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ABSTRACT 

 

Biometric data is an essential feature employed in testing the performance of any real time 

biometric recognition system prior to its usage. The variations introduced in the match 

performance critically determine the authenticity of the biometric data to be able to be used in an 

everyday scenario for the testing of biometric verification systems. This study in totality aims at 

understanding the impact of data stratification of such a biometric test dataset on the match 

performance of each of its stratum. In order to achieve this goal, the fingerprint dataset of the 

West Virginia University's 2012 BioCOP has been employed which is a part of the many 

multimodal biometric data collection projects that the University has accomplished. This test 

dataset has been initially segmented based on the scanners employed in the process of data 

acquisition to check for the variations in match performance with reference to the acquisition 

device. The secondary stage of data stratification included the creation of stratum based on the 

demographic features of the subjects in the dataset. 

The main objectives this study aims to achieve are: 

 Developing a framework to assess the match score distributions of each stratum. 

 Assessing the match performance of demographic strata in comparison to the total 

dataset.  

 Statistical match performance evaluation using match score statistics. 

Following the generation of genuine and imposter match score distributions, Receiver Operating 

Characteristic Curves (ROC) were plotted to compare the match performance of each 

demographic stratum with respect to the total dataset. The divergence measures Kullback Leibler 

Divergence (KLD) and Jensen Shannon Divergence (JSD) have been calculated which signify 

the amount of variation between the match score distributions of each stratum. With the help of 

these procedures, the task of estimating the effect of data stratification on the match performance 

has been accomplished which serves as a measure of understanding the impact of this fingerprint 

dataset when used for biometric testing purposes. 
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CHAPTER 1 - INTRODUCTION 
 

The science of authenticating the identity of a person based on their physical, chemical or 

biological attributes is referred to as biometrics. Biometrics, or biometric recognition, employs a 

variety of physical or behavioral characteristics such as fingerprints, facial structure, hand 

geometry, iris patterns, signature, gait, palm print, voice and ear shape for establishing an 

individual's identity. In the biometric literature, these characteristics are referred to as traits or 

modalities. However, due to desirable features such as high degree of uniqueness and ease of 

capture, fingerprints have been one of the most extensively used biometric modality. Thanks to 

the usability and reliability of biometric systems based on fingerprints, it is now the main means 

of biometric authentication in numerous applications worldwide. This throws light on the need to 

understand why fingerprint matching is critical. Fingerprints are by and large characterized 

through particular elements called minutiae. Verification process using a probe and a gallery of 

fingerprint images require the matching of the minutiae in a probe image against the minutiae of 

other fingerprints in the gallery. Hence, fingerprint matching is a key process in biometric 

verification. 

 

Human age, gender and ethnicity are valuable demographic information about a population. 

These measures are also considered important soft biometric traits for human recognition or 

search. In a study, Jonathan Philips et al [1] documented the effect of racial and gender 

demographics on the accuracy of algorithms that match identity in pairs of face images. This 

study shows that identity match accuracy differs substantially when the non-match identity 

population were varied by race. The results obtained indicate the importance of the demographic 

strata of the facial dataset in predicting the accuracy of the face recognition algorithm. According 

to Mumtaz Kamala and Fahad Al- Harby [2], the effects of gender differences in the acceptance 

of fingerprint biometric systems is highly significant. This study included 306 Saudi participants 

who were involved in a large scale experiment, consisting of men and women between the ages 

of 18 and 55. This experiment also included the testing of a fingerprint authentication system in 

order to understand its response to the difference in the data employed. Thomas Bergmuiller et al 

[3] have proposed a method that investigates the influence of sensor ageing on iris recognition by 
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simulative ageing of the participants of an iris test database. This study also reveals, how the iris 

dataset has impacted the sensor performance over a period of 4 years. 

 

The research studies discussed above clearly indicate a prominent need to understand how the 

different strata of data of a biometric modality could impact the overall matching results which is 

the motivation behind this research.  

1.1 Statement of Problem 
 

This study uses the fingerprint dataset of the West Virginia University's 2012 BioCOP 

(Biometric Collection Project) which has been stratified based on the age, gender and ethnicity 

of the subjects. The WVU 2012 BioCOP project has 1200 subjects enrolled in it and this project 

has been carried out in a controlled environment using standardized acquisition techniques. The 

variations introduced in the fingerprints acquired from various demographic classes propagate 

from the acquisition subsystem all the way to the matching subsystem. These variations 

ultimately affect the performance rates of the fingerprint matching component. So, the question 

this research aims to answer is, how such a data stratification would influence the results of tests 

of the biometric system and the algorithms implemented using this dataset. There is need to 

understand the effect of strata dependency on the match performance not just from an evaluation 

perspective, but also from a technology usage perspective. 

 

1.2 Purpose of Study 
 

The fingerprint dataset of the WVU 2012 BioCOP has been acquired from 3 standard optical 

scanners and from a mixed set of subjects belonging to different age and ethnic groups. The 

purpose of this research has been to examine whether the data stratification of the fingerprint 

images acquired has had an impact on the performance of a particular sensor or a demographic 

cohort under study. This study also examines the possible extent to which the test results would 

be skewed had this dataset been used to test a real time biometric verification system. Examining 

the difference in matching error rates of the original and demographic strata was the focal point 

of analysis. The outcome of such a study will be useful in understanding why a particular stratum 
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is more susceptible to errors and also helps in providing an insight into the characteristics of the 

fingerprint dataset. To further augment the study, statistical analysis of the matching measures 

has been performed to be able to quantitatively understand the difference in match performance 

of each stratum and its impact on the test results of the fingerprint verification system. 

 

1.3 Research Goals and Objectives 
 

The goal of this study is to understand how demographic strata such as age, gender and ethnicity 

have an impact on the match performance through the use of multiple templates of a fingerprint 

impression. In principle, availability of multiple templates would allow us to examine intraclass 

variations and interclass similarities of fingerprints. We have three main objectives to achieve 

our goal which are listed below: 

 

1. Developing a framework to understand the difference in match performance of all the 
fingerprint stratum. 

 

As a primary goal, an effort has been made to customize the functionality of the software 

development kit in a way that it could be used to generate genuine and impostor match scores as 

an initial measure of qualitatively assessing the match performance of each of the stratum in the 

fingerprint dataset WVU 2012 BioCOP collection. 

 

2. Evaluation of match score distributions to check for the match performance of each 

stratum. 

 

As already mentioned, the data set was segmented based on the age, ethnicity and gender of the 

subjects enrolled in the collection. After this, through the analysis of the genuine and imposter 

distributions it was checked to see if a particular stratum of study has significant differences in 

its match performance. 

 

3.  Comparative performance evaluation of matching by statistical analysis.  

 

A set of measures comprising of ROC curves, biometric error rates and divergence distances has 

been formulated using MATLAB. These measures have served as a critical source of 
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understanding the impact of the match performance of the various demographic strata when used 

for the real time testing of a verification system. 

 

1.4 Overview of Biometrics 
 

A biometric system is fundamentally a pattern recognition system that acquires biometric data 

from an individual and extracts significant features that it uses for comparison against the feature 

set in the database. Post comparison, the biometric system then executes an action based on the 

result of comparison. This action that the biometric system executes becomes very critical in 

establishing the identity of a person and so biometric recognition systems have become an 

integral part of numerous applications in today's interconnected society. Biometric recognition 

systems have been able to provide answers to a number of questions like "Is he/she really who 

he/she claims to be?”, “Is this person approved of access to a particular facility?" which are the 

scenarios we come across on a day-to-day basis. 

 1.4.1 Applications of Biometrics 
 

Biometrics is being widely used in forensics such as criminal identification and prison security, 

and has a very strong potential to be widely adopted in a broad range of civilian applications [4]. 

The heightened concerns about security and the enhanced need for trusted user authentication 

has paved way for biometrics to be used in many government and commercial applications as 

well. These applications can be widely categorized into three main categories which have been 

tabulated below. 

Table 1.1: Applications of Biometrics 

GOVERNMENT FORENSIC COMMERCIAL 

Welfare disbursement Criminal Investigation Access Control, Computer 

Login 

Border Crossing Corpse Identification Mobile Phones 

National ID Card Parenthood Determination ATM 

Driver's License, Voter 

Registration 

Missing Children Internet Banking, Smart Card, 

E-Commerce  
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1.4.2 Biometric Characteristics 
 

It is a well-known fact that not all human mannerisms and features can be used as a biometric 

modality. The biometric measures most commonly [4] used have been illustratively shown in the 

Figure 1.1. 

 

Figure 1.1: An illustration of the various biometric modalities 
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A human feature can be certified to be a biometric measure only if it possesses certain 

characteristics [6]. However, only some of these characteristics may affect the match 

performance statistics. These characteristics have been briefly discussed below   

Table 1.2: Characteristics of a Biometric that influence match performance  

 

 

                       

Characteristics 

 

1. 

 

Collectability 

 

It is defined as the ability to obtain or extract the required biometric 

information from a subject which helps in having a large sample test 

dataset. 

 

2. 

 

Uniqueness 

 

It is defined as the ability of a human element to vary over a given 

population thereby ensuring that each individual has his/her own 

distinctive version of the element. This can lead to varied match 

performance of the dataset. 

 

3. 

 

Permanence 

 

It may be explained as the ability of a human trait or element to retain 

itself over a long period of time. This characteristic may also lead to 

consistency in matching scores when tested periodically. 

 

 

4. 

 

Live-ness 

 

The biometric measure is expected to be live enough in order to be able to 

circumvent fake templates of the trait.  

 

5. 

 

One-way 

transform 

 

The ease with which the computational procedures used in the biometric 

template may be inverted trait makes it more feasible to be used in data 

stratification tests. 
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6.  

 

Performance 

 

An ideal biometric characteristic would be the one whose performance is 

not affected by the manner in which the biometric is collected or 

processed. This ensures consistency in match performance. 

 

 
 

7. 

 

Sample Size 

 

Often, the match performance of a test is inclined towards a sample that is 

larger in its size in comparison to another stratum under study. Thus, 

sample size is seen to have a considerable effect on the match 

performance of a biometric stratum. 

 
 

8. 

 

Quality 

 

Low quality templates tend to produce low matching scores due to 

insufficient amount of biometric information. This can lead to a variation 

in the match scores generated while using these images. 

 

1.5 Fingerprints as an Effective Biometric 
 

Every individual has fingerprints except for those who have severely-damaged fingers or certain 

genetic defects. Over time, fingerprints have been shown to be relatively distinct as no two 

identical/indistinguishable fingerprints have ever been discovered. It has also been empirically 

determined that the fingerprints of identical twins are different and so are the prints on each 

finger of the same person. This high level of uniqueness is what makes fingerprints the prime 

source of human identity verification [7]. There also exist several models of the individuality of 

fingerprints which show they are more than suitable for verification purposes and so fingerprints 

are an excellent choice for a differentiating characteristic in a biometric system. There are 

several applications of biometric systems which could only work using fingerprints, and which 

would not be achievable with any other biometric. 
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Table 1.3: Comparison of various biometric identifiers 

 

 

With regard to Table 1.3 [7] it can be understood that fingerprints score higher points when the 

biometric characteristics such as uniqueness, performance and permanence are being considered. 

The ease of acquiring fingerprints paves the way for a number of biometric applications of which 

many modern techniques only require that a finger be pressed against a sensor which prevents 

the need to use the traditional ink-and-paper family of fingerprint collection methods. Many of 

the fingerprint-based biometric systems in use today are extremely efficient, and can offer results 

in seconds (except in special cases like the Integrated Automated Fingerprint Identification 

Systems (IAFIS) which takes 10 minutes on an average to retrieve results). Thus, it can be seen 

that in comparison with most other biometric identifiers fingerprints do possess the 

characteristics of an efficient biometric modality. 

Biometric Identifier

A
c
c
e

p
ta

b
il

it
y

C
ir

c
u

m
v

e
n

ti
o

n

C
o

ll
e

c
ta

b
il

it
y

D
is

ti
n

c
ti

v
e

n
e

s
s

P
e

rf
o

rm
a

n
c
e

P
e

rm
a

n
e

n
c
e

U
n

iv
e

rs
a

li
ty

DNA L L L H H H H

Ear H M M M M H M

Face H H H L L M H

Facial thermogram H L H H M L H

Fingerprint M M M H H H M

Gait H M H L L L M

Hand Geometry M M H M M M M

Hand Vein M L M M M M M

Iris L L M H H H H

Keystroke M M M L L L L

Odor M L L H L H H

Palmprint M M M H H H M

Retina L L L H H M H

Signature H H H L L L L

Voice H H M L L L M
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1.5.1 Advantages of Fingerprint Biometrics 
 

Among all biometrics, fingerprint biometrics has proved itself the most promising and cost-

effective solution in security systems. It’s lower cost and accuracy has brought itself in the 

leading position of all biometric solutions [8]. Although other biometric technologies are gaining 

popularity, fingerprint is likely to maintain its leading position in the near future. At present, 

nearly half of the biometric solutions are being implemented using fingerprint biometrics.  

The main reasons for the popularity of fingerprint biometrics are listed below: 

 Success in various applications in the forensic, government, and civilian domains. 

 The fact that fingerprint is an important key for the purpose of investigation. 

 The existence of large legacy databases. 

 The availability of compact and relatively inexpensive fingerprint readers. 

 The ease of access and the low power consumption makes fingerprint based 

authentication systems a low cost implementation. 

 Need of a fairly small storage space results in a reduced database size.  
 

1.5.2 Challenges in Fingerprint Recognition 
 

Although fingerprints have proved to be a vital source in the biometric arena, there are still a 

number of issues [9] that need to be addressed in order to improve the accuracy and performance 

of fingerprint based authentication systems. Most of these shortcomings can be attributed to the 

acquisition process as discussed here. 

 

Small overlapping area and nonlinear distortion 

 

In the consumer based electronic devices fingerprint sensors seem to have a small sensing area 

and the improper placement of the user's finger on the sensor in an unsupervised condition may 

result in a limited overlapping area within two impressions of the same finger. This leads to an 

inadequate number of minutiae in the overlapping area and so it would be difficult to determine 

if both the fingerprints are of the same finger. 
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Irreproducible contact 

 

Injuries inflicted to the finger can permanently damage the skin of the finger. In such cases, the 

impression of the finger may depict a different portion of it and this may introduce additional 

spurious minutiae. 

 

Non-uniform contact 

 

Factors such as dryness of the skin, shallow or worn-out features, skin diseases, sweat, dirt and 

humidity in the air can result in a non-ideal contact situation. In such a case the features would 

not be able to attain a proper sensing surface leading to an imperfect impression of the 

fingerprint [9]. Inappropriate inking of the fingers in the case of inked fingerprints may also lead 

to noisy low contrast images causing spurious or missing minutiae. 

 

Inconsistent contact 

 

The projection of the finger onto the image acquisition surface maps a two dimensional 

impression of the three dimensional finger. This is determined by the pressure and the contact of 

the finger on the glass platen of the sensor [10]. If these factors are not precisely controlled, 

different impressions of a finger can be created by various transformations. The result of 

inconsistent contact of finger with the sensor can result in elastic distortion where different 

portions of the finger are displaced by different magnitudes in different directions. 

 

Altered/Fake fingerprints 

 

Criminals often cover their fingerprints by artificial fingerprints or they can mutilate their fingers 

in order to not be identified by automated systems. Any unauthorized user [10] may use a fake 

finger that imitates a legitimate user’s fingerprint to access a computer system or pass security 

checks. 

 

Interoperability 
 

Interoperability [10] is a big issue in a multivendor environment because different sensor types 

such as optical, capacitive, RF produce images that are variant in resolution, size, distortion, 

background noise and contrast. This could be a matter of concern as it can occur in any module 
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of a fingerprint based biometric system. The difference in encoding the image into binary 

components may result in varying definition of the same feature. This miscellany makes it 

difficult to build a fingerprint system with its principal components sourced from different 

vendors. 

 

 
 

(a) 

 
 

(b) 

 
 

(c) 

 
 

(d) 

    

                                             (e)                                                                                               (f) 
 

Figure 1.2: Challenges in automated fingerprint processing 

(a) Wet fingerprint (left) and extracted features (right) (b) Fingerprint with many cuts (left) and extracted 
features (right) (c) Small overlapping area as marked by rectangles (d) Large nonlinear distortion in 
fingerprint patterns as indicated by the corresponding triangles (e) Latent fingerprint with overlapping 
letters (left) and the extracted features (right) (f) Altered fingerprint: a criminal made a Z-shaped incision 
into each of his fingers (left), switched two triangles, and stitched them back into the finger (right) [9]. 
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Feature extraction errors 

 

Most feature extraction algorithms often tend to introduce measurement errors [10]. Errors may 

be made during any of the feature extraction stages (e.g. estimation of orientation and frequency 

images, detection of the number, type, and position of the singularities, segmentation of the 

fingerprint area from the background, etc.). Also, enhancement algorithms may introduce 

conflicting biases that perturb the location and orientation of the reported minutiae from their 

gray-scale counterparts. The minutiae extraction is another key process of a biometric system 

which may introduce a large number of spurious minutiae and may not be able to detect all the 

true minutiae in the case of low-quality fingerprint images. 

 

Considering all the challenges that fingerprint biometrics pose and with regard to the Figure 1.2 

we do arrive at a conclusion that they have a serious impact on the performance of a fingerprint 

biometric authentication system and could significantly affect the matching rates leading to 

falsified results. Thus, it is of prime importance to tackle these issues in order to ensure a highly 

productive biometric matching system. 

 

1.5.3 Overcoming the Challenges in Fingerprint Recognition 
 

Improving data acquisition quality 
 

Biometrics sensors that can acquire high quality biometric data will be required to facilitate the 

significantly higher level of matching accuracy required in a wide range of applications. 

Resolution of the fingerprint impressions may also be enhanced by employing fingerprint sensors 

that facilitate the use of extended features for more accurate performance. Similarly, biometrics 

sensors that can simultaneously acquire 2D/3D data can evolve as an essential component of 

many applications. Current biometrics systems are predominantly focused on 2D imaging and 

the use of 3D image acquisition [11] has not delivered its promise due to technological 

limitations posed by speed, cost, resolution, and size of 3D imagers/scanners as well as the 

representation and matching issues. Therefore, continued design and development of multimodal 

biometric sensors that can simultaneously acquire 2D and 3D images would prove extremely 

beneficial in the development of biometric technologies. 
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Handling Poor Quality Data 

 

To improve the matching accuracy, extended fingerprint feature set (EFS) has been utilized in 

addition to minutiae. However, manually marking EFS is very tedious and therefore robust 

automatic extraction algorithms are being developed for this purpose. The increased capabilities 

to handle poor quality data for biometric identification is not only required for improving latent 

matching accuracy but is also essential for a range of biometric systems employed for 

commercial applications [11]. The failure to enroll rate (FTE) and the achievable throughput 

from the deployed biometrics system can also be further improved by imparting new capabilities 

that can handle poor quality biometric data. New user enrolments in a large-scale biometric 

system will typically require periodic re-training or updating of the matcher. Therefore, another 

aspect of an adaptive biometric system is online learning, which can periodically update the 

matcher. The likelihood ratio-based fusion can effectively handle the problem of missing 

biometric modality/data, which could also be perceived as an user preference in adaptive 

multimodal biometric systems. New user enrolments in a large-scale biometric system will 

typically require periodic re-training or updating of the matcher.  

