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Abstract

Numerical Modeling of Inertial Flows in Proppant-Reservoir Rock Interfaces

by

Abdulla Alkaabi
Master of Science in Petroleum and Natural Gas Engineering

West Virginia University

Ali Takbiri Borujeni, Ph.D., Chair

Predicting accurate pressure drops in the reservoirs is essential for estimating the ultimate
hydrocarbons recoveries and production rates. In hydraulically fractured wells, inertial flows
can cause excessive pressure drops, beyond the predicted values form the Darcy equation.
Therefore, predicting these excessive pressure drops through defining non-Darcy factors is of
particular significance.

Excessive pressure drops in inertial flows are caused by acceleration/deceleration of flu-
ids, which usually occur when fluids are moving from constricted areas to larger pores and
vice versa. In the interface between the propped fracture and the reservoir rock, the pores
in the latter are in connection with the former that can generate eddies and thus fluid ac-
celeration/deceleration.

In this work, two-dimensional geometries are generated by combining coarse and tight
porous media and their hydraulic properties, i.e., absolute permeability and non-Darcy fac-
tors, are calculated using lattice Boltzmann simulations. Based on the simulation results,
calculated absolute permeability of generated porous media follows the harmonic averaging
theory for flow through series of constituting porous media. However, the non-Darcy factor
for the generated geometries are higher than the constituting geometries, which does not con-
form to any averaging approach. This affirms the common knowledge that non-Darcy factor
is a property that cannot be upscaled. The results in this study broadens our knowledge of
fluid flow in hydraulic fractures.
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Chapter 1

Introduction

1.1 Problem Statement

The Darcy equation describes the flow of single phase fluids in porous media at low

Reynolds numbers (Re < 1) and the permeability is the constant of the proportionality in

the linear relationship between the pressure gradient and the flow rate [1]. Deviations from

this linear relationship at high Reynolds numbers (Re > 1) where inertial force becomes

significant, are called non-Darcy or inertial flows [2]. The deviation from Darcy’s flow com-

monly occurs at regions with high fluid velocities, such as at the region near the well-bore

and hydraulic fractures. In these regions, the acceleration/deceleration of the fluids causes

in the inertial force to increase and that can cause excessive pressure drops. Deviations

from Darcy’s equation can cause errors in reservoir modeling when attempting to history

match the production data. Previous studies proved that the non-Darcy flows reduce the

well and reservoir productivity index up to 20 times their original values (Holditch and Morse

1976)[3]. A separate study by Guppy at 1982 showed that the non-Darcy flow can signifi-

cantly reduce the productivity index of a hydraulically fractured gas wells up to 50 percent

from the original values [4].

The main objective of this work is to check if the properties of the non-Darcy flow can

be upscaled. That will provide more understanding about the behavior of the flow around

the well bore especially at hydraulically fractured wells.
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1.2 Methodology

There are some methods to calculate the permeability and non-Darcy parameters, such

as flow experiments, analytical methods, empirical relationships, and numerical techniques.

The experimental approach is a reliable methodology; however, it is expensive and time

consuming. The analytical approach is based on applying ideal conditions into analytical

expressions which may not be practical for real cases. The empirical approaches are difficult

to apply to wide variety of porous media. However, the current methods are based on ob-

taning the flow properties of the proppant pack separately and to obtain the flow properties

of the reservoir rock separately.

For this work, the methodology is to obtain the permeability and non-Darcy factor of the

complex geometries created by combining simple 2 dimensional geometries. The flow simu-

lations are conducted using Lattice Boltzmann Method (LBM). Lattice Boltzmann method

(LBM) has been proved to be a reliable tool for numerical fluid flow problem [5]. LBM is

widely used by researchers for complex fluid flow problems for a single phase or multiphase

for different geometries, and variety of different boundary conditions for different fluid flow

problems [6, 7].

1.3 Background and Fundamentals of Fluid Flow in

Porous Media

Henry Darcy in 1856 [8], conducted an experiment for flow of water through vertical

sand beds. He found that for flow of the fluid in laminar region, there is a linear relationship

between flow rate and the pressure gradient. Based on this observation, he proposed the

following equation for flow of single phase fluid in porous media:

−∇p =
µu

K
, (1.1)

where ∇p is the pressure gradient, µ is the viscosity, u is fluid flow velocity and K is the

permeability, a property of porous media to transmit fluids through.
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At high fluid velocities, pressure gradient is not proportional to the flow rate and there

are excessive pressure drops in porous media. Geertsma at 1974 stated that the reason for

the excessive pressure drops is the present of the inertial flows [9]. Inertial flows are caused

by acceleration/deceleration of fluids at regions with high fluid velocities (Re > 1).

