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ABSTRACT 

Cortactin Phosphorylation by Casein Kinase 2 Regulates Actin Related Protein 2/3 Complex 
Activity and Invadopodia Function 

Steven Michael Markwell 

Malregulation of the actin cytoskeleton enhances tumor cell motility and invasion. The actin-
binding protein cortactin facilitates branched actin network formation through activation of the 
actin-related protein (Arp) 2/3 complex. Arp2/3 complex activation is responsible for driving 
increased migration and extracellular matrix (ECM) degradation by governing invadopodia 
formation and activity. While cortactin-mediated activation of Arp2/3 complex and invadopodia 
regulation has been well established, signaling pathways responsible for governing cortactin 
binding to Arp2/3 are unknown. In this dissertation we identify casein kinase (CK) 2α 
phosphorylation of cortactin as a negative regulator of Arp2/3 binding. CK2α directly 
phosphorylates cortactin at a conserved threonine (T24) adjacent to the canonical Arp2/3 binding 
motif. Phosphorylation of cortactin T24 by CK2α impairs the ability of cortactin to bind Arp2/3 and 
activate actin nucleation. Decreased invadopodia activity is observed in HNSCC cells with 
expression of CK2α phosphorylation-null cortactin mutants, shRNA-mediated CK2α knockdown, 
and with the CK2α inhibitor Silmitasertib. Silmitasertib inhibits HNSCC collective invasion in tumor 
spheroids and orthotopic tongue tumors in mice. Although overall cancer incidence rates are 
declining across the United States, the incidence of head and neck squamous cell carcinoma 
(HNSCC) continues to increase within the Appalachian region. To better understand the 
underlying factors leading to disproportionate outcomes, our group has established an 
Appalachian-specific HNSCC patient tissue cohort from surgically-resected tumors. This cohort 
represents all HNSCC stages, lesion types and morphologies, as well as cases that contain 
human papillomavirus (HPV) and/or tobacco and alcohol use. Moreover, we have generated 
several patient derived xenografts (PDXs) from these tissues, allowing further cellular, 
biochemical and preclinical therapeutic evaluation. Utilization of PDX tumors from this cohort will 
allow examination of critical steps in the development and potential treatment of invasive, 
metastatic, and recurrent Appalachian-associated disease. Matched patient and PDX sample 
availability enables personalized medicine and co-clinical trials aimed at reversing this 
Appalachian cancer health disparity and ultimately improving regional HNSCC patient care.   
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Literature Review 
Head and neck squamous cell carcinoma 

Head and neck squamous cell carcinoma (HNSCC) arises from epithelial cells lining the upper 

aerodigestive tract, encompassing the lips, oral cavity, nasopharynx, larynx, and hypopharynx 

(1,2). Clinically HNSCC is further subdivided by anatomical location into disease of the oral cavity 

and pharynx or the larynx, based on differences in progression, response to therapy, and patient 

outcome (1,2). Genetically HNSCC comprises two subtypes based on infection with human 

papilloma virus (HPV): HPV-positive and HPV-negative (1,2). The largely positive prognosis 

associated with HPV-positivity in HNSCC resulted in the American Joint Committee on Cancer 

(AJCC) down-staging all HPV-positive disease effective January 1st, 2017 (3). Likewise, clinical 

trials have established dose de-escalation protocols for treatment of HPV-positive HNSCC (4). 

HPV-negative HNSCC is associated with prolonged tobacco and alcohol exposure (1,2). As 

tobacco consumption in the United States declines, there has been a corollary decrease in HPV-

negative HNSCC incidents (5). However, HPV-positive HNSCC has increased over this same 

time period, leading to an overall plateau in total HNSCC incidence over the past decade (5). 

Recent projections suggest that at the national level HPV-related HNSCC will become the 

predominant form of this cancer as early as 2020 (5).  

While HPV-positive HNSCC accounts for nearly 20% of all HNSCC incidents, it is significantly 

enriched in oropharyngeal tumors where it is responsible for 60-80% of all HNSCC in this 

subregion (5–7). High-risk HPV subtypes 16 and 18 contribute to the vast majority of HPV-positive 

HNSCC (6–8). HPV is a circular double stranded DNA virus encoding 7 “early” stage proteins 

(E1-7) and 2 “late” stage proteins (L1 and L2) (7,8). The early proteins E6 and E7 primarily target 

tumor suppressor genes p53 and Rb in host cells, transforming the infected epithelium and 

increasing susceptibility to oncogenic insult (7,8). Despite impairment of these key tumor 

suppressor pathways, HPV-positive tumors have similar yet distinct mutational burdens as 
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compared with HPV-negative tumors (9–11). Due to the influence of the other HPV encoded 

genes, these tumors tend to be poorly differentiated and highly metastatic to regional lymph nodes 

(12). Tumor differentiation is characterized by the invasive front, where the tumor interacts with 

the stroma. Well differentiated tumors show a clearly defined front, while poorly differentiated 

tumors show tumor cells intermixed with stromal cells making the exact tumor border difficult to 

discern (13). Moderately-differentiated tumors display either an intermediate phenotype or have 

regions along the tumor border than display both well and poorly differentiated segments (13). 

Conversely, HPV-negative HNSCC tumors tend to be well- to moderately-differentiated, invading 

as collective strands which cause immense loco-regional destruction of vital tissues leading to 

worse overall patient survival (12).  

Further genomic analysis identified 5 distinct subtypes within HNSCC; two HPV-positive and three 

HPV-negative (9,11). Characteristically, these tumors stratify into three supergroups: 1) the 

inflammation/mesenchymal group, 2) the basal group, and 3) the classical group. The basal 

supergroup is exclusively HPV-negative, while the other two can be further subdivided based on 

HPV status (9).  The basal supergroup is enriched in hypoxia-responsive gene signatures and 

epithelial cell markers while the classical supergroup shows higher proliferation rates and highly 

correlates with tobacco consumption (9). The inflammation/mesenchymal supergroup exhibits an 

immune-responsive signature, enriched in CD8+ T lymphocyte infiltration and a poorly 

differentiated morphology (9). Despite similarities within supergroups, the HPV-positive tumors 

still display increased overall survival as compared to any of the HPV-negative subtypes (9). 

Another study further validated the distinct HPV-positive subtypes, again molecularly segregating 

the well differentiated tumors from the immune-responsive mesenchymal tumors (11).  

While loco-regional disease is a hallmark of HNSCC progression, metastasis to distant organs 

such as the lungs, bone, brain, and liver have been noted (14,15). Metastatic progression is a 

multi-step process during which tumors cell must breach the basement membrane, forge a path 
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through the extracellular matrix (ECM) to reach local vasculature or lymphatics, intravasate 

through the endothelium, extravasate into the secondary tissue, and engraft at the metastatic 

niche. Invasive carcinoma cells utilize an array of modalities in order to take advantage of cues 

from the tumor microenvironment, as well as internal aberrant signal transduction to accomplish 

these steps (16).  

Mechanisms of cancer cell invasion 

The inherent invasive tumor cell phenotype, along with its particular microenvironment, requires 

differing modes of  cellular invasion as single cells or as collective invasive groups (Figure 1) 

(17,18). Single-cell invasion can be subdivided into two modes. Non-proteolytic amoeboid motility 

driven through membrane blebbing allows cells to squeeze through pores in the ECM. Proteolytic 

mesenchymal invasion requires stromal cells or cells that have undergone epithelial-

mesenchymal transition (EMT) to degrade basement membrane and ECM components in order 

to generate permissive invasion pathways (18). Amoeboid invasion can be further characterized 

based on intracellular signaling involving specific Ras-family small GTPases of either the Rho-

Rho-associated protein kinase (ROCK) pathway or the Rac pathway (19–24). Rho-dependent 

signaling results in actino-myosin contractility, compressing the cell and propelling the trailing 

edge of the cell forward (20,23,24). At the leading edge of the cell, Rac signaling produces 

filopodial extensions, lamellipodia and podosomes driving the membrane forward and attaching 

to the ECM. Lamellipodia formation in response to extracellular growth factors, such as EGF, 

initiate membrane protrusion (25,26). Podosomes anchor the actin cytoskeleton to the ECM 

allowing contractility at the trailing edge to push the cell forward (19,23,24). Mesenchymal 

invasion relies almost entirely on the Rac-based signaling for directed cell motility (18,19,24). 

Unlike amoeboid invasion, mesenchymal cells produce invadopodia, membrane protrusions 

specialized in proteolytic ECM cleavage through localization and secretion of specific matrix 

metalloproteinases (MMPs) (17,27–29). Both single cell modalities can give rise to multi-cellular 
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streaming in which cells form loose transient cell-cell adhesions or simply take advantage of the 

cleared “tracks” left behind by previous invasive cells. It has also been noted that stromal cells 

can be involved in these multi-cellular streams, particularly when cancer-associated fibroblasts 

(CAFs) are recruited to “trail-blaze” a pathway through the ECM (30–32).  

 

Collective cellular 

invasion is classified into 

four main subtypes 

based on morphologic 

differences in the 

collective groups arising 

from differences 

inherent to the invasive 

cell and the surrounding 

tissue: 1) cluster-like 

invasion, 2) solid strand 

invasion, 3) lumen-

containing strand 

invasion, 4) protrusive 

strand invasion (17,18). 

All collective invasion 

relies upon cell-cell 

adhesions between 

either tumor cells 

themselves or between 

 

Figure 1. Tumor cell invasion modalities. Tumor cells utilize a 
spectrum of invasive modalities depending on the cell-cell 
interactions, tumor cell morphology and surrounding ECM.  

 Adapted from Figure 2 in Friedl, P. and Alexander, S. (2011) Cell 
147 (5), p.992-1009.  



5 
 

tumor cells and infiltrating stromal cells within the tumor microenvironment (17,18,33).  Cluster-

like invasion occurs when a compact “ball” of cells breaks away from the main tumor mass and 

invades as a tight group of epithelial cells (17,18). Strand-like invasion can take on several 

morphologies based on cell morphology near the leading edge and is dependent upon 

maintaining polarity within the invasive group (17,18). Solid strand collective invasion involves 

mesenchymal cells localizing to the leading edge of the strand, either through recruitment of 

stromal cells such as CAFs or from subregional EMT of tumor cells termed “tip” cells (18,30,31). 

These tip cells maintain some expression of epithelial cell surface markers while maintaining 

junctions with the rest of the invasive strand to allow force transduction down the length of the 

collective group. Based on cell type and polarity, some invasive strands maintain a clear luminal 

region at the center of the strand, typically only exhibited in well-differentiated tumors (17,18). In 

the absence of EMT or recruitment of mesenchymal stromal cells, collective strands display a 

rounded epithelial morphology where the collective mass extends a multi-cellular protrusion into 

the surrounding stroma (17,18). At the extreme end of the collective invasion spectrum lies 

expansive growth-driven invasion wherein accelerated tumor cell proliferation (as compared to 

the surrounding tissue) generates an outward facing force that allows for pushing expansion of 

the invasive front (17,18). The extent of this expansive growth depends on the rigidity of the 

surrounding tissue and can lead to extracapsular spread when metastatic lymph nodes can no 

longer contain the expanding tumor mass (17,18). Tumor cells are typically capable of undergoing 

several if not all of these collective invasion modalities, where it is not uncommon to observe 

multiple differing modes within a single tumor or within a patient with multiple tumors (17). 

Therefore, a deeper understanding of the underlying mechanisms giving rise to these different 

modes of invasion is needed in order to better target and prevent invasive spread and improve 

patient outcomes.  
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Rearrangement and organization of the actin cytoskeleton is necessary for formation of various 

cellular structures involved in cellular migration and invasion, as well as the transduction of forces 

through multi-cellular tumor cell groups. Migratory cells generate several actin-rich subcellular 

structures including podosomes, filopodia, lamellipodia and invadopodia (34–36). Formation and 

maturation of each of these structures requires tightly regulated cycles of actin polymerization 

and depolymerization through a variety of actin-binding proteins (ABPs) (35,36). These proteins 

are key modulators of filamentous (F-) actin production, branching, stabilization, and eventual 

turnover and recycling of globular (G-) actin for further cycles of F-actin assembly (26,37). F-actin 

is formed through ATP-bound G-actin monomer polymerization which rapidly adds to the “barbed’ 

end of the filament (38). As the filament ages, ATP hydrolysis occurs rending ADP-bound actin 

towards the “pointed” end of the filament, leading to spontaneous depolymerization in the absence 

of filament-stabilizing ABPs (38). Specific ABPs enable complex structures to arise from F-actin, 

allowing for the formation of branches, bundles, and sheets dependent upon the specific ABPs 

involved (26,35–37). Filopodia contain mostly bundled actin strands, lamellipodia consist of 

mostly branched actin networks, while podosomes and invadopodia contain both branched actin 

near the base and bundled actin strands in the membranous extensions (35,36). F-actin assembly 

is highly dependent on actin-related protein (Arp) 2/3 complex-mediated nucleation activity 

enhanced through nucleation promoting factors (NPFs) containing either a verprolin, central, 

acidic (VCA) domain found in the Wiskott-Aldrich Syndrome protein (WASp) family or an 

N-terminal acidic (NTA) domain found in the cortactin family (35,36,38). The type of specialized 

membrane protrusion formed depends upon the microenvironment as well as intrinsic cellular 

signals. In a 2D environment, cells typically exhibit lamellipodia and filopodia at the leading edge 

of the cell which is sufficient to pull the cell along a layer of ECM (35,36). In a 3D environment, it 

becomes difficult to differentiate podosomes from invadopodia since both subcellular structures 

have nearly identical components (39–44). While distinct markers distinguishing podosomes from 

invadopodia are contested in the field, consensus opinion proposes that WASp and Grb2 are 
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considered posodosome-specific, while Nck1 and Mena appear invadopodia-specific (29). 3D 

protrusions containing F-actin and associated proteins such as cortactin, β1 integrin, MMP14, 

N-WASp, paxillin, and talin have been observed in macrophages, dendritic cells, lymphocytes, 

melanoma, fibrosarcoma and breast cancer cells (43,45). Recent studies have observed similar 

structures in tumor and endothelial cells in vivo (40,43,46,47). 

Invadopodia 

Invadopodia were first identified by Chen et al. and characterized as membrane protrusions with 

localized ECM proteolytic activity in oncogenically transformed cells (48). Invadopodia share 

many ABPs found in other membrane protrusions. Invadopodia also contain microtubules and 

associated stabilizing proteins with the necessary transport machinery required for localization 

and secretion of MMPs (49–52). Invadopodia formation occurs in discrete spatial-temporal 

stages: 1) precursor core initiation, 2) precursor stabilization and 3) invadopodia maturation 

(29,53).  

Invadopodia are formed in response to chemotactic and proliferative environmental cues such as 

epidermal growth factor receptor (EGFR) stimulation by epidermal growth factor (EGF) (48,49,54–

56). Intracellular signals are transmitted through Ras family GTPases, Src tyrosine kinase, protein 

kinase C (PKC), Erk1/2, and others. Core initiation begins with cortactin-mediated recruitment of 

Arp2/3 complex, N-WASp, and cofilin to preexisting F-actin filaments (29,53,57,58).  

Stabilization is achieved through Src-dependent Tks5 binding to phosphoinositol 

3,4-bisphosphate (PIP2) on the plasma membrane (58–60) along with recruitment of β1 integrin 

to the precursor where it binds to the ECM and initiates maturation signaling (29,53,61). β1 

integrin activation through ECM binding creates an Arg kinase binding site on β1 integrin initiating 

assembly of a Mena-Arg-SHIP2 complex that generates additional PIP2, further adhering the 

precursor core to the membrane (61). Simultaneously, cofilin severs existing F-actin filaments 

near the membrane, generating new barbed ends (62–64). Src and/or Arg-dependent cortactin 
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phosphorylation creates docking sites for Nck1, recruiting N-WASp and Arp2/3 complex to initiate 

actin polymerization at the membrane (29,55,58–60,65–68). WIP, Nck, and N-WASp bind to Src 

or Abl/Arg tyrosine kinases which target key C-terminal residues on cortactin (55,65,69,70). 

Phospho-cortactin then interacts with various SH2 domain containing proteins , Arp2/3 complex 

through the NTA domain, and F-actin through the repeats region (RR) (71,72). This multi-protein 

complex facilitates Arp2/3-mediated branched actin network formation, providing protrusive force 

on the cellular membrane to initiation invadopodia elongation (35,36,71,72).  

Invadopodia maturation involves elongation through the combined action of the actin bundling 

protein fascin and straight-filament NPFs of the formin family (52,73).  Additional recruitment of 

MMP14 as well as exosomes containing MMPs secreted at the invadopodia tip promote focalized 

matrix degradation (50,74–76). Microtubules and certain intermediate filaments arrive at nascent 

invadopodia and are also involved in the maturation process (29,52,77,78). Regulation of F-actin 

barbed ends at invadopoida tips is achieved by the uncapping activity of formins and Ena/Vasp. 

This enables G-actin addition to filament barbed ends near the inner membrane face, directly 

contributing in invadopodial membrane protrusion (52,73,79,80). Bundling of the F-actin network 

within invadopodia is achieved through the activity of fascin, α-actinin, and caldesmon. The 

combined activity of these dual F-actin bundling proteins serves to organize F-actin filaments in 

to parallel arrays, stabilizing the F-actin invadopodia core (80). The adhesion proteins talin and 

paxillin localize at the invadopodia tip to connect the F-actin network to various integrins, forming 

a bridge between the actin cytoskeleton and the ECM (29,53,56,78,81–83). 

Invadopodia maturation is a  tightly regulated process, striking a balance between the ECM 

adhesion necessary for motility and the proteolysis required maintain directed cellular invasion 

(29). As noted above, focal ECM degradation occurs when MMP14 (also known as membrane-

type 1 (MT1)-MMP) and a disintegrin and metalloproteinase (ADAM)-family sheddases localize 

to invadopodia. These transmembrane proteases in turn act on the pro- forms of secreted 
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extracellular MMP2 and MMP9, cleaving the pro- fragments to enable full enzymatic activity 

(51,57,84–86). MMP14 disruption through reduced expression, inhibition of activity or 

mislocalization profoundly diminishes invadopodia-mediated proteolysis and tumor cell invasion, 

highlighting a central role for this MMP in tumor invasion (87–92). MMP14 localization is regulated 

by plasma membrane dynamics, where recycling to the invadopodia tip can occur via clathrin-

mediated endocytosis or exocytic trafficking in a cortactin-dependent manner followed by exocyst 

complex-mediated sequestering at the membrane for rapid reincorporation at newly formed pre-

invadopodia (49,76,89,91–96).  

Although invadopodia were initially characterized in 2D cell culture, several 3D models 

demonstrate that these structures are not culture artifacts. Physiological in vivo and in vitro assays 

using native ECM have identified tumor cells that display invadopodia-like structures with N-

WASp, Tks5, cortactin, Src, MMP14 and Arp2/3 complex localization at sites of ECM proteolysis 

(39,40,91,97–99). Furthermore, tumor cell lines that exhibit greater invadopodia function in 2D 

models almost universally display enhanced invasion capacity in 3D model systems. Similarly, 

podosomes have been found on osteoclasts, macrophages, smooth muscle and endothelial cells 

mediating homeostatic ECM reorganization (100–104). It is likely that tumor cells utilize this 

inherent cellular phenomenon in an attempt to pursue a more hospitable microenvironment as a 

result of increased primary tumor growth, resulting in depletion of local resources or by preventing 

adequate nutrient exchange due to incomplete angiogenesis and subsequent hypoxic conditions 

(105–107). 

Cortactin 

The ABP cortactin was originally identified as a Src kinase substrate that localized to peripherial 

F-actin (108,109). Cortactin is a cytoplasmic protein ubiquitously expressed in all mammalian 

tissues of non-hematopoietic origin (71). Subsequent studies have elucidated roles in cell 

adhesion, migration, endocytosis, and invasion (71). Fittingly, cortactin localizes to various actin-
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rich membrane protrusions including lamellipodia, filopodia, podosomes, and invadopodia 

(72,110). Cortactin is overexpressed in several invasive cancers including HNSCC, melanoma, 

breast, lung, bladder, colorectal, hepatocellular, and esophageal cancers (111–121). The CTTN 

gene that encodes cortactin is found on chromosome 11q13. Chromosome 11q13 amplification 

occurs in nearly 1/3 of HNSCC patients and is responsible for a significant portion of cortactin 

overexpression events in this disease, though it is not a prerequisite for enhanced cortactin 

protein expression in all HNSCC patients (122–127). CTTN amplification is a poor prognostic 

marker, corresponding with increased lymph node involvement, distant metastasis, and 

decreased time to recurrence (110,112,124,128–130). Regardless of the mechanism, 

overexpression of cortactin mRNA and/or protein corresponds with poor patient outcome in 

multiple patient cohorts (119,125,131,132).  

On the mechanistic level, cortactin is a multi-domain scaffolding protein that has been proposed 

to adopt several conformations. A closed “lollipop” auto-inhibitory conformation is thought to 

represent the inactive form, in which the Src homology (SH) 3 domain folds back to bind to the 

proline-rich region (PRR). The active form is thought to assume an open “rod-like” conformation 

in which the molecule is linearized, allowing multi-protein complex formation (109,133,134).  

Based on primary structure and functional analysis, cortactin has been subdivided into multiple 

domains/regions, including the NTA domain, the RR, an α-helical domain, the PRR, and an SH3 

domain (Figure 2)(135). The NTA domain mediates binding to and activation of Arp2/3 complex 

via a highly conserved DDW motif common to most NPFs (72,109,110,136–143). Arp2/3 

activation by cortactin alone is weak compared to WASp-family NPFs, requiring direct and/or 

indirect WASp-protein binding to cortactin to facilitate robust Arp2/3 complex activation 

 

Figure 2. Diagram representing cortactin functional domains. NTA, N-terminal acidic 
domain; R1-R6, repeats regions; Helix, alpha helical domain, PRR, proline rich region; SH3, 
Src homology 3 domain. 
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(72,110,137,144,145). Following the NTA domain, the F-actin interacting domain contains 6.5 37 

amino acid tandem repeats.  Binding to F-actin occurs at sequences around the 4th repeat 

(109,139). Lysine acetylation/deacetylation within the repeats region modulates F-actin binding 

efficiency. HDAC6-mediated cortactin deacetylation enhances F-actin binding, while a group of 

histone acetyltransferases including pCAF/p300 and SIRT1 acetylate cortactin to impair F-actin 

binding (146–148). The ability of cortactin to simultaneous bind Arp2/3 and F-actin stabilizes the 

overall F-actin network. This is achieved by cortactin NTA binding to Arp2/3 complex at the base 

of one actin filament, and the F-actin binding domain interacting directly with the side of a second 

F-actin filament. This stabilization effect is required for enhanced cell migration and tumor cell 

invasion (71,72,146,149). The α-helical domain contains a calpain cleavage site that when 

proteolyzed by calpain 2, enhances cellular migration likely due to the inability of the cleaved 

product to adopt the closed conformation (150,151). Both the PRR and SH3 domain are 

responsible for integrating upstream signaling events via post-translational modifications and 

mediating protein-protein interactions with other cortactin binding proteins (66,70,128,137,152–

156).  

The cortactin C-terminus contains the vast majority of its post-translational modification sites 

(157). Src and Abl family kinases phosphorylate tyrosine 421, 470, and 486 in the PRR, leading 

to enhanced tumor cell motility, invasion, and metastasis (65,72,128,158). Tyrosine 

phosphorylated cortactin is enriched in lamellipodia, invadopodia, and dorsal waves (153). SH2 

domain containing cortactin-binding proteins including Nck1, Crk, and Abl family kinases utilize 

these phospho-tyrosine residues dock with cortactin, ultimately recruiting other binding partners 

to form large multi-protein complexes (65,66,158–160). The Nck1 SH2 domain binds pY421 and 

pY466 then recruits N-WASp whose PRR interacts with the cortactin SH3 domain (65,158). This 

trimolecular complex enhances Arp2/3 complex nucleation activity through synergistic activities 

of the cortactin NTA and N-WASp VCA domains. Some controversy exists regarding the function 
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of tyrosine phosphorylated cortactin on NPF activity. One study concluded that Src-dependent 

cortactin phosphorylation diminished N-WASp binding and Arp2/3 actin nucleation activity 

through maintaining a closed conformation (161), while another study found that cortactin tyrosine 

phosphorylation does not induce a closed conformation (158). How these various post-

translational modifications to C-terminal cortactin residues impact one another and ultimately how 

these signals integrate to control actin dynamics remains unresolved.  

In order to increase ABP recycling, protein tyrosine phosphatase (PTP) 1B dephosphorylates 

cortactin tyrosine residues (162). The actin capping protein MenaINV protects cortactin from 

PTP1B-mediated dephosphorylation, though the exact mechanism remains unclear (163). 

Tyrosine dephosphorylation plays a major role in invadopodia regulation, as impaired 

phosphorylation at Y421, Y466, and Y482 significantly decreases invadopodia formation 

(72,128,164). Additionally, FAK has been shown to modulate Src-dependent cortactin 

phosphorylation at Y421, Y470, and Y486, enhancing focal adhesion turnover and allowing for 

increased cell motility (128). Cortactin is also a substrate for a variety of serine/threonine kinases.  

Erk1/2 targets serine (S) 405 and 418;  p21-activated kinase Rac1/Cdc42 activated kinases (PAK) 

1, 3, and 4 phosphorylate S405 and S418 as well as S113 in first repeat region (128,152,153,165). 

Erk1/2-mediated phosphorylation of S405/418 enhances binding between cortactin SH3 domain 

and the N-WASp PRR by releasing cortactin from the auto-inhibited state. Erk phosphorylation of 

N-WASp causes a similar release of VCA autoinhibition.  The newly formed complex between 

activated cortactin SH3 and N-WASp PRR domains  promotes Arp2/3 nucleation activity, leading 

to increased lamellipodia persistence and subsequent enhanced motility in HNSCC cells 

(128,166–168). S113 phosphorylation appears to further regulate interaction between the RR and 

F-actin filaments (152). Other studies show that both Erk1/2 and PAK-dependent serine 

phosphorylation are required for optimal ECM degradation in melanoma cells (49). In addition, 

protein kinase D (PKD) phosphorylates cortactin S298 in the sixth repeat and S348 preceding the 
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helical-PRR (169,170). PKD phosphorylated cortactin shows impaired binding to β-catenin and 

vinculin in adherens junctions, uncoupling E-cadherin mediated cell-cell interactions from the actin 

cytoskeleton, resulting in junction dissolution (169–172). While these studies provide important 

mechanistic insights into cortactin regulation by phosphorylation, several phosphorylation sites 

identified by comprehensive mass spectrometry screens currently do not have assigned functions 

(157). 

The cortactin SH3 domain mediates binding to a variety of PRR-containing cortactin binding 

partners. These interactions allow cortactin to integrate signals that control signal transduction 

(Fgd1, BPGAP1, Abl family kinases), actin polymerization (N-WASp, WIP), cell-cell and cell-ECM 

adhesions (ZO-1, FAK), endocytosis and exocytosis (ACK1, HIP1R, AMAP, Dynamin-2, 

SHANK2, CD2AP), and actomyosin contractility (myosin light chain kinase (MLCK)) 

(71,128,134,173). These processes collectively play major roles in directed cellular chemotaxis 

and migration, as well as invadopodia function and ECM invasion.  

While many studies have focused on modification and interactions with the cortactin C-terminal 

domain, the cortactin NTA domain that harbors the NPF activity centered around the DDW motif 

has also been extensively studied. Several studies have demonstrated that removal of the DDW 

motif significantly impairs binding to Arp2/3 complex and subsequently prevents invadopodia 

formation and maturation in a variety of cell lines (137–143,174). NPFs enhance Arp2/3-mediated 

actin polymerization by stabilizing a conformation in which Arp2 and Arp3 subunits mimic an F-

actin barbed end, allowing for rapid assembly of a new actin filament (137,140,175). The cortactin 



14 
 

NTA domain directly binds 

both Arp2 and Arp3 along the 

surface opposite to the 

barded end mimic, pinching 

the two subunits together in 

order to stabilize the active 

Arp2/3 complex conformation 

(38,175). Similarly, NPFs 

from proteins with VCA 

domains bridge between 

Arp2 and Arp3 along the 

pointed end of the complex, 

stabilizing Arp2/3 complex in 

a manner conducive to G-

actin binding (175). Since the VCA domain is also capable of binding G-actin, these NPFs 

demonstrate a greater ability to activate Arp2/3 complex, enhancing the nucleation rate. 

Mechanistic studies to determine the spatial and temporal coordination of cortactin and WASp-

family NPFs in Arp2/3-mediated branch point assembly have yielded differing mechanisms. One 

proposed mechanism involves simultaneous binding of N-WASp and cortactin to Arp2/3 complex 

(137). A second mechanism proposes that N-WASp binding and activating Arp2/3 complex prior 

to displacement by cortactin. In this mechanism, cortactin then binds to and stabilizes Arp2/3 

complex free of N-WASp while anchoring the newly formed “daughter” filament to the existing 

“mother” filament via the RR (176). Further work is required to fully elucidate the precise 

mechanisms utilized by cells in regulating motile and invasive behavior reliant on Arp2/3 activity, 

as well as how upstream signaling events alter NPF binding and activation during these cellular 

events.  

 

Figure 3. Cortactin Arp2/3 interaction modeling 

3D reconstruction of cortactin bound Arp2/3 complex reveals 
cortactin NTA domain bridging the pointed end mimic. Panels 
display views of Arp2/3 complex from the pointed end (left) and 
Arp3 (left center) as well as an Arp2&3 dimer from the side 
(right center) and Arp3 alone (right). Arp2/3 complex is shown 
in the top row with color subunits. On the bottom, Arp2/3 
complex is colored white and cortactin is shown in red.  

