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ABSTRACT 

Role of Stem-like Cells in Carbon Nanotube-Induced Pulmonary Fibrosis 

Amruta Manke, B.Pharm, M.S. 

Recent studies have shown that pulmonary exposure to (CNT) results in rapid and progressive 

interstitial lung fibrosis in animals without causing persistent lung inflammation, which is 

normally associated with other known fibrogenic agents. This unusual fibrogenic effect of CNT 

raises important health issues since the exposure could result in deadly and incurable lung 

fibrosis. Accumulating evidence indicates the fibrogenic potential of carbon nanotubes, however, 

the underlying mechanism remains poorly addressed. Recent studies have demonstrated the 

pathogenic role of mesenchymal stem cells in pulmonary fibrosis that differentiate into 

myofibroblasts and contribute to disease progression. Understanding the molecular/cellular basis 

of these fibrosis-associated stem cells during lung fibrosis is of critical importance. However, the 

concept of stemness in the light of nanomaterial-induced fibrosis remains to be explored. 

Fibroblast cells being the key players in fibrogenesis, we hypothesized that CNT exposure in 

fibroblasts induce fibroblast stem-like cells (FSCs) which are critical for the CNT-induced 

fibrogenic response. The long-term broad objective of this project was to develop an in vitro 

model predictive of in vivo fibrogenic response and to devise preventive strategies for the 

disease. The specific aims of this study included i) Determining the involvement of stemness 

phenotype and underlying mechanism in CNT- induced lung fibrosis the and develop in vitro 

screening assay which may be predictive of the in vivo fibrogenic response; ii) Investigate the 

redox regulation of stem-like cells involved in CNT-driven fibrosis; iii) Evaluating the impact of 

nanoparticle length and surface chemical modification influence stemness phenotype and the 

resulting fibrogenic response. Our findings from Aim 1 indicated that indeed CNTs induced the 

side population phenotype (indicative of the fibroblast stem-like cell phenotype) of primary lung 

fibroblasts. The isolated FSCs displayed an elevated expression of fibrogenic and stem cell 

markers indicating the reliability of the stem cell isolation method as well as supporting their role 

in CNT-induced fibrogenesis. The study also developed and put forth an in vitro model of CNT-

induced fibrotic nodule formation that correlates the development of stemness phenotype and 

onset of fibrosis. Furthermore, the results from Aim 2 demonstrated that CNT-induced stemness 

phenotype was under the redox regulation via identifying the key role of peroxides in CNT-

induced FSC generation and collagen expression. Moreover, results from our second study 

revealed that antioxidants abrogated the effect of CNT on stem-like cell generation suggesting 

crucial role of redox in stemness generation and the fibrogenic effects. Our outcomes from the 

Aim 3 demonstrated a length-dependent effect on stemness phenotype, with longer CNT 

inducing higher FSCs compared to short CNTs as evidenced by side population and aldehyde 

dehydrogenase assays. Pristine CNTs induced higher FSCs compared to modified CNTs; 

however the effect was not statistically different. Long SWCNTs induced greater fibrogenic 

response in vivo compared to short SWCNTs, supporting the potential utility of our in vitro FSC 
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model to predict the fibrogenicity of CNTs. Such information will be important for development 

and safer design and use of nanotechnology. 

Findings from this work introduced the concept of fibroblast stem-like cells as a potential key 

player in the pathogenesis of pulmonary fibrosis; which in turn may help in identifying novel 

biomarkers and drug targets for early diagnosis and treatment of the disease. Furthermore, the in 

vitro FSC model developed in this study may be utilized as a rapid screening tool for 

fibrogenicity testing of not just carbon nanomaterials but also other nanoparticles and anti-

fibrotic agents.  
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MSC, Mesenchymal stem cell 

BM, Bone marrow 
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BALF, Bronchoalveolar lavage fluid  

FSC, Fibroblast stem-like cell 
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SP, Side population 
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GPX, Glutathione peroxidase 

SOD, Superoxide dismutase 

DHE, Dihydroethidium 

DCF-DA, Dichlorofluorescin diacetate 

NF, Non-functionalized/pristine 

COOH, Carboxylic group  

PEI, Polyethyleneamine 

NC, Nitrogen-containing 

OH, Hydroxyl 

PEG, Polyethylene glycol 

ECM, Extracellular matrix  

FGF, Fibroblast growth factor 
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PDGF, Platelet derived growth factor 

WST, 1[2-(4-Iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium] 

AFM, Atomic force microscopy 

FTIR, Fourier transform infrared spectroscopy 

DEAB, Diethylaminobenzaldehyde  
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CHAPTER 1: PULMONARY TOXICITY AND FIBROGENIC RESPONSE OF 

CARBON NANOTUBES 

Introduction 

In recent years, a variety of nanomaterials have revolutionized the industrial field with 

their rapidly emerging applications in the areas of biotechnology, electronics, medicinal drug 

delivery, cosmetics, material science and aerospace engineering. Among the pool of recently 

developed nanomaterials, carbon nanotubes (CNTs) have generated great interest commercially 

with their unique physicochemical properties such as high tensile strength and conductivity [1, 

2]. With abundant novel applications, the CNT market has been projected to expand substantially 

within the next decade. However, such massive production is fraught with concerns for 

environmental and occupational exposure. According to a National Science Foundation (NSF) 

report, about 6 million workers will be involved with the nanotechnology industry by 2020 

including 2 million within the United States, thus indicating a possible prevalence [3]. Human 

exposures to manufactured nanomaterials are most likely to be observed in workers than the 

general population [4]. A study reported exposure to polyacrylate paint containing nanoparticle 

within a group of female workers. Affected workers clinically presented with pleural effusions, 

progressive pulmonary fibrosis, pleural damage and death [4]. Moreover, a risk assessment study 

on titanium dioxide nanomaterial observed occupational exposure within factory workers beyond 

the acceptable limits during the packaging process [5]. However, nanomaterial exposure and 

dosimetry data are insufficient for humans owing to the difficulty in detection and accurate 

measurement tools for this unique and rapidly growing nanomaterial industry. The extraordinary 

properties of CNTs need to compete with reports of CNT-associated toxicities, thus indicating 

careful monitoring of human health and safety during their use [6]. Depending upon the type of 
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exposure, CNTs may penetrate the body through various routes such as the lungs and gut. CNTs 

are high aspect ratio nanomaterials (HARNs) having at least one of their dimensions of the order 

of 100 nm or less in size, as per the British Standards Institution (BSI) (2007). CNT structure 

facilitates their entry, deposition and residence in the lungs and pleura, resulting in incomplete 

phagocytosis and clearance from the lungs [7]. Owing to their bio-persistent and non-

biodegradable nature, and particularly the resemblance to needle-like asbestos fibers, CNTs are 

believed to induce biologically harmful effects. CNTs are similar to asbestos in their fibrous 

morphology, biopersistence, surface reactivity and the ability to translocate within the alveolar 

regions and the deeper pleura of the lung [8]. Upon pulmonary exposure, CNTs generate an 

acute inflammatory response, activate several cell signaling pathways [9, 10], and induce 

genotoxicity [11, 12], mesothelioma [1, 8], diffuse interstitial fibrosis and granulomas similar to 

that observed in asbestos-exposed animals and humans [13, 14]. However, they differ in their 

chemical composition, surface charge and the ability to (i) enter mesothelial cells and (ii) induce 

direct fibrogenic effects [8, 15, 16]. Lung toxicity appears to be the major consequence of CNT 

exposure, ultimately contributing toward granuloma formation, epithelial hypertrophy and early 

onset of fibrosis [17-20]. Accumulating evidence in the literature demonstrates the fibrogenic 

potential of CNTs. Toxicity reports have indicated the ability of CNTs to translocate into the 

surrounding areas of the lung causing systemic toxicity, granulomatous lesions, interstitial and 

sub-pleural fibrosis [14, 22, 23]. However, the interactions of CNTs with the host at the 

molecular and cellular levels remain largely unknown. Identification of molecular targets and 

intracellular signaling is essential to the development of specific biomarkers for risk assessment 

and early detection of CNT-induced pathogenesis. The pathologic effects of CNTs are likely to 
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be influenced by their physicochemical properties, thus we will first describe the physical and 

chemical properties of CNTs and their associated cellular toxicities. 

Types and properties of CNTs  

As per the British Standards Institute Report (2007), CNTs are HARNs having at least one of 

their dimensions, i.e. the diameter less than 100 nm whereas the lengths vary from a wide range 

of micrometers. CNTs are engineered nanomaterials made of graphene sheets that have been 

rolled into seamless cylindrical structure. They are manufactured mainly via arc discharge, 

chemical vapor deposition and laser ablation. All the three methods basically involve thermal 

elimination of carbon atoms from carbon sources including graphite, or gaseous carbon-bearing 

compounds such as CO, methane, ethylene or other hydrocarbons [24]. Post-synthesis, CNTs are 

purified to eliminate residual organics such as soot or amorphous carbon and metals. They are 

classified into two main types known as single walled carbon nanotubes (SWCNTs) and multi-

walled carbon nanotubes (MWCNTs), both demonstrating outstanding chemical and thermal 

stability. MWCNTs comprise of several single-walled tubes layered onto each other. SWCNTs 

can be viewed as a single thick-graphite layer rolled into a cylindrical tube [25]. The nanoscale 

and large surface area of CNTs allow them to interact efficiently with cells, albeit in an 

undefined manner. Whether CNTs are inherently toxic or is it a wide array of external factors 

such as length, surface modification, degree of dispersion and the presence of metal impurities 

playing a role in CNT-induced toxicity is still a subject of intense investigations. Current 

literature reveals that CNTs based on their type, fiber length, dispersion status and functionality 

exert considerable variations in toxicities. 
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Evidence for adverse pulmonary outcomes following CNT exposure 

Currently, there are no published reports of the adverse health effects in workers handling CNTs. 

However, given the likelihood of developing robust pulmonary responses after inhalation of 

particles and fibers, it is rational to assume that at an equivalent lung burden to CNTs, workers 

may also be susceptible to developing these adverse lung effects. Nevertheless, mounting 

evidence from animal studies raises serious health concerns for occupational hazards associated 

with CNT exposure. Due to the lack of safety guidelines and suitable biomarkers for CNT 

workplace exposure, occupational risk estimates are extrapolated from existing rodent models [7, 

28]. 

Biological activities of CNT 

Oxidative stress 

One of the most frequently reported toxicity endpoints is the formation of ROS, which can be 

either protective or harmful during biological interactions. Oxidative stress is an imbalance 

between the production of ROS and their elimination by the host’s defense systems. Oxidative 

stress amounts to DNA damage, lipid peroxidation and activation of signaling networks 

associated with loss of cell growth, fibrosis and carcinogenesis [29, 30]. Following the exposure 

to CNTs, ROS are induced intrinsically within the cell, extrinsically or indirectly via the effect of 

internalized CNTs on mitochondrial respiration. The critical factors driving CNT-induced ROS 

generation include active redox cycling on the surface of nanoparticles (NPs), oxidative 

functional groups on the NPs and NP-cell interactions, especially in the lungs where there is a 

rich pool of ROS producers like neutrophils and macrophages [29]. CNT-induced oxidative 

stress is mainly followed by inflammation, cell injury, apoptosis and activation of cellular 

signaling pathways such as mitogen-activated protein kinase (MAPK) and nuclear factor (NF)-
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κB, which are implicated in the pathogenesis of lung fibrosis [31, 32]. Several studies have 

demonstrated the role of CNTs in oxidative stress, one of the mechanisms being mitochondrial 

damage [9].MWCNT exposure induces ROS production in a variety of cell lines as well as in 

vivo [9, 33, 34]. Likewise, studies have demonstrated SWCNT-induced ROS generation in 

multiple cell lines [10, 35, 36] and activation of intracellular signaling pathways including 

MAPK, Akt, AP-1 and NF-κB in mesothelial cells in a dose-dependent manner [37]. These 

findings indicate that CNT-induced oxidative stress may serve as an important intermediate 

endpoint while assessing pulmonary toxicity of CNTs. 

Genotoxicity 

Since CNTs have been shown to possess asbestos-like pathogenicity, it is necessary to 

characterize their genotoxic potential. Both MWCNT and SWCNT have been shown to exert 

genotoxic effects in number of in vitro settings as evidenced by DNA strand breakage, DNA 

base oxidation, chromosomal aberrations and gene mutations [38-42]. Intrinsic ROS production, 

CNT-induced inflammation and oxidative stress are some of the proposed mechanisms for CNT-

driven genotoxicity [43, 44]. More recent studies have revealed the potential toxicity associated 

with chronic exposure of CNTs which results in a malignant and neoplastic phenotype and 

tumorigenesis as well a novel feature of stem-like induction in human lung cells [45, 46]. 

Inflammation 

Inflammation is commonly observed upon inhalation of CNTs. Characterization of the 

inflammatory process upon CNT exposure is necessary since inflammation is associated with 

other pathologic disorders such as fibrosis and cancer. Given the interplay between the 

inflammatory response and ROS generation, both effects are closely linked and one leads to the 

other [44]. Particle deposition in the lung causes recruitment of inflammatory cells that generate 
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ROS, clastogenic factors and cytokines, either harming or stimulating resident lung cells [32]. 

Oxidative stress produced from CNT exposure activates pro-inflammatory transcription factors 

such as NF-κB, AP-1 and MAPK [37]. The inflammatory cytokines tumor necrosis factor 

(TNF)-alpha and interleukin (IL)-1beta are well known mediators of fibrotic lung diseases by 

activating the pro-fibrotic transforming growth factor (TGF)-b and platelet derived growth factor 

(PDGF), respectively. Such stimulation leads to differentiation of fibroblasts to myofibroblasts 

and their production of extracellular matrix (ECM) proteins [32, 47, 48]. Several reports indicate 

that MWCNTs and SWCNTs induce a panel of pro-fibrotic inflammatory cytokines and 

chemokines in human lung cells including TNF-a and IL-8 [49], IL-1b, IL-6, IL-10 and 

monocyte chemoattractant protein (MCP)-1 [9], NLRP3 inflammasome (Paloma¨ki et al., 2011), 

IL-13/33 [50] and inflammatory enzymes such as cyclooxygenase (COX)-2 and inducible nitric 

oxide synthase (iNOS) [51].  

Permeability barrier function 

Alterations in respiratory barrier function is of particular importance to CNT-induced toxicity 

since respiratory epithelial cells present a protective barrier against inhaled particles and 

constitute a major determinant of the interaction of the particles with other body compartments. 

Epithelial cells are responsible for the formation and maintenance of tight junction barrier, only 

permitting polarized secretory functions and preventing access to xenobiotics and pathogens 

[52]. Consequently, respiratory barrier function plays a pivotal role in CNT-related inhalation 

hazards. MWCNTs have been shown to alter the paracellular permeability of airway epithelial 

cells by interfering with the formation of tight junctions. The permeability altering effect of 

CNTs was shown to be dependent on fiber length and functionalization [53, 54]. However, the 
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underlying mechanisms of alteration and its effect on CNT-induced pathogenesis have not been 

clearly elucidated. 

Pulmonary toxicity of CNTs in vivo 

Pulmonary function 

CNTs can significantly hamper pulmonary function as demonstrated by an increase in expiratory 

time [20], reduced bacterial clearance activity [22], and decreased lung compliance [55]. Both 

SWCNT and MWCNT exacerbate ovalbumin-induced allergic airway inflammation in vivo [56-

58]. Collectively, these studies imply that individuals with pre-existing respiratory conditions 

such as allergic asthma and bronchitis are more likely to be susceptible to CNT exposure [32]. 

Pleural disease 

The structural similarity between asbestos and CNTs has raised a concern about the potential 

damaging effect of CNTs on pleural mesothelium. Studies have demonstrated CNTs to reach the 

pleural space [59], migrate from subpleural to intrapleural tissue [60], induce mesothelial cell 

proliferation and mesothelioma formation [61, 62], and cause inflammation and pleural fibrosis 

[13]. MWCNT injected into the peritoneal cavity of mice or rats generated fiber length-

dependent inflammation/genetic damage and mesothelioma [15]. These findings are important in 

understanding whether CNTs have the potential to cause asbestos-like pleural lesions and 

whether workers are at risk of developing mesothelioma after chronic CNT exposure. 

Fibrosis 

Over the past few years, there has been a considerable growth in the literature base documenting 

dose and time-dependent biological effects of SWCNT and MWCNT exposure. Some early 

reports provided evidence for intrinsic toxicity of CNTs and potential exposure to respirable 
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CNT particulate matters in workers [17, 20]. Pharyngeal aspiration of SWCNT in mice at the 

dose of 10–40 µg/mouse induced acute inflammation, early onset of granulomas, alveolar wall 

thickening, and progressive fibrosis [17]. Subsequent studies determined the influence of the 

route of administration and dispersion status on the end toxic response. For instance, a short-term 

SWCNT inhalation exposure was more effective than pharyngeal aspiration in causing lung 

toxicity in mice as evidenced by a 4-fold greater inflammation and fibrosis than aspiration of the 

same mass lung burden owing to aerosolized particle size during inhalation [20, 22]. Poorly 

dispersed SWCNT in suspension was found to be restricted to the proximal alveolar regions 

resulting in granulomatous lesions, whereas well-dispersed SWCNT deposited deeper into the 

interstitial and pleural areas of the lung causing parenchymal granulomas and interstitial fibrosis 

[63, 64]. Likewise, the biopersistence of MWCNT has been illustrated by a number of in 

vivo studies suggesting similar spectrum of dose- and time-dependent pulmonary fibrogenic 

responses [34, 39, 65]. Contrary to SWCNT, MWCNT was shown to induce a significant 

increase in fibrosis after pulmonary aspiration compared to inhalation [13]. Acute pulmonary 

exposure to inhaled MWCNT induced inflammation, fibrosis, and rare pleural penetration 

indicating that MWCNT can reach the pleura after inhalation [66]. A recent long-term inhalation 

study demonstrated that MWCNT induced a fibrotic response that persisted up to 336 days post-

exposure and exhibited particle size-dependent retention in the lungs [67]. Furthermore, inhaled 

MWCNT were found to translocate to the parietal pleura, the respiratory musculature, liver, 

kidney, heart and brain where they accumulate with time following exposure [68]. 

Despite similar qualitative fibrogenic responses, both MWCNT and SWCNT differ significantly 

in how they are distributed within the lungs. SWCNT is more likely to interact with the lung 

owing to its greater fiber count per mass than MWCNT [13]. Moreover, MWCNT is known to be 
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recognized and phagocytosed by alveolar macrophages [34, 56], whereas SWCNT evades 

macrophages which facilitates its entry into the alveolar interstitium [13]. However, both forms 

of CNT induce damaging lung responses in vivo at doses physiologically relevant to potential 

worker exposures. Pulmonary exposure to CNTs has illustrated systemic responses such as 

increased inflammatory mediators in the blood, diminished ability of coronary arterioles to 

respond to dilators, oxidative stress in aortic tissue and increased plaque formation in an 

atherosclerotic mouse model [69-71]. Additional research is needed to understand the 

mechanisms underlying these pulmonary and systemic responses to CNTs. 

Besides the fibrogenic damage, long-term CNT exposure has been shown to promote malignant 

transformation and induction of tumorigenesis, initiation of lung adenocarcinoma and tumor like 

morphology in vivo at doses which approximate potential human occupational exposures [72, 

73].  



