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ABSTRACT 

Bacillus firmus for the biological control of Meloidogyne hapla and Xiphinema americanum 
 

Lisa M. Valencia 
Root-knot nematode (RKN) and dagger nematode (DN) are serious pests of agricultural crops, 
including peach trees of West Virginia. RKN is a sedentary endoparasite that feeds and 
reproduces within the roots of host plants, causing gall formation, loss of vigor, and plant death. 
DN is an ectoparasite that has the potential to vector devastating plant viruses. Many control 
options recommended for annual crops are not appropriate for orchards and the use of chemical 
nematicides is limited. The endospore-forming bacterium, Bacillus firmus (BF), is marketed as a 
bionematicide, though its mode of action and efficacy in controlling certain nematodes 
indigenous to West Virginia are unclear. The purpose of this study was to determine efficacy and 
mode of action of BF as a bionematicide against the northern RKN, Meloidogyne hapla and DN, 
Xiphinema americanum. Direct toxicity was determined by exposing RKN and DN to various 
concentrations of BF over a 72-hour period. Exposure to a 107 CFU/ml concentration of BF 
caused a 15 % decrease in living RKN and an 11 % decrease in living DN by 72 hours. No effect 
was observed with lower concentrations. In-vitro attraction assays were performed to determine 
if the presence of BF affects nematode migration and infection rates. Filter paper discs were 
treated with BF and sterile soil extract (SSE) and were placed at either end of a slide covered 
with Pluronic gel. Approximately 150 RKN or 30-50 DN were placed in the center of each slide 
and the number of nematodes that left the center and migrated to each side was counted at 1, 2, 4, 
and 24 hours post inoculation. A similar attraction assay was performed with tomato seedlings 
instead of filter paper. Filter paper assays showed that 93 % of motile RKN were observed on the 
SSE portion of the slides compared to 7 % on the BF side by hour 24. Attraction assays using 
tomato seedlings showed 71 % of motile RKN were observed on the portion of slides with SSE-
treated roots, compared to 29 % on the side with BF-treated roots. DN results were contrary to 
RKN results. Filter paper assays showed 59 % of motile DN on the BF portion of slides 
compared to 41 % on the SSE side, while tomato seedling assays showed no significant 
difference between treatments at hour 24. Infection assays using seedlings on glass slides showed 
an average of three RKN successfully penetrated BF-treated roots compared to 20 in SSE roots. 
Attraction assays in sand, comparing RKN infection of BF and SSE-treated tomato seedlings, 
showed no significant difference between treatments. Nematode mortality observed after 
exposure to BF suggests that BF produces secondary metabolites that are directly toxic to RKN 
and DN, though these metabolites have limited potency. Behavior of RKN in the presence of BF 
suggests the involvement of a chemorepellent, while the behavior of DN suggests the 
involvement of a chemoattractant. The results of this study indicate that the mode of action of BF 
is linked to the production of chemorepellent compounds, though these chemotactic factors are 
species specific. BF is a promising biocontrol option for the management of RKN but may not 
demonstrate the same measure of control against DN. 
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CHAPTER 1 

LITERATURE REVIEW 

Introduction 

Plant-parasitic nematodes are serious pests of agriculture that continue to threaten the 

security of the commercial fruit industry in West Virginia and other Mid-Atlantic states (Kotcon, 

1990; Walters and Barker, 1994; Koenning et al., 1999). Many of the nematode species that 

parasitize plants, most notably species of Meloidogyne, cause major crop losses throughout the 

world. The damage generated by the parasitic activity of these nematodes can be further 

amplified by the ability of certain species, including Xiphinema spp., to act as virus vectors. As 

the available chemical options for nematode management decline, growers diagnosed with 

nematode problems have limited options, many of which are unacceptable for established 

orchard sites. These situations call for effective bionematicide alternatives. Several studies have 

demonstrated that the bacterium Bacillus firmus is an effective option for biological control of 

certain nematode species. However, it is uncertain if this organism maintains similar efficacy 

against problematic nematodes of West Virginia fruit trees such as Meloidogyne hapla and 

Xiphinema americanum. Furthermore, the specific nematicidal mode of action employed by B. 

firmus remains disputed.  

Plant-parasitic nematodes 

Plant-parasitic nematodes are economically important agricultural pests, causing billions 

of dollars in crop damage annually (Handoo, 1998). As these microscopic roundworms feed on 

the roots of plants, they impair the health and vigor of crops, which can result in an overall 

decline in crop yields as well as host plant death. A 1994 survey of various crops grown in 35 

states of the USA indicated that at least 25% of crop losses can be attributed to the presence of 

plant-parasitic nematodes (Koenning et al., 1999). This plant damage may be a direct result of 

nematode infection within roots and ingestion of cell contents, or may be associated with indirect 

consequences of nematode parasitic activity. Nematode-inflicted wounds on root tissue leave 

plants more susceptible to secondary infection by fungal and bacterial pathogens, and may also 

facilitate transmission of nematode-vectored plant viruses (Powell et al., 1971; Brown et al., 

1995). Two of the most economically important nematode genera, Meloidogyne spp. and 

Xiphinema spp., are abundant in peach and apple orchards of West Virginia (Kotcon, 1990). 
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Meloidogyne spp. 

 Root-knot nematodes of the genus Meloidogyne are regarded as highly destructive pests 

to agricultural crops worldwide (Barbosa et al., 2004; Gugino et al., 2006; Hussain et al., 2011; 

Koenning et al., 1999; Wesemael et al., 2011). These sedentary endoparasites live most of their 

lives within the roots of their host plants, feeding on cytoplasmic material of root cells. Female 

root-knot nematodes use both sexual and asexual reproduction, laying upwards of 1000 eggs 

while embedded within the host plant roots (Chitwood and Perry, 2009). After completing 

embryogenesis and one molt, the larvae emerge from their eggs as second stage juveniles (J2), 

the infectious stage of the species, and either re-infect the same root or migrate to new infection 

sites. CO2 and other volatile compounds associated with plant roots act as chemoattractants to 

the J2s, allowing them to orient themselves accordingly to find host plant roots (Robinson, 1995; 

Wang et al., 2009). Once an acceptable host root has been located, the nematode secretes 

degrading enzymes and uses its stylet to puncture the root tissue near the zone of elongation, and 

migrates inside (Wyss et al., 1992). The nematode quickly establishes a feeding site where it 

remains sedentary through the remainder of its life, if female, or until it molts into a mature 

adult, if male. Salivary secretions produced by the nematode promote the formation of several 

multinucleated giant cells that act as nutrient pools for the feeding nematode (Bird, 1962; Jones, 

1981; Mor (Mordechai) and Oka, 2006). Root galls form around the area of infection, which 

ultimately inhibits the flow of water and nutrient within host plant roots.  

The life cycle of root-knot nematodes is temperature dependent and is completed in 

approximately 600 degree days with a base temperature of 8.13oC (Bird and Wallace, 1965; 

Vrain et al., 1978; Starr and Mai, 1976; Lahtinen et al., 1988). Within host plant roots, J2s 

undergo three additional molts to develop into a mature, reproductive adult. Adult males are 

vermiform and mobile. Adult females are pyriform and sedentary, maintaining only the 

musculature in the neck region to enable feeding (Eisenback and Hunt, 2009). Each reproductive 

female deposits several hundred eggs on the surface of host plant roots, held together within a 

gelatinous matrix. The ability of these nematodes to produce large numbers of progeny in short 

periods of time can quickly overwhelm susceptible agricultural crops. If root-knot nematode 

infestations are left untreated, plants can exhibit signs of severe nutrient deficiencies such as 

stunting, yield loss, and death. If numbers are maintained at population levels below the damage 
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threshold, root-knot nematodes are considered less of an immediate threat to West Virginia 

peach and apple orchards, however, once they become established in these deep-rooted perennial 

crops, control is difficult and options are limited (Nyczepir, 1991).  

Xiphinema spp. 

Dagger nematodes are migratory ectoparasites belonging to the Longidoridae family. The 

female worms produce eggs by parthenogenesis and observation of males is rare. In contrast with 

many nematode species, Xiphinema spp. maintains a relatively low reproductive rate and a long 

lifespan. Their life cycle may take several months to over a year to complete and they have been 

reported to live 2-5 years in their natural soil environments, laying only a few eggs monthly 

(Flegg, 1968; Cohn and Mordechai, 1969; Brown and Coiro; 1983; Brown, 1986). These 

nematodes live their entire lives within the soil and feed along the growing roots of plants with a 

long, needle-like stylet (Cohn, 1970; Weischer and Wyss, 1976). The stylet punctures through 

plant cell walls, enabling the nematode to ingest the cytoplasmic material of cells. It is this 

method of ectoparasitism, along with their long life span, wide host range, and persistence in 

fallow soil that contribute to the efficiency of Xiphinema spp. as a vector of nepoviruses.  

Dagger nematodes are notorious virus vectors that are known to transmit viruses within 

the genus Nepovirus (nematode transmitted polyhedral viruses) throughout a wide range of host 

plants (Brown et al., 1993; Taylor and Raski, 1964). One such virus, tomato ringspot virus 

(TomRSV), is the causal agent of peach stem pitting (PSP), a devastating affliction of peach 

trees, and apple union necrosis and decline (AUND) in apple trees (Smith et al., 1973; Parish and 

Converse, 1981). PSP-diseased trees possess highly disorganized xylem tissue which can enable 

the breakage of whole trees in just a few years (Barrat et al., 1968). AUND produces similar 

symptoms within apple trees, though typically less severe than those observed in peach and 

generally confined to the graft union (Stouffer et al., 1977). TomRSV infections cannot be cured 

and diseased trees must be removed and destroyed to prevent viral spread, a practice that often 

leads to great losses within a single orchard. Dagger nematodes responsible for transmission of 

TomRSV are a persistent presence in Mid-Atlantic orchards (Georgi, 1988; Jaffee et al., 1987). 