Adapted from Figure 3 in Xu, X. et al. (2012) EMBO, 31(1), 
p.236-247.  
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Cortactin is a key component of the actin-based invadopodia machinery and as such is 

recognized as the canonical invadopodia marker (71,72,128). Initial work demonstrated that 

cortactin formed a complex with paxillin and PKC within invadopodia that correlated with sites of 

ECM degradation (72). Likewise, cortactin expression and subcellular localization correlates with 

invadopodia formation and maturation in transformed fibroblasts and multiple invasive cancer cell 

lines (71,72). Mechanistically, cortactin initiates invadopodia formation through recruitment to 

sites of actin polymerization and ECM adhesion giving rise to immature pre-invadopodia 

(139,141,142). Subsequently, other invadopodia-associated proteins including Arp2/3 complex, 

N-WASp, and Tks5, are recruited to enhance and maintain Arp2/3 activity in order to drive 

membrane protrusion. Invadopodia maturation is characterized by subsequent recruitment and 

localization of MMPs, particularly MMP14, to sites of focalized ECM degradation 

(74,76,87,89,91,95). One model suggests the following order of events for cortactin-mediated 

invadopodia initiation (176). First, non-phosphorylated cortactin arrives at an actin filament, then 

recruits N-WASp, Arp2/3 complex, and cofilin. Cortactin tyrosine phosphorylation releases cofilin 

to begin severing F-actin, generating a localized increase in free barbed ends, and clearing a 

docking site for Nck1 binding to cortactin. Nck1 recruits N-WASp into the trimolecular complex 

described previously. Lastly, PTP1B dephosphorylates cortactin, releasing Nck1 and N-WASp 

and inhibiting cofilin in order to stabilize the newly formed actin network. Invadopodia turnover is 

necessary for efficient tumor cell invasion (177,178). Two mechanisms have been elucidated for 

driving invadopodia disassembly, one involving Rac1-Trio-PAK1 signaling cascade and another 

through RhoG activity. In the first pathway Trio, a Rac1 guanine exchange factor (GEF), activates 

Rac1 which in turn activates PAK1 or PAK4 (165,178,179). PAK-dependent phosphorylation of 

cortactin S113, S150 and S282 destabilizes invadopodia resulting in disassembly presumably 

through decreased interaction between the cortactin RR and F-actin (152,178,179).  The second 

pathway involves RhoG-dependent paxillin Y31 and Y118 phosphorylation leading to calpain 

activation (180,181). Calpain cleaves several ABPs including cortactin, talin, and WASp 
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destabilizing the invadopodia F-actin core leading to invadopodia disassembly (150,151,181–

183).  

In addition to forming invadopodia actin networks, cortactin is also involved in endocytic transport 

and secretion of various MMP cargoes at invadopodia. During endocytosis, the cortactin SH3 

domain binds dynamin-2, linking the cortical actin cytoskeleton to the membrane severing 

machinery around clathrin-coated vesicles (155,184–187). De novo cortactin-mediated actin 

network formation initiates membrane invagination prior to membrane severing through 

dynamin-2 (155,184–187). Following vesicle formation, cortactin and Arp2/3 complex remain 

attached to a subset of vesicles where further actin polymerization propels newly formed vesicles 

through the cytoplasm (188). RNAi-mediated cortactin reduction dramatically reduces MMP2 and 

MMP9 secretion as well as MMP14 localization to invadopodia tips. Conversely, overexpression 

of cortactin corresponds with increased MMP secretion (189,190). 

CK2 

CK2, previously misnamed casein kinase-2, is a ubiquitously expressed, highly conserved, 

constitutively active serine/threonine kinase consisting of two catalytic subunits (α or α’) and two 

β regulatory subunits (191–193). The CK2 holoenzyme exists as a heterotetrameric complex or 

as lone catalytic subunits in cells. The complex is exclusively cytoplasmic, while the catalytic 

subunits can be found in both the cytoplasm and nucleus (191,192,194–197). The regulatory 

subunits play a role in substrate recognition as well as modulating catalytic function of the 

holoenzyme (192,193,196,198,199). This is dissimilar to most heterotrimeric kinases in which the 

regulatory subunit serves as a molecular switch, activating the catalytic subunit’s kinase activity. 

Unlike most kinases, the CK2 catalytic subunit can facilitate phosphorylation utilizing either ATP 

or GTP hydrolysis (191,195,198,200). CK2α contains two lobular domains with the catalytic site 

residing at the interface between the domains (201,202). The constitutive activity arises from a 

unique structure, leaving the activation segment and the third α helix (termed αC) permanently in 
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the active conformation (201,202). Additionally, human 

CK2α subunits exhibit remarkable conformational 

heterogeneity even when compared to evolutionarily 

similar orthologs which remain sequentially and 

structurally similar (202). One recent study identified 5 

distinct regions of conformational flexibility, a glycine-rich 

p-loop, the β3/αC loop, the β4-β5 region, the Hinge/αD 

region, and the αGH2 helix (201). The β4-β5 region 

mediates binding to the regulatory subunit, while the 

glycine-rich p-loop and the Hinge/αD region confer 

differences in access to the ATP binding pocket, therein 

representing “closed” vs. “open” conformations (201). As 

of yet, no functional role has been elucidated for the 

β3/αC loop or the αGH2 helix. Due to its very general 

recognition motif (S-X-X-E/D/pS/pT) CK2 is recognized as one of the most promiscuous kinases 

in the genome with over 300 proposed substrates and more than 700 predicted CK2 phospho-

sites matching its recognition motif in the PhosphoSitePlus dataset (191,194). With the advent of 

CRISPR/Cas9-mediated knockout technology, a recent study attempted to verify substrate 

specificity for proposed CK2 targets, confirming 48 catalytic subunit regulated phospho-sites and 

another 163 heterotetrameric complex regulated phospho-sites in C2C12 mouse myoblast cells 

(194).  

Despite its constitutive activity, CK2 appears to be regulated at the protein level rather than 

transcriptionally (203,204). Early studies reveal intracellular shuttling between the nucleus and 

cytoplasm and subcellular localization as the major regulatory mechanism in CK2-dependent 

signaling (196,205–208). While holoenzyme shuttling between the nuclear and cytoplasm 

 

Figure 4. CK2α flexible regions 

Crystal structure of CK2α bound to 
CX-4945 (PDB ID 3PE1). Flexible 
regions are shown in red. Portions 
of CK2 are identified in color text.  

Adapted from Figure 1 in 
Srivastava et al. (2017) Proteins: 
Structure, Function, and 
Bioinformatics, 86(3), p.344-353. 
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appears to be commonplace in normal cells, subunit specific responses have been noted in 

various cancer cell models where nuclear CK2 is associated with a pro-survival phenotype 

(203,207,209,210). One study found that Bcr-Abl mediated-CK2α phosphorylation suppresses 

CK2 activity, which can reversed with PTP1B, demonstrating a post-translational regulatory 

mechanism of CK2-mediated signaling networks (211).  

CK2 is critical for maintaining cellular homeostasis, as minor changes in expression or nuclear 

localization have robust effects on proliferation and cell viability (203,207,208,210,212–214). 

Initial studies on CK2 signaling demonstrated enhanced activity and nuclear localization in 

response to androgenic growth stimuli, whereas androgen depletion or decreased CK2 

expression induced apoptosis (205,212,214,215). Additionally, CK2 modulates many canonical 

cell proliferation signaling networks including the Wnt, EGFR, Ras, AKT, Hedgehog and 

JAK/STAT pathways (216–220). CK2 mediates crosstalk between the Wnt and EGFR pathways 

via Erk2-dependent CK2 phosphorylation. This results in inhibiting α-catenin phosphorylation and 

promotes subsequent β-catenin translocation to the nucleus that drives glioblastoma invasion 

(216). In some cases CK2 is required for downstream signal transduction, as demonstrated in 

Hedgehog signaling where CK2 phosphorylates Smoothened and stabilizes Cubitus interruptus 

(Ci) and JAK/STAT signaling necessary for JAK2-mediated STAT activation that is required for 

expression of suppressor of cytokine signaling (SOCS)-3, both of which are necessary for tissue 

homeostasis and repair as well as maintaining local stem cell populations (219,220). In other 

cases CK2 merely enhances oncogenically driven proliferation as seen in H-Ras and AKT models 

(217,218). Likewise, CK2 mediates many cell death signals, particularly responses to DNA 

damage. CK2 directly modulates the DNA damage response pathway, phosphorylating BRCA1 

C-terminal residues that are notably mutated in breast cancer to disable a key checkpoint in DNA 

repair (221). Indirectly CK2 modulates the DNA damage response by phosphorylating several 

tumor suppressor proteins including p53, structure-specific recognition protein (SSRP)1, 
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promyelocytic leukemia gene (PML), and PTEN. This alters transcription and replication activity 

within the nucleus (222–226). CK2α suppresses apoptotic signaling via a multitude of post-

translational modifications to apoptotic machinery including the PI3K/AKT pathway, survivin, 

various inhibitors of apoptosis proteins (IAPs), caspases, the Bcl2 pathway, and the reactive 

oxygen species response pathway (195,227). As further evidence of the pro-survival role of CK2, 

impairment of CK2 signaling, either through removal of either CK2α or CK2β in mice or 

simultaneous removal of CK2α and CK2α’ in yeast is lethal (192,195). The fine-tuning between 

pro and anti-survival signaling is best demonstrated in retinal astrocytes, where CK2 expression 

is necessary for neo-angiogenesis during development, while extended CK2 signaling ultimately 

results in retinopathy (228,229).  

CK2β is necessary for localizing the holoenzyme to the plasma membrane, where it 

phosphorylates several ABPs including spectrin, ankyrin and adducin (200,230). Important to this 

Dissertation, CK2 phosphorylates the cortactin homologue HS1 at an unidentified site in the 

comparable NTA region, as well as residues near the DDW region in the Arp2/3 regulatory 

proteins N-WASP and WAVE2 (231–235). There is conflicting evidence about the nature of CK2-

mediated phosphorylation surrounding the DDW motif in WASp family proteins. Phosphorylation 

of the DDW flanking residues in WAVE/SCAR proteins impairs their ability to act as NPFs 

(233,236). Similarly, CK2-mediated phosphorylation impairs N-WASp activity while 

simultaneously enhancing clathrin-mediated EGFR endocytosis (235). Contrary to these finding, 

another study demonstrated that WASp phosphorylation by CK2 enhanced binding to and 

activation of Arp2/3 complex (234). Work in this Dissertation indicates that CK2-dependent 

cortactin NTA phosphorylation impairs binding to and activation of Arp2/3 complex (237). In 

addition to modulating actin dynamics, CK2 also phosphorylates many microtubule associated 

proteins including microtubule-associated protein (MAP)-1A, MAP-1B, MAP2, MAPτ, β-tubulin, 

stathmin, and dynein. This is congruent with association of CK2  with the mitotic spindle in dividing 
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cells (196,197,238–244). Collectively these data demonstrate a role for CK2 signaling having a 

direct impact on the actin and tubulin cytoskeletons involved in cellular motility, mitosis, and 

cytokinesis.  

Given that CK2 influences many prominent pathways utilized during tumor initiation and 

progression, it is not surprising that CK2 is overexpressed in a multitude of different cancer types 

(191,195,204,227,245–247). Increased tumor cell CK2 expression correlates with transformation, 

cell growth, cell cycle progression, cell survival, angiogenesis, and tumor cell motility, as well as 

decreased apoptosis and drug resistance (191,195,203,227,245). One study identified CK2 

among a 186-gene “invasiveness signature”, where enhanced expression correlates with 

decreased overall and metastasis-free survival in medulloblastoma, lung, breast, and prostate 

cancers (245,248). Specific to HNSCC, CK2 overexpression correlates with increased tumor 

grade, stage, and clinical outcome as well as radio- and chemotherapy resistance (227,246,249–

252). CK2 is enriched at the invasive tumor front, primarily within tumor cells, cancer-associated 

fibroblasts, and tumor-infiltrating lymphocytes. This implies that CK2 overexpression plays 

important roles in tumor-associated inflammation, invasion, and metastatic progression 

(251,253). With regards to directed cellular invasion, CK2 expression is critical for IL-6-driven 

tumor cell chemotaxis (254). In addition, CK2 activity further enhances a tumor stem cell 

phenotype and sphere formation, supporting an important a role in cancer progression and 

disease recurrence (255). 

While CK2 is not an oncogene in the traditional sense, modest increases in CK2 expression 

enhance the tumorigenicity of other driver oncogenes in various transgenic mouse models 

(195,247,256–259). In addition, CK2 directly phosphorylates several cancer-promoting 

transcription factors including NF-κB, p53, TAp73, and Twist to promote a pro-malignant 

phenotype (227,246,247,254–256,258). CK2 also phosphorylates IκBα and RELA to promote 

IKKβ activity while simultaneously suppressing p53 expression at both the mRNA and protein 
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levels (227,246,247). One study found that transgenic CK2 overexpression in mice leads to loss 

of p53 expression, enhancing lymphoma onset (256). In a Tal-1-driven murine acute 

lymphoblastic leukemia (ALL) model, CK2α co-overexpression enhanced tumorigenesis and 

significantly decreased overall survival (258). Other studies found that CK2α overexpression 

enhances Notch1, c-Myc and Wnt pathway component expression while modulating NF-κB 

signaling, ultimately leading to tumorigenesis (247,259,260). Conversely CK2 impairment 

decreases expression of β-catenin, c-Myc, CCND1, Bcl-XL, Integrins-α3,-α6,-β4, VEGF, Slug, 

Snail, vimentin and Notch1 while increasing expression of p53,TAp63, TAp73 and E-cadherin 

(227,247,255,259–261). CK2α expression (but not CK2β) is sufficient to confer drug resistance 

in acute myeloid leukemia (AML) and osteosarcoma models (203). Similarly, increased CK2 

activity is induced in prostate cancer cell lines upon treatment with cytotoxic agents and correlates 

with resistance to apoptosis (214). Exogenous CK2α expression alone is sufficient to abrogate 

drug-induced apoptosis in certain tumor cell lines (210,214). Collectively these studies support a 

global role for CK2 in promoting and maintaining signaling necessary for oncogenic initiation and 

progression.   

Given the myriad signal transduction pathways enhanced through CK2 activity, CK2 has garnered 

much interest as a drug target. This one target modulates cellular response to mitogenic signals, 

inflammatory cytokines, apoptosis and cell survival as well as drug efflux pump efficiency, 

angiogenic signaling, and tumor invasion and metastasis (195,203,227,229,247,262). Many 

preclinical models have shown anti-cancer benefits using antisense and siRNA targeted CK2 

reduction (195,213,227,261). Antisense oligodeoxynucleotides (ODN) against CK2 inhibits 

growth and induces apoptosis in prostate cancer and HNSCC cell lines along with associated 

xenografts (212,213,227,252,263,264). Tenfibgen nanocapsule-mediated anti-CK2 ODN delivery 

exhibits high tumor specificity in vivo (195,213,263,264). Reduced CK2 expression resultant from  

antisense ODN or RNAi treatment impaired HNSCC cell migration and invasion while 
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simultaneously resensitizing HNSCC tumors and cell lines to cisplatin (227,261). Furthermore, 

impaired CK2 signaling abrogates stem-like gene expression, clonal survival, and spheroid 

formation (255,260).  

While preclinical CK2 modulation studies continue to show promise, clinical trials targeting CK2 

specific signaling have shown marginal benefit. Pharmacological CK2 inhibitors developed to date 

include apigenin, CIGB-300, 2-Dimethylamino-4,5,6,7-tetrabromobenzimidazole (DMAT), 5,6-

dichloro-1-β-D-ribofuranosylbenzimidazole (DRB), emodin, hematein, Silmitasertib (also known 

as CX-4945), 4,5,6,7-tetrabromobenzotriazole (TBB), quinalizarin, (E)-3-(2,3,4,5-

tetrabromophenyl)acrylic acid (TBCA), and 6,7-dichloro-1,4-dihydro-8-hydroxy-4-[(4-

methylphenylamino)methylen]dibenzo[b,d]furan-3(2H)-one (TF). These compounds display 

varying degrees of anti-tumor efficacy and enzyme specificity (191,262,264–276). Nearly all of 

these CK2-targeted inhibitors are competitive ATP/GTP small molecules, inherently leading to 

poor target specificity due to the inherent conservation of this pocket in the active sites of kinases 

(262,277,278). CK2 pharmacological inhibition decreases proliferation in breast carcinoma and 

lymphoma cell lines (247,259,279). Although CK2 inhibition as a single agent has shown limited 

success, combination therapies with CK2 inhibitors show improved efficacy. One such study 

demonstrated that CK2 inhibition in Imatinib insensitive Bcr-Abl-driven ALL reduced cell viability 

and resensitized the surviving cell population to Imatinib treatment (279).  Similarly, increased 

apoptosis was found in prostate and colorectal carcinoma using CK2 inhibitors with  doxorubicin 

(278). CK2 inhibition also sensitizes colorectal carcinoma and rhabdomyosarcoma cells to TNF-

related apoptosis-inducing ligand (TRAIL)-mediated apoptosis (280,281). Likewise, CK2 inhibition 

sensitizes HeLa cells to ionizing radiation (282). Cells within the tumor microenvironment similarly 

rely on CK2 activity in response to various signals emanating from the tumor cells. CK2 inhibition 

reduced endothelial cell migration and chemotaxis disrupting neoangiogenesis and hematopoetic 

stem cell recruitment (229). These studies indicate that CK2 inhibition has limited utility as a single 
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agent but may play an important role as a key component in combination therapies where 

diminished CK2 activity abolishes a drug resistant phenotype.  

To date, only two CK2 inhibitors have entered clinical trials: Silimitasertib and CIGB-300 

(NCT01199718, NCT00891280, NCT02128282, NCT01639625, NCT01639638). Silmitasertib is 

a benzonaphthyridine derivative that binds CK2α with high specificity that inhibits catalytic activity 

at low concentrations (201). Crystal structure and computational modeling confirm that 

Silmitasertib-bound CK2α exhibits the open conformation in the Hinge/αD region and a stretched 

glycine-rich p-loop, confirming the ATP competitive nature of this inhibitor (201). Silmitasertib 

treatment in murine glioma and breast cancer models blunts NF-κB, PI3K/AKT, and JAK/STAT3 

signaling. This results in diminished cell cycle progression, cell viability, and cell migration 

(246,283). Inhibitor studies in lung and prostate cancer models demonstrate significantly reduced 

tumor cell proliferation (246,284,285). Silmitasertib treated HNSCC cell lines and xenografts 

display decreased proliferation, increased cell death and loss of stem-like characteristics 

(227,246,255). Silmitasertib resistance correlates with upregulated MEK-Erk1/2 signaling which 

can be abrogated using PD-3025901, a selective MEK inhibitor (246).  

CIGB-300 is a small peptide inhibitor that blocks CK2 phosphorylation sites at the CK2 substrate 

phospho-acceptor site (265,286). CIGB-300 administration induces apoptosis in human cell lines 

as well as in xenograft models (265,271). Phase I studies have found that intralesional CIGB-300 

administration is well tolerated and resulted in cervical cancer patient tumor reduction, with  some 

patients experiencing full histological regression (265,286,287). Similar to previous CK2 inhibitor 

studies, CIGB-300 synergistically enhanced paclitaxel and cisplatin treatment in human lung and 

cervical cancer xenografts (288). While only a limited sample, these trials demonstrate promising 

advances in patient treatment and an opportunity to overcome drug resistance to potentially 

enhance the clinical standard of care for cancer patients.  
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Patient-Derived Xenografts (PDXs) 

Modeling human cancer and developing pharmaceutical interventions has largely been carried 

out using cell lines in 2D culture or subcutaneous and orthotopic xenograft models with minimal 

efficacy, with only 5-13.4% of promising preclinical trial drugs achieving success at the clinical 

level (289–292). Cell line xenografts fail to recapitulate the tumor microenvironment, therein 

limiting applicability to the human disease (32).  In addition, in vitro cell culture methods select for 

highly proliferative, pro-survival subclonal populations within the tumor, resulting in an artificially 

increased cellular homogeneity than what is found in patient tumors (292).  

Genetically engineered mouse models (GEMMs) allow for modeling tumorigenesis concurrent 

with disease progression, evaluation of tumor-stroma interactions, and immune surveillance of 

the tumor. These traits collectively allow for greater biological relevancy in these models than cell-

based systems (293–295). GEMMs enable cancer researchers to induce tissue specific 

alterations and temporally regulate specific factors to pinpoint critical stages in tumor onset and 

progression that cannot be achieved using cell line xenografts (293,294). GEMM studies have a 

variety of applications including validating oncogenic drivers, determining therapeutic responses, 

and evaluating drug-resistance and disease recurrence in a manner that closely resembles the 

human disease (293,295–298). However, GEMMs tend to be time consuming to generate, display 

less tumor heterogeneity due to reliance on specific oncogenic drivers rather than chromosomal 

instability and de novo DNA damage, and often fail to predict drug efficacy in heavily pretreated 

patients (297,299–301). While GEMMs are better able to phenocopy the human disease, certain 

genetic abnormalities found in human patients cannot be recapitulated in any mouse model due 

to differences between species (296,301). This is particularly true when observing large 

chromosomal amplification events common in human patients which have no genetic equivalent 

in rodents.  
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As an alternative to these systems, recent advances in generating immune-compromised mouse 

strains have allowed for the ability of directly implant intact patient tumor tissue that can survive 

in mice. These patient-derived xenografts (PDX) models maintain a greater degree of tumor 

heterogeneity and recapitulate the majority of the genetic landscape found in the patient tumor, 

thus providing a platform for precision oncology testing (300–307). Directly culturing tumors in 

vivo maintains many conditions of the tumor microenvironment encountered in the patient, 

including reduced oxygen levels, nutrient and hormone delivery, and tumor-stromal interactions 

(32,293,305). 

PDX development begins with direct patient tumor sample implantation into immunodeficient mice 

which maintains many histological and genetic characteristics of the primary patient tumor (302–

304,306–308).  Patient samples for PDX work are typically obtained as either fine needle 

aspirates (FNAs) or following surgical resection (305). Tumor samples are implanted in the 

recipient mice as small tumor pieces  or as a single-cell suspensions mixed with artificial ECM 

and growth factors (299,303–307,309–311). Single-cell suspension is achieved by digesting  

patient stroma with ECM-cleaving proteases and/or mechanical mincing of the tissue 

(299,305,310–312). These suspension techniques expose tumor cells to harsh chemical and 

mechanical challenges that reduce cell viability, leading to decreased tumor engraftment and 

heterogeneity in the mouse (299). PDXs can be implanted or injected into heterotopic (typically 

subcutaneous flank or subretinal space) or orthotopic sites (305,309,313). Site selection is 

influenced by several factors including tissue size, the orthotopic organ (both size and 

accessibility), and the goal of that individual PDX model (tissue expansion vs. modeling tumor 

phenomenon vs. drug treatment evaluation) (305,312).  

Engraftment success depends on a host of factors including inherent tumor aggressiveness, 

histological grade, tumor composition, sample size, and preservation of endogenous tumor 

signaling such as resistance to anoikis and apoptosis (299,302,308,310,313). Other extraneous 
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factors can also impact engraftment including time (from surgical removal from the patient to 

implantation in the mouse), tissue temperature, lack of continuous nutrient exposure, and 

implantation location (299,311). 

Nomenclature for PDX development and expansion varies between research groups but is 

typically denoted using either F0, G0, or P0 for the initial implantation of patient tissue into the 

mouse (299,305,313). Subsequent implantations following the P0 tumor growth add to the 

number to indicate how many rounds of growth has occurred within the animal model (ex. P1, P2, 

P3).  A PDX is widely considered to be established and reliable upon reaching P3, assuming that 

the tumor has not deviated from the characteristics of the primary patient sample (299,305,313).  

At this point, PDX models are usually utilized for drug evaluations or tumor progression studies 

rather than tissue expansion/PDX establishment that occurs during the first three passages 

(299,305,313). Criteria for passaging the PDX tumor into the subsequent mouse are highly 

variable due to differing Institutional Animal Care and Use Committee (IACUC) standards and 

tumor monitoring techniques. Passaging is commonly performed when the tumor reaches ~1 cm 

in the largest dimension. At this point, tumor tissue is removed, processed then reimplanted (313). 

During tissue processing the tumor mass is broken down into small pieces, several of which may 

be evaluated for tumor drift or utilized for deriving novel primary cell lines (305).  

A critical step in establishing PDX tumors is avoiding host rejection of the tumor xenograft. This 

is largely achieved using immunodeficient mouse models for tissue implantation (Table 1). 

Immune compromised mice were first discovered by N.R. Grist in 1962, which were later 

characterized by Dr. S.P. Flanagan as mice lacking functional T cells (314).  In 1983 Bosma et 

al. published the first severe combined immunodeficient (SCID) mouse model, showing deficiency 

in functional B and T cell populations (315). Non-obese diabetic (NOD) mice developed to study 

diabetes mellitus were soon discovered to contain several cellular immunological deficiencies,  

including dysfunctional dendritic, macrophage, and NK cells (316). Crossing these two stains 
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generated the first NOD/SCID mice capable of enhanced human tumor engraftment rates 

compare to either prior line (317). Combining the NOD/SCID phenotype with IL2Rγnull (NSG) mice 

further enhanced human tumor tissue engraftment and reduced incidence of spontaneous 

lymphomas that frequently occur from implanted human tumors in the immune-permissive 

environment (318). While additional immunocompromised mouse stains have been established, 

none have achieved the widespread utilization of the stains described above (299,319).  NSG 

mice are currently the most commonly utilized model due to their combined adaptive and innate 

immune response impairment resulting in improved tumor engraftment (299,305,313,318,320).   

Tumor implantation in NSG mice shows also allows for prolonged survival of associated patient 

tumor infiltrating lymphocytes (TILs) up to 9 weeks post implantation, allowing for short-term study 

of patient immune response in this system (305,321). In order to further improve human tumor 

engraftment, transgenic mice expressing human stem cell factor (SCF), granulocyte-macrophage 

– colony stimulating factor (GM-CSF), and interleukin (IL)-3 in the NSG background have been 

established and are termed NSG-SGM3 mice (322). These specific murine cytokines show little 

cross-reactivity with their human ortholog receptors and have been attributed to poor engraftment 

of human hematopoetic stem cells and leukemia xenografts, which is countered by the expression 

of these human cytokines (322).   

Mouse Strain Modifications Advantages Disadvantages 
Nude No functional T 

cells 
Allows for human tumor 
engraftment, hairless 
phenotype allows for easier 
subcutaneous tumor 
monitoring, radioresistant 

Lowest human tumor 
engraftment rate, 
functional B and NK 
cells, T cell function 
improves with age, 
intact complement 

SCID No functional B 
and T cells 

Higher allogeneic and 
xenogeneic engraftment rate 
than nudes (above), lacks 
complement 

Functional NK cells, 
spontaneous 
lymphoma 
development 

NOD/SCID No functional B 
and T cells; 
dendritic, 
macrophage, 

Low dendritic, macrophage, 
and NK cell activity, lacks 
complement, engrafts 
hematopoietic cancer cell lines 

Radiosensitive, higher 
rate of spontaneous 
lymphoma 
development 
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Table 1. Immunocompromised mouse models 

While these advances have increased human tumor engraftment in mice, they require the loss of 

host immune surveillance. This makes such models unsuitable for studying tumor-immune 

interactions. To reestablish proper immune system interactions without compromising 

engraftment rates, current development in the field is centered on producing mice with a 

humanized immune system. In these models, human CD34+ hematopoietic stem cells (HSCs) are 

selected from bone marrow, cytokine-mobilized peripheral blood, or umbilical cord blood samples. 

Cells are injected into an immunodeficient recipient mouse’s circulation to seed the marrow and 

function as in the patient (318,323,324). Humanized mice express a wide array of immune lineage 

cell subtypes and are fully capable of eliciting the expected immune response when challenged 

(318,323). Not only do these models provide paracrine signaling factors lost in a standard PDX 

model, they also provide tumor immune surveillance and can be utilized in cancer immunotherapy 

preclinical studies. 

and NK cell 
impairment 

Rag2γnull No functional B, 
T, and NK cells 

High human tumor 
engraftment rate, low rate of 
spontaneous lymphoma 
development, radioresistant 

Functional dendritic 
cells and 
macrophages, intact 
complement 

NSG No functional B, 
NK, and T cells; 
dendritic cell 
and 
macrophage 
impairment 

Higher allogeneic and 
xenogeneic engraftment rate 
than all stains listed above, 
low rate of spontaneous 
lymphoma development, lacks 
complement 

Poor lymph node 
development, 
maintains tumor 
stromal cells for a short 
duration (~9 weeks), 
radiosensitive 

NSG-SGM3 No functional B, 
NK, and T cells; 
dendritic cell 
and 
macrophage 
impairment 
Human SCF, 
GM-CSF, and 
IL-3 expression 

Highest allogeneic and 
xenogeneic engraftment rate, 
low rate of spontaneous 
lymphoma, maintains cytokine 
sensitive tumor 
subpopulations, lacks 
complement 

Poorly characterized, 
slightly deficient lymph 
node development, 
radiosensitive 
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PDX models have been successfully established for many tumor types (299). Several HNSCC 

PDX models exist, covering both HPV+ and HPV- subtypes (311,312,325–328). As seen in other 

tumor PDX models, engraftment rates vary based on the tissue of origin (312).  Surprisingly, 

neither recurrence nor HPV status show any effect on PDX establishment, but these PDXs 

recapitulate overall survival differences seen in such patients (311,312). The only factor that 

appears to influence PDX engraftment is metastatic development in the patient prior to surgical 

resection, but this is inconsistent across cohorts (311,325–327). Epigenetic marker analysis 

shows that while tumor cell lines are significantly different from primary tumors, established PDXs 

maintain identical methylation signatures to the primary tumor from which they are derived (329). 