[11] 
 

 

Figure I: Mechanisms of Lung Fibrosis 

Irritants such as nano-particles induce epithelial injury resulting in infiltration of immune cells 

such as neutrophils, eosinophils and alveolar macrophages at the site of tissue injury. Activated 

neutrophils can exaggerate the ROS response. Moreover, ROS generation upon particle–cell 

interactions activates cytokine growth receptor cascade. ROS-dependent activation of RTKs, 

MAPK, Akt and NF-κB results in expression of genes related to inflammation and fibrosis. ROS 

can also activate TGF-β to mediate the fibrogenic effects. Recruitment of leukocytes induces key 

pro-fibrotic cytokines including TNF-a, IL-1β and IL-13, which can further damage the epithelial 

cells. TNF-α and IL-1β stimulation upregulates TGF-b and PDGF, respectively, which in turn 

increase collagen production via fibroblast and myofibroblast proliferation. Alternatively, 

fibroblasts can directly induce fibrosis via proliferation and differentiation into myofibroblasts. 

In addition, epithelial cells undergoing EMT expand the pool of fibroblasts and myofibroblasts 

thereby driving fibrogenesis. 
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During the development of fibrosis, several common cellular events occur including epithelial 

cell injury, infiltration of inflammatory cells, proliferation and transformation of fibroblasts into 

myofibroblasts, and synthesis and deposition of ECM [9]. Unique to CNTs is their non-

biodegradable and biopersistent nature which likely prolongs the fibrotic process. Multiple 

factors determine the severity and duration of CNT-induced fibrosis, which are discussed below 

and are summarized in Figure 1. 

CNT-Induced Fibrosis 

Role of ROS 

ROS is widely known to be involved in epithelial cell injury and fibrogenesis [74]. CNT 

exposure results in ROS-dependent activation of several transcription factors and signaling 

pathways including NF-κB, signal transducer and activator of transcription (STAT)-1, MAPK 

and receptor tyrosine kinases (RTK), which are involved in the regulation of inflammation and 

fibrosis [32]. CNT-induced ROS generation is likely to be a result of frustrated phagocytosis 

which refers to the failure of the macrophage to entirely engulf the long fibers, thus resulting in 

an inflammatory condition [1]. Additionally, specific properties of CNTs such as metal 

contaminants including iron, cobalt, tungsten and vanadium as well as reactive groups on the 

CNT surface that have been attributed to pulmonary fibrotic response may induce oxidative 

stress [21, 31, 75, 76]. Some of the common metal contaminants associated with pulmonary 

fibrosis include iron, cobalt, tungsten and vanadium. 

 Role of pre-existing inflammation 

Little has been reported about the risk and possibility of a fibrogenic response following CNT 

exposure in conditions with pre-existing inflammation. Studies have reported how bacterial-
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derived products modify CNT-related toxicities. In mice with prior bacterial infection, 

pharyngeal aspiration of SWCNTs promotes inflammatory response, collagen synthesis, reduces 

phagocytosis of bacteria by macrophages and bacterial clearance from the lungs, thereby 

increasing host susceptibility to lung fibrosis [22]. Pre-exposure with lipopolysaccharide, an 

endotoxin, exaggerates the fibrotic effects of CNTs by (i) intensifying acute inflammatory 

response [77], (ii) increasing PDGF and its receptor resulting in fibroblast chemotaxis and 

proliferation [78] and by (iii) elevating the expression of TNF-a and IL-1b resulting in collagen 

synthesis and ECM deposition [22]. Together, these results support the role of pre-existing 

inflammation in promoting CNT-induced lung fibrosis. 

Role of inflammation 

Numerous inflammatory and pro-fibrotic mediators such as TNF-a, IL-1b and TGF-b have been 

implicated in the pathogenesis of fibrosis. Infiltration of immune cells such as eosinophils, 

neutrophils and macrophages results in tissue injury and loss of epithelial integrity, thus 

promoting tissue repair and fibrosis [79]. As mentioned earlier, CNT exposure initiates an 

inflammatory cascade of cytokines in association with oxidative stress. There are reports 

documenting inflammation induced fibrosis following CNT exposure. For example, MWCNTs 

induce TNF-a resulting in fibrosis in vivo [19]. SWCNTs upon pharyngeal aspiration induce 

robust inflammation and an early onset of fibrogenic response in vivo characterized by the 

secretion of TNF-a, IL-1b and TGF-b as well as several biomarkers of oxidative stress. The 

extent of fibrosis is dose and time dependent [20]. Inflammation-driven fibrosis causes 

granuloma formation associated with epithelial hypertrophy, alveolar thickening and interstitial 

fibrosis [19, 22]. Intratracheal instillation of SWCNTs results in early onset of lung fibrosis 

driven by the secretion of a panel of inflammatory cytokines [14]. 
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Role of angiogenesis 

Angiogenesis is essential in the formation of new blood vessels, wound healing and tissue repair, 

thus important in fibrogenesis. Vascular endothelial growth factor (VEGF) regulates the 

angiogenic response by controlling the migration, proliferation and vasculature of endothelial 

cells. Initial studies demonstrated neovascularization leading to anastomoses between the 

systemic and pulmonary microvasculature of patients with pulmonary fibrosis [80]. VEGF and 

TGF-b interact closely with respect to angiogenic and fibrogenic effects. A recent in vitro study 

showed that SWCNT-induced fibroblast proliferation and collagen production is mediated by 

VEGF and TGF-β1 [10]. This study also suggested a positive feedback loop between TGF-b and 

VEGF during angiogenesis, which promotes the fibrotic process after SWCNT treatment. 

Role of epithelial mesenchymal transition 

Epithelial mesenchymal transition (EMT), a process characterized by the transition of fully 

differentiated epithelial cells to a mesenchymal phenotype, has been suggested to play a key role 

in fibrosis by serving as a cellular source of resident fibroblasts/myofibroblasts and by causing a 

loss of epithelial barrier that acts as a defense during advanced stage fibrosis [81]. However, 

whether or not EMT is a major source of these interstitial lung cells during fibrosis in vivo is still 

unclear. EMT is brought about by various external stimuli including growth factors, cytokines 

and hormones [82]. With regards to CNT-induced EMT, SWCNT exposure induced EMT of 

lung epithelial cells which contributed significantly to fibroblast expansion [83]. A recent study 

showed that the activation of the TGF-β/Smad2 signaling plays a critical role in the process of 

the fibroblast-to-myofibroblast transition and the EMT induced by MWCNTs [84]. 

Physicochemical properties of CNTs affecting toxicities 
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Physicochemical factors alter the cytotoxicity of CNTs with respect to their cellular uptake, 

internalization, phagocytosis and clearance from the body [26, 27]. For instance, even though the 

functionalization of CNTs may aid their solubility and dispersion, it has been speculated to 

facilitate their uptake and internalization into the systemic circulation. More detailed effects of 

physicochemical properties of CNTs on their biological activities are provided below and are 

summarized in Tables 1, 2 and 3. 

Conclusions 

The ability of CNTs to cause acute toxicities and chronic fibrotic effects depends on several 

physicochemical factors such as particle dimension, dispersion status, functionalization and the 

presence of transition metals. Understanding these factors will enable the design of safer CNT 

products and their utilization. The cytotoxic and fibrogenic effects of CNTs appear to be 

associated with their ability to induce oxidative stress and inflammatory and fibrogenic 

cytokines. There is a close connection between oxidative stress and inflammatory response, as 

well as cross-talk between inflammation and fibrosis as indicated by the multifunctional roles of 

the induced cytokines, e.g. TGF-b, PDGF and MMPs. Interestingly, however, there have been 

reports showing CNT-induced fibrosis with minimum inflammation and oxidative injury, 

suggesting alternative pathways and mechanisms of fibrosis. Apart from the molecular and 

cellular changes, other biological factors such as angiogenesis and EMT can also influence 

fibrosis. EMT may contribute to the increased fibroblasts/myofibroblasts during CNT-induced 

fibrosis through TGF-b, Smad and b-catenin signaling. Similarly, angiogenesis may promote 

fibrosis through VEGF-mediated fibroblast proliferation and collagen synthesis. 

Understanding Mechanism for CNT-Induced Pulmonary Fibrosis 
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Given the fibrogenic potential of CNT, major concern exists about the long-term human health 

risks associated with chronic pulmonary CNT exposures. Several studies have demonstrated the 

fibrogenic effects of CNTs given their ability to translocate into the surrounding areas in the lung 

causing granulomatous lesions and interstitial and sub-pleural fibrosis. However, the 

mechanisms underlying the disease process remain obscure due to the lack of understanding of 

the cellular interactions and molecular targets involved. Since pulmonary fibrosis is 

characterized via abnormal tissue repair, collagen production and excessive ECM accumulation, 

identifying the cells that are the source of ECM production is fundamental to the understanding 

of fibrosis mechanisms. Currently the paradigm of stem cells is being evaluated in dysfunctional 

lung remodeling. Recent studies have demonstrated the pathogenic role of putative stem cells in 

early stages of pulmonary fibrosis [85-87].  

The role of stem cells in nanomaterial-induced pulmonary fibrosis is unknown. Since 

fibroblasts are the key players in fibrogenesis, we hypothesize that CNT exposure in fibroblasts 

induce fibroblast stem-like cells (FSCs) which are critical for the CNT-induced fibrogenic 

response.   

Our central hypothesis is that upon exposure to fibroblasts CNT are capable of inducing FSC 

which are crucial for the fibroblast to myofibroblast transformation and the development of 

fibrosis. We also hypothesize that oxidative stress induced by CNT is essential for the stemness 

development. 

The long term goal of this study was to develop an in vitro model which will be predictive of 

the NM-induced fibrogenic response in vivo for a) detailed mechanistic study of stem-cell niche 

in CNT-induced lung fibrogenesis, b) studying the role of oxidative stress in regulating fibrosis 
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stem cells and their fibrogenic effects, and c) investigating the ability of different 

physicochemical parameters of CNT to induce FSC. 

Specific Aims 

Aim 1: Characterize the role of fibroblast stem-like cells in CNT-induced lung fibrosis in vitro 

1.1 Determine if CNT is capable of inducing FSC from normal lung fibroblasts. 

1.2 Determine the functional role of FSC as a source of myofibroblasts and collagen production. 

1.3 Evaluate the role of FSCs in fibrotic nodule formation in vitro. 

Through this part of the study, we documented the evidence of FSC and their potential role in 

CNT-induced fibrogenesis in in vitro settings.  Additionally, we demonstrated the role of FSCs 

in fibrogenesis through their upregulation of collagen and alpha-smooth muscle actin. The 

developed in vitro model investigated whether stemness dictates the fibrogenic response induced 

by CNT exposure.  

Aim 2: Determine whether reactive oxygen species (ROS) production is critical for stemness 

development in the event of CNT-induced fibrosis 

2.1 Test whether ROS leads to stem cell phenotype in fibroblasts and identify which ROS are 

important for the stemness development 

2.2 Identify the antioxidant enzymes involved in the regulation of ROS required for inducing 

stemness phenotype in fibroblasts. 

The findings from this study reported the effect of oxidative stress on fibroblast stem-like cell 

generation and fibrogenesis induced by CNT. Our study showed that, ROS, particularly the 

peroxide species play a key role in SWCNT-induced stemness development and fibrogenic 
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effects. Moreover, this study also documented the effect of fiber length and surface modification 

on CNT-elicited oxidative stress. 

Aim 3: Examine whether physicochemical characteristics of CNT govern the ability to induce 

the stemness phenotype and thereby the resulting fibrogenic response 

3.1 Test whether surface modifications of single-walled CNT (SWCNT) via different functional 

groups {including carboxyl (COOH), nitrogen containing (NC), and hydroxyl (OH)} can alter 

the stemness development. 

3.2 Test whether the length of SWCNT is capable of driving the stem-like behavior as well as the 

resulting fibrogenic response.  

3.3 Develop a model which determines that the stemness phenotype is a predictive tool of the 

fibrogenic response in vivo. 

The results presented under this study revealed the role of physicochemical parameters of 

SWCNT, particularly fiber length and surface modification in stemness development. Our data 

indicated the potential usefulness of the in vitro stemness induction model as a predictive 

screening tool for fibrogenicity testing of nanomaterials.
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Studies related to surface functionalization, size and surface area, presence of metal impurities and dispersion status 

Table 1: Surface functionalization 

Type of CNT  System Effect Study 

SWCNT,  

Control; and acid functionalized  

 LA4 mouse lung epithelial cells 

and in vivo in CD1 mice 

AF-SWCNT more cytotoxic than SWCNT in 

vitro; exerted stronger inflammatory response 

in vivo than control SWCNT 

 

[88] 

MWCNT,  

Functionalized; and non-

functionalized  

 In vivo bone marrow cells of 

Swiss-Webster mice 

Functionalized MWCNT induced greater 

clastogenic/genotoxic effects than non-

functionalized MWCNT 

 

[11] 

     SWCNT,  

SWCNT-phenyl-SO3H; 

SWCNT-phenyl-SO3Na; and  

SWCNT-phenyl-(COOH)2 

 

 Human dermal fibroblasts Cytotoxicity dependent on the degree of 

sidewall functionalization  

[89] 

MWCNT,  

Pristine; and carboxylated  

 In vivo mice The degree of functionalization was inversely 

proportional to hepatic toxicity 

 

[90] 

MWCNT,  

Pristine; COOH-MWCNT; and NH2-

MWCNT 

 A549 pneumocytes, in vivo pulmonary toxicity, inflammatory response,  

irrespective of nanotube functionalization 

 

[91] 

MWCNT, 

 

As-prepared (AP); COOH; PEG; 

NH2; sw-NH2; and  PEI-MWCNT 

  

BEAS-2B and THP-1 cells, in 

vivo 

Chronic lung inflammation, fibrosis, and 

collagen deposition: PEI-MWCNT induced the 

strongest 

effects, while NH2 and sw-NH2-MWCNT 

exerted similar effects, and COOH and PEG-

MWCNT induced weaker effects than AP-

MWCNT in vitro and in vivo 

 

[92] 
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MWCNT; CNF; and carbon 

nanoparticles 

 Human lung tumor cells Functionalized carbon nanoparticles most toxic 

compared to MWCNT and CNF 

 

[93] 

SWCNT, 

Purified; and 6-amino-hexanoic acid-

derivatized (AHA-SWCNT)  

 Human epidermal keratinocytes Functionalization induced mild cytotoxic 

responses and maintained cell viability 

[94] 

Table 2: Size and surface area 

Type of CNT  System Effect Study 

Purified MWCNT, 

Short (220 nm); and long (825 nm)  

 Human acute monocytic 

leukemia THP-1 cell line 

 

Long CNT induced more inflammation [95] 

SWCNT, 

Long (0.5-100 μm); and short (0.5-2 

μm)  

MWCNT, 

Long (5-9 μm); and short (0.5-2 μm) 

 

 Human epithelial Calu-3 Long MWCNT and SWCNT caused 

significant disruption of barrier function 

[53] 

MWCNT,  

Long (13 μm); and (56 μm); 

tangled (1-5 μm); and  (5-20 μm) 

 

 In vivo  Length-dependent inflammation and 

granuloma formation 

[60] 

MWCNT,  

Short (1-10 μm); long tangled (10-50 

μm); long needle-like (>50 μm); 

asbestos (4.6 μm); and carbon black  

 

 Primary human macrophages Enhanced activation of NRLP3 inflammasome 

and secretion of IL-1β, IL-1α by long 

MWCNT  

[96] 

MWCNT,  

Long; short; tangled;  

Nickel nanowires (long and short) 

 

 In vivo  Length-dependent retention of CNTs 

into lung pleura resulting in sustained 

inflammation and progressive fibrosis 

[97] 

MWCNT,   Human peritoneal mesothelial Thin MWCNT more inflammatory and [15] 
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Dispersed thin (50 nm); aggregative 

(2-20 nm); and thick (150 nm) 

 

cells carcinogenic 

Purified MWCNT, 

Thick (70 nm) and thin (9.4 nm) 

 Murine alveolar macrophages 

and in vivo in rats 

 

Thin MWCNT more toxic in vitro and in vivo [98] 

SWCNT (138 m
2
/g); carbon 

nanofibers; CNF (21 m
2
/g); and 

asbestos (8 m
2
/g) 

 In vivo C57BL/6 mice SWCNT with high surface area induced more 

oxidative stress, inflammation, lung damage 

and fibrosis than CNF and asbestos 

 

[64] 

SWCNT; MWCNT; active carbon; 

carbon black and carbon graphite 

 

 Human fibroblast cells SWCNT with small surface area more toxic 

than large particles 

[99] 

MWCNT; CNF; carbon nanoparticles  Human lung tumor cells Size and aspect ratio-dependent cytotoxicity of 

MWCNT 

 

[93] 

MWCNT,  

short; and long 

 Murine macrophages Short > long MWCNT in pro-inflammatory 

cytokine secretion and oxidative stress 

 

[100] 

MWCNT; (NM400 and NM402) and 

Crocidolite 

 

 Human fibroblast cells, in vivo 

C57BL/6 mice 

Long MWCNT induced more cell proliferation 

in vitro and fibrosis in vivo 

[101] 

SWCNT,  

Long SWCNT fibers (~13 μm); 

Short SWCNT fibers (~ 1-2 μm) 

 

 Human lung fibroblasts, in vivo  

C57BL/6 mice 

Length-dependent ROS generation, TGF-β and 

collagen I expression 

[102] 

     

Table 3a: Presence of metal impurities 

 

30wt% iron-rich SWCNT 

 

  

Human keratinocytes 

 

 

Loss of cell viability and oxidative stress were 

due to the catalytic activity of SWCNT-

 

 [76] 
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MWCNT,  

99% purity; 97% purity; and acid-

treated 97% purity (surface oxidation 

8%)  

 

 

 

Human neuroblastoma cells 

associated iron content 

 

Loss of cell viability with reduction in CNT 

purity 

 

 

 

[103] 

26wt% iron-rich SWCNT  Murine RAW 264.7 

macrophages 

Loss of intracellular thiols and lipid 

hydroperoxide accumulation in macrophages 

[104] 

     

Table 3b: Dispersion status 

 

SWCNT, 

(poor; and well dispersed) 

  

In vivo  C57BL/6 mice 

 

Poorly dispersed SWCNT - proximal alveolar 

regions resulting in granulomatous lesions; 

well-dispersed CNT-alveolar interstitial and 

pleural areas causing parenchymal granulomas 

and interstitial fibrosis 

 

 

[105] 

SWCNT, 

Survanta dispersed (SD-SWCNT); 

and non-dispersed (ND-SWCNT) 

 Human lung epithelial BEAS-

2B cells 

SD-SWCNT more fibrogenic than ND-

SWCNT both in vitro and in vivo 

 [79] 
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CHAPTER 2: ROLE OF FIBROBLAST STEM-LIKE CELLS IN CARBON 

NANOTUBE-INDUCED LUNG FIBROSIS 

 

Abstract 

Among the pool of engineered nanomaterials, carbon nanotubes (CNTs) have generated great 

interest commercially with their unique physicochemical properties and diverse applications; 

however, the risk of their adverse health effects is not well understood. Recent studies have 

shown that CNTs can induce pulmonary fibrosis, an incurable lung disease, but the underlying 

mechanism is unclear. Since fibrosis is associated with aberrant tissue repair and extracellular 

matrix (ECM) accumulation, identifying the cells that are responsible for the repair and ECM 

production is fundamental to the understanding of fibrosis mechanism. We hypothesized that 

CNTs induce fibroblast stem-like cells (FSCs) and that such induction is essential to the 

development of fibrosis. Fluorescence activated cell sorting (FACS) was used to isolate FSCs 

from CNT-treated normal human lung fibroblasts. The expression of stem cell markers and 

fibrogenic markers was performed using Western blotting, immunofluorescence staining and 

confocal microscopy. Our results demonstrated for the first time that CNTs can induce FSCs 

from lung fibroblasts as evidenced by their side population (SP) property, aldehyde 

dehydrogenase (ALDH) activity, and the expression of stem cell markers ABCG2 and 

ALDH1A1. Furthermore, these cells, isolated from SP-positive FSCs, showed a high expression 

of type I collagen and alpha-smooth muscle actin, which are key biomarkers of fibrosis, as 

compared to non-SP cells. We showed that CNTs induced fibroblastic nodule formation in 

primary human lung fibroblast cultures resembling the fibroblastic foci in clinical fibrosis and 

promoted FSCs that are highly fibrogenic and a potential driving force of fibrogenesis. The 



[33] 
 

developed model could potentially be used as an alternative screening assay to predict the 

fibrogenicity of CNTs and other nanomaterials for their safer design and risk assessment.  

