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ABSTRACT 
 

IQGAP1 Knockdown Enhances the Endothelial Barrier In Vitro 
 

Wentao Zhang 
 

 
IQGAP1 overexpression inhibits E-cadherin-mediated epithelial cell-cell adhesion by 
distabilizing the adherens junctions, and activated Rac1 and Cdc42 may prevent these 
effects by removing IQGAP1 from the adherens junction complex.  In the present 
study, we determined if IQGAP1 associates with the adherens junction of endothelial 
cells and affects endothelial barrier function.  In human umbilical vein endothelial 
cells (HUVECs), IQGAP1 associated with VE-cadherin, the catenins, β, γ, α, and 
p120, but not with N-cadherin or the tight junction proteins, occludin, claudin-5, and 
ZO-1.  Detergent extracted most of the IQGAP1 associated with VE-cadherin.  
Treatment of endothelial cells with sphingosine-1-phosphate (S1P), which increases 
the activity of Rac1, increased the association of IQGAP1 with Rac1, and the amount 
of insoluble VE-cadherin and β-catenin at intercellular junctions.   To determine if the 
increased localization of junctional VE-cadherin induced by S1P occurred via the 
removal of IQGAP1, the protein level of IQGAP1 was reduced with small interfering 
RNA or siRNA.  Reduction of IQGAP1 by transfection of siRNA resulted in a higher 
endothelial electrical resistance in HUVECs as compared to transfection of a 
scrambled siRNA.  Reduction of IQGAP1 also induced an increase and a decrease, 
respectively, in the protein levels of VE-cadherin and N-cadherin.  Also, more VE-
cadherin and less N-cadherin were associated with p120 and β-catenin.  Furthermore, 
more insoluble (cytoskeletal-associated) VE-cadherin was localized at intercellular 
junctions and less insoluble N-cadherin was present in HUVECs.   Overexpression of 
a VE-cadherin-α-catenin fusion protein, which lacked the binding sites for β-catenin 
on VE-cadherin and α-catenin, diminished the localization of junctional IQGAP1.  
These findings suggest that IQGAP1 knockdown positively influences the endothelial 
barrier by increasing the protein level of VE-cadherin and the interaction of VE-
cadherin with the cytoskeleton, possibly by enhancing the p120-VE-cadherin 
association.   
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I.  LITERATURE REVIEW 

 
A. Endothelial Cell-Cell Junctions   

Intercellular junctions, including adherens junctions (or zonula adherens), tight 

junctions (or zonula occludens) and gap junctions, connect adjacent vascular 

endothelial cells and impart a semi-permeable barrier to the passage of water and 

proteins.  The presence and organization of these junctional complexes depend on the 

type of blood vessel and the permeability requirements of the perfused organs.  Gap 

junctions mediate cell-to-cell communication by allowing the passage of small 

molecular weight solutes between neighboring cells.  Tight junctions as “a barrier” 

and “a fence” are responsible, respectively, for regulating paracellular permeability 

and maintaining cell polarity.  Endothelial adherens junctions are involved in cell-cell 

recognition, contact inhibition of cell growth, and paracellular permeability to 

circulating leukocytes and solutes (4).  This dissertation focuses mainly on molecular 

organization and functions of adherens junctions in endothelial cells.  The regulation 

mechanisms of adherens junctions will also be discussed in this literature review. 

1. Vascular Permeability   

Vascular endothelia form a selective barrier between blood and the 

extravascular space that controls the passage of fluid, electrolytes, proteins and even 

cells.  As a barrier, vascular endothelia regulate many biological processes such as 

inflammation, white cell emigration, and angiogenesis.  Disruption of the endothelial 

barrier leads to accumulation of fluid and macromolecules in the interstitial space, 

resulting in edema and dysfunction of tissues and organs and distant metastasis of 

cancer cells.  In normal (undisturbed) tissues, proteins are transported by transcytosis 

through plasmalemmal vesicles and channels and their uncharged diaphragms and 

paracellularly through intercellular junctions (61).  During normal inflammatory 
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processes, plasma and some blood cells can pass paracellularly through intercellular 

junctions transiently separated by vasoactive mediators, such as histamine, bradykinin, 

serotonin, and platelet-activating factor.   

  An excessive inflammatory response as well as growth factors, cytokines, 

and reactive oxygen species can activate the microvascular and venular endothelia to 

elicit intracellular signaling reactions that compromise endothelial barrier function 

(112).  Activated leukocytes and cancer cells of high metastatic capacity also have the 

potential to breakdown the integrity of the vascular endothelial barrier.  Vascular 

endothelial growth factor (VEGF)-expressing ID8 murine ovarian carcinoma cells, 

injected intravenously into the tail vein of mice, formed more metastatic lesions in the 

lung than did injection of control cells.  The high level of VEGF disrupted endothelial 

cell-cell junctions and contributed to tumor cell extravasation and metastasis (103).  

Therefore, the maintenance and regulation of the endothelial barrier is important 

physiologically and pathologically. 

Water, electrolytes, and small molecules can exchange freely between blood 

and extravascular compartments by diffusion and bulk flow.  They may pass through 

the cell via vesicles and membrane channels or parcellularly via fenestrae and 

intercellular junctions.  The rate of exchange is determined by hydrostatic pressure, 

oncotic pressure, and the permeability of the capillary wall.  Permeability is usually 

assessed by hydraulic conductivity (Lp), the diffusional permeability coefficient (Pd), 

and/or the reflection coefficient (σ).  Hydraulic conductivity is the flow of water 

through a unit area of vessel wall per unit difference in hydrostatic pressure across the 

wall (Lp=(Jv/A)/ΔP, when the osmotic pressure is held constant or Δπ=0).  The 

diffusional permeability coefficient is the mass transport of a substance per unit 

concentration difference, under conditions when the net fluid flow through the 
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capillary wall is zero (Pd= (Js/A)/ΔC, when Jv=0) or held constant.  The reflection 

coefficient compares the penetration of a solute with that of the solvent through a 

membrane (σf  =1- Js/ JvC, when ΔC=0).  If the membrane is impermeable to a solute, 

σ=1; if the membrane is totally permeable to a solute, σ=0 (60). 

2. Adherens Junctions 

Along the vascular tree, adherens junctions are ubiquitously distributed and 

expressed at the periphery of endothelial cells.  Adherens junctions consist mainly of 

cadherin-catenin complexes.   

a. Cadherins   

Over 80 members of the cadherin superfamily are expressed within a single 

mammalian species and each cadherin has a unique tissue-distribution pattern.  

Endothelial cells express at least five cadherins: N-cadherin (neural cadherin), P-

cadherin (placental cadherin) (54), T-cadherin (78), Cadherin-5 or VE-cadherin 

(vascular endothelial cadherin) and VE-cadherin 2 (or protocadherin 12, PCDH12) 

(79).  Among these cadherins, VE-cadherin is specifically localized to the inter-

endothelial cell junction (49) and mediates calcium-dependent, homophilic binding of 

endothelial cells through five extracellular cadherin repeats, a transmembrane region, 

a juxtamembrane region, and a highly conserved cytoplasmic tail (1, 49).  In the 

presence of calcium, extracellular domains bind laterally to each other, forming cis-

dimers, or in a head-to-head manner with cadherins on adjacent cell, forming trans-

dimers.  Actually, VE-cadherin can confer strong cell-cell adhesion by forming cis-

dimers, trans-dimers, lateral clusters, and linkage with the actin cytoskeleton (101).  

So, VE-cadherin plays an important role in the regulation of vascular permeability 

(27).  But when Carmeliet et al. (1999) generated mice that lacked a functional 

Cadherin-5 (VE-cadherin) gene, which expressed a mutant Cadherin-5 gene lacking 
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the beta-catenin binding cytoplasmic tail, or that did not express a detectable 

Cadherin-5 level, they found in all of these mice that deletion or truncation of the 

Cadherin-5 gene affected the assembly of endothelial cells in vascular plexi, but not 

completely, suggesting that other cadherin(s) may also mediate endothelial cell-cell 

adhesion (9). 

N-cadherin, another member of the classical cadherin family, is usually found 

at cell-cell contact sites in tissues where it is expressed.  In endothelial cells, N-

cadherin remains diffusely distributed at the cell membrane (67) and is necessary for 

sphingosine 1-phosphate (S1P)1 receptor-induced endothelial-mural cell interaction 

(74).  Thus, N-cadherin may promote endothelial cell adhesion and communication 

with pericytes or smooth muscle cells expressing N-cadherin.  Recent evidence shows 

that N-cadherin also localizes to endothelial cell-cell junctions, indicating a possible 

role of N-cadherin in mediating endothelial cell-cell adhesion (56).  However, little is 

known about N cadherin-mediated homotypic cell adhesion.  Once calcium-dependent 

homophilic binding of VE-cadherin or N-cadherin is disrupted, VE-cadherin or N-

cadherin is internalized, possibly recycled or degraded (40), lowering the protein level 

in cells. 

Both VE- and N-cadherins can directly bind to shc, an adapter protein in the 

Ras signaling pathway.  And expression of VE-cadherin in confluent endothelial cell 

monolayers induced Rac activation and Rho inhibition, but N-cadherin expression 

induced the opposite and promoted cell migration (68). 

The specific transmembrane protein of endothelial cells called cadherin-5 or 

vascular endothelial (VE)-cadherin (15)  binds p120 via its juxtamembrane domain, 

and binds β-catenin and plakoglobin (δ-catenin) through its cytoplasmic tail or 

catenin-binding domain.  β-catenin and plakoglobin in turn link α-catenin, which also 
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binds linker proteins such as vinculin, α-actinin, and ZO-1.  These linker proteins and 

the adhesion modulation domain of α-catenin link the VE-cadherin/β-catenin 

complex to the actin cytoskeleton (48).  The current dogma that the VE-cadherin/β-

catenin complex links to to actin via α-catenin, however, has recently been challenged.  

Two back-back publications by Drees et al. (16) and Yamada et al. (109) suggest that 

α-catenin does not bind simultaneously to both the VE-cadherin/β-catenin complex 

and to actin and that this purported linkage is more dynamic than originally thought.  

Additional studies are required to determine the validity of this new hypothesis. 

 
b. Catenins   

Catenins (α, β, γ, and p120) are members of the Armadillo family, which is 

characterized by a central domain that is composed of a series of imperfect 45-amino 

acid repeats.  Each catenin exerts several functions through interactions of its 

armadillo repeat domain with diverse binding partners.  The cytoplasmic tail of VE-

cadherin binds to β-catenin, which in turn binds to α-catenin to form a complex that 

links to the actin cytoskeleton.  γ-Catenin (plakoglobin) also interacts with VE-

cadherin and links the VE-cadherin complex with the actin cytoskeleton and/or 

connects VE-cadherin to intermediate filaments (84).  A fourth catenin, p120 

(p120cas), was originally characterized as a substrate of v-Src kinase (81, 97, 111) 

and associates with the juxtamembrane domain of VE-cadherin, inducing cadherin 

clustering and stabilization of adherens junctions (14, 39, 105).  In the complex of 

VE-cadherin and catenins, α-catenin appears to be the only catenin that directly or 

indirectly links to the actin cytoskeleton through linker proteins such as α-actinin, 

vinculin, ZO-1, spectrin and a number of other molecules associated with the cadherin 

complex (108).   
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The incorporation of α-catenin into cadherin-catenin complexes was thought 

to be necessary for cadherins to mediate cell-cell adhesion.  α-Catenin binds to either 

β- or γ-catenin through the same region, amino-terminal residues 54-148.  The amino-

terminal domain (aa 82-279) of α-catenin is also important for dimerization.  Its 

central segment can associate with α-actinin (through aa 325-394) and vinculin 

(through aa 327-402).  Amino acids 509-643 of α-catenin is called the adhesion 

modulation domain.  The carboxyl terminal fragments of α-catenin bind to actin 

filaments and vinculin (through aa 697-906), as well as ZO-1 (through aa 631-906).  

By interacting with all these proteins, α-catenin can not only link cadherin-catenin 

complexes to the actin cytoskeleton but also regulate actin binding, bundling, and 

polymerization (36, 100).   But contrary to this notion, recent studies reported that α-

catenin did not interact simultaneously with actin filaments and the E-cadherin-β-

catenin complex (109).   

β-Catenin contains N-terminal Ser/Thr phosphorylation sites (aa 33-45), an α-

catenin binding region (aa 118-146), an APC (adenomatous polyposis coli) binding 

domain, a Tcf (T cell factor)/LEF (lymphocyte enhancer binding factor) binding 

region, a cadherin binding region, and a C-terminal transactivator region (aa 671-

781).  In addition to mediating adherens junction assembly, β-catenin also transduces 

Wnt/Wingless intracellular signals, which regulate embryonic cell fates and, if 

inappropriately activated, contribute to tumorigenesis.  In the absence of Wnt 

signaling, the cytoplasmic level of β-catenin is kept low through interaction with a 

degradation complex comprised of APC , Axin, PP2A (protein phosphatase 2A), and 

GSK3 β (glycogen synthase kinase 3 β), as well as CK1 (casein kinase 1).  

Progressive phosphorylation by CK1 and GSK3 β leads to ubiquitination and 

proteasomal degradation of β-catenin.  F box/WD-40-repeat protein, β-TrCP, serves 
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as an intracellular receptor for phosphorylated β-catenin, forming a Skp1/Cullin/F 

box protein β-TrCP (SCF β-TrCP) ubiquitin ligase complex that ubiquitinates β-catenin 

(99).  When Wnt, a secreted glycoprotein, binds to Frizzled receptors and activates 

Wnt signaling, GSK3 β is removed from the degradation complex, resulting in 

accumulation of unphosphorylated β-catenin in the cytoplasm, allowing the 

translocation of β-catenin to the nucleus and subsequent gene induction via binding to 

TCF/LEF (5, 85).   In tumors, degradation of β-catenin is blocked due to mutation of 

β-catenin or APC, which results in the formation of TCF/β-catenin complexes and 

activation of oncogenes (85).  

