
Graduate Theses, Dissertations, and Problem Reports

2014

Non-intrusive anomaly detection for encrypted networks Non-intrusive anomaly detection for encrypted networks

Luis C. Armendariz Jr.
West Virginia University

Follow this and additional works at: https://researchrepository.wvu.edu/etd

Recommended Citation Recommended Citation
Armendariz Jr., Luis C., "Non-intrusive anomaly detection for encrypted networks" (2014). Graduate
Theses, Dissertations, and Problem Reports. 111.
https://researchrepository.wvu.edu/etd/111

This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research
Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license
in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses,
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU.
For more information, please contact researchrepository@mail.wvu.edu.

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F111&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/111?utm_source=researchrepository.wvu.edu%2Fetd%2F111&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu

Non-Intrusive Anomaly Detection for Encrypted Networks

Luis C. Armendariz, Jr.

Thesis submitted

to the Benjamin M. Statler College of Engineering and Mineral Resources

at West Virginia University

in partial fulfillment of the requirements for the degree of

Master of Science in

Electrical Engineering

Roy S. Nutter, Jr., Ph.D., Chair

Katerina D. Goseva-Popstojanova, Ph.D.

Afzel Noore, Ph.D.

Lane Department of Computer Science and Electrical Engineering

Morgantown, West Virginia

2013

Keywords: Intrusion Detection; Encryption; Clustering

Copyright 2013 Luis C. Armendariz, Jr.

ABSTRACT

Non-Intrusive Anomaly Detection for Encrypted Networks

Luis C. Armendariz, Jr.

The use of encryption is steadily increasing. Packet payloads that are encrypted are

becoming increasingly difficult to analyze using IDSs. This investigation uses a new non-

intrusive IDS approach to detect network intrusions using a K-Means clustering methodology.

It was found that this approach was able to detect many intrusions for these datasets while

maintaining the encrypted confidentiality of packet information. This work utilized the KDD

'99 and NSL-KDD evaluation datasets for testing.

I

"We assumed the digital footprints we left behind

- our clickstream exhaust, so to speak -

were as ephemeral as a phone call,

fleeting, passing, unrecorded...

Our tracks through the digital sand are [in fact] eternal."

- Tom Zeller Jr.

II

ACKNOWLEDGEMENTS

 I would like to take a moment to recognize those who have made my thesis, my

college career, and all that I am blessed to have in life truly memorable. To my fiancée

Mary-Leigh, whose faith, love, and many sacrifices have been an enduring beacon of hope

throughout the years. To my parents whom have always been there for me and

continuously supported and encouraged me throughout each of my college endeavors. To

my nana whose stories and wisdom always inspired me during the tough times of college.

To Mrs. Pierce and my church family who have supported and guided me and covered

many of my college travel expenses. To Tom and his family who opened their home to me

during the final stages of my college career.

 I would like to take this time to recognize my advisor and mentor Dr. Roy S. Nutter,

Jr. who gave me the opportunity to return to West Virginia University and pursue my

Masters degree. His advice and dedication in and out of the classroom have truly been

inspiring and have continued to motivate me in seeking higher excellences. To Dr. Noore,

who taught me to always seek beyond where the bar was set. To Dr. Goseva-Popstojanova,

who taught me the importance of confidentiality, integrity, availability, and authenticity of

information.

 Finally, I would like to recognize the Lane Department and West Virginia

University for making the last 6.5 years truly some of the best moments of my life. Lastly,

I'd like to recognize the WV State Police, the National White Collar Crime Center, the

NCFTA, most notably Sergeant James E. Kozik, Jeremiah Johnson, Michael Shoukry, and

each of my fellow graduate students.

III

Table of Contents

ACKNOWLEDGEMENTS .. II

Chapter 1: Introduction .. 1

1.1 Introduction ...1

1.2 Statement of Problem ...2

1.3 Organization ...3

Chapter 2: Literary Review .. 4

2.1 Intrusion Detection ...4

2.1.1 Specification ... 4

2.1.2 Background .. 4

2.1.3 Detection Techniques .. 5

2.1.4 Implementations .. 10

2.1.5 Current Research ... 13

2.2. Encryption Analysis .. 15

2.2.1 Encryption with Intrusion Detection .. 15

2.2.2 Methodologies ... 15

2.3 Clustering Analysis .. 16

2.3.1 Clustering Overview ... 17

2.3.2 Clustering Models .. 17

2.3.3 Clustering Techniques .. 25

2.3.4 Clustering Research .. 26

2.4 Goals of Next-Generation IDS .. 27

2.5 Comparison to Works ... 28

2.6 Contributions ... 28

Chapter 3: Setup and Evaluation ...29

3.1 Setup.. 29

3.2 Data Sets .. 29

IV

3.2.1 KDD Cup '99 Dataset .. 29

3.2.2 NSL-KDD Dataset .. 33

3.3 Proposed System .. 33

3.3.1 Data Initialization ... 35

3.3.2 K-Means Clustering (Unsupervised) ... 37

3.3.3 Intrusion Detection Analysis .. 43

3.4 Evaluation .. 46

Chapter 4: Results and Conclusions ..48

4.1 Results ... 48

4.1.1 Precision ... 48

4.1.2 Recall .. 48

4.1.3 False Rate ... 49

4.1.4 Time ... 49

4.1.5 Dataset Comparison ... 50

4.1.6 Non-Intrusive Analysis Comparison ... 50

4.2 Conclusions .. 51

4.3 Future Work ... 52

Chapter 5: Bibliography ..53

Chapter 6: Appendices ..67

Appendix A: Vocabulary Index .. 67

Appendix B: Java Implementation... 71

Appendix B.1: K-Means Clustering Algorithm ... 71

Appendix B.2: K-Means Cluster class .. 86

Appendix B.3: RunnableCluster class .. 94

Appendix B.4: RunnableCentroid class ... 97

1

Chapter 1: Introduction

1.1 Introduction

One method of detecting an intrusion is to use an intrusion detection system

(IDS). The IDS has the ability to monitor system or network traffic and compare

it to a standard for analysis. Generally, a standard may be differentiated by an

anomaly-based process utilizing behavior models or a signature-based process

containing signatures of attack descriptions. In recent years, an effort to design

and build systems that analyze network traffic over a variety of mediums has

emerged. Most of the solutions utilize a type of anomaly or signature based

approach that analyzes packet payloads for additional data.

The issue with these systems is that they are unable to analyze network traffic that

is sent over an encrypted channel, due to the payload of the packets being

inaccessible. Only a limited quantity of IDS systems are designed to handle

encrypted information. Many of these systems require protocol modifications or

special infrastructures because of abnormally high false alarm rates. This paper

will investigate a methodology to analyze encrypted network traffic with a K-

Means clustering algorithm. Additionally, it will utilize TCP traffic properties to

evaluate the possibility of an intrusion. An intrusion detection system (IDS) can

thus monitor network traffic for potential intrusions while maintaining the

confidentiality of the packet information.

In order to validate the effectiveness of detecting intrusions with the proposed

methodology, the investigation will implement the proposed system using the

KDD '99 and NSL-KDD evaluation datasets. Furthermore, the results of the

evaluation will be compared against additional methodologies from similar

research experiments. By doing this, the effectiveness of this strategy can be

analyzed.

2

1.2 Statement of Problem

Intrusion Detection systems typically utilize either a signature-based or anomaly-

based approach to analyze in-the-clear network traffic connected to a network or

host machine. However, encrypted communications deny use of payload-related

data. One approach to analyze encrypted networks is non-intrusive. A non-

intrusive approach will be examined to determine if utilizing a K-Means

clustering model and TCP traffic properties will provide high precision and recall

with a lower false rate than the only other known existing non-intrusive

methodology. [1,49] This will be accomplished by validating the effectiveness of

the algorithm using the KDD '99 and NSL-KDD evaluation datasets.

3

1.3 Organization

This paper is separated into six chapters. The first chapter provides an

introduction to intrusion detection and the initial problem statement. The second

chapter provides a more detailed background to intrusion detection as well the

current research in this field of study. The third chapter discusses the proposed

intrusion detection system and the evaluation of the proposed system. The fourth

chapter examines the data collected to either support or refute the initial theory, as

well as discusses the final conclusions and where this work can be expanded in

the future. Finally, the fifth and sixth chapters list the bibliography and additional

appendices.

4

Chapter 2: Literary Review

This chapter provides a review of the current research in the area of intrusion detection.

The first section discusses the background and evolution of intrusion detection to its

current methodologies. The second section provides a brief review of encryption and the

current research related to detecting intrusions over encrypted channels. The third section

discusses clustering methodologies. Finally, the fourth section discusses goals for next

generation Intrusion Detection Systems (IDSs).

2.1 Intrusion Detection

 2.1.1 Specification

Intrusion Detection is the process of monitoring a network or system for

potential signs of malicious activities or policy violations. Possible types

of incidents include violations or imminent threats of violation of

computer security policies, acceptable use policies, or standard security

practices. [2].

2.1.2 Background

In the beginning, intrusion detection was first performed by system

administrators. The process consisted of sitting in front of a user console

and monitoring user activities for potential intrusions. Although this

methodology was effective at the time, this form of detection was very ad

hoc and did not allow for scalability. [22]

However, the awareness of intrusion detection began to spread when a

United States Air Force (USAF) paper written by James P. Anderson was

published in 1972. This paper identified how the USAF had "become

increasingly aware of computer security problems" and spurred people to

begin asking questions on how to safely secure information without

compromising security. [16][17] From this study, James P. Anderson

published a paper in 1980 called How to use accounting audit files to detect

unauthorized access. [18] This paper outlined many ways to improve

computer security auditing and surveillance at customer sites, as well as

paved a way for misuse detection in mainframe systems [16].

From here, Dorothy Denning and Peter Neumann developed the first model

of a real-time IDS called the Intrusion Detection Expert System (IDES)

between 1984 and 1986. [19] Initially, this system was a rule-based system,

trained to detect known malicious activity. However, the system was

5

refined to incorporate the statistical analysis of user profiles, becoming the

Next-Generation Intrusion Detection Expert System (NIDES) [20]. Over

time, the system was further enhanced to become the Event Monitoring

Enabling Responses to Anomalous Live Disturbances (EMERALD)

project. [21]

Throughout the 1980s and 1990s, much of the intrusion detection research

was based on these initial models and designs. Many projects thrived due to

funding from the United States (U.S.) government. Projects such as

Discovery, Haystack, Multics Intrusion Detection and Alerting System

(MIDAS), Network Audit Director and Intrusion Reporter (NADIR),

Netranger, RealSecure, and Snort were developed during this period [16].

2.1.3 Detection Techniques

Today, there are two types of detection techniques that are commonly used to

design Intrusion Detection Systems: Misuse Detection (MD-IDS) and Anomaly

Detection (AD-IDS). [1]

2.1.3.1 Classifications

It is important to note though that no single IDS is perfect. [2] Each IDS

faces unique problems and challenges, primarily due to the fact that

network traffic continues to increase in complexity. [2] As such, erroneous

results produced by an IDS are divided into two categories: false positives

and false negatives. [2]

6

 Alert not generated Alert is generated

Passive Activity

Intrusive Activity

Table 1: False Positives and False Negatives

A false positive is a sequence of innocuous events that an IDS erroneously

classifies as intrusive. [2][15] However, a false negative is a sequence of

unwanted traffic or intrusion attempts that an IDS fails to detect or report.

[2][15]

Above all, the reduction of both false positives and false negatives is a

critical component in intrusion detection. [15] Both create problems for

system and security administrators and may require additional system

calibration. [2] However, while false positives can create the burden of

sifting through cumbersome amounts of data, they are generally more

acceptable than false negatives. [2] This is because false negatives, as

undetected, do not provide a security administrator with the opportunity to

review the data. [2]

2.1.3.2 Misuse Detection

The first technique, known as Misuse Detection, focuses on identifying

intrusions using a predetermined knowledge base [15]. Usually, this is done

by utilizing a signature-based approach in order to search for well-known

attack patterns. [1]

True Positive

False Positive True Negative

False Negative

7

Figure 1: Misuse Detection Model [24][25]

Each attack signature, or fingerprint, is compared with the current system

activities in order to find strange or abusive use of a network or system.

Figure 2: Detecting a Signature [26]

As such, MD-IDSs have shown to have quick detection speeds and

manageable configurations [2], as well as produce a low number of false

positives [15]. Commercial implementations have also seen widespread

adoption and success. [16][20]

However, signature-based systems and approaches are reactive by nature

[10][11] and thus restricted to recognizing only known attacks.

Additionally, an attacker has the ability to modify an attack, rendering it

undetectable by a MD-IDS. [2]

8

Figure 3: Detection of Signature Modifications [23]

As a result, MD-IDSs often produce a high number of false negatives, and

their efficiency is dependent upon continuous updates and response times.

[1]

9

2.1.3.3 Anomaly Detection

The second technique is known as Anomaly Detection. This process

utilizes a heuristic-based approach, in order to build a model of the

"normal" system or network behavior. [1] Using this model, or profile,

intrusions can be detected as anomalies, or deviations, from the expected

behavior of the system. [1]

Figure 4: Anomaly Detection [27]

The primary advantage of this approach is that AD-IDSs are able to detect

new and yet unknown threats. [1] This provides additional support that

signature-based systems are unable to supply.

10

Figure 5: New and Unknown Threats [28]

As such, a wide variety of methods have been explored in order to

approach the anomaly detection issue, including neural networks, artificial

intelligence, data mining algorithms, genetic algorithms, and statistical

models. [15]

However, AD-IDSs are prone to an increased amount of false positives,

since a variety of factors can contribute to producing an anomalous

behavior (e.g. implementation errors). [15] Furthermore, the allocation of a

training phase to develop the analysis model may also be required,

depending upon the approach.

2.1.4 Implementations

The placement of an Intrusion Detection System (IDS) is another vital aspect of

the system's effectiveness. [1] Depending on whether the system is designed to

monitor traffic to a single host or a network of devices, can also determine what

types of intrusions the system may encounter. As such, many IDSs today often

utilize one of two common implementation approaches.

11

2.1.4.1 Host-based Intrusion Detection System

The first approach uses a host centric design, where an IDS requires a small

program, or agent, to be installed on a single device or machine. This type

of implementation is known as a Host-based Intrusion Detection System

(HIDS). [2]

Figure 6: Host-based Intrusion Detection System Setup [31]

One primary advantage of this implementation is that it allows a HIDS to

access and analyze system-specific settings and information in order to

detect intrusions. [1][2] This includes the local security policy [2], the file

system, network events, system calls [15], system commands, system logs,

and security logs. [14] Thus, it is important for a HIDS to appropriately

choose the system characteristics it will monitor. [15]

However, the primary concern with this implementation is that a HIDS

agent must be installed on the machine it intends to analyze. [2] As such,

configuration settings must be specific to that machine, operating system,

and software [2], limiting the HIDS in scalability and increasing the

complexity of system management.

12

2.1.4.2 Network-based Intrusion Detection System

The second approach utilizes a network centric design, where an IDS is

placed on a network to monitor information that is passed between multiple

hosts or to a unique device. This type of implementation is known as a

Network-based Intrusion Detection System (NIDS).

Figure 7: Network-based Intrusion Detection System Setup [31]

Usually, this setup consists of a network application, or sensor, integrated

together with a Network Interface Card (NIC). The NIC operates in

promiscuous mode in order to collect the traffic or data, while a separate

interface is used for management of the system.

The primary advantage of a NIDS setup is that it is able to analyze traffic at

all layers of the Open Systems Interconnection (OSI) model [2] and detect

attacks against the network as a whole. [1] A few examples of this would

be distributed denial-of-service (DDOS) attacks, policy violations, and

various classes of malware. [14]

However, a NIDS is limited to the data that is made available by the

network. As such, unique system information such as audit logs is often

restricted or unavailable for analysis.

