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ABSTRACT

Determining the Angle of Impact from the Analysis of Bullets Following

Perforation with Glass

Roger L. Jefferys II

When two objects come into contact with one another, there is a potential for the transfer

of material between those objects. The goal of this research was to develop statistical

models to aid investigators in the reconstruction of a shooting incident. Specifically, the

determination of the direction of fire from the angle of impact of the bullet was addressed by

assessing the deformation of the bullet and the transfer of glass onto the bullet. Transfer of

material to bullets is an underexploited area of trace evidence. Current research has mainly

been observational and no attempt has been made to provide a quantitative measure to the

results. Four aspects of bullet deformation after perforation of a glass target were studied

during the research: (1) the shape of the bullet holes, (2) the side view of bullet deformation,

(3) the frontal view of bullet deformation, and (4) the distribution of glass onto the bullets. A

Ruger® SR9® 9mm pistol was used to fire 100 cartridges at individual glass samples at angles

of 45°, 50°, 60°, 75°, and 90° using full metal jacket and lead round nose ammunition. The

following methodologies were employed for image capture and analysis: (1) focus stacking

was used to generate high-quality images of the frontal view of the bullet, (2) analysis of

the bullet holes in the glass targets using HemoSpat, (3) analysis of bullet deformation and

distribution of glass onto bullets using ImageJ. Regression modeling and principal component

analysis were performed on the data. The research found that examining bullet holes in

glass is not a viable method for determining angle of impact. It also found that the side

view deformation of full metal jacket bullets can be used to distinguish between some impact

angles, for example, 90° and 65°, but cannot be used for lead round nose bullets. Furthermore,

the front view deformation and distribution of glass on full metal jacket bullets can be used

to distinguish between some impact angles, for example, 75° and 50°, but cannot be used for

lead round nose bullets.
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1. Introduction

Glass evidence is commonly found at many types of crime scenes including burglaries, mur-

ders, assaults, and other types of crimes. The evidence can come from a variety of sources

such as windows, automobiles, bottles, and other glass objects [18]. The size of the evidence

will depend on the event which created the evidence. Smaller fragments may result from a

criminal breaking a window with a weapon, while larger fragments may result from a glass

object falling and breaking onto a surface. While large fragments are able to provide more

shape, detail, and striations, smaller fragments are more commonly found and collected at

crime scenes [18].

Glass evidence can be analyzed in many ways, including the identification of source,

analysis of glass fractures, and the analysis of small glass fragments using the density and

refractive index [18].

To identify a proof of origin for an unknown piece of glass, the piece will fit back together

with the glass of known source. The pieces should fit tightly together and resist lateral

movement when pressed together [18].

To analyze glass fractures, one starts by looking at the longest dimension of the triangular

shape of the individual pieces of glass. This typically indicates the initial breakage position of

a particular glass fragment. Next, each fragment is examined for striations, which diagrams

the lines of stress. The path of the break is across and toward the convex side of the

striations. This will allow one to determine the direction of break, the direction of the force

which produced the break, and which side ruptured first [18].

A refractive index analysis can also be performed to determine whether or not a glass

fragment could have come from a particular source of glass.

Bullet evidence is often left at the scene of a shooting. This evidence can, in turn, help

the examiner determine if a suspected gun fired a specific bullet, the type of gun that fired

the bullet, the type of ammunition used, and from what position the bullet was fired [18].

To determine if an unknown bullet was fired from a suspected firearm, an examiner will

first compare class characteristics between an unknown bullet found at the crime scene and

a test fired bullet from a suspected firearm. Class characteristics include the direction of

twist, number of lands (raised areas created by the rifling in the barrel of a firearm) and
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grooves (depressed areas created by the rifling in the barrel of a firearm), width of the lands

and grooves, and depth of the lands and grooves. If these are the same between bullets, the

examiner will then compare the striation marks on the bullets under a comparison microscope

to determine whether or not the unknown bullet was fired from the suspected firearm.

To determine the type of gun that fired the bullet or the type of ammunition used, an

examiner will often use the class characteristics listed above. It is important to note that

class characteristics differ between manufacturers and between firearms. An examiner will

also measure the bullet dimensions and weight to determine the caliber of the firearm used.

In some cases, the material the bullet is made from may help the examiner determine the

type of ammunition.

In order to determine the position from which the bullet was fired, the examiner may

look at trace evidence, such as glass, that has been deposited onto the bullet. If more than

one type of trace evidence is present, the examiner may also try to determine the sequence

in which the evidence was deposited. They may also look at how the bullet deformed to help

make an inference about the possible angle at which the bullet impacted a surface.

As a forensic scientist, one needs to know the physical and chemical properties of evidence

before any analysis can be conducted.

1.1 Physical and chemical properties of glass

Glass is defined as an inorganic product of fusion that has cooled to a rigid condition without

crystallization [19]. Glass is a mixture of inorganic components including, among others, sand

or silicon dioxide (SiO2), soda ash or sodium carbonate (Na2CO3), and limestone or calcium

oxide (CaO) [20]. It is a hard, brittle, amorphous substance. Glass is a very important piece

of evidence for forensic scientists and it plays a significant role in the reconstruction of a case

for several reasons [21]:

1. It has a wide range of uses and is common in the environment.

2. It is easily broken producing fragments of various sizes.

3. Glass fragments or particles are left at the scene if glass is broken during the commission

of a crime.

4. Small fragments can be transferred to objects.

5. It is not affected by normal environment conditions and is extremely stable.

6. It is produced in different ranges of compositions and by different processes.
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7. There is a range of composition within a given type of glass.

Plate glass (windows), laminated glass (windshields), and tempered glass (side and rear

vehicle windows) are the types of glass commonly found in shooting incidents [22]. Plate

glass or single-strength glass is produced using the float method, which involves one side of

the glass floating on a bath of molten tin during the manufacturing process for flattening

purposes [21]. Sodium, calcium, magnesium, and aluminum are common metal oxides found

in plate glass [23]. The resulting glass tends to be smooth, have a uniform thickness, and

fluoresce on the float side when examined under ultraviolet light.

Laminated glass consists of two sheets of plate glass with a polyvinyl plastic layer placed

between them and can be manufactured with a curvature [22].

Tempered glass is made by heating single-strength glass until it begins to soften and then

rapidly cooling it with streams of compressed air [21]. As a result, stresses and a surface-

tension effect are created due to the outside of the glass cooling down faster than the inside

[24]. This process creates a layer of compression stresses on the surface, offsetting any surface

tension caused by applied forces. Tensile stress is also created in the glass mid-plane, and

as a result, upper stress limits are established [24]. These properties make tempered glass

more resistant to breakage.

1.2 Physical and chemical properties of bullets

Handgun bullets commonly encountered in casework are full metal jackets (FMJ), hollow

points (HP), and lead round nose (LRN) bullets while jacketed soft points (JSP) are less

common [25].

FMJ bullets have a lead core with a copper jacket which encapsulates the entire core

except the base. HP bullets have an opening at the nose of the bullet. The opening causes

the bullet to expand upon impact, but also introduces drag limiting the range of the bullet.

LRN bullets are entirely lead and are similar to the FMJ as both have a round nose. It

has a high ballistic coefficient due to its weight and round nose [26]. JSP bullets have a lead

core surrounded by a copper jacket with some of the lead core protruding from the front

[27].

When a bullet contains a jacket, the jacket is normally harder than the core itself. The

jacket can be composed of a variety of materials, including gilding metal, cupronickel, cupron-

ickelcoated steel, nickel, zinc–, chromium–, or copper-coated steel, lacquered steel, brass,

nickelor chromium-plated brass, copper, bronze, aluminum/aluminum alloy, Nylon (Nyclad),

Teflon- and cadmium-coated steel [28]. Tin is also sometimes used in jacket material due to

its lubricating properties. Depending on the desired effects of the bullet, for example, how
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much the bullet will penetrate, the base and nose of the jacket will have different thickness

and hardness [28]. The way in which the jacket is attached to the core can also be different

as well between manufacturers.

The core can vary between manufacturers, but is normally made from lead. One reason

for this is due to its high density [28]. Other materials can include copper, brass, bronze,

aluminum, steel, depleted uranium, zinc, tungsten, rubber, and various plastics [28]. How-

ever, bullets which contain a lead core and copper alloy jacket are the most common. When

it comes to the hardness between the base and the nose, a combination of core materials

are sometimes used. The lead used to form the core can either be a soft lead or a lead that

has been hardened by antimony, tin, or both [28]. If the lead core is hardened, antimony is

typically used.

The components of a FMJ bullet can be seen in Figure 1.1 on the following page. The

shape of the nose of a bullet is one important factor that plays a crucial role in the aerody-

namics of the bullet, thus determining the distance a specific bullet can travel. The ogive is

represented by the curved shape forming on the bullet and, along with the nose, is one of

the parts that is involved in the impact when a bullet strikes a surface [29]. The bearing sur-

face, or cylindrical portion of the bullet, is typically what firearms examiners use to conduct

comparisons and encompasses the center portion of the bullet, which contacts the rifling

in the barrel of a firearm [29]. A comparison involves the examiner placing both a known

and unknown bullet onto a comparison microscope and viewing the bearing surfaces of each

bullet at a high magnification to observe the lands (raised portions) and grooves (depressed

portions). The lands and grooves are created on the bearing surface of the bullets by the

rifling inside the barrel of the firearm from which each particular bullet was fired. Within

the lands and grooves, the examiner will compare striations, or linear markings, to conclude

whether both bullets were fired from the same firearm or from different firearms. The base,

or side opposite the nose, helps the bullet maintain its seal as it travels down the barrel.

By understanding the physical and chemical properties of these two types of evidence, an

examiner can better understand the interaction that takes place between glass and bullets.
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Figure 1.1: Parts of a full metal jacket bullet (FMJ) [1]

1.3 Interaction between two evidence types (glass and

bullets)

When a bullet contacts a surface, it will either perforate the material (completely pass

through the material), penetrate the material (impacting the material causing the surface

to depress), or ricochet (deflect off the surface of the material) [30].

When two objects come into contact with one another, there is a potential for the transfer

of materials from one to the other [31]. A drive-by shooting is a good example of how glass

and bullets may interact with each other. If a shot is fired at a home from a moving vehicle,

the bullet could travel into the home by way of perforation through a window. This impact

between the bullet and the glass creates an interaction between these two types of evidence

and allows for the possible transfer of glass onto the bullet. Figure 1.2 demonstrates how the

transfer of material to the ogive area of a FMJ bullet can provide crucial information in a

reconstruction. The observation of the x-ray map shows that steel (through the monitoring

of iron) was transferred around the ogive area of the bullet, creating a ring like shape. One

can hypothesize, from this information, that the angle of impact was approximately 90°

based on the how the steel was distributed on the bullet during impact.
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Figure 1.2: Iron X-ray map of the nose of a FMJ bullet following perforation with a steel
plate [2]

Not much attention has been given to target specific markings on and trace evidence from

bullets. From observing trace evidence on bullets following impact, an association between

people, places, and things involved in crimes can be developed [32]. The examination of the

distribution of glass on fired bullets will allow for the determination of angle of impact and

distance fired which will aid in the reconstruction of a crime scene. This is an underexploited

area of trace evidence, as limited research has been performed on this topic. Previous research

has only been observational and no attempt has been made to provide a quantitative measure

of the results.

The characterization of glass samples is needed to ensure similar properties of glass types

before experimentation. Proper control for the continuation of the methods and eventual

evaluation of the results are thus maintained. When referring to glass, refractive index and

elemental composition are the two main methods used in forensic analysis for characterizing

glass samples.

There are a few types of instrumentation that allow examiners to perform analysis on

glass, bullets, and their resulting states following interaction with each other.
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1.4 Instrumentation for the analysis of glass and bul-

lets

1.4.1 Refractive index (RI) and the glass refractive index mea-

surement (GRIM) system

The physical property of refractive index is used for characterizing glass particles [33][34][35].

In forensic casework, the small size of glass fragments allows for an accurate refractive index

measurement.

Refraction refers to the bending of a light wave due to a change in velocity. When light

waves travel through air of the same temperature, they do so at a constant velocity until

they move into another medium. This is demonstrated in Figure 1.3.

Figure 1.3: Diagram of refraction [3]

At this point, the waves will slow and the rays of light will bend. This can be described

by Snells law of refraction by the following equation :

n1 × sin θ1 = n2 × sin θ2 (1.1)

where θ1 and θ2 are the angles of incidence and refraction, respectively, and n1 and n2

are the refractive indices of air and the second medium, respectively. The refractive index of

that medium can be defined as the ratio of the velocity of light in a vacuum to the velocity

of light in that medium, or mathematically as [36]:
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RI =
velocity of light in vacuum

velocity of light in medium
(1.2)

It should be noted that refractive index varies with temperature and wavelength, thus

requiring them to be monitored and controlled. Glass is isotropic and therefore is always

extinct under double polarization at all angles [37]. To determine the refractive index of a

glass sample, two methods can be used. The immersion method involves observing a glass

fragment mounted in a series of immersion oils of different refractive indices. By observing

the direction of the Becke line, which is a bright halo near the edge of glass sample while

immersed in a medium, one can determine the refractive index of the glass sample [38]. If

the distance between the sample and objective lens is increased, the Becke line will move

into the medium of higher refractive index. If this distance in decreased, the Becke line will

move into the medium of lower refractive index.

The hot stage method varies the refractive index of the immersion oil by adjusting the

temperature. The glass fragment is placed in the immersion oil on a hot stage, and the

temperature is adjusted based on properties of the immersion oil. Figure 1.4 demonstrates

what is known as a match point; this is the point at which the temperature reaches 80°C

the refractive index of the glass is the same as the refractive index of the immersion oil (RI

= 1.518). A match point is any combination of temperature and wavelength, at which two

media have indistinguishable refractive indices.

Figure 1.4: Curve showing relationship between the temperature of an immersion oil and
its refractive index. Adapted from Locke Scientific Reference Glasses and Silicon Oils for
Refractive Index Determination [4].
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The refractive index can be calculated using linear equations or graphically determined

using a Hartmann net and plotting the corresponding wavelength at the match temperature

[38]. Figure 1.5 shows a Hartman net which is a graph representing the refractive index

versus wavelength at fixed temperatures for an immersion oil. [39].

Figure 1.5: Hartmann net [5]

The glass refractive index measurement (GRIM) system can be used to automatically

measure the refractive index of a glass sample. The instrument uses the hot stage method

to automate the measurements of the match temperature and refractive index. Contrast on

a video image is measured until the match point is detected as viewed in Figure 1.6. This

contrast is measured while the immersion oil is heated or cooled. Once the match point is

detected, the refractive index is determined using stored calibration data in the system [23].

Figure 1.6: GRIM3® and its graphical user interface [6]

The hot stage method as well as the GRIM3® both make use of a phase contrast micro-

scope which enhances contrast between the glass fragment and immersion oil. The principle
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of phase contrast microscopy enables phase differences in a glass fragment to be converted

to amplitude differences resulting in an image of good contrast [7]. Figure 1.7 depicts the

schematic of a phase microscope and displays the resulting path rays of direct (background

light) and diffracted light. The enhanced contrast is a result of diffracted and direct beams

interfering on recombination in the final image [7].

Figure 1.7: Phase contrast microscope schematic [7].

Central undeviated rays and diffracted deviated rays form spectra in the back focal plane

of the objective as light passes through a glass fragment [7]. Retardation occurs as light is

diffracted and passes through the glass fragment.

An image is produced of the annular ring of light in the back focal plane as a result of

the annular stop being focused by the objective, thus separating the direct rays from the

diffracted rays [7]. The intensity of direct light from the condenser is reduced by a ring of

absorbent material in the phase plate.

A transparent phase retarding film is applied causing retardation in either the direct or

diffracted beam, resulting in the direct and diffracted beams interfering destructively in the
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intermediate image plane [7]. This causes the phase differences to be detected into visible

light and dark.

Another common method for the observation and analysis of glass on a bullet involves the

use of a scanning electron microscope with energy dispersive x-ray spectroscopy (SEM-EDX).

1.4.2 Scanning electron microscopy with energy dispersive x-ray

spectroscopy (SEM-EDX)

Image formation

The SEM-EDX produces high resolution images with high magnification [9]. It allows for

the analysis of small sized samples such as gunshot residue particles and glass fragments.

The SEM column contains a tungsten filament, which is used as the electron beam source.

The beam itself is produced by the operation of electromagnetic lenses in the SEM column.

High energy electrons are focused into a fine beam, and the beam is scanned or rastered over

the surface of the sample in a series of lines and frames [9]. The beam electrons and the

sample interact both elastically and inelastically, resulting in radiation products including

backscattered electrons, secondary electrons, and x-rays [9]. These are generated as a result

of the complex interactions of the beam electrons with the atoms of the sample.

Figure 1.8 displays secondary electrons that are used to represent morphological features

of the sample, backscattered electrons that are used to create an image based on the average

atomic mass of the elements in the sample, and x-rays that provide the elemental composition

which is used to generate a spectrum.

Figure 1.8: Interaction of electron beam with the sample [8].

The radiation products are commonly collected by an Everhart-Thornley scintillator-

photomultiplier detector [9]. The radiation signals are amplified and displayed on screen
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which scans in sync with the scan of the sample [9]. An image is constructed using a

scanning system which scans over the image point by point. Figure 1.9 shows a schematic

of the scanning system of the SEM.

Figure 1.9: Schematic of the SEM [9].

Deflection occurs in both the X and Y directions as a result of electromagnetic scan coils

being energized [9]. The strength of the current in the scan coils are altered as a function of

time. This way, the beam moves according to a sequence of points on the sample.

The resulting image displayed by the SEM represents a two-dimensional map with a

single pixel corresponding to each individual point on the sample that was scanned [9]. The

brightness at each pixel is proportional to the intensity of the signal.

Energy dispersive X-ray spectrometry (EDX)

EDX is combined with the SEM allowing for the elemental analysis at a point on the sample.

The x-ray photon is converted into an electrical pulse with specific characteristics (amplitude

and width) by the EDX system [40]. Depending on the energy received by the detector,

individual peaks are generated corresponding to the electrical pulses. Each particular element

making up a sample will have a peak proportional to the amount of energy received by the

detector [40].

The location, height, and presence of a peak from the EDX spectrum allows for the

identification of specific elements present in the sample. An example of an EDX spectrum

is shown in Figure 1.10 on the following page. Multiple elements can be found in the

spectrum including oxygen (O), aluminum (Al), and sulfur (S). Common elements found in

glass can also be seen in the spectrum including silicon (Si) and calcium (Ca). It would be

expected that these common elements would be present in a glass sample EDX spectrum
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along with another common element, sodium (Na). A quantitative analysis can be performed

to calculate the weight percentages of each element found to be in the sample [40].

Figure 1.10: Example of an EDX spectrum [10].

X-ray mapping

An X-ray map is an image of the sample formed from a selected part of the X-ray spectrum

[40]. They show the spatial distribution of elements in a sample.

An electron beam is rastered over one or more areas of interest point by point as shown

in Figure 1.11. The regions selected represent the intensities (energies) of the X-rays of

the elements of interest [11]. The electron beam will dwell over each pixel in the image

for a specified time. The number of X-rays detected in each pixel region are stored, and

the electron beam moves to the next pixel until the entire region of interest is scanned

[11]. The resolution of the X-ray image is determined by the beam size, and the relative

response of each element is determined both by how long the beam scans each point and the

concentration of each specific element in the sample. An image is created, which is made up

of a matrix of integers representing the number of X-ray counts at each pixel. A single band

image with 0-255 greyscale levels is then created from these integers [11]. A pseudo-color

image can also be created.

Figure 1.11: Diagram of x-ray mapping creation [11].
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Figure 1.12 demonstrates that a combination map of common elements in glass can be

created using X-ray mapping to show the distribution of these elements of interest in a single

image. As the electron beam rasters over the sample point by point, X-rays are generated by

each individual element (silicon, calcium, and sodium) and measured by the EDX detector.

The intensity (number of counts) of the X-rays from each element at each point is then

converted into a greyscale value. This process continues until the beam has rastered over

the entire area of interest, thus resulting in the combination X-ray map.

Figure 1.12: Diagram of an elemental combination x-ray map [11].

In order to properly photograph the interaction between glass and bullets, certain devices

and software can be used to generate high-quality photographs, allowing an examiner to

observe the glass distribution onto a bullet following perforation.

Although the SEM was used in this research, there are other methods, such as inductively

coupled plasma mass spectrometry (ICP-MS), which are better at characterizing glass.

1.5 Data processing and analysis

1.5.1 ImageJ

ImageJ is an image processing and analysis program created to perform multiple functions

on images. An examiner can use ImageJ to calculate area and pixel value statistics, measure

distances and angles, and create density histograms and line profile plots based on the

selection within an image that examiner chooses [41]. For example, an examiner can recover

a bullet at a crime scene and use ImageJ to measure the angle deformation of the bullet

as well as that bullets length, width, and height. This can provide insight into the type of
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material that the bullet may have impacted and at what angle the bullet impact a certain

material.

ImageJ serves as an image processing program that consists of several plugins with the

purpose of statistical analysis of multidimensional images [42]. One of the basic functions

is the ability to measure area statistics, line lengths and angles, or point coordinates. From

those measured particles, the program is able to create 8-bit images with outlines of those

said particles. Another feature is the calculation of area within a selected boundary of the

image using square pixels or calculating the perimeter of that boundary [42]. The center

point, or centroid, of a selection can also be determined by averaging the x and y coordinates

of the pixels. Similar to that, the center of mass can be determined by taking the brightness-

weighted average of the x and y coordinates of the pixels. ImageJ also allows the implication

of fit ellipses, which identifies the primary (major) and secondary (minor) axes of the best

fitting ellipse as well as the angle between the primary axis and a line parallel to the X-axis

of the image [42]. This feature can be used in conjunction with centroid to calculate the

center coordinates of a given ellipse. Similarly, the shape descriptors function calculates and

identifies the shape in reference to circularity, aspect ratio, fit ellipse, roundness, and solidity.

The shape descriptors are represented by specific equations [42]:

Circularity is defined as

circularity = 4π × area

perimeter2
(1.3)

where the area is the combined space of a selected particle, and perimeter is the outside

distance around the selected particle.

Aspect Ratio is defined as

aspect ratio =
major axis

minor axis
(1.4)

where the minor axis is the short axis of the best fitting ellipse from the selected particle

area, and the major axis is the long axis of the best fitting ellipse from the selected particle

area.

Roundness is defined as

roundness = 4× area

π ×major axis2
(1.5)
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where the area is the combined space of a selected particle, and the major axis is the

long axis of the best fitting ellipse from the selected particle area.

Solidity is defined as

solidity =
area

convex area
(1.6)

where the area is the combined space of a selected particle, and the convex area is the

combined space inside the convex hull (or a compressed particle).

1.5.2 R and RStudio®

R is a programming language specifically designed for statistical computing and graphics

and incorporates data manipulation, calculation, and graphical display [43]. Linear and

nonlinear modeling, classical statistical tests, time-series analysis, classification, clustering,

and graphical techniques are just some of the techniques available in R [43]. RStudio® is

designed for R and serves as an integrated development environment which includes a console

for viewing run command scripts, an editor for direct code execution, and numerous tools

[44].

Using the data generated from these programs, an examiner can then perform statistical

analysis in order to help study the data so that new methods can be developed for use in

forensic science.

1.6 Regression modeling

1.6.1 Simple linear regression

When one wishes to describe the behavior of one continuous variable in relation to another

continuous variable, a simple linear regression can be used to try and model this relationship

[12]. For example, simple linear regression could be used if one wished to describe measured

angles resulting from a particular method in relation to the known or true angles. The

response variable, or dependent variable, is represented by y while the explanatory variable,

or independent variable, is represented by x. The simple linear regression model is described

as

yi = β0 + β1 × xi + εi, εi ∼ N(0, σ2), i = 1, . . . , n (1.7)
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where yi is described by a straight line relationship (y = mx + b) with xi [12]. The

intercept and slope, also known as regression coefficients, are represented by β0 and β1. εi is

the error that describes the difference between an observation and a mean, and εi ∼ N(0, σ2)

states that εi has a normal error distribution [12].

Given a particular data set, the data model is described as [12]:

yi = ŷi + ri (1.8)

where ri is the estimated errors (residuals), and ŷi represents fitted values. These values

are obtained from the fitted model described as [12]:

yi = β0 + β1 × xi (1.9)

1.6.2 Multiple linear regression

In order to relate more than one explanatory variable to the response variable, multiple linear

regression is used. A model for p linearly independent explanatory variables, x1, x2, . . . , xp,

can be described as [12]:

yi = β0 + β1 × x1i + β2 × x2i + · · ·+ βp × xpi + εi, εi ∼ N(0, σ2), i = 1, . . . , n (1.10)

A general principle of regression modeling is to find the simplest model that best explains

the data.

1.6.3 Linear models in R

Linear regression is used to describe a relationship between variables based on statistical

data. In R, a command (shown below) is able to compute that relationship using a linear

regression model.

As seen in Figure 1.13 on the next page, the output consists of a series of information,

or data. Lines 1-2 are the call, which serves as a label to ensure the command was operated

on the correct data set with the designated model [12]. Lines 4-6 are a five number sum-

mary, describing the minimum, maximum, lower and upper quartiles, and the median of the

residuals [12]. Lines 8-11 are the coefficient values, most often referred to as the regression

table. This section includes the variable name; estimated coefficients, which are sometimes

referred to as the beta-hats; the standard error, which is used to test the significance of the

regression coefficient or importance of the variables; and the p-values, which either support
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or nullify the hypotheses [12]. In this case, it is a test of the hypotheses: H0 : βj = 0 and

H0 : βj 6= 0. The closer the p-value is to zero, the more likely the evidence is not in favor

of the null hypothesis. Line 13 lists how R identifies significance. If P < 0.001 there are

three asterisks, if 0.001 ≤ P ≤ 0.01 two asterisks, if 0.01 ≤ P ≤ 0.05 one asterisk, and if

0.05 ≤ P ≤ 0.10 either a period or full stop [12]. If there is any other value, nothing is

displayed.

Figure 1.13: Example of a linear model output from R for simple linear regression.

Line 15 is the residual standard error, which describes the standard deviation of the

residuals [12]. Line 16 gives the multipleR2 and adjustedR2 values which provide measures of

model performance. R2, or multiple R2, is called the squared multiple correlation coefficient

and measures the (squared) correlation between the fitted values and the observed values

[12]. To obtain the fitted values, also referred to as the predicted values, estimated regression

coefficients are tested in the model and the output is recorded. The adjusted R2 can be

described by the following equation [12]:

AdjustedR2 = 1− (1−R2)
n− 1

n− p− 1
(1.11)

The adjusted R2, shown in Equation 1.11 above, accounts for the addition of variables to

a regression model. Because of that, adjusted R2 is considered important in multiple linear

regressions because it ensures that the models are not over-parameterized (as an increase

in variables causes an increase in the adjusted R2) [12]. The adjusted R2 value is always

lower than that of R2 and has the potential to be a negative value, which would indicate

that the model had been extremely over-parameterized. Line 17 of the output provides an

F-statistic and the respective P-value [12]. With these values, the following hypotheses are

being looked at: H0 : β1 = β2 = · · · = βp = 0 H1 : someβj 6= 0, j = 1, . . . , p

The hypothesis being tested predicts that all of the regression coefficients, save for the

intercept, will come out to zero. If this hypothesis is proven false, then the explanatory
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variable is considered important in predicting responses. Under linear regression models,

three general assumptions exist to ensure that statistical inferences can be made: (1) all

observations and errors are orthogonal (independent) from one another, (2) all errors have

consistence variance about the line, and (3) all errors have a mean of zero [12].

The idea that the observations and errors are independent is the hardest assumption to

check as there is no statistical test that can prove or disprove independence. However, the

use of fit models can aid in dealing with dependency although they typically consist of series

models, mixed effect models, and/or multivariate analyses [12]. Therefore, the assumption is

made that if the data was collected correctly, the observations would be independent unless

the measurements made were done on “the same subject and time or space effects.”

The second assumption is considered the next most important. In the case that the

errors have dynamic variances, the regression coefficient estimates result in extremely large

standard errors in some areas and extremely small standard errors in others [12].

A pred-res plot plots the model residuals against their corresponding fitted values [12].

In order to validate the assumption of constant scatter, a pred-res plot is created. According

to the third assumption, if the resulting graph shows the points to center around zero, both

assumptions are met [12].

In Figure 1.14 on the next page, the left side shows the fitted line plots while the right

side shows the pred-res plots. As seen with the above, pred-res plots are able to identify

non-constant scatter and non-linearity. These plots also allow for the assessment of data

normality. The normal Q-Q plot, or normal quantile-quantile plot, is a scatter plot that

depicts the empirical quantiles obtained from the data against the theoretical quantiles [12].

Two methods of plotting that do so are the use of a normal Q-Q plot and a density estimate

of the residuals.
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Figure 1.14: Residuals versus predicted value (pred-res) plots [12].

If the data is considered normal, the points of the plot will follow a general linear line as

seen in Figure 1.15 - graph A [12]. From the line, an estimate of the mean can be determined

based on the intercept while the slope of the line gives the estimated standard deviation.

Figure 1.15: Possible shapes for a normal Q-Q plot. The theoretical quantiles are plotted on
the x-axis, and the empirical quantiles are plotted on the y-axis [12].

In multiple linear regressions, when there are several variables, some may be considered

borderline significant. One of the strategies to combat this is called backward elimination,
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where the least significant variables are removed one by one until the refitted model reads

that all variables are significant [12]. If multiple variables are removed at once, the chances

are that two or more of those variables are “highly linearly correlated.” If that is the case,

multi-collinearity (the presence of those correlated variables) may cause the significance of

the remaining variables to change drastically [12].

1.6.4 Confidence and prediction intervals

Determining the 95% confidence interval can be achieved using the following equation [45]:

ŷ ± Tcrit × s.e. (1.12)

where ŷ denotes the forecasted values ŷ of x, tcrit is the critical value of t (or a point on

the continuous probability distribution), and s.e., is the standard error, represented by the

equation:

s.e. = Syx

√
1

n
+

(x− x̄)2

SSx
(1.13)

where Syx is the standard error of the predicted y-value for their respective x, n is the

sample size number, x̄ is the sample mean, and SSx is the sum of all squared deviations

from the sample mean.

An example of a confidence interval can be seen in Figure 1.16 on the next page. A confi-

dence interval represents the 95% probability that the true regression line of the population

will fall within the interval calculated using Equation 1.12 [45].
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Figure 1.16: A linear regression line calculated to fit data points and the lower and upper
confidence limits [13].

Determining the 95% prediction interval can be achieved using the following equation

[45]:

ŷ0 ± tcrit × s.e. (1.14)

where ŷ0 represents the forecasted value for ŷ0 for x, tcrit is the critical value of t (or a

point on the continuous probability distribution), and s.e. is the standard error, which is

represented by the equation:

s.e. = Syx

√
1 +

1

n
+

(x0 − x̄)2

SSx
(1.15)

where Syx is the standard error of the predicted y-value for their respective x, n is the

sample size number, x0 represents any specified value, x̄ is the sample mean, and SSx is the

sum of all squared deviations from the sample mean.

The prediction interval indicates that there is a 95% probability that the true value of ŷ0

corresponding to x0 is within the interval calculated from Equation 1.14 [45].

The prediction interval tells you about where you can expect to see the next data point

sampled and describes the distribution of values [46]. It accounts for the scatter of the data

as well as the uncertainty of the data mean and therefore tends to be much larger than the
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confidence interval [46]. It, on the other hand, describes the possible best-fit line location

and, in turn, depicts how well the mean of the data was determined [46].

1.7 Principal component analysis (PCA)

Principal component analysis (PCA) is a form of multidimensional scaling that constructs

new characteristics, or variables, from the original ones and allows that high-dimensional

data to be optimized and then summarized into a linear multivariate model of orthogonal

variables [14]. This method allows the analysis of variance in a set of data that otherwise

reads non-statistically significant.

For example, an original data set, composed of chemical data, could consist of a high

number of variables where there is a high correlation between those variables. As seen

in Figure 1.17, a total of sixty gasoline samples, each consisting of 401 reflectance values

could not be differentiated from one another. The similiarity between the samples causes

overlapping information creating smooth curves that are hard to tell apart [14].

Figure 1.17: Near-infrared spectra of sixty gasoline samples, consisting of 401 reflectance
values measured at equally spaced wavelengths between 900 and 1700 nm [14].

As a means to create easier interpretable data, and statistically significant data, PCA

isolates and defines latent variables in such a way that all samples are represented and now

distinguishable. To do so, PCA creates linear representations using orthogonal basis vectors,

or eigenvectors [47]. These are also known as principal components, or PCs. PCs model the

statistically significant variation in the data set as well as the random measurement error

[47]. The first PC will account for the highest percentage of the variance, while the next PC
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will account for the next highest percentage, and so on, while remaining uncorrelated with

each other.

The data being used and analyzed is a result of a multiplication matrix, or approximation

of the original data, (represented by X̄), as shown in Equation 1.16:

X̄ = TaP
T
a (1.16)

where T represents the scores, P represents the loadings, superscriptT refers to the

transposition of the matrix, and subscripta refers to the number of components used.

Equation 1.16 forms a multiplication matrix, which has the purpose of forming the lower-

dimensional, and easier interpretable, data. This is done by multiplying the scores and load-

ings [14]. With any given a, it indicates the maximum number of PCs and likewise describes

the minimum number of rows and columns in the created matrix, which is summarized in

equation 1.17:

āmin = min(n, p) (1.17)

where n and p refer to the rows and columns of the matrix, respectively.

The resulting matrix consists of PCs where the scores vary as much as possible, the

linear distance between each score is as large as possible, and the resulting matrix is as

similar to the original as possible. From there, an algorithm referred to as Singular Value

Decomposition (SVD) is used to empirically define the PCs and lower the rank of the matrix,

which can be seen in equation 1.18:

X = UDV T (1.18)

where X indicates an n×p mean-centered data matrix, U refers to an n×a orthonormal

matrix containing the left singular vectors, D refers to a diagonal matrix (a×a) composed of

the singular values, and V refers to a p×a orthonormal matrix containing the right singular

values.

Equation 1.18 shows that by multiplying the orthonormal matrix composed of U , D, and

V , you are able to obtain that mean-centered data matrix, X [14]. However, as shown in

Equation 1.19, by multiplying the left singular vectors and the right singular vectors, you

obtain the scores, represented by T , while V T is, in reference with PCA, synonymous with

loadings, represented with P . In the case that amax = a in Equation 1.16, the approximation

is equivalent to the original matrix, causing Equation 1.16 to appear the same as the modified

Equation 1.18. This can be observed in Equation 1.19:
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X = (UD)V T = TP T (1.19)

where the scores (the columns in T ) describe the object weights per PC, or the location

in the latent variables obtained from PCA, while the loadings (the columns in P ) provide

the weights of the original variables per PC.

While the columns in U have the same coordinates, or location, as that of T , the coordi-

nates in U are normalized and not orthogonal, while the coordinates in T are orthonormal.

Because of this, while the columns in U consist of unit variances, the columns in T consist

of variances parallel to the variances of each PC [14]. That variance relationship described

in the scores matrix (T ) can be described by the following equation:

λi =
d2i

n− 1
(1.20)

where λi are the variances, and d2i refers to the squaring of the diagonal elements in

matrix D.

The fraction of variance resulting from PCi can be calculated using Equation 1.21:

FV (i) =
λi∑a
j=1 λj

(1.21)

A different viewpoint puts this process into another perspective in reference to spectroscopic-

chromatographic data. Under this is an equation similar to Equation 1.16 on the previous

page. The equation is shown below:

A = CP T + ε (1.22)

where A refers to a data matrix composed of mixture spectra, C is a matrix of pure

chromatograms, P is a matrix of pure-component spectra, and ὲ refers to the measurement

error [47].

The same concept is present in Equation 1.16 on the preceding page with the goal being

creating a lower-dimensional data set. Equation 1.22 describes the C and P matrices spectra

as “row basis vectors” and “column basis vectors,” respectively.

Under the Principal Component Model, the following equation is presented:

A = T kV T
k + ε (1.23)

where A represents a set of basis vectors condensed into a data matrix, Vk represents the

eigenvectors, which are also referred to as loadings or eigenspectra, and Tk represents the

scores, where the columns of Tk are considered orthogonal but not orthonormal [47].
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Again, this equation is equivocal to Equation 1.16 on page 24 and Equation 1.22 on the

previous page while also accounting for measurement error. In summation, these equations

allow for creating an empirical model of the original data.

In terms of PCA, possible pre-processing options include centering, and if necessary,

baseline correction. The idea behind mean-centering data analysis is to calculate the average

data vector throughout all rows of that data set, which subsequently moves the origin of

the model to the “center” of the data. This normalizes each column of variables to give

proportional weighting to all aspects of the measured data vectors, forming what is called

“scaled to unit variance.” This sets the data up for SVD and is particularly useful with

large signal-to-noise ratios [47]. In the case that there is a baseline offset, typically identified

by upward or downward slopes, the average signal over a frequency region is calculated and

then subtracted from each frequency in order to form a baseline-corrected spectrum.

1.8 Box-Cox transformation

The Box-Cox Normality Plot is a plot of correlation coefficients obtained from a Box-Cox

transformation [15]. This is a procedure with the purpose of converting a data set into

normalized data in order to be optimal for statistical tests. The transformation required to

normalize data can be determined using Equation 1.24:

T (Y ) =
Y λ − 1

λ
(1.24)

where λ refers to the transformation parameter and Y is the response variable. In the

case that λ = 0, the natural log is taken of the data in place of the formula [15]. To determine

the measure of the normality of the resulting transformation, a number of normal probability

plots are formed based on the transformations using a series of λ values.

A correlation coefficient is calculated from each normal probability plot, which is then

plotted into a Box-Cox normality plot against the corresponding value of λ used as seen in

the top right of Figure 1.18 on the next page.
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Figure 1.18: Example of transforming the data using a Box-Cox Transformation. The top
left graph represents the data before the transformation while the bottom left graph represents
the data after the transformation. The graphs on the right represent the normal probability
and Box-Cox normality plots. [15].
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2. Literature Review

2.1 Characterization of glass evidence

In a study by Munger et al., refractive indices of seven double-paned vehicle windshields were

measured to assess the variation across each pane of glass [17]. Thickness measurements were

taken of the glass fragments from each pane using a digital caliper. A Foster + Freeman®

GRIM3® was used to measure the refractive indices. At least 240 measurements were made

for each pane of glass depending on its size. The largest pane resulted in 540 measurements.

The mean standard deviation of the refractive indices values for all the panes of glass

were found to be 4× 10−5. The individual pane standard deviations were found to be from

3× 10−5 to 5× 10−5. This data can be found in Table 2.1. The range of the mean for the

refractive index values across all panes was found to be from 1.51864 to 1.52264.

Table 2.1: Refractive index values for a single windshield pane [17].

Zadora and Brozek-Mucha discussed the usefulness of the SEM-EDX in forensic exam-

inations [48]. The ability to analyze samples based on elemental composition makes the

SEM-EDX a powerful tool. Since glass samples are usually small in forensic casework, there

is a strong need for an appropriate analytical method of analysis. The elemental composition

could be very different between samples depending on the product from which the glass frag-
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ment originates. Using the SEM-EDX to analyze various glass samples, one should be able

to develop a classification scheme which will allow a glass sample to be placed into a specific

class based on the elemental composition retrieved from the SEM-EDX. It was confirmed in

the Forensic Testing Program that the SEM-EDX is useful for solving problems that involve

the analysis of microtraces, including that of glass [40].

Falcone et al. studied the ability of the SEM-EDX to analyze small glass fragments [49].

