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ABSTRACT 

Evaluation of the Newburg Sandstone of the Appalachian Basin as a CO2 

Geologic Storage Resource 

Jack Eric Lewis 

 

The West Virginia Division of Energy is currently evaluating several deep saline 
formations in the Appalachian basin of West Virginia, which may be potential carbon 
dioxide (CO2) sequestration targets.  The Silurian Newburg Sandstone play, developed 
in the 1970’s, primarily involves natural gas production from reservoir rock with well-
developed porosity and permeability.  High initial pressures encountered in early wells 
in the Newburg indicate that the overlying Silurian Salina Formation provides a 
competent seal.  Due to the large number of CO2 point sources in the region and the 
favorable reservoir properties of the formation; including an estimated 300 billion cubic 
feet (bcf) of natural gas production, a serious evaluation of the Newburg Sandstone may 
expand our available targets for geologic storage of CO2.  Within the Newburg play, 
there are several primary fields separated geographically and geologically by salt water 
contacts and dry holes.   Previous studies have determined the storage potential within 
these individual fields. This study will show that the Newburg is more suitable for small-
scale injection tests, instead of large-scale, regional storage operations. 
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1.0 INTRODUCTION 

As the industrial world’s demand and consumption of fossil fuels continue to grow, so 

too will the volume of anthropogenic greenhouse gas emissions.  Although there are 

natural sources of carbon dioxide (CO2) in the earth’s atmosphere, human activities, 

such as the combustion of fossil fuels for electricity consumption, transportation, and 

industrial purposes, have a significant impact on the atmosphere’s concentration of 

CO2.  Emissions of greenhouse gases continue to rise from a pre-Industrial Revolution 

concentration of CO2 in the atmosphere of around 275 parts per million (ppm) to 390.5 

ppm CO2 (Conway and Tans, 2012).  With an annual increase of 1-3 ppm, we are 

rapidly approaching 450 ppm and a possible global temperature increase of 2-3.5o C 

(IEA, 2011). 

 

Fossil fuel consumption at power plants accounted for 40 percent of total CO2 

emissions in 2008 (Figure 1.1) (McArdle et al., 2002; Conti et al., 2012).  As a significant 

contributor to these greenhouse gases, the United States has also become a leader in 

studying the effects of these releases into the atmosphere.  Considering that human 

consumption of fossil fuels will continue through this century, technologies are being 

developed to manage increasing CO2 emissions.  A potential technology, carbon 

capture and storage, involves the injection and geologic storage of CO2 emissions into 

deep geologic formations.  Carbon capture and storage has been receiving 

considerable attention in recent years.  In order for carbon capture and storage to be 

viable, the necessary capture, transportation and infrastructure must be established, as 
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well as the selection of a geologic storage site with the characteristics necessary for 

long-term storage (i.e., capacity, injectivity, and containment).   

 

      

Figure 1.1 CO2 from fossil fuel combustion makes up 82% of all GHG emissions 
released into the atmosphere; most of which are the result of electricity generation 
(Source: McArdle et al., 2002 and Conti et al., 2012). 

 

In an effort to combat the effects that these emissions may have on Earth’s atmosphere, 

one technique that has been proposed involves injecting CO2 emitted from power plants 

into deep geologic storage sites.  Ideal formations typically are oil reservoirs, in which 

injected CO2 can enhance oil recovery, abandoned gas fields, or deep saline formations 

(Gibbins and Chalmers, 2008).  Pressurizing the CO2 to a supercritical state, in which it 

is neither considered to be a liquid or gas, increases its density and therefore, increases 

the amount of CO2 that can be stored in a given volume.  However, assuming 

hydrostatic pressure and a typical geothermal gradient of 25⁰ C km-1 worldwide (Tissot 

and Welte, 1978),  in order for the CO2 to remain in a supercritical state, geologic 
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storage targets must be at depths greater than or equal to 800 meters (2600 feet) deep 

(Figure 1.2) (WVCARB, 2008).   

 

Not only are deep saline aquifers plentiful throughout the United States, but they can 

trap the CO2 in several ways (Figure 1.3).  Residually, the CO2 can be trapped in the 

pore spaces of the rock.  It can also dissolve into the formation waters and, over time, 

react with existing minerals within the formation to form precipitates, which eventually 

adhere to the surface of individual grains (MRCSP, 2010).  
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Figure 1.2 CO2 increases in density with depth and becomes a supercritical fluid CO2 at 
depths below 2600 feet (800 m) under hydrostatic pressure. Supercritical fluids take up 
much less space, and diffuse better than either gases or ordinary liquids through the 
tiny pore spaces in storage rocks. The blue numbers in this figure show the volume of 
CO2 at each depth relative to a volume of 100 kg/m3 at the surface (Source: WVCARB, 
2008). 
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Figure 1.3 Map showing location of major, deep saline aquifers (in blue) throughout the 
United States and general location of the study area (Modified from DOE/NETL, 2010). 

  

In order to insure the long-term containment of the CO2 once it has been injected, there 

must be an overlying formation with low permeability to prevent upward migration into 

other, less stable formations and possibly into freshwater aquifers or the atmosphere.  

In addition, a trapping mechanism, in relation to the structural or stratigraphic sequence 

in a given area, must be present to inhibit lateral migration of the fluid.  This study will 

show that the Upper Silurian Newburg Sandstone, a tight, fractured unit that is a gas 
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producing anticlinal play (Patchen, 1996), possesses characteristics necessary for CO2 

injection testing and is a significant CO2 geologic storage resource.   