Kotcon (1990) determined that at least 74% of peach orchards surveyed in West Virginia harbor 

Xiphinema spp., and it can be expected that apple orchards maintain similar Xiphinema spp. 

populations. 
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As dagger nematodes feed on infected plants, viral particles may adhere to the stylet and 

esophageal lumen of the feeding nematode, establishing the nematode as a potential virus vector 

(Taylor and Robertson, 1970; Raski et al, 1973). Viral particles will remain attached until the 

nematode molts or the stylet is used to puncture root tissue of a new host plant. During feeding, 

dagger nematodes secrete digestive enzymes into the cytoplasm of root cells, a process that can 

cause attached viral particles to dislodge and be transmitted directly into the new host cell 

(Taylor and Robertson, 1970). The virus is then free to replicate and eventually translocate 

throughout the plant. These viral particles can be acquired by subsequent nematode feeding, 

allowing the cycle of transmission to continue. The potential for dagger nematodes to act as virus 

vectors complicates the issue of nematode damage thresholds. Plants parasitized by virus-free 

dagger nematodes show few symptoms at low to moderate nematode population densities. 

However, nematodes harboring viral particles can fuel the development of serious crop damage. 

A single dagger nematode can transfer TomRSV to a susceptible host plant, and only a few are 

needed to infect multiple new host plants in a matter of weeks (Mountain et al., 1992). Plants are 

rarely infected with TomRSV mechanically, leaving dagger nematodes as the primary mode of 

viral transmission. Elimination of the nematode vector is crucial for controlling the frequency of 

disease.  

 

Nematode management  

Traditional means of nematode management, such as crop rotation, are not always 

appropriate or cost effective for orchard sites. Resistant rootstocks are recommended, however, 

the use of rootstocks, as well as rootstock selection is based heavily on individual orchard 

situations (Esmenjaud et al., 1994; Fernández et al, 1994; McKenry et al., 2001). Not all 

cultivars are compatible with resistant rootstocks and different rootstocks offer varied resistance 

to nematode species, as well as other plant pathogens (Nyczepir, 1991). With the escalated 

concern for human and environmental safety, the ability to manage nematode populations with 

classic chemical nematicides is waning. Few options are available to peach and apple growers, 

and recommendations often involve removal of whole trees and fumigation of fallow land. 

Except for the insecticide spirotetramat, there are presently no chemical nematicides registered 

for application on bearing fruit trees in the state of West Virginia. There remains a clear need for 

novel biological control options that offer reliable control of nematodes within orchard settings, 
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while remaining environmentally benign. As it stands today, a limited number of commercialized 

bionematicides reporting efficacy in nematode control are available for use in various 

agricultural systems. Notable biological agents used as active ingredients within these products 

include Pasteuria spp., Purpureocillium lilacinum, and Bacillus firmus (Kariuki et al., 2006; 

Singh et al; 2013; Keren-Zur et al., 2000). In recent years, the most successful bionematicide, 

based on consumer reports, has been the Bayer CropScience product, VOTiVO, a seed treatment 

utilizing the bacterium B. firmus (Wilson and Jackson, 2013). 

Bacillus firmus 

Bacillus firmus is a member of the genus Bacillus, a diverse group of gram-positive, 

endospore-forming bacteria. Along with the anaerobic group of Clostridia, these aerobic or 

facultative anaerobic organisms make up a large part of the Firmicutes phylum. Species within 

the genus Bacillus are ubiquitous in nature. A large majority of Bacillus spp. are soil-dwelling 

saprophytes, though a few species are known to have medical, agricultural, and industrial 

significance (Turnbull, 1996). B. anthracis and, occasionally, B. cereus are pathogenic to 

humans and other animals, B. thuringiensis-produced crystals are used as a bioinsecticide in 

agriculture, and certain Bacillus species are employed in the industrial production of useful 

organic compounds such as vitamins and proteins (Welkos et al., 1986; Pezard et al., 1991; 

Bottone, 2010; Höfte and Whiteley, 1989; Tang et al., 2004; Bajaj and Manhas, 2012). Bacillus 

spp. have a diverse range of physiological characteristics that allow them to inhabit a variety of 

ecological niches, including those with environmental extremes of high temperature, high pH, 

and high salt (Epstein and Grossowicz, 1969; Nielsen et al., 1995;Ventosa et al., 1989; Turnbull, 

1996). Their endospore-forming capabilities allow them to survive unsuitable conditions for 

hundreds, if not millions, of years (Cano and Borucki, 1995; Errington, 2003). High bacterial 

densities and limited nutrient availability trigger sporulation of Bacillus spp., with each 

vegetative cell producing one dormant endospore capable of surviving UV radiation, extreme 

desiccation, dry and wet heat, and common disinfectants (Sonenshein, 2000; Nicholson et al., 

2000). When endospores sense the return of favorable conditions, they germinate back to their 

vegetative form.  

Because of the diversity of these organisms and the unique characteristics associated with 

them, Bacillus spp. have been subject to a great deal of research in the past several decades. They 

possess unique qualities that make them desirable for the biological control of nuisance 
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organisms such as pathogenic bacteria and plant-parasitic nematodes, and their endospore 

survival strategy allows them to persist over time within desiccated soil, a feature that may be 

exploited for convenient packaging and distribution as pesticides. Bacillus spp. produce an array 

of secondary metabolites that perform a variety of biological functions, including antagonistic 

activities on neighboring microorganisms and the promotion of symbiotic relationships within 

the rhizosphere (Sansinenea and Ortiz, 2001; Chen et al., 2008; Leelasuphakul et al., 2008). B. 

subtilis, for example, is able to produce over two dozen antibiotics of medical and agricultural 

significance, and devotes nearly 5% of its genome to the cause (Stein, 2005). B. thuringiensis 

produces crystals during sporulation that have insecticidal properties, a trait that has been applied 

to the genetic modification of agricultural crops (Schnepf et al., 1998). Wei et al. (2003) revealed 

that the toxicity of these proteins extends to the phylum Nematoda. The relatively new discovery 

of a nematicidal strain of B. firmus (I-1582) has prompted numerous investigations into the use 

of this organism to suppress agriculturally destructive nematode populations (Peleg and 

Feldman, 1996).  

The nematicidal strain of B. firmus (I-1582) was first isolated from cultivated soils of 

Israel, quickly becoming the active biological agent of a novel bionematicide, BioNem-WP. 

Under laboratory conditions, Keren-Zur et al. (2000) demonstrated that applications of the B. 

firmus-based product to Meloidogyne javanica-infested soil caused a rapid decline in juvenile 

viability within a period of 3 to 5 days, and further maintained low root-knot nematode densities 

of less than 1 juvenile per gram of soil throughout the remainder of the experiment’s 20-day 

period. Field trials incorporating B. firmus into root-knot infested sandy soils subsequently 

planted with tomato seedlings demonstrated that the product reduced the galling index of roots 

from 4-5 (an index representing severe galling) in the untreated controls, down to an index of 1-2 

(an index representing mild galling), for 50 and 85 days after planting. This novel research 

provided strong evidence that the use of Bacillus firmus-based nematicides for agricultural 

purposes was worth further investigation.  

Giannakou et al. (2003) used greenhouses infested with Meloidogyne spp. to compare the 

efficacy of BioNem-WP in controlling root-knot infection of cucumber plants to standard 

fumigant and nonfumigant nematicides and the well-known biocontrol agent Pasteuria 

penetrans. The study demonstrated that, though B. firmus was less effective as a nematicide than 

1,3-dichloropropene, dazomet, and oxamyl, nematode populations were significantly lowered 
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with band applications of B. firmus compared with the untreated control, and even further 

reduced with broadcast applications. The study also showed that B. firmus was more effective at 

reducing root-knot nematode populations than P. penetrans and could suppress nematode 

population densities throughout the growing season, an aspect that can drastically reduce 

nematicide application costs for growers. Through a series of in-vitro and greenhouse trials, 

Terefe et al. (2009) presented compelling evidence that BioNem-WP was successful in 

controlling root-knot populations. Applications of BioNem-WP in concentrations varying from 

0.5 to 2.5% (Bionem concentrations produced by adding 0.5, 1, 1.5, 2, and 2.5 grams of Bionem-

WP powder formulation to 99.5, 99, 98.5, 98, and 97.5 mL of sterile water respectively) on 

Meloidogyne incognita egg masses in-vitro, inhibited egg hatching 98-100% by 3 days after 

treatment, while hatching in the control continued up to day 24. Applications of 2.5-3.0% 

BioNem-WP to root knot juveniles in-vitro, resulted in 100% inhibition of motility. BioNem-WP 

applied to tomato seedlings planted in sterilized soil reduced gall formation up to 91% and 

increased plant height and biomass. Mendoza and Sikora (2009) considered the efficacy of B. 

firmus alone and in conjunction with Fusarium oxysporum as a means of controlling Radopholus 

similis in banana production. They determined that B. firmus significantly reduced R. similis 

penetration into banana roots, while the combination of B. firmus and F. oxysporum produced a 

synergistic effect to lower nematode populations as well as increase shoot fresh weight greater 

than that of the untreated control.	     

 

Mode of action 

Though products utilizing Bacillus firmus as an active ingredient have been found 

effective at reducing nematode densities in the aforementioned studies, conflicting information 

exists about the biology, ecology, and mode of action of B. firmus when used as a nematicide 

(Wilson and Jackson, 2013). Bionematicidal agents typically offer control of nematode 

populations by expressing direct toxicity, initiating plant host defense, or interfering with 

nematode-host interactions. From early studies of the nematicidal strain of B. firmus, it was 

proposed that the organism’s mode of action involves the production of toxic secondary 

metabolites. The BioNem-WP patent application filed April 16, 1996 stated that “…proteolytic 

and collagenolytic activities play an important role in control of nematodes, either by direct 

effect on the cuticle of nematode, or indirectly by increasing the release of ammonia which is 
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known to be toxic to nematodes due to protein breakdown…” (Patent US6406690, Peleg and 

Feldman, 1996). The study illustrated that higher levels of proteolytic and collagenolytic activity 

were expressed by B. firmus compared to other bacterial species examined. It is well established 

that many species within the genus Bacillus are able to produce various metabolites and 

extracellular enzymes that have a range of antimicrobial properties. Certain strains of B. firmus 

have been shown to generate antibiotics that are lethal to other bacteria such as Escherichia coli 

and species of Staphylococcus (Adamu et al., 2009). This antibiotic production may explain the 

organism’s ability to suppress nematode densities. Mendoza et al. (2008) demonstrated the 

production of nematicidal bioactive metabolites by B. firmus in in-vitro tests on mobile stages of 

R. similis, M. incognita, and Ditylenchus dipsaci nematodes. Three-day-old cultures of B. firmus 

grown in trypticase soy broth (TSB) were centrifuged to separate bacterial cells from TSB and 

the supernatant was passed through 0.45 and 0.22-µm Millipore filters to remove any remaining 

cells. Observable paralysis and mortality were seen after root-knot, stem, and burrowing 

nematodes were incubated in 15-100% concentrations of bacteria-free culture filtrates. Culture 

filtrates at 100% concentration led to 25, 33, and 11% mortality of R. similis, M. incognita, and 

D. dipsaci, respectively. Suspensions consisting of 100% concentrations of bacteria-free culture 

filtrates applied to M. incognita egg masses resulted in significantly reduced hatching compared 

with the untreated control. Nematode mortality and hatching inhibition in the absence of 

bacterial cells demonstrates that B. firmus production of bioactive compounds is directly toxic to 

nematodes.  

