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ABSTRACT 

 
EXPRESSION AND REGULATION OF C-MYB IN B-LYMPHOCYTE DEVELOPMENT 

 
Candice L. Damiani 

 
B lymphocytes are continually produced in bone marrow from pluripotential 

hematopoietic stem cells.  Lymphopoiesis is characterized by a series of highly 
regulated genotypic and phenotypic changes resulting in immunocompetent effector 
cells which express cell surface immunoglobulin.  Our laboratory has focused on 
defining extracellular signals regulating lymphoid progenitor cell survival, proliferation, 
and differentiation. These studies have demonstrated that pro-B cell survival, 
proliferation, and differentiation are regulated by interactions with fibroblastic stromal 
cells in the hematopoietic microenvironment.  However, specific molecular mechanisms 
by which stromal cells regulate B lymphoid development are largely unknown. In an 
attempt to better understand molecular mechanisms regulating maturation in this 
lineage, we developed a panel of pro-B cell clones from 14-day murine fetal liver.  
These pro-B cell clones remain dependent on stromal cells for survival, do not form 
tumors, and reconstitute B lymphocytes in severe combined immunodeficient (SCID) 
mice.  In vitro, pro-B cell clones continuously proliferate and do not differentiate.  We 
noted that pro B cell lines were characterized by expression of high levels of the 
oncogene c-myb. Although several laboratories have proposed a role for c-myb in 
regulation of hematopoiesis, virtually nothing is known about the function of c-myb in 
normal B lineage cells. To investigate the role of c-myb in the survival, proliferation, and 
differentiation of B lineage cells, we utilized a stromal cell dependent pro-B cell line that 
expresses mRNA and protein for c-myb. Experiments utilizing RT-PCR and Western 
blot analysis reveal that c-myb is regulated in pro-B cells by stromal cells, specifically by 
stromal cell adhesion contacts.  Both DMSO and antisense oligonucleotides were used 
to downregulate c-myb protein to determine the role this intracellular regulator plays in B 
lymphocyte development.  Our investigations revealed that downregulation of c-myb did 
not affect pro-B cell survival but did interrupt both pro-B cell proliferation and 
differentiation. In vivo investigations in mice carrying homozygous mutations of the c-
myb gene indicate that lymphopoiesis is severely diminished in embryonic knockout 
animals.  These data suggest a central role for c-myb in proliferation and differentiation 
of developing B lymphocytes.  
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I.  INTRODUCTION 
 

Hematopoiesis is the continual development of red and white blood cells from 

pluripotential hematopoietic stem cells.  The hematopoietic system is a dynamic system 

consisting of hematopoietic stem cells (HSC) that are retained in blood forming tissues 

throughout life.  HSCs have the ability to both self-renew as well as constantly give rise 

to the different types of mature blood cells, including cells of the erythroid, myeloid, and 

lymphoid lineages (Kincade, 1989).   During embryonic development, hematopoietic 

stem cells migrate from the aorta/gonad/mesonephros (AGM) region through a series of 

tissue sites.  In the fetal liver, hematopoietic stem cells mature and differentiate to form 

committed lymphoid and myeloid progenitor cells.  Progenitor cells are distinguished 

from HSC’s by progressive loss of self-renewal capacity and restriction of 

developmental options. Lymphoid and myeloid progenitors subsequently differentiate 

through a series of committed developmental stages to form effector cells.  Effector 

cells leave hematopoietic tissues, have a finite lifespan, and are continuously 

repopulated from committed progenitor cell populations in hematopoietic tissues.   

Bone marrow is established as the primary site of hematopoiesis shortly before 

birth and this remains the primary hematopoietic organ throughout postnatal life.  Bone 

marrow is characterized by packed hematopoietic cells interspersed with a meshwork of 

non-hematopoietic cells termed stromal cells.  Fibroblastic stromal cells within the bone 

marrow are required for normal hematopoiesis.  Stromal cells support early cell 

development through cell adhesion interactions that bind receptors on developing 

hematopoietic cells.  In addition, stromal cells secrete hematopoietic cytokines into the 

marrow environment, including interleukin-7 and c-kit ligand (stem cell factor), which 

stimulate lymphocyte development (Billips, 1992). These secreted stromal cell products 

are necessary for continued hematopoiesis (Dorshkind, 1990). 

In addition to cellular events, it has become evident that molecular mechanisms 

are also involved in controlling gene expression, proliferation and differentiation in the 

hematopoietic system. Different developmental fates of individual cells must be strictly 

controlled to keep the immune system balanced. On the molecular level, the 

hematopoietic system is useful for studying how decisions are made to differentiate 
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along one of several alternative pathways and how characteristic patterns of lineage 

specific gene expression are generated. The importance of underlying regulatory 

mechanisms is underscored by the fact disruption of these controls can lead to various 

diseases, such as leukemia.  

The Myb family of proteins is a group of transcription factors that bind DNA and 

were first identified as part of avian myeloblastosis virus.  The oncogene responsible for 

the transformation in avian leukemia is v-myb.   V-myb protein is a constitutively active, 

mutated, and truncated form of C-myb, a product of the c-myb proto-oncogene.   The c-

myb proto-oncogene encodes a 75 kDa nuclear protein that binds to a consensus 

sequence of DNA [(T/C)AAC (T/G)G ] (Bidenknapp, 1988).  C-myb expression is high in 

immature hematopoietic cells, and levels of c-myb decrease as immature cells 

differentiate to function (Lipsick, 1996). C-myb is also over expressed in many forms of 

leukemia.  In 1982, Westin et al investigated c-myb expression in a human 

promyelocytic leukemic cell line and determined that overexpression of c-myb inhibited 

differentiation of the cell line (Westin 1982).   These data were the first to suggest that c-

myb dysregulation inhibited normal progression through lineage development and that 

appropriate expression of c-myb was required for normal myelopoiesis.  Based on this, 

a critical role for c-myb in myelopoiesis was proposed.  C-myb must be expressed in 

immature myeloid cells in order for proliferation to occur, but must then be down-

regulated for terminal differentiation of myeloid cells.  Since c-myb is expressed in all 

immature hematopoietic cells, it was hypothesized that c-myb may play a pivotal role in 

the development of other blood cell types as well.  Gewirtz demonstrated that inhibition 

of c-myb expression using anti-sense oligonucleotides resulted in growth arrest of 

hematopoietic cells (Gewirtz, 1988).  The development of a mouse model with a 

homozygous mutant c-myb gene confirmed these data.  Animals with homozygous 

interruption of c-myb transcription were normal at day 13 of gestation, but by day 15 

were severely anemic and expired in utero.  These animals exhibited a complete loss of 

myelo and erythropoiesis in the fetal liver (Mucenski, 1991).  These in vivo observations 

further suggested that c-myb is normally required for the maintenance of myelopoiesis 

as well as erythropoiesis.  The role of c-myb in lymphopoiesis, however, has been more 

poorly defined.   
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Survival, proliferation, and differentiation of B lymphocytes depend on a set of 

regulatory signals from the hematopoietic microenvironment provided in bone marrow.  

Expansion of pro-B cells is dependent on the cytokine interleukin-7 (IL-7) in conjunction 

with a series of co-stimulatory cytokines including insulin-like growth factor-1 (IGF-1) 

(Gibson, 1993).   Stem cell factor, or c-kit ligand, is expressed by stromal cells and binds 

to the tyrosine kinase receptor c-kit expressed on hematopoietic cells.  Murine models 

deficient in c-kit or c-kit ligand result in failure of fetal liver hematopoiesis (Nagasawa, 

1996).  Expression of both the anti-apoptotic gene bcl-2 and the pro-apoptotic gene bax 

in pro-B cells is also regulated by stromal cells (Gibson, 1996). 

In this study, we addressed the role of c-myb in B lymphopoiesis.  The aims of 

this project were to explore normal expression patterns of c-myb in developing B 

lymphocytes, to determine whether the hematopoietic microenvironment regulated 

expression of c-myb in these cells, to determine the effect of c-myb down regulation on 

lymphocyte differentiation, and to determine if loss of myb impacts B lymphopoiesis in 

the fetal liver.   

 

II.  HEMATOPOIESIS 
 

Developmental hematopoiesis.  Hematopoiesis describes the continual 

development of red and white blood cells from a small population of pluripotential 

hematopoietic stem cells. Murine experimental systems have been extensively utilized 

to study the process of hematopoiesis.  Insight into embryonic murine hematopoiesis 

has proven to be extremely informative since it has been determined that murine and 

human fetal hematopoiesis display many parallels. (Ghia et al, 1998).  Embryogenesis 

extends over a 21-day period in the murine system.  During this time hematopoiesis is 

initiated, sequentially progresses through other fetal organ systems, and eventually 

resides in the bone marrow as depicted in Figure 1.   
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Hematopoiesis initiates extraembryonically in hemangioblasts, or blood islands of 

the yolk sac, at approximately day 7 of murine gestation (Metcalf and Moore, 1970).   

Within the mouse embryo, the paraaortic splanchnopleura (P-Sp) is endowed with 

hematopoietic potential (Godin, 1993 and Medvinsky, 1993). The P-Sp comprises the 

dorsal aorta and surrounding mesoderm.  This region develops into the 

aorta/gonad/mesonephros (AGM) region, which continues to possess hematopoietic 

potential (Cumano et al, 2001; Moore et al, 1970).  It is proposed that multipotent 

progenitors may arise simultaneously in the P-Sp/AGM region and in the yolk sac.  On 

day 10 of gestation, hematopoietic cells from the AGM region and/or the yolk sac travel 

through the blood stream into the fetal liver. In mammals, the fetal liver is the principal 

site of hematopoiesis during mid and late gestation.  Multipotent progenitors in the fetal 

liver express the cell surface markers AA4.1 and Sca-1, and lack expression of lineage 

specific markers (Jordan, 1995).  Fetal liver hematopoiesis can be divided into four 

stages:  the onset of hematopoiesis (day 10), the expansion of hematopoiesis (day 11-

12), the peak of hematopoiesis (day 13-14), and the involution of hematopoiesis (after 

day 15) (Sasaki, 2000).  By day 15, the spleen begins to function as a subsidiary 

hematopoietic organ until just after birth (Cumano et al, 2001a; Morrison, 1995).  The 

bone marrow becomes a hematopoietically active site on day 17 as cells from the fetal 

liver traverse into the marrow environment.  The bone marrow functions as the primary 

site of hematopoiesis after birth (Cumano et al, 2001a).  

 

Hematopoietic stem cells.  The first suggestion that stem cells were 

responsible for hematopoiesis was in the late 1890s by Ehrlich (Ehrlich, 1879; Ehrlich, 

1898).  Ehrlich first conceptualized an ancestral stem cell that was capable of dividing to 

maintain a constant population while also producing progeny that could mature into 

various cells of the blood system. From a smear of triacid-stained bone marrow, he 

noticed one particular cell type he described as a “primitive large basophilic 

mononuclear cell with a vesicular nucleus and few or no granules”.  He termed this cell 

the Myelozyt, or marrow cell, and suggested that it was the precursor of granulocytes 

but not lymphocytes.  This dualistic theory of development was challenged by 

Pappenheim who, in 1899, used an improved staining method to detect a “relatively 
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featureless primitive” cell that he coined the Lymphoidozt (Pappenheim, 1989; 

Pappenheim, 1900).  Pappenheim suggested a monophyletic concept of development; 

he proposed that the lymphoidozyt was actually the source of all blood cell development 

(Wintrobe, 1980).    

Hematopoietic stem cells were further studied in response to a clinical quandary.  

Patients with cancer needed to receive high doses of chemotherapy to eradicate 

cancerous cells; however, this treatment often resulted in lethality.  A radio-protective 

cell was needed to overcome this lethality.  The radio-protective cell would be able to 

rapidly reconstitute hematopoietic activity sufficient to rescue a lethally irradiated 

recipient from hematopoietic failure.  The task, however, was locating this cell.  This 

question was first addressed in 1949 when Jacobsen et al showed that lead shielding of 

hematopoietic tissues during lethal irradiation prevented death (Jacobson, 1949).  This 

suggested that radio-protective cells resided somewhere within hematopoietic tissues.  

Then, in 1951, Lorenz showed that infusion of syngenic marrow after irradiation also 

protected patients from death (Lorenz, 1951).  Together, these data suggested that 

radio-protective cells were located in hematopoietic tissues, specifically in the bone 

marrow.  Till and McCulloch further expanded this hypothesis in 1961.  They discovered 

that the bone marrow contained progenitor cells capable of giving rise to myeloid, 

erythroid, and megakaryocytic cell colonies in the spleens of irradiated hosts (Till and 

McCulloch, 1961).  Hematopoietic cells were injected into lethally irradiated mice and, 

after ten days of recovery, hematopoietic nodules had formed on the surface of the 

spleen.  Morphologic examination of the spleen revealed the nodules were composed of 

immature erythroid and myeloid cells.  Based on these observations, Siminovitc (1963) 

proposed that within the bone marrow there existed a cell population capable of multi-

lineage differentiation, self-renewal, and radioprotection (Siminovitc, 1963).  Prior to 

Siminovitc’s theory, Osgood, in 1957, had proposed that there existed a population of 

cells that underwent asymmetric divisions, forming a daughter cell that would mature 

into a specialized blood cell while also forming a replacement stem cell during the same 

division (Osgood, 1957). These cells described by Osgood and Siminovitc were termed 

hematopoietic stem cells.  Following the discovery of Till and McCulloch, Wu et al 

(1967) tracked stem cell development (using induced chromosomal aberrations) and 
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determined that each nodule that developed on the spleen of a reconstituted irradiated 

host was a clone of cells derived from a single precursor cell.  However, neither group 

had identified Siminovitc’s proposed stem cell population that could reconstitute both 

the myeloid and lymphoid lineage.  Then, in 1977, Abramson et al finally identified a 

pluripotential stem cell that could mature into both myeloid and lymphoid lineage cells.  

Again, they used chromosomal aberrations to track the progeny of stem cells.  Their 

model suggested the existence of a pluripotential stem cell compartment, with multi-

lineage reconstitution capabilities, as well as restricted stem cell compartments, 

committed to development in a single lineage (Abramson, 1977).  

 Pluripotential hematopoietic stem cells are the most primitive cells involved in 

blood cell development.  These stem cells originate in the P-Sp of the developing 

embryo and then migrate to the fetal liver (Godin et al, 1999).  Beginning on day 17 of 

gestation, hematopoietic stem cells seed the bone marrow microenvironment and 

produce all hematopoietic cell populations in postnatal animals.  It is estimated that 

hematopoietic stem cells represent up to 0.05% of cells within the bone marrow 

(Spangrude et al, 1988).  

 

Hematopoietic progenitor cells.  Progenitor cells are distinguished from HSCs 

by being a lineage-committed population that has lost the capacity to self-renew. 

Lineage-committed progenitor cells are progeny from stem cells that have begun to 

differentiate into mature cells but are at very early stages of cell development.  It was 

hypothesized that the commitment to differentiate in the myeloid or lymphoid lineage 

was irreversible once commitment had occurred.  This was confirmed in 1997 when 

Kondo et al identified a clonogenic common lymphoid progenitor from murine bone 

marrow.  This Lin- IL-7R+ Thy-1- Sca-1lo C-kitlo population exhibited lymphoid-restricted 

reconstitution capacity while lacking myeloid differentiation potential (Kondo, 1997).  

Three years later, Akashi et al isolated an IL-7Rα- Lin- C-kit+ Sca-1- FcγRlo CD34+ cell 

population that demonstrated myeloid lineage restriction with no lymphoid potential 

(Akashi, 2000).  The authors suggested that the common lymphoid progenitor (CLP) 

and the common myeloid progenitor (CMP) represented the earliest branch point 

between the lymphoid and myeloid lineages.  The CLP and the CMP then undergo 
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differentiation events themselves, become more mature committed cells, and eventually 

develop into end cells. The CLP differentiates into both T and B cells of the immune 

system.  Myeloid end cells include erythrocytes, platelets, monocytes, neutrophils, 

eosinophils, and basophils.   

 Recent literature from Lu et al has called the accepted dogma of hematopoietic 

progression into question (Lu et al, 2002).  Work from their laboratory indicates that no 

CLP exists in the fetal liver.  Rather, they suggest that a common myelolymphoid 

progenitor (CMLP) and a common myeloerythroid progenitor (CMEP) are the first 

branch points from the hematopoietic stem cell.  Their system detected progenitor cells 

with myeloid/erythroid/lymphoid potential (thought to be the HSC), myeloid potential, 

myeloid/erythroid potential, myeloid/lymphoid potential, myeloid/T cell potential, and 

myeloid/B cell potential.  However, no cells with only lymphoid (T and B cell) potential 

were detected.  These data are reminiscent of data presented in 1977 by Abramson 

where no CLP could be detected.  This disputes the developmental scheme proposed 

by Weissman and colleagues described above (Kondo, 1997 and Akashi, 2000).  

Therefore, although this dissertation presents an overall view of the currently accepted 

dogma in hematopoietic development, new data are constantly emerging which 

challenge current thinking.      

 

III.  MYELOID CELL DEVELOPMENT 
 

Regulation of hematopoietic events has been extensively studied in the myeloid 

lineage.  Myeloid progenitor cells differentiate into at least 6 morphologically and 

functionally recognizable cell types.  Developing myeloid progenitor cells have 

characteristics of a myeloblast, promyelocyte, and finally differentiated end cells.  

Differentiation of myeloid progenitors into more mature myeloid cells is characterized by 

an anti-proliferative state in which cells withdraw from the cell cycle into the G0 phase 

(Boyd 1984).  This cell cycle withdrawal is accompanied by down-regulation of the c-

myc oncogene (Westin, 1982), rapid induction of the c-fos oncogene (Barzilay, 1987), 

and decreased expression of histone genes (Brelvi, 1987).  Concurrently, the cell 

acquires a morphologically differentiated phenotype.  Differentiated myeloid cells have 
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condensed nuclei, loss of nucleoli, and altered cell surface receptors.  Myeloid 

differentiation has primarily been studied using tumor cell models comprised of cells 

blocked in a specific hematopoietic differentiation state.  Use of tumor cell models 

allows the study of specific stages of hematopoiesis since tumor cells are “frozen” in a 

particular developmental stage. The HL-60 cell line is an in vitro model system of 

myeloid cell differentiation that is particularly useful. HL-60 cells are a human leukemic 

cell line established from the peripheral blood leukocytes of a patient with acute 

promyelocytic leukemia.  HL-60 cells are primarily promyelocytes arrested in an 

immature proliferative state, but they can be induced to terminally differentiate by a 

variety of agents including DMSO and butyric acid (Collins, 1977).  

 

IV.  REGULATION OF MYELOID CELL DEVELOPMENT BY C-MYB  
                                                                                                                                                                  

.      The Myb family of proteins is a group of transcription factors that bind DNA.  This 

family was first identified in the avian myeloblastosis virus.  The oncogene responsible 

for the transformation seen in the avian leukemia is v-myb.  The V-myb protein was 

found to be a constitutively active, mutated, and truncated form of C-myb, a product of 

the c-myb gene.    The c-myb gene is highly conserved throughout evolution.  C-myb 

has been identified in all types of eukaryotes, including vertebrates, fungi, insects, and 

plants (Ness, 1996).  The c-myb proto-oncogene encodes a 75 kDa nuclear protein, 

comprised of 636 amino acids, that is expressed in most hematopoietic tissues (Gonda, 

1983 and Westin, 1982).  In addition, an 89 kDa c-myb protein has been identified that 

is an alternatively spliced mRNA product.  The 89 kDa protein has 363 base pairs 

inserted between exons 9 and 10, termed region 9A, for a total of 999 amino acids 

(Rosson et al, 1987).  C-myb exhibits a sequence-specific DNA binding activity, binding 

in vitro to the consensus sequence [(T/C)AAC (T/G)G], where the first A, third C, and 

fifth G are involved in very specific interactions (Bidenkapp, 1988 and Tanikawa, 1993).  

C-myb appears to function as a regulator of transcription by mediating interactions 

between specific DNA sequences and other protein components of the transcription 

machinery.  The modular structure of the C-myb protein is similar to that of many other 

transcription factors.  C-myb proteins have a DNA binding domain at the amino 
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terminus, a centrally-located transactivation domain, and a negative regulatory domain 

at the carboxy terminus (Ness, 1996).   

 
C-myb DNA binding domain.  The hallmark of the Myb family of proteins is their 

unique DNA binding domain.  The first one-third of the protein consists of three tandem, 

50 amino acid direct repeats termed R1, R2, and R3. The three repeats resemble a 

homeodomain composed of three connected alpha helices.  Within the tandem repeats, 

there is a periodic occurrence of tryptophans that form a hydrophobic core that 

maintains the alpha helix motif (Saikumar, 1990).  Each repeat has three tryptophans 

that are separated by 18 or 19 amino acid residues (Anton 1988). The regularly spaced 

tryptophan repeat is functionally and structurally unique in the Myb family of proteins.  

Mutation of tryptophan residues significantly decreases Myb’s sequence specific DNA 

binding activity (Kanei-Ishii, 1990).  

Deletion analysis has shown that R2 and R3 are absolutely required for DNA 

binding, but R1 is dispensable.  R1 may be involved in stabilizing the interaction 

between R2R3 and target DNA (Tanikawa, 1993).  Alternatively, it is hypothesized that 

R1 may recognize specific flanking regions adjacent to the core binding site and 

increase the DNA binding affinity of Myb (Dini, 1993).  The R2R3 region of the Myb 

binding domain binds both to DNA and cellular proteins.  The R2R3 region is very highly 

conserved between members of the Myb family, as well as between very divergent 

species.  The third helix of R2 and R3 is a recognition helix.  These helices lie in the 

major groove of the DNA and make site-specific contacts important for sequence 

recognition.  The third helix of R2 is in contact with the third helix of R3 enabling R2 and 

R3 to cooperatively bind specific DNA sequences (Kanei-Ishii, 1995).      

 

C-myb transactivation domain.    The transactivation domain of C-myb is 

downstream of the DNA binding domain, roughly located in the middle of the protein, 

and encompasses a stretch of 85 amino acids.  This stretch of amino acids contains a 

cluster of acidic residues and a cluster of leucine residues termed the heptad leucine 

repeat region (HLR).   This area is poorly conserved throughout the Myb family, and 

little is known about this region of C-myb (Sakura, 1989).  Recent mutational analyses 
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in yeast by Wang and Lipsick have revealed new information regarding this domain.  

80% of the residues within the transactivation domain can be substituted by other amino 

acids without loss of transactivation function.  However, there are non-mutable residues 

located in the acidic and the HLR regions.   Alanine substitutions of pairs of acidic 

residues within the HLR reduced the transcriptional activation of this domain in yeast 

and animal cells.  Although substitution of the acidic residues resulted in reduced 

activity, substitution of leucines within the HLR did not affect transcriptional activation 

ability.  In addition, a single threonine (259) located between the acidic region and the 

HLR would not tolerate substitution.  Mutation of threonine259 resulted in decreased 

domain function.  Although these studies reveal the importance of the acidic residues 

within the transactivation domain, the functional importance of many individual residues 

within the domain remain unknown (Wang and Lipsick, 2002).  

 
C-myb negative regulatory domain.   The C-myb negative regulatory domain 

contains a putative leucine zipper motif with one isoleucine and three leucine residues 

(Bedenkapp, 1988).  Deletion of this c-terminal region results in an increase in the 

transactivational activity of the protein, as well as an increase in the DNA binding 

activity of the mutated protein (Sakura, 1989 and Ramsay, 1991).  Many cellular 

proteins have been shown to bind the leucine zipper of C-myb and exhibit negative 

regulation (Kanei-Ishii, 1992 and Favier, 1994).  In addition, the C-myb binding domain 

can interact specifically with the C-myb leucine zipper and form a Myb dimer.  Once the 

C-myb dimer has formed, it cannot bind to DNA.  These data indicate that 

intramolecular interactions between the two ends of C-myb can serve to negatively 

regulate Myb activation (Nomura, 1993).  In addition to the leucine zipper, it has been 

shown that two subdomains of the negative regulatory domain (NRD1 and NRD2) can 

also regulate C-myb.  NRD1 is upstream of the leucine zipper while NRD2 is 

downstream of the leucine zipper.  Deletion of either NRD1 or NRD2 increases the DNA 

binding capacity of Myb (Kanei-Ishii, 1995).  Other experiments have shown that 

truncating the N-terminal domain of C-myb also results in increased DNA binding ability.  

This implies that the N-terminal domain is also participating in the negative regulation of 

C-myb.  It is hypothesized that C-myb may fold back on itself and allow the two 
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regulatory ends to interact (Ramsay, 1995).  This phenomenon would explain how the 

deletion of either end of the C-myb protein leads to activation.  The regulation of C-myb 

DNA binding activity is complex, requiring multiple subdomains in the C-terminal 

negative regulatory domain as well as a region in the N-terminal domain.    