It is proposed that binding of cadherins to β-catenin prevents recognition of 

degradation signals that are exposed in the unstructured cadherin cytoplasmic domain, 

favoring a cell surface population of catenin-bound cadherins capable of participating 

in cell adhesion (32).  When β-catenin binds to cadherins, it is also stabilized and 

retained at the cell membrane, reducing the pool of free β-catenin in the cytosol and 

decreasing its transcriptional activity.  Tyrosine phosphorylation of β-catenin, 

especially tyrosine 654, decreases the affinity of β-catenin to the cytoplasmic tail of 

E-cadherin, which may induce the detachment of β-catenin from the cadherin and 

increase cytoplasmic and nuclear β-catenin.  In contrast, serine phosphorylation of 

specific residues in the cytoplamic tail of cadherins increases β-catenin association 

with cadherins (33).   

γ-Catenin is a major component of both adherens junctions and desmosomes.  

Via its 13 central repeats, γ-catenin binds to desmoglein (Dsg), desmocollin (Dsc), α-

catenin, and classical cadherins.  When γ-catenin is linked to intermediate filaments 

instead of actin filaments, it may be involved in formation of endothelial junctions 

known as complexus adhaerentes, a novel desmosomal-like structure that is specific 
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for endothelial cells because it consists of VE-cadherin, γ-catenin, desmoplakin, 

vimentin, and intermediate filaments, but not desmocollin or desmoglein (83, 84).  

The functional role of complexus adhaerentes is still not clear.  γ-Catenin can also 

form cytosolic protein complexes with APC to determine cell fate (76). 

p120ctn can be found at intercellular junctions, in the cytoplasm, and in the 

nucleus.  Epidermal growth factor, platelet-derived growth factor, colony stimulating 

factor-1, vascular endothelial growth factor, and nerve growth factor all 

phosphorylate tyrosines on p120 via src or a receptor tyrosine kinase; and epidermal 

growth factor also induces extensive serine phosphorylation of p120.  

Phosphorylation of the N-terminus of p120 may affect the function of p120.  

Hypophosphorylated p120 facilitates cadherin clustering (97, 111), and 

hyperphosphorylation of p120 inhibits cell-cell adhesion as does deletion of the N-

terminus (72, 73).  In the cytoplasm, p120 inhibits RhoA, but activates Rac1 and 

Cdc42, which may increase cell motility (69).  The cytoplasmic roles of p120 can be 

regulated by cadherins, which are able to sequester it at cell junctions.  Nuclear p120 

binds to Kaiso, a novel transcriptional factor of POZ/ZF (Pox Virus and Zinc Finger) 

family (101).  Via its C-terminal C2H2-type zinc-finger motif, Kaiso can bind to a 

specific DNA sequence and repress DNA transcription (90).  Within the past two 

years, a series of papers have highlighted the importance of p120 in the stabilization 

and turnover of VE-cadherin (39, 80, 105).  Collectively, these papers demonstrated 

that binding of p120 to the juxtamembrane domain of cadherins regulates the protein 

levels of these cadherins.  Decreasing the protein level of p120 by siRNA or 

overexpression of the juxtamembrane region of VE-cadherin reduces VE-cadherin 

protein and decreases endothelial barrier function (39).  Overexpression of p120 alone 

or co-expression with the juxtamembrane region increases VE-cadherin and its 
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localization at intercellular junctions.  Therefore, stabilization of VE-cadherin relies 

on the binding of p120.  On the other hand, the lack of p120 binding targets VE-

cadherin to degradation through an endocytic pathway involving clathrin (106). 

c. Rho Subfamily GTPases and Adherens Junctions   

The Rho family of small GTPases belongs to the Ras superfamily, which is 

composed of more than 50 members and has been divided into six families: Ras, Rho, 

Arf, Sar, Ran, and Rab (94).  At least 10 members of the Rho subfamily are known in 

mammals: Rho A-E, Rho G, Rac1 and -2, Cdc42, and TC10.  Rho A, -B, and -C, Rac 

1 and-2, and Cdc42 are the best studied members, which exhibit guanine nucleotide-

binding activity and function as molecular switches, cycling between an inactive 

GDP-bound state and an active GTP-bound state.  Dissociation of GDP is facilitated 

by a guanine nucleotide exchange factor (GEF), and inhibited by a guanine nucleotide 

dissociation inhibitor (GDI).  Hydrolysis of bound GTP is accelerated a hundredfold 

by a GTPase-activating protein (GAP) (47, 66).  Rho small GTPases participate in 

regulation of the actin cytoskeleton and various cell adhesion events. Rho has been 

implicated in the formation of stress fibers and focal adhesions, cell aggregation, cell 

motility, membrane ruffling, smooth muscle contraction, neurite retraction in neuronal 

cells, and cytokinesis.  Rac is involved in membrane ruffling, cell motility, actin 

polymerization, and cadherin-mediated cell-cell adhesion.  Cdc42 plays an important 

role in the formation of filopodia, in cell motility, and in actin polymerization (28).    

 Rho family small GTPases regulate cadherin mediated cell-cell adhesions in 

many ways (7, 31, 43, 95).  Microinjection of dominant negative Rac1 (Rac1 N17) or 

C3 botulinum exoenxyme, a RhoA inhibitor, reduced the level of cadherin at sites of 

cell-cell contact upon Ca2+-induced intercellular adhesion in keratinocytes (7).  In 

contrast, Rac1 (wild-type, dominant-neg. or dominate-pos.) disrupts cell-cell 
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adhesion in small preconfluent colonies of keratinocytes (6).  Overexpression of 

Rac1 N17 in MDCKII cells decreased the amounts of actin filaments, E-cadherin and 

β -catenin to the cell-cell adhesion sites (95).  Both Rac1 and Cdc42 are required for 

E-cadherin-mediated cell-cell adhesion in MDCKII cells (43).  Expression of Rac1 

N17and Cdc42 N17dramatically decreased E-cadherin-mediated cell adhesion in EL 

cells (mouse L fibroblasts stably expressing wild-type E-cadherin) but not in nEαCL 

cells (cells expressing an E-cadherin mutant in which the cytoplasmic domain was 

replaced by the C-terminal domain of α-catenin), which suggests that Rac1 and 

Cdc42 regulate E-cadherin activity through the cadherin-catenin complexes (21).   

d. Adherens Junctions and Vascular Permeability   

 Although tight junctions have been considered the key regulators of barrier 

function, at least in epithelial cells, the role of the adherens junction, in particularVE-

cadherin, in maintaining vascular integrity and permeability of vascular endothelia 

has been proven by in vivo studies.  Intravenous administration of mAb BV13, an 

antibody against mouse VE-cadherin, induced an increase in vascular permeability 

within a few hours in heart and lungs, but not in other organs, such as brain, muscles, 

and skin (12).  These findings indicate that the regulation of vascular permeability by 

VE-cadherin may be cell and tissue specific but that vascular endothelial permeability 

may also depend in some tissues on the type and organization of other intercellular 

junctions like tight junctions. 

 3. Tight Junctions (Zonula Occludens)   

 Tight junctions appear to be a network of ridges under electron microscopy.  

And each ridge is a continuous strand of transmembrane junctional proteins (protein 

model) or lipid domains (lipid model) that bind tightly with those of another cell.  

These ridges consist of occludin, claudins, and small junctional immunoglobulins 

 10



like Junctional Adhesion Molecule-A.  Through their cytoplasmic tails, these integral 

membrane proteins are associated with ZO-1, -2, -3, members of MAGUK 

(Membrane Associated Guanylate Kinase) family, and are connected to actin 

microfilaments.  By occluding the lateral intercellular space, tight junctions restrict 

both the diffusion of solutes across intercellular spaces (barrier function) and the 

movement of membrane molecules between the apical and basolateral domains of the 

plasma membrane (fence function). Therefore, tight junctions are important in 

maintaining cell polarity and cell barrier function (4). 

 Tight junctions are found in both epithelial and endothelial cells.  But in most 

endothelial cells, adherens junctions are intermingled with tight junctions, and the 

precise localization of tight junctions and their separation from other junctional 

organelles is not as obvious as in epithelial cells.  Also, there is considerable 

endothelial heterogeneity along the vascular tree.  For example, tight junctions are 

well organized in arteries and arterioles, but less elaborate or loosely organized in 

veins or postcapillary venules (4).  Finally, tight junctions are well developed in 

brain vessels, where they contribute to the blood-brain barrier, and less organized in 

more leaky vessels (88).   

4. Endothelial Junctions (Complexus Adherens) 

 Endothelial cells do not form desmosomes but instead have specific 

endothelial junctions referred to as complexus adherens.  This type of junction is 

linked to intermediate filaments and expresses VE-cadherin instead of desmosomal-

like proteins.  When bound to desmoplakin, VE-cadherin only associates with 

intermediate filaments; when bound to plakoglobin, VE-cadherin can associate with 

either intermediate filaments or actin microfilaments.  Junctional Adhesion Molecules 

and nectins support the formation of complexus adherens (83, 84).   
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 5. Immunoglobulin (IgG) Superfamily Adhesion Proteins   

 IgG superfamily of adhesion proteins are Ca2+-independent cell-cell adhesion 

molecules (CAMs) and consist of junctional adhesion molecules (JAMs) and Ig cell 

adhesion molecules (IgCAMs).  JAMs are Ca2+-independent immunoglobulin (Ig)-

like cell-cell adhesion proteins, which localize to adherens, tight, and endothelial 

junctions.  JAMs (-A, -B, -C, -D) are comprised of two extracellular Ig folds, a 

transmembrane domain and a short cytoplasmic tail.  JAMs, except JAM-C, form 

cis-dimers and mediate both homotypic and heterotypic interactions.  JAM-B is 

restricted to endothelial junctions, but JAM-A and –C also localize to immune cells.  

JAMs are important for the formation of tight junctions, leukocyte transepithelial 

migration, and platelet activation (3).   

 IgCAMs comprise a diverse group of adhesion receptors having one or several 

Ig folds (41).  Nectins are novel members of the IgCAMs family.  Nectins form cis-

dimers and trans-dimers on the cell membrane and bind to the PDZ-containing 

protein afadin (also called AF-6) inside the cell (92).  Afadin binds ponsin, which in 

turn connects the complex to actin microfilaments through α–catenin and vinculin.  

Nectins act cooperatively with cadherins in adherens junctions of epithelial cells (E-

cadherin) and fibroblasts (N-cadherin) and initiate the formation of adherens and 

tight junctions (93).  Therefore, the specific localization of these proteins at adherens 

junctions may depend on the cell type and/or they may play a more general role in 

the organization of both adherens and tight junctions.   

 Platelet endothelial cell-cell adhesion molecule (PECAM) is a transmembrane 

immunoglobulin concentrated at intercellular contacts but not specifically confined 

to adherens and tight junctions (64).  PECAM mediates either homophilic or 

heterophilic cell-cell adhesion.  Intracellular binding partners of PECAM include 

 12



SHP-2 and β-catenin.  SHP-2 may be involved in the Ras-mitogen-activated protein 

kinase (MAPK) pathway (34).  PECAM may act similarly as cadherin through its 

binding to tyrosine phosphorylated β-catenin.  Therefore, PECAM can modulate 

cadherin-mediated cell-cell interactions through its interaction with β-catenin and 

SHP-2.  PECAM can also modulate cell adhesion with extracellular matrix and cell 

migration through its interaction with integrins (35).   

 

B.  IQGAP1 and Adherens Junctions 

1. Introduction   

Although the molecular mechanism for the regulation of cell-cell adhesion is 

largely unknown, IQGAP1 is now considered a key regulator.  IQGAP1 (190 kDa) is 

a scaffolding protein that has multiple protein-interacting domains (Fig. 1).  Via the 

calponin homology (CH) domain at the N-terminus, IQGAP1 binds to filamentous 

actin and functions to cross-link and stabilize actin filaments (2, 57).  Its IQ domain, a 

tandem repeat of four IQ motifs, mediates the association of IQGAP1 with calmodulin, 

myosin essential light chain, and S100B (a Zn2+-and Ca2+-binding protein) (53, 104).  

Its G-protein binding domain (GRD) at the C-terminus binds to activated Rac and 

Cdc42, but not RhoA or Ras (20, 23).  IQGAP1 interacts with guanosine 5 -(3-O-thio) 

triphosphate (GTP S)·glutathione S-transferase (GST)-Cdc42 and GTP S·GST-Rac1 

but not with the GDP·GST-Cdc42, GDP·GST-Rac1, or GTP S·GST-RhoA) (44).  

Through its C-terminal RasGAP domain, IQGAP1 binds directly to the adherens 

junction proteins, E-cadherin and β-catenin, and co-localizes with these proteins at 

cell-cell contacts in mouse L fibroblasts expressing E-cadherin (EL cells) and in 

Madin Darby Canine Kidney (MDCK) epithelial cells (45).  Via the RasGAP domain, 

IQGAP1 also interacts with the microtubule-binding protein 

 13



Figure 1
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Figure 1.  IQGAP1 structure and interacting proteins.  IQGAP1 is a scaffolding 

protein that has multiple protein-interacting domains.  Via the calponin homology 

(CH) domain at the N-terminus, IQGAP1 binds to filamentous actin and functions to 

cross-link and stabilize actin filaments.  Its IQ domain, a tandem repeat of four IQ 

motifs, mediates the association of IQGAP1 with calmodulin, myosin essential light 

chain, and S100B (a Zn2+-and Ca2+-binding protein).  Its G-protein binding domain 

(GRD) at the C-terminus binds to activated Rac and Cdc42, but not RhoA or Ras.  

Through its C-terminal RasGAP domain, IQGAP1 binds directly to the adherens 

junction proteins, E-cadherin and β-catenin.  Via the RasGAP domain, IQGAP1 also 

interacts with the microtubule-binding protein CLIP170 (cytoplasmic linker protein-

170).    
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CLIP170 (cytoplasmic linker protein-170), capturing the growing microtubules at the 

leading edge of migrating fibroblasts, resulting in cell polarization (23).    

2. IQGAP1 and Cell-Cell adhesion   

Kaibuchi et al. (22) and others (52) have demonstrated that the relative content 

of IQGAP1 at the junction is important for the regulation of epithelial cell-cell 

adhesion through its interaction with β-catenin, Rac1, and Cdc42.  Overexpressed 

IQGAP1 may inhibit E-cadherin-mediated cell-cell adhesion via its interaction with β-

catenin, dissociating α-catenin from the cadherin-catenin complex in EL cells (45).  