 

Fingerprint Mosaicking 

 

In cases where there is only a small overlapping area between two impressions, a feasible 

solution to overcome the issue would be fingerprint mosaicking which combines multiple 

smaller images into a larger image [9]. More ergonomic and intuitive interfaces can guide users 

to properly place the central area of their finger on the sensor. Also, using local minutiae 

descriptors before the global aggregation of local matches may be considered while matching 

fingerprints locally. 

 

Liveness Detection 

 

To detect a mutilated finger, a mutilation detector can be added and effort should be made to 

identify the subject either by restoring the original fingerprints or using the only unaltered areas 

of the fingerprint. To recognize fake fingerprints, the hardware based liveness detection 

technique can be adopted which measures and analyzes various vital signs of the live finger such 
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as pulse, perspiration and deformation. The use of multibiometrics has also proved to be a 

solution to tackle altered fingerprints. 

 

Improving interoperability 

 

As a solution aimed at improving the interoperability among multiple fingerprint systems, 

international standardization organizations have established standards for sensors, templates and 

systems testing. This includes image quality specifications for fingerprint sensors and data 

exchange formats for minutiae templates. However, the proprietary templates have exhibited 

superiority in matching accuracy compared to the standard templates in NIST MINEX testing 

[10]. Hence, it is to be understood that the existing standards still have a scope of improvement. 

 

System on Device 

 

Security issues such as tampering or modification of hardware/software components and 

interception of fingerprint data passing through the communication channels can be of serious 

concern especially when in commercial applications. This problem can be overcome by 

employing system-on-device technology in which the sensor, feature extractor, matcher, and 

even the templates reside on a tamper-resistant device [10]. Cryptographic tools can be leveraged 

to prevent interception and alteration of fingerprint information. These methods ensure that the 

information about a user's fingerprint never leave the device and it is only the matching that is 

securely transmitted. 

 

Template Security 

 

Applying a noninvertible mathematical transformation to the fingerprint template and storing 

only the transformed template could be an efficient way of securing the templates. Using this 

transformation even if the fingerprint template is revealed the original fingerprint cannot be 

gleaned easily [10]. The same fingerprint can be used to generate a new template by applying a 

varied transformation and so it is referred to as a cancellable fingerprint. Employing biometric 

cryptosystems and generating cryptographic keys based on biometric samples is another 

promising solution to enhance template security. 
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1.5.4 Applications of Fingerprint 
 

A vast number of a security and commercial applications today depend on fingerprint as their 

primary source of identification. Fingerprints are used for the purpose of information security 

and also in National ID systems for voter registration and identification.  Identification of 

suspects and identification of missing children using their fingerprint data has also been an 

important application which has helped national agencies such as the FBI (Federal Bureau of 

Investigation) [4]. Fingerprints have also been used to provide biometric security thereby 

restricting the access to secure areas or systems such as ATM, at airports etc. Identifying the 

deceased victims of major disasters or amnesia victims by having their fingerprints on file has 

been extremely helpful at the time of calamities. Conducting a background check (including 

applications for government employment, defense security clearance, concealed weapon permits, 

etc.) in most cases also use fingerprint as the key for the purpose of verification. 

 

 

                      (a) 

 

                (b) 

 

                     (c) 

 
 
Figure 1.3: Applications of Fingerprints 
         

(a) The US-VISIT program currently employs two-print information to validate the travel documents of 
visitors to the United States [http://www.aci-na.org]. (b) Shows the Immigration and Naturalization 
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Service Accelerated Service System (INSPASS) installed at major airports in the U.S which is based on 
fingerprint verification technology developed by Recognition Systems, Inc. and significantly reduces the 
immigration processing time [7] (c) A fingerprint verification system manufactured by Digital Persona 
Inc. used for computer and network login [7].  
 

1.6 Fingerprint Evaluations 
 
The single most critical resource needed to successfully evaluate a biometric system is data and 

this is true for any pattern recognition application. Unavailability of a large dataset limits the 

scope of evaluation and the testing of new algorithms. Beyond sheer quantity, it is also crucial to 

understand the type and quality of biometric data changes between data sources. A number of 

such factors apply to fingerprints which have an impact on the performance of the biometric 

system [8]. These include capture type: were the images of fingerprints generated by scanning 

paper cards of inked fingerprints, or were they generated using a live scan device? There is 

impression type: are the fingerprints rolled nail-to-nail, or are they a plain (flat) impression? 

Other attributes such as the image quality, minutiae count detection etc. are also factors that 

assist in testing the credibility of the dataset and the biometric system. 

 

With years of FBI collaboration, NIST has acquired and distributes the largest publicly available 

collection of federal law enforcement fingerprint images.  NIST has considerably added to its 

fingerprint image repository [13], including operational data from federal agencies, state and 

county jurisdictions, and Department of Defense (DOD) applications. Nearly all this new data is 

considered sensitive but unclassified. Hence, it is not available to the general public. 

 

The datasets described below are carefully sampled and utilized by NIST to test fingerprint 

matching algorithms and systems. These experiments are conducted and the results are reported 

based on the elemental requirement that a biometric system reports which is a similarity score 

when two biometric templates are compared to each other. In general, the higher the score, the 

more likely it is that the two templates belong to the same person. This fundamental concept is 

also the underlying idea that forms the base in the science of fingerprint matching.  

 

Listed below are some of the multijurisdictional datasets at the National Institute of Standards and 

Technology (NIST) [13] that have been tested for quality based on the type of impression. 
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Table 1.4: Multijurisdictional datasets at NIST 

 

NAME 

 

SCAN TYPE 

 

PLAIN 

 

ROLL 

 

TESTS 

 

SIZE 

 

QUALITY 

US-VISIT:  

Jan 04 -Feb 04  

Live Index  

 

Plain: Plain 34 × 103 matched 

 1.7 × 106 subjects 

 

Good 

US - VISIT 

Mar 04-Jun 04 

Live Index  Plain :Plain  

3.7 × 106 subjects 

Good 

SD 29 Ink 10 10 Roll: Roll, 

Plain: Plain, 

Plain: Roll 

216 card pairs  

Medium 

IAFIS 

 

Ink w/Live  10 Roll: Roll, 

Plain: Roll 

1.2 × 106 cards 

 

Operational 

SD 14 (V2) Ink w/Live  10 Roll: Roll 2700 card pairs Medium 

INS INDEX Live(DFR-90) Index  Plain: Plain 620 ×  103 subjects Operational 

INS Benefits 96% Live , 4% 

rescan 

 

10 

 Roll: Roll, 

Plain: Plain, 

Plain: Roll 

640 ×  103 subjects Operational 

DOS-BCC Live(DFR-90) Index  Plain: Plain 6 × 106 subjects 

240 × 103 matched 

Operational 

Office 

INS CARD Ink 10 10  Plain: Roll 100 × 103 cards Operational 

TX 60% Ink, 40% 

Live 

10 10 Plain: Roll 1 × 106 cards Operational 

ESD  Live  10 10 Plain: Roll 3 × 103 cards Good 

LA County 90% Live; 

10%  rescan 

10 10 Roll: Roll, 

Plain: Plain, 

Plain: Roll 

1.5 ×  106 subjects 

100 × 103 matched 

Good 

FBI 12K Ink w/Live 10 10 Plain: Roll 12 × 103 subjects Operational 

  

Fingerprint Vendor Technology Evaluation (FpVTE) 
 

This fingerprint vendor test was designed to measure the accuracy of fingerprint matching 

(identification, and verification systems) [16] and identify the most accurate fingerprint matching 
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systems. It also determines the viability of fingerprint systems for near-term deployment in large-

scale identification systems and evaluates the effect of a wide variety of variables on matcher 

accuracy. 

 

Software Development Kit (SDK) Tests 

The NIST SDK fingerprint matcher tests are a medium scale evaluation of one-to-one 

verification [13]. Goals of these tests include determining the feasibility of verification matching 

in US-VISIT and DOS application clients, evaluating vendor accuracy variability and vendor 

sensitivity to image quality. Furthermore, these tests were used to scale evaluations in FpVTE. 

 

US - VISIT CERTIFICATION 

There are three main biometric functions provided by the DHS US-VISIT system which include 

watch list checking at the time of enrollment, duplicate identification checks for visa holders and 

one-to-one verification for enrolled travelers. Table 1.5 and Table 1.6 [16] refer to the standard 

fingerprint evaluated datasets 

 

Table 1.5: Some standard evaluated datasets in the history of fingerprint matching 

 

NAME 

 

DATABASE SIZE 

 

ALGORITHMS 

EVALUATED 

 

RESULTS 

 

FVC 2004 

 
4 databases, each 
containing 800   fingerprints 
from 100 fingers 

 
Open Category: 41 Large Scale 
Test (LST): 13 
Evaluated Light Category:26 

 
Best average EER: 
2.07% 
(in the Open 

Category) 

 

FpVTE 2003 

 

48,105 fingerprint sets from 
25,309 subjects 

 

Large Scale Test (LST): 13 
Evaluated Light Category:26 
Medium Scale Test (MST):18 
Small Scale Test (SST): 3 (SST 
only) 

 

Best EER on 
MST: 0.2% (MST 
is the FpVTE2003 
test closest to 
FVC2004).  
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Table 1.6: Comparison between FVC2004 and FpVTE2003 

 FVC2004 FpVTE2003 
 
Data collection 

 
All the data were acquired for this event 

 
Data coming from existing U.S. 
Government sources 

 
Fingerprint format 

 
Single finger flat impressions acquired 
through low-cost commercial fingerprint 
scanners (including small area and 
sweeping sensors 

 
Mixed formats (flat, slap, and 
rolled from different sources; 
scanned paper cards, and from 
FBI-complaint fingerprint 
scanners) 

 
Subject population 

 
Students (24 years old on the average) 

 
Operational fingerprint data from a 
variety of U.S. Government 
sources including low-quality 
fingers and low-quality sources 

 
Anonymous 
participation 

 
Allowed 

 
Not allowed 

 
Evaluation type 

 
Independent strongly supervised 

 
Independent supervised 

 
Database 
availability 

 
Databases are available to the scientific 
community  

 
Databases are not available due to 
data protection and privacy issues 

 
Perturbations 

 
Deliberately exaggerated perturbations 
(rotation, distortion, dry/wet fingers) 

 
Difficulties mainly due to intrinsic 
low-quality fingers of some 
subjects and sometimes due to 
non-cooperative users 

 

1.7 Thesis Outline 
 

In Chapter 2 we describe the nature of biometric systems and the basic tasks of a generic 

biometric system. We also discuss the various components of a fingerprint matching system and 

the process used by fingerprint recognition systems for matching fingerprints. We also review 

the strategies and algorithms used in different matching techniques based on fingerprint 

biometrics. We also review the statistical methods that could be used for analytical purposes. 

Discussion of the various error rates that determine the performance of a biometric system and 

statistical divergence measures form the central part of this chapter.  

 

In Chapter 3 we discuss about the fingerprint dataset under study and its features such as 

demographics and the scanners employed while acquiring these images. 
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 In Chapter 4 we describe the overall features of our fingerprint matching system. We cover the 

various aspects of its design and implementation also specifying how each component of our 

system matches with an explanation of each of its functions. We also discuss the file formats 

supported and the tools and libraries used to accomplish the task of matching. 

 

In Chapter 5 we discuss the various results obtained after the experimentation with illustrations 

and an in-detailed explanation of its implication. 

 

In chapter 6 we elaborate the conclusions arrived at in this study and also discuss its prospective 

potential.  
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  CHAPTER 2 - THEORETICAL BACKGROUND 

2.1 Generic Biometric System 
 

In totality, a biometric authentication system consists of five major functional subsystems. These 

subsystems primarily perform the functions of data collection, transmission, signal processing, 

decision and data storage [12]. 

 

 

 

Figure 2.1 : Generic biometric system 

Data Collection Module 

 

The data collection subsystem samples the unprocessed biometric data and the data acquisition 

sensor converts this data into an electronic representation that is then used by the transmission 
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subsystem. In cases, where a great amount of data is involved, compression may be required 

before transmission to conserve bandwidth and storage space.  

 

Transmission Module 

 

The transmission subsystem transports the electronic representation of the raw biometric data to 

the signal processing subsystem.  

 

Signal Processing Module 

 

With reference to Figure 2.1 the signal processing subsystem executes four major tasks namely 

segmentation, feature extraction, quality control and pattern matching. Segmentation is the 

process of finding the required biometric pattern within the transmitted signal. After 

segmentation, the extraction of features is needed which a form of non-reversible compression. 

This means that the original biometric image cannot be reconstructed from the extracted features. 

The non-controllable distortions and any non-distinctive or redundant elements are removed 

from the biometric pattern while at the same time preserving those qualities that are distinctive 

and repeatable [12]. After feature extraction or sometimes before, it is essential to check if the 

signal received from the data collection subsystem is of good quality. If the features extracted are 

insufficient in quality in some way, then it can be concluded that the received signal was 

defective and a new sample may be requested from the data collection subsystem while the user 

is still at the sensor. The processed feature is then sent to the pattern matching process for 

comparison with one or more previously stored feature templates or models. The pattern 

matching process compares a presented feature sample to the stored data and sends a quantitative 

measure of the comparison to the decision subsystem. 

 

Decision Making Module 

 

The decision subsystem determines the "matches" or "non-matches" based on the similarity 

measures received from the pattern matcher and ultimately makes the "accept/reject" based on 

the system decision policy. This decision policy is specific to the operational and security 

requirements of the system. In most cases, lowering the number of false non- matches can be 

traded against raising the number of false matches. The most favorable policy in this regard 



 

23 
 

depends upon both the statistical characteristics of the comparison distances coming from the 

pattern matcher and the relative penalties for matching error rates within the system. In any case, 

it is necessary to decouple the performance of the signal processing subsystem from the policies 

implemented by the decision subsystem. 

 

Storage Module  

 

There can be multiple ways of storage depending upon the structural orientation of the biometric 

system [12]. For the purpose of verification which is nothing but "one-to-one" matching the 

database may be distributed on optically read cards, magnetic stripe cards carried by each 

enrolled user. The means of storage may be centralized if the system performs one-to-N 

matching with N greater than one as in the case of identification. 

 

2.1.1 Tasks of a Biometric System 
 

Based on the environment of application a biometric system may function either in the 

verification mode or identification mode .However, irrespective of the application context, a 

biometric system compares the feature set from the acquired data against the template in the 

database which is its chief functionality in both the verification and identification modes of 

operation. 

In the verification mode of operation the biometric system aims at preventing multiple people 

from using the same identity. The system validates a person's identity by comparing the captured 

data with his/her own data templates in the storage subsystem [5]. A person who wishes to be 

recognized by the system claims an identity usually by means of a personal identification or 

name and the system conducts a one-to-one comparison to verify the truth of the claim. Thus, the 

verification mode of operation enables positive recognition. 
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Figure 2.2 : Verification mode of a biometric system 

 In the identification mode of operation the biometric system aims at preventing a single person 

from using multiple identities. The system recognizes an individual by conducting a one-to-many 

comparison with all the users in the database for a match [5]. Hence, identification becomes 

critically important in negative recognition applications where the system implicitly or explicitly 

states whether the person is who he/she denies to be. For convenience, identification may also be 

used in positive recognition applications where the user is not required to claim an identity.  

 

 

Figure 2.3 : Identification mode of a biometric system 

2.2 Fingerprint Based Biometric System 
 

Owing to the efficacy of fingerprints as a biometric modality fingerprint recognition systems 

have now become an integral part of many day-to-day applications. Automatic fingerprint 
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recognition systems also seem more advantageous in terms of performance and its low cost 

availability. 

 

In the following sections the main components of a fingerprint based biometric system are 

introduced which is also schematically seen in Figure 2.4. The three stages of fingerprint 

recognition consist of sensing, feature extraction and matching. 

                  

 

Figure 2.4: Schematic diagram of a fingerprint recognition system 

2.2.1 Fingerprint Acquisition Technologies (Sensing) 
 

Fingerprint acquisition is the most important part of a biometric recognition process as it is the 

component where the fingerprint image is formed. This is the enrollment phase [5] during which 

the sensor scans the user's fingerprint and converts it into a digital image. 
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Figure 2.5 : Enrollment phase of a fingerprint biometric system 

Almost all the existing fingerprint sensors belong to one of the three families of sensors: optical, 

solid-state, and ultrasound. 

 

Optical Sensors 

The sensors employed in this study work on the principles of optical sensing. Optical Sensors 

have the longest history of all fingerprint image acquisition devices. The optical sensors function 

on the principle of Frustrated Total Internal Reflection (FTIR) [19] as shown in Figure 2.6. The 

finger touches the top side of a glass prism. While the ridges (curved dark lines) enter in contact 

with the surface of the prism the valleys (bright areas) remain at a certain distance. The light 

entering the prism is absorbed at the ridges and reflected at the valleys. The difference in 

reflective ability allows the ridges to be differentiated from the valleys. The features sensed 

would then be focused onto a CCD or CMOS image sensor and the light rays exit from the 

prism. The major advantages of the optical fingerprint sensor technologies are low cost and its 

strength to the prevention of Electro Static Discharge (ESD). Optical sensors contain the 

following technologies: Optical reflection, Optical transmission, Optical Sweep, Optical touch 

less, Optical TFT and Electro-Optical. Refer to figure 2.6 [19] for the illustration showing the 

working of an optical sensor. 
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(a) 

 

(b) 

Figure 2.6 : Optical Sensor Technology  

(a) Working principle (b) Image captured using an optical sensor 

Solid State Sensors 

 

Capacitive sensors have also been employed for acquiring images of the fingerprint dataset and 

so it is necessary to understand how they work. All silicon-based sensors consist of an array of 

pixels wherein each pixel is a tiny sensor itself. In this mode of fingerprint acquisition 

technology the user directly touches the surface of the silicon which implies that neither optical 

components nor external CCD/CMOS image sensors are needed. Four main effects have been 

proposed to convert the physical information into electrical signals namely capacitive, thermal, 

piezoelectric and electric [19]. Of these, the most commonly employed solid state sensor 

technologies have been discussed here.   

 

Capacitive sensors use the electrical property of "capacitance" to make measurements as shown 

in Figure 2.7 [19]. Capacitance is a property that exists between any two conductive surfaces 

within some reasonable proximity. The measurement of the capacitance between the skin and the 

pixel is the most physical effect used to acquire fingerprints. Where there is a ridge or a valley, 

the distance varies, as does the capacitance. The sensors use small sensing surfaces and as result 

are positioned close to the targets. The measured capacitance values are then used to distinguish 

between fingerprint ridges and valleys. The advantages of the capacitive silicon fingerprint 

sensor technologies are small in size, low power consumption and work for almost everyone. 

The significant drawbacks are vulnerability to strong external electrical fields, the most 

dangerous being ESD and the high cost of the silicon area sensors. 
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(a) 

 

(b) 

Figure 2.7: Solid State Capacitive Sensor Technology  

(a)Working principle (b) Image captured using a capacitive sensor 

2.2.2 Fingerprint Image Quality Assessment 
 

The capability of a biometric system to detect and handle samples of varied quality levels is a 

significant contributor in estimating its proficiency as a biometric recognition system. Automated 

and consistent quality assessment of input samples is an important component of any biometric 

system which also holds true for fingerprint recognition systems. The term ‘quality’ [20] is used 

in three different contexts as it relates to biometric sample quality (ISO, 2006) which have been 

listed below: 

1. Fidelity: reflects the accuracy of a sample’s representation of the original source.  

2. Character: reflects the expression of inherent features of the source.  

3. Utility: reflects the observed or predicted positive or negative contribution of the biometric 

sample to the overall performance of a biometric system.  