Bacillus firmus is currently marketed by Bayer CropScience and sold as a nematicide 

seed treatment (VOTiVO). The proposed mode of action associated with the B. firmus in these 

products involves bacterial colonization of young roots that create a “living barrier” to promote 

healthy root growth and reduce nematode damage. It is reported that B. firmus competes with 

nematodes for space along the root system and interferes with nematode host finding ability by 

consuming plant root exudates. Chemotaxis is an important factor in nematode host finding that 

involves the interaction of chemotactic signals with cephalic amphids of the nematode. 

Chemotactic factors accumulate at receptor sites within the amphids and lead to the orientation 

of the nematode either towards the source of a chemoattractant or away from the source of a 

chemorepellent (Zuckerman and Jansson, 1984). As nematodes encounter attractive root 

exudates within their environment, they are drawn towards the suitable host plant’s roots. 
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Altering these chemical signals can prevent nematodes from finding food or even repel 

nematodes from their food source. 

The relationship between rhizobacteria and plant roots is known to have a variety of 

positive effects on root development, such as boosting host plant defenses, promoting plant 

growth, and altering plant root exudates, all of which are a potential hindrance to nematode 

parasitic behavior (Sikora et al, 2007). Diaz et al. (2009) demonstrated that inoculating roots of 

Eucalyptus globulus with naturally associated rhizobacteria can stimulate plant rooting, fibrosity 

and, biomass. The study showed that inoculating soil with various strains of rhizobacteria 

successfully increased E. globulus plant growth compared to untreated controls. A strain of B. 

firmus specifically isolated from the study, increased rooting by 43.8%. Thus, the application of 

B. firmus (I-1582) to plants may prove to be a beneficial approach to promoting plant growth as 

well. Dadwal and Jamaluddin (2010) demonstrated the ability to suppress the occurrence of post 

emergence root rot of four forest species. A 150-cc aliquot of an 11-day old B. firmus culture 

(diluted 10 times with sterilized water) was applied to soils inoculated with a pathogenic 

Fusarium oxysporum spore suspension (106 spores/mL) and planted with Acacia nilotica, Albizia 

procero, Albizia lebbek, and Dalbergia sissoo seedlings. After a 30-day period, seedlings treated 

with B. firmus showed no evidence of root rot while 13-28% of the untreated seedlings showed 

signs of infection. The study demonstrates that B. firmus’s association with plant roots can have 

an antagonistic effect on plant pathogenic organisms, an effect that may extend to plant-parasitic 

nematodes.  

 

Rationale  

Control of plant-parasitic nematodes in agricultural systems has proven to be an 

increasingly daunting task, further complicated by government restrictions on available chemical 

nematicides as well as the unreliability of available biological controls. Many growers, especially 

those involved in organic crop and tree fruit production, are left with little insight into how to 

manage problematic nematodes infestations. Presently, nematicide research aims largely at 

exploiting the nematicidal properties of soil-dwelling bacteria and fungi to produce 

environmentally friendly bionematicide options. Bionematicide products utilizing B. firmus as 

the active ingredient have appealed to growers in recent years, yet information regarding the 

bacterium’s ability to control different nematode species is limited. Research has focused, to a 
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large extent, on the effects of B. firmus applications on root-knot nematodes, namely M. 

incognita and M. javanica. Several studies have demonstrated the superior ability of B. firmus to 

suppress nematode motility, egg hatching, root penetration, and galling on a variety of host 

plants, though the organism’s specific nematicidal mode of action remains disputed (Giannakou 

et al., 2003; Mendoza et al., 2008; Castillo et al., 2013; Crow, 2014). Understanding the direct 

consequences of B. firmus applications on nematode infested soils will confirm the value of this 

novel bionematicide for nematode control. 

With the ability to transmit viruses such as TomRSV, dagger nematodes pose a huge 

threat to the commercial fruit industry, specifically peach production, in West Virginia, while 

root-knot nematodes remain a major pest of agricultural crops worldwide. Nematologists are 

limited in advice available to growers with serious nematode problems, leaving orchards 

vulnerable to further nematode damage. Current gaps in research on the use of B. firmus as a 

bionematicide limit the amount of information available for growers to make informed decisions 

regarding B. firmus applications. The nematicidal potential of B. firmus has only been researched 

and reported for a relatively small number of nematode species. By examining the effects of B. 

firmus on dagger and root-knot nematode species indigenous to West Virginia, this study aims at 

providing information on the efficacy of B. firmus as a bionematicide for fruit bearing trees, such 

as peaches and apples, in the Mid-Atlantic region of the United States.  

Past studies reporting the ability of B. firmus to control root-knot nematode populations 

have considered the interaction between the bacterium and tropical root-knot nematode species 

such as Meloidogyne incognita and M. javanica, therefore, little is known about the nematicidal 

effects of B. firmus on the temperate root-knot nematode species, M. hapla. It is also unclear 

whether B. firmus limits root-knot nematode infection through the production of toxic chemicals 

that are lethal to the nematodes, or through interactions with host plant roots that alter root-knot 

nematode parasitic behavior. In this study, various direct toxicity and attraction assays were 

performed to determine how the presence of B. firmus impacts the mortality and behavior of M. 

hapla. Likewise, little is known about the use of B. firmus as an effective bionematicide for the 

control of Xiphinema americanum, or whether the mode of action employed by B. firmus to 

control X. americanum is similar to that with Meloidogyne.  

The project documented in this thesis consisted of two studies, both of which involved 

determining the effect of B. firmus on species of plant-parasitic nematodes indigenous to West 
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Virginia orchards. The first study (Chapter 2) had two objectives: 1) to determine if B. firmus is 

an effective bionematicide for the control of Meloidogyne hapla; and 2) to verify the mode of 

action employed by B. firmus to control M. hapla J2s. The second study (Chapter 3) had similar 

objectives, but aimed to determine the interaction of B. firmus with Xiphinema americanum. In 

both studies, direct toxicity and attraction assays were performed to determine how the presence 

of B. firmus affects the mortality and behavior of each nematode species.
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CHAPTER 2 

EFFICACY AND MODE OF ACTION OF BACILLUS FIRMUS AS A BIONEMATICIDE 

FOR THE NORTHERN ROOT-KNOT NEMATODE, MELOIDOGYNE HAPLA1 

 

Introduction 

Root-knot nematodes of the genus Meloidogyne are sedentary endoparasites that infect a 

variety of host plants, many of which are important agricultural crops. The infective larval stage 

(J2) of these nematodes is attracted to various volatile and soluble root exudates released into the 

soil (Linford, 1939; Perry, 2005). The attractiveness of these chemicals prompts migration 

towards the host plant and penetration of the roots near the zone of elongation. Once inside the 

roots, female root-knot nematodes remain sedentary, molting into a mature, reproductive adult 

and feeding on five-seven multinucleated giant cells that develop in response to nematode 

salivary secretions (Favery et al., 2016). Each mature female may produce more than 1000 eggs 

within their lifetime.   

Root-knot nematode infection induces gall formation in host tissues and disrupts the flow of 

nutrients, causing mild to severe damage and potentially death to host plants. It is estimated that 

plant-parasitic nematodes are responsible for billions of dollars in crop damage annually 

(Handoo, 1998). Management of root-knot nematode populations often involves the combination 

of several pest management practices, though some options can be inappropriate and ineffective 

for situations such as fruit tree production. In these cases, chemical nematicides remain the best 

defense. In recent years, however, many chemical nematicides have been banned or are actively 

being phased out due to harmful environmental effects and human and animal toxicity. With the 

exception of the insecticide spirotetramat (Movento), there are presently no chemical 

nematicides registered for use on bearing fruit trees in the United States. Thus, environmentally 

benign options such as biological controls are needed.  

Various soil dwelling bacteria have demonstrated success in controlling root-knot nematode 

populations. These antagonistic organisms employ different methods, such as direct toxicity and 

disrupting host finding ability, to limit the severity of nematode infection within plants. Bacillus 

firmus, a gram-positive endospore-forming bacterium is the active ingredient in a nematicide 

currently marketed by Bayer CropScience. This organism has been shown to be effective at 

reducing gall formation and egg hatch, and increasing mortality of root-knot nematodes. Current 
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literature available on the efficacy of B. firmus is limited to the effects seen on tropical root-knot 

nematode species, such as M. javanica and M. incognita, therefore, little is known about the 

bionematicidal effects of B. firmus on temperate Meloidogyne species such as M. hapla. In 

addition, the bacterium’s nematicidal mode of action remains uncertain. Understanding B. 

firmus’s antagonistic relationship towards M. hapla can help establish more effective treatment 

plans for growers facing root-knot nematode infestations in temperate climates, such as those 

located in the state of West Virginia. 

Peach and apple production is a multi-million dollar business in West Virginia and other 

mid-Atlantic states (USDA, 2015), though growers facing M. hapla infestations have few 

options short of chemical intervention. The goal of this study was to determine if B. firmus has 

potential for controlling infection by the northern root-knot nematode M. hapla, and to elucidate 

a nematicidal mode of action for the bacterium.  

 

Materials and methods 

Bacillus firmus 

A research grade formulation containing a minimum of 1.0 X 1011 CFU/gram of Bacillus 

firmus (I-1582) provided by Bayer CropScience was used in this study. A Bacillus isolate from 

this formulation (named BF1) was selected and the identity was confirmed using a range of 

morphological and biochemical characteristics analogous to B. firmus (Appendix 1). Later, 

rRNA gene analysis of the BF1 isolate resulted in 100% identity with Bacillus cereus, Bacillus 

thuringiensis, and Bacillus anthracis and 93% identity with Bacillus firmus (Appendix 1). For 

the following experiments, the isolated BF1 culture is referred to as B. firmus. It was grown in 

100 mL of TSB at 28oC for 24 hours to produce a concentration of approximately 107 CFU/mL. 