Activated Rac1 and Cdc42 may enhance E-cadherin-dependent cell adhesion by 

inhibiting the interaction of IQGAP1 with β-catenin (21) (Fig. 2).  In contrast, 

treatment of MDCK cells with a phorbol ester reduces Rac1 activity, increases the 

association of IQGAP1 with β-catenin, and displaces α-catenin from the adherens 

junction (22).  In vivo, IQGAP1 knockout had hardly any effect on the cadherin-based 

adhesion of gastric cells in mice during embryogenesis, although it increased 

susceptibility to gastric hyperplasia (51).  Therefore, the physiological processes in 

which IQGAP1 is involved needs to be determined.  It would be interesting to 

demonstrate the phenotype of mice transgenically engineered to overepxress the 

IQGAP1 gene  

3. IQGAP1 and Cell Migration   

In general, directional cell migration begins with establishment of cell 

polarization, which includes membrane ruffling, lamellipodia, and filopodia at the 

leading edge, capture of microtubule plus-ends near the leading edge (which enables 

motor proteins such as dynein and kinesin to perform directed membrane trafficking), 

and reorientation of the microtubule-organizing center (MTOC) and the Golgi 

apparatus towards the direction of migration.  The resultant asymmetric distribution of 
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Figure 2.  Kaibuchi’s hypothesis: IQGAP1 inhibits cell-cell adhesion.  

Overexpressed IQGAP1 inhibits E-cadherin-mediated cell-cell adhesion via its 

interaction with β-catenin, dissociating α-catenin from the cadherin-catenin complex 

in EL cells.  Activated Rac1 and Cdc42 may enhance E-cadherin-dependent cell 

adhesion by inhibiting the interaction of IQGAP1 with β-catenin. 
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signaling molecules and the cytoskeleton facilitates the adherence of lamellipodia to 

the substratum via focal adhesions.  After the forward attachments have been made, 

the bulk of the cytoplasm in the cell body flows forward. The trailing edge of the cell 

remains attached to the substratum until the focal adhesions at the rear are broken and 

the tail eventually detaches and retracts into the cell body.  During this process, the 

reorganization of the actin cytoskeleton and microtubules is very important and must 

be well coordinated (26). 

a. Rho GTPases, Cell Polarization and Directional Migration   

In migrating cells, Cdc42 and Rac1 are localized at the leading edge of the 

cells.  The highest Cdc42 activity is at the tip of the leading edge, and the highest 

Rac1 activity is very close to the leading edge (38).  Only Cdc42 is found at the Golgi 

apparatus, where it may regulate the secretory and endocytic transport of lipids and 

proteins to the leading edge (42).  Rho A mainly localizes to the cytosol and is 

necessary and sufficient for lysophosphatidic acid-induced formation of detrypsinated 

tubulin (Glu-tubulin), a post-translational modified form of tubulin that accumulates 

in stable microtubules (10).   

 During cell polarization and migration, Rho GTPases capture and stabilize 

microtubules through their effectors near the cell cortex.  mDia2, a RhoA effector, 

caps and stabilizes microtubules, and mDia1 induces longitudinal alignment of 

microtubules in parallel to F-actin bundles along the long axis of the cell (37, 75).  

Rac1 and Cdc42 can potentially stabilize microtubules through PAK, which 

phosphorylates and inactivates stathmin, a microtubule-destabilizing protein (13).  

Cdc42 can activate PKCξ, an atypical protein kinase C, through Par-6, leading to 

phosphorylation and inactivation of GSK-3β at the leading edge.  Inactivation of 

GSK-3β removes the inhibition of APC, allowing it to stabilize microtubules at the 
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leading edge (17, 18).  APC can also interact with end-binding protein 1 (EB1), a 

member of plus-end-tracking proteins (+Tips) that localize to the growing 

microtubule plus end (17).  As like other +Tips, such as the cytoplasmic linker protein 

170 (CLIP-170) family and dynein-dynactin family, the EB1 family is necessary for 

sensing cortical capture sites.   

b. IQGAP1, Cell Polarization and Directional Migration   

Fukata et al. (2002) found that activated Cdc42/Rac1 complexes with IQGAP1 

and CLIP-170, enhancing the interaction between IQGAP1 and CLIP-170, and 

recruiting green fluorescent protein (GFP)-CLIP-170 to the leading edge and the base 

of filopodia.  Watanabe et al. (2004) also showed that IQGAP1 directly interacts with 

APC and both colocalize with Rac1 and Cdc42 at the leading edge.  Therefore, 

IQGAP1 may promote cell polarization and migration by stabilizing both 

microfilaments and microtubules at the leading edge.   

4. IQGAP1 and Distant Metastasis of Cancer Cells   

In IQGAP1 knockout mice, a significant increase in late-onset gastric 

hyperplasia relative to wild-type animals of the same genetic background was 

observed (51).  In human, gastric carcinoma is known to be associated with damage to 

a small region on chromsome 15, where the IQGAP1 gene is located.  And four 

IQGAP1 mutations were found in multiple cases of highly invasive and metastatic 

diffuse type gastric carcinoma.   IQGAP1 was also upregulated by gene amplification 

at 15q26 in two cell lines established from diffuse types of gastric carcinomas, HSC39 

and 40A (91).  Similary, IQGAP1 overexpression was found in human colorectal 

carcinoma, particularly at the invasion front.  Therefore, IQGAP1 is closely related to 

invasion and distant metastasis of some carcinomas, but the exact mechanism is still 

unknown.   
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C.  Sphingosine-1-Phosphate (S1P) and Cell-Cell Adhesion 

1.  Biosynthesis and Metabolism of S1P   

Sphingosine-1-phosphate (S1P), a bioactive sphingolipid metabolite, is 

generated from the metabolism of sphingomyelin upon cellular activation.  

Specifically, sphingomyelinase degrades sphigomyelin to ceramide, which is then 

degraded by ceramidase to sphingosine.  Sphingosine kinase further converts 

sphingosine to S1P.  Alternatively, ceramide can be synthesized de novo by fumonisin 

B1-sensitive ceramide synthase, which also contributes to S1P synthesis.  Once 

formed, S1P is rapidly degraded by S1P phosphatase and S1P lyase (89).  Since 

platelets have an abundance of sphingosine kinase and lack these S1P degradative 

enzymes, platelets may release S1P in response to prothrombotic activation, 

increasing the S1P level from 100 nM in plasma to 500 nM or even 1,000 nM in 

serum.   

2.  G Protein-Coupled Receptors (GPCRs) for S1P: EDG Family   

S1P acts as an extracellular mediator and an intracellular second messenger, 

binding to seven transmembrane GPCRs and intracellular receptors, respectively.  

GPCRs for S1P are five members of the EDG (or Endothelial Differentiation Gene) 

family: EDG-1/S1P1, EDG-5/S1P2, EDG-3/S1P3, EDG-6/S1P4, and EDG-8/S1P5.   

 EDG-1 is a Gi-coupled receptor, through which S1P stimulates Rac1-induced 

cortical actin formation and enhances motility (23).  The EDG-1 cDNA was originally 

isolated as a phorbol ester-induced immediate early transcript from vascular 

endothelial cells, and EDG-1 protein plays a role in endothelial cell differentiation and 

angiogenesis.  EDG-5 is coupled to all G proteins, via which S1P induces stress fiber 

formation by activating Rho, and inhibits cell migration by decreasing Rac1 activity.  

And EDG-3 is coupled to Gi, Gq, and G12/13, via which S1P induces stress fiber 
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formation by activating Rho, mediates neurite retraction and neuronal cell rounding, 

suppresses Bax expression and activates endothelial nitric oxide synthase (eNOS) and 

phosphatidylinositol 3-kinase (PI3K) (29).   

 As a second messenger, S1P can also promote cell proliferation and survival 

by mobilizing calcium, activating extracellular signal regulated kinase (ERK), 

andinhibiting c-Jun N-terminal kinase (JNK) activation.  Thus, S1P can signal from 

outside the cell via S1P (EDG) receptors and from inside the cell upon activation of 

sphingosine kinase but can also be released from the cell and act on S1P receptors in 

an autocrine and/or paracrine manner (30).   

3.  S1P Enhances Endothelial Barrier Function   

Vascular endothelial cells primarily express receptors for EDG-1 (S1P1) and 

EDG-3 (S1P3), but have little or no EDG-5 (S1P2) (55).  Activation of EDG-1 and -3 

promotes cell migration, vascular maturation, focal contact formation, and endothelial 

barrier function.  Reduction in EDG-1 expression attenuates barrier enhancement 

induced by S1P, platelets, and platelet conditioned medium.  In a mouse model of 

acute lung injury (ALI), S1P attenuates the formation of lung edema in vivo (58, 77).  

This effect of S1P on lung edema in vivo probably occurred via direct maintenance or 

enhancement of the endothelial barrier as S1P prevented the 6-fold increase in 

hydraulic conductivity induced by platelet-activating factor in venular microvessels of 

the rat mesentery (62).  This inhibitory effect of S1P was reversible and involved the 

heterotrimeric G-protein, Gi.  

 S1P may affect the barrier function of the vascular endothelia by reorganizing 

the cytoskeleton, strengthening adherens junctions, and/or remodeling focal adhesions.  

To maintain an endothelial barrier, contractile forces, generated by the cytoskeleton, 

must be balanced by tethering forces generated by adherens junctions and focal 
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adhesions.  S1P treatment induces the formation of a cortical actin ring and a rapid 

redistribution of cortical actomyosin, phosphorylated myosin light chain (MLC), and 

myosin light chain kinase (MLCK).  MLC phosphorylation may promote the 

interaction of myosin with actin filaments, stabilizing cortical cytoskeleton (25).   

S1P of physiologic concentration (less than 1-2 μM) also activates Rac1 and Rho and 

induces lamellipodia formation, membrane ruffling, cortical actin ring formation, and 

cell spreading.  Inhibition of Rac1 increases monolayer permeability and prevents the 

translocation of cortactin to the periphery, reducing actin polymerization (102).  Rac1 

also activates p21activated kinase (PAK) subsequently phosphorylating LIM kinase 

and causing the phosphorylation and inactivation of cofilin, an actin-severing protein.  

Both PAK and cofilin translocated to the cell periphery after treatment with S1P (23).  

Expression of a dominant-negative PAK-1 or wild-type cofilin reduced the increase in 

cortical actin.  The latter also blunted the increase in endothelial electrical resistance 

induced by S1P.  These authors concluded that a thickened, cortical actin plays a 

prominent role in the enhanced endothelial barrier activity of S1P (23).  Therefore, 

inactivation of cofilin via Rac1 to PAK signaling may be key to the activity of S1P.   

In confluent HUVECs, S1P also stimulates the localization of VE-cadherin 

and α-, β-, and γ-catenins to sites of cell-cell contacts, forming functional adherens 

junctions within 1 h in one report (50) and within 30 min in another report (59).  

Dominant-negative Rac1 polypeptide prevented the S1P-induced localization of VE-

cadherin and β-catenin to intercellular junctions (50).  S1P treatment also induces 

tyrosine phosphorylation of FAK, breaking down focal adhesion complexes, 

redistributing paxillin and focal adhesion kinase (FAK) to the periphery where they 

associate with the cortical actin ring (86).   
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Together these findings suggest that S1P increases the barrier function of the 

vascular endothelia via a cell-signaling pathway involving the inhibitory G protein, Gi, 

and Rac1 and via targets of the cytoskeleton such as cofilin, MLC, and MLCK and of 

adherens junction proteins such as VE-cadherin and the catenins. 
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II. INTRODUCTION TO DISSERTATION STUDIES 

 
Vascular endothelium, as a semi-permeable barrier, restricts the passage of 

proteins from the blood to the extravascular compartment and also regulates many 

biological processes such as inflammation, white cell emigration, and angiogenesis.  

Disruption of the endothelial barrier leads to accumulation of fluid and 

macromolecules in the interstitial space, resulting in edema and dysfunction of tissues 

and organs.  The junctional architecture between adjacent endothelial cells, comprised 

of adherens junctions as well as tight junctions, contributes significantly to the 

regulation of the endothelial barrier (4).  The endothelial adherens junction, 

containing primarily vascular endothelial (VE)-cadherin and catenins, has been 

studied extensively.  Modifications to VE-cadherin profoundly affect the integrity of 

the endothelial barrier.  For example, antibodies directed toward the extracellular 

domain of VE-cadherin increased the permeability of endothelial cell monolayers (11) 

and the vascular permeability in heart and lungs of mice (12).  Endothelial cells also 

contain tight junction proteins such as occludin, claudins, and ZO-1, but the effects of 

these proteins on barrier function has been studied primarily in epithelial cells (4). 

VE-cadherin is comprised of an extracellular domain, a transmembrane region, 

a juxtamembrane region, and a highly conserved cytoplasmic tail (49, 101).  In the 

presence of Ca2+, extracellular domains of VE-cadherin of one cell bind to each other 

forming cis-dimers, and those of adjacent cells bind head-to-head forming trans-

dimers.  The cytoplasmic tail of VE-cadherin binds β-catenin or γ-catenin or 

plakoglobin, which in turn binds α-catenin to form a cadherin-catenin complex that 

links to the actin cytoskeleton, although this latter linkage has recently been 

challenged (16, 109).  A fourth catenin, p120, binds to the juxtamembrane region of 

 25



VE-cadherin, inducing stabilization of VE-cadherin (14, 39, 105) and cadherin 

clustering (111), although this latter notion is controversial (72).   

IQGAP1 is a scaffolding protein that binds directly to the adherens junction 

proteins, E-cadherin and β-catenin, and co-localizes with these proteins at cell-cell 

contacts in mouse L fibroblasts expressing E-cadherin (EL cells) and in Madin Darby 

Canine Kidney (MDCK) epithelial cells (45).  IQGAP1 also binds many other cellular 

proteins via its multiple protein-interacting domains.  Via the calponin homology 

domain at the amino terminus, IQGAP1 binds to filamentous actin and functions to 

cross-link and stabilize actin filaments (2, 8, 57).  Its IQ domain mediates the 

association of IQGAP1 with calmodulin (52, 104) and its G-protein binding domain 

near the carboxy terminus binds to activated Rac1 and Cdc42 (21, 22).     