 

Quality assessment algorithms compute the quality score of a biometric image using fidelity, 

character, utility or a combination of the three. Existing image quality assessment algorithms 

may be subdivided into four broad categories: 

1. Based on local features.  

2. Based on global features.  

3. Based on classifiers.  
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4. Hybrid algorithms based on local and global features.  

 

These algorithms have been termed based on the component of the image employed in the course 

of assessment.  In the local feature quality algorithms the fingerprint image is subdivided into 

blocks followed by the quality score computation for each block. This type of analysis takes into 

account specific local features. The global feature quality assessment algorithms search for 

abrupt changes in ridge orientation [19]. These algorithms tend to use 2-D discrete Fourier 

transform and energy concentration analysis of global structure to assess the image quality of 

fingerprints. The third category of quality assessment algorithms is based on the premise that a 

quality measure should define a degree of separation between match and non-match distributions 

of a fingerprint. Using a relatively large dataset, classifiers can be trained using a degree of 

separation as a response variable based on a vector of predictors and then map the degree of 

separation to a quality index. Hybrid algorithms are the ones which use an aggregation of local 

and global feature analysis to compute a quality index.  

2.2.3 Fingerprint Feature Extraction 
 

A fingerprint is an impression of the epidermal ridges of a human fingertip. A hierarchy of three 

levels of features, namely, Level 1 (pattern), Level 2 (minutiae points) and Level 3 (pores and 

ridge shape) are used for recognition purposes. Level 1 features refer to the overall pattern shape 

of the unknown fingerprint—a whorl, loop or some other pattern. This level of detail cannot be 

used to individualize, but it can help narrow down the search. Level 2 features refers to specific 

friction ridge paths — overall flow of the friction ridges and major ridge path deviations (ridge 

characteristics called minutiae) like ridge endings, lakes, islands, bifurcations, scars, incipient 

ridges, and flexion creases. Level 3 detail refers to the intrinsic detail present in a developed 

fingerprint — pores, ridge units, edge detail, scars, etc. Figure 2.9 [20] shows the various levels 

of fingerprint features used for matching. 
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Figure 2.8 : Categorization of fingerprint features 

Fingerprint feature extraction is the process of extracting useful features for identification and/or 

authentication from the biometric. The phase of feature extraction is tied to the process of image 

enhancement and it is always an area of concern to determine where the image enhancement 

process ceases and the feature extraction begins.  

 

Figure 2.9 [16] below provides a graphical representation of the main feature extraction steps 

and their interrelations. 
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Figure 2.9: Graphical representation of fingerprint feature extraction steps and their interrelations 

Local Ridge Orientation Estimation 

 

The fingerprint image is typically separated into small regions and the gradient is analyzed to 

estimate the average direction of the ridges contained within that particular section. In order to 

make the estimate as accurate as possible the regions can be reduced in size. The local ridge 

orientation at a point (x, y) is given by the angle 𝜃𝑥𝑦 which is the arbitrary small neighborhood 

that the fingerprint ridges forms with the horizontal axis. The local ridge density (or frequency) 
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𝑓𝑥𝑦 at a point (x, y) can be defined as the number of ridges per unit length along a hypothetical 

segment centered at (x, y) and perpendicular to the local ridge orientation  𝜃𝑥𝑦 . The local ridge 

frequency may also be computed by counting the average number of pixels between two 

consecutive peaks of gray - levels along the direction normal to the local ridge orientation [21].  

 

Segmentation 

 

Segmentation is the process of separating the foreground regions in the image from the 

background regions. The foreground regions correspond to the clear fingerprint area containing 

the ridges and valleys, which is the area of interest. The background corresponds to the regions 

outside the borders of the fingerprint area, which do not contain any valid fingerprint information 

.When minutiae extraction algorithms are applied to the background regions of an image, it 

results in the extraction of noisy and false minutiae. Thus, segmentation is employed to discard 

these background regions, which facilitates the reliable extraction of minutiae. In a fingerprint 

image, the background regions generally exhibit a very low grey-scale variance value, whereas 

the foreground regions have a very high variance. Hence, a method based on variance 

thresholding can also be used to perform the segmentation [21].  

 

Fingerprint Image Enhancement and Binarization 

 

The goal of fingerprint enhancement is to perk up the precision of the ridge structures in the 

recoverable regions and mark the unrecoverable regions as too noisy for further processing. The 

most commonly used technique for image enhancement is based on contextual filters. In this 

method, the filter characteristics vary according to the local context defined by local ridge 

orientation 𝜃𝑥𝑦 and local ridge frequency 𝑓𝑥𝑦 [16]. Employing a band pass filter i.e. tuned to the 

corresponding frequency and orientation can effectively remove the undesired noise and preserve 

the true ridge and furrow structures. The fingerprint image is then passed through the filtering 

stage. Gabor filters have both frequency-selective and orientation-selective properties and have 

optimal joint resolution in both spatial and frequency domains. Therefore, it is appropriate to use 

Gabor filters as band pass filters to remove the noise and preserve true ridge/valley structures. 

 

Binarization is the process that converts a grey level image into a binary image. This improves 

the contrast between the ridges and valleys in a fingerprint image, and consequently facilitates 
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the extraction of minutiae. Usually grayscale image is converted into binary image using a global 

threshold. The binarization process involves examining the grey-level value of each pixel in the 

enhanced image, and, if the value is greater than the global threshold, then the pixel value is set 

to a binary value one; otherwise, it is set to zero. The outcome is a binary image containing two 

levels of information, the foreground ridges and the background valleys [22].  

 

Let I (x, y) represent the intensity value of enhanced grayscale image at pixel position (x, y). Let 

𝑇𝑃 be the threshold value [16]. In case of fingerprint images 𝑇𝑃 represents the differentiating 

intensity between the background pixels and ridge pixels. BW(x, y) represent the binary image 

obtained by the equation.  

𝐵𝑊(𝑋,𝑌) = 1, if I (x, y)≥ 𝑇𝑃    Eq (2.1) 
                        0,      Otherwise 

 
Thinning 
 
Thinning is a morphological operation that successively erodes away the foreground pixels until 

they are one pixel wide [23] seen in Figure 2.10 [20].The application of the thinning algorithm to 

a fingerprint image preserves the connectivity of the ridge structures while forming a 

skeletonized version of the binary image.  Each sub-iteration begins by examining the 

neighborhood of each pixel in the binary image, and based on a particular set of pixel-deletion 

criteria, it checks whether the pixel can be deleted or not. These sub-iterations continue until no 

more pixels can be deleted. This skeleton image is then used in the subsequent extraction of 

minutiae. 

 

Minutiae Extraction 

 

The most commonly employed method of minutiae extraction is the Crossing Number (CN) 

concept. This method involves the use of the skeleton image where the ridge flow pattern is 

eight-connected. The minutiae are extracted by scanning the local neighborhood of each ridge 

pixel in the image using a 3×3 window. The CN value is then computed, which is defined as half 

the sum of the differences between pairs of adjacent pixels in the eight-neighborhood with 

reference to Table 2.1 and Table 2.2 [24], [25]. According to Rutovitz the crossing number for a 

ridge pixel is given by the equation:  

CN = ∑ | 𝑃𝑖 −  𝑃𝑖−1 |
8
𝑖=1  , 𝑃9 =  𝑃1    Eq (2.2) 
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Where Pi is the pixel value in the neighborhood of P. For a pixel P, its eight neighboring pixels 

are scanned in an anti-clockwise direction as follows: 

Table 2.1 :  3×3 window for searching minutiae 

𝑃4 𝑃3 𝑃2 

𝑃5 P 𝑃1 

𝑃6 𝑃7 𝑃8 

 
The pixel can then be classified according to the property of its CN value. Using the properties of 

the CN it may be classified into one of the following types: 

Table 2.2 : Properties of Crossing Number 

 

 

 

(a) (b) (c) (d) 

Figure 2.10: Feature extraction in a fingerprint 

(a) A fingerprint gray-scale image (b) The image obtained after enhancement and binarization (c) The 
image obtained after thinning (d) Termination and bifurcation minutiae detected through the pixel-wise 
computation of the crossing number. 

2.2.4 Fingerprint Matching  
Once all the required features have been extracted, matching can be achieved. Matching 

algorithms are broad and varied in their approaches, techniques, and methodologies, and employ 

CN Value Property 

0 Isolated point 

1 Ridge ending point 

2 Continuing ending point 

3 Bifurcation point 

4 Crossing point 
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many different strategies in an attempt to increase their efficiency, to increase their match-speed, 

to reduce the memory footprint, or to improve accuracy. Most methods of fingerprint matching 

follow a similar pattern involving an orientation estimation, segmentation of the fingerprint 

image, ridge detection and thinning, and finally, the minutiae detection [26].  

 

Correlation Based Matching 

 

In this class of fingerprint matching two fingerprint images are superimposed and the correlation 

between corresponding pixels is computed for different alignments (e.g. various displacements 

and rotations). Fourier transform may then be used to speed up the correlation computation [16]. 

The mathematical formulation for this method is discussed below: 

Let 𝑰(∆𝑥,∆𝑦,𝜃) represent a rotation of the input image I by an angle Ɵ around the origin shifted by 

∆𝑥 and ∆𝑦 pixels in directions x and y respectively. The similarity between these two images 

may then be computed as  

S (T, I) = 𝐶𝐶 (𝑻, 𝐼(∆𝒙,∆𝒚,𝜽)
∆𝑥,∆𝑦,𝜃

𝑚𝑎𝑥 )    Eq (2.3) 

 

where CC(T,I) = 𝑻𝑻 I  is the cross- correlation between T and I where T is the template and I is 

the image. The cross correlation technique of fingerprint matching proves to be advantageous as 

an efficient measure of image similarity. Also, the maximization obtained from the mathematical 

formulation above allows the fingerprint matching system to find an optimal registration. 

However, in comparison to other matching approaches this technique suffers from certain 

drawbacks which necessitates the need to employ other techniques in the course of fingerprint 

matching.  

 

Minutiae Based Matching 
 
Two fingerprints match if their minutiae points match. This approach of minutiae based 

fingerprint matching is also the backbone of the currently available fingerprint recognition 

products and forms the most extensively employed technique of fingerprint matching. Minutiae 

(i.e., ridge ending and ridge bifurcation) are extracted from the registered fingerprint image and 

the input fingerprint image, and the number of corresponding minutiae pairings between the two 

images is used to recognize a valid fingerprint image [27]. Figure 2.11 [27] shows the various 
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fingerprint extraction techniques. Minutiae are extracted from the two fingerprints and stored as 

sets of points in the two-dimensional plane. Most common minutiae matching algorithms 

consider each minutia as a triplet m ={x, y,𝜃} that indicates the (x, y) minutia location 

coordinates and the minutia angle. 

 

Figure 2.11 : Minutiae based extraction techniques 

The matching algorithms may be roughly categorized into two groups based on the scope of their 

respective matching techniques. These two groups are commonly referred to as "global matching 

techniques" and "local matching techniques". There are significant differences in the way these 

two types of matching algorithms are typically designed, in what contexts they are used, and how 

they treat or process their data. The trade-offs between local and global techniques include: 

algorithm complexity, computational complexity, distortion tolerance, and discriminatory power.  

 

Pattern-based (or Image-based) Matching 
 

Pattern based algorithms compare the basic fingerprint patterns (e.g., local orientation and 

frequency, ridge shape, texture information) between a previously stored template and a 

candidate fingerprint [27]. The images need to be aligned in the same position, about a central 

point on each image. The candidate fingerprint image is then graphically compared with the 

template to determine the degree of match.  The image-based techniques include both optical 

as well as computer-based image correlation techniques. 
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Non-Minutiae Feature-Based Matching  
 
Minutiae extraction is difficult in extremely low-quality fingerprint images. While some other 

features of the fingerprint ridge pattern (e.g., local orientation and frequency, ridge shape, texture 

information) may be extracted more reliably than minutiae, their distinctiveness as well as 

persistence is generally lower. The approaches [10] belonging to this family compare 

fingerprints in terms of features extracted from the ridge pattern. In principle, correlation-based 

matching could be conceived of as a subfamily of non-minutiae feature-based matching, in as 

much as the pixel intensities are themselves features of the finger pattern.  

2. 3 Comparison of Various Fingerprint Matching Techniques 
 

Table 2.3 : Comparison of various fingerprint matching techniques 

 

Class 

 

Advantages 

 

Disadvantages 

 

Correlation Based 

 

 Effective image similarity. 

 Optimal registration of the 

fingerprint image. 

 

 Non- linear distortion. 

 Computationally expensive. 

 

Minutiae Based 

 

 Extensively applicable for a wide 

variety of fingerprint based 

commercial products 

 Ease in acquiring the desired level 

of accuracy in matching. 

 

 Difficulty while extracting 

minutiae from poor quality 

images. 

 Time consuming. 

 Additional components may be 

needed. 

 

Non - minutiae 

(ridge feature 

based) 

 

 Enhancement of the overall system 

performance. 

 Effective even for low quality 

fingerprint images. 

 

 Conjunction with minutiae may 

be required. 

 Computationally complex   

Table 2.3 [16] lists the advantages and disadvantages of each set of matching techniques. The 

choice of the method to be employed is totally dependent on the fingerprint feature level being 

used. 
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2.4 Literature Review  

Vendor SDK Fingerprint Matching  
 

The science of fingerprint recognition using a wide variety of matching techniques in entirety 

involves algorithms which revolve around the concepts that have been discussed in section 2.3. 

The real time implementation of these algorithms includes the extensive use of a commercial 

platform that brings together all the different components of fingerprint authentication. These 

products are called fingerprint matchers and are often referred to as fingerprint recognition 

SDK's. They are presently being sourced from a number of vendors worldwide. A brief review of 

such SDK based fingerprint verification experiments has been given below. 

For Testing 

NIST has conducted testing of one-to-one SDK based on fingerprint matching systems to 

evaluate the accuracy of one-to-one matching used in the US-VISIT program. Fingerprint 

matching systems from eleven vendors not used in US-VISIT were also evaluated to insure that 

the accuracy of the matcher tested was comparable to the most accurate available Commercial 

Off The Shelf matchers (COTS) products. The SDK based matching application was tested on 20 

different single finger data sets of varying difficulty. The average true accept rate (TAR) at a 

false accept rate (FAR) of 0.01% was better than 98% for the two most accurate systems while 

the worst TAR at a FAR of 0.01% was greater than 94% [29]. 

For Performance Evaluation 

COTS are often used in fingerprint image synthesis. In a certain study two such matchers were 

used for performance evaluation. The results indicated that COTS1 had a higher matching 

accuracy than COTS2 on the standard minutiae templates generated from the ground truth 

minutiae. The study also leads to an understanding of the performance of each matching system 

which were given different test datasets [29]. 

For Experimentation 

Among the many areas of fingerprint science, reconstructing fingerprint images from various 

classes of fingerprint features has been a significant one. Often, commercial fingerprint matchers 
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have been employed in such studies for experimentation. The salient feature of such a study is its 

ability to preserve the minutiae at specified locations in the reconstructed feature map. 

Experiments using a commercial fingerprint matcher suggest that the reconstructed ridge 

structure bears close resemblance to the parent fingerprint. It has been demonstrated that three 

levels of information about the parent fingerprint can be elicited from a given minutiae template: 

the orientation field, the fingerprint class, and the friction ridge structure [30].  

2.5 Biometric System Errors 
 

Decision Error Rates 

The performance of a biometric system may be stated in terms of the decision error rates viz. 

"false acceptance rate" and "false rejection rate". 

False Acceptance Rate (impostor acceptance) 

The fraction of transactions with wrongful claims of identity (in a positive ID system) or non-

identity (in a negative ID system) that are incorrectly confirmed is referred to as the false 

acceptance rate of the biometric system [31]. A transaction may consist of one or more wrongful 

attempts dependent on the decision policy. In the mathematical terminology the false acceptance 

rate is also referred to as the Type II error. It can be computed using the relation below 

FAR = 
𝑖𝑚𝑝𝑜𝑠𝑡𝑜𝑟 𝑠𝑐𝑜𝑟𝑒𝑠 𝑒𝑥𝑐𝑒𝑒𝑑𝑖𝑛𝑔 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑎𝑙𝑙 𝑖𝑚𝑝𝑜𝑠𝑡𝑒𝑟 𝑠𝑐𝑜𝑟𝑒𝑠
   Eq (2.4) 

False Rejection Rate (genuine rejection) 

The fraction of transactions that with truthful claims of identity (in a positive ID system) or non-

identity (in a negative ID system) that are incorrectly denied is referred to as the false rejection 

rate of the biometric system. A transaction may contain one or more truthful attempts dependent 

upon the decision policy. In the mathematical terminology the false rejection rate is also referred 

to as the Type I error [31]. It can be computed using the relation below 

        FRR = 
𝑔𝑒𝑛𝑢𝑖𝑛𝑒 𝑠𝑐𝑜𝑟𝑒𝑠 𝑓𝑎𝑙𝑙𝑖𝑛𝑔 𝑏𝑒𝑙𝑜𝑤 𝑡ℎ𝑒 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑎𝑙𝑙 𝑔𝑒𝑛𝑢𝑖𝑛𝑒 𝑠𝑐𝑜𝑟𝑒𝑠
   Eq (2.5) 

The performance of a biometric system is specified in terms of false acceptance rate (FAR). The 

decision scheme should establish a decision boundary which minimizes the false rejection rate 



 

40 
 

(FRR) for the specified FAR. There is a tradeoff between the two types of errors. If a higher 

threshold is chosen, the genuine rejection rate is lower but the false accept rate may be higher, 

and vice versa. The given biometric application dictates the FAR and FRR requirements. For 

example, access to an ATM machine generally needs a small FRR, but access to a military 

installation requires a very small FAR. Different decision thresholds lead to different FAR and 

FRR. 

 

Matching Errors 

 

Considering the scenario of a single comparison of a submitted sample against a single enrolled 

template, the matching errors of a biometric authentication system may be discussed as follows: 

False Match Rate (FMR) 

Mistaking biometric measurements from two different persons to be from the same person 

results in a false match. Therefore, the false match rate is the probability that a sample will be 

falsely declared to match a single randomly selected "non-self" template [31]. It is sometimes 

also referred to as the false positive rate.  

 

False Non-Match Rate (FNMR) 

Mistaking two biometric measurements from the same person to be from two different persons 

results in a false non-match. Therefore, the false non-match rate is the probability that a sample 

will be falsely declared not to match a template of the same measure of the same user supplying 

the sample. It is sometimes also referred to as the false negative rate. Figure 2.12 [7] refers to the 

various operating points of typical biometric applications.  

 
 

Non-Self 

This explicitly means that the samples used for matching are genetically different. Comparison 

of genetically identical biometric characteristics (for instance, biometric samples of identical 

twins) yield different score distributions than comparison of genetically different characteristics. 

Consequently, such genetically similar comparisons should not be considered while computing 

the false match rate [31]. 
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It is to be noted that both FMR and FNMR are functions of the system threshold.  If the threshold 

is decreased to make the system more tolerant to input variations and noise, then FMR increases. 

On the other hand, if the threshold is raised to make the system more secure, then FNMR 

increases accordingly. 