One of the equations that was proposed to predict the fluid flow at high fluid rates is

Forchheimer equation. According to Forcheimer, at high flow rates the pressure gradient is

proportional to the square of the fluid velocity:

−∇p =
uµ

K
+ βρu2, (1.2)

where ρ is fluid density, and β is the non-Darcy factor. In order to calculate the non-Darcy

factor in numerical simulations, the apparent permeability is defined by rearranging the

Forchheimer equation.
1

Kapp

=
1

K
+ β

ρ | u |
µ

, (1.3)

where the | u | is the fluid velocity. By plotting the inverse of Kapp against fluid velocity u,

non-Darcy factor can be calculated as the slope of the line.

1.4 Criteria for Onset of Inertial Flow

One of non-Darcy criteria is based on the Reynolds number where the values are between

1 - 100, the following equation represents Reynolds number:

Re =
ρDpu

µ
, (1.4)

where ρ is the density of the fluid, Dp is the diameter of the particles, u is the velocity of

the fluid, and µ is the viscosity of the fluid[10].

Another non-Darcy criteria is based on the Forchheimner number where the values are

between 0.005 - 0.2, the following equation is the formula for Forchheimer number.

Fo =
Kβuρ

µ
, (1.5)
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where Fo is the Forchheimer number, K is the permeability, β is the Non-Darcy factor, u is

the velocity of the fluid flow, ρ is the density of the fluid and µ is the fluid viscosity.

The Forchhiemer number is usually used in numerical models [10] because it is advanta-

geous over the Reynolds number due to the fact that its parameters are relatively simpler

to be obtained than those in the Reynolds number, especially the particles diameter in

the Reynolds number, Dp, which is one of the challenging parameters to be obtained. In

Forchheimer number particle diameter was substituted in by product of permeability and

non-Darcy factor, βK.
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Chapter 2

Theory of Lattice Boltzmann

2.1 Lattice Boltzmann Method (LBM)

LBM is a simplification of Boltzmann Equation in which we limit the position and di-

rections at which fluids can move from continuum into handful, time is also discretized into

time steps [5].

There are models such as D3Q19 and D2Q9 where D is the dimension and Q is the

number of the directions a particle can travel. Figure 2.1 shows the schematic representation

of D2Q9 where f(0−8) are the directional densities.

f1

f2

f3

f4

f5f6

f7 f8

f0

Figure 2.1: Lattice Boltzmann Model D2Q9
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There are two main steps in LBM: streaming and collision. In streaming, the specific

directional densities fi travel to their near neighboring nodes. The following equation is a

mathematical representation for the streaming step,

fi(x+ ei∆t, t+ ∆t) = fi(x, t), (2.1)

where ei is the direction which the specific directional dentistry can move to its neighboring

node, fi is the distribution function and ∆t is the discrete time step.

In the collision step, once the specific directional densities fi collide with their neighboring

nodes, they tend to reach an equilibrium by exchanging the momentum between the particles.

The following equation represent combined streaming of specific directional densities with a

single relaxation time collision (BGK):

fi(x+ ei∆t, t+ ∆t) = fi(x, t)−
[fi(x, t)− f eqi (x, t)]

τ
, (2.2)

where − [fi(x,t)−feqi (x,t)]

τ
is the collision part, τ is the relaxation time toward equilibrium and

f eq is the equilibrium distribution function which represented as in the following equation:

f eqi = wiρ(x)[1 + 3
ei · u
c2

+
9

2

(ei · u)2

c4
− 3

2

u2

c2
], (2.3)

where wi is the weighting for the particles; for instance D2Q9,the value 4
9

is the weight for

the particle at rest, 1
9

is the particle weight at directions (1,2,3, and 4) while 1
36

is the particle

weight for the directions (5,6,7, and 8). The variable c is the speed of the sound at lattice

unit ( lu
ts

), which is 1√
3

and u is the macroscopic velocity of the particles.

Macroscopic variables can be calculated using momenta of the directional densities, for

instance, fluid density can be calculated using first moment and fluid velocity using the

second moment of the directional densities:

ρ =
8∑
i=0

fi, (2.4)

u =
1

ρ

8∑
i=0

fiei, (2.5)

where the u is the macroscopic fluid velocity and ρ is the macroscopic fluid density.
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2.2 Boundary Conditions

There are two different types of boundary condictions used in this work: bounceback and

periodic. Bounceback is used at the solid-void interface to mimic no-slip boundary condition.

Bounceback is widely used in LBM due to its simplicity [11]. When a particle reaches a solid

node, the magnitude of the velocity of the particle stays the same; however, the direction of

the velocity is reflected back to the fluid.

