 
      if(src_size <= dst_size) 
      { 
        //With big response, classify Normal 
        if(factor > 10) 
        { 
          retStr = "Normal"; 
          //System.out.println(); 
          //cluster.printPatternListExpanded(volume, delimiter); 
          //System.out.println(); 
        } 
         
        //With small response, classify Anomalous (e.g. Scanning Attack (Probe)) 
        else 
        { 
          retStr = "Anomalous"; 
        } 
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      } 
       
      //If big request with smaller response, classify Anomalous (e.g. Buffer Overflow) 
      else  
      { 
        retStr = "Anomalous"; 
      } 
    } 
    return retStr; 
  }//end ids_analyze 
   
  private static boolean isNumeric(String str) 
  { 
    return str.matches("-?\\d+(\\.\\d+)?");  //match a number (latin digits) with optional '-' and decimal. 
  }//end isNumeric [Open Source] 
   
  public static String logNormalize(String inLine, String delimiter, int[] fitPattern) 
  { 
    //Declare variables 
    String inPiece = ""; 
    String normLine = ""; 
     
    //Split input line into pieces 
    String[] inLinePieces = inLine.split(delimiter); 
     
    //For each fitPattern value 
    for(int i=0,j=fitPattern.length; i < j; i++) 
    { 
      //Get corresponding input line piece 
      inPiece = inLinePieces[fitPattern[i]]; 
       
      //Check if piece is continuous (i.e. numeric) 
      if(isNumeric(inPiece)) 
      { 
        //If numeric, convert from string to numeric (Xij) 
        double inData = Double.valueOf(inPiece); 
           
        //Apply log normalization formula (X'ij = log(1 + Xij)) 
        inData = Math.log10(1 + inData); 
         
        //Round value to 2 decimal places 
        inData = round(inData, 2, BigDecimal.ROUND_HALF_UP); 
         
        //Store new value in piece location 
        inPiece = String.valueOf(inData); 
         
        //Store normalized piece back in array of pieces 
        inLinePieces[fitPattern[i]] = inPiece; 
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      } 
    } 
     
    //Create string from array of strings 
    StringBuilder sb = new StringBuilder(); 
 
    for(String s: inLinePieces)  
    { 
      sb.append(s).append(','); 
    } 
 
    sb.deleteCharAt(sb.length()-1); //delete last comma 
     
    normLine = sb.toString(); 
     
    //Return normalized input line as complete string 
    return normLine; 
  }//end logNormalize 
   
   
  public static String millisecondsToStr(long milliseconds)  
  { 
    // TIP: to find current time in milliseconds, use: 
    // var  current_time_milliseconds = new Date().getTime(); 
 
    // This function does not deal with leap years, however, 
    // it should not be an issue because the output is approximated 
     
    String retStr = ""; 
    double temp; 
     
    //Convert ms to seconds (if applicable) 
    if ((milliseconds / 1000) != 0) 
    { 
      temp = milliseconds / 1000; 
     
      //Get years 
      double years = Math.floor(temp / 31536000); 
      if (years != 0)  
      { 
        temp %= 31536000; 
        retStr += years + " Year" + numberEnding(years) + " "; 
      } 
       
      //Get days 
      double days = Math.floor(temp / 86400); 
      if (days != 0)  
      { 
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        temp %= 86400; 
        retStr += days + " Day" + numberEnding(days) + " "; 
      } 
       
      //Get hours 
      double hours = Math.floor(temp / 3600); 
      if (hours != 0)  
      { 
        temp %= 3600; 
        retStr += hours + " hr" + numberEnding(hours) + " "; 
      } 
       
      //Get minutes 
      double minutes = Math.floor(temp / 60); 
      if (minutes != 0)  
      { 
        temp %= 60; 
        retStr += minutes + " min" + numberEnding(minutes) + " "; 
      } 
       
      //Get seconds 
      double seconds = temp; 
      if (seconds != 0)  
      { 
        retStr += seconds + " sec" + numberEnding(seconds) + " "; 
      } 
       