The proteins encoded by the Myb genes can be divided into two classes:  those 

involved in the general housekeeping function of mature hematopoietic cells and those 

having growth, survival, or differentiation activities.  The Myb family of proteins is unique 

due to their ability to regulate the growth and differentiation of many cell types.  Myb 

proteins are linked with critical cell fate decisions including proliferation, differentiation, 

cell cycle control, and gene expression.  C-myb regulates many genes and promoters, 

including CD34, mim-1, cdc-2, c-myc, IGF-1, CD4, GATA-1, IL-3Rα, and c-myb (Melotti, 

1994; Ness, 1989; Ku, 1993; Evans, 1990; Reiss, 1991; Siu, 1992; Aurigemma, 1992; 

Miyajima, 1995; and Nicolaides, 1991). C-myb is primarily expressed in immature 

hematopoietic cells, but it is also expressed in primary fibroblasts (Sczylik, 1993), 

endothelial cells (Brown, 1992), and Sertoli cells (Page, 1995).  Overexpression of c-

myb has also been detected in breast cancer and colon carcinomas (Guerin, 1990 and 

Greco, 1994).  Although c-myb is primarily found in hematopoietic cells, the majority of 

the genes c-myb regulates are markers of maturity and differentiation.  With this pattern 

of expression and regulation it is possible that c-myb induces differentiation rather than 

blocking it by activating differentiation specific genes.     
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C-myb is primarily expressed in primitive hematopoietic cell tissues, the most 

immature hematopoietic cells, and hematopoietic tumor cell lines.  When early 

hematopoietic cells are stimulated to differentiate, there is a significant decline in c-myb 

expression associated with cellular maturation.  This was first demonstrated by Westin 

et al in 1982.  These investigators established that expression of c-myb was correlated 

with specific stages of myeloid differentiation (Westin, 1982).  In 1988, Clark et al 

investigated myb expression in a murine erythroleukemia cell line and demonstrated 

that constitutive expression of exogenously introduced c-myb inhibited erythroid 

differentiation (Clark, 1998).  Although all these data implicate c-myb as a regulator of 

hematopoiesis, they did not definitively establish that c-myb regulated hematopoietic 

cell proliferation and/or differentiation.   

Gewirtz and Calabretta confirmed the importance of c-myb in hematopoiesis 

using an in vitro system.  In their experiments, they depleted normal human bone 

marrow cells of adherent macrophages and T lymphocytes.  They exposed the bone 

marrow mononuclear cells to c-myb antisense oligonucleotides and analyzed colony 

formation.  Exposure to c-myb antisense oligonucleotides resulted in a decrease in 

myeloid, erythroid, and megakaryocytic colony formation.  In addition to a decrease in 

colony number, there was also a marked decrease in colony size indicating that c-myb 

expression is also relevant to understanding the proliferation of progenitor cells.  These 

experiments demonstrated that c-myb played a critical role in regulating normal 

hematopoiesis in vitro (Gewirtz and Calabretta, 1988, Gewirtz, 1991).  These results 

clearly established that loss of c-myb inhibited myeloid cell development, but they did 

not examine what effect over-expression of c-myb would have on myeloid cell 

development.  Clarke had shown that c-myb over expression would inhibit the terminal 

differentiation of erythroid cells.  McClinton and collaborators further expanded upon 

Clarke’s earlier findings.  They investigated the effects of ectopic over expression of c-

myb at different times during the induction process using a Friend virus-infected MEL 

cell line.  The MEL cell line is an early erythroid precursor model system that can be 

induced to differentiate into mature erythroid cells using chemical inducers, including 

erythropoietin and DMSO.  When MEL cells are induced to differentiate, c-myb mRNA is 

biphasically downregulated during early and late stages of differentiation.  C-myb mRNA 
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is significantly down-regulated during the early differentiation stage that occurs within 

hours after chemical treatment.  C-myb rebounds to basal levels after 24 hours, 

corresponding with the beginning of the middle stage of MEL cell differentiation.   In 

subsequent days, during the late stage of differentiation, c-myb is down-regulated until it 

reaches a maximum low when terminal differentiation occurs (Kirsch, 1986 and 

Ramsay, 1986).  McClinton introduced an inducible metallothionein promoter driven c-

myb gene into MEL cells and expressed c-myb during different phases of differentiation. 

Expression of c-myb during the early phase of differentiation did not have an affect on 

MEL cell maturation, indicating that early down-regulation of c-myb is not necessary for 

differentiation.  However, if c-myb was continuously expressed during the entire 

induction phase, differentiation was completely blocked indicating that late down-

regulation of c-myb is critical for terminal differentiation of MEL cells (McClinton, 1990).   

Recently, in 2001, Chen and Bender demonstrated that MEL cells could be 

induced to differentiate into a more mature cell by introducing an inducible dominant 

interfering myb allele (MEnT).  After induction of MEnT in MEL cells, transfected cells 

began differentiating and ceased proliferating with no chemical induction necessary.  

These experiments were used to argue that downregulation of c-myb alone in MEL cells 

is sufficient to induce terminal differentiation (Chen and Bender, 2001). Taken together 

these data suggested a critical role for c-myb in myeloid and erythroid hematopoiesis: 

down regulation of c-myb is required for terminal differentiation of myeloid and erythroid 

cells. This pattern of expression suggests that c-myb plays a pivotal role in the 

development of blood cells.  The development of a mouse model with a homozygous 

mutant c-myb gene confirmed these data.   

Mucenski et al generated a mouse model heterozygous for a mutated c-myb 

gene.  A vector was constructed with a neomycin resistance gene inserted in opposite 

transcriptional orientation into the sixth c-myb exon.  The construct was introduced, by 

electroporation, into stem cells and cells containing the construct were identified by 

G418 selection.  Embryonic stem cells with the construct were implanted into 

pseudopregnant female mice.  The altered c-myb allele was passed to progeny animals 

and the affect of the alteration was examined.  Mice heterozygous for mutant c-myb 

appeared phenotypically normal after birth.  Animals that were homozygous null for the 
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C-myb protein were normal at day 13 of gestation.  They were present in appropriate 

numbers and had developed brains, kidneys, lungs, hearts, and limb buds.  However, 

by day 15, mutant mice were pale in color, severely anemic, and expired in utero.  At 

days 12.5-13.5 of gestation, hematocrit levels in wild type and mutant mice were 35%.  

By day 15.5, there was a 10-fold decrease in the numbers of hematocrits in the c-myb 

null mice.  Null mice had hematocrit levels of 5% whereas wild-type animals had 40%.    

It is at this time in embryogenesis that the anatomic site of erythropoiesis moves from 

the AGM region into the fetal liver.  Erythrocytes derived from the AGM can be 

morphologically differentiated from fetal liver derived erythrocytes; erythrocytes from the 

AGM region remain nucleated and are larger than those from the fetal liver.  

Examination of peripheral blood at day 12 revealed normal numbers of nucleated 

erythrocytes, indicating that early intraembryonic erythropoiesis in the AGM was normal.  

However, there was a significant defect in fetal hepatic erythropoiesis.   Animals 

exhibited a complete loss of erythropoiesis in the fetal liver.  This indicates that c-myb 

mutant mice are unable to switch the site of fetal erythropoiesis from the AGM region to 

the liver (Mucenski, 1991).  These observations further suggest that c-myb is 

responsible for the maintenance of myelo and erythropoiesis.  Although c-myb has been 

shown to be critical in the development of erythroid and myeloid precursors, less work 

has been done on the role of c-myb in the normal development of lymphocytes.   

 
 
V.  B CELL DEVELOPMENT 
 

The bone marrow is the primary site of postnatal B lymphocyte development in 

mammals. The bone marrow microenvironment is composed of a complex meshwork of 

stromal cells, developing lymphopoietic cells, and extracellular matrix.  In addition, the 

cells within the microenvironment release cytokines and colony-stimulating factors.  

These components interact in an amazingly complex way to support the survival, 

proliferation, and differentiation of B lymphocytes.  How the bone marrow 

microenvironment, particularly bone marrow stromal cells, regulates the development of 

B lineage cells is not completely understood.  The bone marrow contains B lineage cells 

at all stages of development, from the earliest progenitors to the most mature B cells.  B 
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lymphopoiesis in the bone marrow occurs in parallel with myelopoiesis and 

erythropoiesis.  The daily production of B cells in adult mammals is very high; an 

estimated 5 x 107 B lymphocytes are generated per day in mice (Landreth et al, 1981, 

Rahal and Osmond, 1981).   

B lymphopoiesis is characterized by the ordered progression of a stem cell 

through a series of tightly controlled, systematic genotypic and phenotypic changes 

resulting in formation of mature B cells.  In order to survive this developmental process, 

B lymphocytes must fulfill several criteria including a single productive immunoglobulin 

(Ig) rearrangement at the heavy chain loci as well as a productive light chain gene 

rearrangement. The initial gene rearrangements occur in the heavy chain genes.  This 

requires the joining of a DH (diversity) to a JH (joining) locus.  Following the DH-JH 

joining, the DJH segment is juxtaposed to one of many VH (variable) regions.  As the 

heavy chain gene is transcribed, post transcriptional processing removes the noncoding 

sequence present between the rearranged VH-DH-JH segment and the constant (C) 

locus, resulting in expression of the µ heavy chain (V-D-J-Cµ).  Following heavy chain 

protein translation, light chain gene rearrangement occurs.  This process entails joining 

one of several light chain J segments to a V segment. The kappa light chain rearranges 

first.  If both kappa light chain rearrangements are non-productive, lambda light chain 

rearrangement occurs.  If a kappa rearrangement is productive, lambda light chain 

rearrangement is inhibited.  Once the light chain gene is rearranged and transcribed, 

the µ heavy chain associates with the light chain and the assembled Ig molecule is 

expressed on the cell surface (Yancopoulos and Alt, 1986 and Oettinger et al, 1999).  

As B lymphocytes undergo these genotypic alterations, the cell also acquires a number 

of cell surface markers that can be used to determine discrete stages along the 

developmental pathway.  Various approaches for identifying and describing cells at 

different stages of B lymphoid development have been proposed based both on cell 

surface phenotype and genotype.  Because of this, several different nomenclatures 

have been established for the classification of B cell developmental stages.  The earliest 

identified cell committed to development in the B lymphocyte lineage is the common 

lymphoid progenitor (CLP) that was identified by the Weissman laboratory (Kondo et al, 

1997).  The stages following the CLP have been described in detail by two different 
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schemes based on phenotypic changes that occur during B cell development. Dennis 

Osmond proposed one nomenclature scheme (Osmond, 1990).  Osmond grouped 

precursor (cytoplasmic µ-) B cells into 3 classes based on expression of TdT, an 

intranuclear enzyme expressed during the rearrangement of the variable region of the 

heavy chain of the immunoglobulin gene, and the tyrosine phosphatase B220, an 

isoform of CD45RA.  Early pro-B cells are TdT+ B220-, intermediate pro-B cells are TdT+ 

B220+ and late pro-B cells are TdT- B220+.  Pre-B cells are characterized by being 

B220+ as well as cµ+.  Large pre-B cells are large mitotically active cells that divided into 

small non-dividing small pre-B cells.  The small pre-B cells then mature into non-

dividing, B220+, IgM+ immature B lymphocytes.  Hardy and colleagues proposed a 

different scheme (Hardy et al, 1991).  Hardy utilized a PCR based strategy to detect the 

status of Ig gene rearrangement and then correlated gene rearrangement with 

phenotype (CD43, Heat Stable Antigen (CD24), and BP-1 expression).  The first genetic 

event in B lineage cells is rearrangement of the D and J segments of the heavy chain 

immunoglobulin gene.  By Hardy’s proposed terminology, this cell is termed a progenitor 

(pro-) B cell.  Pro-B cells are B220lo and CD43+.  In vitro, pro-B cells have long-term 

proliferative capacity in the presence of stromal cells and interleukin-7 (IL-7).  He further 

divided the pro-B cell stage into Fraction A, Fraction B, Fraction C, and Fraction C’ 

based on BP-1 and heat stable antigen (HSA) expression.  Fraction A cells are the most 

primitive and lack expression of either HSA or BP-1.  Fraction B cells express HSA but 

not BP-1 while Fraction C cells express both HSA and BP-1.  Fraction C’ differs from 

Fraction C by expressing higher levels of HSA.  Cells are classified as pre-B cells once 

complete rearrangement of the heavy chain immunoglobulin gene (the V segment is 

joined to the D-J segment) occurs and the heavy chain is expressed in the cytoplasm of 

the developing cell.  During the pre-B cell stage the heavy chain, µ, is expressed on the 

surface of the cell in conjunction with a surrogate light chain.  The surrogate light chain 

is comprised of two molecules, V pre B and λ5.  The surrogate light chain is expressed 

on the surface of the pre-B cell in conjunction with Ig α and β.  The pre-B cell has lost 

some of its proliferative capacity and is less dependent on stromal cells and IL-7.  In 

addition, the pre-B cell has lost expression of CD43 on the cell surface.  Then, the light 

chain genes of the pre-B cell rearrange.   After a functional rearrangement has 
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occurred, the heavy and light chains are expressed on the surface of the cell.  

Phenotypically, cells lose expression of the IL-7 receptor but acquire cell surface 

expression of immunoglobulin (IgM). This cell is now classified as an immature or virgin 

B cell. Immature B cells then leave the bone marrow where a small fraction enters the 

peripheral B cell pool.  After antigen stimulation, the immature B cell further 

differentiates into a mature B cell expressing IgM and IgD on the cell surface. 

Hardy and Hayakawa proposed a model for B cell development based on the Osmond 

scheme, the early Hardy scheme, and other cell surface markers that have recently 

been discovered on the surface of developing B lymphocytes.  The current model 

proposes 6 developmental stages following the CLP:  pre-pro-B (Fraction A), pro-B 

(Fraction B/C), large pre-B (Fraction C’), small pre-B (Fraction D), new-B (Fraction E), 

and mature B (Fraction F).  Pre-pro-B cells are B220+, CD43+, HSAlo, c-kitlo, Tdt+, 

AA4.1+, IL-7Rα+, CD19-, and have immunoglobulin genes in germline configuration.   

Pro-B cells retain the markers that pre-pro-B cells have but they also acquire CD19, Ig α 

and β, surrogate light chain, Rag 1 and 2, and higher levels of HSA.  These cells either 

have their Ig genes in germline configuration or have rearranged the D and J loci of the 

heavy chain gene.   The large pre-B cell population phenotypically resembles pro-B 

cells, but they have acquired BP-1 on the cell surface.  However, this cell population 

has rearranged the V, D, and J loci of the heavy chain genes while the light chain genes 

remain in germline configuration.  The small pre-B cell acquires the expression of CD25 

and µ heavy chain, while increasing existing levels of HSA.  This population looses 

expression of CD43, c-kit, surrogate light chain, and TdT.  At this stage of development, 

B lymphocytes rearrange either the kappa or lambda light chain of the immunoglobulin 

gene.  New B cells no longer express BP-1, IL-7Rα, CD25, Rag 1, or Rag 2.  New B 

cells have completely rearranged heavy and light chains and they express mu and 

kappa or lambda.  Mature B cells are characterized by the loss of AA4.1 as well as a 

decrease in HSA expression (Hardy and Hayakawa, 2001).   Since this is the most 

recent model proposed that considers all the genotypic and phenotypic changes that 

occur in B lymphopoiesis, this work will refer to stages in B cell development based 

upon this developmental scheme (see Figure 2). 
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Figure 2.  Model of B lineage development.  Model depicts hematopoietic stem cell 

development (HSC) through mature B cell development.  Expression of cell surface 

markers and progression of immunoglobulin gene rearrangement are shown.  Cell 

surface markers are described as follows:   
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AA4.1            Cell surface antigen recognized by the AA4.1 antibody 

B220            220kD from of CD45 restricted to expression in B lineage cells 

CD43            Leukosyalin 

HSA            Heat stable antigen 

BP-1            B lineage restricted glycoprotein 

c-kit               Stem cell factor receptor 

IL-7Rα α chain of the interleukin-7 (IL-7) receptor 

CD19             90 kD B cell specific cell surface antigen 

CD25  Interleukin-2 (IL-2) receptor α chain 

Ig α/β  Anchor the pre-B cell receptor and assist in signaling 

SLC            Surrogate light chain of the pre-B cell receptor 

Rag 1/2         Recombinase activating genes 

TdT Terminal deoxynucleotidyl transferase; gene encoding machinery for 

immunoglobulin gene rearrangement; expressed only in bone marrow 

 

Adapted from Hardy and Hayakawa, 2001. 
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The survival, proliferation, and differentiation of B lymphocytes depend on the 

hematopoietic microenvironment provided in the bone marrow.  This microenvironment 

provides both particular cell types and cytokines that are necessary for B lymphocyte 

maturation.  In particular, B cells in the bone marrow develop in close association with 

surrounding, non-hematopoietic, fibroblastic mesenchymal stromal cells found in the 

intrasinusoidal spaces of the bone marrow, indicating that cell-to-cell contact may be 

necessary for B cell development.  In fact, studies of the bone marrow have revealed a 

close, physical association is maintained between stromal cells and developing blood 

cells (Chen and Weiss, 1975).  Experiments to delineate the interactions between 

stromal cells and B lymphocytes have only been possible in recent years.  The 

development of long term cultures of B lymphocytes, as well as the development of 

stromal cell lines that could support lymphoid cultures in vitro, were required to allow 

stromal cell/B cell interactions to be dissected (Whitlock and Whitte, 1982 and Johnson 

and Dorshkind, 1986).  The observed close association between early B cells and 

adherent stromal cell layers led to investigations of the adhesion interactions occurring 

between the two cell types.  It is now apparent that adhesion contacts are necessary for 

retaining lymphopoietic cells in the marrow environment and for promoting their 

continued survival.  One essential adhesion molecule found on stromal cells is vascular 

cell adhesion molecule-1 (VCAM-1 or CD106).  VCAM-1 is a 170 kDa glycoprotein 

expressed on the surface of stromal cells that belongs to the immunoglobulin super-

gene family.  VCAM-1 is the ligand for VLA-4, a heterodimer belonging to the integrin 

family, expressed on the surface of lymphopoietic and myelopoietic cells.  The 

importance of this interaction was demonstrated when antibody that blocked the VLA-4 

molecule expressed on lymphoid cells ablated adherence of lymphoid cells to bone 

marrow stromal cells (Miyake et al, 1991 and Kina et al, 1991). 

Literature had clearly indicated that stromal cells were responsible for regulating 

the survival of early B cells (Johnson and Dorshkind, 1986).  To more clearly describe 

these interactions, Gibson and colleagues described a murine pro-B cell line, C1.92, 

from day 14 fetal liver that required stromal cells and IL-7 for continued growth.  They 

demonstrated that the model murine pro-B cell line was completely dependent upon 

stromal cells for continued survival (Gibson, 1993).  When cultured in the presence of 
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the cloned stromal cell line, S10, for 24 hours pro-B cells maintained high cell viability.  

However, when pro-B cells were cultured in media alone for 24 hours, their viability was 

reduced to 5%, indicating that pro-B cells require survival factors provided by stromal 

cells.  Gibson then looked at expression of the proto-oncogene bcl-2, a known anti-

apoptotic molecule.  When pro-B cells were removed from stromal cell culture, there 

was a rapid decrease in bcl-2 mRNA and a corresponding rapid increase in mRNA 

levels for bax, a known pro-apoptotic molecule.  These results suggested that stromal 

cells control the survival of progenitor B cells by regulating pro- and anti-apoptotic 

factors (Gibson, 1996).   

Previous experiments had demonstrated conclusively that stromal cells were 

involved in the regulation of B lineage cell survival.  However, the factors necessary to 

promote B cell proliferation and differentiation had still not been elucidated.  It was 

possible that, in addition to providing adhesion interactions and survival signals, stromal 

cells may also provide proliferative and differentiative signals.  The first important 

interaction to be elucidated was reported in 1988 by Namen et al who demonstrated 

conclusively that B cell progenitor proliferation was stimulated by a 25 kD stromal cell 

derived cytokine termed interleukin-7 (IL-7) (Namen et al, 1988).  The importance of IL-

7 in B cell development is underscored by experiments that show blocking the IL-7R or 

neutralization of IL-7 in the bone marrow results in a developmental B cell block (Sudo 

et al, 1993 and Grabstein et al, 1993).  This observation was confirmed in 1994 when a 

targeted gene disruption of the IL-7R severely arrested B cell development in the bone 

marrow of mutant mice (Peschon et al, 1994).   

Other cytokines were shown to be important in 1990 when Billips et al 

demonstrated that the cytokines interleukin-1 (IL-1) and interleukin-4 (IL-4) regulated 

stromal cell support of pre-B cells.  They showed that treating a cloned stromal cell line, 

S17, with IL-4 or IL-1 completely abrogated the ability of S17 to support pro-B cell 

development.  These data indicated that cytokine levels in the microenvironment 

influence B cell development, and stromal cells can be the targets of local cytokine 

influence (Billips et al, 1990).  Billips continued to investigate the role of stromal cells in 

B lymphopoiesis by determining the effect of stromal cell derived cytokines on B cell 

proliferation and differentiation.  IL-7 was known to be the major proliferative cytokine 
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produced by stromal cells.  It was also known that stromal cells produce other 

cytokines, including c-kit ligand (KL) (Huang et al, 1990).  KL, also known as stem cell 

factor, serves as a ligand for the tyrosine kinase receptor c-kit that is expressed on 

hematopoietic cells.  Murine models deficient in c-kit or KL resulted in prenatal lethality 

in at days 13 to 15 of gestation due to loss of fetal liver hematopoiesis (Russell, 1979).   

Experiments Billips performed indicated that KL synergized with IL-7 to provide a strong 

proliferative stimulus to B220+ B-lineage cells.  However neither of these cytokines, 

individually nor in combination, could induce the maturation of B220- cells into B220+ 

cells; differentiation of progenitor B cells into pre-B cells required the presence of 

stromal cells.  These data were critical in demonstrating that stromal cells provide 

separate proliferative and differentiative signals to developing B lineage cells (Billips et 

al, 1992).   

Further experiments revealed that stromal cell derived insulin growth factor-1 

(IGF-1) could also potentiate the proliferative effects of IL-7 on B lymphocytes, similar to 

the synergy observed between IL-7 and KL (Landreth et al, 1992).  To further delineate 

specific stages of B lymphopoiesis that respond to IL-7, KL, and IGF-1, Gibson et al 

used the murine pro-B cell model, C1.92, discussed previously. These pro-B cells were 

dependent on stromal cells and IL-7 for continued growth.  Gibson demonstrated that 

IL-7 was absolutely necessary for pro-B cell expansion in culture; however the addition 

of recombinant KL, IGF-1, or KL/IGF-1 significantly increased the proliferation of the 

pro-B cells as evidenced by increased tritiated thymidine uptake (Gibson et al, 1993).   

Flt3 ligand (FL) is another early hematopoietic growth factor expressed by 

stromal cells.  Like KL and IGF-1, FL stimulated little proliferative activity on its own but 

could synergize with IL-7 to stimulate progenitor B cell proliferation (Ray et al, 1996).  

Together, these results suggest that pro-B cell expansion is depended on at least four 

stromal cell derived cytokines; IL-7 delivers the primary proliferative signal while KL, 

IGF-1 and FL synergize with IL-7 to increase proliferation.  Another chemokine that is 

expressed constitutively by bone marrow stromal cells is stromal cell derived factor-1 

(SDF-1).  SDF-1 was shown to stimulate the proliferation of B cell progenitors in vitro 

(Nagasawa, 1994).  Nagasawa continued to explore the function of SDF-1 in 

lymphopoiesis by developing a mutant mouse model harboring a targeted disruption in 
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the SDF-1 gene. The majority of mice lacking the SDF-1 gene expired in utero at day 

18.5 of embryogenesis.  In mutants that were born, significantly reduced numbers of 

pro-B and pre-B cells were observed, indicating that SDF-1 was required for the 

expansion of early B lymphocytes (Nagasawa, 1996).  Together, all of these data 

emphasize the importance of stromal cell derived proliferative signals to normal 

development of B lymphocytes.   

Although signals that regulate B cell proliferation have been proposed, it is clear 

that these same signals are not solely responsible for directing B cell maturation.  On 

their own, IGF-1 and FL could not stimulate pro-B cell proliferation, although they could 

cooperate with IL-7 to increase proliferation.  However, further insights into these two 

molecules revealed that they had yet another function.  When Landreth et al 

investigated stromal cell derived IGF-1, they found that treatment of bone marrow 

cultures with recombinant IGF-1 resulted in cytoplasmic µ heavy chain expression while 

treatment with anti-IGF-1 antibody completely ablated stromal cell stimulated pro-B cell 

differentiation.  IGF-1 was necessary and sufficient to stimulate B cell differentiation 

(Landreth et al, 1992).  Ray demonstrated that FL also had an important role in B 

lineage differentiation.  He reported that, in the absence of stromal cells, the growth 

factor combination of Flt3 ligand, IL-7, and IL-11 was able to support B cell 

differentiation from early progenitor cells (Ray et al, 1996).  These data suggest that FL 

and IGF-1 play a dual role in B cell development; they potentiate IL-7 induced 

proliferation and promote B cell maturation.  

Taken together, these data revealed that B cell development is critically 

dependent on stromal cells and the bone marrow microenvironment.  Stromal cell 

regulation of B cell development is extremely multifaceted, and in vitro experimental 

systems may never be completely representative of the complexity of the bone marrow 

microenvironment.  Although many of the mechanisms through which this regulation is 

exerted have been discovered, the entire scope of genes that stromal cells may 

regulate, and the specific mechanisms by which stromal cells exert this regulation, are 

largely unknown.   
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VI.  REGULATION OF LYMPHOID DEVELOPMENT BY C-MYB 
 

As previously discussed, several investigators have proposed that c-myb plays a 

pivotal role in the maturation and development of myeloid cells.  However, the role of c-

myb in the development of lymphoid cells is less clear. Bender et al (1987) 

demonstrated that constitutive expression of c-myb was necessary to maintain pre-B 

leukemic cells in culture and that down regulation of c-myb correlated with partial 

differentiation of these cells as evidenced by J chain secretion and decreased levels of 

N-myc and BP-1.  This indicated that, as in myeloid cell development, c-myb 

downregulation was required prior to differentiation (Bender, 1987).  Using both the pre-

B cell lymphoma line that Bender used, as well as a B cell lymphoma line, Catron et al 

investigated the cell cycle regulation of c-myb mRNA in murine B lymphoid tumors.  