Periodic boundary condition is usually used as the inlet and outlet boundaries. When the

distribution function reaches the outlet, the same distribution function comes back in the

inlet and vice versa [5].
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Chapter 3

Verification

It is necessary to verify the LBM simulation results with analytical solution of the prob-

lem. One of the simplest ways to verify the results is to compare them against Poiseuille

equation for two dimensional channel.

ux(y) =
1

2ν

∆P

lx
(R2 − y2), (3.1)

where the ux is the flow velocity values along the x axis and a function of the y-coordinate,

ν is the kinematic viscosity of fluid, ∆P is the pressure drop, R is the radius of the channel

and lx is the length of the channel. It is necessary to mention that ∆P
lx

is the same as the

body force in LBM simulation. The parameter are converted from the lattice units to the

physical units.

The following problem set is used for the verification:

LX : lattice length x-direction = 20 lu
LY : lattice length y-direction = 20 lu
g : body force = 0.001 lu

lt2

ν : kinematic viscosity = 1
6

lt
lu2

these parameters are converted from lattice units to physical units.

R : the radius of the channel = 0.005 m
g : body force = 0.209868044 m

s2

ν : kinematic viscosity of water = 10−6 Pa.s

Figure 3.1 shows the velocity profiles of the Poiseuille solution versus the numerical
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solution which is obtained from the simulation of LBM. The figure shows that the LBM

results are in agreement with the analytical Poiseuille flow for 2 dimensional channel.

Figure 3.1: Analytical Solution

Figure 3.1 Verification of the LBM simulation results against Poiseuille equation for a

two dimensional channel.
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Chapter 4

Results

4.1 Overview

In hydraulic fractured wells, proppant are used to keep the fracture open and to create

a high conductivity flow path for the fluid, in the reservoir to flow towards the well-bore.

The high velocity of the fluids, in the fracture can cause excessive pressure drops, where the

inertial force becomes important and causes the relationship between the pressure drops and

the fluid velocity to become non-linear [12]. These excessive pressure drops are due to the

fluid decelerating from smaller pores through larger ones and accelerating from larger pores

though smaller ones. These local acceleration/deceleration of the fluids could be significant

in the interface between the proppants in the fracture and formation rock. It has been proved

that the non-Darcy factor is not upscalable [13]. This work attempts to demonstrate the

local nature of non-Darcy flows through numerical simulations.

In this work, numerical flow simulations are run for simple geometries of 2 dimensional

circle packs and also on the combination of the circle packs with different circle sizes. Figure

4.1 shows a combination of two circle packs with two different circle sizes.



Abdulla Alkaabi Chapter 7.Results 11

Figure 4.1: Representation of combination of two circle packs with different circle sizes

connected with each other to make a combined geometry (1× 1) and (2× 2) circle pack

Circle packs with a single circle size and combined circle packs are simulated to predict

permeability and the non-Darcy factor.

Each simulation starts with a very low body force and therefore (low Reynolds/Forchheimer

number) so that the value of the permeability can be predicted. The value of the body force

is gradually increased in each new simulation until a noticeable reduction in the apparent

permeability is observed. The value of the body force is increased, until the simulation

breaks down when (incompressibility assumption is no longer valid). Subsequently, apparent

permeability is then plotted against the Forchheimer number, Fo, in a log-log plot to observe

the reduction of the apparent permeability values.

To predict the value of the non-Darcy factor, first, the apparent permeability is calculated

for each value of body force via equation (1.3); subsequently, the values of the apparent

permeability are converted from lattice units to physical units. The converted apparent

permeabilities are plotted against u
ν
. The slope of the line is the non-Darcy factor.

4.2 Numerical Simulation Results

In this section, LBM simulation results are performed. For each circle pack and combined

circle packs simulations for velocity streamlines are presented to show the behavior of the

fluid flow under low and high fluid velocities (low and high Reynolds/Forchheimer number).



Abdulla Alkaabi Chapter 7.Results 12

Figure 4.2.a shows the plot of the apparent permeability against the Forchheimer num-

bers. It shows that there is a reduction of apparent permeability from 1.88 × 10−6m2 at

Fo = 9.97 × 10−5 to 1.51 × 10−6m2 at Fo = 1.80 × 10−1 with (19.81 percent reduction).

Figure 4.2.b shows a linear relationship between the inverse of apparent permeability and

velocity over kinematic viscosity, u
ν

with R2 = 0.9999 and a non-Darcy factor of 14.765 m−1.