 

2.0 REGIONAL GEOLOGY 

The Silurian Newburg Sandstone play, developed during the 1960’s and 1970’s, 

primarily involves natural gas production from reservoir rock with well-developed, matrix 

and fracture porosity and permeability.  Several fields within the play make up the 

majority of the production in western and south-central West Virginia including the North 

and South Ripley fields, Rocky Fork and Cooper Creek fields and the Kanawha Forest 

field (Figure 2.1) (Patchen, 1996).  Present across central West Virginia, the subsurface 

unit referred to by drillers as the “Newburg” separates the evaporite of the overlying 

Salina Formation from carbonate of the McKenzie Formation or the Lockport Dolomite 

(Figure 2.2).  Sourced from erosion of the Taconic uplifts in the east, Woodward (1959) 

and Overbey (1961) determined the stratigraphic equivalent of this marine deposit to be, 

in part, the Williamsport Sandstone.  In outcrop, the Williamsport is a silica-cemented 

quartz sandstone that has been slightly metamorphosed.  The brittleness of the 

formation gives it a blocky, fractured appearance, similar to the Silurian Tuscarora 

Sandstone.  However, it is much thinner than the Tuscarora with thickness between 20 

and 40 feet (6 and 12 meters) in outcrop and up to 50 feet (15 meters) in the 

subsurface.   
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Examination of several cores taken in the Newburg suggests the lithology is more 

similar to portions of the Wills Creek Formation, which overlies the Williamsport, and 

consists of carbonate cemented sand, shale and evaporite deposits (McDowell et al., 

2007).  There appears to be some confusion in stratigraphic terminology when referring 

to the sandstone that underlies the Wills Creek Formation.  Patchen (1996) notes that 

the term “Crabbottom” was first used by Swartz and Swartz (1940) to describe a thick 

sandstone, situated between the Wills Creek Formation and the McKenzie “Limestone”, 

in specific areas along the West Virginia/Virginia border.  Later correlations determined 

this outcrop unit to be equivalent to the Newburg Sandstone (Patchen, 1996).    

However, it should be noted that Swartz and Swartz (1940, abstract p. 2008) described 

the Crabbottom as a “thick-bedded, whitish sandstone at the base of the Wills Creek 

formation”.  The type section for this is located approximately two miles (three 

kilometers) east of the settlement of Blue Grass, Virginia (formerly known as 

Crabbottom) on Highland County Highway 642.  According to Diecchio and Dennison 

(1996), this unit is the Williamsport Sandstone.  The National Geologic Map Database 

(NGMDB) (2012), managed by the United States Geological Survey (USGS), does not 

recognize the Newburg or the Crabbottom as a valid stratigraphic unit.    
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Figure 2.1 Boundary of the Newburg Sandstone play in West Virginia and the three 
major producing gas fields and outcrop equivalents of the Newburg Sandstone (data 
collected from WVGES database, updated 2012). 

 

Most fields in the Newburg are a combination of structural and stratigraphic traps 

separated by down-dip salt water contacts or low porosity rocks.  Uncharacteristically 

over-pressured compared to most gas fields in the Appalachian basin, six to seven 

years appears to be the average life span of Newburg wells (Patchen, 1996).  This 

suggests well-developed porosity and permeability, especially in the pay zone, which is 

normally in the middle to upper section of the Newburg interval.  The major producing 
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fields are at least 5,000 feet deep and recorded initial pressures greater than 2000 psi 

(pounds per square inch) (Patchen, 1996).  These pressures appear to be good 

indicators of the Newburg’s ability to retain fluids once injected and long-term CO2 

containment should not be a problem as long as the storage pressure does not exceed 

hydrostatic pressure.      

 

 

Figure 2.2 Generalized stratigraphy of the Silurian in West Virginia with the Newburg 
Sand highlighted (modified from WVGES, 2012).   

 

As the Newburg play was being developed in the 1960’s, four rig hands died from H2S 

inhalation while working under the derrick floor.  Initially thought to be sourced in the 

Newburg itself, it was later determined that the source of this poisonous gas was a thin 

zone, several hundred feet above the Newburg, in the Salina.  It was mentioned as 

“sour gas” or “black water” on early completion records (Patchen, personal 

communication 2012).  Gases with high sulfur conditions are not surprising in an 

evaporite sequence and we see indications of evaporite deposition in the Wills Creek 

Formation in the form of gypsum in the core and outcrop.  Gypsum and halite casts 
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were observed in the Bluegrass outcrop of the Wills Creek Formation but not in the 

underlying Williamsport Sandstone in eastern West Virginia (Figure 2.3).   

  

 

Figure 2.3  Outcrop sample of calcareous siltstone from the Wills Creek Formation 
containing casts of gypsum and halite.  Location is approximately two miles east of 
Bluegrass, Virginia, on the northeast side of Virginia Route 642, west of U.S. Route 220 
in Highland County, Virginia (Samples from section described by Diecchio and 
Dennison, 1996).   

 

Natural gas from the Newburg was first discovered in the 1939, but it wasn’t until the 

middle of the 1960’s that production increased to significant quantities (Patchen, 1996).  

Production statistics from the West Virginia Geological and Economic Survey (WVGES) 

are available only starting in 1979 (Figure 2.4). The early 1980’s and 1990’s saw spikes 

in annual production reaching almost three billion cubic feet (3 bcf) followed by a 

general decline to approximately 500 million cubic feet (500 mmcf) in 2010 (Figure 2.4).   
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Figure 2.4 Graph showing annual gas production from reservoirs in the Newburg 
Sandstone (WVGES database, updated 2012). In 1983, there were issues with 
reporting among state agencies; therefore, an anomalous dip in production is shown for 
that year. 

 

2.1 Depositional History 

Through much of the Silurian, the West Virginia area was predominantly a seaway 

extending to open ocean to the south-west (Figure 2.5).  Baltica collided with North 

America during the Taconic orogeny closing off the seaway, and forming an epiric sea, 

with shallow, highly saline, evaporitic conditions (Figure 2.5).   Initial constriction of the 

seaway, during the Early Silurian, increased wave energy into the basin resulting in 
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high-energy marine deposits in southwest West Virginia.  The facies relationship 

between the marine deposits of the Newburg Sandstone, the siliciclastic deposits of the 

Williamsport Sandstone and the evaporite deposits of the Wills Creek Formation shows 

the gradual restriction of the seaway during the Silurian.  Once cutoff from wave action, 

a shallow basin formed with evaporite deposits of the Salina Formation (Smosna and 

Patchen, 1978).    These Upper Silurian evaporite deposits provide a major regional 

seal that forms traps in Newburg Sandstone gas reservoirs, and provides the regional 

seal for containment and the potential for long-term geologic storage of CO2. 