They found that c-myb expression in the pre-B cell lymphoma was constitutive, but cell 

cycle regulated in the more mature B cell lymphoma line.  The authors suggested that c-

myb may be constitutively expressed in immature, highly proliferative cells but cell cycle 

regulated in more mature, differentiated cells, therefore exerting its effects by switching 

from a constitutive to a cell cycle mode of regulation as lymphoid cells mature (Catron et 

al, 1992).   

Most work done on the role of c-myb in lymphoid development has focused on T 

lymphocytes.  During T cell development, the earliest committed T cell precursor that 

migrates from the bone marrow to the does not express CD4, CD8, or the T cell antigen 

receptor (TCR) (triple negative cell).  The most immature double negative (DN) 

thymocyte is CD44lo CD25-.  These cells retain the ability to develop into T and B 

lymphocytes as well as NK and dendritic cells (Guidos et al, 1989, Wu et al, 1991).  This 

cell then matures into the CD44+CD25- population that begins to rearrange T cell 

receptor β genes (Godfrey et al, 1993).  During T cell receptor gene rearrangement, the 

DN cell acquires CD25 and becomes CD44+ CD25+.  After the T cell expresses a 

functional T cell receptor β chain, CD25 is downregulated and CD4 and CD8 are co-

expressed on the surface of the cell.  The CD4+CD8+ cell is termed a double positive 

(DP) thymocyte.  The DP stage is the time when thymocytes undergo the repertoire 

selection process (Bevan et al, 1994).  T cells surviving the selection process then 
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downregulate either CD4 or CD8 to become mature single positive (SP) T cells (Robey 

and Fowlkes, 1994).  During T cell maturation, c-myb is expressed at high levels in 

immature thymocytes found in the thymic cortex (Churilla et al, 1989).  As in myeloid 

development, c-myb levels decrease in T cells as they mature.  However, when resting 

T cells in the periphery are stimulated to proliferate after antigen exposure, c-myb 

becomes active again (Stern and Smith, 1986).  As the activated T cells undergo G1 

progression c-myb expression peaks, indicating that c-myb expression is required for 

entry into S phase (Gewirtz, 1989).   

Direct study of c-myb in thymocyte development has been complicated by the 

embryonic lethality of the c-myb null mouse.  In order to circumvent this problem, 

Badiani et al used a Myb DNA-binding domain linked to the Drosophila Engrailed 

transcription repressor domain to act as a dominant interfering Myb.  This allowed 

investigation of the effects of loss of c-myb expression on T cell development.  When 

the dominant negative myb was expressed in transgenic mice, T cell development was 

severely disrupted.  The thymii of myb deficient animals were very small, malformed, 

and had 20 times less thymocytes than normal.  Flow cytometric analysis revealed that 

thymic cells in c-myb deficient mice were arrested at the DN to DP transition.  This 

stage in thymocyte development is characterized by rapid expansion and loss of c-myb 

inhibited this process of proliferative expansion.  In addition, thymocytes isolated from 

these animals were compromised in their proliferative response to mitogen stimulation, 

consistent with the notion that c-myb is involved in thymocyte proliferation (Badiani et al, 

1994).  Salomoni et al used a CTLL-2 T-cell line to further determine the function of c-

myb in T cell development.  When  IL-2 dependent, cytotoxic T lymphocytes (CTLL-2) 

were transfected with constitutively active myb or c-myb antisense, CTLL-2 cells 

proliferated when exposed to low levels of IL-2 and were less susceptible to apoptosis 

induced by dexamethasone or withdrawal of IL-2.  Although c-myb overexpression did 

not confer IL-2 independence, it did lower the threshold of IL-2 necessary for CTLL-2 

cell proliferation and survival.  The resistance to apoptosis observed in cells with 

overexpressed c-myb was also accompanied by an up-regulation of bcl-2 expression.  

CTLL-2 cells expressing the antisense construct were not able to proliferate in low 

levels of IL-2 and they underwent apoptosis more quickly after treatment with 
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dexamethasone or withdrawal of IL-2 than did control cultures.  These data suggest that 

c-myb is involved in regulating the survival of T cells and that c-myb may protect T cells 

from apoptosis by inducing bcl-2 expression (Salomoni, 1997).              

RAG-1 and RAG-2 gene products are essential components of site-specific DNA 

recombination events in lymphocytes (Oettinger, 1990).  These molecules make up the 

recombinase complex which recognizes specific nucleotide sequences flanking 

rearranging gene segments, termed recombination signal sequences (RSS), and 

introduce DNA breaks between these signals and DNA segments (Gellert et al, 1997).  

RAG-1 and RAG-2 are expressed at high levels in the earliest T and B cell progenitors 

until assembly of the T cell receptor β chain or the Ig heavy chain gene is complete 

(Grawunder et al, 1995 and Wilson et al, 1994).  A mutation in either the RAG-1 or 

RAG-2 gene completely blocks lymphocyte development at an early progenitor stage by 

preventing V-D-J recombination (Mombaerts et al, 1992 and Shinikai et al, 1992).  Since 

Rag1-/- mice are unable to generate mature lymphocytes due to lack of a functional 

antigen receptor gene rearrangements, implanting ES cells from c-myb wild type or null 

animal allowed the role of c-myb in lymphopoiesis to be directly examined (Allen et al, 

1999).  C-myb wild type ES cells implanted into Rag deficient animals developed into 

mature lymphocytes bearing cell surface immunoglobulin.  Conversely, c-myb -/- 

embryonic stem cells implanted into Rag1-/- animals were not able to reconstitute the 

spleen with mature B220+ mIgM+ B cells and less mature B220+ CD43+ cells could not 

be detected in the bone marrow.  This indicates that ES hematopoietic stem cells from 

c-myb-/- animals cannot commit to B lineage development.   It was also determined that 

C-myb -/- ES cells were not capable of TCR gene rearrangements, resulting in a 

developmental block at the CD44lo CD25- double negative T cell stage.  These data 

indicate the early developmental progression of both T and B lymphocytes is dependent 

on c-myb (Allen et al, 1999). 

Since both the expression of c-myb and the RAG genes are necessary for 

lymphocyte development, Wang et al looked at the role of c-myb in regulating RAG 

gene expression.  C-myb is known to regulate a wide variety of genes, and Wang et al 

identified a consensus c-myb binding site within the RAG-2 promoter region.  

Investigation of this site revealed that c-myb could transactivate RAG-2 by binding to 
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this region and that this transactivation was critical for RAG-2 activity in T lymphocytes 

(Wang et al, 2000).  These data correlate well with observation that immature 

thymocytes in the cortex express RAG-1 and RAG-2, since they are undergoing V-D-J 

recombination at the TCR loci, as well as high levels of c-myb mRNA.   It was not 

known, however, if c-myb regulated RAG expression in developing B cells as well as in 

T cells.  Kishi et al determined that c-myb does bind to the RAG-2 promoter in B cells.  

But, c-myb binds cooperatively with the B lineage specific transcription factor Pax-5 to 

synergistically activate the RAG-2 promoter in B cells.  In addition, their studies 

revealed that there is direct protein-protein interaction between c-myb and Pax-5, and 

that this interaction required the C-terminal region of c-myb.  This is the first evidence 

that the hematopoietic specific transcription factor c-myb can cooperate with a B lineage 

specific transcription factor, such as Pax-5, to activate genes necessary for lymphoid 

development (Kishi et al, 2002).  These data suggest that c-myb is essential for RAG-2 

activation in both B and T lymphocytes and therefore regulates the process of antigen 

receptor gene rearrangements.       

The majority of information presented here describes the role of c-myb in T cell 

development and parallels cannot always be drawn between T and B lymphoid 

maturation.  B lymphocytes develop in conjunction with stromal cells in the bone marrow 

microenvironment.  Because of this, the regulation of c-myb in B lymphocyte 

development may differ greatly from that of T lymphocytes.  Stromal cells have been 

shown to regulate many other genes involved in B cell development, and they may also 

be involved in the regulation of c-myb.  Our work is intended to investigate the role of c-

myb in B lymphoid development and to better understand the role that stromal cells may 

play in regulating c-myb.    

 
VII.  MYB FAMILY MEMBERS 
 

In addition to c-myb, there are two other members of the Myb family of proteins.  

Like c-myb, both a-myb and b-myb are thought to be involved in the regulation of 

cellular proliferation.  A-myb and b-myb share extensive sequence homology with c-

myb, but they are expressed in a number of different tissues.  Some tissues, however, 
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express more than one member of the myb family.  A-myb and b-myb also encode for 

nuclear DNA binding proteins that are 95kDa (751 amino acids) and 93kDa (704 amino 

acids) respectively.  All 3 members of the Myb family have a similar structure.  Like C-

myb, A- and B-myb have a DNA binding domain, transactivation domain, and a 

regulatory domain.  A-myb has a negative regulatory domain like C-myb while B-myb 

has only a regulatory domain.  In addition, all Myb family members bind to the same 

consensus DNA sequence, but they have distinct preferences for nucleotides flanking 

the core binding site (Howe and Watson, 1991 and Golay et al, 1994).  This differential 

binding may explain the distinctive biological functions of the Myb family genes.    

A-myb is expressed in a tissue-specific fashion.  The A-myb protein is primarily 

found in breast epithelial cells of pregnant mice and in male germ cells.  A-myb has also 

been detected in ovaries, brain, and germinal center B cells (Mettus et al, 1994, Trauth 

et al, 1994).  DeRocco et al showed in 1997 that mice over expressing the A-myb 

protein develop hyperplasia of the spleen and lymph nodes.  These mice exhibited 

increased DNA synthesis and a polyclonally expanded B cell population (DeRocco et al, 

1997).  Development of a homozygous null mutant mouse deficient in a-myb revealed 

knockout mice are smaller and grow at a decreased rate than wild type littermates.  As 

the mice mature, the males become sterile.  Female a-myb mutant mice can carry and 

deliver offspring, but they exhibit abnormal mammary function and are not able to nurse 

the pups.   Taken together, these data suggest that a-myb may serve as a mediator of 

proliferation in certain cell types (Toscani et al, 1997).   

B-myb is the least conserved member of the Myb family.  Unlike a- and c-myb, b-

myb does not demonstrate tissue tropism.  Expression of B-myb protein has been found 

ubiquitously in all tissues studied (Golay et al, 1991 and Kamano et al, 1995).  B-myb is 

the only member of the Myb family expressed during very early (before day 10) murine 

embryogenesis (Sitzmann et al, 1996).  In 1992, Arsura and colleagues used b-myb 

antisense oligonucleotides to inhibit the proliferation of myeloid and lymphoid cells.  

Expression of b-myb is correlated directly with the induction of cellular proliferation in B 

and T lymphocytes, and over expression of b-myb results in increased numbers of cells 

in S phase of the cell cycle (Golay et al, 1991 and Lam et al, 1992).  Thus, alterations in 

the amount of b-myb present in cells correlates with altered cellular proliferation.    
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IX.  SUMMARY 
 
 The current literature ascribes an important role to c-myb in hematopoiesis.  C-

myb is expressed in immature hematopoietic cells and highly proliferative cells. C-myb 

is necessary for the proliferation of myeloid and erythroid cells.  Down regulation of c-

myb is critical for the maturation of myeloid and erythroid progenitors into mature end 

cells.  Over expression of c-myb retains myeloid cells in a proliferative state and inhibits 

differentiation.  In lymphocyte development, c-myb is required for the proliferation of 

thymocytes.  C-myb over expression promotes the survival of T cells when treated with 

dexamethasone by up regulating the anti-apoptotic bcl-2 gene.  C-myb also regulates T 

cell differentiation by binding to the RAG-2 gene that controls antigen receptor gene 

rearrangement.  Less is known about the role of c-myb in B lymphocyte development.  

B lymphocytes are dependent on stromal cells for signals that regulate survival, 

proliferation, and differentiation.  We have developed an early pro-B cell line that is 

dependent on stromal cells and IL-7 for continued survival and proliferation as a model 

to study stromal cell/B cell interactions.  These cells continue to proliferate in culture, 

but have not been shown to differentiate in vitro.  The work presented in this dissertation 

will demonstrate that the pro-B cell line, C1.92, is characterized by c-myb expression.  

Our work will determine the degradation kinetics of c-myb mRNA and protein in pro-B 

cells and compare that with the known kinetics of c-myb in myeloid cells.   Furthermore, 

our work aims to determine whether stromal cells are responsible for maintaining c-myb 

expression in pro-B cells and whether specific adhesion contacts are responsible for 

this maintenance rather than stromal cell cytokines.  In addition, these studies will 

determine whether c-myb is an intracellular regulator of proliferation and differentiation 

in early pro-B cells, or an intracellular regulator of cell survival.  Finally, we will 

investigate c-myb knockout mice to better understand how loss of c-myb expression 

during embryonic development impacts fetal liver lymphopoiesis.  We will also utilize a 

mouse model deficient for a-myb to determine if one member of the myb family can 

compensate for the loss of another member during fetal lymphopoiesis.   
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X.  RESEARCH OBJECTIVES 
 

The main goal of the work presented in this dissertation is to understand the role of 

c-myb in development of B lymphocytes.  Current literature has clearly established a 

putative role for c-myb in proliferation and differentiation of a vast array of 

developmental cell types, including erythroid, myeloid, and T lymphoid cells.  However, 

there is a significant lack of fundamental information about the role of myb in B lymphoid 

development.  This project will explore the normal expression patterns of myb in 

developing B lymphocytes, determine if the hematopoietic microenvironment is able to 

regulate the expression of myb during lymphopoiesis, and determine the role c-myb 

plays in B lymphocyte maturation.  This dissertation will address the following 

objectives: 

1. Determine the normal expression patterns of c-myb in cells of the 
developing B lineage.  The following studies investigate the expression of c-

myb in progenitor B cells.  It is well documented that immature myeloid cells 

require expression of c-myb early in development for normal proliferative 

capacity, but also require c-myb to be downregulated for terminal differentiation.  

This study will determine whether developing B lymphocytes also require 

molecular changes in c-myb for normal proliferation and differentiation.  In 

addition, this study will determine the half-life of c-myb mRNA and protein in 

progenitor B cells and compare that with the known degradation kinetics of c-myb 

in myeloid cells.  Knowing the half-life of c-myb mRNA and protein will allow this 

work to examine c-myb regulation at biologically relevant time points.   

2. Determine whether stromal cells regulate the expression of c-myb in pro-B 
cells.  The role of bone marrow stromal cells as regulatory elements of B cell 

development has been firmly established since they are known to regulate 

several genes expressed by developing B lymphocytes.  These studies will 

determine whether stromal cells maintain c-myb levels in highly proliferative, pro-

B cells.  Stromal cells regulate gene expression both by adhesion contacts and 

by producing numerous cytokines.  We will determine whether c-myb mRNA 
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levels are maintained by specific stromal cell adhesion contacts or by stromal cell 

derived cytokines. 

3. Determine whether c-myb is an intracellular regulator of proliferation in 
developing B lymphocytes.  C-myb is known to be a regulator of proliferation in 

myeloid, erythroid, and T cells.  Several studies have also indicated that c-myb 

regulates proliferation in transformed murine B cells.  These studies will 

determine if c-myb regulates proliferation of B cell progenitors.    

4. Determine whether c-myb is an intracellular regulator of differentiation in 
developing B lymphocytes.  Recently studies have demonstrated that c-myb 

binds to the RAG-2 promoter (Kishi et al, 2002), suggesting that c-myb may 

regulate maturation of pro-B cells.  We will determine whether down regulation of 

c-myb is required for gene rearrangement of heavy chain immunoglobulin genes. 

5. Determine if c-myb is an intracellular regulator of cell survival in 
developing B lymphocytes.  C-myb is known to decrease the sensitivity of T 

cells to cytokine withdrawal and protect them from apoptotic death.  In addition, 

c-myb over expression correlates with an increase in the expression of the anti-

apoptotic bcl-2 gene in T cells.  We will determine whether down regulation of c-

myb impacts pro-B cell survival and onset of apoptosis and cell death.     

6. Evaluate B lymphopoiesis in myb knockout models. C-myb knockout mice 

die at day 15 of embryogenesis due to loss of erythropoiesis in the fetal liver.  We 

will determine whether loss of c-myb during embryonic development affects B 

cell development.  In addition, we will utilize animals with mutant a-myb to 

determine if loss of another myb family member significantly alters B 

lymphopoiesis in developing embryos.  
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ABSTRACT 
 

B lymphocytes are continually produced throughout life in the bone marrow from 

pluripotential hematopoietic stem cells.  Lymphopoiesis is characterized by a series of 

highly regulated genotypic and phenotypic changes that conclude with expression of 

cell surface immunoglobulin on immunocompetent B cells.  Pro-B cell survival, 

proliferation, and differentiation of B cell progenitors require a series of interactions with 

fibroblastic stromal cells in the hematopoietic microenvironment.  However, specific 

molecular mechanisms that regulate progression of B lymphoid development are poorly 

understood.  In this study we utilized a pro-B cell clone derived from 14-day fetal liver by 

continuous in vitro passage in the presence of bone marrow stromal cells and 

recombinant interleukin-7 (rIL-7).  The cloned pro-B cell line remains dependent on the 

presence of stromal cells for survival, does not form tumors in vivo, and reconstitutes B 

lymphocytes in severe combined immunodeficient (SCID) mice.  However, pro-B cells 

clones are characterized by rapid and continuous proliferation and high expression 

levels of the oncogene c-myb.  Although several laboratories have proposed a role for 

c-myb in myelopoiesis, virtually nothing is known about the physiologic function of c-

myb in developing B lineage cells.  Studies described here are aimed at determining 

whether stromal cells regulate expression of c-myb in developing B lymphocytes.  Pro-B 

cells removed from stromal cells decreased c-myb mRNA and protein levels.  

Experiments utilizing a transwell cell culture system demonstrated that stromal cell 

adhesion was required for maintenance of c-myb expression.  Down regulation of c-myb 

correlated with genotypic maturation, progressive immunoglobulin gene rearrangement, 

reduced proliferative capacity, and G0/G1 cell cycle blockade.   
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INTRODUCTION 
 

Hematopoiesis describes the continual development of functional blood cells 

from pluripotential hematopoietic stem cells.  Hematopoietic stem cells (HSC) retain 

self-renewal capacity and the potential to generate cells of the erythroid, myeloid, and 

lymphoid lineages. HSCs primarily reside in the bone marrow of post-natal mammals. 

However, during embryonic development, hematopoietic stem cells are first found in the 

aorta/gonad/mesonephros (AGM) region (Kincade, 1989).  From the AGM region, HSCs 

migrate into the liver of the developing embryo (Cumano, 2001; Moore 1970).  It is 

within the fetal liver that hematopoietic stem cells differentiate into committed lymphoid 

and myeloid progenitor cells (Godin, 1999).  Progenitor cells are distinguished from 

HSCs by loss of self-renewal capacity and commitment to lineage specific development.   

During postnatal life, lymphoid and myeloid progenitors differentiate through a series of 

committed developmental stages to form non-proliferating effector cells.  Effector cells 

have a finite lifespan, and they are continuously regenerated from committed progenitor 

cell populations in hematopoietic tissues.   

The bone marrow is established as the primary site of hematopoiesis shortly 

before birth, and this remains the primary hematopoietic organ throughout postnatal life 

(Sabin, 1928; Micklem, 1966; Tavassoli, 1975).  The bone marrow is composed of 

packed hematopoietic cells interspersed with a meshwork of non-hematopoietic cells 

termed stromal cells.  Fibroblastic stromal cells within the bone marrow are necessary 

for hematopoiesis.  Stromal cells support early cell development by providing adhesion 

molecules that interact with receptors on developing hematopoietic cells (Johnson and 

Dorshkind, 1986; Witte, 1987).  In addition, stromal cells secrete cytokines into the 

marrow environment including interleukin-7 (IL-7) and c-kit ligand (stem cell factor) 

(Billips, 1992). These stromal cell products are necessary for continued lymphopoiesis 

(Sudo, 1989; Dorshkind, 1990). 

The Myb family of proteins is a group of transcription factors that bind DNA and 

were first identified as part of avian myeloblastosis virus.  V-myb protein is a 

constitutively active, mutated, and truncated form of C-myb, a product of the c-myb 

proto-oncogene.   The c-myb proto-oncogene encodes a 75 kDa nuclear protein that 
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binds to a consensus sequence of DNA [(T/C)AAC (T/G)G ] (Bidenkapp, 1988).  C-myb 

expression is high in the most immature hematopoietic cells, but levels of c-myb 

decrease as immature cells differentiate into more mature progeny (Lipsick, 1996).  C-

myb expression and regulation is necessary for normal hematopoietic development.  

Inhibiting c-myb expression in hematopoietic cells using anti-sense oligonucleotides 

causes growth arrest, while over-expressing c-myb results in leukemia (Westin, 1982 

and Gewirtz, 1988).  In 1982, Westin et al investigated c-myb expression in a human 

promyelocytic leukemic cell line (HL-60).  They determined that myeloid cells could be 

held in a proliferative state when c-myb was over-expressed and induced to differentiate 

when c-myb was downregulated (Westin, 1982).  These data suggest a critical role for 

c-myb in myelopoiesis.  The development of a mouse model with a homozygous mutant 

c-myb gene confirmed these data.  Animals with homozygous interruption of c-myb 

transcription were normal at day 13 of gestation, but by day 15 were severely anemic 

and expired in utero.  These animals exhibited a complete loss of erythropoiesis in the 

fetal liver (Mucenski, 1991).   These in vivo observations substantiate the role of c-myb 

in maintenance of myelopoiesis.  While the importance of c-myb in myelopoiesis has 

been clearly established, the role of c-myb in lymphopoiesis has been suggested but 

less defined.   

Survival, proliferation, and differentiation of B lymphocytes depend on the 

hematopoietic microenvironment provided in bone marrow (Dorshkind, 1990).    

Expansion of pro-B cells is dependent on cytokines produced by bone marrow stromal 

cells.  Interleukin-7 (IL-7) is a stromal cell derived cytokine that provides the major 

proliferative stimulus for pro-B cells (Lee, 1989; Sudo,1989).  Several other bone 

marrow derived cytokines, including insulin-like growth factor-1 (IGF-1), stem cell factor, 

and flt-3 ligand, also regulate pro-B cell expansion by synergizing with IL-7 to maximize 

pro-B cell proliferation (Gibson, 1993 and Ray, 1996). In addition to producing cytokines 

that regulate proliferation stromal cells produce cytokines, including IGF-1, that regulate 

differentiation.  Stromal cells also regulate the survival of pro-B cells.  Adhesion 

contacts between stromal cells and pro-B cells control expression of the anti-apoptotic 

bcl-2 gene, as well as the pro-apoptotic bax gene, in pro-B cells (Gibson, 1996).  While 

many of the interactions between stromal cells and pro-B cells have been elucidated, 
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the total spectrum of genes and cytokines that influence pro-B cell survival, proliferation, 

and differentiation has not yet been determined.   

In this study, the role stromal cells play in pro-B cell development is further 

investigated.  These experiments are aimed at determining whether stromal cells are 

responsible for c-myb expression and regulation in pro-B cells.  The goals of this project 

were to explore the normal expression patterns of c-myb in developing B lymphocytes, 

to determine the expression kinetics of c-myb in pro-B cells, and to determine whether 

the hematopoietic microenvironment regulated expression of c-myb in these cells.  Pro-

B cells cultured without stromal cells down regulated c-myb expression, withdrew from 

cell cycle, and genotypically matured.  These data demonstrate that c-myb expression 

in pro-B cells is regulated by stromal cells. 

 

 

MATERIALS AND METHODS 
 
Cell Lines and Cytokines.  A panel of pro-B cell lines was derived from normal Balb/C 

mice.  Isolation of pro-B cell lines has previously been described in detail (Gibson, 

1993).  Briefly, fetal livers were removed from murine embryos at day 14 of gestation.  

Fetal livers were dispersed into single cell suspension and the nonadherent cells were 

passaged in the presence of a cloned bone marrow stromal cell line, S10, and 50 U/mL 

of recombinant murine interleukin-7 (IL-7, Biosource International).  The fetal liver cells 

were then cloned at limiting dilution in the presence of S10 and IL-7.  One of the 

resulting clones, C1.92, is utilized in these studies.  C1.92 cells were maintained in α-

modification of Eagle’s medium (α-MEM) supplemented with 5% fetal calf serum 

(Summit, lot# 30P14), 1% penicillin/streptomycin, 1% l-glutamine, and 0.1% 2-

Mercaptoethanol in the presence of S10 and 50 U/mL of IL-7.   

S10 stromal cells were a generous gift from Dr. Kenneth Dorshkind (University of 

California).  Isolation and biological characteristics of S10 have been previously 

described in detail (Collins and Dorshkind, 1987).  S10 cells were maintained in α-MEM 

media, supplemented as described above, and grown to confluence in 75 cm2 flasks.  

They were passaged weekly by trypsinization (0.25%, GIBCO). 
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Transwell Cell Cultures.  C1.92 cells were cultured for 24 hours in 6 well plates 

directly in contact with a confluent adherent layer of S10 stromal cells or separated from 

stromal cells in the same culture well by use of a cellulose 0.45 µm microporous 

membrane transwell (Millicell-HA, Millipore, Bedford, MA).  All cultures were 

supplemented with 50 U/ml IL-7.  After 24 hours, cells were harvested, enumerated, and 

cell viabilities were assessed.  