      //Get milliseconds 
      double milliSec = milliseconds % 1000; 
      if (milliSec != 0) 
      { 
        retStr += milliSec + " ms "; 
      } 
    } 
    else 
    { 
        retStr += milliseconds + " ms"; 
    } 
     
    return retStr; 
  }//end millisecondsToStr [Open Source] 
   
  private static String numberEnding(double numb)  
  {  
    String retVal; 
         
    if(numb > 1) 
    { 
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      retVal = "s"; 
    } 
    else 
    { 
      retVal = ""; 
    } 
      
    return retVal; 
  }//end numberEnding 
   
  private static void printClusterAssigns(int[] clusterAssignments) 
  { 
    for(int r=0,s=clusterAssignments.length; r < s; r++) 
    { 
      System.out.print(r + "->" + clusterAssignments[r] + " "); 
    } 
    System.out.println(); 
  }//end printClusterAssigns 
   
  private static void printClusterListCentroids(ArrayList<Cluster> clusterL) 
  { 
    for(int i=0,j=clusterL.size(); i < j; i++) 
    { 
      System.out.println(i + " " + Arrays.toString(clusterL.get(i).getCentroid())); 
    } 
  }//end printClusterListCentroids 
   
  private static void printClusterListPatterns(ArrayList<Cluster> clusterL) 
  { 
    for(int i=0,j=clusterL.size(); i < j; i++) 
    { 
      System.out.print("Cluster " + i + ": "); 
      clusterL.get(i).printPatternList(); 
    } 
  }//end printClusterListPatterns 
   
  private static void printClusterListPatternsWithLabels(ArrayList<Cluster> clusterL, ArrayList<String> 
volume, String delimiter) 
  { 
    for(int i=0,j=clusterL.size(); i < j; i++) 
    { 
      System.out.print("Cluster " + i + ": "); 
      clusterL.get(i).printPatternListWithLabels(volume, delimiter); 
    } 
  }//end printClusterListPatternsWithLabels 
   
  private static void printClusterListPatternsWithLabelsAsSummary(ArrayList<Cluster> clusterL, 
ArrayList<String> volume, String delimiter) 
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  { 
    for(int i=0,j=clusterL.size(); i < j; i++) 
    { 
      System.out.print("Cluster " + i + ": "); 
      clusterL.get(i).printPatternListWithLabelsAsSummary(volume, delimiter); 
    } 
  }//end printClusterListPatternsWithLabelsAsSummary 
   
  private static void printIDSAnalysis(String[] ids_results) 
  { 
    for(int i=0,j=ids_results.length; i < j; i++) 
    { 
      System.out.println("Cluster " + i + ": " + ids_results[i]); 
    } 
  }//end printIDSAnalysis 
   
  public static double round(double unrounded, int precision, int roundingMode) 
  { 
    BigDecimal bd = new BigDecimal(unrounded); 
    BigDecimal rounded = bd.setScale(precision, roundingMode); 
    return rounded.doubleValue(); 
  }//end round [Open Source] 
   
  private static void shutdownAndAwaitTermination(ExecutorService pool) 
  { 
    //Disable new tasks from being submitted & finish all existing threads in queue 
    pool.shutdown(); 
     
    try 
    { 
      //Wait a while for existing tasks to terminate 
      if(!pool.awaitTermination(1, TimeUnit.MINUTES)) 
      { 
        pool.shutdownNow();  //Cancel currently executing tasks 
         
        //Wait a while for tasks to respond to being cancelled 
        if(!pool.awaitTermination(1, TimeUnit.MINUTES)) 
        { 
          System.err.println("Pool did not terminate"); 
        } 
      } 
    } 
    catch (InterruptedException ie) 
    { 
      System.err.println("An error occurred: " + ie.getMessage()); 
       
      // (Re-)Cancel if current thread also interrupted 
      pool.shutdownNow(); 
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      //Preserve interrupt status 
      Thread.currentThread().interrupt(); 
    } 
  }//end shutdownAndAwaitTermination [Open Source] 
}//end kMeans 
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Appendix B.2: K-Means Cluster class 