(a) Apparent permeability versus Forchheimer number (b) Inverse apparent permeability versus u/ν

Figure 4.2: Simulations results for a single circle

Figures 4.3 show that the velocity streamlines for a single circle at Fo = 9.97 × 10−5

Figure 4.3.a and Fo = 1.80× 10−1 Figure 4.3.b. Due to the acceleration/deceleration of the

fluid flow, at high Fo some eddies are generated in Figure 4.3.b.
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(a) Velocity streamlines for a single circle

with Fo = 9.97× 10−5
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(b) Velocity streamlines for a single circle

with Fo = 1.80× 10−1

Figure 4.3: Velocity streamlines for a single circle Fo = 9.97×10−5 (left) and Fo = 1.80×10−1

(right)

Figure 4.4.a shows the plot of the apparent permeability against the Forchheimer num-

bers. It shows that there is a reduction of apparent permeability from 4.82 × 10−7m2 at

Fo = 3.09 × 10−3 to 4.00 × 10−7m2 at Fo = 2.12 × 10−1 with (17.09 percent reduction).

Figure 4.4.b shows a linear relationship between the inverse of apparent permeability and

velocity over kinematic viscosity, u
ν

with R2 = 1 and a non-Darcy factor of 69.427 m−1.

(a) Apparent permeability versus Forchheimer number (b) Inverse apparent permeability versus u/ν

Figure 4.4: Simulations results for (2 × 2) circle pack

Figure 4.5 show that the velocity streamlines for (2 × 2) circle pack at Fo = 3.09× 10−3
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Figure 4.3.a and Fo = 2.12× 10−1 Figure 4.5.b. Due to the acceleration/deceleration of the

fluid flow, at high Fo some eddies are generated in Figure 4.5.b.
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(a) Velocity streamlines for (2 × 2) circle pack

with Fo = 3.09× 10−3
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(b) Velocity streamlines for (2 × 2) circle pack

with Fo = 2.12× 10−1

Figure 4.5: Velocity streamlines for (2 × 2) circle pack Fo = 3.09 × 10−3 (left) and Fo =

2.12× 10−1 (right)

Figure 4.6.a shows the plot of the apparent permeability against the Forchheimer num-

bers. It shows that there is a reduction of apparent permeability from 2.18 × 10−7m2 at

Fo = 1.24 × 10−5 to 1.84 × 10−7m2 at Fo = 2.29 × 10−1 with (15.69 percent reduction).

Figure 4.6.b shows a linear relationship between the inverse of apparent permeability and

velocity over kinematic viscosity, u
ν

with R2 = 0.9995 and a non-Darcy factor of 136.03 m−1.

(a) Apparent permeability versus Forchheimer number (b) Inverse apparent permeability versus u/ν

Figure 4.6: Simulations results for (3 × 3) circle pack
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Figure 4.7 show that the velocity streamlines for (3 × 3) circle pack at Fo = 1.24× 10−5

Figure 4.7.a and Fo = 2.29× 10−1 Figure 4.7.b. Due to the acceleration/deceleration of the

fluid flow, at high Fo some eddies are generated in Figure 4.7.b.
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(a) Velocity streamlines for (3 × 3) circle pack

with Fo = 1.24× 10−5
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(b) Velocity streamlines for (3 × 3) circle pack

with Fo = 2.29× 10−1

Figure 4.7: Velocity streamlines for (3 × 3) circle pack Fo = 1.24 × 10−5 (left) and Fo =

2.29× 10−1 (right)

Figure 4.8.a shows the plot of the apparent permeability against the Forchheimer num-

bers. It shows that there is a reduction of apparent permeability from 1.19 × 10−7m2 at

Fo = 8.23 × 10−4 to 1.03 × 10−7m2 at Fo = 2.70 × 10−1 with (13.71 percent reduction).

Figure 4.8.b shows a linear relationship between the inverse of apparent permeability and

velocity over kinematic viscosity, u
ν

with R2 = 0.9996 and a non-Darcy factor of 302.73 m−1.
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(a) Apparent permeability versus Forchheimer number (b) Inverse apparent permeability versus u/ν

Figure 4.8: Simulations results for (4 × 4) circle pack

Figure 4.9 show that the velocity streamlines for (4 × 4) circle pack at Fo = 8.23× 10−4

Figure 4.9.a and Fo = 2.70× 10−1 Figure 4.9.b. Due to the acceleration/deceleration of the

fluid flow, at high Fo some eddies are generated in Figure 4.9.b.
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(a) Velocity streamlines (4 × 4) circle pack

with Fo = 8.23× 10−4

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0e+00

3e-03

6e-03

9e-03

1e-02

2e-02

2e-02

2e-02

2e-02

x, (cm)

y
, 
(c

m
)

m/s

(b) Velocity streamlines for (4 × 4) circle pack

with Fo = 2.70× 10−1

Figure 4.9: Velocity streamlines for (4 × 4) circle pack Fo = 8.23 × 10−4 (left) and Fo =

2.70× 10−1 (right)

Figure 4.10.a shows the plot of the apparent permeability against the Forchheimer num-

bers. It shows that there is a reduction of apparent permeability from 1.87 × 10−7m2 at

Fo = 1.24 × 10−3 to 1.26 × 10−7m2 at Fo = 4.43 × 10−1 with (32.27 percent reduction).
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Figure 4.10.b shows a linear relationship between the inverse of apparent permeability and

velocity over kinematic viscosity, u
ν

with R2 = 1 and a non-Darcy factor of 232.32 m−1.