Cell Counts and Viability assay.  After incubation with direct stromal cell support, 

without stromal cell support, or separated from stromal cell support by a transwell, 

C1.92 cells were removed from culture, diluted with an equal volume of 0.4% trypan 

blue (Sigma), and counted in a hemacytometer.  Total cells in culture and viability were 

calculated from hemacytometer counts.   

RNA Isolation.  After culture, 2x106 C1.92 cells were harvested, washed with PBS, and 

frozen in liquid nitrogen.  Total RNA was extracted using the SNAP RNA isolation kit 

(Invitrogen).  After isolation, RNA was quantitated using a spectrophotometer and 

quartz cuvettes.  0.1 µg of total RNA was amplified simultaneously for c-myb and 

GAPDH using a one-step RT-PCR reaction (Qiagen).  0.1 µg of RNA was combined 

with 1x Qiagen OneStep RT-PCR Buffer, 400 µM of each dNTP, 0.5 µg c-myb sense 

primer, 0.5 µg c-myb antisense primer, 1µg GAPDH sense primer, 1 µg GAPDH 

antisense primer, 2 µl Qiagen OneStep RT-PCR Enzyme Mix, 5 units RNase inhibitor, 

and water to a total volume of 50 µl.   C-myb specific primers used were: (sense primer) 

5’-GAGCTTGTCCAGAAATATGGTCCGAAG-3’ and (antisense primer) 5’-

GGCTGCCGCAGCCGGCTGAGGGAC-3’ (Biosource International).  GAPDH 

amplification was used as a control for template integrity and normalization of data 

utilizing the following primers: (sense primer) 5’-

TGAAGGTCGGTGTGAACGGATTTGG-3’ and (antisense primer) 5’-

ACGACATACTCAGCACCGGCCTCAC-3’ (Biosource International).  RT-PCR 

amplifications were performed in a GeneAmp PCR System 9700 (Perkin Elmer Applied 

BioSystems).  Reverse transcription was carried out at 50oC for 30 minutes.  DNA 

polymerase was activated by heating for 15 minutes at 95oC.   Amplification was 

performed for 30 cycles with denaturation at 94oC for 30 seconds, annealing at 60oC for 

1 minute, and extension for 1 minute at 72oC with an additional 10 minute, 72oC 
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extension added to the final cycle. PCR products were separated on 2% ethidium 

bromide stained gels and visualized using Eagle Eye (Stratagene).    

Protein Analysis.  To evaluate the influence of stromal cells on C-myb protein levels, 

C1.92 cells were maintained in normal culture conditions (directly in the presence of 

S10 and IL-7), in transwell co-cultures, or in media alone.  Protein was isolated from 106 

pro-B cells in Laemmli’s buffer and separated on 8% denaturing polyacrylamide gels.  

Gels were transferred to PVDF membrane and blocked for 30 minutes in PBS with 5% 

dry milk at room temperature.  Blots were then probed with a primary monoclonal 

mouse C-myb antibody (Clone 1.1, Upstate Biotechnology, 1 µg/ml) or monoclonal 

mouse GAPDH (glucose-aldehyde-phosphate dehydrogenase) antibody (Research 

Diagnostics, 0.5 µg/ml) in PBS with 3% milk overnight at 4oC.  Blots were then washed 

with one change of water and probed with a goat α-mouse Ig-HRP as the second 

antibody for 2 hours at room temperature.  Blots were washed with one quick wash of 

water, one 15 minute wash of TBS with 0.1% Tween, and then 5 vigorous washes in 

water at room temperature for one minute.  ECL plus (Amersham) was used as a 

chemiluminescent reagent and then blots were exposed to Kodak X-OMAT film.  

Densitometry analysis was done using Eagle Eye Software. 

Determination of C-myb half-life.   To determine the half-life of c-myb mRNA, C1.92 

cells were cultured for 1, 2, 4, 6, 12, and 24 hours in the presence of S10 stromal cells.  

Cultures were treated with media alone, 10 µg/ml of the solvent DMSO, or 10 µg/ml of 

actinomycin D.  RNA was isolated from cultured cells and RT-PCR (as described 

above) was utilized to determine the rate of c-myb mRNA degradation.  To determine 

the half-life of C-myb protein, C1.92 cells were cultured in the presence of S10 stromal 

cells for 15, 30, 60, and 90 minutes.  Cultures were treated with media alone, 10 µg/ml 

of the solvent ethanol, or with 10 µg/ml of cyclohexamide.  Degradation of C-myb 

specific protein from treated cells was analyzed by Western Blotting, with GAPDH as an 

internal protein loading control (as described above).   

Intracellular Fluorescent Staining.  For intracellular C-myb staining, 106 C1.92 cells 

were harvested after being cultured with or without stromal cells for 0 or 8 hours.  Cells 

were washed with ice-cold PBS containing 0.1% heat inactivated fetal bovine serum 

(PBS/FBS). Cells were aspirated to dryness, resuspended in 1 ml of paraformaldehyde 
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buffer and fixed for 10 minutes at 4oC.  Cells were then washed with PBS/FBS and 

resuspended in 25µl of permeabilization buffer.  20 µg of C-myb specific antibody (UBI, 

Clone 1.1) or IgG2a isotype antibody (Southern Biotechnology) were added to 

suspension and incubated for 30 minutes at 4oC.  Cells were then washed with 

PBS/FBS and incubated for 30 minutes at 4oC with a secondary goat α-mouse Ig-FITC.  

After 2 washes of permeabilization buffer, cells were resuspended in 1 ml of 

permeabilization buffer and analyzed using a flow cytometer (FACScan; Becton 

Dickinson). 

DNA Isolation and Ig gene rearrangement status.  DNA was isolated from 106 C1.92 

cells using the Easy-DNA isolation kit (Invitrogen).  DNA was RNase treated to remove 

contaminating RNA and resuspended in 100 ml of Tris-EDTA (pH 8).  500 ngs of DNA 

were used in a PCR reaction (Promega) to determine immunoglobulin (Ig) gene 

rearrangement status.  The Ig heavy chain is assembled from a variable (V) region, a 

diversity (D) region, a joining (J) region, as well as a constant region (Yancopoulos, 

1986).  These loci are separated from one another in the germline by intervening 

sequences, and are joined together upon B cell differentiation.  Ig heavy chain gene 

rearrangement status was determined using primer sets (Hardy, 1991) complementary 

to the intervening sequence between the V and D section of the heavy chain gene 

(using primers DFL16.1; 472 bp amplicon) and between the D and J section of the heavy 

chain gene (using primers JH1; 1227 bp amplicon).  The sequence of primer sets was 

as follows: DFL16.1 (sense primer) – 5’-GCCTGGGGAGTCACTCAGCAGC-3’;  

(antisense primer) – 5’-GTGTGGAAAGCTGTGTATCCCC-3’ and  

JH1  (sense primer) - 5’- CCCGGACAGAGCAGGCAGGTGG-3’ and  

(antisense primer) –5’-GGTCCCTGCGCCCCAGACA-3’.  Amplification was performed 

for 35 cycles with denaturation at 95oC for 1 minute, annealing at 63oC for 3 minutes, 

and extension for 4 minutes at 72oC with an additional 15-minute extension added to 

the final cycle.  Loss of a DFL16.1 or a JH1 amplicon was indicative of gene 

rearrangement.  DNA from identically prepared S10 was used to confirm germline 

configuration.   

GAPDH ((sense primer) 5’-TGAAGGTCGGTGTGAACGGATTTGG-3’ (antisense 

primer) 5’-ACGACATACTCAGCACCGGCCTCAC-3’)) amplification was used as a 
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control for template integrity and normalization of data.  PCR products were separated 

on 2% ethidium bromide stained gels and visualized using Eagle Eye (Stratagene).  

Proliferation assay.  Following culture with direct stromal cell support, indirect stromal 

cell support, or no stromal cell support, 105 viable C1.92 cells were allocated in 96 well 

plates coated with S10 and 200 µl of α-MEM media.  Where indicated, IL-7 (50 U/ml) 

was added to the cultures.  Cells were cultured over night for 18 hours, and then pulsed 

with 1 µCi 3H-TdR/well.  After 6 more hours of culture, cells were harvested onto glass 

wool fiber strips with an automated cell harvester (Cambridge Instruments, Boston, MA).  

Radioactive incorporation was determined by liquid scintillation counting in an aqueous 

fluor (Biosafe-II; Research Products International).  Each treatment was repeated in 

triplicate.    

Cell Cycle Analysis.  C1.92 cells were cultured with or without stromal cells as 

previously described.  106 cells were fixed in 70% EtOH (at –20oC) and treated with 20 

µg RNase A (Sigma) at 37oC for 30 minutes.  Cells were then stained with 50 µg/mL 

propidium iodide (PI) (Sigma) to evaluate DNA content.  PI stained cells were evaluated 

using a flow cytometer (FACScan; Becton Dickinson) and analyzed using ModFit 

Software. 

 

RESULTS 
 
Expression of c-myb in pro-B cells.  C1.92 pro-B cells (Fig. 1a) were cultured in the 

presence of S10 stromal cells and exogenously added IL-7 (50 U/ml).  After culture, 

expression of c-myb mRNA was evaluated using RT-PCR amplification.  As shown in 

Fig. 1b, C1.92 cells expressed c-myb mRNA.  Amplification of GAPDH was used as a 

control to ensure template integrity.  To further confirm the presence of c-myb in pro-B 

cells, C1.92 cells were assayed for C-myb protein by western blot.  As shown in Fig 1c, 

C1.92 cells expressed C-myb protein that was confirmed by immunohistochemistry and 

FACS analysis (figure 4b).  C1.92 pro-B cells expressed both mRNA and protein for the 

proto-oncogene c-myb.  S10 stromal cells had no detectable mRNA or protein for c-myb 

(Fig. 1b and 1c).  
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Figure 1.  Characterization of C1.92 Pro-B Cell Clone. (A) Cytospin preparation of 

C1.92 cells in vitro stained with Jenner-Giemsa.  Viewed at 100x magnification.  (B) RT-

PCR amplification of c-myb in C1.92 cells.  C-myb amplicon is approximately 500 bp.  

GAPDH was used as a control to ensure template integrity.  GAPDH amplicon is 

approximately 300 bp.  (C) C-myb protein expression in C1.92 cells by Western Blot 

analysis.   
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C-myb mRNA half-life.  In order to accurately evaluate changes in c-myb mRNA 

levels, it was necessary to determine the half-life of c-myb in pro-B cells.  To determine 

the half-life of c-myb mRNA, C1.92 cells were cultured for 1, 2, 4, 6, 12, or 24 hours in 

the presence of S10 stromal cells.  Cultures treated with media alone or with 10 µg/ml of 

the solvent DMSO exhibited no change in c-myb expression throughout the time course 

(Figure 2).  C1.92 cells cultured with 10 µg/ml of actinomycin D had a 50% decrease in 

c-myb mRNA expression after 6 hours of treatment.  After 24 hours of treatment, c-myb 

mRNA levels decreased to almost undetectable levels (Figure 2). Because the c-myb 

mRNA seemed to be so stable, it was necessary to confirm the length of the half-life 

using a different set of RT-PCR primers.  Primers were designed in a completely 

different area (over exon 9A) of the c-myb mRNA message and RT-PCR amplification 

was performed.  Amplification of actinomycin D treated mRNA with the second set of 

primers confirmed that the half-life of the mRNA message is long-lived, with 50% of the 

message being degraded at approximately 11 hours (data not shown).  Cell viabilities 

were determined at every time point for all treatments.  No changes in cell viabilities 

were noted. 

 

C-myb protein half-life.  To determine the half-life of C-myb protein, C1.92 cells were 

cultured in the presence of S10 stromal cells for 15, 30, 60, and 90 minutes.  Cultures 

treated with media alone or with 10 µg/ml of the solvent ethanol exhibited no change in 

C-myb expression, as determined by Western Blot, throughout the time course (Figure 

3).  C1.92 cells cultured with 10 µg/ml of cyclohexamide had a 50% reduction in C-myb 

protein within 60 minutes of treatment (Fig 3).  Cell viabilities were assessed at each 

time point for every treatment group.  No changes in cell viability were seen.  
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Figure 2. Half-life of C-myb mRNA in Pro-B Cells.  C1.92 pro-B cell lines were 

expanded on S10 stromal cells.  After 24 hours of culture, C1.92 cells were treated with 

10 µg/ml of DMSO (�), 10 µg/ml of actinomycin D (�), or left untreated (�).  MRNA 

was isolated at 0, 2, 4, 6, 12, or 24 hours post treatment.  Data shown is one of five 

replicate experiments.  
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Figure 3. Half-life of C-myb Protein in Pro-B Cells.  C1.92 pro-B cell lines were 

expanded on S10 stromal cells for 24 hours. Pro-B cell lines were treated with 10 µg/ml 

of ethanol (�), 10 µg/ml of cyclohexamide (�), or left untreated (�).  Data shown is 

one of five replicate experiments. 
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Stromal cell regulation of c-myb.  It is well documented that stromal cells regulate 

gene expression in developing B lineage cells.   We determined whether stromal cells 

regulated the expression of the proto-oncogene c-myb in IL-7 dependent pro-B cells.  

C1.92 cells were cultured for 0, 2, 4, or 6 hours in cell culture medium and IL-7 in the 

absence of stromal cells.  At each time point, RNA was isolated and amplified for c-myb 

and GAPDH in an RT-PCR reaction.  Within 6 hours, c-myb mRNA had decreased to 

50% of control levels (Fig 4a).  To determine whether C-myb protein was also 

decreased, C1.92 cells were cultured for 8 hours in cell culture media and IL-7 with no 

stromal cell support.  After 8 hours, cells were labeled with a C-myb specific FITC 

tagged antibody and analyzed by FACS analysis.  Within 8 hours, C-myb protein had 

decreased by 50 % in pro-B cells grown without stromal cell influence (Fig 4b).  This 

was also confirmed by Western Blot analysis.   

 

Stromal cell adhesion contacts maintain c-myb expression.  Stromal cells provide 

both adhesion contacts and cytokine support that are necessary for B lymphopoiesis.  

Previous data indicated that stromal cells are necessary for maintenance of c-myb 

expression; however it was necessary to determine if stromal cell cytokines or actual 

adhesion interactions with stromal cells were responsible for maintaining c-myb levels in 

pro-B cells.  C1.92 cells were cultured directly on a confluent stromal cell layer (control, 

Fig 5a and Fig 5b) or separated from the stromal cell layer by a cellulose transwell 

membrane (transwell, Fig 5a and 5b).  C1.92 cells were exposed to soluble factors 

released by stromal cells, but prevented from physical interaction with stromal cells in 

transwell cultures.  This dissected the influence of released soluble factors from 

membrane bound proteins.  As shown in Figure 5, pro-B cells separated from the 

stromal cell layer via a transwell had a significant decrease in c-myb mRNA as well as 

C-myb protein within 24 hours.  This indicates that stromal cell adhesion contacts are 

primarily responsible for maintenance of C-myb in developing B lineage cells.   
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Figure 4. Stromal Cells Regulate C-myb Expression.  (A) C1.92 cells were cultured 

for 0, 2, 4, or 6 hours in cell culture medium and IL-7 in the absence of stromal cells.  

C1.92 cells were harvested and RNA isolated.  RNA for c-myb and GAPDH was then 

amplified by RT-PCR.   C-myb mRNA was normalized to GAPDH expression using a 

Stratagene Eagle Eye.  C-myb mRNA was decreased by 50% within 6 hours. (B) C1.92 

cells were cultured in the absence of stromal cells for 8 hours.  After 8 hours, C1.92 

cells were stained with a C-myb specific antibody to determine intracellular protein 

expression.   
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Figure 5. Stromal Cells Regulate C-myb Expression via Adhesion Contacts.  (A) 

C1.92 cells were cultured for 24 hours directly in contact with stromal cells or separated 

from stromal cells in the same culture well by use of a transwell. Cells were harvested 

and total RNA isolated.  RNA for c-myb and GAPDH was amplified by RT-PCR reaction. 

After 24 hours c-myb mRNA levels were decreased by approximately 80%. (B) C-myb 

protein levels were also analyzed by Western Blotting.   
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Decreased C-myb is associated with impaired proliferative capacity.  It is well 

documented that decreases in c-myb correlate with inhibition of proliferation in myeloid 

cells.  In order to determine whether the decrease in c-myb levels observed when pro-B 

cells were cultured in transwells correlated with decreased pro-B cell proliferation, 

tritiated thymidine uptake was assayed.  Pro-B cells grown in direct contact with stromal 

cells (control, Fig 6) exhibited a proliferative response after exposure to IL-7.  In 

contrast, pro-B cells that had decreased c-myb levels due to loss of stromal cell contact 

showed a significant impairment in the ability to respond to IL-7 (transwell, Fig 6).   

 

Impaired proliferative capacity was due to a block in cell cycle. We wanted to 

determine if the observed inhibition of proliferation was due to alterations in pro-B cell 

cycle. Normally, approximately 65% of pro-B cells in culture with stromal cell support 

are in the G0/G1 phase of the cell cycle with 30% in the G2/M phase and 5% in the S 

phase.  However, after 24 hours of culture with a transwell, C1.92 cells exhibited a 

failure to exit the G0/G1 phase of the cell cycle.  Greater than 95% of the cells were in 

the G0/G1 phase of the cell cycle with only 3% in the G2/M phase and less than 2% in 

the S phase (Fig 7).  These data indicate that impairment in cell cycle, associated with a 

decrease in c-myb expression levels, is the result of altered cell cycle kinetics.          

 

Loss of c-myb expression correlated with Ig heavy chain gene rearrangement.  

Exit from the cell cycle in developing B lineage cells is often accompanied by 

differentiation into a more mature cell.  To investigate the possibility that pro-B cells with 

down regulated c-myb levels were differentiating, Ig heavy chain gene rearrangement 

status was evaluated.  C1.92 cells are early pro-B cells, thus they have not yet 

rearranged either the D-J or V-DJ loci and they remain in germline configuration while in 

culture with direct stromal cell contact (control, Fig 8).  However, when C1.92 cells are 

cultured in a transwell for 24 hours, D-J rearrangement of the Ig heavy chain gene 

occurs as indicated by the loss of an amplicon (transwell, Fig 8).  V-DJ rearrangement 

does not occur, and this loci is retained in germline configuration.   These data indicate 

that loss of c-myb, which occurs when C1.92 cells are cultured without direct stromal 

cell support, is accompanied by genotypic maturation.    
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Figure 6.  Proliferative Response of Pro-B Cells.  C1.92 cells were cultured directly 

in the presence of stromal cells or separated from direct stromal cell contact via a 

transwell for 24 hours.  After culture, 105 live C1.92 cells were plated into 96 well plates 

with S10 stromal cells for 18 hours.  The cytokine IL-7 (50 U/ml) was added where 

indicated.  After 18 hours, 1µCi of 3H-TdR was added to each well.  Cells were 

harvested 6 hours later.  Quantitation of incorporated 1µCi of 3H-TdR is presented as 

counts per minute (CPM) +/- SEM for 3 replicate cultures.  
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Figure 7.  Altered Cell Cycle Kinetics.  C1.92 cells were cultured for 24 hours with 

direct stromal cell contact or separated from stromal cell adhesion contacts by a 

transwell membrane.  After 24 hours, cells were harvested and stained with propidium 

iodide (PI).  To determine DNA content, PI incorporation was measured using FACS 

analysis and ModFit software.  Data for one of 3 replicate experiments is shown.   
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Figure 8. Down Regulation of C-myb is Associated with Pro-B Cell Differentiation.   
C1.92 cells were cultured in direct contact with stromal cells or separated from stromal 

cell contact via a transwell for 24 hours.  DNA was isolated from 106 pro-B cells.  RT-

PCR amplification was performed using primers designed to detect gene 

rearrangement, as well as GAPDH primers to check template integrity.   
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DISCUSSION 
 

Early pro-B cell development is dependent on the hematopoietic 

microenvironment found in the bone marrow (Dorshkind, 1990).  This niche provides 

regulatory signals that are critical for B lymphopoiesis.  Fibroblastic stromal cells within 

the bone marrow microenvironment supply a vast majority of these regulatory signals 

through cell adhesion contacts and cytokine stimulation.  B cell progenitors must 

express and/or repress various genes during their maturation process.  Failure to tightly 

regulate gene expression can halt B cell development, leading to hematopoietic defects.  

It is known that the regulation of some early lymphoid genes is intrinsic to the 

developing cell, while other genes are regulated by the stromal cell microenvironment.  

However, the mechanism regulating many other genes expressed by developing 

lymphocytes is completely unknown.  One gene highly expressed in early hematopoietic 

cells is the proto-oncogene c-myb (Lipsick, 1996).  The aims of this work are to 

determine if early pro-B cells express c-myb and to determine if the hematopoietic 

microenvironment is involved in regulating c-myb expression in developing B 

lymphocytes.  Data presented here demonstrate that c-myb is expressed in an IL-7, 

stromal cell dependent pro-B cell line and suggest that expression of c-myb is regulated 

by stromal cell adhesion contacts.   

This report is not the first to demonstrate the important relationship between 

stromal cells and developing B lymphocytes.  Many stromal cell derived cytokines are 

known to impact the expansion of B cell progenitors.   The stromal cell secreted 

cytokine IL-7, in conjunction with stromal cell derived IGF-1 and Flt3 ligand, are the 

major proliferative stimuli provided to early developing B cells (Gibson, 1993). Stromal 

cell derived factor-1 (SDF-1) is another mediator constitutively expressed by bone 

marrow derived stromal cells that stimulates the proliferation of B cell progenitors.  The 

majority of mutant mice harboring a targeted disruption in the SDF-1 gene expire in 

utero at day 18.5 of embryogenesis, and mutants that survived had significantly 

decreased numbers of pro-B and pre-B cells (Nagasawa, 1996).  Stromal cell derived 

Flt-3 ligand and IGF-1 not only affect early B cell expansion, but they also have 

important roles in B lineage differentiation (Dorshkind, 1990 and Ray, 1996).  In addition 
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to releasing cytokines that aid in B cell expansion and maturation, stromal cells are 

involved in providing survival signals as well.  Expression of both pro- and anti-apoptotic 

genes in developing B lymphocytes is regulated by stromal cells, including bcl-2 and 

bax (Gibson, 1996).   Stem cell factor (kit ligand) is produced by stromal cells and 

serves as a ligand for the tyrosine kinase receptor c-kit expressed on hematopoietic 

cells.  The importance of this stromal cell/B cell interaction was evident when murine 

models deficient in c-kit or kit ligand resulted in prenatal lethality between days 13 and 

15 of gestation due to loss of fetal liver hematopoiesis (Russel, 1979).   Although many 

of the regulatory signals and stromal cell/B cell interactions have been reported, the full 

complement of genes that stromal cells may regulate, and the specific mechanisms by 

which stromal cells exert this regulation, are largely unknown. 

Although c-myb has been shown to be critical in the development of erythroid 

and myeloid precursors, less work has been done on the role of c-myb in the normal 

development of lymphocytes.  Because the loss of c-myb results in embryonic lethality, 

it is difficult to investigate the regulation of c-myb in developing B lymphocytes.  This 

problem was circumvented in studies of erythroid and myeloid cells using an in vitro cell 

model.  We have developed a cloned fetal liver pro-B cell line that is dependent on 

stromal cells and IL-7 for continued survival and proliferation (Gibson, 1993).  This 

population of pro-B cells continues to proliferate in culture in the presence of stromal 

cells and IL-7, but does not differentiate.  Westin et al previously demonstrated high 

expression levels of the proto-oncogene c-myb hold myeloid cells in a proliferative state 

and inhibit differentiation.  Using Western Blot and RT-PCR, we determined that high 

levels of mRNA and protein for the proto-oncogene c-myb characterize C1.92 cells.  

Therefore, we have developed an in vitro model that will be useful to study the 

regulation of c-myb in an IL-7, stromal cell dependent pro-B ell line.   

The half-life of c-myb mRNA and protein has not yet been reported for 

developing B lineage cells.  In order to investigate c-myb regulation, it was necessary to 

determine the degradation kinetics of c-myb mRNA and protein in pro-B cells.  Our 

experiments with actinomycin D and cyclohexamide revealed a long half-life for c-myb 

mRNA (11hours) with a much shorter half-life for C-myb protein (less than 1 hour).  

Although not reported in the literature, the half life of c-myb in pro-myelocytes is 
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approximately 1 hour for both the mRNA and the protein (Westin, personal 

communication).  While the protein half-life for c-myb in pro-B cells is similar to that 

reported for myeloid cells, the mRNA half-life of c-myb is much longer in pro-B cells 

than in pro-myelocytes.  These data give us a time frame within which we can conduct 

further experiments at biologically relevant times.  