 

Key words: Carbon nanotube (CNT), fibroblast stem-like cell (FSC), side population (SP), 

collagen I, stemness, fibrogenesis. 
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Introduction 

Engineered nanomaterials have increasingly been used for a wide array of applications in 

the fields as diverse as electronics, aerospace engineering, energy, consumer products, and 

medicinal drug delivery. Among them, carbon nanotubes (CNTs) have generated great interest 

commercially with their unique physicochemical properties such as high tensile strength and 

conductivity [1-3]. The global market for CNTs is estimated to reach a trillion dollars in the next 

decade, with their use affecting millions of workers and users [3, 4]. However, despite their 

numerous applications, inhalation of these nanoparticles exerts negative effects on the normal 

physiological functions of lungs and causes pulmonary toxicity. They are particularly scrutinized 

given their high aspect ratio similar to asbestos fibers which induce inflammatory and fibrotic 

lung reactions, pleural mesothelioma and lung cancer [4-6]. Unique to CNTs is their non-

biodegradable and biopersistent nature which likely prolongs the fibrotic process. Moreover, 

CNT structure facilitates their entry, deposition and residence in the lungs, resulting in impaired 

clearance from the lungs [6, 7]. Collectively, these features reinforce the safety concerns about 

their pathogenicity and potential adverse effects on the health of exposed workers and the 

general population. 

At present, human data regarding fibrogenicity assessment of CNTs is lacking and 

information on in vivo toxicity is limited, especially for single-walled CNTs (SWCNTs). Initial 

findings demonstrated that SWCNTs are capable of causing rapid and progressive interstitial 

fibrosis in murine models given their ability to translocate into the surrounding areas in the lung 

causing inflammation, granulomatous lesions and sub-pleural fibrosis [8-11]. 

Classical pulmonary fibrosis is characterized by epithelial cell injury, infiltration of 

inflammatory cells, proliferation and transformation of fibroblasts into myofibroblasts, 
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irreversible deposition of excessive extracellular matrix (ECM) within the interstitium of the 

lung [12]. Given the fibrogenic potential of CNTs, major concern exists about the long-term 

human health risks associated with chronic respiratory CNT exposures. The mechanisms 

underlying CNT-induced lung fibrosis remain obscure due to the lack of understanding of the 

cellular interactions and molecular targets involved. There is evidence suggesting the role of a 

multitude of factors including oxidative stress, inflammation, epithelial mesenchymal transition 

(EMT), angiogenesis and pro-fibrogenic mediators [13-16]. However, the specific mechanism 

underlying CNT-induced fibrosis remains unclear. 

Many lung diseases driven by the maladaptive proliferation of myofibroblast cells result 

in dysfunctional lung remodeling that affects the regenerative capacity of resident stem cells. 

Current paradigms define the origin of these proliferative myofibroblasts as bone marrow, 

vascular and epithelium-derived [17]. However, recent studies suggest that stem cells 

differentiate into myofibroblasts thereby contributing to tissue fibrosis [18].  In human idiopathic 

pulmonary fibrosis (IPF), observational studies suggest dysregulation of a number of epithelial 

progenitor cell types, with reactivation of developmental pathways. Despite the potential benefits 

of stem cells in lung regeneration and repair, there is no direct evidence for the role of these cells 

in parenchymal fibrosis, although there are some circumstantial evidences to support this 

possibility [19]. For instance, TGF-β overexpression within the lungs of premature infants 

stimulates mesenchymal stem cells (MSCs) to differentiate into myofibroblasts [20], whilst 

another study showed that administration of intravenous bone marrow (BM)-derived MSCs 

following lung irradiation contributed to fibroblasts and myofibroblasts in areas of damage [21].  

Similarly, MSCs isolated from bronchoalveolar lavage fluid (BALF) were found to contribute to 

fibrogenesis in human lung allografts [22]. Nearly 80% of collagen-producing lung fibroblasts 
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were identified as bone marrow derived in a bleomycin model of pulmonary fibrosis [23], 

whereas another study suggested the role of fibroblast precursors and circulating fibrocytes in 

lung injury and fibrosis [24]. A recent study of kidney fibrosis showed that 35% of total 

myofibroblasts originating from BM-derived MSCs [25]. These findings indicate that stem or 

stem-like cells are a critical factor in the development of lung fibrosis. Understanding the 

molecular/cellular basis of these cells during lung fibrosis is of critical importance.  

Recent findings from our laboratory and other groups have demonstrated that SWCNTs 

can directly interact with interstitial lung fibroblasts to exert their direct fibrogenic effects both in 

vivo and in vitro in the absence of persistent inflammation and cell damage [26, 26-28]. The 

cellular fibrogenic effect of CNTs provides a platform to develop an in vitro fibroblast model for 

assessing the fibrogenic potential of CNTs. Therefore, we proposed that fibroblasts can be a 

source of stem-like cells upon exposure to CNTs. The primary goal of this study was to 

determine the existence of fibroblast stem-like cells (FSCs) upon CNT exposure and studied 

their role in CNT-induced fibrogenesis under in vitro settings. This part of the study was focused 

on the ability of CNT to induce FSCs. 

Rationale: 

Recent studies suggest the role of stem cells in the fibroblast to myofibroblast 

differentiation and contribution to parenchymal fibrosis. Moreover, previous findings from our 

group revealed the expression of universal stem cell markers in human lung fibrotic tissues [29] 

as well CNT-induced lung fibrosis tissues, thus providing evidence for the clinical relevance of 

stem cells in fibrosis. 
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Figure S1: Role of stem-like cells in pulmonary fibrosis 
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Experimental Section 

SWCNT Preparation 

SWCNTs were prepared by plasma purified chemical vapor deposition process and were 

obtained from Cheap Tubes Inc. (Brattleboro, VT, USA). They were dispersed in culture 

medium containing 5% serum by water-bath sonication. Before exposure to the cells, the 

SWCNT dispersion was lightly sonicated (Sonic Vibra Cell Sonicator, Sonic & Material Inc., 

Newtown, CT, USA) with the power, frequency, and amplitude settings of 130 W, 20 kHz, and 

60% respectively for 10 s. 

Chemicals and Reagents  

Antibodies for collagen type I and TGF-β were obtained from Fitzgerald (Concord, MA, USA) 

and Cell Signaling Technology, Inc. (Beverly, MA, USA), respectively. β-actin antibody and 

horseradish peroxidase (HRP)-conjugated secondary antibodies were obtained from Santa Cruz 

Biotechnology (Santa Cruz, CA, USA). The antioxidant catalase was obtained from Roche 

Molecular Biochemicals (Indianapolis, IN, USA). Antibody for collagen type I was from 

Fitzgerald (Acton, MA). Human-derived TGF-β was obtained from R&D Systems (Minneapolis, 

MN). Poly-L-lysine and Hoechst 33342 were obtained from Sigma Aldrich (St. Louis, MO). 

Antibodies for α-SMA and ALDH1A1 were from Abcam (Cambridge, MA). Antibody for 

ABCG2 (BRCP1) was from Milipore (Billerica, MA), and horseradish peroxidase (HRP)-

conjugated secondary antibodies were obtained from Cell Signaling Technology (Beverly, MA). 

DAPI and Alexa Fluor secondary antibodies were obtained from Molecular Probes (Grand 

Island, NY). 
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Atomic Force Microscopy (AFM) (Some experiments were performed in the laboratory of Dr. 

Cerasela-Zoica Dinu) 

AFM was used to determine the length and diameter distribution of SWCNT samples using 

Digital Instrument Nanoscope II (Model No. MFP-3D-AFM, Asylum Research, Goleta, CA, 

USA). A Si tip (50-90 kHz AC240TS, Asylum Research, Goleta, CA, USA) was used to perform 

tapping mode in air. SWCNT samples were deposited on mica surfaces (9.5 mm diameter, 0.15-

0.21 mm thickness, Electron Microscopy Sciences, Hatfield, PA USA) and allowed to dry 

overnight under vacuum. Scan angel was set as 0, scan rate was set as 0.5 Hz, and resolution was 

set as 512. Scan images of 20×20 or 10×10 μm areas were acquired. For each sample, at least 30 

individual SWCNT particles were counted and measured to obtain average length and diameter 

distribution. 

Cell Culture 

Normal human lung fibroblasts (NHLFs) were obtained from Lonza (Walkersville, MD, USA). 

The cells were maintained in Fibroblast Basal Medium (Lonza, CC-4126, Walkersville, MD, 

USA) containing growth supplements. The cells were cultured at 37 °C in 5% CO2 incubator and 

were passaged at preconfluent densities using a medium containing 0.05% trypsin.  

Cytotoxicity Assay 

 Cytotoxicity assay was carried out using WST-1 cell viability assay kit (Roche Molecular 

Biochemicals, Indianapolis, IN, USA) as per the manufacturer’s instructions. Cells were plated 

in triplicate in 96-well plates at the density of 2.0×10
4
 cells/well in CS-C medium. Following 

overnight culture, the cells were incubated with the indicated concentrations of SWCNT for 48 h. 

After incubation, WST-1 reagent was added and the cells were incubated for an additional 4 h. 
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The plates were then read at the wavelength of 420 nm using a microplate reader (Model 3550; 

BioRad, Richmond, CA, USA).  

Sircol
®

 Collagen Assay  

Soluble collagen content was determined by Sircol assay
®
 (Biocolor Ltd., Belfast, UK), 

according to the manufacturer’s protocol. Briefly, lung fibroblasts (1×10
5
 cells/well) were 

cultured in 6-well plates and treated with SWCNTs of different lengths at the indicated 

concentrations for 24 and 48 h. Equal amount of Sirius red reagent (Biocolor Ltd., Belfast, UK) 

and cell culture supernatant (50 μL) were added together and mixed for 30 min. The collagen-

dye complex was then precipitated by centrifugation at 13,000× g for 5 min, washed with 

ethanol, and dissolved in 0.5 M NaOH. A 200 μL aliquot of the mixture was transferred to a 96-

well plate and analyzed for optical absorbance at 540 nm.  

Isolation of FSC using Flow Cytometry 

Cell subsets markedly enriched for stem cell activity are characterized by the ability to efflux the 

vital dye Hoechst 33342 via multidrug-like transporter ABCG2. Following appropriate 

treatments, the cells were harvested using 0.05% trypsin.  Hoechst was added at the final 

concentration of 5 µg/ml to stain the cells. Flow cytometry experiments included Hoechst-

stained lung fibroblasts, unstained fibroblasts, and cell suspensions incubated with Hoechst 

33342 and the dye uptake inhibitor, fumitremorgin C (FTC). Gates were set according to the 

controls. The Hoechst dye was excited with a UV laser and its fluorescence was measured with 

both 450/20 filter (Hoechst Blue) and 675 LP filter (Hoechst Red), sorting was performed using 

FACS ARIA (BD Biosciences, San Jose, CA, USA). 
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Western Blotting 

Collagen protein expression was determined by Western blotting. After specific treatments, cells 

were incubated in lysis buffer containing 20 mM Tris-HCl (pH 7.5), 1% Triton X-100, 150 mM 

sodium chloride, 10% glycerol, 1 mM sodium orthovanadate, 50 mM sodium fluoride, 100 mM 

phenylmethylsulfonyl fluoride, and a commercial protease inhibitor mixture (Roche Molecular 

Biochemicals, Indianapolis, IN, USA) at 4 °C for 20 min. Cell lysates were collected and protein 

concentrations were determined using a bicinchoninic acid protein assay kit (Pierce 

Biotechnology, Rockford, IL, USA). Equal amount of protein per sample (40 μg) was resolved 

under denaturing conditions by 10% SDS-PAGE and transferred onto a nitrocellulose membrane. 

The membranes were blocked for 1 h in 5% nonfat dry milk in TBST (25 mM Tris-HCl, pH 7.4, 

125 mM sodium chloride, 0.05% Tween 20) and incubated with appropriate primary antibodies 

at 4 °C for 12 h. Membranes were washed thrice with TBST for 10 min and incubated with HRP-

labeled isotype-specific secondary antibodies for 1 h at room temperature. The immune 

complexes were then detected by enhanced chemiluminescence detection system (Supersignal
®

 

West Pico, Pierce, Rockford, IL, USA). The bands were quantified via densitometry using Image 

J. software, version 10.2 (GraphPad Software Inc., La Jolla, CA, USA). Mean densitometry data 

from independent experiments were normalized to results in cells from control experiments. 

Growth and Counts of Fibroblastic Nodules  

Cells at the density of 3×10
4
 cells/well were seeded onto poly-L-lysine-coated glass cover slips 

in 24-well plates and allowed to adhere overnight. The cells were then deprived of serum for 8 h 

and then treated with SWCNT, MWCNT, or TGF-β for 16 h, which is the optimal time for 

fibroblastic nodule formation. For each culture, three cover slides were analyzed and counted 

(Leica Microsystems, Bannockburn, IL) by two independent observers blinded to the treatment. 
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Immunofluorescence 

For immunofluorescence staining, cells were seeded on rat type I collagen-coated cover slips  (5 

µg/cm
2
), fixed with 3.7% paraformaldehyde for 15 min, incubated in 50 mM glycine for 5 min, 

permeabilized and blocked with 0.5% saponin, 1.5% BSA, and 1.5% normal goat serum for 30 

min. Coverslips were then incubated with the appropriate primary antibodies at 4 °C overnight 

followed by secondary Alexa Fluor 488-, 546-, or 647-conjugated antibodies and phalloidin 

(Molecular Probes) for 2 h. After washing, cells were mounted on a coverslip using ProLong
®

 

Gold antifade reagent with DAPI (Molecular Probes). Cells were visualized with a Zeiss LSM 

510 confocal microscope on an Axiolmager Z1 platform using a 40x objective lens (Carl Zeiss, 

Jena, Germany).  

Aldehyde Dehydrogenase Assay 

Human lung fibroblasts exposed to SWCNT for 24 h were analyzed using an Aldefluor
®
 assay 

kit (Stem Cell Technologies, Vancouver, B.C., Canada). Dead cells, cell debris, doublets and 

aggregates were excluded by forward and side scattering and pulse-width gating. Cells were 

suspended in Aldefluor assay buffer containing ALDH substrate, BODIPY™-aminoacate (BAA) 

(1 μM) for 30-60 min per 1×10
6
 cells. After staining cells with the activated Aldefluor

®
 reagent, 

the single cell dissociation was maintained on ice during all subsequent procedures. In each 

experiment, a sample of cells was stained under identical conditions with 1.5 mM of the specific 

ALDH inhibitor diethylaminobenzaldehyde (DEAB) as a negative control. Flow cytometric 

sorting was conducted using a FACS ARIA (BD Biosciences, San Jose, CA, USA). Aldefluor 

fluorescence was excited at 488 nm, and fluorescence emission was detected using a standard 

fluorescein isothiocyanate (FITC) 530/30-nm band-pass filter by a FACS Calibur™ machine 

(BD Biosciences, San Jose, CA). High side scatter ALDH
+ve

 and low ALDH
−ve

 were selected. 
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Statistical Analysis  

The data represent mean ± S.D. from three or more independent experiments. ANOVA was 

performed to determine statistical significance between treatment and control groups using 

Graph Pad Prism 6.0 (GraphPad Software Inc., La Jolla, CA, USA) at a confidence level of * p < 

0.05. 

Figure S2: Working model for demonstrating CNT-induced fibroblast stem-like cell induction  
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Results 

CNT Characterization and Dose Calculation 

Pristine SWCNTs were characterized using atomic force microscopy. Table 1 provides 

information on the purity, length and diameter characteristics for the SWCNTs used in this study. 

SWCNTs differed slightly in their diameter and their length both in the solution and dry forms 

with a specific surface area of 407 m
2
/g.  SWCNTs were dispersed using serum and were lightly 

sonicated prior to culture exposure. The SWCNT doses used in the in vitro exposure studies were 

calculated based on in vivo CNT exposure data normalized to alveolar surface area in mice [29]. 

The doses that induced positive in vivo fibrogenic response were 10-80 μg/mouse lung (0.5 

mg/kg body weight) [30-32]. Dividing this dose by the average alveolar surface area in mice 

(∼500 cm
2
) [32] indicates the in vitro surface area dose of 0.02-0.16 μg/cm

2
. 

Effect of SWCNTs on Cell Viability and Type I Collagen Expression 

Cultured normal human lung fibroblasts were exposed to SWCNTs and analyzed for cellular 

toxicity (Figure 3). This study was performed to optimize the experimental doses of SWCNT 

that are relevant to in vivo lung fibrosis. Lung fibroblasts were treated with different 

concentrations of SWCNT for 48 h and analyzed for cell viability by WST-1 assay (Figure 3A). 

The doses of 0.02-0.6 μg/cm
2
 were used in this study since they are physiologically relevant and 

derived from pulmonary exposure data in mice, i.e., 10-80 μg/mouse which corresponds to 0.02-

0.16 μg/cm
2
 of mouse lung alveolar surface area [9, 27, 28]. SWCNTs induced a dose-dependent 

decrease in cell viability of the cultured fibroblasts. We also investigated the collagen-inducing 

effect of SWCNTs in lung fibroblasts. To avoid the interfering effect of cell toxicity on 

collagenic activity of the cells, we performed experiments using low non-cytotoxic doses of 

SWCNT (Figure 3B, 3C). SWCNTs induced a substantial increase in collagen expression as 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4057682/table/t1-ijms-15-07444/
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determined by Western blot assay. Analysis of soluble collagen content by Sircol
®
 assay 

confirmed the fibrogenic effect of SWCNTs (Figure 3D) 

CNTs Induce Side Population Phenotype of Lung Fibroblasts 

Adult stem cells are known to efflux Hoechst dye slowly due to their high expression of ABCG2.  

Flow cytometric analysis was used to identify these stem cells with a distinct low Hoechst 

staining pattern referred to as side population (SP) [33, 34]. An increase in SP population was 

reported in the lung of mice with fibrosis, suggesting the involvement of SP-positive stem cells 

in lung fibrogenesis [25]. To determine the potential role of stem-like fibroblasts in CNT-

induced fibrogenesis, we first determined the change of SP subpopulation upon CNT treatment. 