The glass fragments used in the study were retrieved from a green silica-soda-lime container

glass of known composition. The analyses provided accurate results of the components of

embedded and polished glass particles down to 0.30mm in size. It was found that trace

element concentrations of oxides in the range of 500–100ppm could be detected and that

non-embedded irregular shaped glass particles could be classified using the SEM-EDX.

Andrasko and Maehly attempted to differentiate four different groups of window glass

[16]. Group A consisted of two panes, one fifteen years old and one new. Group B contained

twenty-nine samples collected from a town over a period of several weeks. Group C had ten

samples of show window glass with similar thickness, densities, and refractive index values.

Group D consisted of three glass samples from casework, which were indistinguishable based

on refractive index values. The elements found in the glass samples included: silicon, calcium,

sodium, magnesium, aluminum, potassium, sulfur, chlorine, iron, and barium.

It was concluded that the elemental ratios obtained by the SEM-EDX analysis allowed for

nearly all of the glass samples to be distinguished from one another although the refractive

index values were the same for some samples. This can be seen in Figure 2.1.

Figure 2.1: X-ray spectrum resulting from a 400-s analysis of glass samples 23 and 24 of
Group B. The refractive index of both of these samples was 1.5198 [16].
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2.2 Interaction between glass and bullets

In a study by Vermeij et al., the transfer of glass onto bullets following perforation of 8mm

layered glass and 4mm single sheet glass was examined [2]. The study found that the best

method to catch the bullets was to use a cotton wool trap which limited the amount of

damage to the bullet and transferred a limited amount, if any, of cotton to the bullet itself.

Sellier & Bellot® 9mm Luger FMJ 115 grain and PMC .38 Special 158 grain lead round nose

(LRN) ammunition were used in the study. The 9mm Luger ammunition was fired using a

Sig Sauer P226 9mm pistol. The .38 Special ammunition was fired using a Smith & Wesson

Model 586-3 .357 revolver. Ten FMJ bullets were fired through layered glass and nine were

fired through single plate glass. Eight LRN bullets were fired through layered glass and ten

were fired through single plate glass. The study used SEM-EDX to observe the glass on the

bullets.

For single-sheet glass, the noses of the bullets were strongly flattened. Finely powdered

glass fragments covered the noses. The very tip of the bullet, however, was relatively free

of glass. Three zones were noticed on the bullet as shown in Figure 2.2. The first zone

consisted of the center of the nose which remained mainly unharmed with very few traces of

glass. The second zone consisted of the area surrounding the center of the nose which was

rough and contained only a few glass particles. The third zone is outside of the second zone

and contains larger particles of glass.

Figure 2.2: Nose of FMJ bullet (A) and LRN (B) after perforation of single sheet glass [2].

For layered glass, both the FMJ and LRN bullets were more damaged [2]. The jackets

separated from the core, and, at times, there was fragmentation of the core itself. If part

of the jacket remained intact, glass dust was observed in a ring around the nose. Glass

powder was also found on the edges of the opened jackets. There were glass fragments found

embedded in the flattened faces of the bullets.
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The glass fragments embedded into the bullets were easily recognized using SEM-EDX

due to the angularity of the particles and the EDX spectra of the particles [2]. These glass

fragments can be observed in Figure 2.3.

Figure 2.3: SEM image of glass (black) surrounding the tip of an FMJ bullet [2].

Karger et al. examined the transfer of glass to bullets using a SEM-EDX [50]. A Sig

Sauer P225 9mm pistol was used to fire Geco 9mm FMJ round nose bullets through 3mm

thick flat glass (lime-sodium-silicate). Five bullets were fired through the glass. After firing,

the glass on the bullets was located using SEM-EDX. The major elements observed were

silicon and calcium. Upon observation of the bullets, there was a hollow in the tip of the

bullet along with a finely tapered rim. A few small glass fragments were observed at the tip

of the bullet. Glass dust was also located on the sides and rear of the bullets.

Scientists Wong and Jacobson conducted a study on bullet hole shapes to determine

angles of impact in 2012 [51]. They created bullet impacts using a Walther P4 with PMC

copper-jacketed ammo into three different flat media surfaces — 5/8 wood, sheetrock, and

sheet metal from a van. The 54 holes were then examined using an ellipse template method

and caliper and half-length method. With the wood pressboard media, 39 of the calculated

angles were within the 10° true angle using the ellipse template while 46 were within the

range using the caliper. With the sheetrock, 38 of the template-method angles were within

range while 44 of the caliper-method angles were. With the sheet metal, the bullets were

unable to penetrate at the 10 degree angle due to the nature of the media. However, the

ellipse template was used on the ricochet imprints, resulting in 20 of the 48 calculated angles

within the 10° range and 23 of the 48 to be within range using the caliper.
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2.3 Image capture

Baviskar discussed a method to measure area from a set of features in a photomicrograph

using ImageJ [52]. In this process, a scale is calibrated using Set Scale and the image

must be 8-bit greyscale. Variables to be measured, such as area, standard deviation, mini-

mum and maximum grey scale value, and mean grey scale value, are selected using the Set

Measurements function. Automatic thresholding is used to set pixels for objects of interest

at a certain greyscale value so that they appear brighter than the background. The Analyze

Particles function is used to analyze the image and generate characteristic data for the

objects of interest. A Microsoft® Excel® spreadsheet stores the data which can then be

used to conduct further analyses.

2.3.1 Zerene Stacker

In a study conducted by Brecko et al. in 2014, an inexpensive approach to focus stacking

systems used Zerene Stacker results for comparison against two high-end stacking systems

– a Leica® MZ16A with DFC500 and a Leica® Z6APO with DFC290 [53]. Using an ant

and beetle as subjects, photos were taken within an Ikea® kitchen closet with flashlights for

lighting and StackshotTM as the focus-adjuster. Afterwards, the results were tested with a

number of stacking software including CombineZP, Auto-Montage, Helicon Focus, and Zerene

Stacker using the PMax and DMap stacking methods. When comparing the results between

the two stacking methods, DMap resulted in halos in areas of fine detail, such as hairs,

and blurry images while PMax created detailed and clear images. The study results showed

that out of all the high-end focus stacking solutions used, Zerene Stacker (using PMax) in

combination with their stacking system gave the best resolution and highest detailed photos.

2.4 Analysis of data

2.4.1 HemoSpat

A study considering the calculations of one-sided bloodstains and the methods to do so

was carried out by Maloney et al. in 2010 [54]. After creating 64 one-sided, incomplete

bloodstains using hockey pucks, 20 were selected to be analyzed using a laser distance finder

and right angles. The same 20 stains were then analyzed by a version of HemoSpat specifically

for one-sided stains and compared to the previous results. HemoSpat gave both angles and

a two-dimensional view at the estimated locations of the pucks, and it was found that the
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areas of origin using the laser distance finder were within an acceptable range for that of

HemoSpat.

An attempt to calculate areas of origin on non-orthogonal surfaces by Maloney et al. in

2009 used HemoSpat to reduce limitations and create precise results [55]. A small tabled

surface was set up at an angle in a room where, after impact, 78 stains were chosen to be

analyzed and were categorized by location on that table. After being processed through

HemoSpat, the two-dimensional images showed estimated origins of impact that were within

1cm of the actual source. As a result, the analyst found it nondestructive to remove objects

from scenes to be analyzed in controlled environments using software similar to HemoSpat.

2.5 Regression modeling

A study by Rowe & Hanson in 1985 used regression analysis to model range of fire estimates

of various spreads of shotgun pellet patterns [56]. The study used test fires from two different

12-gauge shotguns. Each firearm used a different buckshot cartridge. A number of questioned

pellet patterns were fired at ranges between 10 and 50 feet, and test fires were conducted

using the same firearms and ammunition. Using the data obtained from the spread of the

pellet patterns, regression analysis was applied and regression coefficients were determined.

The estimates of the ranges of fire were derived from the regression coefficients. Confidence

intervals were then calculated for the estimates, and the ranges of fire were found to be

within the 99% confidence interval. An approach using regression functions in R to model

the data from this study was performed by Curran, 2011 [12].

In an experiment conducted by Heaney and Rowe in 1982, a series of shotgun pellet

patterns were shot at varying ranges using a Remington 12-gauge and chilled No. 2 shot

cartridges [57]. Using the linear regression model y = a+bx, a and b (the intercept and slope,

respectively) were calculated and used to determine the correlation coefficient and standard

error for three different sets of ranges. The correlation coefficients calculated ranged from

0.993–0.999, meaning that for the ranges tested at, there existed a strong linear relationship

between the range at which the bullets were shot and the
√
area of the smallest rectangle that

would enclose the shotgun pellet pattern. These results were consistent with the already-

existing belief that shotgun pellets traveled together for x distance before they actually

spread out.

In 1983, a study done by Wray, McNeil, and Rowe looked at the spread of pellet patterns

by three methods: the “effective shot dispersion” method, calculating the area of the smallest

rectangle that would enclose the pellet pattern, and an overlay method that calculated the

radius of the smallest circle that would enclose the pellet pattern [58]. Using a Remington
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12-gauge with 00 buckshot cartridges, 72 shot patterns were created at 24 different ranges.

To find a relationship between the dispersion of the pattern (S), the radius of the smallest

circle (R), and the area of the smallest rectangle (A), regression analysis was applied. The

relationship was found to be expressed by y = a + bx where y = S, R, or
√
A and a and b

represented the regression coefficients. The result of the study showed that the dispersion

method resulted in the best fit to a linear function according to range while giving the

smallest confidence interval in terms of range-of-fire estimates.

2.6 Principal component analysis

An experiment conducted by Virkler and Lednev in 2009 used a combination of Raman

spectroscopy, significant factor analysis, mean-centering, and principal component analysis

to isolate the principal components that could be used to separate three different species [59].

They measured Raman spectra for 24 samples from 16 points at random, and then normalized

the spectra into a single matrix. PCA was performed, assuming six principal components,

and then cross-validated to verify that number of components. A graph was made by plotting

the root-mean-square error of cross validation against the number of principal components.

Only the first three PCs proved to be differentiable, and a three-dimensional plot of the

species was created based on the information provided by the PCs. A 99% confidence

interval was used for each species–it was found that none of the ellipsoids created overlapped

one another. Assuming that since there is no overlap in two- and three-dimensional space,

there must be no overlap in a six-dimensional space, meaning there is a low likelihood of a

false positive identification using this nondestructive method.

An attempt to identify the limitations of chemometric methods on spectroscopic data

by Muehlethaler et al. in 2011 consisted of using principal component analysis to reinforce

data obtained from other variable selection methods [60]. Using paint samples for spectro-

scopic data, PCA was performed on the FTIR data matrix, which provided four principal

components. These PCs corresponded to binder types and the presence/absence of calcium

carbonate. 83% of the total variance was explained by the four first PCs.

However, from using the Raman data matrix, six PCs were identified. These corresponded

to the different pigment compositions when plotting the first two PCs, which accounted for

37% and 20%, respectively, of the total variance. They determined that when separating at a

more specific, higher level, PCA works efficiently while at a general, lower level of separation,

Raman spectra are more likely to experience reproducibility problems. If both methods of

variable selection (hierarchical cluster analysis (HCA) principal component analysis) are

used combined, it was found that all samples could be individually separated as long as the
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samples could be separated into different groups. They concluded that chemometrics is a

valuable tool for objective decision-making, a reduction of the possible classification errors,

and a better efficiency, having robust results with time saving data [60].

2.7 Box-Cox transformation

A study by Osborne in 2010 assessed Box-Cox transformations as a primary means to en-

hance data analysis [61]. The idea was that the use of power transformations improves the

effectiveness of normalizing for all variables. Osborne applied Box-Cox transformations on

data of Prussian cavalrymen deaths via horses, U.S. universities and faculty salary, and stu-

dent test grades, all of which were non-normal data. Following the implementation of the

transformation, the effect sizes of a correlation in all three cases increased over 80%.
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3. Methods

3.1 Glass targets and bullets

All samples of glass were obtained from a closed glass factory and are part of the same sheet

of glass produced. The samples were cleaned and labeled with a unique identifier. The width

and length of the samples were measured with the same tape measure. The thickness on all

four sides of each glass sample was measured using the same caliper.

Table 3.1 and Table 3.2 lists a subset of the samples used for the full metal jacket bullet

and lead round nose bullet analysis. The unique identifier, which represents each glass

sample, also represents the bullet that was fired through that specific piece of glass. Each

bullet was fired from a distance of approximately 80 inches from the glass using a Ruger®

SR9® 9mm pistol. The bullets perforated the glass samples at angles of 45°, 50°, 60°, 75°,

and 90°.

Table 3.1: Subset of samples used for all full metal jacket bullets

Table 3.2: Subset of samples used for all lead round nose bullets
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Ten full metal jacket bullets and ten lead round nose bullets were used for this study at

each angle. The sample set consisted of a total of 100 samples (50 full metal jacket and 50

lead round nose).

Winchester® 115 grain full metal jacket 9mm Luger ammunition was used for the full

metal jacket bullet analysis. Reloaded 9mm lead round nose ammunition was used for the

lead round nose bullet analysis. The reloaded ammunition consisted of 115 grain Missouri

Bullet Company lead, 4.1 grains of Hodgdon® Titegroup powder, and Sellier & Bellot® 4,4

small pistol boxer primers.

3.2 Firing system

Three devices were designed to form a system for the testing and collection of bullets. The

firearm mount device, as seen in Figure 3.1, was used to stabilize the firearm while each shot

was fired. There was a Ransom Masters Series Vise mounted into the center of the device

to place the firearm into before being fired. Three cinder blocks were used to weigh down

the device to restrict movement during firing. The device was designed to allow for vertical

adjustment of the firearm.

Figure 3.1: Firearm mount device
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The glass frame and angle adjustment device, as seen in Figure 3.2, was used to frame

the glass samples prior to firing. A swivel from a chair was mounted in the center of the main

table in order to adjust the angle at which the bullet would perforate the glass. The frame

itself was placed onto the top of the swivel. The bottom and sides of the frame consisted of

two pieces of wood with a V-shape groove to ensure that the glass samples would fit tightly

into the frame. For the top part of the frame, two pieces of wood with tightening screws

for the glass sample were placed on each side of the frame and locked down using clamps.

Angles from 45° to 90° in increments of 5° were measured out and labeled on the main table.

This allowed for the centering of the frame and alignment of the desired angle.

Figure 3.2: Glass frame and angle adjustment device

The Kevlar® bullet trap holder device, as seen in Figure 3.3 on the following page,

served as the bullet trap holder. It consisted of a wood piece that was cut and designed to

fit the cylindrical bullet trap that was used to catch the bullets. This piece could be moved

vertically to align the trap with the bullet’s path. The bullet trap itself contained Kevlar®

fibers.
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Figure 3.3: Kevlar® bullet trap holder device

3.3 Firing process and collection

The following steps were repeated for each sample at an indoor firing facility:

1. The firearm was placed into a vice and tightened down. The firearm was checked to

ensure it was level in the vice (Figure 3.4 on the next page). The wood surface, which

the vice was mounted on, was checked to ensure it was level on all four sides with a

larger level.
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Figure 3.4: Process to ensure firearm is level in the vice

2. A plumb bob was attached to the frame and allowed to hang down over the side of the

frame until it contacted the main table at the desired angle (Figure 3.5). The swivel

was then secured down to the main table using four tightening screws. The frame was

checked to ensure it was leveled. A glass sample was then inserted into the frame and

secured on all four sides.
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Figure 3.5: Plumb bob measuring the proper angle

3. A laser was inserted into the barrel of the firearm, and the path of travel of the bullet

was aligned with the center of the glass sample and also with the center of the bullet

trap (Figure 3.6).

Figure 3.6: Laser inserted into barrel to view the path of the bullet

4. The firearm was pulled up in the vice so the magazine could be ejected. A single

cartridge was inserted into the magazine. The magazine was then inserted into the
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firearm, and the firearm was pressed back down into place. The firearm was cocked,

and the muzzle was pressed down to ensure it was leveled. The handle was pulled

backward, pulling the trigger and thus discharging the round into the glass sample.

The magazine was then immediately removed from the firearm.

5. As shown in Figure 3.7, a scale was placed in front of the glass sample. Two pho-

tographs were taken of the bullet hole in the glass. The first photograph was taken by

looking at the glass from the angle at which the bullet perforated it. The second was

taken perpendicular to the hole. One photograph was taken for samples at 90°.

Figure 3.7: A 60° angle photograph (left) and perpendicular photograph (right)

6. A small glass sample was retrieved and placed into an envelope and labeled. The rest

of the glass was discarded.

7. The bullet was retrieved from the bullet trap and placed into a small envelope and

labeled.

8. The area was cleaned of glass, and the bullet trap was reset for the next sample.

9. Steps 1-8 were repeated for each sample for both the full metal jacket and lead round

nose bullet analysis.
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3.4 Using HemoSpat to determine the angle of impact

HemoSpat is a software designed specifically for bloodstain pattern analysis and recognition

in order to easily determine areas of impact [62]. By applying the same concept of traditional

methods like stringing, HemoSpat is able to effectively perform directional analysis of blood-

stains in much less time than traditional methods. This software utilizes a combination of

physical stringing, mathematical formulae, and bloodstain pattern analysis software to accu-

rately calculate the area of origins of bloodstain patterns [62]. It offers the ability to invert

colors to allow a greater contrast from the background for hard-to-see bloodstains, analyze

non-orthogonal surfaces by allowing the addition of any flat surface to a scene for analy-

sis relative to that surface, and automatic bloodstain ellipse detection to make quicker and

easier analysis [63]. As stain data is edited and changed, the area of origin calculations are

also automatically updated in real time [63]. HemoSpat takes away the time-consumption

traditional methods applied at crime scenes and condenses it into a simpler program.

The interface for HemoSpat during the processing of a glass sample can be seen in Fig-

ure 3.8. The following steps were repeated for each sample of the full metal jacket and lead

round nose bullet analysis within the HemoSpat program:

Figure 3.8: Interface of HemoSpat while measuring angle of impact

1. The perpendicular photograph taken at the indoor facility of the bullet hole in the

glass was loaded into the HemoSpat program.
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2. The photograph was cropped to include the bullet hole and scale only.

3. The bullet hole was selected using the Select Stain tool.

4. The scale was set to 10mm using the Set Scale tool.

5. The vertical direction was selected using the Select Plumb Line tool.

6. The location of the hole was chosen to be the front wall. The x and z coordinates were

both set to 50 cm.

7. The four sides of the yellow selection area were adjusted in three different ways to

select the bullet hole. The tail of the yellow selection area was moved in the direction

where the bullet hole was elongated the most.

First, they were adjusted to include the largest possible ellipse that could be made

while selecting areas that contained no glass (Figure 3.9).

Secondly, they were adjusted to include the smallest possible ellipse that could be made

while selecting areas that contained no glass. The yellow selection area touched the

innermost glass piece on all four sides (Figure 3.10 on the next page).

Finally, the sides were adjusted to include the best fitting ellipse (Figure 3.11 on the

following page). This took into account areas with and without glass present.

Figure 3.9: Measuring angle of impact by selecting the largest possible ellipse while including
all areas that do not contain glass
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Figure 3.10: Measuring angle of impact by selecting the smallest possible ellipse while in-
cluding all areas that do not contain glass

Figure 3.11: Measuring angle of impact by selecting the best fitting ellipse

8. The measured alpha angle, or angle of impact, was recorded for each of the three

methods.
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The data retrieved from HemoSpat was used to develop linear models using R. Four linear

models were created for the full metal jacket data and four for the lead round nose data.The

four models include an overall model, inner model, middle model, and outside model. Plots

showing the linear models and their 95% confidence and prediction intervals were created.

In addition, a pred-res plot (residuals versus fitted values), normal Q-Q plot, histogram,

and 95% confidence and prediction intervals only plot were created for each model.

A regression table for each model was created, which included the estimated coefficients,

standard errors of the estimates, t-values, p-values, and the multiple R2 and adjusted R2

values.

3.5 Refractive index analysis of glass deposited on bul-

lets

Glass from three bullets were tested on the GRIM3® to determine if the refractive index

could be measured following the perforation of the bullets.

A new case was created on the GRIM3® system. To calibrate the GRIM3®, a small

piece of a B6 standard glass fragment was placed onto a glass slide. Two drops of silicon B6

immersion oil was placed onto the fragment. Forceps were used to push down on the frag-

ments to break it into smaller pieces for better observation under the microscope. Another

drop of oil was placed onto the slide, and a circular glass cover slip was placed over the oil

and fragments. The slide was placed into the GRIM3®. The lighting and focus were both

adjusted. Four glass fragments were selected for analysis. The resulting refractive index

measurements for the standard fragments selected fell into the acceptable range.

For analysis, glass, which was deposited on a bullet during impact, was scraped onto a

clean microscope slide. Two drops of silicon B6 immersion oil were placed on the slide at

the location of the glass fragments. A circular glass cover slip was placed over the oil and

fragments, and the slide was then placed into the GRIM3®. The lighting and focus were

adjusted.

After careful observation under the microscope, the fragments retrieved from the bullets

were determined to be too fine for selection using the GRIM3®.
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3.6 Scanning electron microscopy with energy

dispersive X-ray analysis on FMJ and LRN bullets

A section of a full metal jacket (sample 8G) and lead round nose (sample 8X) bullet was

observed in BEC (backscattered electron composition image) mode on a Joel JSM-6490 LV

scanning electron microscope under x50 magnification with an accelerating voltage of 20kV

and pressure of 27Pa.

Energy dispersive X-ray analysis was performed on the samples using an Oxford Instru-

ments INCAx-sight Model 7623. X-ray maps were created of calcium (glass), silicon (glass),

copper (jacket), and lead (bullet) for sample 8G and of calcium, silicon, and lead for sample

8X.

Table 3.3 displays the conditions for the full metal jacket sample.

Table 3.3: Conditions for the x-ray map of sample 8G

Table 3.4 displays the conditions for the lead round nose sample.

Table 3.4: Conditions for the x-ray map of sample 8X

3.7 Using ImageJ to measure side view bullet defor-

mation

The following steps were repeated for each sample of the full metal jacket and lead round

nose bullet analysis:
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1. As seen in Figure 3.13, each bullet was placed onto a rotating mount and rotated until

the steepest slope of the non-glass side of the deformed bullet was aligned to the right.

As seen in Figure 3.13, for some 90° bullets, no noticeable slope was observed no matter

the rotation. The setup can be seen in Figure 3.12. For bullets that perforated the

glass at angles of 45°, 50°, 60°, and 75°, a majority of the glass was located on the left

side of the bullet once aligned. For 90°, the glass was located throughout the surface

of the bullet once aligned.

Figure 3.12: Bullet deformation setup

Figure 3.13: Noticeable slope present on a 90° bullet (left), no noticeable slope present on a
90° bullet (right)
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2. A photograph was taken using a Nikon® D7000 with a 60mm macro lens. An example

photograph can be seen in Figure 3.14. The settings used were an ISO of 100, shutter

speed of one fifth of a second, and f/stop of 16.

Figure 3.14: Example of a photographed bullet

3. The photograph was loaded into ImageJ. Using the multi-point selection tool,

three different methods were used to measure the deformed bullet. If a bullet did not

have a noticeable angle (distinct rise and fall before the left vertical tangent of the

bearing surface) on the nose of the bullet, the following methods were used:

The first method, called AA, is shown in Figure 3.15 and incorporated placing points

from the steepest right vertical tangent to the steepest left vertical tangent. Five,

ten, and fifteen points were marked between these locations.The points were spaced

approximately an equal distance apart.

Figure 3.15: Measuring 5 (left), 10 (middle), and 15 (right) points on a 90° bullet using
method AA.
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The second method, called VV, incorporated placing points from above the right ver-

tical of the bearing surface to above the left vertical of the bearing surface. Five,

ten, and fifteen points were marked between these locations. The points were spaced

approximately an equal distance apart. Method VV is demonstrated in Figure 3.16.

Figure 3.16: Measuring 5 (left), 10 (middle), and 15 (right) points on a 90° bullet using
method VV.

The third method, called HH, is shown in Figure 3.17. This method incorporated

placing points from half way between the right vertical tangent and above the right

vertical of the bearing surface to half way between the left vertical tangent and above

the left vertical of the bearing surface. Five, ten, and fifteen points were marked

between these locations. The points were spaced approximately an equal distance

apart.

Figure 3.17: Measuring 5 (left), 10 (middle), and 15 (right) points on a 90° bullet using
method HH.

4. If there was a noticeable angle (distinct rise and fall before the left vertical tangent of

the bearing surface), the following methods were used:

Method AA, shown in Figure 3.15 on the preceding page, incorporated placing points

from the highest peak on the nose of the bullet to the steepest left vertical tangent.

Five, ten, and fifteen points were marked between these locations.The points were

spaced approximately an equal distance apart.
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Figure 3.18: Measuring 5 (left), 10 (middle), and 15 (right) points on a 60° bullet using
method AA.

Method VV, shown in Figure 3.19, incorporated placing points from the highest peak of

the bullet’s nose to above the left vertical of the bearing surface. Five, ten, and fifteen

points were marked between these locations. The points were spaced approximately

an equal distance apart.

Figure 3.19: Measuring 5 (left), 10 (middle), and 15 (right) points on a 60° bullet using
method VV.

Method HH, shown in Figure 3.20 on the following page, incorporated placing points

from the highest peak of the bullet’s nose to half way between the steepest left vertical

tangent and above the left vertical of the bearing surface. Five, ten, and fifteen points

were marked between these locations. The points were spaced approximately an equal

distance apart.
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Figure 3.20: Measuring 5 (left), 10 (middle), and 15 (right) points on a 60° bullet using
method HH.

5. The X and Y coordinates for the points selected for each method were retrieved from

ImageJ by first selecting Analyze, then Set Measurements, and then choosing the

Center of Mass in the Set Measurements window. Secondly, Analyze then Measure

was selected, which displayed the coordinates in a table that could be saved.

The following steps were completed in R for each method used:

1. A new variable yprime was created which included the subtracted y-coordinate of each

point from 2,500. This allowed for a consistent y-axis to be created.

2. A linear model was created for the new yprime values as a function of the corresponding

X coordinates.

3. The theoretical degree value was calculated by taking the arc tangent of the gradient

(or slope) of the regression line from the linear model created in Step 2 and converting

it from radians to degrees.

4. The theoretical degree value was subtracted (or added as appropriate) from 90° to

obtain the measured degrees.

The data retrieved from ImageJ was used to develop linear models using R. Seven linear

models were created for the full metal jacket data and seven for the lead round nose data.

The seven models include an overall model and models for methods AA, VV, HH, 5 points,

10 points, and 15 points. Plots showing the linear models and their 95% confidence and

prediction intervals were created.

In addition, a pred-res plot (residuals versus fitted values), normal Q-Q plot, histogram,

and 95% confidence and prediction intervals only plot were created for each model.
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A regression table for each model was created, which included the estimated coefficients,

standard errors of the estimates, t-values, p-values, and the multiple R2 and adjusted R2

values.

3.8 Using focus stacking and ImageJ to measure frontal

view bullet deformation

and distribution of glass onto bullets

3.8.1 Image capture

StackshotTM

With the purpose of making image collection easier, StackshotTM consists of a macro rail

system that allows the electronic control of positioning and triggering of an attached camera

[64]. It was designed to make the general focus stacking procedure more effective and less time

consuming by providing an automated approach to maco rails, which would traditionally be

adjusted manually between photo runs. With StackshotTM, exposure settings can be easily

replicated between photo series runs while also giving access to shot timing, the amount of

photos taken, the speed at which they are taken, ramp time, and more. It consists of a

length of up to 100 mm, which can be controlled by two buttons, and an auto-return option

that returns the camera to the position it originally started in for easier, consistent setup

[64].

Nikon® Camera Control Pro 2TM

Nikon® Camera Control Pro 2TM is software that allows remote control access to most func-

tions offered by Nikon® DSLRs via cable connection or wireless LAN [65]. Settings including

exposure mode, shutter speed, aperture, and preview and selection become modifiable from

a computer while also allowing images to be directly transferred from camera to computer.

Camera Control Pro 2TM also includes adjustment of focal points and gives previews of im-

ages in real time as they are taken [65]. In addition, a number of other Nikon® software are

integrable such as ViewNX browser or Capture NX photo-finishing.

Zerene Stacker

Intended for macro photography subjects, Zerene Stacker utilizes focus stacking, or z-stacking,

software to create the sharpest photos possible [66]. This is accomplished by taking a series
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of photos of the subject in varying focused depth planes and then stacking all of the photos

into one. With a no-limit on load depth, Zerene Stacker uses stacking algorithms to isolate

the sharpest portions of each photo and automatically aligns and interpolates those portions

into an image as sharp as possible [66].

The two main stacking methods are PMax, a pyramid method, and DMap, a depth

map method [67]. Although it is best to process the image frames from one side of the

object to the other, PMax works well to align no matter the order or how many photos are

stacked while DMap results in degraded images with a large number of photos. PMax also

focuses on locating and preserving detail, even in blurred or low contrast areas, and processes

overlapping objects as small as hairs or fibers true to form [67]. However, as a tradeoff, this

method tends to create higher contrast in images as well as an increase in noise and color

alteration. DMap oppositely keeps the original smoothness and colors of the image while

not being able to enhance details quite as well [67].

Zerene Stacker enables high-quality images of bullets to be created following perforation

with glass. The software takes multiple photographs, which are taken at different focal

distances and combines these photographs together to create one high-quality image. The

resulting image allows the examiner to observe the distribution of glass on the bullet and

other characteristics, including striation marks.

To analyze these high-quality photographs for data, an examiner can take advantage of

different image processing and analysis programs that allow the examiner to conduct analyses

on different aspects of a glass and bullet interaction.

3.8.2 Analysis process

A Nikon® D7200 with an AF Micro Nikkor 200mm lens was used to take all photographs.

The settings used were ISO 100, shutter speed of seven tenths of a second, and an f/stop of 16.

The Cognisys Stackshot 3XTM system was used to move the camera toward and away from

the bullet on a rail system and to simultaneously stack photographs while they were being

taken. ZereneStacker was used to focus stack the photographs. Nikon® Camera Control

Pro 2TM software was used in conjunction with the ZereneStacker to store the photographs

in a specified folder for stacking.

The focus stacking setup can be seen in Figure 3.21 on the next page.
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Figure 3.21: Focus stacking setup with Stackshot 3XTM

The following steps were repeated for the image capture of each sample of the full metal

jacket and lead round nose bullet analysis:

1. A small piece of putty was placed around the base of the bullet. The bullet was then

secured in the center of a square white platform by placing the bullet in a designated

hole. If distinctive striations were present, such as with a 50° as shown in Figure 3.22

on the following page, the bullets were oriented with the striations pointing to the

right (striations flow to the right center edge). If there were no distinctive striations

present, such as with a 90° bullet as shown in Figure 3.22, the bullet was not oriented

in any specific way.
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Figure 3.22: Distinctive striations present on a 50° bullet (left), no distincitve striations
present on a 90° bullet (right)

2. On the StackshotTM system, the step size was set to 10 micrometers. This refers to

the distance the camera moves toward the bullet after every photograph.

3. Looking through the viewfinder of the camera, start and stop points were chosen. The

start point refers to the location of the camera where the very center of the bullet is in

focus. The stop point refers to the location of the camera where the very outside edge

of the bullet is in focus.

4. Zerene Stacker and Camera Control Pro 2TM software was loaded and setup for stack-

ing.

5. The focus stacking process was completed which included taking all photographs, stack-

ing those photographs together, and saving them. The PMax algorithm was used for

all stacking. On average, the system captured between 300 and 650 photographs.

The following steps were repeated for the image analysis of each sample of the full metal

jacket and lead round nose bullet analysis:

1. The photograph was opened in ImageJ. Each photograph was 6000x4000 pixels.

2. Using the freehand selection tool, the bullet outline was selected. This is shown in

Figure 3.23 on the next page. If the jacket was not separated on an FMJ bullet, this

included the areas containing copper that were still pressed against the lead core.
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Figure 3.23: Selection of the bullet outline using the freehand selection tool

3. Specific data was chosen by selecting Analyze then Set Measurements. The follow-

ing were chosen: Area, Center of Mass, Shape descriptors, Perimeter, and Fit

ellipse. The data were retrieved and saved by selecting Analyze and then Measure.

4. Continuing with the same image, the area selected was made white by selecting the

Fill option in the Edit menu.

5. The image was made an 8-bit greyscale by going to Image, Type, then 8-bit.

6. The threshold was adjusted so that only the area selected remained after the threshold

was applied. This was done by going to Image, Adjust, then Threshold.

7. The best fitting ellipse was generated by going to Analyze then Analyze Particles,

and in the Analyze Particles window under Show, Ellipses was selected.

8. The threshold and fitted ellipse images were combined into one image by going to

Process then Image Calculator. An example can be seen in Figure 3.24 on the

following page. In the Image Calculator window, the threshold image was chosen

in the Image1 drop down menu, and the fitted ellipse was chosen in the Image2 drop

down menu. Under the Operation drop down menu, Average was selected.
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Figure 3.24: Threshold and fitted ellipse images combined

9. Using the same original image and the straight line tool, a vertical line was drawn

at the location on the bullet where the last distinctive white patch of glass was observed

(moving from left to right). The line was drawn on the rightmost edge of the patch.

10. The X coordinate for this line was retrieved by going to Analyze then Measure. A

variable called X Patch was created by subtracting the X coordinate of the line with

the X coordinate for the center of mass of the bullet obtained in Step 7.

11. Using the freehand selections tool, the area where glass was distributed on the

bullet was selected. Areas that were obvious and distinct were chosen. This is shown

in Figure 3.25.

Figure 3.25: Selecting glass that was transferred to the bullet using the Freehand Selection

tool

58



12. The areas selected were then made white by selecting the Fill option in the Edit

menu.

13. The image was made an 8-bit greyscale by going to Image, Type, then 8-bit. This

can be seen in Figure 3.26.

Figure 3.26: Image as an 8-bit greyscale with areas selected filled in white

14. The threshold was adjusted so that only the areas selected remained after the threshold

was applied. This was done by going to Image, Adjust, then Threshold. This can be

seen in Figure 3.27.

Figure 3.27: Areas that were selected after using the threshold option

15. Area was selected in ImageJ by going to Analyze then Set Measurements. The area

data was retrieved and recorded by selecting Analyze then Analyze Particles. The

analyze particles window can be seen in Figure 3.28 on the following page.
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Figure 3.28: Analyze Particles window

16. Using all of the data recorded, the following was calculated: total particle area, area of

the largest particle, total area of the five largest particles, total area of the ten largest

particles, and total number of particles selected. All of the data was combined into

one spreadsheet.

17. Using R, principal component analysis was performed on the full metal jacket and

lead round nose bullet data. Combinations of the above variables were used to test

which group of variables would perform the best. Area, X Patch, Circ., Area Largest

Particle, Minor, and AR were determined to provide the best results and were therefore

used in the final analysis for both the FMJ and LRN data.

Summary tables showing the standard deviations of the PCs and rotations (or loadings)

were created along with tables displaying the proportion of variance and cumulative

proportion. Scree plots were created to show the proportion of variance of each PC.

Biplots were created to show resulting PCs and the corresponding vectors of each

variable. The normal contour line for each group has a probability of 95% confidence.

A testing set was created for both the FMJ and LRN principal component analysis to

gain an understanding of the variability in the data for each angle. The new values were

based on the distributions of the original data means and the covariances between these

parameters. New random data consisting of 20,000 test samples for each true angle
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was created. The MASS package was used to calculate correlated/unvarying random

numbers using this information. Principal component analysis was performed on the

new data, and a table of new projected PC values for each angle were created using the

predict function. Plots of the original data (10 samples) and 95% confidence bounds

for the projected PCs of each angle were created.

The devtools, ggbiplot, caret, and scatterplot3d packages were also used.

18. Using R, an attempt was made to create a multiple linear regression model, which

showed a significant linear relationship between the above variables and the true angle.

If the resulting regression table for the model showed that a variable had little or no

significance, that variable was removed from the model. A multiple linear regression

model for the full metal jacket data was created for X Patch ×Minor as a function

of the TrueAngle. The lead round nose bullet data showed little or no significance for

all variables, and, therefore, no regression analysis was performed.

For the full metal jacket data, plots of the linear models for X Patch and Minor were

created. A pred-res plot (residuals versus fitted values), normal Q-Q plot, and his-

togram were created for the model. A regression table for the model was created,

which included the estimated coefficients, standard errors of the estimates, t-values,

p-values, and the multiple R2 and adjusted R2 values. An XY scatter plot of X Patch

and Minor was created along with a 3D scatterplot of X Patch, Minor, and True Angle.

Contour plots were created for the lower, fitted, and upper prediction values for the

model.

Testing and training were performed using the full metal jacket model prediction values.

1000 iterations of the testing and training were performed. During each iteration, 20%

of the data was used for testing while the other 80% was used for training. An XY

jitter plot was created to show the results.

The lattice, fields, graphics, and scatterplot3d packages were used.
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4. Results and Discussion

4.1 Bullet information obtained from laboratories

Information concerning the submission of bullet evidence to forensic laboratories was ob-

tained. The submitted questions are based on the type of bullets being used in this study

and were asked to assess the usefulness of bullets submitted to laboratories and the preva-

lence of specific bullets in crime scenes. Two firearms examiners, one from the Kentucky

State Police Eastern Branch Crime Laboratory (KSP) [25] and one from the West Virginia

State Police Crime Laboratory (WVSP) [68], were contacted.

Table 4.1 displays the four questions asked to each agency and their responses.

Table 4.1: Bullet information from laboratories

4.2 Bullet observations

4.2.1 FMJ bullets

Bullets fired at 90°

As shown in Figure 4.1 on the following page, all bullets fired at 90° contained part of the

jacket in the center of the deformed nose.
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Figure 4.1: Part of jacket in center of bullet nose. The bullet perforated the glass at 90°.

With the retrieval of the 90° samples, the jackets of samples 6C, 6G, 8A, 8D, and 8K

did not separate from their bullets. Samples 5A, 8G, 8J, and 8L had jackets that separated

but were located immediately behind their bullets, while only sample 8I had a jacket that

separated towards the front of the fiber trap.

Two of the jackets completely folded inside out as shown in Figure 4.2. This only hap-

pened at 90°.

Figure 4.2: Jacket of a 90° bullet folded inside-out
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Bullets fired at 75°

For the 75° samples, the jacket was found separated and towards the front of the fiber trap

for samples 1D, 1F, 1G, 1J, 1K, 4L, and 4M. The jacket also separated for sample 1E, but

it was located on the floor, underneath the trap. Samples 8F and 1H had jackets that were

still intact with the bullet.

Bullets fired at 60°

The jackets of samples 4I, 4J, 5C, 5E, 1M, and 1A were found separated from their bullets

towards the front of the fiber trap while that of sample 1B was found immediately behind

the bullet within the fiber trap. Sample 8H’s jacket also separated but penetrated and was

lodged into the wood of the fiber trap. The jacket of sample 5D dispersed into three separate

pieces, one of which fell in front of the glass sample and two of which were found inside of

the trap. Similarly, sample 1C's jacket resulted in two separate pieces, but only part of it

was found in the fiber trap, while the other part was lodged into the wood of the trap.

Bullets fired at 50°

For the 50° samples, the bullets of samples 3G, 3I, 3D, 3L, 1L, 5B, and 6A were all found to

have separated jackets that were located toward the front of the fiber trap. For sample 3J,

the jacket was located directly behind the bullet within the trap. Samples 3H and 3E had

jackets that were retrieved on the floor, located beneath the fiber trap.