Because C1.92 are continuously grown in the presence of stromal cells, and 

stromal cells have previously been shown to regulate other genes involved in the 

proliferation and differentiation of B lymphocytes, we hypothesized that the 

hematopoietic microenvironment is able to regulate the expression of c-myb in pro-B 

cells.  In the present report, we show that c-myb is down regulated when C1.92 cells are 

grown in culture media alone without stromal cell support.  Removal of pro-B cells from 

stromal cells and IL-7 for only 6 hours resulted in c-myb mRNA levels that were less 

than 50% of control levels.  Immunofluorescent staining for intracellular C-myb protein 

supported mRNA data, revealing a decrease in protein levels within 8 hours after 

removal from S10 and IL-7. Western blots were also performed to determine C-myb 

protein levels.  These studies confirmed observations made from immunohistochemistry 

data; C1.92 cells removed from S10 and IL-7 for 24 hours showed decrease levels of C-

myb protein, to almost undetectable levels.  These data are particularly interesting 

because stromal cell regulation of c-myb expression has not been considered 

previously.  These data are the first to suggest that c-myb expression, like the 

expression of many other pro-B cell genes, is under the control of stromal cells.  This 

indicates that stromal cells are necessary to maintain the expression of c-myb in 

developing B lineage cells.   

It is known, however, that stromal cells provide both cytokine support and cell 

adhesion contacts to immature B cells.   We utilized a transwell culture system to 

determine if stromal cell cytokines (such as IL-7, IGF-1, SDF-1, or KL) or stromal cell 

adhesion contacts (such as VCAM-1, CD44, fibronectin, or hyaluronate) are responsible 

for the maintenance of c-myb expression.  The transwell culture system prohibits 

stromal cell/pro-B cell contact, but still allows pro-B cell exposure to stromal cells 

cytokines.   We determined that stromal cell adhesion contacts are largely responsible 

for high levels of c-myb expression in pro-B cells.  At 24 hours, c-myb mRNA and 
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protein expression decreased in pro-B cells that did not have direct stromal cell 

interaction.  However, c-myb expression was not completely ablated.  This indicates 

that stromal cell contacts are largely responsible for c-myb expression in pro-B cells, but 

not solely responsible.  Extending the experiments to 48 hours may reveal a complete 

loss of c-myb, but the cell viability of transwell cultures begins to decrease after 24 

hours in culture therefore complicating data analysis.  It remains possible that that both 

stromal cell adhesion contacts and stromal cell cytokines regulate c-myb expression.     

We also determined that the down-regulation of c-myb expression following 

culture in the transwell system correlated with alterations in the proliferative response of 

C1.92 cells.  C1.92 cells cultured in the transwell for 24 hours exhibited a loss of 

responsive to their major proliferative stimulus, IL-7.  In addition, there were a greater 

number of pro-B cells in the G0/G1 phase of the cell cycle and correspondingly fewer 

cells in the G2/M and S phases of the cell cycle.  This was due either to a slower rate of 

progression through the cell cycle or an inability to exit the G0/G1 phase.  The decrease 

of c-myb mRNA and protein in pro-B cells corresponds with alterations in proliferative 

capacity and cell cycle progression.   

The finding that pro-B cells exited the cell cycle when c-myb levels decreased 

was intriguing.  The observed inhibition of proliferation and cell cycle suggest two 

possible fates for C1.92 cells.  Pro-B cells may be exiting the cell cycle in preparation 

for apoptosis.  However, this idea is not supported by our experimental data.  Following 

culture transwells separated from stromal cells, the viability of C1.92 cells is not different 

from that of control cells.  In addition, propidium iodide analysis did not reveal increases 

in C1.92 cells with less than 2N DNA, indicative of cell death (data not shown).  These 

data indicate that, after 24 hours of culture in transwells, C1.92 cells are not initiating 

significant apoptosis.  The second possibility is that the pro-B cells exit cell cycle prior to 

differentiation. In normal B lineage development, pro-B cell differentiation into pre-B 

cells is accompanied by a corresponding decrease in cell cycle progression.  In 

addition, this maturation is also accompanied by rearrangement of the immunoglobulin 

(Ig) heavy chain gene.  As pro-B cells become immature B cells, they must generate B 

cell receptors.  This is accomplished through systematic rearrangements of the Ig heavy 

chain gene, commencing with rearrangement of the D-J loci followed by rearrangement 
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of the V-DJ loci.  Ig gene rearrangements were evaluated using PCR amplification of 

germline Ig heavy chain gene sequence.  PCR analysis of the intervening sequences 

between the D and J and V and D segments of the Ig heavy chain gene revealed that 

gene rearrangement is occurring at the D-J loci after transwell culture as shown in figure 

8.  These data suggest an association between the down regulation of c-myb and pro-B 

cell maturation. 

Taken together, these data provide the basis for expanding the role that stromal 

cells play in B lymphopoiesis.  As early immature cells, pro-B cells require contact with 

stromal cells for their continued survival, proliferation, and differentiation.  Along with 

several other events described above, this stromal cell contact maintains a high level of 

c-myb expression in pro-B cells.  As pro-B cells mature to express Ig (pre-B cells), they 

lose dependence on stromal cell contact.  This loss of stromal cell influence is 

accompanied by a decrease in c-myb expression, a corresponding decrease in 

proliferation, an inhibition of progression through the cell cycle, and rearrangement of 

the D-J loci of the heavy chain gene indicative of maturation.   This suggests that c-myb 

expression may be one of the many ways that stromal cells guide immature B cells 

through maturation and differentiation. 
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ABSTRACT 
 

The expansion and maturation of a finite quantity of pluripotient stem cells into 

differentiated progeny is termed hematopoiesis.  Pluripotent stem cells divide and 

mature into all blood cell types.  Typically, stem cells are relatively unresponsive to 

cytokine influence because their proliferation and differentiation must be restrained in 

order to prevent stem cell depeletion.  The stem cell compartment must maintain stable 

numbers of highly proliferative progenitor cells and must produce progeny capable of 

maturation into end effector cells.  The molecular events that regulate cell fate 

determinations in hematopoietic cells are largely uncharacterized.  One protein family 

important in regulating cell fate decisions is the myb family of proteins.  In particular, c-

myb has been shown to be critical in the development of erythroid and myeloid 

precursors.  Much of the erythroid and myeloid work has been accomplished using an in 

vitro cell model since in vivo mutations of c-myb result in embryonic lethality.  Less 

work, however, has been done on the role of c-myb in the normal development of 

lymphocytes due to the lack of an appropriate model of B cell development.   Studies in 

this report describe development of a system in which c-myb expression in pro-B cells 

can be manipulated while pro-B cells remain in co-culture with stromal cells.  In addition, 

this work determines that c-myb is an intracellular regulator of proliferation and 

differentiation in early B cell progenitors, but does not impact their cell survival.  These 

data clearly establish the role of c-myb in the development of stromal-cell dependent 

pro-B cells.   
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INTRODUCTION 
 

Hematopoiesis is the process by which a limited number of multipotient stem 

cells mature and expand to form differentiated progeny.  The majority of stem cells are 

quiescent and relatively unresponsive to cytokine influence.  The proliferation and 

differentiation of stem cells is tightly regulated in order to prevent exhaustion of the stem 

cell compartment.  The function of the stem cell compartment is two-fold: maintenance 

of stable numbers of multipotent progenitor cells and differentiating into mature effector 

cells having a finite lifespan (Till and McCulloch, 1961; Metcalf and Moore, 1971).  In 

order for stem cells to mature into effector cells, they must enter the cell cycle after 

extrinsic stimulation by cytokines (Bradford, 1997).  After entering the cell cycle, the 

stem cell progresses through a highly proliferative, cytokine responsive progenitor cell 

stage.  Progenitor cells undergo a sequence of genetic expression and repression that 

affects self-renewal and lineage specific differentiation.  Molecular mechanisms that 

regulate self-renewal and differentiation of developing hematopoietic cells have not 

been well defined.   

One family of proteins known to modulate lineage specific events in 

hematopoiesis is the Myb family of proteins.  Myb family members are DNA binding 

proteins that play critical roles in cell fate determinations and maintenance of 

differentiation status in many developmental systems (Gewirtz and Calabretta, 1988; 

Clarke MF, 1988; Patel G, 1993; Mucenski ML, 1991).  Myb family members have been 

highly conserved throughout evolution, and have been found in most every organism 

studied.   Three related Myb gene family members have been identified in vertebrates; 

these include A-myb, B-myb, and C-myb.  In particular, the proto-oncogene c-myb is 

essential for definitive hematopoiesis in murine models (Mucenski, 1991).   The c-myb 

proto-oncogene encodes a 75 kDa nuclear protein that binds to a consensus sequence 

of DNA [(T/C)AAC (T/G)G ] (Gonda, 1983, Westin, 1982 and Bidenkapp, 1988).  C-myb 

is expressed at high levels in immature, highly proliferative hematopoietic cells, but 

levels of C-myb decrease as immature cells differentiate into more mature progeny 

(Westin, 1982; Gonda and Metcalf, 1984; Craig and Bloch, 1984; Sheiness and 

Gardinier, 1984).   C-myb facilitates self-renewal of pro-myelocytes by impeding exit 
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from, and maintaining these cells in, cell cycle.  Overexpression of c-myb or failure to 

downregulate c-myb during development is thought to lead to myelocytic leukemia.  

These data suggest that downregulation of c-myb is required for terminal differentiation 

of myeloid cells. However, the role of c-myb in developing B lineage cells has not been 

investigated.   

B lymphocyte development occurs in the bone marrow, and is characterized by 

progressive rearrangement and expression of immunoglobulin heavy and light chain 

genes (Yancopoulos, 1986).  Newly formed B lymphocytes are a population of rapidly 

renewed cells in the bone marrow of mammals (Landreth, 1981).  The steady state 

production of B lymphocytes depends on lineage specific gene expression, alternative 

lineage gene repression, and a cascade of regulatory cytokines.  Considerable progress 

has been made in defining both intracellular and extracellular signals that regulate the 

development of B lymphocytes.  However, many other events regulating B lymphocyte 

development are poorly understood.  In particular, the role of the proto-oncogene c-

myb, which is expressed in highly proliferative, early pro-B cells, is not clearly defined.  

The function of c-myb is well defined in myeloid cell development, and progress is being 

made in determining myb’s role in T cell development (Allen, 1999, Westin, 1982, 

Mucenski, 1991, Gewirtz and Calabretta, 1988).  However, the role of c-myb in B 

lymphocyte development is virtually unknown.  B lymphocyte development is a 

complicated system to investigate because early B lymphocytes do not develop 

independently.  Instead, they develop in conjunction with non-hematopoietic stromal 

cells located in the bone marrow.   

Previous data from this lab demonstrated that stromal cells regulate c-myb 

expression in pro-B cells.  In this manuscript, we further delineate the role of c-myb in 

the survival, proliferation, and differentiation of pro-B cells.  Our studies aimed to 

determine whether c-myb is an intracellular regulator of survival, differentiation, and/or 

proliferation in pro-B cells.  Downregulation of c-myb in C1.92 pro-B cells resulted in 

genotypic maturation, progressive immunoglobulin gene rearrangements, and impaired 

proliferative capacity.  However, c-myb downregulation in pro-B cells did not directly 

impact cell survival.  Taken together, these data demonstrate that proliferation and 
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differentiation of pro-B cells depends on expression and regulation of c-myb whereas 

pro-B cell survival is c-myb independent. 

 

MATERIALS AND METHODS 
 

Cell Lines and Cytokines.  A panel of pro-B cell lines was derived from normal Balb/C 

mice.  Fetal livers were removed from murine embryos at day 14 of gestation.  Fetal 

livers were dispersed into single cell suspension and the non-adherent cells were 

passaged in the presence of a cloned bone marrow stromal cell line, S10, and 50U/mL 

of recombinant murine interleukin-7 (IL-7).  The fetal liver cells were then cloned at 

limiting dilution in the presence of S10 and IL-7.  One of the resulting clones, C1.92, is 

utilized in these studies.  C1.92 cells are maintained in α-modification of Eagle’s 

medium (α-MEM) supplemented with 5% fetal calf serum (Summit), 1% 

penicillin/streptomycin, 1% l-glutamine, and 0.1% 2-Mercaptoethanol in the presence of 

S10 and 50U/mL of IL-7.  S10 stromal cells were a generous gift from Dr. Kenneth 

Dorshkind (University of California).  Isolation and biological characteristics of S10 have 

been previously described in detail (Johnson, 1986).  S10 cells were maintained in α-

MEM media supplemented as described above and grown to confluence in 75 cm2 

flasks.  They were passaged weekly by trypsinization (0.25%, GIBCO). 

Downregulation of C-myb.  C-myb expression was abrogated using two methods.  

Non-specific downregulation was accomplished using DMSO (dimethylsulphoxide).  

DMSO was added directly to culture conditions at varying concentrations including 

0.5%, 0.75%, 1.0%, 1.25% and 1.5%.  Cultures were treated for varying times:  2 hours, 

6 hours, 12 hours, 24 hours, 48 hours, 72 hours, 96 hours, and 144 hours.  Specific C-

myb downregulation was accomplished by using antisense oligonucleotides 

complementary to the start site of the c-myb mRNA sequence.  Antisense 

oligonucleotides (5’-GTTGAGTGGGGCGCCCATCATCGC-3’ with phosphorothioated 

backbone) (Biosource International and Integrated DNA Technologies, Inc.) were added 

to pro-B cell cultures at a concentration of 14 µM for 60 hours.  As a control, scrambled 

oligonucleotides (5’-CGGTCCTCACGGTAGCAGGTGTCG-3’ with phosphorothioated 

backbone) were also added to pro-B cell cultures.  Scrambled oligonucleotides 
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contained the same A/T and G/C content as antisense oligos.  PBS was also added to 

cultures as a control since antisense and scrambled oligonucleotides were reconstituted 

in PBS.  

Cell Counts and Viability assay.  After treatment with DMSO or oligonucleotides, 

C1.92 cells were removed from culture, diluted with an equal volume of 0.4% trypan 

blue (Sigma), and counted in a hemacytometer.  Both total cells and viable cells in 

culture were calculated from hemacytometer counts.   

RNA Isolation.  After culture with DMSO or oligonucleotides, 2x106 C1.92 cells were 

harvested, washed with PBS, and frozen in liquid nitrogen.  Total RNA was extracted 

using the SNAP RNA isolation kit (Invitrogen).  After isolation, RNA was quantitated 

using a spectrophotometer and quartz cuvettes.  0.1 µg of total RNA was amplified 

simultaneously for c-myb and GAPDH using a one-step RT-PCR reaction (Qiagen).  0.1 

µg of RNA was combined with 1x Qiagen OneStep RT-PCR Buffer, 400 µM of each 

dNTP, 0.5 µg c-myb sense primer, 0.5 µg c-myb antisense primer, 1µg GAPDH sense 

primer, 1 µg GAPDH antisense primer, 2 µl Qiagen OneStep RT-PCR Enzyme Mix, 5 

units RNase inhibitor, and water to a total volume of 50 µl.   C-myb specific primers 

used were: (sense primer) 5’-GAGCTTGTCCAGAAATATGGTCCGAAG-3’ and 

(antisense primer) 5’-GGCTGCCGCAGCCGGCTGAGGGAC-3’ (Biosource 

International).  GAPDH amplification was used as a control for template integrity and 

normalization of data utilizing the following primers: (sense primer) 5’-

TGAAGGTCGGTGTGAACGGATTTGG-3’ and (antisense primer) 5’-

ACGACATACTCAGCACCGGCCTCAC-3’ (Biosource International).  RT-PCR 

amplifications were performed in a GeneAmp PCR System 9700 (Perkin Elmer Applied 

BioSystems).  Reverse transcription was carried out at 50oC for 30 minutes.  DNA 

polymerase was activated by heating for 15 minutes at 95oC.   Amplification was 

performed for 30 cycles with denaturation at 94oC for 30 seconds, annealing at 60oC for 

1 minute, and extension for 1 minute at 72oC with an additional 10 minute, 72oC 

extension added to the final cycle. PCR products were separated on 2% ethidium 

bromide stained gels and visualized using Eagle Eye (Stratagene).    

Protein Analysis.   To evaluate the influence of DMSO or antisense oligonucleotides 

on C-myb protein levels, C1.92 cells were maintained in normal culture conditions (in 
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the presence of S10 and IL-7) or in cultures to which 14µM antisense oligonucleotides 

or varying concentrations of DMSO were added.  Protein was isolated from 1x106 pro-B 

cells in Laemmli’s buffer and separated on 8% denaturing polyacrylamide gels.  Gels 

were transferred to PVDF membrane and blocked for 30 minutes in PBS with 5% dry 

milk.  Blots were than probed with a primary monoclonal mouse C-myb antibody (Clone 

1.1, Upstate Biotechnology, 1 µg/ml) or monoclonal mouse GAPDH (glucose-aldehyde-

phosphate dehydrogenase) antibody (Research Diagnostics, 0.5 µg/ml) in PBS with 3% 

milk overnight at 4oC.  Blots were then washed with one change of water and probed 

with a goat α-mouse Ig-HRP as the second antibody for 2 hours at room temperature.  

Blots were washed with one quick wash of water, one 15 minute wash of TBS with 0.1% 

Tween, and then 5 vigorous washes in water at room temperature for one minute.  ECL 

plus (Amersham) was used as a chemiluminescent reagent and then blots exposed to 

Kodak X-OMAT film.  Densitometry analysis was done using Eagle Eye Software. 

Cell Depletion.  G10 Sephadex was used to deplete adherent stromal cells from pro-B 

cell suspensions.  Sterile G10 columns were prepared as described by Kincade et al 

(1981).  Sterile 10 ml syringe barrels were plugged with glass wool, autoclaved, and 

filled with 8 mls of sterile pre-swollen G10 Sephadex.  Columns were washed with 

sterile PBS and equilibrated with 20 mls warm media.  Two mls of media containing 

5x106 C1.92 cells were applied to each column.  Columns were incubated at room temp 

for 30 minutes.  Cells were then washed from columns with 30 mls of warm media. 

DNA Isolation and Ig gene rearrangment status.  DNA was isolated from 1x106 

C1.92 cells using the Easy-DNA isolation kit (Invitrogen).  DNA was RNAse treated to 

remove contaminating RNA and resuspended in 100 ml of Tris-EDTA (pH 8).  500 ngs 

of DNA were used in an RT-PCR reaction (Promega) to determine immunoglobulin (Ig) 

gene rearrangement status.  The Ig heavy chain is assembled from a variable (V) 

region, a diversity (D) region, a joining (J) region, as well as a constant region.  These 

loci are separated from one another in the germline by intervening sequences and are 

joined together upon B cell differentiation.  Ig heavy chain gene rearrangement status 

was determined using primer sets that are complementary to the intervening sequence 

between the V and D section of the heavy chain gene (using primers DFL16.1; 1227 bp 

amplicon) and between the D and J section of the heavy chain gene (using primers JH1; 
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472 bp amplicon).  The sequence of primer sets was as follows: DFL16.1 (sense primer) – 

5’-GCCTGGGGAGTCACTCAGCAGC-3’;  

(antisense primer) – 5’-GTGTGGAAAGCTGTGTATCCCC-3’ and  

JH1  (sense primer) - 5’- CCCGGACAGAGCAGGCAGGTGG-3’ and  

(antisense primer) –5’-GGTCCCTGCGCCCCAGACA-3’.  Amplification was performed 

for 35 cycles with denaturation at 95oC for 1 minute, annealing at 58oC for 3 minutes, 

and extension for 4 minutes at 72oC with an additional 15 minute extension added to the 

final cycle.  Loss of a DFL16.1 or a JH1 amplicon was indicative of gene rearrangement.  

DNA from identically prepared S10 was used to confirm germline configuration.   

GAPDH ((sense primer)5’-TGAAGGTCGGTGTGAACGGATTTGG-3’ (antisense primer) 

5’-ACGACATACTCAGCACCGGCCTCAC-3’)) amplification was used as a control for 

template integrity and normalization of data.  PCR products were separated on 2% 

ethidium bromide stained gels and visualized using Eagle Eye (Stratagene).  

Proliferation assay.  Following culture with DMSO or oligonucleotides, 1x105 viable 

C1.92 cells were allocated in 96 well plates coated with S10 and 200 µl of α-MEM 

media.  Cells were cultured over night for 18 hours, and then pulsed with 1 µCi 3H-

TdR/well.  After 6 more hours of culture, cells were harvested onto glass wool fiber 

strips with an automated cell harvester.  Radioactive incorporation was determined by 

liquid scintillation counting in an aqueous fluor (Biosafe-II).  Each treatment was 

repeated in triplicate.    

Cell Cycle Analysis.  C1.92 cells were cultured with DMSO or oligonucleotides as 

previously described.  1x106 cells were fixed in 70% EtOH (at –20oC) and treated with 

20 µg RNase A (Sigma) at 37oC for 30 minutes.  Cells were then stained with 50 µg/mL 

propidium iodide (PI) (Sigma) to evaluate DNA content.  PI stained cells were evaluated 

using a flow cytometer (FACScan; Becton Dickinson) and analyzed using ModFit 

Software. 

Fluorescent Staining.  For surface Ig, flt-3, BP-1, HSA (CD24), and CD43 staining, 106 

C1.92 cells were harvested after being cultured with PBS, scrambled oligonuclotide, or 

antisense olignucleotide for 0 or 60 hours.  Cells were washed with ice-cold PBS 

containing 0.1% heat inactivated fetal bovine serum (PBS/FBS). Cells were aspirated to 

dryness, resuspended in 25 µl of PBS and stained with 1 µg/ml FITC conjugated 
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primary antibody (or a corresponding isotype) for 30 minutes at 4oC.  Cells were then 

washed twice with PBS/FBS and resuspended in 500 ml of PBS and 500 ml of 

paraformaldehyde buffer (2%).   Samples were analyzed using a flow cytometer 

(FACScan; Becton Dickinson) and WinMidi software. 

 

RESULTS 
 

Effect of DMSO on C-myb Expression in Pro-B Cells.  DMSO treatment (Collins, 

1978; Westin, 1982) was utilized to downregulate C-myb levels in pro-B cells while 

allowing them to remain in the presence of stromal cells.  C1.92 cells were cultured with 

several different concentrations of DMSO to determine optimal concentrations for c-myb 

downregulation.  C1.92 cells were cultured with 0%, 0.5%, 0.75%, 1.0%, 1.25%, and 

1.5% DMSO for 2 hours, 6 hours, 12 hours, 24 hours, 48 hours, 72 hours, 96 hours, and 

144 hours.  A dose dependent response to DMSO was observed.  C-myb protein levels 

were not altered after 24 hours of culture with the lowest concentrations of DMSO.  

However, 24 hours of culture with the highest DMSO concentration (1.5%) resulted in 

undetectable C-myb protein expression in pro-B cells.  In order to avoid any toxicity to 

pro-B cell cultures, C1.92 cells were treated with moderate levels of DMSO and 

evaluated at 48, 72, and 96 hours post treatment.  After 72 hours of culture, C.192 

treated with 0.5% DMSO had a 15% reduction in C-myb protein while pro-B cells 

treated with 1.0% DMSO had a 50% reduction in C-myb expression.  Within 96 hours C-

myb protein expression was almost undetectable in cultures treated with 1.0% DMSO, 

but was still present in pro-B cells cultured with 0.5% DMSO (figure 1).   

 

DMSO Treatment Does Not Decrease Cell Viability.   After treatment with DMSO, cell 

viabilities were assessed using trypan blue exclusion.  C1.92 cells were cultured with 

moderate concentrations of DMSO, 0.5% and 1.0% DMSO, for 48, 72, and 96 hours.  

As discussed above, there was a decrease in C-myb protein in C1.92 cells treated with 

1.0% DMSO within 72 hours and levels were almost undetectable by 96 hours.  

However, there was no change in viabilities of treated or untreated pro-B cells (figure 2).  
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Figure 1.  Effect of DMSO on C-myb Expression in Pro-B Cells.   C1.92 cells were 

treated with culture medium alone, medium containing 0.5% DMSO, or medium 

containing 1.0% DMSO for 48, 72, or 96 hours.  106 live C1.92 cells were harvested and 

C-myb protein levels were determined by Western Blot analysis.  Data is shown as C-

myb protein density as a percentage of untreated controls.  Data is representative of 3 

replicate experiments.   
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Figure 2.  DMSO Treatment Does Not Decrease Cell Viability.  C1.92 cells were 

treated with culture medium alone, medium containing 0.5% DMSO, or medium 

containing 1.0% DMSO for 48, 72, or 96 hours.  Cell viability of both treatment groups 

was then determined using trypan blue exclusion.  Data presented is one of 3 replicate 

experiments. 

 

 

 



 89

Non-Specific Inhibition of C-myb Results in Decreased Pr-B Cell Expansion in 

Culture.  After treatment with DMSO, C1.92 cells were enumerated to assess total 

number of cells in culture.  C1.92 cells left untreated or treated with 0.5% DMSO 

expanded in culture over the experimental timecourse.  However, as shown in figure 3, 

C1.92 cells with downregulated C-myb expression (by treatment with 1.0% DMSO) 

expanded less in culture.   

 
Downregulation of C-myb is Associated with Ig Gene Rearrangement.  C-myb 

downregulation has been associated with the maturation and differentiation of myeloid 

cells.  In order to determine if C-myb was involved with progression through the B 

lineage pathway, gene rearrangement status of the Ig heavy chain gene in C1.92 cells 

was evaluated.  Prior to any treatment regime, C1.92 cells have both the D-J and V-DJ 

segments of the Ig heavy chain gene in germline configuration (figure 4, 0 hour), and 

they remain germline throughout the entire culture period.  C1.92 cells were cultured 

with 1.25% DMSO for 24 or 48 hours. After treatment, C1.92 cells were removed from 

culture and depleted of any adherent stromal cell contamination.  This was to ensure 

that S10 DNA, which is in germline configuration, would not contaminate C1.92 DNA.  