The involvement of IQGAP1 in the dynamic regulation of epithelial adherens 

junctions has been brought forth in a series of papers by Kaibuchi and co-workers (21, 

22, 45, 71).  These authors hypothesize that IQGAP1 overexpression inhibits E-

cadherin-mediated epithelial cell-cell adhesion by dissociating β-catenin from α-

catenin, thus disconnecting the VE-cadherin/β-catenin complex from the actin 

cytoskeleton.  Furthermore, activated Rac1 and Cdc42 may prevent these effects by 

removing IQGAP1 from the complex (22, 45). The importance of the interaction of 

IQGAP1 with E-cadherin or VE-cadherin, however, has not been determined and is 

timely considering the recent papers by Yamada et al. (109) and Drees et al. (16).  

These authors concluded that α-catenin does not bind simultaneously to the complex 

of E-cadherin/β-catenin and to the actin cytoskeleton and that this purported linkage is 

more dynamic than originally thought.  

 In initial experiments, I determined by immunoprecipitation and 

immunofluorescence microscopy that IQGAP1 associated with the adherens junction 
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proteins, VE- cadherin and the catenins, β, γ, α, and p120, but not with the tight 

junction proteins, occludin, claudin-5, and ZO-1.  To remove IQGAP1 from 

junctional complexes, I activated Rac1 by S1P treatment and examined the 

association of IQGAP1 with Rac1 and the presence of insoluble VE-cadherin and β–

catenin at intercellular junctions.  Also, I significantly reduced the protein level of 

IQGAP1 in human umbilical vein endothelial cells (HUVECs) by transfection of 

small interfering RNA (siRNA) and determined the effect on basal electrical 

resistance across cell monolayers by the measurement of electrical cell-substrate 

impedance sensing (ECIS).  Since IQGAP1 associated only with adherens junction 

proteins and alterations in content of IQGAP1 have produced equivocal changes in E-

cadherin or VE-cadherin in other cell types (45, 52, 70), I assessed the protein levels 

of VE-cadherin and N-cadherin and the interactions of these two cadherins with the 

catenins, p120, β, γ, and α, and with the insoluble cytoskeleton in IQGAP1 

knockdown cells.  To further determine the effect of IQGAP1 on the p120-VE-

cadherin association, a VE-cadherin-α-catenin fusion protein lacking β-catenin 

binding sites was overexpressed in HUVECs and the distribution of IQGAP1 was 

detected by immunofluorescence microscopy.  
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III.  MATERIALS AND METHODS 

 

 Materials.  Fetal bovine serum was purchased from Atlanta Biologicals 

(Norcross, GA), and gentamicin sulfate was from ICN Biomedicals, Inc (Aurora, OH).  

Newborn calf serum and bovine brain extract were from Cambrex Corporation (East 

Rutherford, NJ).  Type I collagenase was from Worthington Biochemical Corporation 

(Lakewood, NJ).  MDCK (Madin-Darby Canine Kidney) cells (Catalog No. CCL-34) 

were purchased from ATCC (Manassas, VA).  Oligofectamine was from Invitrogen 

(Carlsbad, CA).  Control (scrambled) siRNA (SC-37007), IQGAP1 siRNA (SC-

35700), and polyclonal antibodies to VE-cadherin, IQGAP1, and p120 were from 

Santa Cruz Biotechnology Inc (Santa Cruz, CA).  Anti-β-actin monoclonal and anti-α-

catenin polyclonal antibodies were from Alexis Biochemicals (San Diego, CA).  

Monoclonal antibodies directed against IQGAP1, Rac1, N-cadherin, and γ-catenin 

were from BD Biosciences (San Jose, CA).  Polyclonal antibodies directed against 

human occludin and ZO-1 and a monoclonal antibody to human claudin-5 were from 

Zymed Laboratories (South San Francisco, CA).  Anti-calmodulin and anti-IQGAP1 

monoclonal (AF4) antibodies were from Upstate (Chicago, IL).  Gold-coated ECIS 

electrodes were from Applied Biophysics (Troy, NY).  Sphingosine-1-Phosphate (S1P) 

was from Avanti Polar Lipids, Inc. (Alabaster, AL).  Peroxidase conjugated goat anti-

mouse IgG, peroxidase conjugated goat anti-rabbit IgG, and peroxidase conjugated 

rabbit anti-goat IgG antibodies were from Chemicon International, Inc. (Temecula, 

CA).  Alexa Fluor 488-labeled phalloidin, Alexa Fluor 594-labeled phalloidin, Alexa 

Fluor 488-labeled goat anti-rabbit IgG, and Alexa Fluor 594-labeled goat anti-mouse 

IgG were from Invitrogen Molecular Probes (Eugene, OR).  Nitrocellulose 

membranes and ECL (enhanced chemiluminescence) Western Blotting detection 
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reagents were from Amersham Biosciences (Buckinghamshire, England), and a mini-

Protean electrophoresis system was from Bio-Rad Laboratories (Hercules, CA).  All 

other chemicals were from Sigma-Aldrich (St. Louis, MO). 

 

 Cell culture.  HUVECs were isolated from fresh umbilical veins with 1 mg/ml 

of type I collagenase and serially passaged and maintained in MCDB-131 containing 

20% (v/v) newborn calf serum, 5% (v/v) human serum, 7.5 μg/ml of endothelial cell 

growth supplement, 4.5 μg/ml of bovine brain extract, 20 μg/ml of porcine intestinal 

heparin, and 50 μg/ml of gentamicin sulfate.  All experiments were performed on 

HUVECs passaged less than 8x.  MDCK cells were cultured in Dulbecco’s modified 

Eagles medium containing 10% fetal bovine serum.   

 

 Transfection.  IQGAP1 siRNA was transfected into HUVECs with 

oligofectamine.  Briefly, HUVECs were seeded on 0.2% gelatin-coated 6-well culture 

dishes or on ECIS wells and grown to 50-80% confluence.  IQGAP1 siRNA (0.27 to 

0.40 µM) or scrambled siRNA was transfected into cells with oligofectamine in 

serum-free MCDB-131 for 4 h.  In most experiments, fresh HUVEC growth medium 

was added, and cells were placed in a humidified environment and maintained at 37 º

C and 5% CO2 for 2-3 d.  Although this transfection protocol resulted in a significant 

dilution of the oligofectamine, this lipd carrier was not removed by washing and there 

was concern about adverse effects of the remaining oligofectamine, especially if lipid 

micells were formed.  Therefore, some of the experiments were repeated whereby cell 

monolayers were washed with culture medium after the initial 4 h- transfection period, 

then incubated in fresh culture medium for the remainder of the experiment. 
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Assessment of endothelial barrier function by ECIS.  Continuous measurement 

of electrical resistance across HUVEC monolayers with ECIS was used to assess 

changes in endothelial barrier function (24).  HUVECs (50,000-100,000 cells) were 

seeded onto ECIS cultureware (0.8 cm2/well) precoated with 0.2% gelatin for 24 h.  

The measured electrical resistance is of those cells located on the small gold electrode 

(5 x 10 4 cm2) in each of the wells.  The culture medium was the electrolyte, and the 

small gold electrode, covered by confluent endothelial cells, and a larger gold counter-

electrode (~2 cm2) were connected to a phase-sensitive, lock-in amplifier.  A 1-V, 

4,000-Hz alternating current signal was supplied through a 1-M  resistor to 

approximate a constant current source of 1 µA.  The computer controlled the output of 

the amplifier and switched the measurements to different electrodes in each of two 8-

well arrays during the course of an experiment. The small size of the cell-seeded 

electrode is the critical feature of the system.  When electrodes of 10 3 cm2 or smaller 

are used, the impedance at the small electrode dominates the system, allowing the 

morphology of the cells located at this interface to be assessed.  Electrical resistance of 

the bare electrode is ~2,000 ohms and increases to 8,000 to 10,000 ohms or greater 

when HUVECs have become confluent.  Using a cell-covered electrical resistance of 

7,000 ohms, corrected for the bare electrode, and the electrode surface area of 5 x 10-4 

cm2, the basal electrical resistance across the HUVEC cell monolayer is less than 5 

ohms•cm2 (98).   

For experiments with S1P, HUVECs (100,000 cells) were seeded onto ECIS 

cultureware, then carefully washed 3x with MCDB-131 cell culture medium and 

incubated in MCDB-131 medium without serum for 2 h.  After these cells were 

treated with 1 μM S1P (once or 7x, 10 min each) or BSA as a control, transcellular 

electrical resistance was continuously measured for 2.5 h.   

 30



The method of transfection of IQGAP1 siRNA and measurement of electrical 

resistance were conducted in two different ways: either cells were seeded on 6-well 

culture dishes, transfected, re-seeded on ECIS wells, and monitored for changes in 

endothelial electrical resistance or cells were directly seeded on ECIS wells, 

transfected, and monitored for changes in electrical resistance.  In the first method, 

oligofectamine was removed by the process of reseeding cells from the culture dish to 

the ECIS wells, as compared to the second protocol where oligofectamine, albeit in a 

diluted concentration, remained in the ECIS wells.  One rationale for not changing the 

medium was not to disturb the continuous measurement of electrical resistance. 

For the experiments with the infection of the adenoviral recombinant fusion 

protein, VE-cadherin-α-catenin, HUVECs were grown on ECIS cultureware with 10 

instead of 1 small gold electrode.  In these 10-electrode wells, the electrical resistance 

signal is averaged among the 10 electrodes, and the baseline electrical resistance is 

lower than the 1-electrode wells. 

 

 Immunoprecipitation and immunoblotting.  Cells were washed 2x in ice-cold 

phosphate buffered saline (PBS), lysed in buffer containing 30 mM 4-(2-

hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES, pH 7.4), 50 mM NaCl, 1% 

Triton X-100, 10% glycerol, 1 mM ethylene glycol-bis(2-aminoethylether)-

N,N,N’,N’-tetraacetic acid (EGTA), 1 mM sodium vanadate, 10 mM 

phenylmethanesulfonyl fluoride (PMSF), and 10 μg/ml of leupeptin.  Samples were 

clarified by centrifugation at 14,000 x g for 5 min at 4º C, and one-tenth of the whole 

cell lysate was saved for immunoblotting.  Nine-tenth of the total cell lysate was 

immunoprecipitated overnight at 4º C with indicated antibodies.  Immune complexes 

were collected with protein A- and G-Sepharose.  After centrifugation, samples were 
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washed 3x with lysis buffer.  Proteins were resolved by sodium dodecyl sulfate-

polyacrylamide gel electrophoresis (SDS-PAGE) and transferred to Nitrocellulose 

membrane using a mini-Protean electrophoresis system.  Polyacrylamide gels (7.5%) 

were used to detect IQGAP1, VE-cadherin, N-cadherin, the catenins, β-, γ-, α-, p120 

and ZO-1, and 12% gels were used to detect occludin and claudin-5.  Blots were 

probed with indicated primary antibodies, followed by the appropriate horseradish 

peroxidase-conjugated secondary antibody, and developed by enhanced 

chemiluminescence. 

 Immunocytochemistry and confocal microscopy.  HUVEC monolayers were 

fixed in 4% formaldehyde in PBS for 15 min and permeabilized in PBS containing 

0.18% Triton X-100 for 15 min.  Fixed cells were stained with the indicated primary 

antibodies for 1 h and incubated with Alexa Fluor 488-labeled goat anti-rabbit IgG 

and/or Alexa Fluor 594-labeled goat anti-mouse IgG for 30 min.  Actin filaments 

were fluorescently stained with Alexa Fluor 488- or 594-labeled phalloidin.  Images 

were generated by confocal laser scanning with a Zeiss LSM 510 upright confocal 

microscope.  For the same group of images, the fluorescent signals were measured at 

emission wavelengths of 488 and 594 nm with the same pinhole (less than 1 μm) and 

the same detector gain, as well as the same amplifier offset.  For all of the images, 

multitracking was used to prevent crosstalk of signals between channels, and the 

bandwidth of the emission filters was narrowed to avoid bleed-through from one 

channel to another. 

 Cytoskeleton preserving buffer containing 0.5% Triton X-100 (CSK-Tx buffer) 

was used to extract soluble proteins not linked to the cytoskeleton under near 

physiological conditions of ionic strength and pH, and the Triton X-100-insoluble 

proteins consistes of 65% of the total cell protein (19).  Cells were first permeabilized 
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in ice-cold CSK-Tx buffer (10 mM PIPES, pH 6.8, 3 mM MgCl2, 100 mM NaCl, and 

300 mM sucrose) for 1 min and then fixed in 4% formaldehyde in PBS for 15 min.  

Fixed cells were then processed as described above.   

 

Infection.  HUVECs were seeded onto precoated glass coverslips for 24 h, 

then confluent HUVEC monolayers were infected with an adenoviral construct 

expressing green fluorescent protein (GFP)-labeled VE-cadherin-α-catenin fusion 

protein for 48 h.  This adenoviral recombinant lacked the β-catenin binding site on 

VE-cadherin and on α-catenin.  Immunfluorescent staining was performed as 

described above.     

  

Statistics.  All values in the text are means ± SE.  Data on the quantification of 

immunoblots were analyzed with a single sample t-Test.  Data on electrical resistance 

were analyzed with a 2-way analysis of variance with repeated measures.  Differences 

between treatments at specific time points were further analyzed with a Bonferroni 

post-test.  Significance was set at P<0.05.
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IV.  RESULTS 

 

S1P rapidly increased the electrical resistance across HUVEC monolayers.   

S1P has been shown previously to enhance the barrier function of endothelial 

monolayers, as assessed by an increase in electrical resistance (25).  I initially 

confirmed this result by the measurement of transcellular electrical resisatance using 

ECIS.  After treatment with various doses of S1P, electrical resistance across HUVEC 

monolayers increased rapidly, peaked at 10 min, and gradually came back to the 

baseline level after 1 h.  Electrical resistance across cell monolayers treated with the 

vehicle BSA did not change (Fig. 3A).   