 

Equal Error Rate (EER) 

The EER operating point is a computation which is generally regarded as an obvious choice to 

judge the quality of a fingerprint matcher. The EER is the operational point where FNMR=FMR. 

A lower EER value, therefore, indicates better performance. 

 

 

Figure 2.12 : Typical operating points of different biometric applications 

Image Acquisition Errors 

 

Failure To Enroll Rate (FTE) 

The failure to enroll rate is the expected fraction of biometric transactions for which the system 

is unable to generate repeatable templates. This comprises of all those transactions wherein the 

user was unable to present the required biometric feature, the image that the user provided was 

insufficient in its quality at the time of enrollment, the user is unable to  reliably match his/her 

template in attempts to confirm that the enrollment is usable [31]. The failure to enroll rate will 

depend on the enrollment policy.  

 

Failure To Acquire Rate (FTA) 

The failure to acquire rate is defined as the fraction of biometric transactions for which the 

system is unable to capture or locate an image or signal of sufficient quality [31]. This image 

acquisition error depends on the adjustable thresholds for image or signal quality.     
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2.6 Identity Claims in a Biometric System 
 

Genuine Claim of Identity 

A genuine attempt is a single good faith attempt by a user to match his or her own stored 

template. In a genuine biometric transaction the user truthfully claims to be him/herself thereby 

leading to the comparison of a sample with a truly matching template [31]. Such pairs of 

biometric samples generating scores higher than or equal to the threshold are inferred to as mate 

pairs (i.e., belonging to the same person). The distribution of scores generated from pairs of 

samples from the same person is called the genuine distribution. 

Impostor Claim of Identity 

 

An impostor attempt is a single trial by a user to match his/her template with a non-matching 

template. In an impostor biometric transaction the user falsely claims to be someone else thereby 

leading to the comparison of a sample with a mismatched template [31]. Such pairs of biometric 

samples generating scores lower than the threshold are inferred to as non-mate pairs (i.e., 

belonging to different persons). The distribution of scores generated from pairs of samples from 

different persons is called the impostor distribution. Figure 2.13 [32] is an illustration of the 

genuine and imposter match score distributions also indicating the FMR and FNMR curves. 

 

 

Figure 2.13: Representation of a typical genuine and impostor score distribution 
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2.7 Receiver Operating Characteristic Curves 
 

A receiver operating characteristic (ROC) curve is a plot of genuine acceptance rate (1-FRR) 

against false acceptance rate for all possible system operating points (i.e., matching threshold) 

and measures the overall performance of the system. Each point on the curve corresponds to a 

particular decision threshold. In the ideal case, both the error rates, i.e., FAR and FRR should be 

zero and the genuine distribution and imposter distribution should be disjoint. In such a case, the 

“ideal” ROC curve is a step function at the zero false acceptance rate [13]. On the other extreme, 

if the genuine and imposter distributions are exactly the same, then the ROC is a line segment 

with a slope of 45 degrees with an end point at zero false acceptance rate. In practice, the ROC 

curve behaves in between these two extremes. Figure 2.14 [13] is an illustration of sample ROC 

Curves. 

 

  ROC (T) = (FAR (T), GAR (T)) where T is the threshold                Eq (2.6) 

 
 

Figure 2.14 : Sample ROC Curves 

An ROC curve demonstrates several things [32] which have been listed below: 
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 It shows the tradeoff between sensitivity and specificity (any increase in sensitivity will 

be accompanied by a decrease in specificity). 

 The closer the curve follows the left-hand border and then the top border of the ROC 

space, the more accurate the test. 

 The closer the curve comes to the 45-degree diagonal of the ROC space, the less accurate 

the test. 

 The slope of the tangent line at a cut point gives the likelihood ratio (LR) for that value of 

the test.  

 The area under the curve (AUC) is a measure of performance accuracy. An area of 1 

represents a perfect test while an area ≤ 0.5 represents a worthless test. 

2.8 Information- Theoretic Divergence Measures 
 

In probability theory, a ƒ-divergence is a function 𝐷𝑓(M || N) that measures the difference 

between two probability distributions M and N. It helps the intuition to think of the divergence as 

an average, weighted by the function f, of the odds ratio given by M and N. The Kullback Leibler 

Divergence is one such measure that belongs to the family of f-divergences [38]. It is also called 

as the discrimination information, information divergence, relative entropy, KLIC or KL 

divergence. 

Kullback- Leibler Divergence 

The Kullback Leibler Divergence or KLD, as we call it in this study, is not symmetric in M and 

N. In applications, M typically represents the "true" distribution of data, observations, or a 

precisely calculated theoretical distribution, while N typically represents a theory, model, 

description, or approximation of M. For two discrete probability distributions M and N the 

Kullback Leibler Divergence from N to M is defined by the following mathematical relation 

𝐷𝐾𝐿 (𝑀 ǁ 𝑁) =  ∑ 𝑀(𝑖) log
𝑀(𝑖)

𝑁(𝑖)𝑖    Eq (2.7) 

In words, it is the expectation of the logarithmic difference between the probabilities M and N, 

where the expectation is taken using the probabilities of M [38]. The Kullback–Leibler 

divergence is defined only if N (i) =0 which implies M (i) =0, for all i (absolute continuity). 
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Whenever M (i) is zero the contribution of the i-th term is interpreted as zero 

because lim𝑥→0 𝑥 log(𝑥) = 0. 

Properties of KLD 

 A very essential property of this divergence will be that the K-L divergence is always 

non-negative, i.e. 

𝐷𝐾𝐿(𝑀 ǁ 𝑁 ) ≥ 0     Eq (2.8) 

 The equality is reached when both distribution coincides, i.e. M (x) = N (x) for all values 

of x. 

 The Kullback Leibler Divergence is not symmetrical and does not satisfy the triangular 

inequality [38]. So, the KLD is not really a metric, but a premetric. Hence, it specifies a 

topology. 

D (M ǁ N) ≠ D (N ǁ M)     Eq (2.9) 

To address the symmetry problem, the Jeffrey's Divergence [39] which is another form of f-

divergence can be employed which is obtained by “averaging” two Kullback-Leibler distances. 

The J - divergence equals the average of the two possible Kullback-Leibler distances between the 

two probability distributions and hence results in a symmetric version of the KLD. Assuming the 

component Kullback-Leibler distances exist, it may be mathematically expressed as  

 

J (M, N) =
𝐷(𝑀 ǁ 𝑁)+ 𝐷(𝑁 ǁ 𝑀)

2
    Eq (2.10) 

 

Relation between the Kullback Leibler Divergence and Jeffrey's Divergence 

 

The Kullback Leibler Divergence may be expressed as half of its symmetric version which is 

Jeffrey's Divergence. 

 

𝐾 (M || N) = 
1

2
 J(M ǁ N)    Eq (2.11) 
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Jensen- Shannon Divergence 

 

The Jensen Shannon Divergence or JSD, as we call it in our study, is the smoothed version of the 

Kullback Leibler Divergence. It is also called as the information radius or total information to the 

average [37]. The square root of the Jensen Shannon Divergence is known as the Jensen Shannon 

distance which serves as the information theoretic measure in this study. Mathematically, the 

Jensen Shannon Divergence is given as 

JSD (M ǁ N) = 
1

2
𝐷(𝑀 ǁ 𝑃) +

1

2
𝐷(𝑁 ǁ 𝑃)          Eq (2.12) 

 where P = 
1 

2
(𝑀 + 𝑁)                   Eq (2.13) 

Properties of Jensen Shannon Divergence 

 

 JSD is symmetric and it is always a finite value. 

 The Jensen–Shannon divergence is bounded by 1 for two probability distributions, given 

that the base 2 algorithm is being used. 

0≤ JSD (M ǁ N) ≤ 1             Eq (2.14) 

 The Jensen Shannon Divergence when computed with respect to log base e has the upper 

bound as ln(2) 

0≤ JSD (M ǁ N) ≤ ln (2)                       Eq (2.15) 

 The Jensen–Shannon divergence gives the mutual information between a random variable 

X associated to a distributive mixture between M and N and a binary indicator variable Y 

that is used to shift between M and N to produce the mixture [37]. 

I(X; Y) = JSD (M ǁ N)            Eq (2.16) 

 The closer the distributions lesser would be the value of JSD. 
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CHAPTER 3 - EXPERIMENTAL DATA 

3.1 Data Acquisition 
 

Over the past few years, West Virginia University (WVU) in collaboration with the Federal 

Bureau of Investigation (FBI) has been involved in a number of large scale multimodal biometric 

collections. The West Virginia University's BIOCOP 2012 is one such assortment that has been 

employed for analysis in our study. The fingerprint subset of this collection consists of images 

that have been acquired from 1200 participants belonging to various age and ethnic groups.  

Table 3.1 : Description of the fingerprint scanners employed in WVU BIOCOP 2012 

Scanner Properties Enrollment No: of 

images 

captured 

 

CrossMatch 

Verifier 

300LC 

 

It is an optical USB 2.0 fingerprint 

scanner. The scanner is an improved 

version of Verifier 300 LC with USB 

2.0 support, faster frame rate and an 

infrared filter to improve ambient light 

rejection. 

 

Captures the image of only one 

finger in a single trial of 

enrollment. 

 

34911 

 

CrossMatch 

Verifier 310 

LC 

 

It is a FIPS 201 approved dual 

fingerprint capture device. Enhanced 

accuracy, reduced time for enrollment 

are the major advantages of this 

scanner. 

 

Can be employed to capture the 

image of two or more fingers or 

varied combinations of multiple 

fingers in a single trial of 

enrollment. 

 

38368 

 

Upek Eikon 

Touch 700   

 

It is a FIPS 201 certified capacitive 

USB 2.0 fingerprint scanner. 

 

Captures the image of only one 

finger in a single trial of 

enrollment. 

 

 

34810 

 

Using the scanners listed below fingerprint images were captured of all the ten fingers. However, 

this study is confined to the analysis of genuine and impostor score distributions for the right 
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thumb and right index fingers. The specifications of these images as captured by the various 

scanners has been listed in Table 3.2. 

Table 3.2 : Specifications of the fingerprint images in WVU BIOCOP 2012 

Specification CrossMatch Verifier 
300 LC 

CrossMatch Verifier 
310 

Upek Eikon Touch 700 

 
No: of Images 

 
Right Thumb - 3491 
Right Index- 3491 

 
Right Index- 3480 
(segmented) 

 
Right Thumb - 3481 
Right Index- 3481 

 
Image Format 

 
Bitmap (.bmp) 

 
Bitmap (.bmp) 

 
Bitmap (.bmp) 

 
Size 

 
586 kb 

 
586 kb 
 

 
91 kb 

 
Bit depth  

 
8 

 
8 

 
8 

 
Color 

 
Grayscale 

 
Grayscale 

 
Grayscale 

 
Original resolution (in 
pixels) 

 
800 × 750 

 
800 × 750 

 
256 × 360 

 
Modified resolution 
(while verification) 

 
500 × 500 

 
500 × 500 

 
500 500 

3.2 Demographic Distribution of the Fingerprint Data 
 

While one section of this study revolves around the genuine and impostor score distributions of 

the total fingerprints captured by each of the scanners, the crux of this study is totally oriented 

towards analyzing the fingerprints based on the demographic feature they belong to. The three 

demographic features that this study aims to examine are Age, Gender and Ethnicity. Table 3.3 

shows the demographic distribution of the BIOCOP 2012 fingerprint dataset. 
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Table 3.3 : Demographic distribution of the BIOCOP 2012 fingerprint dataset 

 

The main goal of analyzing the effect of data stratification takes into account the key fact that 

fingerprint images acquired from different subjects present different information to the system 

which results in a significant variation in matching score. The reason for these variations in the 

fingerprints has been described in Table 3.3.   

Demographic No: of Participants Reason for variations in matching score
Age Age 18-19 :138 Decreased skin firmness

Age 20-30: 886 Loose and dry aging skin resulting in poor quality
Age 31-49: 113
Age 50-70: 59
Age 71-79: 4

Gender Male- 705 Difference in pattern of the ridge structure
Female- 495 Varying ridge breadth and minutaie count

Ethnicity Caucasian - 727 Difference in ridge structure
Asians - 105
Asian Indians - 137
African Americans - 76
Middle Eastern - 61
Hispanics - 56
Africans - 20
Other Pacific Islanders - 4
Others - 14
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CHAPTER 4 - METHODOLOGY 

4.1 Experimental Set Up 
 

 

Figure 4.1: Algorithmic view of the overall experimental set up 

Figure 4.1 gives us an illustrative view of the matching and analysis algorithm that has been 

implemented in this study. MegaMatcher 5.0 SDK was installed and matching functions were 

employed using a JAVA based platform in an Eclipse Integrated Development Environment 

(IDE). Post-matching the genuine and impostor scores were stored in Comma Separated Variable 

(CSV) files and were used for statistical analysis using MATLAB. 

 

4.2 Matching System  

4.2.1 MegaMatcher SDK 
 

MegaMatcher technology [41] is designed for large-scale AFIS (Automatic Fingerprint 

Identification System) and multi-biometric systems developers. The technology ensures high 

reliability and speed of biometric identification even when using large databases. MegaMatcher 
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is available as a software development kit that allows development of large-scale single- or 

multi-biometric fingerprint, face, voice, iris and palm print identification products for Microsoft 

Windows, Linux, Mac OS X, iOS and Android platforms.  

 

Figure 4.2 : Schema of Megamatcher SDK 

 

Features of MegaMatcher SDK 

 It also endures high productivity and efficiency are supported by a fused algorithm that 

contains fingerprint, face, iris, palmprint and voice recognition engines. Integrators can 

use the fused algorithm for better results or any of these engines separately.  

 The fault-tolerant scalable cluster software [41] allows to perform fast parallel matching, 

processes high number of requests and handles databases with practically unlimited size. 

 MegaMatcher includes server software for local multi-biometrical systems and cluster 

software for large-scale multibiometrical products development. .NET and Java 

components for rapid development of client side software are also included with 

MegaMatcher.  

 To ensure system compatibility with other software, WSQ library is included, as well as 

modules for conversion between MegaMatcher template and other biometrical standards. 
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4.2.2 VERIFINGER 7.0 
 

VeriFinger [41] is a fingerprint authentication algorithm intended for biometric systems 

developers and integrators. The technology assures system performance with fast, reliable 

fingerprint matching in one-to-one and one-to-many modes. VeriFinger fingerprint engine 

performance and reliability has been recognized by NIST as MINEX compliant. 

 

Figure 4.3 : Client-Server Architecture of VeriFinger 

4.2.2.1 SDK Fingerprint Components 
 

Fingerprint Matcher 

The Fingerprint Matcher [42] performs fingerprint template matching in one-to-one (verification) 

and one-to-many (identification) modes. Also the Fingerprint Matcher component includes 

fused matching algorithm that allows to increase template matching reliability by:  
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 Matching templates that contain 2 or more fingerprint records (note that the Fingerprint 

Segmenter and the Fingerprint Client components are required to perform template extraction 

from images that contain more than one fingerprint) 

 Matching templates that contain fingerprint, face, voiceprint and/or iris records (note that 

matching faces, irises and voiceprints requires to purchase Face Matcher, Iris Matcher and 

Voice Matcher components correspondingly). 

The Fingerprint Matcher component matches 40,000 fingerprints per second and is designed 

to be used in desktop or mobile biometric systems, which run on PCs or laptops with at least 

Intel Core 2 Q9400 (2.67 GHz) processor.  

 

Fingerprint Client 

The Fingerprint Client [42] component is a combination of the Fingerprint BSS (Biometric 

Standard Support), Fingerprint Segmenter and Fingerprint WSQ (Wavelet Scalar Quantization) 

components. It is intended for the systems that need to support most or all functionality of the 

mentioned components on the same PC. The Fingerprint Client extracts a single fingerprint 

template in 0.6 seconds. The specified performance requires a PC or laptop with at least Intel 

Core 2 Q9400 (2.67 GHz) processor. 

 

Fingerprint Segmenter 

The Fingerprint Segmenter [42] components separates fingerprints if an image contains more 

than one fingerprint. This component also enables the Fingerprint Extractor component to 

process fingerprints from scanned ten print card or image captured using scanners that allow to 

scan two or more fingers at a time. 

Table 4.1 : Fingerprint Engine Specifications 

 

 
 

MegaMatcher 5.0 Fingerprint Engine Specifications (PC Based Platform)
Template Extraction Components Fingerprint Extractor Fingerprint Client
Template Extraction time (in seconds) 1.34 0.6
Template Matching Component Fingerprint Matcher
Template Matching Speed (fingerprints per second) 40,000      
Single fingerprint record size in a template (in bytes) 700- 6,000 (configurable)
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4.2.2.2 Biometric Functionalities 
 

MegaMatcher 5.0 is comprised of a number of tutorials each of which includes a small program 

that demonstrates specific functionality [41] of Neurotechnology libraries. The section below 

would give a brief description about the biometric libraries used in this study. 

Table 4.2 : Biometric Function Files 

 
Biometrics 

 
Description 

 
EnrollFingerFromImage 

 
Demonstrates how to extract features from fingerprint image and enroll to 
database. 

 
EvaluateFingerQuality 

 
Demonstrates fingerprint image quality evaluation. 

 
SegmentFingers 

 
Demonstrates how to use fingerprint features segmentation. 

 
ShowTemplateContent 

 
Demonstrates how to retrieve information about a template. 

 
VerifyFinger 

 
Demonstrates how to use 1:1 fingerprint matching. 

 

4.2.2.3 Task Specific Attributes 
 

Table 4.3 : Task Specific Attributes used for Matching, Segmentation and Minutiae extraction 

For Matching 
 
NBiometricOperation 

 
Defines the biometric operation to be performed 
in the task. 

 
NBiometricStatus 

 
Returns the status of the biometric task. 

 
NBiometricTask 

 
Used to define a new biometric task. 

 
NFinger 

 
Provides methods for the biometric engine to deal 
with fingerprint templates. 

 
NMatchingSpeed 

 
Defines the matching speed to be low, medium or 
high. 

 
NSubject 

 
Represents a person and contains the biometric 
information related to that person. 

 
NBiometricClient 

 
Represents a biometric client which provides 
functions for biometric data capture and its 
transfer through various connections. 
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NImage 

 
Provides functionality for managing images. 

Segmentation and Quality Score generation 
 
NF Position 

 
Specifies finger position. 

 
NFIQ Quality 

 
Specifies the quality of a fingerprint image 

For Minutiae Extraction 
 
NFCore 

 
Represents a core in the fingerprint image. 

 
NFDelta 

 
Represents a delta in a fingerprint image. 

 
NFDoubleCore 

 
Represents a double core in a fingerprint image. 

 
NFMinutia 

 
Represents a minutia point in a fingerprint image. 

 
NFMinutiaFormat 

 
Specifies the format of the minutiae in the 
fingerprint image. 

 
NFRecord 

 
Provides the functionality for packing, unpacking 
and editing Neurotechnology finger records. 

Table 4.3 [41] lists out the various task specific attributes that have been used in the course of 

experimentation in this study. 

4.3 Matching of fingerprints 
 

The templates can be compared with the aim to check if they belong to the same person. The 

result of such comparison is the similarity score. The higher score suggests the higher probability 

that features collections are obtained from the same person. This score is mapped to yes/no 

answer with the matching threshold [41]. Using the NMatcher component of the matching 

system, each finger from the query template is matched with the database template in the 

following way: 

 If query of finger position is unknown it is matched with all fingers from database 

template and the match with maximal score is selected. 