After culture for 24 hours, pro-B cells cultured with 1.25% DMSO rearranged genes at 

the D-J loci.  Within 48 hours, genes at both the D-J and V-DJ loci were rearranged 

(figure 4, 1.25% DMSO).  Gene rearrangement also occurred in C1.92 cells treated with 

1.0% DMSO, however 144 hours of culture with DMSO was necessary to induce gene 

rearrangement.   In untreated control cultures, gene rearrangement was not observed.  

As a control, GAPDH expression was evaluated.  GAPDH was unchanged in all 

treatment groups.  This indicates that genotypic maturation occurs after C-myb 

downregulation in pro-B cells.   
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Figure 3. Inhibition of C-myb Results in Decreased Pro-B Cell Expansion in 

Culture.  C1.92 cells were cultured for 48, 72, or 96 hours in tissue culture media alone, 

in media containing 0.5% DMSO, or in media containing 1.0% DMSO.  Cell recovery 

and cell viability were determined.  Data shown is mean and SEM of 3 replicate 

experiments. 
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Figure 4.   Downregulation of C-myb is Associated with Pro-B Cell Differentiation.   

C1.92 cells were treated with cell culture medium alone or medium containing 1.25% 

DMSO for 24 or 48 hours.  DNA was isolated from 106 pro-B cells.  RT-PCR 

amplification was performed using primers designed to detect gene rearrangement, as 

well as GAPDH primers to check template integrity.  Data from one of 3 replicate 

experiments is shown. 
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Figure 5.  Stromal Cell C-myb Levels Are Not Altered By DMSO Treatment.  Non-

confluent flasks of S10 stromal cells were treated with 1.5% DMSO for 48 hours.  After 

48 hours of DMSO treatment, C-myb protein expression was examined by western blot 

analysis.  Data from one of 3 experiments is presented. 
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C-myb Downregulation Results in Cell Surface Expression of Immunoglobulin but 

Not in Other Phenotypic Changes.  In addition to genotypic alterations, B cell 

maturation is accompanied by several phenotypic alterations.  After immunoglobulin 

heavy chain gene rearrangement, surface Ig expression is an indicator of progression 

through the B lineage pathway.  Under normal culture conditions, C1.92 cells do not 

express cell surface immunoglobulin; C1.92 cells are CD43hi, CD24lo, CD45Rlo, flt-3lo, 

and sIg-.  C1.92 cells treated with 0.5% DMSO remained sIg-.  However, pro-B cells 

treated with 1.0% DMSO that exhibited downregulation of C-myb had an increase in the 

expression of surface immunoglobulin (sIg) as detected by fluorescent staining.   In 

addition to surface Ig expression, alterations in several other cell surface molecules 

have been correlated with stages in B cell development.  These changes include 

increased expression of flt-3, CD24 (Heat Stable Antigen), BP-1, and CD45R.   C1.92 

cells treated with 0.5% and 1.0% DMSO exhibited no alterations in these cell surface 

molecules.  No changes in BP-1, CD24, CD45R, or flt-3 were observed after 96 hours of 

treatment with 1.0%.   These data indicate that downregulation of C-myb results in 

rearrangement of immunoglobulin heavy chain genes, expression of immunoglobulin on 

the cell surface, and pro-B cell maturation, but not in changes of other cell surface 

molecules. 

 

Stromal Cell Alterations Following DMSO Treatment.  Several changes were 

observed in C1.92 cells after treatment with DMSO.  However, since they are grown in 

co-culture with stromal cells, it was necessary to ensure that DMSO was not also 

affecting stromal cell characteristics.  Therefore S10 stromal cells were also treated with 

media containing 1.5% DMSO, the highest concentration used for any of these 

experiments, for 48 hours.  S10 stromal cells do not normally express C-myb mRNA or 

protein.  Culture with DMSO for 48 hours did not induce C-myb expression (figure 5). In 

addition, the cytokine profile of S10 stromal cells was examined after culture with 1.5% 

DMSO for 48 hours.  RT-PCR showed little to no changes in stromal cell expression 

levels of IGF-1 or IL-7 (figures 6 and 7).  Although there appears to be a slight increase 

in IL-7 mRNA following DMSO treatment, a proliferation assay showed no increase in 

functional IL-7 protein.  PCR of DNA from DMSO treated stromal cells revealed that the 
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Ig genes of stromal cells remained in germline configuration (figure 8).  These data 

indicate that DMSO treatment alters c-myb expression and Ig gene rearrangement 

status in pro-B cells but not in stromal cells.  And, stromal cells treated with DMSO 

neither have alterations of B cell specific cytokines (IL-7 and IGF-1) nor do they exhibit 

an impaired ability to support pro-B cells in culture.  Therefore, the effects of DMSO in 

the pro-B cell/stromal cell culture are specific to B cell progenitors.   

 

Regulation of C-myb Expression in Pro-B Cells Using Antisense 

Oligonucleotides.   Although DMSO treatment was effective at downregulating C-myb 

in pro-B cells, the mechanism by which this is accomplished is non-specific.  In order to 

specifically downregulate C-myb expression in pro-B cells, antisense oligonucleotides 

were utilized.  Antisense oligonucleotides were cultured with pro-B cells for 60 hours.  

As controls, pro-B cells were also cultured with a scrambled sequence of 

oligonucleotides.  The scrambled oligos had the same G/C and A/T content as did 

antisense oligos, however the nucleotides were in random order.  This was used to 

ensure that any effects observed were due to specificity of antisense oligonucleotides 

and not due to non-specific oligonucleotide effects.  In addition, cultures were also 

treated with PBS since this served as the solvent for reconstituting antisense and 

scrambled designed complimentary to the start site of the c-myb mRNA.  Pro-B cells 

were cultured with stromal cells and 14 µm oligos.  After 60 hours of treatment C-myb 

protein was significantly decreased in cultures treated with antisense oligonucleotides 

but was unchanged in scrambled or PBS treated cultures (figure 9).   
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Figure 6.  DMSO Treatment of Stromal Cells Does Not Alter IGF-I Expression.  S10 

stromal cells were treated with DMSO for 48 hours.  RNA was isolated from treated 

cells and RT-PCR was performed.  GAPDH was amplified as an internal control.  Data 

from one of three experiments is shown. 
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Figure 7.  DMSO Treatment of Stromal Cells Does Not Alter IL-7 Expression.  S10 

stromal cells were treated with DMSO for 48 hours.  RNA was isolated from treated 

cells and RT-PCR was performed.  GAPDH was also amplified as an internal control.  

Data from one of three experiments is pictured. 
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Figure 8.  Stromal Cell Ig Gene Rearrangement Status is Not Altered by DMSO 

Treatment.  Non-confluent flasks of S10 stromal cells were treated with 1.5% DMSO for 

48 hours.  After 48 hours of DMSO treatment, DNA was isolated from stromal cells and 

PCR amplified to detect gene rearrangement status.   
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Figure 9.  Regulation of C-myb Expression in Pro-B Cells Using Antisense 

Oligonucleotides.   C1.92 cells were grown in medium with S10 and IL-7 for 24 hours.  

14µM c-myb scrambled oligonucleotides, 14µM c-myb antisense oligonucleotides, or 

saline solvent were then added to the culture for 60 hours.  After 60 hours, 106 live cells 

were collected and C-myb protein analyzed by Western Blot.  Data shown is one of 5 

representative experiments. 
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Antisense Oligonucleotide Treatment Does Not Decrease Cell Viability.    As with 

DMSO, the viability of C1.92 cells after treatment with oligonucleotides was examined 

using trypan blue exclusion.  Downregulation of C-myb by culture with antisense 

oligonucleotides resulted in no changes in cell survival.    These data indicated that pro-

B cell survival was not altered by specific decreases in C-myb expression (figure 10).    

 

Specific Inhibition of C-myb Results Decreased Pro-B Cell Expansion in Culture.  

After treatment with oligonucleotides, C1.92 cells were enumerated to  

assess total number of cells in culture.  C1.92 cells treated with PBS or treated with 

scrambled oligonucleotides expanded in culture over the experimental timecourse.  

However, as shown in figure 11, C1.92 cells with downregulated C-myb expression (by 

treatment with antisense oligonucleotides) expanded less in culture.   

 
Inhibition of C-myb Results in a Decreased Response to IL-7.  Since C-myb 

downregulation by antisense oligonucleotides inhibited pro-B cell expansion, the ability 

of C1.92 cells to respond IL-7, their major proliferative stimulus, was evaluated.  C1.92 

cells were treated either with PBS, scrambled oligonucleotides, or antisense 

oligonucleotides for 60 hours.  After 60 hours of treatment cells were washed and plated 

in S10 coated-96 well plates, with or without IL-7 as indicated in figure 12.  Pro-B cells 

treated with PBS or scrambled oligonucleotides proliferated in response to IL-7 

exposure.  However, pro-B cells treated with antisense oligonucleotides nucleotides 

exhibited a decreased proliferative response following IL-7 exposure (figure 12, 

antisense).   

 

 

 

 

 

 

 

 



 100

 

 
 
 
 

PB
S

Sc
ra

mb
led

0 hour

An
tis

en
se

PB
S

Sc
ra

mb
led

60 hours
An

tis
en

se

0

25

50

75

100

Pe
rc

en
t o

f c
el

ls
 v

ia
bl

e

 
 

Figure 10.   Antisense Oligonucleotide Treatment Does Not Decrease Cell 

Viability.  C1.92 cells were cultured for 60 hours in media alone or in media containing 

PBS, 14 µM c-myb scrambled oligonucleotides, or 14 µM c-myb antisense 

oligonucleotides.  Cell viability of both treatment groups was then determined using 

trypan blue exclusion.  Data shown is representative of 5 experiments. 
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Figure 11. Inhibition of C-myb Results in Decreased Pro-B Cell Expression in 

Culture.  C1.92 cells were cultured for 60 hours in tissue culture medium alone or in 

medium containing PBS, 14µM c-myb scrambled oligonucleotides, or 14 µM c-myb 

antisense oligonucleotides.  Cell recovery and cell viability was determined.  Data is 

presented as one of 5 experiments. 
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Figure 12. Inhibition of C-myb Results in a Decreased Response to IL-7.  C1.92 

cells were cultured for 60 hours in tissue culture medium containing PBS, 14µM c-myb 

scrambled oligonucleotides, or 14 µM c-myb antisense oligonucleotides.  Cell recovery 

and cell viability was determined.  After treatment, 105 C1.92 cells were cultured on S10 

with or without IL-7 for 18 hours in 96 well plates.  Cells were pulsed with tritiated 

thymidine following an 18 hour exposure to IL-7.   Data is presented as mean and SEM 

of 3 replicate wells.  Experiments were conducted a minimum of 3 times. 
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DISCUSSION 

 
Although c-myb has been shown to be critical in the development of erythroid 

and myeloid precursors, less work has been done on the role of c-myb in the normal 

development of lymphocytes.  Because c-myb deletion in vivo results in embryonic 

lethality, it is difficult to investigate c-myb regulation in developing B lymphocytes.  Much 

of the erythroid and myeloid work has been accomplished using an in vitro cell model.  

Therefore, an appropriate model of B cell development must be utilized to determine the 

role of c-myb in B lymphopoiesis.  The aim of this work was to develop a system in 

which c-myb expression in pro-B cells could be downregulated while they remain in co-

culture with stromal cells.  In addition, this work will determine whether c-myb is an 

intracellular regulator of survival, proliferation, and/or differentiation in early B cell 

progenitors.  This project demonstrates that the addition of DMSO or antisense 

oligonucleotides to pro-B cell cultures results in c-myb downregulation, even in the 

presence of stromal cells.  These data also clearly establish the role of c-myb in the 

proliferation and differentiation of stromal-cell dependent pro-B cells.   

Expression and regulation of the proto-oncogene c-myb are critical events in the 

maturation of myeloid lineage cells.  Myeloid differentiation has primarily been studied 

using tumor cell models comprised of cells blocked in a specific hematopoietic 

differentiation state.  The HL-60 tumor cell line has been an in vitro model widely utilized 

to dissect the processes involved in myeloid cell development.  HL-60 cells are a human 

leukemic cell line established from the peripheral blood leukocytes of a patient with 

acute promyelocytic leukemia.  HL-60 cells are primarily promyelocytes arrested in an 

immature proliferative state.  Previous data from Collins et al had demonstrated that 

addition of DMSO to HL-60 cell cultures would induce terminal differentiation of the pro-

myelocytes into mature neutrophils and monocytes (Collins, 1977).  The mechanism 

responsible for inducing maturation was unknown.  In 1982, Westin et al further 

investigated the differentiation of HL-60 cells and discovered that the maturation of pro-

myelocytes correlated with a significant decline in c-myb expression.  This finding laid 

the foundation to further expand the role of c-myb in myeloid cell development.   
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In 1988, Clark et al demonstrated that constitutive expression of exogenously 

introduced c-myb inhibited erythroid differentiation in a murine erythroleukemia cell line 

(Clark, 1988). McClinton and collaborators further expanded Clarke’s findings.  They 

investigated the effects of ectopic C-myb over expression at different times during 

differentiation using a Friend virus-infected MEL cell line.  The MEL cell line is an early 

erythroid precursor model that can be induced to differentiate into mature erythroid cells 

using chemical inducers, including erythropoietin and DMSO.  During early and late 

stages of MEL cell differentiation, c-myb mRNA is biphasically downregulated.  

(Kirsch,1986 and Ramsay, 1986).  McClinton et al introduced an inducible 

metallothionein promoter driven c-myb gene into MEL cells and expressed c-myb during 

different phases of differentiation. Expression of c-myb during the early phase of 

differentiation did not have an affect on MEL cell maturation, indicating that early down-

regulation of c-myb is not necessary for differentiation.  However, if c-myb was 

continuously expressed during the entire induction phase, differentiation was completely 

blocked indicating that late down-regulation of c-myb is critical for terminal differentiation 

of MEL cells (McClinton, 1990).  Recently, in 2001, Chen and Bender demonstrated that 

MEL cells could be induced to differentiate into a more mature cell by introducing an 

inducible dominant interfering myb allele (MEnT).  Introduction of MEnT in MEL cells 

resulted in the cessation of proliferation and initiation of differentiation without chemical 

induction.  These experiments demonstrate that c-myb downregulation alone (in MEL 

cells) is sufficient to induce terminal differentiation (Chen and Bender, 2001). Taken 

together these data supported a critical role for c-myb in myeloid and erythroid 

hematopoiesis: down regulation of c-myb is required for terminal differentiation of 

myeloid and erythroid cells.  

We previously developed a cloned fetal liver pro-B cell line that is dependent on 

stromal cells and IL-7 for continued survival and proliferation (Gibson, 1996).    This 

cloned pro-B cell line, termed C1.92, remains dependent on the presence of stromal 

cells for survival and proliferation, does not form tumors, and reconstitutes B 

lymphocytes in severe combined immunodeficient (SCID) mice.  However, studies of 

the pro-B cell clone show it is characterized by rapid and continuous proliferation.  We 

noted this continuously growing pro-B cell line was characterized by unusually high 
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levels of c-myb expression.  Culture of C1.92 pro-B cells without stromal cells resulted 

in decreased c-myb expression.  However, C1.92 cells are dependent on stromal cell 

adhesion contacts for survival signals.  Due to decreased cell viability, culture without 

stromal cells is not the best way to investigate the role of c-myb in B cell development.  

Previous work by Westin indicated that c-myb in myeloid cells could be non-specifically 

downregulated after culture with DMSO.  Although the mechanism by which DMSO 

decreases c-myb expression is not known, it is nevertheless an effective method to alter 

c-myb levels.  To determine if this would work with pro-B cells, C1.92 cells were co-

cultured with S10 stromal cells and exogenously added IL-7.  DMSO was then added to 

pro-B cell cultures at varying concentrations.  C1.92 cells exhibited a dose-response 

decrease in C-myb expression after treatment with DMSO.  C-myb protein expression 

was only slightly altered after 48 hours of culture with 0.5% DMSO but was 

undetectable in pro-B cells cultured with 1.25% or 1.5% DMSO.  This approach allowed 

us to downregulate C-myb expression in pro-B cells while allowing them to remain in co-

culture with stromal cells.  However, since this is a co-culture system, it was necessary 

to ensure that DMSO treatment was not altering stromal cells.  S10 stromal cells do not 

express mRNA or protein for c-myb and they retain Ig heavy chain genes in germline 

configuration.  After treatment with 1.5% DMSO for 48 hours, S10 stromal cells still do 

not express c-myb mRNA or protein and their Ig heavy chain genes remain in germline 

configuration.  In addition, the cytokine profile of stromal cells was examined after 

DMSO treatment.  It has been previously reported in the literature that DMSO treatment 

causes alterations of IL-6 message.  It was necessary to determine if DMSO was 

altering other cytokines produced by stromal cells that may influence B cell 

development.  In particular, IGF-1 and IL-7 messages were examined because of their 

importance in pro-B cell proliferation and differentiation.  Again, S10 stromal cells were 

treated with 1.5% DMSO for 48 hours, and IGF-1 and IL-7 message were amplified by 

RT-PCR.  No significant differences in IGF-1 or IL-7 mRNA levels were seen in 

untreated S10 stromal cells compared with those treated with DMSO.  In addition, 

stromal cells treated with DMSO were still able to support pro-B cell cultures.  Pre-

treatment of S10 with DMSO did not alter the cell viability or c-myb levels of pro-B cells 

in the co-culture.  Therefore, DMSO treatment of pro-B cell/stromal cell cultures resulted 
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in significant decreases in C-myb expression in pro-B cells but did not result in 

significant alterations of the stromal cell feeder layer.  

Although DMSO treatment was found to be an effective method to downregulate 

c-myb expression, it suffers because it is non-specific.  In 1988, Gewirtz and Calabretta 

first reported the use of c-myb antisense oligonucleotides to specifically downregulate c-

myb expression (Gewirtz and Calabretta, 1988).  In the current work, antisense 

oligonucleotides complimentary to the start site of the c-myb mRNA were used.  

Antisense oligo were added to cultures of pro-B cells and stromal cells at 14 µm for 60 

hours.  After 60 hours of treatment, there was a significant decrease in C-myb protein 

as determined by Western Blot.  Therefore, a model system has been developed in 

which C-myb expression in IL-7, stromal cell dependent pro-B cells can be 

downregulated both specifically by antisense oligonucleotides and non-specifically by 

DMSO addition. This in vitro system allows us to examine the importance of c-myb in B 

lymphoid development.    

We determined whether c-myb regulated survival, proliferation, and/or 

differentiation of developing B lineage cells.  When c-myb was downregulated by 

moderate doses of DMSO (1.0%) or by antisense oligonucleotides, there was no 

change in viability of treated cells.  C-myb remained at undetectable levels in pro-B 

cells, yet they continued to survive.  These data suggested that pro-B cell survival is c-

myb independent.  

Although the pro-B cells continued to survive while c-myb was downregulated, 

we observed a marked impairment in the ability of pro-B cells to expand in culture.  

Enumerating total cells in culture after treatment with DMSO revealed that there were 

25% fewer cells in the cultures containing 1.0% DMSO than were present in untreated 

cultures.  In cultures treated with antisense oligonucleotides, there was a 50% reduction 

in the number of cells recovered after 60 hours of treatment.  Since cell viabilities were 

not decreased, the decreased number of cells in culture was not due to cell death.  For 

that reason, the proliferative potential of pro-B cells with decreased c-myb levels was 

evaluated.  Pro-B cells proliferate in response to the stromal cell derived cytokine IL-7.  

C1.92 cells were cultured with stromal cells, exogenous IL-7, and tritiated thymidine for 

24 hours.  Thymidine uptake was used as an indicator of the proliferative potential of 
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C1.92 cells.  C1.92 cells with decreased c-myb levels displayed an inability to proliferate 

in response to stromal cells and IL-7.  Therefore, pro-B cells with downregulated c-myb 

failed to expand in culture and were unable to proliferate in response to IL-7.  This 

indicates that c-myb expression in pro-B cells is necessary for maintenance of the 

progenitor cell population. 

   The B cell progenitor stage is the main proliferative compartment of developing 

B lineage cells.  As pro-B cells mature into pre-B cells, they loose some of their 

proliferative ability.  Since pro-B cells with decreased C-myb levels had a decreased 

proliferation rate, but continued to survive in culture, we wanted to determine if C1.92 

cells differentiated into pre-B cells.  Ig gene rearrangement gene status of C1.92 cells 

was evaluated.  C1.92 cells are early pro-B cells that retain both the D-J and the V-DJ 

loci of their Ig heavy chain gene in germline configuration.  Maturation into late pro-B 

cells or early pre-B cells would be indicated by rearrangement of the D-J and V-DJ loci.  

This can be detected using PCR primers complimentary to the intervening regions 

between the V, D, and J segments.  If Ig genes are unrearranged, the intervening 

sequences between the V, D, and J will be amplifiable by PCR.  However, once 

rearrangement occurs, the intervening sequences are excised out and will no longer be 

detectable by PCR.  C1.92 cells were treated with 1.25% DMSO for 24 or 48 hours.  

1.25% DMSO was used because treatment with this concentration resulted in 

undetectable C-myb protein within 48 hours.  24 hours after culture with DMSO, C1.92 

pro-B cells had rearranged the D-J segment of the Ig heavy chain gene; within 48 hours 

V-DJ rearrangement had occurred.  These data indicate that downregulation of C-myb 

is necessary for pro-B cell genotypic differentiation.  However, there are also phenotypic 

changes that correlate with B cell maturation stages.  Loss of CD43 and an increase in 

flt-3, BP-1, HSA, and sIg are indicative of B cell maturation.  However, C1.92 cells 

treated with DMSO or antisense oligonucleotides did not exhibit any change in these 

markers.  Therefore, although genotypic maturation is regulated by C-myb expression, 

phenotypic maturation is C-myb independent.  Genotypic maturation usually correlates 

with phenotypic changes.  However, these data indicate that genotypic and phenotypic 

maturation are correlative, not causative, and that C-myb regulates one aspect of 

maturation but not the other.     
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Taken together, these data establish c-myb as an intracellular regulator of 

proliferation and genotypic differentiation in IL-7, stromal cell dependent pro-B cells but 

not as a regulator of survival.  As early immature cells, pro-B cells require contact with 

stromal cells for their continued survival, proliferation, and differentiation.  These data 

suggest that pro-B cells receive survival signals directly from stromal cells.  However, 

the proliferation and differentiation of pro-B cells are regulated through stromal cell 

control of the proto-oncogene c-myb.  We previously demonstrated that stromal cell 

contact maintains a high level of c-myb expression in pro-B cells.  As pro-B cells mature 

into pre-B cells, they lose their dependence on stromal cells.  So, as pro-B cells detach 

from stromal cells, there is a decrease in c-myb expression.  This decrease in c-myb 

expression causes a decreased responsiveness to IL-7 and cessation of proliferation.  

Following a decrease in proliferative potential, genotypic maturation of pro-B cells into 

pre-B cells occurs.  Therefore, stromal cells coordinate progression through the B 

lineage pathway by regulating c-myb expression.  
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ABSTRACT 
 

 
 The differentiation of hematopoietic stem cells into B lymphocytes occurs in a 

hierarchal fashion during which stem cells develop first into lineage committed 

progenitor cells and then into precursor cells having decreased proliferative potential 

and increased lineage commitment.  To dissect the molecular events regulating this 

process, in vivo deletion of specific genes can be utilized.  This technique has been 

used to delete many target genes, including the DNA binding proteins a- and c-myb.   In 

vivo deletion of c-myb results in embryonic lethality due to a complete failure of fetal 

liver erythropoiesis.  Embryonic inactivation of the a-myb gene results in 

spermatogenesis and breast development defects.  However, the effect of embryonic 

myb deletion on B lymphopoiesis has not been described.  To better understand the 

biological function of a- and c-myb in B lymphopoiesis, we have utilized the available 

myb knockout mice.  Homozygous c-myb mutant mice display complete failure of B 

lymphopoiesis in the fetal liver of day 13.5 mice.  However, homozygous a-myb mutant 

mice appear to have no defects in B lymphopoiesis.  These results suggest that 

embryonic expression of c-myb is critical for embryonic B cell development while a-myb 

expression is not required.  
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INTRODUCTION 
 
 

The c-myb proto-oncogene, the cellular homolog of the v-myb gene, is expressed 

in highly proliferative, immature progenitor cells of the myeloid, erythroid, and lymphoid 

lineages (Klempnauer,1982).  Transcription levels of c-myb are dramatically reduced as 

progenitor cells differentiate into more mature cells (Westin et al, 1982, Gonda and 

Metcalf 1984).  C-myb expression is found in embryonic stem cells and neural tissues of 

embryonic, fetal, and adult brain (Dyson 1989, Thiele 1988).  Fibroblasts and T 

lymphocytes express c-myb transiently during cellular proliferation (Stern and Smith, 

1986, Thompson, 1986, Lipsick and Boyle, 1987).  Over-expression of c-myb has been 

associated with leukemias and neoplasms.  Human neuroectodermal and hematopoietic 

malignancies, as well as carcinomas of lung, colon, and breast, have all been reported 

to express c-myb (Alitalo, 1984; Griffin and Baylin, 1985; Thiele, 1987; Salmon 1984; 

Slamon 1986; Torelli, 1987).  The expression pattern of the c-myb gene suggested a 

role for c-myb in hematopoiesis and developmental processes.  The development of a 

mouse model with a homozygous mutant c-myb gene confirmed these data (Mucenski, 

1991).   