/* 
 * Name: Luis C. Armendariz 
 * Program Name: Cluster 
 * Advisor: Dr. Roy S. Nutter 
 * Date: 10/29/2013 
 * Program Description: Creates a Cluster class for the K-Means Algorithm 
*/ 
 
import java.util.ArrayList;                 //Import ArrayList 
import java.util.Iterator;                  //Allows traversal of an ArrayList 
import java.util.Map;                       //Get methods for Map 
import java.util.HashMap;                   //Import HashMap 
 
public class Cluster 
{ 
  private ArrayList<Integer> patternList;  //List of pattern locations 
  private String[] centroid;               //Cluster center 
  private final int labelDistance;         //Pattern label distance for fitness 
  private final int[] fitPattern;          //Pattern for continuous data locations 
  private Object lock1 = new Object();     //Lock 1 for synchronization with threads 
  private Object lock2 = new Object();     //Lock 2 for synchronization with threads 
  private Object lock3 = new Object();     //Lock 3 for synchronization with threads 
   
  /********************/ 
  /*** Constructors ***/ 
  /********************/ 
  public Cluster(int totalElements, int labelDistance, int[] fitPattern) 
  { 
    this.patternList = new ArrayList<Integer>();           
    this.centroid = new String[totalElements];             
    this.labelDistance = labelDistance; 
    this.fitPattern = fitPattern; 
  }//end Cluster 
   
  public Cluster(String[] inCentroid, int labelDistance, int[] fitPattern) 
  { 
    this.patternList = new ArrayList<Integer>(); 
    this.centroid = inCentroid; 
    this.labelDistance = labelDistance; 
    this.fitPattern = fitPattern; 
  }//end Cluster(String) 
   
   
   
  /********************/ 
  /**** Accessors *****/ 
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  /********************/ 
  public String[] getCentroid() 
  { 
    return centroid; 
  }//end getCentroid 
   
  public double getFitness(String[] pattern) 
  { 
    //Initialize variables 
    double fitValue = 0; 
    double sumSquare = 0.0; 
     
    //Euclidean Distance Function = d(p,q) = sqrt(sumFromI=1ToN((qi - pi)^2)) 
     
    //Check for fitness pattern 
    if(fitPattern.length > 0) 
    { 
      //For length of fitness pattern, get Continuous Data elements 
      for(int i=0,j=fitPattern.length; i < j; i++) 
      { 
        //Get an element 
        String strData = pattern[fitPattern[i]]; 
         
        //Check if element is numerical value 
        if(isNumeric(strData)) 
        { 
          //If numeric, convert from string to numeric (q) 
          double inData = Double.valueOf(strData); 
           
          //Take the difference between the Mean element (q-p) 
          double diff = inData - Double.valueOf(centroid[fitPattern[i]]); 
           
          //Square the difference (q-p)^2 
          double square = Math.pow(diff,2); 
           
          //Add value to total sum of squares E(qi-pi)^2 
          sumSquare = sumSquare + square; 
        } 
      } 
    } 
    else 
    { 
      //For length of String array, get only Numerics 
      for(int i=0,j=pattern.length - labelDistance; i < j; i++)   //Pattern.length-2 is to avoid factoring in the 
attack labels as part of fitness value 
      { 
        //Get an element 
        String strData = pattern[i]; 
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        //Check if element is numerical value 
        if(isNumeric(strData)) 
        { 
          //If numeric, convert from string to numeric (q) 
          double inData = Double.valueOf(strData); 
           
          //Take the difference between the Mean element (q-p) 
          double diff = inData - Double.valueOf(centroid[i]); 
           
          //Square the difference (q-p)^2 
          double square = Math.pow(diff,2); 
           
          //Add value to total sum of squares E(qi-pi)^2 
          sumSquare = sumSquare + square; 
        } 
      } 
    } 
     