 Increasing or decreasing the dosage of S1P (0.1 μM -10 μM) from 1 μM did 

not change the response pattern, which suggests that the S1P response is not dose- or 

time-dependent.  Since S1P can be rapidly degraded by S1P phosphatase and S1P 

lyase, we also administered 1 μM S1P 7x every 10 min for 1 h to maximize the 

downstream effects of S1P.  The repeated treatments of S1P every 10 min maintained 

the peak resistance for 1 h.  Once the S1P treatment was stopped, however, electrical 

resistance gradually decreased to the baseline level after 1 h.  Electrical resistance 

across cell monolayers treated with BSA (7x, 10 min each) was not significantly 

changed (Fig. 3B).    

 

S1P increased insoluble VE-cadherin and insoluble β-catenin at intercellular 

junctions in confluent cell monolayers. 

One potential mechanism for the S1P-induced increase in endothelial electrical 

resistance is an increase in homophilic VE-cadherin binding.  To look at this possible 

effect of S1P on the adherens junctions, cytoskeleton preserving buffer containing 
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Figure 3
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Figure 3.  S1P rapidly increased transcellular electrical resistance.    HUVEC 

monolayers grown on ECIS cultureware (0.8 cm2/well) were carefully washed 3x with 

MCDB-131 culture medium and incubated in MCDB-131 medium without serum for 

2 h.  After these cells were treated with 1 μM S1P (one or 7x, 10 min each) or BSA as 

a control, transcellular electrical resistance was continuously measured for 2.5 h.  A) 

After S1P treatment, the electrical resistance across HUVEC monolayers increased 

rapidly, peaked at 10 min, and gradually came back to baseline value after 1 h.  

Electrical resistance across control cell monolayers treated with BSA did not change 

(n=8).  B) Repeated S1P treatments (7x) every 10 min maintained the peak resistance 

for 1 h.  Once the S1P treatment was stopped, the electrical resistance gradually came 

back to the baseline value after 1 h.  The resistance across control cell monolayers 

treated with BSA was not significantly changed (n=6).      
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0.5% Triton X-100 (CSK-Tx buffer) was used to extract soluble proteins not linked to 

the cytoskeleton, as previously described by Nagafuchi and Takeichi (65).  After the 

challenge of Triton X-100, some of the VE-cadherin and β-catenin, presumably the 

soluble proteins, were removed from cell-cell contacts, but insoluble VE-cadherin and 

β-catenin, defined as being bound to the actin cytoskeleton and forming strong cell-

cell adhesions, remained at intercellular junctions.  Within 10 min of S1P treatment, 

more insoluble VE-cadherin and β-catenin were localized at intercellular junctions as 

compared to the BSA control treatment (Fig. 4A), which suggests that S1P rapidly 

increased the interaction of the VE-cadherin/β-catenin complex to the insoluble 

cytoskeleton and possibly also increased the amount of VE-cadherin and β-catenin at 

intercellular junctions.  Furthermore, S1P also prevented the formation of gaps 

between cells, which indicates a stronger cell-cell adhesion (Fig. 4B).  

 

S1P translocated Rac1 to the periphery of cells and increased the association 

of Rac1 with IQGAP1.  

Rac1 has been implicated in tightening of the adherens contacts (20), and S1P 

is known to increase the activity of Rac1 .  Immunocytochemistry studies showed that 

S1P treatment translocated Rac1 from the cytoplasm to the cell periphery (Fig. 5B). 

Previous studies by Kaibuchi and co-workers (21) have demonstrated in epithelial 

cells that active Rac1 interacts with IQGAP1.  To determine if Rac1 activated by S1P 

interacts with IQGAP1 in endothelial cells, HUVECs were seeded on 6-well dishes 

for 24 h and treated with BSA or 1 μM S1P for 10 min.  Cells were lysed in 

immunoprecipitation buffer and one-tenth of the whole cell lysate was saved for 

immunoblotting.  The rest of the cell lysate was immunoprecipitated for IQGAP1 or 

IgG as a control, and then immunoblotted for Rac1.  Association of IQGAP1 with 
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Figure 4.  S1P increased insoluble VE-cadherin and insoluble β-catenin at 

intercellular junctions.  Confluent HUVEC monolayers grown on glass coverslips 

were treated with 1 μM S1P for 10 min or with BSA as a control. cells were 

permeabilized first (CSK-Tx) with cytoskeleton preserving buffer containing 0.5% 

Triton X-100 to extract soluble proteins before application of primary antibodies to 

VE-cadherin and β-catenin.  After S1P treatment, insoluble VE-cadherin and β-

catenin were increased as compared to BSA treatment.  Magnification bar =10 μm. 
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Figure 5.  S1P increased IQGAP1 association with Rac1.  A) HUVECs were lysed 

in immunoprecipitation buffer and one-tenth of the whole cell lysate was saved for 

immunoblotting. The rest of the cell lysate was immunoprecipitated for IQGAP1 or 

IgG as a control, and then immunoblotted for Rac1.  Association of IQGAP1 with 

Rac1 was dramatically increased at 10 min after S1P treatment, and the protein level 

of Rac1 in each group of cells was similar. B) Cells were fixed and incubated with 

anti-IQGAP1 polyclonal and anti-Rac1 monoclonal antibody, which were visualized, 

respectively, with Alexa Fluor 488-labeled goat anti-rabbit IgG (green) and Alexa 

Fluor 594-labeled goat anti-mouse IgG (red).  S1P induced the translocation of Rac1 

to intercellular junctions, where Rac1 colocalized with IQGAP1.   Magnification bar 

= 10 μm. 
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Rac1 was increased nearly 4 fold within 10 min of S1P treatment (Fig. 5A).  

Immunocytochemistry studies showed that S1P induced co-localization of Rac1 and  

IQGAP1 at the cell periphery, which also suggests that S1P treatment increased the 

association of Rac1 with IQGAP1.   

 

IQGAP1 colocalizes with Rac1 at membrane ruffles and in the cytoplasm of 

subconfluent cells, and complexes with calmodulin in the cytoplasm of HUVECs. 

In subconfluent cells, IQGAP1 and Rac1 colocalized in the cytoplasm and at 

the membrane ruffles of untreated cells (Fig. 6).  For both subconfluent and confluent 

cells, IQGAP1 colocalized with calmodulin in the cytoplasm but not at the periphery 

of cells (Fig. 7B).  Co-immunoprecipitaton showed that calmodulin specifically 

complexed with IQGAP1 in HUVECs (Fig. 7A).   

 

Insoluble IQGAP1 colocalizes with actin filaments at leading edges of 

subconfluent cells. 

In subconfluent cells, IQGAP1 colocalized with actin filaments (phalloidin 

stained) at the membrane ruffles of cell leading edges (Fig. 8A).  Triton extraction did 

not remove IQGAP1 at the membrane ruffles, which suggested that IQGAP1 at the 

leading edge of the cell is insoluble and bound to the cytoskeleton (Fig. 8B).    

 

Interaction of IQGAP1 with VE-cadherin and catenins at cell-cell contacts. 

IQGAP1 associates with E-cadherin and catenins in epithelial cell, so I 

initially determined by immunoprecipitation and immunofluoresence microscopy if 

IQGAP1 associates with proteins of the adherens junction in HUVECs.  Control cell 

lysates were incubated with an antibody to IQGAP1 or IgG, the latter to determine 
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Figure 6. IQGAP1 colocalized with Rac1 at membrane ruffles and in the 

cytoplasm in subconfluent monolayers.  Subconfluent cell monolayers were fixed 

and stained with anti-IQGAP1 polyclonal and anti-Rac1 monoclonal antibodies, 

which were visualized, respectively, with Alexa Fluor 488-labeled goat anti-rabbit 

IgG (green) and Alexa Fluor 594-labeled goat anti-mouse IgG (red).  IQGAP1 

colocalized with Rac1 at both membrane ruffles and in the cytoplasm of the 

subconfluent cells.  Magnification bar = 10 μm. 
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Figure 7.  IQGAP1 complexed with calmodulin in the cytoplasm.  A) HUVEC cell 

lysate was immunoprecipitated for IQGAP1 or IgG as a control, and then 

immunoblotted for calmodulin.  IQGAP1 specifically associated with calmodulin but 

not the IgG control.  B) Both confluent and subconfluent cells were fixed and 

incubated with anti-IQGAP1 polyclonal and anti-calmodulin monoclonal antibody, 

which were visualized, respectively, with Alexa Fluor 488-labeled goat anti-rabbit 

IgG (green) and Alexa Fluor 594-labeled goat anti-mouse IgG (red).  For both 

subconfluent and confluent cells, IQGAP1 colocalized with calmodulin in the 

cytoplasm but not at the periphery of cells.  Magnification bar = 10 μm. 
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Figure 8.  Insoluble IQGAP1 colocalized with actin filaments at membrane 

ruffles of subconfluent cell monolayers.   Subconfluent HUVEC monolayers grown 

on glass coverslips were fixed first (Control) or permeabilized first (CSK-Tx) with 

cytoskeleton preserving buffer containing 0.5% Triton X-100 to extract soluble 

proteins before application of an anti-IQGAP1 antibody and phalloidin.  In 

subconfluent cells, IQGAP1 colocalized with actin filaments (phalloidin stained) at 

the membrane ruffles of the leading edges of cells.  IQGAP1 at the membrane ruffles 

was Triton-insoluble.   Magnification bar = 10 μm. 
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antibody specificity.  Immunoprecipitates were resolved by SDS-PAGE and probed 

with antibodies to VE cadherin and the catenins, β, γ, α, and p120.  These proteins 

formed specific complexes with IQGAP1 in HUVEC monolayers (Fig. 9 A-E).  

Localization of IQGAP1 in confluent endothelial cell monolayers was also viewed by 

immunofluorescence microscopy following co-incubation with primary antibodies to 

IQGAP1 and VE-cadherin, or one of the catenins, β, γ, α, or p120 (Fig. 9 F-J), or 

calmodulin, or Rac1.  IQGAP1 was localized in the cytoplasm and at cell-cell contacts 

(Fig. 9, IQGAP1).  In the cytoplasm, IQGAP1 was evenly distributed and partially co-

localized with Rac1 and calmodulin (Fig. 5,7).  At the cell periphery, IQGAP1 co-

localized with VE-cadherin and the catenins (Fig. 9 F-J, Merged). 

 

IQGAP1 did not complex with the tight junction proteins, occludin, claudin-5, 

and ZO-1.   

Since there are no reports of the association of IQGAP1 with tight junction 

proteins, I measured the protein levels of occludin, claudin-5, and ZO-1 in HUVECs 

and MDCK cells by immunoblotting, localized these proteins in the cells by 

immunofluorescence microscopy, and finally determined if these proteins associated 

with IQGAP1 in HUVECs by immunoprecipitation.  Low protein levels of occludin 

and ZO-1 were present in HUVECs as compared with MDCK cells (Fig. 10 A, B).  

The protein level of claudin-5, an endothelial-specific member of the claudin family, 

was also low in HUVECs (Fig. 10 A, B).  Compared to the immunofluorescent 

staining of IQGAP1, staining of occludin was very weak.  Both claudin-5 and ZO-1 

localized at intercellular junctions, but neither protein associated with IQGAP1, as 

depicted by immunoprecipitation or immunofluorescence microscopy (Fig. 10C).   

 Junctional IQGAP1 was detergent extractable.   
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Figure 9.  Interaction of IQGAP1 with VE-cadherin and catenins, β, γ, α, and 

p120.  HUVEC lysates were immunoprecipitated with antibodies to IQGAP1 or IgG.  

A-E) Representative immunoblots from three independent experiments demonstrated 

that IQGAP1 associates with VE-cadherin and catenins, β, γ, α, and p120.  F-J) 

Confluent HUVEC monolayers were processed for immunofluorescence microscopy 

using monoclonal antibodies visualized with Alexa Fluor 594-labeled goat anti-mouse 

IgG (red) or polyclonal antibodies visualized with Alexa Fluor 488-labeled goat anti-

rabbit IgG (green).  Note co-localization of IQGAP1 with VE-cadherin and all four 

catenins (Merged).  Magnification bars = 10 μm. 
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Figure 10.  IQGAP1 did not complex with tight junction proteins, occludin, 

claudin-5, and ZO-1.  A, B) MDCK and HUVEC lysates were probed with 

antibodies to occludin and ZO-1.  Representative immunoblots (A) and quantification 

after normalization to β-actin of four independent immunoblots (B) demonstrated that 

protein levels of occludin and ZO-1 were low in HUVECs, as compared to MDCK 

cells.  C) HUVEC lysates were immunoprecipitated with antibodies to IQGAP1 or 

IgG and immunoblotted with antibodies to occludin, claudin-5, and ZO-1.  

Representative immunoblots from four independent experiments demonstrated that 

IQGAP1 did not associate with occludin, claudin-5, and ZO-1 in HUVECs. Confluent 

HUVEC monolayers were also processed for immunofluorescence microscopy using 

monoclonal antibodies visualized with Alexa Fluor 594-labeled goat anti-mouse IgG 

(red) or polyclonal antibodies visualized with Alexa Fluor 488-labeled goat anti-rabbit 

IgG (green).  Note that claudin-5 and ZO-1 were observed at intercellular junctions, 

whereas occludin staining was weak as compared to IQGAP1 staining.  Magnification 

bars = 10 μm. 
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To determine whether the IQGAP1 observed at intercellular junctions 

complexes with adherens junction proteins associated with the insoluble cytoskeleton, 

HUVEC monolayers were permeabilized first with CSK-Tx buffer to remove soluble 

proteins and then fixed with 4% paraformaldehyde.  In control cells, both IQGAP1 

and VE-cadherin were co-localized at cell-cell contacts (Fig. 11A, Control).  After 

removal of soluble proteins by permeabilization with Triton X-100, most of the 

IQGAP1 was absent from intercellular junctions (Fig. 11A, CSK-Tx) and no longer 

co-localized with insoluble (cytoskeletal-associated) VE-cadherin (Fig. 11A, CSK-Tx) 

or β-catenin.  A few strands of IQGAP1 at the cell periphery (Fig. 11A, IQGAP1 and 

CSK-Tx) were resistant to detergent extraction.  Junctional IQGAP1 did not 

colocalize with the cortical actin ring in control cells.  But in Triton-treated cells, most 

of the junctional IQGAP1 was extracted, and the remaining insoluble IQGAP1 co-

localized with the peripheral ring of actin just interior to the cell membrane (Fig. 12).   