 

 

Figure 2.5 Global paleogeography during depostion of Silurian sequences (modified 
from Blakey, 2011).  In the early Silurian, the seaway is open to the ocean and becomes 
restricted forming an evaporitic basin during the Late Silurian as a result of the Taconic 
Orogeny.  General location of study area indicated by yellow star. 
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The traditional depositional model of the Newburg includes elements such as barrier 

islands, lagoons, and tidal marshes (Patchen, 1996).  Reworking of sediments implies 

high energy settings on a shallow shelf complete with sandstone units deposited in ebb 

and flood tidal deltas, lagoons, washover fans, and tidal deposits.  Deposition is 

interpreted to be a result of both wind and wave processes (Patchen, 1996) (Figure 

2.6).        

 

 

Figure 2.6 Traditional depositional model for the Newburg Sandstone showing the mix 
of barrier islands, tidal deltas, lagoons, washover fans and tidal deposits (Patchen, 
1996). 
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2.2 Structural Setting 

A majority of the thrusting in West Virginia is located east of the Appalachian plateau 

and therefore, east of major petroleum production.  In western West Virginia, normal 

faulting is the dominant structure in Precambrian-aged basement rocks.  West of the 

Appalachian mountains, the majority of faults in the Devonian Onondaga Limestone are 

inferred to be “normal” except in the Burning Springs area in western West Virginia, 

where reverse and thrust faults extend into the Devonian and younger rocks, and are 

responsible for the formation of a geologic anomaly known as the Burning Springs 

anticline (Figure 2.7).  Small thrust faults exist throughout the Devonian shales 

throughout the state.  

 

The Wood 351 well (API# 4710700351), one of only a few deep wells in West Virginia 

reported 1,527 feet (465 m) of repeated section between the Newburg Sandstone and 

the Oriskany Sandstone (Cardwell, 1971).  This anomaly has been determined be a 

result of thrust faulting, but it has not been associated with a particular orogeny 

(Cardwell, 1971).      
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Figure 2.7   Major faults and structure elements recognized by the West Virginia 
Geologic and Economic Survey.  Generally, thrusting and reverse faulting is confined to 
eastern West Virginia and normal faulting dominates to the west.  However, in the 
Burning Springs area, the Wood 351 well is described as having a significant amount of 
repeated section, beginning in the Lower Silurian attributed to thrust faulting.  This, in 
addition to regionally anomalous thrusting in younger, Devonian/Carboniferous rocks, 
led to the formation of the Burning Springs Anticline (WVGES database, updated 2012).  
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3.0 PREVIOUS AND RELATED WORK 

WVGES has released several publications that refer to the Bloomsberg facies in 

outcrop.  The earliest such release was in the 1924 Mineral and Grant County Report 

(Reger and Tucker, 1924).  Although Stout et al. (1935) is credited for first using the 

term, the name “Newburg” did not make an appearance in WVGES publications until 

Haught (1959) noted the name on well logs.  In addition to core descriptions, 

correlations and mapping, Patchen was involved in distributing information about the 

development of the Newburg gas fields in a series of American Association of 

Petroleum Geologists (AAPG) publications from the late 1970’s through the 1980’s 

(Lytle et al. 1972, 1973, 1974, 1975, 1976, and 1977; Patchen et al., 1978, 1979, 1980, 

1981, 1982, 1983, 1984, 1985, 1986, 1987, 1988, 1989, and 1990).  Most notably, his 

preliminary report chronicled the early stages of development within the play (Patchen, 

1967).  Cardwell (1971) devoted an entire publication to the Newburg Sandstone in 

which he discussed the characteristics of the individual gas fields and overall history of 

the development of the unit as a viable gas play.  Woodward (1941) compiled the first 

full report of the entire Silurian column.  Russell (1972) included the Newburg in his 

discussion of “pressure-depth” relations in the Appalachian region.  Smosna and 

Patchen (1978) described the evolution of the Appalachian basin throughout the 

Silurian.  Several studies have been conducted on the Warfield anticline, including Gao 

and Shumaker’s (1996) study of its impacts on hydrocarbon exploration.  As part of the 

Midwest Regional Carbon Sequestration Partnership (MRCSP), funded by the United 

States Department of Energy (U.S. DOE), potential sequestration volumes of individual 

gas fields were calculated (WVGES, 2005).  
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4.0 METHODOLOGY AND DATA SET 

Technical storage capacity for the Newburg Sandstone is calculated using the following 

equation: 

 

GCO2 = A hg фtot ρ E (USDOE, 2012) (1) 

 

GCO2 is an estimation of the CO2 in metric tons (tonnes) that can potentially be stored 

within a particular unit, A is the geographical area in square feet being assessed, hg is 

the gross thickness in feet of the target formation, фtot is the decimal average porosity 

of the entire unit being assessed, ρ is the density of CO2 in pounds per cubic foot 

(lbs/ft3) expected at pressure and temperature conditions represented by the particular 

rock unit in pounds per cubic feet, and E is the storage efficiency factor that represents 

the percentage of the total pore volume filled by CO2.   This factor is a P10, P50, and P90 

confidence interval that takes into account any barriers which may inhibit CO2 from 

accessing all of the pore space in the formation and uses values of .51%, 2.0%, and 

5.5%, respectively (USDOE, 2012).  The result is divided by 2200 to convert from 

pounds to tonnes (metric tons).            

 

Out of over 800 wells within the Newburg play, 102 had geophysical logs through the 

Newburg containing the following suite of logs: Gamma Ray (GR), Density Porosity 

(DPHI) and Neutron Porosity (NPHI).  The areal extent of these 102 wells defines the 



- 18 - 
 

study area (Figure 4.1).  GR logs were used in conjunction with the porosity logs for 

correlation purposes.  DPHI and NPHI logs were used to calculate the average porosity 

(фtot) throughout the interval. 