 If query of finger position is known it is matched with all fingers from database template 

that have the same finger position or have unknown finger position and the match with 

maximal score is selected. 
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Table 4.4 : Matching threshold for various FAR 

 

Table 4.5 gives the set of FAR's for various levels of thresholding as stated by Megamatcher 5.0 

SDK which could also be determined using the relation 

 

    Threshold = -12 * log10 (FAR)           Eq (4.1) 
 
where FAR is NOT percentage value (e.g. 0.1% FAR is 0.001). 
 
The returned score should be interpreted as the probability that the false acceptance happened. 

The score is retuned by using such algorithm – if the matching score is equal or higher than the 

set matching threshold, then it means that modality has matched and score is returned. If the 

score is lower than the matching threshold, then “0” value is returned and it means that the 

modality did not match. There is no maximum value for the matching score which implies that 

bigger the score lower is the probability that false acceptance has happened.  
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CHAPTER 5 - EXPERIMENTAL RESULTS 

5.1 Fingerprint Image Match Score Analysis 
VeriFinger component contained in the MegaMatcher software SDK has been used as the 

matching platform. The fingerprint feature extractor component extracts a template of the 

original fingerprint image which serves as the probe image. The fingerprint matcher component 

then matches this probe image against the set of images in the gallery. In order to generate the 

genuine scores, a probe image of a subject is matched against all other fingerprint images of the 

same subject which forms the gallery. However, in order to generate the imposter scores the 

probe image of a subject is matched against that particular set of images of all the subjects in the 

dataset which forms the gallery in this case. In both the cases, the probe image has not been 

included in the gallery. For both the experiments the horizontal and vertical resolution of the 

fingerprint images has been set to 500 pixels per inch (ppi) in order to avoid the error of 'invalid 

sample resolution' which occurred while trying to perform experiments with the original 

resolution of the images. Also, while experimentation the matching speed was maintained at a 

low level and the matching threshold was kept zero in order to allow maximum possible 

matches. Each experiment resulted in a genuine or imposter match score list obtained in the form 

of comma separated variable (csv) files which were then imported into Matlab to generate the 

imposter and genuine score distributions. Table 5.1 shows the maximum and minimum values of 

the genuine and imposter scores generated by the matcher for each of the sensors.  

Table 5.1: Range of match scores of the WVU 2012 BioCOP fingerprint dataset 

Sensor Finger Genuine  

Maximum 

score 

Genuine  

Minimum 

Score 

Imposter 

Maximum 

Score 

Imposter 

Minimum Score 

CrossMatch 

Verifier 300LC 

Right Thumb 18492 0 17391 0 

Right Index 22179 0 15140 0 

CrossMatch 

Verifier 310 

Right Index 94154 0 10017  0 

Upek Eikon 

Touch 700  

Right Thumb 23760 0 10089 0 

Right Index 31277 0 9470  0 
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(a) 

 

(b) 

  

(c) 

 

(d) 

 

(e) 

 

(a) CrossMatch 300LC right index. (b) 
CrossMatch300LC right thumb. (c) CrossMatch 
310 right index. (d) Upek Eikon Touch right index. 
(e) Upek Eikon Touch right thumb. 
 

Figure 5.1 : Genuine and imposter score distributions for thumb and index fingerprint images 
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5.1.1 ROC Curves of the WVU 2012 BioCOP Fingerprint Dataset 
 

ROC curves were plotted in order to better understand the performance of the sensors employed. 

These performance curves can be seen in Figure 5.2. The area under the curve values (AUC) for 

these curves have been tabulated in Table 5.2. From these values it can be understood that the 

scanners CrossMatch Verifier 300LC and Upek Eikon Touch 700 have been on the same level in 

terms of match performance. 

 

Table 5.2 : Summary of AUC values of the WVU 2012 BioCOP fingerprint dataset 

Finger Scanner Area under Curve 
Right Thumb Cross Match Verifier 300LC  0.9535 
  Upek Eikon Touch 700 0.9381 
Right Index Cross Match Verifier 300LC  0.9035 
  Cross Match Verifier 310 0.8856 
  Upek Eikon Touch 700 0.9651 

 

 

 

(a) 

 

(b) 

Figure 5.2 : ROC Curves for WVU 2012 BioCOP Fingerprint Dataset  

(a) Right Index (b) Right Thumb 

5.1.2 Divergence Measure Distributions 
The Kullback Leibler and Jensen Shannon Divergence measures have been listed in Table 5.3.  
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From these values it can be inferred that the range of the KLD and JSD scores varies between 

0.3928 and 0.0571. As discussed in Section 2.5, the more a divergence score is closer to zero the 

more ideal it would be. However, with reference to the divergence measure properties, this range 

of variation in divergence is not very significant to state that a particular sensor exhibits a change 

in its match performance as a result of data stratification. 

 
Table 5.3 : KLD and JSD Scores for the Right Index and Right Thumb fingerprint images 

 
Scanner -
Finger 

Reference 
Scanner - Finger 

KLD 
Genuine 

KLD 
Imposter 

JSD 
Genuine 

JSD 
Imposter 

JD 
Genuine 

JD 
Imposter 

Upek Eikon 
Touch-Right 
Thumb 

Cross Match 
Verifier 300LC - 
Right Thumb 0.3928 0.5516 0.4839 0.2332 0.7855 1.1032 

Cross Match 
Verifier 310 
- Right Index 

Cross Match 
Verifier 300LC - 
Right Index 0.2398 0.1153 0.5211 0.0571 0.4795 0.2306 

Upek Eikon 
Touch-Right 
Index 

Cross Match 
Verifier 300LC - 
Right Index 0.2786 0.283 0.5076 0.1366 0.5572 0.5661 
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(a) 

 
(b) 

  

  
Figure 5.3 : KLD and JSD Distributions of Right Index and Right Thumb Fingerprint Images 

(a) Bar graph of KLD scores of right index images. (b) Bar graph of JSD scores of right index images. (c) 
Bar graph of KLD scores of right thumb images. (d) Bar graph of JSD scores of right thumb images.  
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5.2 Demographic Based Distributions 
 

The major objective this study is oriented towards is understanding the influence of the 

demographic strata on the match performance of each stratum and in comparison with the total 

fingerprint dataset. In order to accomplish this task the test dataset under study has been divided 

into three demographic strata viz. gender, age and ethnicity. Sections 5.2.1, 5.2.2, 5.2.3 describe 

the experimental results that have been obtained in each of these sections respectively. 

5.2.1 Gender Based Test Results 
 

The fingerprint dataset of the WVU 2012 BioCOP consists of 705 males and 495 females 

belonging to different age and ethnic groups. The sections below focus on the difference in 

match performance between the male and female strata with reference to the ROC curves and the 

statistical divergence measures.  

5.2.1.1 Match Score Analysis 
 

Table 5.4 : Maximum and Minimum match scores of the gender strata 

Demographic Scanner Finger Genuine   Imposter   
      Maximum Minimum Maximum Minimum 

Male 
Cross Match Verifier 
300LC 

Right 
Thumb 16558 0 9325 0 

    Right Index 21819 0 13299 0 

  
Cross Match Verifier 
310LC Right Index 94154 0 6396 0 

  
Upek Eikon Touch 
700 

Right 
Thumb 23760 0 9820 0 

    Right Index 31277 0 998 0 

Female 
Cross Match Verifier 
300LC 

Right 
Thumb 18492 0 17391 0 

    Right Index 22179 0 15140 0 

  
Cross Match Verifier 
310LC Right Index 24724 0 10017 0 

  Upek Eikon Touch 
Right 
Thumb 20938 0 10089 0 

    Right Index 25701 0 3975 0 
 

Figure 5.4 and Figure 5.5 show the match score distributions of each scanners for the gender 

stratum under study. It needs to be mentioned that the overlap area of the genuine and impostor 
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distribution is very small indicating a very less error region. These results hold good for all the 

distributions. Hence, it can be seen that there is not much of variation in the match score 

distributions of the gender strata with respect to the total dataset which is again a sign of minimal 

data stratification effect. Refer to Section A of the appendix for the individual genuine and 

imposter score distributions.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
 

Figure 5.4 : Genuine and imposter match score distributions for male fingerprint images. 

(a) CrossMatch 300LC right index. (b) CrossMatch300LC right thumb. (c) CrossMatch 310 right index. 
(d) Upek Eikon Touch right index. (e) Upek Eikon Touch right thumb 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
 

Figure 5.5 : Genuine and imposter match score distributions for female fingerprint images. 

(a) CrossMatch 300LC right index. (b) CrossMatch300LC right thumb. (c) CrossMatch 310 right index. 
(d) Upek Eikon Touch right index. (e) Upek Eikon Touch right thumb 
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5.2.1.2 Receiver Operating Characteristic Curves 
 

Table 5.5 lists the AUC Values obtained from the receiver operating characteristic curves. It can 

be seen that the gender strata has been quite close in its performance to the total data set. This 

signifies that a majority of the data set has been quite invariant in terms of the match 

performance under the influence of data stratification. However, it can also be noticed that the 

gender stratum has been consistent in its match performance throughout. 

Table 5.5 : Gender Based AUC Values 

Scanner Finger Gender Area Under Curve 
Cross Match Verifier 300LC  Right Thumb Main 0.9535 
  

 
Male 0.9457 

  
 

Female 0.968 
  Right Index Main 0.9197 
    Male 0.9244 
    Female 0.9088 
Cross Match Verifier 310 Right Index Main 0.8656 
    Male 0.8261 
    Female 0.9257 
Upek Eikon Touch 700 Right Thumb Main 0.9374 
    Male 0.9263 
    Female 0.9616 
  Right Index Main 0.9640 
    Male 0.9639 
    Female 0.9600 
 

Using the minutiae extraction feature of the VeriFinger component the count of minutiae has 

been generated for each set of male and female fingerprint images acquired from all the scanners. 

It has been observed that the average count of extracted minutia is comparatively more for the 

fingerprint images obtained using CrossMatch Verifier 300LC for both male and female strata. 

This can be understood from the boxplots in Figure 5.7. The center line of the box plot indicates 

the median of the minutiae count generated which is seen to be higher in the case of CrossMatch 

Verifier 300LC in comparison with CrossMatch Verifier 310 and Upek Eikon Touch 700. Thus, 

the images acquired using CrossMatch verifier 300LC show a higher rate of success from the 

point of feature extraction.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
 
 

Figure 5.6 : Gender Based ROC Curves 

(a) CrossMatch 300LC right index .(b) CrossMatch300LC right thumb. (c) CrossMatch 310 right index. 
(d) Upek Eikon Touch right index .(e) Upek Eikon Touch right thumb  



 

68 
 

 
                                     (a) 

 
                                      (b) 

 
                                     (c) 

 
                                     (d) 

  
                              (e)  

 
 
 
 

Figure 5.7 : Gender Based Minutiae Count Representation 

(a) Boxplots of minutiae of right index images from Crossmatch Verifier 300LC. (b) Boxplots of 
minutiae of right thumb images from Crossmatch Verifier 300LC. (c) Boxplots of minutiae of right index 
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images from Crossmatch Verifier 310. (d) Boxplots of minutiae of right index images from Upek Eikon 
Touch 700. (e) Boxplots of minutiae of right thumb images from Upek Eikon Touch 700. 

5.2.1.3 Divergence Measure Distributions 
 

Table 5.6 lists the divergence distance measures between the male and female stratum. Both the 

KLD and JSD distributions validate the conclusions arrived at in the section 5.2.1.2. It can be 

seen that the maximum divergence score obtained is 0.577 while the minimum score is 0.013. 

Again, this variation in the divergence score values does not present a significant separation 

between the match score distributions. Hence, it can be concluded that the match performance of 

each of the gender demographic strata has not been influenced by the effect of data stratification. 

Refer to figure 5.8 for the bar graphs of the KLD and JSD scores obtained for the male and 

female stratum. 

Table 5.6 : Gender Based KLD and JSD Values 

 
Sensor 
Name Gender Finger 

KLD 
Genuine 

KLD 
Imposter 

JSD 
Genuine 

JSD 
Imposter 

JD 
Genuine 

JD 
Imposter 

Cross Match 
Verifier 300 
LC Male 

Right 
Index 0.3796 0.0274 0.2773 0.0137 0.7592 0.0548 

  Male 
Right 
Thumb 0.3667 0.0369 0.2573 0.0184 0.7334 0.0737 

  Female 
Right 
Index 0.5472 0.1236 0.4105 0.0614 1.0945 0.2472 

  Female 
Right 
Thumb 0.5075 0.121 0.3783 0.0601 1.0149 0.242 

Cross Match 
Verifier 310 
LC Male 

Right 
Index 0.3829 0.0326 0.285 0.0163 0.7658 0.0652 

  Female 
Right 
Index 0.5508 0.1268 0.422 0.063 1.1016 0.2537 

Upek Male 
Right 
Index 0.3694 0.0274 0.2687 0.0137 0.7388 0.0548 

  Male 
Right 
Thumb 0.3602 0.0603 0.2545 0.0301 0.7204 0.1206 

  Female 
Right 
Index 0.5354 0.577 0.398 0.0288 1.0707 0.1154 

  Female 
Right 
Thumb 0.5149 0.0418 0.3751 0.0209 1.0297 0.835 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5.8 : Gender Based KLD and JSD Distributions  

 (a) Bar graph of KLD scores of right index images. (b) Bar graph of JSD scores of right index images. 
(c) Bar graph of KLD scores of right thumb images. (d) Bar graph of JSD scores of right thumb images. 

5.2.2 Age Based Test Results 
 

The fingerprint dataset of the WVU 2012 BioCOP consists of subjects belonging to five age 

groups viz. Age 18-19, Age 20-30, Age 31-49, Age 50-70, Age 71-79. The sections below focus 

on the difference in match performance between the various age groups with reference to the 

ROC curves and the statistical divergence measures.  
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5.2.2.1 Match Score Analysis 
 

Figure 5.9, 5.10, 5.11 shows the match score distributions of each scanners for each of the major 

age stratum under study. It needs to be mentioned that the overlap area of the genuine and 

impostor distribution is very small indicating a very less error region. Also, the performance of 

the three age groups has been quite close to the match performance of the total dataset. This 

results holds good for all the distributions of the three major age groups Age 20-30, Age 31-49, 

Age 50-70. Refer to the Section B of appendix for the individual genuine and imposter score 

distributions. 

Table 5.7 : Maximum and Minimum match scores of the three major age groups 

Demographic Scanner Finger Genuine   Imposter   
      Maximum Minimum Maximum Minimum 

20-30 
Cross Match Verifier 
300LC Right Thumb 57288 0 7432 0 

    Right Index 21819 0 15140 0 

  
Cross Match Verifier 
310LC Right Index 28609 0 7011 0 

  Upek Eikon Touch Right Thumb 23760 0 5781 0 
    Right Index 31277 0 9470 0 

31-49 
Cross Match Verifier 
300LC Right Thumb 14002 4 17391 0 

    Right Index 14859 0 11629 0 

  
Cross Match Verifier 
310LC Right Index 94154 0 10017 0 

  Upek Eikon Touch Right Thumb 22681 0 6795 0 
    Right Index 22992 42 1323 0 

50-70 
Cross Match Verifier 
300LC Right Thumb 12877 0 34 0 

    Right Index 14472 0 41 0 

  
Cross Match Verifier 
310LC Right Index 20369 0 51 0 

  Upek Eikon Touch Right Thumb 12983 0 52 0 
    Right Index 18444 0 56 0 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
 

Figure 5.9 : Genuine and imposter match score distributions for Age group 20-30. 

(a) CrossMatch 300LC right index. (b) CrossMatch300LC right thumb. (c) CrossMatch 310 right index. 
(d) Upek Eikon Touch right index. (e) Upek Eikon Touch right thumb. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 

Figure 5.10: Genuine and imposter match score distributions for Age group 31-49. 

(a) CrossMatch 300LC right index. (b) CrossMatch300LC right thumb. (c) CrossMatch 310 right index. 
(d) Upek Eikon Touch right index. (e) Upek Eikon Touch right thumb.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
 

Figure 5.11 : Genuine and imposter match score distributions for Age group 50-70. 

(a) CrossMatch 300LC right index. (b) CrossMatch300LC right thumb. (c) CrossMatch 310 right index. 
(d) Upek Eikon Touch right index. (e) Upek Eikon Touch right thumb.  
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5.2.2.2 Receiver Operating Characteristic Curves 
 

Table 5.8 lists the AUC Values obtained from the receiver operating characteristic curves. It can 

be noticed that the age group 20-30 has been close in its match performance to the total dataset 

owing to the similarity in sample size as the subjects belonging to this group constitute a major 

section of the age demographic strata.  

Table 5.8 : Age Based AUC Values 

Scanner Finger Age 
Area Under 
Curve 

Cross Match Verifier 300LC  Right Thumb Main 0.9535 
    18-19 0.9456 
    20-30 0.9528 
    31-49 0.9642 
    50-70 0.9505 
    71-79 0.915 
  Right Index Main 0.9197 
    18-19 0.8671 
    20-30 0.924 
    31-49 0.861 
    50-70 0.938 
    71-79 0.9216 
Cross Match Verifier 310 Right Index Main 0.8656 
    18-19 0.5358 
    20-30 0.8754 
    31-49 0.9041 
    50-70 0.9293 
    71-79 0.7455 
Upek Eikon Touch 700 Right Thumb Main 0.9381 
    18-19 0.928 
    20-30 0.9352 
    31-49 0.9845 
    50-70 0.8985 
    71-79 0.8617 
  Right Index Main 0.9635 
  

 
18-19 0.9441 

  
 

20-30 0.9606 
  

 
31-49 1 

  
 

50-70 0.9366 
    71-79 0.9927 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 

 
(e) 

 

Figure 5.12 : Age Based ROC Curves 

(a) CrossMatch 300LC right index. (b) CrossMatch300LC right thumb. (c) CrossMatch 310 right index. 
(d) Upek Eikon Touch right index. (e) Upek Eikon Touch right thumb. 
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5.2.2.3 Divergence Measure Distributions 
Table 5.9 : Age Based KLD and JSD Values 

 

Sensor Name Age Finger 
KLD 
Genuine 

KLD 
Imposter 

JSD 
Genuine 

JSD 
Imposter 

JD 
Genuine 

JD 
Imposter 

Cross Match 
Verifier 300 
LC 18-19 

Right 
Index 1.136 0.0177 0.6633 0.0089 2.2632 0.0354 

    
Right 
Thumb 1.0565 0.0274 0.6344 0.0137 2.1131 0.0544 

  20-30 
Right 
Index 0.2799 0.0075 0.1921 0.0037 0.5597 0.015 

    
Right 
Thumb 0.2764 0.0069 0.1838 0.0035 0.5527 0.0139 

  31-44 
Right 
Index 1.0967 0.0207 0.6533 0.0102 2.1934 0.0415 

    
Right 
Thumb 1.084 0.0261 0.6485 0.0129 2.168 0.0523 

  50-70 
Right 
Index 1.311 0.1318 0.687 0.0654 2.622 0.2637 

    
Right 
Thumb 1.2817 0.0591 0.6818 0.0295 2.5633 0.1183 

  71-79 
Right 
Index 2.6869 0.3538 0.6783 0.2451 5.3738 0.7076 

    
Right 
Thumb 2.3618 0.3656 0.6098 0.1836 4.7236 0.7313 

Cross Match 
Verifier 310  18-19 

Right 
Index 1.1354 0.091 0.6675 0.0095 2.2709 0.0382 

  20-30 
Right 
Index 0.2824 0.009 0.1982 0.0045 0.5644 0.0179 

  31-44 
Right 
Index 1.1481 0.0389 0.6696 0.0192 2.2963 0.0774 

  50-70 
Right 
Index 1.384 0.1229 0.6964 0.061 2.768 0.2459 

  71-79 
Right 
Index 2.5021 0.5289 0.6822 0.2582 5.0041 1.0578 

Upek Eikon 
Touch 700 18-19 

Right 
Index 1.0958 0.0195 0.6521 0.0097 2.1917 1.039 

    
Right 
Thumb 1.0414 0.0267 0.6306 0.0133 2.0829 0.0534 

  20-30 
Right 
Index 0.2791 0.004 0.1877 0.002 0.5582 0.0079 

    
Right 
Thumb 0.2809 0.0082 0.1765 0.0041 0.5475 0.0165 

  31-44 
Right 
Index 1.0962 0.0212 0.653 0.0106 2.1925 0.0425 

    
Right 
Thumb 0.915 0.0345 0.6621 0.0172 1.0435 0.069 

  50-70 
Right 
Index 1.2886 0.1423 0.6812 0.0707 2.5771 0.2847 

    
Right 
Thumb 2.178 0.1098 0.664 0.0543 2.4201 0.2196 

  71-79 
Right 
Index 2.4818 0.3271 0.6894 0.2026 4.9636 0.6542 

    
Right 
Thumb 2.0999 0.35 0.6938 0.1736 4.1997 0.7 
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Table 5.9 lists the divergence distance measures between the various age stratums. Both the KLD 

and JSD distributions validate the conclusions arrived at in the section 5.2.2.2. For the age strata 

the maximum divergence score obtained is 2.6869 while the minimum score obtained is 0.002. It 

is to be noticed that there is considerably higher variation in the match scores of the age strata in 

comparison with the overall dataset. However, yet again, this variation is not significant enough 

to conclude that the match performance of the age strata has been influenced by the data 

stratification. This phenomenon in the match performance has remained constant for data 

acquired from all the scanners and for both the thumb and index fingers. Refer to figure 5.13 for 

the bar graphs of the KLD and JSD scores obtained for the various age groups. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 

Figure 5.13 : Age Based KLD Distributions. 