13

2.1.5 Current Research

 2.1.5.1 Threats

Today, many well-known attacks and new types of threats can be detected

and impeded from causing harm. [1] However, all systems suffer from

security vulnerabilities and are subject to electronic attacks.

With the commercial success of the Internet and the ability to carry out

attacks from afar, e-Crime has evolved into a multi-billion dollar market.

[1,32]. Malicious code has now proliferated through the development and

distribution of attack kits, requiring no in-depth technical knowledge. [1]

Each professional kit contributes to the growing numbers of new signatures

with each set of new code. [1]

As the world continues to connect with the cyberworld, attackers are

becoming more sophisticated using automated tools to penetrate systems

and organizing highly coordinated and intricate attacks. [2] As such,

targeted attacks have also increased [32-33], including the most recent

commercial attacks on Nintendo[3-4], Ubisoft[5], and Sony [6-9]. Small

businesses have become more viable targets, accounting for fifty percent of

all targeted attacks in 2012. [33] Furthermore, the number of cyber

espionage attacks on military targets has also increased, such as the Flamer

and Gauss worms [33] and recent Social Engineering exploits [34].

The dissemination of malicious software and packages is not restricted to

networks anymore. Flash drives used as promotional prizes have become

popular instruments for Trojans. [1] Once a device is connected to a

computer, the Trojan installs itself onto the host system or network,

bypassing the security systems. Additionally, formerly secure systems such

as Supervisory Control And Data Acquisition Systems (SCADA) can be

compromised with the use of offline-propagation. [1] Thus, protecting a

system from only external threats is not enough.

With the evolution of technology and the interconnectivity provided by the

Internet, additional problems continue to arise. One important note is the

shift from attacks directed at operating systems or network protocols to

attacks utilizing vulnerabilities in the application layer. [1] As new

applications are created and developed, the potential for flawed program

14

code to enter the market continues to increase. As such, the quantity of

Zero-Day vulnerabilities has increased in recent years. [1]

While vendors continue to supply consumers with patches and updates to

discovered vulnerabilities, these updates may sometimes be delayed

utilizing a fixed patch-day policy. [1] Even more so, many users may not

take the appropriate safety precautions, due to often strenuous, complex, or

often changing security configurations. As such, the most successful

exploits are often utilizing vulnerabilities that were reported more than a

year ago. [1]

2.1.5.2 Increased Security Measures

Based on these recent changes, more and more services are beginning to

offer protected access, such as Transport Layer Security (TLS). This trend

will continue to grow, through the use of IPv6 IPSec [1].

However, many available systems will be unable to cope or scale to

challenges like encryption, since it denies the use of payload data for

evaluation. [1]

As IDS technologies continue to evolve, encryption will continue to

become a crucial factor to train the application of IDSs. [1,2]

15

2.2. Encryption Analysis

 2.2.1 Encryption with Intrusion Detection

Today, encryption is becoming a more common component and entity in data

communications. Protocols such as TLS and IPSec offer services that help in

safeguarding private information. However, as a result, common IDS structures

and systems are unable to analyze packet payloads in order to detect intrusions.

As such, new methodologies have been examined in order to integrate common

intrusion detection designs with encrypted networks.

 2.2.2 Methodologies

2.2.2.1 Protocol-based

The first methodology is a protocol-based approach, where malicious

activity is detected based on misuse of the encryption protocol. [1]

The primary advantage of this approach is that common attacks based on

vulnerabilities in the protocol can be analyzed and detected. However, this

approach is limited mainly to the misuse of the encryption protocol. As

such, additional attack vectors such as application-level attacks (e.g. SQL

injection, buffer overflow, cross-site request forgery) are usually not

detected since the payload of the packets is not decrypted and analyzed. [1]

For example, Joglekar et al. [46] developed an anomaly-based IDS for

detecting malicious use of cryptographic and application-level protocols.

This system, denoted as ProtoMon, instrumented shared libraries for these

protocols in order to detect intrusions. As the monitoring was integrated

into the protocol handling, attacks on the encryption protocol were able to

be detected. However, malicious activities hidden within the encrypted

channel remained undetected.

2.2.2.2 Intrusive

The next methodology is an intrusive approach, where modifications are

implemented onto the network architecture or the encryption protocol. [1]

The main advantage of this approach is that it provides a way to perform

deep packet inspection of payloads while maintaining the confidentiality of

the information. However, this approach strongly depends on modifications

16

to the protocols and the network infrastructure. As such, this creates heavy

management overhead and is often limited in scalability.

For example, Goh et al. [47-48] proposed and developed a detection

framework that allowed a NIDS to analyze network traffic without

compromising the confidentiality of a VPN. This approach was able to

detect application-level attacks and evasion attacks; however, it was limited

in scalability due to increased network overhead and implementation

challenges.

2.2.2.3 Non-Intrusive

The last methodology is a non-intrusive approach, where statistical models

and analysis methods are applied to encrypted traffic. [1]

The primary advantage with this approach is that it provides a way to

analyze network traffic without relying on packet payloads. Furthermore,

it maintains the confidentially of the information without modifications to

the network infrastructure. However, application-level attacks may not be

detected since the payload is not decrypted and analyzed. [1] Additionally,

this strategy also has the potential to have a high false positive rate,

decreasing its suitability to an online implementation.

In one approach, Foroushani et al. [49] proposed a system to detect

anomalous behaviors in SSH2 encrypted accesses, using intrusion

signatures generated from traffic information (e.g. access frequency, TCP

traffic specifications). This system was able to detect a variety of attacks

with high accuracy; however, it was not suitable to online implementation

due to a high false alarm rate.

2.3 Clustering Analysis

In this section, an introduction is given to common clustering methodologies and

approaches. The first area gives an overview of clustering and a few of its main

advantages for data analysis. The second area discusses clustering models and common

algorithms and approaches that have been utilized in research. The third area discusses

common clustering techniques that have been used to classify data. The last section

discusses current clustering research specific to the K-Means algorithm.

17

 2.3.1 Clustering Overview

Clustering is the process of organizing a set of objects in such a way that

information in the same group, or cluster, is more similar than to information in

other groups, or clusters. [35]

It has a vast history, expanding across disciplines such as biology, psychology,

geology, and marketing. [36] Today, this process of analyzing data and

information is found in many fields, including machine learning, pattern

recognition, and information retrieval. [36]

One of the main advantages of clustering is that it allows the analysis of cluster

groups containing similar objects rather than the analysis of each individual object

from a respective data set. However, the notion of a “cluster” cannot be precisely

defined, as the process of clustering is the general task to be solved. [35] As such,

there are many different types of clustering models, with each model employing a

different inductive principle for the definition of a cluster. Furthermore, each

induction principle contains many clustering algorithms that may be used for data

analysis. [35]

2.3.2 Clustering Models

A clustering model is the basic structure that is used to represent a cluster, or a

group of data. This model usually relies on an inductive principle, in order to

define a cluster, as well as a clustering criterion to select a “best fit” structure

given a set of data. [35] By defining what the clustering criterion is, it also aids in

accounting for the similarity between the cluster groups. [35]

For example, one commonly implemented clustering model is the probabilistic

model. This may utilize an inductive principle such as the Maximum Likelihood

(ML) approach, which states to choose the model that maximizes the probability

of the data being generated by such a model. [35] The clustering criterion would

be the mathematical expression of the inductive principle, while the clustering

algorithm would implement this criterion such as the Expectation Maximisation

method. [35]

However, it is also common for the names of clustering models to be used

interchangeably with the inductive principle. As such, it has become difficult to

identify if the clustering model name refers more to the model or the induction

principle. [35]

18

A few common clustering methods are hierarchical clustering, partitional

clustering, distribution clustering, and density clustering.

2.3.2.1 Hierarchical Clustering

Hierarchical Clustering, or connectivity models, builds a model based on

the distance between connected objects. The core inductive principle is

based on the guideline that objects are more related to nearby objects than

to far away objects. As such, algorithms that utilize this model develop

clusters based on object distances and represent clusters using a

dendrogram, or tree diagram.

Figure 8: Hierarchical clustering points within 3 clusters [36]

19

Figure 9: Hierarchical clustering dendrogram from single-link algorithm [36]

However, each algorithm differs by how the distances for each object are

computed. A few common algorithms for connectivity models are the

Linkage Clustering algorithms, including single-link, complete-link, and

average link clustering. Of these algorithms, single-link clustering and

complete-link clustering are most common. [36]

In single-link clustering, the distance between two clusters is the minimum

of the distances between all pairs of patterns drawn from the two clusters.

[36] However, in complete-link clustering, the distance is the maximum of

all pairs of patterns derived from the two clusters. [36] As such, complete-

link clustering produces tightly bound clusters, while single-link clustering

suffers from a chaining effect. In contrast, single-link clustering is more

versatile than complete-link clustering, even though noisy patterns may

develop. [36]

20

Figure 10: Single-link clustering with 2 data sets connected by noisy patterns [36]

Figure 11: Complete-link clustering with 2 data sets connected by noisy patterns [36]

While this clustering methodology is useful in organizing a set of objects

into a dendrogram, it does have its disadvantages. First, most hierarchical

algorithms’ results are not produced as a unique partitioning of a data set

but as a hierarchy. As such, a user would still need to choose the

appropriate clusters from the results. Second, this methodology is not

21

robust against outliers and can cause either additional clusters to form or

other clusters to merge (i.e. Chaining Phenomenon). [36] Lastly, the

complexity for most connectivity model algorithms is usually on the scale

of O(n
3
). Even optimized methods for these algorithms are on a scale of

O(n
2
). As such, many of these algorithms are too slow for large data sets.

[36]

2.3.2.2 Partitional Clustering

In partitional clustering, or centroid models, a single partition of the data is

obtained instead of utilizing a clustering structure. [36] The primary

inductive principle in this approach is that a cluster is represented by a

central vector, which may or may not be a member of the original data set.

A few algorithms that are common in this approach are the squared error

algorithms and the graph-based algorithms. [36]

2.3.2.2.1 Squared Error Algorithms

The squared error algorithms utilize one of the most frequently used

criterion functions in partitional clustering. This technique is known

as the squared error criterion.

In this methodology, an initial partition is selected with a fixed

number of clusters and cluster centers. Each data object or pattern is

assigned to a cluster center, while cluster centers are continuously

recomputed. Clusters are continuously split and merged again using

heuristics information [36], until the algorithm converges or cannot

be improved.

The primary goal of this operation is to obtain a partition for a fixed

number of clusters that minimizes the squared-error value, or the

objective function. [39,40] This value is the sum of the distances

between each individual object or pattern and its cluster center. [39]

An example of the clustering equation may be found in the figure

below.

22

Figure 12: Example of Squared Error Criterion Equation [40]

For a clustering of a pattern set () containing K clusters, the value

 is the i
th

 pattern belonging to the j
th

 cluster and cj is the centroid

of the j
th

 cluster.

The squared error criterion function is often effective with isolated

and compact clusters. Furthermore, the Euclidean distance function

is commonly used in conjunction with this approach. One of the

most commonly used squared error algorithms is the K-Means

clustering algorithm. [36]

2.3.2.2.2 K-Means Clustering

For the K-Means algorithm (i.e. Lloyd's algorithm), the methodology

builds upon the basic principles of squared error algorithms. First, a

random initial partition is selected with n objects and k cluster

centers. Then, each data object is assigned to the closest cluster

center, or the cluster with the nearest mean. Once this is

accomplished, each cluster center is recomputed and a new set of k

cluster centers are utilized to reassign objects. Convergence is

achieved when no or minimal objects are reassigned to new cluster

centers or when the squared error value ceases to decrease

significantly. [36,40]

The K-Means algorithm is used quite often due to its implementation

ease and its O(n) time complexity. However, one disadvantage with

this technique is that it is sensitive to the selection of the initial

23

partition and may converge at a local minimum of the criterion

function value instead of the global minimum. [36]

There are also several variations to the K-Means algorithm strategy.

For example, some implementations allow the separation and

aggregation of resulting clusters in order to select a more optimal

partition. [36] Other variations may utilize different criterion

functions in order to optimize the results, such as the dynamic

clustering algorithm. [36]

Additional discussions for variations, modifications, and

optimizations to the K-Means algorithm may be found in Section

2.3.3 Clustering Research.

2.3.2.2.2 Graph-Theoretic Clustering

In graph-based algorithms, the main approach is to construct a

minimal spanning tree (MST) for the data. Using this tree, the MST

edges with the largest lengths may be removed one-by-one, in order

to generate the appropriate clusters. [36] An example of this process

may be found in the figure below.

Figure 13: Graph-Theoretic Clustering MST [36]

24

One interesting point to note is that hierarchical clustering

approaches are also related to graph-theoretic clustering models. For

example, single-link clusters are subgraphs of the MST, while

complete-link clusters are maximal complete subgraphs, considered

the strictest definition of a cluster. [36]

2.3.2.3 Distribution Clustering

In Distribution Clustering, or distribution models, the primary inductive

principle is that the patterns to be clustered are part of one or more

distributions. Thus, the goal is to identify each of the input parameters and

their corresponding number. [36] As such, this methodology is closely

related to statistical approaches.

The most prominent algorithm used in this approach is the Expectation-

Maximization (EM) algorithm, also referred to as EM-Clustering.

2.3.2.3.1 EM Clustering

In EM-Clustering, the data set is often modeled using a fixed number

of Gaussian distributions. Each distribution is randomly initialized

using a set of mixing parameters. With each iterative pass, the

parameters are rescored and optimized in order to better match the

data set. [36]

Overall, this methodology produces a set of clusters and complex

models for these clusters that are able to capture correlation and

dependence attributes. However, one key issue with this strategy is

that it may suffer from overfitting, or when the statistical model may

describe a random error or noise instead of the underlying

relationship. Additionally, many real data sets may not have a

mathematical model available for the algorithm to optimize. Thus, an

additional burden is placed on the user to choose the appropriate data

models for the analysis.

2.3.2.4 Density Clustering

In Density Clustering, or density models, the core inductive principle

defines a cluster as a region in a data set with higher object density. Objects

25

that may be found or located near sparse areas are defined as noise or

cluster border points. [37] A few algorithms that are common in this

approach are the DBSCAN, OPTICS, and the DeLi-Clu algorithms.

The DBSCAN algorithm, or density-based spatial clustering of applications

with noise, is one of the most commonly used density-clustering methods

and utilizes the notion of density-reachability. Likewise, the OPTICS

algorithm, or ordering points to identify the clustering structure, may be

viewed as a generalization of the DBSCAN algorithm to multiple ranges.

While each algorithm offers advantages similar to those of the Linkage

Clustering algorithms, the primary drawback is that the algorithms expect a

type of density drop in order to detect cluster borders. As such, they are not

able to detect intrinsic cluster structures which are commonly prevalent in

real-time data sets.

The DeLi-Clu, or Density Link-Clustering, algorithm, merges ideas found

in both OPTICS and Single-Link clustering. This reduces the required

amount of defined parameters and offers performance improvements over

OPTICS by using an R-tree index.

2.3.3 Clustering Techniques

Similar to clustering models, there are also a variety of clustering techniques that

can be applied to various clustering algorithms. These techniques may aid in

defining the guidelines for the algorithm or clustering criterion.

2.3.3.1 Agglomerative vs Divisive

This technique relates to the algorithmic structure and operation. In an

agglomerative approach, each pattern is defined within a distinct cluster

and continuously merged until a specified stopping criterion is reached.

However, in a divisive approach, all patterns are defined within a single

cluster and continuously split until a specified stopping criterion is

satisfied. [36]

2.3.3.1 Hard vs Soft Clustering

This technique relates to the how the algorithm places objects or patterns

within defined clusters. A hard clustering approach places each data object

26

within a single cluster, during operation and output. However, a soft

clustering (i.e. fuzzy clustering) approach assigns each data object to a set

of clusters using relative degrees of memberships. [36]

2.3.4 Clustering Research

Recently, there have been many new research developments with regards to

improvements or modifications to the K-Means clustering strategy. Many of these

variations offer additional insight as to how to improve the accuracy of the

detection algorithm and reduce the computational expenses.