    //Take square root of sum of squares to find Euclidean Distance 
    fitValue = Math.sqrt(sumSquare); 
     
    return fitValue; 
  }//end getFitness 
   
  public int[] getFitPattern() 
  { 
    return fitPattern; 
  }//end getFitPattern 
   
  public int getLabelDistance() 
  { 
    return labelDistance; 
  }//end getLabelDistance 
   
  public Integer getPattern(int location) 
  { 
    Integer outPattern = 0; 
     
    try  
    { 
      outPattern = patternList.get(location); 
    } 
    catch(IndexOutOfBoundsException err) 
    { 
      System.out.println("An error occurred: " + err.getMessage()); 
    } 
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    return outPattern; 
  }//end getPattern 
   
  public ArrayList<Integer> getPatternList() 
  { 
    return patternList; 
  }//end getPatternList 
   
  public int getPatternListSize() 
  { 
    return patternList.size(); 
  }//end getPatternListSize 
   
   
   
  /********************/ 
  /***** Mutators *****/ 
  /********************/ 
  public void addPattern(Integer pattern) 
  { 
    synchronized(lock1)  
    { 
      patternList.add(pattern); 
    } 
  }//end addPattern 
   
  public void removePattern(Integer pattern) 
  { 
    synchronized(lock2) 
    { 
      patternList.remove(pattern);  //Remove Integer Object of unique pattern location w.r.t. volume 
    } 
  }//end removePattern 
   
  public void setPattern(Integer pattern, int location) 
  { 
    synchronized(lock3) 
    { 
      patternList.set(location, pattern); 
    } 
  }//end setPattern 
   
   
   
  /********************/ 
  /**** Executors *****/ 
  /********************/ 
  public void printCentroid() 
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  { 
    for(int i=0,j=centroid.length; i < j ; i++) 
    { 
      System.out.print(centroid[i]); 
       
      if((i+1) != j) 
      { 
        System.out.print(","); 
      }//end if 
    }//end for 
  }//end printCentroid 
   
  public void printPatternList() 
  { 
    Iterator<Integer> it = patternList.iterator();    //Attach patternList to iterator for traversal 
     
    if(it.hasNext()) 
    { 
      while(it.hasNext())  
      { 
        System.out.print(it.next() + " " ); 
      } 
      System.out.println(); 
    } 
    else 
    { 
      System.out.println("(empty)"); 
    } 
  }//end printPatternList 
   
  public void printPatternListExpanded(ArrayList<String> volume, String delimiter) 
  { 
    Iterator<Integer> it = patternList.iterator();    //Attach patternList to iterator for traversal 
     
    //Check for patterns 
    if(it.hasNext()) 
    { 
      //Loop through patterns 
      while(it.hasNext())  
      { 
        //Get a pattern from volume 
        String[] tempPat = volume.get(it.next()).split(delimiter); 
         
        //Print entire pattern 
        /* 
        for(int i=0,j=tempPat.length; i < j; i++) 
        { 
          System.out.print(tempPat[i]); 
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          if((i+1) != j) 
          { 
            System.out.print(","); 
          } 
        } 
        System.out.println(); 
        */ 
         
        //Print Src_bytes and Dst_bytes elements of pattern 
        System.out.println(tempPat[4] + "," + tempPat[5]); 
      } 
      System.out.println(); 
    } 
    else 
    { 
      System.out.println("(empty)"); 
    } 
  }//end printPatternListExpanded 
   
  public void printPatternListWithLabels(ArrayList<String> volume, String delimiter) 
  { 
    Iterator<Integer> it = patternList.iterator();    //Attach patternList to iterator for traversal 
     
    if(it.hasNext()) 
    { 
      while(it.hasNext())  
      { 
        String[] tempPat = volume.get(it.next()).split(delimiter); 
         
        System.out.print(translate(tempPat[tempPat.length - labelDistance]) + " " ); 
      } 
      System.out.println(); 
    } 
    else 
    { 
      System.out.println("(empty)"); 
    } 
  }//end printPatternListWithLabels 
   
  public void printPatternListWithLabelsAsSummary(ArrayList<String> volume, String delimiter) 
  { 
    Iterator<Integer> it = patternList.iterator();    //Attach patternList to iterator for traversal 
    Map<String, Integer> map = new HashMap<String, Integer>(); //Summary of attack types 
     
    if(it.hasNext()) 
    { 
      while(it.hasNext())  
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      { 
        //Get pattern split into pieces 
        String[] tempPat = volume.get(it.next()).split(delimiter); 
         