 

 

Figure 4.1    Map of study area, Newburg fields, locations of 102 wells used in 
calculations and location of type log (star) that comes from the Kan and Hocking C&C 
#20653 well (API# 4703903646) located in Kanawha County, West Virginia. 
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The type log used for this study comes from the Kan and Hocking C&C #20653 well 

(API# 4703903646), located in Kanawha County, West Virginia.  This is a non-

productive well targeting the lower Silurian Tuscarora Sandstone.  Typically, the 

Newburg is identified on well logs by a characteristic porosity response in the middle to 

upper zone of the interval.  This response is recognized by a dramatic increase in the 

DPHI curve that crosses over and surpasses the NPHI values. In relatively clean 

lithology (low clay content indicated by low gamma-ray values), such as the Newburg 

Sandstone, the crossover of DPHI and NPHI is indicative of gas in the pore space 

instead of liquids such as brine or oil.  Without the density and neutron curves, it can be 

difficult to distinguish the Newburg Sandstone from the overlying Salina Group and 

underlying McKenzie Formation (Figure 4.2a).  The low gamma ray values on the type 

log show predominantly clean carbonate and sandstone through the Newburg with a 

couple of shale zones appearing towards the bottom of the interval as reflected by high 

gamma ray values.  The negative DPHI values above and below the Newburg are good 

indicators of denser minerals such as anhydrite, typical of the overlying Salina evaporite 

sequence (Figure 4.2a) (Asquith and Krygowski, 2004).  After digitizing the type log, 

NPHI and DPHI values were “normalized” to eliminate negative values and averaged to 

create NORM_PHIA, or the amount of gas filling the pore space.  Using Petra™ 

software, water saturation (SW) was calculated and multiplied by NORM_PHIA to create 

Bulk Volume of Water (BVW) which reflects the amount of water filling the pore space 

(Figure 4.2b).  BVW and NORM_PHIA were then plotted together and shaded red and 

blue to reflect the amount of hydrocarbons and water filling the pore space respectively 

(Figure 4.2b).  Even though the type log shows cross-over indicative of gas at the top of 
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the formation, a Pickett Plot shows that between a third and a half of the pore space 

within the top five feet of the Newburg is filled with water, while water takes up a 

majority of the pore space in the rest of the formation (Figure 4.2c).  A closer look at the 

log allows one to determine where these zones are with respect to depth (Figure 4.2 a 

and b.).   

    

 

Figure 4.2a 
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Figure 4.2b 

 

Figure 4.2c 
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Figure 4.2 a. Type log, Kanawha County, API# 4703903646.  Newburg highlighted in 
yellow.  b.  Type log digitized.  NPHI and DPHI values were corrected to eliminate all 
negative values.  Yellow shading indicates cross-over of DPHI and NPHI which reflects 
gas.  BVW refers to bulk volume of water and the red and blue indicates the amount of 
gas and water filling the pore space (%) respectively.  Two shoaling upwards 
parasequences (Red arrows) are interpreted in the Newburg and underlying McKenzie 
formations. c. Pickett plot (left) shows water saturation (%) within the Newburg.  
Resistivity, PHIA and GR are plotted with respect to depth (right).   

 

Petra™ Software was used to depth register the necessary raster logs, digitize the 

interval of interest, and construct cross sections and maps.  Three cross sections were 

constructed through the study area to establish preliminary regional correlations (Figure 

4.3).    
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Figure 4.3a 
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.  

Figure 4.3b 
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Figure 4.3 a. Location of regional cross-sections within the study area.  b. Stratigraphic 
cross-sections using GR logs through study area.  Tie wells are color coded.  Color 
shading is indicative of gamma-ray value with lower gamma-ray values (clean 
sandstone and carbonate) in yellow and higher gamma-ray values (shale rich interval) 
gray.  Datum is base of the Newburg.   

 

Once initial correlations were completed, the Newburg in the remaining wells throughout 

the study area became much easier to identify.  The depth map shows that, throughout 

the study area, the formation sits well below the 2600 ft depth limit necessary to keep 

CO2 in its supercritical phase at hydrostatic conditions (Figure 4.4).  The sub-sea 

structure shows a relatively uniform deepening to the north-east (Figure 4.5).  In south-

east Wirt County and central Fayette County, there appears to be an anomaly in the 

structure and isopach maps (Figure 4.5, 4.6).  In Fayette County, thickening appears to 

be depositional (Figure 4.7).  In Wirt County, the log signature appears to show that the 

section is repeated, suggesting the presence of a compressional fault (Figure 4.8).  This 

is a previously unrecognized compressional fault cutting the Silurian and appears to be 

related to the Burning Springs anticline. 

 

The average porosity map was created by digitizing the NPHI and DPHI curves (Figure 

4.9).  Once digitized, negative values were converted to “0” and then an arithmetic 

average porosity (PHIA) was calculated over the entire interval using the following 

equation: 

PHIA = (DPHI + NPHI) / 2  (2) 
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Although the major Newburg gas fields are described as structural and stratigraphic 

traps separated by saltwater contacts (Patchen, 1996), the highest average porosities 

are outside of these areas which indicates that production is predominantly controlled 

by permeability boundaries.  High porosity zones exist within the Newburg Sandstone in 

gas fields, but they generally represent only a quarter to a third of the entire 

stratigraphic interval.   A pore-foot map was constructed to help identify areas with the 