 Reduction of IQGAP1 by siRNA.   

HUVECs were seeded on 6-well dishes and transfected with IQGAP1 siRNA 

or scrambled siRNA by using oligofectamine.  After 48 h of transfection with 

IQGAP1 siRNA, the protein level of IQGAP1 was reduced by 75% (Fig. 13 A and B).  

Reduction of IQGAP1 by siRNA was also observed by immunofluorescence 

microscopy with an anti-IQGAP1 polyclonal antibody.  HUVECs were transfected 

with IQGAP1 siRNA or scrambled siRNA in 6-well dishes.  After 48 h, cells were 

trypsinized and reseeded onto precoated glass coverslips for another 24 h.  IQGAP1 

siRNA, as compared with scrambled siRNA, dramatically reduced the 

immunofluorescent staining of IQGAP1 (Fig. 13C).  The protein level of IQGAP1 

was also reduced at 24 and 72 h after transfection with IQGAP1 siRNA (Fig. 14A). 
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Figure 11.  IQGAP1 was Triton-soluble at intercellular junctions.  Confluent 

HUVEC monolayers grown on glass coverslips were fixed first (Control) or 

permeabilized first (CSK-Tx) with cytoskeleton preserving buffer containing 0.5% 

Triton X-100 to extract soluble proteins before application of primary antibodies to 

IQGAP1 and VE-cadherin.  Junctional IQGAP1 was sensitive to Triton-

permeabilization, whereas VE-cadherin was more resistant (CSK-Tx versus Control).  

Note co-localization (Merged) of IQGAP1 and VE-cadherin in Control column but 

not in CSK-Tx column.  Magnification bars = 10 μm. 
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Figure 12.  Junctional IQGAP1 colocalized with cortical actin filaments after 

permeabilization.    Confluent HUVEC monolayers grown on glass coverslips were 

fixed first (Control) or permeabilized first (CSK-Tx) with cytoskeleton preserving 

buffer containing 0.5% Triton X-100 to extract soluble proteins before application of 

antibodies to IQGAP1 and phalloidin.  Junctional IQGAP1 did not colocalize with 

cortical actin ring in control cells, but after Triton-treatment, IQGAP1 co-localized 

with peripheral ring of actin just interior to the cell membrane.  Magnification bars = 

10 μm. 
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Figure 13.  Reduction of IQGAP1 by siRNA.  HUVEC monolayers were 

transfected by oligofectamine with 0.4 μM IQGAP1 siRNA or scrambled siRNA.  A) 

Representative immunoblot demonstrated reduction of IQGAP1 by siRNA.  B) 

Quantification of IQGAP1 after normalization to β-actin demonstrated reduction of 

IQGAP1 in cells transfected with IQGAP1 versus scrambled siRNA (n = 16).  C) 

Immunofluorescent staining of IQGAP1 was dramatically reduced in cells transfected 

for 72 h with IQGAP1 siRNA.  ∗P<0.05 vs. scrambled siRNA (open bar).  

Magnification bars = 10 μm. 
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Figure 14.  Toxicity and Knockdown Effect of IQGAP1 siRNA.  A) HUVEC 

monolayers were transfected by oligofectamine with 0.27 μM IQGAP1 siRNA or 

scrambled siRNA for 24h, 48h, or 72h, and then equal volume of cell lysates were 

loaded.  Representative immunoblot demonstrated that IQGAP1 protein level was 

reduced by siRNA after 24h, 48h, and 72h.  B) HUVEC monolayers were not 

transfected, or treated only with oligofectamine, or transfected by oligofectamine with 

0.27 μM IQGAP1 siRNA or scrambled siRNA, and then equal volume of cell lysates 

were loaded.  Representative immunoblot demonstrated reduction of IQGAP1 by 

siRNA and no change in the protein levels of β-actin.   
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Reduction of IQGAP1 was specific to transfection with IQGAP1 siRNA as 

cells transfected with a scrambled siRNA and oligofectamine alone had protein levels 

of IQGAP1 that were no different from untreated cells (Fig. 14 B).  No significant 

cellular toxicity was detected by comparing the levels of IQGAP1 and β-actin in 

HUVECs that were untreated, oligofectamine-treated, or transfected with scrambled 

siRNA (Figs. 13A and 14A-B).   

 Basal electrical resistance was higher in IQGAP1 knockdown cells.   

According to the hypothesis of Kaibuchi and co-workers (71), the binding of 

IQGAP1 to β-catenin disrupts the adherens junction and causes separation between 

adjacent cells.  To determine if a reduction in IQGAP1 would induce the opposite 

result, an increase in endothelial barrier function, HUVECs were transfected directly 

on ECIS wells with 0.27 µM IQGAP1 siRNA or scrambled siRNA in MCDB-131 

containing oligofectamine (Fig. 15A).  Electrical resistance across cell monolayers 

was continuously measured by ECIS.  Basal electrical resistance of both siRNA-

transfected groups started at ~ 9,000 ohms.  In IQGAP1 knockdown cells, electrical 

resistance remained fairly constant, and from 60-80 h after transfection there was an 

~2,000 ohms difference between the IQGAP1 siRNA group and the scrambled siRNA 

(Fig. 15A).  The above findings were confirmed by transfecting HUVECs in 6-well 

dishes for 48 h, trypsinizing, seeding the scrambled siRNA- or IQGAP1 siRNA-

transfected cells on ECIS wells, and continuously monitoring electrical resistance for 

an additional 50 h.    After 48 h of transfection and within five hours of seeding on the 

ECIS wells, electrical resistance of HUVEC monolayers was 8,200 and 6,700 ohms, 

respectively, for the IQGAP1 siRNA- and scrambled siRNA-treated groups (Fig. 

15B).  This difference of ~1,500 ohms in electrical resistance increased to ~2,200 

ohms at 58 h and then decreased to ~1,400 ohms by 73 h after transfection.  After 
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ECIS, cells on the active electrode were immunostained for IQGAP1 to demonstrate 

reduction of this protein by siRNA and for VE-cadherin to count the cells and exclude 

any gain or loss of cells in both groups (Fig. 15 B).  With both methods of 

transfection, basal electrical resistance was higher from 50 to 80 h after transfection 

with IQGAP1 siRNA.  It also important to note that similar responses were observed 

in cell monolayers either continuously exposed to a diluted concentration of 

oligofectamine (Fig. 15A) or having had oligofectamine removed during the process 

of reseeding the cells on the ECIS wells (Fig. 15B). 

 IQGAP1 knockdown increased VE-cadherin.   

To begin to understand the cellular mechanism for the higher endothelial 

electrical resistance in IQGAP1 siRNA-treated cells, I measured the protein level of 

VE-cadherin in both IQGAP1 siRNA- and scrambled siRNA-transfected cells after 48 

h of transfection.  A representative immunoblot (Fig. 16A) and quantification of four 

immunoblots (Fig. 16B) from individual experiments demonstrated that IQGAP1 

knockdown increased the protein level of VE-cadherin by almost 80%, as compared 

to transfection with a scrambled siRNA.  In these initial experiments, cell monolayers 

were exposed continuously to a diluted concentration of oligofectamine for 44 h.  To 

remove any potential adverse effects of oligofectamine, these experiments were 

repeated in cell monolayers in which oligofectamine was removed by washing at 4 h 

after the transfection period.  The protein level of IQGAP1 increased in two of the 

three experiments in cell monolayers transfected with IQGAP1 siRNA, as compared 

to the levels in cells that were untreated, oligofectamine alone-treated, and scrambled 

siRNA-treated (Fig. 16 C and D).  In the third experiment, similar levels of IQGAP1 

protein were observed in all four groups (Fig. 16E).   
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Figure 15.  Basal electrical resistance was higher in IQGAP1 knockdown cells.  A) 

HUVEC monolayers seeded in ECIS (Electric Cell-substrate Impedance Sensing) 

wells were transfected with 0.27 μM IQGAP1 or scrambled siRNA and continuously 

monitored by ECIS.  Basal electrical resistance of cell monolayers was higher in 

IQGAP1 knockdown cells compared to scrambled siRNA- transfected cells (n = 17).  

B) HUVEC monolayers were transfected in 6-well dishes for 48 h, then trypsinized 

and seeded in ECIS wells.  Basal electrical resistance of HUVEC monolayers was 

higher in cells transfected with IQGAP1 siRNA than with scrambled siRNA (n = 7).  

Inserts are representative micrographs of ECIS wells incubated with anti-IQGAP1 

antibody after ECIS experimentation of cell monolayers transfected with IQGAP1 or 

scrambled siRNA.  ∗P<0.05 vs. scrambled siRNA (open squares) at specific time 

points. 
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To observe the localization of the increased VE-cadherin in IQGAP1 

knockdown cells, HUVECs were untreated, oligofectamine-treated, scrambled 

siRNA-treated, or IQGAP1 siRNA-treated in 6-well dishes for 48 h, then trypsinized 

and seeded them on precoated glass coverslips for another 24 h to form confluent cell 

monolayers.  Cell monolayers were fixed (Fig. 16F) and incubated with an anti-VE-

cadherin antibody to visualize VE-cadherin by immunofluorescence microscopy.    

Similar cell densities were observed in these groups, and no significant difference in 

the amount or localization of VE-cadherin was observed among these groups. 

 IQGAP1 knockdown decreased N-cadherin.   

Interestingly, the protein level of N-cadherin was decreased by 75% in 

HUVECs transfected with IQGAP1 siRNA for 48 h under the condition of continuous 

exposure to diluted oligofectamine for 44 h (Fig. 17 A and B).  Following the repeat 

of these experiments in cell monolayers washed of oligofectamine, the protein level of 

N-cadherin was decreased in three of three experiments (Fig. 17C-E). 

 

IQGAP1 knockdown did not change protein levels of p120-, β-, γ-, and α-

catenins.   

In contrast to the changes in protein levels for VE- and N-cadherins, protein 

levels of the catenins, p120, β, γ, and α, were unchanged in IQGAP1 knockdown cells 

(Fig. 18 A and B).  Neither the distribution patterns nor the intensities of p120- β-, γ-, 

and α-catenins as visualized by immunofluorescence microscopy was changed after 

reduction of IQGAP1 (Fig. 18 C-E).   

 

 N-cadherin associated with catenins (p120, β, γ, α) but not VE-cadherin or 

IQGAP1.   
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Figure 16.  IQGAP1 knockdown increased VE-cadherin.   HUVEC monolayers 

were transfected with IQGAP1 or scrambled siRNA, and cell lysates were probed 

with primary antibodies to IQGAP1, VE-cadherin, and β-actin.  A,B) Representative 

immunoblot and quantification after normalization to β-actin of four independent 

immunoblots demonstrated that IQGAP1 knockdown increased protein level of VE-

cadherin (VE-Cad).  C-E) VE-cadherin protein level was also measured inHUVECs 

were untransfected, oligofectamine-treated, scrambled siRNA-treated, or IQGAP1 

siRNA-treated in 6-well dishes for 4h.  The protein level of VE-cadherin increased in 

two of the three experiments in cell monolayers transfected with IQGAP1 siRNA, as 

compared to the levels in cells that were untreated, oligofectamine alone-treated, and 

scrambled siRNA-treated (C, D).  In the third experiment, similar levels of IQGAP1 

protein were observed in all four groups (E).  F) HUVECs were untransfected, 

oligofectamine-treated, scrambled siRNA-treated, or IQGAP1 siRNA-treated in 6-

well dishes for 48 h, trypsinized, and then seeded onto precoated glass coverslips for 

another 24 h to form confluent cell monolayers.  Cells were fixed and incubated with 

anti-VE-cadherin antibody followed by goat anti-rabbit IgG conjugated to Alexa 

Fluor 488.  No significant difference was observed among these groups.  ∗P<0.05 vs. 

respective scrambled siRNA (open bars).  
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Figure 17
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Figure 17.  IQGAP1 knockdown decreased N-cadherin.   HUVEC monolayers 

were transfected with IQGAP1 (IQ) or scrambled siRNA, and cell lysates were 

probed with primary antibodies to IQGAP1, N-cadherin, and β-actin.  A,B) 

Representative immunoblot and quantification after normalization to β-actin of four 

independent immunoblots demonstrated that IQGAP1 knockdown decreased protein 

level of N-cadherin.  C-E) N-cadherin protein level was also measured inHUVECs 

were untransfected, oligofectamine-treated, scrambled siRNA-treated, or IQGAP1 

siRNA-treated in 6-well dishes for 4h.  The protein level of N-cadherin decreased in 

all of the three experiments in cell monolayers transfected with IQGAP1 siRNA, as 

compared to the levels in cells that were untreated, oligofectamine alone-treated, and 

scrambled siRNA-treated.  ∗P<0.05 vs. respective scrambled siRNA (open bars).   
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Figure 18.  IQGAP1 knockdown did not change protein levels of p120-, β-, and α- 

catenins.   HUVEC monolayers were transfected with IQGAP1 (IQ) or scrambled 

siRNA, and cell lysates were probed with primary antibodies to IQGAP1, catenins 

(cat), p120, β, and α, and β-actin.  A, B) Representative immunoblot and 

quantification after normalization to β-actin of four independent immunoblots 

demonstrated that protein levels of catenins were unchanged in IQGAP1 knockdown 

cells.  C, D, E) Both scrambled and IQGAP1 siRNA-transfected cells were stained for 

IQGAP1, catenins, p120, β, and α, which were visualized with Alexa Fluor 488-

labeled goat anti-rabbit IgG (green) and Alexa Fluor 594-labeled goat anti-mouse IgG 

(red), respectively.  Although IQGAP1 siRNA dramatically decreased the intensity of 

IQGAP1 staining, it did not change the intensities of p120-, β-, and α-catenin staining. 