        //Get attack type 
        String attackType = translate(tempPat[tempPat.length - labelDistance]); 
         
        //Add attack type to hashed array 
        if(map.containsKey(attackType)) 
        { 
          map.put(attackType, map.get(attackType) + 1); 
        } 
        else 
        { 
          map.put(attackType, 1); 
        } 
      } 
       
      //Print out summaries of all attack types 
      for(String name: map.keySet()) 
      { 
        String key = name.toString(); 
        String value = map.get(name).toString(); 
        System.out.print(key + " x" + value + " "); 
      } 
       
      System.out.println(); 
    } 
    else 
    { 
      System.out.println("(empty)"); 
    } 
  }//end printPatternListWithLabelsAsSummary 
   
   
   
  /*************************/ 
  /*** Private Functions ***/ 
  /*************************/ 
  private static boolean isNumeric(String str) 
  { 
    return str.matches("-?\\d+(\\.\\d+)?");  //match a number (latin digits) with optional '-' and decimal. 
  }//end isNumeric [Open Source] 
   
  private static String translate(String str) 
  { 
    String retStr = ""; 
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    //Remove ending period (if necessary) 
    str = str.replace(".", ""); 
     
    //Check string 
    switch(str) 
    { 
      case "back": retStr = "dos"; break; 
      case "buffer_overflow": retStr = "u2r"; break; 
      case "ftp_write": retStr = "r2l"; break; 
      case "guess_passwd": retStr = "r2l"; break; 
      case "imap": retStr = "r2l"; break; 
      case "ipsweep": retStr = "probe"; break; 
      case "land": retStr = "dos"; break; 
      case "loadmodule": retStr = "u2r"; break; 
      case "multihop": retStr = "r2l"; break; 
      case "neptune": retStr = "dos"; break; 
      case "nmap": retStr = "probe"; break; 
      case "perl": retStr = "u2r"; break; 
      case "phf": retStr = "r2l"; break; 
      case "pod": retStr = "dos"; break; 
      case "portsweep": retStr = "probe"; break; 
      case "rootkit": retStr = "u2r"; break; 
      case "satan": retStr = "probe"; break; 
      case "smurf": retStr = "dos"; break; 
      case "spy": retStr = "r2l"; break; 
      case "teardrop": retStr = "dos"; break; 
      case "warezclient": retStr = "r2l"; break; 
      case "warezmaster": retStr = "r2l"; break; 
      case "normal": retStr = "normal"; break; 
      default: retStr = "str"; break; 
    } 
     
    return retStr; 
  }//end translate 
}//end Cluster 
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Appendix B.3: RunnableCluster class 

/* 
 * Name: Luis C. Armendariz 
 * Program Name: RunnableCluster 
 * Advisor: Dr. Roy S. Nutter 
 * Date: 11/4/2013 
 * Program Description: Implements the Runnable interface for assigning patterns to a K-Means cluster 
*/ 
 
import java.util.ArrayList;                 //Import ArrayList 
import java.util.concurrent.atomic.AtomicInteger; 
 
public class RunnableCluster implements Runnable 
{ 
  private final int patternLoc;             //Pattern location in volume 
  private final ArrayList<String> volume; 
  private final ArrayList<Cluster> clusterList; 
  private final int[] clusterAssign; 
  private final int clusterLoops; 
  private final AtomicInteger clusterReassigns; 
  private final String delimiter; 
   
  /********************/ 
  /*** Constructors ***/ 
  /********************/ 
  public RunnableCluster(int patternLocation, ArrayList<String> volume, ArrayList<Cluster> clusterList, 
int[] clusterAssign, int clusterLoops, AtomicInteger clusterReassigns, String delimiter) 
  { 
    this.patternLoc = patternLocation; 
    this.volume = volume; 
    this.clusterList = clusterList; 
    this.clusterAssign = clusterAssign; 
    this.clusterLoops = clusterLoops; 
    this.clusterReassigns = clusterReassigns; 
    this.delimiter = delimiter; 
  }//end RunnableCluster 
   