For example, Xiao et. al. [38,50] proposed an approach where the K-Means

algorithm was associated with the Particle Swarm Optimization (PSO) algorithm.

This approach, denoted as PSO-KM, produced results that maintained a high

accuracy when detecting probe attacks, denial-of-service (DoS) attacks, and user-

to-root (U2R) attacks. It was also effective in converging towards a global

optimum rather than a K-Means local optimum. However, the approach produced

low results in detecting root-to-local (R2L) attacks and was unable to overcome

the K-Means dependency on the number of clusters.

In another study, Gaddam et al. [41] proposed a supervised anomaly detection

approach, known as K-Means+ID3, which cascaded K-Means clustering with ID3

decision tree learning methods. This combined approach showed improved

performance measures relative to its individual counterparts. A similar study was

done by Yasami et al. [44] where the approach was refined to provide an

unsupervised classification for ARP anomaly detection.

Additional variations include K-Medoids, which represents clusters with the data

median value rather than the mean [42], and Fuzzy c-means (i.e. Soft K-Means,

Fuzzy K-Means) which is an extension of the K-Means algorithm that allows data

points to be associated with multiple clusters using membership values. [42] An

improved methodology was proposed by Ensafi et al. [43] which associated Fuzzy

K-Means with PSO, denoted as SFK-means. This approach provided solutions to

the local convergence problem in Fuzzy K-Means and the sharp boundary

problem in Swarm K-Means. However, the SFK-means algorithm suffered from a

high false positive rate, as well as a high computation overhead in terms of

memory requirements and CPU times.

Another methodology offered by Tian et. al. [45], proposed an improved K-

Means algorithm that utilized the K-Medoids cyclic method and the improved

trilateral relations theorem. This approach produced results that improved the

27

false detection rate of abnormality and reduced computation time to a certain

extent.

2.4 Goals of Next-Generation IDS

Based on the shortcomings of current IDSs, Koch[1] identified a set of unique goals that

aid in the development of a Next-Generation IDS. A few of these goals that the proposed

methodology focuses on are given below:

1. First, an IDS must aim to support a behavior-based analysis. Due to the increase

in the number of Zero Days, targeted attacks, and encrypted communications, it is

often not feasible to rely on the availability of signatures. [1] Furthermore, the

efficiency of near-real time evaluation of patterns in server systems is limited to

both the amount of traffic as well as the size of integrated databases and the

quantity of patterns. [1]

2. Second, an IDS must aim to support the exclusion of a learning phase. Many IDSs

using Anomaly Detection techniques often require the inclusion of a learning

phase; however, retrieving clean labeled data based on a production environment

is often unavailable. Thus, Koch[1] recommends the implementation of other

techniques that provide solutions for this issue such as unsupervised learning or

neural networks.

3. Third, the evaluation of a packet's payload must be abstained, if not prohibited.

As the use of encryption increases, the ability to analyze packet payloads becomes

very elaborate. Data becomes inaccessible or requires great computational

complexity to evaluate. Thus, reliance on the availability of packet payloads

becomes increasingly infeasible.[1]

4. Fourth, an IDS must aim to support the implementation of a network-centric

design. While host-based implementations hold several advantages with regard to

the availability of information (e.g. decrypted data; log files), the management is

often complex, error-prone, and limited in scalability. However, network-based

installations are able to recognize distributed and sophisticated attacks against the

network as a whole. [1]

28

2.5 Comparison to Works

All of the approaches discussed in the above sections, except Foroushani [49], do not

meet all of the goals identified by Koch [1] above for a next-generation intrusion

detection system. Foroushani [49] is the only known existing non-intrusive approach that

meets all of these goals to date.

This paper will analyze a new non-intrusive approach that is consistent with each of the

four goals above required for a next-generation intrusion detection system and compare

with Foroushani [49]. [see Fig. 14 pg. 24]

2.6 Contributions

The contributions of the paper are enumerated as follows:

1. The paper presents a non-intrusive approach to detect network intrusions across

encrypted accesses using a K-Means clustering algorithm and TCP traffic

properties, while maintaining the confidentiality of packet payload information.

2. The paper evaluates the performance of the proposed methodology and compares

it with the only other known existing non-intrusive approach using five

performance measures. [1,49]

3. The paper presents a non-intrusive approach for analyzing information that is

consistent with four of the goals required for a next-generation intrusion detection

system.

29

Chapter 3: Setup and Evaluation

3.1 Setup

For this investigation, a Windows 7 setup will be utilized running a Java 1.7

environment. The specifications of the investigation setup may be found in the table

below.

Operating System Windows 7 Home Premium SP 1

System Type 64-bit

Memory 8.00 GB

Processor Intel
®

 Core
TM

 i7-2820QM CPU

@ 2.30GHz 2.30GHz

Hard Drive 700 GB
Table 2: System Information

3.2 Data Sets

During the investigation, two evaluation datasets will be used: the KDD Cup '99 dataset

and the NSL-KDD dataset.

3.2.1 KDD Cup '99 Dataset

The Knowledge Discovery and Data Mining (KDD) 1999 dataset is derived from

the 1998 DARPA Intrusion Detection Evaluation datasets. Under the sponsorship

of the Defense Advanced Research Projects Agency (DARPA) and the Air Force

Research Laboratory (AFRL), MIT Lincoln Labs collected and distributed the

DARPA datasets for the evaluation of network intrusion detection systems.

The KDD '99 dataset consists of 41 features and one class attribute for each

connection record. Of these 41 features, nine are basic features of individual TCP

connections. These features may be found in the table below.

30

Feature Name Description Type
Duration Length (number of seconds of the connection) Continuous

Protocol_type Type of the protocol (e.g. tcp, udp, etc.) Discrete

Service Network service on the destination (e.g. http, telnet, etc.) Discrete

Src_bytes Number of data bytes from source to destination Continuous

Dst_bytes Number of data bytes from destination to source Continuous

Flag Normal or error status of the connection Discrete

Land 1 if connection is from/to the same host/port; 0 otherwise Discrete

Wrong_fragment Number of "wrong" fragments Continuous

Urgent Number of Urgent packets Continuous

Table 3: Basic features of individual TCP connections [56]

The remaining fields are higher-level features defined by Stolfo et. al. to help in

distinguishing normal connections from attacks. [56] These features are grouped

in one of several categories.

The first category consists of same-host features. These features examine only

connections within the past two second interval that have the same destination

host as the current connection and calculate statistics related to protocol behavior,

service, and more. [56] Likewise, same-service features examine only connections

within the past two second interval that have the same service as the current

connection. [56] The same-host and same-service features together are called

time-based traffic features of the connection records. [56] These features may be

found in the table below.

Feature Name Description Type
Count Number of connections to the same host as the current

connection in the past two seconds

Continuous

Note: The following features refer to these same-host connections.

Serror_rate % of connections that have "SYN" errors Continuous

Rerror_rate % of connections that have "REJ" errors Continuous

Same_srv_rate % of connections to the same service Continuous

Diff_srv_rate % of connections to different services Continuous

Srv_count Number of connections to the same service as the current

connection in the past two seconds

Continuous

Note: The following features refer to these same-service connections.

Srv_serror_rate % of connections that have "SYN" errors Continuous

Srv_rerror_rate % of connections that have "REJ" errors Continuous

Srv_diff_host_rate % of connections that have different hosts Continuous

Table 4: Time-based traffic features [56]

The second category contains host-based traffic features. [56] These features were

derived with respect to attacks that use a much larger time interval than two

seconds (e.g. probing attacks scanning once per minute). As such connection

records were sorted by destination host, and features were constructed using a

31

window of 100 connections to the same host instead of a time window. [56] These

features may be found in the table below.

Feature Name Description Type
Dst_host_count Number of connections to the same host as the current

connection.

Continuous

Dst_host_srerror_rate % of connections that have "SYN" errors Continuous

Dst_host_rerror_rate % of connections that have "REJ" errors Continuous

Dst_host_same_srv_rate % of connections to the same service Continuous

Dst_host_diff_srv_rate % of connections to different services Continuous

Dst_host_srv_count Number of connections to the same service as the current

connection.

Continuous

Dst_host_srv_serror_rate % of connections to same service that have "SYN" errors Continuous

Dst_host_srv_rerror_rate % of connections to same service that have "REJ" errors Continuous

Dst_host_srv_diff_host_rate % of connections to different hosts Continuous

Dst_host_same_src_port_rate % of connections that were to the same source port Continuous

Table 5: Host-based traffic features [71]

The last category consists of content features. [56] Unlike DoS and Probing

attacks, R2L and U2R attacks do not have intrusion frequent sequential patterns.

[54] This is mainly due in part to DoS and Probing attacks utilizing many

connections to some host(s) in a short period of time, while R2L and U2R attacks

are embedded in the data portions of the packets utilizing only a single

connection. [54] Thus, in order to detect these kinds of attacks, content features

were added using domain knowledge, in order to look for suspicious behavior in

the data portions (e.g. number of failed login attempts). [56] A list of these

features may be found in the table below.

Feature Name Description Type
Hot Number of "hot" indicators Continuous

Num_failed_logins Number of failed login attempts Continuous

Logged_in 1 if successfully logged in; 0 otherwise Discrete

Num_compromised Number of "compromised" conditions Continuous

Root_shell 1 if root shell is obtained; 0 otherwise Discrete

Su_attempted 1 if "su root" command attempted; 0 otherwise Discrete

Num_root Number of "root" accesses Continuous

Num_file_creations Number of file creation operations Continuous

Num_shells Number of shell prompts Continuous

Num_access_files Number of operations on access control files Continuous

Num_outbound_cmds Number of outbound commands in an ftp session Continuous

Is_hot_login 1 if the login belongs to the "hot" list; 0 otherwise Discrete

Is_guest_login 1 if the login is a "guest" login; 0 otherwise Discrete

Table 6: Content features within a connection suggested by domain knowledge [56]

32

Lastly, the class attribute consists of 1 of 21 classes that fall under four types of

attacks [55-56]. These classes and attack types may be found in the tables below.

Class Name Attack Type

Back DoS

Buffer_overflow U2R

ftp_write R2L

Guess_passwd R2L

Imap R2L

Ipsweep Probe

Land DoS

Loadmodule U2R

Multihop R2L

Neptune DoS

Nmap Probe

Perl U2R

Phf R2L

Pod DoS

Portsweep Probe

Rootkit U2R

Satan Probe

Smurf DoS

Spy R2L

Teardrop DoS

Warezclient R2L

Warezmaster R2L
Table 7: List of Classes [56]

Attack Type Description

Probing (Probe) Surveillance and other probing (e.g. port scanning)

Remote-to-Local (R2L) Unauthorized access from a remote machine

(e.g. guessing password)

User-to-Root (U2R) Unauthorized access to local superuser (root)

privileges (e.g. buffer overflow attacks)

Denial-of-Service (DoS) Denial of Service (e.g. syn flood)
Table 8: Types of attacks [56]

Although the KDD Cup '99 dataset has become a widely used dataset for the

evaluation of detection systems, it does suffer from a few shortcomings [54]. As

such, a newer dataset was proposed to handle many of these issues, called the

NSL-KDD dataset. [54]

33

3.2.2 NSL-KDD Dataset

The NSL-KDD dataset is a reduced version of the original KDD '99 dataset to

handle many of the KDD '99 shortcomings. [55] It was proposed by Tavallaee et

al. [54] in 2009 and includes some of the following differences over the original

KDD '99 dataset:

1. First, the training set does not include redundant records. This aids in

preventing the classifiers from being biased towards frequent records. [57]

2. Second, the test sets do not include duplicate records. This prevents the

performance of learning algorithms from being biased towards methods which

yield better detection rates on frequent records. [57]

3. Third, the number of selected records from each difficulty level group is

inversely proportional to the percentage of records in the original KDD '99

dataset. As a result, the classification rates of distinct learning methods vary in

a wider range, increasing the accuracy of evaluation of different learning

techniques. [57]

4. Last, the number of records in both the training and test datasets are

reasonable, allowing experiments to run the complete datasets without the

need to randomly select a smaller portion. As such, this allows the evaluation

results of different research works to be more consistent and comparable. [57]

3.3 Proposed System

The proposed intrusion detection system (IDS) will consist of three primary areas. [15]

1. Data Initialization

2. K-Means Clustering (Unsupervised)

3. Intrusion Detection Analysis

An overview of this process may be found in the figure below.

34

Figure 14: Overview of System Specifications

First, the system will extract information from a respective dataset. This information

includes intrinsic attributes from the header's area of network packets (i.e. TCP traffic

properties), time-based attributes, host-based attributes, content attributes, and a class

attribute each related to the network data. [71] A list of each of these attributes with their

respective descriptions may be found above in the dataset section in Table 3 through

Table 8.

Then, once the information is retrieved, the K-Means Clustering algorithm will sort the

data into cluster groups for analysis. This will allow for various actions to be identified

based on the similarity of the information. In order to accomplish this task, four primary

steps will be utilized: selecting K cluster centers to initialize each cluster group, assigning

data patterns to cluster groups using the cluster centers, updating the cluster centers using

the new pattern sets, and then checking for convergence of the algorithm based on a

stopping criterion.

Finally, attacks will be detected according to the TCP traffic properties of the cluster

centers. This will include features such as the number of bytes from source to destination

and vice-versa.

The next set of subsections will discuss the applied methodology in more detail.

35

3.3.1 Data Initialization

The first area of the proposed IDS is the data initialization module. In this phase,

traffic data is extracted and formatted to be analyzed for the K-Means clustering

algorithm. An overview of this process may be found in the figure below.

Figure 15: Overview of initializing variables and retrieving data for clustering

In the first step, system variables are initialized for processing. This includes

essential information such as the name and location of the dataset to be processed

(e.g. KDD or NSL-KDD), the token for how the data is delimited, the volume to

store the data patterns as they are retrieved, as well as additional variables that

will be used throughout the experiment.

Next, information from the selected dataset is retrieved through the use of a

filereader. The "kddcup.data" file (KDD) and the "KDDTrain+" file (NSL-KDD)

will be used to evaluate the proposed system, since they each contain the largest

quantity of labeled evaluation data from their respective datasets. This will allow

the data to be compared to a known standard of effectiveness in order to validate

36

the methodology, once the analysis phase has completed. Additionally, as each

data element is retrieved, the service feature of the element is analyzed for

protocols supporting encrypted communications during the collection of the

original datasets. This will allow the system to analyze data features that

supported encrypted communications, restricting use of the packet information.

For this experiment, Secure Shell (i.e. SSH) traffic data will be focused on and

extracted from each of the datasets. The details and information related to each of

the specific dataset files may be found in the table below.

 KDD Cup '99 NSL-KDD

Total Data Lines 4,898,431 125,973

Total Passive Activities 972,780 67,343

Total Intrusive Activities 3,925,651 58,630

Total DoS Attacks 3,883,370 45,927

Total U2R Attacks 52 52

Total R2L Attacks 1,126 995

Total Probe Attacks 41,102 11,656

Total SSH Data Lines 1,075 311

Total SSH Passive Activities 7 5

Total SSH Intrusive Activities 1,068 306

Total SSH DoS Attacks 1,039 281

Total SSH U2R Attacks 0 0

Total SSH R2L Attacks 0 0

Total SSH Probe Attacks 29 25
Table 9: KDD and NSL-KDD Dataset Information

As each data element is extracted, it is added to a preformatted array list, or

volume. Once this operation has completed, each set of data is normalized using a

log transform strategy. The equation for the log normalization may be found area

below.

Where Xij = the value of feature j for observation i before normalization

X'ij = the value after normalization is applied

By normalizing the data, it allows for the contributions of different data attributes

to be weighed in a manner such that the distance between observations becomes

meaningful. [75] This will allow the K-Means clustering algorithm to begin to

process and group the extracted data.