∗P<0.05 vs. respective scrambled siRNA (open bars). 
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To determine the interaction of N-cadherin with adherens junction proteins, 

we incubated cell lysates with antibodies to IQGAP1, VE-cadherin, p120-, β-, γ-, and 

α-catenins, and IgG.  Immunoprecipitates were resolved by SDS-PAGE and probed 

with an anti-N-cadherin antibody.  N-cadherin associated with p120-, β-, γ-, and α-

catenins, but not with VE-cadherin or IQGAP1 (Fig. 19A).  We conclude that N-

cadherin forms similar complexes as VE-cadherin, but N-cadherin does not directly 

associate with IQGAP1. 

 N-cadherin was also distinguished from VE-cadherin with regard to the 

interaction with the insoluble cytoskeleton.  Cells were either fixed first (Fig. 19B, 

Control) or permeabilized first (Fig. 19B, CSK-Tx) before administration of 

antibodies to VE- and N-cadherins.  In control cells, both VE-cadherin and N-

cadherin were present at intercellular junctions (Fig. 19B, Control).  After removal of 

soluble proteins by detergent extraction, less N-cadherin was observed at intercellular 

junctions than VE-cadherin (Fig. 19B, CSK-Tx).  These observations suggest that 

VE-cadherin is linked to a greater extent than N-cadherin to the insoluble 

cytoskeleton.  Since the linkage of cadherins to the actin cytoskeleton is thought to be 

essential for the formation of a strong intercellular adhesion, these findings would 

indicate that VE-cadherin mediates a much stronger cell-cell adhesion than N-

cadherin. 

 IQGAP1 knockdown increased association of VE-cadherin with p120- and β-

catenins; opposite response occurred with N-cadherin.   

Next, I determined if the reduction in IQGAP1 affected the association of VE-

cadherin and N-cadherin with the catenins.  Lysates from HUVECs transfected with 

IQGAP1 siRNA or scrambled siRNA for 48 h were incubated with antibodies to p120 

or β-catenin.  The resultant immunoprecipitates were subjected to SDS-PAGE and 
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Figure 19
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Figure 19.  N-cadherin formed complexes with all four catenins and was less 

bound to cytoskeleton.  A) HUVEC lysates were immunoprecipitated with 

polyclonal antibodies to IQGAP1, VE cadherin, p120, α-catenin, or IgG or 

monoclonal antibodies to β-catenin or γ-catenin and probed with an anti-N-cadherin 

monoclonal antibody.  N-cadherin formed immunocomplexes with catenins, p120, β, 

γ, and α, but not VE-cadherin or IQGAP1.  Data represent three independent 

experimental determinations.  B) Cells were fixed first (Control) or permeabilized 

first (CSK-Tx) and incubated with anti-VE-cadherin polyclonal and anti-N-cadherin 

monoclonal antibody, which were visualized, respectively with Alexa Fluor 488-

labeled goat anti- rabbit IgG (green) and Alexa Fluor 594-labeled goat anti-mouse 

IgG (red).  Both N-cadherin and VE-cadherin were located at intercellular junctions .  

Note that more VE-cadherin was resistant to extraction with Triton X-100 than N-

cadherin (CSK-Tx).  Magnification bars = 10 μm. 
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probed with antibodies to VE-cadherin, N-cadherin, and β- and α-catenins.  

Association of VE-cadherin with p120 was increased by almost 50% (Fig. 20 A and B) 

and that with β-catenin by ~60% (Fig. 20 C and D).  In contrast, the associations of 

N-cadherin with both p120 (Fig. 20 A and B) and β-catenin (Fig. 20 C and D) were 

decreased by 50%.  Associations of p120 with β-catenin (Fig. 20 A and B) and of β-

catenin with α-catenin (Fig. 20 C and D) were not changed by transfection with 

IQGAP1 siRNA.  The increased and decreased associations of p120 and β-catenin 

with VE-cadherin and N-cadherin, respectively, were in line with the increased 

protein level of VE-cadherin and the decreased protein level of N-cadherin in 

IQGAP1 knockdown cells. 

 
Expression of fusion protein, VE-cadherin-α-catenin, increased the electrical 

resistance across HUVECs. 

To determine the targets of IQGAP1 in the adherens junctional complex, I 

infected cells with an adenoviral construct expressing GFP-labeled VE-cadherin-α-

catenin as a fusion protein, which consists of amino acids (aa) 1-701 of VE-cadherin 

and aa 320-906 of α-catenin.  Since the binding sites of β-catenin in both VE-cadherin 

and α-catenin were deleted, β-catenin cannot bind to this exogeneous fusion protein.  

By immunoblotting, a GFP-labeled protein at 140 kD was found in infected cells but 

not in the control cells with equal loading of protein (Fig. 21B).   

To detect the functional role of this fusion protein, confluent HUVEC 

monolayers were adenovirally infected with the construct expressing the VE cadherin-

α-catenin fusion protein on ECIS (8W10) cultureware, and electrical resistance across 

cell monolayers was continuously measured.  During the first 48 h, electrical 

resistance of the PBScontrol group was maintained around 900 ohms, wherease the 

electrical resistance of the VE-cadherin-α-catenin treated group started at 1,000 ohms 
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Figure 20
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Figure 20.  IQGAP1 knockdown increased association of VE-cadherin with p120 

and β-catenin; opposite effect occurred with N-cadherin.   HUVECs were seeded 

on 6-well dishes for 24 h, and transfected with scrambled or IQGAP1 siRNA for 

another 48 h.  HUVEC lysates were immunoprecipitated with an anti-p120 polyclonal 

or an anti-β-catenin monoclonal antibody, and probed with antibodies to VE-cadherin, 

N-cadherin, β-catenin, and α-catenin.  Representative immunoblots (A,C) and 

quantification of three independent immunoblots after normalization to β-actin (B,D) 

demonstrated that reduction of IQGAP1 increased and decreased, respectively, 

associations of p120 (A,B) and β-catenin (C,D) with VE-cadherin (VE-cad) and N-

cadherin (N-cad).  Association of p120 with β-catenin (β-cat, A,B) or β-catenin with 

α-catenin (α-cat, C,D) did not change.  ∗P<0.05 vs. respective scrambled siRNA (open 

bars). 
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and reached 1,400 ohms.   Thus, the basal electrical resistance contributed by control 

cells was increased 55% by infection of VE-cadherin-α-catenin.  From 48 h to 72 h, 

electrical resistance was increased in both groups, but the resistance of the VE-

cadherin-α-catenin treated group was still 400 ohms higher than that of the control 

group.  Therefore, overexpressed VE-cadherin-α-catenin increased the basal electrical 

resistance of HUVEC monolayers (Fig. 21C).   

VE-cadherin-α-catenin expression diminished IQGAP1 located at intercellular 

junctions. 

In the attempt to increase the p120-VE-cadherin association, confluent 

HUVEC monolayers grown on glass coverslips were infected with an adenoviral 

construct expressing GFP-labeled VE-cadherin-α-catenin fusion protein for 48 h, then 

fixed and stained for p120, β-catenin, and IQGAP1.  In cells expressing VE-cadherin-

α-catenin, p120 colocalized with GFP-labelled VE-cadherin-α-catenin at intercellular 

junctions; fewer β-catenin molecules colocalized with GFP-labelled VE-cadherin-α-

catenin than p120; and most of the junctional IQGAP1 was diminished in cells 

expressing VE-cadherin-α-catenin (Fig. 22). 
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Figure 21
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Figure 21. VE-cadherin-α-catenin expression increased the electrical resistance 

across HUVECs.  A) Confluent HUVEC monolayers were infected with an 

adenoviral construct expressing green fluorescent protein (GFP)-labeled VE-cadherin-

α-catenin fusion protein for 48 h.  Cell lysates were immunoblotted for GFP, and a 

GFP-labelled protein at 140KD was found in infected cells but not in the control cells 

with equal loading of proteins.  B) Confluent HUVEC monolayers were infected with 

the construct expressing VE cadherin-α catenin fusion proteins on 8W10 

culturewares, and electrical resistance across cell monolayers was continuously 

measured.  During the first 48 h, electrical resistance of the PBS control group was 

maintained around 900 ohms, whereas the resistance of the VE cadherin-α catenin 

treated group started at 1,000 ohms and reached 1,400 ohms.   The basal electrical 

resistance contributed by control cells was increased 55% by VE cadherin-α catenin 

infection.   From 48 h to 72 h, electrical resistance was increased in both groups and 

the resistance of VE cadherin-α catenin treated group was still 400 ohms higher than 

that of the control group.  

 

85



Figure 22
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Figure 22. VE-cadherin-α-catenin expression diminishes junctional IQGAP1.  

HUVECs were seeded onto precoated glass coverslips for 24 h, then the confluent 

HUVEC monolayers were infected with an adenoviral construct expressing green 

fluorescent protein (GFP)-labeled VE-α-catenin fusion protein for 48h.  After fixation, 

these cells were stained for p120, β-catenin, or IQGAP1.  In cells expressing VE-

cadherin-α-catenin, p120 colocalized with GFP-labelled VE-cadherin-α-catenin at 

intercellular junctions.  Less β-catenin colocalized with GFP-labelled VE-cadherin-α-

catenin at intercellular junctions than p120.  And most junctional IQGAP1 was 

diminished in cells expressing VE-cadherin-α-catenin.  Magnification bar = 10 μm. 
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V.  DISCUSSION 

I demonstrated in this dissertation that 1) S1P increased the association of 

IQGAP1 with Rac1, 2) S1P increased insoluble VE-cadherin and β-catenin at 

intercellular junctions, 3) IQGAP1 was associated with proteins comprising the 

endothelial adherens junction, i.e. VE-cadherin and the catenins, 4) a reduction in 

IQGAP1 enhanced the integrity of the endothelial barrier, 5) IQGAP1 knockdown 

increased the protein level of VE-cadherin and the interaction of VE-cadherin with 

p120- and β-catenins, and 6) IQGAP1 knockdown decreased the protein level of N-

cadherin and the interaction of N-cadherin with p120- and β-catenins.  IQGAP1 at 

intercellular junctions appeared to be soluble in its association with VE-cadherin but 

insoluble in its association with the actin ring structure just adjacent to the cell 

periphery.  N-cadherin formed complexes with p120-, β-, γ-, and α-catenins but not 

with VE-cadherin or IQGAP1.  After detergent extraction, more insoluble VE-

cadherin and less N-cadherin were observed at intercellular junctions in HUVECs, 

indicating that VE-cadherin associates to a greater extent than N-cadherin with the 

insoluble cytoskeleton.  Low levels of the tight junction proteins, occludin, claudin-5, 

and ZO-1, as compared to the levels in MDCK cells, were observed in HUVECs, and 

these proteins were not complexed with IQGAP1.  We suggest that IQGAP1 

knockdown can enhance the barrier function of vascular endothelia by increasing the 

protein level of VE-cadherin and the association of VE-cadherin with β-catenin and 

the actin cytoskeleton.  The increased interaction of p120 with VE-cadherin could also 

contribute to the enhanced barrier function via stabilization and an increase in VE-

cadherin protein.  As a result of the decrease in N-cadherin, more p120 and β-catenin 

may be available to interact with VE-cadherin. 
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Junctions between endothelial cells consist of tight junctions and adherens 

junctions.  And expression and organization of tight junctions and adherens junctions 

varies in endothelial cells at different locations in the vascular tree.  In HUVECs, I 

found that the protein levels of occludin and ZO-1 were much lower than those in 

MDCK cells that have fully developed and well-organized, tight junctions.  Compared 

to the level of β-actin, the relatively low protein levels of claudin-5, occludin, and 

ZO-1 in HUVECs indicate that tight junctions are poorly organized in HUVECs.  

Although claudin-5 and ZO-1 were found at intercellular junctions, IQGAP1 did not 

co-immunoprecipitate with these proteins, which suggests that IQGAP1 does not 

complex with these proteins.   Therefore, we conclude that tight junctions are less 

expressed and organized in HUVECs and that IQGAP1 does not interact with tight 

junction proteins in endothelial cells. 

According to the Kaibuchi hypothesis, the association of IQGAP1 with E-

cadherin and β-catenin can be disrupted by GTP-bound Rac1 (21).   Since S1P has 

been shown to activate Rac 1, I hypothesized that S1P treatment may also disrupt the 

IQGAP1-VE-cadherin association.  I first looked at the S1P effect on endothelial cell-

cell adhesion, and found that S1P treatment rapidly increased the electrical resistance 

across HUVEC monolayers, confirming an earlier reported finding (Garcia).  This 

S1P effect was diminished within 1 h, and the S1P response was not affected by 

changing the S1P dose from 0.1 μM to 10 μM, which may be due to a negative 

feedback mechanism or the metabolism of S1P.  To further explore the mechanism, I 

gave S1P every 10 min for 1 h and found that repeated S1P treatments every 10 min 

maintained the peak resistance.  Maintenance of the response would argue against 

internalization of the Edg-receptor.  However, the increased electrical resistance did 

slowly decline over the period of the seven treatments of S1P, which might argue for 
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a slow internalization of the receptors.  A more likely explanation isthat termination 

of the S1P effect was due to the metabolism of S1P, possibly by phosphatases and/or 

lysases in the serum.   