The day-old culture was centrifuged at 5000 rpm for 20 minutes to separate bacterial cells and 

TSB. The supernatant was removed and the B. firmus cells were re-suspended in 100 mL of 

sterile soil extract (SSE).  

 

Sterile soil extract (SSE) 

Sterile soil extract (SSE) was used as the control for all experiments in this study. SSE 

was used in lieu of sterile distilled water and TSB based on preliminary results that exhibited a 

larger nematode mortality rate for both cell-free sterile distilled water and cell-free TSB when 
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compared to cell-free SSE. SSE was prepared by combining 1000 g of a Tilsit silt loam soil 

obtained from the West Virginia University Organic Farm in 1 L of tap water. The soil and water 

were mixed thoroughly then allowed to settle for 24 hours. The water was decanted and 

autoclaved twice for 90 minutes each time.  

 

Meloidogyne hapla  

Root-knot nematodes used for this experiment were extracted from a pure culture (#16) 

of M. hapla isolated from strawberry from Monongalia County, WV. M. hapla was maintained 

on tomato roots as part of the nematode culture collection at West Virginia University. Perineal 

patterns were used to verify the M. hapla culture. Tomato roots were washed free of debris and 

eggs were extracted by submerging roots in 1% NaClO and shaking vigorously for 4 minutes. 

The resulting suspension was washed through stacked sieves with 250 and 25µm pore mesh 

(Hussey and Barker, 1973). Nematode eggs were placed in Baermann funnels and 1-5 day old 

J2s were used for the following experiments.    

 

Tomato seedlings 

Rutgers tomato seeds were surface disinfested by washing in a 70% ethanol solution for 2 

minutes, then a 3% NaOCl solution for 10 minutes and immediately rinsing with sterile distilled 

water three times. Seeds were transferred to 0.75% trypticase soy agar (TSA) plates and 

incubated at 28oC for 5 days or until roots were approximately 2-4 cm. Seedlings that showed 

signs of microbial contamination were discarded.  

 

Experiment 1. Bacillus firmus direct toxicity assay  

To assess whether B. firmus was directly toxic to nematodes, we tested the hypothesis 

that M. hapla survival differed among various concentrations of B. firmus in solution. A 107 

CFU/mL concentration of B. firmus in SSE was serially diluted to produce seven B. firmus 

concentrations from approximately 101 to 107 CFU/mL. Bacterial concentrations were 

enumerated using serial dilution and spread plating. Two mL of each bacterial concentration 

were added to 35-mm plastic dishes and uniformly spread throughout the plates. Plates with cell-

free SSE were used as a control. Approximately 10 M. hapla J2s were added to each dish and the 

plates were incubated in darkness at room temperature (23±2oC). Nematode mortality was 
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determined at 24, 48, and 72 hours. Nonmotile nematodes were probed with a fine needle and 

those that did not respond were considered dead. Four replications were used for each B. firmus 

concentration and the entire experiment was conducted three times.  

 

Experiment 2. Filter paper attraction assay 

To determine if the movement of root-knot nematodes is affected by the presence of B. 

firmus, we tested the hypothesis that the number of M. hapla J2s that accumulate near B. firmus 

will differ from that accumulating near the SSE control. Sterile filter paper disks (12.7 mm dia) 

were soaked in either a 107 CFU/mL concentration of B. firmus in SSE or cell-free SSE. 

Approximately 2 mL of a 23% Pluronic gel medium was pipetted onto 75 X 25-mm glass 

microscope slides, covering the entire surface. The slides were partitioned into three labeled 

sections: B. firmus (32.5 X 25 mm), center (10 X 25 mm), and SSE (32.5 X 25 mm). Treated 

filter paper disks were immediately placed towards the edges of either the B. firmus or SSE 

sections of the slides, approximately 40 mm apart. No filter paper disks were placed in the 

centers. The slides were placed in petri dishes with a dampened paper towel and incubated at 

28oC for 1 hour. After incubation, approximately 150 M. hapla J2s were added to the center of 

each slide (Figure 1). The slides with nematodes were again incubated in darkness at room 

temperature (23±2oC). The number of nematodes in each section of the slide was counted at 1, 2, 

4 and 24 hours post inoculation. The experiment had eight replicates.  

 

Experiment 3. Tomato seedling attraction assay 

To determine if the migration of M. hapla towards host plant roots is altered by the 

presence of B. firmus, we tested the hypothesis that a smaller number of M. hapla J2s will 

accumulate near B. firmus-treated roots compared with SSE-treated roots. The roots of surface 

disinfested tomato seedlings were submerged in either a 107 CFU/mL concentration of B. firmus 

in SSE or cell-free SSE. Approximately 2 mL of a 23% Pluronic gel medium was pipetted onto 

75 X 25-mm glass microscope slides, covering the entire surface. The slides were partitioned 

into three labeled sections: B. firmus (32.5 X 25 mm), center (10 X 25 mm), and SSE (32.5 X 25 

mm). One tomato seedling from each treatment was immediately placed towards the edge of the 

appropriate section on the slides approximately 50 mm apart. No tomato seedlings were placed 

in the centers. The slides were placed in petri dishes with a dampened paper towel and incubated 
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at 28oC for 1 hour. After incubation, approximately 150 M. hapla J2s were added to the center of 

each slide and the slides were stored in darkness at room temperature (23±2oC). The nematodes 

in each section of the slide were counted at 1, 2, 4 and 24 hours. The experiment had five 

replicates.  

 

Experiment 4. In-vitro infection assay 

To determine if root penetration by M. hapla was influenced by the presence of B. firmus, 

we tested the hypothesis that fewer M. hapla J2s will successfully penetrate B. firmus-treated 

roots compared with SSE-treated roots. Tomato seedling roots were submerged in either a 107 

CFU/mL concentration of B. firmus in SSE or cell-free SSE. Approximately 2 mL of a 23% 

Pluronic gel medium was pipetted onto 75 X 25-mm glass microscope slides, covering the entire 

surface. One seedling of either the B. firmus treatment or the SSE treatment was added to each 

slide. Slides were placed in petri dishes with a dampened paper towel and incubated at 28oC for 1 

hour. After incubation, approximately 150 M. hapla J2s were added to each slide close to the 

root tips. The slides were incubated in darkness at room temperature (23±2oC). At 48 hours post 

inoculation, each tomato seedling was removed from the gel medium and the roots were stained 

by bleaching in a 1.5% NaOCl solution for 4 minutes, rinsing with distilled water, and boiling 

with acid fuchsin stain for 30 seconds (Byrd et al., 1983). J2s that had successfully penetrated the 

roots were counted. Ten replications were used for each treatment.  

 

Experiment 5. In-sand attraction assay (5-day) 

To determine if root-knot infection in tomato roots in sand is disrupted by the presence of 

B. firmus, we tested the hypothesis that fewer M. hapla J2s will successfully penetrate the roots 

of B. firmus-treated roots compared with SSE-treated roots. Tomato seedling roots were 

submerged in either a 107 CFU/mL concentration of B. firmus in SSE or cell-free SSE. Two 

tomato seedlings, one of each treatment, were planted on either side of a beaker (approximately 

35 mm apart) containing 50 g of sterile sand with a 10% moisture content (approximately field 

capacity) (Figure 2). The tomato seedlings were left on a laboratory bench top under lights for 1 

day before being inoculated with approximately 500 M. hapla J2s in the center of each beaker. 

The plants were left on the bench for an additional 5 days receiving 16 hours of light over a 24-

hour period. The seedlings were then removed from the sand, gently washed free of debris and 
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the roots were stained. The number of nematodes that successfully penetrated the roots was 

determined. Ten replicates were used for each treatment.  

 

Experiment 6. In-sand reproduction assay (40-day) 

To determine if B. firmus can decrease the severity of M. hapla infection in tomato roots, 

we tested the hypothesis that B. firmus-treated roots will contain fewer M. hapla females and 

eggs per gram of root compared with SSE-treated root. Tomato seedling roots were submerged 

in either a 107 CFU/mL concentration of B. firmus in SSE or cell-free SSE. Two seedlings, one 

from each treatment, were planted on either side of a beaker (approximately 35 mm apart) 

containing 50 g of sterile sand with a 10% moisture content (approximately field capacity). The 

seedlings were left on a laboratory bench top under lights for 1 day before being inoculated with 

approximately 500 M. hapla J2s in the center of each beaker. After 5 days, the seedlings were 

separated and transplanted into individual beakers containing 500 g of sterile sand. The plants 

were left on the bench top at room temperature (23±2oC) receiving 16 hours of light over a 24-

hour period and fertilizer every 3 days. After 40 days the plants were removed from their 

beakers, the roots were washed free of debris, and M. hapla eggs were extracted and counted. 

Roots were stained with acid fuchsin as described in the infection assay above and the number of 

visible females was determined. Shoot weight, dry shoot weight, and root weight were also 

recorded. The experiment was conducted once with 20 replicates per treatment.  

 

Data Analysis 

All data were analyzed using JMP and SAS software (JMP®, Version Pro 11, SAS 

Institute Inc., Cary, NC, Copyright ©2013; SAS®, Version 9.3, SAS Institute Inc., Cary, NC, 

Copyright ©2002-2010). The significance criterion (alpha) for all tests was 0.05 unless otherwise 

indicated. 

 
Results 

Experiment 1. B. firmus direct toxicity assay  

As the concentration of B. firmus increased from cell-free to approximately 107 CFU/ 

mL, plates became increasingly cloudy and visibility was impacted by the bacterial composition. 

Nematodes exposed to higher concentrations of B. firmus, specifically the two highest 
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concentrations of approximately 107 and 106 CFU/ mL were typically less active and required 

probing to verify living status more often than J2s in cell-free SSE. Due to the significant 

negatively skewed distribution, data were analyzed using a Kruskal-Wallis test by ranks and 

treatment means were compared with the control using the Steel ranks test. Differences among 

treatments were not statistically significant at 24 hours (P = 0.29) but by 48 hours there was a 

significant difference in M. hapla survival in dishes with 107 CFU/mL compared to the control 

(P = 0.02). Exposure to 107 CFU/mL of B. firmus yielded a 15% decrease in the proportion of 

living nematodes by 72 hours (Figure 2.3) compared to the control (P < 0.01).  