37

3.3.2 K-Means Clustering (Unsupervised)

In the second area of the proposed IDS, the K-Means clustering module sorts the

data into cluster groups for analysis. The algorithm accomplishes this task through

four steps, as seen in the figure below.

Figure 16: Overview of K-Means Clustering Algorithm

38

First, k cluster centers are chosen to coincide with k randomly defined points from

the respective dataset. In order to accomplish this task, a strategy similar to the

Forgy methodology is implemented, where k pattern sets (i.e. data lines) are

randomly selected from the volume containing the selected dataset and used as the

initial cluster means, or centers. [58]

Figure 17: Selection of K Cluster Centers

For this experiment, the initial starting value of K will be set to the general rule of

thumb proposed by Mardia et al. [59]:

Where = total number of data patterns

As such, using the information provided in Table 9 above, the K values for each

dataset can be calculated. These values may be found in the table below.

39

 Total Data

Lines

K

(Total)

Total SSH

Data Lines

K

(SSH)

KDD Cup '99 4,898,431 1,564 1,075 23

NSL-KDD 125,973 250 311 12
Table 10: KDD and NSL-KDD Dataset K Values

The KDD Cup '99 dataset contains 4,898,431 total patterns with 1,075 SSH

specific data patterns. This generates a K value of 1,564 clusters when operating

on the complete data set, and a K value of 23 when examining the SSH specific

information. Likewise, the NSL-KDD dataset contains 125,973 total patterns with

311 SSH specific data patterns. As such, this generates a K value of 250 clusters

when operating on the full data set, and a K value of 12 when examining the SSH

information.

Each cluster center, or centroid (c), is also associated with the mean value of that

cluster's assigned pattern set. Thus, as patterns are assigned to clusters, the cluster

centroids are able to be updated as needed.

Next, each pattern from the respective dataset is assigned to a cluster. This is

accomplished by comparing each pattern (p) to each cluster centroid (c) through

the implementation of the Euclidean Distance function. An overview of the

process may be found in the figure below.

40

Figure 18: Pattern Assignment

As each pattern is examined, a fitness value is generated for each cluster, using

the distance function. This fitness value relates the distance of a single data

pattern to a cluster's centroid. As such, the cluster with the lowest fitness value is

the one whose centroid produced the least Euclidean Distance to the pattern.

In order to accomplish this task, each pattern (p) from the data volume is

examined and compared with each respective cluster centroid (c), such that the

Euclidean Distance is given as:

 Where = total number of elements in a data pattern

 = the i
th

 pattern element

 = the i
th

 centroid element

 = distance from pattern p to centroid c

41

For this experiment, the fitness values generated for each pattern will focus on the

continuous intrinsic attributes from the header's area of the network packets (i.e.

TCP traffic properties). These attributes may be found in the table below.

Feature Name Description
Duration Length (number of seconds of the connection)

Src_bytes Number of data bytes from source to destination

Dst_bytes Number of data bytes from destination to source

Wrong_fragment Number of "wrong" fragments

Urgent Number of Urgent packets

Table 11: Continuous intrinsic attributes of KDD and NSL-KDD datasets [56]

By utilizing this information, it will allow the algorithm to focus on core traffic

features that are most relevant in detecting attacks [73], as well as features that are

usually available in network packets during encrypted communications.

Furthermore, it will mitigate the reliance on higher-level features that are less

relevant in detecting attacks [73] and that would not usually be available without

additional data analysis.

Once each fitness value is obtained, a pattern can be assigned to its best matching

cluster, or the cluster that produced the lowest distance to the pattern. If the

pattern was previously assigned to a cluster, then this assignment can also be

updated with each iteration of the algorithm. Lastly, a reassignment counter is

also incremented as each pattern is assigned or reassigned. This will aid in

determining if the clustering has reached a convergence criteria.

After each pattern has been assigned, each cluster centroid is recomputed as the

new average, or mean, of the respective cluster's assigned patterns, or pattern set.

In order to accomplish this task, each cluster's pattern set is traversed, retrieving

each pattern element and summing the value together with the complementary

centroid element. Once this process is complete, each centroid element is divided

by the total number of assigned patterns plus one for the centroid, in order to find

the mean pattern set for that cluster. An overview of this process may be found in

the figure below.

42

Figure 19: Updating a Cluster Centroid

43

Finally, the convergence criteria is checked to see if the algorithm has reached its

stopping point. If this criteria has been met, then the K-Means clustering has

completed sorting the data and the intrusion detection module may begin its

analysis. Otherwise, the second and third steps of the K-Means algorithm are

repeated until the convergence criteria has been met.

For this experiment, the convergence criteria will be set to be a minimum number

of pattern reassignments across each clustering iteration. That value will be 1/8 of

the total number of patterns.

Finally, Java 1.7 multithreading will also be implemented across pattern

assignment and centroid updates, in order to fully utilize available setup

resources.

3.3.3 Intrusion Detection Analysis

The third area of the proposed IDS is the intrusion detection module. In this

phase, the final clustering of the dataset is analyzed to determine if each set of

cluster patterns is normal or potentially intrusive. As such, a non-intrusive

approach is taken that is similar to Foroushani et al. [49], where each cluster

centroid is analyzed for abnormal activity based on the TCP traffic properties of

the related network data (i.e. intrinsic attributes). Foroushani et al. [49] also

discussed how SSH packet sizes may be computed based on the protocol's

specifications. From this information, the traffic properties for incoming and

outgoing data bytes can be used to analyze each cluster group without relying on

detailed payload information. An overview of this process may be found in the

figure below.

44

Figure 20: Intrusion Detection Analysis using TCP Traffic Properties

As each cluster centroid is examined, the traffic properties for source and

destination bytes are retrieved. The descriptions for each of these properties may

be found in the table below. Additional information may also be found in Table 3

of the data set section.

45

Feature Name Description

src_bytes Number of data bytes from source to destination

dst_bytes Number of data bytes from destination to source

Table 12: Data byte features of individual TCP connections [56]

Using this information, the TCP traffic properties can be examined based on the

expected network behavior. For example, in normal SSH access, the request, or

input traffic size, is usually small while the reply, or output traffic size, is large.

[49] Thus, a request with a large input size and a reply with a small output size

can possibly be an intrusion. [49] Likewise, in typical scanning or probe attacks,

the replies are smaller than regular contents, even if the requests are similar to

normal traffic. [49] This is because that a server that is not vulnerable typically

sends a response that includes a small message with an error status. [49]

As such, each cluster centroid's traffic properties are examined for potential

intrusions using this criterion. [49] For this experiment, a factor ratio will be

computed in order to relate the value of source bytes to the value of destination

bytes. If the source bytes feature is greater than the destination bytes property

(e.g. buffer overflow attacks), the cluster is flagged as potentially intrusive.

Likewise, if the factor ratio is small (e.g. scanning attacks), a flag will also be set.

However, if the centroid passes each of the traffic property evaluations, then it is

classified as normal. For this experiment, the minimum factorial ratio value was

set to ten.

The java implementation of the proposed system may be found in Appendix B.

46

3.4 Evaluation

During this investigation, the precision and recall of the proposed system will be

collected and analyzed with each dataset implementation, in order to evaluate the

system's effectiveness in detecting intrusions. [60] The precision is denoted as the

fraction of retrieved instances that are relevant, or the fraction of potentially intrusive

activities that are flagged with respect to the total number of alerts that are generated.

Likewise, the recall is the fraction of relevant instances that are retrieved, or the fraction

of potentially intrusive activities that are flagged with respect to the total number of

intrusive activities that are present.

The false rate of the system will also be analyzed in order to evaluate the efficiency of the

non-intrusive approach against the only other known existing non-intrusive methodology.

[1,49] The false rate is denoted as the summation of both the false positive rate and the

false negative rate. [49] As such, it is composed of the total number of false alarms with

respect to the total number of passive activities, as well as the total number of false

negatives with respect to the total number of intrusive activities. An overview of each of

the measurements may be found in the table below.

Measurement Name Description

Precision Fraction of flagged intrusive activities

w.r.t. the total number of generated alerts.

Recall Fraction of flagged intrusive activities

w.r.t. the total number of intrusive activities present.

False Positive Rate

(FPR)

Fraction of false alarms generated

(e.g. flagged passive activities)

w.r.t. the total number of passive activities.

False Negative Rate

(FNR)

Fraction of false negatives generated

(e.g. intrusive activities that were not flagged)

w.r.t. the total number of intrusive activities.

False Rate The summation of both the

false positive rate and the false negative rate.
Table 13: Measurement Descriptions

The precision, recall, and false rate values will be collected for 25 trials on each dataset,

along with relative time values. Once the trials have been completed, the average

precision, recall, and false rate values will be calculated. The equations for each of these

measurements may be found below.

47

Where = True Negatives

 = False Negatives

 = False Positives

 = True Positives

48

Chapter 4: Results and Conclusions

This chapter is divided into three sections. The first section displays the results from the

evaluation of the proposed system. This includes measurement values and discussions as

to what can be inferred from the retrieved data. The second and third sections discuss the

final conclusions that can be drawn from the results, the limitations with the system, and

the recommendations for future work.

4.1 Results

4.1.1 Precision

The following table reflects the precision data collected for 25 trials on each

dataset.

Dataset Average Precision Standard Deviation

KDD 100.00% ±0.00%

NSL-KDD 100.00% ±0.00%
Table 14: Average Precision Values for KDD and NSL-KDD Datasets

By examining this information, it shows that the fraction of retrieved instances

that are relevant remained at a high value across each trial evaluation. As such,

passive activities were able to be classified appropriately across each trial,

minimizing false positives from the data.

4.1.2 Recall

The following table reflects the recall data collected for 25 trials on each dataset.

Dataset Average Recall Standard Deviation

KDD 99.06% ±0.60%

NSL-KDD 97.86% ±1.79%
Table 15: Average Recall Values for KDD and NSL-KDD Datasets

49

By examining this information, it shows that the fraction of relevant instances that

were retrieved remained at a high value across most of the trials. However, while

many intrusive activities were able to be classified correctly as anomalies, there

were still a fair amount of false negatives, or intrusive activities that were not

flagged.

4.1.3 False Rate

The following table reflects the false rate data collected for 25 trials on each

dataset.

Dataset Average False Rate Standard Deviation

KDD 0.94% ±0.601%

NSL-KDD 2.14% ±1.788 %
Table 16: Average False Rate Values for KDD and NSL-KDD Datasets

By examining this information, it shows that both the false positive rate and the

false negative rate were able to remain within a small value range across each set

of trials. As such, many of the passive activities and intrusive activities were able

to be classified appropriately, containing only a small quantity of passive

activities that were flagged or intrusive activities that were not flagged.

4.1.4 Time

The following table reflects the time data collected for 25 trials on each dataset.

Dataset Average Time

(in seconds)

Standard Deviation

(in milliseconds)

Average

of Loops

KDD 00:27:618 ±00:00:189 3

NSL-KDD 00:01:191 ±00:00:017 3
Table 17: Average Time Values for KDD and NSL-KDD Datasets

By examining this information, it shows that average time required to perform

each trial was within consistent time frames with respect to the average number of

iterations used by the K-Means clustering algorithm.

50

4.1.5 Dataset Comparison

The following table shows the relationship of the number of records to processing

time for each dataset implementation.

Dataset Total Records SSH Records Average Time

KDD 4,898,431 1,075 00:27:618 seconds

NSL-KDD 125,973 311 00:01:191 seconds
Table 18: Number of Records and Processing Time

The average results for each dataset are summarized in the table below. The

confusion matrix for each dataset is also located below the summary table.

KDD NSL-KDD

Average Standard Deviation Average Standard Deviation

Avg Precision 100.00% ±0.00% 100.00% ±0.00%

Avg Recall 99.06% ±0.60% 97.86% ±1.79%

Avg False Rate 0.94% ±0.601% 2.14% ±1.788 %

Avg Time 00:27:618 ±00:00:189 00:01:191 ±00:00:017
Table 19: Dataset Comparison Summary

KDD Flagged Not Flagged

Intrusive 1054 14

Passive 0 7
Table 20: Confusion Matrix for KDD

NSL-KDD Flagged Not Flagged

Intrusive 295 11

Passive 0 5
Table 21: Confusion Matrix for NSL-KDD

4.1.6 Non-Intrusive Analysis Comparison

The average false rate results from each non-intrusive methodology are

summarized in the table below.

51

Proposed System

Foroushani
[49]

KDD NSL

Avg False Rate 0.94% 2.14% 15%
Table 22: Non-Intrusive Analysis Comparison Summary

By examining this information, it shows that the average false rate for the

proposed non-intrusive approach performed well in comparison to the only other

known existing non-intrusive methodology.

4.2 Conclusions

In this paper, a non-intrusive approach was proposed to detect network intrusions across

encrypted accesses using a K-Means clustering model and TCP traffic properties. While

many Intrusion Detection Systems will typically utilize a signature-based or anomaly-

based approach to analyze in-the-clear network traffic, the growing use of encrypted

communications continues to deny the use of payload-related data. This non-intrusive

methodology provides a potential solution to mitigate these issues, by complying with

four goals required for next-generation intrusion detection systems. [1]

This approach supports a behavior-based analysis, in contrast to the reliance on databases

of attack signatures. Thus, this approach should provide support for the growing use of

encrypted communications. An unsupervised K-Means clustering algorithm was used so

that there is no learning phase. There was thus no evaluation of packet payload-related

data. This also ensures the confidentiality of the packet information and reduces the

computational complexity of the evaluation. This work used a non-intrusive approach

similar to Foroushani et. al. [49]. This uses TCP traffic properties for evaluation of the

data. Lastly, this approach supports the implementation of a network-centric design.

There was thus no reliance on host-based implementation data for evaluation (e.g. log

files). The KDD '99 and NSL-KDD evaluation datasets were used to test this new

approach.

This paper analyzes a new non-intrusive approach that is able to detect many intrusions in

the used datasets. Furthermore, the average false detection rate of the tested system

showed greatly improved results in comparison to other non-intrusive methodologies.

Therefore, based on the tables in chapter 4, the proposed system operated effectively in

detecting many of the network intrusions for these datasets while maintaining the

encrypted confidentiality of the packet information.

52

4.3 Future Work

Now that the investigation has concluded, there are some extensions of this work.

First, implement an enhanced clustering algorithm that shortens the time to group the

data. While the K-Means clustering provides a methodology to sort information into

similar cluster groups, it has inherent drawbacks, including the ability to fall into a local

optimum instead of a global optimum as well as potentially creating an exponential

running-time as the dataset information continues to scale in size. [74] With this route,

there are a few interesting areas of study analyzing clustering algorithms with real-time

data. [61-63]

Second, a different standardized dataset of traffic information should be tested. This

should include a more balanced distribution of data between both passive and intrusive

activities and a more diverse set of attacks. The KDD and NSL-KDD datasets are useful

in analyzing the system against basic network-related data. However, each of the datasets

used herein suffer from limitations. These include a strong correlation towards intrusive

network behaviors and limited types of attack types for encrypted service protocols (e.g.

SSH). Examples of these features may be seen in Table 9 above.

Third, the use of additional traffic properties can also be examined. [49]

53

Chapter 5: Bibliography

 [1] Koch, R., "Towards next-generation Intrusion Detection," Cyber Conflict (ICCC), 2011 3rd

International Conference on , vol., no., pp.1-18, 7-10 June 2011

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5954707&isnumber=595

4687

[2] "Intrusion Detection Systems," Information Assurance Technology Analysis Center

(IATAC), Herndon, VA, OMB No. 0704-0188, September 25, 2009.