combination of thick, high porosity in the Newburg Sandstone (Figure 4.10). 
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Figure 4.4 Newburg depth to formation top map.  The formation lies well below the 
2600 feet (800m) depth limit required to maintain and efficiently store CO2 in a 
supercritical phase at hydrostatic conditions.  Contour interval is 500ft (150m).     
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Figure 4.5 Newburg sub-sea structure map shows a relatively uniform dip to the north 
and north-east in the deeper parts of the foreland basin in Braxton County, West 
Virginia.  Anomaly in Wirt County is interpreted as compressional basement faulting 
associated with Burning Springs anticline.  Contour interval is 200ft (60m).  
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Figure 4.6 Newburg isopach map.  Anomaly in Wirt County is possibly associated with 
basement faulting.  Thin zone running east-west across central part of study area 
appears to coincide with an increase in average porosity across the Newburg.  Contour 
interval is 5 ft (1.5m).  Locations of Figure 4.7 and 4.8 referring to anomalous thickening 
events. 
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Figure 4.7 Isopach map and cross-section showing anomalous thickening of Newburg 
in Fayette County.  This is interpreted to be a result of increased deposition of individual 
units.   
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Figure 4.8 Isopach map and cross-section showing anomalous thickening of Newburg 
in Wirt County.  GR log signature in Wirt 725 appears to repeat, which is interpreted to 
be a result of compressional faulting.  
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Figure 4.9 Newburg average formation porosity map.  The increased average porosity 
zone that runs east-west across the central part of study area appears to be consistent 
with thinning in the Newburg.  Contour interval is .02 porosity units on a scale from 0 - 1. 
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Figure 4.10 Newburg pore-foot map is used to identify the thickest zones in the study 
area with the highest amount of porosity.  Contour interval is .2 por-ft. 
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The highest pore-foot areas appear to be isolated features and center around two 

individual wells in Kanawha County.  The first, API# 4703902433, was a non-productive 

well that targeted the lower Silurian Tuscarora Sandstone.  Although the log shows the 

Newburg to be very clean and porous in this well, according to well records, it is also 

saturated with saltwater (WVGES database, accessed July 17, 2012) (Figure 4.11).  

 

 

Figure 4.11 Kan 2433 (API # 4703902433).  Well with highest pore-foot value for the 
Newburg in the study area.  Salt water was produced from the Newburg in this area. 
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The well with the second highest pore-foot value in the study area is also located in 

Kanawha County.  API# 4703903914 was a successful well that produced from the 

Tuscarora.  This log has the characteristic NPHI/DPHI cross-over in the upper section of 

the Newburg, as well as two smaller instances in the middle and lower part of the 

section, indicative of gas (Figure 4.12). 

 

 

Figure 4.12 Kan 3914 (API# 4703903914).  Well with second highest pore-foot value 
through the Newburg in the study area.   

 

While the pore-foot map shows areas of isolated porosity, it does little to demonstrate 

connectivity between and across the study area.  A cross-section through Jackson and 

Kanawha counties shows that porosities greater than or equal to 10% exist in the upper 

part of the Newburg section across a large area (Figure 4.13 a, b).  Unfortunately, few 

porosity logs are available and definition of these high porosity areas is limited to the 
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individual producing fields.  It is difficult to determine the characteristics of the formation 

without more well control outside of the major production fields or a better 

understanding of the depositional model.   
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Figure 4.13a 
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Figure 4.13b 
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Figure 4.13 a. Map showing locations of cross-section through Jackson and Kanawha 

Counties highlighting wells with Newburg porosity greater than or equal to 10%.  b. 

Cross-section; datum is the top of the Newburg with porosity greater than 10% 

highlighted in red.   

 

4.1 CALCULATIONS 

The density of CO2 was determined using standards set by the National Institute of 

Standards and Technology (NIST, 2011).  Average formation temperature of the 

Newburg has been determined to be 130 degrees Fahrenheit (Patchen, 1996).  

Minimum and maximum pressures were determined by multiplying the hydrostatic 

gradient (0.433 pounds per square inch per foot) by the depth range of the Newburg, 

which is between 4,000 feet (1,220 m) and 9,000 feet (2,740 m) (Figure 4.14).       

 Referring to Equation (1) where: 

A = 200 billion ft2 

hg = 15.2 ft 

фtot = .018 

ρ = 31.75 – 51.89 lbs/ft3 

E = .0051, .020, .055 
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The Newburg CO2 storage potential at minimum pressure conditions of 1,732 pounds 

per square inch (psi) is between 4.0 and 43.4 million tonnes.  The Newburg CO2 

storage potential at maximum pressure conditions of 3,897 pounds per square inch (psi) 

is between 6.6 and 71.0 million tonnes (Figure 4.14).  Annual CO2 emissions in West 

Virginia is approximately 77 million tonnes (NATCARB, 2012); therefore, the potential 

storage capacity for the Newburg is less than one year of West Virginia’s emissions. 

 

Figure 4.14 Newburg CO2 storage potential at maximum and minimum pressure 

conditions.  
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5.0 REFINING THE DEPOSITIONAL MODEL 

Coring in the Newburg fields was difficult due to lack of cement in the pay zone 

(Patchen, 1996).  Two wells (API#’s 4707901155, 4710701266) had the necessary log 

suites for a detailed analysis.  In addition, four cored wells (API#’s 4708700714, 

4703902112, 47032501136 and 4703501224,) allowed for a detailed description from 

the base of the Salina, through the Newburg, into the top of the McKenzie.  Several 

samples were taken from these cores and used to make thin sections illustrating typical 

and unusual features (Figure 5.1). 

 

Figure 5.1 Study area with locations of wells with detailed log analysis and core 
descriptions. 
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5.1 Core Analysis 

Core from the Roane 714 (API# 4708700714) well starts in the Newburg at a depth of 

6,284 ft (1,915 m) and continues into the McKenzie to a depth of 6,299 ft (1,920 m).   

This well is located in the center of the study area and was originally drilled as an 

unsuccessful test of the Tuscarora Sandstone.  Spudded in 1957, the well’s gamma ray 

trace is recorded in micrograms RA EQ per ton units while the Neutron is in standard 

counts per second (Figure 5.2 a.).  The core is a mix of fine-grained silty/sandy 

carbonate and fine-grained sandstone.    A common feature throughout the core is clay 

beds that have been disrupted by various degrees of bioturbation.  A dark-grey shale 

interval exists at 6,290 ft (1,917 m).  This shale is picked on the log as a spike in the 

gamma ray count and is interpreted as the top of the McKenzie Formation, making the 

core about two feet shallower than the log.  Immediately below this shale is a silica- 

cemented, fine-grained quartz sand with vugs, shale clasts and signs of bioturbation.  