Bullets fired at 45°

The jackets of samples 1R, 1W, 3A, 3B, and 3C were found towards the front of the fiber

trap, separated from their bullets. There were also portions of sample 3C that were found

below the trap, lodged into the wood. The jacket for sample 3K was also found lodged into

the wood. Samples 1S and 1X had separated jackets as well, but all or some of their jacket

was found perpendicular to the line of fire. The jacket of sample 1Q was located in front of

the glass sample, as well as lodged into the wood of the fiber trap, while the jacket of sample

1T was the only one to have a separated jacket that was not located.

4.2.2 LRN bullets

As shown in Figure 4.3 on the following page, all bullets fired at 90° contained a circular

mark in the center of the nose of the bullet. This was not observed on bullets fired from 75°,

60°, 50°, or 45°.
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Figure 4.3: Circular mark in the center of the nose of the bullet. The bullet perforated glass
at 90°

Lead round nose bullets deformed and broke apart much more than full metal jacket

bullets. This was more apparent at 90° as can be seen in Figure 4.3. As the angle decreased

to 45°, fewer bullets deformed and broke apart. However, some samples at low angles did

present these characteristics as can be seen in Figure 4.4.

Figure 4.4: Bullet fired at 45°
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4.2.3 General bullet observations

As full metal jacket bullets are fired at lower angles, the jackets are smaller and separate

into more pieces.

From 75° down to 45°, glass is distributed toward one side of the bullet, whereas with

90°, the glass is distributed on all parts of the bullet. This was more apparent in full metal

jacket bullets since they did not break apart and deform as much as lead round nose bullets.

The glass samples fractured into more pieces at lower angles. An example is shown in

Figure 4.5.

Figure 4.5: Glass sample perforated by a bullet at 45° (left), glass sample perforated by a
bullet at 90° (right)

At 60°, bullets begin to form an apparent V-shaped nose. This is clear at 45° as shown

in Figure 4.6 on the following page.
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Figure 4.6: Bullet fired at 45° viewed from the side

4.3 Energy dispersive X-ray analysis

Figure 4.7 on the next page displays a backscattered electron image of a section of sample 8G

and corresponding x-ray maps of calcium, silicon, copper, and lead. These specific elements

are clearly visible in the x-ray maps.
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Figure 4.7: Backscattered electron image of a section of sample 8G (top), and corresponding
x-ray maps of calcium (second row, left), silicon (second row, right), copper (bottom row,
left), and lead (bottom row, right).

Figure 4.7 displays a backscattered electron image of a section of sample 8X and corre-

sponding x-ray maps of calcium, silicon, and lead. These specific elements are clearly visible

in the x-ray maps.
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Figure 4.8: Backscattered electron image of a section of sample 8X (top), and corresponding
x-ray maps of calcium (second row, left), silicon (second row, middle), and lead (bottom row,
right)

4.4 HemoSpat

For all linear model plots in the results section, the solid horizontal lines represents a mea-

sured angle. In other words, if a bullet is recovered from a crime scene and the bullet

deformation method is performed, the resulting angle would be the measured angle. The

position that a line intersects the x-axis (Measured Angle) represents the calculated angle

from the model. The position that a line intersects the y-axis (True Angle) represents the

predicted angle from the model. The vertical dashed lines of each color represent the lower

and upper prediction values for each measured angle. The vertical dotted lines of each color

represent the lower and upper confidence values for each measured angle. The solid vertical

line of each color represents the fitted value for each measured angle.
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4.4.1 FMJ bullets

From Table 4.2, the gradient (or measured degrees) has an extremely low p-value, meaning

that there appears to be a significant linear relationship between true angle and measured

degrees (calculated values).

Table 4.2: Regression table for combined full metal jacket bullet HemoSpat data

Based on the R2 value, the model performs poorly at explaining the variation in true

angle. The estimated regression equation for this model is

ŷ = 0.6896×MeasuredDegrees+ 25.8739 (4.1)

The standard error (or standard deviation) of the intercept is 4.5270 while the standard

error of the slope is 0.0794.

Figure 4.9 on the following page displays the linear model for the combined HemoSpat

methods and the corresponding confidence and prediction intervals. Bullets fired at 90°, 75°,

60°, 50°, and 45° cannot be distinguished from each other.
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Figure 4.9: Linear model for combined full metal jacket bullet HemoSpat data

From Table 4.3, the gradient (or measured degrees) has an extremely low p-value, meaning

that there appears to be a significant linear relationship between true angle and measured

degrees (calculated values).

Table 4.3: Regression table for inside full metal jacket bullet HemoSpat data

Based on the R2 value, the model performs poorly at explaining the variation in true

angle. The estimated regression equation for this model is

ŷ = 0.6336×MeasuredDegrees+ 31.8398 (4.2)

The standard error (or standard deviation) of the intercept is 6.1916 while the standard

error of the slope is 0.1162.

Figure 4.10 on the following page displays the linear model for the inside method and

the corresponding confidence and prediction intervals. Bullets fired at 90°, 75°, 60°, 50°, and

45° cannot be distinguished from each other.
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Figure 4.10: Linear model for inside full metal jacket bullet HemoSpat data

From Table 4.4, the gradient (or measured degrees) has an extremely low p-value, meaning

that there appears to be a significant linear relationship between true angle and measured

degrees (calculated values).

Table 4.4: Regression table for middle full metal jacket bullet HemoSpat data

Based on the R2 value, the model does not perform well at explaining the variation in

true angle. The estimated regression equation for this model is

ŷ = 1.0565×MeasuredDegrees+ 5.5518 (4.3)

The standard error (or standard deviation) of the intercept is 7.5164 while the standard

error of the slope is 0.1329.

Figure 4.11 on the following page displays the linear model for the middle method and the

corresponding confidence and prediction intervals. Bullets fired from 45° can be distinguished

from bullets fired from 90°, but bullets fired from 46° cannot be distinguished from 90°.

Bullets fired from 90°, 75°, 60°, and 50° cannot be distinguished from each other.
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Figure 4.11: Linear model for middle full metal jacket bullet HemoSpat data

From Table 4.5, the gradient (or measured degrees) has an extremely low p-value, meaning

that there appears to be a significant linear relationship between true angle and measured

degrees (calculated values).

Table 4.5: Regression table for outside full metal jacket bullet HemoSpat data

Based on the R2 value, the model does not perform well at explaining the variation in

true angle. The estimated regression equation for this model is

ŷ = 0.6301×MeasuredDegrees+ 26.3237 (4.4)

The standard error (or standard deviation) of the intercept is 10.8756 while the standard

error of the slope is 0.1784.

Figure 4.12 on the following page displays the linear model for the inside method and

the corresponding confidence and prediction intervals. Bullets fired at 90°, 75°, 60°, 50°, and

45° cannot be distinguished from each other.
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Figure 4.12: Linear model for outside full metal jacket bullet HemoSpat data

All other pred-res plots, normal Q-Q plots, histograms, and confidence and prediction

interval plots for the full metal jacket combined methods, as well as for methods inside,

outside, and middle can be found in Appendix A.

4.4.2 LRN bullets

From Table 4.6, the gradient (or measured degrees) has an extremely low p-value, meaning

that there appears to be a significant linear relationship between true angle and measured

degrees (calculated values).

Table 4.6: Regression table for combined lead round nose bullet HemoSpat data

Based on the R2 value, the model performs poorly at explaining the variation in true

angle. The estimated regression equation for this model is

ŷ = 0.4999×MeasuredDegrees+ 38.6018 (4.5)
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The standard error (or standard deviation) of the intercept is 4.3813 while the standard

error of the slope is 0.0828.

Figure 4.13 displays the linear model for the combined methods and the corresponding

confidence and prediction intervals. Bullets fired at 90°, 75°, 60°, 50°, and 45° cannot be

distinguished from each other.

Figure 4.13: Linear model for combined lead round nose bullet HemoSpat data

From Table 4.7, the gradient (or measured degrees) has an extremely low p-value, meaning

that there appears to be a significant linear relationship between true angle and measured

degrees (calculated values).

Table 4.7: Regression table for inside lead round nose bullet HemoSpat data

Based on the R2 value, the model performs poorly at explaining the variation in true

angle. The estimated regression equation for this model is

ŷ = 0.5935×MeasuredDegrees+ 37.2299 (4.6)
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The standard error (or standard deviation) of the intercept is 5.0769 while the standard

error of the slope is 0.1048.

Figure 4.14 displays the linear model for the inside method and the corresponding con-

fidence and prediction intervals. Bullets fired at 90°, 75°, 60°, 50°, and 45° cannot be distin-

guished from each other.

Figure 4.14: Linear model for inside lead round nose bullet HemoSpat data

From Table 4.8, the gradient (or measured degrees) has a low p-value, meaning that

there appears to be a significant linear relationship between true angle and measured degrees

(calculated values).

Table 4.8: Regression table for middle lead round nose bullet HemoSpat data

Based on the R2 value, the model performs poorly at explaining the variation in true

angle. The estimated regression equation for this model is

ŷ = 0.6137×MeasuredDegrees+ 37.2672 (4.7)
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The standard error (or standard deviation) of the intercept is 9.0286 while the standard

error of the slope is 0.1697.

Figure 4.15 displays the linear model for the middle method and the corresponding con-

fidence and prediction intervals. Bullets fired at 90°, 75°, 60°, 50°, and 45° cannot be distin-

guished from each other.

Figure 4.15: Linear model for middle lead round nose bullet HemoSpat data

From Table 4.9, the gradient (or measured degrees) has a low p-value, meaning that

there appears to be a significant linear relationship between true angle and measured degrees

(calculated values).

Table 4.9: Regression table for outside lead round nose bullet HemoSpat data

Based on the R2 value, the model does a very poor job at explaining the variation in true

angle. The estimated regression equation for this model is

ŷ = 0.3507×MeasuredDegrees+ 44.5049 (4.8)
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The standard error (or standard deviation) of the intercept is 11.7187 while the standard

error of the slope is 0.3366.

Figure 4.16 displays the linear model for the middle method and the corresponding con-

fidence and prediction intervals. Bullets fired at 90°, 75°, 60°, 50°, and 45° cannot be distin-

guished from each other.

Figure 4.16: Linear model for outside lead round nose bullet HemoSpat data

4.4.3 Discussion of the HemoSpat results

For the full metal jacket bullets, the middle method performed the best, followed by the

inside method, and then the outside method. For the lead round nose bullets, the inside

performed the best, followed by the middle, and then the outside. The inside method being

the best for the lead round nose bullets could be a result of those particular bullets being

softer than the full metal jacket bullets causing there to be a smoother inside edge around

the bullet hole from not as much glass breaking off.

Photographs of bullet holes (FMJ bullets)

There was only one method where a bullet fired from one angle (45°) could be distinguished

from a bullet fired from another (90°). This was the case for the full metal jacket middle

method where the best fitting ellipse was selected for the bullet hole. No other angles could

be distinguished from each other using any method for both types of bullets. Figures 4.17,

4.18, 4.19, 4.20, and 4.21 for full metal jacket bullets and Figures 4.22, 4.23, 4.24, 4.25, and
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4.26 for lead round nose bullets show that there is a significant amount of variation in the

size, shape, and total structure of the bullet holes within the same angle group, which in

turn causes a large range of measured angles to result when measuring the bullet holes in

HemoSpat. For example, a 90° bullet hole for the FMJ inside method resulted in measured

values ranging from 48.8° to 83.89°.

Figure 4.17: 45° full metal jacket bullet holes in glass. (Top row): 1Q, 1S, 1W, (Bottom
row): 3B, 3C, 3K

Figure 4.18: 50° full metal jacket bullet holes in glass. (Top row): 1L, 3D, 3G, (Bottom
row): 3I, 3J, 3L
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Figure 4.19: 60° full metal jacket bullet holes in glass. (Top row): 1A, 1B, 4I, (Bottom row):
4J, 5D, 8H
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Figure 4.20: 75° full metal jacket bullet holes in glass. (Top row): 1D, 1F, 1G, (Bottom
row): 1H, 4L, 8F
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Photographs of bullet holes (LRN bullets)

Figure 4.21: 90° full metal jacket bullet holes in glass. (Top row): 5A, 6C, 6G, (Bottom
row): 8G, 8K, 8L
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Figure 4.22: 45° lead round nose bullet holes in glass. (Top row): 1U, 1V, 1Y, (Bottom
row): 2A, 2C, 3M

Figure 4.23: 50° lead round nose bullet holes in glass. (Top row): 6P, 61, 6T, (Bottom row):
6U, 8Y, 8Z
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Figure 4.24: 60° lead round nose bullet holes in glass. (Top row): 3R, 3S, 3T, (Bottom row):
8R, 8S, 8V

Figure 4.25: 75° lead round nose bullet holes in glass. (Top row): 3W, 3X, 3Z, (Bottom
row): 3H, 5P, 5T
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Figure 4.26: 90° lead round nose bullet holes in glass. (Top row): 5J, 5K, 5O, (Bottom row):
5S, 5U, 8E

All other pred-res plots, normal Q-Q plots, histograms, and confidence and prediction interval

plots for the lead round nose combined methods, as well as for methods inside, outside, and

middle can be found in Appendix A.

4.5 Side view bullet deformation

4.5.1 FMJ bullets

Figure 4.27 on the next page displays the model residuals plotted against their corresponding

fitted values.There is no recognizable pattern in the data showing non-linearity or non-

constant scatter. Overall, the residuals are symmetrically distributed around the zero line,

indicating that most errors have constant variance around the line.
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Figure 4.27: Pred-res plot (residual versus fitted values) for combined full metal jacket bullet
angle data

Figure 4.28 displays the empirical quantiles obtained from the data against the theoretical

quantiles. Although the data does not follow a perfect normal distribution, it does show that

most of the points fall on or close to the line demonstrating that the normality assumption

is met.

Figure 4.28: Normal Q-Q plot for combined full metal jacket bullet angle data
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Figure 4.29 shows a density estimate of the residuals. As displayed in Figure 4.28 on the

preceding page, the data does not follow a perfectly normal distribution, although there is

no evidence to suggest that the data are skewed.

Figure 4.29: Histogram for combined full metal jacket bullet angle data

From Table 4.10, the gradient (or measured degrees) has an extremely low p-value, mean-

ing that there appears to be a significant linear relationship between true angle and measured

degrees (calculated values).

Table 4.10: Regression table for combined full metal jacket bullet angle data

Based on the R2 value, the model performs well at explaining the variation in true angle.

The estimated regression equation for this model is

ŷ = 0.8961×MeasuredDegrees+ 7.7803 (4.9)

The standard error (or standard deviation) of the intercept is 1.4505 while the standard

error of the slope is 0.0224.
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Figure 4.30 displays the linear model for the combined full metal jacket bullet data for

all methods and the corresponding confidence and prediction intervals. Bullets fired at 55°

cannot be distinguished from bullets fired at 75° but can be distinguished from bullets fired

at 90°. Bullets fired from 50° and 45° can be distinguished from bullets fired from 85° and

80°, respectively.

Figure 4.30: Linear model for combined full metal jacket bullet angle data

From Table 4.11, the gradient (or measured degrees) has an extremely low p-value, mean-

ing that there appears to be a significant linear relationship between true angle and measured

degrees (calculated values).

Table 4.11: Regression table for method AA using full metal jacket bullet angle data

Based on the R2 value, the model performs great at explaining the variation in true angle.

The estimated regression equation for this model is

ŷ = 0.8922×MeasuredDegrees+ 13.2356 (4.10)
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The standard error (or standard deviation) of the intercept is 1.4948 while the standard

error of the slope is 0.0251.

Figure 4.31 displays the linear model for method AA and the corresponding confidence

and prediction intervals. Bullets fired at 65° cannot be distinguished from bullets fired at

75° but can be distinguished from those fired at 90°. Bullets fired from 75° and 90° are not

distinguishable from one another. Bullets fired from 60°, 55°, 50° and 45° can be distinguished

from bullets fired from 85°, 80°, 75°, and 70°, respectively.

Figure 4.31: Linear model for method AA using full metal jacket bullet angle data

From Table 4.12, the gradient (or measured degrees) has an extremely low p-value, mean-

ing that there appears to be a significant linear relationship between true angle and measured

degrees (calculated values).

Table 4.12: Regression table for method HH using full metal jacket bullet angle data

Based on the R2 value, the model performs great at explaining the variation in true angle.

The estimated regression equation for this model is
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ŷ = 0.9925×MeasuredDegrees+ 0.9178 (4.11)

The standard error (or standard deviation) of the intercept is 2.1900 while the standard

error of the slope is 0.0335.

Figure 4.32 displays the linear model for method HH and the corresponding confidence

and prediction intervals. Bullets fired at 60° cannot be distinguished from bullets fired at

75° but can be distinguished from those fired at 90°. Bullets fired from 75° and 90° are not

distinguishable from one another. Bullets fired from 55°, 50° and 45° can be distinguished

from bullets fired from 85°, 80°, and 75°, respectively.

Figure 4.32: Linear model for method HH using full metal jacket bullet angle data

From Table 4.13, the gradient (or measured degrees) has an extremely low p-value, mean-

ing that there appears to be a significant linear relationship between true angle and measured

degrees (calculated values).

Table 4.13: Regression table for method VV using full metal jacket bullet angle data
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Based on the R2 value, the model performs well at explaining the variation in true angle.

The estimated regression equation for this model is

ŷ = 1.0613×MeasuredDegrees+−7.9208 (4.12)

The standard error (or standard deviation) of the intercept is 3.0410 while the standard

error of the slope is 0.0440.

Figure 4.33 displays the linear model for method VV and the corresponding confidence

and prediction intervals. Bullets fired at 60° cannot be distinguished from bullets fired at

75° but can be distinguished from those fired at 90°. Bullets fired from 75° and 90° are not

distinguishable from one another. Bullets fired from 55°, 50° and 45° can be distinguished

from bullets fired from 85°, 80°, and 75°, respectively.

Figure 4.33: Linear model for method VV using full metal jacket bullet angle data

From Table 4.14 on the next page, the gradient (or measured degrees) has an extremely

low p-value, meaning that there appears to be a significant linear relationship between true

angle and measured degrees (calculated values).
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Table 4.14: Regression table for the 5-point method using full metal jacket bullet angle data

Based on the R2 value, the model performs well at explaining the variation in true angle.

The estimated regression equation for this model is

ŷ = 0.9066×MeasuredDegrees+ 7.0600 (4.13)

The standard error (or standard deviation) of the intercept is 2.5642 while the standard

error of the slope is 0.0395.

Figure 4.34 displays the linear model for the 5-point method and the corresponding

confidence and prediction intervals. Bullets fired at 55° cannot be distinguished from bullets

fired at 75° but can be distinguished from those fired at 90°. Bullets fired from 75° and 90°

are not distinguishable from one another. Bullets fired from 50° and 45° can be distinguished

from bullets fired from 85° and 80°, respectively.

Figure 4.34: Linear model for the 5-point method using full metal jacket bullet angle data
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From Table 4.15, the gradient (or measured degrees) has an extremely low p-value, mean-

ing that there appears to be a significant linear relationship between true angle and measured

degrees (calculated values).

Table 4.15: Regression table for the 10-point method using full metal jacket bullet angle data

Based on the R2 value, the model performs well at explaining the variation in true angle.

The estimated regression equation for this model is

ŷ = 0.8961×MeasuredDegrees+ 7.7155. (4.14)

The standard error (or standard deviation) of the intercept is 2.5300 while the standard

error of the slope is 0.0390.

Figure 4.35 on the following page displays the linear model for the 10-point method

and the corresponding confidence and prediction intervals. Bullets fired at 55° cannot be

distinguished from bullets fired at 75° but can be distinguished from those fired at 90°.

Bullets fired from 75° and 90° are not distinguishable from one another. Bullets fired from

50° and 45° can be distinguished from bullets fired from 85° and 80°, respectively.
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Figure 4.35: Linear model for the 10-point method using full metal jacket bullet angle data

From Table 4.16, the gradient (or measured degrees) has an extremely low p-value, mean-

ing that there appears to be a significant linear relationship between true angle and measured

degrees (calculated values).

Table 4.16: Regression table for the 15-point method using full metal jacket bullet angle data

Based on the R2 value, the model performs well at explaining the variation in true angle.

The estimated regression equation for this model is

ŷ = 0.8861×MeasuredDegrees+ 8.5254 (4.15)

The standard error (or standard deviation) of the intercept is 2.4767 while the standard

error of the slope is 0.0824.

Figure 4.36 on the following page displays the linear model for the 15-point method

and the corresponding confidence and prediction intervals. Bullets fired at 55° cannot be

distinguished from bullets fired at 75° but can be distinguished from those fired at 90°.
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Bullets fired from 75° and 90° are not distinguishable from one another. Bullets fired from

50° and 45° can be distinguished from bullets fired from 85° and 80°, respectively.

Figure 4.36: Linear model for the 15-point using full metal jacket bullet angle data

4.5.2 Discussion of the FMJ side view bullet deformation

analysis

When comparing methods AA, HH, and VV, it can be seen that method AA gave the best

results for the full metal jackets using linear regression. Method HH gave better results

than did method VV. When comparing the 5-point, 10-point, and 15-point methods, the

15-point method gave the best results followed by the 10-point method. The 5-point method

performed the worst of the three. Therefore, a combination of method AA in conjunction

with using 15 points would seem to provide the best results for full metal jacket bullets using

linear regression.

For the following full metal jacket results as well as for the lead round nose results,

all of the point methods (5, 10, and 15) for a specific bullet showed similar higher and

lower measured angles as was observed with a specific location method (AA, HH, VV). For

example, if a specific bullet had a higher measured angle for the method AA model, similar

results would be observed for the 5-point, 10-point, and 15-point model that correspond to

the method AA.
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45° bullets

For bullets fired at 45°, Sample 1W had high measured angles for all methods. As shown in

Figure 4.37, this was a result of the slope on the left side of the bullet not being as steep as

other 45° bullets as well as the location of the highest peak, which was not as far to the left

as it was on other 45° bullets.

Figure 4.37: 45° problem bullet - Sample 1W (left); other 45° bullets - sample 3A (middle)
and sample 1Q (right)

50° bullets

For bullets fired at 50°, samples 3E, 3G, and 6A all presented problems in the data. The

problem bullets can be seen in Figure 4.38 on the following page along with other 50° bullets

that did not present any problems.
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Figure 4.38: 50° problem bullets - Sample 3E (top left) , sample 3G (top middle), and sample
6A (top right); other 50° bullets - Sample 1L (bottom left) , sample 3H (bottom middle), and
sample 5B (bottom right)

Sample 3E had higher measured angles for method AA and HH compared to other bullets

fired at this angle. This is a result of the slope on the left side of the bullet not being as

steep as other 50° bullets as well as the highest peak being more to the right on the top of

the bullet.

Sample 3G had lower measured angles for the method AA compared to other bullets fired

from this angle. This is a result of the slope on the left side of the bullet being very steep

and peeling further down the bearing surface of the bullet. In addition, this would cause the

points to be marked further away from each other than they were in other 50° bullets.

Sample 6A had higher measured angles for methods. HH and VV compared to other

bullets fired from this angle. This is a result of the slope not being as steep at the location

where marking the points would begin (half way point between the highest peak and the left

vertical tangent).

60° bullets

For bullets fired at 60°, samples 5D and 4I presented problems in the data. The problem

bullets can be seen in Figure 4.39 on the next page along with other 60° bullets that did
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not present any problems. Samples 5D and 4I both had higher measured angles for method

HH. This is a result of the slope not being as steep at the location where marking the points

would begin (half way point between the highest peak and the left vertical tangent).

Figure 4.39: 60° problem bullets - Sample 5D (top left) and sample 4I (top right); other 60°

bullets - Sample 1M (bottom left) and sample 5C (bottom right)

75° bullets

For bullets fired at 75°, samples 1D, 1E, and 1J presented problems in the data. The problem

bullets can be seen in Figure 4.40 on the following page along with other 75° bullets that

did not present any problems. Samples 1D, 1E, and 1J all had lower measured angles for

method AA and VV. For method AA, this is a result of a steeper slope on the left side of

the bullet. For method VV, it is clear that the slope from the highest peak to above the left

vertical is steeper for the problem bullets compared to the other bullets.
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Figure 4.40: 75° problem bullets - Sample 1D (top left) , sample 1E (top middle), and sample
1J (top right); other 75° bullets - Sample 1G (bottom left) , sample 4M (bottom middle), and
sample 1K (bottom right)

All other pred-res plots, normal Q-Q plots, histograms, and confidence and prediction

interval plots for the full metal jacket combined methods, as well as for method AA, HH,

VV, 5-point, 10-point, and 15-point can be found in Appendix A.

4.5.3 LRN bullets

From Table 4.17, the gradient (or measured degrees) has an extremely low p-value, meaning

that there appears to be a significant linear relationship between true angle and measured

degrees (calculated values).

Table 4.17: Regression table for combined lead round nose bullet angle data

Based on the R2 value, the model does not perform well at explaining the variation in

true angle. The estimated regression equation for this model is
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ŷ = 0.4966×MeasuredDegrees+ 28.6487 (4.16)

The standard error (or standard deviation) of the intercept is 2.2510 while the standard

error of the slope is 0.0341.

Figure 4.41 displays the linear model for the combined methods and the corresponding

confidence and prediction intervals. Bullets fired from 45° cannot be distinguished from

bullets fired from 90°.

Figure 4.41: Linear model for combined lead round nose bullet angle data

From Table 4.18, the gradient (or measured degrees) has an extremely low p-value, mean-

ing that there appears to be a significant linear relationship between true angle and measured

degrees (calculated values).

Table 4.18: Regression table for method AA using lead round nose bullet angle data

Based on the R2 value, the model does not perform well at explaining the variation in

true angle. The estimated regression equation for this model is
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ŷ = 0.5093×MeasuredDegrees+ 22.1062 (4.17)

The standard error (or standard deviation) of the intercept is 3.8623 while the standard

error of the slope is 0.0584.

Figure 4.42 displays the linear model for method AA and the corresponding confidence

and prediction intervals. Bullets fired at 90°, 75°, 60°, 50°, and 45° cannot be distinguished

from each other.

Figure 4.42: Linear model for method AA using lead round nose bullet angle data

From Table 4.19, the gradient (or measured degrees) has an extremely low p-value, mean-

ing that there appears to be a significant linear relationship between true angle and measured

degrees (calculated values).

Table 4.19: Regression table for method HH using lead round nose bullet angle data

Based on the R2 value, the model does not perform well at explaining the variation in

true angle. The estimated regression equation for this model is
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ŷ = 0.5095×MeasuredDegrees+ 28.9102 (4.18)

The standard error (or standard deviation) of the intercept is 3.5010 while the standard

error of the slope is 0.0530.

Figure 4.43 displays the linear model for method HH and the corresponding confidence

and prediction intervals. Bullets fired at 90°, 75°, 60°, 50°, and 45° cannot be distinguished

from each other.

Figure 4.43: Linear model for method HH using lead round nose bullet angle data

From Table 4.20, the gradient (or measured degrees) has an extremely low p-value, mean-

ing that there appears to be a significant linear relationship between true angle and measured

degrees (calculated values).

Table 4.20: Regression table for method VV using lead round nose bullet angle data

Based on the R2 value, the model does not perform well at explaining the variation in

true angle. The estimated regression equation for this model is

102



ŷ = 0.4711×MeasuredDegrees+ 34.9297 (4.19)

The standard error (or standard deviation) of the intercept is 3.5801 while the standard

error of the slope is 0.0542.

Figure 4.44 displays the linear model for method VV and the corresponding confidence

and prediction intervals. Bullets fired at 90°, 75°, 60°, 50°, and 45° cannot be distinguished

from each other.

Figure 4.44: Linear model for method VV using lead round nose bullet angle data

From Table 4.21, the gradient (or measured degrees) has an extremely low p-value, mean-

ing that there appears to be a significant linear relationship between true angle and measured

degrees (calculated values).

Table 4.21: Regression table for the 5-point method using lead round nose bullet angle data

Based on the R2 value, the model performs well at explaining the variation in true angle.

The estimated regression equation for this model is
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ŷ = 0.4880×MeasuredDegrees+ 29.2421 (4.20)

The standard error (or standard deviation) of the intercept is 3.8275 while the standard

error of the slope is 0.0579.

Figure 4.45 displays the linear model for the 5-point method and the corresponding

confidence and prediction intervals. Bullets fired at 90°, 75°, 60°, 50°, and 45° cannot be

distinguished from each other.

Figure 4.45: Linear model for the 5-point method using lead round nose bullet angle data

From Table 4.22, the gradient (or measured degrees) has an extremely low p-value, mean-

ing that there appears to be a significant linear relationship between true angle and measured

degrees (calculated values).

Table 4.22: Regression table for the 10-point method using lead round nose bullet angle data

Based on the R2 value, the model performs well at explaining the variation in true angle.

The estimated regression equation for this model is
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ŷ = 0.5004×MeasuredDegrees+ 28.4098 (4.21)

The standard error (or standard deviation) of the intercept is 3.9258 while the standard

error of the slope is 0.0594.

Figure 4.46 displays the linear model for the 10-point method and the corresponding

confidence and prediction intervals. Bullets fired at 90°, 75°, 60°, 50°, and 45° cannot be

distinguished from each other.

Figure 4.46: Linear model for the 10-point method using lead round nose bullet angle data

From Table 4.23, the gradient (or measured degrees) has an extremely low p-value, mean-

ing that there appears to be a significant linear relationship between true angle and measured

degrees (calculated values).

Table 4.23: Regression table for the 15-point method using lead round nose bullet angle data

Based on the R2 value, the model performs well at explaining the variation in true angle.

The estimated regression equation for this model is
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ŷ = 0.5016×MeasuredDegrees+ 28.2942 (4.22)

The standard error (or standard deviation) of the intercept is 3.9936 while the standard

error of the slope is 0.0604.

Figure 4.47 displays the linear model for the 15-point method and the corresponding

confidence and prediction intervals. Bullets fired at 90°, 75°, 60°, 50°, and 45° cannot be

distinguished from each other.

Figure 4.47: Linear model for the 15-point method using lead round nose bullet angle data

4.5.4 Discussion of the LRN side view bullet deformation

analysis

Method HH in conjunction with using 15 points performed the best when using linear re-

gression with lead round nose bullets. Method VV performed the second best and AA the

worst. Using 10 points performed better than using only 5 points.

None of the methods were able to distinguish between any angles (90°, 75°, 60°, 50°, and

45°).

45° bullets

For bullets fired at 45°, samples 2D, 1Z, and 2A presented problems in the data. The problem

bullets can be seen in Figure 4.48 on the next page along with other 45° bullets that did not

present any problems. Samples 2D, 1Z, and 2A all had higher measured angles for method
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AA, HH, and VV. This is a result of the slope on the left side of the bullet not being as

steep as the other 45° bullets.

Figure 4.48: 45° problem bullets - Sample 2D (top left) , sample 1Z (top middle), and sample
2A (top right); other 45° bullets - Sample 2C (bottom left) , sample 3F (bottom middle), and
sample 1U (bottom right)

60° bullets

For bullets fired at 60°, samples 8X and 3S presented problems in the data. The problem

bullets can be seen in Figure 4.49 on the following page along with other 50° bullets that did

not present any problems. Sample 8X had higher measured angles for method AA, HH, and

VV than other 60° bullets fired at this angle. This is a result of there not being any curve

to the left side of the bullet. There is minimal slope on this side.

Sample 3S on the other hand resulted in lower measured angles for method AA, HH, and

VV. This is a result of the slope being steeper on the left side of the bullet as compared to

other bullets fired from this angle.
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Figure 4.49: 60° problem bullets - Sample 8X (top left) and sample 3S (top right); other 60°

bullets - Sample 8U (bottom left) and sample 3R (bottom right)

75° bullets

For bullets fired at 75°, sample 5P presented a major problem in the data. The problem

bullet can be seen in Figure 4.49 along with other bullets fired at 75° that did not present

any problems. Sample 5P resulted in an extremely lower measured angle for method VV

than other bullets fired at 75°. This is a result of the slope being more steep on the top of

the bullet compared to the other bullets fired at 75°.

108



Figure 4.50: 75° problem bullet - Sample 5P (left); other 75° bullets - sample 5C (middle)
and sample 3X (right)

90° bullets

For bullets fired at 90°, sample 5V presented a major problem in the data. The problem

bullet can be seen in Figure 4.51 along with other bullets fired at 90° that did not present

any problems. Sample 5V resulted in an extremely lower measured angle for method HH

and VV compared to other bullets fired at 90°. This is a result of the slope being more steep

on the left side of the bullet compared to the other bullets fired at 90°.

Figure 4.51: 90° problem bullet - Sample 5V (left); other 90° bullets - sample 5S (middle)
and sample 5F (right)

A common event observed with the lead round nose bullets is that on some bullets, parts

of the lead would break off. This changes the structure of the bullets, thus influencing the

results compared to what would be observed if no parts would have broken off.

All other pred-res plots, normal Q-Q plots, histograms, and confidence and prediction

interval plots for the lead round nose combined methods, as well as for method AA, HH,

VV, 5-point, 10-point, and 15-point can be found in Appendix A.
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4.6 Multiple linear regression using Minor × X Patch

for FMJ bullets

From Table 4.24, the slope for X Patch and Minor have a low p-value, meaning that there

appears to be a significant linear relationship between each of these variables and the true

angle.

Table 4.24: Regression table for Minor ×X Patch

The slope for X Patch:Minor has a less significant p-value but still shows there to be a

linear relationship between it and the true angle. Based on the R2 value, the model performs

great at explaining the variation in true angle. The estimated regression equation for this

model is:

ŷ = (−1.24× 105)×X Patch : Minor+ 0.042×Minor+ 0.048×X Patch− 61.516 (4.23)

The standard error (or standard deviation) of the intercept is 13.946 while the standard

error for the slope of the three variables are 0.011, 0.005, and 3.75× 106, respectively.

Figures 4.52 and 4.53 display the linear models for Minor and X Patch. The measured

angles resulting from each individual true angle is grouped well together in the Minor model

and are more spread out in the X Patch model. This would be expected as we see a lower

p-value and lower standard error for the Minor model.
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Figure 4.52: Linear model of Minor for FMJ bullet data

Figure 4.53: Linear model of X Patch for FMJ bullet data
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4.6.1 Description of variables used in multiple linear regression

and principal component analysis

The following generalized description will be used to help clarify and describe the following

results and figures relating to the distribution of glass on the front of the bullet, bullet

outlines, and particle selection. In this description, the term “value” for a specific variable

refers to the value of the original data. For example, it would represent the pixel value

recorded from ImageJ of a bullet outline.

Area corresponds to the total surface area of the front view of the bullet. A large Area

value implies that the nose flattened extensively.

Circularity represents the shape of the front view of the bullet compared to a circle. A

low value would indicate that the nose of the bullet flattened in a non-circular fashion (e.g.,

rough edges, straight lines, etc.). If Circularity is equal to 1, it is a perfect circle. As the

value decreases from 1, the shape becomes less circular.

Aspect Ratio (AR) denotes whether the nose of the bullet flattened more into a circular

or elliptical shape. It uses the best fitting ellipse of the front view of the bullet (ratio of the

major to minor axis). If AR is equal to 1, the shape is a perfect circle. As the value of AR

increases above 1, the shape becomes more elliptical. A large value would indicate that the

shape of the front view of the bullet is more elliptical.

Minor corresponds to the length of the minor (or secondary) axis of the best fitting ellipse

of the front view of the bullet. A larger value would indicate that the nose flattened more

following perforation.

Figure 4.54 shows an example of an outlined bullet and where the major and minor axes

are located.

Figure 4.54: Outline of a bullet showing where the major and minor axes are located
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Area Largest Particle (ALP) represents how the glass distributes to the front of the bullet

and refers to the largest contiguous area of glass deposited onto the front surface of the bullet.

A low value would indicate that the largest particle for a particular sample is small.

X Patch corresponds to the rightmost vertical edge of a distinctive, contiguous area of

glass that is located the furthest horizontal distance away from the center of a bullet. X Patch

is determined while viewing the front of the bullet from above.

45° bullets - Minor

Figure 4.55 shows the 45° problem bullet for the Minor model and other 45° bullets. Sample

1T has a large value for Minor compared to other 45° bullets.

Figure 4.55: 45° problem bullet - sample 1T (left); other 45° bullets - samples 1W (middle)
and 3K (right)

50° bullets - Minor

Figure 4.56 on the following page shows the 50° problem bullets for the Minor model and

other 50° bullets. Sample 3D has a large value for Minor while sample 3I has a low value for

Minor than compared to other 50° bullets.
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Figure 4.56: 50° problem bullets - samples 3D (top left) and 3I (top right); other 50° bullets
- samples 3J (bottom left) and 3L (bottom right)

60° bullets - Minor

Figure 4.57 on the next page shows the 60° problem bullets for the Minor model and other

60° bullets. Samples 4I and 5D have a large value for Minor compared to other 60° bullets.
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Figure 4.57: 60° problem bullets - samples 4I (top left) and 5D (top right); other 60° bullets
- samples 1B (bottom left) and 1M (bottom right)

75° bullets - Minor

Figure 4.58 shows the 75° problem bullets for the Minor model and other 75° bullets. Sample

1H has a low value for Minor compared to other 75° bullets.

Figure 4.58: 75° problem bullet - sample 1H (left); other 75° bullets - samples 1E (middle)
and 4L (right)
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90° bullets - Minor

Figure 4.59 on the next page shows the 90° problem bullets for the Minor model and other

90° bullets. Samples 8J, 8G, 8D, and 5A have a low value for Minor compared to other 90°

bullets.
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Figure 4.59: 90° problem bullets - samples 8J (top row, left), 8G (top row, right), 8D (middle
row, left), and 5A (middle row, right); other 90° bullets - samples 8A (bottom row, left) and
8K (bottom row, right)
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45° bullets - X Patch

Figure 4.60 shows the 45° problem bullets for the X Patch model and other 45° bullets.

Samples 3B, 3K, and 1X have a high value for X Patch compared to other 45° bullets.

Figure 4.60: 45° problem bullets - samples 3B (top left) and 3K (top right); other 45° bullets
- samples 1Q (bottom left) and 1W (bottom right)

50° bullets - X Patch

Figure 4.61 on the next page shows the 50° problem bullets for the X Patch model and other

50° bullets. Samples 3L and 6A have a low value for X Patch compared to other bullets fired

from 50°.
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Figure 4.61: 50° problem bullets - samples 3L (top left) and 6A (top right); other 50° bullets
- samples 3J (bottom left) and 3E (bottom right)

60° bullets - X Patch

Figure 4.62 on the following page shows the 60° problem bullets for the X Patch model and

other 60° bullets. Samples 4I, 5E, and 5D have low values for X Patch compared with other

bullets fired from 60°.
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Figure 4.62: 60° problem bullets - samples 4I (top left), 5E (top middle), and 5D (top right);
other 60° bullets - samples 1M (bottom left), 5C (bottom middle), and 8H (bottom right)

75° bullets - X Patch

Figure 4.63 on the next page shows the 75° problem bullets for the X Patch model and other

75° bullets. Samples 8F, 1E, 1G, and 1D have low values for X Patch compared with other

bullets fired from 75°.
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Figure 4.63: 75° problem bullets - samples 8F (top row left), 1E (top row right), 1G (middle
row left), and 1D (middle row right); other 75° bullets - samples 1F (bottom row left) and
1J (bottom row right)
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90° bullets - X Patch

Figure 4.64 shows the 90° problem bullet for the X Patch model and other 90° bullets. Sample

8I has a low value for X Patch compared with other bullets fired from 90°.