Since S1P treatment rapidly enhanced the endothelial barrier, I further 

explored its effect on adherens junctions and found that S1P increased insoluble VE-

cadherin and insoluble β-catenin at intercellular junctions in confluent cell 

monolayers, which indicates that S1P induces the formation of more adherens 

junctions bound to actin cytoskeleton.  And S1P treatment also prevented formation of 

gaps between cells during the permeabilization and processing procedures for light 

microscopy, which indicates a stronger cell-cell adhesion.  The finding that S1P 

increased insoluble VE-cadherin and insoluble β-catenin at intercellular junctions 

confirms the previous reports (46, 56) that S1P increased the localization of junctional 

VE-cadherin and the catenins within 30-60 min of treatment.  Dominant-negative 

Rac1 polypeptide prevented the S1P-induced localization of VE-cadherin and β-

catenin to intercellular junctions (50).  However, in the present study, S1P increased 

the amount of junctional VE-cadherin as well as β-catenin within 10 min, which 

temporally corresponds with the rapid increase in electrical resistance that peaks 

around 10 min after treatment with S1P.  S1P also translocated Rac1 to the periphery 

of cells and increased the association of Rac1 with IQGAP1, as demonstrated by co-

immunoprecipitation and immunofluorescence microscopy.   Together, these findings 

suggest that S1P may increase insoluble VE-cadherin and β-catenin by activating 

Rac1 and dissociating IQGAP1 from adherens junction complexes.  However, there 

was no microscopical verification of a reduction in IQGAP1 at intercellular junctions 

upon treatment with S1P. 
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To further characterize IQGAP1 in endothelial cells, I found that IQGAP1 

colocalizes with Rac1 at membane ruffles and with Rac1 and calmodulin in the 

cytoplasm of subconfluent cells.     In subconfluent cells, IQGAP1 colocalized with 

actin filaments (phalloidin stained) at the membrane ruffles of the leading edges of 

cells.  Triton extraction did not remove IQGAP1 at the membrane ruffles, which 

suggests that these proteins are insoluble and bound to the cytoskeleton.  Mataraza et 

al. (53) found that overexpression of IQGAP1 in Swiss 3T3 cells enhanced cell 

migration in a Cdc42- and Rac1-dependent manner, and knock down of IQGAP1 

decreased cell motility.    Fukata et al. (2002) found that activated Cdc42/Rac1 

complexes with IQGAP1 and CLIP-170, enhancing the interaction between IQGAP1 

and CLIP-170, and recruiting GFP-CLIP-170 to the leading edge and the base of 

filopodia.  Watanabe et al. (2004) also showed that IQGAP1 directly interacts with 

APC and both colocalize with Rac1 and Cdc42 at the leading edge.  Therefore, 

IQGAP1 may promote cell polarization and migration by stabilizing both 

microfilaments and microtubules at the leading edge.  

IQGAP1 binds to E-cadherin and β-catenin, but not to α-catenin, in L cells 

expressing E-cadherin (EL cells) (45).  In MDCK cells, IQGAP1 co-localizes with α-

catenin as viewed by immunofluorescence microscopy (44) and interacts at its 

carboxy terminal domain with β-catenin and E-cadherin (8, 71).  Upon binding to β-

catenin, IQGAP1 competitively interferes with the binding of α-catenin to the E-

cadherin/β-catenin complex and dissociates cell-cell contacts, presumably by 

unlinking the complex from the actin cytoskeleton (22, 45).  The content of IQGAP1 

at epithelial adherens junctions appears to be determined by the activity of Rac1 or 

Cdc42.  Treatment of MDCK cells with a phorbol ester reduces Rac1 activity, 

increases the association of IQGAP1 with β-catenin, and displaces α-catenin from the 
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adherens junction (22).  The opposite response occurs upon activation of Rac1 or 

Cdc42, i.e. removal of IQGAP1 from the cadherin-catenin complex and enhancement 

of cell-cell contacts (21, 45).  IQGAP1 also binds avidly to calmodulin.  An 

antagonist of calmodulin induced the disassociation of IQGAP1 from calmodulin and 

increased the association of IQGAP1 with E-cadherin at the periphery of MCF-7 

human breast epithelial carcinoma cells (52).  Together, these findings indicate that 

IQGAP1 can interact with proteins in the cytoplasm and at the plasma membrane 

where IQGAP1 can regulate the epithelial adherens junction. 

 In HUVECs, I found that IQGAP1 formed complexes with VE-cadherin and 

β-, γ-, α-, and p120-catenins at cell-cell contacts.  Furthermore, the IQGAP1 

associated with junctional VE-cadherin appeared to be soluble, i.e. not bound to the 

cytoskeleton, as Triton X-100 extracted most of the IQGAP1, except for a few strands, 

at the cell periphery.  This observation supports Kaibuchi’s hypothesis that soluble 

IQGAP1 interacts with and can be removed from adherens junction proteins, thus 

contributing to the dynamic regulation of the adherens junction (46, 71).  There was 

also a ring of IQGAP1 just interior to VE-cadherin that was resistant to detergent 

extraction, thus considered insoluble, and was co-localized with the peripheral band of 

actin.  IQGAP1 did not interact with N-cadherin.  Under control conditions, N-

cadherin was located diffusely throughout the endothelial cell (67, 82) and also 

localized at intercellular junctions (56).  Using co-immunoprecipitation, we found that 

all of the catenins, p120, β, γ, and α, formed complexes with N-cadherin but that VE-

cadherin and IQGAP1 did not.   

I found an inverse relationship between the protein levels of VE-cadherin and 

N-cadherin after transfection with IQGAP1 siRNA.  The protein level of VE-cadherin 

was increased and that of N-cadherin decreased after the reduction of IQGAP1 in 
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HUVECs.  The protein levels of the catenins, p120, β, γ, or α, were unchanged.  

Although there were changes in protein levels, as determined by Western blotting, no 

changes in the amount or localization of these protein, the cadherins and catenins, 

were observed by light microscopy.  In other cell types, varying the content of 

IQGAP1 at intercellular junctions has produced varying results in terms of the protein 

level of E-cadherin.  Reduction of IQGAP1 by siRNA decreased the accumulation of 

E-cadherin, β-catenin, and actin filaments at contacts between MDCK cells (71).  

IQGAP1 knockdown also decreased VE-cadherin at cell-cell contacts in HUVECs, 

but did not change the protein level of VE-cadherin (110).  Translocation of IQGAP1 

from calmodulin present in the cyptoplasm to E-cadherin at the cell membrane, 

induced in MCF-7 cells by a calmodulin antagonist, decreased the level of E-cadherin 

(52).  Overexpression of IQGAP1, however, did not change the protein level of E-

cadherin and α- or β-catenin in EL cells (45).  Our findings of an inverse relationship 

of the protein levels of VE- and N-cadherins is also in contrast to the findings of Luo 

and Radice (56) who observed that a reduction of N-cadherin by siRNA led to a 

decrease in VE-cadherin as well as p120 in HUVECs.  

The above finding of an inverse relationship in the protein levels of VE- and 

N-cadherin following a reduction of IQGAP1 was observed initially in cell 

monolayers continuously exposed to a diluted concentration of oligofectamine.  

Because continuous exposure of oligofectamine, which could have formed micells 

even if diluted, may adversely effecte the cells, the above experiments were repeated 

after removing the oligofectamine by washing at 4h after the transfection period.  

Similar findings were observed as above in three additional experiments; protein level 

of VE-cadherin increased in two of three experiments and the proten leve of N-

cadherin decreased in three of three experiments. 
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There was also an inverse relationship in the associations of p120 and β-

catenin with VE-cadherin and N-cadherin in IQGAP1 knockdown cells.  VE-cadherin 

interacted to a greater and N-cadherin to a lesser extent with p120 and β-catenin.  This 

makes sense, as there would be more VE-cadherin protein to interact with these 

catenins and vice versa for N-cadherin.  However, within the past two years, a series 

of papers have highlighted the importance of p120 in the stabilization and turnover of 

VE-cadherin (14, 39, 105, 106).  Collectively, these papers demonstrated that binding 

of p120 to the juxtamembrane domain of cadherins regulates the protein levels of 

these cadherins.  Decreasing the protein level of p120 by siRNA or overexpression of 

the juxtamembrane region of VE-cadherin reduced VE-cadherin protein and 

decreased endothelial barrier function (39).  Overexpression of p120 alone or co-

expression with the juxtamembrane region increased VE-cadherin and its localization 

at intercellular junctions.  Therefore, stabilization of VE-cadherin relies on the 

binding of p120.  On the other hand, the lack of p120 binding targets VE-cadherin to 

degradation through an endocytic pathway involving clathrin (106).  Interestingly, N-

cadherin may participate in this regulation.  Unpublished observations by a 

collaborator (Dr. Peter Vincent, Albany Medical College) indicated that 

overexpression of N-cadherin induces a decrease in VE-cadherin, and p120 associates 

preferentially with the increased N-cadherin.  Although not addressed in this study, 

the increased associations of p120- and β-catenins with VE-cadherin could have 

resulted from removing a potential antagonistic effect of IQGAP1 on the binding of 

these two catenins to VE-cadherin.  Also, the decreased association of these two 

catenins with N-cadherin may have resulted in the increased availability of these 

catenins for VE-cadherin.   
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IQGAP1 knockdown had a positive influence on basal barrier function, as 

assessed by the continuous measurement of electrical resistance across HUVEC 

monolayers.  Endothelial electrical resistance was higher in those cell monolayers 

transfected with IQGAP1 siRNA as compared with transfection of a scrambled 

siRNA.  The potential mechanism for this positive effect on barrier function may be 

an increase in homophilic VE-cadherin binding between adjacent endothelial cells.  

This notion is supported by the demonstrations in IQGAP1 knockdown cells of an 

increased protein level of VE-cadherin and association of VE-cadherin with β-catenin.  

In contrast to the findings for VE-cadherin, the protein level of N-cadherin and the 

association of N-cadherin with β-catenin were decreased, and N-cadherin was less 

resistant to detergent extraction in IQGAP1 knockdown cells.  I conclude from these 

findings that an increased linkage of VE-cadherin and/or a decreased linkage of N-

cadherin to the cytoskeleton contributed to the higher electrical resistance in IQGAP1 

knockdown cells.   

The increased association of p120 with VE-cadherin could also induce lateral 

clustering or cis-dimerization of adjacent VE-cadherins (111) and/or could stabilize 

VE-cadherin protein (14, 39, 105), both effects having a positive influence on the 

endothelial barrier.  Equivocal results, however, have been obtained with regard to 

p120 and its role in cell-cell adhesion.  Whereas in some studies the juxtamembrane 

region of the cadherins and in particular p120 was found to enhance cell-cell adhesion 

and maintain the cobble-stone morphology of cell monolayers (97, 111), other studies 

have concluded that the juxtamembrane region and p120 prevent lateral clustering of 

the cadherins (72).  The amino-terminus of p120 may be the key to this adhesive 

activity as it contains a number of phosphorylation residues for tyrosine and 

serine/threonine that appear to effect cell-cell adhesion (72, 73).   
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Vice versa, an increased presence of IQGAP1 at adherens junctions might 

decrease VE- or E-cadherin and increase N-cadherin; an inverse relationship that 

characterizes the migratory phenotype of epithelial cells when they transition from 

epithelium to mesenchymal or fibroblast-like cells.  IQGAP1 has been identified as 

one of many cell-adhesion-related genes upregulated by transforming growth factor β, 

a known mediator of epithelial to mesenchymal transition (107).  IQGAP1 is also 

expressed in poorly differentiated adenocarcinomas (63) and in diffuse-type gastric 

tumors exhibiting impaired cell-cell adhesion (96) and has been implicated in cohort 

migration of carcinoma cells (87).  Our findings of an inverse relationship in the 

expression of VE-cadherin and N-cadherin coupled with enhancement of endothelial 

barrier function further implicate the involvement of IQGAP1 in adhesive activities 

between endothelial cells.  

The presence of IQGAP1 at the cell periphery may destabilize the adherens 

junction by interfering with the association of VE-cadherin with p120 or β-catenin.  

By infecting HUVECs with an adenoviral construct expressing a GFP-labeled VE-

cadherin-α-catenin fusion protein, which lacks the β-catenin binding domain on VE-

cadherin and α-catenin, I found that expression of the VE-cadherin-α-catenin fusion 

protein increased endothelial electrical resistance, which may be due to more VE-

cadherin on the membrane and more VE-cadherin linked to the actin cytoskeleton, 

similar to the outcomes mediated by IQGAP1 knockdown, or an enhanced interaction 

of α-catenin to the actin cytoskeleton.  Localization of GFP expression with p120, β-

catenin, and IQGAP1 by immunofluorescence microscopy revealed that GFP and 

p120 were co-localized.  The staining of β-catenin was low and not co-loclized with 

GFP and probably only represented endogenous β-catenin.  There was minimal to no 

staining of IQGAP1, similar to the results observed in IQGAP1 knockdown cells.  
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The low level of IQGAP1 staining is to be expected since the fusion protein lacks any 

of the binding sites for β-catenin.  However, it is also possible that expression of the 

VE-cadherin-α-catenin fusion protein caused a reduction in localization of IQGAP1 at 

intercellular junctions as the increase in binding of p120 to the fusion protein 

competitively excluded IQGAP1.  This would be the expected result if one of the 

primary binding site for IQGAP1 on VE-cadherin is the p120-binding domain on the 

juxtamembrane region of VE-cadherin,  indicatinge that IQGAP1 mainly targets at the 

p120-VE-cadherin association in the complex.  Although IQGAP1 has been reported 

to bind VE-cadherin at the carbocy terminus of IQGAP1 (Kaibuchi, Sacks), the 

binding site on VE-cadherin has yet to be determined. 
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VI.  CONCLUSION 

  Reduction of IQGAP1 by siRNA increased the basal electrical resistance 

across endothelial cell monolayers in association with increases in the protein level of 

VE-cadherin and the associations of VE-cadherin with p120 and β-catenin as well as 

the cytoskeleton.  Based on these findings in IQGAP1 knockdown cells, it is attractive 

to hypothesize, as depicted in Figure 23, that the overexpression of IQGAP1 at 

endothelial adherens junctions disrupts the binding of p120 and β-catenin to VE-

cadherin, causing the destabilization of VE-cadherin and a decrease in VE-cadherin 

protein.  The end result might be a decrease in endothelial barrier function.  

Furthermore, activation of Rac1 by S1P might remove IQGAP1 from adherens 

junctions, promoting the binding of p120 to VE-cadherin, and thus stabilizing VE-

cadherin, increasing its linkage to the actin cytoskeleton, and enhancing endothelial 

cell-cell adhesion.   
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Figure 23. Our hypothesis.   In human umbilical vein endothelial cells (HUVECs), 

IQGAP1 disrupts the association of p120 with VE-cadherin, destabilizing endothelial 

adherens junctions, decreasing VE-cadherin and increasing N-cadherin.   
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