Primary human lung fibroblasts were treated with SWCNT at the concentration of 0.15 μg/cm
2
 

for 48 h, after which they were incubated with 5 μg/mL of Hoechst 33342 in the presence or 

absence of 25 μM fumitremorgin C (FTC), an inhibitor of ATP- binding cassette (ABC) 

transporter (Figure 4A). SWCNTs were able to induce the SP subpopulation and the percentage 

of SP was approximately 5% in SWCNT-treated fibroblasts versus less than 0.5% in vehicle-

treated control cells (Figure 4B). We also tested the expression of α-SMA, the myofibroblast 

marker in CNT-induced SP fibroblasts. SP cells overexpressed α-SMA compared to non-SP 

cells, suggesting the fibroblast to myofibroblast transition in both SW and MWCNT-induced 

stem-like fibroblasts (Figure 4C). 

Side Population is a Potential Source of Collagen I and alpha-SMA 

Increased α-SMA is a characteristic feature indicating the transformation of fibroblasts to 

myofibroblasts, which is known to be the main source of collagen production [12]. To determine 

whether isolated SP and non-SP were able to induce myofibroblast phenotype, we isolated the 

stem-like cells from SWCNT-treated (0.15 μg/cm
2
) fibroblasts based on their SP phenotype 
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using flow cytometry based cell sorting (Figure 5A). Sorted SP and non-SP fibroblasts were 

further evaluated for collagen I and α-SMA expression. Figures 5B and 5C reveal a substantially 

higher expression of collagen I and SMA in the SP versus non-SP cells, thus confirming that SP 

fibroblasts could be key originating sources of collagen production and the myofibroblasts, and 

may play a crucial role in fibrogenesis. 

Increased Stem Cell Marker and Collagen Expression in CNT-Derived SP Fibroblasts 

Recent studies indicate the functional role of stem cells at the early onset of pulmonary fibrosis. 

To determine the role of stem-like fibroblasts in CNT-induced fibrogenesis, we isolated the 

stem-like cells from SWCNT-treated (0.15 μg/cm
2
) fibroblasts based on their SP phenotype as 

earlier described. Sorted SP and non-SP fibroblasts were further evaluated for the universal stem 

cell marker ABCG2 [35] and type I collagen expression by immunofluorescence (Figure 6). 

Figures 6A, 6B reveals a substantially higher expression of ABCG2 in the SP versus non-SP 

cells, thus confirming the stem-like phenotype of SP fibroblasts and the reliability of stem cell 

isolation by FACS. Importantly, type I collagen expression was significantly higher in the SP 

versus non-SP population. It is widely known that fibroblasts play a key role in fibrogenesis 

through its ability to synthesize and secrete ECM proteins including type I collagen, which 

characterizes fibrosis [36, 37]. Our results thus reveal the potential role of SP cells in 

fibrogenesis via simultaneous expression of stem cell and fibrosis markers. Furthermore, the 

increases in stem cell markers ABCG2 and ALDH1A1 via immunofluorescence [35, 38] were 

validated via Western blotting (Figure 6C, 6D).  

CNTs Induce Fibroblastic Nodule Formation of Human Lung Fibroblasts 

Formation of fibrotic nodules has been described as a means to quantify fibrosis and to screen 

anti-fibrotic agents [39, 40]. Fibrotic nodules are defined by a collagenous core with an 
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accumulation of extracellular matrix and a bounding cell layer detached from the alveolar wall 

[41, 42].  In this part of the study we tested whether SP cells are capable of forming fibrous 

nodules in a 3D in vitro model as compared to non-SP cells. A 3D biomimetic model of 

fibroblastic foci was developed by growing primary human lung fibroblasts in culture on a poly-

L-lysine substrate, while TGF-β was used as a positive inducer of fibrosis (Figure 7). The 

formation of 3D cell clusters that are referred to as fibroblastic nodules after treatment of the 

cells with TGF-β (1 ng/mL) for 16 h. Interestingly, treatment of the cells with SWCNT induced 

the fibroblastic nodules, whereas vehicle-treated control cells showed minimal nodule formation 

(Figure 7A). Quantitative analysis for the number of fibroblastic nodules demonstrated the dose-

dependent effect of SWCNT treatment (Figure 7B). To substantiate the functional role of stem-

like fibroblasts in CNT fibrogenesis, the sorted SP and non-SP cells from CNT-treated 

fibroblasts were assessed for their ability to form fibroblastic nodules. SP cells had a 

substantially higher capability to form fibroblastic nodules than the non-SP fibroblasts (Figure 

7C). Altogether, these findings support the role of stem-like fibroblasts in CNT-induced 

fibrogenesis. 

Supplemental Data 

CNTs Induce Fibroblast-Stem Cells in a Dose and Cell Type-Dependent Manner 

To determine if CNT-induced stem-like fibroblast generation was dose dependent, the doses of 

0.02-0.2 μg/cm
2
 were used since they are physiologically relevant and derived from pulmonary 

exposure data in mice (Figure 8A). SWCNTs induced a dose-dependent FSC induction 

correlating with the collagen I and α-SMA response of the cultured fibroblasts (Figure 8B). In 

order to optimize the time of exposure to CNTs and the resulting SP generation, cultured lung 

fibroblasts were exposed to SWCNTs at 24, 48, and 72 h time points. 48 h exposure was found 
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to be critical for SWCNT-driven stem-like fibroblast induction (Figure 8C). Nanomaterial-

mediated cell toxicity has been shown to vary depending upon the cell type that the material 

interacts with. To investigate if SP generation was cell type dependent, using three different 

models for lung fibroblasts (primary normal human lung fibroblasts, 3T3 mouse embryonic lung 

fibroblasts, and WI-38 human lung fibroblasts), SP generation was found to be cell type 

dependent (Figure 8A, 8B, 8C). These findings demonstrated that CNT dose, exposure time and 

exposed cell type are key determinants for the resulting stem-like fibroblast induction. 

CNT-Induced FSC Generation Using Aldehyde Dehydrogenase (ALDH) Expression as a Marker for 

Stem-like Cells 

A high level of ALDH activity serves as a functional marker for stem/progenitor cells and allows 

for simple, efficient isolation of cells with primitive features [43]. Human stem and progenitor 

cells typically have more ALDH activity than mature cells, and this quantitative difference 

allows stem cells to be resolved from other cells [44]. Lung fibroblasts were treated with 

SWCNT at 0.15 μg/cm
2 

for 24 h after which they were incubated with 0.3 mM activated 

Aldeflour dye in the presence or absence of 1.5 mM ALDH inhibitor, diethylaminobenzaldehyde 

(DEAB) (Figure 10). SWCNT induced ALDH positive (+ve) cells indicated by the ALDH Hi 

fraction (Figure 10A) and the percentage of ALDH +ve population of cells was approximately 6 

% in SWCNT-treated fibroblasts versus less than 0.5% in vehicle-treated control cells (Figure 

10B). 
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Discussion 

Currently, there is an urgent need for efficient in vitro models for fibrogenicity testing of 

nanomaterials. The large and rapidly expanding number of engineered nanomaterials makes it 

impossible to test them all in animals due to time constraints and prohibitive cost [45]. In this 

study, we developed and tested a fibroblast cell assay as a rapid, low cost, predictive in vitro 

model that demonstrates stem-like cell induction as a mechanism critical for the development of 

lung fibrosis. 

Fibrosis is a progressive disorder associated with abnormal wound healing, excessive 

collagen deposition and ECM accumulation [12, 46]. Identifying the cells that are capable of 

repairing the injured tissue and are the source of ECM production is fundamental to the 

understanding of fibrosis mechanisms. Recent studies have indicated the pathogenic role of stem 

and progenitor cells in pulmonary fibrosis at the early onset of lung fibrosis in murine models 

[20-25]. The fibrogenic potential of CNTs has been well documented [8-11, 13-16]; however, the 

concept of stemness in the light of nanomaterial-induced fibrosis has not been explored. Since 

fibroblasts are known to induce collagen and ECM deposition, which are hallmarks of fibrosis 

[26, 27, 45], the present study was designed to investigate whether CNT exposure in lung 

fibroblasts can induce FSCs and whether these stem-like cells possess fibrogenic activities. FSCs 

were induced by exposing primary human lung fibroblasts to CNTs. These cells were used in this 

study because they are of human origin and a better representation of pathological process than 

immortalized cell lines that are popularly used but may possess defective genes affecting fibrosis 

development. Our results demonstrated FSC generation from normal lung fibroblasts post-

SWCNT exposure. The isolated FSCs from FACS analysis were further characterized for 

potential fibrosis and stem cell markers to determine their putative role in fibrogenesis.  
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To optimize the experimental doses of SWCNT that are relevant to in vivo lung fibrosis, 

lung fibroblasts were treated with different concentrations of SWCNT for 48 h and analyzed for 

cell viability by WST-1 assay. The doses of 0.02-0.2 μg/cm
2
 were used in this study since they 

are physiologically relevant and derived from in vivo pulmonary exposure data in mice, i.e., 10-

80 μg/mouse corresponding to mouse lung alveolar surface area [9, 27, 28]. The collagen-

inducing effect of SWCNTs was not due to their proliferative activity since fibroblast cell growth 

was not increased by the SWCNT treatment as indicated by WST-1 assay. An increased 

expression of the myofibroblast marker α-SMA in SWCNT-treated cells indicated the 

transformation of fibroblasts to myofibroblasts, and their production of extracellular matrix 

proteins [47, 48]. 

We demonstrated the existence of FSCs as evidenced by the SP phenotype of lung 

fibroblasts post-CNT exposure. SWCNT treatment produced a significantly higher percentage of 

SP population, thereby signifying the potential role of stem-like fibroblasts in CNT-induced 

fibrogenesis. CNT-induced SP upregulated both collagen I and α-SMA compared to the non-SP, 

indicating that the stem-like fibroblasts are a potential key source of collagen production and 

may play a crucial role in fibrogenesis. Furthermore, the elevated expression of stem cell 

markers, ABCG2 and ALDH1A1, in SP versus non-SP cells as evidenced by Western blotting 

and immunofluorescence confirmed the stem phenotype of SP fibroblasts and the reliability of 

our employed method of stem cell isolation via FACS. 

An important pathological feature of human lung fibrosis is the presence of fibroblastic 

foci, which are aggregates of lung fibroblasts and myofibroblasts and the newly deposited 

collagen [39-41]. Here we verified the in vitro model of CNT-induced fibroblastic nodule 

formation that correlates the development of stem cell phenotype and onset of fibrosis. Using 
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fibroblastic nodule generation as a model for lung fibrosis has the following advantages: (i) 

clinical resemblance to human lung fibrotic lesions; (ii) rapid and quantitative or semi-

quantitative analysis, (iii) fewer cell numbers needed per assay; and (iv) potential for high-

throughput screening [29]. SWCNT treatment induced a dose-dependent fibrotic nodule 

formation which also correlated with the SWCNT dose-driven collagen expression observed in 

Figure 2A. Furthermore, SP fibroblasts demonstrated higher potency in fibroblastic nodule 

generation compared to non-SP fibroblasts, hence supporting their key role in fibrogenesis. 

Although considerable experimental data related to CNT toxicity at the cellular and 

whole animal levels have been published, the results are often conflicting [49]. Therefore, a 

systematic understanding of CNT toxicity in terms of different cell lines and animal species, 

multidimensional evaluation methods, and exposure conditions is needed but has not yet been 

developed. In agreement with other studies, we demonstrated that stemness phenotype is cell 

line, dose and time-dependent, indicating that the dose and exposure time of SWCNT are critical 

for stemness induction. To obtain accurate results, future studies must establish standards and 

reliable detection methods, use standard CNT samples as a reference control, and study the 

impact of various factors systematically.  

The Aldeflour™ detection system is an alternative method to side population assay to 

identify human stem/progenitor cells on the basis of their ALDH activity. Using ALDH as a 

marker for stem cells, we validated the stem cell phenotype of SWCNT-induced FSCs as 

indicated by the significantly increased ALDH activity in SWCNT-treated cells compared to 

untreated controls.  

In summary, we have developed an in vitro model for CNT-induced lung fibrosis 

involving CNT-driven FSC generation and studied their putative role in fibrogenesis.  The 
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isolated FSCs were found to be key sources of collagen I and α-SMA, whereby they may play a 

crucial role in fibrogenesis. Besides being potential sources of collagen production, stem-like 

fibroblasts substantially elevated the expression universal stem cell markers including ABCG2 

and ALDH1A1, validating the SP phenotype model of CNT-induced lung fibrogenesis. SP lung 

fibroblasts were potent in fibroblastic nodule formation compared to the non-SP cells supporting 

their key role in fibrogenesis. The developed model could potentially be used as an alternative 

assay to predict the fibrogenicity of CNTs and other nanomaterials for their safer design and risk 

assessment. The novel role of FSCs in CNT-induced collagen production and α-SMA expression 

provides new insights into the mechanisms of pulmonary fibrosis. In addition, the findings from 

this study could potentially benefit in the development of early detection biomarkers and 

treatment strategies for the disease.  

 

 

Figure S3: Proposed mechanisms of CNT-induced lung fibrosis 
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Figures 

Purity Length  Diameter 

  
Solution Form 

(μm) 

Dry Form 

(μm) 
(nm) 

    
>99% 12.71±0.48 12.9±0.55 18.76±8.62 

Table 1: Physicochemical Characterization of SWCNTs. The 

table describes the purity, diameter and length distribution 

measured via AFM. 

 

Figure I: Carbon nanotubes (CNT) induce collagen production of human lung fibroblasts 

Subconfluent monolayers of cells were treated with various concentrations (0-0.2 μg/cm
2
) of 

SWCNT, or TGF-β (1 ng/mL) for 48 h. A) Analysis of cell toxicity and proliferation using 

WST-1 assay. B) Western blot analysis of type I collagen and α-SMA. β-actin was used to 

confirm equal loading of the samples. C and D) Quantitative analysis of type I collagen and α-

B 



[58] 
 

SMA. E) Soluble collagen content by Sircol assay. Data are means ± SD (n =3). *p < 0.05 versus 

control cells. 
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Figure II: CNT induce stem-like cells as indicated by side population (SP) phenotype 

A) SWCNT-treated human lung fibroblasts isolated into SP and NSP with and without the 

inhibitor fumitremorgin C (FTC) as indicated by the % population. B) % SP population in 

SWCNT and MWCNT-treated lung fibroblasts as compared to vehicle-treated control. C) 

Relative fold change in α-SMA expression (SP versus non-SP cells) in CNT-treated cells 

compared to vehicle-treated control. D) Data are means ± SD (n =3). *p < 0.05 versus control 

cells. 
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Figure III: CNT-induced SP fibroblasts are a potential source of collagen I and α-SMA 

 A) SWCNT-treated human lung fibroblasts isolated into SP and NSP with and without the 

inhibitor fumitremorgin C (FTC) as indicated by the % population. B) Quantitative analysis of % 

SP population in SWCNT and MWCNT-treated lung fibroblasts. C) Type I collagen and α-SMA 

expression in SWCNT-induced SP versus non-SP cells. D) Quantitative analysis of type I 

collagen and α-SMA. Data are means ± SD (n =3). *p < 0.05 versus Non-SP cells. 
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Figure IV: Enhanced fibrogenic response of CNT-derived SP fibroblasts 

Cells were treated with SWCNT (0.15 μg/cm
2
) for 48 h and stained with Hoechst 33342 dye for 

side population (SP) analysis. SP fibroblasts were characterized and isolated by FACS. A) 

Fluorescence micrographs of the sorted SP fibroblasts and parental control non-SP fibroblasts 

immunostained for phalloidin (F-actin, green), stem cell marker ABCG2 (red), and type I 

collagen (yellow) by confocal fluorescence microscopy. B) Quantitative analysis of ABCG2 and 

type I collagen expression. C) ABCG2 and ALDH1A1 stem cell marker expression in CNT-

induced SP versus non-SP stem-like fibroblasts. D) Quantitative analysis of type I collagen and 

α-SMA. Data are means ± SD (n =3). *p < 0.05 versus Non-SP fibroblasts. 
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Figure V: CNT induce fibroblast nodule formation of human lung fibroblasts 

Cells at the density of 3×10
4
 cells/24-well were grown on a poly-L-lysine-coated glass substrate 

and treated with various concentrations (0-0.15 μg/cm
2
) of SWCNT or TGF-β (1 ng/mL) for 16 

h. A) Phase contrast micrographs comparing 3D fibroblastic nodules in control and treated 

fibroblasts. B) Quantitative analysis of fibroblastic nodules in SWCNT and TGF-β treated lung 

fibroblasts versus control. C) Quantitative analysis of fibrotic nodules in SWCNT-induced SP 

versus non-SP cells. Data are means ± SD (n =3). #p<0.05 versus control cells; *p < 0.05 versus 

SP fibroblasts. 
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Figure VI: CNT-induced SP is dose dependent 

SWCNT induced stem-like cells as indicated by side population (SP) phenotype in a dose-

dependent manner. A) Primary lung fibroblasts were treated with SWCNT (0-0.20 μg/cm
2
) for 

48 h and stained with Hoechst 33342 dye for side population (SP) analysis as indicated by the % 

population. SP fibroblasts were characterized and isolated by FACS. B) Quantitative analysis of 

% SP population in SWCNT-treated lung fibroblasts. Data are means ± SD (n =3). *p < 0.05 

compared to control cells. 



[64] 
 

 

Figure VII: CNT induced SP is cell type-dependent 

Fibroblast cells were treated with SWCNT (0.15 μg/cm
2
) for 48 h and stained with Hoechst 

33342 dye for side population (SP) analysis with and without the inhibitor fumitremorgin C 

(FTC). Representative FACS micrographs showing A) % SP population in SWCNT-treated 

primary human lung fibroblasts as compared to vehicle-treated control, B) % SP population in 

SWCNT-treated 3T3 mouse lung fibroblasts as compared to vehicle-treated control, and C) % SP 

population in SWCNT-treated WI 38 human lung fibroblasts as compared to vehicle-treated 

control. 

A 

B 

C 
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Figure VIII: CNT upregulate ALDH activity of lung fibroblasts 

A) WI 38 human lung fibroblasts were treated with SWCNT (0.15 μg/cm
2
)
 
for 24 h and stained 

with Aldeflour dye in the presence or absence of 1.5 mM ALDH inhibitor, 

diethylaminobenzaldehyde (DEAB) for ALDH activity analysis. Cells with increased ALDH 

activity were characterized and isolated by FACS. B) Quantitative analysis of % ALDH activity 

in SWCNT-treated lung fibroblasts compared to control. Data are means ± SD (n =3). *p < 0.05 

compared to control cells. 
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CHAPTER 3: ROLE OF REACTIVE OXYGEN SPECIES IN STEMNESS 

DEVELOPMENT AND FIBROGENESIS INDUCED BY CARBON NANOTUBES 

Abstract 

The unique physicochemical and electrical properties of carbon nanotubes (CNTs) make them 

highly desirable in a variety of commercial and biomedical applications. However, these novel 

properties of CNTs are fraught with concerns for environmental and occupational exposure. 