To better define the normal biological function of c-myb, Mucenski et al 

generated a mouse model heterozygous for a mutated c-myb gene.  Mice heterozygous 

for mutant c-myb appeared phenotypically normal after birth.  However, no c-myb null 

animals were present postnatally, suggesting that the c-myb mutation was lethal.  In 

utero examinations of animals, at day 13 of gestation, revealed that homozygous null 

embryos were indistinguishable from c-myb wildtype embryos.  They were present in 

appropriate numbers and had developed brains, kidneys, lungs, hearts, and limb buds.  

However, by day 15, mutant mice were pale in color, severely anemic, and expired in 

utero.  At days 12.5-13.5 of gestation, hematocrit levels in wild type and mutant mice 

were 35%.  By day 15.5, there was a 10-fold decrease in hematocrits of c-myb null 

mice.  Null mice had hematocrit levels of 5% whereas wild-type animals had 40%.    At 

this time in embryogenesis, the site of erythropoiesis moves from the AGM region into 

the fetal liver.  Erythrocytes derived from the AGM can be morphologically differentiated 

from fetal liver derived erythrocytes; erythrocytes from the AGM region remain 
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nucleated and are larger than those from the fetal liver.  Examination of peripheral blood 

at day 12 revealed normal numbers of nucleated erythrocytes, indicating that early 

intraembryonic erythropoiesis in the AGM was normal.  However, there was a significant 

defect in fetal hepatic erythropoiesis.   Animals exhibited a complete loss of 

erythropoiesis in the fetal liver.  This indicates that c-myb mutant mice are unable to 

switch the site of fetal erythropoiesis from the AGM region to the liver (Mucenski, 1991).  

These observations clearly establish that c-myb is responsible for the maintenance of 

myelo and erythropoiesis.  Although c-myb has been shown to be critical in the 

development of erythroid and myeloid precursors, less work has been done on the role 

of c-myb in the normal development of lymphocytes.   

C-myb is closely related to another member of the Myb gene family, a-myb.  

Unlike c-myb, a-myb is expressed in a tissue-specific fashion.  The A-myb protein is 

primarily found in breast epithelial cells of pregnant mice and in male germ cells.  A-myb 

has also been detected in ovaries, brain, and germinal center B cells (Mettus et al, 

1994, Trauth et al, 1994).  DeRocco et al showed in 1997 that mice over expressing the 

A-myb protein develop hyperplasia of the spleen and lymph nodes.  These mice 

exhibited increased DNA synthesis and a polyclonally expanded B cell population 

(DeRocco et al, 1997).  Development of a homozygous null mutant mouse deficient in 

A-myb protein further clarified the role of a-myb.  Mice homozygous for a germline 

mutation in the a-myb gene are present postnatally and appear normal at birth.  

However, during the first weeks of life, the pups lagged behind in growth appearing 

small, wrinkled, and hunched.  At 4 months of life, however, the mutant pups were 

identical to normal littermates in body size.  Male mice with a-myb gene mice were 

sterile due to a block in spermatogenesis.  Female a-myb mutant mice were not sterile 

and delivered offspring sired by wild-type or heterozygous males. However, pups born 

to a-myb null mothers failed to thrive because the mutant mother mice exhibit abnormal 

mammary function and are unable to nurse pups.   Taken together, these data suggest 

that a-myb may serve as a mediator of proliferation in certain cell types, particularly in 

spermatocytes and mammary epithelial cells (Toscani et al, 1997).  

Although the literature describes anatomic defects associated with myb mutant 

mice, B lymphopoiesis in these animals has not yet been described.  This work utilizes 
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the currently available myb knockout models to explore B lymphocyte development.  

This work demonstrates that loss of c-myb completely ablates B lymphopoiesis while 

loss of a-myb does not impact B lymphoid development.  C-myb is critical for fetal 

development of B cells whereas a-myb is dispensable.   

  

METHODS AND MATERIALS 
 
 

Mice.  C-myb mutant mice were obtained from Dr. Michael Mucenski at Children’s 

Hospital Research Foundation in Cincinnati, OH.  Generation of c-myb mutant mice has 

been described in detail (Mucenski et al, 1991).  Briefly, a vector was constructed with a 

neomycin resistance gene inserted in opposite transcriptional orientation into the sixth 

c-myb exon.  The construct was introduced, by electroporation, into stem cells and cells 

containing the construct were identified by G418 selection.  Embryonic stem cells with 

the construct were implanted into pseudopregnant female mice.  The altered c-myb 

allele was passed to progeny animals and the affect of the alteration was examined.  C-

myb mice were housed in the West Virginia Office for Laboratory Animal Resources.   

A-myb mutant mice were obtained from Dr. Premkumar Reddy at Fels Institute 

for Cancer Research and Molecular Biology, Temple University, Philadelphia PA.  

Generation of a-myb mutant mice has been described in detail (Toscani et al, 1997).  

Briefly, a targeting vector was designed in which the neomycin resistance gene was 

inserted into exon 4 of the a-myb gene.  The vector was electroporated into ES cells.  

Cells containing the disrupted a-myb gene were selected by G418 and verified by 

Southern Blot analysis.  Clones bearing a disrupted a-myb gene were used to generate 

a-myb-/- mice.  A-myb mice were housed at the West Virginia University vivarium.    

Fetal liver preparation.  Day 13.5 fetal livers were removed from wild type, 

heterozygous mutant, or homozygous null mice.  They were made into single cell 

suspensions after several passages through a 23-gauge needle.  White blood cells 

were then enumerated and underlayed with 1.5ml fetal bovine serum to remove any 

remaining tissues from suspension.  Cells were collected in a new tube and enumerated 

a second time.         
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Colony-forming assays.  Recombinant interleukin-7 (rIL-7) -induced colony formation 

was measured using culture of fetal liver cell suspensions in methylcellulose.  

Methylcellulose, with no additives, was diluted 1:1 using 1x Iscoves medium containing 

30% fetal calf serum, 2% l-glutamine, 2% penicillin/streptomycin, and 0.2% 2-

mercaptoethanol.  Triplicate 1 ml cultures were prepared in 35 mm culture dishes with 

2.5 x 105 fetal liver cells per culture and 50 U/ml rIL-7.  Control cultures with rIL-7 were 

also examined.  GM-CSF (granulocyte macrophage colony stimulating factor) induced 

colony formation was also measured in methylcellulose, prepared as described above.  

Triplicate 1 ml cultures were prepared in 35 mm culture dishes with 1 x 105 fetal liver 

cells per culture and 50 U/ml GM-CSF.  Both CFU-IL-7 and CFU-GM-CSF colonies 

were counted using a dissecting microscope after 7 days incubation at 37oC in 5% CO2.  

Colonies from CFU-IL-7 and CFU-GM were isolated and cytospin slide preparations 

were made.  Slides were stained with Jenner-Giemsa stain and morphology was 

examined to ensure that colonies were pure.   

Gender determination.  Chromosomal DNA was isolated from embryos using the 

Easy-DNA isolation kit (Invitrogen).  DNA was RNase treated to remove contaminating 

RNA and resuspended in 100 ml of Tris-EDTA (pH 8).  The DNA sequence of the Sry 

gene, which is Y chomosome specific in the mouse, was amplified using PCR.  The 

primers used for PCR were 5’-AAGCGCCCCATGAATGCATT-3’ and 5’-

TCCCAGCTGCTTGCTGATCT-3’ and the expected size of the amplified fragment was 

105 nucleotides (Han et al, 1993). 

Pro-B cell assay.  S10 stromal cells were split into 96 well plates in 50 ml α-MEM 

media the day prior to the experiment.  On the day of the experiment, fetal liver cells 

were seeded onto stromal cell layers at 50, 100, or 200 cells per well with 50 U/ml of r-

IL-7 and 125 ml α-MEM media.  IL-7 was added to pro-B cell cultures after 2 days of 

culture.  Pro-B cell cultures were incubated at 37oC in 5% CO2 for 5 days.    At 5 days, 

wells were examined and those with expanded pro-B cell colonies were counted as 

positive. 

Proliferation assay.  2.5 x 105 fetal liver cells were allocated in 96 well plates coated 

with S10 and 200 µl of α-MEM media.  Where indicated, IL-7 (50 U/ml) was added to 

the cultures.  Cells were cultured over night for 18 hours, and then pulsed with 1 µCi 3H-
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TdR/well.  After 6 more hours of culture, cells were harvested onto glass wool fiber 

strips with an automated cell harvester (Cambridge Instruments, Boston, MA).  

Radioactive incorporation was determined by liquid scintillation counting in an aqueous 

fluor (Biosafe-II; Research Products International).  Each treatment was repeated in 

triplicate.    

Genotyping of animals.  To identify wild-type, heterozygous, and homozygous mutant 

c-myb mice, PCR was utilized. Chromosomal DNA was isolated from embryos or tail 

clippings using the Easy-DNA isolation kit (Invitrogen).  DNA was RNase treated to 

remove contaminating RNA and resuspended in 100 ml of Tris-EDTA (pH 8).   PCR was 

performed with primers complimentary to sequences in c-myb exon 6 that flanked the 

inserted neomycin resistance gene.  C-myb primer sequences were as follows: (sense) 

5’-GCAAGGTGGAACAGGAAGGCTACC-3’ and (antisense) 5’-

GTGCTTCGGCGATGTGGTAATAGG-3’ (Biosource International, CA).  Primers were diluted 

from lyophilized solution to 1µg/µl in autoclaved water.    Reaction mixtures of 25 µl 

were used.  PCR mixtures were:  25 µl Stratagene Optiprime Buffer #8, 5 µl 60% 

sucrose, 1 µl 10 mM (each) dNTP, 0.5 µl Stratagene Master Mix, 0.2 µl c-myb sense 

primer, 0.2 µl c-myb antisense primer, 1.0 µl 25mM MgCl2, 0.5 µl Promega Taq, 250 ng 

genomic DNA, and water to 25 µl.  Initially, the reaction mixture was activated with a hot 

start for 2 minutes at 95oC.  Then, amplification was performed for 35 cycles with 

denaturation at 95oC for 30 seconds, annealing at 65oC for 30 seconds, and extension 

for 2 minutes at 72oC with an additional 10 minute extension added to the final cycle.  

PCR amplifications were performed in a GeneAmp PCR System 9700 (Perkin Elmer 

Applied BioSystems).  PCR products were resolved on a 2% agarose gel to identify 

amplified bands.   Expected band sizes were 200 bp (wild-type c-myb gene) or 1548 bp 

(mutated c-myb gene). 

To identify wild-type, heterozygous, and homozygous mutant a-myb mice, PCR 

was also utilized.  2 sets of PCR primers were utilized to genotype a-myb animals.  A-

myb PCR primers were complimentary to sequences in a-myb exon 4 and they flanked 

the inserted neomycin resistance gene.  In addition, neo primers were used that were 

complimentary to the inserted neomycin resistance cassette.  A-myb and Neo primers 

were obtained from Biosource International and diluted to 1 µg/µl in autoclaved water.  
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A-myb primer sequences were (sense) 5’-GTATACTTAAATTTGGGCTAATTT-3’ and 

(antisense) 5’-TAAATTTTTTCAAAAGAATATGAA-3’.  Amplification was performed for 

35 cycles with denaturation at 94oC for 1 minute, annealing at 55oC for 2 minutes, and 

extension for 3 minutes at 72oC with an additional 15 minute extension added to the 

final cycle in a Perkin Elmer 480 DNA Cycler.  The a-myb PCR reaction included 4 µl 

Promega MgCl2, 5 µl 10 x Promega Buffer, 5 µl dNTP, 1 µl sense a-myb primer, 1 µl 

antisense a-myb primer, 1 µl Promega Taq, 250 ng DNA, and autoclaved water to 50 µl.  

The expected a-myb amplicon size was 200 bp (a-myb wildtype). 

 Neo primer sequences were: 

 (sense) 5’-GATGGATTGCACGCAGGTTCTCCGG-3’ and (antisense) 5’-   

ATGGGCAGGTAGCCGGATCAAGCGT –3’.  The neo PCR reaction included 4 µl 

Promega MgCl2, 5 µl 10 x Promega Buffer, 5 µl dNTP, 1 µl sense neo primer, 1 µl 

antisense neo primer, 1 µl Promega Taq, 250 ng DNA, and autoclaved water to 50 µl.   

PCR amplifications were performed in a GeneAmp PCR System 9700 (Perkin Elmer 

Applied BioSystems).  Amplification was initiated with a 94oC hot start for 3 minutes.  

Amplification was then performed for 28 cycles with denaturation at 94oC for 30 

seconds, annealing at 60oC for 1 minute, and extension for 30 seconds at 72oC. PCR 

amplifications were performed in a GeneAmp PCR System 9700 (Perkin Elmer Applied 

BioSystems).   PCR products were separated on 2% ethidium bromide stained gels and 

visualized using Eagle Eye (Stratagene).   Expected neo amplicon size was 385 bp. 

All DNA samples were evaluated for template integrity using PCR amplification of 

GAPDH.  GAPDH primers were also obtained from Biosource International and diluted 

with autoclaved water to 1 µg/µl.  GAPDH primers sequences were: (sense) 5’-

TGAAGGTCGGTGTGAACGGATTTGG-3’ and              

(antisense) 5’-ACGACATACTCAGCACCGGCCTCAC-3’.  Reaction conditions were as 

described above for neo primers.   
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RESULTS 
 
 
PCR Strategy to Detect Targeted C-myb Allele.  C-myb null mice were generated by 

breeding heterozygous animals.  In order to construct appropriate breeding pairs, it was 

necessary to genotype parental animals.  Genotyping was done by PCR amplification of 

genomic DNA acquired from adult tail clippings.   Mating of heterozygous male and 

female mice will result in wild-type, heterozygous, and homozygous null embryos in 

each pregnancy.  In these experiments, embryos from pregnant heterozygous females 

were examined at day 13.5, before c-myb null embryos expired in utero.  At day 13.5, 

there is little phenotypic difference between wild-type, heterozygous, and c-myb null 

animals.  Therefore, genotypic analysis was also needed to determine which embryos 

were c-myb knockout animals.  In order to genotype c-myb animals, a PCR strategy 

developed by Mucenski et al was utilized.  We used one set of primers which were 

complimentary to sequences in exon 6 of the c-myb gene.  Additionally, these primers 

flanked the 1348 kb neomycin cassette inserted to inactivate the c-myb gene (see figure 

1).  PCR amplification of genomic DNA from embryos or tail cuttings revealed the 

presence of either one or two bands.  Wild-type animals had only one 200 kb band 

amplified indicating the neomycin gene was not present in exon 6 of the c-myb gene.  

Heterozygous animals had 2 amplicons following PCR, a 200 kb band and a 1548 kb 

band.  This indicated that both the wild-type c-myb gene and the inactivated c-myb gene 

were present.  C-myb null animals also exhibited only one band, a 1548 kb band.   

Absence of the 200 kb band indicated that no native c-myb gene was present in the 

DNA, only c-myb with the neo insertion was present.  This PCR strategy provided a 

method to distinguish c-myb null mice from wild type and heterozygous animals.  It also 

provided a way to distinguish wild-type from heterozygous animals for breeding 

purposes.   
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Neomycin resistance gene 
1348 bp

Primer 2

If neo insert is not present:  200 bp

If neo insert is present:  1548 bp

Primer 1

 
 

Figure 1.  PCR Strategy to Detect Targeted C-myb Allele.  Primers were designed to 

flank an inserted neomycin resistance cassette in the c-myb gene. Differential bands 

can be used to distinguish wild-type, heterozygous, and homozygous null animals. Wild-

type animals had only one 200 kb band. Heterozygous animals had 2 amplicons 

following PCR, a 200 kb band and a 1548 kb band indicating both wild-type c-myb and 

inactivated c-myb were present.  C-myb null animals also exhibited only one band, a 

1548 kb band.  
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CFU-GM Progenitor Cells are Present but Drastically Decreased in C-myb 

Knockout Mice.  In their original description of the c-myb null mouse, Mucenski et al 

had reported an 88% decrease in the number of progenitor cells capable of forming GM 

colonies in methylcellulose from c-myb null livers as compared to wild type livers.  This 

experiment was repeated in the current report to ensure that this experimental system 

was similar to the one described by Mucenski.  Culture of 1 x 105 live fetal liver cells 

from wild-type, heterozygous, or homozygous null mice in methylcellulose resulted in a 

significant decrease in CFU-GM progenitors obtained from the c-myb null mice as 

compared to wild-type or heterozygous animals.  As reported by Mucenski, there was 

no CFU-GM difference between wild-type and heterozygous animals while there was 

greater than an 80% decrease in c-myb null CFU-GM progenitors (Figure 2).  This 

indicates that, as previously reported, myelopoiesis is severely impaired in mutant c-

myb animals.  

Often, deletion of a single gene or protein has differential effects on males and 

females.  As c-myb embryos were harvested, they were genotyped using PCR.  In all 

experiments, the difference between males and females was examined.  No difference 

between male and female mice was observed in any experiment conducted.  Therefore, 

all data presented includes both male and female embryos.  

 

Cellular Composition of C-myb Fetal Livers.   Mucenski et al reported a significant 

reduction in the total number of cells found in c-myb null fetal livers as compared to 

wild-type fetal livers.  C-myb knockout mice examined in the current report had 

approximately 3 x 106 white blood cells per fetal liver while c-myb wild-type mice had 

approximately 16 x 106 white blood cells on day 13.5 (Table 1).  However, Mucenski et 

al did not determine the number of lymphocytes present in the fetal livers of c-myb mice.  

Examination of fetal livers at day 13.5 post-coitus indicated that 22% of fetal liver cells in 

the wild-type mice were lymphocytes.  2.3% of wild-type fetal liver cells were B220+ 

while 0.5% were IL-7R+.  In contrast, only 0.1% of the c-myb knockout fetal liver cells 

were lymphocytes, 0.6% were B220+, and 0.01% were IL-7R positive.  In the wild-type 

animals, 12% of the cells that fell within the lymphocyte gate were B220+ cells.  This 
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number was significantly increased in the c-myb null animal; 67% of the lymphocytes 

were B220+.  This indicates that c-myb knockout mice not only have a severe 

impairment in myelopoiesis, but there is also a marked defect in B lymphopoiesis. 

 

Mutations in C-myb Ablate Clonable, IL-7 Responsive Pro-B Cell Potential.  
Although the number of lymphocytes is decreased in c-myb null fetal livers, there were 

B220+, IL-7R+ lymphocytes present.  We determined whether lymphocytes present in 

the c-myb null fetal liver were IL-7 responsive lymphocytes.  To accomplish this 96 well 

plates were coated with S10 stromal cells that have been shown to support B 

lymphocyte development.  100 fetal liver cells were plated per well, and 20 U/ml of 

exogenous IL-7 was added to each well.  Cells were cultured for 2 days, exogenous IL-

7 was added again, and cells were cultured for 3 more days.  After 5 days of cultures, 

individual wells were examined for the presence of expanded B cell progenitor colonies.  

Wells with 10 or more expanded cells were scored as positive.  As demonstrated in 

Figure 3, the numbers of clonable IL-7 responsive cells in the wild-type fetal livers were 

not significantly different from the numbers present in the heterozygous animals.  

However, the c-myb null fetal livers had almost no cells that were capable of forming IL-

7 responsive pro-B cell colonies.  In addition, the numbers of progenitor cells capable of 

forming IL-7 colonies in methylcellulose (CFU-IL-7) were examined.  2.5 x 105 fetal liver 

cells were plated in methylcellulose, incubated for 7 days with IL-7, and then examined.  

The CFU-IL-7 data paralleled those data obtained in figure 3; no IL-7 responsive 

colonies were obtained from c-myb null fetal livers.  Finally, we tried to develop a pro-B 

cell line from c-myb null fetal livers similar to C1.92 pro-B cells that were described 

earlier in this work.  Fetal livers were dispersed into single cell suspension and the non-

adherent cells were passaged in the presence of the cloned bone marrow stromal cell 

line, S10, and exogenously added IL-7.  Although several attempts were made, no 

lymphocytes from c-myb null fetal livers survived in culture long term.    
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Figure 2.  CFU-GM Progenitor Cells are Present but Drastically Decreased in C-

myb Knockout Mice.  105 live fetal liver cells from wild-type, heterozygous, or 

homozygous null mice were plated in methylcellulose.  CFU-GM colonies were 

enumerated after 7 days in culture.  Data are presented as mean and SEM of a 

minimum of 3 mice per group. 
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FL cells x 10-6 Lymphocytes x 10-5 B220+ cells x 10-5 IL-7R+ cells x 10-3 

+/+ 16 + 2.7 36 + 5.7  4.4 + 0.7  64 + 12  

+/- 12 + 2.6 39 + 8.2  6.7 + 2  38 + 12  

-/- 3.1 + 0.5 0.3 + .02  0.2 + .03  0.4 + 0.2  

 
 
 
 
Table 1.  Cellular Composition of C-myb Fetal Livers. Fetal livers were harvested 

from wild-type, heterozygous, and homozygous null c-myb mice.  Cells were dispersed 

into single cell suspension and white blood cells were enumerated.  Cells were stained 

for B220 (CD45R) and IL-7 receptor.   FACS analysis was completed on stained cells.  

Data are presented as mean + SEM of a minimum of 3 animals per group. 
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Figure 3.  Mutations in C-myb Ablate Clonable, IL-7 Responsive Pro-B Cell 

Potential.  100 live fetal liver cells were plated into individual wells of a 96 well plate 

coated with stromal cells.  IL-7 was added to cultures at day 0 and day 2.  Plates were 

incubated for 5 days and then the number of IL-7 responsive pro-B cell colonies formed 

was determined.  Data are presented as mean + SEM of a minimum of 3 animals per 

group. 
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PCR Strategy to Detect Targeted A-myb Allele.  From previous literature it is known 

that a-myb null mice do not expire in utero, but males are unable to father pups due to 

sterility and mothers are not able to nurse pups due to mammary gland defects.  

Therefore, a-myb knockout mice also were generated by breeding heterozygous 

animals.  As with c-myb animals, it was necessary to genotype parental animals via tail 

cuttings to ensure that heterozygous male and female mice were bred.   Although the a-

myb deletion is not an embryonic lethal, the deletion was also examined in embryos at 

day 13.5 of gestation in order to compare effects of a-myb deletion with c-myb deletion.  

As previously described for c-myb, embryos from pregnant heterozygous females were 

examined at day 13.5.  At day 13.5, no phenotypic difference existed between wild-type, 

heterozygous, or a-myb null animals.  Genotypic analysis was necessary to detect a-

myb null animals.  To genotype a-myb animals, a PCR strategy was developed by this 

laboratory.  As detailed in the methods, two sets of PCR primers were utilized.  The first 

primer set was complimentary to sequences in exon 4 of the a-myb gene.  These 

primers amplified a 200 kb region of the native a-myb gene.  However, these primers 

also flanked the inserted neo cassette.  These primers differed from c-myb primers 

because a-myb primers will not produce a detectable amplicon if the neomycin gene is 

inserted.  This is most likely due to the high A/T content of the primers, resulting in 

decreased primer fidelity.  To detect the inserted neo cassette, we used another set of 

primers specific for the neomycin gene.  If the neomycin gene was present, a 385 kb 

band was detected.   PCR amplification of genomic DNA from embryos or tail cuttings 

revealed either one or two bands.  Wild-type animals had only one 200 kb band 

amplified.  This indicated that the neomycin gene was not present in exon 4 of the a-

myb gene.  Heterozygous animals had 2 amplicons following PCR with both primer 

sets, a 200 kb band and a 385 kb band.  These data indicated that both the wild-type a-

myb gene and the neo cassette were present. A-myb null animals also exhibited only 

one band, a 385 kb band.  Absence of the 200 kb band indicated that no native a-myb 

gene was present in the DNA, only a-myb with the neo insertion was present.  Like the 

previously described PCR method, this two-step PCR method also provided a method 

to distinguish a-myb null mice from wild type and heterozygous animals as well as a 

way to distinguish wild-type from heterozygous animals for breeding purposes.   
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Figure 4.  PCR Strategy to Detect Targeted A-myb Allele.  (A)  One set of primers 

was complimentary to sequences in exon 4 of the a-myb gene on either side of the 

inserted neomycin cassette.  The second set of primers was complimentary to 

sequences within the neomycin resistance cassette.  (B)  Differential band sizes can be 

used to distinguish wild-type, heterozygous, and homozygous null animals.  Wild type 

animals have an amplicon using a-myb primers, but no neo amplicon.  Heterozygous 

animals have a PCR product for both a-myb and neo.  Homozygous null animals only 

display an amplicon after neo amplification; no a-myb amplicon is detected.  
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CFU-GM Progenitor Cells Are Present in A-myb Knockout Mice.  To compare the 

effects of the a-myb mutation with the drastic effects observed with the c-myb mutation, 

a-myb null mice were also examined at day 13.5 of gestation.  CFU-GM potential of the 

a-myb knockout animal was examined.  Livers were harvested from day 13.5 embyos 

from pregnant heterozygous a-myb females, dispersed into single cell suspension, and 

enumerated.  Unlike the c-myb animals, there was no difference in the number of total 

cells in wild-type, heterozygous, or homozygous null fetal livers.  On average, a-myb 

wild-type and heterozygous fetal livers contained 7.42 x 106 ( + 9.4 x 105 ) white blood 

cells while a-myb null fetal livers had 6.31 x 106 ( + 1.2 x 106) white blood cells.  105 live 

fetal liver cells from each mouse were plated into methylcellulose with exogenous 

addition of GM-CSF cytokine.  Cells were cultured for 7 days then the numbers of 

colonies formed were counted.  As shown in Figure 5, no differences were observed in 

the number of GM progenitor cells in a-myb wild-type and heterozygous fetal livers 

versus a-myb null fetal livers.  In addition, male and female a-myb animals were 

independently examined in these experiments.  This was done because effects of the a-

myb deletion are expressed differently in males and females.  Although there is a slight 

reduction in the number of CFU-GM colonies found in a-myb -/- females, the difference 

is not statistically significant.  These data indicate that, unlike mutations in the c-myb 

gene, mutations in the a-myb gene have no effect on GM progenitor cells found in the 

day 13.5 fetal liver.        
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Figure 5.  CFU-GM Progenitor Cells Are Present in A-myb Knockout Mice.  105 live 

fetal liver cells from wild-type or homozygous null mice were plated in methylcellulose.  