(a) Bar graph of KLD scores of right index images from Crossmatch Verifier 300LC. (b) Bar graph of KLD scores 
of right thumb images from Crossmatch Verifier 300LC. (c) Bar graph of KLD scores of right index images from 
Crossmatch Verifier 310. (d) Bar graph of KLD scores of right index images from Upek Eikon Touch 700. (e) Bar 
graph of KLD scores of right thumb images from Upek Eikon Touch 700. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
 
 
 
 

Figure 5.14 : Age Based JSD Distributions 

(a) Bar graph of KLD scores of right index images from Crossmatch Verifier 300LC. (b) Bar graph of KLD scores of right 
thumb images from Crossmatch Verifier 300LC. (c) Bar graph of KLD scores of right index images from Crossmatch Verifier 
310. (d) Bar graph of KLD scores of right index images from Upek Eikon Touch 700. (e) Bar graph of KLD scores of right 
thumb images from Upek Eikon Touch 700. 
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5.2.3 Ethnicity Based Test Results 
 

The fingerprint dataset of the WVU 2012 BioCOP consists of subjects belonging to 8 ethnic 

groups of which Caucasians, Asian Indians and Asians are the three major stratum. The sections 

below focus on the difference in match performance between the various ethnic groups. 

5.2.3.1 Match Score Analysis 

The genuine and imposter distributions shown below indicate a similarity in match performance 

of all the major groups. Refer to section B of the appendix for the individual genuine and 

imposter score distributions for the other ethnic groups.  

Table 5.10 : Maximum and Minimum scores of the major ethnic groups 

Demographic Scanner Finger Genuine   Imposter   
      Maximum Minimum Maximum Minimum 

Caucasian 
Cross Match Verifier 
300LC 

Right 
Thumb 17750 0 17931 0 

    Right Index 21445 0 11269 0 

  
Cross Match Verifier 
310LC Right Index 28609 0 10017 0 

  
Upek Eikon Touch 
700 

Right 
Thumb 23760 0 6795 0 

    Right Index 31277 0 1323 0 

Asian 
Cross Match Verifier 
300LC 

Right 
Thumb 18942 0 7432 0 

    Right Index 19050 0 15140 0 

  
Cross Match Verifier 
310LC Right Index 94154 0 7011 0 

  
Upek Eikon Touch 
700 

Right 
Thumb 12269 0 5781 0 

    Right Index 18708 0 9470 0 

Asian Indian 
Cross Match Verifier 
300LC 

Right 
Thumb 16185 4 37 0 

    Right Index 20705 0 49 0 

  
Cross Match Verifier 
310LC Right Index 22155 90 63 0 

  
Upek Eikon Touch 
700 

Right 
Thumb 21074 0 64 0 

    Right Index 2105 0 89 0 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
 

Figure 5.15 : Genuine and imposter match score distributions for Caucasian ethnicity. 

(a) CrossMatch 300LC right index. (b) CrossMatch 300LC right thumb. (c) CrossMatch 310 right index. 
(d) Upek Eikon Touch right index. (e) Upek Eikon Touch right thumb.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
 

Figure 5.16 : Genuine and imposter match score distributions for Asian Indian ethnicity. 

(a) CrossMatch 300LC right index. (b) CrossMatch 300LC right thumb. (c) CrossMatch 310 right index. 
(d) Upek Eikon Touch right index. (e) Upek Eikon Touch right thumb.  
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Figure 5.17 : Genuine and imposter match score distributions for Asian ethnicity. 

(a) CrossMatch 300LC right index. (b) CrossMatch 300LC right thumb. (c) CrossMatch 310 right index. 
(d) Upek Eikon Touch right index. (e) Upek Eikon Touch right thumb. 
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5.2.3.2 Receiver Operating Characteristic Curves 
Table 5.11 lists the AUC Values obtained from the receiver operating characteristic curves.  

Table 5.11 : Ethnicity Based AUC Values 

Scanner Finger Ethnicity Area Under Curve 
Cross Match Verifier 300LC  Right Thumb Full data 0.9197 
  

 
African 0.9453 

  
 

African American 0.9286 
  

 
Asian Indian 0.9257 

  
 

Asian  0.8951 
  

 
Caucasian 0.9215 

  
 

Middle Eastern 0.8656 
  

 
Hispanic 0.9595 

  
 

OPF 0.9989 
  

 
Others 0.9989 

  Right Index Full data 0.9535 
  

 
African 0.999 

  
 

African American 0.8978 
  

 
Asian Indian 0.912 

  
 

Asian  0.9866 
  

 
Caucasian 0.9713 

  
 

Middle Eastern 0.9543 
  

 
Hispanic 1 

  
 

OPF 0.996 
  

 
Others 0.9993 

Cross Match Verifier 310 Right Index Full data 0.8656 
  

 
African 1 

  
 

African American 1 
  

 
Asian Indian 0.5378 

  
 

Asian  1 
  

 
Caucasian 0.9593 

  
 

Middle Eastern 0.8827 
  

 
Hispanic 1 

  
 

OPF 0.9984 
  

 
Others 0.9991 

Upek Eikon Touch 700 Right Thumb Full data 0.9381 
  

 
African 0.9999 

  
 

African American 0.909 
  

 
Asian Indian 0.7931 

  
 

Asian  0.9629 
  

 
Caucasian 0.9633 

  
 

Middle Eastern 0.9636 
  

 
Hispanic 0.9424 

  
 

OPF 0.9966 
  

 
Others 0.9971 

  Right Index Full data 0.9540 
    African 0.9999 
    African American 1 
    Asian Indian 0.8896 
    Asian  0.9812 
    Caucasian 0.9729 
    Middle Eastern 0.909 
    Hispanic 0.994 
    OPF 0.9988 
    Others 0.998 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
 

Figure 5.18 : Ethnicity Based ROC Curves. 

(a) CrossMatch 300LC right index. (b) CrossMatch 300LC right thumb. (c) CrossMatch 310 right index. 

(d) Upek Eikon Touch right index. (e) Upek Eikon Touch right thumb.
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 It can also be noticed that the three major ethnic groups have close resemblance in the match 

performance characteristics with respect to the total dataset as an indication of minimum data 

stratification effect.  

5.2.3.3 Divergence Measure Distributions 

Table 5.12 : Ethnicity Based KLD and JSD values for the right index fingerprints 

Sensor Name Ethnicity 
KLD 
Genuine 

KLD 
Imposter 

JSD 
Genuine 

JSD 
Imposter 

JD 
Genuine 

JD 
Imposter 

Cross Match Verifier 
300 LC African 1.83 0.07 0.71 0.04 3.66 0.13 

  
African 
American 1.41 0.06 0.70 0.03 2.82 0.12 

  Asian Indian 0.96 0.08 0.62 0.05 1.91 0.17 

  Asian  1.09 0.09 0.66 0.05 2.20 0.20 

  Caucasian 0.42 0.005 0.31 0.003 0.83 0.02 

  Hispanic 1.45 0.04 0.67 0.022 2.90 0.09 

  
Middle 
Eastern 1.285 0.06 0.68 0.03 2.57 0.12 

  Others 1.92 0.9 0.71 0.05 3.83 0.18 

  
Pacific 
Islanders 1.57 0.41 0.70 0.22 3.15 0.80 

Cross Match Verifier 
310 LC African 1.92 0.11 0.71 0.06 3.82 0.20 

  
African 
American 1.45 0.05 0.70 0.02 2.90 0.09 

  Asian Indian 0.99 0.11 0.63 0.05 1.97 0.21 

  Asian  1.13 0.08 0.67 0.04 2.26 0.16 

  Caucasian 0.52 0.09 0.34 0.005 1.03 0.02 

  Hispanic 1.49 0.07 0.70 0.04 2.98 0.15 

  
Middle 
Eastern 1.35 0.054 0.69 0.03 2.69 0.106 

  Others 1.92 0.13 0.71 0.07 3.84 0.27 

  
Pacific 
Islanders 2.50 0.50 0.69 0.24 5.007 0.98 

Upek African 1.91 0.01 0.706 0.05 3.83 0.20 

  
African 
American 1.92 0.15 0.70 0.072 2.83 0.29 

  Asian Indian 0.94 0.07 0.61 0.04 1.88 0.13 

  Asian  1.06 0.09 0.65 0.05 2.11 0.18 

  Caucasian 0.40 0.02 0.30 0.001 0.80 0.04 

  Hispanic 1.45 0.05 0.69 0.02 2.91 0.09 

  
Middle 
Eastern 1.30 0.04 0.68 0.02 2.59 0.07 

  Others 1.77 0.16 0.71 0.08 3.54 0.31 

  
Pacific 
Islanders 2.25 0.34 0.71 0.19 4.51 0.68 
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Table 5.13 : Ethnicity Based KLD and JSD values for the right thumb fingerprints 

Sensor Name Ethnicity 
KLD 
Genuine 

KLD 
Imposter 

JSD 
Genuine 

JSD 
Imposter 

JD 
Genuine 

JD 
Imposter 

Cross Match Verifier 
300 LC African 1.80 0.11 0.71 0.05 3.60 0.21 

  
African 
American 1.36 0.027 0.69 0.01 2.73 0.06 

  Asian Indian 0.91 0.05 0.60 0.02 1.82 0.01 

  Asian  1.05 0.16 0.64 0.09 2.09 0.33 

  Caucasian 0.40 0.02 0.29 0.01 0.81 0.04 

  Hispanic 1.40 0.05 0.70 0.02 2.78 0.01 

  
Middle 
Eastern 1.22 0.06 0.70 0.03 2.45 0.12 

  Others 1.83 0.27 0.70 0.13 3.66 0.54 

  
Pacific 
Islanders 2.28 0.32 0.70 0.18 4.55 0.65 

Upek African 1.88 0.18 0.71 0.09 3.76 0.36 

  
African 
American 1.35 0.12 0.69 0.08 2.68 0.32 

  Asian Indian 0.89 0.07 0.58 0.04 1.78 0.15 

  Asian  0.99 0.03 0.62 0.13 1.99 0.06 

  Caucasian 0.40 0.02 0.28 0.01 0.80 0.02 

  Hispanic 1.36 0.03 0.69 0.017 2.71 0.07 

  
Middle 
Eastern 1.12 0.04 0.66 0.02 2.40 0.07 

  Others 1.81 0.17 0.71 0.08 3.62 0.34 

  
Pacific 
Islanders 2.20 0.36 0.70 0.12 4.38 0.71 

 

Both the KLD and JSD distributions validate the conclusions arrived at in the section 5.2.3.2. 

The maximum and minimum divergence scores for the right index images are 2.5 and 0.001 

respectively, while these values are 2.28 and 0.01 for the right thumb images. These values 

indicate that the match performance has not been affected by the data stratification as they 

present only a minor variation in the divergence distributions in comparison with the total dataset 

and in the case of both sets of fingerprint images. 
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(a) 

 
(b) 

Figure 5.19 : Ethnicity Based KLD and JSD Match Score Distributions of the right thumb 
fingerprint images. 

5.3 Pairwise Comparison for Equal Sample Sized Strata 
 

In order to revalidate the results that have been obtained in the previous sections, the divergence 

measures have been calculated considering stratum equal in size. From the values obtained, it 
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can be understood that the sample size of the stratum under study has not influenced the 

divergence measure values as the range of values in Table 5.14 present an insignificant change. 

Hence, it can be concluded that the effect of data stratification remains minimum even when 

equal sample sized strata are tested.  

Table 5.14: KLD and JSD values for equal sample sized stratum 

Demographic Pair Distribution KLD JSD 
Male-Female Genuine 0.03 0.65 

Imposter 0.12 0.06 
Age 20-30; Age 50-70 Genuine 0.01 0.67 

Imposter 0.06 0.03 
Age 20-30; Age 31-49; Genuine 0.02 0.67 

Imposter 0.05 0.03 
Caucasian-Asian Genuine 0.02 0.67 

Imposter 0.13 0.07 
African-African American Genuine 0.09 0.69 

Imposter 0.23 0.11 
Hispanic- Asian Indian Genuine 0.02 0.67 

Imposter 0.07 0.04 
Middle Eastern- Asian Genuine 0.01 0.68 

Imposter 0.30 0.14 

 

5.4 Statistical Error Rates  
 

Table 5.15 and Table 5.16 present the false rejection rates calculated at a false acceptance rate of 

1%. With reference to the matching threshold, which was zero while performing matching, the 

range of FRR values has been around 1%-5%. However, a majority of these values lie close to 

each other which again reiterates the similarity in the match score distributions. Hence, it can be 

stated again that the effect of data stratification on this fingerprint dataset has been considerably 

insignificant. 
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Table 5.15 : FRR values at FAR 1% for all the age and gender strata 

Demographic/ 
Attribute 

Finger Scanner FRR at 1% FAR 

Total data set Right Thumb Cross Match Verifier 300LC 0.86 
Upek Eikon Touch 700 2.46 

Right Index Cross Match Verifier 300LC 1.80 
Cross Match Verifier-310 0.86 
Upek Eikon Touch 700 1.1 

Female Right Thumb Cross Match Verifier 300LC 2.1 
Upek Eikon Touch 700 1.8 

Right Index Cross Match Verifier 300LC 2.08 
Cross Match Verifier-310 1.09 
Upek Eikon Touch 700 1.09 

Male Right Thumb Cross Match Verifier 300LC 0.84 
Upek Eikon Touch 700 2.80 

Right Index Cross Match Verifier 300LC 1.68 
Cross Match Verifier-310 0.80 
Upek Eikon Touch 700 1.10 

Age 18-19 Right Thumb Cross Match Verifier 300LC 1 
Upek Eikon Touch 700 3.36 

Right Index Cross Match Verifier 300LC 1.50 
Cross Match Verifier-310 1.76 
Upek Eikon Touch 700 1 

Age 20-30 Right Thumb Cross Match Verifier 300LC 0.69 
Upek Eikon Touch 700 2.24 

Right Index Cross Match Verifier 300LC 2 
Cross Match Verifier-310 0.60 
Upek Eikon Touch 700 1.13 

Age 31-49 Right Thumb Cross Match Verifier 300LC 1 
Upek Eikon Touch 700 1.30 

Right Index Cross Match Verifier 300LC 2.70 
Cross Match Verifier-310 0 
Upek Eikon Touch 700 0 

Age 50-70 Right Thumb Cross Match Verifier 300LC 3.26 
Upek Eikon Touch 700 5.50 

Right Index Cross Match Verifier 300LC 3.27 
Cross Match Verifier-310 2.61 
Upek Eikon Touch 700 3.71 

Age 71-79 Right Thumb Cross Match Verifier 300LC 4.70 
Upek Eikon Touch 700 2.70 

Right Index Cross Match Verifier 300LC 0 
Cross Match Verifier-310 1 
Upek Eikon Touch 700 0 
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Table 5.16 : FRR at FAR 1% for the ethnicity stratum 

Ethnicity Finger Scanner FRR AT FAR=1% 
African Right Thumb Cross Match Verifier 300LC 0 

Upek Eikon Touch 700 0 
Right Index Cross Match Verifier 300LC 7.20 

Cross Match Verifier-310 0 
Upek Eikon Touch 700 0 

African-American Right Thumb Cross Match Verifier 300LC 1.50 
Upek Eikon Touch 700 5 

Right Index Cross Match Verifier 300LC 1.55 
Cross Match Verifier-310 0 
Upek Eikon Touch 700 0 

Asian Right Thumb Cross Match Verifier 300LC 2 
Upek Eikon Touch 700 6.70 

Right Index Cross Match Verifier 300LC 2.70 
Cross Match Verifier-310 2.50 
Upek Eikon Touch 700 2.70 

Asian-Indian Right Thumb Cross Match Verifier 300LC 0.18 
Upek Eikon Touch 700 1.60 

Right Index Cross Match Verifier 300LC 1.38 
Cross Match Verifier-310 0 
Upek Eikon Touch 700 0.70 

Caucasian Right Thumb Cross Match Verifier 300LC 0.57 
Upek Eikon Touch 700 1.90 

Right Index Cross Match Verifier 300LC 1.55 
Cross Match Verifier-310 0.35 
Upek Eikon Touch 700 0.77 

Middle-Eastern Right Thumb Cross Match Verifier 300LC 1.67 
Upek Eikon Touch 700 1.73 

Right Index Cross Match Verifier 300LC 3.33 
Cross Match Verifier-310 2.98 
Upek Eikon Touch 700 3.85 

Hispanic Right Thumb Cross Match Verifier 300LC 0 
Upek Eikon Touch 700 2.28 

Right Index Cross Match Verifier 300LC 2.22 
Cross Match Verifier-310 0 
Upek Eikon Touch 700 0.57 

Other Pacific 
Islanders 

Right Thumb Cross Match Verifier 300LC 0 
Upek Eikon Touch 700 0 

Right Index Cross Match Verifier 300LC 0 
Cross Match Verifier-310 0 
Upek Eikon Touch 700 0 

Others Right Thumb Cross Match Verifier 300LC 0 
Upek Eikon Touch 700 0 

Right Index Cross Match Verifier 300LC 0 
Cross Match Verifier-310 0 
Upek Eikon Touch 700 1.55 
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CHAPTER 6 - CONCLUSION AND FUTURE WORK 

6.1 Conclusions 
With reference to all the graphs and values listed in Chapter 5, we arrive at the following 
conclusions after experimentation. 