Preclinical studies demonstrate enrichment for resistance to cisplatin and susceptibility to 

diaziquone in HNSCC PDXs, which correlates with p53 mutation and cyclin D1 amplification in 

specific tumor samples (328,330). These data recapitulate findings from various HNSCC clinical 

trials (331,332). One study showed PI3K enrichment in Cetuximab-resistant HNSCC tumors 

which respond to PX-866, a PI3K inhibitor, treatment demonstrating predictive therapeutic 

intervention based on genomic and proteomic markers (312).  

Several studies have evaluated specific tumor subpopulations, seeking to identify the HNSCC 

CSCs which are display enhanced tumor initiating capacity and drug resistance (307,310,333). 

Establishing treatment modalities to target these distinct subpopulations is key in developing 

second line therapies and preventing disease recurrence.  

PDX models exhibit responses similar to the patient when exposed to clinical therapeutics 

(302,334,335). The successful translation of PDX treatment to clinical efficacy prompted the 

National Cancer Institute (NCI) to shift its drug screening program from an established panel of 

cell lines to a PDX cohort (336). Likewise, the Novartis Institutes for BioMedical Research 

published a large drug screening study utilizing a library of 1,075 PDX tumors (337).  PDX 

samples can be evaluated post-treatment to identify shifts in tumor expression that may provide 
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additional insight towards secondary treatments (312,338). For instance, identifying an expanding 

drug-resistant subpopulation susceptible to another chemotherapeutic agent that was previously 

undetectable in the untreated sample provides a beneficial change in clinical intervention 

(312,334,338,339). One study found that a drug-resistant tumor was addicted to the drug itself, 

which regressed following treatment cessation (334). This same study also demonstrated that 

periodic treatment, rather than continual dosing, delayed progress to drug-resistant disease and 

prevented drug-reliant subpopulation development (334). Several studies have run co-clinical 

trials where the patient and matched PDX are treated with identical therapeutics,  with PDX 

sample analysis allowing clearer observation of patient tumor alterations that can potentially shift 

clinical intervention for that individual (340–343). This represents an initial foray into personalized 

or precision medicine where the genomic and proteomic tumor characteristics govern patient 

care, rather than conventional therapy where clinicians rely upon gross tumor characteristics 

including tumor size, grade, and stage to determine patient treatment (339,344,345). 

While PDXs represent an advance in characterizing and in preclinical testing of human tumors, 

there are several limitations to this model. Not every tumor sample engrafts in the animal to form 

a tumor. Some tumors that do engraft grow too slowly to allow time for clinicians to practically 

adjust patient care. Additionally, mouse stromal cells quickly replace their human stromal 

counterparts within the tumor and do not always mimic behaviors found in patient tumor tissue. 

Similarly, alterations in drug metabolism, targeting, and tumor vascularity can confound PDX drug 

responses. On the practical side, one must account for the increased cost associated with 

immunodeficient mouse cohorts along with the time commitment to implant tumors, monitor 

progress, and passage tissue into subsequent mice. Newly developed models such as the NSG-

SGM3 can alleviate some biological deficiencies but come at increased expense and/or shortened 

therapeutic window. Despite these short comings, PDX preclinical and co-clinical trials enhance 
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translational robustness to patient care and pave the way towards enhanced precision medicine 

care in oncology.  
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Abstract  

Malregulation of the actin cytoskeleton enhances tumor cell motility and invasion. The 

actin-binding protein cortactin facilitates branched actin network formation through 

activation of the actin-related protein (Arp) 2/3 complex. Increased cortactin 

expression due to gene amplification is observed in head and neck squamous cell 

carcinoma (HNSCC) and other cancers, corresponding with elevated tumor 

progression and poor patient outcome. Arp2/3 complex activation is responsible for 

driving increased migration and extracellular matrix (ECM) degradation by governing 

invadopodia formation and activity. While cortactin-mediated activation of Arp2/3 

complex and invadopodia regulation has been well established, signaling pathways 

responsible for governing cortactin binding to Arp2/3 are unknown and potentially 

present a new avenue for anti-invasive therapeutic targeting. Here we identify casein 

kinase (CK) 2α phosphorylation of cortactin as a negative regulator of Arp2/3 binding. 

CK2α directly phosphorylates cortactin at a conserved threonine (T24) adjacent to the 

canonical Arp2/3 binding motif. Phosphorylation of cortactin T24 by CK2α impairs the 

ability of cortactin to bind Arp2/3 and activate actin nucleation. Decreased invadopodia 

activity is observed in HNSCC cells with expression of CK2α phosphorylation-null 

cortactin mutants, shRNA-mediated CK2α knockdown, and with the CK2α inhibitor 

Silmitasertib. Silmitasertib inhibits HNSCC collective invasion in tumor spheroids and 

orthotopic tongue tumors in mice. Collectively these data suggest that CK2α-mediated 

cortactin phosphorylation at T24 is critical in regulating cortactin binding to Arp2/3 

complex and pro-invasive activity, identifying a potential targetable mechanism for 

impairing HNSCC invasion.   
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Implications: This study identifies a new signaling pathway that contributes to enhancing 

cancer cell invasion. 
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Introduction 

Cell invasion from the primary tumor is responsible for initiating the metastatic cascade 

and increasing cancer lethality (1,2). Invasion is initiated in part through the action of 

invadopodia, actin-based membrane protrusions produced by tumor cells that mediate 

dissemination by degrading restrictive extracellular matrix (ECM) proteins through 

enzymatic matrix metalloproteinase (MMP) activity (3). Invadopodia contain a central 

filamentous (F-) actin core surrounded by an integrin-based adhesion ring complex that 

anchors the structure to allow focal matrix degradation and tumor cell protrusion through 

the basement membrane (4). Cortactin and actin-related protein (Arp) 2/3 complex are 

essential protein components involved in invadopodia precursor core formation required 

for subsequent MMP recruitment and membrane protrusion (5,6). Cortactin 

overexpression is common in several cancer types including head and neck squamous 

cell carcinoma (HNSCC), resulting in enhanced motility, invasion, and invadopodia 

activity (7,8). Cortactin binding to Arp2/3 complex activates Arp2/3 actin nucleation 

activity, enhancing cellular actin polymerization to form branched F-actin networks (6,8–

10). Cortactin also directly binds F-actin and bundles newly-formed filaments, providing 

an overall stabilizing effect on the Arp2/3-F-actin network required for invadopodia 

formation (5,6,11). Previous work has shown that a DDW motif within the cortactin N-

terminal acidic (NTA) domain is central in mediating Arp2/3 activation and branched actin 

network formation (7,12–14). This region is similar to the Arp2/3 binding motif found in 

the Acidic region of the Verprolin, Central, Acidic (VCA) domain of the Wiskott-Aldrich 

Syndrome protein (WASp)-family of Arp2/3 nucleation promotion factors (NPFs). While 

the cortactin DDW motif is well established as the region responsible for Arp2/3 binding, 
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post-translational or other modifications of amino acids in the NTA region that regulate 

binding have not been reported. Tyrosine and serine phosphorylation of cortactin residues 

in the carboxyl-terminal region are essential for invadopodia formation, cellular invasion, 

and tumor metastasis through multiple mechanisms ultimately involving activation of 

WASp NPFs (6,7,15–18). In addition, comprehensive phosphorylation site mapping by 

mass spectroscopy has identified NTA phosphorylation sites in close proximity to the 

DDW motif (19). This raises the possibility that phosphorylation of one or more of these 

residues may serve to govern Arp2/3 binding and invadopodia function in invasive cancer.   

Casein kinase (CK) 2 is a ubiquitously expressed, constitutively active serine/threonine 

kinase consisting of two catalytic subunits (α or α’) and two β regulatory subunits (20). 

Increased CK2 expression correlates with cell cycle progression, apoptosis resistance 

and tumor cell motility in various cancers (20). Overexpressed CK2 enhances HNSCC 

tumor cell motility (20). CK2 phosphorylates the cortactin homologue HS1 at an 

unidentified site(s) in the NTA region (21), as well as residues near the DDW region in 

the NPFs N-WASp and WAVE2 (22–25). Here we show that CK2 phosphorylation of 

threonine (T) 24 in the cortactin NTA impairs binding to and activation of Arp2/3 complex. 

Cortactin T24 and CK2 are required for efficient invadopodia formation and ECM 

degradation activity in HNSCC cell lines. Treatment of established and primary HNSCC 

cells with the selective CK2 inhibitor Silmitasertib impairs invadopodia function and 

regional HNSCC invasion. These results identify a new mechanism of invadopodia 

regulation that can be targeted to impair HNSCC invasion.
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Materials and Methods 

Cell culture, lentiviral infection and transfection, siRNA  

HNSCC cell lines OSC19 and UMSCC1 were acquired and maintained as described (26). 

MDA1586 cells were obtained in March 2014 from Barbara Frederick (University of 

Colorado, Denver, CO). All HNSCC lines were authenticated by STR profiling at the 

University of Arizona Genetics Core in June 2017. PCR-based mycoplasma testing 

(13100-01, Southern Biotech) was conducted on OSC19 and UMSCC1 lines in March 

2015 and were free of contamination. The MDA1586 line was not tested for mycoplasma. 

HEK293T/17 cells were obtained in April 2013 from Robert Wysolmerski (West Virginia 

University, Morgantown, WV). NIH3T3 cells were obtained in June 2017 from Ivan 

Martinez (West Virginia University, Morgantown, WV) and maintained for ≤10 passages. 

These lines were not authenticated or tested for mycoplasma. Cells were propagated in 

DMEM supplemented with 10% fetal bovine serum and 1% penicillin-streptomycin for ˂ 6 

months. OSC19 and UMSCC1 cells stably infected with pLKO.1-puro cortactin shRNA or 

CK2α shRNA were generated by clonal puromycin selection following standard methods 

(CSNK2A1: TRCN0000380839, TRCN0000027627; CTTN: TRCN0000040275).  

UMSCC1 cells stably infected with pLU-Luc2 expressing luciferase were generated 

following standard methods. Murine cortactin rescue OSC19 and UMSCC1 cells 

containing cortactin shRNA stably infected with pLenti CMV Hygro cortactin constructs 

were generated by subsequent clonal hygromycin selection. Complete cortactin 

knockdown in OSC19 and UMSCC1 cells was achieved by transfection of cortactin-
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targeting siRNA (ON-TARGETplus SMARTpool L-010508-00-0020, Dharmacon) using a 

Nucleofector I (Amaxa Biosystems). 

Western blotting, antibodies and immunoprecipitation 

Western blotting was conducted as described (27) and visualized with autoradiography 

film (E3012, Denville Scientific) or captured by an Amersham Imager 600 (GE Healthcare 

Bio-Sciences). Antibodies used were: anti-cortactin clone 4F11 (1 μg/ml, (26)), anti-

pS473 AKT (#4060, 1:1000; Cell Signaling Technology), anti-panAKT (#2920, 1:1000; 

Cell Signaling Technology), anti-β-actin (#8457, 1:1000; Cell Signaling Technology), anti-

CK2α (#2656, 1:500, Cell Signaling Technology), anti-DYKDDDK (FLAG) clone 2EL-

1B11 (MAB3118, 1:500, Millipore) and anti-Arp3 (#07-272, 1:500, EMD Millipore). 

Immunoprecipitation was conducted from cells lysed in 50mM Tris Buffer pH 8.0 with 

10mM EDTA and 1% NP-40 (28). Clarified lysates (1 mg) were incubated with 50 μl of 

FLAG M2 affinity resin (A2220, Sigma-Aldrich) for 2 hours at 4°C. Immune complexes 

were collected by centrifugation, washed twice with Tris buffer, separated by SDS-PAGE, 

and Western blotted with antibodies as described above. 

Gelatin degradation assay, invadopodia characterization and microscopy  

Cells were plated on Oregon Green 488-conjugated gelatin (G13186, Invitrogen) coated 

coverslips (29). In cases of inhibitor treatment, cells were allowed to attach for 1 hour, 

then incubated for 12 or 24 hours with Silmitasertib (S2248, Selleckchem) as indicated. 

Cells were rinsed in PBS, fixed with 10% buffered formalin (SF100-4, Fisher) and labeled 

as described (29). Antibodies used were 4F11 (1:500) or anti-FLAG (1:500). Primary 

antibodies were visualized using Alexa Fluor 647 conjugated goat anti-mouse secondary 
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antibody (A21235, 1:500, Invitrogen). F-actin was visualized with rhodamine-conjugated 

phalloidin (R415, 1:1000, Invitrogen). Coverslips were mounted using ProLong Gold 

antifade with DAPI (P36935, Invitrogen). Images for quantifying gelatin degradation and 

knockdown/rescue expression were acquired with a Zeiss Axio Imager Z2 epifluorescent 

microscope equipped with an AxioCam MRm CCD camera and AxioVision software using 

LD Plan-Neofluar 40X/0.6 Corr and Plan-Apochromat 63X/1.4 oil objectives (Carl Zeiss 

Microscopy). Acquisition parameters were held constant within comparison groups. 

Confocal images were acquired using a Zeiss Axio Imager Z1 LSM510 confocal 

microscope with EC Plan-Neofluar 40X/1.30 and Plan-Apochromat 63X/1.4 oil objectives 

and Zen2009 software (Carl Zeiss Microcopy). All representative images were level 

adjusted to enhance contrast and brightness as needed and resized using Photoshop CC 

2018 (Adobe Systems). Gelatin images were corrected for uneven illumination via 

bandpass filtering using ImageJ software (NIH). Degradation and invadopodia formation 

was quantified as described previously (29), with n ≥ 70 lentiviral infected or ≥ 100 

inhibitor-treated cells evaluated for each condition. FLAG-stained control images were 

thresholded against non-specific staining using ImageJ software. Cells above threshold 

values were considered positive for rescue construct expression and used for 

quantitation. For therapeutic treatments and RNAi stable cell lines, degradation and cell 

areas were determined by Image J (NIH) on an individual cell basis. Data represent the 

mean values normalized to control degradation area per cell area from at least 3 

independent experiments. Invadopodia precursors were determined by colocalization of 

actin and cortactin at sites lacking gelatin degradation. Active invadopodia were 

determined by colocalization of actin, cortactin, and gelatin degradation. Data represent 
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the mean from at least 3 independent experiments. Phase contrast images were acquired 

using a Zeiss Axiovert 200M microscope equipped with an AxioCamMR CCD camera 

using a Plan-Neofluar 10X/0.30 objective and AxioVision software (Carl Zeiss 

Microscopy).  

CK2α kinase assay  

In vitro kinase assays were performed as described (30). Briefly, 0.25, 0.5, or 1 μg of 

purified GST-WT or T24A cortactin NTA fusion proteins were incubated with 8 ng CK2α 

(#14-445, Millipore) and 10 μCi 32Pγ-ATP (#NEG002A500UC, PerkinElmer) at 30oC for 

10 minutes. Reactions were terminated with hot SDS sample loading buffer. Proteins 

were visualized by autoradiography. Purified N-WASp GST-VCA (0.5 μg) and GST (1 μg) 

were used as respective positive and negative controls.  

In vitro cortactin phosphorylation binding assay  

Purified WT or T24A cortactin proteins (2.5 μg) were bound to 4F11-conjugated protein 

G magnetic beads (#10003D, Life Technologies). Immune complexes were incubated in 

the presence or absence of activated CK2α (75 ng; #V4482, Promega) and ATP (500 

nmoles, #BP413-25, Fisher Scientific) at 30oC for 15 minutes. Reactions were washed 

twice with 10mM Tris pH 7.4, 150mM NaCl, 0.5mM EDTA. Complexes were washed once 

with 10mM Tris pH 7.4, 10mM EDTA and incubated with 50 ng Arp2/3 complex (#RP01-

A, Cytoskeleton) at 4oC for 30 minutes. Following incubation, binding complexes were 

washed once with 10mM Tris Buffer pH 7.4 with 25 mM NaCl, 10mM EDTA, 1% NP-40, 

then boiled and Western blotted with antibodies against cortactin and Arp3.  
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Actin polymerization assay  

Actin polymerization experiments were conducted as described previously (31). 

Reactions contained 2 μM actin (10% pyrene-labeled), 75 nM Arp2/3 complex, 100 nM 

cortactin or 50 nM GST-VCA (#VCG03, Cytoskeleton), and/or varying amounts of CK2α 

(#14-445, Millipore) as indicated. For reactions with CK2α, GST-VCA or cortactin mutants 

were preincubated with CK2α and 500 nmoles unlabeled ATP for 15 minutes at room 

temperature prior to addition to the actin polymerization reaction.  

PDX-derived cell lines  

Patient-derived xenograft (PDX) tumors and cell lines were established as described (32). 

WVUSCC-AR2 and WVUSCC-AR5 were derived from surgical specimens of alveolar 

ridge HNSCC in compliance with West Virginia University Institutional Review Board 

approved protocol #1310105737A033. PDXs were developed in compliance with West 

Virginia University Institutional Animal Care and Use Committee approved protocol #15-

0302.6 by placing approximately 1mm tumor fragments into subcutaneous pockets in the 

flanks of anesthetized 8-10 week old NOD/SCID-γ (NSG) mice. Tumor fragments were 

overlayed with Matrigel (354234, Corning) and incisions were closed using wound clips. 

Mice were weighed and monitored for tumor growth on a weekly basis. PDX tumors were 

passed into new NSG mice and/or used to generate cell lines once tumors reached ~1 

cm in greatest dimension.   

For cell line derivation, PDX tumors were minced and digested in DMEM supplemented 

with 20% FBS and 1 mg/mL collagenase IV (17104019, Gibco). Digested tissues were 
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plated onto NIH 3T3 fibroblasts senesced with 4μg/mL mitomycin C (BP2531, Fisher) and 

cultured in DMEM:F12 1:1 supplemented with 10% FBS, 400 ng/mL hydrocortisone 

(H0888, Sigma), 50 μg/mL gentamycin (15750060, Gibco), 5 μM ROCK inhibitor (S1049, 

Selleckchem), 0.5 ng/mL recombinant human epidermal growth factor (EGF) (PHG0311, 

Gibco), and 10 ng/mL cholera toxin (C8062, Sigma). Both WVUSCC-AR2 and -AR5 were 

derived in August 2017 and maintained for ≤10 passages. Derived lines were verified 

using cytokeratin 14 staining (ab15462, Abcam). Neither STR profiling nor mycoplasma 

detection was performed on these cell lines. Prior to utilization in gelatin degradation or 

spheroid invasion assays, PDX derived cell lines were plated directly onto cell culture 

dishes for 1-2 passages to remove the fibroblast population. Gelatin degradation and 

spheroid invasion assays were performed in DMEM supplemented with 10% FBS.  

In vitro tumor spheroid invasion 

3D spheroid invasion assays were performed as previously described (26). 1x104 

(OSC19) or 2.5x104 (UMSCC1 and WVUSCC-AR5) cells were plated into individual wells 

coated with 1.5% noble agar for 24 h (UMSCC1) or 48h (OSC19 and WVUSCC-AR5) to 

form spheroids. For each line, spheroids were collected, resuspended in 500 µL of 2 

mg/mL rat tail collagen I (354236, Corning), and plated into individual wells of a 24-well 

plate pre-coated with 400 µL solidified 2 mg/mL collagen I. Plates were incubated for 1 h 

at 37oC, then overlayed with 1 mL DMEM supplemented with 10% fetal bovine serum and 

1% penicillin-streptomycin containing DMSO or 10µM Silmitasertib. Spheroid invasion 

was visualized at the indicated time points by phase contrast microscopy using a Zeiss 

Axiovert 200M microscope equipped with an AxioCamMR CCD camera using a Plan-
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Neofluar 5X/0.15 objective and Axiovision software (Carl Zeiss Microscopy). Maximal 

radial distances for invaded cells were calculated using Axiovision software, with invasive 

distance determined as the difference between the initial and final maximum radius for 

each invaded spheroid. 

Orthotopic tongue tumors and invasion analysis 

Tongue tumor establishment was adapted from previous work (33). 2.5X104 luciferase 

expressing UMSCC1 cells were injected into the tongues of 8-10 week old NSG mice 

(purchased from the West Virginia University Transgenic Animal Core Facility). Mice were 

maintained using transgenic dough diet (S3472, Bioserve) and weighed every 2-3 days. 

Tumor growth was monitored by bioluminescent imaging using 150 mg/kg D-luciferin 

(122796, Caliper Life Sciences) injected intraperitoneally, followed by in vivo whole-body 

bioluminescence imaging using an IVIS Lumina-II system and Living Image 4.0 software 

(PerkinElmer). Tumors were allowed to establish for one week, then mice were divided 

equally into two groups based on approximate tumor size. Mice were given 50 mg/kg 

Silmitasertib in DMSO or DMSO alone by oval gavage twice daily for three weeks. Mice 

were subsequently euthanized, tongues excised, processed and stained for histological 

analysis.  

To quantify invasion parameters, whole tongue histological images were cropped to 

encompass the tumor invasive front and analyzed using ImageJ. Images were processed 

with the colour deconvolution 1.5 plugin using H&E or H&E2 presets. Resultant colour_1 

images were 25% contrast enhanced before conversion into binary images. ROIs were 

selected for particles above 15,000 pixel units and manually verified by overlay onto the 
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original H&E image to remove artifacts. Invasive protrusions were defined as projections 

at the leading edge of the tumor surrounded by stroma on three sides and identified on 

the binary image using the polygon selection tool. Invasive distance was determined as 

the difference between the farthest edge of the protrusion and the protrusion base.      

Statistical analysis  

Differences in mean values between groups were evaluated using Student’s or Welch’s t 

test. Significance was determined at p < 0.05 utilizing GraphPad Prism 7 software. Error 

bars represent +/- S.E.M.
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Results 

Cortactin threonine 24 is required for Arp2/3 complex binding and activation 

Phosphorylation of serine (S) 11, T13, and T24 in the murine cortactin NTA domain has 

been reported (19). The proximity of these residues to the canonical Arp2/3 binding motif 

consisting of amino acids 20-22 (DDW) has the potential to regulate Arp2/3 binding (Fig. 

1A). To determine if these residues influence cortactin binding to Arp2/3, FLAG-tagged 

murine cortactin constructs were generated that contained serine to alanine (S11A) and 

threonine to alanine (T24A) phosphorylation-null mutations. T13 was not evaluated since 

it is not conserved in human cortactin. Co-immunoprecipitation studies indicate that S11A 

cortactin bound endogenous Arp2/3 at levels similar to wild-type (WT) cortactin, while 

T24A cortactin failed to effectively bind Arp2/3 despite retaining the DDW binding motif 

(Fig. 1B). Threonine to aspartic acid (T24D) phosphomimetic cortactin bound Arp2/3 at 

reduced levels compared to WT (Fig. 1B). These data demonstrate that both the DDW 

motif and T24 are required for optimal Arp2/3 complex binding. Furthermore, reduced 

Arp2/3 binding resultant from the addition of negative charge at amino acid 24 (T24D) 

suggests that phosphorylation may play a negative-regulatory role. 

To assess the impact of T24 on Arp2/3 actin nucleation, recombinant human WT, ΔDDW, 

and T24A cortactin proteins were expressed in bacteria and purified (Fig. 1C). When 

evaluated in pyrene-labeled actin assembly assays, WT cortactin displayed slower 

polymerization kinetics compared to the neuronal (N)-WASp VCA domain, whereas the 

ΔDDW mutant failed to activate Arp2/3 as previously reported (Fig. 1D, (16,34,35)). T24A 

cortactin demonstrated intermediate activity, with reduced nucleation levels compared to 
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WT cortactin and increased nucleation compared to ΔDDW (Fig. 1D). Taken together 

these data identify T24 in the cortactin NTA as a critical residue required for optimal 

cortactin-mediated Arp2/3 binding and activation regardless of phosphorylation status.  

Cortactin T24 is required for invadopodia-mediated ECM degradation 

Cortactin is essential for initiating invadopodia formation, maturation, and ECM 

degradation in part due to NTA-mediated Arp2/3 binding (36,37). To determine the role 

of cortactin T24 in invadopodia function, a panel of cortactin knockdown-rescue cell lines 

stably expressing FLAG-cortactin mutant constructs were produced in invasive UMSCC1 

(Fig. 2) and OSC19 (Supplementary Fig. S1) HNSCC cell lines. Both lines spontaneously 

produce invadopodia and degrade ECM (26,38). While individual cortactin siRNA 

(siCTTN) and shRNA (shCTTN) treatment resulted in decreased cortactin expression and 

matrix degradation in each case (Fig. 2D, Supplementary Fig. S1B, Supplementary Fig. 

S2), sequential exposure to cortactin siRNA in stable shRNA cells resulted in efficient and 

reliable cortactin knockdown (KD; Fig. 2, Supplementary Fig. S1, Supplementary Fig. S2). 

Cortactin KD cells were used for subsequent experimentation to minimize the possibility 

of residual endogenous cortactin masking the effects of re-expressed FLAG-cortactin 

mutants. FLAG-WT cortactin expression in KD cells partially restored the amount of active 

invadopodia formation in UMSCC1 cells (Fig. 2A & C) and fully restored ECM degradation 

in UMSCC1 (Fig. 2A & B) and OSC19 (Supplementary Fig. S1A & C) cell lines. FLAG-

ΔDDW enhanced invadopodia precursor formation but failed to rescue active invadopodia 

and ECM degradation (Fig. 2A-C, Supplementary Fig. 1A & C). Similarly, both FLAG-

T24A and FLAG-T24D cortactin restored invadopodia precursor formation while failing to 

induce invadopodia maturation above KD levels, with active invadopodia and ECM 
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degradation levels for both mutants similar to that of FLAG-ΔDDW cortactin (Fig. 2A-C, 

Supplementary Fig. S1A, C, D). These results suggest that Arp2/3 binding and activation 

facilitated by cortactin T24 is required for effective cortactin-mediated invadopodia 

formation and ECM degradation in HNSCC cells. 

CK2 phosphorylation of cortactin T24 regulates interaction with Arp2/3 complex 

The importance of T24 in Arp2/3 activation and invadopodia function, along with prior 

identification of T24 as a cortactin phosphorylation site, led us to identify the kinase(s) 

responsible for phosphorylating T24. Computational analysis of the sequences flanking 

T24 was performed by seven independent predictive algorithms, six of which suggested 

that CK2α had the highest probability of phosphorylating cortactin T24 (Supplementary 

Table S1). To test this, kinase assays were conducted using GST-tagged cortactin WT 

and T24A NTA fusion proteins with purified active CK2α. The N-WASp VCA domain was 

used as a positive control, since previous studies have shown this region to be a CK2α 

substrate (23,25). Increasing amounts of GST-WT-NTA were efficiently phosphorylated 

by CK2α, whereas no phosphorylation was evident in GST-T24A-NTA (Fig. 3A). These 

data indicate that cortactin T24 can serve as a CK2α substrate, and that T24 is the only 

residue targeted by CK2α in the NTA region. 

To determine if CK2α phosphorylation of cortactin T24 effects binding to Arp2/3 complex, 

recombinant human WT or T24A cortactin proteins were pre-incubated with or without 

CK2α, then mixed with purified Arp2/3. Phosphorylation of WT cortactin by CK2α reduced 

binding of Arp2/3 complex to background levels (beads alone) whereas no impact on 

T24A was observed (Fig. 3B). To ascertain the impact of CK2α phosphorylation on 
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cortactin-mediated Arp2/3 activation, actin assembly assays were conducted with CK2α-

phosphorylated cortactin and N-WASp VCA domain. As previously determined, CK2α 

phosphorylation of N-WASp VCA results in a modest reduction of Arp2/3 NPF activity 

(black vs. grey, Fig. 3C, (25)). Similarly, WT cortactin incubated with increasing amounts 

of CK2α prior to inclusion in polymerization assays resulted in a dose dependent 

suppression of actin assembly, suggesting that CK2α phosphorylation impairs the ability 

of cortactin to activate Arp2/3 complex (Fig. 3C). Although Arp2/3 can be activated by 

direct phosphorylation from multiple kinases (39–41), CK2α had no direct effect on Arp2/3 

activation (orange vs. pale green, Fig. 3C), suggesting that the inhibitory effect on Arp2/3 

activity is due to phosphorylated cortactin in these assays. To determine if the CK2α-

targeted T24 residue is responsible for the observed inhibitory effect on Arp2/3 activity, 

polymerization assays were conducted with WT and T24A cortactin proteins following 

incubation with CK2α. While CK2α inhibited the ability of WT cortactin to activate Arp2/3 

complex (blue vs. red, Fig. 3D), preincubation of CK2α with T24A cortactin exhibited no 

additional inhibitory effect on Arp2/3 nucleation activity (green vs. purple, Fig. 3D). 

Collectively these data indicate that cortactin phosphorylation at T24 by CK2α reduces 

the ability of cortactin to bind and activate Arp2/3 complex-mediated branched actin 

network formation.   

CK2α is required for optimal HNSCC invadopodia function 

To determine if CK2α impacts invadopodia function, CK2α expression was stably 

knocked down in OSC19 and UMSCC1 cells using anti-CK2α shRNAs targeting two 

different regions in the CK2α transcript. Both shRNAs reduced CK2α expression to non-

detectable levels in each cell line (Fig. 4A). Neither line expressed the alternative CK2α’ 
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isoform in control or CK2α knockdown cells (data not shown). CK2α knockdown in OSC19 

cells reduced the level of active invadopodia by 71-88% and ECM degradation by 63-

73%, whereas knockdown in UMSCC1 cells reduced active invadopodia formation by 68-

92% and ECM degradation by 36-60% (Fig. 4B-D). While these data indicate that CK2α-

is a key mediator of invadopodia maturation and function, neither invadopodia formation 

nor matrix degradation was entirely abolished. This would indicate that alternative 

signaling pathways impinging on cortactin and other invadopodia proteins remain active 

in the absence of CK2α expression.   