(a) Apparent permeability versus Forchheimer number (b) Inverse apparent permeability versus u/ν

Figure 4.10: Simulations results for (1 × 1) + (2 × 2) circle pack

Figure 4.11.a shows that the velocity streamlines for (1 × 1) + (2 × 2) circle pack at

Fo = 1.24 × 10−3 are smooth and parallel. Figure 4.11.b shows some eddies in velocity

streamline plot for Fo = 4.43 × 10−1 due to the acceleration/deceleration of the fluid flow.

Eddies are generated mostly in the interface between single circle and (2 × 2) circle pack.
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(a) Velocity streamlines for (1 × 1) + (2 × 2)

circle pack with Fo = 1.24× 10−3
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(b) Velocity streamlines for (1 × 1) + (2 × 2)

circle pack with Fo = 4.43× 10−1

Figure 4.11: Velocity streamlines for (1 × 1) + (2 × 2) circle pack Fo = 1.24 × 10−3 (left)

and Fo = 4.43× 10−1 (right)

Figure 4.12.a shows the plot of the apparent permeability against the Forchheimer num-

bers. It shows that there is a reduction of apparent permeability from 9.56 × 10−8m2 at
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Fo = 4.83 × 10−5 to 7.11 × 10−8m2 at Fo = 3.74 × 10−1 with (25.62 percent reduction).

Figure 4.12.b shows a linear relationship between the inverse of apparent permeability and

velocity over kinematic viscosity, u
ν

with R2 = 0.9991 and a non-Darcy factor of 345.75 m−1.

(a) Apparent permeability versus Forchheimer number (b) Inverse apparent permeability versus u/ν

Figure 4.12: Simulations results for (1 × 1) + (3 × 3) circle pack

Figure 4.13.a shows that the velocity streamlines for (1 × 1) + (3 × 3) circle pack at

Fo = 4.83 × 10−5 are smooth and parallel. Figure 4.13.b shows some eddies in velocity

streamline plot for Fo = 3.74 × 10−1 due to the acceleration/deceleration of the fluid flow.

Eddies are generated mostly in the interface between single circle and (3 × 3) circle pack.
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(a) Velocity streamlines for (1 × 1) + (3 × 3)

circle pack with Fo = 4.83× 10−5
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(b) Velocity streamlines for a (1 × 1) + (3 × 3)

circle pack with Fo = 3.74× 10−1

Figure 4.13: Velocity streamlines for (1 × 1) + (3 × 3) circle pack Fo = 4.83 × 10−5 (left)

and Fo = 3.74× 10−1 (right)

Figure 4.14.a shows the plot of the apparent permeability against the Forchheimer num-
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bers. It shows that there is a reduction of apparent permeability from 5.54 × 10−8m2 at

Fo = 1.85 × 10−3 to 4.58 × 10−8m2 at Fo = 2.53 × 10−1 with (17.27 percent reduction).

Figure 4.14.b shows a linear relationship between the inverse of apparent permeability and

velocity over kinematic viscosity, u
ν

with R2 = 0.9928 and a non-Darcy factor of 393.09 m−1.

(a) Apparent permeability versus Forchheimer number (b) Inverse apparent permeability versus u/ν

Figure 4.14: Simulations results for (1 × 1) + (4 × 4) circle pack

Figure 4.15.a shows that the velocity streamlines for (1 × 1) + (4 × 4) circle pack at

Fo = 1.85 × 10−3 are smooth and parallel. Figure 4.15.b shows some eddies in velocity

streamline plot for Fo = 2.53 × 10−1 due to the acceleration/deceleration of the fluid flow.

Eddies are generated mostly in the interface between single circle and (4 × 4) circle pack.
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(a) Velocity streamlines for (1 × 1) + (4 × 4)

circle pack with Fo = 1.85× 10−3
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(b) Velocity streamlines for (1 × 1) + (4 × 4)

circle pack with Fo = 2.53× 10−1

Figure 4.15: Velocity streamlines for (1 × 1) + (4 × 4) circle pack Fo = 1.85 × 10−3 (left)

and Fo = 2.53× 10−1 (right)
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Figure 4.16.a shows the plot of the apparent permeability against the Forchheimer num-

bers. It shows that there is a reduction of apparent permeability from 7.34 × 10−8m2 at

Fo = 2.62 × 10−5 to 5.76 × 10−8m2 at Fo = 2.90 × 10−1 with (21.59 percent reduction).