 

Experiments 2 and 3. Attraction assays 

 Nematode movement from the center of each slide was observed within the first hour, 

though 50% or more of the nematodes remained in the center throughout the length of the 

experiment. Most nematode movement occurred in the direction of the SSE control for both filter 

paper and tomato seedling attraction assays. Tracks made by nematodes moving along the 

surface of the Pluronic gel medium were visible but were rarely seen in the B. firmus section of 

slides. Data were analyzed using a repeated measures ANOVA with irregular spacing (due to 

unequally spaced time points), using spatial Gaussian covariance structure. Time was considered 

the covariate. The attraction assays using filter paper showed a significant treatment effect over 

time (P < 0.01, Figure 2.4). After 24 hours, 16% of motile J2s were on the B. firmus portion of 

the slides compared to 93% of motile J2s at the SSE control. Attraction assays using tomato 

seedlings were similar with 29% of motile J2s on the B. firmus portion of the slides compared to 

71% at the SSE control (P = 0.01, Figure 2.5).  

 

Experiment 4. In-vitro infection assay 

 By 48 hours after nematodes were introduced to tomato roots on Pluronic gel, stained J2s 

within roots were clearly visible using a stereoscopic microscope. Data were analyzed using the 

nonparametric Kruskal-Wallis test by ranks because the distribution was not normal. Root 

infection by J2s was significantly greater in the control treatment group (P = 0.01) than roots 

treated with a B. firmus concentration of 107 CFU/mL (Figure 2.6). On average, 20 J2s 

successfully penetrated SSE-treated roots compared with three J2s in B. firmus-treated roots.  
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Experiment 5. In-sand attraction assay 5-day 

Root-knot nematode infection was apparent in tomato roots of both treatment groups at 5 

days post inoculation. Data were analyzed using a matched pairs t-test analysis. Roots treated 

with a 107 CFU/mL concentration of B. firmus had fewer J2s than the control (P = 0.09, Figure 

2.7). On average, 79 J2s successfully penetrated SSE-treated roots compared with 58 J2s in B. 

firmus-treated roots.  

 

Experiment 6. In-pot reproduction assay 40-day 

 At the end of the 40-day trial, tomato plants in both treatment groups showed typical root 

galling. Data (females per plant and eggs per female) were analyzed using a matched pairs t-test 

analysis. A slightly larger number of female root-knot nematodes were associated with plants 

from the SSE control group (P = 0.05, figure 2.8). An average of 54 females were found within 

SSE roots versus an average of 43 females found within B. firmus roots. The number of eggs 

produced per M. hapla female did not differ significantly between the B. firmus treatment and 

the control (P = 0.22, Figures 2.9). Each M. hapla female produced an average of 880 eggs 

within B. firmus-treated roots and 704 eggs within SSE-treated roots. 

 

Discussion 
 

These results indicate that B. firmus has the potential to affect infective M. hapla 

nematodes in a biological control context. Exposing M. hapla J2s to a B. firmus concentration of 

107 CFU/mL resulted in a 15% decrease in living nematodes after 72 hours. Observed nematode 

mortality may be explained by the production of lethal secondary metabolites by B. firmus. 

Species within the genus Bacillus are known to produce secondary metabolites that have an array 

of functions, including those with antimicrobial properties (Niu et al., 2006; Zhang et al., 2012). 

Yilmaz et al. (2006) showed that 29 tested Bacillus spp. strains were inhibitory to the growth of 

both gram-negative and gram-positive bacteria. B. thuringiensis has been a successful 

bioinsecticide for over half a century, and produces toxic crystal proteins that form pores within 

the digestive tract of insects. Wei et al. (2003) revealed that the toxicity of these proteins extends 

to the phylum Nematoda. The patent submitted for the use of B. firmus as a bionematicide 

asserted that “...proteolytic and collagenolytic activities play an important role in control of 
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nematodes...” (Patent US6406690, Peleg and Feldman, 1996). Terefe et al. (2009) reported that 

M. incognita exposed to 2.5 and 3% concentrations of the B. firmus product, BioNem WP, 

resulted in 100% nematode paralysis after 24 hours, and Mendoza et al. (2008) showed that 

100% cultural filtrates of B. firmus caused 33% mortality of M. incognita after 24 hours of 

exposure. Both studies reported higher nematode mortality after exposure to B. firmus culture 

filtrates than the 15% nematode mortality observed in the present study. Furthermore, the lethal 

properties of B. firmus were seen only when the bacterial concentration reached 107 CFU/mL, an 

indication that the potency of any secondary metabolites produced is not very high. These 

compound would likely be diluted within the rhizosphere and have little effect on nematodes 

populations in an orchard environment.  

Though the statistically significant nematode mortality produced by 107 B. firmus 

CFU/ml may be due to the production of toxic secondary metabolites, another explanation is that 

high bacterial densities lead to a decrease in oxygen over time. As the B. firmus concentrations 

were increased from 0-107 CFU/ml, the turbidity of SSE increased, leaving plates with the 

highest B. firmus concentration lined in a thick, cloudy film of bacteria. Such high bacterial 

concentrations likely results in high oxygen consumption which can cause hypoxic or anoxic 

conditions. Nematodes are obligate aerobes that rely solely on diffusion of oxygen from the 

ambient environment, therefore, this lowered oxygen availability can be detrimental. Föll et al. 

(1999) showed that more than 80% of Caenorhabditis elegans, a free-living nematode, will die 

after 72 hours in anoxic conditions and Qiu and Bedding (2000) demonstrated that the ability of 

infective Steinernema carpocapsae juveniles to survive in decreased oxygen conditions is low 

when their available energy supply is limited. In the present study, utilizing an additional 

treatment of cell-free culture filtrates may have confirmed the presence of toxic secondary 

metabolites. Also, whether nematode mortality in the present study was caused by the production 

of toxic chemicals or the limited oxygen availability may have been more conclusive if a steady 

flow of oxygen was provided to plates through the duration of the experiment.  

In-vitro attraction assays comparing M. hapla movement on Pluronic gel in the presence 

of 107 B. firmus CFU/ml and cell-free SSE on filter paper showed a significant difference 

between treatments over time. M. hapla J2s were consistently more inclined to migrate away 

from B. firmus towards cell-free SSE. By 24 hours, a large proportion of nematodes could be 

seen accumulating on the SSE portion of slides. Similar results were seen when B. firmus and 
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cell-free SSE were applied to roots of tomato seedlings, though the observed avoidance of B. 

firmus was not as strong. A suggested nematicidal mode of action for rhizobacteria such as B. 

firmus states that bacterial colonization of roots induces systemic resistance and interferes with a 

plant-parasitic nematode’s ability to find a suitable host (Kloepper et al., 2004). In the present 

study, the presence of B. firmus affected the movement of M. hapla not only when applied to 

tomato roots, but when applied to a non-food source (paper discs) as well. While an influence of 

B. firmus on root exudates cannot be discounted, this observation suggests the production of a 

chemorepellent by B. firmus.  

Chemotaxis is a central feature of nematode food-finding behavior (Linford, 1939; 

Wieser, 1955; Bird, 1959; Troemel et al., 1997; Wang et al., 2009; Reynolds et al., 2011). 

Linford (1939) demonstrated that the ability of Meloidogyne spp. J2s to locate suitable hosts is 

not a random event, but is influenced by the presence of various plant roots, which results in the 

accumulation of nematodes near the zone of elongation. Zhao et al. (2000) further demonstrated 

that exudates from different regions of plant roots can have a positive or negative influence on 

nematodes. While root border cell exudates from various host plants were attractive to M. 

incognita, root tip exudates were repellent. Despite numerous studies on the subject of nematode 

reactions to various chemotactic factors, the specific plant-based chemical signals involved in 

nematode chemotaxis remain largely unexplained. It is likely that the phenomenon is governed 

by complex biochemical mixtures produced by plants and their associated microbiota. Thus, 

overwhelming the system with large quantities of an introduced organism, such as B. firmus, 

could affect these biochemical signals and disrupt nematode host finding. Vos et al. (2011) 

demonstrated this potential with the introduction of mycorrhizal fungi to banana plants. The 

fungi successfully induced nematode resistance in the host when compared to control plants. In 

the present study, the avoidance of M. hapla J2s towards B. firmus regardless of the absence of 

an available food source is an interaction occurring in other bacteria/nematode relationships. 

Höckelmann et al. (2004) demonstrated that cyanobacteria produce various volatile organic 

compounds that function to drive nematodes to and away from their associated biofilms and 

Neidig et al. (2011), showed that Pseudomonas fluorescens produces secondary metabolites that 

act to repel C. elegans.  

To further support the evidence that B. firmus repels root-knot nematodes and interferes 

with nematode host-finding, the present study showed that the presence of B. firmus significantly 
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decreased M. hapla infection of tomato roots on Pluronic gel compared to roots treated with cell-

free SSE. However, when B. firmus and cell-free SSE treatments were applied to tomato 

seedlings for the 5-day and 40-day in-pot attraction assays in sand, no significant treatment effect 

was observed, and tomato roots of both treatments showed varying levels of root-knot nematode 

infection. The inconsistencies between in-vitro and in-pot assays may be a reflection of the 

efficiency at which chemicals diffuse through media of various textures. Though Pluronic gel is 

a useful medium in the study of nematodes, as it mimics the three-dimensional structure of soil, 

the gel texture may alter the diffusion of volatile organic compounds produced by B. firmus 

compared with sand. Volatile organic compounds diffuse through the porous channels within the 

soil matrix (Reynolds et al., 2011) and diffusion gradients of the chemorepellent may be more 

complex in three-dimensional films of moisture around sand grains than in the uniform two-

dimensional gel medium. The coarse texture of sandy soils allows for fast diffusion rates of 

organic compounds, while the same chemicals may persist on Pluronic gel longer, offering an 

extended period of nematode repulsion.  

Bayer CropScience states that their B. firmus product, VOTiVO, “creates a living barrier 

that grows with the roots to extend protection through multiple generations of nematodes.” 