   
  /********************/ 
  /**** Executors *****/ 
  /********************/ 
  public void run() 
  { 
    //Initialize variables 
    String tempPattern = "";           //Temporary Pattern (Whole) 
    String[] dataPattern;              //Temporary Pattern (Split into data elements) 
    Double tempFitness = 0.0;          //Temporary Fitness Value 
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    Double bestFitness = -1.0;         //Best Fitness Value for a temporary pattern 
    int bestCluster = -1;              //Best Cluster for temporary pattern 
    
    //Get pattern 
    tempPattern = volume.get(patternLoc); 
        
    //Split pattern using delimiter 
    dataPattern = tempPattern.split(delimiter); 
     
    //Get fitness with 1st cluster 
    bestFitness = clusterList.get(0).getFitness(dataPattern); 
    bestCluster = 0; 
     
    //Check fitness with other clusters and take lowest 
    for(int j=1, m=clusterList.size(); j < m; j++) 
    { 
      //Get fitness of cluster j 
      tempFitness = clusterList.get(j).getFitness(dataPattern); 
       
      //Best fitness is LOWEST of values 
      if(tempFitness < bestFitness) 
      { 
        bestFitness = tempFitness; 
        bestCluster = j; 
      } 
    } 
     
     
    //Check cluster assignment 
    if(clusterLoops == 0) 
    { 
      //Typecast pattern location to Object 
      Integer pattern = (Integer) patternLoc; 
       
      //Assign pattern to cluster with best fitness 
      clusterList.get(bestCluster).addPattern(pattern); 
       
      //Store cluster assignment 
      clusterAssign[patternLoc] = bestCluster; 
       
      //Increment reassignment count 
      clusterReassigns.incrementAndGet(); 
    } 
    else if(clusterAssign[patternLoc] != bestCluster) 
    { 
      //Typecast pattern location to Object 
      Integer pattern = (Integer) patternLoc; 
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      //Remove pattern from old cluster (if value exists) 
      clusterList.get(clusterAssign[patternLoc]).removePattern(pattern); 
       
      //Assign pattern to cluster with best fitness 
      clusterList.get(bestCluster).addPattern(pattern); 
       
      //Store cluster assignment 
      clusterAssign[patternLoc] = bestCluster; 
       
      //Increment reassignment count 
      clusterReassigns.incrementAndGet(); 
    }//end if-else 
  }//end run 
}//end RunnableCluster 
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Appendix B.4: RunnableCentroid class 

/* 
 * Name: Luis C. Armendariz 
 * Program Name: RunnableCentroid 
 * Advisor: Dr. Roy S. Nutter 
 * Date: 11/3/2013 
 * Program Description: Implements the Runnable interface for updating a K-Means cluster centroid 
*/ 
 
import java.util.ArrayList;                 //Import ArrayList 
import java.math.BigDecimal;                //Allows rounding of double type values 
 
public class RunnableCentroid implements Runnable 
{ 
  private final Cluster cluster; 
  private final ArrayList<String> volume; 
  private final String delimiter; 
   
  /********************/ 
  /*** Constructors ***/ 
  /********************/ 
  public RunnableCentroid(Cluster inCluster, ArrayList<String> inPatterns, String delim) 
  { 
    this.cluster = inCluster; 
    this.volume = inPatterns; 
    this.delimiter = delim; 
  }//end RunnableCentroid 
   
   
   
  /********************/ 
  /**** Executors *****/ 
  /********************/ 
  public void run() 
  { 
    String[] tempPattern; 
    ArrayList<Integer> patternList = cluster.getPatternList(); 
    int totalPatterns = cluster.getPatternListSize(); 
    String[] centroid = cluster.getCentroid(); 
    int labelDistance = cluster.getLabelDistance(); 
    int[] fitPattern = cluster.getFitPattern(); 
     
    //Check for fitness pattern (continuous data values) 
    if(fitPattern.length > 0) 
    { 
      /* PATTERN VALUE SUMATION */ 
      //Loop through list of patterns 
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      for(int i=0,j=totalPatterns; i < j; i++) 
      { 
        //Get a pattern and split into pieces 
        tempPattern = (volume.get(patternList.get(i))).split(delimiter); 
          