The CK2α inhibitor Silmitasertib suppresses invadopodia function in HNSCC cells 

Silmitasertib (CX-4945) is an orally bioavailable small molecule ATP-competitive inhibitor 

that targets CK2α kinase activity and is currently undergoing clinical trials in multiple 

cancer types (20) (NCT01199718, NCT02128282, NCT00891280). To determine the 

impact of Silmitasertib on HNSCC tumor cell-mediated invadopodia formation and ECM 

degradation, established HNSCC cell lines were treated with increasing Silmitasertib 

concentrations and evaluated for effects on invadopodia activity and ECM degradation. 

Dose-dependent decreases in ECM degradation were observed at concentrations above 

0.5 μM in all evaluated HNSCC lines (Fig. 5A & B). The greatest impairment of gelatin 

degradation was seen at 10 μM (Fig. 5A & B), comparable to effective CK2 specific 

growth-inhibitory doses in several cancer cell lines (20,42). At this concentration, active 

invadopodia formation was significantly diminished in OSC19 and UMSCC1 cells, 

whereas MDA1586 cells displayed non-significant decreases (Fig. 5C). To determine if 

the invadopodia inhibitory effect of Silmitasertib was directly due to altering CK2α-

mediated cortactin T24 phosphorylation, antibodies against phosphorylated cortactin T24 
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peptides (pT24) were designed and purified. Attempts by two different commercial 

vendors failed to generate a pT24-specific antibody (not shown). Therefore, we evaluated 

the phosphorylation status of S473 (pS473) in AKT following Silmitasertib treatment as a 

surrogate marker for drug efficacy, as this site is known to be phosphorylated by CK2α 

(20). MDA1586 cells treated with 1 or 10 μM Silmitasertib had decreased pS473 AKT 

after 24 hours, the same timeframe used in ECM degradation assays (Supplementary 

Fig. S3). OSC19 and UMSCC1 cells had decreased pS473 AKT after treatment with 10 

μM Silmitasertib for 12 hours, the time used for matrix degradation assays in these lines 

(Supplementary Fig. S3).  

The fact that CK2α phosphorylates multiple targets aside from cortactin (20) raises the 

possibility that the inhibitory effect of Silmitasertib may be due to impairing 

phosphorylation of additional proteins involved in invadopodia function. To determine the 

extent of cortactin-specific CK2α phosphorylation in invadopodia-mediated ECM 

degradation, UMSCC1 cells expressing FLAG-WT, -T24A, and -T24D cortactin were 

treated with 1 µM Silmitasertib and evaluated for additional suppressive effects on matrix 

degradation (Fig. 5D & E). Silmitasertib diminished ECM degradation in cells expressing 

FLAG-WT cortactin by 51%, similar to the reduction observed in non-transfected cells 

(Fig 5D vs B). Neither FLAG-T24A or FLAG-T24D expressing cells treated with 

Silmitasertib demonstrated reductions in ECM degradation levels from baseline vehicle-

treated controls (Fig. 5D & E). While these results do not entirely negate alternative CK2-

dependent signaling pathways in invadopodia regulation, it does suggest that cortactin 

T24 is the primary CK2α target in governing HNSCC invadopodia function. 
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To evaluate the anti-invadopodia effect of Silmitasertib in more translationally-relevant 

models, patient-derived xenografts (PDXs) were derived from a well- and a moderately-

differentiated HNSCC surgical sample. PDX tumors maintained original patient tumor 

architecture, displaying collective invasion and keratin pearls characteristic of 

differentiated HNSCC (Fig. 6A). Primary cell lines derived from these PDX tumors form 

invadopodia and spontaneously degrade gelatin within 24 hours (Fig. 6B). Both lines 

exhibit tight colony morphology under cell culture conditions consistent with HNSCC lines 

derived from epithelial HNSCC (Fig. 6B, (32,43)). Treatment of WVUSCC-AR2 and 

WVUSCC-AR5 with Silmitasertib yielded similar results to those observed in established 

lines, with gelatin degradation impaired 38-62% in WVUSCC-AR2 cells and 56-66% in 

WVUSCC-AR5 cells at and above 0.5 μM (Fig. 6C & D). Similarly, 10 μM Silmitasertib 

treatment suppressed active invadopodia by 76% in WVUSCC-AR2 and 91% in 

WVUSCC-AR5 (Fig. 6E). Collectively these data indicate that CK2α kinase activity is 

essential for maximal ECM degradation ability in HNSCC.  

Silmitasertib inhibits HNSCC invasion 

To determine if Silmitasertib impacts HNSCC invasion, we initially utilized a 3D in vitro 

assay designed to model collective invasion typically observed in differentiated HNSCC. 

Tumor spheroids generated from OSC19, UMSCC1 and WVUSCC-AR5 PDX lines were 

embedded between layers of collagen I. WVUSCC-AR2 cells failed to form spheroids and 

could not be used in this assay. Spheroids were treated with 10 µM Silmitasertib or vehicle 

(DMSO) for 48 h (Fig. 7A & B). Silmitasertib significantly reduced 3D collective invasion 

in all assayed lines (Fig. 7B). We next evaluated the ability of Silmitasertib to control 

invasion in the tongues of mice harboring orthotopic tumors. Luciferase-expressing 
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UMSCC1 cells injected into the tongues of NSG mice formed detectable tumors within 

one week (Fig. 7C). Mice were divided into two groups containing similar tumor size as 

determined by in vivo bioluminescence, with one group treated with vehicle and one with 

Silmitasertib. Mice dosed twice daily for three weeks displayed a non-significant reduction 

in tumor growth compared to controls, similar to previous single agent xenograft studies 

(Fig. 7C, (20)). To negate potential bias due to unequal tumor size, four equivalent tumors 

from each group were selected for further assessment. In-depth evaluation of tumor 

margins from tongues excised after four weeks revealed alterations in invasive 

characteristics of Silmitasertib-treated mice (Fig. 7D-I). Tumors in drug-treated mice had 

a less ragged appearance at the invasive front, exhibiting shorter and smaller collective 

cell protrusions into the tongue stroma compared to control mice (Fig. 7D-G). In addition, 

tongues from Silmitasertib-treated mice had reduced perineural invasion of nerves 

adjacent to the invasive front (Fig. 7H & I). No difference was seen in the size or invasive 

distance of detached collective groups within the invasive front (Supplementary Fig. S4). 

Collectively these data support a role for CK2α signaling in driving several pro-invasive 

behaviors associated with poor patient outcome in HNSCC (2,44).  

Discussion 

Proteolysis of restrictive tissue barriers is essential to all steps in the metastatic cascade, 

and increasing evidence indicates that the proteolytic activity of invadopodia is required 

for invasive breaching of ECM barriers (1). Signals that govern invadopodia are dynamic 

and highly regulated, requiring coordinated activity of several oncogenic pathways in 

parallel to achieve maximal efficiency (1). Active assembly and turnover of cellular F-actin 
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networks is required for initiating invadopodia formation and subsequent maturation, 

involving recruitment and activation of membrane-bound and secreted MMPs to mediate 

ECM proteolysis (1). Breakdown of existing F-actin networks, in conjunction with Arp2/3 

activation in invadopodia, is responsible for actin network turnover necessary for 

productive branched F-actin formation that drives membrane protrusion. Early 

recruitment of cortactin is necessary for invadopodia initiation, where phosphorylation of 

C-terminal tyrosines 421, 470, and 486, along with serines 405 and 418, occurs 

downstream of growth factor and integrin signaling (45). These phosphorylation events 

create binding sites for scaffolding platforms that recruit N-WASp and WAS protein family 

member 2 (WASF2; WAVE2, WASp family Verprolin-homologous protein 2), ensuring 

that activation of Arp2/3 is maintained throughout the invadopodia cycle (6). Cortactin 

also recruits the F-actin severing protein cofilin to invadopodia, providing the necessary 

machinery for cyclic actin network breakdown and regrowth during invadopod extension 

(16). In addition to these important C-terminal functions, the ability of the NTA region to 

directly bind Arp2/3 is also essential for invadopodia formation and ECM degradation, 

presumably through direct Arp2/3 activation and prolonged stabilization of Arp2/3-F-actin 

networks (10,16).  

Regarding the ability of the cortactin NTA to bind Arp2/3, this study reveals two distinct 

findings. First, that T24 is required for Arp2/3 binding, since mutation of this residue 

ablates (A) or reduces (D) the association of cortactin with Arp2/3 in co-

immunoprecipitation assays. T24 is two residues C-terminal to the well-defined DDW 

Arp2/3 interaction motif that is conserved in other Arp2/3 NPFs (6). This places T24 in 

close proximity to contribute to Arp2/3 binding. While the crystal structure of the cortactin 
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NTA bound to Arp2/3 complex has not been reported, previous chemical crosslinking and 

three-dimensional reconstruction studies indicate that the NTA region primarily binds the 

Arp3 subunit in the complex, with the most N-terminal residues spanning the Arp2-Arp3 

interface to contact the Arp2 subunit (Graphical abstract, (9,34)). Thus, T24 may 

contribute essential hydrogen bonding with recipient polar residues near the basic side 

chains on Arp3 involved in electrostatic binding to the acidic NTA residues. This concept 

is supported by the requirement of W22 in the DDW motif for Arp2/3 binding, along with 

the lack of an equivalent threonine in the VCA region of WASp proteins (16,34,35). While 

T24A cortactin appears incapable of binding Arp2/3, it can activate Arp2/3 actin 

nucleation in conditions where ΔDDW cortactin remains inactive (Fig. 1D). This may be 

due to T24 having a lower affinity for Arp3 than the DDW region and/or the high cortactin 

molar levels required to stimulate NPF activity in vitro. Nonetheless, the requirement for 

cortactin T24 in invadopodia-mediated ECM degradation supports an essential biological 

role for this residue in a non-phosphorylated context.  

Secondly, our study shows that T24 phosphorylation serves to negatively regulate 

cortactin binding to and activation of Arp2/3 complex (Fig. 3B-D). Addition of the 

phosphate group to T24 likely imparts a steric and electrostatic disruption, preventing the 

DDW and other interacting residues in the NTA from initiating and/or maintaining binding 

to Arp3. Steric interference may be the predominant mechanism, since T24D cortactin 

can bind Arp2/3 at reduced levels (Fig. 1B), indicating that negative charge alone is 

insufficient to completely prevent Arp2/3 association. Phosphorylation of T24 therefore 

serves to block the ability of cortactin to bind Arp2/3, similar to the regulation of the Arp2/3-

F-actin regulatory proteins coronin 1B and cofilin (46,47). While we did not determine if 
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phosphorylation of T24 serves to release cortactin from existing Arp2/3-F-actin 

branchpoints, phosphorylation of Arp2/3-bound cortactin T24 may be an additional 

mechanism to dissociate cortactin from these regions. Such a mechanism could function 

in facilitating breakdown and recycling of invadopodia Arp2/3-F-actin networks.      

The ability of CK2α to phosphorylate cortactin T24 supports a wider role for this kinase in 

actin regulation. Previous work identified T23 as a putative but unconfirmed CK2α 

phosphorylation site in the NTA region of myeloid-cell specific cortactin homolog HS1 

(21). In addition, CK2α phosphorylates two adjacent sites in the A domain of WASp family 

proteins (22–25). These studies report conflicting results on Arp2/3 activity, with 

phosphorylation of WASp enhancing and in N-WASp and WAVE2 inhibiting VCA-

stimulated Arp2/3-mediated actin polymerization. Our results with CK2α-phosphorylated 

N-WASp VCA domain also shows an inhibitory effect on Arp2/3 activation (Fig. 3C), 

suggesting that CK2α effects may be differential to specific WASp family proteins.         

Cortactin T24A and T24D expression in KD HNSCC lines impairs active invadopodia 

formation and subsequent ECM degradation (Fig. 2A-C, Supplementary Fig. 1A & C), 

supporting in vitro evidence that T24 phosphorylation prevents Arp2/3 binding and 

activation necessary for invadopodia activity. The importance of CK2α-mediated cortactin 

T24 phosphorylation is further supported by the inability of Silmitasertib to further 

suppress ECM degradation in cortactin T24A or T24D expressing cells (Fig. 5D & E). 

CK2α-specific knockdown or pharmacologic inhibition in cells would therefore be 

expected to reduce phosphorylation of cortactin and WASp family proteins, resulting in 

net increased Arp2/3 activity as observed from in vitro studies. The fact that CK2α 
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knockdown or kinase blockade also impairs invadopodia formation and function is 

paradoxical but can be explained by cyclic CK2α phosphorylation and dephosphorylation 

to regulate cortactin binding to and activation of Arp2/3 in invadopodia during maturation 

and elongation. Dephosphorylation of cortactin T24 and WASp NPFs by unknown 

phosphatases would enable these NPFs to promote Arp2/3 activation, actin 

polymerization, and invadopodia activity. Following network breakdown during actin 

turnover, CK2α phosphorylation would return NPFs to the inactive state to await the next 

cycle of actin assembly. While similar cyclic regulation of Src and cofilin has been shown 

to be essential for invadopodia function and provides support for this model (38,46), 

confirmation of T24 phosphorylation within invadopodia leading to altered actin dynamics 

along with identification of the  T24 phosphatase are necessary to fully confirm this 

proposed mechanism.  

Locoregional control of HNSCC dissemination is problematic, where perineural invasion 

and invasive metastatic spread to cervical lymph nodes accelerates patient decline 

(44,48,49). Cortactin and CK2α expression are elevated in HNSCC and individually 

correspond with poorer patient outcomes (7,20). CK2 knockdown and Silmitasertib 

treatment in HNSCC cells has anti-proliferative and anti-metastatic properties in vitro and 

in mice, providing support for the utility of Silmitasertib in HNSCC (20). The anti-invasive 

effect of Silmitasertib shown here is likely due in part to disruption of the invadopodia actin 

assembly through combined inhibition of multiple Arp2/3 NPFs. We note that T24 

cortactin mutants, CK2α knockdown, and Silmitasertib treatment in HNSCC cells does 

not completely abolish invadopodia formation, degradation activity or invasion. Activation 

of invadopodial Arp2/3 NPFs through alternative scaffolding or lipid-based signaling 
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pathways that can bypass CK2 inhibition can account for this residual activity (1). 

However, our results indicate that CK2α inhibition by a single agent does significantly 

impair collective HNSCC invasion. Given the current paucity of treatment options for 

invasive HNSCC, combining Silmitasertib with additional drugs known to impair 

invadopodia function by blocking additional invadopodia and motility pathways (8) has the 

potential to provide novel treatment options for controlling invasive spread of late-stage 

HNSCC harboring elevated cortactin and/or CK2 expression. 
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Figure 1. Cortactin T24 is required for binding and activation of Arp2/3 complex.  

A. Diagram representing cortactin functional domains. NTA, N-terminal acidic domain; 

R1-R6, repeats regions with F-actin binding site indicated; Helix, alpha helical domain, 

PRR, proline rich region; SH3, Src homology 3 domain. NTA domain with position of S11 

and T24 in context of the DDW region is shown. B. Immunoprecipitation analysis of Arp2/3 

binding to cortactin NTA mutants. HEK 293T/17 cells transfected with FLAG-empty vector 

(EV), FLAG-wild-type cortactin (WT) or the indicated FLAG-cortactin mutants. Immune 

complexes were Western blotted with antibodies against cortactin (top) and Arp3 

(bottom). 1:10 diluted total cell lysates were Western blotted as indicated. C. Coomassie 

blue staining of the indicated purified recombinant human cortactin proteins. D. Effect of 

cortactin T24A on Arp2/3 complex activation. Fluorometric evaluation of actin 

polymerization over time with the indicated cortactin mutants incubated with Arp2/3 

complex and pyrene-labeled actin. Polymerization curves: WT cortactin (blue); T24A 

cortactin (dark green) and ΔDDW cortactin (purple). N-WASp VCA domain (black) was 

used as a positive control; negative controls include Arp2/3 complex plus actin (pale 

green) and actin alone (red). Polymerization curves are representative from three 

independent experiments. 

Figure 2. T24 is required for cortactin-mediated invadopodia formation and ECM 

degradation in HNSCC cells.  

A. UMSCC1 cells with stable shRNA scramble control (Ctl) or anti-cortactin shRNA 

combined with siRNA knockdown (KD) were transduced with murine FLAG-WT, -ΔDDW, 

-T24A and -T24D cortactin lentiviruses. Cells were plated on Oregon Green (OG)-488 

gelatin coated coverslips for 12 hours, fixed, and labeled with anti-FLAG and rhodamine 
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phalloidin (Actin). Gelatin panels are pseudo-colored white; degradation is evident as 

black areas indicating loss of fluorescence. Scale bar represents 20 μm. Insets in WT 

Cttn panel display invadopodia precursors (top right, yellow arrows) and active 

invadopodia (bottom left, yellow arrowheads). Inset scale bar represents 1 μm. B. 

Quantification of gelatin matrix degradation for control (Ctl), cortactin KD and FLAG-

cortactin expressing UMSCC1 cells. C. Quantification of invadopodia precursors (left) and 

active invadopodia (right) numbers from the lines assayed in (B). Data represents the 

mean + S.E.M. of n ≥ 100 cells for each line analyzed from at least three independent 

experiments. All gelatin degradation conditions were normalized to Ctl UMSCC1 cells. 

n.s., not significant; *, P ˂ 0.05, Welch’s or Student’s t test vs. Ctl (B & C), †, P <0.05, 

Student’s t test vs. wild type cortactin rescue (WT) (C). D. Total cell lysates from (A) 

evaluated for endogenous and FLAG-cortactin expression by immunoblotting with 

antibodies against cortactin (top) and β-actin (bottom). 

Figure 3. CK2α phosphorylation of cortactin T24 inhibits Arp2/3 complex binding 

and activation.  

A. Cortactin T24 is a CK2α phosphorylation site. Autoradiogram of active CK2α incubated 

with the increasing amounts (0, 0.25, 0.5, and 1 μg) of GST-WT-NTA or GST-T24A-NTA 

cortactin fusion proteins. GST (1 μg) and the GST-VCA domain of N-WASp (0.25 μg) 

were used as respective negative and positive phosphorylation controls. Positions of 

autophosphorylated CK2α, GST-VCA and cortactin NTA proteins are indicated on the left; 

autoradiogram is representative of three independent experiments. B. CK2α 

phosphorylation at cortactin T24 ablates binding to Arp2/3 complex. Purified recombinant 

human WT and T24A cortactin proteins (2.5 μg) were bound with an anti-cortactin 
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antibody to protein G beads. Immune complexes were preincubated with or without 75 ng 

active CK2α, washed and incubated with 50 ng purified Arp2/3 complex. Co-

immunoprecipitated complexes were Western blotted for cortactin (top) and Arp3 

(bottom). 4F11-bound protein G beads were used as a negative control for non-specific 

binding (Beads). Arp2/3 complex (5 ng) was used as positive control for Arp3 

immunoblotting. Blot is representative of two independent experiments. C. Cortactin 

phosphorylation by CK2α inhibits cortactin-mediated Arp2/3 actin polymerization. WT 

human cortactin or GST-VCA proteins were preincubated with the indicated amounts of 

active CK2α and evaluated for effects on Arp2/3 activity. Polymerization curves are 

representative from three independent experiments. D. Phosphorylation of T24 is 

responsible for the inhibitory effect of CK2α on cortactin-mediated Arp2/3 activation. 

Human WT and T24A cortactin proteins were preincubated with or without 30 ng active 

CK2α and evaluated for effects on Arp2/3-mediated actin assembly. Polymerization 

curves are representative from three independent experiments. 

Figure 4. CK2α is required for optimal HNSCC invadopodia function.  

A. Evaluation of CK2α expression in stable scramble control (Ctl) and CK2α shRNA 

HNSCC cells. Cells were lysed and Western blotted with antibodies against CK2α (top) 

and β-actin (bottom). B. Representative confocal images of OSC19 and UMSCC1 cells 

with Ctl shRNA and with each anti-CK2α shRNA (shCK2α #1 and #2). Cells were plated 

on OG-488 gelatin coverslips for 12 h then labeled with an anti-cortactin antibody and 

rhodamine phalloidin (Actin). Gelatin is pseudo-colored white. Scale bar represents 20 

μm. C. CK2α knockdown decreases invadopodia-mediated ECM degradation. 

Quantification of matrix degradation area per cell area for Ctl and each anti-CK2α shRNA 
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in the indicated cell lines. Degradation data was normalized to Ctl condition for each cell 

line. D. CK2α knockdown decreases invadopodia numbers. Amount of invadopodia 

precursors (left) and active invadopodia (right) per cell is shown for control and shCK2α 

OSC19 and UMSCC1 cells. Data in C and D represents the mean + S.E.M. of n ≥ 100 

cells analyzed from at least three independent experiments. n.s., not significant; *, P ˂ 

0.05, Welch’s t test vs Ctl.  

Figure 5. Silmitasertib-mediated CK2 inhibition reduces invadopodia function in 

established HNSCC cell lines.  

A. Representative confocal images of MDA1586, OSC19, and UMSCC1 cells plated on 

OG-488 gelatin coverslips for 1 hour before treatment with vehicle (DMSO) or 10 µM 

Silmitasertib for 24 hours (MDA1586) or 12 hours (OSC19 & UMSCC1) (optimal ECM 

degradation times for each line). Cells were fixed and labeled with an anti-cortactin 

antibody and rhodamine phalloidin (Actin). Gelatin is pseudo-colored white. Scale bar 

represents 20 μm. B. CK2α inhibition decreases invadopodia-mediated ECM 

degradation. Quantification of gelatin matrix degradation area per cell area in HNSCC cell 

lines treated with the indicated Silmitasertib concentrations. C. CK2α inhibition decreases 

invadopodia numbers. Amount of invadopodia precursors (left) and active invadopodia 

(right) per cell is shown for Silmitasertib treated HNSCC cell lines. Degradation data was 

normalized to DMSO-treated (0) cells for each cell line. Data in B and C represents the 

mean + S.E.M. of n ≥ 100 cells analyzed from at least three independent experiments. 

n.s., not significant; *, P ˂ 0.05, Welch’s or Student’s t test vs DMSO for each cell line. D. 

Quantitation of gelatin matrix degradation area per cell area for UMSCC1 cells expressing 

FLAG-WT, T24A or T24D cortactin treated with DMSO or 1μM Silmitasertib. Data 
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represents the mean + S.E.M of n ≥ 75 cells analyzed from at least three independent 

experiments. n.s., not significant; *, P ˂ 0.05, Welch’s or Student’s t test vs DMSO for 

each condition. E. Representative confocal images of UMSCC1 cells expressing FLAG-

WT, T24A, or T24D cortactin plated on OG-488 gelatin coverslips for 1 hour before 

treatment with vehicle (DMSO) or 1 µM Silmitasertib for 12 hours. Cells were fixed and 

labeled with an anti-FLAG antibody and rhodamine phalloidin (Actin). Gelatin is pseudo-

colored white. Scale bar represents 20 μm.  

Figure 6. Silmitasertib inhibits invadopodia function in HNSCC PDX cells.  

A. Establishment of HNSCC patient-derived xenograft (PDX) tumors.  Hematoxylin and 

eosin stained patient tumor tissue and PDXs. Patient tumors were from the alveolar ridge 

(AR). Scale bar represents 200 μm. B. Invadopodia formation in HNSCC PDX cells. 

Representative confocal images of WVUSCC-AR2 (AR2) and WVUSCC-AR5 (AR5) PDX 

cell lines. Cells were plated on OG-488 gelatin coverslips for 24 hours and labeled with 

an anti-cortactin antibody and rhodamine phalloidin (Actin). Gelatin is pseudo-colored 

white. Scale bar represents 20 μm. 10X representative phase contrast images (Phase) of 

each line are shown on the right. Scale bar represents 100 μm. C. Confocal images of 

WVUSCC-AR2 and WVUSCC-AR5 cells plated on OG-488 gelatin coverslips, allowed to 

attach for 1 hour, then treated with vehicle (DMSO) or 10 µM Silmitasertib for 24 hours. 

Cells were labeled with an anti-cortactin antibody and rhodamine phalloidin (Actin). 

Gelatin is pseudo-colored white. Scale bar represents 20 μm. D. CK2α inhibition 

decreases invadopodia-mediated ECM degradation in PDX derived cell lines. 

Quantification of matrix degradation area per cell area for WVUSCC-AR2 and WVUSCC-

AR5 PDX cell lines treated with the indicated Silmitasertib concentrations. Degradation 
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data was normalized to DMSO-treated cells for each cell line. E. CK2α inhibition 

decreases invadopodia numbers in PDX derived cell lines. Determination of amount of 

invadopodia precursors (left) and active invadopodia (right) in WVUSCC-AR2 and 

WVUSCC-AR5 cells. Data represents the mean + S.E.M. of n ≥ 100 cells analyzed from 

at least three independent experiments. *, P ˂ 0.05, Welch’s t test vs DMSO for each cell 

line. 

Figure 7. Silmitasertib impairs collective invasion in HNSCC. 

A. Representative phase contrast microscopy images of OSC19, UMSCC1 and 

WVUSCC-AR5 tumor cell spheroids embedded in collagen I (0 h) then incubated in 

complete media containing 10 μM Silmitasertib or vehicle (DMSO) for 48 h. Red circles 

indicate the maximum radial distance at indicated time points. Scale bar represents 100 

μm. B. Quantitation of maximal collective invasive distance of each cell line at 48 h with 

vehicle (0) or Silmitasertib (10 μM). Data represents the mean + S.E.M. of n ≥ 10 

spheroids per cell line and condition analyzed from at least three independent 

experiments. *, P ˂ 0.05, Welch’s or Student’s t test vs DMSO. C. Effect of Silmitasertib 

on HNSCC orthotopic tumor growth. Bioluminescent monitoring of UMSCC1 cells 

orthotopically injected into tongues of NSG mice. Tumors were allowed to establish for 

one week prior to administration of Silmitasertib or equal volume vehicle (DMSO). Data 

represent means +/- S.E.M. from two independent experiments. DMSO, n = 9 mice; 

Silmitasertib, n = 7 mice. n.s., not significant; Student’s t test vs DMSO. D. Silmitasertib 

inhibits orthotopic HNSCC invasion. Representative hematoxylin and eosin stained 

invasive front of orthotopic UMSCC1 tongue tumors from mice receiving Silmitasertib or 

vehicle (DMSO) for three weeks. Black lines show tumor-encompassing RIO borders 
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determined by software analysis. Black box in DMSO tumor indicates the invasive 

protrusion shown in F. White box in DMSO tumor denotes region containing perineural 

invasion (PNI) shown in I. Black arrow indicates direction of invasion toward tongue base. 

M, skeletal muscle; T, tumor. Scale bar represents 100 μm. E. Invasive distance of tumor 

protrusions from mice treated with Silmitasertib or vehicle (DMSO). Data represent the 

mean + S.E.M. of two serial sections from N = 4 tumors; n = 34 protrusions per condition. 

*, P ˂ 0.05, Student’s t test vs DMSO. F. Representative image of an invasive protrusion 

from vehicle-treated mice shown in the black box in D. The protrusive region was traced 

in black to denote the tumor protrusion from surrounding muscle-containing stroma. M, 

skeletal muscle; T, tumor protrusion. Scale bar represents 100 μm. G. Area of invasive 

protrusions from mice treated with Silmitasertib or vehicle (DMSO). Data represent the 

mean + S.E.M. of two serial sections from N = 4 tumors; n = 34 protrusions per condition. 

*, P ˂ 0.05, Welch’s t test vs DMSO. H. Percentage of lingual nerves displaying PNI in 

tumors from mice treated with Silmitasertib or vehicle (DMSO). Data represent the mean 

+ S.E.M. of two serial sections from N = 4 tumors; n ≥ 60 nerves per condition. *, P ˂ 

0.05, Student’s t test vs DMSO. I. Representative image of PNI shown in the white box in 

the DMSO-treated mouse in D. N, nerve; T, tumor cells. Scale bar represents 50 μm. 
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Supplementary Materials 

Supplementary Figure S1. T24 is required for optimal OSC19 invadopodia function. 

A. Representative epifluorescent images of OSC19 cells with stable shRNA scramble 

control (Ctl) or anti-cortactin shRNA combined with siRNA knockdown (KD) transduced 

with murine FLAG-WT, -ΔDDW, -T24A and -T24D cortactin lentiviruses. Cells were plated 

on Oregon Green(OG)-488 gelatin coated coverslips for 12 hours, fixed, and labeled with 

anti-FLAG and rhodamine phalloidin (Actin). Gelatin panels are pseudo-colored white; 

degradation is evident as black areas indicating loss of fluorescence. Scale bar 

represents 20 μm. B. Total cell lysates from (A) evaluated for endogenous and FLAG-

cortactin expression by immunoblotting with antibodies against cortactin (top) and β-actin 

(bottom). C. Quantification of gelatin matrix degradation for cortactin KD and FLAG-

cortactin expressing OSC19 cells. Data represents the mean + S.E.M. of n ≥ 100 cells for 

each line analyzed from at least three independent experiments. All conditions were 

normalized to control (Ctl) OSC19 cells. n.s., not significant; *, P ˂ 0.05, Welch’s t test vs. 

Ctl. D. Representative epifluorescent images of UMSCC1 cells stably expressing shRNA 

scramble control (Ctl) or murine FLAG-WT, -ΔDDW, -T24A and -T24D cortactin 

lentiviruses plated on Oregon Green(OG)-488 gelatin coated coverslips for 12 hours, 

fixed, and labeled with anti-cortactin or anti-FLAG and rhodamine phalloidin (Actin), as 

indicated. Gelatin panels are pseudo-colored white; degradation is evident as black areas 

indicating loss of fluorescence. Scale bar represents 20 μm. Insets denote invadopodia 

precursors (yellow; top right corners) and active invadopodia (magenta; bottom left 

corners). Invadopodia precursors comprise cortactin and actin puncta lacking associated 
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gelatin degradation (yellow arrowheads). Active invadopodia contain cortactin and actin 

with associated gelatin degradation (magenta arrowheads). Inset scale bar represents 2 

μm. 

Supplementary Figure S2. Effects of stable and transient cortactin knockdown on 

HNSCC invadopodia function. 