Changes in their structural and physicochemical properties can lead to changes in biological 

activities including reactive oxygen species (ROS) generation; one of the most frequently 

reported CNT-associated toxicities. CNT exposure results in ROS-dependent activation of 

several transcription factors and signaling pathways involved in the regulation of inflammation 

and fibrosis. ROS are known to regulate several cellular responses such as collagen production, 

fibroblast to myofibroblast activation, and angiogenesis implicated in CNT-induced fibrosis. We 

have previously demonstrated the existence of fibroblast stem-like cells (FSCs) and their role in 

CNT-induced fibrogenesis. It is unknown whether CNT-induced oxidative stress is essential for 

the development of stemness phenotype of FSCs. We hypothesized that this process is under the 

regulation of ROS and that such stemness phenotype is essential to the fibrogenic activity of 

FSCs that contributes to fibrosis. Normal human lung fibroblasts were treated with single-walled 

CNTs in the presence or absence of various known ROS modulators, and FSCs were identified 

by their side population (SP) and isolated by fluorescence activated cell sorting (FACS). Our 

results demonstrated that i) SWCNTs induced ROS generation in human lung fibroblasts, ii) 

such induction, particularly peroxides, are required for the generation of FSCs, iii) the fibrogenic 

activity of these FSCs is under the regulation of ROS, iv) effect of fiber length and surface 

modification on SWCNT-induced oxidative stress, and v) SWCNT-induced FSCs exhibited 
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substantial downregulation of antioxidant enzymes including catalase, glutathione peroxidase 

and superoxide dismutase. These findings indicate a novel mechanism of CNT fibrogenesis 

regulation through ROS-dependent induction of FSCs, which may be targeted for disease 

intervention.  

Keywords: Reactive oxygen species (ROS), fibrosis, fibroblast stem-like cell (FSC), N-acetyl 

cysteine (NAC), oxidative stress, SWCNT 
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Introduction 

Uncontrolled regulation of reactive oxygen species (ROS) generation has been implicated 

in the pathogenesis of several diseases including lung inflammation and fibrosis.[1, 2] Increased 

ROS generation leading to oxidative stress and cellular damage is one of the most frequently 

reported toxicity endpoints caused by carbon nanotube (CNT) exposure.[3-6] Oxidative stress 

may be caused directly by CNT-induced ROS in the vicinity or inside the cell, or indirectly due 

to the effect of internalized CNTs on mitochondrial respiration [7, 8] or depletion of ROS 

scavengers and antioxidant enzymes within the cell.[9] Incomplete phagocytosis of CNTs, 

presence of transition metals such as iron, cobalt and nickel introduced within the CNTs during 

their synthesis, and specific reactive groups on the CNT surface are key drivers of ROS 

generation.[7, 10, 11] Nanoparticle-induced ROS responses have been reported to orchestrate a 

series of pathological events such as genotoxicity [12, 13], inflammation [14], fibrosis [5, 15], 

and carcinogenesis.[16]  For instance, CNT-induced oxidative stress triggers cellular signaling 

pathways such as NF-κB, STAT-1, MAPK, and RTK resulting in increased expression of pro-

inflammatory and fibrotic cytokines.[15, 17-20] CNT-induced ROS generation has also been 

shown to regulate several cellular events such as collagen production, fibroblast to myofibroblast 

transition, and angiogenesis, which have been implicated in the pathogenesis of lung fibrosis.[5, 

15, 21] Previous studies by our group also indicate the involvement of ROS in CNT-induced 

fibrogenesis. [15, 22] We demonstrated the pathogenic role of fibroblast stem-like cells (FSCs) 

in SWCNT-induced fibrogenic response in chapter 1. Recent studies indicate the differentiation 

of stem cells into myofibroblasts and their contribution to tissue fibrosis.[23-25] Interestingly, 

ROS have been shown to play an essential role in the fate and physiology of normal stem cells; 

there is evidence demonstrating that ROS production promotes proliferation and survival of both 
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stem and progenitor cells.[26] Currently, there is no information linking CNT-induced oxidative 

stress and stemness development. This study was undertaken, in part, to evaluate whether CNT-

induced oxidative stress is essential for the development and maintenance of stemness phenotype 

of FSCs during SWCNT-induced fibrogenesis. 

The relationship between ROS and stem cell development is not well understood, 

although ROS have been suggested to play a role in the differentiation and maintenance of stem 

cells.[27] ROS and antioxidants are essential to maintain a redox balance within cells and tissues. 

Many cellular processes including proliferation, differentiation, apoptosis, and response to injury 

are governed via intracellular ROS.[28] The redox environment is particularly important for stem 

cell differentiation and self-renewal.[29] Low ROS level within stem cells has been reported to 

maintain their stemness, whereas a high level promotes differentiation, proliferation and 

survival.[30] However, normal stem cells are generally thought to maintain low ROS level to 

protect against damage.[31] High ROS levels are detrimental to cells and tissues. As a result, just 

as oxidative stress is associated with multiple disorders; elevated ROS levels have been 

implicated in the progression of stem cell-associated pathologies.[27] For instance, ROS promote 

stem cell expansion in colorectal cancer.[32] Increased oxidative status has been shown to drive 

stem cell activity of neuroepithelial and skin stem cells.[33, 34] Currently, stem cells continue to 

be pursued as potential therapy for regeneration and tissue repair; however, they have both 

adaptive and maladaptive responses to oxidative stress. For example, acute bursts of ROS to 

embryonic stem cells (ESCs) in culture facilitate differentiation toward cardiomyocyte 

phenotype, whereas prolonged exposure to H2O2 inhibits differentiation.[35] The effect of ROS 

has been reasonably studied in certain stem cell types; however their effect on the differentiation 

of stem-like cells into myofibroblasts during lung fibrosis is not known. Whether oxidative stress 
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drives the stem-like cell induction associated with CNT-induced fibrosis remains to be explored. 

Unveiling such regulation could lead to the identification of novel biomarkers or drug targets for 

disease treatment and prevention. We hypothesized that ROS are involved in the development of 

fibroblast stem-like cells during CNT-induced fibrosis. In this part of the study, we investigated 

whether ROS regulate the stem phenotype of lung fibroblasts during CNT exposure and 

identified the specific ROS important for the stemness development.  
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Experimental Section 

SWCNT Preparation  

SWCNTs were prepared by plasma purified chemical vapor deposition process and were 

obtained from Cheap Tubes Inc. (Brattleboro, VT, USA). They were dispersed in culture 

medium containing 5% serum by water-bath sonication. Before exposure to the cells, the 

SWCNT dispersion was lightly sonicated (Sonic Vibra Cell Sonicator, Sonic & Material Inc., 

Newtown, CT, USA) with the power, frequency, and amplitude settings of 130 W, 20 kHz, and 

60% respectively for 10 s.  

Chemicals and Reagents  

Antibodies for collagen type I and TGF-β were obtained from Fitzgerald (Concord, MA, USA) 

and Cell Signaling Technology (Beverly, MA, USA), respectively. β-actin antibody and 

horseradish peroxidase (HRP)-conjugated secondary antibodies were obtained from Santa Cruz 

Biotechnology (Santa Cruz, CA, USA). Mn (III) tetrakis (4-benzoic acid) porphyrin (MnTBAP) 

was obtained from Calbiochem (La Jolla, CA). Catalase (CAT) was from Roche Molecular 

Biochemicals (Indianapolis, IN). The oxidative probes, dichlorodihydrofluorescein diacetate 

(DCF-DA) and dihydroethidium (DHE) were from Molecular Probes (Eugene, OR). All other 

chemicals and reagents including N-acetyl cysteine (NAC) were from Sigma-Aldrich (St. Louis, 

MO). 

Energy Dispersive X-ray Spectroscopy (EDX-S) (Some experiments were performed in the 

laboratory of Dr. Cerasela-Zoica Dinu) 

EDX-S was used to perform elemental analysis of SWCNT samples. Data were collected on a 

LEO 1530 VP scanning electron microscope equipped with an energy-dispersive X-ray analyzer 
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(Hitachi S-4700 Field Emission Scanning Electron Microscope, Hitachi High Technologies Co., 

Tokyo, Japan). A few drops of SWCNT dispersion in cell culture medium were placed on a 

silicon wafer and allowed to air-dry. The silicon wafer was then mounted on an aluminum stub 

for EDX-S analysis.  

Atomic Force Microscopy (AFM) (Some experiments were performed in the laboratory of Dr. 

Cerasela-Zoica Dinu) 

AFM was used to determine the length and diameter distribution of SWCNT samples using 

Digital Instrument Nanoscope II (Model No. MFP-3D-AFM, Asylum Research, Goleta, CA, 

USA). A Si tip (50-90 kHz AC240TS, Asylum Research, Goleta, CA, USA) was used to perform 

tapping mode in air. SWCNT samples were deposited on mica surfaces (9.5 mm diameter, 0.15-

0.21 mm thickness, Electron Microscopy Sciences, Hatfield, PA, USA) and allowed to dry 

overnight under vacuum. Scan angel was set as 0, scan rate was set as 0.5 Hz, and resolution was 

set as 512. Scan images of 20×20 or 10×10 μm areas were acquired. For each sample, at least 30 

individual SWCNT particles were counted and measured to obtain average length and diameter 

distribution. 

Cell Culture  

Normal human lung fibroblasts (NHLFs) were obtained from Lonza (Walkersville, MD, USA). 

The cells were maintained in Fibroblast Basal Medium (Lonza, CC-4126) containing growth 

supplements. The cells were cultured at 37 °C in 5% CO2 incubator and were passaged at 

preconfluent densities using a medium containing 0.05% trypsin.  
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Isolation of FSCs using Flow Cytometry 

Cell subsets markedly enriched for stem cell activity are characterized by their ability to efflux 

the vital dye Hoechst 33342 via multidrug-like transporter ABCG2. After specific treatments, 

cells were harvested using 0.05% trypsin and stained with Hoechst dye at the final concentration 

of 5 µg/ml. Flow cytometry experiments included Hoechst-stained lung fibroblasts, unstained 

fibroblasts, and cell suspensions incubated with Hoechst 33342 and the dye uptake inhibitor, 

fumitremorgin C (FTC). Gates were set according to the controls. The Hoechst dye was excited 

with a UV laser and its fluorescence was measured with both 450/20 filter (Hoechst Blue) and 

675 LP filter (Hoechst Red), sorting was performed using FACS ARIA (BD Biosciences, San 

Jose, CA, USA). 

Western Blot Analysis  

Collagen protein expression was determined by Western blotting. After specific treatments, cells 

were incubated in lysis buffer containing 20 mM Tris-HCl (pH 7.5), 1% Triton X-100, 150 mM 

sodium chloride, 10% glycerol, 1 mM sodium orthovanadate, 50 mM sodium fluoride, 100 mM 

phenylmethylsulfonyl fluoride, and a commercial protease inhibitor mixture (Roche Molecular 

Biochemicals, Indianapolis, IN, USA) at 4 °C for 20 min. Cell lysates were collected and protein 

concentrations were determined using a bicinchoninic acid protein assay kit (Pierce 

Biotechnology, Rockford, IL, USA). Equal amount of protein per sample (40 μg) was resolved 

under denaturing conditions by 10% SDS-PAGE and transferred onto a nitrocellulose membrane. 

The membranes were blocked for 1 h in 5% nonfat dry milk in TBST (25 mM Tris-HCl, pH 7.4, 

125 mM sodium chloride, 0.05% Tween 20) and incubated with appropriate primary antibodies 

at 4 °C for 12 h. Membranes were washed thrice with TBST for 10 min and incubated with HRP-

labeled isotype-specific secondary antibodies for 1 h at room temperature. The immune 
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complexes were then detected by enhanced chemiluminescence detection system (Supersignal
® 

West Pico, Pierce, Rockford, IL, USA). The bands were quantified via densitometry using Image 

J software, version 10.2 (GraphPad Software Inc., La Jolla, CA, USA). Mean densitometry data 

from independent experiments were normalized to results in cells from control experiments. 

Fluorometric Assay for ROS Detection  

Intracellular ROS was determined fluorometrically using DCF-DA and DHE as fluorescent 

probes. After treatment with SWCNTs, the cells were incubated with the probes (5 mM) for 30 

min at 37 °C, after which they were analyzed for fluorescence intensity using a multi-well plate 

reader (FLUOstar OPTIMA BMG LABTECH Inc., Durham, NC, USA) at the 

excitation/emission wavelengths of 485/535 and 485/610 nm for DHE and DCF fluorescence 

measurements, respectively.  

Statistical Analysis 

The data represent mean ± S.D. from three or more independent experiments. ANOVA was 

performed to determine statistical significance between treatment and control groups using 

Graph Pad Prism 6.0 (GraphPad Software Inc., La Jolla, CA, USA) at a confidence level of * p < 

0.05. 
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Results 

Effect of SWCNTs on Cellular Oxidative Stress 

Since oxidative stress has been implicated as an underlying mechanism for pulmonary fibrosis 

[36], we investigated the effect of SWCNTs on cellular ROS generation as an indicator of 

oxidative stress. Cells were treated with SWCNTs and analyzed for ROS generation by 

fluorometry using DCF-DA and DHE as fluorescent probes for hydrogen peroxide and 

superoxide radicals, respectively (Figure 1). SWCNTs induced a dramatic increase in cellular 

DCF fluorescence intensities, indicative of peroxide formation (Figure 1A), but had negligible 

effect on DHE fluorescence, indicative of superoxide formation (Figure 1B). Pretreatment of the 

cells with general antioxidant N-acetyl cysteine (NAC) strongly inhibited the ROS-inducing 

effect of SWCNTs (Figure 1A). Likewise, pretreatment of the cells with catalase, a peroxide 

scavenger, effectively inhibited the ROS generation (Figure 1A), indicating the induction of 

peroxides by SWCNTs and the specificity of peroxide detection by DCF fluorescence 

measurements in the tested cell system. Figure 1B shows the inhibitory effect of MnTBAP, a 

superoxide scavenger, on SWCNT-induced DHE fluorescence, confirming the specificity of 

superoxide detection and the limited induction of superoxide anions by SWCNTs. Together, 

these results indicate the ROS-inducing effect of SWCNTs, particularly peroxides, in cultured 

human lung fibroblasts.  

Effect of Length and Surface Modification on SWCNT-Induced ROS Generation 

Certain physicochemical properties of nanoparticles (NPs), such as prooxidant functional groups 

and surface activity, have been suggested as key determinants of NP-induced ROS 

generation.[37, 38] In this study, we further investigated the effect of fiber length and 

functionalization on SWCNT-induced ROS generation. Lung fibroblasts were treated with 
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SWCNTs of different lengths and functionalities, and analyzed for ROS generation by 

fluorometry. As compared to pristine, non-functionalized (NF) SWCNTs of similar length, the 

modified SWCNTs, including COOH, nitrogen-containing and OH elicited a weaker ROS 

response (Figure 2A). Both short and long SWCNTs induced ROS generation as indicated by 

their increased cellular DCF fluorescence intensities over control level. However, long SWCNTs 

were more potent inducers of ROS generation compared to short SWCNTs (Figure 2B). In all 

experiments, pretreatment of the cells with NAC or catalase strongly inhibited the DCF 

fluorescence signals (Figure 2A, 2B), indicating the general ability of SWCNTs of different 

lengths and surface modifications to induce ROS.  

Role of ROS in SWCNT-Induced Fibrogenesis 

Oxidative stress signaling has been linked to excessive accumulation of extracellular matrix 

(ECM).[39] Previous work from our group demonstrated that CNTs induce a ROS-dependent 

fibrogenic effect on lung fibroblasts by upregulating collagen expression and cell 

proliferation.[15] To determine the role of ROS in SWCNT-induced fibrogenic effect, fibroblasts 

were treated with SWCNTs of various lengths and surface modifications in the presence or 

absence of the antioxidant NAC. All forms of SWCNTs were able to induce collagen expression 

with the unmodified CNTs being most potent (Figure 3A, 3C). Long SWCNTs induced a more 

robust collagen response than short SWCNTs (Figure 3B, 3D). Moreover, NAC pretreatment 

abrogated the collagen-inducing effect of all forms of SWCNTs, supporting the role of ROS in 

SWCNT-induced fibrogenesis. 

Role of ROS in CNT-Induced Fibroblast Stem-like Cell (FSC) Generation 

Previous studies have identified a stem-like side population (SP) of cells using flow 

cytometry.[40, 41] SP is the cell population identified by its capacity to efflux Hoechst dye that 
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is highly enriched for stem/progenitor cell activity. SP cells appear “off to the side” of the main 

population of cells due to their relative absence of staining.[42] Our previous study from chapter 

1 demonstrated the ability of SWCNTs to induce stem-like fibroblasts as evidenced by their side 

population phenotype. Furthermore, these cells also express stem cell markers, including 

ALDH1A1 and ABCG2. In order to determine the role of ROS on stemness induction, human 

lung fibroblasts were treated with SWCNTs with or without antioxidant pretreatment, and 

subsequently sorted into SP and NSP by FACS. NAC and catalase pretreatment significantly 

inhibited SP induced by SWCNTs, whereas superoxide scavenger MnTBAP pretreatment had 

minor effect (Figure 4A, 4B), supporting the role of peroxides in the induction of FSCs by 

SWCNTs.  

Role of ROS in Fibrogenic Activity of Fibroblast Stem-like Cells 

SWCNT-treated lung fibroblasts were subjected to FACS and isolated into SP and NSP with and 

without antioxidant pretreatment. NAC and catalase pretreatment, in addition to inhibiting SP 

(Figure 4A, 4B), also downregulated collagen I expression in SWCNT-treated SP fibroblasts 

(Figure 4C, 4D and 4E, 4F). These results indicate the linkage between stem cell induction and 

collagen production as well as their regulation by ROS.  

Identification of Specific Antioxidant Enzymes in Fibroblast Stem-like Cells 

Stem cells have been shown to possess special antioxidant defense mechanisms in order to ward 

off elevated ROS levels and thus maintain their genomic identity.[27] To test the role of 

antioxidant enzymes in FSC induction, human lung fibroblasts were exposed to SWCNTs, and 

their SP and non-SP fractions were isolated by flow cytometry and subsequently analyzed for 

their expression of antioxidant enzymes including catalase, superoxide dismutase and glutathione 

peroxidase by Western blotting (Figure 5A). Interestingly, the expression of catalase, GPX1, 
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SOD1 and SOD2 were downregulated in SP versus non-SP cells, suggesting that higher amounts 

of antioxidant enzymes may be required to rescue the increased ROS production in CNT-induced 

SP versus non-SP cells (Figure 5B, 5C). Furthermore, SP and non-SP cells isolated via flow 

cytometry were analyzed for ROS generation by fluorometry using DCF-DA as fluorescent 

probe for hydrogen peroxide. SP induced substantially higher DECF fluorescence intensities 

compared to non-SP suggestive of peroxide anion formation (Figure 5D). The increased ROS 

response in SP versus non-SPs could potentially explain the reduced antioxidant enzyme 

expression in these stem-like cells. 
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Discussion 

ROS-dependent activation of transcription factors and signaling pathways has been 

shown to regulate fibrosis.[19] CNTs have been shown to induce ROS generation in various cell 

types [6, 15, 43, 44] mediating important cellular processes including inflammation, cell injury, 

apoptosis, and activation of cellular signaling pathways implicated in the pathogenesis of lung 

fibrosis. ROS have also been shown to be key regulators of stem cell renewal and 

differentiation.[26-28] Previous studies have demonstrated the involvement of ROS in CNT-

induced fibrogenic effects.[5, 15, 21, 22] However, whether ROS and stemness are associated 

during CNT-induced fibrosis is not known. In this study, we demonstrated that ROS are essential 

for inducing FSCs in human lung fibroblasts upon SWCNT exposure. Our findings are in good 

agreement with previous studies indicating that stem cells maintain their genomic identity by 

maintaining certain intracellular ROS levels.  