CFU-GM colonies were enumerated after 7 days in culture.  Data is presented as an 

average of atleast 3 animals +/- SEM.   
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A-myb Mutation Does Not Alter Pro-B Cell Frequency. Finally, this report examined 

the number of white blood cells present in a-myb null fetal livers that were clonable, IL-7 

responsive lymphocytes.  As described above, a pro-B cell assay was employed.  96 

well plates were coated with S10 stromal cells that can support B lymphocyte 

development.  100 fetal liver cells were plated per well, and 20 U/ml of exogenous IL-7 

was added to each well.  Cells were cultured for 2 days, exogenous IL-7 was added 

again, and cells were cultured for 3 more days.  After 5 days of cultures, individual wells 

were examined for presence of expanded B cell progenitor colonies.  Wells with 10 or 

more expanded cells were scored as positive.  As demonstrated in Figure 6, the 

numbers of clonable IL-7 responsive cells in the wild-type fetal livers were not 

significantly different from the numbers present in homozygous null animals.   

Additionally, the numbers of progenitor cells capable of forming IL-7 colonies in 

methylcellulose (CFU-IL-7) were examined.  2.5 x 105 fetal liver cells were plated in 

methylcellulose, incubated for 7 days with IL-7, and then examined.  The CFU-IL-7 data 

paralleled those data obtained in figure 6; no statistically significant difference in IL-7 

responsive colonies was observed between wild-type and homozygous null fetal livers.   
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Figure 6.  A-myb Mutation Does Not Alter Pro-B Cell Frequency.  100 cells from a-

myb wild-type or homozygous null fetal livers were plated into individual, stromal cell 

coated wells of 96 well plates.  After incubation for 5 days with exogenously added IL-7, 

wells with clonable IL-7 responsive colonies were counted.  Data is presented as the 

average of atleast 3 mice + SEM. 
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DISCUSSION 
 

Animal models harboring a mutation in one or more genes are valuable tools 

used to investigate the role specific genes play in development.  Often, mutating a 

single gene can have deleterious effects on development.  This is the case for several 

genes, including the proto-oncogene c-myb.  Homozygous inactivation of c-myb results 

in embryonic lethality at days 14 to 15 of gestation due to a loss of fetal liver 

erythropoiesis.  Other mutations, however, have less dramatic effects.  This 

phenomenon is observed in animals harboring homozygous mutations of the a-myb 

gene.  Inactivation of the a-myb gene results in male sterility and defects in mammary 

gland development, but does not prevent embryo formation.  The original reports that 

describe the myb mutations discuss the most obvious defects associated with animals 

harboring the mutations.  The objective of this report was to investigate an area not 

previously described by literature:  the effect of a- and c-myb deletions on B 

lymphopoiesis.  These data indicate that inactivation of the c-myb gene completely 

ablates B lymphopoiesis in the murine fetal liver while inactivation of the a-myb gene 

does not significantly alter fetal liver B lymphopoiesis. 

 In order to differentiate between wild-type, heterozygous, and homozygous null 

embryos, a genotyping strategy was needed.  Mucenski et al had previously developed 

a PCR based strategy for genotyping c-myb animals, which was employed in this report.  

However, a PCR based strategy had not been developed for genotyping a-myb animals.  

We tried to mimic the PCR strategy used by Mucenski et al using one set of primers 

complimentary to exon 4 of a-myb that flanked the neomycin cassette.  However, due to 

the high A/T content of the a-myb gene, we could not design a set of primers to amplify 

the entire length of the neomycin cassette plus 200 bases of the a-myb gene.  

Therefore, a second set of primers was designed that amplified a region within the neo 

cassette.  This required two separate PCR reactions, but allowed for detection of the 

native a-myb gene, the neo insert, and the a-myb gene containing a neo insert. 

 C-myb mutant animals expire at approximately day 15 of gestation.  Therefore 

we analyzed embryos at day 13.5, before the mutation was lethal.  In order to compare 

effects of the c-myb mutation with the a-myb mutation, a-myb mice were also examined 

at day 13.5 of gestation.  All experiments described in this report were performed on 
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fetal livers from day 13.5 embryos.  Fetal livers from day 13.5 c-myb null mice had 

significantly reduced numbers of white blood cells when compared to fetal livers of wild-

type and heterozygous animals.  There was a 10 fold decrease in the number of cells 

present in the c-myb null livers as compared to wild-type livers.  However, in a-myb 

animals, there was no difference in the number of cells in the wild-type fetal liver versus 

fetal livers harboring a homozygous a-myb null mutation.  These data indicate that while 

inactivation of the a-myb gene does not impact proliferation of fetal liver cells, 

inactivation of the c-myb gene leads to significant impairments in fetal liver cell 

expansion.    

 CFU-GM potential was evaluated in both a- and c-myb animals.  In animals 

deficient for c-myb, there was greater than an 80% reduction in the number of CFU-GM 

progenitors as compared to wild-type animals.  These data agreed with those results 

reported by Mucenski et al (Mucenski, 1991).  In a-myb animals, however, the numbers 

of CFU-GM progenitors were the same in wild-type and in heterozygous null livers. In 

addition, CFU-GM progenitor numbers were evaluated in males and females.   This was 

done because effects of the a-myb mutation are displayed differently in male and 

female animals.  In males, a-myb inactivation results in sterility and spermatogenesis 

defects.  In females, however, sterility does not result from inactive a-myb.  A-myb 

mutant females can birth offspring but display an inability to nurse pups due to defective 

breast development.  Although the a-myb mutation results in different phenotypes in 

males and females, the effects of the mutation on GM progenitor cell formation is not 

gender specific.  Neither males nor females had altered numbers of fetal liver GM 

progenitor cells. These data indicate that a-myb and c-myb mutations have differential 

effects on GM progenitor formation.  While loss of c-myb severely decreases GM 

progenitor potential, loss of a-myb does not alter GM progenitor cell numbers.    

 In order to evaluate the role a- and c-myb play in B lymphopoiesis, colony 

forming units in response to IL-7 were evaluated.  CFU-IL-7 progenitor potential was 

first evaluated in c-myb deficient animals.  Mice harboring a homozygous null mutation 

of the c-myb gene had no IL-7 colonies formed above no cytokine controls.  Loss of c-

myb function resulted in a complete abrogation of IL-7 progenitor cell expansion.  To 

confirm these results, a pro-B cell assay was utilized.  Plating 100 fetal liver cells from c-
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myb homozygous null mice into individual wells of a 96 well plate resulted in no clonable 

IL-7 responsive cells.  Also, the number of fetal liver cells cultured was increased to 200 

cells per well.  Still, no clonable IL-7 pro-B cells were obtained from c-myb mutants.  

These data correlated well with CFU-IL-7 data; no IL-7 responsive pro-B cells could be 

cultured from c-myb null fetal livers.  Therefore, while both wild-type and heterozygous 

fetal livers contained clonable IL-7 responsive pro-B cells, B lymphopoiesis was absent 

in c-myb null animals.  In animals with a mutated a-myb gene, the numbers of fetal liver 

pro-B cells were no different than those in wild-type litter mates.  In addition, there was 

no difference in the numbers of IL-7 responsive pro-B cells present in males or in 

females.  These data suggest that B lymphopoiesis is severely damaged in animals 

containing mutated c-myb genes, but is unaltered in animals with a-myb mutations.     

 Overall, data presented in this report demonstrate that B lymphopoiesis is almost 

completely ablated in animals harboring a mutant c-myb gene.  Even at day 13.5, 

before the c-myb mutation is lethal, B lymphopoiesis is significantly altered.  Taken 

together with the previous work presented by Mucenski et al, this suggests that c-myb is 

critical for development of both myeloid and lymphoid lineage cells.  It is reasonable to 

suggest two possibilities for the observed defect in B lymphopoiesis.  First, it is possible 

that loss of c-myb results in an intrinsic defect in early B cell progenitors that prohibits 

them from expanding within the fetal liver compartment.  Secondly, it is possible that the 

microenvironment of the fetal liver is altered and is no longer permissive for lymphocyte 

expansion.  Most likely, the defect in B lymphopoiesis is a combination of an altered 

microenvironment as well as progenitor cells with impaired proliferative capacity.  In 

contrast, inactivation of the a-myb gene does not significantly impact B lymphopoiesis at 

all.  Although a-myb is expressed in different cell types than c-myb, the two display 

highly homologous DNA binding regions.  Both a-myb and c-myb bind the same 

consensus DNA site on target DNA.  How the two proteins exhibit differential effects is 

not completely understood, especially given their similar DNA binding preferences.  This 

report indicates that, although they are highly homologous proteins, a-myb and c-myb 

play largely different roles in the development of B lymphopoiesis.  C-myb is critical for 

normal development of B lymphopoiesis since mice with a homozygous deletion of c-

myb have a complete loss of B cell development in the fetal live.  However, a-myb is not 
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essential to B cell development as evidenced by unaltered B cell development in mice 

with a homozygous null mutation of a-myb.  Taken together these data suggest that, 

although a- and c-myb are closely related proteins, they do not play redundant roles in 

the development of B lymphocytes.  
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The overall goal of this study was to investigate the role of the proto-oncogene c-

myb in B lymphopoiesis.  We undertook this study because the current literature has 

focused on the role of c-myb in proliferation and differentiation of erythroid, myeloid, and 

T lymphoid cells, but far less is known about the role of myb in B lymphoid 

development.  Our studies led to several novel observations:  1). C-myb is expressed at 

high levels in pro-B cells, 2). The half-life of c-myb mRNA is long lived in pro-B cells 

while the protein half-life is less than 1 hour, 3). Stromal cells regulate c-myb expression 

in pro-B cells, 4). C-myb is an intracellular regulator of proliferation in pro-B cells, 5). C-

myb is an intracellular regulator of differentiation in early B lymphocytes, 6). C-myb does 

not regulate survival in pro-B cells, and 7). C-myb knockout animals exhibit a complete 

failure of fetal liver lymphopoiesis while animals deficient for a-myb do not exhibit any 

alterations in B cell development.  

The first goal of this dissertation was to determine the normal expression patterns of 

c-myb in developing B lymphocytes.  Previous literature reported that late stage pro-B 

cells (those with D-J rearrangement of the heavy chain gene) do not express c-myb.  

We utilized a pro B cell line which does not have Ig gene rearrangements to investigate 

c-myb in B lymphopoiesis.  C1.92 was cloned from fetal liver.  This cell line retains 

dependence on stromal cells and IL-7, and retains Ig heavy chain genes in germline 

configuration. This cell line is characterized as an early B cell progenitor line because 

the D-J region of the heavy chin gene remains germline and the cells continue to 

express CD43 along with CD45R (B220).  C1.92 cells cultured with stromal cell support 

proliferate continuously in culture and do not differentiate.  In addition, expression of c-

myb remains high throughout their life cycle.  Since the C1.92 cell line is an early pro-B 

cell that still retains c-myb expression, it is a useful model to examine c-myb expression 

and regulation.  Our data demonstrate that C1.92 pro-B cells express both mRNA and 

protein for c-myb.   

C1.92 cells are similar in developmental status to the myeloid cell line HL-60.  HL-60 

cells are pro-myelocytes that continually proliferate in culture but do not differentiate.  

HL-60 cells are also characterized by high expression levels of c-myb.  The C1.92 cell 

line is a model system similar to HL-60 cells, but lymphoid in nature.  This provides a 

model of lymphocyte development which can be compared to c-myb data reported for 
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myeloid cells.  In order to complete assays at biologically relevant times, it was 

necessary to determine the degradation kinetics of c-myb in lymphoid cells.  The half-

life of c-myb mRNA and protein in myeloid cells is approximately one hour (E Westin, 

personal communication).  However, when the half-life of c-myb in pro-B cells was 

evaluated we determined the half-life of c-myb mRNA to be long lived.  Inhibition of 

mRNA transcription revealed the c-myb mRNA half-life to be approximately 11 hours.  

Conversely, the half-life of c-myb protein was short; inhibition of mRNA translation 

revealed the half-life of c-myb protein to be less than 1 hour.  Therefore, while the half-

life of c-myb protein is similar in lymphoid and myeloid cells, the half-life of c-myb 

protein is much longer in pro-B cells than in myeloid cells.  These data establish the 

degradation kinetics of c-myb mRNA and protein in early pro B cells and demonstrate 

that c-myb is expressed continuously at high levels in an early pro-B cell model.  

The second goal of this dissertation was to determine whether stromal cells 

regulated to expression of c-myb in pro-B cells.  Developing B cells within the bone 

marrow are dependent upon the bone marrow microenvironment for normal 

development.  In particular, bone marrow stromal cells are known to regulate the 

survival, proliferation, and differentiation of developing B lymphocytes.  Much of this 

regulation is accomplished through molecular changes in specific gene expression.  

One particular gene, c-myb, is known to be regulated during development in myeloid 

cells.  Since stromal cells are important in regulating several other genes important in B 

cell development, we wanted to investigate whether stromal cells also regulated c-myb 

expression in C1.92 cells.  The data presented here demonstrate that stromal cells are 

also responsible for regulating c-myb in C1.92 cells.  Culturing C1.92 cells in media 

alone, without the support of stromal cells, resulted in a decrease in both c-myb mRNA 

and protein within 8 hours.  A decrease in c-myb mRNA was observed within 6 hours, 

indicating that loss of stromal cell support resulted in an active degradation of c-myb 

mRNA.  However, it is known that stromal cells can regulate gene expression both by 

adhesion contacts and by producing numerous cytokines.   

Our next aim was to determine whether stromal cells regulated c-myb expression 

through cytokine production or via adhesion contacts.  Using a transwell culture system, 

it was determined that stromal cell adhesion contacts are largely responsible for 
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maintaining c-myb expression.  Although loss of stromal cell adhesion contacts did not 

completely ablate c-myb expression, it was significantly decreased.  This indicates that 

although both stromal cell cytokine support and stromal cell adhesion molecules are 

involved in c-myb expression, stromal cell adhesion contacts are mainly responsible for 

the maintenance of c-myb expression in early B lymphocytes.   

There are three hallmarks of the life of developing blood cells: the ability to survive, 

proliferate, and differentiate.  Mechanisms that regulate these three fundamental events 

are not well understood.  Our working hypothesis was that c-myb regulated proliferation 

and differentiation of developing B linage cells in the bone marrow.  Therefore, the next 

goal of this work was to determine if c-myb was an intracellular regulator of proliferation 

in developing B lymphocytes.  It is well documented that c-myb regulates the 

proliferation and expansion of myeloid, erythroid, T, and transformed B cells.  This study 

investigated if proliferation in normal progenitor B cells was regulated by c-myb.  

Although culturing pro-B cells without stromal cells effectively downregulated c-myb, this 

is not the best method to use to investigate regulation of c-myb in pro-B cells because 

this results in initiation of apoptosis.  In order to downregulate c-myb without initiating 

cell death in pro-B cells, treatment of cells with DMSO or antisense oligonucleotides 

was utilized.  Treatment of pro-B cells with DMSO or antisense oligonucleotides 

resulted in decreased c-myb protein as detected by western blot analysis.  Following c-

myb downregulation by either of these treatments, pro-B cells failed to expand in 

culture.  When cells were enumerated after c-myb downregulation, cultures treated with 

antisense oligonucleotides or DMSO had significantly fewer cells.  When pro-B cells 

with downregulated c-myb levels were put into a proliferation assay, there was a 

significant decrease in their ability to respond to the proliferative cytokine interleukin-7.  

Analysis of their cell cycle profile using propidium iodide revealed that pro-B cells with 

decreased c-myb levels had an increased proportion of cells in the G0/G1 phase of the 

cell cycle with fewer numbers of cells in the S and G2/M phases of the cell cycle.  These 

data indicated that downregulation of c-myb resulted in an inhibition of proliferation by 

blocking cells in the G0/G1 phase of the cell cycle.  This suggested that c-myb is an 

intracellular regulator of proliferation in pro-B cells. 
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Since pro-B cells exhibited alterations in proliferation and cell cycle profiles, we were 

interested in determining whether cells were exiting the cell cycle and beginning to 

differentiate.  Our next goal was to determine whether c-myb was an intracellular 

regulator of differentiation in early B lymphocytes.  One way to follow B cell maturation 

is to follow changes in cell surface markers.  C1.92 cells express low levels of B220, 

high levels of CD43, low levels of CD24 (HSA), and low levels of flt-3.  If phenotypic 

maturation is occurring, B220, CD24, and flt-3 levels should increase while CD43 

expression should decrease.  However, after downregulation of c-myb, no alterations in 

these cell surface molecules were observed.  Although phenotypic maturation was not 

observed, we investigated genotypic alterations.  As pro-B cells mature into 

immunoglobulin bearing B cells, rearrangement of the immunoglobulin genes occurs.  

Genetic reorgantization and juxtaposition of a single variable (V), diversity (D), and 

joining (J) region from the Ig heavy chain gene is required for expression of 

immunoglobulin.  Tracking rearrangement of the heavy chain genes is the most reliable 

way to follow B cell maturation.  Utilizing PCR, we determined that downregulation of c-

myb by DMSO treatment resulted in rearrangement of Ig heavy chain genes.  In 

addition, surface immunoglobulin was detected on C1.92 cells with downregulated c-

myb expression.  These data indicated that downregulation of c-myb resulted in 

genotypic maturation of pro-B cells to Ig expression.  However, phenotypic maturation 

was uncoupled from genotypic maturation because c-myb downregulation did not alter 

the cell surface phenotype of pro B cells.  These data suggest that c-myb is an 

intracellular regulator of differentiation in pro-B cells, but that add additional signals are 

required for completion of phenotypic (and maybe functional) maturation.     

The next objective of this report was to determine whether c-myb was an 

intracellular regulator of survival in developing B lymphocytes.  It is known that pro-B 

cells require stromal cell contact for their continued survival.  And, we have previously 

shown that stromal cells regulate c-myb expression in pro-B cells.  We wanted to 

determine if the survival signals provided by stromal cells were c-myb dependent.  

When c-myb was downregulated by DMSO or antisense treatment, C1.92 cells 

exhibited no decrease in cell viability.  In addition, staining with propidium iodide and 

examination of DNA did not reveal the onset of apoptosis.  This indicates that, although 
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stromal cells regulate c-myb expression in pro-B cells, c-myb does not regulate the 

survival of developing B lymphocytes.   

Finally, we wanted to utilize the currently available myb knockout models and 

determine whether lymphopoiesis occurred in these mutant animals. C-myb knockout 

mice die at day 15 of embryogenesis due to loss of erythropoiesis in the fetal liver.  

However, B lymphopoiesis has not been described in these animals.  Examinations of 

the fetal livers of day 13.5 mutant c-myb animals revealed that no lymphopoiesis was 

occurring in these animals.  No CFU-IL-7 progenitors were present in c-myb null 

animals and no clonable IL-7 responsive pro-B cells were present.  These data suggest 

that the loss of c-myb during embryogenesis completely ablated B lymphopoiesis in the 

fetal liver.  Conversely, when the fetal livers of day 13.5 a-myb null fetal livers were 

examined, B lymphopoiesis was completely intact.  This indicates that c-myb is 

necessary for B lymphopoiesis while a-myb is dispensable.  Although a-myb and c-myb 

exhibit high homology and share affinity for the same consensus DNA binding site, they 

are not redundant in their role in B lymphopoiesis. 

Taken together, these data provide a working model for the role of c-myb in B cell 

development.  Pro-B cells require stromal cell interactions for maturation within the bone 

marrow microenvironment.  Stromal cell contacts are responsible for maintaining high 

levels of c-myb in early pro-B cells and this expression is directly related to observed 

high proliferative capacity of these cells. Pro-B cells are the primary expanding cell 

compartment of the B lineage, therefore a high proliferative capacity is necessary to 

produce enough progenitor cells to populate the entire animal. However, as pro-B cells 

loose their dependence on stromal cells, they exhibit decreased proliferative potential.  

It is at this time that c-myb levels decrease.  As c-myb levels abate, proliferation ceases 

and genotypic maturation occurs.  These changes allow pro-B cells to differentiate into 

surface immunoglobulin positive B cells.  These data clearly demonstrate that cellular 

interactions between stromal cells and pro-B cells regulate molecular events within 

developing B cells.  In turn, these changes in molecular molecules, particularly in c-myb 

expression, determine the fate of immature B linage cells.      
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 RNA Primers 
  

Primer 
Name Sense Primer Sequence (5’- 3’)  Antisense Primer Sequence (5’- 3’) 

C-myb 
exon 4 GAGCTTGTCCAGAAATATGGTCCGAAG GGCTGCCGCAGCCGGCTGAGGGAC 
C-myb 

exon 8/10 ACCCTGAGAAGGAAAAGCGAA GTTTTCACAGTCTGGTCTCGA 
C-myb 

exon 8/9 AAGCGAATAAAGGAGCTGGAGT TGGTGGACGATCATGCACCT 
C-myb 

start site ATGGGCGCCCCACTCAACT TATCAGTCCGTCCGGGCA 

B-myb ATGTCTCGGCGGACGCGCTGCGAG CTGTTCCTTGTCCTCCAGCTCCAGG 

B-myb ACGAGCCTGCCCTACAAGTG TGGCGTGTGGGGAGTGTTGT 

Actin CACAGCTTCTTTGCAGCTCC GGATCTTCATGAGGTAGTCTGTC 

IGF-1 GACCCTTTGCGGGGCTGAGCTGGT CTTCTGAGTCTTGGGCATGTCAGT 

IL-6 AACAGACCTGTCTATACC GTACTCCAGAAGACCAGA 

IL-7 GCCTGTCACATCATCTGAGTGCC CAGGAGGCATCCAGGAACTTCTG 
 
 
DNA primers 
 

Primer 
Name Sense Primer Sequence (5’- 3’) Antisense Primer Sequence (5’- 3’) 

GAPDH TGAAGGTCGGTGTGAACGGATTTGG ACGACATACTCAGCACCGGCCTCAC 

DFL16.1 GCCTGGGGAGTCACTCAGCAGC GTGTGGAAAGCTGTGTATCCCC 

JH1 CCCGGACAGAGCAGGCAGGTGG GGTCCCTGCGCCCCAGACA 

Syr AAGCGCCCCATGAATGCATT TCCCAGCTGCTTGCTGATCT 

Neo GATGGATTGCACGCAGGTTCTCCGG ATGGGCAGGTAGCCGGATCAAGCGT

C-myb GCAAGGTGGAACAGGAAGGCTACC GTGCTTCGGCGATGTGGTAATAGG 

A-myb GTATACTTAAATTTGGGCTAATTT TAAATTTTTTCAAAAGAATATGAA  
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Antibodies: 
 
 

Antibody  Isotype Tag Clone Supplier 

GAPDH 

Monoclonal 
mouse anti 

rabbit IgG2b Purified 6C5 

Research 
Diagnostics 

Inc. 

C-myb 
Mouse 

monoclonal IgG2aκ Purified 1-1 
Upstate 

Biotechnology

CD45R 
Rat anti 
mouse IgG2aκ FITC RA3-6B2 Pharmingen 

CD45R 
Rat anti 
mouse IgG2aκ R-PE RA3-6B2 Pharmingen 

RAG-2 
Mouse 

monoclonal IgG2b Purified G110-461 Pharmingen 

RAG-1 
Mouse anti-

mouse IgG2b Purified G109-256 Pharmingen 
Ly-51 
(BP-1) 

Rat anti-
mouse IgG2aκ  FITC 6C3 Pharmingen 

CD24 
(HSA) 

Rat anti-
mouse IgG2cκ Purified 30-F1 Pharmingen 

CD24 
(HSA) 

Rat anti-
mouse IgG2bκ FITC M1/69 Pharmingen 

CD43 rat anti-
mouse IgG2aκ  FITC S7 Pharmingen 

CD43 rat anti-
mouse IgG2aκ PE S7 Pharmingen 

CD135 
(Flt-3) 

Rat anti-
mouse IgG2aκ PE A2F10.1 Pharmingen 

IL-7R   Purified   
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Isotype Antibodies: 
 
 

Antibody Isotype Tag Clone Supplier 

Mouse IgG1 Isotype IgG1,κ Purified 15H6 Southern Biotechnology 

Mouse IgG2a Isotype IgG2a,κ Purified HOPC-1 Southern Biotechnology 

rat IgG2a isotype IgG2a,κ R-PE R35-95 Pharmingen 

Rat IgG2b isotype IgG2b,κ Purified A95-1 Pharmingen 

Rat IgM IgM,κ Purified R4-22 Pharmingen 

Mouse IgG2b isotype 
(anti-dansyl) IgG2b,κ Purified 27-35 Pharmingen 

Goat anti-rat IgM +IgG 
IgM +IgG 

(H+L chain 
specific) 

Purified  Southern Biotechnology 

Goat anti mouse Ig 
Ig (H+L) 
Chain 

specific 
Purified  Southern Biotechnology 
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