Above the shale interval, ostracodes are visible in the core (Figure 5.2 b and c).   

 

Several thin sections were taken from the Newburg in this core.  They show poorly 

sorted, sub-angular quartz grains isolated in a clay-rich and carbonate matrix.  In thin 

section, dolomite rhombs appear sporadically throughout the interval and microfossils 

(possibly ostracodes) are present at the top of the core (Figure 5.2 d).  Carbonate 

cement occurs filling intergranular and fracture porosity (Figure 5.2 d, e).  Minimal 

porosity still exists, as dissolution of sediments is evident (Figure 5.2 d).  The 

distribution of the clay particles among the quartz grains in Figure 5.2 d appears to be 
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uneven.  This may be due to bioturbation if the area of calcite cement is interpreted as a 

burrow, where this uneven distribution is especially noticeable (Figure 5.2 d).       

 

In the upper part of the McKenzie, storm deposits, indicated by intraclasts, are generally 

followed by a gradual return to biological activity.  The two shale layers are interpreted 

as rises in sea level, which subsequently fell, allowing for a slow restoration of biologic 

activity (Figure 5.2 c.).  Faunal content increases towards the top of Newburg; however, 

the gamma ray increase that overlies the Newburg suggests one last rise in sea level 

before deposition of the Salina evaporite sequence (Figure 5.2 a.).  Circulation and 

wave action appear to be intermittent, thus creating an environment subjected to rapid 

changes in localized sea level, perhaps in a tidal channel. The repetitive nature of these 

deposits is noticeable in the core and on the GR curve through the Newburg in this well 

and is interpreted as being part of a set of marine parasequences, reflecting a 

prograding shoreline (Figure 5.2a.)  These sequences are recognized by a series of 

coarsening upward successions separated by a flooding surface, typically represented 

by shale deposits (Kamola and Wagoner, 1995).     
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Figure 5.2a 
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Figure 5.2b 
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Figure 5.2c 
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Figure 5.2d 

 

Figure 5.2e 

 

Figure 5.2 Roane 714 (API# 4708700714) Geophysical log (a.), photographed core 
(b.), lithological log (c.) and thin sections (d. and e.).  Yellow color in geophysical log 
represents the Newburg.  Blue color in thin sections represents porosity. Red arrows on 
logs and core description (a. and c.) indicate individual parasequences. 
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Core from the Kanawha 2112 (API# 4703902112) well is taken from the Kanawha 

Forest field; however, no production is documented from this well.  The cored interval 

includes the base of the Salina and most of the Newburg between the depths of 5,400 

and 5,432.5 ft (1,646 and 1,656 m) (Figure 5.3 a).  Completed in 1967, the well was 

fractured in the Newburg and labeled as a development.  The targeted production 

depth, 5418-5430 ft (1,651- 1,655 m), is marked at the top by an anomalous decrease 

in bulk density that coincides with a porosity increase.  The log shows fluctuations in the 

gamma ray count in the transition from the McKenzie to the Newburg. The high gamma 

ray count towards the bottom of the Newburg is interpreted as a shale zone (Figure 5.3 

a).    

 

This core is predominantly composed of sandy carbonate with bioturbation throughout 

and is difficult to correlate with the log due to the lack of available continuous core.     If 

one uses the black carbonaceous shale in the core at 5416 ft (1651 m) as the base of 

the Salina, picked as high gamma ray values on the log and the “transitional zone” at 

5424 ft (1653 m) as the most porous value on the log, the core appears to be four to five 

feet shallower than the log.  It is in this “transitional zone” where dramatic changes in 

oxygen content occurred, indicated not only by color, but also by variations in the level 

of biological activity which are evidenced by fossil voids and bioturbation.  Algal 

laminae, disrupted by bioturbation and underlain by poorly cemented red and green 

layers; indicating either an abrupt transition from oxygen rich to anoxic conditions or a 

change in salinity or weather conditions.  Overlying the transitional zone, where biologic 

activity appears to become more intermittent, the transition from the Newburg to the 
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Salina is picked at a depth of approximately 5,418 ft (1,651 m) where core is missing 

(Figure 5.3 c).  Up-section in the Salina, at core depths of 5,406 ft and 5,411 ft (1,648 

and 1,649 m), brittle, black carbonaceous shale lies between cross-beds of sandy 

carbonate (Figure 5.3 b).  The presence of carbonaceous black shales may indicate low 

intertidal conditions which are more influenced by fluvial processes rather than marine, 

indicative of an estuarine setting (Dalrymple et al, 1992).   

 

Gypsum is identified in the Salina section of the core as filling in fractures and burrows.  

It is also present in the “pay zone” of the Newburg as part of the matrix.  A closer look at 

5,426.15 ft (1,654 m) shows that the gypsum is replacing dolomite (Figure 5.3 d).  

Intergranular porosity exists just below this zone and in some cases appears to be a 

result of dolomite replacement (Figure 5.3 e).   

 

The repetitive conditions of shale, overlain by intervals of gray silt, which transition into 

brown sandstone persist throughout the remaining deposition of the Newburg and into 

the Salina and are reminiscent of the parasequences described in the Roane 714 core.    
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Figure 5.3a 
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Figure 5.3b 
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Figure 5.3c 
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Figure 5.3d 

 

Figure 5.3e 

 

Figure 5.3 Kanawha 2112 (API# 4703902112) Geophysical log (a.), photographed core 
(b.), lithological log (c.) and thin sections (d and e.).  Yellow color in geophysical log 
represents the Newburg.  Blue color in thin sections represents porosity.  Red arrows on 
logs (a. and c.) indicate individual parasequences. 
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The Jackson 1136 (API# 4703501136) well is located in the South Ripley Newburg field.  