Figure 4.64: 90° problem bullets - sample 8I (left); other 90° bullets - samples 8K (middle)
and 8L (right)

Figure 4.65 on the next page displays a 3D scatter plot of Minor × X Patch. The

multiple regression model of Minor ×X Patch appears to perform well at providing some

separation between individual groups of angles although there is some overlap between the

angles.
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Figure 4.65: 3D Scatter plot of Minor and X Patch

Figures 4.66 on the following page, 4.67 on page 125, 4.68 on page 126 displays contour

plots of the upper, fitted, and lower predictions for X Patch×Minor. If a measured bullet

was found to have an X Patch value of -200 and a Minor value of 2700, the fitted value is

47.9° and falls between 38.0° and 57.8°. If the X Patch value was found to be 400 with a

Minor value of 3000, the fitted value is 67.7° and falls between 57.7° and 77.6°. An X Patch

value of 1000 and Minor value of 3300 results in a fitted value of 82.9 and falls between 72.8°

and 92.9°. The prediction intervals have an approximate range of 20°-30°.
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Figure 4.66: Contour plot showing the lower prediction values for Minor ×X Patch
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Figure 4.67: Contour plot showing the fitted prediction values for Minor ×X Patch
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Figure 4.68: Contour plot showing the upper prediction values for Minor ×X Patch

Figure 4.69 on the next page displays the results of the testing and training performed

on X Patch×Minor. Bullets fired from 90° cannot be distinguished from bullets fired from

70° but can be distinguished from bullets fired from 60°. Bullets fired from 75° cannot be

distinguished from bullets fired from 60° but can be from bullets fired from 50°. Bullets fired

from 60° cannot be distinguished from bullets fired from 50° or 45°. There was only one

point between the 60° and 45° bullets which resulted in overlap.

126



Figure 4.69: Results from testing and training sets performed on full metal jacket data using
Minor ×X Patch

4.7 Principal component analysis

The same information used to describe the multiple linear regression results are used in the

following PCA results sections. The phrase “lack of” refers to a small value in the original

data for the corresponding variable, and the phrase “abundance of” refers to a large value

in the original data for the corresponding variable.

PCA was used on the data in this research since some of the variables are correlated with

each other, such as Circularity, Aspect Ratio, and Minor. By using PCA, the transformed

data becomes uncorrelated and one particular variable will not have complete influence over

the results. In addition, PCA allows one to visualize the contribution of each specific variable

to each principal component.

4.7.1 FMJ bullets

Table 4.25 on the following page shows the proportion of variance for the full metal jacket

data. PC1 accounts for 63% of the variance, while PC2 accounts for 15%, and PC3 accounts

for 12%. Together, they account for 90% of the variance. This means that PC1-PC3 describes
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90% of the original variance. 100% of the variance is accounted for by PC6. PC4-PC6 each

account for less than 10% of the variance.

Table 4.25: Importance of components for full metal jacket bullet data

Figure 4.70 is a graphical representation of Table 4.25. The variance in each feature

(PC1-PC6) is defined by its eigenvalues. PC1-PC3 account for a majority of the variance.

Figure 4.70: Scree plot for full metal jacket data where the variances are the eigenvalues of
the PCs

Table 4.26 on the next page displays the standard deviations and rotations (or loadings)

for the full metal jacket data. AR and Area Largest Particle are the only two variables that

are positively loaded in PC1. Minor has the greatest weight of any variable in PC1 (positive

value) while Area Largest Particle has the least weight of any variable in PC1 (positive

value).
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Table 4.26: Summary of components for full metal jacket bullet data

Circularity is the only variable that is positively loaded in PC2. It also has the greatest

weight of any variable (positive value), while Minor has the least weight of any variable

(negative value).

Area, Area Largest Particle, and Minor all are positively loaded on PC3. Area Largest

Particle has the greatest weight of any variable (positive value), while Circularity has the

least weight of any variable (negative value).

Figure 4.71 on the following page displays the biplot for PC1 and PC2 for full metal

jacket data. The ellipses represent a contour line (95% confidence) for each group. Bullets

fired at 90° can be distinguished from bullets fired at 60°, 50°, and 45°. Bullets fired at

75° can be distinguished from bullets fired at 50° and 45°. Bullets fired at 60° cannot be

distinguished from 50° or 45°.
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Figure 4.71: Biplot for PC1 and PC2 for full metal jacket data

If the value of PC1 is -2.75 or smaller, the bullet was fired from 90°.

If the value of PC1 is 1.875 or higher, the bullet could have been fired from 50° or 45°.

If the PC1 values is 0.625, the bullet could have been fired from 75°, 60°, or 50°. If the PC1

value is -1.25, the bullet could have been fired from 90°, 75°, or 60°.

If the PC2 value is 2, the bullet could have been fired at 75°, 60°, or 45°. If the PC2 value

is between 1 and -1.5, then the bullet could have been fired at 90°, 75°, 60°, 50°, or 45°.

Figure 4.72 on the next page displays the 95% confidence bounds of the projected PCs

and original data points of PC1 and PC2 for full metal jacket bullets. There were 20,000

test samples (predicted PCs) per individual angle generated. The generated samples take

into account the mean and covariance of the original data, thus providing a representation

of possible values for bullets fired at a specific angle. The confidence bounds are similar to

the normal contour lines (95% probability) of the original data. The original data points for

each angle fall into the the corresponding predicted confidence bounds except for sample 3E

(50°).
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Figure 4.72: Predicted PCs confidence bounds (95%) for full metal jacket bullets (PC1 and
PC2)

Figure 4.73 on the following page displays the biplot for PC1 and PC3 for full metal

jacket data. The ellipses represent a normal contour line with probability (95% confidence)

for each group. Bullets fired at 90°, 75°, 60°, 50°, and 45° cannot be distinguished from one

another.

131



Figure 4.73: Biplot for PC3 and PC4 for full metal jacket data

Figure 4.74 on the next page displays the 95% confidence bounds of the projected PCs

and original data points of PC3 and PC4 for full metal jacket bullets. There were 20,000

test samples (predicted PCs) per individual angle generated. The generated samples take

into account the mean and covariance of the original data, thus providing a representation

of possible values for bullets fired at a specific angle. The confidence bounds are similar to

the normal contour lines (95% probability) of the original data. Some original data points

for each angle fall outside of the corresponding predicted confidence bounds except for the

45° original samples.
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Figure 4.74: Predicted PCs confidence bounds (95%) for full metal jacket bullets (PC3 and
PC4)

Figure 4.75 displays a 3D scatterplot of PC1, PC2, and PC3. It is clear that the addition

of PC3 does not provide much ability to distinguish between angles.

Figure 4.75: 3D scatter plot of PC1, PC2, and PC3 with vertical lines
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Discussion of PCs

1. To transform the original data to the transformed values seen in Table 4.27, the original

data was centered, scaled, and a Box-Cox transformation was performed.

2. In order to obtain the scores (e.g., PC1 Area) as seen in Table 4.28, the transformed

value for a variable, for example Area for sample 5A, was multiplied by the PC1 loading

value for Area (-0.45505, Table 4.26 on page 129).

3. Once all the scores were obtained for a sample (Area, X Patch, Circ, ALP, AR, and

Minor), each of them were summed together to obtain the PC1 value (-1.8651, Ta-

ble 4.28).

4. To understand how much each variable was contributing to the PC1 value of a specific

sample (e.g., 5A), the absolute value of each score for a specific variable (e.g., Area)

for that sample was calculated and summed together.

5. The absolute value for a specific variable (e.g., 0.7294 for Area, Table 4.28 was then

divided by the total sum found in Step 4.

Table 4.27: Data table displaying the original values of each variable (∗O) and the transformed
values of each variable (∗T ) for each sample for the full metal jacket problem samples

Table 4.28: Data table displaying the scores of variables, PC1 values, and percent contribu-
tions of variables for each sample for the full metal jacket problem samples
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If a specific sample (e.g., 5A for 90°) was causing a problem in the data, the average of all

the 90° scores for each variable was calculated as shown in Table 4.29. The average of each

variable (e.g., -0.6123 for 8D) was then subtracted from the individual problem sample scores

corresponding to those variables (e.g., -0.03205 for 8D). This provided the distance that each

variable for a specific sample was away from the average of all 90° samples of that variable

(e.g., -0.2918 for 8D, Area). The absolute value of these distances provided information as

to which variables were causing problems. Using the same table, Circularity and ALP are

the major contributors to this sample. This can be confirmed by viewing Figure 4.71 on

page 130.

Table 4.29: Data table displaying the scores of each variable, averages of variables, and
distances away from the average for sample 8D for 90°

All other PC tables for both full metal jacket and lead round nose bullets can be seen in

Appendix A.

The samples described in the results below can be observed in Figures 4.71 on page 130

and 4.73 on page 132

90° bullets (PC1 through PC3)

The following results for 90° full metal jacket bullets can be inspected visually and compared

with other 90° bullets in Figures 4.71 on page 130, 4.73 on page 132, and 4.76 on page 137.
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Circularity ranges from 0.878 (sample 8D) to 0.942 (samples 6G and 8A). Normalization

of these values results in 8D having a z-score of -2.14 and a z-score of 1.16 for samples 6G

and 8A. It is clear that sample 8D is in the negative tail of the distribution. The lack of

Circularity for sample 8D contributes significantly to its PC1 and PC2 values. It has a value

of 0.878, whilst the average value for Circularity to PC1 is 0.920.

The contributions of Circularity (18.6%) and then ALP (7.8%) to the PC1 value and the

contributions of Circularity (35.5%) to the PC2 value of sample 8D result in it being located

away from the other 90° samples.

The abundance of ALP and lack of Circularity for sample 8D contributes significantly to

its PC3 value, respectively. It has a value of 88382 for ALP (average is 28803) and a value

of 0.878 for Circularity (average is 0.920).

The contribution of ALP (38.1%) to the PC3 value and Circularity (37.3%) to the PC4

value result in it being located away from the other 90° samples.

AR ranges from 1.02 (sample 8A) to 1.17 (sample 5A). Normalization of these values

results in 5A having a z-score of 1.80 and a z-score of -1.23 for samples 8A. The abundance

of AR for sample 5A contributes significantly to its PC1 value. It has a value of 1.17, whilst

the average value for AR to PC1 is 1.08.

Normalization of the Circularity values results in sample 5A having a z-score of -0.85.

It has a value of 0.903 for Circularity. The lack of Circularity for sample 5A contributes

significantly to its PC2 value.

The contributions of AR (3.1%) and then ALP (1.5%) to the PC1 value and the contri-

butions of Circularity (11.1%) and then AR (3.8%) to the PC2 value of sample 5A result in

it being located away from the other 90° samples.
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Figure 4.76: Particle selection (top two rows) and bullet outline (bottom two rows) images
for 90° lead round nose bullets. Samples 5A, 6C, 6G, 8A, 8D (first and third rows) and
samples 8G, 8I, 8J, 8K, 8L (second and forth rows)

75° bullets (PC1 through PC3)

The following results for 75° full metal jacket bullets can be inspected visually and compared

with other 75° bullets in Figures 4.71 on page 130, 4.73 on page 132, and 4.76.

ALP ranges from 13272 (sample 1E) to 112229 (sample 1J ). Normalization of these values

results in 1J having a z-score of 1.74 and a z-score of -1.48 for sample 1E. The abundance

of ALP for sample 1J contributes significantly to its PC3 value. It has a value of 102842,

whilst the average value for ALP is 58707.

The contribution of ALP (49.3%) to the PC3 value result in it being located away from

the other 75° samples.
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Figure 4.77: Particle selection (top two rows) and bullet outline (bottom two rows) images
for 90° lead round nose bullets. Samples 1D, 1E, 1F, 1G, 1H (first and third rows) and
samples 1J, 1K, 4L, 4M, 8F (second and forth rows)

60° bullets (PC1 through PC3)

The following results for 60° full metal jacket bullets can be inspected visually and compared

with other 60° bullets in Figures 4.71 on page 130, 4.73 on page 132, and 4.76 on the preceding

page.

AR ranges from 1.05 (sample 4I) to 1.36 (sample 1B). Normalization of these values

results in 1B having a z-score of 2.09 and a z-score of -1.18 for samples 4I. The abundance

of AR for sample 1B contributes significantly to its PC1 and PC2 values. It has a value of

1.36, whilst the average value for AR is 1.16.

The contributions of AR (45.1%) and then Circularity (15.6%) to the PC1 value and of

AR (45%) and then Circularity (29.4%) to the PC2 value of sample 1B result in it being

located further away from other 60° samples.

ALP ranges from 8498 (sample 5E) to 102842 (sample 4J). Normalization of these values

results in 5E having a z-score of -1.91 and a z-score of 2.09 for samples 4J. The lack of ALP

for sample 5E contributes significantly to its PC3 value. It has a value of 8498, whilst the

average value for ALP is 53487.
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The contribution of ALP (74.9%) to the PC3 value result in it being located away from

the other 60° samples.

Figure 4.78: Particle selection (top two rows) and bullet outline (bottom two rows) images
for 90° lead round nose bullets. Samples 1A, 1B, 1C, 1M, 4I (first and third rows) and
samples 4J, 5C, 5D, 5E, 8H (second and forth rows)

50° bullets (PC1 through PC3)

The following results for 50° full metal jacket bullets can be inspected visually and compared

with other 50° bullets in Figures 4.71 on page 130, 4.73 on page 132, and 4.76 on page 137.

ALP ranges from 58261 (sample 3L) to 436360 (sample 3E). Normalization of these values

results in 3E having a z-score of 2.82 and a z-score of -0.50 for samples 3L. The abundance

of ALP for sample 3E contributes significantly to its PC1 value. It has a value of 436360,

whilst the average value for ALP to PC1 is 115139. Circularity ranges from 0.871 (sample

3I) to 0.917 (sample 5B). The abundance of ALP for sample 3E also contributes significantly

to its PC3 value. It has a value of 436360, whilst the average value for ALP is 115139.

The contribution of ALP (82.6%) to the PC3 value result in it being located away from

the other 50° samples.

Normalization of the ALP values results in 3I having a z-score of -1.40 and a z-score of

1.39 for sample 5B. Sample 3E (behind sample 3I) has a value of 0.873 for Circularity and
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z-score of -1.27. The lack of Circularity for sample 3E contributes significantly to its PC2

value.

The contributions of ALP (40.7%) then Area (4.9%) to the PC1 value and the contribu-

tions of Circularity (41.4%) and then ALP (19.6%) to the value of PC2 of sample 3E result

in it being located further away from other 50° samples.

Figure 4.79: Particle selection (top two rows) and bullet outline (bottom two rows) images
for 90° lead round nose bullets. Samples 1L, 3D, 3E, 3G, 3H (first and third rows) and
samples 3I, 3J, 3L, 5B, 6A (second and forth rows)

45° bullets (PC1 through PC3)

The following results for 45° full metal jacket bullets can be inspected visually and compared

with other 45° bullets in Figures 4.71 on page 130, 4.73 on page 132, and 4.76 on page 137.

Circularity ranges from 0.861 (sample 3C) to 0.938 (sample 3B). Normalization of these

values results in 3C having a z-score of -1.62 and a z-score of 1.86 for samples 3B. The lack

of Circularity for both samples 3C and 1X (z-score = -1.49) contributes significantly to their

PC1 and PC2 values. Sample 3C has a value of 0.861, and sample 1X has a value of 0.864,

whilst the average value for Circularity to PC1 is 0.897.

The contributions of Circularity (27.8%) to the PC1 value and Circularity (50.2%) to the

PC2 value of sample 3C result in it being located further away from other 45° samples.
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The contributions of Circularity (20.3%) and then Minor (28.3%) to the PC1 value and

Circularity (41.9%) to the PC2 value of sample 1X result in it being located further away

from other 45° samples.

Figure 4.80: Particle selection (top two rows) and bullet outline (bottom two rows) images
for 90° lead round nose bullets. Samples 1Q, 1R, 1S, 1T, 1W (first and third rows) and
samples 1X, 3A, 3B, 3C, 3K (second and forth rows)

4.7.2 LRN bullets

Table 4.30 on the next page shows the proportion of variance explained for the lead round

nose bullet data. PC1 accounts for approximately 35% of the variance, while PC2 accounts

for approximately 26%, PC3 approximately 21%, and PC4 approximately 11%. Together,

they account for approximately 93% of the variance explained. 100% of the variance is

accounted for by PC6. PC5 and PC6 each account for less than 10% of the variance. This

means that PC1-PC4 describes 93% of the original variance.
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Table 4.30: Importance of components for lead round nose bullet data (proportion of variance
explained by PCs

Figure 4.81 is a graphical representation of Table 4.30. The variance in each feature

(PC1-PC6) is defined by its eigenvalues. PC1-PC4 account for a majority of the variance.

Figure 4.81: Scree plot for lead round nose bullet data where the variances are the eigenvalues
of the PCs

Table 4.31 on the following page displays the standard deviations and rotations (or load-

ings) for the lead round nose data. Aspect ratio (AR) is the only variable that is negatively

loaded in PC1. Minor has the greatest weight of any variable in PC1 (positive value) while

X Patch has the lowest weight of any variable in PC1 (positive value).
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Table 4.31: Summary of components for lead round nose bullet data

Circularity and X Patch are the only variables that that are negatively loaded in PC2.

AR has the greatest weight of any variable (positive value), while Minor has the least weight

of any variable (positive value).

Area, Minor, and X Patch are all negatively loaded on PC3. X Patch has the greatest

weight of any variable (negative value), while AR has the least weight of any variable (positive

value).

Circularity, Area Largest Particle, and X Patch are all negatively loaded in PC4. X Patch

has the greatest weight of any variable (negative value), while AR has the least weight

(positive value).

Figure 4.82 on the next page displays the biplot for PC1 and PC2 for lead round nose

data. The ellipses represent a contour line (95% confidence) for each group. Bullets fired at

angles of 90°, 75°, 60°, 50°, and 45° cannot be distinguished from each other.
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Figure 4.82: Biplot for PC1 and PC2 for lead round nose bullet data

Figure 4.83 on the following page displays the 95% confidence bounds of the projected

PCs and original data points of PC1 and PC2 for lead round nose bullets. There were 20,000

test samples (predicted PCs) per individual angle generated. The generated samples take

into account the mean and covariance of the original data, thus providing a representation

of possible values for bullets fired at a specific angle. The confidence bounds are similar to

the normal contour lines (95% probability) of the original data. Some of the original data

points for each angle fall outside of the predicted confidence bounds, except for 50°.
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Figure 4.83: Predicted PCs confidence bounds (95%) for lead round nose bullets (PC1 and
PC2)

Figure 4.84 on the next page displays the biplot for PC3 and PC4 for lead round nose

bullet data. The ellipses represent a normal contour line with probability (95% confidence)

for each group. Bullets fired at angles of 90°, 75°, 60°, 50°, and 45° cannot be distinguished

from each other.
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Figure 4.84: Biplot for PC3 and PC4 for lead round nose bullet data

If the value of PC3 is -1 or lower, the bullet could have been fired at 90° or 75°. If the

value of PC3 is 0, the bullet could have been fired at 75°, 60°, 50°, or 45°. If the PC3 value

is 1.5, the bullet could have been fired at 50° or 45°.

If the PC4 value is -1.5 or lower, the bullet was fired at 45°. If the PC4 value is -1, the

bullet could have been fired at 60° or 45°. If the PC4 value is 1, the bullet could have been

fired at 90°, 60°, or 45°.

Figure 4.85 on the following page displays the 95% confidence bounds of the projected

PCs and original data points of PC3 and PC4 for lead round nose bullets. There were 20,000

test samples (predicted PCs) per individual angle generated. The generated samples take

into account the mean and covariance of the original data, thus providing a representation

of possible values for bullets fired at a specific angle. The confidence bounds are similar to

the normal contour lines (95% probability) of the original data. Original data points from

each of the five angles fall outside the predicted confidence bounds.
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Figure 4.85: Predicted PCs confidence bounds (95%) for lead round nose bullets (PC3 and
PC4)

Figure 4.69 displays a 3D scatterplot of PC1, PC2, and PC3. It is clear that the addition

of PC3 does not provide much ability to distinguish between angles.
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Figure 4.86: 3D scatter plot of PC1, PC2, and PC3 with vertical lines for lead round nose
bullet data

Discussion of PCs

The samples described in the results below can be observed in Figures 4.82 on page 144

and 4.84 on page 146.

90° bullets (PC1 through PC4)

The following results for 90° lead round nose bullets can be inspected visually and compared

with other 90° bullets in Figure 4.87 on page 150.

ALP ranges from 6124 (sample 6E) to 187297 (sample 5Y). Normalization of these values

results in 6E having a z-score of -1.21 and a z-score of 2.08 for sample 5Y. The lack of ALP

for sample 6E contributes significantly to its PC2 value. It has a value of 6124, whilst the

average value for ALP is 72724.

The contribution of ALP (45.9%) and then Area (26.1%) to the PC2 value result in it

being located away from the other 90° samples.

The abundance of ALP for sample 5Y contributes significantly to its PC4. It has a value

of 187297, whilst the average value for ALP is 72723.

The contribution of Circularity (44.2%) to the PC3 value and the contributions of ALP

(8.26%), Circularity (35.2%), then Area (18.4%) to the PC4 value result in it being located

outside the 90° ellipse.
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Circularity ranges from 0.749 (sample 5Y) to 0.869 (sample 6E). Normalization of these

values results in 6E having a z-score of 1.55 and a z-score of -1.31 for sample 5Y. The

abundance of Circularity for sample 6E contributes significantly to its PC3 value. It has a

value of 0.869, whilst the average value for Circularity is 0.804.

The contribution of Circularity (26.5%) then X Patch (8.2%) to the PC3 value result in

it being outside the 90° ellipse.

X Patch ranges from 11 (sample 5K) to 1201 (sample 8E). Normalization of these values

results in 5K having a z-score of -1.83 and a z-score of 1.18 for sample 8E. The lack of

X Patch for sample 5K contributes significantly to its PC4 value. It has a value of 11, whilst

the average value for X Patch is 735.

The contribution of X Patch (14.5%) to the PC4 value result in it being located outside

the 90° ellipse.
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Figure 4.87: Particle selection (top two rows), bullet outline (middle two rows), and glass
distribution (bottom two rows) images for 90° lead round nose bullets. Samples 5F, 5J, 5K,
5M, 5O (first, third, and fifth rows) and samples 5S, 5V, 5Y, 6E, 8E (second, fourth, and
sixth rows)

75° bullets (PC1 through PC4)

The following results for 75° lead round nose bullets can be inspected visually and compared

with other 75° bullets in Figure 4.88 on page 152.
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Minor ranges from 2379 (sample 5C) to 2774 (sample 5H). Normalization of these values

results in 5C having a z-score of -1.67 and a z-score of 1.49 for sample 5H. The lack of Minor

for sample 5C contributes significantly to its PC1 value. It has a value of 2379, whilst the

average value for Minor is 2588.

The contribution of Minor (40.7%) then Area (11.2%) to the PC3 value result in it being

located away from the other 75° samples.

AR ranges from 1.10 (sample 5P) to 1.29 (sample 5C). Normalization of these values

results in 5P having a z-score of -1.44 and a z-score of 1.52 for sample 5C. The lack of AR

for sample 5P contributes significantly to its PC2 value. It has a value of 1.10, whilst the

average value for AR is 1.19.

The contribution of AR(32.0%), ALP (20.9%) and then Circularity (26.9%) to the PC3

value result in it being located away from the other 75° samples.

Circularity ranges from 0.724 (sample 5N) to 0.874 (sample 5P). Normalization of these

values results in 5N having a z-score of -2.10 and a z-score of 1.18 for sample 5P. The lack

of Circularity for sample 5N contributes significantly to its PC3 and PC4 values. It has a

value of 0.724, whilst the average value for Circularity is 0.820.

The contribution of Circularity (44.2%) then X Patch (42.3%) to the PC3 value and the

contribution of Circularity (37.95%) and then X Patch (38.63%) to the PC4 value result in

it being located outside the 75° ellipse.

ALP ranges from 76190 (sample 5C) to 1722200 (sample 5Q). Normalization of these

values results in 5Q having a z-score of 1.47 and a z-score of -1.14 for sample 5C. The

abundance of ALP for sample 5Q contributes significantly to its PC3 value.

The contribution of ALP (37.28%), X Patch (24.55%) and then Circularity (15.38%)

result in it being located away from the other 75° samples.
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Figure 4.88: Particle selection (top two rows), bullet outline (middle two rows), and glass
distribution (bottom two rows) images for 75° lead round nose bullets. Samples 3W, 3X, 3Y,
3Z, 5C (first, third, and firth rows) and samples 5H, 5N, 5P, 5Q, 5T (second, fourth, and
sixth rows)

60° bullets (PC1 through PC4)

The following results for 60° lead round nose bullets can be inspected visually and compared

with other 60° bullets in Figure 4.89 on the next page.
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Minor ranges from 2534 (sample 3R) to 2842 (sample 8X). Normalization of these values

results in 8X having a z-score of 2.18 and a z-score of -1.37 for sample 3R. The abundance

of Minor for sample 8X contributes significantly to its PC1 value. It has a value of 2842,

whilst the average value for Minor is 2653.

The contribution of Minor (44.2%) then Area (35.6%) to the PC1 value result in it being

located away from the other 60° samples.

Figure 4.89: Particle selection (top two rows) and bullet outline (bottom two rows) images
for 60° lead round nose bullets. Samples 3R, 3S, 3T, 8R, 8S (first and third rows) and
samples 8T, 8U, 8V, 8W, 8X (second and forth rows)

50° bullets (PC1 through PC4)

The following results for 50° lead round nose bullets can be inspected visually and compared

with other 50° bullets in Figure 4.90 on page 155.

AR ranges from 1.05 (sample 8Z) to 1.45 (sample 6S). Normalization of these values

results in 6S having a z-score of 2.36 and a z-score of -1.29 for sample 8Z. The abundance

of AR for sample 6S contributes significantly to its PC1 value. It has a value of 1.45, whilst

the average value for AR is 1.19.

The contribution of AR (25.3%) then Area (19.3%) to the PC1 value result in it being

located away from the other 50° samples.
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X Patch ranges from -674 (sample 6R) to 634 (sample 6Q). Normalization of these values

results in 6Q having a z-score of 2.12 and a z-score of -1.25 for sample 6R. The abundance

of X Patch for sample 6Q contributes significantly to its PC3 value. It has a value of 634,

whilst the average value for X Patch is -188.

The contribution of X Patch (54.7%) to the PC3 value result in it being located outside

the 50° ellipse.
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Figure 4.90: Particle selection (top two rows), bullet outline (middle two rows), and glass
distribution (bottom two rows) images for 50° lead round nose bullets. Samples 3U, 6P, 6Q,
6R, 6S (first, third, and firth rows) and samples 6T, 6U, 6V, 8Y, 8Z (second, fourth, and
sixth rows)

45° bullets (PC1 through PC4)

The following results for 45° lead round nose bullets can be inspected visually and compared

with other 45° bullets in Figure 4.91 on page 157.
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AR ranges from 1.11 (sample 2D) to 1.51 (sample 2C). Normalization of these values

results in 2C having a z-score of 2.32 and a z-score of -1.08 for sample 2D. The abundance

of AR for sample 2C contributes significantly to its PC1 and PC2 value. It has a value of

1.51, whilst the average value for AR is 1.24.

The contribution of AR (48.5%) to the PC1 value and the contributions of AR (33.5%)

, Minor (33.3%), and then Circularity (18.6%) to the PC2 value result in it being located

away from the other 45° samples.

X Patch ranges from -701 (sample 3M) to 895 (sample 1V). Normalization of these values

results in 1V having a z-score of 1.53 and a z-score of -1.24 for sample 6R. Sample 3F (behind

sample 1V) has a z-score of 1.39. The abundance of X Patch for sample 3F contributes

significantly to its PC4 value. It has a value of 814, whilst the average value for X Patch is

14.

The contribution of X Patch (32.5%) then Circularity (32.0%) to the PC4 value result

in it being located outside the 45° ellipse.

ALP ranges from 104313 (sample 2A) to 5478486 (sample 1V). Normalization of these

values results in 1V having a z-score of 2.71 and a z-score of -0.57 for sample 2A. The

abundance of ALP for sample 1V contributes significantly to its PC4 value. It has a value

of 5478486, whilst the average value for ALP is 1037530. The contribution of ALP (55.3%),

then X Patch (29.4%) to the PC4 value result in it being located outside the 45° ellipse.

The abundance of X Patch for sample 1V contributes significantly to its PC3 value. It has

a value of 895, whilst the average value for X Patch is 14.

The contribution of X Patch (46.5%) in the value of PC3 is also causing sample 1V to

be outside the 45° ellipse.

Circularity ranges from 0.739 (sample 2C) to 0.885 (sample 3F). Normalization of these

values results in 2C having a z-score of -1.98 and a z-score of 1.46 for sample 3F. The lack of

Circularity for sample 2C contributes significantly to its PC3 value. It has a value of 0.739,

whilst the average value for Circularity is 0.823.

The contribution of Circularity (45.9%) then X Patch (16.8%) to the PC3 value result

in it being located outside the 45° ellipse.
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Figure 4.91: Particle selection (top two rows), bullet outline (middle two rows), and glass
distribution (bottom two rows) images for 50° lead round nose bullets. Samples 1U, 1V, 1Y,
1Z, 2A (first, third, and firth rows) and samples 2B, 2C, 2D, 3F, 3M (second, fourth, and
sixth rows)
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5. Limitations and Future Directions

This study has many limitations. The following limitations are ranked in order of importance:

1. The bullet came to rest in a “soft” location (fiber trap). In real casework, once the

bullet perforates glass, it may end up impacting a harder material such as a wall. This

could change the structure of the bullet even more as well as cause material to be lost

or gained by the bullet.

2. Only one distance (80 inches) was used in this study. Shorter and longer distances could

be studied. The distance fired from the target would influence the velocity at which

the bullet perforates the glass target. This could significantly change the structure of

the bullet. Lead round nose bullets may not break apart from further distances.

3. The glass targets were similar in dimensions (width, length, and thickness). Glass

targets of significantly different dimensions could be used. Longer dimensions and

less thickness could have a significant impact on the structure of a bullet following

perforation. The jackets of full metal jacket bullets may not separate as much if

different dimensions are used.

4. Only plate glass was used. In actual casework, tempered and laminated glass are also

encountered. This would allow observations to be made about how glass distributes

to a bullet depending on the type of material involved in a shooting incident and how

that particular bullet may deform.

5. Only two types of bullets were studied (full metal jacket and lead round nose). Other

bullets types could include hollow-point and semi jacketed. This would allow for a

better understanding of how different bullets deform and how glass deposits on those

bullets.

6. Only five angles were studied (90°, 75°, 60°, 50°, and 45°). More angles in between

these five angles could be studied to observe any characteristics that would be specific

to those angles. This could prove useful in determining the angle of impact.
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7. One firearm (Ruger® SR9®) was used. Performing this research with different firearms

will help to understand how muzzle velocity could play a part in the structure of a

bullet following perforation with a glass target.

All of the above limitations provide means for future research in this area of forensic

science. Using different variables in this research would help examiners to understand how

the bullet structure changes when there is a specific combination of the above variables.

The more variables used in this type of research will allow examiners to better answer the

question of where the shooter was positioned when they fired the shot during a shooting

incident reconstruction.
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6. Conclusion

The hypothesis of this research was that the angle of impact can be determined by examining

and analyzing bullet structure and the glass distribution on bullets following perforation with

glass.

The side view bullet deformation method using simple linear regression for full metal

jacket bullets proved to be a viable method for distinguishing between possible directions

that a shot was fired. However, this method does not work for lead round nose bullets.

Using simple linear regression and HemoSpat, only one method (FMJ middle) could

be used to distinguish between a bullet fired at 90° and 45°. No other angles could be

distinguished from each other. It is important to realize that the middle method has some

bias associated with it since it would be the examiners choice as to where the best fitting

ellipse is located. Therefore, the examination of bullet holes in glass from both full metal

jacket and lead round nose bullets proved not to be a viable method to distinguish between

between possible directions that a shot was fired.

Multiple linear regression using Minor × X Patch proved to be a viable method to

distinguish between possible directions that a shot was fired. No variables proved to be

significant when testing multiple linear regression on lead round nose bullets.

Principal component analysis can be used with the variables Area, X Patch, Circularity,

Area Largest Particle, AR, and Minor for full metal jacket bullets for distinguishing between

possible directions that a shot was fired. It cannot be used with lead round nose bullets.

Although some methods could only distinguish between select angles, other methods

were determined to not be viable. The results are intriguing and could eventually prove

to be beneficial to not only those reconstructing the shooting incident but also to defense

attorneys.

In forensic science, it is imperative that an examiner keep both the prosecutorial and the

defense hypotheses in mind when examining the evidence. From a prosecutorial perspective,

given that a crime has occurred, the defendant is the person who committed the crime. From

a defense prospective, another person, other than the defendant, committed the crime.

For example, suppose that there was a shooting incident and the investigators on scene

photographed the bullet hole in a kitchen window. Furthermore, they used software to
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measure the bullet hole and calculated the angle at which the bullet perforated the glass. If

this evidence is eventually brought to trial, the research performed in this study could prove

beneficial to the defense. The prosecution could state that based on the calculations, person

X must have been the person who fired the shot that killed person Y due to their position at

the scene. However, the defense could counter by saying that there is too much variability

in bullet holes in glass to exclude any other persons present at the scene.

Variability plays a huge role in forensic science and oftentimes this key factor is forgotten

by those involved in the investigation. This research provides a perfect example of the

importance of understanding variability and its effect on expert testimony. For example,

bullets which were fired at the same angle under the same controlled conditions all presented

differences in the measurable outcomes. This variation is a classic example of variability in

controlled experiments. Such variability needs to be considered when developing hypotheses

of what occurred during the commissioning of a crime. The big question is: ”How well does

the investigator understand the crime scene to conduct further analyses on a particular piece

of evidence?” All variables and conditions need to be taken into account when the examiner

is performing the analyses, interpreting the results, and testifying in the courtroom.
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7. Appendix A - Tables and Figures
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7.1 Data for all FMJ and LRN bullets

Table 7.1: All samples used for the full metal jacket bullet analysis
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Table 7.2: All samples used for the lead round nose bullet analysis
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7.2 Bullet deformation plots for the FMJ bullet data

Figure 7.1: Prediction values for combined full metal jacket bullet angle data

Figure 7.2: Pred-res plot (residual versus fitted values) for method AA using full metal jacket
bullet angle data
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Figure 7.3: Normal Q-Q plot for method AA using full metal jacket bullet angle data

Figure 7.4: Histogram for method AA using full metal jacket bullet angle data
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Figure 7.5: Prediction values for method AA using full metal jacket bullet angle data

Figure 7.6: Pred-res plot (residual versus fitted values) for method HH using full metal jacket
bullet angle data
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Figure 7.7: Normal Q-Q plot for method HH using full metal jacket bullet angle data

Figure 7.8: Histogram for method HH using full metal jacket bullet angle data
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Figure 7.9: Prediction values for method HH using full metal jacket bullet angle data

Figure 7.10: Pred-res plot (residual versus fitted values) for method VV using full metal
jacket bullet angle data
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Figure 7.11: Normal Q-Q plot for method VV using full metal jacket bullet angle data

Figure 7.12: Histogram for method VV using full metal jacket bullet angle data
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Figure 7.13: Prediction values for method VV using full metal jacket bullet angle data

Figure 7.14: Pred-res plot (residual versus fitted values) for 5 points using full metal jacket
bullet angle data
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Figure 7.15: Normal Q-Q plot for 5 points using full metal jacket bullet angle data

Figure 7.16: Histogram for 5 points using full metal jacket bullet angle data
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Figure 7.17: Prediction values for 5 points using full metal jacket bullet angle data

Figure 7.18: Pred-res plot (residual versus fitted values) for 10 points using full metal jacket
bullet angle data
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Figure 7.19: Normal Q-Q plot for 10 points using full metal jacket bullet angle data

Figure 7.20: Histogram for 10 points using full metal jacket bullet angle data
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Figure 7.21: Prediction values for 10 points using full metal jacket bullet angle data

Figure 7.22: Pred-res plot (residual versus fitted values) for 15 points using full metal jacket
bullet angle data
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Figure 7.23: Normal Q-Q plot for 15 points using full metal jacket bullet angle data

Figure 7.24: Histogram for 15 points using full metal jacket bullet angle data
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Figure 7.25: Prediction values for 15 points using full metal jacket bullet angle data

7.3 Bullet deformation plots for the LRN bullet data

Figure 7.26: Pred-res plot (residual versus fitted values) for combined lead round nose bullet
angle data
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Figure 7.27: Normal Q-Q plot for combined lead round nose bullet angle data

Figure 7.28: Histogram for combined lead round nose bullet angle data
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Figure 7.29: Prediction values for combined lead round nose bullet angle data

Figure 7.30: Pred-res plot (residual versus fitted values) for method AA using lead round
nose bullet angle data
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Figure 7.31: Normal Q-Q plot for method AA using lead round nose bullet angle data

Figure 7.32: Histogram for method AA using lead round nose bullet angle data
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Figure 7.33: Prediction values for method AA using lead round nose bullet angle data

Figure 7.34: Pred-res plot (residual versus fitted values) for method HH using lead round
nose bullet angle data

181



Figure 7.35: Normal Q-Q plot for method HH using lead round nose bullet angle data

Figure 7.36: Histogram for method HH using lead round nose bullet angle data
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Figure 7.37: Prediction values for method HH using lead round nose bullet angle data

Figure 7.38: Pred-res plot (residual versus fitted values) for method VV using lead round
nose bullet angle data
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Figure 7.39: Normal Q-Q plot for method VV using lead round nose bullet angle data

Figure 7.40: Histogram for method VV using lead round nose bullet angle data
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Figure 7.41: Prediction values for method VV using lead round nose bullet angle data

Figure 7.42: Pred-res plot (residual versus fitted values) for 5 points using lead round nose
bullet angle data
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Figure 7.43: Normal Q-Q plot for 5 points using lead round nose bullet angle data

Figure 7.44: Histogram for 5 points using lead round nose bullet angle data
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Figure 7.45: Prediction values for 5 points using lead round nose bullet angle data

Figure 7.46: Pred-res plot (residual versus fitted values) for 10 points using lead round nose
bullet angle data
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Figure 7.47: Normal Q-Q plot for 10 points using lead round nose bullet angle data

Figure 7.48: Histogram for 10 points using lead round nose bullet angle data
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Figure 7.49: Prediction values for 10 points using lead round nose bullet angle data

Figure 7.50: Pred-res plot (residual versus fitted values) for 15 points using lead round nose
bullet angle data
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Figure 7.51: Normal Q-Q plot for 15 points using lead round nose bullet angle data

Figure 7.52: Histogram for 15 points using lead round nose bullet angle data
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Figure 7.53: Prediction values for 15 points using lead round nose bullet angle data

7.4 HemoSpat plots for the FMJ bullet data

Figure 7.54: Pred-res plot (residual versus fitted values) for combined full metal jacket bullet
HemoSpat data
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Figure 7.55: Normal Q-Q plot for combined full metal jacket bullet HemoSpat data

Figure 7.56: Histogram for combined full metal jacket bullet HemoSpat data
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Figure 7.57: Prediction values for combined full metal jacket bullet HemoSpat data

Figure 7.58: Pred-res plot (residual versus fitted values) for inside full metal jacket bullet
HemoSpat data
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Figure 7.59: Normal Q-Q plot for inside full metal jacket bullet HemoSpat data

Figure 7.60: Histogram for inside full metal jacket bullet HemoSpat data
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Figure 7.61: Prediction values for inside full metal jacket bullet HemoSpat data

Figure 7.62: Pred-res plot (residual versus fitted values) for middle full metal jacket bullet
HemoSpat data
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Figure 7.63: Normal Q-Q plot for middle full metal jacket bullet HemoSpat data

Figure 7.64: Histogram for middle full metal jacket bullet HemoSpat data
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Figure 7.65: Prediction values for middle full metal jacket bullet HemoSpat data

Figure 7.66: Pred-res plot (residual versus fitted values) for outside full metal jacket bullet
HemoSpat data
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Figure 7.67: Normal Q-Q plot for outside full metal jacket bullet HemoSpat data

Figure 7.68: Histogram for outside full metal jacket bullet HemoSpat data
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Figure 7.69: Prediction values for outside full metal jacket bullet HemoSpat data

7.5 HemoSpat plots for the LRN bullet data

Figure 7.70: Pred-res plot (residual versus fitted values) for combined lead round nose bullet
HemoSpat data
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Figure 7.71: Normal Q-Q plot for combined lead round nose bullet HemoSpat data

Figure 7.72: Histogram for combined lead round nose bullet HemoSpat data
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Figure 7.73: Prediction values for combined lead round nose bullet HemoSpat data

Figure 7.74: Pred-res plot (residual versus fitted values) for inside lead round nose bullet
HemoSpat data
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Figure 7.75: Normal Q-Q plot for inside lead round nose bullet HemoSpat data

Figure 7.76: Histogram for inside lead round nose bullet HemoSpat data
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Figure 7.77: Prediction values for inside lead round nose bullet HemoSpat data

Figure 7.78: Pred-res plot (residual versus fitted values) for middle lead round nose bullet
HemoSpat data
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Figure 7.79: Normal Q-Q plot for middle lead round nose bullet HemoSpat data

Figure 7.80: Histogram for middle lead round nose bullet HemoSpat data
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Figure 7.81: Prediction values for middle lead round nose bullet HemoSpat data

Figure 7.82: Pred-res plot (residual versus fitted values) for outside lead round nose bullet
HemoSpat data
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Figure 7.83: Normal Q-Q plot for outside lead round nose bullet HemoSpat data

Figure 7.84: Histogram for outside lead round nose bullet HemoSpat data
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Figure 7.85: Prediction values for outside lead round nose bullet HemoSpat data

7.6 Multiple linear regression plots for the FMJ bullet

data using Minor ×X Patch

Figure 7.86: Pred-res plot (residual versus fitted values) for Minor × X Patch using full
metal jacket bullet data
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Figure 7.87: Normal Q-Q plot for Minor ×X Patch using full metal jacket bullet data

Figure 7.88: Histogram for Minor ×X Patch using full metal jacket bullet data
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Figure 7.89: XY scatter plot for Minor and X Patch using full metal jacket bullet data

7.7 Principal component analysis tables
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Table 7.3: PCA table for full metal jacket bullets (PC1)
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Table 7.4: PCA table for full metal jacket bullets (PC2)
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Table 7.5: PCA table for full metal jacket bullets (PC3)
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Table 7.6: PCA table for lead round nose bullets (PC1)
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Table 7.7: PCA table for lead round nose bullets (PC2)
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Table 7.8: PCA table for lead round nose bullets (PC3)
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Table 7.9: PCA table for lead round nose bullets (PC4)
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8. Appendix B

8.1 Script for HemoSpat

FMJ bullets

###beg in FMJ Hemospat s c r i p t

setwd ( ”C: /Users/ J e f f e r y s /Desktop/Thes i s J e f f e r y s /Hemospat/FMJ” )

linmod <− read . table ( ”Hemo Or i g i na l . csv ” , header=TRUE, sep=” , ” ,

↪→ s t r i ng sAsFac to r s=FALSE)

hemo <− lm( True Angle ˜ Calcu lated Degrees , data = linmod )

summary(hemo)

# range <− range ( linmod$C a l c u l a t e d Degrees )

# xrange <−seq ( 2 0 . 4 3 , 8 3 . 8 9 , 0 . 1 )

#y c a l c u l a t e d <− p r e d i c t ( linmod , l i s t ( C a l c u l a t e d Degrees =

↪→ y c a l c u l a t e d , type=”response ”) )

normrsq<− c ( )

g rad i en t s1 <− c ( )

i n t e r c e p t s 1 <− c ( )

ad j r sq <− c ( )

pva lue in t <− c ( )

pvaluevar <− c ( )

s t e r r o r i n t <− c ( )

s t e r r o r v a r <− c ( )

g rad i en t s1 <− as . numeric (hemo$coef f ic ients [ 2 ] )
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i n t e r c e p t s 1 <− as . numeric (hemo$coef f ic ients [ 1 ] )

normrsq <− summary(hemo)$ r . squared

ad j r sq <− summary(hemo)$adj . r . squared

pva lue in t <− summary(hemo)$coef f ic ients [ 1 , 4 ]

pvaluevar <− summary(hemo)$coef f ic ients [ 2 , 4 ]

s t e r r o r i n t <− summary(hemo)$coef f ic ients [ 1 , 2 ]

s t e r r o r v a r <− summary(hemo)$coef f ic ients [ 2 , 2 ]

t v a l u e i n t <− summary(hemo)$coef f ic ients [ 1 , 3 ]

tva luevar <− summary(hemo)$coef f ic ients [ 2 , 3 ]

output . df1 <−cbind ( i n t e r c e p t s 1 , s t e r r o r i n t , t va lue in t , pva lue int ,

↪→ normrsq )

output . df2 <− cbind ( grad ients1 , s t e r r o r v a r , tva luevar , pvaluevar ,

↪→ ad j r sq )

f i n a l . output <− rbind ( output . df1 , output . df2 )

write . csv ( f i n a l . output , f i l e =”Combined Data Hemospat FMJ. csv ” ,row .