Table 6.1 : Conclusions 

Task Conclusion 
Match Score Distributions Of The Total Dataset Average match performance of all the scanners has 

been quite similar. The divergence values range 
between 0.3928 and 0.0571. 

Gender Based Study The male stratum has been able to closely match its 
performance to that of the total fingerprint dataset. 
The maximum and minimum divergence values are 
0.577 and 0.0137 respectively indicating a minor 
variation in match performance with respect to the 
total dataset. Thus, it can be concluded that the 
gender demographic strata has presented a minor 
difference in its performance as a result of data 
stratification.  

Minutiae Extraction The minutiae extraction has been best for the 
fingerprint images acquired from CrossMatch 
Verifier 300LC for both the genders. This also 
indicates that this scanner has been able to provide 
more information for matching to the biometric 
verification system. 

Age Based Study The match performance of Age group 20-30 bears 
close resemblance to that of the total dataset owing 
to the similarity in sample size. The maximum and 
minimum divergence values are 2.6869 and 0.002 
respectively. In this case, even though the values 
seem to be a little more variant they still present a 
minor variation in match performance with respect 
to the total dataset. Thus, it can be concluded that 
the age demographic strata has also presented a 
minor difference in its performance as a result of 
data stratification. 

Ethnicity Based Study The match performance of Caucasian ethnic group 
bears close resemblance to that of the total dataset 
owing to the similarity in sample size. The 
maximum and minimum divergence values are 2.5, 
0.001 for right index and 2.28, 0.01 for right thumb 
respectively. Again in this case, even though the 
values seem to be a little more variant they still 
present a minor variation in match performance 
with respect to the total dataset. Thus, it can be 
concluded that the ethnicity demographic strata, 
similar to the age and gender stratum, has also 
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presented a minor difference in its performance as a 
result of data stratification. 

Equal Sample Sized Stratum Study The KLD and JSD values vary slightly when 
samples of equal size are tested for the effect of 
data stratification. 

Statistical Error Rates The range of FRR values at FAR 1% lie close to 
each other restating the minor performance change  
of the demographic strata with respect to the total 
dataset. 

 

Considering the conclusions stated in the above sections, it is necessary to know why data 

stratification has not been phenomenal in this study. The fingerprint dataset of the WVU 

BioCOP has been acquired in a controlled environment under the supervision of trained 

operators. Standard acquisition techniques have been employed for obtaining the fingerprint 

images. Another major factor that has played an important role in determining the effect of data 

stratification is that the data is concentrated in a particular ethnic and age group. These factors 

reduce the variation in match performance. Studies [42] show that certain ethnic groups such as 

Africans and African Americans could be fundamental in influencing the match performance  

characteristics. However, in this dataset, these ethnic groups are very small in number which 

leads to the conclusion that the lack of more subjects belonging to such ethnic groups may have 

contracted the effect of data stratification. 

6.2 Future Work 
All the conclusions listed above are based on the match score values that have been obtained 

from a single matcher. However, in order to prove the authenticity of these results it is necessary 

to perform these experiments using another matching system. Although the changes in match 

performance have been minor in this study, the effect of applying such a framework to larger 

datasets could lead to highly significant performance variations. This dataset consists of 1200 

subjects, so a 1% difference in performance rate accounts to the data of only 12 subjects whereas 

applying the same methodology to a larger dataset would drastically increase the count of 

subjects thereby amplifying the variation in performance. Hence, employing a large dataset could 

be a productive extension for this study. Using statistical measures that could more effectively 

validate slight quantitative changes may serve as an extension of the performance analysis. Also, 

experimentation with this dataset as a part of a multibiometric study can help in testing its 
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usability. Further study could also include, understanding the match score distributions for the 

left hand fingers to check for any similarities in the match performance.                                             
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APPENDIX 

[A] FINGERPRINT MATCH SCORE DISTRIBUTIONS OF THE TOTAL DATA SET 
(i)  Crossmatchverifier 300LC- Right Index 

 
(a) 

 
(b) 

 
(c) 

 
 
 
 
Figure A (i): Match score distributions of right index images 
captured using the Crossmatch Verifier 300LC sensor. 
(a)Genuine match score distribution. (b)Impostor match score 
distribution. (c)Combined match score distribution. 
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(ii) Crossmatchverifier300LC – Right Thumb 

 
(a) 

 
(b) 

 
(c) 

 
 
 
 
 
 
Figure A (ii): Match score distributions of right thumb 
images captured using the Crossmatch Verifier 300LC 
sensor. (a)Genuine match score distribution. (b)Impostor 
match score distribution. (c)Combined match score 
distribution. 
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(iii) Crossmatchverifier 310 – Right Index 

 
(a) 

 
(b) 

 
(c) 

 
 
 
 
 
Figure A (iii): Match score distributions of right index 
images captured using the Crossmatch Verifier 310 sensor. 
(a)Genuine match score distribution. (b)Impostor match score 
distribution. (c)Combined match score distribution. 
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(iv) Upek Eikon Touch 700 – Right Index 

 
(a) 

 
(b) 

 
 

 
(c) 

 
 
 
 
 
Figure A (iv): Match score distributions of right index 
images captured using the Upek Eikon Touch 700 sensor. 
(a)Genuine match score distribution. (b)Impostor match score 
distribution. (c)Combined match score distribution. 
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(v) Upek Eikon Touch 700- Right Thumb 

 
(a) 

 
(b) 

 
(c) 

 
 
 
 
Figure A. (v): Match score distributions of right thumb 
images captured using the Upek Eikon Touch 700 sensor. 
(a)Genuine match score distribution. (b)Impostor match score 
distribution. (c)Combined match score distribution. 
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[B]DEMOGRAPHIC BASED DISTRIBUTIONS 
GENDER BASED FINGERPRINT MATCH SCORE DISTRIBUTIONS 

B.1) Male 

B.1. (i) Crossmatchverifier 300LC- Right Index 

 
(a) 

 
(b) 

 
(c) 

 
 
 
 
Figure B.1 (i): Match score distributions of right index 
images of male’s captured using the Crossmatch Verifier 

300LC sensor.(a)Genuine match score distribution. 
(b)Impostor match score distribution. (c)Combined match 
score distribution. 
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B.1. (ii) Crossmatchverifier 300LC- Right Thumb  

 
(a) 

 
(b) 

 
(c) 

 
 
 
 
 
 
Figure B.1 (ii): Match score distributions of right thumb 
images of male’s captured using the Crossmatch Verifier 

300LC sensor.(a)Genuine match score distribution. 
(b)Impostor match score distribution. (c)Combined match 
score distribution. 
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B.1. (iii) Crossmatchverifier 310 – Right Index 

 
(a) 

 
(b) 

 
(c) 

 
 
 
 
 
 
Figure B.1 (iii): Match score distributions of right index 
images of male’s captured using the Crossmatch Verifier 310 
sensor.(a)Genuine match score distribution. (b)Impostor 
match score distribution. (c)Combined match score 
distribution. 
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B.1. (iv) Upek Eikon Touch 700- Right Index 

 
(a) 

 
(b) 

 
(c) 

 
 
 
 
 
Figure B.1 (iv): Match score distributions of right index 
images of male’s captured using the Upek Eikon Touch 700 

sensor. (a)Genuine match score distribution. (b)Impostor 
match score distribution. (c)Combined match score 
distribution. 
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B.1. (v). Upek Eikon Touch 700 – Right Thumb 

 
(a) 

 
(b) 

 
(c) 

 
 
 
 
 
Figure B.1 (v): Match score distributions of right thumb 
images of male’s captured using the Upek Eikon Touch 700 

sensor. (a)Genuine match score distribution. (b)Impostor 
match score distribution. (c)Combined match score 
distribution. 
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B.2) Gender - Female 

B.2. (i) Crossmatchverifier 300LC- Right Index 

 
(a) 

 
(b) 

 
(c) 

 
 
 
 
 
Figure B.2 (i): Match score distributions of right index 
images of female’s captured using the Crossmatch Verifier 

300LC sensor.(a)Genuine match score distribution. 
(b)Impostor match score distribution. (c)Combined match 
score distribution. 
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B.2. (ii) Crossmatchverifier 300LC- Right Thumb 

 
(a) 

 
(b) 

 
(c) 

 
 
 
 
Figure B.2 (ii): Match score distributions of right thumb 
images of female’s captured using the Crossmatch Verifier 

300LC sensor.(a)Genuine match score distribution. 
(b)Impostor match score distribution. (c)Combined match 
score distribution. 
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B.2. (iii) Crossmatchverifier 310 – Right Index 

 
(a) 

 
(b) 

  
(c) 

 
 
 
 
Figure B.2 (iii): Match score distributions of right index 
images of female’s captured using the Crossmatch Verifier 
310 sensor.(a)Genuine match score distribution. (b)Impostor 
match score distribution. (c)Combined match score 
distribution. 
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B.2. (iv) Upek Eikon Touch 700 – Right Index 

 
(a) 

 
(b) 

 
(c) 

 
 
 
 
 
Figure B.2 (iv): Match score distributions of right index 
images of female’s captured using the Upek Eikon Touch 

700 sensor. (a)Genuine match score distribution. (b)Impostor 
match score distribution. (c)Combined match score 
distribution. 
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B.2. (v) Upek Eikon Touch 700 – Right Thumb 

 
(a) 

 
(b) 

 
(c) 

 
 
 
 
 
Figure B.2 (v): Match score distributions of right thumb 
images of female’s captured using the Upek Eikon Touch 

700 sensor. (a)Genuine match score distribution. (b)Impostor 
match score distribution. (c)Combined match score 
distribution. 
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AGE BASED FINGERPRINT MATCH SCORE DISTRIBUTIONS 

B.3) Age 18-19 

B.3. (i) Crossmatchverifier 300LC – Right Index 

 
 

(a) 

 
(b) 

 
(c) 

 
 
 
 
 
Figure B.3 (i): Match score distributions of right index 
images of the age group 18-19 captured using the Crossmatch 
Verifier 300LC sensor. (a)Genuine match score distribution. 
(b)Impostor match score distribution. (c)Combined match 
score distribution. 
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B.3. (ii) Crossmatchverifier 300LC- Right Thumb 

 
(a) 

 
(b) 

 
(c) 

 
 
 
 
 
 
Figure B.3 (ii): Match score distributions of right thumb 
images of the age group 18-19 captured using the Crossmatch 
Verifier 300LC sensor. (a)Genuine match score distribution. 
(b)Impostor match score distribution. (c)Combined match 
score distribution. 
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B.3. (iii) Crossmatchverifier 310- Right Index 

 
(a) 

 
(b) 

 
(c) 

 
 
 
 
Figure B.3 (iii): Match score distributions of right index 
images of the age group 18-19 captured using the Crossmatch 
Verifier 310 sensor. (a)Genuine match score distribution. 
(b)Impostor match score distribution. (c)Combined match 
score distribution. 
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B.3. (iv) Upek Eikon Touch 700- Right Index 

 
(a) 

 
(b) 

 
(c) 

 
 
 
 

Figure B.3 (iv): Match score distributions of right index 
images of the age group 18-19 captured using the Upek 
Eikon Touch 700 sensor. (a)Genuine match score 
distribution. (b)Impostor match score distribution. 
(c)Combined match score distribution. 
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B.3. (v) Upek Eikon Touch 700- Right Thumb 

 
(a) 

 
(b) 

 
(c) 

 
 
 
 
 
Figure B.3 (v): Match score distributions of right thumb 
images of the age group 18-19 captured using the Upek 
Eikon Touch 700 sensor. (a)Genuine match score 
distribution. (b)Impostor match score distribution. 
(c)Combined match score distribution. 
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B.4) Age 20-30 

B.4. (i) Crossmatchverifier 300LC- Right Index 

 
(a) 

 
(b) 

 
(c) 

 
 
 
 
 
Figure B.4 (i): Match score distributions of right index 
images of the age group 20-30 captured using the Crossmatch 
Verifier 300LC sensor. (a)Genuine match score distribution. 
(b)Impostor match score distribution. (c)Combined match 
score distribution. 
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B.4. (ii) Crossmatchverifier 300LC- Right Thumb 

 
(a) 

 
(b) 

 
(c) 

 
 
 
 
 
 
Figure B.4 (ii): Match score distributions of right thumb 
images of the age group 20-30 captured using the Crossmatch 
Verifier 300LC sensor. (a)Genuine match score distribution. 
(b)Impostor match score distribution. (c)Combined match 
score distribution. 
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B.4. (iii) Crossmatchverifier 310 – Right Index 

 
(a) 

 
(b) 

 
(c) 

 
 
 
 
 
Figure B.4 (iii): Match score distributions of right index 
images of the age group 20-30 captured using the Crossmatch 
Verifier 310 sensor. (a)Genuine match score distribution. 
(b)Impostor match score distribution. (c)Combined match 
score distribution. 
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B.4. (iv) Upek Eikon Touch 700- Right Index 

 
(a) 

 
(b) 

 
(c) 

 
 
 
 
 
 
Figure B.4 (iv): Match score distributions of right index 
images of the age group 20-30 captured using the Upek 
Eikon Touch 700 sensor. (a)Genuine match score 
distribution. (b)Impostor match score distribution. 
(c)Combined match score distribution. 
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B.4. (v) Upek Eikon Touch 700- Right Thumb 

 
(a) 

 
(b) 

 
(c) 

 
 
 
 
 
Figure B.4 (v): Match score distributions of right thumb 
images of the age group 20-30 captured using the Upek 
Eikon Touch 700 sensor. (a)Genuine match score 
distribution. (b)Impostor match score distribution. 
(c)Combined match score distribution. 
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B.5) Age 31-49 

B.5. (i) Crossmatchverifier 300LC- Right Index 

 
(a) 

 
(b) 

 
(c) 

 
 
 
 
 
Figure B.5 (i): Match score distributions of right index 
images of the age group 31-49 captured using the Crossmatch 
Verifier 300LC sensor. (a)Genuine match score distribution. 
(b)Impostor match score distribution. (c)Combined match 
score distribution. 
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B.5. (ii) Crossmatchverifier 300LC- Right Thumb 

 
(a) 

 
(b) 

 
(c) 

 
 
 
 
 
Figure B.5 (ii): Match score distributions of right thumb 
images of the age group 31-49 captured using the Crossmatch 
Verifier 300LC sensor. (a)Genuine match score distribution. 
(b)Impostor match score distribution. (c)Combined match 
score distribution. 
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B.5. (iii) Crossmatchverifier 310-Right Index 

 
(a) 

 
(b) 

 
(c) 

 
 
 
 
 
Figure B.5 (iii): Match score distributions of right index 
images of the age group 31-49 captured using the Crossmatch 
Verifier 310 sensor. (a)Genuine match score distribution. 
(b)Impostor match score distribution. (c)Combined match 
score distribution. 
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B.5. (iv) Upek Eikon Touch 700-Right Index 

 
(a) 

 
(b) 

 
(c) 

 
 
 
 
Figure B.5 (iv): Match score distributions of right index 
images of the age group 31-49 captured using the Upek 
Eikon Touch 700 sensor. (a)Genuine match score 
distribution. (b)Impostor match score distribution. 
(c)Combined match score distribution. 
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B.5. (v) Upek Eikon Touch 700-Right Thumb 

 
(a) 

 
(b) 

 
(c) 

 
 
 
 
 
 
Figure B.5 (v): Match score distributions of right thumb 
images of the age group 31-49 captured using the Upek 
Eikon Touch 700 sensor. (a)Genuine match score 
distribution. (b)Impostor match score distribution. 
(c)Combined match score distribution. 
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B.6) Age 50-70 

B.6. (i) Crossmatchverifier 300LC-Right Index 

 
(a) 

 
(b) 

 
(c) 

 
 
 
 
 
 
Figure B.6 (i): Match score distributions of right index 
images of the age group 50-70 captured using the Crossmatch 
Verifier 300LC sensor. (a)Genuine match score distribution. 
(b)Impostor match score distribution. (c)Combined match 
score distribution. 
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B.6. (ii) Crossmatchverifier 300LC-Right Thumb 

 
(a) 

 
(b) 

 
(c) 

 
 
 
 
 
 
Figure B.6 (ii): Match score distributions of right thumb 
images of the age group 50-70 captured using the Crossmatch 
Verifier 300LC sensor. (a)Genuine match score distribution. 
(b)Impostor match score distribution. (c)Combined match 
score distribution. 

 

  



 

128 
 

B.6. (iii) Crossmatchverifier 310-Right Index 

 
(a) 

 
(b) 

 
(c) 

 
 
 
 
 
 
Figure B.6 (iii): Match score distributions of right index 
images of the age group 50-70 captured using the Crossmatch 
Verifier 310 sensor. (a)Genuine match score distribution. 
(b)Impostor match score distribution. (c)Combined match 
score distribution. 
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B.6. (iv) Upek Eikon Touch 700-Right Index 

 
(a) 

 
(b) 

 
(c) 

 
 
 
 
 
 
Figure B.6 (iv): Match score distributions of right index 
images of the age group 50-70 captured using the Upek 
Eikon Touch 700 sensor. (a)Genuine match score 
distribution. (b)Impostor match score distribution. 
(c)Combined match score distribution. 

 

  



 

130 
 

B.6. (v) Upek Eikon Touch 700-Right Thumb 

 
(a) 

 
(b) 

 
(c) 

 
 
 
 
 
Figure B.6 (v): Match score distributions of right thumb 
images of the age group 50-70 captured using the Upek 
Eikon Touch 700 sensor. (a)Genuine match score 
distribution. (b)Impostor match score distribution. 
(c)Combined match score distribution. 
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B.7) Age 71-79 

B.7. (i) Crossmatchverifier 300LC- Right Index 

 
(a) 

 
(b) 

 
(c) 

 
 
 
 
 
Figure B.7 (i): Match score distributions of right index 
images of the age group 71-79 captured using the Crossmatch 
Verifier 300LC sensor. (a)Genuine match score distribution. 
(b)Impostor match score distribution. (c)Combined match 
score distribution. 
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B.7. (ii) Crossmatchverifier 300LC- Right Thumb 

 
(a) 

 
(b) 

 
(c) 

 
 
 
 
Figure B.7 (ii): Match score distributions of right thumb 
images of the age group 71-79 captured using the Crossmatch 
Verifier 300LC sensor. (a)Genuine match score distribution. 
(b)Impostor match score distribution. (c)Combined match 
score distribution. 