[3] Thomas Whitehead. (2013, July 5). Club Nintendo Japan Falls Victim to Hack Attack

[Online]. Available:

http://www.nintendolife.com/news/2013/07/club_nintendo_japan_falls_victim_to_hack_att

ack

[4] Chris Davies. (2013, July 5). Club Nintendo Japan Hacked [Online]. Available:

http://www.slashgear.com/club-nintendo-japan-hacked-05289196/

[5] Andy Green. (2013, July 3). Ubisoft Hit By Hacking Attack [Online]. Available:

http://www.nintendolife.com/news/2013/07/ubisoft_hit_by_hacking_attack

[6] Patrick Seybold. (2011, April 22). Update on PlayStation Network/Qriocity Services

[Online]. Available: http://blog.us.playstation.com/2011/04/22/update-on-playstation-

network-qriocity-services/

http://ieeexplore.ieee.org.www.libproxy.wvu.edu/stamp/stamp.jsp?tp=&arnumber=5954707&isnumber=5954687
http://ieeexplore.ieee.org.www.libproxy.wvu.edu/stamp/stamp.jsp?tp=&arnumber=5954707&isnumber=5954687
http://blog.us.playstation.com/2011/04/22/update-on-playstation-network-qriocity-services/
http://blog.us.playstation.com/2011/04/22/update-on-playstation-network-qriocity-services/

54

[7] (2011, April 28). Sony faces legal action over attack on PlayStation network [Online].

Available: http://www.bbc.co.uk/news/technology-13192359

[8] (2011, May 17). PlayStation Network Restoration Begins [Online]. Available: http://

uk.playstation.com/psn/news/articles/detail/item369506/PSN-Qriocity-Service-Update/

[9] (2011, June 3). Sony investigating another hack [Online]. Available:

http://www.bbc.co.uk/news/business-13636704

[10] Ghosh, Anup et al., "A Real-Time Intrusion Detection System Based on Learning Program

Behavior," Recent Advances in Intrusion Detection, in Lecture Notes in Computer Science,

LNCS 1907, Springer Berlin / Heidelberg, 2000

[11] Deepak Gautam. (2013, June 2). Host Based Intrusion Detection System (HIDS) [Online].

Available: http://deepakgautam.com.np/2013/06/host-based-intrusion-detection-system-

hids/

[12] Sailesh Kumar. (2007, December). Survey of Current Network Intrusion Detection

Techniques [Online]. Available: http://www.cse.wustl.edu/~jain/cse571-07/ftp/ids/

[13] Denning, D.E., "An Intrusion-Detection Model," in Software Engineering, IEEE

Transactions on , vol.SE-13, no.2, pp.222,232, Feb. 1987, doi: 10.1109/TSE.1987.232894,

http://www.bbc.co.uk/news/technology-13192359
http://uk.playstation.com/psn/news/articles/detail/item369506/PSN-Qriocity-Service-Update/
http://www.bbc.co.uk/news/business-13636704
http://deepakgautam.com.np/2013/06/host-based-intrusion-detection-system-hids/
http://deepakgautam.com.np/2013/06/host-based-intrusion-detection-system-hids/
http://www.cse.wustl.edu/~jain/cse571-07/ftp/ids/

55

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1702202&isnumber=358

84

[14] Sabahi, F.; Movaghar, A., "Intrusion Detection: A Survey," Systems and Networks

Communications, 2008. ICSNC '08. 3rd International Conference on , vol., no., pp.23,26,

26-31 Oct. 2008, doi: 10.1109/ICSNC.2008.44,

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4693640&isnumber=469

3626

[15] D. J. Brown et al. (2002). A Survey of Intrusion Detection Systems [Online]. Available:

http://charlotte.ucsd.edu/classes/fa01/cse221/projects/group10.pdf

[16] Guy Bruneau, “The History and Evolution of Intrusion Detection,” SANS Inst., Bethesda,

MD, ver. 1.2f, 2001.

[17] James P. Anderson. (1972, October). Computer Security Technology Planning Study

Volume 2 [Online].

Available: http://seclab.cs.ucdavis.edu/projects/history/papers/ande72.pdf

[18] James P. Anderson. (1980, April 15). Computer Security Threat Monitoring and

Surveillance [Online].

Available: http://seclab.cs.ucdavis.edu/projects/history/papers/ande80.pdf

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1702202&isnumber=35884
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1702202&isnumber=35884
http://seclab.cs.ucdavis.edu/projects/history/papers/ande72.pdf

56

[19] Denning, D.E., "An Intrusion-Detection Model," Software Engineering, IEEE Transactions

on , vol.SE-13, no.2, pp.222,232, Feb. 1987 doi: 10.1109/TSE.1987.232894,

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1702202&isnumber=358

84

[20] Next-Generation Intrusion-Detection Expert System (NIDES) [Online].

Available: www.csl.sri.com/projects/nides/

[21] Event Monitoring Enabling Responses to Anomalous Live Disturbances (EMERALD)

[Online]. Available: www.csl.sri.com/projects/emerald/

[22] Kemmerer, R.A.; Vigna, G., "Intrusion detection: a brief history and

overview," Computer , vol.35, no.4, pp.27,30, Apr 2002

doi: 10.1109/MC.2002.1012428,

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1012428&isnumber=218

10

[23] (2009). Finjan Secure Web Gateway Solutions for Enterprises [Online].

Available: http://www.virusdefence.com.au/finjan/finjan-zero-hour.html

[24] Yan, K.Q.; Wang, S.C.; Wang, S.S.; Liu, C. W., "Hybrid Intrusion Detection System for

enhancing the security of a cluster-based Wireless Sensor Network," Computer Science

and Information Technology (ICCSIT), 2010 3rd IEEE International Conference on ,

http://seclab.cs.ucdavis.edu/projects/history/papers/ande72.pdf
http://ieeexplore.ieee.org.www.libproxy.wvu.edu/stamp/stamp.jsp?tp=&arnumber=1012428&isnumber=21810
http://ieeexplore.ieee.org.www.libproxy.wvu.edu/stamp/stamp.jsp?tp=&arnumber=1012428&isnumber=21810

57

vol.1, no., pp.114,118, 9-11 July 2010

doi: 10.1109/ICCSIT.2010.5563886,

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5563886&isnumber=556

3682

[25] Yan, K.Q.; Wang, S.C.; Wang, S.S.; Liu, C. W., "An Integrated Intrusion Detection System

for Cluster-based Wireless Sensor Networks," in Expert Systems with Applications , vol.38,

no. 12, pp. 15234-15243, November-December 2011. doi:

http://dx.doi.org/10.1016/j.eswa.2011.05.076,

URL: http://www.sciencedirect.com/science/article/pii/S0957417411008608

 [26] (2008). How Does Anti virus detects viruses? [Online].

Available: http://www.breakthesecurity.com/2011/05/how-does-anti-virus-detects-

viruses.html

[27] R Interface to Oracle Data Mining [Online].

Available: http://www.oracle.com/technetwork/database/options/advanced-

analytics/odm/odm-r-integration-089013.html

[28] (2013). Corporate Overview [Online]. Available: https://www.damballa.com/company/

[29] Yingbing Yu, “A survey of anomaly intrusion detection techniques,” J. Comput. Sci. Coll.,

vol. 28, no. 1, pp. 9-17, October, 2012.

http://ieeexplore.ieee.org.www.libproxy.wvu.edu/stamp/stamp.jsp?tp=&arnumber=5563886&isnumber=5563682
http://ieeexplore.ieee.org.www.libproxy.wvu.edu/stamp/stamp.jsp?tp=&arnumber=5563886&isnumber=5563682
https://www.damballa.com/company/

58

[30] Varun Chandola et al., “Anomaly detection: A Survey,” ACM Comput. Surv., vol. 41, no.

15, July, 2009.

[31] Donald Tabone. (2007, April 5). The concept of Intrusion Detection Systems [Online].

Available: http://maltainfosec.org/archives/26-The-concept-of-Intrusion-Detection-

Systems.html

[32] “Security Labs Report,” M86 Security, 2011

[33] “Internet Security Threat Report,” Symantec, (Mountain View, CA), April 2013, vol. 18

[34] Ms. Smith. (2013, April 23). Verizon report: China behind 96% of all cyber-espionage

data breaches [Online].

Available: http://www.networkworld.com/community/blog/verizon-report-china-behind-

96-all-cyber-espionage-data-breaches

[35] Estivill-Castro, V., "Why so many clustering algorithms - A Position Paper," ACM

SIGKDD Explorations Newsletter, vol.4, no. 1, pp.65-75, June 2002 doi:

10.1145/568574.568575

[36] Jain, A.K.; Murty, M.N.; Flynn, P.J., "Data Clustering: A Review," ACM Computing

Surveys (CSUR), vol.31, no. 3, pp.264-323, September 1999 doi: 10.1145/331499.331504

59

[37] Dr. Hans-Peter Kriegel. Density-Based Cluster- and Outlier Analysis [Online]. Available:

http://www.dbs.informatik.uni-muenchen.de/Forschung/KDD/Clustering/

[38] Lizhong Xiao; Zhiqing Shao; Gang Liu, "K-means Algorithm Based on Particle Swarm

Optimization Algorithm for Anomaly Intrusion Detection," Intelligent Control and

Automation, 2006. WCICA 2006. The Sixth World Congress on , vol.2, no., pp.5854,5858,

0-0 0 doi: 10.1109/WCICA.2006.1714200,

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1714200&isnumber=360

92

[39] Miranda Irene. (1999, April 1). Square error clustering methods [Online]. Available:

http://www.cse.iitb.ac.in/dbms/Data/Courses/CS632/1999/clustering/node17.html

[40] Dr. Saed Sayad. (1999, April 1). K-Means Clustering [Online]. Available:

http://www.saedsayad.com/clustering_kmeans.htm

[41] Gaddam, S.R.; Phoha, V.V.; Balagani, K.S., "K-Means+ID3: A Novel Method for

Supervised Anomaly Detection by Cascading K-Means Clustering and ID3 Decision Tree

Learning Methods," Knowledge and Data Engineering, IEEE Transactions on , vol.19,

no.3, pp.345,354, March 2007 doi: 10.1109/TKDE.2007.44,

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4072746&isnumber=407

2743

http://ieeexplore.ieee.org.www.libproxy.wvu.edu/stamp/stamp.jsp?tp=&arnumber=1714200&isnumber=36092
http://ieeexplore.ieee.org.www.libproxy.wvu.edu/stamp/stamp.jsp?tp=&arnumber=1714200&isnumber=36092
http://ieeexplore.ieee.org.www.libproxy.wvu.edu/stamp/stamp.jsp?tp=&arnumber=4072746&isnumber=4072743
http://ieeexplore.ieee.org.www.libproxy.wvu.edu/stamp/stamp.jsp?tp=&arnumber=4072746&isnumber=4072743

60

[42] Jain, A.K., "Data Clustering: 50 Years Beyond K-Means," Pattern Recognition Letters,

vol.31, no. 38, pp.651-666, June 2010 doi: 10.1016/j.patrec.2009.09.011

[43] Ensafi, R.; Dehghanzadeh, S.; Mohammad, R.; Akbarzadeh, T., "Optimizing Fuzzy K-

means for network anomaly detection using PSO," Computer Systems and Applications,

2008. AICCSA 2008. IEEE/ACS International Conference on , vol., no., pp.686,693, March

31 2008-April 4 2008 doi: 10.1109/AICCSA.2008.4493603,

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4493603&isnumber=449

3499

[44] Yasami, Y.; Khorsandi, S.; Mozaffari, S.P.; Jalalian, A., "An unsupervised network

anomaly detection approach by k-Means clustering & ID3 algorithms," Computers and

Communications, 2008. ISCC 2008. IEEE Symposium on , vol., no., pp.398,403, 6-9 July

2008 doi: 10.1109/ISCC.2008.4625717,

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4625717&isnumber=462

5572

[45] Li Tian; Wang Jianwen, "Research on Network Intrusion Detection System Based on

Improved K-means Clustering Algorithm," Computer Science-Technology and

Applications, 2009. IFCSTA '09. International Forum on , vol.1, no., pp.76,79, 25-27 Dec.

2009 doi: 10.1109/IFCSTA.2009.25,

http://ieeexplore.ieee.org.www.libproxy.wvu.edu/stamp/stamp.jsp?tp=&arnumber=4493603&isnumber=4493499
http://ieeexplore.ieee.org.www.libproxy.wvu.edu/stamp/stamp.jsp?tp=&arnumber=4493603&isnumber=4493499
http://ieeexplore.ieee.org.www.libproxy.wvu.edu/stamp/stamp.jsp?tp=&arnumber=4625717&isnumber=4625572
http://ieeexplore.ieee.org.www.libproxy.wvu.edu/stamp/stamp.jsp?tp=&arnumber=4625717&isnumber=4625572

61

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5385128&isnumber=538

5019

[46] Joglekar, S.P.; Tate, S.R., "ProtoMon: embedded monitors for cryptographic protocol

intrusion detection and prevention," Information Technology: Coding and Computing,

2004. Proceedings. ITCC 2004. International Conference on , vol.1, no., pp.81,88 Vol.1,

5-7 April 2004 doi: 10.1109/ITCC.2004.1286430,

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1286430&isnumber=286

82

[47] Vik Tor Goh; Zimmermann, J.; Looi, M.; , "Towards Intrusion Detection for Encrypted

Networks," Availability, Reliability and Security, 2009. ARES '09. International

Conference on , vol., no., pp.540-545, 16-19 March 2009 doi: 10.1109/ARES.2009.76

 URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5066523&isnumber=506

6394

[48] Vik Tor Goh; Zimmermann, J.; Looi, M.; , "Experimenting with an Intrusion Detection

System for Encrypted Networks," Int. J. of Business Intelligence and Data Mining , vol. 5,

no. 2, pp.172-191, January 2010 doi: 10.1504/IJBIDM.2010.031286

[49] Foroushani, V.A.; Adibnia, F.; Hojati, E.; , "Intrusion detection in encrypted accesses with

SSH protocol to network public servers," Computer and Communication Engineering,

2008. ICCCE 2008. International Conference on , vol., no., pp.314-318, 13-15 May 2008

http://ieeexplore.ieee.org.www.libproxy.wvu.edu/stamp/stamp.jsp?tp=&arnumber=5385128&isnumber=5385019
http://ieeexplore.ieee.org.www.libproxy.wvu.edu/stamp/stamp.jsp?tp=&arnumber=5385128&isnumber=5385019
http://ieeexplore.ieee.org.www.libproxy.wvu.edu/stamp/stamp.jsp?tp=&arnumber=1286430&isnumber=28682
http://ieeexplore.ieee.org.www.libproxy.wvu.edu/stamp/stamp.jsp?tp=&arnumber=1286430&isnumber=28682
http://ieeexplore.ieee.org.www.libproxy.wvu.edu/stamp/stamp.jsp?tp=&arnumber=5066523&isnumber=5066394
http://ieeexplore.ieee.org.www.libproxy.wvu.edu/stamp/stamp.jsp?tp=&arnumber=5066523&isnumber=5066394

62

doi: 10.1109/ICCCE.2008.4580619

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4580619&isnumber=458

0554

[50] Zhengjie Li; Yongzhong Li; Lei Xu, "Anomaly Intrusion Detection Method Based on K-

Means Clustering Algorithm with Particle Swarm Optimization," Information Technology,

Computer Engineering and Management Sciences (ICM), 2011 International Conference

on , vol.2, no., pp.157,161, 24-25 Sept. 2011 doi: 10.1109/ICM.2011.184,

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6113492&isnumber=611

3446

[51] (2013). cyber espionage [Online]. Available: http://lexicon.ft.com/Term?term=cyber-

espionage

[52] (2013). intrusion signature [Online].

Available: http://www.webopedia.com/TERM/I/intrusion_signature.html

[53] (2013). SCADA [Online]. Available: http://www.webopedia.com/TERM/S/SCADA.html

[54] Tavallaee, M.; Bagheri, E.; Wei Lu; Ghorbani, A.A., "A detailed analysis of the KDD CUP

99 data set, "Computational Intelligence for Security and Defense Applications, 2009.