Regulation of oxidative stress is critical for maintaining ‘‘stemness’’ and differentiation 

of stem cells, as well as in progression of stem cell-associated disorders.[26, 27] In our model of 

CNT-induced stem-like fibroblasts, ROS scavengers NAC and catalase successfully abrogated 

the generation of FSCs from fibroblasts as evidenced by SP assay, implying that redox status of 

the FSCs has a significant role in maintaining their identity (Figure 4A and 4B). Furthermore, the 

SP fibroblasts generated from antioxidant pretreatment showed downregulation of collagen I 

levels compared to SP without antioxidant pretreatment, revealing a novel role of ROS in CNT-

induced stemness phenotype and the resulting fibrogenicity (Figure 4C and 4E). Thus, our 

findings suggest that oxidative stress could potentially drive the CNT-induced stem cell activity; 

moreover, the SP-driven fibrogenic effects are under the direct regulation of ROS.  
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Next we investigated key antioxidant enzymes involved in the induction of FSCs and 

maintenance of stemness during SWCNT-induced fibrogenesis. Interestingly, SWCNT-induced 

SP fibroblasts down-regulated the expression of peroxide and superoxide-scavenging enzymes as 

compared to non-SP fibroblasts which may likely occur in order to rescue the elevated ROS 

response in SP over non-SP cells. In an event of increased oxidative stress, stem cells possess 

antioxidant defense systems including ROS scavengers and antioxidants to rescue the decline in 

their cellular properties and restore the functional properties.[45-47] Pluripotent stem cells 

(PSCs) have been shown to possess limited ROS levels and superior antioxidant defense systems 

to maintain their stemness via downregulation of antioxidant enzymes.[48] Moreover, a study on 

human induced pluripotent stem cells (iPSCs) derived from Parkinson’s disease patients 

demonstrated reduced efficiency of their antioxidant defense activity in disease-relevant 

conditions.[49] These studies may possibly explain the reduced antioxidant enzyme expression 

in SP versus non-SP fibroblasts observed in our study (Figure 5B, 5C) since we have 

demonstrated the pathogenic role of SWCNT-derived FSCs in fibrogenesis.  

The regulatory role of ROS in pulmonary fibrosis remains under intense investigations. 

Since increased ROS production is tightly linked with pulmonary fibrosis [50], we investigated 

the effect of SWCNTs on cellular ROS. SWCNTs induce substantial increase in cellular DCF 

fluorescence, indicative of peroxide formation which was successfully abrogated by NAC and 

catalase; but had minimal effect on DHE fluorescence indicative of superoxide formation.  

One of the ways through which CNTs induce ROS includes the oxidant-generating 

property of particles due to the presence of prooxidant functional groups on the reactive 

surface.[7] Surface reactivity of CNTs is a key property enhancing their applicability.[51] During 

their interaction with cells and tissues, surface chemistry plays a key role in determining the 
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toxic responses. Surface charge present on acid-functionalized CNTs elicits inflammatory and 

ROS response.[14, 52, 53] While comparing the ROS response between pristine and surface-

modified SWCNTs, pristine SWCNTs mounted a more robust ROS response compared to 

nitrogen-containing and OH-functionalized SWCNTs. Variances within pristine and surface-

modified SWCNT-induced ROS response could be attributed to their differential cellular uptake 

as the larger load of internalized CNTs may be responsible for the increased disruption of cell 

membrane and intracellular organelles.[53, 54] Some authors have indicated an inverse 

relationship between toxicity and purity of CNTs.[55] The SWCNTs used in this study were of 

high purity (>99 % w/w) (Table 1). Clearly, apart from functionalization, many factors including 

CNT uptake, internalization and phagocytosis influence the toxicity of CNTs.  

Apart from surface modification, length also plays a key role in SWCNT-induced ROS 

responses. As compared to control, both short and long SWCNTs induced a stronger oxidative 

stress response (Figure 2B). Long SWCNTs elicited more robust ROS and fibrogenic responses 

than short SWCNTs, indicating a length-dependent effect not associating with metal content 

(Figure 3B, 3D). It is generally accepted that the presence of transition metal impurities such as 

iron and nickel contributes to the oxidative stress and fibrotic effect of CNTs.[6, 56] In this 

study, we used well characterized CNTs with known metal impurities to study the effects of fiber 

length on ROS generation and fibrosis. Elemental analysis indicated low iron content for both 

short (0.12 wt %) and long (0.13 wt %) SWCNTs compared to those reported in the previous 

studies. Besides, no significant difference was observed in the elemental composition of the two 

SWCNT samples used in this study (Table 2). Variances within short and long SWCNT-induced 

ROS response could be attributed to their differential cellular uptake [54] or frustrated 

phagocytosis.[57] Moreover, the difference observed between the short and long SWCNTs could 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4057682/figure/f2-ijms-15-07444/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4057682/table/t2-ijms-15-07444/
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be attributable to different cellular signaling pathways targeted by the two CNTs.[58] The higher 

toxicity of long SWCNTs could be due to lipid peroxidation following the interaction between 

cells and long SWCNTs.[59] 

Interestingly, the antioxidant NAC significantly inhibited collagen production induced by 

SWCNTs of varying lengths and surface modifications, indicating the involvement of ROS in 

SWCNT-induced fibrogenic response (Figure 3). Moreover, ROS, particularly peroxides were 

found to regulate FSCs and their collagen-producing activity (Figures 4, 5). These results suggest 

the potential utility of ROS and FSC generation as rapid screening tools for fibrogenicity testing 

of CNTs. In our study, SP fibroblasts derived after NAC pre-treatment downregulated collagen 

expression compared to those without the NAC exposure, indicating that NAC possibly 

promoted the differentiation of SP phenotype. Previous studies have shown that NAC facilitates 

the differentiation of various cell types including neuronal cells, mouse embryonic stem cells and 

ovary carcinoma cells among many others.[60-64] Our findings suggest a putative role played by 

NAC in the self renewal of FSCs.  

In addition to the direct ROS-inducing effect of CNTs, these nanomaterials can stimulate 

lung inflammatory response leading to infiltration of inflammatory and immune cells such as 

neutrophils and macrophages that can act as additional sources of ROS production.[65, 66] Thus, 

inclusion of these cells in the fibroblast cell model system may increase the reliability and 

predictability of the test model for CNT fibrogenicity assessment. 

To summarize the findings from this study, we demonstrated that i) ROS, particularly 

peroxides, are crucial for the induction of FSCs by SWCNTs, ii) the fibrogenic activity of these 

cells is under the regulation of ROS, iii) SWCNT-mediated ROS response was dependent upon 

their fiber length and surface modification, and iv) SWCNT-induced collagen expression was 
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also length and functionalization dependent, and was regulated by ROS. Since FSCs possess 

high fibrogenic activity and are the potential sources of fibroblasts and myofibroblasts, clarifying 

their regulation is fundamental to the understanding of fibrosis mechanisms and the development 

of effective treatment strategies. 
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Figures 

 

 

Figure I: Effect of SWCNT on ROS generation 

A) NHLF cells were treated with SWCNT at the surface area dose of 0.15
 
μg/cm

2
 for 2 h, after which they 

were incubated with dichlorodihydrofluorescein (DCF) and analyzed for fluorescence intensity. In some 

cases, cells were pretreated with N-acetyl cysteine (10 mM) or catalase (1000 U/mL) for 1 h, and then 

treated with SWCNT and analyzed for DCF fluorescence as described. B) Cells were pretreated with 

MnTBAP (50 μM) for 1 h and then treated with SWCNT (0.15
 
μg/cm

2
) for 2 h, after which they were 

incubated with dihydroethidium (DHE) and analyzed for fluorescence intensity. Plots are mean ± S.D. 

(n = 4); * p < 0.05 as compared to untreated control; # p < 0.05 compared to SWCNT only. 
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Figure II: Effect of SWCNT surface modification and length on ROS generation 

After treatment with different SWCNTs at 0.06 μg/cm
2
, NHLF cells were incubated with 

dichlorodihydrofluorescein (DCF) and fluorescence intensity was measured at 2 h post-treatment. In some 

experiments, cells were pretreated for 1 h with N-acetyl cysteine (10 mM) or catalase (1000 U/mL) and 

then treated with SWCNT and analyzed for DCF fluorescence as described. A) Effect of SWCNT surface 

modification. B) Effect of SWCNT length. Plots are mean ± S.D. (n = 4); * p < 0.05 as compared to 

control; # p < 0.05 vs. pristine-SW only; a, p < 0.05 compared to NF-SW only; b, p < 0.05 compared to 

COOH-SW only; c, p < 0.05 compared to NC-SW only; d, p < 0.05 compared to OH-SW only. ** p < 

0.05 compared to Short-SW only; e, p < 0.05 compared to Short-SW only; f, p < 0.05 compared to Long-

SW only. 
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Figure III: Effect of ROS on SWCNT-induced fibrogenic response 

NHLFs were pretreated for 1 h with NAC (10 mM) and then treated with SWCNTs for 48 h and analyzed 

for collagen I expression by Western blotting. Blots were reprobed with β-actin antibody to confirm equal 

loading of the samples. The immunoblot signals were quantified by Image J. A) Effect of SWCNT 

functionalization. B) Effect of SWCNT length. C) Quantitative analysis of collagen I for SWCNTs of 

different functionalization. D) Quantitative analysis of collagen I for SWCNTs of different lengths. Plots 

are mean ± S.D. (n = 3); * p < 0.05 as compared to control; # p < 0.05 vs. pristine(NF)-SW only; a, p < 

0.05 compared to NF-SW only; b, p < 0.05 compared to COOH-SW only; c, p < 0.05 compared to NC-

SW only; d, p < 0.05 compared to OH-SW only. ** p < 0.05 compared to Short-SW only; e, p < 0.05 

compared to Short-SW only; f, p < 0.05 compared to Long-SW only. 
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Figure IV: Role of ROS in SWCNT-induced fibroblast stem-like cells 

A) SWCNT-treated NHLF cells isolated into SP and NSP with and without the inhibitor fumitremorgin C 

(FTC) as indicated by the % population in the presence or absence of catalase (1000 U/ml), NAC (10 

mM) or MnTBAP (50 μM). B) Redox-dependent FSC generation quantified by % SP population as 

evidenced by treatment with various ROS scavengers. C) Type 1 collagen expression (relative to β-actin) 

in SP cells with and without catalase treatment. D) Quantitative analysis of collagen I in SP cells E) Type 

1 collagen expression (relative to β-actin) in SP cells with and without NAC treatment. F) Quantitative 
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analysis of collagen I in SP cells The immunoblot signals were quantified by Image J. Plots are mean ± 

S.D. (n = 3), * p < 0.05 as compared to control; # p < 0.05 compared to SWCNT-treated SP cells; ## p < 

0.05 as compared to SP cells without catalase treatment; ** p<0,05 as compared to SP cells without NAC 

treatment. 
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Figure V: Antioxidant enzyme expression in SWCNT-induced fibroblast stem-like cells 

A) SWCNT-treated NHLF cells isolated into SP and NSP with and without the inhibitor fumitremorgin C 

(FTC). B) Differential antioxidant enzyme expression in SP and non-SP cells. Blots were reprobed with 

β-actin antibody to confirm equal loading of the samples. C) The immunoblot signals were quantified by 

Image J. D) SP and non-SP cells isolated via flow cytometry were incubated with 
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dichlorodihydrofluorescein (DCF) and fluorescence intensity was measured at 2 h post-treatment. Plots 

are mean ± S.D. (n = 3), * p < 0.05 as compared to SP cells. 
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Table 1: Physicochemical characterization of SWCNTs 

 

Table 2: Elemental analysis for short and long SWCNTs 
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CHAPTER 4: EFFECTS OF FIBER LENGTH AND SURFACE MODIFICATION ON 

CARBON NANOTUBE-INDUCED FIBROBLAST STEM-LIKE CELLS AND LUNG 

FIBROSIS 

Abstract 

Carbon nanotubes (CNTs) have increasing been used for a wide variety of applications, however, 

given their extremely small size and light weight, these nanomaterials can be readily inhaled by 

human lungs resulting in increased rates of pulmonary disorders, particularly fibrosis. Although 

the fibrogenic potential of CNTs is well established, there is a lack of consensus regarding the 

contribution of physicochemical attributes of CNTs on the underlying fibrotic outcome. We have 

previously demonstrated the existence of fibroblast stem-like cells (FSCs) and their characteristic 

role in single-walled (SW) CNT-induced fibrogenesis (Chapters 2, 3). However, it is not known 

if these CNT characteristics including surface functionalization and fiber length influence the 

ability of SWCNTs to induce FSCs. This study was designed to investigate whether SWCNT 

functionalization and fiber length drive the stemness phenotype and the resulting fibrogenic 

response. Our findings demonstrated that pristine SWCNT induced higher FSCs and collagen 

expression compared to their chemically modified counterparts; however the difference was 

moderate and not statistically significant. Whereas, long SWCNTs were significantly more 

potent than short SWCNTs in terms of collagen production and stemness induction as evidenced 

by elevated aldehyde dehydrogenase (ALDH) enzyme activity and side population (SP) 

generation. Furthermore, our findings on the length-dependent in vitro fibrogenic response were 

validated by the in vivo lung fibrosis outcome, thus supporting the predictive value of the FSC in 

vitro model. Our results also demonstrated the key role of FSCs in SWCNT-induced collagen 

expression, indicating the potential mechanisms of length-dependent CNT-induced lung fibrosis. 
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Together, our study provides evidence that CNT-induced stem-like cell induction offers a new 

rapid cell-based model for fibrogenicity testing of nanomaterials with the ability to predict 

pulmonary fibrogenic response in vivo. 

Keywords: SWCNT, functionalization, fiber length, fibroblast stem-like cell, fibrosis 

Introduction 

Because of their unique physicochemical properties such as high conductivity, 

extraordinary tensile strength, and light weight, carbon nanotubes (CNTs) have emerged as one 

of the most promising and best studied materials in nanotechnology [1, 2]. However, pristine 

CNTs display low solubility and dispersibility in both organic and inorganic solutions, which 

makes these materials difficult to handle and process during commercial use, thereby limiting 

their widespread applications [3]. To overcome this issue, CNT surface can be functionalized by 

introducing hydrophilic chemical groups, thus imparting higher dispersibility and 

biocompatibility and conferring them new functions that cannot otherwise be acquired by 

pristine CNTs [4].  As a result, they are widely used as additives [5], catalysts [6], sensors [7], 

absorbents [8], intracellular carriers [9, 10], electrodes [11], and imaging agents [12]. However, 

the rapid growth in functionalized CNT applications has necessitated an understanding of the 

accompanying adverse health effects, which are currently being pursued by in vitro and in vivo 

risk assessment studies [13]. For instance, CNT-elicited inflammation, ROS production, and 

fibrosis are likely to be influenced by their physicochemical properties such as particle size, 

dispersion status, fiber length, surface activity and presence of metal contaminants [2, 14]. 

Current literature reveals that functionalized CNTs exert considerable variations in their 

biological effects, including cellular uptake [2, 15], clearance [16], genotoxicity [17], 

inflammation, [18] and fibrogenicity [2] based on their surface charge. For instance, pristine 
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CNTs demonstrated an increased inflammatory and fibrotic responses compared to those of 

carboxylated [19], pluronic-coated [20], taurine [21] and polystyrene-functionalized CNTs [22]. 

In a recent study, in comparison to pristine CNTs, strong cationic polyethylene imine (PEI)-

MWCNTs induced significant lung fibrosis, whereas carboxylation of the CNTs significantly 

decreased the extent of fibrosis [2]. Similarly, another study showed that amine-modified CNTs 

lead to increased pulmonary collagen deposition along with increased production of TGF-β1 and 

IL-6 [23]. Given these contradictory outcomes and the paucity for studies outlining a clear effect 

of functionalization on CNT-induced fibrosis, the need for systematic investigations of the 

adverse effects of surface charge is imperative. Previous studies have suggested the role of 

cellular uptake [2] and inflammasome activation [24, 25] for functionalization-dependent 

toxicities, but the direct effect of SWCNT functionalization on fibrosis and its underlying 

mechanisms need further investigations.  

Besides surface reactivity, a number of studies have illustrated CNT length-dependent 

effects on pleural inflammation and granuloma formation [26, 27], cytotoxicity [28], and 

inflammasome activation [24]. Additionally, fiber length has been shown to regulate CNT 

retention and clearance from the lungs [27, 29]. While recent studies have suggested incomplete 

phagocytosis as a paradigm for CNT length-mediated toxic effects, the direct effect of SWCNT 

length on fibrosis and the underlying mechanisms remain to be elucidated. 

Recent findings from our lab indicate that fiber length [30] and surface functionalities can 

influence CNT-induced fibrogenic response. We have previously demonstrated the existence of 

fibroblast stem-like cells (FSCs) and their characteristic role in SWCNT-induced fibrogenesis 

(Chapters 2 and 3). However, it is not known if these CNT characteristics, including surface 

functionalization and fiber length, can influence the ability of CNTs to induce FSCs from lung 
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fibroblasts. The main objective of this study was to investigate whether CNT functionalization 

and fiber length influence stemness induction and the resulting fibrogenic response. To do this, 

we employed SWCNTs of varying lengths and different functionalities, including pristine, 

carboxyl (COOH), nitrogen-containing, and hydroxyl (OH). The latter part of this study involved 

developing a model to determine whether the stemness phenotype of FSCs is predictive of the 

fibrogenic response, which will in part also contribute towards the validation of Aim 1. 
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Experimental Section 

SWCNT Preparation 

SWCNTs were prepared by plasma purified chemical vapor deposition process and were 

obtained from Cheap Tubes Inc. (Brattleboro, VT, USA). They were dispersed in culture 

medium containing 5% serum by water-bath sonication. Before exposure to the cells, the 

SWCNT dispersion was lightly sonicated (Sonic Vibra Cell Sonicator, Sonic & Material Inc., 

Newtown, CT, USA) with the power, frequency, and amplitude settings of 130 W, 20 kHz, and 

60% respectively for 10 s. 

Chemicals and Reagents 

Antibody for collagen type I was obtained from Fitzgerald (Concord, MA, USA). β-actin 

antibody and horseradish peroxidase (HRP)-conjugated secondary antibodies were obtained from 

Santa Cruz Biotechnology (Santa Cruz, CA, USA). Hoechst 33342 was obtained from Sigma 

Aldrich (St. Louis, MO). Aldefluor® kit was obtained from Stem Cell Technologies (Vancouver, 

BC, Canada). 

Energy Dispersive X-ray Spectroscopy (EDX-S) (Some experiments were performed in the 

laboratory of Dr. Cerasela-Zoica Dinu) 

EDX-S was used to perform elemental analysis of SWCNT samples. Data were collected on a 

LEO 1530 VP scanning electron microscope equipped with an energy-dispersive X-ray analyzer 

(Hitachi S-4700 Field Emission Scanning Electron Microscope, Hitachi High Technologies Co., 

Tokyo, Japan). A few drops of SWCNT dispersion in cell culture medium were placed on a 

silicon wafer and allowed to air-dry. The silicon wafer was then mounted on an aluminum stub 

for EDX-S analysis. 
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Atomic Force Microscopy (AFM) (Some experiments were performed in the laboratory of Dr. 