↪→ names=FALSE)

#s t a t s

r e s = residuals (hemo)

pred = f i tted (hemo)

png ( f i l e = ” Res idua l Combined Hemo . png” , width = 1000 , he ight =

↪→ 600)

plot ( pred , res , x lab = ” Fi t t ed Value” , ylab= ” Res idua l s ” , main =”

↪→ Res idua l s ve r sus F i t t ed Values f o r Combined Ful l Metal

↪→ Jacket Hemospat Data” )

abline (h=0, l t y =2)

#qqnorm ( res )

dev . of f ( )

r e s = sort ( residuals (hemo) )

n = length ( r e s )

z = qnorm( ppoints (n) )

png ( f i l e = ”QQplot Combined Hemo . png” , width = 1000 , he ight = 600)
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plot ( z , res , x lab=” Theo r e t i c a l Quant i l e s ” , ylab=”Sample Quant i l e s ” ,

↪→ main=”Normal Q−Q Plot f o r Combined Ful l Metal Jacket

↪→ Hemospat Data” )

abline (lm( r e s ˜z ) )

dev . of f ( )

r e s = residuals (hemo)

mx = mean( r e s )

##Note the r e s i d u a l s tandard error

#not the s imple SD of the r e s i d u a l s

#i s the e s t i m a t e o f the SD of the r e s i d u a l s

#r e s i d u a l SE i s the b e s t e s t i m a t e f o r sigma ( e s t i m a t i n g SD of

↪→ r e s i d u a l s )

sx = summary(hemo)$sigma

png ( f i l e = ”Histogram Combined Hemo . png” , width = 1000 , he ight =

↪→ 600)

hist ( res , prob=TRUE, xlab=” Res idua l s ” , yl im=c ( 0 , 0 . 0 4 0 ) , main=”

↪→ Histogram of Combined Ful l Metal Jacket Hemospat Data” )

x = seq (min( r e s )−0.5*sx , max( r e s ) +0.5*sx , length=200)

y = dnorm(x , mx, sx )

l ines (x , y , l t y =2)

box ( )

dev . of f ( )

png ( f i l e = ” Linear Model o f Combined Hemospat Data . png” , width =

↪→ 1000 , he ight = 600)

plot ( True Angle ˜ Calcu lated Degrees , data = linmod , ylim=c (40 ,90) ,

↪→ xlim=c (30 ,90) , main=” Linear Model o f Combined Ful l Metal

↪→ Jacket Hemospat Data with Pred i c t i on and Conf idence

↪→ I n t e r v a l s ” , xlab=”Measured Angle” , ylab=”True Angle” )

new . Ca lcu lated Degrees = seq (min( linmod$Calcu lated Degrees ) , max(

↪→ l inmod$Calcu lated Degrees ) , length = 420)

True Angle . pred . c i = predict (hemo , data . frame ( Calcu lated Degrees =

↪→ new . Ca lcu lated Degrees ) , i n t e r v a l = ” con f idence ” )

True Angle . pred . pred = predict (hemo , data . frame ( Calcu lated Degrees

↪→ = new . Ca lcu lated Degrees ) , i n t e r v a l = ” p r e d i c t i o n ” )
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l ines (new . Ca lcu lated Degrees , True Angle . pred . c i [ , 1 ] )

l ines (new . Ca lcu lated Degrees , True Angle . pred . c i [ , 2 ] , l t y = 2 ,

↪→ col = ” blue ” )

l ines ( new . Ca lcu lated Degrees , True Angle . pred . c i [ , 3 ] , l t y = 2 ,

↪→ col = ” blue ” )

l ines ( new . Ca lcu lated Degrees , True Angle . pred . pred [ , 2 ] , l t y = 2 ,

↪→ col = ” red ” )

l ines ( new . Ca lcu lated Degrees , True Angle . pred . pred [ , 3 ] , l t y =

↪→ 2 , col = ” red ” )

t e s t v a l <− c (45 ,75 ,90 )

l . colors <− c ( ” green ” , ” orange ” , ” darkgrey ” )

for ( i in 1 : length ( t e s t v a l ) ){
abline ( v=t e s t v a l [ i ] , col=l . colors [ i ] )

new . Ca lcu lated Degrees <− c ( t e s t v a l [ i ] )

xmax1 <− predict (hemo , data . frame ( Calcu lated Degrees =new .

↪→ Calcu lated Degrees ) , i n t e r v a l=” p r e d i c t i o n ” )

xg1 <− c (0 , t e s t v a l [ i ] )

yg1 <− c (xmax1 [ , 3 ] , xmax1 [ , 3 ] )

l ines ( xg1 , yg1 , l t y =2,col=l . colors [ i ] )

xg2 <− c (0 , t e s t v a l [ i ] )

yg2 <− c (xmax1 [ , 2 ] , xmax1 [ , 2 ] )

l ines ( xg2 , yg2 , l t y =2,col=l . colors [ i ] )

xg3 <− c (0 , t e s t v a l [ i ] )

yg3 <− c (xmax1 [ , 1 ] , xmax1 [ , 1 ] )

l ines ( xg3 , yg3 , l t y =1,col=l . colors [ i ] )

xmax2 <− predict (hemo , data . frame ( Calcu lated Degrees =new .

↪→ Calcu lated Degrees ) , i n t e r v a l=” con f idence ” )

xg4 <− c (0 , t e s t v a l [ i ] )

yg4 <− c (xmax2 [ , 2 ] , xmax2 [ , 2 ] )

l ines ( xg4 , yg4 , l t y =3,col=l . colors [ i ] )

xg5 <− c (0 , t e s t v a l [ i ] )

yg5 <− c (xmax2 [ , 3 ] , xmax2 [ , 3 ] )

l ines ( xg5 , yg5 , l t y =3,col=l . colors [ i ] )

}
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dev . of f ( )

#p r e d i c t i o n code f o r model

oute r s<−c ( )

i n n e r s<−c ( )

ang le <− c ( )

TA. pred . f i t <− c ( )

TA. pred . lwr <− c ( )

TA. pred . upr <− c ( )

ang le . pred . f i t <− c ( )

ang le . pred . lwr <− c ( )

ang le . pred . upr <− c ( )

for ( j j in 45 : 90 ) {

ang le [ j j ] <− j j

CD <− c ( j j )

TA. pred = predict (hemo , data . frame ( Calcu lated Degrees=CD) , i n t e r v a l

↪→ = ” con f idence ” )

ang le . pred = predict (hemo , data . frame ( Calcu lated Degrees=CD) ,

↪→ i n t e r v a l = ” p r e d i c t i o n ” )

TA. pred . f i t [ j j ] <− ang le . pred [ 1 ]

TA. pred . lwr [ j j ] <− ang le . pred [ 2 ]

TA. pred . upr [ j j ] <− ang le . pred [ 3 ]

ang le . pred . f i t [ j j ] <− TA. pred [ 1 ]

ang le . pred . lwr [ j j ] <− TA. pred [ 2 ]

ang le . pred . upr [ j j ] <− TA. pred [ 3 ]

i n n e r s <−cbind ( ang le [ j j ] , TA. pred . f i t [ j j ] , TA. pred . lwr [ j j ] , TA.

↪→ pred . upr [ j j ] ,

ang le . pred . f i t [ j j ] , ang le . pred . lwr [ j j ] , ang le . pred .

↪→ upr [ j j ] )

ou t e r s<−rbind ( outers , i n n e r s )

}

oute r s<− data . frame ( oute r s )

write . csv ( outers , f i l e = ”Combined Outers . csv ” ,row .names=FALSE)
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outer . c o l s <−c ( ”Angle” , ”Pred . f i t ” , ”Pred . lower ” , ”Pred . upper” , ”CI .

↪→ f i t ” , ”CI . lower ” , ”CI . upper” )

colnames ( oute r s )<−outer . c o l s

old . output <− output

output <− oute r s

ymin<−min( output$Angle )

ymax<−max( output$Angle )

mypath <− f i l e . path ( ”C: /Users/ J e f f e r y s /Desktop/Thes i s J e f f e r y s /

↪→ Hemospat/FMJ” , paste ( ”Combined Pred i c t i on ” , ” . png” , sep = ”” )

↪→ )

png ( f i l e = mypath , width = 1000 , he ight = 600)

#m y t i t l e = p a s t e (” P r e d i c t i o n Values f o r Combined Hemospat Data ”)

plot ( output$Angle , output$CI . f i t , type=” l ” , yl im=c ( ymin , ymax) ,

↪→ ylab=”True Angle” , xlab=”Measured Angle” , main=” Pred i c t i on

↪→ Values Resu l t ing from Measured Values f o r Combined Ful l

↪→ Metal Jacket Hemospat Data with Conf idence I n t e r v a l s ” )

l ines ( output$Angle , output$CI . upper , l t y =2, col=” blue ” )

l ines ( output$Angle , output$CI . lower , l t y =2, col=” blue ” )

#f o r ( i in 1 : l e n g t h ( output$Angle ) ){
# x . temp <− c ( output$Angle [ i ] , output$Angle [ i ] )

# y . temp <− c ( output$CI . lower [ i ] , output$CI . upper [ i ] )

# l i n e s ( x . temp , y . temp )

#}
l ines ( output$Angle , output$Pred . upper , l t y =2, col=” red ” )

l ines ( output$Angle , output$Pred . lower , l t y =2, col=” red ” )

#f o r ( i in 1 : l e n g t h ( output$Angle ) ){
# x . temp <− c ( output$Angle [ i ] , output$Angle [ i ] )

# y . temp <− c ( output$Pred . lower [ i ] , output$Pred . upper [ i ] )

# l i n e s ( x . temp , y . temp )

#}
abline ( v=45, col=” grey ” )

abline ( v=50, col=” grey ” )
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abline ( v=60, col=” grey ” )

abline ( v=75, col=” grey ” )

abline ( v=90, col=” grey ” )

dev . of f ( )

#output <− o l d . output

#s t a r t o f methods loop

method type <− as . character (unique ( linmod$Method ) )

########################################Methods

#a d j u s t the current method be ing used here

i <− ” Outside ”

#f o r ( i in method type ){
l inmodsub <− subset ( linmod , linmod$Method == as . character ( i ) )

hemo1 <− lm( True Angle ˜ Calcu lated Degrees , data = linmodsub )

summary(hemo1)

normrsq<− c ( )

g rad i en t s1 <− c ( )

i n t e r c e p t s 1 <− c ( )

ad j r sq <− c ( )

pva lue in t <− c ( )

pvaluevar <− c ( )

s t e r r o r i n t <− c ( )

s t e r r o r v a r <− c ( )

g rad i en t s1 [ i ] <− as . numeric (hemo1$coef f ic ients [ 2 ] )

i n t e r c e p t s 1 [ i ] <− as . numeric (hemo1$coef f ic ients [ 1 ] )

normrsq [ i ] <− summary(hemo1)$ r . squared

ad j r sq [ i ] <− summary(hemo1)$adj . r . squared

pva lue in t [ i ] <− summary(hemo1)$coef f ic ients [ 1 , 4 ]

pvaluevar [ i ] <− summary(hemo1)$coef f ic ients [ 2 , 4 ]

s t e r r o r i n t [ i ] <− summary(hemo1)$coef f ic ients [ 1 , 2 ]

s t e r r o r v a r [ i ] <− summary(hemo1)$coef f ic ients [ 2 , 2 ]

t v a l u e i n t [ i ] <− summary(hemo1)$coef f ic ients [ 1 , 3 ]
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tva luevar [ i ] <− summary(hemo1)$coef f ic ients [ 2 , 3 ]

output . df1 <−cbind ( i n t e r c e p t s 1 [ i ] , s t e r r o r i n t [ i ] , t v a l u e i n t [ i ] ,

↪→ pva lue in t [ i ] , normrsq [ i ] )

output . df2 <− cbind ( g rad i en t s1 [ i ] , s t e r r o r v a r [ i ] , tva luevar [ i ] ,

↪→ pvaluevar [ i ] , ad j r sq [ i ] )

f i n a l o u t p u t 2 <− rbind ( output . df1 , output . df2 )

write . csv ( f i na l output2 , f i l e = paste ( as . character ( i ) , ” Data Model

↪→ . csv ” ) ,row .names=FALSE)

# p l o t ( l inmodsub$C a l c u l a t e d Degrees , l inmodsub$True Angle , main =

↪→ m y t i t l e , y l a b =”C a l c u l a t e d Angle ” , x l a b = ”True Angle ”)

# a b l i n e ( c o e f = c ( i n t e r c e p t s [ i ] , g r a d i e n t s [ i ] ) )

# dev . o f f ( )

#r e s i d u a l s p l o t s

r e s = residuals (hemo1)

pred = f i tted (hemo1)

mypath <− f i l e . path ( ”C: /Users/ J e f f e r y s /Desktop/Thes i s J e f f e r y s /

↪→ Hemospat/FMJ” , paste ( ” Res idua l s f o r ” , as . character ( i ) , ” .

↪→ png” , sep = ”” ) )

png ( f i l e = mypath , width = 1000 , he ight = 600)

myt i t l e = paste ( ” Res idua l s ve r sus F i t t ed Values f o r Method” , as .

↪→ character ( i ) , ”Using Fu l l Metal Jacket B u l l e t s ” )

plot ( pred , res , x lab = ” Fi t t ed Value” , ylab= ” Res idua l s ” , main =

↪→ myt i t l e )

abline (h=0, l t y =2)

dev . of f ( )

# res = r e s i d u a l s (hemo1)

# qqnorm ( res )

# q q l i n e ( res )

r e s = sort ( residuals (hemo1) )

n = length ( r e s )
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z = qnorm( ppoints (n) )

mypath <− f i l e . path ( ”C: /Users/ J e f f e r y s /Desktop/Thes i s J e f f e r y s /

↪→ Hemospat/FMJ” , paste ( ”Normal QQ Plot ” , as . character ( i ) , ” .

↪→ png” , sep = ”” ) )

png ( f i l e = mypath , width = 1000 , he ight = 600)

myt i t l e = paste ( ”Normal Q−Q Plot f o r Method” , as . character ( i ) , ”

↪→ Using Fu l l Metal Jacket B u l l e t s ” )

plot ( z , res , x lab=” Theo r e t i c a l Quant i l e s ” , ylab=”Sample Quant i l e s ” ,

↪→ main = myt i t l e )

abline (lm( r e s ˜z ) )

dev . of f ( )

r e s = residuals (hemo1)

mx = mean( r e s )

##Note the r e s i d u a l s tandard error

#not the s imple SD of the r e s i d u a l s

#i s the e s t i m a t e o f the SD of the r e s i d u a l s

#r e s i d u a l SE i s the b e s t e s t i m a t e f o r sigma ( e s t i m a t i n g SD of

↪→ r e s i d u a l s )

sx = summary(hemo1)$sigma

mypath <− f i l e . path ( ”C: /Users/ J e f f e r y s /Desktop/Thes i s J e f f e r y s /

↪→ Hemospat/FMJ” , paste ( ”Histogram f o r ” , as . character ( i ) , ” .

↪→ png” , sep = ”” ) )

png ( f i l e = mypath , width = 1000 , he ight = 600)

myt i t l e = paste ( ”Histogram f o r Method” , as . character ( i ) , ”Using

↪→ Ful l Metal Jacket B u l l e t s ” )

hist ( res , prob=TRUE, xlab=” Res idua l s ” , main =myt i t l e , yl im=c

↪→ ( 0 , 0 . 0 4 ) )

x = seq (min( r e s )−0.5*sx , max( r e s ) +0.5*sx , length=200)

y = dnorm(x , mx, sx )

l ines (x , y , l t y =2)

box ( )

dev . of f ( )
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mypath <− f i l e . path ( ”C: /Users/ J e f f e r y s /Desktop/Thes i s J e f f e r y s /

↪→ Hemospat/FMJ” , paste ( ” Linear Model o f ” , as . character ( i ) , ” .

↪→ png” , sep = ”” ) )

png ( f i l e = mypath , width = 1000 , he ight = 600)

myt i t l e = paste ( ” Linear Model o f Method” , as . character ( i ) , ”

↪→ Using Fu l l Metal Jacket B u l l e t s with Pred i c t i on and

↪→ Confidence I n t e r v a l s ” )

plot ( True Angle ˜ Calcu lated Degrees , data = linmodsub , main=

↪→ mytit l e , x lab=”Measured Angle” , ylab=”True Angle” , xl im=c

↪→ (30 ,90) )

new . Ca lcu lated Degrees = seq (min( linmodsub$Calcu lated Degrees ) ,

↪→ max( linmodsub$Calcu lated Degrees ) , length = 90)

True Angle . pred . c i = predict (hemo1 , data . frame ( Calcu lated Degrees

↪→ =new . Ca lcu lated Degrees ) , i n t e r v a l = ” con f idence ” )

True Angle . pred . pred = predict (hemo1 , data . frame ( Calcu lated

↪→ Degrees = new . Ca lcu lated Degrees ) , i n t e r v a l = ” p r e d i c t i o n ” )

l ines (new . Ca lcu lated Degrees , True Angle . pred . c i [ , 1 ] )

l ines (new . Ca lcu lated Degrees , True Angle . pred . c i [ , 2 ] , l t y = 2 ,

↪→ col = ” blue ” )

l ines ( new . Ca lcu lated Degrees , True Angle . pred . c i [ , 3 ] , l t y =

↪→ 2 , col = ” blue ” )

l ines ( new . Ca lcu lated Degrees , True Angle . pred . pred [ , 2 ] , l t y =

↪→ 2 , col = ” red ” )

l ines ( new . Ca lcu lated Degrees , True Angle . pred . pred [ , 3 ] , l t y =

↪→ 2 , col = ” red ” )

t e s t v a l <− c (45 ,75 ,90 )

l . colors <− c ( ” green ” , ” orange ” , ” darkgrey ” )

for ( i in 1 : length ( t e s t v a l ) ){
abline ( v=t e s t v a l [ i ] , col=l . colors [ i ] )

new . Ca lcu lated Degrees <− c ( t e s t v a l [ i ] )

xmax1 <− predict (hemo1 , data . frame ( Calcu lated Degrees =new .

↪→ Calcu lated Degrees ) , i n t e r v a l=” p r e d i c t i o n ” )

xg1 <− c (0 , t e s t v a l [ i ] )

yg1 <− c (xmax1 [ , 3 ] , xmax1 [ , 3 ] )
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l ines ( xg1 , yg1 , l t y =2,col=l . colors [ i ] )

xg2 <− c (0 , t e s t v a l [ i ] )

yg2 <− c (xmax1 [ , 2 ] , xmax1 [ , 2 ] )

l ines ( xg2 , yg2 , l t y =2,col=l . colors [ i ] )

xg3 <− c (0 , t e s t v a l [ i ] )

yg3 <− c (xmax1 [ , 1 ] , xmax1 [ , 1 ] )

l ines ( xg3 , yg3 , l t y =1,col=l . colors [ i ] )

xmax2 <− predict (hemo1 , data . frame ( Calcu lated Degrees =new .

↪→ Calcu lated Degrees ) , i n t e r v a l=” con f idence ” )

xg4 <− c (0 , t e s t v a l [ i ] )

yg4 <− c (xmax2 [ , 2 ] , xmax2 [ , 2 ] )

l ines ( xg4 , yg4 , l t y =3,col=l . colors [ i ] )

xg5 <− c (0 , t e s t v a l [ i ] )

yg5 <− c (xmax2 [ , 3 ] , xmax2 [ , 3 ] )

l ines ( xg5 , yg5 , l t y =3,col=l . colors [ i ] )

}
dev . of f ( )

#a d j u s t what i i s f o r the method be ing used

i <− ” Outside ”

oute r s<−c ( )

i n n e r s<−c ( )

ang le <− c ( )

TA. pred . f i t <− c ( )

TA. pred . lwr <− c ( )

TA. pred . upr <− c ( )

ang le . pred . f i t <− c ( )

ang le . pred . lwr <− c ( )

ang le . pred . upr <− c ( )

for ( j j in 45 : 90 ) {

ang le [ j j ] <− j j

CD <− c ( j j )

TA. pred = predict (hemo1 , data . frame ( Calcu lated Degrees=CD) ,

↪→ i n t e r v a l = ” con f idence ” )
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ang le . pred = predict (hemo1 , data . frame ( Calcu lated Degrees=CD) ,

↪→ i n t e r v a l = ” p r e d i c t i o n ” )

TA. pred . f i t [ j j ] <− ang le . pred [ 1 ]

TA. pred . lwr [ j j ] <− ang le . pred [ 2 ]

TA. pred . upr [ j j ] <− ang le . pred [ 3 ]

ang le . pred . f i t [ j j ] <− TA. pred [ 1 ]

ang le . pred . lwr [ j j ] <− TA. pred [ 2 ]

ang le . pred . upr [ j j ] <− TA. pred [ 3 ]

i n n e r s <−cbind ( ang le [ j j ] , TA. pred . f i t [ j j ] , TA. pred . lwr [ j j ] , TA

↪→ . pred . upr [ j j ] ,

ang le . pred . f i t [ j j ] , ang le . pred . lwr [ j j ] , ang le .

↪→ pred . upr [ j j ] )

ou te r s<−rbind ( outers , i n n e r s )

}

oute r s<− data . frame ( oute r s )

write . csv ( outers , f i l e = paste ( as . character ( i ) , ” Outers . csv ” ) ,row

↪→ .names=FALSE)

outer . c o l s <−c ( ”Angle” , ”Pred . f i t ” , ”Pred . lower ” , ”Pred . upper” , ”CI .

↪→ f i t ” , ”CI . lower ” , ”CI . upper” )

colnames ( oute r s )<−outer . c o l s

old . output <− output

# output <− o u t e r s

ymin<−min( output$Angle )

ymax<−max( output$Angle )

mypath <− f i l e . path ( ”C: /Users/ J e f f e r y s /Desktop/Thes i s J e f f e r y s /

↪→ Hemospat/FMJ” , paste ( ” Fina l Model o f ” , as . character ( i ) , ” .

↪→ png” , sep = ”” ) )

png ( f i l e = mypath , width = 1000 , he ight = 600)

myt i t l e = paste ( ” Pred i c t i on Values Resu l t ing from Measured

↪→ Values f o r Method” , as . character ( i ) , ”Using Fu l l Metal

↪→ Jacket B u l l e t s with Conf idence I n t e r v a l s ” )
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plot ( output$Angle , output$CI . f i t , type=” l ” , xlim=c (45 ,90) , yl im=c

↪→ ( ymin , ymax) , ylab=”True Angle” , xlab=”Measured Angle” ,

↪→ main=myt i t l e )

l ines ( output$Angle , output$CI . upper , l t y =2, col=” blue ” )

l ines ( output$Angle , output$CI . lower , l t y =2, col=” blue ” )

#f o r ( i in 1 : l e n g t h ( output$Angle ) ){
# x . temp <− c ( output$Angle [ i ] , output$Angle [ i ] )

# y . temp <− c ( output$CI . lower [ i ] , output$CI . upper [ i ] )

# l i n e s ( x . temp , y . temp )

#}
l ines ( output$Angle , output$Pred . upper , l t y =2, col=” red ” )

l ines ( output$Angle , output$Pred . lower , l t y =2, col=” red ” )

#f o r ( i in 1 : l e n g t h ( output$Angle ) ){
# x . temp <− c ( output$Angle [ i ] , output$Angle [ i ] )

# y . temp <− c ( output$Pred . lower [ i ] , output$Pred . upper [ i ] )

# l i n e s ( x . temp , y . temp )

#}
abline ( v=45, col=” grey ” )

abline ( v=50, col=” grey ” )

abline ( v=60, col=” grey ” )

abline ( v=75, col=” grey ” )

abline ( v=90, col=” grey ” )

dev . of f ( )

#output <− o l d . output

#w r i t e . csv ( output f i n a l , f i l e = p a s t e ( s u b s t r ( l inmodsub$Method [ i

↪→ ] , 1 , 2 ) ,” Data Methods . csv ”) , row . names=FALSE)

#}
####end o f FMJ Hemospat s c r i p t

LRN bullets

###beg in s c r i p t f o r LRN Hemospat

setwd ( ”C: /Users/ J e f f e r y s /Desktop/Thes i s J e f f e r y s /Hemospat/LRN” )

229



l inmod <− read . table ( ”Hemo LRN Data . csv ” , header=TRUE, sep=” , ” ,

↪→ s t r i ng sAsFac to r s=FALSE)

hemo <− lm( True Angle ˜ Calcu lated Degrees , data = linmod )

summary(hemo)

# range <− range ( linmod$C a l c u l a t e d Degrees )

# xrange <−seq ( 2 0 . 4 3 , 8 3 . 8 9 , 0 . 1 )

#y c a l c u l a t e d <− p r e d i c t ( linmod , l i s t ( C a l c u l a t e d Degrees =

↪→ y c a l c u l a t e d , type=”response ”) )

normrsq<− c ( )

g rad i en t s1 <− c ( )

i n t e r c e p t s 1 <− c ( )

ad j r sq <− c ( )

pva lue in t <− c ( )

pvaluevar <− c ( )

s t e r r o r i n t <− c ( )

s t e r r o r v a r <− c ( )

g rad i en t s1 <− as . numeric (hemo$coef f ic ients [ 2 ] )

i n t e r c e p t s 1 <− as . numeric (hemo$coef f ic ients [ 1 ] )

normrsq <− summary(hemo)$ r . squared

ad j r sq <− summary(hemo)$adj . r . squared

pva lue in t <− summary(hemo)$coef f ic ients [ 1 , 4 ]

pvaluevar <− summary(hemo)$coef f ic ients [ 2 , 4 ]

s t e r r o r i n t <− summary(hemo)$coef f ic ients [ 1 , 2 ]

s t e r r o r v a r <− summary(hemo)$coef f ic ients [ 2 , 2 ]

t v a l u e i n t <− summary(hemo)$coef f ic ients [ 1 , 3 ]

tva luevar <− summary(hemo)$coef f ic ients [ 2 , 3 ]

output . df1 <−cbind ( i n t e r c e p t s 1 , s t e r r o r i n t , t va lue in t , pva lue int ,

↪→ normrsq )

output . df2 <− cbind ( grad ients1 , s t e r r o r v a r , tva luevar , pvaluevar ,

↪→ ad j r sq )
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f i n a l . output <− rbind ( output . df1 , output . df2 )

write . csv ( f i n a l . output , f i l e =”Combined Data Hemospat LRN. csv ” ,row .

↪→ names=FALSE)

#s t a t s

r e s = residuals (hemo)

pred = f i tted (hemo)

png ( f i l e = ” Res idua l Combined Hemo . png” , width = 1000 , he ight =

↪→ 600)

plot ( pred , res , x lab = ” Fi t t ed Value” , ylab= ” Res idua l s ” , main =”

↪→ Res idua l s ve r sus F i t t ed Values f o r Combined Lead Round Nose

↪→ Hemospat Data” )

abline (h=0, l t y =2)

#qqnorm ( res )

dev . of f ( )

r e s = sort ( residuals (hemo) )

n = length ( r e s )

z = qnorm( ppoints (n) )

png ( f i l e = ”QQplot Combined Hemo . png” , width = 1000 , he ight = 600)

plot ( z , res , x lab=” Theo r e t i c a l Quant i l e s ” , ylab=”Sample Quant i l e s ” ,

↪→ main=”Normal Q−Q Plot f o r Combined Lead Round Nose Hemospat

↪→ Data” )

abline (lm( r e s ˜z ) )

dev . of f ( )

r e s = residuals (hemo)

mx = mean( r e s )

##Note the r e s i d u a l s tandard error

#not the s imple SD of the r e s i d u a l s

#i s the e s t i m a t e o f the SD of the r e s i d u a l s

#r e s i d u a l SE i s the b e s t e s t i m a t e f o r sigma ( e s t i m a t i n g SD of

↪→ r e s i d u a l s )

sx = summary(hemo)$sigma
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png ( f i l e = ”Histogram Combined Hemo . png” , width = 1000 , he ight =

↪→ 600)

hist ( res , prob=TRUE, xlab=” Res idua l s ” , main=”Histogram of Combined

↪→ Lead Round Nose Hemospat Data” )

x = seq (min( r e s )−0.5*sx , max( r e s ) +0.5*sx , length=200)

y = dnorm(x , mx, sx )

l ines (x , y , l t y =2)

box ( )

dev . of f ( )

png ( f i l e = ” Linear Model o f Combined Hemospat Data . png” , width =

↪→ 1000 , he ight = 600)

plot ( True Angle ˜ Calcu lated Degrees , data = linmod , xlim=c (30 ,90)

↪→ , main=” Linear Model o f Combined Lead Round Nose Hemospat

↪→ Data with Pred i c t i on and Conf idence I n t e r v a l s ” , xlab=”

↪→ Measured Angle” , ylab=”True Angle” )

new . Ca lcu lated Degrees = seq (min( linmod$Calcu lated Degrees ) , max(

↪→ l inmod$Calcu lated Degrees ) , length = 420)

True Angle . pred . c i = predict (hemo , data . frame ( Calcu lated Degrees =

↪→ new . Ca lcu lated Degrees ) , i n t e r v a l = ” con f idence ” )

True Angle . pred . pred = predict (hemo , data . frame ( Calcu lated Degrees

↪→ = new . Ca lcu lated Degrees ) , i n t e r v a l = ” p r e d i c t i o n ” )

l ines (new . Ca lcu lated Degrees , True Angle . pred . c i [ , 1 ] )

l ines (new . Ca lcu lated Degrees , True Angle . pred . c i [ , 2 ] , l t y = 2 ,

↪→ col = ” blue ” )

l ines ( new . Ca lcu lated Degrees , True Angle . pred . c i [ , 3 ] , l t y = 2 ,

↪→ col = ” blue ” )

l ines ( new . Ca lcu lated Degrees , True Angle . pred . pred [ , 2 ] , l t y = 2 ,

↪→ col = ” red ” )

l ines ( new . Ca lcu lated Degrees , True Angle . pred . pred [ , 3 ] , l t y =

↪→ 2 , col = ” red ” )

t e s t v a l <− c (45 ,75 ,90 )

l . colors <− c ( ” green ” , ” orange ” , ” darkgrey ” )

for ( i in 1 : length ( t e s t v a l ) ){
abline ( v=t e s t v a l [ i ] , col=l . colors [ i ] )
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new . Ca lcu lated Degrees <− c ( t e s t v a l [ i ] )

xmax1 <− predict (hemo , data . frame ( Calcu lated Degrees =new .

↪→ Calcu lated Degrees ) , i n t e r v a l=” p r e d i c t i o n ” )

xg1 <− c (0 , t e s t v a l [ i ] )

yg1 <− c (xmax1 [ , 3 ] , xmax1 [ , 3 ] )

l ines ( xg1 , yg1 , l t y =2,col=l . colors [ i ] )

xg2 <− c (0 , t e s t v a l [ i ] )

yg2 <− c (xmax1 [ , 2 ] , xmax1 [ , 2 ] )

l ines ( xg2 , yg2 , l t y =2,col=l . colors [ i ] )

xg3 <− c (0 , t e s t v a l [ i ] )

yg3 <− c (xmax1 [ , 1 ] , xmax1 [ , 1 ] )

l ines ( xg3 , yg3 , l t y =1,col=l . colors [ i ] )

xmax2 <− predict (hemo , data . frame ( Calcu lated Degrees =new .

↪→ Calcu lated Degrees ) , i n t e r v a l=” con f idence ” )

xg4 <− c (0 , t e s t v a l [ i ] )

yg4 <− c (xmax2 [ , 2 ] , xmax2 [ , 2 ] )

l ines ( xg4 , yg4 , l t y =3,col=l . colors [ i ] )

xg5 <− c (0 , t e s t v a l [ i ] )

yg5 <− c (xmax2 [ , 3 ] , xmax2 [ , 3 ] )

l ines ( xg5 , yg5 , l t y =3,col=l . colors [ i ] )

}
dev . of f ( )

#p r e d i c t i o n code f o r model

oute r s<−c ( )

i n n e r s<−c ( )

ang le <− c ( )

TA. pred . f i t <− c ( )

TA. pred . lwr <− c ( )

TA. pred . upr <− c ( )

ang le . pred . f i t <− c ( )

ang le . pred . lwr <− c ( )

ang le . pred . upr <− c ( )

for ( j j in 45 : 90 ) {
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ang le [ j j ] <− j j

CD <− c ( j j )

TA. pred = predict (hemo , data . frame ( Calcu lated Degrees=CD) , i n t e r v a l

↪→ = ” con f idence ” )

ang le . pred = predict (hemo , data . frame ( Calcu lated Degrees=CD) ,

↪→ i n t e r v a l = ” p r e d i c t i o n ” )

TA. pred . f i t [ j j ] <− ang le . pred [ 1 ]

TA. pred . lwr [ j j ] <− ang le . pred [ 2 ]

TA. pred . upr [ j j ] <− ang le . pred [ 3 ]

ang le . pred . f i t [ j j ] <− TA. pred [ 1 ]

ang le . pred . lwr [ j j ] <− TA. pred [ 2 ]

ang le . pred . upr [ j j ] <− TA. pred [ 3 ]

i n n e r s <−cbind ( ang le [ j j ] , TA. pred . f i t [ j j ] , TA. pred . lwr [ j j ] , TA.

↪→ pred . upr [ j j ] ,

ang le . pred . f i t [ j j ] , ang le . pred . lwr [ j j ] , ang le . pred .

↪→ upr [ j j ] )

ou t e r s<−rbind ( outers , i n n e r s )

}

oute r s<− data . frame ( oute r s )

write . csv ( outers , f i l e = ”Combined Outers . csv ” ,row .names=FALSE)

outer . c o l s <−c ( ”Angle” , ”Pred . f i t ” , ”Pred . lower ” , ”Pred . upper” , ”CI .