A. Representative epifluorescent images of OSC19 cells with stable scramble shRNA 

control (Ctl), anti-cortactin siRNA knockdown (siCTTN), anti-cortactin shRNA knockdown 

(shCTTN), or both shRNA and siRNA cortactin treatment (KD). Cells were plated on OG-

488 gelatin coverslips for 12 hours and labeled with an anti-cortactin antibody and 

rhodamine phalloidin (Actin). Gelatin is pseudo-colored white. Scale bar represents 20 

μm. Effects of each knockdown condition on cortactin expression are found in the 

indicated RNAi lanes of the Western blot in Supplemental Figure S1B. B. Quantification 

of matrix degradation area per cell area for the indicated OSC19 cell lines. All conditions 

were normalized to control OSC19 gelatin degradation (Ctl). Data represents the mean + 

S.E.M. of n ≥ 100 cells per condition analyzed from at least three independent 

experiments. Ctl and KD conditions are identical to those displayed in Supplemental 

Figure S1. C. Representative epifluorescent images of UMSCC1 cells with stable 

scramble control (Ctl), cortactin siRNA knockdown (siCTTN), cortactin shRNA knockdown 

(shCTTN), or both RNAi conditions (KD). Cells plated on OG-488 gelatin for 12 hours 

were labeled with an anti-cortactin antibody and rhodamine phalloidin (Actin). Gelatin is 

pseudo-colored white. Scale bar represents 20 μm. Cortactin expression for the indicated 

RNAi lanes of the Western blot are shown in Figure 2D. D. Quantification of matrix 

degradation area per cell area for the indicated UMSCC1 cell lines. Conditions were 



103 

 

normalized to control (Ctl). Data represents the mean + S.E.M. of n ≥ 100 cells per 

condition analyzed from at least three independent experiments. Ctl and KD conditions 

are identical to those displayed in Figure 2. 

Supplementary Figure 3. Silmitasertib inhibits CK2-dependent phosphorylation. 

HNSCC cells incubated with 0, 1 or 10 μM Silmitasertib for 24 hours (MDA1586) or 12 

hours (OSC19 and UMSCC1) were lysed and evaluated for CK2α inhibition by Western 

blotting with antibodies against phospho-serine 473 AKT (pS473; top), pan AKT (middle), 

and β-actin (bottom).  

Supplementary Figure 4. Silmitasertib treatment does not impact collective 

invasive groups at the tumor invasive front. 

A. Quantitation of invasive distance and B. area of collective invasive group in tumors 

from mice treated with Silmitasertib or vehicle (DMSO). Data represent the mean + S.E.M. 

of two serial sections from N = 4 tumors, n ≥ 54 collective groups per condition. n.s., not 

significant; Welch’s t test vs DMSO.  
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Supplemental Materials and Methods 

Plasmid constructs  

FLAG-tagged murine cortactin expression constructs were generated as described (1). 

Briefly, murine cortactin cDNAs were PCR amplified as XbaI-SalI fragments and 

subcloned into XbaI-SalI digested pLenti CMV GFP Hygro (#17446, Addgene). GST-

tagged full length and NTA human cortactin and N-WASp VCA expression constructs 

were generated as before (2). Full length human cortactin cDNAs were PCR amplified as 

ClaI-BglII fragments and subcloned into ClaI-BglII digested pGST-parallel2. Purification 

of recombinant proteins were performed as before (3), with GST tags removed by AcTEV 

protease (#12575015, Invitrogen). The pLU-Luc2 lentiviral vector was obtained from 

Elena Pugacheva (West Virginia University, Morgantown, WV). 

Tissue sectioning, staining and microscopy 

HNSCC patient and PDX tissue samples were fixed in 10% neutral-buffered formalin and 

paraffin embedded (FFPE). Extracted orthotopic tongue tumors were frozen in O.C.T. 

media (4583, Scigen) using a HM 525 cryostat (Thermo Scientific). For patient tissue 

blocks, five micron sections were cut and dried onto charged glass slides at 60-65oC for 

30 minutes. Slides were washed three times in xylene (#8400-1, Statlabs) for two minutes 

each, rinsed in 100%, 95%, and 80% ethanol (#7100-1, Statlabs) sequentially for 20 

seconds each, rinsed with distilled water twice for 10 seconds each, then incubated in 

hematoxylin (#7211, Richard Allan Scientific) for 90 seconds. Slides were washed twice 

in distilled water for 20 seconds each, then incubated with bluing solution (0.3% 

ammonium hydroxide, A669-212, Fisher Scientific) for 10 seconds and rinsed twice in 
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distilled water for 20 seconds. Slides were washed with acid alcohol solution (0.1% 

hydrochloric acid in 70% ethanol, A144-212, Fisher Scientific), twice with distilled water 

for 1 minute, then with 80% ethanol for 10 seconds. Slides were incubated in eosin 

(#3801600, Lieca Biosystems) for 15 seconds, washed twice with 95% ethanol, three 

times with 100% ethanol, then three times with xylene for 20 seconds. Slides were 

mounted using a Tissue-Tek SCA coverslipper (Model 4764, Sakura).  

For PDX tumors, FFPE sections were incubated three times in microwave-heated xylene 

for 3 minutes each. PDX tumor and orthotopic tongue tumor sections were washed thrice 

in 100% ethanol, then once in 96% ethanol for 1 minute. Samples were washed with 

distilled water, incubated with hematoxylin for 30 seconds, rinsed with water for 1 minute, 

then with 96% ethanol. Slides were subsequently incubated with eosin for 2 minutes, 

washed with water for 10 seconds, then rinsed in 96% ethanol. Slides were washed with 

100% ethanol, followed by three 1 minute xylene washes. Slides were dried and mounted 

with glass coverslips using Permount (SP15-500, Fisher). Histological images were 

acquired with an Olympus VS120 Virtual Slide microscope with a UPlanSApo 20X/0.75 

objective using VS-ASW-S6 software (Olympus Corporation). 

Predictive analysis of human cortactin T24 phosphorylating kinases 

The 84 amino acid sequence containing the entire human cortactin NTA domain was 

evaluated for potential phosphorylating kinases targeting the T24 site using the publicly 

available web-based programs ScanSite 2.0 (4), Minimotif Miner (5), PhosphoMotif finder 

(6), NetPhosK 1.0 (7), GPS 2.0 (8), PPSP (9) and KinasePhos (10). Potential kinases 
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were ranked by frequency based on the number of different programs identifying the 

same kinase and are displayed in Supplementary Table S1. 

Tumor invasive group characterization and quantitation 

Collective groups were defined as independent groups of tumor cells that were 

discontinuous with the main tumor mass and progressed towards the base of tongue. 

Invasive distance represents the difference between the farthest edge of the collective 

group and the nearest border of the primary tumor mass. Quantitation of these groups 

was carried out as described for tumor invasive protrusions in the Materials and Methods.  
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Supplemental Table S1. Predictive analysis of human cortactin T24 phosphorylating 
kinases 

Kinase ScanSite Minimotif 
Miner 

Phospho
Motif 
finder 

NetPhosK GPS PPSP KinasePhos 

CK2 X X X X X X  
CK1   X   X  
GRK     X X X 
DNA-PK      X  
PKB       X 

Protein Sequence: 
MWKASAGHAVSIAQDDAGADDWETDPDFVNDVSEKEQRWGAKTVQGSG 

HQEHINIHKLRENVFQEHQTLKEKELETGPKASHGY 
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Abstract 

Although overall cancer incidence rates are declining across the United States, the incidence of 

head and neck squamous cell carcinoma (HNSCC) continues to increase within the Appalachian 

region. West Virginia is the only state entirely within Appalachia, with the population having 

increased HNSCC incidence and mortality. This underscores the need for improved 

understanding of Appalachian HNSCC in WV and the rest of the region in order to ultimately 

devise improved patient treatment. To better understand the underlying factors leading to these 

disproportionate outcomes, our group has established an Appalachian-specific HNSCC patient 

tissue cohort from surgically-resected tumors. This cohort represents all HNSCC stages, lesion 

types and morphologies, as well as cases that contain human papillomavirus (HPV) and/or from 

patients with histories of tobacco and alcohol use. Moreover, we have generated several patient 

derived xenografts (PDXs) from these tissues, allowing further cellular, biochemical and 

preclinical therapeutic evaluation. Utilization of PDX tumors from this cohort will allow examination 

of critical steps in the development and potential treatment of invasive, metastatic, and recurrent 

Appalachian-associated disease. Matched patient and PDX sample availability enables 

personalized medicine and co-clinical trials aimed at reversing this Appalachian cancer health 

disparity and ultimately improving regional HNSCC patient care.  
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Introduction 

Tumors of the epithelium lining the upper aerodigestive tract, termed head and neck squamous 

cell carcinoma (HNSCC), can form in the lips, oral cavity, nasopharynx, hypopharynx, and larynx 

(1–3). Anatomical location subdivides these tumors into oral cavity and pharynx or laryngeal 

disease, which clinically display differences in progression, response to therapy, and patient 

survival (1–3). Clinically HNSCC is subdivided based on human papilloma virus (HPV) infection 

(1–3). HPV associated HNSCC results a significantly less aggressive disease with much 

improved prognosis, leading the American Joint Committee on Cancer (AJCC) to down-stage all 

HPV-positive tumors effective January 1st, 2017 (4). Clinical trials have shown that less 

aggressive therapy can still garner efficacious patient outcomes in HPV-positive HNSCC (5). In 

contrast, prolonged tobacco and alcohol exposure is associated with HPV-negative HNSCC (1,2). 

With diminishing tobacco consumption in the United States the number of HPV-negative HNSCC 

cases have decreased over time (6). Unfortunately, increasing HPV-positive incidence within this 

same time period has resulted in no significant change in the total number HNSCC cases during 

the past decade (6). Recent projections predict HPV-related HNSCC will become the predominant 

form of this cancer as early as 2020 (6).  

Present reports indicate that HPV-positive HNSCC accounts for approximately 20% of all HNSCC 

incidence, but is significantly enriched in oropharyngeal tumors  (60-80% of cases) (6–8). HPV-

positive HNSCC is due in large part to infection of the high-risk HPV subtypes 16 and 18 (7–9). 

HPV is a circular double stranded DNA virus encoding 7 “early” stage proteins (E1-7) and 2 “late” 

stage proteins (L1 and L2) (8,9). The critical early proteins E6 and E7 primarily target tumor 

suppressor genes p53 and Rb in host cells, promoting transformation of the infected epithelium 

and predisposing cells to subsequent genomic damage (8,9). Surprisingly, HPV-positive tumors 

harbor similar chromosomal mutational burdens but unique mutational signatures when 

compared with HPV-negative tumors (10–12). Other HPV encoded genes bias these tumors 
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towards a poorly differentiated and highly metastatic phenotype (13). Conversely, HPV-negative 

HNSCC tumors are typically well- to moderately-differentiated and undergo collective invasion 

causing vast loco-regional devastation resulting in decreased overall patient survival (13).  

Loco-regional disease remains the focus HNSCC progression, yet metastasis to distant organs 

such as the lungs, bone, brain, and liver do occur (14,15). More commonly, tumors spread along 

tissue-specific drainage pathways into the lymphatic system or follow neural pathways from the 

oral cavity (14–17). Both perineural invasion (PNI) and lymph node involvement result in 

decreased patient survival, emphasizing the necessity to control local disease prior to distal 

dissemination (14–17).  

Utilizing 2D culture or subcutaneous and orthotopic xenograft models to model human cancer 

and develop pharmaceuticals has largely been ineffective, as few preclinical trial drugs duplicate 

their success when evaluated in the clinic (18–21). Traditional cell culture models select for highly 

proliferative, pro-survival subclonal cell populations presenting far greater homogeneity than 

found in patient tumors (21). Established cell line-based xenograft models often lack physiological 

tumor microenvironment interactions, displaying limited resemblance to the human disease (22). 

These limitations necessitate the use of more sophisticated tumor models to enhance the 

translatability of preclinical findings in informing patient treatment.  

Genetically engineered mouse models (GEMMs) can model tumorigenesis and progression as 

well as serve to evaluate tumor-stroma interactions and immune surveillance of the tumor, 

enabling broader biological insights (23–25). These models allow researchers to address tissue-

specific and temporal changes regulating key steps in tumor onset and progression that cannot 

be recapitulated in cell line-based xenografts (23,24). GEMM studies can be used to validate 

novel oncogenes, evaluate new drugs and/or treatment combinations, and assess drug-

resistance and disease recurrence mechanisms that closely mimic the human disease (23,25–

28). There are some practical and biological limitations to GEMMs in that they can be time 
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consuming to generate, often display decreased tumor heterogeneity due to reliance on specific 

oncogenic drives rather than chromosomal instability and de novo DNA damage, and rarely 

capture the magnitude of alterations seen heavily pretreated patients (27,29–31). While GEMMs 

represent marked improvement towards mimicking human disease, certain genetic abnormalities 

found in human patients cannot be recreated in any mouse model due to differences between 

species (26,31). This is particularly true for large chromosomal amplification events common in 

human patients which have no genetic equivalent in rodents.  

Patient-derived xenograft (PDX) models maintain greater tumor heterogeneity and preserve 

genetic landscapes found in patient tumors (30–37). Directly culturing tumors in vivo conserves 

several critical tumor microenvironmental facets, including reduced oxygen levels, nutrient and 

hormone delivery, and tumor-stromal interactions (22,23,34). 

PDX development begins by directly implanting patient tumor samples into immunodeficient mice, 

maintaining many primary patient tumor histological and genetic characteristics (32,33,35–38).  

Patient samples are obtained as either fine needle aspirates (FNAs) or following surgical resection 

(34). The host mice receive either small pieces of tumor or a single-cell suspension typically mixed 

with pseudo-extracellular matrix (ECM) cocktail such as collagen I or Matrigel (29,32–36,39–41). 

Tumor cells are separated into suspension through chemical digestion with ECM cleaving 

proteases and/or mechanical tissue mincing (29,34,40–42). These suspension techniques 

expose tumor cells to harsh chemical and mechanical challenges that can reduce cell viability, 

leading to decreased tumor engraftment and/or heterogeneity in mice (29). PDXs are inserted 

into heterotopic (typically subcutaneous flank or subretinal space) or orthotopic sites (34,39,43). 

Site selection varies based on tissue sample size, orthotopic organ (both size and accessibility), 

and the individual PDX model purpose (tissue expansion vs. tumor phenomenon observation vs. 

therapeutic assessment, etc.) (34,42).  
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PDX engraftment success varies based on intrinsic tumor characteristics such as tumor 

aggressiveness, histological grade, tumor composition, sample size, resistance to anoikis and 

apoptosis (29,37,38,40,43). Other factors that influence engraftment include time (from surgical 

removal from the patient to implantation in the mouse), tissue temperature, exposure to nutrients 

while outside of the body, and implantation location (29,41). 

PDX nomenclature varies but is typically denoted using either F0, G0, or P0 for initial implantation 

of patient tissue into the mouse (29,34,43). Subsequent implantations following P0 tumor growth 

increase the associated passage number, indicating rounds of growth occurring within the animal 

model (ex. P1, P2, P3).  A particular PDX sample is commonly considered established and reliable 

around P3, assuming the tumor characteristics still resemble the primary patient sample 

(29,34,43,44). From this passage forward, PDX models are utilized in drug or tumor progression 

studies rather than the initial rounds of PDX establishment and tissue expansion (29,34,43). 

Criteria for PDX tumor passaging are variable due to differing Institutional Animal Care and Use 

Committee (IACUC) standards and tumor monitoring techniques. Generally, once the tumor  

exceeds 1 cm in the largest dimension, the tissue is harvested, processed, then reimplanted (43). 

During tissue processing the tumor mass is broken down into small pieces, which can then be 

evaluated for tumor drift by genomic sequencing or derived into novel primary cell lines.  

Several HNSCC PDX models have been developed, covering both HPV+ and HPV- subtypes. 

However these models represent a limited selection of HNSCC patients (41,42,44–48). As seen 

in other tumor PDX models, engraftment rates vary based on the tissue of origin (42,44).  

Surprisingly, while neither recurrence nor HPV status impact the success of HNSCC PDX 

establishment, these PDXs still recapitulate overall survival differences seen in patients (41,42). 

The sole factor seems to influence PDX engraftment thus far is whether the patient developed 

metastatic disease prior to surgical resection, but this finding is inconsistent across published 

cohorts (41,45–47). Epigenetic analysis determined that, unlike tumor cell lines, PDXs maintain 
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an identical methylation signature to their primary human tumor, indicating consistent genetic 

regulation between the PDX and patient tumor (49). Several studies sought to identify a HNSCC 

cancer stem cell (CSC) subpopulation enriched for tumor initiating capacity and drug resistance 

(36,40,50). Establishing treatment modalities to identify and target distinct subpopulations is 

critical to developing novel therapeutics and preventing disease progression and recurrence.  

In many cases, PDX models respond to clinical therapeutics similarly to patient tumors (37,51,52). 

Successful translation of PDX treatment to clinical efficacy enabled the National Cancer Institute 

(NCI) drug screening program to replace their panel of established cell lines, known as the NCI-

60, with a comprehensive PDX cohort (53). Recently, the Novartis Institutes for BioMedical 

Research unveiled a robust drug screening study utilizing its 1,075 PDX library (54). The 

increasing availability of large PDX cohorts should improve drug optimization and translation 

efforts that have largely been unsuccessful using prior methodologies. Advantageously, PDX 

samples can be evaluated post-treatment, identifying shifts in tumor cell protein expression that 

can influence secondary treatment options (42,55). For instance, identifying drug resistant and 

susceptible subpopulations undetectable in the untreated sample provides beneficial insight 

towards selecting subsequent clinical interventions (42,51,55,56). One study found that the drug-

resistant tumor subpopulation was addicted to the drug itself and regressed following treatment 

cessation (51). This study went on to show that periodic treatment rather than continual dosing 

delayed onset of drug resistance and abolished drug-reliant subpopulation development (51).  

Several studies have run co-clinical trials where the patient and their matched PDX are treated 

with identical therapeutics. Subsequent PDX sample analysis is then used to advise therapeutic 

selection tailored to that specific tumor (57–60). These studies utilize personalized or precision 

medicine, employing genomic and proteomic tumor characteristics to customize patient care 

rather than conventional chemotherapy, where clinicians rely upon gross tumor characteristics 

involving tumor size, grade, and stage to determine the optimal clinical intervention (56,61,62). 
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While PDXs represent advances in characterizing and preclinical testing of human tumors, there 

are limitations to this model. Not every tumor sample engrafts in mice. Some that do engraft can 

grow too slow to be practical for clinicians to adjust patient care. Additionally, mouse stromal cells 

replace human stromal components within the first two passages and do not always mimic 

behaviors found in the patient tumor microenvironment. Additionally, alterations in drug 

metabolism, targeting, and tumor vascularity in the mouse can weaken PDX translation to the 

clinical setting. More practically, PDXs come at the increased cost associated with 

immunodeficient mice along with a large time commitment for implanting tumors, monitoring 

progress, and passaging tissue. Despite these short comings, PDX preclinical and co-clinical trials 

enhance translational effectiveness to patient care, paving the way towards precision medicine.  

West Virginia resides entirely within the Appalachian region, an area with a majority Caucasian 

rural population and a history of economic depression (63). While Appalachia has made 

remarkable strides towards attaining national averages in health care, it remains an underserved 

region (63). When compared to regions outside Appalachia, multiple studies indicate an increased 

cancer incidence and mortality within the Appalachian population (63,64). West Virginia in 

particular shows higher total cancer incidence and a lower relative survival ratio than the national 

average (64,65). A recent study found that while overall cancer incidence is decreasing both 

nationally and within Appalachia, cancers of the oral cavity/pharynx and larynx, show increasing 

incidence compared to the rest of the nation (63,64). Specifically, there was a 20% increase in 

Appalachian oral cavity and pharynx cancer incidence from 2004-2011 compared to national 

averages (63,64). This increased burden on the local and regional population necessitates a 

focused approach to combating this growing cancer health disparity. As a first step towards further 

understanding the underlying biological factors that drive Appalachian oral cavity and pharyngeal 

cancers, the present study details the collection and establishment of an Appalachian specific 

HNSCC and PDX cohort. Characterization and analysis of this cohort will begin to unravel the 
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molecular and genetic mechanisms driving the disproportionate incidence in our state, enabling 

improved clinical treatment to reverse these trends.  

Materials and Methods 

PDX establishment  

Patient-derived xenograft (PDX) tumors were established as described (36,66). WVUSCC PDXs 

were derived from surgical specimens of HNSCC in compliance with the West Virginia University 

Institutional Review Board. PDX models were developed in compliance with the West Virginia 

University Institutional Animal Care and Use Committee by placing approximately 1 mm tumor 

fragments into subcutaneous pockets in the flanks of anesthetized 8-10 week-old NOD/SCID-γ 

(NSG) mice. Tumor fragments were overlayed with Matrigel (354234, Corning) and incisions were 

closed using wound clips. Mice were weighed and monitored for tumor growth on a weekly basis. 

PDX tumors were passaged into new NSG mice and/or used to generate cell lines once tumors 

reached ~1 cm in greatest dimension.  

PDX-derived cell lines  

For cell line derivation, PDX tumors were minced and digested in DMEM supplemented with 20% 

FBS and 1 mg/mL collagenase IV (17104019, Gibco). Digested tissues were plated onto NIH 3T3 

fibroblasts senesced with 4 μg/mL mitomycin C (BP2531, Fisher) and cultured in DMEM:F12 1:1 

supplemented with 10% FBS, 400 ng/mL hydrocortisone (H0888, Sigma), 50 μg/mL gentamycin 

(15750060, Gibco), 5 μM ROCK inhibitor (S1049, Selleckchem), 0.5 ng/mL recombinant human 

epidermal growth factor (EGF) (PHG0311, Gibco), and 10 ng/mL cholera toxin (C8062, Sigma). 

Prior to utilization in gelatin degradation assays, PDX derived cell lines were plated directly onto 

cell culture dishes for 1-2 passages to remove the fibroblast population. Gelatin degradation 

assays were performed in DMEM supplemented with 10% FBS.  
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Tissue sectioning, staining and microscopy  

HNSCC patient and PDX tissue samples were fixed in 10% neutral-buffered formalin and paraffin 

embedded (FFPE).  

For patient tissue blocks, five micron sections were cut and dried onto charged glass slides at 60-

65 oC for 30 minutes. Slides were washed three times in xylene (#8400-1, Statlabs) for two 

minutes each, rinsed in 100%, 95%, and 80% ethanol (#7100-1, Statlabs) sequentially for 20 

seconds each, rinsed with distilled water twice for 10 seconds each, then incubated in hematoxylin 

(#7211, Richard Allan Scientific) for 90 seconds. Slides were washed twice in distilled water for 

20 seconds each, then incubated with bluing solution (0.3% ammonium hydroxide, A669-212, 

Fisher Scientific) for 10 seconds and rinsed twice in distilled water for 20 seconds. Slides were 

washed with acid alcohol solution (0.1% hydrochloric acid in 70% ethanol, A144-212, Fisher 

Scientific), twice with distilled water for 1 minute, then with 80% ethanol for 10 seconds. Slides 

were incubated in eosin (#3801600, Lieca Biosystems) for 15 seconds, washed twice with 95% 

ethanol, three times with 100% ethanol, then three times with xylene for 20 seconds. Slides were 

mounted using a Tissue-Tek SCA coverslipper (Model 4764, Sakura).  

For H&E stained PDX tumors, FFPE sections were incubated three times in microwave-heated 

xylene for 3 minutes each. Tumor sections were washed thrice in 100% ethanol, then once in 

96% ethanol for 1 minute. Samples were washed with distilled water, incubated with hematoxylin 

for 30 seconds, rinsed with water for 1 minute, then with 96% ethanol. Slides were subsequently 

incubated with eosin for 2 minutes, washed with water for 10 seconds, then rinsed in 96% ethanol. 

Slides were washed with 100% ethanol, followed by three 1 minute xylene washes. Slides were 

dried and mounted with glass coverslips using Permount (SP15-500, Fisher).  
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Histological images were acquired with an Olympus VS120 Virtual Slide microscope with a 

UPlanSApo 20X/0.75 objective using VS-ASW-S6 software (Olympus Corporation). 

For immunofluorescent stained PDX tumors, FFPE sections were incubated three times in 

microwave-heated xylene for 3 minutes each. Tumor sections were washed thrice in microwave-

heated 100% ethanol for 2 minutes each. Sections were then washed in 95%, 80%, and 70% 

ethanol for 2 minutes each. Next sections were incubated in 11 mM citrate buffer pH 6.0 with 

0.05% Tween 20 at 98 oC for 20 minutes then cooled to room temperature. Slides were incubated 

in 1X PBS with 0.1% Triton X-100 for 20 minutes followed by incubation in 1X PBS with 0.01% 

Tween 20 for 5 minutes. Tissue samples were encircled using a hydrophobic PAP pen. Antibodies 

used were p16 (ab2301980, 1:250, Abcam). Primary antibodies were visualized using Alexa Fluor 

647 conjugated goat anti-mouse secondary antibody (A21235, 1:500, Invitrogen). F-actin was 

visualized with rhodamine-conjugated phalloidin (R415, 1:1000, Invitrogen). Slides were mounted 

using ProLong Gold antifade with DAPI (P36935, Invitrogen). Fluorescent images were acquired 

using a Zeiss Axiovert 200M microscope equipped with an AxioCamMR CCD camera using a 

Plan-Neofluar 20X/0.40 Corr objective and AxioVision software (Carl Zeiss Microscopy). 

Phase contrast and gelatin degradation microscopy 

Phase contrast images were acquired using a Zeiss Axiovert 200M microscope equipped with an 

AxioCamMR CCD camera using a Plan-Neofluar 20X/0.40 Corr objective and AxioVision software 

(Carl Zeiss Microscopy).  

For gelatin degradation, cells were plated on Oregon Green 488-conjugated gelatin (G13186, 

Invitrogen) coated coverslips for 24 h (67). Cells were rinsed in PBS, fixed with 10% buffered 

formalin (SF100-4, Fisher) and labeled as described (67). Antibodies used were 4F11 (1:500). 

Primary antibodies were visualized using Alexa Fluor 647 conjugated goat anti-mouse secondary 

antibody (A21235, 1:500, Invitrogen). F-actin was visualized with rhodamine-conjugated 



124 
 

phalloidin (R415, 1:1000, Invitrogen). Coverslips were mounted using ProLong Gold antifade with 

DAPI (P36935, Invitrogen). Gelatin degradation images were acquired with a Zeiss Axiovert 200M 

microscope equipped with an AxioCamMR CCD camera using a Plan-Apochromat 63X/1.4 

objective and AxioVision software (Carl Zeiss Microscopy).  
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Results 

Establishing a WVUSCC patient cohort 

In order to investigate underlying biological factors that contribute to increased HNSCC lethality 

in West Virginia and other Appalachia regions, a collective patient tissue repository was 

constructed. 63 tumor samples from different individuals encompassing the majority of HNSCC 

subsites were accrued from WVU Department of Pathology Laboratory for Translational Medicine. 

Patient consent was provided in all cases prior to surgery by the Department of Otolaryngology-

Head and Neck Surgery. The cohort displays a biased occurrence towards male patients similar 

to that found in HNSCC cohorts from other institutions (Table 1, (11,44,68)). The vast majority of 

these patients present with advanced disease (Stage IV) at initial diagnosis (Table 1, (11,44,68)). 

Within the oropharyngeal subtype, the majority of samples came from a primary tumor, with some 

recurrent and metastatic patient samples (Table 1). The laryngeal subtype presented an even 

distribution between primary and recurrent tumors and lacked any metastatic samples (Table 1). 

Well differentiated tumors show clear distinction between tumor cells and the surrounding stroma 

at the tumor leading edge, while poorly differentiated tumors display intermixed tumor and stromal 

cells (69). Tumors that either fall in between those two extremes or display both morphologies 

across areas along the tumor leading edge are considered moderately differentiated (69). The 

overall WVUSCC histology matches the rank order distribution published for similar HNSCC 

cohorts, with the majority of patient tumors are moderately differentiated, followed by well 

differentiated and poorly differentiated morphology (Table 1, (68,70)). While HPV status is an 

important clinical parameter for patient care, HPV status for any HNSCC tumor was not routinely 

tested at our institution until 2017. As a result, the majority of tumors in our cohort do not have 

HPV status determined either by p16 immunostaining or PCR (Table 1).  Importantly, over 70% 

of all cohort patients use tobacco in some form, with 11% having smoked with concurrent 

smokeless tobacco use (Table 1). Alcohol consumption is present in over 50% of cases, 
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correlating with high occurrence in other studies (11,70). Due to the self-reporting nature of these 

data, it is possible that figures for tobacco and alcohol underrepresent the number of individuals 

with such exposure. Overall our WVUSCC cohort contains similar representation of clinical, 

biological and social factors that are common to other HNSCC population groups from a high-

smoking demographic. 

While HNSCC represents an assortment tumors arising from various tissues, not all tissues give 

rise to tumors that behave uniformly in the clinic (3). Differences in outcomes and response to 

therapy have already been taken into account for oral cavity and pharynx vs. laryngeal disease 

as well as the enrichment for HPV positivity among tumors of the oropharynx (1–3,6–8). To 

establish clarity and allow for future assessment of unique features that may arise from other 

tissue sites, we designated our PDX samples based on tissue of origin as defined in Cumming’s 

Otolaryngology, 5th edition (Table 2, (3)). HNSCC is made up of five major anatomic sites: 1) oral 

cavity (OC), 2) oropharynx (OX), 3) hypopharynx (HX), 4) larynx (LX), 5) nasal cavity (NC); each 

of which can be further subdivided into specific tissue locations. The oral cavity comprises the lip 

(LP), buccal mucosa (BM), alveolar ridge (AR), floor of mouth (FM), oral tongue (OT), retromolar 

trigone (RT), hard palate (HP), and soft palate (SP). The oropharynx contains the base of tongue 

(BT), vallecula (VL), posterior pharyngeal wall (PPW), tonsil (TS), and lateral pharyngeal wall 

(LPW). The hypopharynx contains the pyriform sinus (PS) and post cricoid area (PC) (3). The 

larynx contains the supraglottis (SG), arytenoid (AT), epiglottis (EG), vocal cords (VC), and 

subglottis/infraglottis (IG). The nasal cavity contains the ethmoid sinus (ET), maxillary sinus (MS), 

frontal sinus (FS) and sphenoid sinus (SS). The nasopharynx (NX) contains only one subsite. 