Cerasela-Zoica Dinu) 

AFM was used to measure the length and diameter distribution of SWCNT samples using Digital 

Instrument Nanoscope II (Model No. MFP-3D-AFM, Asylum Research, Goleta, CA, USA). A Si 

tip (50-90 kHz AC240TS, Asylum Research, Goleta, CA, USA) was used to perform tapping 

mode in air. SWCNT samples were deposited on mica surfaces (9.5 mm diameter, 0.15-0.21 mm 

thickness, Electron Microscopy Sciences, Hatfield, PA, USA) and allowed to dry overnight 

under vacuum. Scan angel was set as 0, scan rate was set as 0.5 Hz, and resolution was set as 

512. Scan images of 20×20 or 10×10 μm areas were acquired. For each sample, at least 30 

individual SWCNTs were counted and measured to obtain average length and diameter 

distribution. 

Cell Culture 

Normal human lung fibroblasts (NHLFs) were obtained from Lonza (Walkersville, MD, USA). 

The cells were maintained in Fibroblast Basal Medium (Lonza, CC-4126, Walkersville, MD, 

USA) containing growth supplements. Lung diploid human fibroblasts WI-38 (#CCL-75) were 

obtained from American Type Culture Collection (Manassas, VA, USA). The cells were 

maintained in Minimum Essential Medium (Life Technologies, Grand Island, NY, USA). They 

were cultured at 37 °C in 5% CO2 incubator and were passaged at preconfluent densities using a 

medium containing 0.05% trypsin. 

Cytotoxicity Assay 

Cytotoxicity assay was carried out using WST-1 cell viability assay kit (Roche Molecular 

Biochemicals, Indianapolis, IN, USA) as per the manufacturer’s instructions. Cells were plated 
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in triplicate in 96-well plates at the density of 2.0×10
4
 cells/well in CS-C medium. Following 

overnight culture, the cells were incubated with the indicated concentrations of SWCNT for 48 h. 

After incubation, WST-1 reagent was added and the cells were incubated for an additional 4 h. 

The plates were then read at the wavelength of 420 nm using a microplate reader (Model 3550; 

BioRad, Richmond, CA, USA). 

Sircol
®

 Collagen Assay 

Soluble collagen content was determined by Sircol
®
 assay (Biocolor Ltd., Belfast, UK), 

according to the manufacturer’s protocol. Briefly, lung fibroblasts (1×10
5
 cells/well) were 

cultured in 6-well plates and treated with SWCNTs of different lengths at the indicated 

concentrations for 24 and 48 h. Equal amounts of Sirius red reagent (Biocolor Ltd., Belfast, UK) 

and cell culture supernatant (50 μL) were added together and mixed for 30 min. The collagen-

dye complex was then precipitated by centrifugation at 13,000× g for 5 min, washed with 

ethanol, and dissolved in 0.5 M NaOH. A 200 μL aliquot of the mixture was transferred to a 96-

well plate and analyzed for optical absorbance at 540 nm. 

Western Blot Analysis 

Collagen protein expression was determined by Western blotting. After specific treatments, cells 

were incubated in lysis buffer containing 20 mM Tris-HCl (pH 7.5), 1% Triton X-100, 150 mM 

sodium chloride, 10% glycerol, 1 mM sodium orthovanadate, 50 mM sodium fluoride, 100 mM 

phenylmethylsulfonyl fluoride, and a commercial protease inhibitor mixture (Roche Molecular 

Biochemicals, Indianapolis, IN, USA) at 4 °C for 20 min. Cell lysates were collected and protein 

concentrations were determined using a bicinchoninic acid protein assay kit (Pierce 

Biotechnology, Rockford, IL, USA). Equal amount of protein per sample (40 μg) was resolved 

under denaturing conditions by 10% SDS-PAGE and transferred onto a nitrocellulose membrane. 
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The membranes were blocked for 1 h in 5% nonfat dry milk in TBST (25 mM Tris-HCl, pH 7.4, 

125 mM sodium chloride, 0.05% Tween 20) and incubated with appropriate primary antibodies 

at 4 °C for 12 h. Membranes were washed thrice with TBST for 10 min and incubated with HRP-

labeled isotype-specific secondary antibodies for 1 h at room temperature. The immune 

complexes were then detected by enhanced chemiluminescence detection system 

(Supersignal
®
 West Pico, Pierce, Rockford, IL, USA). The bands were quantified via 

densitometry using Image J. software, version 10.2 (GraphPad Software Inc., La Jolla, CA, 

USA). Mean densitometry data from independent experiments were normalized to results in cells 

from control experiments. 

Isolation of FSCs using Flow Cytometry 

Cell subsets enriched for stem cell activity were characterized by their ability to efflux the vital 

dye Hoechst 33342 via multidrug-like transporter ABCG2. Following appropriate treatments, the 

cells were harvested using 0.05% trypsin.  Hoechst dye was added at a final concentration of 5 

µg/mL to stain the lung fibroblasts. To ensure that SP is the accurate stem cell population, lung 

fibroblasts should be co-stained Hoechst as well as with conjugated isotype-matched control 

antibody which does not stain SP cells but stains a large fraction of the lung fibroblast pool. 

Controls for flow cytometry included Hoechst-stained lung fibroblasts, unstained cells and cell 

suspensions incubated with Hoechst 33342 and the dye uptake inhibitor FTC. Gates were set 

according to the controls. The Hoechst dye was excited with a UV laser and its fluorescence was 

measured with both 450/20 filter (Hoechst Blue) and 675 LP filter (Hoechst Red), sorting was 

performed using FACS ARIA (BD Biosciences, San Jose, CA, USA). 
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Aldehyde Dehydrogenase Assay 

Human lung fibroblasts exposed to SWCNT for 24 h were analyzed using an Aldefluor
®
 assay 

kit (Stem Cell Technologies, Vancouver, B.C., Canada). Dead cells, cell debris, doublets and 

aggregates were excluded by forward and side scattering and pulse-width gating. Cells were 

suspended in Aldefluor assay buffer containing ALDH substrate, BODIPY™-aminoacate (BAA) 

(1 μM) for 30-60 min per 1×10
6
 cells. After staining cells with the activated Aldefluor

®
 reagent, 

the single cell dissociation was maintained on ice during all subsequent procedures. In each 

experiment, a sample of cells was stained under identical conditions with 1.5 mM of the specific 

ALDH inhibitor diethylaminobenzaldehyde (DEAB) as a negative control. Flow cytometric 

sorting was conducted using a FACS ARIA (BD Biosciences, San Jose, CA, USA). Aldefluor 

fluorescence was excited at 488 nm, and fluorescence emission was detected using a standard 

fluorescein isothiocyanate (FITC) 530/30-nm band-pass filter by a FACS Calibur™ machine 

(BD Biosciences, San Jose, CA). High side scatter ALDH
+ve

 and low ALDH
−ve

 were selected. 

SWCNT Animal Model (Some experiments were conducted at NIOSH, Morgantown) 

Pathogen-free male C57BL/6J mice (Jackson Laboratories, Bar Harbor, ME, USA) weighing 25-

30 g were used in this study. Animals were housed in an “Association for Assessment and 

Accreditation of Laboratory Animal Care” (AAALAC)-accredited, specific-pathogen-free, 

environmentally controlled facility at National Institute for Occupational Safety and Health 

(NIOSH). All experimental procedures were conducted in accordance with the protocol #11-LR-

M-018 approved by the Institutional Animal Care and Use Committee (IACUC). The animals 

were treated with SWCNTs by pharyngeal aspiration. Briefly, animals were anesthetized by an 

intraperitoneal injection of ketamine and xylazine (45 and 8 mg/kg) and placed on a board in the 

supine position. The animal’s tongue was extended with padded forceps. A suspension of the test 
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material (40 μg/50 μL per mouse) was placed on the back of the tongue. A slight pull of the 

tongue results in a reflex gasp and aspiration of the droplet. The tongue was held, and the animal 

was monitored for a few breaths after aspiration. At 90 days post-exposure, mice were sacrificed 

and lung tissues were isolated, homogenized, lysed and analyzed for collagen content by 

Sircol
®
 assay. For histopathology studies, paraffin-embedded lung sections were stained with 

Sirius red and examined under a light microscope. 

Statistical Analysis 

The data represent mean ± S.D. from three or more independent experiments. ANOVA was 

performed to determine statistical significance between treatment and control groups using 

Graph Pad Prism 6.0 (GraphPad Software Inc., La Jolla, CA, USA) at a confidence level of * p < 

0.05. 
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Results 

Physicochemical Characterization of Single-Walled Carbon Nanotubes 

SWCNT samples of different lengths and surface functionalization were characterized using 

atomic force microscopy (AFM) and energy dispersive X-ray spectroscopy (EDX-S) for size 

measurements and elemental analysis, respectively. Table 1 provides information on the purity, 

length and diameter characteristics for the SWCNT samples used in this study. The different 

surface modified SWCNTs did not vary substantially in their diameter and lengths except in the 

case of nitrogen-containing SWCNTs. Short and long SWCNTs differed slightly in their 

diameter but very substantially in their length both in the solution and dry forms. For each 

SWCNT type, particle lengths were comparable in the solution and dry forms, suggesting that 

they were efficiently dispersed in the culture medium. Table 2 provides quantitative elemental 

analysis for the SWCNT samples. Short SWCNTs were 92.82 wt % elemental carbon with 5.7 

wt % oxygen, whereas long SWCNTs were 90.9 wt % carbon with 8 wt % oxygen. Both short 

and long SWCNTs were similar in their elemental composition. Similarly, AFM was used to 

characterize SWCNT samples of different functionalities.  

FTIR Analysis for Identification of Various Functional Groups (Some experiments were 

performed in the laboratory of Dr. Nianqiang Wu) 

To confirm surface modification of SWCNTs via different functional groups, solid state FTIR 

was performed to show the presence of the peaks that characterize each of these functional 

groups on the nanotube surface (Figure 1). Pristine SWCNTs show the typical IR peaks, where i) 

the 3420 cm
-1

 peak is assigned to the O-H stretching vibration, ii) 2850 cm
-1

 and 2970 cm
-1

 peaks 

are ascribed to the asymmetric and symmetric vibrations of C-H, respectively, iii) whereas the 

1643 cm
-1

 and 1590 cm
-1

 peaks are due to the benzene ring skeleton vibrations, and iv) 1170 cm
-1

 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4057682/table/t1-ijms-15-07444/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4057682/table/t2-ijms-15-07444/
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and 1140 cm
-1

 peaks are from the C-O stretching vibration. Similar peaks were observed in other 

SWCNT samples. However, the COOH-modified SWCNTs were observed to have a strong 

stretching vibration peak of C=O around 1730 cm
-1

 which was not evident in other SWCNTs. 

OH-modified SWCNTs reveal a strong stretching vibration peak of O-H around 3450 cm
-1

. 

Moreover, the nitrogen-containing SWCNTs display the characteristic N-H wagging at 883 cm
-1

, 

two characteristic peaks at 3760 cm
-1

 and 3650 cm
-1

 depicting asymmetric and symmetric N-H 

stretch respectively, peaks at 1070 cm
-1

 and 1120 cm
-1 

suggesting C-N stretch vibrations of 

aliphatic amines and a small peak observed at 1380 cm
-1

 which may imply of the C-N stretch 

vibration of aromatic amines. The IR spectra suggest that our nitrogen-containing could 

potentially be a mixture of aliphatic and aromatic amines. 

Effect of SWCNTs on Cell Viability 

This study was performed to optimize the experimental doses of SWCNTs that are relevant to in 

vivo lung fibrosis. Lung fibroblasts were treated with different concentrations of SWCNTs for 48 

h and analyzed for cell viability by WST-1 assay (Figure 2). The doses of 0.02-0.2 μg/cm
2
 were 

used in this study since they are physiologically relevant and derived from pulmonary exposure 

data in mice, i.e., 10-80 μg/mouse which corresponds to 0.02-0.16 μg/cm
2
 of mouse lung 

alveolar surface area [19, 31, 32]. At the low-dose exposures of 0.02-0.06 µg/cm
2
, SWCNT 

samples with various functional groups and lengths induced a reduction in cell viability; yet this 

effect in cytotoxicity was relatively lower than that of 0.2 µg/cm
2
 which resulted in a significant 

inhibition of cell proliferation (Figure 2A and 2B). The vehicle-treated control cells showed 

minimal reduction in cell viability (Figure 2A and 1B). Both short and long SWCNTs induced a 

dose-dependent decrease in cell viability of the cultured fibroblasts (Figure 2B). At equal dosing, 
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long SWCNTs induced slightly more cellular toxicity than short SWCNTs, although the 

difference was not statistically significant under the test conditions (Figure 2B).  

Effect of SWCNTs on Type I Collagen Expression 

Fibrosis is a fibroproliferative disorder characterized by excessive accumulation of ECM 

proteins, especially collagens [33]. To determine the effect of SWCNT surface functionalization 

and fiber length on fibrogenic response, human lung fibroblasts were exposed to SWCNTs for 48 

h and type I collagen expression was determined by Western blotting, which was performed on 

the basis of equal protein content, and the results were normalized by β-actin content (Figure 3). 

Both pristine and modified SWCNTs substantially induced collagen expression compared to 

untreated control (Figure 3A, 3C). Pristine SWCNTs were more potent in inducing collagen 

expression compared to nitrogen-containing- and OH SWCNTs (Figure 3A and 3C). Moreover, 

COOH-SWCNTs induced significantly higher collagen expression compared to nitrogen-

containing-SWCNTs. Western blot data for SWCNT-induced collagen were validated via 

Sircol
®
 assay at 48 h post-SWCNT exposure. Analysis of total collagen content in SWCNT-

treated cell supernatants by Sircol
®
 collagen assay showed a similar functionalization-dependent 

effect on soluble collagen content (Figure 3E). Figures 3B, 3D show that both long and short 

SWCNTs induced a substantial increase in collagen production as determined by Western blot 

assay. Analysis of soluble collagen content by Sircol
®
 assay confirmed the result and indicated 

the collagenic activity of SWCNTs (Figure 3F). Long SWCNTs were substantially more 

fibrogenic than short SWCNTs based on the Western blot and Sircol
®
 results. 

Effect of Surface Functionalization on SWCNT-Induced FSC Generation 

Recent evidence suggests that aldehyde dehydrogenase (ALDH) activity is a hallmark of adult 

stem and progenitor cells isolated from bone marrow, brain, breast and possibly other tissues 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4057682/figure/f1-ijms-15-07444/
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measurable by the Aldefluor assay [34]. ALDH activity plays a functional role in stem cell 

survival, differentiation, expansion and oxidative stress response [35].  WI-38 human lung 

fibroblasts were treated with pristine or surface modified SWCNTs at the dose of 0.15 μg/cm
2 

for 

24 h, after which they were incubated with 0.3 mM activated Aldeflour dye in the presence or 

absence of 1.5 mM ALDH inhibitor, DEAB (Figure 4). All SWCNT samples induced a 

significantly increased ALDH activity compared to untreated control (Figure 4A, 4B). SWCNT 

treatment generated ALDH +ve cells in a functionalization-dependent manner similar to their 

fibrogenic response in vitro. Pristine SWCNTs induced substantial FSC generation and 

significantly higher FSC level compared to nitrogen-containing- and OH-SWCNTs, however the 

difference was not significant between pristine and COOH SWCNTs (Figure 4B).  

Effect of Fiber Length on SWCNT-Induced FSC Generation 

To determine the effect of fiber length on SWCNT-induced SP generation, human lung 

fibroblasts were treated with SWCNTs of different lengths, and stem or stem-like cells were 

isolated according to their SP phenotype using flow cytometry based cell sorting (Figure 5A, 

5B). Both short and long SWCNTs generated substantially higher SP subpopulation compared to 

vehicle-treated control. The percentage of long SWCNT-induced SP was significantly higher 

compared to short SWCNT, thus indicating the role of fiber length in stemness induction (Figure 

5A, 5B). Similarly, WI-38 human lung fibroblasts were treated with long and short SWCNTs at 

the dose of 0.15 μg/cm
2 

for 24 h, after which they were incubated with 0.3 mM activated 

Aldeflour dye in the presence or absence of 1.5 mM ALDH inhibitor, DEAB. Long SWCNTs 

induced a substantially higher ALDH activity than short SWCNTs, confirming the effect of fiber 

length on stemness phenotype (Figure 6A, B). However, both short and long SWCNTs induced a 

significantly higher ALDH activity than the untreated control (Figure 6B).  
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Stemness Phenotype is Predictive of the Fibrogenic Response in vitro and in vivo 

To determine if our in vitro model of stemness induction is a suitable tool to assess the 

fibrogenic response of SWCNTs. C57BL/6J mice were exposed to short and long SWCNTs via 

pharyngeal aspiration and analyzed for lung fibrosis by Sircol
®
 collagen assay and 

histopathology. Occupationally relevant dose of 40 μg/mouse and exposure time of 3 months 

were used to ensure a robust fibrogenic response based on previous findings [36-38]. Lung 

collagen content as determined by Sircol
®
 assay was substantially upregulated in the SWCNT-

treated mice compared to control mice (Figure 5B).  

Long SWCNTs induced a higher fibrogenic response in mice than short SWCNTs, consistent 

with the in vitro finding (Figure 7A, 7B). Histopathological analysis of lung tissue sections by 

Sirius red staining confirmed the biochemical findings showing greater accumulation and 

thickening of collagen fibers in the SWCNT-treated lung sections (Figure 7C). As compared to 

alveolar tissue sections from vehicle (BSA)-treated lungs, both short and long SWCNTs induced 

more collagen fibers which were condensed around SWCNT-deposited areas (observed 

throughout the alveolar interstitial space) (Figure 7D).  

Increased SP generation (Figure 5) and ALDH enzyme activity (Figure 6) correlated well with 

the elevated length-dependent fibrogenic response of SWCNTs in vivo, thereby validating our 

fibroblast stem cell model of CNT-induced fibrogenesis. The findings from this study also 

indicate the role of fiber length as a key physicochemical determinant of CNT-induced stemness 

and lung fibrosis, whereby the stemness model was predictive of the in vivo fibrogenic response. 

  

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4057682/figure/f5-ijms-15-07444/
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Discussion 

Lung fibrosis induced by SWCNTs has been well documented [19, 31, 32, 39-43], but the 

effect of specific SWCNT properties on lung fibrosis remains controversial and largely 

undefined [44]. Revealing the physicochemical properties influencing CNT fibrogenicity is 

essential due to the promise surrounding CNT exploitation. For instance, functionalized CNTs 

are generally considered more biocompatible than pristine CNTs because of their improved 

hydrophilicity and dispersion in biological media making them easier to use for a variety of 

commercial applications [5]. However, the potential adverse effects of functionalized CNTs have 

not been well characterized or systematically explored. Several potential mechanisms of CNT-

induced fibrosis have been suggested, including epithelial mesenchymal transition [40], pro-

fibrogenic mediators [41], and oxidative stress [42]. The direct effect of functionalization on 

CNT-generated fibrogenicity remains inconclusive owing to the contradictory reports in the 

literature. Besides surface reactivity, length has been suggested to play a critical role in the 

biological reactivity of CNTs. Although a few studies have reported the length effect of CNTs on 

lung toxicity and while recent studies have suggested incomplete phagocytosis as a paradigm for 

CNT length-mediated toxicities, the effect of fiber length on SWCNT-induced lung fibrosis and 

its underlying mechanism have not been reported.  