CISDA 2009. IEEE Symposium on , vol., no., pp.1,6, 8-10 July 2009

doi: 10.1109/CISDA.2009.5356528,

http://ieeexplore.ieee.org.www.libproxy.wvu.edu/stamp/stamp.jsp?tp=&arnumber=4580619&isnumber=4580554
http://ieeexplore.ieee.org.www.libproxy.wvu.edu/stamp/stamp.jsp?tp=&arnumber=4580619&isnumber=4580554
http://ieeexplore.ieee.org.www.libproxy.wvu.edu/stamp/stamp.jsp?tp=&arnumber=6113492&isnumber=6113446
http://ieeexplore.ieee.org.www.libproxy.wvu.edu/stamp/stamp.jsp?tp=&arnumber=6113492&isnumber=6113446

63

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5356528&isnumber=535

6514

[55] Laheeb Ibrahim; Dujan Basheer; Mahmod Mahmod, "A COMPARISON STUDY FOR

INTRUSION DATABASE (KDD99, NSL-KDD) BASED ON SELF ORGANIZATION

MAP (SOM) ARTIFICIAL NEURAL NETWORK," Journal of Engineering Science and

Technology , vol.8, no.1, pp.107-119, Feb. 2013

[56] (1999). KDD Cup 1999: Computer network intrusion detection [Online]. Available:

http://www.kdd.org/kdd-cup-1999-computer-network-intrusion-detection

[57] (1999). The NSL-KDD Data Set [Online]. Available: http://nsl.cs.unb.ca/NSL-KDD/

[58] Hamerly, G.; Elkan, C., "Alternatives to the k-means algorithm that find better clusterings,"

Proceedings of the eleventh international conference on Information and knowledge

management (CIKM 2002), pp.600-607 doi: 10.1145/584792.584890,

URL: http://doi.acm.org/10.1145/584792.584890

[59] K. V. Mardia et al., in Multivariate Analysis, 1st ed., Academic Press, 1980

[60] T. Menzies, A. Dekhtyar, J. Distefano and J. Greenwald, ""Problems with Precision: A

Response to “Comments on ‘Data Mining Static Code Attributes to Learn Defect

http://ieeexplore.ieee.org.www.libproxy.wvu.edu/stamp/stamp.jsp?tp=&arnumber=5356528&isnumber=5356514
http://ieeexplore.ieee.org.www.libproxy.wvu.edu/stamp/stamp.jsp?tp=&arnumber=5356528&isnumber=5356514

64

Predictors’"," IEEE Transactions on Software Engineering, vol. 33, no. 9, pp. 637-640,

2007.

[61] N. Ailon, R. Jaiswal, C. Monteleoni. (2009). Streaming k-means approximation [Online].

Available: http://books.nips.cc/papers/files/nips22/NIPS2009_1085.pdf

[62] A. Meyerson, M. Shindler, A. Wong. (2011). Fast and Accurate k-means for Large

Datasets [Online]. Available: http://books.nips.cc/papers/files/nips24/NIPS2011_1271.pdf

[63] D. Filimon. (2013). Clustering data at scale [Online]. Available:

http://berlinbuzzwords.de/sites/berlinbuzzwords.de/files/slides/DanFilimon.pdf

[64] Erik Kangas. (2013, July 16). SSL versus TLS - What's the difference? [Online]. Available:

http://luxsci.com/blog/ssl-versus-tls-whats-the-difference.html

[65] TLS [Online]. Available: http://www.webopedia.com/TERM/T/TLS.html

[66] Margaret Rouse. (2006, July). Transport Layer Security (TLS) [Online]. Available:

http://searchsecurity.techtarget.com/definition/Transport-Layer-Security-TLS l

[67] Ariel Gilbert-Knight, Carlos Bergfeld, Adam Chapman. (2012, April 12). An Introduction

to Transport Layer Security [Online]. Available: http://www.techsoup.org/support/articles-

and-how-tos/introduction-to-transport-layer-security

65

[68] Margaret Rouse. (2007, March). Secure Sockets Layer [Online]. Available:

http://searchsecurity.techtarget.com/definition/Secure-Sockets-Layer-SSL

[69] SSL [Online]. Available: http://www.webopedia.com/TERM/S/SSL.html

[70] What is SSL (Secure Sockets Layer) and What Are SSL Certificates? [Online]. Available:

http://www.digicert.com/ssl.htm

[71] I. Perona, I. Gurrutxaga, O. Arbelaitz, J. I. Martin, J. Muguerza, J. M. Perez. (2008).

GureKddcup database description [Online]. Available:

http://www.sc.ehu.es/acwaldap/gureKddcup/README.pdf

[72] (2013). TCP [Online]. Available: http://www.webopedia.com/TERM/T/TCP.html

[73] A. A. Olusola et al., "Analysis of KDD'99 Intrusion Detection Dataset for Selection of

Relevance Features," in Proceedings of The World Congress on Engineering and Computer

Science, San Francisco, CA, 2010, pp. 162-168.

[74] Bahman Bahmani, Benjamin Moseley, Andrea Vattani, Ravi Kumar, and Sergei

Vassilvitskii., "Scalable k-means++," Proc. VLDB Endow. (March 2012), 5, 7, pp. 622-

633. URL: http://dl.acm.org/citation.cfm?id=2180915

66

[75] Said, D.; Stirling, L.; Federolf, P.; Barker, K., "Data preprocessing for distance-

based unsupervised Intrusion Detection," Privacy, Security and Trust (PST),

2011 Ninth Annual International Conference on , vol., no., pp.181,188, 19-21

July 2011 doi: 10.1109/PST.2011.5971981,

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5971981&isnu

mber=5971950

67

Chapter 6: Appendices

Appendix A: Vocabulary Index

Title Definition

Anomalies

(i.e. Outliers)

Patterns in data that do not conform to a well-defined notion of normal

behavior. [30]

For example, a set of data points that is relatively different from the rest

of the analyzed data set may be considered an anomaly.

Anomaly Detection

(i.e. Heuristic-based)

Classifies traffic as normal or anomalous based on a set of heuristics, or

rules. This technique attempts to detect misuse by monitoring a

system’s activities for any behavior that deviates from the norm. [16]

Address Resolution Protocol

(ARP)

A protocol used in telecommunications in order to map a network layer

address (i.e. IP Address) into a link layer address (i.e. MAC address).

Attack Toolkit A hacker kit that exploits client-side vulnerabilities in order to execute

arbitrary code. [32]

Botnets

(i.e. Bot Networks)

A network of compromised computers, known as drones or zombies,

that are used by cyber criminals in order to transmit spam messages,

spread malware, and/or for other criminal activities. [32]

Clustering Criterion The mathematical formulation of the inductive principle. This criterion is

used to differentiate various clustering models given the same data set.

[35]

Clustering Model A structure used to represent a cluster. [35]

Cyberespionage

(i.e. Cyber Espionage or

The act or practice of obtaining confidential information, stored in

digital formats on computers or IT networks, without the permission of

68

Cyber Spying) the holder through the use of cracking techniques or malicious software.

[51]

Dynamic Clustering

Algorithm

This algorithm formulates the clustering problem in terms of the

Maximum-Likelihood Estimation framework and allows the use of

representations other than the centroid for each cluster. [36]

False Positive

(i.e. Type I Error)

A false positive is a sequence of innocuous events that an IDS

erroneously classifies as intrusive [2][15].

False Positive Rate

(i.e. False Alarm Rate)

The expectancy of producing a false positive.

False Negative

(i.e. Type II Error)

A false negative is sequence of unwanted traffic or intrusion attempts

that an IDS fails to detect or report. [2][15]

False Negative Rate The expectancy of producing a false negative.

Host-based The data, or set of packets, to and from a single host is used to detect

signs of an intrusion. [16]

Inductive Principle

(i.e. Induction Principle)

A mathematical formalization for the definition of a cluster. This

principle is used to make explicit a clustering criterion, in order to select

a “best fit” structure given a set of data [35]

Intrusion Detection Intrusion Detection the process of monitoring a network or system for

potential signs of malicious activities or policy violations.

Intrusion Detection System

(i.e. IDS)

An intrusion detection system is a device that attempts to detect an

intrusion into a network or system using observed information and/or

audit data. It can be a piece of installed software or a physical

component that monitors traffic in order to detect unwanted activities,

events, and/or policy violations. [2]

69

Intrusion Prevention System

(i.e. IPS)

 An intrusion prevention system is a device that attempts to both detect

and prevent an intrusion. [2]

Misuse Detection

(i.e. Signature-based)

Classifies based on patterns or signatures. This detection technique can

only detect an intrusion for which a signature already exists. [16]

Network-based The data from a network is scrutinized against a database or model in

order to flag packets that are potentially malicious. Audit data from one

or multiple hosts may also be incorporated to detect signs of an

intrusion. [16]

Particle Swarm Optimization

Algorithm

(i.e. PSOA)

An algorithm from the field of swarm intelligence. This algorithm was

first introduced as a substitute for a genetic algorithm (i.e. GA). It

operates on the basis that consecutive actions of respective individuals

are influenced by their own movements and those of their companions.

[38]

Secure Sockets Layer

(i.e. SSL)

 A commonly-used protocol for managing the security of a message

transmission between a server and a client. [68-69] It has been

succeeded by Transport Layer Security (TLS), which is based on SSL. [70]

Signature

(i.e. Digital Fingerprint;

Digital Footprint)

Recorded evidence of a system intrusion (i.e. digital footprint).

For example, the number of failed logins or the unauthorized execution

of software may be an example of a signature. [52]

Supervisory Control And

Data Acquisition Systems

(i.e. SCADA)

A type of industrial control system used for gathering and analyzing real-

time data or information. Usually, they have been used to monitor and

control industry equipment or plant infrastructures. (e.g.

telecommunications, water and waste control, energy, oil, etc) [53]

Transmission Control One of the main protocols in TCP/IP networks. TCP enables two hosts to

70

Protocol

(i.e. TCP)

establish a connection and exchange streams of data. It also provides a

guarantee for the delivery of the data as well as maintaining the order in

which the data packets were sent. [72]

Transport Layer Security

(i.e. TLS)

A protocol that provides data encryption and authentication between

applications and servers. [64] It is based on Netscape's SSL 3.0 protocol

[65-66], and is considered to be the successor of SSL. [67] While the

differences between TLS and SSL are minor and very technical [67], they

are not interoperable.[65-66]

Zero-Day Vulnerabilities A vulnerability that is unknown to others, undisclosed to the software

developer, or for which no security fix is available. [32]

71

Appendix B: Java Implementation

Appendix B.1: K-Means Clustering Algorithm

/*
 * Name: Luis C. Armendariz
 * Program Name: K-Means Clustering Algorithm
 * Advisor: Dr. Roy S. Nutter
 * Date: 10/25/2013
 * Program Description: Parses KDD & NSL-KDD datasets from input files and performs K-Means
Clustering on SSH data
*/

import java.util.Scanner; //Get scanner to parse input file into pieces
import java.io.FileReader; //Get file reader to read input file as whole
import java.io.FileNotFoundException; //Error Handling
import java.util.Arrays; //Gets static methods for Arrays
import java.util.ArrayList; //Import ArrayList
import java.util.Random; //Import Random for random # generator
import java.util.concurrent.Executors;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicInteger;
import java.math.BigDecimal; //Allows rounding of double type values

public class kMeans
{
 static Scanner console = new Scanner(System.in); //Initialize scanner for reading user input

 public static void main(String[] args) throws FileNotFoundException
 {
 /***
 ************* DATA INITIALIZATION ************
 **/

 //Initialize run time
 long startTime = System.currentTimeMillis();
 String runTime = "";

 //Initialize variables
 String inFileName = "KDDTrain+"; //"kddcup.data"; //KDDTrain+"; //Input file name (w/o .txt)
 String delimiter = "\\,"; //Delimiter token (comma)
 String connType = "ssh"; //Type of connection to examine
 boolean normCheck = true; //Check to normalize input data from dataset

 int[] fitPattern; //Pattern for continuous data locations
 int labelDistance; //Pattern label distance to factor during fitness

72

 String inLine = ""; //Input line of data
 String normLine = ""; //Input line of normalized data
 ArrayList<String> volume; //Volume of data values (Array List of Strings)
 ArrayList<String> volumeNorm; //Volume of normalized data values
 ArrayList<String> volumeOrig; //Volume of original data values
 int totalPatterns = 0; //Total # of Patterns

 int k = 0; //Number of cluster centers (i.e. centroids)
 String randomPattern = ""; //Random pattern
 ArrayList<Cluster> clusterList; //List of clusters
 ArrayList<Integer> patternGuesses; //List of pattern selections
 Random generator; //Random # generator
 int randomNum; //Random Number

 //Initialize Thread Pool Manager
 ExecutorService es = Executors.newCachedThreadPool();

 int[] clusterAssign; //Keyed Array of Pattern to Cluster assignments [Ex: Pattern1=>Cluster5]
 AtomicInteger clusterReassigns; //Number of cluster reassignments
 int clusterLoops = 0; //Number of clustering loops

 //Get input file
 Scanner inFile = new Scanner (new FileReader (inFileName + ".txt")); //Get input file

 //Set fitness pattern & label distance (for continous data analysis)
 switch(inFileName)
 {
 //NSL-KDD
 case "KDDTrain+":
 //fitPattern = new
int[]{0,4,5,7,8,9,10,12,13,14,15,16,17,18,19,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40};
//All continuous elements
 fitPattern = new int[]{0,4,5,7,8}; //Only continuous TCP elements
 labelDistance = 2;
 break;
 //KDD
 case "kddcup.data":
 //fitPattern = new
int[]{0,4,5,7,8,9,10,12,13,14,15,16,17,18,19,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40};
//All continuous elements
 fitPattern = new int[]{0,4,5,7,8};
 labelDistance = 1;
 break;
 case "kddcup.data_10_percent":
 //fitPattern = new
int[]{0,4,5,7,8,9,10,12,13,14,15,16,17,18,19,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40};
 fitPattern = new int[]{0,4,5,7,8};

73

 labelDistance = 1;
 break;
 default:
 fitPattern = new int[0];
 labelDistance = 1;
 break;
 }

 //Traverse input file for SSH data
 //volume = new ArrayList<String>();
 volumeNorm = new ArrayList<String>();
 volumeOrig = new ArrayList<String>();
 while (inFile.hasNext())
 {
 //Get next line of data
 inLine = inFile.nextLine();

 //Check if line contains SSH data
 if(inLine.toLowerCase().contains(connType.toLowerCase()))
 {
 //Check to normalize the data
 if(normCheck)
 {
 //Step C: If found, Normalize the data using Log Normalization
 normLine = logNormalize(inLine, delimiter, fitPattern);
 //System.out.println("In: " + inLine);
 //System.out.println("Norm: " + normLine);

 //Add normalized SSH data to end of normalized volume
 volumeNorm.add(normLine);
 }
 else
 {
 //Add original SSH data to end of volume
 volumeOrig.add(inLine);
 }
 }
 }

 //Set volume for clustering (check for normalization)
 if(normCheck)
 {
 volume = volumeNorm;
 }
 else
 {
 volume = volumeOrig;

74

 }

 //Set total number of patterns
 totalPatterns = volume.size();

 /***
 *************** K-Means Clustering **************
 ***/

 /***
 ******************** STEP #1 ********************
 ***/
 /* Instructions
 * ------------
 * Choose k cluster centers to coincide with k
 * randomly-chosen patterns or k randomly defined
 * points inside the hyper volume containing the
 * pattern set
 */

 //Set value of k
 k = (int) Math.sqrt(totalPatterns/2); //Rule of Thumb by Mardia et al.[59]

 //Setup list variables and random number generator
 clusterList = new ArrayList<Cluster>();
 patternGuesses = new ArrayList<Integer>();
 generator = new Random();