↪→ f i t ” , ”CI . lower ” , ”CI . upper” )

colnames ( oute r s )<−outer . c o l s

old . output <− output

output <− oute r s

ymin<−min( output$Angle )

ymax<−max( output$Angle )

mypath <− f i l e . path ( ”C: /Users/ J e f f e r y s /Desktop/Thes i s J e f f e r y s /

↪→ Hemospat/LRN/” , paste ( ”Combined Pred i c t i on ” , ” . png” , sep = ””

↪→ ) )
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png ( f i l e = mypath , width = 1000 , he ight = 600)

#m y t i t l e = p a s t e (” P r e d i c t i o n Values f o r Combined Hemospat Data ”)

plot ( output$Angle , output$CI . f i t , type=” l ” , yl im=c ( ymin , ymax) ,

↪→ xlab=”Measured Angle” , ylab=”True Angle” , main=” Pred i c t i on

↪→ Values Resu l t ing from Measured Values f o r Combined Lead

↪→ Round Nose Hemospat Data with Conf idence I n t e r v a l s ” )

l ines ( output$Angle , output$CI . upper , l t y =2, col=” blue ” )

l ines ( output$Angle , output$CI . lower , l t y =2, col=” blue ” )

#f o r ( i in 1 : l e n g t h ( output$Angle ) ){
# x . temp <− c ( output$Angle [ i ] , output$Angle [ i ] )

# y . temp <− c ( output$CI . lower [ i ] , output$CI . upper [ i ] )

# l i n e s ( x . temp , y . temp )

#}
l ines ( output$Angle , output$Pred . upper , l t y =2, col=” red ” )

l ines ( output$Angle , output$Pred . lower , l t y =2, col=” red ” )

#f o r ( i in 1 : l e n g t h ( output$Angle ) ){
# x . temp <− c ( output$Angle [ i ] , output$Angle [ i ] )

# y . temp <− c ( output$Pred . lower [ i ] , output$Pred . upper [ i ] )

# l i n e s ( x . temp , y . temp )

#}
abline ( v=45, col=” grey ” )

abline ( v=50, col=” grey ” )

abline ( v=60, col=” grey ” )

abline ( v=75, col=” grey ” )

abline ( v=90, col=” grey ” )

dev . of f ( )

#output <− o l d . output

#s t a r t o f methods loop

method type <− as . character (unique ( linmod$Method ) )

########################################Methods

#a d j u s t method be ing used here

i <− ” Outside ”

#f o r ( i in method type ){
l inmodsub <− subset ( linmod , linmod$Method == as . character ( i ) )
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hemo1 <− lm( True Angle ˜ Calcu lated Degrees , data = linmodsub )

summary(hemo1)

normrsq<− c ( )

g rad i en t s1 <− c ( )

i n t e r c e p t s 1 <− c ( )

ad j r sq <− c ( )

pva lue in t <− c ( )

pvaluevar <− c ( )

s t e r r o r i n t <− c ( )

s t e r r o r v a r <− c ( )

g rad i en t s1 [ i ] <− as . numeric (hemo1$coef f ic ients [ 2 ] )

i n t e r c e p t s 1 [ i ] <− as . numeric (hemo1$coef f ic ients [ 1 ] )

normrsq [ i ] <− summary(hemo1)$ r . squared

ad j r sq [ i ] <− summary(hemo1)$adj . r . squared

pva lue in t [ i ] <− summary(hemo1)$coef f ic ients [ 1 , 4 ]

pvaluevar [ i ] <− summary(hemo1)$coef f ic ients [ 2 , 4 ]

s t e r r o r i n t [ i ] <− summary(hemo1)$coef f ic ients [ 1 , 2 ]

s t e r r o r v a r [ i ] <− summary(hemo1)$coef f ic ients [ 2 , 2 ]

t v a l u e i n t [ i ] <− summary(hemo1)$coef f ic ients [ 1 , 3 ]

tva luevar [ i ] <− summary(hemo1)$coef f ic ients [ 2 , 3 ]

output . df1 <−cbind ( i n t e r c e p t s 1 [ i ] , s t e r r o r i n t [ i ] , t v a l u e i n t [ i ] ,

↪→ pva lue in t [ i ] , normrsq [ i ] )

output . df2 <− cbind ( g rad i en t s1 [ i ] , s t e r r o r v a r [ i ] , tva luevar [ i ] ,

↪→ pvaluevar [ i ] , ad j r sq [ i ] )

f i n a l o u t p u t 2 <− rbind ( output . df1 , output . df2 )

write . csv ( f i na l output2 , f i l e = paste ( as . character ( i ) , ” Data Model

↪→ . csv ” ) ,row .names=FALSE)

#r e s i d u a l s p l o t s

r e s = residuals (hemo1)

pred = f i tted (hemo1)
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mypath <− f i l e . path ( ”C: /Users/ J e f f e r y s /Desktop/Thes i s J e f f e r y s /

↪→ Hemospat/LRN” , paste ( ” Res idua l s f o r ” , as . character ( i ) , ” .

↪→ png” , sep = ”” ) )

png ( f i l e = mypath , width = 1000 , he ight = 600)

myt i t l e = paste ( ” Res idua l s ve r sus F i t t ed Values f o r Method” , as .

↪→ character ( i ) , ”Using Lead Round Nose B u l l e t s ” )

plot ( pred , res , x lab = ” Fi t t ed Value” , ylab= ” Res idua l s ” , main =

↪→ myt i t l e )

abline (h=0, l t y =2)

dev . of f ( )

r e s = sort ( residuals (hemo1) )

n = length ( r e s )

z = qnorm( ppoints (n) )

mypath <− f i l e . path ( ”C: /Users/ J e f f e r y s /Desktop/Thes i s J e f f e r y s /

↪→ Hemospat/LRN” , paste ( ”Normal QQ Plot ” , as . character ( i ) , ” .

↪→ png” , sep = ”” ) )

png ( f i l e = mypath , width = 1000 , he ight = 600)

myt i t l e = paste ( ”Normal Q−Q Plot f o r Method” , as . character ( i ) , ”

↪→ Using Lead Round Nose B u l l e t s ” )

plot ( z , res , x lab=” Theo r e t i c a l Quant i l e s ” , ylab=”Sample Quant i l e s ” ,

↪→ main = myt i t l e )

abline (lm( r e s ˜z ) )

dev . of f ( )

r e s = residuals (hemo1)

mx = mean( r e s )

##Note the r e s i d u a l s tandard error

#not the s imple SD of the r e s i d u a l s

#i s the e s t i m a t e o f the SD of the r e s i d u a l s

#r e s i d u a l SE i s the b e s t e s t i m a t e f o r sigma ( e s t i m a t i n g SD of

↪→ r e s i d u a l s )

sx = summary(hemo1)$sigma

mypath <− f i l e . path ( ”C: /Users/ J e f f e r y s /Desktop/Thes i s J e f f e r y s /

↪→ Hemospat/LRN” , paste ( ”Histogram f o r ” , as . character ( i ) , ” .

↪→ png” , sep = ”” ) )
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png ( f i l e = mypath , width = 1000 , he ight = 600)

myt i t l e = paste ( ”Histogram f o r Method” , as . character ( i ) , ”Using

↪→ Lead Round Nose B u l l e t s ” )

hist ( res , prob=TRUE, xlab=” Res idua l s ” , main =myt i t l e , yl im=c

↪→ ( 0 , 0 . 0 4 ) )

x = seq (min( r e s )−0.5*sx , max( r e s ) +0.5*sx , length=200)

y = dnorm(x , mx, sx )

l ines (x , y , l t y =2)

box ( )

dev . of f ( )

mypath <− f i l e . path ( ”C: /Users/ J e f f e r y s /Desktop/Thes i s J e f f e r y s /

↪→ Hemospat/LRN” , paste ( ” Linear Model o f ” , as . character ( i ) , ” .

↪→ png” , sep = ”” ) )

png ( f i l e = mypath , width = 1000 , he ight = 600)

myt i t l e = paste ( ” Linear Model o f Method” , as . character ( i ) , ”

↪→ Using Lead Round Nose B u l l e t s with Pred i c t i on and

↪→ Confidence I n t e r v a l s ” )

plot ( True Angle ˜ Calcu lated Degrees , data = linmodsub , xlim=c

↪→ (30 ,90) , main=myti t l e , x lab=”Measured Angle” , ylab=”True

↪→ Angle” )

new . Ca lcu lated Degrees = seq (min( linmodsub$Calcu lated Degrees ) ,

↪→ max( linmodsub$Calcu lated Degrees ) , length = 90)

True Angle . pred . c i = predict (hemo1 , data . frame ( Calcu lated Degrees

↪→ =new . Ca lcu lated Degrees ) , i n t e r v a l = ” con f idence ” )

True Angle . pred . pred = predict (hemo1 , data . frame ( Calcu lated

↪→ Degrees = new . Ca lcu lated Degrees ) , i n t e r v a l = ” p r e d i c t i o n ” )

l ines (new . Ca lcu lated Degrees , True Angle . pred . c i [ , 1 ] )

l ines (new . Ca lcu lated Degrees , True Angle . pred . c i [ , 2 ] , l t y = 2 ,

↪→ col = ” blue ” )

l ines ( new . Ca lcu lated Degrees , True Angle . pred . c i [ , 3 ] , l t y =

↪→ 2 , col = ” blue ” )

l ines ( new . Ca lcu lated Degrees , True Angle . pred . pred [ , 2 ] , l t y =

↪→ 2 , col = ” red ” )

l ines ( new . Ca lcu lated Degrees , True Angle . pred . pred [ , 3 ] , l t y =

↪→ 2 , col = ” red ” )

238



t e s t v a l <− c (45 ,75 ,90 )

l . colors <− c ( ” green ” , ” orange ” , ” darkgrey ” )

for ( i in 1 : length ( t e s t v a l ) ){
abline ( v=t e s t v a l [ i ] , col=l . colors [ i ] )

new . Ca lcu lated Degrees <− c ( t e s t v a l [ i ] )

xmax1 <− predict (hemo1 , data . frame ( Calcu lated Degrees =new .

↪→ Calcu lated Degrees ) , i n t e r v a l=” p r e d i c t i o n ” )

xg1 <− c (0 , t e s t v a l [ i ] )

yg1 <− c (xmax1 [ , 3 ] , xmax1 [ , 3 ] )

l ines ( xg1 , yg1 , l t y =2,col=l . colors [ i ] )

xg2 <− c (0 , t e s t v a l [ i ] )

yg2 <− c (xmax1 [ , 2 ] , xmax1 [ , 2 ] )

l ines ( xg2 , yg2 , l t y =2,col=l . colors [ i ] )

xg3 <− c (0 , t e s t v a l [ i ] )

yg3 <− c (xmax1 [ , 1 ] , xmax1 [ , 1 ] )

l ines ( xg3 , yg3 , l t y =1,col=l . colors [ i ] )

xmax2 <− predict (hemo1 , data . frame ( Calcu lated Degrees =new .

↪→ Calcu lated Degrees ) , i n t e r v a l=” con f idence ” )

xg4 <− c (0 , t e s t v a l [ i ] )

yg4 <− c (xmax2 [ , 2 ] , xmax2 [ , 2 ] )

l ines ( xg4 , yg4 , l t y =3,col=l . colors [ i ] )

xg5 <− c (0 , t e s t v a l [ i ] )

yg5 <− c (xmax2 [ , 3 ] , xmax2 [ , 3 ] )

l ines ( xg5 , yg5 , l t y =3,col=l . colors [ i ] )

}
dev . of f ( )

#a d j u s t what i i s based on method be ing used

i <− ” Outside ”

oute r s<−c ( )

i n n e r s<−c ( )

ang le <− c ( )

TA. pred . f i t <− c ( )
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TA. pred . lwr <− c ( )

TA. pred . upr <− c ( )

ang le . pred . f i t <− c ( )

ang le . pred . lwr <− c ( )

ang le . pred . upr <− c ( )

for ( j j in 45 : 90 ) {

ang le [ j j ] <− j j

CD <− c ( j j )

TA. pred = predict (hemo1 , data . frame ( Calcu lated Degrees=CD) ,

↪→ i n t e r v a l = ” con f idence ” )

ang le . pred = predict (hemo1 , data . frame ( Calcu lated Degrees=CD) ,

↪→ i n t e r v a l = ” p r e d i c t i o n ” )

TA. pred . f i t [ j j ] <− ang le . pred [ 1 ]

TA. pred . lwr [ j j ] <− ang le . pred [ 2 ]

TA. pred . upr [ j j ] <− ang le . pred [ 3 ]

ang le . pred . f i t [ j j ] <− TA. pred [ 1 ]

ang le . pred . lwr [ j j ] <− TA. pred [ 2 ]

ang le . pred . upr [ j j ] <− TA. pred [ 3 ]

i n n e r s <−cbind ( ang le [ j j ] , TA. pred . f i t [ j j ] , TA. pred . lwr [ j j ] , TA

↪→ . pred . upr [ j j ] ,

ang le . pred . f i t [ j j ] , ang le . pred . lwr [ j j ] , ang le .

↪→ pred . upr [ j j ] )

ou te r s<−rbind ( outers , i n n e r s )

}

oute r s<− data . frame ( oute r s )

write . csv ( outers , f i l e = paste ( as . character ( i ) , ” Outers . csv ” ) ,row

↪→ .names=FALSE)

outer . c o l s <−c ( ”Angle” , ”Pred . f i t ” , ”Pred . lower ” , ”Pred . upper” , ”CI .

↪→ f i t ” , ”CI . lower ” , ”CI . upper” )

colnames ( oute r s )<−outer . c o l s

old . output <− output
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output <− oute r s

ymin<−min( output$Angle )

ymax<−max( output$Angle )

mypath <− f i l e . path ( ”C: /Users/ J e f f e r y s /Desktop/Thes i s J e f f e r y s /

↪→ Hemospat/LRN” , paste ( ” Fina l Model o f ” , as . character ( i ) , ” .

↪→ png” , sep = ”” ) )

png ( f i l e = mypath , width = 1000 , he ight = 600)

myt i t l e = paste ( ” Pred i c t i on Values Resu l t ing from Measured

↪→ Values f o r Method” , as . character ( i ) , ”Using Lead Round Nose

↪→ B u l l e t s with Conf idence I n t e r v a l s ” )

plot ( output$Angle , output$CI . f i t , type=” l ” , xlim=c (45 ,90) , yl im=c

↪→ ( ymin , ymax) , xlab=”Measured Angle” , ylab=”True Angle” ,

↪→ main=myt i t l e )

l ines ( output$Angle , output$CI . upper , l t y =2, col=” blue ” )

l ines ( output$Angle , output$CI . lower , l t y =2, col=” blue ” )

#f o r ( i in 1 : l e n g t h ( output$Angle ) ){
# x . temp <− c ( output$Angle [ i ] , output$Angle [ i ] )

# y . temp <− c ( output$CI . lower [ i ] , output$CI . upper [ i ] )

# l i n e s ( x . temp , y . temp )

#}
l ines ( output$Angle , output$Pred . upper , l t y =2, col=” red ” )

l ines ( output$Angle , output$Pred . lower , l t y =2, col=” red ” )

#f o r ( i in 1 : l e n g t h ( output$Angle ) ){
# x . temp <− c ( output$Angle [ i ] , output$Angle [ i ] )

# y . temp <− c ( output$Pred . lower [ i ] , output$Pred . upper [ i ] )

# l i n e s ( x . temp , y . temp )

#}
abline ( v=45, col=” grey ” )

abline ( v=50, col=” grey ” )

abline ( v=60, col=” grey ” )

abline ( v=75, col=” grey ” )

abline ( v=90, col=” grey ” )

dev . of f ( )

# #output <− o l d . output
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#

# w r i t e . csv ( output f i n a l , f i l e = p a s t e ( s u b s t r ( l inmodsub$Method [ i

↪→ ] , 1 , 2 ) ,” Data Methods . csv ”) , row . names=FALSE)

#}
###end s c r i p t f o r LRN Hemospat

8.2 Script for side view bullet deformation

File preparation

###beg in s e t up f i l e code f o r b u l l e t deformation

getwd ( )

setwd ( ”C: /Users/ J e f f e r y s /Desktop/Thes i s J e f f e r y s /Bul l e t Angle

↪→ Photos/LRN/90 Degrees/Resu l t s ” )

path = ”C: /Users/ J e f f e r y s /Desktop/Thes i s J e f f e r y s /Bul l e t Angle

↪→ Photos/LRN/90 Degrees/Resu l t s ”

f i l e .names <− dir (path , pat tern =” . csv ” )

for ( i in 1 : length ( f i l e .names) ){
Angle <− read . table ( f i l e .names [ i ] , header=TRUE, sep=” , ” ,

↪→ s t r i ng sAsFac to r s=FALSE)

t rueang l e1 <− 90 #a d j u s t

yprime <− 2500−Angle$Y

dataname <− substr ( f i l e .names [ i ] , 9 , 1 0 )

method <− substr ( f i l e .names [ i ] , 1 2 , 1 3 )

points <− substr ( f i l e .names [ i ] , 1 5 , 1 6 )

newAngle <− cbind ( dataname , Angle , yprime )

y int1 <− min( newAngle$X)

y int2 <− max( newAngle$X)

yprimemax <− max( newAngle$yprime )
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l i n e a r <− lm( formula = newAngle$yprime ˜ newAngle$X, data =

↪→ newAngle )

l i n e a r $coef f ic ients

grad i en t <− as . numeric ( l i n e a r $coef f ic ients [ 2 ] )

i n t e r c e p t <− as . numeric ( l i n e a r $coef f ic ients [ 1 ] )

r squared <− summary( l i n e a r )$ r . squared

mypath <− f i l e . path ( ”C: /Users/ J e f f e r y s /Desktop/Thes i s J e f f e r y s /

↪→ Bul l e t Angle Photos/LRN/90 Degrees/Resu l t s/Graphs” , paste ( ”

↪→ Graph o f ” , substr ( f i l e .names [ i ] , 1 , 1 6 ) , ” . png” , sep = ”” ) )

png ( f i l e = mypath , width = 1000 , he ight = 600)

myt i t l e = paste ( ” Linear Model o f ” , substr ( f i l e .names [ i ] , 1 , 1 6 ) )

plot ( newAngle$X, newAngle$yprime , main = myti t l e , y lab =”Y−
↪→ Coordinates ” , xlab = ”X−Coordinates ” )

abline ( coef = c ( i n t e r c ep t , g rad i en t ) )

dev . of f ( )

t h e o r e t i c a l r a d <− atan ( g rad i en t )

rad2deg <− function ( rad ) {( rad * 180) / ( p i )}
t h e o r e t i c a l d e g 3 <− rad2deg ( t h e o r e t i c a l r a d )

theodeg <− 90− t h e o r e t i c a l d e g 3#a d j u s t based on s l o p e

e r r o r <− abs ( ( ( t rueang le1−theodeg )/ t rueang l e1 )*100)

output <− cbind ( dataname , method , points , g rad ient , i n t e r c ep t ,

↪→ rsquared , t rueang le1 , t h e o r e t i c a l d e g 3 , theodeg , e r r o r )

colnames ( output ) <− c ( ”Data Name” , ”Method” , ” Points ” , ” Gradient ” , ”

↪→ Y−I n t e r c e p t ” , ”R−Squared Value” , ”True Angle” , ” Theo r e t i c a l

↪→ Degrees ” , ” Calcu lated Degrees ” , ” Percent Error ” )

setwd ( ”C: /Users/ J e f f e r y s /Desktop/Thes i s J e f f e r y s /Bul l e t Angle

↪→ Photos/LRN/90 Degrees/Resu l t s/Data F i l e s ” )

write . csv ( output , f i l e = paste ( substr ( f i l e .names [ i ] , 1 , 1 6 ) , ” Data .

↪→ csv ” ) ,row .names=FALSE)

setwd ( ”C: /Users/ J e f f e r y s /Desktop/Thes i s J e f f e r y s /Bul l e t Angle

↪→ Photos/LRN/90 Degrees/Resu l t s/” )
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}
setwd ( ”C: /Users/ J e f f e r y s /Desktop/Thes i s J e f f e r y s /Bul l e t Angle

↪→ Photos/LRN/90 Degrees/Resu l t s/Data F i l e s ” )

f i l eNames <− Sys . g lob ( ”* . csv ” )

t a b l e s <− lapply ( f i leNames , read . csv , header = TRUE)

combined . df <− do . ca l l ( rbind , t a b l e s )

write . csv ( combined . df , ”C: /Users/ J e f f e r y s /Desktop/Thes i s J e f f e r y s /

↪→ Bul l e t Angle Photos/LRN/90 Degrees/Resu l t s/Combined Data 90

↪→ 2 . csv ” )#a d j u s t

###end s c r i p t f o r f i l e s e t up b u l l e t de formation

FMJ bullets

#####################beg inn ing o f b u l l e t ang l e main combination

↪→ s c r i p t

setwd ( ”C: /Users/ J e f f e r y s /Desktop/Thes i s J e f f e r y s /Bul l e t Angle

↪→ Photos/FMJ/New” )

dat1 <− read . csv ( ”Combined Data 90 . csv ” )

dat2 <− read . csv ( ”Combined Data 75 . csv ” )

dat3 <− read . csv ( ”Combined Data 60 . csv ” )

dat4 <− read . csv ( ”Combined Data 50 . csv ” )

dat5 <− read . csv ( ”Combined Data 45 . csv ” )

complete . dat <− rbind ( dat1 , dat2 , dat3 , dat4 , dat5 )

complete . dat <− complete . dat [ order (complete . dat [ , 8 ] ) , ]

write . csv (complete . dat , f i l e=”Combined Data Al l . csv ” )

#####beg in l i n e a r model

l inmod <− read . table ( ”Combined Data Al l . csv ” , header=TRUE, sep=” , ” ,

↪→ s t r i ng sAsFac to r s=FALSE)

b u l l e t <− lm( True Angle ˜ Calcu lated Degrees , data = linmod )

#b u l l e t <− lm ( linmod$C a l c u l a t e d Degrees ˜ l inmod$True Angle , data

↪→ = linmod )

summary( b u l l e t )
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# range <− range ( linmod$C a l c u l a t e d Degrees )

# xrange <−seq ( 2 8 . 8 , 9 0 . 8 , 0 . 1 )

normrsq<− c ( )

g rad i en t s1 <− c ( )

i n t e r c e p t s 1 <− c ( )

ad j r sq <− c ( )

pva lue in t <− c ( )

pvaluevar <− c ( )

s t e r r o r i n t <− c ( )

s t e r r o r v a r <− c ( )

g rad i en t s1 <− as . numeric ( b u l l e t$coef f ic ients [ 2 ] )

i n t e r c e p t s 1 <− as . numeric ( b u l l e t$coef f ic ients [ 1 ] )

normrsq <− summary( b u l l e t )$ r . squared

ad j r sq <− summary( b u l l e t )$adj . r . squared

pva lue in t <− summary( b u l l e t )$coef f ic ients [ 1 , 4 ]

pvaluevar <− summary( b u l l e t )$coef f ic ients [ 2 , 4 ]

s t e r r o r i n t <− summary( b u l l e t )$coef f ic ients [ 1 , 2 ]

s t e r r o r v a r <− summary( b u l l e t )$coef f ic ients [ 2 , 2 ]

t v a l u e i n t <− summary( b u l l e t )$coef f ic ients [ 1 , 3 ]

tva luevar <− summary( b u l l e t )$coef f ic ients [ 2 , 3 ]

output . df1 <−cbind ( i n t e r c e p t s 1 , s t e r r o r i n t , t va lue in t , pva lue int ,

↪→ normrsq )

output . df2 <− cbind ( grad ients1 , s t e r r o r v a r , tva luevar , pvaluevar ,

↪→ ad j r sq )

f i n a l . output <− rbind ( output . df1 , output . df2 )

write . csv ( f i n a l . output , f i l e =”Combined Data Bul le tAngle Al l 2 . csv ”

↪→ ,row .names=FALSE)

#s t a t s

r e s = residuals ( b u l l e t )

pred = f i tted ( b u l l e t )
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png ( f i l e = ” Res idua l Combined Bul le tAngle . png” , width = 1000 ,

↪→ he ight = 600)

plot ( pred , res , x lab = ” Fi t t ed Value” , ylab= ” Res idua l s ” , main =”

↪→ Res idua l s ve r sus F i t t ed Values f o r Combined Ful l Metal

↪→ Jacket Bu l l e t Angle Data” )

abline (h=0, l t y =2)

#qqnorm ( res )

dev . of f ( )

r e s = sort ( residuals ( b u l l e t ) )

n = length ( r e s )

z = qnorm( ppoints (n) )

png ( f i l e = ”QQplot Combined Bul le tAngle . png” , width = 1000 , he ight

↪→ = 600)

plot ( z , res , x lab=” Theo r e t i c a l Quant i l e s ” , ylab=”Sample Quant i l e s ” ,

↪→ main=”Normal Q−Q Plot f o r Combined Ful l Metal Jacket Bu l l e t

↪→ Angle Data” )

abline (lm( r e s ˜z ) )

dev . of f ( )

r e s = residuals ( b u l l e t )

mx = mean( r e s )

##Note the r e s i d u a l s tandard error

#not the s imple SD of the r e s i d u a l s

#i s the e s t i m a t e o f the SD of the r e s i d u a l s

#r e s i d u a l SE i s the b e s t e s t i m a t e f o r sigma ( e s t i m a t i n g SD of

↪→ r e s i d u a l s )

sx = summary( b u l l e t )$sigma

png ( f i l e = ”Histogram Combined Bul le tAngle . png” , width = 1000 ,

↪→ he ight = 600)

hist ( res , prob=TRUE, xlab=” Res idua l s ” , main=”Histogram of Combined

↪→ Ful l Metal Jacket Bu l l e t Angle Data” , yl im=c ( 0 , 0 . 0 6 0 ) )

x = seq (min( r e s )−0.5*sx , max( r e s ) +0.5*sx , length=200)

y = dnorm(x , mx, sx )

l ines (x , y , l t y =2)

box ( )
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dev . of f ( )

##########################

png ( f i l e = ” Linear Model o f Combined LRN. png” , width = 1000 ,

↪→ he ight = 600)

plot ( True Angle ˜ Calcu lated Degrees , data = linmod , main=” Linear

↪→ Model o f Combined Ful l Metal Jacket Bu l l e t Angle Data with

↪→ Confidence and Pred i c t i on I n t e r v a l s ” , ylab=”True Angle” , xlab

↪→ =”Measured Angle” )

new . Ca lcu lated Degrees = seq (min( linmod$Calcu lated Degrees ) ,max(

↪→ l inmod$Calcu lated Degrees ) , length = 450)

True Angle . pred . c i = predict ( bu l l e t , data . frame ( Calcu lated Degrees

↪→ =new . Ca lcu lated Degrees ) , i n t e r v a l = ” con f idence ” )

True Angle . pred . pred = predict ( bu l l e t , data . frame ( Calcu lated

↪→ Degrees = new . Ca lcu lated Degrees ) , i n t e r v a l = ” p r e d i c t i o n ” )

l ines (new . Ca lcu lated Degrees , True Angle . pred . c i [ , 1 ] )

l ines (new . Ca lcu lated Degrees , True Angle . pred . c i [ , 2 ] , l t y = 2 ,

↪→ col = ” blue ” )

l ines ( new . Ca lcu lated Degrees , True Angle . pred . c i [ , 3 ] , l t y = 2 ,

↪→ col = ” blue ” )

l ines ( new . Ca lcu lated Degrees , True Angle . pred . pred [ , 2 ] , l t y = 2 ,

↪→ col = ” red ” )

l ines ( new . Ca lcu lated Degrees , True Angle . pred . pred [ , 3 ] , l t y =

↪→ 2 , col = ” red ” )

t e s t v a l <− c (55 ,75 ,90 )

l . colors <− c ( ” green ” , ” orange ” , ” darkgrey ” )

for ( i in 1 : length ( t e s t v a l ) ){
abline ( v=t e s t v a l [ i ] , col=l . colors [ i ] )

new . Ca lcu lated Degrees <− c ( t e s t v a l [ i ] )

xmax1 <− predict ( bu l l e t , data . frame ( Calcu lated Degrees =new .

↪→ Calcu lated Degrees ) , i n t e r v a l=” p r e d i c t i o n ” )

xg1 <− c (0 , t e s t v a l [ i ] )

yg1 <− c (xmax1 [ , 3 ] , xmax1 [ , 3 ] )

l ines ( xg1 , yg1 , l t y =2,col=l . colors [ i ] )
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xg2 <− c (0 , t e s t v a l [ i ] )

yg2 <− c (xmax1 [ , 2 ] , xmax1 [ , 2 ] )

l ines ( xg2 , yg2 , l t y =2,col=l . colors [ i ] )

xg3 <− c (0 , t e s t v a l [ i ] )

yg3 <− c (xmax1 [ , 1 ] , xmax1 [ , 1 ] )

l ines ( xg3 , yg3 , l t y =1,col=l . colors [ i ] )

xmax2 <− predict ( bu l l e t , data . frame ( Calcu lated Degrees =new .

↪→ Calcu lated Degrees ) , i n t e r v a l=” con f idence ” )

xg4 <− c (0 , t e s t v a l [ i ] )

yg4 <− c (xmax2 [ , 2 ] , xmax2 [ , 2 ] )

l ines ( xg4 , yg4 , l t y =3,col=l . colors [ i ] )

xg5 <− c (0 , t e s t v a l [ i ] )

yg5 <− c (xmax2 [ , 3 ] , xmax2 [ , 3 ] )

l ines ( xg5 , yg5 , l t y =3,col=l . colors [ i ] )

}
dev . of f ( )

###p r e d i c t i o n i n t e r v a l s

#p r e d i c t i o n code f o r model

oute r s<−c ( )

i n n e r s<−c ( )

ang le <− c ( )

TA. pred . f i t <− c ( )

TA. pred . lwr <− c ( )

TA. pred . upr <− c ( )

ang le . pred . f i t <− c ( )

ang le . pred . lwr <− c ( )

ang le . pred . upr <− c ( )

for ( j j in 45 : 90 ) {

ang le [ j j ] <− j j

CD <− c ( j j )

TA. pred = predict ( bu l l e t , data . frame ( Calcu lated Degrees=CD) ,

↪→ i n t e r v a l = ” con f idence ” )
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ang le . pred = predict ( bu l l e t , data . frame ( Calcu lated Degrees=CD) ,

↪→ i n t e r v a l = ” p r e d i c t i o n ” )

TA. pred . f i t [ j j ] <− ang le . pred [ 1 ]

TA. pred . lwr [ j j ] <− ang le . pred [ 2 ]

TA. pred . upr [ j j ] <− ang le . pred [ 3 ]

ang le . pred . f i t [ j j ] <− TA. pred [ 1 ]

ang le . pred . lwr [ j j ] <− TA. pred [ 2 ]

ang le . pred . upr [ j j ] <− TA. pred [ 3 ]

i n n e r s <−cbind ( ang le [ j j ] , TA. pred . f i t [ j j ] , TA. pred . lwr [ j j ] , TA.

↪→ pred . upr [ j j ] ,

ang le . pred . f i t [ j j ] , ang le . pred . lwr [ j j ] , ang le . pred

↪→ . upr [ j j ] )

ou te r s<−rbind ( outers , i n n e r s )

}

oute r s<− data . frame ( oute r s )

write . csv ( outers , f i l e = ”Combined Bul le tAngle Outers . csv ” ,row .

↪→ names=FALSE)

outer . c o l s <−c ( ”Angle” , ”Pred . f i t ” , ”Pred . lower ” , ”Pred . upper” , ”CI .

↪→ f i t ” , ”CI . lower ” , ”CI . upper” )

colnames ( oute r s )<−outer . c o l s

old . output <− output

output <− oute r s

ymin<−min( output$Angle )

ymax<−max( output$Angle )

mypath <− f i l e . path ( ”C: /Users/ J e f f e r y s /Desktop/Thes i s J e f f e r y s /

↪→ Bul l e t Angle Photos/FMJ/New/” , paste ( ”Combined Bul le tAngle

↪→ Pred i c t i on ” , ” . png” , sep = ”” ) )

png ( f i l e = mypath , width = 1000 , he ight = 600)

#m y t i t l e = p a s t e (” P r e d i c t i o n Values f o r Combined b u l l e t s p a t Data ”)

plot ( output$Angle , output$CI . f i t , type=” l ” , ylim=c (30 ,105) , xl im=c

↪→ ( ymin , ymax) , ylab=”True Angle” , xlab=”Measured Angle” , main=
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↪→ ” Pred i c t i on Values Resu l t ing from Measured Values f o r

↪→ Combined Ful l Metal Jacket Bu l l e t Angle Data with Conf idence

↪→ I n t e r v a l s ” )

l ines ( output$Angle , output$CI . upper , l t y =2, col=” blue ” )

l ines ( output$Angle , output$CI . lower , l t y =2, col=” blue ” )

#f o r ( i in 1 : l e n g t h ( output$Angle ) ){
# x . temp <− c ( output$Angle [ i ] , output$Angle [ i ] )

# y . temp <− c ( output$CI . lower [ i ] , output$CI . upper [ i ] )

# l i n e s ( x . temp , y . temp )

#}
l ines ( output$Angle , output$Pred . upper , l t y =2, col=” red ” )

l ines ( output$Angle , output$Pred . lower , l t y =2, col=” red ” )

#f o r ( i in 1 : l e n g t h ( output$Angle ) ){
# x . temp <− c ( output$Angle [ i ] , output$Angle [ i ] )

# y . temp <− c ( output$Pred . lower [ i ] , output$Pred . upper [ i ] )

# l i n e s ( x . temp , y . temp )

#}
abline ( v=45, col=” grey ” )

abline ( v=50, col=” grey ” )

abline ( v=60, col=” grey ” )

abline ( v=75, col=” grey ” )

abline ( v=90, col=” grey ” )

dev . of f ( )

######################################################

#s t a r t o f methods loop

method type <− as . character (unique ( linmod$Method ) )

#Methods

i <− ”VV”

#f o r ( i in method type ){
l inmodsub <− subset ( linmod , linmod$Method == as . character ( i ) )

b u l l e t 1 <− lm( True Angle ˜ Calcu lated Degrees , data = linmodsub )

summary( b u l l e t 1 )
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normrsq<− c ( )

g rad i en t s1 <− c ( )

i n t e r c e p t s 1 <− c ( )

ad j r sq <− c ( )

pva lue in t <− c ( )

pvaluevar <− c ( )

s t e r r o r i n t <− c ( )

s t e r r o r v a r <− c ( )

t v a l u e i n t <− c ( )

tva luevar <− c ( )

g rad i en t s1 [ i ] <− as . numeric ( b u l l e t 1$coef f ic ients [ 2 ] )

i n t e r c e p t s 1 [ i ] <− as . numeric ( b u l l e t 1$coef f ic ients [ 1 ] )

normrsq [ i ] <− summary( b u l l e t 1 )$ r . squared

ad j r sq [ i ] <− summary( b u l l e t 1 )$adj . r . squared

pva lue in t [ i ] <− summary( b u l l e t 1 )$coef f ic ients [ 1 , 4 ]

pvaluevar [ i ] <− summary( b u l l e t 1 )$coef f ic ients [ 2 , 4 ]

s t e r r o r i n t [ i ] <− summary( b u l l e t 1 )$coef f ic ients [ 1 , 2 ]

s t e r r o r v a r [ i ] <− summary( b u l l e t 1 )$coef f ic ients [ 2 , 2 ]

t v a l u e i n t [ i ] <− summary( b u l l e t 1 )$coef f ic ients [ 1 , 3 ]

tva luevar [ i ] <− summary( b u l l e t 1 )$coef f ic ients [ 2 , 3 ]

output . df1 <−cbind ( i n t e r c e p t s 1 [ i ] , s t e r r o r i n t [ i ] , t v a l u e i n t [ i ] ,

↪→ pva lue in t [ i ] , normrsq [ i ] )

output . df2 <− cbind ( g rad i en t s1 [ i ] , s t e r r o r v a r [ i ] , tva luevar [ i ] ,

↪→ pvaluevar [ i ] , ad j r sq [ i ] )

f i n a l o u t p u t 2 <− rbind ( output . df1 , output . df2 )

write . csv ( f i na l output2 , f i l e = paste ( as . character ( i ) , ” Data Model

↪→ . csv ” ) ,row .names=FALSE)

# p l o t ( l inmodsub$C a l c u l a t e d Degrees , l inmodsub$True Angle , main =

↪→ m y t i t l e , y l a b =”C a l c u l a t e d Angle ” , x l a b = ”True Angle ”)

# a b l i n e ( c o e f = c ( i n t e r c e p t s [ i ] , g r a d i e n t s [ i ] ) )

# a b l i n e ( c o e f = c (0 ,1) )
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# dev . o f f ( )

################r e s i d u a l s p l o t s

r e s = residuals ( b u l l e t 1 )

pred = f i tted ( b u l l e t 1 )

mypath <− f i l e . path ( ”C: /Users/ J e f f e r y s /Desktop/Thes i s J e f f e r y s /

↪→ Bul l e t Angle Photos/FMJ/New/” , paste ( ” Res idua l s f o r ” , as .

↪→ character ( i ) , ” . png” , sep = ”” ) )

png ( f i l e = mypath , width = 1000 , he ight = 600)

myt i t l e = paste ( ” Res idua l s ve r sus F i t t ed Values f o r Method” , as .

↪→ character ( i ) , ”Using Fu l l Metal Jacket B u l l e t s ” )

plot ( pred , res , x lab = ” Fi t t ed Value” , ylab= ” Res idua l s ” , main=

↪→ myt i t l e )

abline (h=0, l t y =2)

dev . of f ( )

# ###############################QQplot

r e s = sort ( residuals ( b u l l e t 1 ) )

n = length ( r e s )

z = qnorm( ppoints (n) )

mypath <− f i l e . path ( ”C: /Users/ J e f f e r y s /Desktop/Thes i s J e f f e r y s /

↪→ Bul l e t Angle Photos/FMJ/New/” , paste ( ”Normal QQ Plot ” , as .

↪→ character ( i ) , ” . png” , sep = ”” ) )

png ( f i l e = mypath , width = 1000 , he ight = 600)

myt i t l e = paste ( ”Normal Q−Q Plot f o r Method” , as . character ( i ) , ”

↪→ Using Fu l l Metal Jacket B u l l e t s ” )

plot ( z , res , x lab=” Theo r e t i c a l Quant i l e s ” , ylab=”Sample Quant i l e s ” ,

↪→ main=myt i t l e )

abline (lm( r e s ˜z ) )

dev . of f ( )

# #########################Histogram

r e s = residuals ( b u l l e t 1 )

mx = mean( r e s )

##Note the r e s i d u a l s tandard error

#not the s imple SD of the r e s i d u a l s
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#i s the e s t i m a t e o f the SD of the r e s i d u a l s

#r e s i d u a l SE i s the b e s t e s t i m a t e f o r sigma ( e s t i m a t i n g SD of

↪→ r e s i d u a l s )

sx = summary( b u l l e t 1 )$sigma

mypath <− f i l e . path ( ”C: /Users/ J e f f e r y s /Desktop/Thes i s J e f f e r y s /

↪→ Bul l e t Angle Photos/FMJ/New/” , paste ( ”Histogram f o r ” , as .

↪→ character ( i ) , ” . png” , sep = ”” ) )

png ( f i l e = mypath , width = 1000 , he ight = 600)

myt i t l e = paste ( ”Histogram f o r Method” , as . character ( i ) , ”Using

↪→ Ful l Metal Jacket B u l l e t s ” )

hist ( res , prob=TRUE, xlab=” Res idua l s ” , main=myt i t l e , yl im=c

↪→ ( 0 , 0 . 0 8 0 ) )

x = seq (min( r e s )−0.5*sx , max( r e s ) +0.5*sx , length=200)

y = dnorm(x , mx, sx )

l ines (x , y , l t y =2)

box ( )

dev . of f ( )

#####################Confidence P lo t

mypath <− f i l e . path ( ”C: /Users/ J e f f e r y s /Desktop/Thes i s J e f f e r y s /

↪→ Bul l e t Angle Photos/FMJ/New/” , paste ( ” Linear Model o f ” , as .