Durham (2013) used a rifampicin-resistant B. firmus mutant strain and demonstrated the 

organism’s ability to colonize the rhizosphere, rhizoplane, and endorhiza of corn, soybean, and 

cotton. Those data, along with the negative association between B. firmus and M. hapla observed 

in-vitro in the present study, indicate the plausibility of the “living barrier” hypothesis, though 

additional in-vitro experiments are needed to determine the specific interactions.  

The present study presents evidence of the biocontrol potential of B. firmus, however, the 

results of these in-vitro and in-pot experiments give little insight into the interactions between B. 

firmus and root-knot nematodes within an orchard setting. Future studies utilizing non-sterilized 

soil collected from peach orchards would help determine if the presence of native 

microorganisms has an effect on the ability of B. firmus to repel nematodes and suppress 

infection as seen in the present study. Attraction assays on peach seedlings as well as orchard 

studies spanning several growing seasons would give a more meaningful assessment on the 

efficacy of utilizing B. firmus as a bionematicide in West Virginia peach orchards. Having a 

better understanding of the complex relationships between nematodes and antagonistic 

organisms, such as the interactions between M. hapla and B. firmus, will ultimately support the 
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development of more effective biological control options and more efficient pest management 

plans for growers.    
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Fig. 2.1. In-vitro attraction assay set-up: B. firmus- and SSE-treated filter paper on opposite ends 

of slides covered in Pluronic gel. 
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Fig. 2.2. In-pot attraction assay set-up: Beakers containing both B. firmus- and SSE-treated 
tomato seedlings on opposite sides.   
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Fig. 2.3. Direct toxicity assay: Proportion of living M. hapla nematodes after 24, 48, and 72 
hours of exposure to different concentrations of B. firmus. Error bars represent standard error of 
the mean. 
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Fig. 2.4. Filter paper attraction assay: Number of M. hapla nematodes observed on the B. firmus 

portion of the slide vs. the SSE portion of the slide over time. The shaded regions represent 

confidence intervals of the slope. 
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Fig. 2.5. Tomato seedling attraction assay: Number of M. hapla nematodes observed on the B. 

firmus portion of the slide vs. the SSE portion of the slide over time. The shaded regions 

represent confidence intervals of the slope.  
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 Fig. 2.6. In-vitro infection assay: The average number of M. hapla nematodes that successfully 

penetrated roots of B. firmus-treated tomato seedlings vs. SSE-treated tomato seedlings. Error 

bars represent standard error of the means. 
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Fig. 2.7. In-sand attraction assay (5-day): The average number of M. hapla nematodes that 

successfully penetrated roots of B. firmus-treated tomato seedlings vs. SSE-treated tomato 

seedlings. Error bars represent standard error of the means. 
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Fig. 2.8. In-sand reproduction assay (40-day): The average number of reproductive M. hapla 

females within the roots of B. firmus-treated tomato seedlings vs. SSE-treated tomato seedlings. 

Error bars represent standard error of the means. 
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Fig. 2.9. In-sand reproduction assay (40-day): The average number of eggs per reproductive M. 

hapla female within the roots of B. firmus-treated tomato seedlings vs. SSE-treated tomato 

seedlings. Error bars represent standard error of the means. 
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CHAPTER 3 

EFFICACY OF BACILLUS FIRMUS AS A BIONEMATICIDE AGAINST XIPHINEMA 

AMERICANUM2 

 

Introduction 

Dagger nematodes of the genus Xiphinema are economically important plant-parasitic 

nematodes that cause damage to a wide range of agricultural crops worldwide. These nematodes 

are ectoparasites that migrate through soil, feeding on young root tips and root hairs of 

susceptible plants with a long, needle-like stylet. High dagger nematode populations can lead to 

significant yield losses and a general decline in plant health, though direct damage related to 

Xiphinema spp. infestation is generally not regarded as an immediate concern for growers. The 

economic importance of dagger nematodes is derived from their ability to transmit different 

nepoviruses (nematode transmitted polyhedral viruses), including tomato ringspot virus 

(TomRSV), tobacco ringspot virus (TRSV), and grapevine fanleaf virus (GFLV), to plants (Forer 

& Stouffer, 1982; McGuire, 1964; Raski & Hewitt, 1960).  

As dagger nematodes feed on the roots of virus-infected plants, viral particles may adhere 

to the stylet and esophageal lumen of the nematode, initiating the potential for viral transmission 

to a new host plant (Taylor & Robertson, 1970). During feeding, the dagger nematode uses its 

stylet to puncture the plant cell wall and secrete salivary enzymes prior to ingesting the cell’s 

cytoplasmic contents. At this time, any retained viral particles may dislodge and infect the new 

host. Viral particles attached to the nematode stylet are shed with each molt but may persist 

within adult worms for several years (Taylor & Raski, 1964; Demangeat et al., 2005). Without 

intervention, the longevity of viral retention and lengthy lifespan of dagger nematodes (2-5 

years) allow for long-term spread of devastating plant diseases. 

Management practices for nepoviruses include the use of resistant rootstocks and control 

of the nematode vector, though reducing Xiphinema spp. population sizes can prove difficult due 

to a wide host range and persistence in fallow soil. Combining several traditional management 

practices, such as fumigation and the use of cover crops, is recommended, however, these 

options are not suited for all agricultural situations, and government restrictions continue to limit 

the use of chemical nematicides. Aside from spirotetramat (Movento), which is primarily an 

insecticide, there are presently no registered chemical nematicides available for application on 
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bearing fruit trees in the US. Pre-plant nematicides and fumigants are available but these will not 

provide control over the life of the orchard. In recent years, focus in nematode management has 

shifted to the use of ubiquitous, soil-dwelling organisms as a means of controlling plant-parasitic 

nematode populations. While a large portion of bionematicide research has focused on 

endoparasites such as Meloidogyne spp., a variety of organisms including Pasteuria penetrans, 

Cunninghamella elegans, Variovorax paradoxus, Pseudomonas pseudoalcaligenes, Bacillus 

mycoides, Bacillus sphaericus, Bacillus thuringiensis, Curtobacterium flaccumfaciens, 

Pseudomonas putida, Pseudomonas alcaligenes, and Pseudomonas viridiflava have been 

reported to decrease dagger nematode population densities and damage (Ciancio, 1995; Galper et 

al., 1991; Aballay et. al., 2012). Bacillus firmus, a gram-positive, endospore-forming bacterium, 

is the active ingredient in a nematicide currently marketed by Bayer CropScience. This organism 

has shown success in controlling populations of several nematode species, namely Meloidogyne 

spp., by direct toxicity and disruption of host-finding ability. Although dagger nematodes are 

listed as key pests controlled by this B. firmus product, its efficacy as a bionematicide against 

species of dagger nematode indigenous to West Virginia peach and apple orchards remains 

unclear.  

Peach and apple production is a valuable industry in West Virginia and other Mid-

Atlantic states, with a combined revenue exceeding 18 million dollars annually in West Virginia 

alone (USDA, 2015). These trees are highly susceptible to dagger nematodes and the spread of 

TomRSV, a virus that leads to development of peach stem pitting (PSP) and apple union necrosis 

diseases (AUND) (Georgi, 1988; Jaffee et al., 1987). The purpose of this study was to determine 

if the bacterium B. firmus is an effective biological control organism against the West Virginia-

native dagger nematode, Xiphinema americanum.  

 

Materials and methods 

Bacillus firmus 

A research grade formulation containing a minimum of 1.0 X 1011 CFU/gram of Bacillus 

firmus (I-1582) provided by Bayer CropScience was used in this study. A Bacillus isolate from 

this formulation (named BF1) was selected and the identity was confirmed using a range of 

morphological and biochemical characteristics analogous to B. firmus (Appendix 1). Later, 

rRNA gene analysis of the BF1 isolate resulted in 100% identity with Bacillus cereus, Bacillus 
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thuringiensis, and Bacillus anthracis and 93% identity with Bacillus firmus (Appendix 1). For 

the following experiments, the isolated BF1 culture is referred to as B. firmus. It was grown in 

100 mL of TSB at 28oC for 24 hours to produce a concentration of approximately 107 CFU/mL. 

The day-old culture was centrifuged at 5000 rpm for 20 minutes to separate bacterial cells and 

TSB. The supernatant was removed and the B. firmus cells were re-suspended in 100 mL of SSE.  

 

Sterile soil extract (SSE) 

Sterile soil extract (SSE) was used as the control for all experiments in this study. SSE 

was used in lieu of sterile distilled water and TSB based on preliminary results that exhibited a 

larger nematode mortality rate for both cell-free sterile distilled water and cell-free TSB when 

compared to cell-free SSE. SSE was prepared by combining 1000 g of a Tilsit silt loam soil 

obtained from the West Virginia University Organic Farm in 1 L of tap water. The soil and water 

were mixed thoroughly then allowed to settle for 24 hours. The water was decanted and 

autoclaved twice for 90 minutes each time.  

 

Xiphinema americanum 

Dagger nematodes were collected from an orchard in Hampshire County, West Virginia 

with a Lehew-Berks Complex soil (channery fine sandy loam, Loamy-skeletal, siliceous, 

semiactive, mesic Typic Dystrudepts) and extracted using a sieving and sucrose-centrifugation 

method. One hundred cm3 of soil was placed in a pitcher, mixed with tap water, and immediately 

poured through a 600-µm-pore mesh sieve to remove large debris. The water was then washed 

through a 38-µm-pore mesh sieve and anything remaining in the sieve was collected in a tube 

and centrifuged at 1000 rpm for 3 minutes. The supernatant was discarded and the nematodes 

were re-suspended in a 60% sucrose solution. The tubes were centrifuged at 1000 rpm for an 

additional 3 minutes. After centrifugation, the sucrose/nematode suspension was washed through 

a 25-µm-pore mesh sieve to collect nematodes. Those resembling dagger nematodes of various 

life stages were picked from the samples and used for the following experiments. Measurements 

of stylet and tail lengths and anal body diameters were taken for species verification (Lamberti 

and Bleve-Zacheo, 1979).  

 

Tomato seedlings 
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Rutgers tomato seeds were surface disinfested by washing in a 70% ethanol solution for 2 

minutes, then a 3% NaOCl solution for 10 minutes and immediately rinsing with sterile distilled 

water three times. Seeds were transferred to 0.75% TSA plates and incubated at 28oC for 5 days 

or until roots were approximately 2-4 cm. Seedlings that showed signs of microbial 

contamination were discarded.  