Additionally, we designated associated lymph nodes as LN. Care was taken to attempt to discern 

the tissue of origin for each tissue collected in order to accurately account for any trends 

discovered from analysis of these samples. This nomenclature allows rapid determination of the 

specific HNSCC subsite for each patient tumor and associated PDX. 
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PDX Development from WVUSCC patient samples 

Detailed analysis of the genomic and proteomic landscape contributing to aggressive HNSCC in 

the WVUSCC cohort requires a robust tissue resource. As clinical presentation and prioritization 

towards pathological diagnosis limit tissue availability for further detailed analysis, tissue 

expansion becomes a critical step in generating sufficient tumor material for subsequent study. 

Sample collection begins with surgical resection where a tumor mass is excised from the patient 

(Fig. 1A-D). These samples undergo histological staining and pathological confirmation, with 

many tumors consisting of moderately differentiated cancer associated with keratin pearl 

formation (Fig. 1E). Keratin pearls (large pink-stained oval areas lacking cells within the tumor) 

are a hallmark of classical HNSCC, exhibiting the epithelial nature common to the originating 

tissue (Fig. 1E). Following resection, a small portion of the patient tumor is implanted into an 

anesthetized NSG mouse flank (Fig. 2A). Mice are monitored biweekly until tumors reach ~1 cm 

in greatest diameter, at which point the mouse is sacrificed and tumor tissue is collected (Fig. 3A-

C). Despite the heterotopic location, established PDX tumors maintain the histological 

characteristics of the patient tumor from which they are derived (Fig. 4A). Clearly, the PDX tumor 

(Fig. 4A, left) resembles the patient tumor (Fig. 1E, left), displaying a more well differentiated 

morphology against the mouse stroma and continuing to present keratin pearls. Similarly, the 

oropharyngeal PDX tumor maintains its well differentiated status (Fig. 4A, right). While histological 

resemblance suggests similarities between the patient and PDX tumors, biochemical 

characterization is required to understand oncogenic, recurrent, and metastatic drivers within 

each tumor. Thus verifying expression of pathologically identified characteristics such as p16 

expression is crucial to the reliability of this PDX cohort. Immunofluorescent staining of a 

previously pathologically identified HPV positive tumor shows sustained p16 expression in the 

PDX tumor, specifically staining tumor cells within the tumor mass (Fig. 4B).  Together these initial 

indicators suggest that the PDX cohort strongly represents the WVUSCC patient cohort from 
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which these samples have been established. Further genomic and proteomic examination are 

necessary to validate these PDX samples and will allow for insight into the causative factors 

driving this disease.  

In addition to tumor characterization, preclinical modeling is frequently used to establish novel 

therapeutic approaches and paradigms aimed at improving patient outcome. To expand cell and 

tumor-based model availability for Appalachian HNSCC patients, PDX derived cell lines have 

been generated from six PDX tumors. Ongoing work will increase the number and variety of PDX 

derived cell lines from new tumors, enabling a more comprehensive investigation of the disease 

spectrum observed in the WVUSCC cohort.  

For primary cell line generation, tumors excised from mice were dissociated and plated on 

senesced NIH 3T3 fibroblasts to generate novel cell lines. Example cell lines are shown in Fig. 

5A. The WVUSCC-AR3 line, derived from a recurrent stage IV alveolar ridge tumor displays tight 

colony morphology in 2D co-culture typical of epithelial HNSCC cell lines (Fig. 5A left, (71)). The 

WVUSCC-BT4 line, derived from a recurrent stage II base of tongue tumor displays very tight 

colony morphology (Fig. 5A right, (71)).  

As a way to measure retention of tumor behavior in the PDX cell lines, select lines were evaluated 

for invadopodia activity. The WVUSCC-AR3 cell line exhibits large numbers of active invadopodia 

(colocalization of actin and cortactin puncta at black dots within the gelatin) degrading the 

surrounding pseudo-ECM (Fig. 5B, top). Capturing this invasive phenomenon indicates retention 

of the aggressive nature of advanced stage HNSCC. The WVUSCC-BT4 cell line displays fewer 

invadopodia and less degradation over the same time course (Fig. 5B, bottom), suggesting lower 

aggressiveness as seen in p16-positive, HPV-harboring tumors.  
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Discussion 

The health disparity in West Virginia and other Appalachian regions for various cancers including 

HNSCC necessitates further investigation into the molecular and genetic drivers in this disease 

(65). Characterizing these patient tumors will help identify potential unique factors within 

Appalachia contributing to the increased incidence and mortality in this region, potentially 

identifying novel targets and increased information to better inform rational clinical intervention. 

Once the genomic and proteomic landscape for Appalachian HNSCC is known, appropriate 

combination therapies or novel drug development can be employed. In order to perform these 

detailed analysis, we generated the first Appalachian HNSCC live tissue cohort to capture the 

spectrum of the disease as it presents in the clinic. From there, tumor and cell-based models 

allow for preclinical experimentation and validation of novel approaches, tailoring patient care to 

the individual. This study demonstrates the creation of this cohort through the WVUCI, including 

a matched HNSCC PDX cohort for downstream applications. The generation of this critical 

resource will allow better insight into this health disparity with the end goal of resolving the 

Appalachian HNSCC cancer disparity through more suitable therapeutic interventions.  

While the diversity within the WVUSCC cohort captures a broad spectrum within the disease, it is 

not representative of the total patient population treated at the WVUCI, nor does it completely 

extend to the local or regional population (Table 1, (65)). Patient accrual and tissue sample 

collection was limited to patients undergoing surgical resection whose tumors were sufficiently 

large enough to provide diagnostic and research samples. Even if surgical patients had adequate 

tumors, some patients refused consent or underwent lengthy resections which precluded tissue 

collection. Despite these limitations, the WVUSCC cohort captures a myriad of tumor stages, 

types and sublocations. There is also preferential selection for cofactors associated with poor 

patient outcome including advanced stage, recurrence, and metastatic disease (Table 1). 

Additional value of this specific HNSCC cohort lies in the unique ability to allow direct molecular, 
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biological and pharmacological interrogation of tumors from patients that represent an escalating 

health issue among the patient population seen at the WVUCI. In addition, this cohort enables 

comparison between HNSCC sub-locations (oropharynx vs. larynx), stage, and differentiation 

status. It also encompasses the currently acknowledged extrinsic disease contributions from HPV, 

tobacco, and alcohol. Combining these factors allows for identification of biomarkers for 

oncogenesis and aggressive disease. Once these factors have been identified, preclinical 

experimentation aimed at combatting this disease can begin.  

The successful translation of many co-clinical and preclinical drug studies carried out utilizing 

PDX models lends this cohort the potential for changing disease outcomes (41,42,46–49). This 

study demonstrates PDX model reliability in maintaining hallmarks identified in patient tumors. 

We have shown that our PDX tumors continue to display histological characteristics (Fig. 1B vs. 

E) and genetic abnormalities (Fig. 1F) found in the matched patient tumor. The PDX derived cell 

lines enable further characterization of tumor and stromal based contributions to disease 

progression and recurrence. Initial novel drug compound validation in these PDX derived cell lines 

and tumors can assure target specificity and efficacy prior to clinical trials. Our previous work 

demonstrates this utility in preclinical Silmitasertib evaluation in HNSCC, a drug which other 

studies have concluded was ineffective (66,72). Although Silmitasertib is currently ongoing clinical 

trials, it has yet to be evaluated in this disease as an anti-invasive therapeutic (66). Given the 

current paucity of targeted therapeutic options, recognition of other clinical trials or FDA approved 

therapies as potentially advantageous for HNSCC patients would rapidly benefit patients. Novel 

drug target identification will facilitate partnership with pharmaceutical research and development 

in order to broaden the spectrum of available treatments specifically aimed at combatting this 

disease. The high translatability and decreased cost of PDX preclinical studies as compared to 

human clinical trials can continue to lessen the burden on drug developers while at the same time 

enhancing the successful implementation of promising lead compounds. The continued 
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expansion of this WVUSCC cohort will allow us to make more rapid advances in HNSCC 

treatment designed to ablate the current rising trend in HNSCC incident and mortality seen in the 

Appalachian patient population.  
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Figure Legends 

Figure 1. Representative examples of WVUSCC patient tumor anatomy and histology 

A. Gross images of a recurrent stage IV laryngeal tumor involving the supraglottis, glottis, and 

subglottis. Scale bar represents 2.5 cm. B. Stage IV alveolar ridge tumor exhibiting mandibular 

invasion. Scale bar represents 1 cm. C. Neck mass metastasis from a stage IV oral tongue tumor. 

Ruler displays cm distance. D. Stage IV oral tongue tumor cross section. Ruler displays cm 

distance. E. Histological architecture of HNSCC patient tumors. Hematoxylin and eosin (H & E) 

stained stage IV patient tumor (left) and a stage III tumor (right), both arising from the alveolar 

ridge. Keratin pearls are denoted with black arrows. Scale bar represents 100 μm (left) and 

200 μm (right).  

Figure 2. Representative example of WVUSCC PDX implantation 

A. Image of an anesthetized NSG mouse following surgical implantation of HNSCC patient tumor 

tissue. Tissue that has been implanted into a subcutaneous flank pocked of a shaved/depilated 

mouse was covered with Matrigel and wound closed with metal surgical wound clips.  

Figure 3. WVUSCC PDX tumor monitoring and tissue passaging 

A. Established (P0) flank PDX tumor protruding from the mouse flank. Calipers show largest 

tumor dimension (1 cm) prior to passaging. B. WVUSCC-AR2R PDX tumors derived from 

recurrent stage IV patient tumor of the alveolar ridge. Two tumors are evident; one tumor mass 

adherent to the skin flap on either flank. C. Gross images of multiple resected PDX tumors in 

sterile PBS prior to mincing for reimplantation or dissociation for cell line derivation. Ruler displays 

cm distance.  

Figure 4. Histological validation of WVUSCC PDX tumors 

A. PDX tumor tissue maintains patient tumor histological architecture. H & E stained WVUSCC-

AR3 P2 (left) and WVUSCC-OX3 P0 (right) PDX tumor tissue. Keratin pearls are denoted with 



133 
 

black arrows. Scale bar represents 100 μm (left) and 200 μm (right). B. Immunofluorescent 

labeling of WVUSCC-BT4 PDX tissue with an anti-p16 antibody. p16 (green) expression is 

maintain in the PDX tumor and exclusively stains tumor cells. Merged image shows p16 along 

with F-actin (red) and nuclei (blue). Scale bar represents 50 µm.  

Figure 5. WVUSCC PDX-derived cell lines and gelatin degradation 

A. Phase contrast images of PDX derived cell lines grown on senesced fibroblast “feeder” cell 

layers. Images of the indicated WVUSCC lines are from alveolar ridge (AR, left) and base of 

tongue (BT, right) tumor tissue. Tumor cells display tight colony epithelial morphology indicative 

of moderate-well differentiated HNSCC. Scale bar represents 50 µm. B. Invadopodia formation 

and matrix degradation activity in PDX derived cell lines. Representative epifluorescent images 

of PDX cell lines derived from tumor tissue shown in (A). Cells were plated on OG-488 gelatin 

coverslips for 24 hours and labeled with an anti-cortactin antibody and rhodamine phalloidin 

(Actin). Gelatin is pseudo-colored white. Scale bar represents 20 μm. 
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Table 1. WVUSCC patient cohort  

 Characteristic 

 All 
 n = 63 
(100%) 

 
Oropharynx 
 n = 53 
(100%) 

 Larynx 
 n = 10 
(100%) 

   n (%)  n (%)  n (%) 
 Sex       
     Male 43 (68.25) 36 (67.92) 7 (70) 
     Female 20 (31.75) 17 (32.08) 3 (30) 
 AJCC Stage       
     I / II 13 (20.63) 12 (22.64) 1 (10) 
     III 8 (12.7) 5 (9.43) 3 (30) 
     IV 42 (66.67) 36 (67.92) 6 (60) 
Type of Lesion       
     Primary 40 (63.49) 35 (66.04) 5 (50) 
     Recurrence 21 (33.33) 16 (30.19) 5 (50) 
     Metastasis 2 (3.17) 2 (3.77) - 
 Differentiation Status      
     Well 15 (23.81) 12 (22.64) 3 (30) 
     Moderate 38 (60.32) 32 (60.38) 6 (60) 
     Poor 7 (11.11) 6 (11.32) 1 (10) 
     Unknown 2 (3.17) 2 (3.77) - 
 HPV Status       
     Positive 9 (14.29) 9 (16.98) - 
     Negative  16 (25.4) 15 (28.3) 1 (10) 
     Missing 38 (60.32) 29 (54.72) 9 (90) 
Tobacco Usage       
     Smoking 45 (71.43) 35 (66.04) 10 (100) 
     Smokeless 14 (22.22) 14 (26.42) - 
     Both 7 (11.11) 7 (13.21) - 
     Neither 6 (9.52) 6 (11.32) - 
Alcohol Usage       
     Yes 36 (57.14) 31 (58.49) 5 (50) 
     Never 25 (39.68) 20 (37.74) 5 (50) 
     Unknown 2 (3.17) 2 (3.77) - 

 

Markwell et al. Table 1 
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Table 2. WVUSCC tissue naming convention 

Subsite Abbreviation Anatomic Site 
Lip LP Oral Cavity 
Buccal mucosa BM   
Alveolar ridge AR   
Floor of mouth FM   
Oral tongue OT   
Retromolar trigone RT   
Hard palate HP   
Soft palate SP   
Lymph node LN   
Oropharynx OX Oropharynx 
Base of tongue BT   
Vallecula VL   
Posterior pharyngeal wall PPW   
Tonsil TS   
Lateral pharyngeal wall LPW   
Nasopharynx NX   
Hypopharynx HX Hypopharynx 
Pyriform sinus PS   
Post cricoid area PC   
Larynx LX Larynx 
Supraglottis SG   
Arytenoid AT   
Epiglottis EG   
Vocal cord VC   
Subglottis IG for Infraglottis 
Nasal cavity NC Nasal Cavity 
Ethmoid sinus ET   
Maxillary sinus MS   
Frontal sinus FS   
Sphenoid sinus SS   

 

Markwell et al. Table 2 
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GENERAL DISCUSSION 

This dissertation describes studies that elucidate a novel phospho-regulatory pathway that 

modulates tumor cell invasiveness and the development of a unique Appalachian HNSCC patient 

cohort with matched PDX samples. The first study details a druggable target that regulates the 

initial steps of cellular invasion which controls tumor invasion in an orthotopic setting. The second 

study establishes a comprehensive tissue collection allowing investigation of significant steps in 

the development and potential treatment of invasive, metastatic, and recurrent Appalachian-

associated HNSCC. Collectively, these studies expand potential treatment options for HNSCC 

patients and position us to uncover unique facets driving higher HNSCC incidence and poor 

outcome among Appalachian patients as initial steps to combat this cancer health disparity.  

While HNSCC loco-regional and distal spread has long been shown to coincide with decreased 

patient survival, we are just beginning to understand the various modes of invasion enabling 

lymphatic and metastatic dissemination (1–5). Tumor cell invasion occurs across a spectrum, 

ranging from single-cell modalities to large multi-cellular structures (6,7). These collective invasive 

groups often contain stromal cells alongside tumor cells, leading to greater appreciation for the 

contributions of the tumor microenvironment toward tumor progression (7,8). Currently, there are 

promising new therapeutic interventions targeting tumor stromal components that target 

endothelial cells, CAFs, and TAMs along with various immunotherapies aimed at reinitiating 

immune surveillance (9–12). As future studies expand our understanding of stromal contributions 

to tumorigenesis, progression and recurrence, it seems likely that combination therapies will soon 

include components aimed at combating multiple facets of the tumor microenvironment.  

At the cellular level, many studies have focused on tumor cell-based motility and invasion, much 

of which relies on actin cytoskeletal dynamics allowing for concerted cell migration. The 

interaction between Arp2/3 complex and associate NPFs, mainly N-WASp and cortactin, are 

critical to producing the F-actin network at the center of migratory and invasive cellular 
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substructures such as lamellipodia, filapodia, podosomes and invadopodia (13–15). These 

structures require tightly regulated actin dynamics achieved through specific interactions among 

various ABPs (13–15). Cortactin plays a key role maintaining the integrity of the F-actin network 

through its ability to stabilize actin branch point through interactions in the NTA domain and RR 

(16). Much of the current literature focuses on cortactin as a central integrator for multiple 

upstream signaling pathways that converge on actin cytoskeletal regulation. Post-translational 

modifications to the cortactin C-terminal end have been established for Src, Erk1/2, PAK family 

kinases, PKD, and Arg/Abl family kinases (17). All of these modifications are suggested to release 

cortactin from an auto-inhibited state, opening the protein up to become a scaffold for other ABPs 

(17). Less is known regarding signaling events that modulate the ability of cortactin to interact 

with other binding partners. Several studies have demonstrated that removal of the DDW motif in 

the cortactin NTA domain dramatically reduces binding to Arp2/3 complex and subsequently 

blunts invadopodia formation and maturation in multiple cell lines (18–25). Data presented in 

Study 1 demonstrate a novel CK2-cortactin signaling mechanism which is required for efficient 

invadopodia formation and function leading to tumor cell invasion in 3D and in vivo. We observed 

that CK2-mediated cortactin NTA phosphorylation proximal to the DDW motif is sufficient to 

diminish binding to and/or activation of Arp2/3 complex. This is in agreement with the majority of 

the literature that indicates CK2 phosphorylation plays an inhibitory role with respect to other 

NPFs (26–29).  

Despite significant reductions in HNSCC tumor cell invadopodia and invasion due to modification 

of cortactin T24 and CK2 inhibition, invadopodia or tumor cell invasion were not completely 

abolished (Study 1). The incomplete ability of cortactin removal or CK2 inhibition to block invasion 

has not been emphasized in other work (30–36). Unlike CK2 inhibition, which has mainly been 

studied with a focus on anti-proliferative effects, cortactin inhibition resulting in reduced 

invasiveness has been extensively documented in many tumor cell types. Results from across 



149 
 

these studies have shown significant reduction in invadopodia and invasion following reduced 

cortactin expression, yet some cells still retain the ability to form functional invadopodia (16,30–

33). Evaluation of this work indicates that ~20% of cells still make invadopodia and degrade matrix 

when cortactin is directly targeted. While it is possible that this residual activity results from 

incomplete cortactin reduction through limitations of RNAi, the consistent lower limit achieved 

among multiple laboratories (including our own) using a variety of cell lines suggests that tumor 

cells also possess cortactin-independent invasion mechanism(s) to ensure invadopodia are 

produced. Studies utilizing CRISPR-Cas9 technologies or cortactin null GEMM models can be 

used to verify the existence of such a mechanism. Presuming that such a mechanism does exist, 

there are several ways to elucidate the compensatory pathways allowing cortactin-independent 

invasion. Following the creation of cortactin-null cell lines, RNA sequencing and proteomic 

analysis may reveal compensatory upregulation of proteins able to stabilize actin networks in the 

absence of cortactin. We have already tested our cortactin KD cell lines for expression of the 

cortactin homologue HS1 and found that all HNSCC cell lines tested failed to upregulate HS1. 

Upregulation or a change in the phosphorylation status of other ABPs will generate a list of targets 

for subsequent investigation. Utilizing an RNA or CRISP-mediated reduction in those target 

proteins in cortactin-null cells will be helpful in further validating the comprehensive network 

involved in compensatory cortactin-independent invasive processes. Such targets can serve as 

the basis for additional anti-invasive therapeutic development in order to generate a combination 

therapy capable of fully inhibiting tumor invasion. It is also possible, if not likely, that there are 

tumor cell independent compensatory mechanisms in vivo that can facilitate tumor cell invasion 

in the absence of cortactin. This is supported by the fact that cortactin amplification and 

overexpression only occurs in a subset of tumors, indicating that tumors can progress without 

relying on cortactin driven enhancements (1,30,33,37–45). The most likely compensation in this 

case would arise from recruitment of various stromal cells to the tumor border, followed by 

stromal-cell directed invasion. This can already be seen in certain tumors undergoing collective 
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invasion mediated through the proteolytic action of CAFs on the ECM to generate permissive 

trails for tumor cells for migration independent of tumor cell-driven ECM proteolysis (6,7). In 

addition to CAFs, other immune infiltrating cells such as TAMs are capable of remodeling the 

ECM and can similarly contribute to generating a permissive environment for cortactin-

independent tumor cell invasion. Further stromal cell contributions to tumor cell invasion are 

detailed in Markwell and Weed 2015 which can be found under Appendix items attached to end 

of this dissertation (p.172-196). 

CK2 has been established as a pro-oncogenic gene involved in cell survival, proliferation and 

resistance to apoptosis (46). In agreement with a pro-invasive role, CK2 is enriched at the tumor 

border and correlates with enhanced tumor cell invasion and metastatic progression in various 

tumor types (47,48). Many signaling pathways require CK2 activity for optimal signal transduction 

including mitogenic signals, inflammatory cytokines, apoptosis, cell survival and angiogenesis 

(49–54). The central role of CK2 in multiple important oncogenic process spurred the 

development of many pharmacological inhibitors, though only a select few have shown promise 

as true clinical interventions (55). Data from Study 1 demonstrate efficacy for Silmitasertib in 

blunting HNSCC invasion in 3D and in vivo models. While insufficient as a single agent, CK2 

inhibition may be a useful component of a multi-drug regimen for treating aggressive tumors. 

Several preclinical and early clinical studies have already demonstrated a synergistic role for CK2 

inhibition when in combination with other standard chemotherapeutic agents, mainly through 

sensitizing cells to apoptosis (56–58). Targeting the CK2-cortactin signal pathway with 

Silmitasertib presents a new potential anti-invasion therapeutic option for HNSCC patients. 

Preclinical efficacy in PDX-derived cell lines further suggests the likelihood of clinical benefit 

resultant from Silmitasertib administration, since PDXs have been shown to exhibit similar 

response to patient tumors when treated with the same agents (59–61).  
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While data presented in Study 1 identify CK2α as the T24 phosphorylating kinase, future efforts 

are needed to discover the pT24 phosphatase capable of regenerating T24 cortactin that is 

required for optimal interaction with Arp2/3 complex. The Slingshot family phosphatases are 

potential candidates for this role, since they localize to actin-rich structures and are capable of 

dephosphorylating other ABPs including cofilin and coronin (62–64). The close proximity 

Slingshot phosphatases to sites of cortactin activity suggest that it may be capable of acting upon 

pT24 in the cortactin NTA domain. Alternatively, CK2α has been shown to bind to and enhance 

the activity of protein phosphatase 2A (PP2A) in fibroblasts and glioma cell lines (65,66). PP2A 

directly binds to the CK2 catalytic subunit and blocks its association with the regulatory β subunit, 

preventing CK2 holoenzyme formation (66). The feasibility of this interaction at invadopodia 

warrants further investigation, as the CK2β subunit localizes the holoenzyme to the plasma 

membrane and may be critical for CK2 association at areas of actin network formation in 

invadopodia (67,68). It is possible that both interactions with CK2α are coordinated to enhance 

CK2 signal cycling. One interaction allowing for CK2α substrate phosphorylation is through proper 

localization of the kinase domain, while a second enhances substrate dephosphorylation. These 

two events combine to form a CK2 phosphoregulatory cycle at the plasma membrane. 

Additionally, RNA sequencing or proteomic analysis of CK2 overexpressing cell lines and patient 

tumors could generate an unbiased approach to identifying likely CK2 phosphatase candidates. 

These candidate genes could then be verified through biochemical, RNAi, or phosphatase 

inhibitor studies in order to identify candidate phosphatases that contribute to the CK2-cortactin 

phosphoregulatory cycle described herein.    

PDX models maintain greater tumor heterogeneity and preserve genetic landscapes found in 

patient tumors (59,69–75). Directly culturing tumors in vivo conserves several critical tumor 

microenvironmental facets, including reduced oxygen levels, nutrient and hormone delivery, and 

tumor-stromal interactions (71,76,77). Despite some failures of PDX-based treatment outcomes 
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to recapitulate their results in the clinical setting, PDX models have far superior success rates 

when compared to cell culture and animal-based studies (78). Not only do PDX models allow for 

repurposing current FDA approved drugs and the generation of novel combinational therapies 

with those drugs, but PDX tissue analysis post treatment allows for discovery of new druggable 

targets for further research and development (79,80). The success of a small handful of co-clinical 

trials has already altered the way that innovative oncologists approach patient care. The current 

shift toward rapid, reliable sequencing utilizing personalized or precision medicine through 

genomic and proteomic tumor analysis will allow customized patient care to become more 

frequently utilized in clinical practice in the future.  

Although PDX models are becoming increasingly popular tools for studying tumor behavior, this 

model still does not fully recapitulate the human disease. Rapid depletion of human stromal cells 

with their mouse stromal counterparts that do not entirely mimic behaviors found in the patient 

tumor microenvironment limits the utility of PDX models. Furthermore, the immune compromised 

nature of these animals prevents observation of tumor-immune cell interactions. The inability to 

observe stromal and immune cell compensation in the tumor microenvironment is the greatest 

limitation to PDX-based discoveries. Additionally, differences in drug metabolism, targeting, and 

tumor vascularity in the mouse diminishes PDX translation to the clinical setting. Development of 

better immune-compromised mouse hosts such as humanized mice and more sophisticated de 

novo tumorigenesis models will enable researchers to recapitulate disease development, 

progression, response to therapy and recurrence.  

The Appalachian population displays increased cancer incidence and mortality when compared 

to the rest of the United States (81,82). West Virginia specifically exhibits higher total cancer 

incidence and a lower relative survival ratio than the national average (81,83). Despite a decrease 

in overall cancer incidence at the national level and within Appalachia, cancers of the oral 

cavity/pharynx and larynx, continue to have higher incidence in Appalachia (81,82). The 
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enhanced tumor burden on the local and regional population warrants directed efforts to reverse 

this cancer health disparity. Our group has begun such an effort towards further understanding 

biological factors that drive Appalachian oral cavity and pharyngeal cancers through the collection 

and establishment of an Appalachian specific HNSCC and PDX cohort. We have amassed 63 

tumor samples covering the majority of HNSCC subsites across all stages, histologic subtypes 

and known causative factors including HPV, tobacco and alcohol exposure. The established PDX 

tissues maintain histological and functional similarities to the patient samples from which they are 

derived (Study 2). Characterization and future investigation of this cohort seeks to reveal the 

molecular and genetic mechanisms driving the disproportionate incidence and mortality in West 

Virginia and neighboring Appalachian regions. Successful analysis will enable informed clinical 

care to combat this health disparity. Additional investigation into the genomic and proteomic 

topography within Appalachian HNSCC combined with current array of PDXs will allow for rapid 

evaluation of novel treatments directed towards improving HNSCC patient survival. With the 

limited targeted therapeutic agents available in HNSCC, any novel interventions will provide 

meaningful advances in patient care.  

As noted in the discussion section of Study 1, there are several subsequent studies required to 

further confirm these findings. Successful pT24 antibody development would enable direct 

detection of CK2-mediated cortactin regulation. This would confirm that CK2 acts directly on 

cortactin in cell lines and tumor tissues. It would also allow analysis of cortactin amplified and 

overexpressing tumors to determine if pT24 levels correlate with enhanced invasiveness, 

metastasis, and poor outcome as predicted by this dissertation. Additional analysis directed at 

observing invadopodia dynamics in real time could determine whether the T24 phospho-

regulatory cycle alters invadopodia initiation or maturation. This can be partially achieved through 

actin incorporation assays aimed at labeling actin barded ends in areas of invadopodia 

development. A complementary method involves live cell imaging of de novo invadopodia 
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formation and maturation utilizing 2D or 3D invasion models. Combined these data would 

elucidate the exact step(s) of invadopodia formation and function that CK2 phosphorylation 

regulate.  

Further validation of Silmitasertib in blunting tumor invasiveness can be achieved through 

additional animal modeling. PDX tumor treatment either at heterotopic or orthotopic sites would 

confirm its utility in treating advanced human HNSCC tumors. However, PDX models and the 

orthotopic tumor injection model shown in Study 1 all start treatment following significant tumor 

establishment. Further studies involving spontaneous tumor development combined with 

Silmitasertib treatment would determine the extent to which CK2 inhibition can blunt tumor 

progression from the point of tumor initiation. Focusing solely on CK2-dependent processes, 

additional studies carried on patients or animals with post-surgical tumor resection may 

demonstrate Silmitasertib efficacy towards delaying or even preventing disease recurrence. As 

has been revealed with CK2 inhibition in other tumor types, Silmitasertib would be expected to 

enhance HNSCC tumor sensitivity to cytotoxic chemotherapies. Thus, Silmitasertib could be a 

component of first-line therapeutic combinations. In the case of HNSCC, it has yet to be 

determined if CK2 inhibition enhances EGFR inhibition. As EGFR blockade is the only tumor 

targeted therapy in HNSCC that shows efficacy in the metastatic setting (84), it would be 

interesting to evaluate any potential synergistic overlap between these two major signaling 

pathways through combined Silmitasertib and Erbitux treatment in the neoadjuvant or post-

operative settings.  
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Abstract

Cellular invasion into local tissues is a process important in development and homeostasis. Malregulated invasion and subsequent cell
movement is characteristic of multiple pathological processes, including inflammation, cardiovascular disease and tumor cell metastasis1.
Focalized proteolytic degradation of extracellular matrix (ECM) components in the epithelial or endothelial basement membrane is a critical step
in initiating cellular invasion. In tumor cells, extensive in vitro analysis has determined that ECM degradation is accomplished by ventral actin-rich
membrane protrusive structures termed invadopodia2,3. Invadopodia form in close apposition to the ECM, where they moderate ECM breakdown
through the action of matrix metalloproteinases (MMPs). The ability of tumor cells to form invadopodia directly correlates with the ability to invade
into local stroma and associated vascular components3.