 //Choose k random patterns from volume to make k cluster centers
 for(int i=0; i < k; i++)
 {
 //Get a pattern from volume
 try
 {
 //Get a random unchosen pattern location
 do
 {
 //Generate a "random" number from 0 to totalPatterns-1
 randomNum = generator.nextInt(totalPatterns);

 //Check if number was already chosen (prevents selecting the same patterns as centroids)
 }while(patternGuesses.contains(randomNum));

 //Add pattern location to list

75

 patternGuesses.add(randomNum);

 //Get pattern
 randomPattern = volume.get(randomNum);
 }
 catch(IndexOutOfBoundsException err)
 {
 System.err.println("An error occurred: " + err.getMessage());
 }

 //Create cluster & assign centroid (Split pattern into element pieces)
 Cluster cluster = new Cluster(randomPattern.split(delimiter), labelDistance, fitPattern);

 //Add cluster to Cluster ArrayList
 clusterList.add(cluster);
 }

 /***** Prepare for Looping *****/
 //Initialize cluster assignment array
 clusterAssign = new int[totalPatterns];

 //Begin K-Means Clustering Loop
 do
 {
 /***
 ******************** STEP #2 ********************
 ***/
 /* Instructions
 * ------------
 * Assign each pattern to closest cluster center
 */

 //Reset cluster reassignment count
 clusterReassigns = new AtomicInteger(0);

 //Initialize Thread Pool Manager (for RunnableCluster Threads)
 es = Executors.newCachedThreadPool();

 //Loop through volume
 for(int i=0; i < totalPatterns; i++)
 {
 //Create RunnableCluster Object
 RunnableCluster threadAssign = new RunnableCluster(i, volume, clusterList, clusterAssign,
clusterLoops, clusterReassigns, delimiter);

76

 //Execute thread to assign pattern to closest cluster centroid
 es.execute(threadAssign);
 }

 //Shutdown thread pool & finish all queued threads
 shutdownAndAwaitTermination(es);

 //System.out.println("2 Done");

 /***
 ******************** STEP #3 ********************
 ***/
 /* Instructions
 * ------------
 * Recompute the cluster centers
 * using the current cluster memberships
 */

 //Initialize Thread Pool Manager (for RunnableCentroid Threads)
 es = Executors.newCachedThreadPool();

 //Loop through cluster list
 for(int i=0, j=clusterList.size(); i < j; i++)
 {
 //Create RunnableCentroid Object
 RunnableCentroid threadUpdate = new RunnableCentroid(clusterList.get(i), volume, delimiter);

 //Execute thread to recompute cluster centroid
 es.execute(threadUpdate);
 }

 //Shutdown thread pool & finish all queued threads
 shutdownAndAwaitTermination(es);

 //System.out.println("3 Done");

 /***
 ******************** STEP #4 ********************
 ***/
 /* Instructions
 * ------------
 * If a convergence criterion is not met, go to step 2
 *
 * Typical convergence criteria are:
 * * no (or minimal) reassignment of patterns to new cluster centers,

77

 * * or minimal decrease in squared error
 */

 clusterLoops = clusterLoops + 1;

 //System.out.println("4 Done = Reassigns: " + clusterReassigns.get() + " Ratio: " + (totalPatterns/16));

 }while(clusterReassigns.get() > (totalPatterns/8));

 /***
 ***************** IDS Analysis ******************
 ***/
 /* Instructions
 * ------------
 * Uses Traffic Properties to Identify Centroids with Attack Traffic (High Level Analysis)
 *
 * Future Work:
 * Scan each cluster pattern and make best attempts to identify individual attacks (Deep Level
Analysis)
 */

 //Initialize array to hold analysis results
 String[] ids_results = new String[clusterList.size()];

 //Loop through cluster list
 for(int i=0, j=clusterList.size(); i < j; i++)
 {
 //Analyze each cluster for probability of attacks
 ids_results[i] = ids_analyze(clusterList.get(i), normCheck);
 }

 /***
 *************** ENDING CLEAN UP **************
 **/

 //Calculate run time
 runTime = getRunTime(startTime);

 //Completion message
 System.out.println("The program has completed execution.");
 System.out.println();
 System.out.println("File Name: " + inFileName);

78

 System.out.println("Total Run Time: " + runTime);
 System.out.println("Total Patterns: " + totalPatterns);
 System.out.println("Total Loops: " + clusterLoops);
 System.out.println("K: " + k);
 System.out.println();

 //printClusterListPatterns(clusterList);
 //System.out.println();
 printClusterListPatternsWithLabelsAsSummary(clusterList,volume,delimiter);
 System.out.println();
 //printClusterListCentroids(clusterList);
 //System.out.println();
 printIDSAnalysis(ids_results);

 }//end main

 /***
 *************** Function List **************
 **/

 private static String getRunTime(long sTime)
 {
 //Calculate run time
 long endTime = System.currentTimeMillis();
 long totalTime = endTime - sTime;
 String runTime = millisecondsToStr(totalTime);

 return runTime;
 }//end getRunTime

 private static String ids_analyze(Cluster cluster, boolean normCheck)
 {
 String retStr = ""; //return value

 //Get cluster centroid
 String[] centroid = cluster.getCentroid();

 //System.out.print("Centroid: ");
 //cluster.printCentroid();
 //System.out.println();

 //Check if cluster is empty
 if(cluster.getPatternListSize() == 0)
 {

79

 retStr = "(empty)";
 }
 else
 {
 /* Analyze cluster centroid based on traffic properties */
 //Analyze Flow Sizes [Based on Foroushani et al.[49] & NSL/KDD Datasets]
 double src_size_dec = Double.valueOf(centroid[4]); //number of data bytes from source to
destination
 double dst_size_dec = Double.valueOf(centroid[5]); //number of data bytes from destination to
source
 double factor = 0; //factor ratio of source to dest. bytes

 //Check for log normalization
 if(normCheck)
 {
 //Denormalize values
 src_size_dec = (Math.ceil(Math.pow(10,src_size_dec)) - 1);
 dst_size_dec = (Math.ceil(Math.pow(10,src_size_dec)) - 1);
 }

 //Round values up to nearest whole number
 float src_size = (float)Math.ceil(src_size_dec);
 float dst_size = (float)Math.ceil(dst_size_dec);

 //Get factor value
 if((src_size != 0))
 {
 factor = dst_size / src_size;
 //System.out.println("Src Size: " + src_size + " Dst Size: " + dst_size + " Factor: " + factor);
 }

 //If small request
 if(src_size <= dst_size)
 {
 //With big response, classify Normal
 if(factor > 10)
 {
 retStr = "Normal";
 //System.out.println();
 //cluster.printPatternListExpanded(volume, delimiter);
 //System.out.println();
 }

 //With small response, classify Anomalous (e.g. Scanning Attack (Probe))
 else
 {
 retStr = "Anomalous";
 }

80

 }

 //If big request with smaller response, classify Anomalous (e.g. Buffer Overflow)
 else
 {
 retStr = "Anomalous";
 }
 }
 return retStr;
 }//end ids_analyze

 private static boolean isNumeric(String str)
 {
 return str.matches("-?\\d+(\\.\\d+)?"); //match a number (latin digits) with optional '-' and decimal.
 }//end isNumeric [Open Source]

 public static String logNormalize(String inLine, String delimiter, int[] fitPattern)
 {
 //Declare variables
 String inPiece = "";
 String normLine = "";

 //Split input line into pieces
 String[] inLinePieces = inLine.split(delimiter);

 //For each fitPattern value
 for(int i=0,j=fitPattern.length; i < j; i++)
 {
 //Get corresponding input line piece
 inPiece = inLinePieces[fitPattern[i]];

 //Check if piece is continuous (i.e. numeric)
 if(isNumeric(inPiece))
 {
 //If numeric, convert from string to numeric (Xij)
 double inData = Double.valueOf(inPiece);

 //Apply log normalization formula (X'ij = log(1 + Xij))
 inData = Math.log10(1 + inData);

 //Round value to 2 decimal places
 inData = round(inData, 2, BigDecimal.ROUND_HALF_UP);

 //Store new value in piece location
 inPiece = String.valueOf(inData);

 //Store normalized piece back in array of pieces
 inLinePieces[fitPattern[i]] = inPiece;

81

 }
 }

 //Create string from array of strings
 StringBuilder sb = new StringBuilder();

 for(String s: inLinePieces)
 {
 sb.append(s).append(',');
 }

 sb.deleteCharAt(sb.length()-1); //delete last comma

 normLine = sb.toString();

 //Return normalized input line as complete string
 return normLine;
 }//end logNormalize

 public static String millisecondsToStr(long milliseconds)
 {
 // TIP: to find current time in milliseconds, use:
 // var current_time_milliseconds = new Date().getTime();

 // This function does not deal with leap years, however,
 // it should not be an issue because the output is approximated

 String retStr = "";
 double temp;

 //Convert ms to seconds (if applicable)
 if ((milliseconds / 1000) != 0)
 {
 temp = milliseconds / 1000;

 //Get years
 double years = Math.floor(temp / 31536000);
 if (years != 0)
 {
 temp %= 31536000;
 retStr += years + " Year" + numberEnding(years) + " ";
 }

 //Get days
 double days = Math.floor(temp / 86400);
 if (days != 0)
 {

82

 temp %= 86400;
 retStr += days + " Day" + numberEnding(days) + " ";
 }

 //Get hours
 double hours = Math.floor(temp / 3600);
 if (hours != 0)
 {
 temp %= 3600;
 retStr += hours + " hr" + numberEnding(hours) + " ";
 }

 //Get minutes
 double minutes = Math.floor(temp / 60);
 if (minutes != 0)
 {
 temp %= 60;
 retStr += minutes + " min" + numberEnding(minutes) + " ";
 }

 //Get seconds
 double seconds = temp;
 if (seconds != 0)
 {
 retStr += seconds + " sec" + numberEnding(seconds) + " ";
 }

 //Get milliseconds
 double milliSec = milliseconds % 1000;
 if (milliSec != 0)
 {
 retStr += milliSec + " ms ";
 }
 }
 else
 {
 retStr += milliseconds + " ms";
 }

 return retStr;
 }//end millisecondsToStr [Open Source]

 private static String numberEnding(double numb)
 {
 String retVal;

 if(numb > 1)
 {

83

 retVal = "s";
 }
 else
 {
 retVal = "";
 }

 return retVal;
 }//end numberEnding

 private static void printClusterAssigns(int[] clusterAssignments)
 {
 for(int r=0,s=clusterAssignments.length; r < s; r++)
 {
 System.out.print(r + "->" + clusterAssignments[r] + " ");
 }
 System.out.println();
 }//end printClusterAssigns

 private static void printClusterListCentroids(ArrayList<Cluster> clusterL)
 {
 for(int i=0,j=clusterL.size(); i < j; i++)
 {
 System.out.println(i + " " + Arrays.toString(clusterL.get(i).getCentroid()));
 }
 }//end printClusterListCentroids

 private static void printClusterListPatterns(ArrayList<Cluster> clusterL)
 {
 for(int i=0,j=clusterL.size(); i < j; i++)
 {
 System.out.print("Cluster " + i + ": ");
 clusterL.get(i).printPatternList();
 }
 }//end printClusterListPatterns

 private static void printClusterListPatternsWithLabels(ArrayList<Cluster> clusterL, ArrayList<String>
volume, String delimiter)
 {
 for(int i=0,j=clusterL.size(); i < j; i++)
 {
 System.out.print("Cluster " + i + ": ");
 clusterL.get(i).printPatternListWithLabels(volume, delimiter);
 }
 }//end printClusterListPatternsWithLabels

 private static void printClusterListPatternsWithLabelsAsSummary(ArrayList<Cluster> clusterL,
ArrayList<String> volume, String delimiter)

84

 {
 for(int i=0,j=clusterL.size(); i < j; i++)
 {
 System.out.print("Cluster " + i + ": ");
 clusterL.get(i).printPatternListWithLabelsAsSummary(volume, delimiter);
 }
 }//end printClusterListPatternsWithLabelsAsSummary

 private static void printIDSAnalysis(String[] ids_results)
 {
 for(int i=0,j=ids_results.length; i < j; i++)
 {
 System.out.println("Cluster " + i + ": " + ids_results[i]);
 }
 }//end printIDSAnalysis

 public static double round(double unrounded, int precision, int roundingMode)
 {
 BigDecimal bd = new BigDecimal(unrounded);
 BigDecimal rounded = bd.setScale(precision, roundingMode);
 return rounded.doubleValue();
 }//end round [Open Source]

 private static void shutdownAndAwaitTermination(ExecutorService pool)
 {
 //Disable new tasks from being submitted & finish all existing threads in queue
 pool.shutdown();

 try
 {
 //Wait a while for existing tasks to terminate
 if(!pool.awaitTermination(1, TimeUnit.MINUTES))
 {
 pool.shutdownNow(); //Cancel currently executing tasks

 //Wait a while for tasks to respond to being cancelled
 if(!pool.awaitTermination(1, TimeUnit.MINUTES))
 {
 System.err.println("Pool did not terminate");
 }
 }
 }
 catch (InterruptedException ie)
 {
 System.err.println("An error occurred: " + ie.getMessage());

 // (Re-)Cancel if current thread also interrupted
 pool.shutdownNow();

85

 //Preserve interrupt status
 Thread.currentThread().interrupt();
 }
 }//end shutdownAndAwaitTermination [Open Source]
}//end kMeans

86

Appendix B.2: K-Means Cluster class

/*
 * Name: Luis C. Armendariz
 * Program Name: Cluster
 * Advisor: Dr. Roy S. Nutter
 * Date: 10/29/2013
 * Program Description: Creates a Cluster class for the K-Means Algorithm
*/

import java.util.ArrayList; //Import ArrayList
import java.util.Iterator; //Allows traversal of an ArrayList
import java.util.Map; //Get methods for Map
import java.util.HashMap; //Import HashMap

public class Cluster
{
 private ArrayList<Integer> patternList; //List of pattern locations
 private String[] centroid; //Cluster center
 private final int labelDistance; //Pattern label distance for fitness
 private final int[] fitPattern; //Pattern for continuous data locations
 private Object lock1 = new Object(); //Lock 1 for synchronization with threads
 private Object lock2 = new Object(); //Lock 2 for synchronization with threads
 private Object lock3 = new Object(); //Lock 3 for synchronization with threads

 /********************/
 /*** Constructors ***/
 /********************/
 public Cluster(int totalElements, int labelDistance, int[] fitPattern)
 {
 this.patternList = new ArrayList<Integer>();
 this.centroid = new String[totalElements];
 this.labelDistance = labelDistance;
 this.fitPattern = fitPattern;
 }//end Cluster

 public Cluster(String[] inCentroid, int labelDistance, int[] fitPattern)
 {
 this.patternList = new ArrayList<Integer>();
 this.centroid = inCentroid;
 this.labelDistance = labelDistance;
 this.fitPattern = fitPattern;
 }//end Cluster(String)

 /********************/
 /**** Accessors *****/

87

 /********************/
 public String[] getCentroid()
 {
 return centroid;
 }//end getCentroid

 public double getFitness(String[] pattern)
 {
 //Initialize variables
 double fitValue = 0;
 double sumSquare = 0.0;

 //Euclidean Distance Function = d(p,q) = sqrt(sumFromI=1ToN((qi - pi)^2))

 //Check for fitness pattern
 if(fitPattern.length > 0)
 {
 //For length of fitness pattern, get Continuous Data elements
 for(int i=0,j=fitPattern.length; i < j; i++)
 {
 //Get an element
 String strData = pattern[fitPattern[i]];

 //Check if element is numerical value
 if(isNumeric(strData))
 {
 //If numeric, convert from string to numeric (q)
 double inData = Double.valueOf(strData);