 

  



 

133 
 

B.7. (iii) Crossmatchverifier 310- Right Index 

 
(a) 

 
(b) 

 
(c) 

 
 
 
 
Figure B.7 (iii): Match score distributions of right index 
images of the age group 71-79 captured using the Crossmatch 
Verifier 310 sensor. (a)Genuine match score distribution. 
(b)Impostor match score distribution. (c)Combined match 
score distribution. 
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B.7. (iv) Upek Eikon Touch 700- Right Index 

 
(a) 

 
(b) 

 
(c) 

 
 
 
 
Figure B.7 (iv): Match score distributions of right index 
images of the age group 71-79 captured using the Upek 
Eikon Touch 700 sensor. (a)Genuine match score 
distribution. (b)Impostor match score distribution. 
(c)Combined match score distribution. 
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B.7. (v) Upek Eikon Touch 700- Right Thumb 

 
(a) 

 
(b) 

 
(c) 

 
 
 
 
Figure B.7 (v): Match score distributions of right thumb 
images of the age group 71-79 captured using the Upek 
Eikon Touch 700 sensor. (a)Genuine match score 
distribution. (b)Impostor match score distribution. 
(c)Combined match score distribution. 
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ETHNICITY BASED FINGERPRINT MATCH SCORE DISTRIBUTIONS 

B.8) African 

B.8. (i) Crossmatchverifier 300LC-Right Index 

 
(a) 

 
(b) 

 
(c) 

 
 
 
 
Figure B.8 (i): Match score distributions of right index 
images of African ethnicity captured using the Crossmatch 
Verifier 300LC sensor. (a)Genuine match score distribution. 
(b)Impostor match score distribution. (c)Combined match 
score distribution. 
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B.8. (ii) Crossmatchverifier 300LC-Right Thumb 

 
(a) 

 
(b) 

 
(c) 

 
 
 
 
 
Figure B.8 (ii): Match score distributions of right thumb 
images of African ethnicity captured using the Crossmatch 
Verifier 300LC sensor. (a)Genuine match score distribution. 
(b)Impostor match score distribution. (c)Combined match 
score distribution. 
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B.8. (iii) Crossmatchverifier 310-Right Index 

 
(a) 

 
(b) 

 
(c) 

 
 
 
 
Figure B.8 (iii): Match score distributions of right index 
images of  African ethnicity captured using the Crossmatch 
Verifier 310 sensor. (a)Genuine match score distribution. 
(b)Impostor match score distribution. (c)Combined match 
score distribution. 
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B.8. (iv) Upek Eikon Touch 700-Right Index 

 
(a) 

 
(b) 

 
(c) 

 
 
 
 
 
Figure B.8 (iv): Match score distributions of right index 
images of African ethnicity captured using the Upek Eikon 
Touch 700 sensor. (a)Genuine match score distribution. 
(b)Impostor match score distribution. (c)Combined match 
score distribution. 
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B.8. (v) Upek Eikon Touch 700-Right Thumb 

 
(a) 

 
(b) 

 
(c) 

 
 
 
 
Figure B.8 (v): Match score distributions of right thumb 
images of African ethnicity captured using the Upek Eikon 
Touch 700 sensor. (a)Genuine match score distribution. 
(b)Impostor match score distribution. (c)Combined match 
score distribution. 
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B.9) African American 

B.9. (i) Crossmatchverifier 300LC- Right Index 

 
(a) 

 
(b) 

 
(c) 

 
 
 
 
Figure B.9 (i): Match score distributions of right index 
images for African American ethnicity captured using the 
Crossmatch Verifier 300LC sensor. (a)Genuine match score 
distribution. (b)Impostor match score distribution. 
(c)Combined match score distribution. 
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B.9. (ii) Crossmatchverifier 300LC- Right Thumb 

 
(a) 

 
(b) 

 
(c) 

 
 
 
 
Figure B.9 (ii): Match score distributions of right thumb 
images for African American ethnicity captured using the 
Crossmatch Verifier 300LC sensor. (a)Genuine match score 
distribution. (b)Impostor match score distribution. 
(c)Combined match score distribution. 
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B.9. (iii) Crossmatchverifier 310- Right Index 

 
(a) 

 
(b) 

 
(c) 

 
 
 
 
Figure B.9 (iii): Match score distributions of right index 
images for African American ethnicity captured using the 
Crossmatch Verifier 310 sensor. (a)Genuine match score 
distribution. (b)Impostor match score distribution. 
(c)Combined match score distribution. 
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B.9. (iv) Upek Eikon Touch 700- Right Index 

 
(a) 

 
(b) 

 
(c) 

 
 
 
 
 
Figure B.9 (iv): Match score distributions of right index 
images for African American ethnicity captured using the 
Upek Eikon Touch 700 sensor. (a)Genuine match score 
distribution. (b)Impostor match score distribution. 
(c)Combined match score distribution. 
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B.9. (v) Upek Eikon Touch 700- Right Thumb 

 
(a) 

 
(b) 

 
(c) 

 
 
 
 
Figure B.9 (v): Match score distributions of right thumb 
images for African American ethnicity captured using the 
Upek Eikon Touch 700 sensor. (a)Genuine match score 
distribution. (b)Impostor match score distribution. 
(c)Combined match score distribution. 
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B.10) Asian Indian 

B.10. (i) Crossmatchverifier 300LC-Right Index 

 
(a) 

 
(b) 

 
(c) 

 
 
 
 
 
Figure B.10 (i): Match score distributions of right index 
images for Asian Indian ethnicity captured using the 
Crossmatch Verifier 300LC sensor. (a)Genuine match score 
distribution. (b)Impostor match score distribution (c) 
Combined match score distribution. 
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B.10. (ii) Crossmatchverifier 300LC-Right Thumb 

 
(a) 

 
(b) 

 
(c) 

 
 
 
 
 
Figure B.10 (ii): Match score distributions of right thumb 
images for Asian Indian ethnicity captured using the 
Crossmatch Verifier 300LC sensor. (a)Genuine match score 
distribution. (b)Impostor match score distribution. 
(c)Combined match score distribution. 
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B.10. (iii) Crossmatchverifier 310-Right Index 

 
(a) 

 
(b) 

 
(c) 

 
 
 
 
Figure B.10 (iii): Match score distributions of right index 
images for Asian Indian ethnicity captured using the 
Crossmatch Verifier 310 sensor. (a)Genuine match score 
distribution. (b)Impostor match score distribution. 
(c)Combined match score distribution. 
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B.10. (iv) Upek Eikon Touch 700- Right Index 

 
(a) 

 
(b) 

 
(c) 

 
 
 
 
Figure B.10 (iv): Match score distributions of right index 
images for Asian Indian ethnicity captured using the Upek 
Eikon Touch 700 sensor. (a)Genuine match score 
distribution. (b)Impostor match score distribution. 
(c)Combined match score distribution. 
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B.10. (v) Upek Eikon Touch 700- Right Thumb 

 
(a) 

 
(b) 

 
(c) 

 
 
 
 
 
 
Figure B.10 (v): Match score distributions of right thumb 
images for Asian Indian ethnicity captured using the Upek 
Eikon Touch 700 sensor. (a)Genuine match score 
distribution. (b)Impostor match score distribution. 
(c)Combined match score distribution. 
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B.11) Asian 

B.11. (i) Crossmatchverifier 300LC- Right Index 

 
(a) 

 
(b) 

 
(c) 

 
 
 
 
Figure B.11 (i): Match score distributions of right index 
images for Asian ethnicity captured using the Crossmatch 
Verifier 300LC sensor. (a)Genuine match score distribution. 
(b)Impostor match score distribution. (c)Combined match 
score distribution. 
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B.11. (ii) Crossmatchverifier 300LC- Right Thumb 

 
(a) 

 
(b) 

 
(c) 

 
 
 
 
Figure B.11 (ii): Match score distributions of right thumb 
images for Asian ethnicity captured using the Crossmatch 
Verifier 300LC sensor. (a)Genuine match score distribution. 
(b)Impostor match score distribution. (c)Combined match 
score distribution. 
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B.11. (iii) Crossmatchverifier 310- Right Index 

 
(a) 

 
(b) 

 
(c) 

 
 
 
 
Figure B.11 (iii): Match score distributions of right index 
images for Asian ethnicity captured using the Crossmatch 
Verifier 310 sensor. (a)Genuine match score distribution. 
(b)Impostor match score distribution. (c)Combined match 
score distribution. 
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B.11. (iv) Upek Eikon Touch 700 – Right Index 

 
(a) 

 
(b) 

 
(c) 

 
 
 
 
Figure B.11 (iv): Match score distributions of right index 
images for Asian ethnicity captured using the Upek Eikon 
Touch 700 sensor. (a)Genuine match score distribution. 
(b)Impostor match score distribution. (c)Combined match 
score distribution. 
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B.11. (v) Upek Eikon Touch 700- Right Thumb 

 
(a) 

 
(b) 

 
(c) 

 
 
 
 
 
 
Figure B.11 (v): Match score distributions of right thumb 
images for Asian ethnicity captured using the Upek Eikon 
Touch 700 sensor. (a)Genuine match score distribution. 
(b)Impostor match score distribution. (c)Combined match 
score distribution. 
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B.12) Caucasian 

B.12. (i) Crossmatchverifier 300LC- Right Index 

 
(a) 

 
(b) 

 
(c) 

 
 
 
 
 
Figure B.12 (i): Match score distributions of right index 
images for Caucasian ethnicity captured using the 
Crossmatch Verifier 300LC sensor. (a)Genuine match score 
distribution. (b)Impostor match score distribution. 
(c)Combined match score distribution. 
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B.12. (ii) Crossmatchverifier 300LC- Right Thumb 

 
(a) 

 
(b) 

 
(c) 

 
 
 
 
 
Figure B.12 (ii): Match score distributions of right thumb 
images for Caucasian ethnicity captured using the 
Crossmatch Verifier 300LC sensor. (a)Genuine match score 
distribution. (b)Impostor match score distribution. 
(c)Combined match score distribution. 
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B.12. (iii) Crossmatchverifier 310- Right Index 

 
(a) 

 
(b) 

 
(c) 

 
 
 
 
 
 
Figure B.12 (iii): Match score distributions of right index 
images for Caucasian ethnicity captured using the 
Crossmatch Verifier 310 sensor. (a)Genuine match score 
distribution. (b)Impostor match score distribution. 
(c)Combined match score distribution. 
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B.12. (iv) Upek Eikon Touch 700- Right Index 

 
(a) 

 
(b) 

 
(c) 

 
 
 
 
 
Figure B.12 (iv): Match score distributions of right index 
images for Caucasian ethnicity captured using the Upek 
Eikon Touch 700 sensor. (a)Genuine match score 
distribution. (b)Impostor match score distribution. 
(c)Combined match score distribution. 
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B.12. (v) Upek Eikon Touch 700- Right Thumb 

 
(a) 

 
(b) 

 
(c) 

 
 
 
 
 
Figure B.12 (v): Match score distributions of right thumb 
images for Caucasian ethnicity captured using the Upek 
Eikon Touch 700 sensor. (a)Genuine match score 
distribution. (b)Impostor match score distribution. 
(c)Combined match score distribution. 
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B.13) Hispanic 

B.13. (i) Crossmatchverifier 300LC-Right Index 

 
(a) 

 
(b) 

 
(c) 

 
 
 
 
 
Figure B.13 (i): Match score distributions of right index 
images for Hispanic ethnicity captured using the Crossmatch 
Verifier 300LC sensor. (a)Genuine match score distribution. 
(b)Impostor match score distribution. (c)Combined match 
score distribution. 
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B.13. (ii) Crossmatchverifier 300LC-Right Thumb 

 
(a) 

 
(b) 

 
(c) 

 
 
 
 
 
Figure B.13 (ii): Match score distributions of right thumb 
images for Hispanic ethnicity captured using the Crossmatch 
Verifier 300LC sensor. (a)Genuine match score distribution. 
(b)Impostor match score distribution. (c)Combined match 
score distribution. 
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B.13. (iii) Crossmatchverifier 310-Right Index 

 
(a) 

 
(b) 

 
(c) 

 
 
 
 
 

Figure B.13 (iii): Match score distributions of right index 
images for Hispanic ethnicity captured using the Crossmatch 
Verifier 310 sensor. (a)Genuine match score distribution. 
(b)Impostor match score distribution. (c)Combined match 
score distribution. 
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B.13. (iv) Upek Eikon Touch 700-Right Index 

 
(a) 

 
(b) 

 
(c) 

 
 
 
 
Figure B.13 (iv): Match score distributions of right index 
images for Hispanic ethnicity captured using the Upek Eikon 
Touch 700 sensor. (a)Genuine match score distribution. 
(b)Impostor match score distribution. (c)Combined match 
score distribution. 
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B.13. (v) Upek Eikon Touch 700-Right Thumb 

 
(a) 

 
(b) 

 
(c) 

 
 
 
 
 
Figure B.13 (v): Match score distributions of right thumb 
images for Hispanic ethnicity captured using the Upek Eikon 
Touch 700 sensor. (a)Genuine match score distribution. 
(b)Impostor match score distribution. (c)Combined match 
score distribution. 
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B.14) Middle Eastern 

B.14. (i) Crossmatchverifier 300LC-Right Index 

 
(a) 

 
(b) 

 
(c) 

 
 
 
 
 
 
Figure B.14 (i): Match score distributions of right index 
images for Middle Eastern ethnicity captured using the 
Crossmatch Verifier 300LC sensor. (a)Genuine match score 
distribution. (b)Impostor match score distribution. 
(c)Combined match score distribution. 
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B.14. (ii) Crossmatchverifier 300LC-Right Thumb 

 
(a) 

 
(b) 

  

 
(c) 

 

 
 
 
 
 
Figure B.14 (ii): Match score distributions of right thumb 
images for Middle Eastern ethnicity captured using the 
Crossmatch Verifier 300LC sensor. (a)Genuine match score 
distribution. (b)Impostor match score distribution. 
(c)Combined match score distribution. 
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B.14. (iii) Crossmatchverifier 310-Right Index 

 
(a) 

 
(b) 

 
(c) 

 
 
 
 
 
Figure B.14 (iii): Match score distributions of right index 
images for Middle Eastern ethnicity captured using the 
Crossmatch Verifier 310 sensor. (a)Genuine match score 
distribution. (b)Impostor match score distribution. 
(c)Combined match score distribution. 
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B.14. (iv) Upek Eikon Touch 700-Right Index 

 
(a) 

 
(b) 

 
(c) 

 
 
 
 
 
Figure B.14 (iv): Match score distributions of right index 
images for Middle Eastern ethnicity captured using the Upek 
Eikon Touch 700 sensor. (a)Genuine match score 
distribution. (b)Impostor match score distribution. 
(c)Combined match score distribution. 
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B.14. (v) Upek Eikon Touch 700-Right Thumb 

 
(a) 

 

 
(b) 

 
(c) 

 

 
 
 
 
 
 
Figure B.14 (v): Match score distributions of right thumb 
images for Middle Eastern ethnicity captured using the Upek 
Eikon Touch 700 sensor. (a)Genuine match score 
distribution. (b)Impostor match score distribution. 
(c)Combined match score distribution. 
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B.15) Other Pacific Islanders 

B.15. (i) Crossmatchverifier 300LC- Right Index 

 
(a) 

 
(b) 

 
(c) 

 
 
 
 
Figure B.15 (i): Match score distributions of right index 
images for Pacific Islanders ethnicity captured using the 
Crossmatch Verifier 300LC sensor. (a)Genuine match score 
distribution. (b)Impostor match score distribution. 
(c)Combined match score distribution. 
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B.15. (ii) Crossmatchverifier 300LC- Right Thumb 
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(c) 

 
 
 
 
 
Figure B.15 (ii): Match score distributions of right thumb 
images for Pacific Islanders ethnicity captured using the 
Crossmatch Verifier 300LC sensor. (a)Genuine match score 
distribution. (b)Impostor match score distribution. 
(c)Combined match score distribution. 
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B.15. (iii) Crossmatchverifier 310- Right Index 
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Figure B.15 (iii): Match score distributions of right index 
images for Pacific Islanders ethnicity captured using the 
Crossmatch Verifier 310 sensor. (a)Genuine match score 
distribution. (b)Impostor match score distribution. 
(c)Combined match score distribution. 

 

 

 

 

 

 

 



 

174 
 

B.15. (iv) Upek Eikon Touch 700- Right Index 

 
                                         (a) 

 
                                            (b) 

 
                                         (c)  

 
 
 
Figure B.15 (iv): Match score distributions of right index 
images for Pacific Islanders ethnicity captured using the 
Upek Eikon Touch 700 sensor. (a)Genuine match score 
distribution. (b)Impostor match score distribution. 
(c)Combined match score distribution. 
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B.15. (v) Upek Eikon Touch 700- Right Thumb 

 
(a)                                                                          

 
(b) 

 
(c) 

 
 
 
 
Figure B.15 (v): Match score distributions of right thumb 
images for Pacific Islanders ethnicity captured using the 
Upek Eikon Touch 700 sensor. (a)Genuine match score 
distribution. (b)Impostor match score distribution. 
(c)Combined match score distribution. 
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B.16) Others 

B.16. (i) Crossmatchverifier300LC – Right Index 

 
                                        (a) 

 
                                          (b) 

 
                                        (c) 

         
 
 
 
 
Figure B.16 (i): Match score distributions of right index 
images for Other ethnicity captured using the Crossmatch 
Verifier 300LC sensor. (a)Genuine match score distribution. 
(b)Impostor match score distribution. (c)Combined match 
score distribution. 
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B.16. (ii) Crossmatchverifier300LC – Right Thumb 

 
                                       (a) 

 
                                           (b) 

  

 
                                       (c) 

 
 
Figure B.16 (ii): Match score distributions of right thumb 
images for Other ethnicity captured using the Crossmatch 
Verifier 300LC sensor. (a)Genuine match score distribution. 
(b)Impostor match score distribution. (c)Combined match 
score distribution. 
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B.16. (iii) Crossmatchverifier310 – Right Index 

 
                                          (a) 

 
                                               (b) 

 
                                      (c)  

 
 
 
 
 
Figure B.16 (iii): Match score distributions of right index 
images for Other ethnicity captured using the Crossmatch 
Verifier 310 sensor. (a)Genuine match score distribution. 
(b)Impostor match score distribution. (c)Combined match 
score distribution. 
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B.16. (iv) Upek Eikon Touch 700 – Right Index 

 
                                     (a) 

 
                                             (b) 

 
                                        (c)   

 
 
 
 
Figure B.16 (iv): Match score distributions of right index 
images for Other ethnicity captured using the Upek Eikon 
Touch 700 sensor. (a)Genuine match score distribution. 
(b)Impostor match score distribution. (c)Combined match 
score distribution. 
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B.16. (v) Upek Eikon Touch 700 – Right Thumb 

 
                                      (a) 

 
                                       (b) 

  

 
                                 ( c ) 

 
 
 
Figure B.16 (v): Match score distributions of right thumb 
images for Other ethnicity captured using the Upek Eikon 
Touch 700 sensor. (a)Genuine match score distribution. 
(b)Impostor match score distribution. (c)Combined match 
score distribution. 
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Ethnicity Based KLD and JSD Distributions 

B.17. (i) KLD and JSD distribution for right index finger – Crossmatch Verifier 300LC 

 
(a) 

 
(b) 

 
 
 

(i) KLD and JSD distributions of right index images obtained from Crossmatch Verifier 300LC 
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 B.17. (ii) KLD and JSD distribution for right thumb finger – Crossmatch Verifier 310 

 
(a) 

 
(b) 

 

                (ii) KLD and JSD distributions of right index images obtained from Crossmatch Verifier 310 
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B.17. (iii) KLD and JSD distribution for right index finger – Upek Eikon Touch 700 

 
(a) 

 
(b) 

(iii) KLD and JSD distributions of right index images obtained from Upek Eikon Touch 700  
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B.17.(iv) KLD and JSD distribution for right thumb finger – Upek Eikon Touch 700 

 
(a) 

 
(b) 

 

(iv) KLD and JSD distributions of right thumb images obtained from Upek Eikon Touch 700 
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