Visualization of invadopodia-mediated ECM degradation of cells by fluorescent microscopy using dye-labeled matrix proteins coated onto glass
coverslips has emerged as the most prevalent technique for evaluating the degree of matrix proteolysis and cellular invasive potential4,5. Here
we describe a version of the standard method for generating fluorescently-labeled glass coverslips utilizing a commercially available Oregon
Green-488 gelatin conjugate. This method is easily scaled to rapidly produce large numbers of coated coverslips. We show some of the common
microscopic artifacts that are often encountered during this procedure and how these can be avoided. Finally, we describe standardized methods
using readily available computer software to allow quantification of labeled gelatin matrix degradation mediated by individual cells and by entire
cellular populations. The described procedures provide the ability to accurately and reproducibly monitor invadopodia activity, and can also
serve as a platform for evaluating the efficacy of modulating protein expression or testing of anti-invasive compounds on extracellular matrix
degradation in single and multicellular settings.

Video Link

The video component of this article can be found at http://www.jove.com/video/4119/

Protocol

1. Production of Oregon Green 488-gelatin Coated Coverslips

1. Prepare an unlabeled 5% (w/w) stock gelatin/sucrose solution by adding 1.25 g gelatin and 1.25 g sucrose in PBS to a final volume of 50 ml.
Warm the stock gelatin solution to 37 °C and ensure it is entirely melted before use. Store the final mixture at 4 °C.

2. Clean 13 mm diameter #1 glass coverslips by placing an individual coverslip into each well of a 24 well plastic tissue culture plate. Add 500 μl
of 20% nitric acid to each well and incubate for 30 min. Aspirate the nitric acid solution and wash coverslips three times with deionized water.

3. Coat coverslips with 500 μl of 50 μg/ml poly-L-lysine (prepared from 0.1% stock solution and diluted in deionized water) to each well for 20
min at room temperature. Aspirate the solution and wash three times with PBS. Poly-L-lysine coating facilitates even coating and bonding of
the overlying labeled gelatin.

4. Add 500 μl of 0.5% glutaraldehyde (made fresh before use) to each well and incubate the 24 well plates on ice for 15 min. Aspirate and wash
three times with cold PBS. Be sure to remove all traces of PBS prior to gelatin coating. Keep plates on ice during all washes until gelatin is
added.

5. Reconstitute the Oregon Green 488-conjugated gelatin as per manufacturer's protocol and warm it and the unlabeled 5% gelatin/sucrose
solution from (1.1) to 37 °C. Dilute one part Oregon Green 488 gelatin into eight parts of unlabeled gelatin/sucrose (i.e.; 500 μl of Oregon
Green 488 gelatin into 4 ml of 5% gelatin mixture). Pipet 100 μl of the diluted 488-gelatin mixture (kept at 37 °C) onto each coverslip, using
enough gelatin to coat the coverslip without manual spreading (which can lead to uneven coverslip coating as shown in Figure 3B). It is
important to keep the diluted 488-gelatin mixture at 37 °C during the coating procedure to prevent premature solidification. From this step
forward the coverslips should be kept in the dark as much as possible to avoid potential photobleaching. Other ECM proteins conjugated to
different fluorophores can be substituted for Oregon Green 488 gelatin (see Discussion).
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6. Once all coverslips are coated in a single plate, hold the 24 well plate at an angle and remove excess gelatin from each well by vacuum
aspiration. Incubate coated coverslips in the dark for 10 min at room temperature.

7. Wash the coverslips three times with PBS, then add 500 μl of freshly made 5 mg/ml sodium borohydride (NaBH4) for 15 min at room
temperature to reduce and inactivate residual glutaraldehyde. Sodium borohydride is effervescent, and small bubbles will be evident on and
around each coverslip.

8. Remove the NaBH4 solution by vacuum aspiration with a quick sweeping motion around the outside of each well. Take care not to pick up any
floating coverslips that became detached from the bottom of the tissue culture plate during NaBH4 treatment. Detached coverslips that float to
the top may be gently pushed back down to the well bottom, but care must be taken to avoid damaging the protein coating. Wash each well
three times with PBS and then incubate coverslips in 70% ethanol for 30 min at room temperature.

9. Using sterile technique, transfer the coverslip-containing plates to a type IIA/B cell culture laminar flow hood and rinse coverslips three times
with sterile PBS. At this point coverslips can be stored in PBS protected from light at 4 °C for at least two months.

10. Transfer coverslips to be used for degradation assays to an empty well of a new 24 well plate by careful removal using a sterile needle and
forceps. Equilibrate coverslips for 1-24 hr with complete media appropriate to the specific cell type being assayed. Care must be taken not to
invert the coverslip or scratch the gelatin coating (see Figure 3B).

2. Plating and Processing of Cells on Oregon Green 488-gelatin Coated Coverslips to Assay
ECM Degradation

1. Seed 3-5x104 cells onto a coverslip within each well of the 24 well plate.
2. Conduct a time course study to determine optimal times required for invadopodia degradation activity for the particular cell line/type of

interest. Most invasive cells require a time between 4-24 h for degradation to become apparent, although this range can vary widely and
should be empirically determined. To synchronize invadopodia activity, cells can be treated with MMP inhibitors (e.g., GM 6001) for a desired
time period, then wash out the inhibitor to allow invadopodia activity to proceed (for example, see6).

3. Rinse coverslips three times with PBS, then fix cells with 500 μl of 10% buffered formalin phosphate for 15 min. Rinse three times with PBS
and permeabilize for 4 min with 0.4% Triton X-100 in PBS. Rinse three times with PBS to remove the Triton X-100.

4. Label cells using any standard protocol for immunofluorescence staining (see 7 for example) by co-labeling cells with fluorescent conjugated
phalloidin to visualize actin filaments (F-actin) and for a known marker protein that localizes to invadopodia (e.g; cortactin5, TKS58, or N-
WASp9).Remember to avoid using 488-labeled secondary antibodies or GFP-labeled proteins if using Oregon Green 488 or FITC-labeled
gelatin to prevent signal interference.

5. Mount stained coverslips onto glass microscope slides by carefully inverting the coverslip and placing it on a drop of ProLong Gold antifade or
similar reagent.

6. To assess matrix degradation, image cells in appropriate channels using a conventional fluorescent or confocal microscope. Gelatin
degradation is visualized as darker areas on the coverslip due to proteolytic removal of the fluorescent gelatin (Figure 4A). Labeling of cells
for actin and an invadopodia marker protein allows for confirmation of invadopodia at sites of matrix degradation in merged images (Figure
4A).

7. Degradation activity can also be monitored in real time by live cell imaging with fluorescent-tagged recombinant proteins to track invadopodia
formation and matrix degradation5,10,11.

3. Quantification of Fluorescent Gelatin Degradation by Measuring Normalized Matrix
Degradation

This analysis provides the normalized area of matrix degradation relative to the area of the cells or the number of cells. It is useful for analyzing
entire microscopic fields of view where multiple cells are present that have been collectively treated with siRNA, growth factors or therapeutic
agents. For this analysis, images collected at lower magnification are sufficient to efficiently collect information about populations of cells.

1. Open the images in ImageJ12. ImageJ for microscopy can be downloaded from http://www.macbiophotonics.ca/imagej/.
2. Check the scale information by choosing the menu command "Analyze/Set Scale." This information will import automatically with many file

formats, but can be entered manually if required. Proper scaling is necessary to report measurements in microns rather than pixels.
3. Select the appropriate measurements to track by choosing "Analyze/Set Measurements." Check Area and Limit to Threshold.
4. Calculate the area of degradation using the fluorescent gelatin image (Figure 5A).
5. Threshold the image ("Image/Adjust/Threshold") to set the upper and lower pixel intensity values to select the areas of degradation

(highlighted in red; Figure 5B). In subsequent images, use the Set button in the Threshold window to set the same threshold for all images as
an objective means to select degradation area.

6. In some cases, the coverslip may not be perfectly flat when images are acquired. This causes the intensity of the gelatin to change across the
image. If this variation creates problems when thresholding the image, correct for uneven illumination across the gelatin by subtracting the
background ("Process/Subtract Background") or by filtering with a bandpass filter ("Process/FFT/Bandpass Filter") or a pseudo flatfield filter
("Process/Filters/Pseudo Flatfield") until the background intensity is uniform.

7. Measure the area of matrix degradation ("Analyze/Analyze Particles"). In the Analyze Particles window, choose a particle size > 0 to remove
noise from the selection. Show Outlines to identify regions of interest (ROIs). Check Display Results and Summarize to show measurements.
If the drawing has specifically outlined all of the areas of degradation (Figure 5C), copy the Total Area measurement into a spreadsheet. If
other objects were selected (such as debris), record only the areas of the relevant ROIs.

8. Calculate the cell area using the phalloidin stained (F-actin) image (Figure 5D).
9. Threshold the image ("Image/Adjust/Threshold") to set the upper and lower pixel intensity values so that the edges of the cells are selected

(highlighted in red; Figure 5E). In subsequent images, use the Set button in the Threshold window to set the same threshold for all images as
an objective means to select cell area.
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10. 10 Measure the area of the cells ("Analyze/Analyze Particles"). In the Analyze Particles window, choose a particle size > 0 to remove
noise from the selection. Show Outlines to identify regions for analysis (Figure 5F). Check Display Results and Summarize to show area
measurements. Do not check Include Holes if there are spaces between cells in a cluster so the non-selected pixels within the cluster will not
be included in the cell area calculation. Choose OK.

11. Copy the Area results for relevant ROIs into a spreadsheet.
12. Calculate the area of gelatin degradation per total area of cells13.
13. An alternative approach would be to report the area of degradation per number of cells from counting nuclei (Figure 5G). This is necessary

if manipulations alter the cell area between different compared treatment groups. Automatic counting works best if nuclei are well separated,
uniform in intensity and round. Automatically count nuclei ("Plugins/Particle Analysis/Nucleus Counter"). Choose Smallest and Largest
Particle Size, a Threshold Method and a Smoothing Method. Check Subtract Background, Watershed Filter, Add Particles to ROI Manager
and Show Summary (Figure 5H).

14. If nuclei overlap extensively or have an irregular shape or texture, automatic counting may not produce an accurate count (Figure 5H, arrows
on right). In this case, manual counting can be facilitated using the cell counter tool ("Plugins/Particle Analysis/Cell Counter"). This will keep
count as cells are marked during a manual count (Figure 5I).

15. Copy the number of cells (nuclei) into a spreadsheet. Calculate the area of gelatin degradation per total number of cells.

4. Quantification of Fluorescent Gelatin Degradation by Individual Cells in a Mixed Cellular
Population

To evaluate matrix degradation resulting from specific cells in a population apart from other cells within the field (e.g., transfected versus non-
transfected cells), the procedure in section 3 can be modified to measure the area of degradation under individual cells. An additional fluorescent
channel is needed to mark transfected cells. In this instance, higher magnification images and well-separated cells are easier to quantitate.

1. Check the scale information by choosing the menu command "Analyze/Set Scale." Select the appropriate measurements to track by choosing
"Analyze/Set Measurements." Check Area and Limit to Threshold.

2. For individual cells that are not touching, identify each cell using the F-actin image (Figure 6A). Threshold the image (see 3.9) (Figure 6B).
It is important to capture the edges of the cells, but there can be holes inside that are not included in the threshold. Use the same intensity
values across images to select cell boundaries.

3. To measure the area of the cells, use "Analyze/Analyze Particles." In the Analyze Particles window, choose a Size >0 (to eliminate noise),
Show Outlines, and check Display Results, Add to Manager and Include Holes (to record the entire area inside the outline). Choose OK and
record the Area for each cell from the Results window.

4. Identify which cells are transfected (Figure 6C).
5. Identify the areas of degradation using the fluorescent gelatin image (Figure 6D). If needed, filter the gelatin image to even background

intensity (see 3.6). Threshold to select the areas of degradation, making note of the threshold settings (Figure 6E). On subsequent images,
use these same upper and lower intensity values (using the Set button in the Threshold window) for an objective selection of areas of
degradation.

6. Measure the areas of degradation under the cells. On the thresholded fluorescent gelatin image, show an outline of the cells by selecting
ROIs in the ROI Manager window and selecting Measure (Figure 6F). Record the results and calculate the normalized area of degradation/
cell or cell area.

5. Representative Results

The overall schematic for the procedure is shown in Figure 1. The procedure entails preparation of glass coverslips and coating with
fluorescently-conjugated gelatin, plating of cells onto the coated coverslips to allow cells to degrade the gelatin, fixing and labeling of cells for
fluorescence microscopic analysis, imaging the fluorescent matrix to assess the matrix integrity, and objectively quantifying the degree of gelatin
matrix degradation using computer software.
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Figure 1. Overall schematic highlighting the key steps involved in fluorescent gelatin coating, cell plating, fixing and immunolabeling, and
evaluating matrix proteolysis.

The key procedural steps involved in preparing and coating glass coverslips are outlined in Figure 2.

 
Figure 2. Schematic demonstrating the individual steps involved in preparing glass coverslips for gelatin matrix coating. Steps conducted
in the light (lit bulb), on ice (cubes) and in the dark (non-illuminated bulb) are cartoon indicated. Steps conducted in the dark help prevent
photobleaching of the fluorescent matrices.

When properly performed, coverslips are evenly coated with Oregon Green 488-conjugated gelatin, displaying homogenous fluorescence when
visualized by microscopy (Figure 3A). Typical artifacts that can arise due to improper coating, handling, storage and usage of coated coverslips
are shown in Figure 3B.
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Figure 3. Examples of artifacts encountered during gelatin coated coverslip preparation and handling. A. Orthogonal view of a confocal z-stack
showing the typical color and consistency of an Oregon Green 488-conjugated gelatin coated coverslip produced using the prescribed protocol.
Coverslips should have a homogenous coating ~1-2 μm thick as shown in the X-Z (bottom) and Y-Z (right) confocal planes. B. Artifacts that
can occur during the coating and processing of gelatin-coated coverslips include: Improper covering of the coverslip during the coating process
due to poor mixing, manual spreading or partial solidification of the gelatin mixture (uneven coating), removal of the coated matrix by scoring
with needles or forceps during handling (scrape), drying of the coverslip surface during prolonged storage periods, resulting in a "cobblestone"
appearance (dehydrated) and photobleaching of the fluorescent gelatin surface during imaging due to prolonged or high intensity light exposure
(bleaching). White arrow indicates bleached area encompassing a plated OSC19 head and neck squamous carcinoma cell. The Oregon Green
488-conjugated gelatin is pseudocolored white to enhance image contrast. Bar, 10 μm.

The resulting thin matrices produced during this procedure provide a sensitive means to evaluate the ability of cells to degrade ECM. Figure 4
demonstrates an example of invadopodia activity from an OSC19 cell plated on an Oregon Green-488 conjugated gelatin coverslip and imaged
by conventional confocal microscopy as well as by volume-fill image rendering following three dimensional deconvolution.
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Figure 4. Representative examples of invadopodia matrix degradation activity. A. Visualization of invadopodia and corresponding gelatin matrix
proteolysis. OSC19 cells plated on Oregon Green 488-conjugated gelatin coverslips for 10 hr were fixed and labeled with rhodamine-conjugated
phalloidin (F-actin) and anti-cortactin antibodies (visualized with an Alexa Fluor 647 secondary antibody and pseudocolored green). Invadopodia
are evident as focal cytoplasmic concentrations of F-actin and cortactin that overlap with areas of gelatin clearing (dark holes in the matrix) within
the merged image. Boxed regions containing arrowheads indicate individual invadopodia and areas of focal matrix proteolysis as shown in the
enlarged regions below. Bar, 10 μm. B. Volume fill visualization of invadopodia penetration into the ECM. OSC19 cells plated and stained as in
(A) were visually rendered by obtaining 23 successive 0.32 μm optical z-slices totaling 7.04 μm for rhodamine-conjugated phalloidin and Oregon
Green 488-conjugated gelatin. The native LSM file set for each channel was opened in AutoQuant X2.2 software and a 3D blind deconvolution
of each image stack was performed using the recommended settings (10 iterations, medium noise). The processed images were saved as TIFF
stacks that were then opened in NIS Elements and rendered as a volume view with alpha blending. The LUTs were adjusted, and a subvolume
was created to show an edge inside the cell where invadopodia are present. Dorsal-edge view demonstrates invadopodia (red, arrows) inserted
into the underlying gelatin (green). Ventral-edge view shows protrusive invadopodia and areas of gelatin degradation underneath the coverslip as
regions of red present in the green matrix (arrowheads). The total image field presented is cropped to 77 x 65 μm; the cell is~ 60 x 40 μm.

Figure 5 shows some of the important steps for quantification of normalized gelatin matrix degradation as described in step 3 of the protocol.
This procedure is designed to allow for unbiased quantitation of gelatin degradation in an entire field of view, and is suitable for matrix
degradation attributed to many cells within the field.
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Figure 5. Screen capture images demonstrating key steps in computational-assisted quantification of normalized gelatin degradation for cells
within an entire microscopic image as described in protocol step 3. All fluorescent images have been converted to grayscale to better display
the red thresholding and ROI markings. A. Image of Oregon Green 488-conjugated gelatin, showing dark areas ("holes") where degradation has
occurred (step 3.4). B. Thresholded gelatin image highlighting areas of degradation in red (step 3.5). C. Drawing showing ROIs measured for
area of degradation (step 3.7). D. Rhodamine phalloidin staining of F-actin (step 3.8). E. Thresholded actin image highlighting total cell area in
red (step 3.9). F. Drawing showing cell areas to be measured (step 3.10). G. Image of DAPI-stained cell nuclei (step 3.13). H. Red outlines show
results from automatic nuclei counting (step 3.13). The Watershed filter has the potential to separate nuclei that are touching (white arrow). If
nuclei overlap extensively, they may not be separated into individual objects (red arrow). If a nucleus has an irregular shape, it may be separated
into multiple objects (yellow arrow). I. Results from marking nuclei during a manual count using the cell counter tool (step 3.14).

Figure 6. demonstrates select steps involved in quantifying fluorescent gelatin degradation by individual cells within a mixed cellular population
as described in protocol step 4. Here, matrix degradation by transfected cells can be analyzed within a mixed population of transfected and non-
transfected cells.
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Figure 6. Screen capture images of steps involved in quantifying gelatin degradation from individual transfected cells within a cell population.
Quantification of a single transfected OSC19 cell overexpressing recombinant cortactin fused to the FLAG epitope tag is shown as an example.
All fluorescent images have been converted to grayscale to better display the red thresholding and yellow ROI markings. A. Confocal image
of three cells labeled with rhodamine-phalloidin (step 4.2). B. Drawing of total cell area based on F-actin staining following application of the
Threshold and Analyze Particles functions (step 4.2-3). C. Confocal image of anti-FLAG immunolabeling of the cell population demonstrating a
single cell expressing FLAG-tagged cortactin (marked with *) (step 4.4). D. Image of Oregon Green 488-conjugated gelatin, showing dark areas
("holes") where degradation has occurred (step 4.5) E. Thresholded gelatin image highlighting dark areas of degradation in red (step 4.5). F.
Thresholded gelatin image overlaid with cell outlines from panel B (step 4.6). Note that only the thresholded pixels within the cell outlines are
counted in the analysis. Areas of degradation outside the current cell location (white arrow) result from cell migration across the gelatin over time
and are not included in the analysis.

Discussion

The ability to visualize cells degrading the extracellular matrix has aided in discovering the molecular mechanisms employed in the early steps
of cell invasion. Pioneered by Wen-Tien Chen in the early 1980's4,14,15, coating fluorescently labeled extracellular proteins on glass coverslips for
subsequent microscopic analysis has emerged as the primary technique in evaluating invadopodia function across a wide range of cell types.
The prescribed protocol demonstrates the basic method used for preparing gelatin-coated coverslips that form a collagenous layer less than
2 μm thick suitable for detection of extracellular matrix degradation by cells in most conventional fluorescent and confocal microscopes11,16-18,
similar to what has been previously described19-21. These properties allow for rapid production of coated coverslips capable of detecting the
initial onset of matrix degradation. The sensitivity afforded by the resulting thin gelatin matrix on the underlying hard glass surface likely aids in
promoting invadopodia formation as a response to the high inherent stiffness of the overall matrix environment22. However, these matrices are
not well suited for analysis of invadopodia elongation or additional morphological evaluation that has been achieved using thicker (30-100 μm)
gelatin layers with similar methodology, coated transwells or electron microscopy20,23,24.

We have found that pre-conjugated commercially produced Oregon Green 488 gelatin allows for rapid experimental set up and consistent,
reproducible results. However, alkaline borate conjugation of fluorescein isothiocyanate (FITC) to unlabeled gelatin remains a popular and
inexpensive method for producing fluorescent gelatin conjugates20. Fibronectin is also used as an alternative matrix protein for labeling and
coverslip coating4,9, and in some cases investigators have used labeled fibronectin layered onto unlabeled gelatin coated coverslips to create
denser matrices11,25. Other matrices could be used, depending on the specifics of the cell type. In addition to dyes in the green 488 nm spectrum,
a wide range of fluorophores have also been used with manual coupling methods to generate coverslips with different fluorescence spectra,
including rhodamine21,26, Alexa Fluor 35024, 54621, 5685,11, 59427 and 6475 dyes. Such conjugates are easily adaptable for use in the prescribed
protocol, providing the flexibility for utilizing specific ECM protein-dye combinations suitable for most any imaging filter set.

The techniques described herein provide the necessary detailed steps for utilizing ImageJ to quantify gelatin matrix degradation attributed to
individual cells in a heterogeneous population or to entire cell groups as published previously6,28. Proprietary software has also been successfully
employed for the same purpose5,25. In this protocol, the area of matrix degradation is normalized to either the total area of the cells or the
total number of cells (nuclei) in the field. Generally, both options for normalization will give the same result (ELW, data not shown). However, if
different cell lines having different sized cells are being compared or if the experimental treatment causes cells to change size, then it may be
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more accurate to normalize to cell number. On the other hand, many cancer cell lines have a high percentage of multi-nucleated cells, in which
case total cell area may be a more accurate parameter for normalization. Also, if only part of a cell is captured in an image (Figure 6), it may
be better to normalize to cell area rather than underestimate the degradation potential for an individual cell. It is important to optimize the image
analysis to best suit the characteristics and nuances of the specific experimental setup.

For determining cell numbers in a crowded field, counting nuclei is often the method of choice. ImageJ has a nucleus counter plugin for
automatic counting. One option in this tool is the Watershed filter. This filter will help separate nuclei that are touching by segregating them into
individual objects (Figure 5H, white arrow). However, this filter may not be able to separate nuclei that overlap extensively (Figure 5H, red
arrow). In addition, if a nucleus has an irregular shape and large variations in intensity, the filter may separate a single nucleus into multiple
objects (Figure 5H, yellow arrow). Therefore, it is important to try different thresholding and smoothing methods in this plugin to determine the
best parameters for analysis. If the automatic counting does not produce accurate numbers, the cell counter plugin can facilitate manual counting
of cells or nuclei.

In cases utilizing transient transfection, images will often contain a mixture of cells expressing or not expressing a protein of interest (Figure
6). In this scenario, it is not always apparent which cells were responsible for creating areas of matrix degradation. This is especially true if the
cells are migrating across the gelatin. To be consistent in the analysis, it is important to only measure the degraded areas directly underneath
each cell. By thresholding to select the dark areas in the matrix and using the actin to generate cell outlines, only the degraded areas under the
cells will be quantitated. This procedure will exclude degraded areas outside of cell boundaries from analysis (Figure 6F, arrow). The assay may
require optimization to select a time point that allows sufficient time for degradation before the cells have had a chance to move.

Numerous methods have been developed to quantitate invadopodia formation and function. In addition to matrix degradation, other frequently
reported parameters include determining the number of invadopodia per cell, the percentage of cells displaying invadopodia within a given
population, and the number of "immature" or "pre" non-degrading invadopodia compared to "mature" invadopodia capable of degrading the
ECM11,13,25,26. The method(s) of choice for invadopodia evaluation depend on inherent characteristics of each cell type. For instance, counting
the number of invadopodia per cell or determining the percentage of cells containing invadopodia is a straightforward approach that works well
if the analyzed cells contain just a few prominent invadopodia, but becomes more difficult in cells that have dozens of invadopodia or where
invadopodia may be small and difficult to detect. Using the degradation assay makes it possible to calculate the percentage of pre-invadopodia
vs. mature invadopodia in single cells or in a population by comparing the total number of cells with invadopodia to the percentage that are
degrading matrix. If there is a discrepancy where fewer cells are degrading matrix compared to cells displaying invadopodia, it may indicate that
these cells are forming pre-invadopodia that were incapable of matrix degradation at the time the cells were fixed.

Whatever method combination is chosen for analysis, it is important to quantify the desired invadopodia characteristics as objectively as
possible. When collecting images on the microscope, choose fields by looking at cells (actin), rather than the fluorescent matrix, to avoid bias
from preferentially selecting areas with high levels of degradation. Multiple images should be acquired to ensure a fair representation of the
cell population. Images should also be acquired at an appropriate magnification. For uniform populations of cells, lower magnification can be
used to collect more cells as long as the areas of degradation can still be resolved. Higher magnification images are preferred to measure
areas under individual cells and to resolve individual invadopodia. When areas are being quantitated, thresholding images based on intensity
is more objective than manually choosing the area of the matrix to measure. In all cases, a sufficient number of cells from multiple independent
experiments should be analyzed to give statistically meaningful, reproducible results.
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Abstract: Head and neck squamous cell carcinoma (HNSCC) is typically diagnosed at 

advanced stages with evident loco-regional and/or distal metastases. The prevalence of 

metastatic lesions directly correlates with poor patient outcome, resulting in high patient 

mortality rates following metastatic development. The progression to metastatic disease 

requires changes not only in the carcinoma cells, but also in the surrounding stromal cells 

and tumor microenvironment. Within the microenvironment, acellular contributions from 

the surrounding extracellular matrix, along with contributions from various infiltrating 

immune cells, tumor associated fibroblasts, and endothelial cells facilitate the spread of 

tumor cells from the primary site to the rest of the body. Thus far, most attempts to limit 

metastatic spread through therapeutic intervention have failed to show patient benefit in 

clinic trails. The goal of this review is highlight the complexity of invasion-promoting 

interactions in the HNSCC tumor microenvironment, focusing on contributions from tumor 

and stromal cells in order to assist future therapeutic development and patient treatment. 
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1. Introduction 

Head and neck squamous cell carcinoma (HNSCC) is one of the most aggressive and invasive cancer 

types [1]. A common HNSCC hallmark is loco-regional invasion and metastasis to cervical lymph nodes, 

accounting for an 88% patient mortality rate in the two years following metastatic disease development [1]. 

Despite the long-held notion of genomic instability in advanced disease stages, recent studies have found 

no difference in the accumulation of mutations in tumors from patients with and without lymph node 

involvement [2]. This indicates that alterations other than mutations in signaling pathways likely account 

for progression from primary tumor to invasive and metastatic disease. The contributions towards 

metastatic disease arise both from changes in the behavior of tumor cells and interactions with various 

stromal components in the tumor microenvironment. The purpose of this review is to highlight the molecular 

and cellular mechanisms utilized by tumor cells and the associated microenvironment in promoting 

HNSCC invasiveness. 

2. Tumor Cell Contributions 

In HNSCC patients, two out of three individuals exhibit locoregional or distal metastasis at diagnosis, 

correlating with poor patient survival [3,4]. As in other carcinomas, HNSCC invasion involves a multi-step 

process that entails initial breaching of the basement membrane, tumor cell migration through the stromal 

extracellular matrix (ECM), intravasation into regional vasculature, and extravasation at the metastatic 

site. These stages frequently utilize proteolytic-mediated degradation of ECM proteins to facilitate tumor 

cell spreading [5–9]. 

2.1. Cell-ECM Interactions 

The activity of several actin cytoskeletal-modulating proteins has been demonstrated to alter  

the invasive nature of HNSCC. The basement membrane and ECM are barriers that tumor cells must 

bypass in order to move into the surrounding stroma [6,10,11]. Tumor cell mediated proteolytic 

degradation of ECM components, globally or at focalized points termed invadopodia, is essential to  

the invasive process [6,10–12]. Invadopodia are actin-based membrane protrusions that mediate tumor 

cell dissemination by degrading restrictive ECM proteins through the action of matrix metalloproteinases 

(MMPs) [5,10–12]. Many MMPs are overexpressed in HNSCC, including the invadopodia-associated 

MMPs MMP-2, MMP-9, and MMP-14 [9,12,13]. Invadopodia comprise a central filamentous (F)-actin 

core surrounded by an integrin-based adhesion complex ring [6,10,11]. Cortactin and Arp2/3 complex 

are essential protein components involved in formation of the F-actin invadopodia core [14–17]. 

Cortactin is overexpressed in several cancer types including HNSCC, resulting in enhanced tumor cell 

motility and invasion [18–25]. Cortactin stabilizes actin branch points, binding to both the F-actin “mother” 

filament and Arp2/3 complex on the “daughter” filament [22,25–27]. The end result of this activity is 

enhanced invadopodia formation and maturation, leading to robust localized ECM degradation [22,25–27]. 