Completed in 1967, was classified as unsuccessful.  The cored interval includes the 

base of the Salina, and the top of the McKenzie and appears to run deeper than the log 

signature by about one and a half feet (Figure 5.4 a).  Although the Newburg is in 

disarray and could not be confidently placed in stratigraphic order, one can still identify 

similar parasequences in the core to those previously described when compared with 

the log.   

 

The base of the core consists of interbedded sands and shales suggesting abrupt 

changes in local environment (to a lesser scale than the “transition zones” observed in 

the Kanawha 2112 core).  The contact between the McKenzie and the Newburg, at a 

core depth of 5,727.5 ft (1,746 m), appears as a change from gray silty shales with 

periodic intraclasts, into clean, cross-bedded, white quartz sandstone that contains 

some bands of organic material, or clays, and finer quartz sand layers (Figure 5.4 b).  

Preceded by an episode of black shale deposition at 5,730 ft (1,747 m), a regressive 

sequence picked at the high, “clean” gamma ray trace on the log (Figure 5.4 a).   

 

Although it is disorganized, several pieces of core were marked with footage values in 

the Newburg section.  A thin section at 5,715.5 ft (1,742 m) shows some calcite spar   

filling pore space between quartz grains (Figure 5.4 d).  A closer look at this section 

shows gypsum filling in the pore space between the individual grains (Figure 5.4 e).  
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Dolomite rhombs appear to be replaced by gypsum, as they do in the Kanawha 2112 

core.   

The Newburg appears to begin with a low energy, tidal pool, or lagoonal deposit, which 

transitions into potential tidal channel deposits.  Generally, the questionable section of 

this core appears to reinforce the shoaling upward sequence with silt intervals and shale 

transitioning to coarser grained sandstone as you move up section (Figure 5.4 b).  The 

transition into the Salina shows a dramatic gamma-ray increase, normally interpreted as 

shale, which implies a localized rise in sea level signaling the beginning of another 

parasequence.   
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Figure 5.4a    
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Figure 5.4b    
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Figure 5.4c    
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Figure 5.4d   

 

Figure 5.4e   

 

Figure 5.4   Jackson 1136 (API# 4703501136) Geophysical log (a.), photographed core 
(b.) (Red “X” indicates depth at which the core was not in order and thus, not 
photographed), lithological log (c.) and thin sections (d. and e.).  Yellow color in 
geophysical log represents the Newburg.  Blue color in thin sections represents 
porosity.  Red arrows on logs (a. and c.) indicate individual parasequences.   
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5.2 Log Analysis 

An Excel™ spreadsheet, with macros and formulas prepared by Dr. Tim Carr (2008), 

was used to conduct a detailed log analysis on two wells in the study area.  The curves 

used for these calculations include photoelectric (PE), DPHI and NPHI.  Percentages of 

quartz, clay (in the form of Illite), calcite and porosity were calculated and plotted with 

respect to depth.    

 

The Wood County well, API# 4710701266, was completed in 1983 in the Middle 

Devonian Oriskany Sandstone; however it was drilled through the Newburg and into the 

Upper Ordovician Juniata red beds.  The Newburg in this well appears to have repetitive 

intervals of higher calcite deposition and higher quartz influx.  Simultaneously, a steady 

influx of terrigeneous fine clay material is suggested throughout (Figure 5.5 a).  Porosity 

does not show up on the composition plot and when the PHID and PHIN are averaged, 

this is reflected on the log.  This is further reinforced by high density values throughout 

the interval.  Although according to the analysis there is no porosity, any porosity that 

does exist is likely saturated with water (Figure 5.5 a, b).   

The progradational parasequences previously described in the cored intervals is not 

seen in the Wood 1266 well log (API # 4710701266).  A retrogradational sequence, 

capped by a maximum flooding surface (MFS), consisting of predominantly calcite, 

marks the transition from the McKenzie into the Newburg.  This gradual flooding 

sequence continues through the entire Newburg interval in this area.    
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Figure 5.5 a 

  

Figure 5.5 b 

Figure 5.5 a. Log analysis of Wood 1266 (API # 4710701266).  Compositional plot.   
b. Pickett plot.  Red arrows on log (a.) indicate individual parasequences. 
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The Putnam County well, API# 4707901155, was completed in 1990 in the Upper 

Devonian Lower Huron Shale.  In this well, porosity is difficult to determine from log 

analysis because of a lack of an NPHI log.  Throughout the analyzed interval, the 

Newburg appears to be predominantly composed of quartz with a “stringer” of calcite 

towards the bottom of the Newburg.  Density values decrease in the upper half of the 

interval, possibly due to pore space becoming saturated with water (Figure 5.6 a and b).  

This log shows the shoaling upward sequence typical of Newburg deposition. 

 

 

Figure 5.6 a 
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Figure 5.6 b 

Figure 5.6 a. Log analysis of Putman #1155 (API# 4707901155).  Compositional plot.  
b. Pickett plot.  Red arrows on log (a.) indicate individual parasequences. 

 

5.3 Modern Analogue 

Sand-rich carbonate intervals with intermittent influxes of terrigeneous fines appear to 

have been consistently deposited throughout the Newburg interval, with finer material 

found in the Roane 714 well.  In core, low energy sedimentary structures reinforce the 

idea of a restricted basin; however, repeated parasequences show the position of the 

shoreline was constantly changing.    

 

A majority of the study area reflects consistent thicknesses throughout, with the 

exception of the two anomalies described in the north and south of the study area 
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(Figure 4.6).  The southern anomaly could be a result of deposition or thrusting due to 

its proximity to the Taconic uplift.  If the northern anomaly is interpreted as increased 

deposition, a barrier island model may be sufficient.  However, as stated earlier, there is 

an abundance of repeated material due to thrusting as observed in the Sand Hill well 

(Cardwell, 1971).  Assuming that these increases in thicknesses are a result of 

structural processes, a central-estuarine, tidal flat model may be adequate to describe 

deposition (Figure 5.7).    