 //Take the difference between the Mean element (q-p)
 double diff = inData - Double.valueOf(centroid[fitPattern[i]]);

 //Square the difference (q-p)^2
 double square = Math.pow(diff,2);

 //Add value to total sum of squares E(qi-pi)^2
 sumSquare = sumSquare + square;
 }
 }
 }
 else
 {
 //For length of String array, get only Numerics
 for(int i=0,j=pattern.length - labelDistance; i < j; i++) //Pattern.length-2 is to avoid factoring in the
attack labels as part of fitness value
 {
 //Get an element
 String strData = pattern[i];

88

 //Check if element is numerical value
 if(isNumeric(strData))
 {
 //If numeric, convert from string to numeric (q)
 double inData = Double.valueOf(strData);

 //Take the difference between the Mean element (q-p)
 double diff = inData - Double.valueOf(centroid[i]);

 //Square the difference (q-p)^2
 double square = Math.pow(diff,2);

 //Add value to total sum of squares E(qi-pi)^2
 sumSquare = sumSquare + square;
 }
 }
 }

 //Take square root of sum of squares to find Euclidean Distance
 fitValue = Math.sqrt(sumSquare);

 return fitValue;
 }//end getFitness

 public int[] getFitPattern()
 {
 return fitPattern;
 }//end getFitPattern

 public int getLabelDistance()
 {
 return labelDistance;
 }//end getLabelDistance

 public Integer getPattern(int location)
 {
 Integer outPattern = 0;

 try
 {
 outPattern = patternList.get(location);
 }
 catch(IndexOutOfBoundsException err)
 {
 System.out.println("An error occurred: " + err.getMessage());
 }

89

 return outPattern;
 }//end getPattern

 public ArrayList<Integer> getPatternList()
 {
 return patternList;
 }//end getPatternList

 public int getPatternListSize()
 {
 return patternList.size();
 }//end getPatternListSize

 /********************/
 /***** Mutators *****/
 /********************/
 public void addPattern(Integer pattern)
 {
 synchronized(lock1)
 {
 patternList.add(pattern);
 }
 }//end addPattern

 public void removePattern(Integer pattern)
 {
 synchronized(lock2)
 {
 patternList.remove(pattern); //Remove Integer Object of unique pattern location w.r.t. volume
 }
 }//end removePattern

 public void setPattern(Integer pattern, int location)
 {
 synchronized(lock3)
 {
 patternList.set(location, pattern);
 }
 }//end setPattern

 /********************/
 /**** Executors *****/
 /********************/
 public void printCentroid()

90

 {
 for(int i=0,j=centroid.length; i < j ; i++)
 {
 System.out.print(centroid[i]);

 if((i+1) != j)
 {
 System.out.print(",");
 }//end if
 }//end for
 }//end printCentroid

 public void printPatternList()
 {
 Iterator<Integer> it = patternList.iterator(); //Attach patternList to iterator for traversal

 if(it.hasNext())
 {
 while(it.hasNext())
 {
 System.out.print(it.next() + " ");
 }
 System.out.println();
 }
 else
 {
 System.out.println("(empty)");
 }
 }//end printPatternList

 public void printPatternListExpanded(ArrayList<String> volume, String delimiter)
 {
 Iterator<Integer> it = patternList.iterator(); //Attach patternList to iterator for traversal

 //Check for patterns
 if(it.hasNext())
 {
 //Loop through patterns
 while(it.hasNext())
 {
 //Get a pattern from volume
 String[] tempPat = volume.get(it.next()).split(delimiter);

 //Print entire pattern
 /*
 for(int i=0,j=tempPat.length; i < j; i++)
 {
 System.out.print(tempPat[i]);

91

 if((i+1) != j)
 {
 System.out.print(",");
 }
 }
 System.out.println();
 */

 //Print Src_bytes and Dst_bytes elements of pattern
 System.out.println(tempPat[4] + "," + tempPat[5]);
 }
 System.out.println();
 }
 else
 {
 System.out.println("(empty)");
 }
 }//end printPatternListExpanded

 public void printPatternListWithLabels(ArrayList<String> volume, String delimiter)
 {
 Iterator<Integer> it = patternList.iterator(); //Attach patternList to iterator for traversal

 if(it.hasNext())
 {
 while(it.hasNext())
 {
 String[] tempPat = volume.get(it.next()).split(delimiter);

 System.out.print(translate(tempPat[tempPat.length - labelDistance]) + " ");
 }
 System.out.println();
 }
 else
 {
 System.out.println("(empty)");
 }
 }//end printPatternListWithLabels

 public void printPatternListWithLabelsAsSummary(ArrayList<String> volume, String delimiter)
 {
 Iterator<Integer> it = patternList.iterator(); //Attach patternList to iterator for traversal
 Map<String, Integer> map = new HashMap<String, Integer>(); //Summary of attack types

 if(it.hasNext())
 {
 while(it.hasNext())

92

 {
 //Get pattern split into pieces
 String[] tempPat = volume.get(it.next()).split(delimiter);

 //Get attack type
 String attackType = translate(tempPat[tempPat.length - labelDistance]);

 //Add attack type to hashed array
 if(map.containsKey(attackType))
 {
 map.put(attackType, map.get(attackType) + 1);
 }
 else
 {
 map.put(attackType, 1);
 }
 }

 //Print out summaries of all attack types
 for(String name: map.keySet())
 {
 String key = name.toString();
 String value = map.get(name).toString();
 System.out.print(key + " x" + value + " ");
 }

 System.out.println();
 }
 else
 {
 System.out.println("(empty)");
 }
 }//end printPatternListWithLabelsAsSummary

 /*************************/
 /*** Private Functions ***/
 /*************************/
 private static boolean isNumeric(String str)
 {
 return str.matches("-?\\d+(\\.\\d+)?"); //match a number (latin digits) with optional '-' and decimal.
 }//end isNumeric [Open Source]

 private static String translate(String str)
 {
 String retStr = "";

93

 //Remove ending period (if necessary)
 str = str.replace(".", "");

 //Check string
 switch(str)
 {
 case "back": retStr = "dos"; break;
 case "buffer_overflow": retStr = "u2r"; break;
 case "ftp_write": retStr = "r2l"; break;
 case "guess_passwd": retStr = "r2l"; break;
 case "imap": retStr = "r2l"; break;
 case "ipsweep": retStr = "probe"; break;
 case "land": retStr = "dos"; break;
 case "loadmodule": retStr = "u2r"; break;
 case "multihop": retStr = "r2l"; break;
 case "neptune": retStr = "dos"; break;
 case "nmap": retStr = "probe"; break;
 case "perl": retStr = "u2r"; break;
 case "phf": retStr = "r2l"; break;
 case "pod": retStr = "dos"; break;
 case "portsweep": retStr = "probe"; break;
 case "rootkit": retStr = "u2r"; break;
 case "satan": retStr = "probe"; break;
 case "smurf": retStr = "dos"; break;
 case "spy": retStr = "r2l"; break;
 case "teardrop": retStr = "dos"; break;
 case "warezclient": retStr = "r2l"; break;
 case "warezmaster": retStr = "r2l"; break;
 case "normal": retStr = "normal"; break;
 default: retStr = "str"; break;
 }

 return retStr;
 }//end translate
}//end Cluster

94

Appendix B.3: RunnableCluster class

/*
 * Name: Luis C. Armendariz
 * Program Name: RunnableCluster
 * Advisor: Dr. Roy S. Nutter
 * Date: 11/4/2013
 * Program Description: Implements the Runnable interface for assigning patterns to a K-Means cluster
*/

import java.util.ArrayList; //Import ArrayList
import java.util.concurrent.atomic.AtomicInteger;

public class RunnableCluster implements Runnable
{
 private final int patternLoc; //Pattern location in volume
 private final ArrayList<String> volume;
 private final ArrayList<Cluster> clusterList;
 private final int[] clusterAssign;
 private final int clusterLoops;
 private final AtomicInteger clusterReassigns;
 private final String delimiter;

 /********************/
 /*** Constructors ***/
 /********************/
 public RunnableCluster(int patternLocation, ArrayList<String> volume, ArrayList<Cluster> clusterList,
int[] clusterAssign, int clusterLoops, AtomicInteger clusterReassigns, String delimiter)
 {
 this.patternLoc = patternLocation;
 this.volume = volume;
 this.clusterList = clusterList;
 this.clusterAssign = clusterAssign;
 this.clusterLoops = clusterLoops;
 this.clusterReassigns = clusterReassigns;
 this.delimiter = delimiter;
 }//end RunnableCluster

 /********************/
 /**** Executors *****/
 /********************/
 public void run()
 {
 //Initialize variables
 String tempPattern = ""; //Temporary Pattern (Whole)
 String[] dataPattern; //Temporary Pattern (Split into data elements)
 Double tempFitness = 0.0; //Temporary Fitness Value

95

 Double bestFitness = -1.0; //Best Fitness Value for a temporary pattern
 int bestCluster = -1; //Best Cluster for temporary pattern

 //Get pattern
 tempPattern = volume.get(patternLoc);

 //Split pattern using delimiter
 dataPattern = tempPattern.split(delimiter);

 //Get fitness with 1st cluster
 bestFitness = clusterList.get(0).getFitness(dataPattern);
 bestCluster = 0;

 //Check fitness with other clusters and take lowest
 for(int j=1, m=clusterList.size(); j < m; j++)
 {
 //Get fitness of cluster j
 tempFitness = clusterList.get(j).getFitness(dataPattern);

 //Best fitness is LOWEST of values
 if(tempFitness < bestFitness)
 {
 bestFitness = tempFitness;
 bestCluster = j;
 }
 }

 //Check cluster assignment
 if(clusterLoops == 0)
 {
 //Typecast pattern location to Object
 Integer pattern = (Integer) patternLoc;

 //Assign pattern to cluster with best fitness
 clusterList.get(bestCluster).addPattern(pattern);

 //Store cluster assignment
 clusterAssign[patternLoc] = bestCluster;

 //Increment reassignment count
 clusterReassigns.incrementAndGet();
 }
 else if(clusterAssign[patternLoc] != bestCluster)
 {
 //Typecast pattern location to Object
 Integer pattern = (Integer) patternLoc;

96

 //Remove pattern from old cluster (if value exists)
 clusterList.get(clusterAssign[patternLoc]).removePattern(pattern);

 //Assign pattern to cluster with best fitness
 clusterList.get(bestCluster).addPattern(pattern);

 //Store cluster assignment
 clusterAssign[patternLoc] = bestCluster;

 //Increment reassignment count
 clusterReassigns.incrementAndGet();
 }//end if-else
 }//end run
}//end RunnableCluster

97

Appendix B.4: RunnableCentroid class

/*
 * Name: Luis C. Armendariz
 * Program Name: RunnableCentroid
 * Advisor: Dr. Roy S. Nutter
 * Date: 11/3/2013
 * Program Description: Implements the Runnable interface for updating a K-Means cluster centroid
*/

import java.util.ArrayList; //Import ArrayList
import java.math.BigDecimal; //Allows rounding of double type values

public class RunnableCentroid implements Runnable
{
 private final Cluster cluster;
 private final ArrayList<String> volume;
 private final String delimiter;

 /********************/
 /*** Constructors ***/
 /********************/
 public RunnableCentroid(Cluster inCluster, ArrayList<String> inPatterns, String delim)
 {
 this.cluster = inCluster;
 this.volume = inPatterns;
 this.delimiter = delim;
 }//end RunnableCentroid

 /********************/
 /**** Executors *****/
 /********************/
 public void run()
 {
 String[] tempPattern;
 ArrayList<Integer> patternList = cluster.getPatternList();
 int totalPatterns = cluster.getPatternListSize();
 String[] centroid = cluster.getCentroid();
 int labelDistance = cluster.getLabelDistance();
 int[] fitPattern = cluster.getFitPattern();

 //Check for fitness pattern (continuous data values)
 if(fitPattern.length > 0)
 {
 /* PATTERN VALUE SUMATION */
 //Loop through list of patterns

98

 for(int i=0,j=totalPatterns; i < j; i++)
 {
 //Get a pattern and split into pieces
 tempPattern = (volume.get(patternList.get(i))).split(delimiter);

 //Loop through continuous data elements
 for(int m=0,n=fitPattern.length; m < n; m++)
 {
 //Get location of continuous element
 int cLoc = fitPattern[m];

 //If numerical values
 if(isNumeric(centroid[cLoc]) && isNumeric(tempPattern[cLoc]))
 {
 //Get numerical value(s)
 double cValue = Double.valueOf(centroid[cLoc]);
 double pValue = Double.valueOf(tempPattern[cLoc]);

 //Sum each NUMERICAL pattern value with respective centroid value
 if(i == 0)
 {
 cValue = pValue; //For 1st pattern, assign pattern element to centroid element
 }
 else
 {
 cValue = cValue + pValue;
 }

 //Convert back to a string & update centroid value
 centroid[cLoc] = String.valueOf(cValue);
 }
 }
 }//end for

 /* CENTROID VALUE DIVIDES */
 //Loop through continuous data elements of centroid
 for(int y=0,z=fitPattern.length; y < z; y++)
 {
 //Get location of continuous element
 int cLoc = fitPattern[y];

 //If numerical value
 if(isNumeric(centroid[cLoc]))
 {
 //Get numerical value
 double cValue = Double.valueOf(centroid[cLoc]);

 //Divide value by total number of patterns + 1 (for centroid)

99

 double newValue = (cValue / (totalPatterns + 1));

 //Round value to 2 decimal places
 newValue = round(newValue, 2, BigDecimal.ROUND_HALF_UP);

 //Convert value back to a string & update centroid value
 centroid[cLoc] = String.valueOf(newValue);
 }
 }//end for
 }
 else
 {
 /* PATTERN VALUE SUMATION */
 //Loop through list of patterns
 for(int i=0,j=totalPatterns; i < j; i++)
 {
 //Get a pattern and split into pieces
 tempPattern = (volume.get(patternList.get(i))).split(delimiter);

 //Loop through pattern elements [Minus labels at end of pattern]
 for(int m=0,n=tempPattern.length-labelDistance; m < n; m++)
 {
 //If numerical value
 if(isNumeric(centroid[m]) && isNumeric(tempPattern[m]))
 {
 //Get numeric value(s)
 double cValue = Double.valueOf(centroid[m]);
 double pValue = Double.valueOf(tempPattern[m]);

 //Sum each NUMERICAL pattern value with respective centroid value
 cValue = cValue + pValue;

 //Convert back to a string & update centroid value
 centroid[m] = String.valueOf(cValue);
 }
 }
 }//end for

 /* CENTROID VALUE DIVIDES */
 //Loop through each centroid value [Minus labels at end of pattern]
 for(int y=0,z=centroid.length-labelDistance; y < z; y++)
 {
 //If numerical value
 if(isNumeric(centroid[y]))
 {
 //Get numerical value
 double cValue = Double.valueOf(centroid[y]);

100

 //Divide value by total number of patterns + 1 (for centroid)
 double newValue = (cValue / (totalPatterns + 1));

 //Round value to 2 decimal places
 newValue = round(newValue, 2, BigDecimal.ROUND_HALF_UP);

 //Convert value back to a string & update centroid value
 centroid[y] = String.valueOf(newValue);
 }
 }//end for
 }//end if-else
 }//end run

 private static boolean isNumeric(String str)
 {
 return str.matches("-?\\d+(\\.\\d+)?"); //match a number (latin digits) with optional '-' and decimal.
 }//end isNumeric [Open Source]

 public static double round(double unrounded, int precision, int roundingMode)
 {
 BigDecimal bd = new BigDecimal(unrounded);
 BigDecimal rounded = bd.setScale(precision, roundingMode);
 return rounded.doubleValue();
 }//end round [Open Source]
}//end RunnableCentroid

	Non-intrusive anomaly detection for encrypted networks
	Recommended Citation

	tmp.1540787049.pdf.Aa3Fa