 

Experiment 1. Bacillus firmus direct toxicity assay 

To determine if various concentrations of B. firmus are directly toxic to X. americanum, 

we tested the hypothesis that survival of X. americanum will be affected by the concentration of 

B. firmus. A 107 CFU/mL concentration of B. firmus in SSE was serially diluted to produce 

seven B. firmus concentrations from approximately 101-107 CFU/mL. Bacterial concentrations 

were enumerated using serial dilution and spread plating. Two mL of each bacterial 

concentration were added to 35-mm plastic dishes and uniformly spread throughout the plates. 

Plates with cell-free SSE were used as a control. Approximately 10 X. americanum nematodes of 

various life stages were added to each dish and the plates were incubated in darkness at room 

temperature (23±2oC). Nematode mortality was determined at 24, 48, and 72 hours. Nonmotile 

nematodes were probed with a fine needle and those that were unresponsive after probing were 

considered dead. Four replications were used for each B. firmus concentration and the entire 

experiment was conducted three times. Data were analyzed using ANOVA and treatment means 

were compared with the control using a nonparametric Kruskal-Wallis test. 

 

Experiment 2. Filter paper attraction assay 

To determine if movement of dagger nematodes is affected by the presence of B. firmus, 

we tested the hypothesis that a smaller portion of X. americanum will accumulate near B. firmus-

treated filter paper compared with SSE-treated filter paper. Sterile filter paper disks (12.7 mm 

dia) were soaked in either a 107 CFU/mL concentration of B. firmus in SSE or cell-free SSE. 

Approximately 2 mL of a 23% Pluronic gel medium were pipetted onto 75 X 25-mm glass 

microscope slides, covering the entire surface. The slides were partitioned into three labeled 

sections: B. firmus (32.5 X 25 mm), center (10 X 25 mm), and SSE (32.5 X 25 mm). Treated 

filter paper disks were immediately placed towards the edges of either the B. firmus or SSE 

sections of the slides, approximately 40 mm apart. No filter paper disks were placed in the 
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centers. The slides were placed in petri dishes with a dampened paper towel and incubated at 

28oC for 1 hour. After incubation, 10-50 X. americanum nematodes of various life stages were 

added to the center of each slide (Figure 3.1). The slides with nematodes were again incubated in 

darkness at room temperature (23±2oC). The number of nematodes in each section of the slide 

was counted at 1, 2, 4, and 24 hours post inoculation. The experiment had eight replicates.  

 

Experiment 3. Tomato seedling attraction assay 

To determine if the migration of X. americanum towards host plant roots is altered by the 

presence of B. firmus, we tested the hypothesis that the number of X. americanum that move 

towards B. firmus-treated tomato roots differs from the number of X. americanum that move 

towards SSE-treated tomato roots. The roots of surface disinfested tomato seedlings were 

submerged in either a 107 CFU/mL concentration of B. firmus in SSE or cell-free SSE. 

Approximately 2 mL of a 23% Pluronic gel medium were pipetted onto 75 X 25-mm glass 

microscope slides, covering the entire surface. The slides were partitioned into three labeled 

sections: B. firmus (32.5 X 25 mm), center (10 X 25 mm), and SSE (32.5 X 25 mm). One tomato 

seedling from each treatment was immediately placed towards the edge of the appropriate 

section on the slides approximately 50 mm apart. No tomato seedlings were placed in the 

centers. The slides were placed in petri dishes with a dampened paper towel and incubated at 

28oC for 1 hour. After incubation, 10-30 X. americanum nematodes of various life stages were 

added to the center of each slide and the slides were stored in darkness at room temperature 

(23±2oC). The number of nematodes in each section of the slide was counted at 1, 2, 4, 24 and 48 

hours. The experiment had five replicates.  

 

Data Analysis 

All data were analyzed using JMP and SAS software (JMP®, Version Pro 11, SAS 

Institute Inc., Cary, NC, Copyright ©2013; SAS®, Version 9.3, SAS Institute Inc., Cary, NC, 

Copyright ©2002-2010). The significance criterion (alpha) for all tests was 0.05 unless otherwise 

indicated. 

 

Results 

Experiment 1. Bacillus firmus direct toxicity assay 



	  

48	  
 

As the concentration of B. firmus increased from cell-free SSE to approximately 107 

CFU/mL, dishes became increasingly cloudy and visibility was impacted by the turbidity of the 

solution. Nematodes exposed to higher concentrations of B. firmus, specifically the two highest 

concentrations of approximately 107 and 106 CFU/ mL were typically less active and required 

probing to verify living status more often than nematodes in cell-free SSE. Juveniles appeared to 

be more affected than adults, however, data were not collected for this observation. Due to a 

significant negatively-skewed distribution, data were analyzed using a Kruskal-Wallis test by 

ranks and treatment means were compared to the control using the Steel ranks test. Differences 

among treatments were not statistically significant at 24 or 48 hours (Figure 3.2). By 72 hours, 

there was a significant increase in the number of nonmotile nematodes in the 107 CFU/mL dishes 

compared to the control (P = 0.03), and the exposure to B. firmus resulted in an 11% decrease in 

the proportion of living nematodes. 

 

Experiment 2. Filter paper attraction assay 

        Nematode movement from the center of each slide was observable within the first hour, 

though approximately 50% of the nematodes did not move from the centers throughout the entire 

length of the experiment. Data were analyzed using a repeated measures ANOVA with irregular 

spacing (due to unequally spaced time points), using spatial Gaussian covariance structure. Time 

was considered the covariate. Attraction assays using filter paper showed a significant treatment 

effect over time. At hours 1, 4, and 24 there were significantly more nematodes on the B. firmus 

end of the slides (P = 0.02, P = 0.01, P = 0.01) respectively. By hour 24, 59% of motile 

nematodes were observed on the B. firmus side compared with 41% on SSE (Figure 3.3). 

 

Experiment 3. Tomato seedling attraction assay 

Data were analyzed using a repeated measures ANOVA with irregular spacing (due to 

unequally spaced time points), using spatial Gaussian covariance structure. Time was considered 

the covariate. No significant differences in the number of dagger nematodes at each treatment 

were seen throughout the length of this experiment, with the exception of hour 2 (P = 0.04), 

when 70% of motile nematodes were observed on the B. firmus end of slides compared to 30% 

of motile nematodes on SSE (Figure 3.4).  

Discussion 
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The results of this study indicate that B. firmus may not be a suitable candidate for the 

biological control of the dagger nematode Xiphinema americanum. Exposure to a B. firmus 

concentration of 107 CFU/mL, the highest concentration used in this study, showed a significant 

decrease in the number of living nematodes by 72 hours, suggesting the production of lethal 

secondary metabolites. Species of Bacillus are well-known for their production of secondary 

metabolites that have an array of properties and functions, including those with nematicidal 

activities. Castaneda-Alarez et al. (2015) demonstrated that cultural filtrates of B. thuringiensis, 

B. megaterium, and B. amyloliquefaciens are capable of killing 54-100% of Xiphinema index 

after 72 hours of exposure. Metabolite and enzyme analysis showed that these Bacillus species 

produce collagenases, proteases and lipases, which may play a role in their nematicidal activity. 

Ramezani Moghaddam et al. (2014) showed that culture filtrates of B. cereus and B. pumilus 

reduced egg hatch and resulted in 72-99% juvenile mortality of Meloidogyne javanica after 48 

hours of exposure. The patent submitted for the use of B. firmus as a bionematicide asserted that 

“...proteolytic and collagenolytic activities play an important role in control of nematodes...” 

(Patent US6406690) (Peleg & Feldman, 1996). Mendoza et al. (2009) showed that 100% 

concentrations of cell-free B. firmus culture filtrates caused 33% mortality of Meloidogyne 

incognita after 24 hours.  

The 11% mortality of X. americanum seen in the present study may be explained by the 

production of secondary metabolites, though this degree of nematode death was only observed 

after exposure to the highest concentration of B. firmus (107 CFU/mL). Durham (2013) showed 

that a rifampicin-resistant B. firmus mutant could maintain population densities of 105, 107, and 

106 CFU/g of root in the rhizosphere of corn, cotton, and soybean, respectively, 6 weeks after 

planting, while population densities of the rhizoplane were measured at 106 CFU/g of root for 

each plant host. Those data suggest that B. firmus may be unable to maintain population densities 

that reflect the highest concentration used in the present study. Furthermore, since the lethal 

properties of B. firmus were observed only when the bacterial concentration reached 107 

CFU/mL, the potency of any secondary metabolites produced may be limited. These compounds 

would likely be diluted within the rhizosphere and have little effect on nematode populations in 

realistic orchard settings. However, if the metabolites suppress nematode movement, the 

nematode may be induced to remain near the source of the metabolite long enough for toxic 

effects to occur.  
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An additional explanation for the significant nematode mortality observed in the present 

study is that high concentrations of bacteria can lead to a decrease in available oxygen over time. 

In the direct toxicity experiment, the increase of B. firmus concentrations from 0 in SSE to 107 

CFU/mL was reflected in the turbidity of the solution within each plate. Thick films of bacteria 

were clearly visible within plates containing high bacterial concentrations. Metabolic activity of 

high concentrations of bacteria can deplete oxygen levels and create hypoxic and anoxic 

conditions. As aerobic organisms that rely solely on the diffusion of oxygen from the ambient 

environment, nematodes can be negatively impacted by oxygen depletion. Kung et al. (1990) 

demonstrated that mortality rates of Steinernema carpocapsae and S. glaseri increase over time 

as oxygen levels are decreased from 20-1%, while Föll et al. (1999) showed that more than 80% 

of Caenorhabditis elegans die after 72 hours in anoxic conditions. Future studies could utilize an 

additional treatment of cell-free culture filtrates to confirm the presence of toxic secondary 

metabolites, as well as supply a steady flow of oxygen to plates to ensure oxygen depletion does 

not occur. 