        //Loop through continuous data elements 
        for(int m=0,n=fitPattern.length; m < n; m++) 
        { 
          //Get location of continuous element 
          int cLoc = fitPattern[m]; 
            
          //If numerical values 
          if(isNumeric(centroid[cLoc]) && isNumeric(tempPattern[cLoc])) 
          { 
            //Get numerical value(s) 
            double cValue = Double.valueOf(centroid[cLoc]); 
            double pValue = Double.valueOf(tempPattern[cLoc]); 
              
            //Sum each NUMERICAL pattern value with respective centroid value 
            if(i == 0) 
            { 
              cValue = pValue;  //For 1st pattern, assign pattern element to centroid element 
            } 
            else 
            { 
              cValue = cValue + pValue; 
            } 
             
            //Convert back to a string & update centroid value 
            centroid[cLoc] = String.valueOf(cValue); 
          } 
        } 
      }//end for 
       
      /* CENTROID VALUE DIVIDES */ 
      //Loop through continuous data elements of centroid 
      for(int y=0,z=fitPattern.length; y < z; y++) 
      { 
        //Get location of continuous element 
        int cLoc = fitPattern[y]; 
            
        //If numerical value 
        if(isNumeric(centroid[cLoc])) 
        { 
          //Get numerical value 
          double cValue = Double.valueOf(centroid[cLoc]); 
           
          //Divide value by total number of patterns + 1 (for centroid) 
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          double newValue = (cValue / (totalPatterns + 1)); 
           
          //Round value to 2 decimal places 
          newValue = round(newValue, 2, BigDecimal.ROUND_HALF_UP); 
           
          //Convert value back to a string & update centroid value 
          centroid[cLoc] = String.valueOf(newValue); 
        } 
      }//end for 
    } 
    else 
    { 
      /* PATTERN VALUE SUMATION */ 
      //Loop through list of patterns 
      for(int i=0,j=totalPatterns; i < j; i++) 
      { 
        //Get a pattern and split into pieces 
        tempPattern = (volume.get(patternList.get(i))).split(delimiter); 
         
        //Loop through pattern elements [Minus labels at end of pattern] 
        for(int m=0,n=tempPattern.length-labelDistance; m < n; m++) 
        { 
          //If numerical value 
          if(isNumeric(centroid[m]) && isNumeric(tempPattern[m])) 
          { 
            //Get numeric value(s) 
            double cValue = Double.valueOf(centroid[m]); 
            double pValue = Double.valueOf(tempPattern[m]); 
             
            //Sum each NUMERICAL pattern value with respective centroid value 
            cValue = cValue + pValue; 
             
            //Convert back to a string & update centroid value 
            centroid[m] = String.valueOf(cValue); 
          } 
        } 
      }//end for 
        
      /* CENTROID VALUE DIVIDES */ 
      //Loop through each centroid value [Minus labels at end of pattern] 
      for(int y=0,z=centroid.length-labelDistance; y < z; y++) 
      { 
        //If numerical value 
        if(isNumeric(centroid[y])) 
        { 
          //Get numerical value 
          double cValue = Double.valueOf(centroid[y]); 
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          //Divide value by total number of patterns + 1 (for centroid) 
          double newValue = (cValue / (totalPatterns + 1)); 
           
          //Round value to 2 decimal places 
          newValue = round(newValue, 2, BigDecimal.ROUND_HALF_UP); 
           
          //Convert value back to a string & update centroid value 
          centroid[y] = String.valueOf(newValue); 
        } 
      }//end for 
   }//end if-else 
  }//end run 
   
  private static boolean isNumeric(String str) 
  { 
    return str.matches("-?\\d+(\\.\\d+)?");  //match a number (latin digits) with optional '-' and decimal. 
  }//end isNumeric [Open Source] 
   
  public static double round(double unrounded, int precision, int roundingMode) 
  { 
    BigDecimal bd = new BigDecimal(unrounded); 
    BigDecimal rounded = bd.setScale(precision, roundingMode); 
    return rounded.doubleValue(); 
  }//end round [Open Source] 
}//end RunnableCentroid 
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