↪→ character ( i ) , ” . png” , sep = ”” ) )

png ( f i l e = mypath , width = 1000 , he ight = 600)

myt i t l e = paste ( ” Linear Model o f Method” , as . character ( i ) , ”

↪→ Using Fu l l Metal Jacket B u l l e t s with Pred i c t i on and

↪→ Confidence I n t e r v a l s ” )

plot ( True Angle ˜ Calcu lated Degrees , data = linmodsub , main=

↪→ mytit l e , y lab=”True Angle” , xlab=”Measured Angle” )

new . Ca lcu lated Degrees = seq (min( linmodsub$Calcu lated Degrees ) ,

↪→ max( linmodsub$Calcu lated Degrees ) , length = 90)

True Angle . pred . c i = predict ( bu l l e t1 , data . frame ( Calcu lated

↪→ Degrees =new . Ca lcu lated Degrees ) , i n t e r v a l = ” con f idence ” )

True Angle . pred . pred = predict ( bu l l e t1 , data . frame ( Calcu lated

↪→ Degrees = new . Ca lcu lated Degrees ) , i n t e r v a l = ” p r e d i c t i o n ” )

l ines (new . Ca lcu lated Degrees , True Angle . pred . c i [ , 1 ] )
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l ines (new . Ca lcu lated Degrees , True Angle . pred . c i [ , 2 ] , l t y = 2 ,

↪→ col = ” blue ” )

l ines ( new . Ca lcu lated Degrees , True Angle . pred . c i [ , 3 ] , l t y =

↪→ 2 , col = ” blue ” )

l ines ( new . Ca lcu lated Degrees , True Angle . pred . pred [ , 2 ] , l t y =

↪→ 2 , col = ” red ” )

l ines ( new . Ca lcu lated Degrees , True Angle . pred . pred [ , 3 ] , l t y =

↪→ 2 , col = ” red ” )

t e s t v a l <− c (60 ,75 ,90 )

l . colors <− c ( ” green ” , ” orange ” , ” darkgrey ” )

for ( i in 1 : length ( t e s t v a l ) ){
abline ( v=t e s t v a l [ i ] , col=l . colors [ i ] )

new . Ca lcu lated Degrees <− c ( t e s t v a l [ i ] )

xmax1 <− predict ( bu l l e t1 , data . frame ( Calcu lated Degrees =new .

↪→ Calcu lated Degrees ) , i n t e r v a l=” p r e d i c t i o n ” )

xg1 <− c (0 , t e s t v a l [ i ] )

yg1 <− c (xmax1 [ , 3 ] , xmax1 [ , 3 ] )

l ines ( xg1 , yg1 , l t y =2,col=l . colors [ i ] )

xg2 <− c (0 , t e s t v a l [ i ] )

yg2 <− c (xmax1 [ , 2 ] , xmax1 [ , 2 ] )

l ines ( xg2 , yg2 , l t y =2,col=l . colors [ i ] )

xg3 <− c (0 , t e s t v a l [ i ] )

yg3 <− c (xmax1 [ , 1 ] , xmax1 [ , 1 ] )

l ines ( xg3 , yg3 , l t y =1,col=l . colors [ i ] )

xmax2 <− predict ( bu l l e t1 , data . frame ( Calcu lated Degrees =new .

↪→ Calcu lated Degrees ) , i n t e r v a l=” con f idence ” )

xg4 <− c (0 , t e s t v a l [ i ] )

yg4 <− c (xmax2 [ , 2 ] , xmax2 [ , 2 ] )

l ines ( xg4 , yg4 , l t y =3,col=l . colors [ i ] )

xg5 <− c (0 , t e s t v a l [ i ] )

yg5 <− c (xmax2 [ , 3 ] , xmax2 [ , 3 ] )

l ines ( xg5 , yg5 , l t y =3,col=l . colors [ i ] )

}
dev . of f ( )
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###############################

#i needs changed to method be ing used

i <− ”VV”

####################p r e d i c t i o n

oute r s<−c ( )

i n n e r s<−c ( )

ang le <− c ( )

TA. pred . f i t <− c ( )

TA. pred . lwr <− c ( )

TA. pred . upr <− c ( )

ang le . pred . f i t <− c ( )

ang le . pred . lwr <− c ( )

ang le . pred . upr <− c ( )

for ( j j in 45 : 90 ) {

ang le [ j j ] <− j j

CD <− c ( j j )

TA. pred = predict ( bu l l e t1 , data . frame ( Calcu lated Degrees=CD) ,

↪→ i n t e r v a l = ” con f idence ” )

ang le . pred = predict ( bu l l e t1 , data . frame ( Calcu lated Degrees=CD

↪→ ) , i n t e r v a l = ” p r e d i c t i o n ” )

TA. pred . f i t [ j j ] <− ang le . pred [ 1 ]

TA. pred . lwr [ j j ] <− ang le . pred [ 2 ]

TA. pred . upr [ j j ] <− ang le . pred [ 3 ]

ang le . pred . f i t [ j j ] <− TA. pred [ 1 ]

ang le . pred . lwr [ j j ] <− TA. pred [ 2 ]

ang le . pred . upr [ j j ] <− TA. pred [ 3 ]

i n n e r s <−cbind ( ang le [ j j ] , TA. pred . f i t [ j j ] , TA. pred . lwr [ j j ] , TA

↪→ . pred . upr [ j j ] ,

ang le . pred . f i t [ j j ] , ang le . pred . lwr [ j j ] , ang le .

↪→ pred . upr [ j j ] )

ou te r s<−rbind ( outers , i n n e r s )
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}

oute r s<− data . frame ( oute r s )

write . csv ( outers , f i l e = paste ( as . character ( i ) , ” Outers . csv ” ) ,row

↪→ .names=FALSE)

outer . c o l s <−c ( ”Angle” , ”Pred . f i t ” , ”Pred . lower ” , ”Pred . upper” , ”CI .

↪→ f i t ” , ”CI . lower ” , ”CI . upper” )

colnames ( oute r s )<−outer . c o l s

old . output <− output

output <− oute r s

ymin<−min( output$Angle )

ymax<−max( output$Angle )

mypath <− f i l e . path ( ”C: /Users/ J e f f e r y s /Desktop/Thes i s J e f f e r y s /

↪→ Bul l e t Angle Photos/FMJ/New/” , paste ( ” Fina l Model o f ” , as .

↪→ character ( i ) , ” . png” , sep = ”” ) )

png ( f i l e = mypath , width = 1000 , he ight = 600)

myt i t l e = paste ( ” Pred i c t i on Values Resu l t ing from Measured

↪→ Values f o r Method” , as . character ( i ) , ”Using Fu l l Metal

↪→ Jacket B u l l e t s with Conf idence I n t e r v a l s ” )

plot ( output$Angle , output$CI . f i t , type=” l ” , yl im=c (30 ,105) , xl im=

↪→ c ( ymin , ymax) , ylab=”True Angle” , xlab=”Measured Angle” ,

↪→ main=myt i t l e )

l ines ( output$Angle , output$CI . upper , l t y =2, col=” blue ” )

l ines ( output$Angle , output$CI . lower , l t y =2, col=” blue ” )

#f o r ( i in 1 : l e n g t h ( output$Angle ) ){
# x . temp <− c ( output$Angle [ i ] , output$Angle [ i ] )

# y . temp <− c ( output$CI . lower [ i ] , output$CI . upper [ i ] )

# l i n e s ( x . temp , y . temp )

#}
l ines ( output$Angle , output$Pred . upper , l t y =2, col=” red ” )

l ines ( output$Angle , output$Pred . lower , l t y =2, col=” red ” )

#f o r ( i in 1 : l e n g t h ( output$Angle ) ){

256



# x . temp <− c ( output$Angle [ i ] , output$Angle [ i ] )

# y . temp <− c ( output$Pred . lower [ i ] , output$Pred . upper [ i ] )

# l i n e s ( x . temp , y . temp )

#}
abline ( v=45, col=” grey ” )

abline ( v=50, col=” grey ” )

abline ( v=60, col=” grey ” )

abline ( v=75, col=” grey ” )

abline ( v=90, col=” grey ” )

dev . of f ( )

#}
###############Beginning o f Points Models

↪→ ################################

#Points

point type2 <− as . character (unique ( linmod$Points ) )

i <− ”15”

#f o r ( i in p o i n t type2 ){
l inmodsub <− subset ( linmod , linmod$Points == as . character ( i ) )

b u l l e t 2 <− lm( True Angle ˜ Calcu lated Degrees , data = linmodsub )

normrsq<− c ( )

g rad i en t s1 <− c ( )

i n t e r c e p t s 1 <− c ( )

ad j r sq <− c ( )

pva lue in t <− c ( )

pvaluevar <− c ( )

s t e r r o r i n t <− c ( )

s t e r r o r v a r <− c ( )

g rad i en t s1 [ i ] <− as . numeric ( b u l l e t 2$coef f ic ients [ 2 ] )

i n t e r c e p t s 1 [ i ] <− as . numeric ( b u l l e t 2$coef f ic ients [ 1 ] )

normrsq [ i ] <− summary( b u l l e t 2 )$ r . squared

ad j r sq [ i ] <− summary( b u l l e t 2 )$adj . r . squared

pva lue in t [ i ] <− summary( b u l l e t 2 )$coef f ic ients [ 1 , 4 ]
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pvaluevar [ i ] <− summary( b u l l e t 2 )$coef f ic ients [ 2 , 4 ]

s t e r r o r i n t [ i ] <− summary( b u l l e t 2 )$coef f ic ients [ 1 , 2 ]

s t e r r o r v a r [ i ] <− summary( b u l l e t 2 )$coef f ic ients [ 2 , 2 ]

t v a l u e i n t [ i ] <− summary( b u l l e t 2 )$coef f ic ients [ 1 , 3 ]

tva luevar [ i ] <− summary( b u l l e t 2 )$coef f ic ients [ 2 , 3 ]

output . df1 <−cbind ( i n t e r c e p t s 1 [ i ] , s t e r r o r i n t [ i ] , t v a l u e i n t [ i ] ,

↪→ pva lue in t [ i ] , normrsq [ i ] )

output . df2 <− cbind ( g rad i en t s1 [ i ] , s t e r r o r v a r [ i ] , tva luevar [ i ] ,

↪→ pvaluevar [ i ] , ad j r sq [ i ] )

f i n a l o u t p u t 2 <− rbind ( output . df1 , output . df2 )

write . csv ( f i na l output2 , f i l e = paste ( as . character ( i ) , ” Data Model

↪→ . csv ” ) ,row .names=FALSE)

myt i t l e = paste ( ” Linear Model o f Combined Data Points ” , as .

↪→ character ( i ) )

plot ( linmodsub$Calcu lated Degrees , l inmodsub$True Angle , main =

↪→ mytit l e , y lab =” Calcu lated Angle” , xlab = ”True Angle” )

abline ( coef = c ( i n t e r c e p t s 2 [ i ] , g r ad i en t s2 [ i ] ) )

#r e s i d u a l s p l o t s

r e s = residuals ( b u l l e t 2 )

pred = f i tted ( b u l l e t 2 )

mypath <− f i l e . path ( ”C: /Users/ J e f f e r y s /Desktop/Thes i s J e f f e r y s /

↪→ Bul l e t Angle Photos/FMJ/New/” , paste ( ” Res idua l s f o r ” , as .

↪→ character ( i ) , ” . png” , sep = ”” ) )

png ( f i l e = mypath , width = 1000 , he ight = 600)

myt i t l e = paste ( ” Res idua l s ve r sus F i t t ed Values f o r ” , as .

↪→ character ( i ) , ” Point Method Using Fu l l Metal Jacket B u l l e t s

↪→ ” )

plot ( pred , res , x lab = ” Fi t t ed Value” , ylab= ” Res idua l s ” , main=

↪→ myt i t l e )

abline (h=0, l t y =2)

dev . of f ( )
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##q q p l o t

r e s = sort ( residuals ( b u l l e t 2 ) )

n = length ( r e s )

z = qnorm( ppoints (n) )

mypath <− f i l e . path ( ”C: /Users/ J e f f e r y s /Desktop/Thes i s J e f f e r y s /

↪→ Bul l e t Angle Photos/FMJ/New/” , paste ( ”Normal QQ Plot ” , as .

↪→ character ( i ) , ” . png” , sep = ”” ) )

png ( f i l e = mypath , width = 1000 , he ight = 600)

myt i t l e = paste ( ”Normal Q−Q Plot f o r ” , as . character ( i ) , ” Point

↪→ Method Using Fu l l Metal Jacket B u l l e t s ” )

plot ( z , res , x lab=” Theo r e t i c a l Quant i l e s ” , ylab=”Sample Quant i l e s ” ,

↪→ main=myt i t l e )

abline (lm( r e s ˜z ) )

dev . of f ( )

#histogram

r e s = residuals ( b u l l e t 2 )

mx = mean( r e s )

##Note the r e s i d u a l s tandard error

#not the s imple SD of the r e s i d u a l s

#i s the e s t i m a t e o f the SD of the r e s i d u a l s

#r e s i d u a l SE i s the b e s t e s t i m a t e f o r sigma ( e s t i m a t i n g SD of

↪→ r e s i d u a l s )

sx = summary( b u l l e t 2 )$sigma

mypath <− f i l e . path ( ”C: /Users/ J e f f e r y s /Desktop/Thes i s J e f f e r y s /

↪→ Bul l e t Angle Photos/FMJ/New/” , paste ( ”Histogram f o r ” , as .

↪→ character ( i ) , ” . png” , sep = ”” ) )

png ( f i l e = mypath , width = 1000 , he ight = 600)

myt i t l e = paste ( ”Histogram f o r ” , as . character ( i ) , ” Point Method

↪→ Using Fu l l Metal Jacket B u l l e t s ” )

hist ( res , prob=TRUE, xlab=” Res idua l s ” , main=myt i t l e , yl im=c

↪→ ( 0 , 0 . 0 7 0 ) )

x = seq (min( r e s )−0.5*sx , max( r e s ) +0.5*sx , length=200)

y = dnorm(x , mx, sx )

l ines (x , y , l t y =2)

box ( )
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dev . of f ( )

mypath <− f i l e . path ( ”C: /Users/ J e f f e r y s /Desktop/Thes i s J e f f e r y s /

↪→ Bul l e t Angle Photos/FMJ/New/” , paste ( ” Linear Model o f ” , as .

↪→ character ( i ) , ” . png” , sep = ”” ) )

png ( f i l e = mypath , width = 1000 , he ight = 600)

myt i t l e = paste ( ” Linear Model o f ” , as . character ( i ) , ” Point

↪→ Method Using Fu l l Metal Jacket B u l l e t s with Pred i c t i on and

↪→ Confidence I n t e r v a l s ” )

plot ( True Angle ˜ Calcu lated Degrees , data = linmodsub , main=

↪→ mytit l e , x lab=”Measured Angle” , ylab=”True Angle” )

new . Ca lcu lated Degrees = seq (min( linmodsub$Calcu lated Degrees ) ,

↪→ max( linmodsub$Calcu lated Degrees ) , length = 90)

True Angle . pred . c i = predict ( bu l l e t2 , data . frame ( Calcu lated

↪→ Degrees =new . Ca lcu lated Degrees ) , i n t e r v a l = ” con f idence ” )

True Angle . pred . pred = predict ( bu l l e t2 , data . frame ( Calcu lated

↪→ Degrees = new . Ca lcu lated Degrees ) , i n t e r v a l = ” p r e d i c t i o n ” )

l ines (new . Ca lcu lated Degrees , True Angle . pred . c i [ , 1 ] )

l ines (new . Ca lcu lated Degrees , True Angle . pred . c i [ , 2 ] , l t y = 2 ,

↪→ col = ” blue ” )

l ines ( new . Ca lcu lated Degrees , True Angle . pred . c i [ , 3 ] , l t y =

↪→ 2 , col = ” blue ” )

l ines ( new . Ca lcu lated Degrees , True Angle . pred . pred [ , 2 ] , l t y =

↪→ 2 , col = ” red ” )

l ines ( new . Ca lcu lated Degrees , True Angle . pred . pred [ , 3 ] , l t y =

↪→ 2 , col = ” red ” )

t e s t v a l <− c (55 ,75 ,90 )

l . colors <− c ( ” green ” , ” orange ” , ” darkgrey ” )

for ( i in 1 : length ( t e s t v a l ) ){
abline ( v=t e s t v a l [ i ] , col=l . colors [ i ] )

new . Ca lcu lated Degrees <− c ( t e s t v a l [ i ] )

xmax1 <− predict ( bu l l e t2 , data . frame ( Calcu lated Degrees =new .

↪→ Calcu lated Degrees ) , i n t e r v a l=” p r e d i c t i o n ” )

xg1 <− c (0 , t e s t v a l [ i ] )
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yg1 <− c (xmax1 [ , 3 ] , xmax1 [ , 3 ] )

l ines ( xg1 , yg1 , l t y =2,col=l . colors [ i ] )

xg2 <− c (0 , t e s t v a l [ i ] )

yg2 <− c (xmax1 [ , 2 ] , xmax1 [ , 2 ] )

l ines ( xg2 , yg2 , l t y =2,col=l . colors [ i ] )

xg3 <− c (0 , t e s t v a l [ i ] )

yg3 <− c (xmax1 [ , 1 ] , xmax1 [ , 1 ] )

l ines ( xg3 , yg3 , l t y =1,col=l . colors [ i ] )

xmax2 <− predict ( bu l l e t2 , data . frame ( Calcu lated Degrees =new .

↪→ Calcu lated Degrees ) , i n t e r v a l=” con f idence ” )

xg4 <− c (0 , t e s t v a l [ i ] )

yg4 <− c (xmax2 [ , 2 ] , xmax2 [ , 2 ] )

l ines ( xg4 , yg4 , l t y =3,col=l . colors [ i ] )

xg5 <− c (0 , t e s t v a l [ i ] )

yg5 <− c (xmax2 [ , 3 ] , xmax2 [ , 3 ] )

l ines ( xg5 , yg5 , l t y =3,col=l . colors [ i ] )

}
dev . of f ( )

#i needs changed to p o i n t s be ing used

i <− ”15”

oute r s<−c ( )

i n n e r s<−c ( )

ang le <− c ( )

TA. pred . f i t <− c ( )

TA. pred . lwr <− c ( )

TA. pred . upr <− c ( )

ang le . pred . f i t <− c ( )

ang le . pred . lwr <− c ( )

ang le . pred . upr <− c ( )

for ( j j in 45 : 90 ) {

ang le [ j j ] <− j j

CD <− c ( j j )
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TA. pred = predict ( bu l l e t2 , data . frame ( Calcu lated Degrees=CD) ,

↪→ i n t e r v a l = ” con f idence ” )

ang le . pred = predict ( bu l l e t2 , data . frame ( Calcu lated Degrees=CD

↪→ ) , i n t e r v a l = ” p r e d i c t i o n ” )

TA. pred . f i t [ j j ] <− ang le . pred [ 1 ]

TA. pred . lwr [ j j ] <− ang le . pred [ 2 ]

TA. pred . upr [ j j ] <− ang le . pred [ 3 ]

ang le . pred . f i t [ j j ] <− TA. pred [ 1 ]

ang le . pred . lwr [ j j ] <− TA. pred [ 2 ]

ang le . pred . upr [ j j ] <− TA. pred [ 3 ]

i n n e r s <−cbind ( ang le [ j j ] , TA. pred . f i t [ j j ] , TA. pred . lwr [ j j ] , TA

↪→ . pred . upr [ j j ] ,

ang le . pred . f i t [ j j ] , ang le . pred . lwr [ j j ] , ang le .

↪→ pred . upr [ j j ] )

ou te r s<−rbind ( outers , i n n e r s )

}

oute r s<− data . frame ( oute r s )

write . csv ( outers , f i l e = paste ( as . character ( i ) , ” Outers . csv ” ) ,row

↪→ .names=FALSE)

outer . c o l s <−c ( ”Angle” , ”Pred . f i t ” , ”Pred . lower ” , ”Pred . upper” , ”CI .

↪→ f i t ” , ”CI . lower ” , ”CI . upper” )

colnames ( oute r s )<−outer . c o l s

old . output <− output

output <− oute r s

ymin<−min( output$Angle )

ymax<−max( output$Angle )

mypath <− f i l e . path ( ”C: /Users/ J e f f e r y s /Desktop/Thes i s J e f f e r y s /

↪→ Bul l e t Angle Photos/FMJ/New/” , paste ( ” Fina l Model o f ” , as .

↪→ character ( i ) , ” . png” , sep = ”” ) )

png ( f i l e = mypath , width = 1000 , he ight = 600)
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myt i t l e = paste ( ” Pred i c t i on Values Resu l t ing from Measured

↪→ Values f o r ” , as . character ( i ) , ” Point Method Using Fu l l Metal

↪→ Jacket B u l l e t s with Conf idence I n t e r v a l s ” )

plot ( output$Angle , output$CI . f i t , type=” l ” , yl im=c (30 ,105) , xl im=

↪→ c ( ymin , ymax) , ylab=”True Angle” , xlab=”Measured Angle” ,

↪→ main=myt i t l e )

l ines ( output$Angle , output$CI . upper , l t y =2, col=” blue ” )

l ines ( output$Angle , output$CI . lower , l t y =2, col=” blue ” )

#f o r ( i in 1 : l e n g t h ( output$Angle ) ){
# x . temp <− c ( output$Angle [ i ] , output$Angle [ i ] )

# y . temp <− c ( output$CI . lower [ i ] , output$CI . upper [ i ] )

# l i n e s ( x . temp , y . temp )

#}
l ines ( output$Angle , output$Pred . upper , l t y =2, col=” red ” )

l ines ( output$Angle , output$Pred . lower , l t y =2, col=” red ” )

#f o r ( i in 1 : l e n g t h ( output$Angle ) ){
# x . temp <− c ( output$Angle [ i ] , output$Angle [ i ] )

# y . temp <− c ( output$Pred . lower [ i ] , output$Pred . upper [ i ] )

# l i n e s ( x . temp , y . temp )

#}
abline ( v=45, col=” grey ” )

abline ( v=50, col=” grey ” )

abline ( v=60, col=” grey ” )

abline ( v=75, col=” grey ” )

abline ( v=90, col=” grey ” )

dev . of f ( )

#}
#######################end o f b u l l e t ang l e s c r i p t

LRN bullets

#####################beg inn ing o f b u l l e t ang l e main combination

↪→ s c r i p t

setwd ( ”C: /Users/ J e f f e r y s /Desktop/Thes i s J e f f e r y s /Bul l e t Angle

↪→ Photos/LRN/Combined” )

dat1 <− read . csv ( ”Combined Data 90 . csv ” )
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dat2 <− read . csv ( ”Combined Data 75 . csv ” )

dat3 <− read . csv ( ”Combined Data 60 . csv ” )

dat4 <− read . csv ( ”Combined Data 50 . csv ” )

dat5 <− read . csv ( ”Combined Data 45 . csv ” )

complete . dat <− rbind ( dat1 , dat2 , dat3 , dat4 , dat5 )

complete . dat <− complete . dat [ order (complete . dat [ , 8 ] ) , ]

write . csv (complete . dat , f i l e=”Combined Data Al l . csv ” )

#####beg in l i n e a r model

l inmod <− read . table ( ”Combined Data Al l . csv ” , header=TRUE, sep=” , ” ,

↪→ s t r i ng sAsFac to r s=FALSE)

b u l l e t <− lm( True Angle ˜ Calcu lated Degrees , data = linmod )

#b u l l e t <− lm ( linmod$C a l c u l a t e d Degrees ˜ l inmod$True Angle , data

↪→ = linmod )

summary( b u l l e t )

# range <− range ( linmod$C a l c u l a t e d Degrees )

# xrange <−seq ( 2 8 . 8 , 9 0 . 8 , 0 . 1 )

normrsq<− c ( )

g rad i en t s1 <− c ( )

i n t e r c e p t s 1 <− c ( )

ad j r sq <− c ( )

pva lue in t <− c ( )

pvaluevar <− c ( )

s t e r r o r i n t <− c ( )

s t e r r o r v a r <− c ( )

g rad i en t s1 <− as . numeric ( b u l l e t$coef f ic ients [ 2 ] )

i n t e r c e p t s 1 <− as . numeric ( b u l l e t$coef f ic ients [ 1 ] )

normrsq <− summary( b u l l e t )$ r . squared

ad j r sq <− summary( b u l l e t )$adj . r . squared

pva lue in t <− summary( b u l l e t )$coef f ic ients [ 1 , 4 ]

pvaluevar <− summary( b u l l e t )$coef f ic ients [ 2 , 4 ]
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s t e r r o r i n t <− summary( b u l l e t )$coef f ic ients [ 1 , 2 ]

s t e r r o r v a r <− summary( b u l l e t )$coef f ic ients [ 2 , 2 ]

t v a l u e i n t <− summary( b u l l e t )$coef f ic ients [ 1 , 3 ]

tva luevar <− summary( b u l l e t )$coef f ic ients [ 2 , 3 ]

output . df1 <−cbind ( i n t e r c e p t s 1 , s t e r r o r i n t , t va lue in t , pva lue int ,

↪→ normrsq )

output . df2 <− cbind ( grad ients1 , s t e r r o r v a r , tva luevar , pvaluevar ,

↪→ ad j r sq )

f i n a l . output <− rbind ( output . df1 , output . df2 )

write . csv ( f i n a l . output , f i l e =”Combined Data Bul le tAngle Al l . csv ” ,

↪→ row .names=FALSE)

#s t a t s

r e s = residuals ( b u l l e t )

pred = f i tted ( b u l l e t )

png ( f i l e = ” Res idua l Combined Bul le tAngle . png” , width = 1000 ,

↪→ he ight = 600)

plot ( pred , res , x lab = ” Fi t t ed Value” , ylab= ” Res idua l s ” , main =”

↪→ Res idua l s ve r sus F i t t ed Values f o r Combined Lead Round Nose

↪→ Bul l e t Angle Data” )

abline (h=0, l t y =2)

#qqnorm ( res )

dev . of f ( )

r e s = sort ( residuals ( b u l l e t ) )

n = length ( r e s )

z = qnorm( ppoints (n) )

png ( f i l e = ”QQplot Combined Bul le tAngle . png” , width = 1000 , he ight

↪→ = 600)

plot ( z , res , x lab=” Theo r e t i c a l Quant i l e s ” , ylab=”Sample Quant i l e s ” ,

↪→ main=”Normal Q−Q Plot f o r Combined Lead Round Nose Bu l l e t

↪→ Angle Data” )

abline (lm( r e s ˜z ) )

dev . of f ( )
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r e s = residuals ( b u l l e t )

mx = mean( r e s )

##Note the r e s i d u a l s tandard error

#not the s imple SD of the r e s i d u a l s

#i s the e s t i m a t e o f the SD of the r e s i d u a l s

#r e s i d u a l SE i s the b e s t e s t i m a t e f o r sigma ( e s t i m a t i n g SD of

↪→ r e s i d u a l s )

sx = summary( b u l l e t )$sigma

png ( f i l e = ”Histogram Combined Bul le tAngle . png” , width = 1000 ,

↪→ he ight = 600)

hist ( res , prob=TRUE, xlab=” Res idua l s ” , main=”Histogram of Combined

↪→ Lead Round Nose Bu l l e t Angle Data” , yl im=c ( 0 , 0 . 0 4 0 ) )

x = seq (min( r e s )−0.5*sx , max( r e s ) +0.5*sx , length=200)

y = dnorm(x , mx, sx )

l ines (x , y , l t y =2)

box ( )

dev . of f ( )

png ( f i l e = ” Linear Model o f Combined LRN. png” , width = 1000 ,

↪→ he ight = 600)

plot ( True Angle ˜ Calcu lated Degrees , data = linmod , main=” Linear

↪→ Model o f Combined Lead Round Nose Bu l l e t Angle Data with

↪→ Confidence and Pred i c t i on I n t e r v a l s ” , xlab=”Measured Angle” ,

↪→ ylab=”True Angle” )

new . Ca lcu lated Degrees = seq (min( linmod$Calcu lated Degrees ) ,max(

↪→ l inmod$Calcu lated Degrees ) , length = 450)

True Angle . pred . c i = predict ( bu l l e t , data . frame ( Calcu lated Degrees

↪→ =new . Ca lcu lated Degrees ) , i n t e r v a l = ” con f idence ” )

True Angle . pred . pred = predict ( bu l l e t , data . frame ( Calcu lated

↪→ Degrees = new . Ca lcu lated Degrees ) , i n t e r v a l = ” p r e d i c t i o n ” )

l ines (new . Ca lcu lated Degrees , True Angle . pred . c i [ , 1 ] )

l ines (new . Ca lcu lated Degrees , True Angle . pred . c i [ , 2 ] , l t y = 2 ,

↪→ col = ” blue ” )

l ines ( new . Ca lcu lated Degrees , True Angle . pred . c i [ , 3 ] , l t y = 2 ,

↪→ col = ” blue ” )
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l ines ( new . Ca lcu lated Degrees , True Angle . pred . pred [ , 2 ] , l t y = 2 ,

↪→ col = ” red ” )

l ines ( new . Ca lcu lated Degrees , True Angle . pred . pred [ , 3 ] , l t y =

↪→ 2 , col = ” red ” )

t e s t v a l <− c (45 ,75 ,90 )

l . colors <− c ( ” green ” , ” orange ” , ” darkgrey ” )

for ( i in 1 : length ( t e s t v a l ) ){
abline ( v=t e s t v a l [ i ] , col=l . colors [ i ] )

new . Ca lcu lated Degrees <− c ( t e s t v a l [ i ] )

xmax1 <− predict ( bu l l e t , data . frame ( Calcu lated Degrees =new .

↪→ Calcu lated Degrees ) , i n t e r v a l=” p r e d i c t i o n ” )

xg1 <− c (0 , t e s t v a l [ i ] )

yg1 <− c (xmax1 [ , 3 ] , xmax1 [ , 3 ] )

l ines ( xg1 , yg1 , l t y =2,col=l . colors [ i ] )

xg2 <− c (0 , t e s t v a l [ i ] )

yg2 <− c (xmax1 [ , 2 ] , xmax1 [ , 2 ] )

l ines ( xg2 , yg2 , l t y =2,col=l . colors [ i ] )

xg3 <− c (0 , t e s t v a l [ i ] )

yg3 <− c (xmax1 [ , 1 ] , xmax1 [ , 1 ] )

l ines ( xg3 , yg3 , l t y =1,col=l . colors [ i ] )

xmax2 <− predict ( bu l l e t , data . frame ( Calcu lated Degrees =new .

↪→ Calcu lated Degrees ) , i n t e r v a l=” con f idence ” )

xg4 <− c (0 , t e s t v a l [ i ] )

yg4 <− c (xmax2 [ , 2 ] , xmax2 [ , 2 ] )

l ines ( xg4 , yg4 , l t y =3,col=l . colors [ i ] )

xg5 <− c (0 , t e s t v a l [ i ] )

yg5 <− c (xmax2 [ , 3 ] , xmax2 [ , 3 ] )

l ines ( xg5 , yg5 , l t y =3,col=l . colors [ i ] )

}
dev . of f ( )

###p r e d i c t i o n i n t e r v a l s

#p r e d i c t i o n code f o r model
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oute r s<−c ( )

i n n e r s<−c ( )

ang le <− c ( )

TA. pred . f i t <− c ( )

TA. pred . lwr <− c ( )

TA. pred . upr <− c ( )

ang le . pred . f i t <− c ( )

ang le . pred . lwr <− c ( )

ang le . pred . upr <− c ( )

for ( j j in 45 : 90 ) {

ang le [ j j ] <− j j

CD <− c ( j j )

TA. pred = predict ( bu l l e t , data . frame ( Calcu lated Degrees=CD) ,

↪→ i n t e r v a l = ” con f idence ” )

ang le . pred = predict ( bu l l e t , data . frame ( Calcu lated Degrees=CD) ,

↪→ i n t e r v a l = ” p r e d i c t i o n ” )

TA. pred . f i t [ j j ] <− ang le . pred [ 1 ]

TA. pred . lwr [ j j ] <− ang le . pred [ 2 ]

TA. pred . upr [ j j ] <− ang le . pred [ 3 ]

ang le . pred . f i t [ j j ] <− TA. pred [ 1 ]

ang le . pred . lwr [ j j ] <− TA. pred [ 2 ]

ang le . pred . upr [ j j ] <− TA. pred [ 3 ]

i n n e r s <−cbind ( ang le [ j j ] , TA. pred . f i t [ j j ] , TA. pred . lwr [ j j ] , TA.

↪→ pred . upr [ j j ] ,

ang le . pred . f i t [ j j ] , ang le . pred . lwr [ j j ] , ang le . pred

↪→ . upr [ j j ] )

ou te r s<−rbind ( outers , i n n e r s )

}

oute r s<− data . frame ( oute r s )

write . csv ( outers , f i l e = ”Combined Bul le tAngle Outers . csv ” ,row .

↪→ names=FALSE)
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outer . c o l s <−c ( ”Angle” , ”Pred . f i t ” , ”Pred . lower ” , ”Pred . upper” , ”CI .

↪→ f i t ” , ”CI . lower ” , ”CI . upper” )

colnames ( oute r s )<−outer . c o l s

old . output <− output

output <− oute r s

ymin<−min( output$Angle )

ymax<−max( output$Angle )

mypath <− f i l e . path ( ”C: /Users/ J e f f e r y s /Desktop/Thes i s J e f f e r y s /

↪→ Bul l e t Angle Photos/LRN/Combined/” , paste ( ”Combined

↪→ Bul letAngle Pred i c t i on ” , ” . png” , sep = ”” ) )

png ( f i l e = mypath , width = 1000 , he ight = 600)

#m y t i t l e = p a s t e (” P r e d i c t i o n Values f o r Combined b u l l e t s p a t Data ”)

plot ( output$Angle , output$CI . f i t , type=” l ” , yl im=c (30 ,105) , xl im=

↪→ c ( ymin , ymax) , ylab=”True Angle” , xlab=”Measured Angle” , main

↪→ =” Pred i c t i on Values Resu l t ing from Measured Values f o r

↪→ Combined Lead Round Nose Bu l l e t Angle Data with Conf idence

↪→ I n t e r v a l s ” )

l ines ( output$Angle , output$CI . upper , l t y =2, col=” blue ” )

l ines ( output$Angle , output$CI . lower , l t y =2, col=” blue ” )

#f o r ( i in 1 : l e n g t h ( output$Angle ) ){
# x . temp <− c ( output$Angle [ i ] , output$Angle [ i ] )

# y . temp <− c ( output$CI . lower [ i ] , output$CI . upper [ i ] )

# l i n e s ( x . temp , y . temp )

#}
l ines ( output$Angle , output$Pred . upper , l t y =2, col=” red ” )

l ines ( output$Angle , output$Pred . lower , l t y =2, col=” red ” )

#f o r ( i in 1 : l e n g t h ( output$Angle ) ){
# x . temp <− c ( output$Angle [ i ] , output$Angle [ i ] )

# y . temp <− c ( output$Pred . lower [ i ] , output$Pred . upper [ i ] )

# l i n e s ( x . temp , y . temp )

#}
abline ( v=45, col=” grey ” )

abline ( v=50, col=” grey ” )
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abline ( v=60, col=” grey ” )

abline ( v=75, col=” grey ” )

abline ( v=90, col=” grey ” )

dev . of f ( )

######################################################

#s t a r t o f methods loop

method type <− as . character (unique ( linmod$Method ) )

#Methods

i <− ”AA” #can use t h i s to do one at a time

#f o r ( i in method type ){
l inmodsub <− subset ( linmod , linmod$Method == as . character ( i ) )

b u l l e t 1 <− lm( True Angle ˜ Calcu lated Degrees , data = linmodsub )

summary( b u l l e t 1 )

normrsq<− c ( )

g rad i en t s1 <− c ( )

i n t e r c e p t s 1 <− c ( )

ad j r sq <− c ( )

pva lue in t <− c ( )

pvaluevar <− c ( )

s t e r r o r i n t <− c ( )

s t e r r o r v a r <− c ( )

t v a l u e i n t <− c ( )

tva luevar <− c ( )

g rad i en t s1 [ i ] <− as . numeric ( b u l l e t 1$coef f ic ients [ 2 ] )

i n t e r c e p t s 1 [ i ] <− as . numeric ( b u l l e t 1$coef f ic ients [ 1 ] )

normrsq [ i ] <− summary( b u l l e t 1 )$ r . squared

ad j r sq [ i ] <− summary( b u l l e t 1 )$adj . r . squared

pva lue in t [ i ] <− summary( b u l l e t 1 )$coef f ic ients [ 1 , 4 ]

pvaluevar [ i ] <− summary( b u l l e t 1 )$coef f ic ients [ 2 , 4 ]

s t e r r o r i n t [ i ] <− summary( b u l l e t 1 )$coef f ic ients [ 1 , 2 ]
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s t e r r o r v a r [ i ] <− summary( b u l l e t 1 )$coef f ic ients [ 2 , 2 ]

t v a l u e i n t [ i ] <− summary( b u l l e t 1 )$coef f ic ients [ 1 , 3 ]

tva luevar [ i ] <− summary( b u l l e t 1 )$coef f ic ients [ 2 , 3 ]

output . df1 <−cbind ( i n t e r c e p t s 1 [ i ] , s t e r r o r i n t [ i ] , t v a l u e i n t [ i ] ,

↪→ pva lue in t [ i ] , normrsq [ i ] )

output . df2 <− cbind ( g rad i en t s1 [ i ] , s t e r r o r v a r [ i ] , tva luevar [ i ] ,

↪→ pvaluevar [ i ] , ad j r sq [ i ] )

f i n a l o u t p u t 2 <− rbind ( output . df1 , output . df2 )

write . csv ( f i na l output2 , f i l e = paste ( as . character ( i ) , ” Data Model

↪→ . csv ” ) ,row .names=FALSE)

# p l o t ( l inmodsub$C a l c u l a t e d Degrees , l inmodsub$True Angle , main =

↪→ m y t i t l e , y l a b =”C a l c u l a t e d Angle ” , x l a b = ”True Angle ”)

# a b l i n e ( c o e f = c ( i n t e r c e p t s [ i ] , g r a d i e n t s [ i ] ) )

# a b l i n e ( c o e f = c (0 ,1) )

# dev . o f f ( )

###############r e s i d u a l s p l o t s

r e s = residuals ( b u l l e t 1 )

pred = f i tted ( b u l l e t 1 )

mypath <− f i l e . path ( ”C: /Users/ J e f f e r y s /Desktop/Thes i s J e f f e r y s /

↪→ Bul l e t Angle Photos/LRN/Combined/” , paste ( ” Res idua l s f o r ” ,

↪→ as . character ( i ) , ” . png” , sep = ”” ) )

png ( f i l e = mypath , width = 1000 , he ight = 600)

myt i t l e = paste ( ” Res idua l s ve r sus F i t t ed Values f o r Method” , as .