Further evidence indicates that cortactin overexpression correlates with lymph node involvement and 

metastases [28–30]. In addition to modulating cytoskeletal dynamics, cortactin facilitates localization 

and activation of MMP-14 (also termed membrane type 1—matrix metalloproteinase (MT1-MMP)) to 

invadopodia along with the secretion of MMP-2 and MMP-9 at sites of focalized degradation of ECM 
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proteins [13,31,32]. The activity of MMP-14, MMP-2, and MMP-9 is significantly elevated in HNSCC 

cell lines with high metastatic potential and well as oral cancer patient samples with lymph node 

involvement [12,33,34]. 

Several studies have demonstrated increased localization of the actin bundling protein fascin at  

the tumor invasive front [35,36]. Facin functions by bundling F-actin, which facilitates the formation of 

cellular protrusions necessary for cell-ECM interactions and cell motility [35–37]. Bundling of F-actin 

into parallel strands stabilizes filopodia and invadopodia, resulting in enhanced cell motility and localized 

ECM degradation [35–37]. Re-expression of fascin in facin-null SW1222 human colonic epithelial cells 

results in relocalization of integrin β1 and vinculin to the leading edge of motile cells [38]. Overexpression 

of fascin in various tumors, including HNSCC, correlates with aggressive disease, high metastatic potential, 

and poor prognosis [35,36]. 

Similarly, the serine/threonine kinase p21 protein (Cdc42/Rac)-activated kinase (PAK1) is enriched 

at the invasive boarder of HNSCC tumors, and is essential for HNSCC invasion in vitro [39,40]. PAK1 

resides in the cytoplasm, but can be detected at the leading edge of motile cells, focal adhesions, cell-cell 

junctions, and cortical actin structures [41–44]. PAKs phosphorylate several cytoskeletal protein targets, 

including vimentin, desmin, LIM kinase (LIMK), myosin light chain (MLC), and myosin light chain 

kinase (MLCK), where phosphorylation directly correlates with enhanced cellular motility [39,40]. 

PAK1-mediated MLCK phosphorylation reduces stress fiber formation, while PAK-1-mediated MLC 

phosphorylation induces contractility [41,45,46]. LIMK activation facilitates LIMK binding to the F-actin 

severing protein ADF/cofilin, inhibiting ADF/cofilin activity via phosphorylation to stabilize the F-actin 

network [41,47,48]. The p41-ARC subunit of Arp2/3 complex can be directly phosphorylated by PAK1, 

activating Arp2/3 actin nucleation activity to enhance F-actin formation and increase cell motility [49,50]. 

This effect on actin network formation can also be accomplished through PAK1 phosphorylation of 

cortactin [49,51]. In addition to altering cytoskeletal dynamics, PAK1 has been implicated in the 

downregulation of cell-cell contacts. PAK1-mediated phosphorylation of the transcription factor Snail 

results in reduced expression of the epithelial cell-cell adhesion molecule epithelial (E)-cadherin [41,52]. 

Secretion of MMP-1, MMP-3, and MMP-9 correlates directly with PAK1 expression, suggesting that 

the activity of PAK1 may enhance proteolytic degradation of ECM [53,54]. Overexpression of PAK1 in 

various tumors, including HNSCC, correlates with aggressive disease and poor prognosis [39,40]. 

The calcium binding proteins S100A8 and S100A9 belong to a family of low-molecular-weight 

cytoplasmic proteins primarily detected as a S100A8/A9 heterodimer termed calprotectin [55–58]. 

Expression and secretion of S100A8/A9 is associated with chronic inflammation and is released from 

tumor cells in response to hypoxic stress [55]. While S100A8 and S100A9 are overexpressed in a 

multitude of cancers, their expression is suppressed in HNSCC [55,59,60]. Certain studies have 

demonstrated a pro-apoptotic role of S100A8/A9, inducing pro-caspase-3 cleavage and downregulating 

expression of anti-apoptotic members of the Bcl family, Bcl2 and Bcl-XL [55,61]. The ability of 

S100A8/A9 to induce an apoptotic response, rather than the role in inflammatory signaling, is the most 

likely reason that expression of these proteins is lost in HNSCC. In addition to inflammatory signaling 

and apoptotic response, S100A8/A9 regulates the expression and secretion of MMP-2, representing a 

potential upstream therapeutic target [59,60]. Thus, calprotectin may serve a dual role in HNSCC by 

preventing apoptosis while facilitating MMP-2-driven metastatic dissemination. 
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In order to monitor the surrounding ECM, cells form actin-rich protrusions that in a migratory cell 

contact the ECM to form structures known as focal adhesions. Focal adhesions contain the  

well-characterized cytoskeletal proteins talin, paxillin, α-actinin, vinculin and focal adhesion kinase 

(FAK) [62–64]. Focal adhesions serve as intermediary structures by linking the actin cytoskeleton within 

the cell to the ECM surrounding the cell by interacting with the cytoplasmic domains of the integrin 

class of transmembrane ECM receptors [62,65–68]. Integrin extracellular domains directly bind ECM 

proteins, including fibronectin, laminin, collagen I and collagen IV. [62,65–68]. FAK activation precedes 

focal contact formation and facilitates focal adhesion maturation through phosphorylation of Rho 

guanine nucleotide exchange factors and phosphatidylinositol phosphate kinase isoform γ, which 

enhances talin binding to integrin cytoplasmic domains [66,69]. Regulation of focal adhesion 

disassembly at the trailing edge by FAK dramatically alters cellular motility [66,70,71]. FAK overexpression 

occurs early in HNSCC development, correlating with increased tumor cell invasion and lymph node 

metastasis, partially through an increase in MMP-2 and MMP-9 secretion [67–69]. As such, FAK has 

become a therapeutic target in many tumor types, where pharmacological inhibition of FAK tyrosine 

kinase activity results in decreased tumor cell invasion [72–75]. 

Phospholipase D (PLD1), mediates the hydrolysis of phosphatidyl choline into choline and the second 

messenger phosphatidic acid [49,76,77]. Phosphatidic acid is further hydrolyzed by phosphatidic acid 

phosphohydrolases to generate diacylglycerol and lysophosphatidic acid (LPA), the latter being a key 

mediator of inflammatory response and has been implicated in oncogenesis and metastatic progression [10,76]. 

In addition, LPA activates the Rho family of cytoskeletal regulatory GTPases, facilitating the formation 

of filopodia, lamellipodia, and stress fibers essential for cell movement [49,76]. PLD1 has been shown 

to drive stress fiber and focal adhesion formation in HeLa cells [78]. PLD1 is overexpressed in several 

cancers including HNSCC, where it activates Src kinase and mitogen activated protein kinase (MAPK), 

driving invadopodia formation, maturation, and tumor cell invasion [79–82]. Due to the numerous 

migratory and invasive signaling networks stimulated by PLD1 and PLD1 substrates, PLD1 represents a 

viable upstream target for limiting tumor spread and metastatic progression. To this end, the PLD1 inhibitors 

quercetin, ML298, and ML299 decrease U87 glioblastoma cell invasion in in vitro assays [83,84]. These 

data support further investigation into PLD1 inhibitor efficacy in suppressing HNSCC invasion. 

The phosphoinsositide-3-kinase (PI3K) family of kinases are among the most frequently altered 

oncongenic drivers in cancer [85,86]. Genomic alteration of PI3K occurs in approximately 31% of 

HNSCC tumors [85,86]. The PI3K class IA isoforms, p110α, p110β, and p110δ lie directly downstream 

of many oncogenic receptor tyrosine kinases, including epidermal growth factor receptor (EGFR), 

human epidermal growth factor receptor 3 (HER3), Met, platelet-derived growth factor receptor 

(PDGFR), vascular endothelial growth factor receptor (VEGFR), and insulin-like growth factor receptor 1 

(IGF-1R) [85,87]. The PI3K isoform p110α is the most commonly overexpressed family member in 

HNSCC, acting upstream of Cdc42, Rac, and Rho kinases, to enhance filopodia and lamellipodia 

formation resulting in increased cellular motility [85,86,88–90]. 

Despite the expression of several fibroblast growth factor (FGF) receptors in HNSCC, surprisingly 

little investigation has focused on secretion of the FGF gene products FGF-3, FGF-4, and FGF-19 

located within the 11q13 amplified region found in nearly a third of HNSCC patient samples [91,92]. 

Studies have focused on FGF-2 and FGF-binding protein, identifying autocrine loops with these FGF 

receptors that correlate with enhanced HNSCC invasion [92,93]. Given the establishment of these 
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autocrine loops and the potential for these secreted FGFs to attract fibroblasts into proximity with 

HNSCC cells (see below), further investigation into the 11q13 amplified FGFs is warranted to determine 

if these proteins contribute to HNSCC metastatic progression. 

2.2. Cell-Cell Interactions 

In addition to enhanced motility at the individual cellular level, the mode of tumor cell migration also 

impacts local invasion and metastasis. Tumor cells can invade as individual cells, displaying either 

mesenchymal or amoeboid migration depending on intercellular signaling events, which result in poorly 

differentiated tumors due to the intermingling of individual invasive tumor cells with the stromal  

tissue [94,95]. Other tumor cells utilize multicellular or collective invasion, maintaining tumor cell-cell 

junctions, resulting in moderately to well differentiated tumors as the invasive tumor cells can be 

distinguished from the surrounding tissue [94,95]. In histological HNSCC samples displaying a broad 

invasive front, tumors remain well-to moderately-differentiated due the tumor cells being easily 

distinguished from the surrounding tissue by retaining membranous E-cadherin staining. These 

characteristics indicate that such tumors undergo collective invasion. In addition, cases where tumors 

display individual finger-like invasive fronts, tumors are poorly differentiated as individual tumor cells 

are intermingled with stromal cells. These invasive tumor cells show reduced E-cadherin staining,  

with notable increases in both phospho-Src and vimentin that represent a more mesenchymal invasion 

modality [96]. Patients with elevated phospho-Src and vimentin have direct correlation with greater 

lymph node involvement and advanced tumor stage [96]. Although E-cadherin is not essential to 

collective invasion, maintenance of cell-cell adhesions and an epithelial phenotype allow for multicellular 

invasive clusters to migrate simultaneously [94,95]. 

In addition to direct cell-cell contact, tumor cells interact through autocrine and paracrine signaling 

networks. EGFR is overexpressed in greater than 95% of HNSCC patient samples, and phosphorylation 

of the downstream effector Src kinase correlates with poorly differentiated HNSCC, lymph node 

involvement, and poor patient outcome [97–99]. Recent studies indicate that there are two distinct 

subpopulations within most HNSCC tumors, in which E-cadherin and vimentin are inversely  

expressed [100–102]. These two subpopulations demonstrate plasticity in regenerating heterogeneity in 

culture and xenograft tumors derived from single subpopulations, but respond differentially to various 

chemotherapeutic agents [100–102]. Expression of EGFR is variable in these subpopulations, correlating 

inversely with vimentin expression, suggesting a potential mechanism for acquired EGFR inhibitor 

resistance that is observed in the clinic [100–102]. Another receptor tyrosine kinase, tyrosine receptor 

kinase B (TrkB), is expressed in more than half of HNSCC patient tumors. TrkB activates the transcription 

factors Snail and Twist, driving the epithelial to mesenchymal transition (EMT) and enhancing tumor 

cell invasion [103]. These data collectively support the idea that deterioration of cell-cell contacts drives 

a drug resistant and more invasive phenotype in HNSCC. 

2.3. Angiogenesis and Neo-Vascularization 

Angiogenesis not only supplies growing tumors with requisite nutrition, but also provides cells at  

the tumor periphery a route to disseminate into surrounding tissues and the rest of the body. In addition 

to MMPs, HNSCC cells secrete a variety of pro-angiogenic factors that recruit endothelial cells into  
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the local tumor microenvironment, resulting in formation of a leaky capillary bed that facilitates tumor 

cell intra- and extravasation. Two key angiogenic paracrine signaling profiles have been proposed for 

HNSCC cells. The first utilizes excess secreted VEGF, FGF-2, with small amounts of interleukin (IL)-8. 

The second mainly consists of IL-8, with lesser amounts of VEGF and FGF-2 [104–106]. In addition, 

primary HNSCC tumor cell cultures, tissue specimens, and established cells lines have enhanced 

secretion of VEGF and/or PDGF-AB, with lesser, yet still elevated, secretion of granulocyte colony 

stimulating factor (G-CSF) and granulocyte macrophage (GM)-CSF [105,107]. Increased secretion of 

these cytokines drives HNSCC tumor angiogenesis and corresponds with decreased patient survival [105]. 

Furthermore, oral SCC tissue samples display enhanced lymphatic microvessel density in the presence 

of VEGF, PDGF, basic FGF, hepatocyte growth factor (HGF) and IGF-1 [108,109]. Enhanced primary 

tumor lymphatic and blood microvessel density in response to these secreted factors correlates with 

lymph node metastasis and invasive tumor margins [110,111]. Endothelial cell recruitment and 

formation of an immature vascular network around the tumor in response to HNSCC cell angiogenic 

secretions are therefore prime contributors for providing essential routes for primary tumor cell invasion 

and metastatic dissemination. 

2.4. Metastasis to Distant Sites 

Once tumor cells reach the blood or lymphatic vasculature, they must survive in circulation until they 

reach lymph nodes or other metastatic sites. While little has been elucidated about such circulating tumor 

cells (CTCs) in HNSCC, the amount of HNSCC CTCs rises significantly in stage IV tumors, correlating 

directly with increased metastasis and inversely with therapeutic response [112,113]. HNSCC CTCs are 

not well defined, and are typically characterized as cells expressing epidermal cell adhesion molecule 

(EpCAM) or cytokeratin (CK) 8, CK18, or CK19 in blood samples [112,113]. One study found that IL-6 

enhanced survival and self-renewal of the aldehyde dehydrogenase (ALDH)highCD44high cell population, 

representing a potential cancer stem cell (CSC) subpopulation sufficient to reconstitute a tumor when 

transplanted into a mouse xenograft model [114]. This same CSC subpopulation is resistant to cisplatin-

induced cell death [115]. There is evidence that indicates EGFR, TrkB, and IL-1β are essential to maintaining 

a mesenchymal subpopulation associated with chemotherapeutic resistance in HNSCC [103,116,117]. 

Other studies suggest that these mesenchymal-like cells can recapitulate the epithelial population of a 

tumor following chemotherapeutic therapy, potentially representing the HNSCC tumor equivalent to the 

CD44+/CD24− stem-like subpopulation in breast carcinomas [100–102]. It remains unclear if these 

mesenchymal-like cells, CSCs and CTCs are the same or unique HNSCC subpopulations, but all show 

tumor initiating capacity that can be utilized to form metastases [101–103,114,115,117]. Once these 

tumor initiating cells (TICs) reach the metastatic site, they must first extravasate, a process aided by the 

local endothelial cells [114]. Following extravasation, some TICs differentiate back into the more epithelial 

phenotype that makes up the majority of the tumor mass, while other TICs undergo self-renewal to 

maintain the subpopulation [100–102,114]. Reconstituting the entire tumor mass allows the tumor to 

grow rapidly, taking advantage of the hospitable metastatic niche since the epithelial cell phenotype 

shows enhanced proliferation rates as compared to TICs [101,117]. While CTCs, CSCs, and 

mesenchymal-like cells represent resistant subpopulations potentially capable of initiating recurrence 
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and correlates with invasive and metastatic disease, investigation into this aspect of HNSCC progression 

for therapeutic targeting has become an important newly emerging field [100,103,112,113,116]. 

3. Stromal Cell Contributions 

In addition to carcinoma cells, various cellular and acellular stromal components contribute to promoting 

and maintaining HNSCC invasion. Deposition of specific ECM proteins (collagen IV, collagen XVII, 

fibronectin, and laminin) is enhanced in HNSCC tumors and serve as a chemo-attractant for HNSCC 

cells in various in vitro invasion assays [118–120]. As HNSCC tumors progress towards metastatic 

disease, non-tumor cell types from the associated stroma have been shown to have direct and indirect 

roles in facilitating HNSCC invasion. 

3.1. Mast Cells 

Mast cells are part of the immune myeloid lineage that mediate innate and acquired immune responses 

through granule exocyctosis, releasing histamine, serine proteases, carboxypeptidase A (CPA1), 

proteoglycans, prostaglandin D2 (PGD2), leukotriene C4 (LTC4), tumor necrosis factor (TNF)-α, GM-CSF, 

IL-3, IL-4, IL-5, IL-6, IL-8, and IL-16 [121]. During advanced HNSCC stages, where the tumor has 

spread to loco-regional or distal lymph nodes, mast cells accumulate in the tumor stroma, with their 

presence directly correlating with increased angiogenesis [104,122,123]. How HNSCC tumors suppress 

rapid mast cell activation in response to immunoglobulin E or CD32 binding to FcεRI or FCγRIIb 

respectively remains to be elucidated, but may occur by blocking FcεRI activation on mast cells [121]. 

Additionally, heparanase, an enzyme involved in cleavage and remodeling heparin sulfate proteoglycans 

in the ECM, accumulates at the HNSCC invasive front, and is a marker of poor prognosis for lymph 

node metastasis and tumor recurrence [124]. Mast cells, along with tumor infiltrating neutrophils, 

endothelial cells, and macrophages exhibit heparanase activity [124,125]. However, since mast cells also 

secrete large amounts of heparin, they are the cell type that is likely responsible for invasion-associated 

heparanase activity in the tumor microenvironment. While the main contribution of mast cells to tumor 

progression may be inflammation-mediated recruitment of other cell types into the microenvironment, 

their presence also facilitates HNSCC tumor neo-vascularization and dissemination to loco-regional 

lymph nodes. 

3.2. Neutrophils 

Neutrophils are another component of the immune system that contributes to the innate immune 

response [126]. Neutrophils are recruited to the tumor microenvironment by pro-inflammatory signals, 

including IL-8, transforming growth factor (TGF)-β, IL-4, IL-10, IL-13, GM-CSF, and TNF-α [127,128]. 

Following recruitment to the tumor microenvironment, neutrophils secrete VEGF-A, stimulating 

neovascularization through endothelial cell recruitment and proliferation, which can be abrogated via 

anti-VEGF-A antibodies or angiostatin treatment [128–130]. Additionally, neutrophil-derived HGF and 

MMP-9 facilitate tumor cell migration and invasion towards the newly formed vascular bed [128]. In 

this context, neutrophils bridge the gap between the growing tumor mass and the local vasculature, 
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bringing in endothelial cells to an area of growing hypoxia while promoting a chemotactic invasive 

phenotype in the tumor cells. 

3.3. Macrophages 

Macrophages belong to the myeloid lineage of the immune system [131]. Macrophages play a direct 

role in immune surveillance through endocytosis of pathogens and cellular debris [131]. Tumor associated 

macrophage (TAM) infiltration into the tumor microenvironment correlates with lymph node involvement, 

tumor stage, and extracapsular spread [132–134]. Once TAMs arrive in the tumor microenvironment, 

TAM secretions set up several paracrine signaling loops that drive tumor cell invasion and metastasis. 

In one loop, TAMs secrete EGF stimulating tumor cell growth, migration, and invasion. Correspondingly, 

HNSCC cells secrete CSF-1 that drives further TAM proliferation and tumor infiltration [135–137]. In 

another loop, TAMs secrete macrophage migration inhibitory factor (MMIF), attracting and activating 

neutrophils, which subsequently interact with HNSCC cells as described above [128–130,138]. In 

response to HNSCC secreted paracrine factors, TAMs develop podosomes, capable of assisting tumor 

cells breach the basement membrane and enter the vascular or lymphatic network [133,139]. Similar to 

invadopodia, podosomes are membrane protrusions containing an actin-rich core surrounded by an 

integrin ring that mediates interaction with the ECM [140]. Podosomes are formed at the leading edge 

of motile cells and contribute to cellular motility, simultaneously allowing cells to adhere to the ECM 

and initiating acto-mysoin contractility to pull the cell body forward [139,140]. Podosomes can also 

localize MMPs, including MMP-2, MMP-9, and MT1-MMP to proteolytically degrade and rearrange 

the ECM [140,141]. TAMs also secrete the chemotactic factor macrophage inflammatory protein (MIP)-3α, 

which drives HNSCC cell migration and invasion [142]. Through these signaling pathways, macrophages 

are able to promote and maintain the HNSCC invasive phenotype, assist in basement membrane 

breakdown and recruitment of other cell types into the tumor microenvironment. 

3.4. Endothelial Cells 

While endothelial cells play a major role in vascularization of the growing tumor mass, emerging 

evidence demonstrates a novel role for endothelial cells in facilitating tumor cell invasion. The chemotactic 

factors VEGF, TNF-α, and TGF-β induce podosome formation in endothelial cells along the invasive 

tumor front [141,143–146]. This allows endothelial cells to reach hypoxic tumor regions, facilitating 

breakdown of basement membrane encapsulating the primary tumor. Once endothelial cells come into 

direct contact with tumor cells, endothelial cell Notch activation in response to HNSCC-derived Notch 

ligand Jagged1 drives capillary-like sprout formation and neovascularization of the expanding tumor 

mass [147]. The combined effort of endothelial cell-mediated rearrangement of the microenvironment 

to promote tumor cell access to the vascular network makes endothelial cells important contributors to 

HNSCC tumor progression. 

3.5. Fibroblasts 

The desmoplastic response is a hallmark of cancer progression, where secretion and restructuring of 

ECM proteins drives tumor cell proteolytic invasion and production of “tracks” for proteolytic-independent 
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invasion modes [148,149]. Fibroblasts are specialized for this task, as they can degrade and rearrange  

a variety of ECM proteins including type I and IV collagens, laminin, and fibronectin [145,149,150]. 

Integrin α6 expression allows such cancer associated fibroblasts (CAFs) to bind the basement membrane 

protein laminin, enabling CAF-mediated proteolytic laminin degradation [140,151]. Expression of 

integrin α6 in CAFs has been linked to poor prognosis in oral cancer patients [151]. Fibroblast-mediated 

proteolytic cleavage of ECM proteins requires direct contact with tumor cells or binding of HNSCC 

secreted endothelin-1 (ET-1), leading to localization of a disintegrin and metalloprotease (ADAM)-12 

and ADAM-17 at fibroblast podosomes, followed by secretion and activation of MMP-2 and MMP-9 

from carcinoma cells and CAFs [34,152–154]. Other studies suggest that chemokine C-X-C motif 

receptor type 4 (CXCR4) binding to CAF-secreted chemokine C-X-C motif ligand 12 (CXCL12) initiates 

carcinoma derived MMP-9 secretion in the tumor microenvironment [34,155]. Regardless of the source 

of MMP secretion, total MMP levels and the ratio of activated MMPs to total MMP concentration 

compared with adjacent normal tissue positively correlates with lymph node involvement [155,156]. As 

a result, the HNSCC stroma is enriched in infiltrating CAFs, with the highest concentrations 

accumulating near the invasive front of the tumor [24,29,157]. Infiltrating CAFs have several 

characteristics of myofibroblasts, including enhanced proliferation and motility, expression of cytokeratins, 

vimentin, and α-smooth muscle actin (SMA), and secretion of MMP-2 and HGF [122,158,159]. CAF 

MMP secretion facilitates ECM degradation and remodeling, whereas HGF enhances HNSCC cell 

motility [122,158,159]. In turn, enhanced CAF proliferation and motility allows the CAF population to 

expand and spread in accordance with the growing invasive tumor front [122,158,159]. The adaptation 

of HNSCC CAFs with myofibroblast characteristics results in extracapsular tumor cell spread, increased 

invasion, and lymph node metastasis [160]. Orthotopic floor of mouth co-injection of HNSCC cells with 

CAFs or normal fibroblasts in mice indicates that CAFs contribute significantly to lymph node and distal 

metastatic disease [161]. The net results of fibroblasts in the tumor microenvironment is rearrangement 

of ECM proteins, allowing fibroblasts to lead tumor cells into surrounding tissues or paving pathways 

in the stroma for invasive tumor cells to follow. Additionally, TGF-β and miR-210 induced CAF 

senescence promotes fibroblast MMP-2 secretion and tumor cell EMT, enhancing in vitro tumor cell 

invasion [151,162–164]. Further evidence indicates that coinjection of tumor cells with senescent CAFs 

promotes xenograft engraftment and tumor growth [165–167]. These activities ultimately result in 

facilitating HNSCC metastatic progression. 

4. Anti-Metastatic Therapeutic Approaches 

While indolent primary HNSCC tumors are typically treated by surgical resection and/or radiation 

therapy, the treatment of invasive and metastatic disease is more complex. The development of 

preventative anti-metastatic therapies holds promise to broaden patient treatment options and improve 

survival rates. Many recent anti-metastatic treatments have been aimed at Src kinase due to the essential 

role Src plays in cancer cell motility and invadopodia formation, as well as the multitude of overexpressed 

upstream transmembrane receptors that activate Src in tumors [25–27]. Initial in vitro studies using 

saracatinib (AZD0530) resulted in decreased MMP-9 activation and ECM degradation in established 

HNSCC cell lines, and also reduced invasion in HNSCC cells lines from primary tumors and matched 

lymph node metastases in combination with the phospholipase C inhibitor U73122 [168,169]. Another 
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combination study showed that saracatinib with the EGFR small molecule inhibitor gefitinib suppressed 

HNSCC cell invasion in vitro to a greater extent than either drug alone [170]. However, a subsequent 

Phase II trial of saracatinib resulted in no therapeutic benefit in either recurrent or metastatic HNSCC [171]. 

Treatment of HNSCC cell lines with the Src/Abl small molecule inhibitor dasatinib (BMS-354825) 

decreased migration and invasion while blocking the G1-S transition [172]. A Phase II clinical trial of 

dasatinib alone also failed to show clinical benefit to patients with late stage HNSCC [173]. These trial 

results clearly demonstrate that targeting Src is insufficient to prevent HNSCC progression, prompting 

the need to evaluate additional pro-invasive oncogenic targets. The activity of another oncogenic 

tyrosine kinase, Abl, downstream of EGFR and Src kinase facilitates invadopodia formation and 

promotes tumor cell invasion and metastasis [30,174–178]. In vitro treatment with the Abl family 

inhibitor imatinib mesylate (STI571; Gleevac) resulted in enhanced HNSCC cell invasion, opposite of 

what has been observed in invasive breast cancer [179]. Imatinib mesylate stimulates HNSCC shedding 

of heparin-binding EGF, which activates EGFR on the HNSCC cell surface, driving invadopodia 

formation and ECM degradation [179]. A phase II trial of imatinib mesylate and docetaxel for patients 

with metastatic non-small-cell lung carcinoma and HNSCC found no clinical benefit and closed early 

due to significant toxicity from this drug regimen [180]. Cetuximab (IMC-C225), an anti-EGFR humanized 

monoclonal antibody, shows multifaceted benefit in HNSCC by blocking proliferation, angiogenesis and 

metastasis while increasing tumor cell apoptosis [181–183]. Phase II clinical trials for patients with late 

stage HNSCC showed partial response to cetuximab alone in a small patient subset, while complete 

response was observed in the majority of patients when cetuximab was used in combination with cisplatin, 

fluorouracil, and radiotherapy [184,185]. The Erbitux in First-Line Treatment of Recurrent or Metastatic 

Head and Neck Cancer (EXTREME) Phase III trial showed significant increases in overall survival, 

progression-free survival, and response rate for the combination of cetuximab and platinum/5-fluorouralcil 

compared with platinum/5-fluorouracil alone [186–189]. While these trials did not directly investigate an 

anti-metastatic role for cetuximab, it is a promising advance in HNSCC treatment. Another study found that 

the potassium ionophore antibiotic salinomycin significantly inhibited growth of the cisplatin-resistant 

mesenchymal-like HNSCC subpopulation, likely through induction of apoptosis [101,190]. These data 

demonstrate a potential mechanism for targeting a drug resistant, highly mobile subpopulation that has 

been implicated in metastatic dissemination as well as disease recurrence [100–102]. While these initial 

studies have demonstrated some efficacy in patients with advanced disease, direct anti-invasive and anti-

metastatic therapeutic targeting continues to remain elusive in HNSCC. 

5. Conclusions 

HNSCC tumors contain a host of aberrant signaling pathways, from cytoskeletal modulation 

responsible for driving increased invasion to promoting tumor cell survival in the circulation. 

Interactions with the surrounding ECM as well as between individual tumor cells influences the ability 

of HNSCC cells to invade into the surrounding tissue and eventually to other parts of the body, 

predominantly the cervical lymph nodes. Changes in cell-cell adhesions along with alterations in cellular 

morphology allow HNSCC cells to undergo a variety of invasive patterns. Additionally, HNSCC cells 

utilize various autocrine and paracrine secreted factors in order to optimize tumor dissemination, whether 

through neovascularization by endothelial cells or rearrangement of ECM protein by local fibroblasts. 
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The tumor microenvironment, depicted in Figure 1, is therefore a complex, dynamic system, complicating 

our understanding of tumor behavior and potential therapeutic interventions.  

 

Figure 1. Diagram of tumor and stromal-based contributions that promote head and neck 

squamous cell carcinoma (HNSCC) invasion. Depicted is an invasive HNSCC tumor cell mass 

invading into the surrounding stroma and muscle tissue of the oral tongue. Specific cell types 

and their respective secreted protein contributions are detailed, demonstrating subsequent 

cellular responses and paracrine signaling networks. See text for additional detail. 

Use of conventional wet-bench‒based cell and xenograft assays cannot incorporate the breath of 

tumor-stromal interactions that occur in patient tumors. The inability of these models to accurately guide 

pharmaceutical intervention development, as witnessed by the lack of successful clinical trials to date, is 

a testament to the complexity and difficulty of targeting HNSCC invasion and metastasis. This is likely due 

to the multitude of pro-invasive signaling networks in HNSCC cells and various tumor-stromal 

interactions. Therefore, in order to make meaningful advances in the treatment of HNSCC invasion, new 

model systems need to be developed that include, or at least consider, all of the intracellular, cell-cell, 

and cell-matrix contributions from carcinoma cells and corresponding tumor-associated stromal cells 

found in patient tumors. 
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