 

Figure 5.7 Estuarine depositional model (source: Dalrymple et al., 1992). 
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Famous for its unique, present-day carbonate production, the Persian Gulf (Figure 5.8) 

is not known for its barrier islands.  Instead, it is known for a shallow, sloping, carbonate 

ramp, and its location within a restricted basin.  Sediments typically fine toward the 

basin and become coarser landward.  There are typically no barriers to incoming ocean 

currents so energy offshore is low and gradually increases landward (Bathurst, 1975).  

In the Persian Gulf model, the finer grain size in the Roane 714 well, compared to the 

other cores, would place this well further offshore compared to the other cored wells.   

  

 

Figure 5.8 Satellite image of Persian Gulf and surrounding region (Google Earth, 2011). 
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The Persian Gulf is also known for its high salinities and high evaporation rates.  

Gypsum appears in the western cores in the form of clasts and replacement of dolomite.  

The Roane 714 core appears to be free of gypsum and abundant in carbonate.  The 

absence of evaporites in this well compared to the other cored wells to the west 

suggests an undulating shoreline was probably situated somewhere in between, during 

deposition of the Newburg (Figure 5.9).   

 

Figure 5.9 Map showing general accumulation of gypsum during Newburg deposition in 
the study area.  

 

Intertidal and supratidal deposits were observed in all the cores implying that water 

depth throughout the study area ranged from zero to several feet (Figure 5.10).   The 

lack of relief during deposition of the Newburg may imply that changes in sea level were 

most likely localized and not the result of eustacy.    Dark shales in the Newburg could 
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be the result of relatively shallow, restricted environments, such as tidal pools or 

lagoons, where organic matter could accumulate without being degraded. 

 

 

Figure 5.10 Depositional environments, energy levels and diagnostic criteria in Wayne 
County McKenzie core.  Red checks represent evidence observed in core (Figure 
modified from Patchen and Smosna, 1975, p. 2274.)  

 

The resulting depositional model for the Newburg could be a combination of the 

estuarine and carbonate ramp environments within a restricted basin, with wind and 

fluvial processes providing a majority of the oxygen and siliciclastics, while algae growth 

provided a majority of the organic material.  Tidal channels probably accounted for any 

localized heterogeneity (Figure 5.11).      
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Figure 5.11 Coastline image of the Persian Gulf.  

Source: http://ourlifeinprague.wordpress.com/2011/09/23/desert-safari-part-1/  

  

Using the presence of gypsum in the core combined with the isopach maps, the 

restriction of the basin during deposition of the Newburg is interpreted.  The isopach 

maps provide an idea of the tidal/subtidal boundary, otherwise known as the central 

mixing zone in the estuarine model (Dalrymple et al., 1992).  The lack of gypsum in the 

Roane County well indicates that this area was predominantly submerged during 

Newburg deposition.  Gypsum became present in other locations later in the transition 

from the Newburg to the Salina (Figure 5.12). 
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Figure 5.12 Interpreted restriction of the basin during deposition of the Newburg. 
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6.0 Conclusions 

The Newburg appears to be adequate for small-scale injection tests in areas defined by 

fields where production has ceased; however, on a regional scale, porosity is not 

consistently high throughout the study area.  Rather, it is limited to a few “sweet spots” 

that contain a highly porous zone within the formation.   These sweet spots are defined 

by structural and stratigraphic traps associated with salt water contacts, generally 

confined to the south and west of the study area.  The integrity of the seal appears to be 

more than adequate to retain CO2, as evidenced by the high production pressures.  

 

The results of porosity calculations were relatively surprising for a formation known for a 

pay zone with high production pressures and lack of cement.  Because the porosity was 

calculated across the entire interval, finer-grained material deposited by migrating 

shorelines and fluvial systems offset the otherwise more highly porous beach sands.  By 

computing porosity cutoffs, an attempt was made to compensate for this lack of porosity 

in an otherwise highly productive formation.  In general, the defined porosity cutoffs 

mirrored the location of the North/South Ripley, Kanawha Forest and Coopers Creek 

fields.  One reason for the poor definition of the fields could be due to poor well logging 

conditions through the pay zone reflecting a lack of cement; therefore, enlarging the well 

bore and creating a poor log signature (Patchen, personal communication 2011).  

Otherwise, outside of the defined production fields, well control remains an issue when 

refining the porosity maps.   
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A carbonate ramp model, with estuarine influence is proposed for the Newburg as an 

alternative to the barrier island model.  Similar lithologies exist in all the cores, excluding 

the presence of gypsum in Roane 714.  Another distinguishing characteristic in this well 

is the finer grain size compared to those in the other available cores.   Finer-grained 

sands become more prevalent in this part of the study area.   

 

Based on the analysis of core and well logs, the Newburg Sandstone generally appears 

to consist of two marine parasequences representing shoreline progradation.  The 

thicker, second parasequence is responsible for providing most of the porosity and 

hydrocarbon reservoirs in the interval.  This shoaling-upward sequence consistently 

exists in all the logs and core analyzed in this study except for the Wood 1266 well.       

 

Examination of core, in conjunction with analysis of well logs, allows one to interpret a 

general regression of an epiric sea, which led to the late Silurian evaporite sequence.  

By interpreting the depositional sequences in a study area, a lack of well control can 

somewhat be compensated for.   

 

Finally, previous descriptions have correlated the Newburg with the Williamsport 

Sandstone, previously referred to as the Crabbottom Sandstone; however, evaporite 

deposits identified in core appear to be more characteristic of those found in Wills Creek 
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outcrops.  Therefore, it’s possible the Newburg is more stratigraphically equivalent to 

portions of the Wills Creek Formation instead of the Williamsport Sandstone.    

 

It appears that the Newburg Sandstone is appropriately suited for small-scale injection 

tests into individual, proven, exhausted production fields, rather than large scale, 

regional storage operations.  Also, with the trend of utilization of CO2 for enhanced 

recovery purposes becoming more dominant, the Newburg may be a good candidate for 

the enhanced recovery of natural gas.  Brine disposal operations may also benefit from 

the unique characteristics of the Newburg.  Nevertheless, it remains an interesting 

formation that should remain on one’s radar for present and future trends in dealing with 

America’s energy issues. 
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