Figure 4.16.b shows a linear relationship between the inverse of apparent permeability and

velocity over kinematic viscosity, u
ν

with R2 = 0.9993 and a non-Darcy factor of 317.9 m−1.

(a) Apparent permeability versus Forchheimer number (b) Inverse apparent permeability versus u/ν

Figure 4.16: Simulations results for (2 × 2) + (3 × 3) circle pack

Figure 4.17.a shows that the velocity streamlines for (2 × 2) + (3 × 3) circle pack at

Fo = 2.62 × 10−5 are smooth and parallel. Figure 4.17.b shows some eddies in velocity

streamline plot for (Fo = 2.90× 10−1 due to the acceleration/deceleration of the fluid flow.

Eddies are generated mostly in the interface between (2 × 2) + (3 × 3) circle pack.
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(a) Velocity streamlines for (2 × 2) + (3 × 3)

circle pack with Fo = 2.62× 10−5
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(b) Velocity streamlines for (2 × 2) + (3 × 3)

circle pack with Fo = 2.90× 10−1

Figure 4.17: Velocity streamlines for (2 × 2) + (3 × 3) circle pack Fo = 2.62 × 10−5 (left)

and Fo = 2.90× 10−1 (right)
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Figure 4.18.a shows the plot of the apparent permeability against the Forchheimer num-

bers. It shows that there is a reduction of apparent permeability from 4.71 × 10−8m2 at

Fo = 1.29 × 10−5 to 4.02 × 10−8m2 at Fo = 2.25 × 10−1 with (14.67 percent reduction).

Figure 4.18.b shows a linear relationship between the inverse of apparent permeability and

velocity over kinematic viscosity, u
ν

with R2 = 1 and a non-Darcy factor of 379.12 m−1.

(a) Apparent permeability versus Forchheimer number (b) Inverse apparent permeability versus u/ν

Figure 4.18: Simulations results for (2 × 2) + (4 × 4) circle pack

Figure 4.19.a shows that the velocity streamlines for (2 × 2) + (4 × 4) circle pack at

Fo = 1.29 × 10−5 are smooth and parallel. Figure 4.19.b shows some eddies in velocity

streamline plot for Fo = 2.25 × 10−1 due to the acceleration/deceleration of the fluid flow.

Eddies are generated mostly in the interface between (2 × 2) + (4 × 4) circle pack.
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(a) Velocity streamlines for (2 × 2) + (4 × 4)

circle pack with Fo = 1.29× 10−5
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(b) Velocity streamlines for (2 × 2) + (4 × 4)

circle pack with Fo = 2.25× 10−1

Figure 4.19: Velocity streamlines for (2 × 2) + (4 × 4) circle pack Fo = 1.29 × 10−5 (left)

and Fo = 2.25× 10−1 (right)
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Figure 4.20.a shows the plot of the apparent permeability against the Forchheimer num-

bers. It shows that there is a reduction of apparent permeability from 3.80 × 10−8m2 at

Fo = 9.75 × 10−6 to 3.24 × 10−8m2 at Fo = 2.27 × 10−1 with (14.69 percent reduction).

Figure 4.20.b shows a linear relationship between the inverse of apparent permeability and

velocity over kinematic viscosity, u
ν

with R2 = 0.9998 and a non-Darcy factor of 440.44 m−1.

(a) Apparent permeability versus Forchheimer number (b) Inverse apparent permeability versus u/ν

Figure 4.20: Simulations results for (3 × 3) + (4 × 4) circle pack

Figure 4.21.a shows that the velocity streamlines for (3 × 3) + (4 × 4) circle pack at

Fo = 9.75 × 10−6 are smooth and parallel. Figure 4.21.b shows some eddies in velocity

streamline plot for Fo = 2.27 × 10−1 due to the acceleration/deceleration of the fluid flow.

Eddies are generated mostly in the interface between (3 × 3) + (4 × 4) circle pack.
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(a) Velocity streamlines for (3 × 3) + (4 × 4)

circle pack with Fo = 9.75× 10−6
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(b) Velocity streamlines for (3 × 3) + (4 × 4)

circle pack with Fo = 2.27× 10−1

Figure 4.21: Velocity streamlines for (3 × 3) + (4 × 4) circle pack Fo = 9.75 × 10−6 (left)

and Fo = 2.27× 10−1 (right)
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Figure 4.22.a shows the plot of the apparent permeability against the Forchheimer num-

bers. It shows that there is a reduction of apparent permeability from 2.58 × 10−8m2 at

Fo = 4.87 × 10−3 to 2.31 × 10−8m2 at Fo = 1.96 × 10−1 with (10.19 percent reduction).