Based on the results from Chapters 2 and 3, we demonstrated a functional role of stem-

like fibroblasts in CNT-induced fibrogenic response. Furthermore, the isolated stem-like 

fibroblasts were potential key source for collagen and α-SMA production, thus playing a crucial 

role in fibrogenesis. The present study was designed to evaluate whether surface 

functionalization and fiber length influenced FSC generation during CNT-induced fibrosis and to 

develop an in vitro model based on the FSC generation to predict the fibrogenic response in vivo. 
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Our results showed that 1) pristine SWCNTs induced a higher level of FSCs compared to their 

chemically modified counterparts; 2) long SWCNTs induced substantially higher stem cell 

activity compared to short SWCNTs; and 3) the ability of SWCNTs with different lengths to 

induce FSCs mimicked their fibrogenic activity in vivo, suggesting that CNT-induced stemness 

phenotype is predictive of their fibrogenicity in vivo. 

Identifying the cells that are responsible for repairing the injured tissue and are the source 

of ECM production is fundamental to the understanding of fibrosis mechanisms [45, 46]. Recent 

studies have demonstrated the pathogenic role of stem-like cells in lung fibrosis; however, the 

concept of stemness in the light of nanomaterial-induced fibrosis remains to be explored [47, 48].  

Furthermore, the existence and role of fibroblast-derived stem cells have not been described. As 

mentioned before, ALDH activity has been shown to act as a functional marker for 

stem/progenitor cells [35]. Our model aimed at critically analyzing the ability of SWCNTs of 

various lengths and surface modifications to induce high levels of ALDH activity. Pristine 

SWCNTs induced a substantially higher ALDH activity compared to their modified forms. 

Additionally, this effect of CNT functionalization on stem cell induction correlated well with the 

fibrogenic response in vitro. Likewise, compared to short SWCNTs, long SWCNTs exhibited a 

stronger stem cell-inducing effect, as evidenced by their increased SP generation and ALDH 

activity. The increased stem cell activity was corroborated by the fibrogenic response of long 

SWCNTs both in vitro and in vivo, thus supporting the predictive value of our stem cell model 

for the detection of fibrogenic effect of nanomaterials. 

We reported the effect of CNT fiber length on lung fibrosis in vivo as determined by 

histological analysis of Sirius Red stained lung sections from control and three-month short and 

long SWCNT aspiration. Additionally, long SWCNTs were potent inducer of collagen 
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expression than short SWCNTs in vitro as determined by Western blot and Sircol
®
 assays. 

Similarly, pristine SWCNTs mounted a strong fibrogenic response compared to nitrogen-

containing and OH SWCNTs in vitro. Our surface modification-dependent fibrogenic results are 

in agreement with previous studies where functionalized CNT demonstrate reduced pulmonary 

inflammation and fibrosis [20-22, 49]. Whereas recent reports showed that functionalized tubes 

such as NH2, amide-CNTs and PEI-CNTs, are capable of inducing robust fibrogenic responses 

compared to their pristine counterparts [2, 23, 50]. Although surface charge is a potential factor 

responsible for the variable in vivo fibrogenic responses, these inconsistencies response 

outcomes could be attributed to the complex and multivariate differences in the tube structure 

derived from different suppliers and method of functionalization [2]. 

The collagen-inducing effect of SWCNTs (Figure 3A, 3B) was not due to their 

proliferative activity since fibroblast cell growth was not increased by the SWCNT treatment as 

indicated by WST-1 assay (Figure 2A, 2B). Moreover, all collagen expression data presented in 

this study were normalized against β-actin or cellular content as described in the Experimental 

section. We observed that the fibrogenic response elicited via SWCNTs of various functionalities 

and lengths corresponded in good agreement with their ability to induce FSCs (Figure 3A, 3B). 

Since collagen deposition is a hallmark of lung fibrosis, cellular collagen content could be used 

as a functional assay for nanoparticle fibrogenicity in vitro.  

An additional key finding from this study was the correlation between the in vitro and in 

vivo SWCNT length-dependent responses, indicating the potential usefulness of the in 

vitro stemness induction model as a predictive screening tool for fibrogenicity testing of 

nanomaterials. The three-month aspiration study in mice demonstrated a length-dependent 

fibrogenicity in vivo as evidenced from the histopathological and biochemical studies showing 
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greater fibrogenicity of long over short SWCNTs (Figure 7C, 7D).  Furthermore, long SWCNTs 

induced significantly higher FSCs compared to short SWCNTs, supporting the fiber length 

paradigm [51] in stemness induction (Figures 5A, 5B and 6A, 6B). These findings validate the 

reliability of our in vitro stemness phenotype model to be used as an alternative assay to predict 

the fibrogenicity of CNTs and other nanomaterials for their safer design and risk assessment.  

The described in vitro model is based on the use of lung fibroblasts which are the main 

cellular source of collagen production whose accumulation epitomizes lung fibrosis [33]. 

However, because of the lack of inflammatory and epithelial cells in the test system which are 

involved in the fibrogenic process, future studies incorporating these cells to better mimic the in 

vivo conditions are warranted. Currently, there is a need for simple and rapid in vitro models for 

fibrogenicity testing of nanomaterials since traditional assays which rely on the use of animal 

models are time consuming, laborious, and costly. They are not suitable for screening a large 

number of nanomaterials currently being used or developed. Developing a reliable and predictive 

screening model apriori is beneficial for understanding the influence of physicochemical 

parameters on pulmonary fibrosis before performing targeted animal experiments. Our study 

presents a predictive toxicological paradigm for comparing multiple parameters of CNTs in a 

single round of experimentation via assessment of mechanistic endpoint of stemness induction 

and collagen expression, critical in the pathogenesis of fibrosis. 
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Figures 

 

Table I: Physicochemical characterization of Single walled carbon nanotubes (SWCNTs) of 

different surface modifications and lengths 

 Note: The table describes the purity, diameter and length distribution measured via AFM. 

 

Table II: Elemental analysis for short and long SWCNTs 

Elemental analysis of SWCNTs of different lengths measured via EDX-S. 

Dispersed form 
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Figure I: FTIR spectra for pristine and surface modified Single walled carbon nanotubes 

(SWCNTs) 

FTIR spectra for pristine and modified SWCNTs. Strong stretching vibration peak of C=O 

around 1730 cm
-1

 as well as O-H stretching vibrations at 3430 cm
-1

 are in the COOH SWCNTs 

respectively. Characteristic N-H wagging at 883 cm
-1

 and a small peak observed at 1380 cm
-1

 

resulting from the C-N stretch vibration found in nitrogen-containing SWCNTs. 
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Figure II: Effect of SWCNTs on cell viability 

Subconfluent cultures of normal human lung fibroblasts were exposed to SWCNTs of various 

lengths and surface modification for 48 h within the concentration range of 0.02-0.2 μg/cm
2
. Cell 

viability was determined by WST-1 assay and compared to untreated control. A) Effect of fiber 

length and B) surface modification on cell viability. Values are means ± SD (n = 3); * p < 0.05 

vs. untreated control. 
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Figure III: Effect of SWCNTs on type I collagen expression 

A) Western blots showing functionalization-dependent effect of SWCNTs on collagen I 

production. B) Western blots showing fiber length-dependent effect of SWCNTs on collagen I 

production. Subconfluent cultures of human lung fibroblasts were treated with SWCNTs with 

various functionalities and lengths for 48 h and analyzed for collagen I expression by Western 

blotting. Blots were reprobed with β-actin antibody to confirm equal loading of the samples. The 

immunoblot signals were quantified by Image J. C) and D) Relative protein quantification via 

Image J. Values are means ± SD (n = 3); * p < 0.05 vs. untreated control; # p < 0.05 vs. pristine-

SWCNT; δ p<0.05 vs. short-SWCNT. 
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Figure IV: Effect of SWCNT surface modification on FSC generation via Aldefluor
®
 assay 

Human lung fibroblasts were treated with modified and pristine SWCNTs (0.15 μg/cm
2
)
 
for 24 h 

and stained with Aldeflour
®
 dye in the presence or absence of 1.5 mM ALDH inhibitor, 

diethylaminobenzaldehyde (DEAB). A) Cells with increased ALDH activity (ALDH Hi) were 

characterized and isolated by FACS. B) Quantitative analysis of % ALDH activity in SWCNT-

treated human lung fibroblasts compared to control. Data are means ± SD (n = 3). *p < 0.05 

versus control cells. 
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Figure V: Effect of SWCNT length on FSC induction determined by side population (SP) 

assay 

A) Short and long SWCNT-treated human lung fibroblasts isolated into SP and NSP with or 

without the inhibitor fumitremorgin C (FTC) as indicated by % population. B) % SP population 

in short and long SWCNT-treated lung fibroblasts as compared to vehicle-treated control. Data 

are means ± SD (n =3). *p < 0.05 vs. control cells. # p < 0.05 vs. short-SWCNT. 
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Figure VI: Effect of SWCNT length on FSC generation via Aldeflour
®
 assay 

WI-38 human lung fibroblasts were treated with SWCNTs of different lengths (0.15 μg/cm
2
)
 
for 

24 h and stained with the Aldeflour dye in the presence or absence of 1.5 mM ALDH inhibitor, 

diethylaminobenzaldehyde (DEAB) for ALDH activity analysis. A) Cells with increased ALDH 

activity (ALDH Hi) were characterized and isolated by FACS. B) Quantitative analysis of % 

ALDH activity in SWCNT-treated lung fibroblasts compared to control. Data are means ± SD (n 

= 3). *p < 0.05 vs. control cells. # p < 0.05 vs. short-SWCNT. 
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Figure VII: Effect of SWCNT length on fibrogenic response in vitro and in vivo 

A) Western blots showing length-dependent effect of SWCNTs on collagen I production. 

Subconfluent cultures of human lung fibroblasts were treated with SWCNTs of different lengths 

for 48 h and analyzed for collagen I expression by Western blotting. Blots were reprobed with β-

actin antibody to confirm equal loading of the samples. B) Quantitative analysis of collagen I 

expression. C) Mice were exposed to 50 μL of dispersed SWCNT (40 μg/mouse) via pharyngeal 
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aspiration for 90 days, after which the animals were sacrificed and the lungs were isolated, lysed 

and analyzed for histopathology after Sirius red staining. Scale bar = 20 μm; Arrows denote the 

thickening of collagen fibers around the CNTs. D) soluble collagen content by Sircol
®
 assay. 

Values are means ± SD, (n = 5 mice/group); * p < 0.05 vs. BSA/dipalmitoyl phosphatidylcholine 

(DPPC)-treated control; # p < 0.05 vs. short-SWCNT. 
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CHAPTER 5: EXECUTIVE SUMMARY 

Introduction 

Given their remarkable properties, carbon nanotubes (CNTs) have made their way 

through various industrial and medicinal applications. The overall production of CNTs and their 

products is expected to grow rapidly in the next decade, thus requiring an additional recruitment 

of workers [1-3]. However, their unique applications and desirable properties are fraught with 

concerns regarding occupational exposure. The concern about worker exposure to CNTs arises 

from the results of recent animal studies. Short-term and sub-chronic exposure studies in rodents 

have shown consistent adverse health effects such as pulmonary inflammation, granulomas, 

fibrosis, and mesothelioma [4-8]. Furthermore, physicochemical properties of CNTs such as 

aspect ratio, dispersion, and functionalization can significantly affect their pulmonary toxicity [9-

11]. 

CNTs can evade phagocytosis, cross cell membranes and the blood-brain barrier and 

translocate to other sites of the body causing systemic side effects [12]. Once inhaled, CNTs can 

cross the alveolar interstitial barrier and typically end up in the interstitial compartment of the 

lung. Subsequent in vitro studies show that CNTs interact with interstitial fibroblast cells to 

induce excessive extracellular matrix (ECM) accumulation. The clearance rate of these 

nanomaterials is extremely low, owing to their non-biodegradable nature resulting in bio-

persistence and tissue burden, leading to a higher probability of adverse health effects [2, 4]. 

Considerable investigations in the literature demonstrate the fibrogenic effect of CNTs; however, 

the underlying mechanisms remain poorly understood.  

Pulmonary fibrosis is a progressive and lethal lung disease characterized by excessive 

proliferation of fibroblasts and deposition of ECM [13]. Identifying the cells responsible for the 
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enhanced ECM and collagen production is crucial for understanding fibrosis mechanisms. 

Growing research indicates the presence of putative stem cells in the pathogenesis of pulmonary 

fibrosis [14]. For instance, a recent study has indicated the stem cell induction at the early onset 

of lung fibrosis in a mouse model of bleomycin-induced fibrosis [15]. However, the role of stem 

cells in nanomaterial-induced pulmonary fibrosis has not been explored. 

At present, human data regarding fibrogenicity assessment of CNTs is lacking and 

information on in vivo toxicity is limited. Murine models appear to be a gold standard for the 

assessment of lung fibrosis [16]. However, the rapidly expanding number of engineered 

nanomaterials makes it impossible to test them all in animals due to time constraints and 

prohibitive cost. Currently, there is a dire need for efficient and reliable in vitro models which 

can facilitate the rapid high-throughput assessment of nanomaterial fibrogenicity and disease 

mechanisms [17]. 

In order to elucidate the mechanism of CNT-induced fibrosis, we hypothesize that CNT 

exposure to fibroblasts induces FSCs which are crucial for the fibroblast to myofibroblast 

transformation and the development of fibrosis. The specific aims of this study are designed, first 

of all, to establish the evidence of fibroblast stem-like cells (FSCs) upon SWCNT exposure, 

characterize their role in the fibrogenesis, and lastly to evaluate whether oxidative stress and 

physicochemical parameters of CNTs influence the resulting stemness phenotype. Oxidative 

stress was specifically studied since it is the most commonly reported SWCNT toxicity endpoint 

and has been demonstrated to be a key player in stem cell fate and function.  

 

 



[135] 
 

Specific Aim 1: Characterize the role of fibroblast stem-like cells in CNT-induced lung 

fibrosis 

Background 

Currently the paradigm of stem cells is being evaluated in dysfunctional lung remodeling. 

Evolving research has demonstrated the pathogenic role of these stem/progenitor cells during the 

early onset of lung fibrosis in vivo [14, 15]. Stem cells triggered by environmental cues 

differentiate into myofibroblasts and contribute to disease progression. Understanding the 

molecular/cellular basis of these stem-like cells during lung fibrosis is of critical importance. 

Previous research findings and studies from our laboratory have shown the fibrogenic potential 

of CNTs [18-20]. However, the concept of stemness in the light of nanomaterial-induced fibrosis 

remains to be explored. Therefore, we proposed that fibroblasts can be a source of stem-like cells 

upon exposure to CNTs. The goal of this aim was to document the evidence of FSCs and their 

potential role in CNT-induced fibrogenic effects both in vivo and in vitro settings. 

Rationale 

Previous findings from our laboratory revealed the expression of universal stem cell markers 

ALDH1A1 and ABCG2 in human lung fibrotic tissues [21] as well as CNT-induced FSCs thus 

providing evidence for the clinical relevance of stem cells in fibrosis. These data provide 

preliminary supporting evidence for the role of stem cells in human lung fibrosis. 

Results 

SWCNTs induced the side population phenotype (indicative of the fibroblast stem-like cell 

phenotype) of primary lung fibroblasts. CNT-induced SP cells (FSCs) expressed a high level of 

both collagen I and α-SMA compared to non-SP indicating that the stem-like fibroblasts are a 
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potential key source of collagen production and may play a crucial role in fibrogenesis. The 

isolated FSCs displayed an elevated expression of fibrogenic and stem cell markers indicating 

the reliability of the stem cell isolation method via FACS as well as supporting their critical role 

in SWCNT-induced fibrogenesis. The study also developed and put forth an in vitro model of 

SWCNT-induced fibrotic nodule formation that correlates the development of stemness 

phenotype and onset of fibrosis. 

Specific Aim 2: Determine whether reactive oxygen species (ROS) production is involved in 

CNT-induced stemness. 

Background 

Accumulating evidence suggests the redox potential of CNTs [22]. Nanoparticle exposure results 

in ROS-dependent activation of several transcription factors and signaling pathways involved in 

the regulation of inflammation and fibrosis [23]. ROS are known to regulate several cellular 

responses such as SWCNT-induced collagen production, fibroblast to myofibroblast activation, 

and angiogenesis, all implicated in the pathogenesis of fibrosis [18, 24]. ROS signaling has been 

shown to drive the metabolic state of stem cells thereby governing their stemness and 

differentiation as well as implicated in the progression of stem cell-associated diseases [25, 26]. 

However, it is unknown whether the oxidative stress induced by SWCNTs is essential for the 

development of stem phenotype of FSCs. This study was undertaken to evaluate whether ROS 

are critical for the development of stem phenotype during CNT-induced fibrogenesis. 
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Rationale 

Previous findings from our group indicate that ROS generation plays a key role in CNT-induced 

fibrogenesis [18, 19]. Oxidative stress has also been shown to affect stem cell function and 

behavior [25]. 

Results 

SWCNT-induced FSC generation was under the regulation of oxidative stress as indicated by i) 

antioxidants abrogated the effect of SWCNTs on FSC (SP) generation, ii) role of peroxides in 

SWCNT-induced FSC generation, iii) SWCNT-induced FSCs overexpressed collagen I, which 

was shown to be ROS-dependent, and iv) CNT length and surface modification dependent ROS 

responses. Overall, our findings indicate that ROS are essential for imparting stemness to 

SWCNT-treated fibroblasts.  

Specific Aim 3: Study the effects of fiber length and surface modification on carbon 

nanotube-induced fibroblast stem-like cells and lung fibrosis 

Background 

The pathologic effects of CNTs such as inflammation, ROS production, and fibrosis are likely to 

be influenced by their physicochemical properties such as particle size, dispersion and surface 

activity with respect to their cellular uptake, internalization, phagocytosis and clearance from the 

body [27, 28]. Studies from our laboratory as well as other groups have demonstrated the 

differential fibrogenic response owing to different sizes, dispersion status, and chemical 

functionalization of nanomaterials [9-11, 19]. SWCNT exposure causes FSC generation in 

human lung fibroblasts as demonstrated in chapter 1. However, it is not known if these CNT 

characteristics are capable of driving the stemness phenotype in SWCNT-treated lung 
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fibroblasts. Thus, the major objective of this aim was to understand an association between 

SWCNT surface modification and fiber length and stemness development. This study also aimed 

to develop a model that determines whether stemness phenotype is predictive of the fibrogenic 

response in vivo. 

Results 

Long SWCNTs induced higher FSCs compared to short SWCNTs as evidenced by side 

population (SP) and (aldehyde dehydrogenase) ALDH assays, thus indicating a length-dependent 

effect on stemness phenotype. Pristine SWCNTs induced higher FSCs compared to modified 

SWCNTs; however the effect was not statistically different. Long SWCNTs induced greater 

fibrogenic response in vivo compared to short SWCNTs, supporting the potential utility of our in 

vitro FSC model to predict the fibrogenicity of CNTs. 

Clinical & Translational Relevance 

The work presented in this study is innovative because it introduces the concept of fibroblast 

stem-like cells as a potential key player in the pathogenesis of pulmonary fibrosis. These cells, 

which possess stem property and high fibrogenic activity, were induced by CNTs and could 

serve as a potential key source of ECM production whose accumulation characterizes fibrosis. 

This work has a broad impact on stem cell development and is applicable to other nanomaterials 

and fibrogenic agents. It also provides new insight into the mechanisms of fibrosis which may 

help to identify novel biomarkers and drug targets for early diagnosis and treatment of the 

disease. Furthermore, the in vitro FSC model developed in this study may be utilized as a rapid 

screening tool for fibrogenicity testing of nanomaterials and anti-fibrotic agents.  
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