In-vitro attraction assays comparing X. americanum movement on Pluronic gel in the 

presence of B. firmus and cell-free SSE on filter paper showed a significant treatment effect over 

time. Interestingly, nematodes were observed more often on the B. firmus end of slides compared 

to the SSE control, a contrast to attraction assays observing Meloidogyne hapla movement in the 

presence of B. firmus as discussed in Chapter 2. Chemotaxis is a key component of nematode 

behavior, where various chemical gradients signal the presence of food, potential mates, and 

environmental stressors, prompting nematode movement (Linford, 1939; Wieser, 1955; Bird, 

1959; Simon & Sternberg, 2002; Saeki et al., 2001). Bayer CropScience reports that their B. 

firmus product, VOTiVO, “...creates a living barrier that grows with the roots to extend 

protection through multiple generations of nematodes...” by interfering with the nematode’s 

ability to find host plant roots. The behavior of X. americanum towards B. firmus on filter paper 

observed in the present study, however, indicates the involvement of a chemoattractant produced 

by B. firmus. Because nematodes remained motile and free to migrate within the Pluronic gel 

throughout the length of the experiment, nematode accumulation at B. firmus is more likely a 

result of the continual lure of attractive compound(s) produced by B. firmus rather than the 

presence of chemicals affecting nematode motility. In this case, the addition of B. firmus to roots 

may lead to an accumulation of dagger nematodes near the source of the attractant, though it 
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remains unclear whether this interaction would result in a higher or lower degree of nematode 

parasitism. Aballay et al. (2012) showed that treatment of grapevines with various rhizobacteria 

including B. mycoides, B. sphaericus, and B. thuringiensis significantly reduced feeding damage 

by X. index compared with the untreated control.  

Attraction assays utilizing B. firmus- and SSE-treated tomato seedlings showed no 

significant treatment effect, with the exception of hour two, when more nematodes were 

observed on the B. firmus portion of slides. Again, these data conflict with the behavior of M. 

hapla towards B. firmus-treated tomato seedlings observed in the tomato seedling attraction 

assay discussed in Chapter 2. The lack of significant treatment effect may be explained by small 

nematode sample sizes and the use of an unsuitable host plant. In the present study, 10-30 X. 

americanum nematodes of various life stages were placed on each slide. Throughout the length 

of the experiment, a relatively large portion of these nematodes remained motionless in the 

centers. Larger sample sizes may have compensated for this lack of nematode movement and 

generated more significant results. Tomato seedlings were chosen for use in attraction assays 

based on their ease and speed of germination, however, the parasitic association of Xiphinema 

spp. with tomato is not as strong as with other crops. Offering a more suitable host, such as corn, 

may have initiated a more notable nematode response (Batchelor, 1993).  

The present study presents evidence of the limited potential of B. firmus as a 

bionematicide for the control of X. americanum. In-vitro experiments demonstrated that, 

although B. firmus may produce lethal secondary metabolites, these metabolites have low 

nematicidal activity. Additionally, the production of a chemoattractant may result in the 

accumulation of nematodes at host plant roots.  

The observed difference in behavior of X. americanum seen in the present study and M. 

hapla as discussed in Chapter 2 in the presence of B. firmus is an interesting outcome that 

suggests that the effect of any chemotactic factor produced by B. firmus is species-specific. This 

contrasting behavior between nematode species is an indication that maximum nematode control 

may only be achieved by treating infested soils with a combination of antagonistic organisms. 

Mendoza & Sikora (2009) showed this trend by combining applications of a nonpathogenic 

strain of Fusarium oxysporum (considered to induce resistance within banana plants), and B. 

firmus to soils inoculated with the endoparasitic nematode, Radopholus similis. The combined 
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treatments reduced R. similis densities between 77 and 86% compared to a reduction between 33 

and 43% seen with treatments of F. oxysporum alone.  

While this study gave insight into the interaction of X. americanum and B. firmus in a 

highly controlled setting, little is known about how these interactions translate to the complex 

orchard environment. Additional attraction assays incorporating more suitable host plants, 

preferably peach and apple, and increasing dagger nematode sample sizes would allow for a 

more accurate interpretation of this B. firmus/dagger nematode relationship. The present study 

was useful in facilitating a better understanding of the nematicidal mode of action of B. firmus 

but, ultimately, long-term nematicide trials within orchards, utilizing applications of B. firmus 

throughout several growing seasons should be the future direction of B. firmus efficacy trials. 

Monitoring X. americanum populations, damage, and viral transmission over time would give 

the most meaningful assessment of B. firmus as a bionematicide against X. americanum.  

  



	  

53	  
 

 

 

Fig. 3.1. In-vitro attraction assay set-up: B. firmus and SSE treated filter paper on opposite ends 

of slides covered in Pluronic gel. 
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Fig. 3.2. Direct toxicity assay: Proportion of living X. americanum nematodes after 24, 48, and 

72 hours of exposure to different concentrations of B. firmus. Error bars represent standard error 

of the mean. 
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Fig. 3.3. Filter paper attraction assay: Number of X. americanum nematodes observed on the B. 

firmus portion of the slide vs. the SSE portion of the slide over time. The shaded regions 

represent confidence intervals of the slope. 
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Fig. 3.4. Tomato seedling attraction assay: Number of X. americanum nematodes observed on 

the B. firmus portion of the slide vs. the SSE portion of the slide over time The shaded regions 

represent confidence intervals of the slope. 
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Appendix 1 

Bacillus firmus isolation 1 

A research grade formulation containing a minimum of 1.0 X 1011 CFU/gram of Bacillus 

firmus (I-1582) provided by Bayer CropScience was used to obtain the B. firmus isolate that was 

used in the studies described in this thesis. One gram of the product was placed into a flask 

containing 100 mL of TSB and incubated at 28oC for 24 hours. The culture was then used to 

streak TSA plates for isolation. Plates were incubated at 28oC for 24 hours. Following 

incubation, one main morphological type of colony (Morphotype 1) could be seen covering 

approximately 80-90% of each plate and a secondary morphological type (Morphotype 2) 

covered approximately 10-20% of each plate. Morphotype 1 colonies had a glossy cream-yellow 

coloring with entire-slightly irregular margins. Colony sizes averaged 3-5 mm after 24 hours of 

growth. Morphotype 2 colonies were transparent-cream colored and circular with entire margins. 

Colony sizes averages 1-2 mm after 24 hours of growth. Several colonies of both morphological 

types were chosen for staining and biochemical testing.  

Gram stains showed gram-positive bacillus-shaped cells, 3-5 µm X 1.5-2 µm for both 

morphotypes. Spore stains showed one slightly offset endospore per vegetative cell. Both 

morphotypes displayed similar results for biochemical tests. Positive results included catalase 

production, reduction of nitrate to nitrite, starch hydrolysis, casein and gelatin decomposition, 

and production of acid in glucose and mannitol. Negative tests included oxidase, production of 

acid in lactose, urease, indole, citrate, and Voges-Proskauer. Based on morphology and 

biochemical testing, a Morphotype 1 isolate (BF1) was chosen to be used for the experiments 

described in this thesis. 

 

rRNA gene analysis 1 

 Following the studies described in this thesis, 16S rRNA gene sequencing was performed 

on the BF1 isolate to verify the presence of Bacillus firmus. DNA was extracted from cells and 

universal 16S rRNA bacterial primers Bakt_341F 5'-CCTACGGGNGGCWGCAG-3' and Bakt-

805R 5'-GACTACHVGGGTATCTAATCC-3' were used to amplify a ~450bp portion of the 

gene. PCR products were visualized on a 1% agarose gel under UV light to confirm the presence 

of a ~450bp band. Sanger sequences were generated by Eurofins MWG Operon LLC in 

Louisville, KY. Blasting Sanger sequences in the National Center for Biotechnology Information 
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(NCBI) database resulted in 100% identity with Bacillus cereus, B. thuringiensis, and B. 

anthracis and 93% identity with B. firmus. These results lead to re-isolation from the original 

Bacillus firmus product provided by Bayer CropScience and additional rRNA gene sequencing. 

 

Bacillus firmus isolation 2 

The research grade formulation of Bacillus firmus (I-1582) provided by Bayer 

CropScience as previously mentioned in “Bacillus firmus isolation 1” was used to re-isolate 

Bacillus firmus for species verification. One gram of the product was placed into a flask 

containing 100 mL of TSB and incubated at 28oC for 24 hours. The culture was then used to 

streak TSA plates for isolation. Plates were incubated at 28oC for 24 hours. Again, following 

incubation, one main morphological type of colony (Morphotype 1) could be seen covering 

approximately 80-90% of each plate and a secondary morphological type (Morphotype 2) 

covered approximately 10-20% of each plate. Morphotype 1 colonies had a glossy cream-yellow 

coloring with entire-slightly irregular margins. Colony sizes averaged 3-5 mm after 24 hours of 

growth. Morphotype 2 colonies were transparent-cream colored and circular with entire margins. 

Colony sizes averages 1-2 mm after 24 hours of growth. Six colonies of Morphotype 1 (BF 2-7) 

and three colonies of Morphotype 2 (BF 8-10) were chosen for staining and biochemical testing.  

Gram stains showed gram-positive bacillus-shaped cells, 3-5 µm X 1.5-2 µm for both 

morphotypes. Spore stains showed one slightly offset endospore per vegetative cell. Both 

morphotypes displayed similar results for biochemical tests. Positive results included catalase 

production, reduction of nitrate to nitrite, starch hydrolysis, casein and gelatin decomposition, 

and production of acid in glucose. Negative tests included oxidase, production of acid in lactose, 

urease, indole, citrate, and Voges-Proskauer. Isolates BF3, 9, and 10 tested positive for 

production of acid in mannitol.  

 

rRNA gene analysis 2 

 16S rRNA gene sequencing was performed on the BF1-10 isolates to verify the presence 

of B. firmus. DNA was extracted from cells and universal 16S rRNA bacterial primers 

Bakt_341F 5'-CCTACGGGNGGCWGCAG-3' and Bakt805R 5'-

GACTACHVGGGTATCTAATCC-3' were used to amplify a ~450bp portion of the gene. PCR 

products were visualized on a 1% agarose gel under UV light to confirm the presence of a 
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~450bp band. Sanger sequences were generated by Eurofins MWG Operon LLC in Louisville, 

KY. Blasting BF1-2 sequences in the NCBI database resulted in 100% identity with Bacillus 

cereus, B. thuringiensis, and B. anthracis; BF4-7 resulted in 99% identity with B. cereus, B. 

thuringiensis, and B. anthracis; BF3 resulted in 100% identity with Lysinibacillus; BF9 resulted 

in 100% identity with Bacillus firmus; and BF10 was unidentifiable.  
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