Figure 4.22.b shows a linear relationship between the inverse of apparent permeability and

velocity over kinematic viscosity, u
ν

with R2 = 0.9994 and a non-Darcy factor of 3981 m−1.

(a) Apparent permeability versus Forchheimer

number for random porous media with 0.64 porosity

(b) Inverse apparent permeability versus u/ν

for random porous media with 0.64 porosity

Figure 4.22: Simulations results of 2-dimensional random porous media for 0.64 porosity

Figure 4.23.a shows that the velocity streamlines for porosity (0.64) random 2D porous

media at Fo = 4.87 × 10−3 are smooth and parallel. Figure 4.23.b shows some eddies in

velocity streamline plot for Fo = 1.96×10−1 due to the acceleration/deceleration of the fluid

flow.
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(a) Velocity streamlines for porosity (0.64) random

2D porous media with Fo = 4.87× 10−3
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(b) Velocity streamlines for porosity (0.64) random

2D porous media with Fo = 1.96× 10−1

Figure 4.23: Velocity streamlines for porosity (0.64) random 2D porous media Fo = 4.87 ×
10−3 (left) and Fo = 1.96× 10−1 (right)

Figure 4.24.a shows the plot of the apparent permeability against the Forchheimer num-

bers. It shows that there is a reduction of apparent permeability from 3.82 × 10−7m2 at

Fo = 1.42 × 10−4 to 1.84 × 10−7m2 at Fo = 7.89 × 10−1 with (51.81 percent reduction).

Figure 4.24.b shows a linear relationship between the inverse of apparent permeability and

velocity over kinematic viscosity, u
ν

with R2 = 0.9993 and a non-Darcy factor of 525.72 m−1.

(a) Apparent permeability versus Forchheimer

number for random porous media with 0.87 porosity

(b) Inverse apparent permeability versus u/ν

for random porous media with 0.87 porosity

Figure 4.24: Simulations results of 2-dimensional random porous media for 0.87 porosity



Abdulla Alkaabi Chapter 7.Results 25

Figure 4.25.a shows that the velocity streamlines for porosity (0.87) random 2D porous

media at Fo = 1.42 × 10−4 are smooth and parallel. Figure 4.25.b shows some eddies in

velocity streamline plot for Fo = 7.89×10−1 due to the acceleration/deceleration of the fluid

flow.
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(a) Velocity streamlines for porosity (0.87) random

2D porous media with Fo = 1.42× 10−4
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(b) Velocity streamlines for porosity (0.87) random

2D porous media with Fo = 7.89× 10−1

Figure 4.25: Velocity streamlines for porosity (0.87) random 2D porous media Fo = 1.42 ×
10−4 (left) and Fo = 7.89× 10−1 (right)

Figure 4.26.a shows the plot of the apparent permeability against the Forchheimer num-

bers. It shows that there is a reduction of apparent permeability from 1.18 × 10−8m2 at

Fo = 1.03×10−4 to 1.06×10−8m2 at Fo = 2.01×10−1 with (9.70 percent reduction). Figure

4.26.b shows a linear relationship between the inverse of apparent permeability and velocity

over kinematic viscosity, u
ν

with R2 = 0.9995 and a non-Darcy factor of 5012.2 m−1.
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(a) Apparent permeability versus Forchheimer

number for random porous media with

low and high porosity

(b) Inverse apparent permeability versus u/ν

for random porous media with

low and high porosity

Figure 4.26: Simulations results of 2-dimensional random porous media for low and high

porosity

Figure 4.27.a shows that the velocity streamlines for low and high porosity 2D random

porous media at Fo = 1.03× 10−4 are smooth and parallel. Figure 4.27.b shows some eddies

in velocity streamline plot for Fo = 2.01 × 10−1 due to the acceleration/deceleration of the

fluid flow. Eddies are generated mostly in the interface between the randomly generated

porous media of low and high porosity.
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(a) Velocity streamlines for low and high porosity

2D random porous media with Fo = 1.03× 10−4
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(b) Velocity streamlines for low and high porosity

2D random porous media with Fo = 2.01× 10−1

Figure 4.27: Velocity streamlines for low and high porosity 2D random porous media Fo =

1.03× 10−4 (left) and Fo = 2.01× 10−1 (right)
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4.3 Discussion

Table 4.1 summarizes the results of the simulations for each geometry, as well as the

calculated harmonic averages for the permeability using the following equation,

ΣLi
Ktotal

= Σ
Li
Ki

, (4.1)

where Li is the length of the channel and Ki is the permeability for the geometries, while

Ktotal is the permeability for the combined geometry.

Geometry K Ktotal β

(1× 1) 123.2824 - 14.765
(2× 2) 31.63985 - 69.427
(3× 3) 14.32196 - 136.03
(4× 4) 7.822869 - 302.73

(1× 1) + (2× 2) 49.00067 50.3560 232.32
(1× 1) + (3× 3) 25.08423 25.6626 345.75
(1× 1) + (4× 4) 14.53737 14.7121 393.09
(2× 2) + (3× 3) 19.27202 19.7183 317.9
(2× 2) + (4× 4) 12.36359 12.5442 379.12
(3× 3) + (4× 4) 9.981599 10.1187 440.44

Low porosity 1.647911 - 3981.0
High porosity 24.45982 - 525.72

Low porosity + High porosity 3.017687 3.0878 5012.2

Table 4.1: Summary of the LBM simulation results

The permeability values for combined geometries are calculated by harmonic averaging

of the permeability of two single geometries. This is an example to illustrate the value of

Ktotal based on the permeability values from the simulations of two single geometries.
(1× 1) + (2× 2) : A combined geometry where K (simulation) = 49.00067
(1× 1) : A single geometry where K1 (simulation) = 123.2824
(2× 2) : A single geometry where K2 (simulation) = 31.63985

2

Ktotal

=
L

123.2824
+

L

31.63985
= 0.03972⇒ Ktotal = 50.3560 (4.2)

based on the final value of Ktotal, the value of the calculated permeability through series of

constituting porous media follows the harmonic averaging theory.
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The non-Darcy factor for the geometry that is constructed by combining two single

geometries are higher than their values for each of the single geometries. This confirms that

the inertial effect has been influenced by of the acceleration/deceleration of the fluid at the

interface of coarse-fine geometries. Furthermore, the obtained values of the non-Darcy factor

does not follow any averaging technique (averaging values of two combined geometries are

always between the value of the combined geometries). The non-Darcy factor is larger in a

combined geometry than each of the two single geometries indirectly due to the fact that

when the fluids in the porous media flow from tight to coarse pore space or vice verca, eddies

could be generated due to the acceleration/deceleration of the fluid. The eddies occur when

the fluid flows past an obstacle in high velocity which create swirling behind the two edges

of the obstacle after passing it. Those swirling, which are created behind the obstacle, are

flowing into the opposite direction of the general fluid flow direction such as figure 4.28.

0.0 0.2 0.4 0.6 0.8
0.0

0.2

0.4

0.6

0.8

1.0

0e+00

6e-03

1e-02

2e-02

2e-02

3e-02

4e-02

4e-02

5e-02

x, (cm)

y
, 

(c
m

)

m/s

Figure 4.28: Eddies generated at the interface between fine and coarse geometries

The eddies in the porous media carry the most momentum and energy of the fluid flow

[14] which causes the non-Darcy factor to be greater in the combined geometry than the

single geometries which takes place mostly at the void spaces when the fluids flow though

the interface of fine-coarse grids in the porous media.
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Chapter 5

Conclusions and Recommendations

5.1 Conclusions and Recommendations

In this work, LBM was used to obtain flow properties of 2 dimensional geometries at

different Forchheimer numbers. The geometries were either simple (circle packs with single

circle daimeter or random porous media with a certain porosity) or complex (created by

combining the simple geometries)

Based on the simulation results of 2 dimensional circle packs, the higher circle diameter

the lower non-Darcy factor. This is because fluids are not accelerating in bigger porous as

much as they do in smaller porous. The non-Darcy factor for combined geometries resulted

in higher values than simple geometries due to the acceleration/deceleration of the fluid flow

from fine to coarse circle packs and vice versa which generates eddies at the interface.

The permeability obtained from the flow simulation for combined circle packs follows

the theory of harmonic averaging. However, the values of non-Darcy factor obtained from

flow simulations for combined circle packs are higher than those for the single circle packs;

therefore, calculated non-Darcy factor do not follow any averaging theories which confirms

that the non-Darcy factor cannot be upscalled.
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5.2 Recommendations

For future work, it is recommended to apply flow simulations to 3 dimensional geometries.

The simulation results can also be inputted to a reservoir simulators to observe the impact of

higher non-Darcy factor at the fracture-reservoir rock interface on the productivity index of

the wells. Moreover, it is recommended to apply grid refinement technique because it reduces

the time of the flow simulations by dividing the combined geometries into two different mesh

sizes for proppant and for reservoir rock.
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