↪→ character ( i ) , ”Using Lead Round Nose B u l l e t s ” )

plot ( pred , res , x lab = ” Fi t t ed Value” , ylab= ” Res idua l s ” , main=

↪→ myt i t l e )

abline (h=0, l t y =2)

dev . of f ( )

# ###############################QQplot

r e s = sort ( residuals ( b u l l e t 1 ) )

n = length ( r e s )
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z = qnorm( ppoints (n) )

mypath <− f i l e . path ( ”C: /Users/ J e f f e r y s /Desktop/Thes i s J e f f e r y s /

↪→ Bul l e t Angle Photos/LRN/Combined/” , paste ( ”Normal QQ Plot ” ,

↪→ as . character ( i ) , ” . png” , sep = ”” ) )

png ( f i l e = mypath , width = 1000 , he ight = 600)

myt i t l e = paste ( ”Normal Q−Q Plot f o r Method” , as . character ( i ) , ”

↪→ Using Lead Round Nose B u l l e t s ” )

plot ( z , res , x lab=” Theo r e t i c a l Quant i l e s ” , ylab=”Sample Quant i l e s ” ,

↪→ main=myt i t l e )

abline (lm( r e s ˜z ) )

dev . of f ( )

#########################Histogram

r e s = residuals ( b u l l e t 1 )

mx = mean( r e s )

##Note the r e s i d u a l s tandard error

#not the s imple SD of the r e s i d u a l s

#i s the e s t i m a t e o f the SD of the r e s i d u a l s

#r e s i d u a l SE i s the b e s t e s t i m a t e f o r sigma ( e s t i m a t i n g SD of

↪→ r e s i d u a l s )

sx = summary( b u l l e t 1 )$sigma

mypath <− f i l e . path ( ”C: /Users/ J e f f e r y s /Desktop/Thes i s J e f f e r y s /

↪→ Bul l e t Angle Photos/LRN/Combined/” , paste ( ”Histogram f o r ” ,

↪→ as . character ( i ) , ” . png” , sep = ”” ) )

png ( f i l e = mypath , width = 1000 , he ight = 600)

myt i t l e = paste ( ”Histogram f o r Method” , as . character ( i ) , ”Using

↪→ Lead Round Nose B u l l e t s ” )

hist ( res , prob=TRUE, xlab=” Res idua l s ” , main=myt i t l e , yl im=c

↪→ ( 0 , 0 . 0 4 ) )

x = seq (min( r e s )−0.5*sx , max( r e s ) +0.5*sx , length=200)

y = dnorm(x , mx, sx )

l ines (x , y , l t y =2)

box ( )

dev . of f ( )

######################Confidence P lo t
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mypath <− f i l e . path ( ”C: /Users/ J e f f e r y s /Desktop/Thes i s J e f f e r y s /

↪→ Bul l e t Angle Photos/LRN/Combined/” , paste ( ” Linear Model o f ”

↪→ , as . character ( i ) , ” . png” , sep = ”” ) )

png ( f i l e = mypath , width = 1000 , he ight = 600)

myt i t l e = paste ( ” Linear Model o f Method” , as . character ( i ) , ”

↪→ Using Lead Round Nose B u l l e t s with Pred i c t i on and

↪→ Confidence I n t e r v a l s ” )

plot ( True Angle ˜ Calcu lated Degrees , data = linmodsub , ylim=c

↪→ (30 ,90) , xl im=c (35 ,90) , main=myti t l e , x lab=”Measured Angle”

↪→ , y lab=”True Angle” )

new . Ca lcu lated Degrees = seq (min( linmodsub$Calcu lated Degrees ) ,

↪→ max( linmodsub$Calcu lated Degrees ) , length = 90)

True Angle . pred . c i = predict ( bu l l e t1 , data . frame ( Calcu lated

↪→ Degrees =new . Ca lcu lated Degrees ) , i n t e r v a l = ” con f idence ” )

True Angle . pred . pred = predict ( bu l l e t1 , data . frame ( Calcu lated

↪→ Degrees = new . Ca lcu lated Degrees ) , i n t e r v a l = ” p r e d i c t i o n ” )

l ines (new . Ca lcu lated Degrees , True Angle . pred . c i [ , 1 ] )

l ines (new . Ca lcu lated Degrees , True Angle . pred . c i [ , 2 ] , l t y = 2 ,

↪→ col = ” blue ” )

l ines ( new . Ca lcu lated Degrees , True Angle . pred . c i [ , 3 ] , l t y =

↪→ 2 , col = ” blue ” )

l ines ( new . Ca lcu lated Degrees , True Angle . pred . pred [ , 2 ] , l t y =

↪→ 2 , col = ” red ” )

l ines ( new . Ca lcu lated Degrees , True Angle . pred . pred [ , 3 ] , l t y =

↪→ 2 , col = ” red ” )

t e s t v a l <− c (45 ,75 ,90 )

l . colors <− c ( ” green ” , ” orange ” , ” darkgrey ” )

for ( i in 1 : length ( t e s t v a l ) ){
abline ( v=t e s t v a l [ i ] , col=l . colors [ i ] )

new . Ca lcu lated Degrees <− c ( t e s t v a l [ i ] )

xmax1 <− predict ( bu l l e t1 , data . frame ( Calcu lated Degrees =new .

↪→ Calcu lated Degrees ) , i n t e r v a l=” p r e d i c t i o n ” )

xg1 <− c (0 , t e s t v a l [ i ] )

yg1 <− c (xmax1 [ , 3 ] , xmax1 [ , 3 ] )
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l ines ( xg1 , yg1 , l t y =2,col=l . colors [ i ] )

xg2 <− c (0 , t e s t v a l [ i ] )

yg2 <− c (xmax1 [ , 2 ] , xmax1 [ , 2 ] )

l ines ( xg2 , yg2 , l t y =2,col=l . colors [ i ] )

xg3 <− c (0 , t e s t v a l [ i ] )

yg3 <− c (xmax1 [ , 1 ] , xmax1 [ , 1 ] )

l ines ( xg3 , yg3 , l t y =1,col=l . colors [ i ] )

xmax2 <− predict ( bu l l e t1 , data . frame ( Calcu lated Degrees =new .

↪→ Calcu lated Degrees ) , i n t e r v a l=” con f idence ” )

xg4 <− c (0 , t e s t v a l [ i ] )

yg4 <− c (xmax2 [ , 2 ] , xmax2 [ , 2 ] )

l ines ( xg4 , yg4 , l t y =3,col=l . colors [ i ] )

xg5 <− c (0 , t e s t v a l [ i ] )

yg5 <− c (xmax2 [ , 3 ] , xmax2 [ , 3 ] )

l ines ( xg5 , yg5 , l t y =3,col=l . colors [ i ] )

}
dev . of f ( )

#i g e t s changed in the above code

#i t needs to be s e t again to the method be ing used

i <− ”AA”

###################p r e d i c t i o n

oute r s<−c ( )

i n n e r s<−c ( )

ang le <− c ( )

TA. pred . f i t <− c ( )

TA. pred . lwr <− c ( )

TA. pred . upr <− c ( )

ang le . pred . f i t <− c ( )

ang le . pred . lwr <− c ( )

ang le . pred . upr <− c ( )

for ( j j in 45 : 90 ) {
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ang le [ j j ] <− j j

CD <− c ( j j )

TA. pred = predict ( bu l l e t1 , data . frame ( Calcu lated Degrees=CD) ,

↪→ i n t e r v a l = ” con f idence ” )

ang le . pred = predict ( bu l l e t1 , data . frame ( Calcu lated Degrees=CD

↪→ ) , i n t e r v a l = ” p r e d i c t i o n ” )

TA. pred . f i t [ j j ] <− ang le . pred [ 1 ]

TA. pred . lwr [ j j ] <− ang le . pred [ 2 ]

TA. pred . upr [ j j ] <− ang le . pred [ 3 ]

ang le . pred . f i t [ j j ] <− TA. pred [ 1 ]

ang le . pred . lwr [ j j ] <− TA. pred [ 2 ]

ang le . pred . upr [ j j ] <− TA. pred [ 3 ]

i n n e r s <−cbind ( ang le [ j j ] , TA. pred . f i t [ j j ] , TA. pred . lwr [ j j ] , TA

↪→ . pred . upr [ j j ] ,

ang le . pred . f i t [ j j ] , ang le . pred . lwr [ j j ] , ang le .

↪→ pred . upr [ j j ] )

ou te r s<−rbind ( outers , i n n e r s )

}

oute r s<− data . frame ( oute r s )

write . csv ( outers , f i l e = paste ( as . character ( i ) , ” Outers . csv ” ) ,row

↪→ .names=FALSE)

outer . c o l s <−c ( ”Angle” , ”Pred . f i t ” , ”Pred . lower ” , ”Pred . upper” , ”CI .

↪→ f i t ” , ”CI . lower ” , ”CI . upper” )

colnames ( oute r s )<−outer . c o l s

old . output <− output

output <− oute r s

ymin<−min( output$Angle )

ymax<−max( output$Angle )

mypath <− f i l e . path ( ”C: /Users/ J e f f e r y s /Desktop/Thes i s J e f f e r y s /

↪→ Bul l e t Angle Photos/LRN/Combined/” , paste ( ” Fina l Model o f ” ,

↪→ as . character ( i ) , ” . png” , sep = ”” ) )
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png ( f i l e = mypath , width = 1000 , he ight = 600)

myt i t l e = paste ( ” Pred i c t i on Values Resu l t ing from Measured

↪→ Values f o r Method” , as . character ( i ) , ”Using Lead Round

↪→ Nose B u l l e t s with Conf idence I n t e r v a l s ” )

plot ( output$Angle , output$CI . f i t , type=” l ” , yl im=c ( ymin , ymax) ,

↪→ ylab=”True Angle” , xlab=”Measured Angle” , main=myt i t l e )

l ines ( output$Angle , output$CI . upper , l t y =2, col=” blue ” )

l ines ( output$Angle , output$CI . lower , l t y =2, col=” blue ” )

#f o r ( i in 1 : l e n g t h ( output$Angle ) ){
# x . temp <− c ( output$Angle [ i ] , output$Angle [ i ] )

# y . temp <− c ( output$CI . lower [ i ] , output$CI . upper [ i ] )

# l i n e s ( x . temp , y . temp )

#}
l ines ( output$Angle , output$Pred . upper , l t y =2, col=” red ” )

l ines ( output$Angle , output$Pred . lower , l t y =2, col=” red ” )

#f o r ( i in 1 : l e n g t h ( output$Angle ) ){
# x . temp <− c ( output$Angle [ i ] , output$Angle [ i ] )

# y . temp <− c ( output$Pred . lower [ i ] , output$Pred . upper [ i ] )

# l i n e s ( x . temp , y . temp )

#}
abline ( v=45, col=” grey ” )

abline ( v=50, col=” grey ” )

abline ( v=60, col=” grey ” )

abline ( v=75, col=” grey ” )

abline ( v=90, col=” grey ” )

dev . of f ( )

#}

###############Beginning o f Points Models

↪→ ################################

#Points

point type2 <− as . character (unique ( linmod$Points ) )

i <− ”15”

#f o r ( i in p o i n t type2 ){
l inmodsub <− subset ( linmod , linmod$Points == as . character ( i ) )
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b u l l e t 2 <− lm( True Angle ˜ Calcu lated Degrees , data = linmodsub )

normrsq<− c ( )

g rad i en t s1 <− c ( )

i n t e r c e p t s 1 <− c ( )

ad j r sq <− c ( )

pva lue in t <− c ( )

pvaluevar <− c ( )

s t e r r o r i n t <− c ( )

s t e r r o r v a r <− c ( )

g rad i en t s1 [ i ] <− as . numeric ( b u l l e t 2$coef f ic ients [ 2 ] )

i n t e r c e p t s 1 [ i ] <− as . numeric ( b u l l e t 2$coef f ic ients [ 1 ] )

normrsq [ i ] <− summary( b u l l e t 2 )$ r . squared

ad j r sq [ i ] <− summary( b u l l e t 2 )$adj . r . squared

pva lue in t [ i ] <− summary( b u l l e t 2 )$coef f ic ients [ 1 , 4 ]

pvaluevar [ i ] <− summary( b u l l e t 2 )$coef f ic ients [ 2 , 4 ]

s t e r r o r i n t [ i ] <− summary( b u l l e t 2 )$coef f ic ients [ 1 , 2 ]

s t e r r o r v a r [ i ] <− summary( b u l l e t 2 )$coef f ic ients [ 2 , 2 ]

t v a l u e i n t [ i ] <− summary( b u l l e t 2 )$coef f ic ients [ 1 , 3 ]

tva luevar [ i ] <− summary( b u l l e t 2 )$coef f ic ients [ 2 , 3 ]

output . df1 <−cbind ( i n t e r c e p t s 1 [ i ] , s t e r r o r i n t [ i ] , t v a l u e i n t [ i ] ,

↪→ pva lue in t [ i ] , normrsq [ i ] )

output . df2 <− cbind ( g rad i en t s1 [ i ] , s t e r r o r v a r [ i ] , tva luevar [ i ] ,

↪→ pvaluevar [ i ] , ad j r sq [ i ] )

f i n a l o u t p u t 2 <− rbind ( output . df1 , output . df2 )

write . csv ( f i na l output2 , f i l e = paste ( as . character ( i ) , ” Data Model

↪→ . csv ” ) ,row .names=FALSE)

# m y t i t l e = p a s t e (” Linear Model o f Combined Data Points ” , as .

↪→ c h a r a c t e r ( i ) )

# p l o t ( l inmodsub$C a l c u l a t e d Degrees , l inmodsub$True Angle , main =

↪→ m y t i t l e , y l a b =”C a l c u l a t e d Angle ” , x l a b = ”True Angle ”)
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# a b l i n e ( c o e f = c ( i n t e r c e p t s 2 [ i ] , g r a d i e n t s 2 [ i ] ) )

#r e s i d u a l s p l o t s

r e s = residuals ( b u l l e t 2 )

pred = f i tted ( b u l l e t 2 )

mypath <− f i l e . path ( ”C: /Users/ J e f f e r y s /Desktop/Thes i s J e f f e r y s /

↪→ Bul l e t Angle Photos/LRN/Combined” , paste ( ” Res idua l s f o r ” ,

↪→ as . character ( i ) , ” . png” , sep = ”” ) )

png ( f i l e = mypath , width = 1000 , he ight = 600)

myt i t l e = paste ( ” Res idua l s ve r sus F i t t ed Values f o r ” , as .

↪→ character ( i ) , ” Point Method Using Lead Round Nose B u l l e t s ” )

plot ( pred , res , x lab = ” Fi t t ed Value” , ylab= ” Res idua l s ” , main=

↪→ myt i t l e )

abline (h=0, l t y =2)

dev . of f ( )

# res = r e s i d u a l s ( b u l l e t 2 )

# qqnorm ( res )

# q q l i n e ( res )

##q q p l o t

r e s = sort ( residuals ( b u l l e t 2 ) )

n = length ( r e s )

z = qnorm( ppoints (n) )

mypath <− f i l e . path ( ”C: /Users/ J e f f e r y s /Desktop/Thes i s J e f f e r y s /

↪→ Bul l e t Angle Photos/LRN/Combined” , paste ( ”Normal QQ Plot ” ,

↪→ as . character ( i ) , ” . png” , sep = ”” ) )

png ( f i l e = mypath , width = 1000 , he ight = 600)

myt i t l e = paste ( ”Normal Q−Q Plot f o r ” , as . character ( i ) , ” Point

↪→ Method Using Lead Round Nose B u l l e t s ” )

plot ( z , res , x lab=” Theo r e t i c a l Quant i l e s ” , ylab=”Sample Quant i l e s ” ,

↪→ main=myt i t l e )

abline (lm( r e s ˜z ) )

dev . of f ( )

#histogram
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r e s = residuals ( b u l l e t 2 )

mx = mean( r e s )

##Note the r e s i d u a l s tandard error

#not the s imple SD of the r e s i d u a l s

#i s the e s t i m a t e o f the SD of the r e s i d u a l s

#r e s i d u a l SE i s the b e s t e s t i m a t e f o r sigma ( e s t i m a t i n g SD of

↪→ r e s i d u a l s )

sx = summary( b u l l e t 2 )$sigma

mypath <− f i l e . path ( ”C: /Users/ J e f f e r y s /Desktop/Thes i s J e f f e r y s /

↪→ Bul l e t Angle Photos/LRN/Combined” , paste ( ”Histogram f o r ” ,

↪→ as . character ( i ) , ” . png” , sep = ”” ) )

png ( f i l e = mypath , width = 1000 , he ight = 600)

myt i t l e = paste ( ”Histogram f o r ” , as . character ( i ) , ” Point Method

↪→ Using Lead Round Nose B u l l e t s ” )

hist ( res , prob=TRUE, xlab=” Res idua l s ” , main=myt i t l e , yl im=c

↪→ ( 0 , 0 . 0 4 ) )

x = seq (min( r e s )−0.5*sx , max( r e s ) +0.5*sx , length=200)

y = dnorm(x , mx, sx )

l ines (x , y , l t y =2)

box ( )

dev . of f ( )

mypath <− f i l e . path ( ”C: /Users/ J e f f e r y s /Desktop/Thes i s J e f f e r y s /

↪→ Bul l e t Angle Photos/LRN/Combined” , paste ( ” Linear Model o f ” ,

↪→ as . character ( i ) , ” . png” , sep = ”” ) )

png ( f i l e = mypath , width = 1000 , he ight = 600)

myt i t l e = paste ( ” Linear Model o f ” , as . character ( i ) , ” Point

↪→ Method Using Lead Round Nose B u l l e t s with Pred i c t i on and

↪→ Confidence I n t e r v a l s ” )

plot ( True Angle ˜ Calcu lated Degrees , data = linmodsub , main=

↪→ mytit l e , x lab=”Measured Angle” , ylab=”True Angle” )

new . Ca lcu lated Degrees = seq (min( linmodsub$Calcu lated Degrees ) ,

↪→ max( linmodsub$Calcu lated Degrees ) , length = 90)
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True Angle . pred . c i = predict ( bu l l e t2 , data . frame ( Calcu lated

↪→ Degrees =new . Ca lcu lated Degrees ) , i n t e r v a l = ” con f idence ” )

True Angle . pred . pred = predict ( bu l l e t2 , data . frame ( Calcu lated

↪→ Degrees = new . Ca lcu lated Degrees ) , i n t e r v a l = ” p r e d i c t i o n ” )

l ines (new . Ca lcu lated Degrees , True Angle . pred . c i [ , 1 ] )

l ines (new . Ca lcu lated Degrees , True Angle . pred . c i [ , 2 ] , l t y = 2 ,

↪→ col = ” blue ” )

l ines ( new . Ca lcu lated Degrees , True Angle . pred . c i [ , 3 ] , l t y =

↪→ 2 , col = ” blue ” )

l ines ( new . Ca lcu lated Degrees , True Angle . pred . pred [ , 2 ] , l t y =

↪→ 2 , col = ” red ” )

l ines ( new . Ca lcu lated Degrees , True Angle . pred . pred [ , 3 ] , l t y =

↪→ 2 , col = ” red ” )

t e s t v a l <− c (45 ,75 ,90 )

l . colors <− c ( ” green ” , ” orange ” , ” darkgrey ” )

for ( i in 1 : length ( t e s t v a l ) ){
abline ( v=t e s t v a l [ i ] , col=l . colors [ i ] )

new . Ca lcu lated Degrees <− c ( t e s t v a l [ i ] )

xmax1 <− predict ( bu l l e t2 , data . frame ( Calcu lated Degrees =new .

↪→ Calcu lated Degrees ) , i n t e r v a l=” p r e d i c t i o n ” )

xg1 <− c (0 , t e s t v a l [ i ] )

yg1 <− c (xmax1 [ , 3 ] , xmax1 [ , 3 ] )

l ines ( xg1 , yg1 , l t y =2,col=l . colors [ i ] )

xg2 <− c (0 , t e s t v a l [ i ] )

yg2 <− c (xmax1 [ , 2 ] , xmax1 [ , 2 ] )

l ines ( xg2 , yg2 , l t y =2,col=l . colors [ i ] )

xg3 <− c (0 , t e s t v a l [ i ] )

yg3 <− c (xmax1 [ , 1 ] , xmax1 [ , 1 ] )

l ines ( xg3 , yg3 , l t y =1,col=l . colors [ i ] )

xmax2 <− predict ( bu l l e t2 , data . frame ( Calcu lated Degrees =new .

↪→ Calcu lated Degrees ) , i n t e r v a l=” con f idence ” )

xg4 <− c (0 , t e s t v a l [ i ] )

yg4 <− c (xmax2 [ , 2 ] , xmax2 [ , 2 ] )

l ines ( xg4 , yg4 , l t y =3,col=l . colors [ i ] )

280



xg5 <− c (0 , t e s t v a l [ i ] )

yg5 <− c (xmax2 [ , 3 ] , xmax2 [ , 3 ] )

l ines ( xg5 , yg5 , l t y =3,col=l . colors [ i ] )

}
dev . of f ( )

#change i to the p o i n t s be ing used

i <− ”15”

#########o u t e r s

oute r s<−c ( )

i n n e r s<−c ( )

ang le <− c ( )

TA. pred . f i t <− c ( )

TA. pred . lwr <− c ( )

TA. pred . upr <− c ( )

ang le . pred . f i t <− c ( )

ang le . pred . lwr <− c ( )

ang le . pred . upr <− c ( )

for ( j j in 45 : 90 ) {

ang le [ j j ] <− j j

CD <− c ( j j )

TA. pred = predict ( bu l l e t2 , data . frame ( Calcu lated Degrees=CD) ,

↪→ i n t e r v a l = ” con f idence ” )

ang le . pred = predict ( bu l l e t2 , data . frame ( Calcu lated Degrees=CD

↪→ ) , i n t e r v a l = ” p r e d i c t i o n ” )

TA. pred . f i t [ j j ] <− ang le . pred [ 1 ]

TA. pred . lwr [ j j ] <− ang le . pred [ 2 ]

TA. pred . upr [ j j ] <− ang le . pred [ 3 ]

ang le . pred . f i t [ j j ] <− TA. pred [ 1 ]

ang le . pred . lwr [ j j ] <− TA. pred [ 2 ]

ang le . pred . upr [ j j ] <− TA. pred [ 3 ]

i n n e r s <−cbind ( ang le [ j j ] , TA. pred . f i t [ j j ] , TA. pred . lwr [ j j ] , TA

↪→ . pred . upr [ j j ] ,
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ang le . pred . f i t [ j j ] , ang le . pred . lwr [ j j ] , ang le .

↪→ pred . upr [ j j ] )

ou te r s<−rbind ( outers , i n n e r s )

}

oute r s<− data . frame ( oute r s )

write . csv ( outers , f i l e = paste ( as . character ( i ) , ” Outers . csv ” ) ,row

↪→ .names=FALSE)

outer . c o l s <−c ( ”Angle” , ”Pred . f i t ” , ”Pred . lower ” , ”Pred . upper” , ”CI .

↪→ f i t ” , ”CI . lower ” , ”CI . upper” )

colnames ( oute r s )<−outer . c o l s

old . output <− output

output <− oute r s

ymin<−min( output$Angle )

ymax<−max( output$Angle )

mypath <− f i l e . path ( ”C: /Users/ J e f f e r y s /Desktop/Thes i s J e f f e r y s /

↪→ Bul l e t Angle Photos/LRN/Combined” , paste ( ” Fina l Model o f ” ,

↪→ as . character ( i ) , ” . png” , sep = ”” ) )

png ( f i l e = mypath , width = 1000 , he ight = 600)

myt i t l e = paste ( ” Pred i c t i on Values Resu l t ing from Measured

↪→ Values f o r ” , as . character ( i ) , ” Point Method Using Lead

↪→ Round Nose B u l l e t s with Conf idence I n t e r v a l s ” )

plot ( output$Angle , output$CI . f i t , type=” l ” , yl im=c ( ymin , ymax) ,

↪→ ylab=”True Angle” , xlab=”Measured Angle” , main=myt i t l e )

l ines ( output$Angle , output$CI . upper , l t y =2, col=” blue ” )

l ines ( output$Angle , output$CI . lower , l t y =2, col=” blue ” )

#f o r ( i in 1 : l e n g t h ( output$Angle ) ){
# x . temp <− c ( output$Angle [ i ] , output$Angle [ i ] )

# y . temp <− c ( output$CI . lower [ i ] , output$CI . upper [ i ] )

# l i n e s ( x . temp , y . temp )

#}
l ines ( output$Angle , output$Pred . upper , l t y =2, col=” red ” )
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l ines ( output$Angle , output$Pred . lower , l t y =2, col=” red ” )

#f o r ( i in 1 : l e n g t h ( output$Angle ) ){
# x . temp <− c ( output$Angle [ i ] , output$Angle [ i ] )

# y . temp <− c ( output$Pred . lower [ i ] , output$Pred . upper [ i ] )

# l i n e s ( x . temp , y . temp )

#}
abline ( v=45, col=” grey ” )

abline ( v=50, col=” grey ” )

abline ( v=60, col=” grey ” )

abline ( v=75, col=” grey ” )

abline ( v=90, col=” grey ” )

dev . of f ( )

#}
#######################end o f b u l l e t ang l e s c r i p t

8.3 Script for multiple linear regression

###beg in s c r i p t f o r MLR

l ibrary ( l a t t i c e )

l ibrary ( graphics )

l ibrary ( s c a t t e r p l o t 3 d )

l ibrary ( f i e lds )

setwd ( ”C: /Users/ J e f f e r y s /Desktop/Thes i s J e f f e r y s /Fina l Data/FMJ” )

linmod <− read . table ( ”Complete Data . csv ” , header=TRUE, sep=” , ” ,

↪→ s t r i ng sAsFac to r s=FALSE)

mult <− lm( True Angle ˜ X Patch*Minor , data = linmod )

summary( mult )

####Contour p l o t

pa . seq <− seq (−400 , 2000 , 10)

mi . seq <− seq (2400 , 3600 , 10)

l en . pa . seq <− length ( pa . seq )
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l en . mi . seq <− length (mi . seq )

outputPred <− matrix ( ,nrow=len . pa . seq , ncol=len . mi . seq )

xx <− 1

yy <− 1

for ( pa in pa . seq ){
for (mi in mi . seq ){

out <− predict ( mult , data . frame (X Patch=pa , Minor=mi ) , i n t e r v a l=

↪→ ” p r e d i c t i o n ” )

#cat ( out [ 1 ] )

outputPred [ xx , yy ] <− out [ 3 ]#####add in 1 , 2 , 3 f o r f i t , lower ,

↪→ upper i n t e r v a l s

yy <− yy+1

}
yy <− 1

xx<−xx+1

}

####change names in code f o r lower , upper , and f i t t e d

png ( f i l e = ”ContourFMJUpper . png” , width = 600 , he ight = 600)

image . plot ( outputPred , axes=F, ylab=”Minor” , xlab=”X Patch” )

contour ( outputPred , add = TRUE)

t i t l e ( main=”Upper P r e d i c t i o n s Using X Patch and Minor f o r Fu l l

↪→ Metal Jacket B u l l e t s ” )

xat<−seq (0 , 1 , length . out = 7)

yat <−seq (0 , 1 , length . out = 5)

x . labels<− c (−400 ,0 ,400 ,800 ,1200 ,1600 ,2000)

y . labels <− c (2400 ,2700 ,3000 , 3300 , 3600)

axis ( s i d e =1, at=xat , labels = x . labels )

axis ( s i d e =2, at=yat , labels = y . labels )

dev . of f ( )

#s i n g l e p r e d i c t i o n to check p l o t s
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out <− predict ( mult , data . frame ( True Angle = 70) , i n t e r v a l=”

↪→ p r e d i c t i o n ” )

out2 <− predict ( mult , data . frame (X Patch=0, Minor=3300) , i n t e r v a l=”

↪→ p r e d i c t i o n ” )

out3 <− predict ( mult , data . frame (X Patch=400 , Minor=3100) , i n t e r v a l=

↪→ ” p r e d i c t i o n ” )

out4 <− predict ( mult , data . frame (X Patch =1300 , Minor=2400) , i n t e r v a l

↪→ =” p r e d i c t i o n ” )

out5 <− predict ( mult , data . frame (X Patch =1900 , Minor=3300) , i n t e r v a l

↪→ =” p r e d i c t i o n ” )

#end o f contour

normrsq<− c ( )

g rad i en t s1 <− c ( )

i n t e r c e p t s 1 <− c ( )

ad j r sq <− c ( )

pva lue in t <− c ( )

pvaluevar <− c ( )

s t e r r o r i n t <− c ( )

s t e r r o r v a r <− c ( )

i n t e r c e p t s 2 <−c ( )

i n t e r c e p t s 3 <− c ( )

pvaluevar2 <−c ( )

pvaluevar3 <−c ( )

tva luevar2 <− c ( )

tva luevar3 <− c ( )

s t e r r o r v a r 2 <− c ( )

s t e r r o r v a r 3 <− c ( )

g rad i en t s1 <− as . numeric ( mult$coef f ic ients [ 2 ] )

i n t e r c e p t s 1 <− as . numeric ( mult$coef f ic ients [ 1 ] )

i n t e r c e p t s 2 <−as . numeric ( mult$coef f ic ients [ 3 ] )

i n t e r c e p t s 3 <− as . numeric ( mult$coef f ic ients [ 4 ] )

normrsq <− summary( mult )$ r . squared

ad j r sq <− summary( mult )$adj . r . squared
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pva lue in t <− summary( mult )$coef f ic ients [ 1 , 4 ]

pvaluevar <− summary( mult )$coef f ic ients [ 2 , 4 ]

pvaluevar2 <−summary( mult )$coef f ic ients [ 3 , 4 ]

pvaluevar3 <−summary( mult )$coef f ic ients [ 4 , 4 ]

s t e r r o r i n t <− summary( mult )$coef f ic ients [ 1 , 2 ]

s t e r r o r v a r <− summary( mult )$coef f ic ients [ 2 , 2 ]

s t e r r o r v a r 2 <− summary( mult )$coef f ic ients [ 3 , 2 ]

s t e r r o r v a r 3 <− summary( mult )$coef f ic ients [ 4 , 2 ]

t v a l u e i n t <− summary( mult )$coef f ic ients [ 1 , 3 ]

tva luevar <− summary( mult )$coef f ic ients [ 2 , 3 ]

tva luevar2 <− summary( mult )$coef f ic ients [ 3 , 3 ]

tva luevar3 <− summary( mult )$coef f ic ients [ 4 , 3 ]

output . df1 <−cbind ( i n t e r c e p t s 1 , s t e r r o r i n t , t va lue in t , pva lue int ,

↪→ normrsq )

output . df2 <− cbind ( grad ients1 , s t e r r o r v a r , tva luevar , pvaluevar ,

↪→ ad j r sq )

output . df3 <− cbind ( i n t e r c e p t s 2 , s t e r r o rva r2 , tva luevar2 , pvaluevar2 ,

↪→ normrsq )

output . df4 <− cbind ( i n t e r c e p t s 3 , s t e r r o rva r3 , tva luevar3 , pvaluevar3 ,

↪→ ad j r sq )

f i n a l . output <− rbind ( output . df1 , output . df2 , output . df3 , output . df4 )

write . csv ( f i n a l . output , f i l e =”Combined Data MLRFMJbullets Al l . csv ”

↪→ ,row .names=FALSE)

#p l o t o f r e s i d u a l s

r e s = residuals ( mult )

pred = f i tted ( mult )

png ( f i l e = ” Res idua l Combined MLRFMJ. png” , width = 1000 , he ight =

↪→ 600)
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plot ( pred , res , x lab = ” Fi t t ed Value” , ylab= ” Res idua l s ” , main =”

↪→ Res idua l s ve r sus F i t t ed Values us ing X Patch x Minor f o r

↪→ Ful l Metal Jacket Bu l l e t Data” )

abline (h=0, l t y =2)

dev . of f ( )

#q q p l o t

r e s = sort ( residuals ( mult ) )

n = length ( r e s )

z = qnorm( ppoints (n) )

png ( f i l e = ”QQplot Combined MLRFMJ. png” , width = 1000 , he ight =

↪→ 600)

plot ( z , res , x lab=” Theo r e t i c a l Quant i l e s ” , ylab=”Sample Quant i l e s ” ,

↪→ main=”Normal Q−Q Plot us ing X Patch x Minor f o r Fu l l Metal

↪→ Jacket Bu l l e t Data” )

abline (lm( r e s ˜z ) )

dev . of f ( )

#histogram

r e s = residuals ( mult )

mx = mean( r e s )

sx = summary( mult )$sigma

png ( f i l e = ”Histogram Combined MLRFMJ. png” , width = 1000 , he ight =

↪→ 600)

hist ( res , prob=TRUE, xlab=” Res idua l s ” , main=”Histogram of X Patch x

↪→ Minor f o r Fu l l Metal Jacket Bu l l e t Data” )

x = seq (min( r e s )−0.5*sx , max( r e s ) +0.5*sx , length=200)

y = dnorm(x , mx, sx )

l ines (x , y , l t y =2)

box ( )

dev . of f ( )

#3D p l o t

png ( f i l e = ” Sca t t e rp l o t3d . png” , width = 1000 , he ight = 600)

par ( mai=c ( 1 . 2 , 1 . 2 , 2 , 1 . 8 ) )#bottom , l e f t , top , r i g h t

l inmod$pco lo r [ linmod$True Angle==90] <− ” red ”
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l inmod$pco lo r [ linmod$True Angle==75] <− ” blue ”

linmod$pco lo r [ linmod$True Angle==60] <− ” darkgreen ”

linmod$pco lo r [ linmod$True Angle==50] <− ” purple ”

linmod$pco lo r [ linmod$True Angle==45] <− ” black ”

with ( linmod , {
s c a t t e r p l o t 3 d ( linmod$Minor , linmod$X Patch , linmod$True Angle ,

pch=16,

h i g h l i g h t . 3 d=FALSE,

type=”h” ,

main=”3D Sca t t e r Plot o f Minor , X Patch , and True

↪→ Angle with V e r t i c a l L ines ” , c o l o r=pcolor , xlab

↪→ =”Minor” , z lab=”True Angle” , ylab=”X Patch” )

legend ( ” t o p l e f t ” , i n s e t=c ( .0025 ,−0.0050) , # l o c a t i o n and

↪→ i n s e t

bty=”n” , cex =1 , , # suppress l egend box ,

↪→ s h r i n k t e x t 50%

t i t l e=” Angles ” ,

c ( ”45” , ”50” , ”60” , ”75” , ”90” ) , f i l l =c ( ” black ” , ” red ” , ” blue

↪→ ” , ” darkgreen ” , ” purple ” ) )

})

dev . of f ( )

#xy p l o t

png ( f i l e = ”XYplotFMJ . png” , width = 1000 , he ight = 600)

par ( mai=c ( 1 . 2 , 1 . 2 , 1 . 2 , 1 . 8 ) )#bottom , l e f t , top , r i g h t

xyplot ( linmod$Minor˜ l inmod$X Patch , grid=TRUE, group = linmod$True

↪→ Angle , main=”XY Plot o f X Patch and Minor f o r Fu l l Metal

↪→ Jacket Bu l l e t Data” , pch=15, xlab=”X Patch” , ylab=”Minor” ,

auto . key=l i s t ( space=” r i g h t ” , columns=1, t i t l e=” Angles ” ,

points=TRUE,

type = c ( ”p” , ”smooth” ) , pch=16, lwd = 4) )

dev . of f ( )

####Regular l i n e a r model P l o t s

png ( f i l e = ” Xpatchplot . png” , width = 1000 , he ight = 600)
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plot (X Patch ˜ True Angle , data = linmod , xlab=”True Angle” , main=”

↪→ S c a t t e r p l o t o f X Patch ver sus True Angle f o r Fu l l Metal

↪→ Jacket Bu l l e t Data” )

dev . of f ( )

png ( f i l e = ” MinorPlot . png” , width = 1000 , he ight = 600)

plot ( Minor ˜ True Angle , data = linmod , xlab=”True Angle” , main=”

↪→ S c a t t e r p l o t o f Minor ver sus True Angle f o r Fu l l Metal Jacket

↪→ Bul l e t Data” )

dev . of f ( )

###end o f MLR s c r i p t

#beg in e x t e n s i o n s c r i p t f o r t e s t i n g and t r a i n i n g

#l i b r a r y ( s20x )

l ibrary ( l a t t i c e )

l ibrary ( graphics )

set . seed (123)

setwd ( ”C: /Users/ J e f f e r y s /Desktop/Thes i s J e f f e r y s /Fina l Data/FMJ” )

linmod <− read . table ( ”Complete Data . csv ” , header=TRUE, sep=” , ” ,

↪→ s t r i ng sAsFac to r s=FALSE)

outer<−c ( )

for ( j in 1 :5000) {
## 90% of the sample s i z e

smp s i z e <− f loor ( 0 . 8 * nrow( linmod ) )

## s e t the seed to make your p a r t i t i o n r e p r o d u c t i b l e

t r a i n ind <− sample ( seq l en (nrow( linmod ) ) , s i z e = smp s i z e )

t r a i n <− l inmod [ t r a i n ind , ]

t e s t <− l inmod[− t r a i n ind , ]
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mult <− lm( True Angle ˜ Minor*X Patch , data = t r a i n )

inne r<−c ( )

ang le . p <− c ( )

ang le . t <− c ( )

ang le . p . l <− c ( )

ang le . p . u <− c ( )

for ( i in 1 : length ( t e s t$Minor ) ){
out <− predict ( mult , data . frame (X Patch=as . numeric ( t e s t$X Patch

↪→ [ i ] ) , Minor=as . numeric ( t e s t$Minor [ i ] ) ) , i n t e r v a l=”

↪→ p r e d i c t i o n ” )

#cat ( out [ 1 ] )

ang le . p [ i ] <− out [ 1 ]

ang le . p . l [ i ] <− out [ 2 ]

ang le . p . u [ i ] <− out [ 3 ]

ang le . t [ i ] <− as . numeric ( t e s t$True Angle [ i ] )

}

i nne r <− cbind ( ang le . p , ang le . t , ang le . p . l , ang le . p . u )

outer <−rbind ( outer , i nne r )

}

outer . df <−data . frame ( outer )

#genera te the p l o t

png ( f i l e = ” x y p l o t t e s t t r a i n . png” , width = 800 , he ight = 600)

xyplot ( outer . df$ang le . p˜outer . df$ang le . t , j i t t e r . x = T, pch=” . ” ,

↪→ main=”Measured Values Resu l t ing from Test and Train ing Sets

↪→ us ing Minor and X Patch\n (1000 I t e r a t i o n s , 20% Testing , 80%

↪→ Training ) ” , xlab=”True Angle” , ylab=”Measured Angle” )

dev . of f ( )

#end t e s t i n g and t r a i n i n g s c r i p t
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8.4 Script for principal component analysis

FMJ bullets

###beg in FMJ PCA s c r i p t

l ibrary ( dev too l s )

in s ta l l github ( ” ggb ip l o t ” , ”vqv” )

l ibrary ( ggb ip l o t )

l ibrary ( c a r e t )

l ibrary ( s c a t t e r p l o t 3 d )

l ibrary ( hexbin )

setwd ( ”C: /Users/ J e f f e r y s /Desktop/Thes i s J e f f e r y s /Al l PCA/FMJ” )

f i l e r <− read . csv ( ”C: /Users/ J e f f e r y s /Desktop/Thes i s J e f f e r y s /Al l

↪→ PCA/FMJ/FMJ Data FS . csv ” )

a l l . dat <− cbind ( f i l e r ,PC)

write . csv ( a l l . dat , f i l e=”C: /Users/ J e f f e r y s /Desktop/Thes i s J e f f e r y s /

↪→ Al l PCA/FMJ/Al l Data . csv ” , row .names = FALSE)

########################

f i l e r $True Angle <− as . factor ( f i l e r $True Angle )

log . var <− f i l e r [ , 4 : 9 ]

i r . ang le <− f i l e r [ , 2 ]

t rans <− preProces s ( log . var , method=c ( ”BoxCox” , ” c en te r ” , ” s c a l e ” )

↪→ )

PC <− predict ( trans , log . var )

i r . pca 2 <− prcomp (PC, cent e r = FALSE)

#p r i n t s the s tandard d e v i a t i o n s and r o t a t i o n s

print ( i r . pca 2$sdev )

stdpc <− i r . pca 2$sdev

rotpc <− i r . pca 2$ r o t a t i o n
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data . a l l <− rbind ( stdpc , rotpc )

write . csv (data . al l , f i l e=”C: /Users/ J e f f e r y s /Desktop/Thes i s

↪→ J e f f e r y s /Al l PCA/FMJ/Data Al l RotationsSD . csv ” )

###Proport ion o f Variance

s <− summary( i r . pca 2 , scale = TRUE)

proppc <− s$ importance [ 2 , ]

cumlat ivepc <− s$ importance [ 3 , ]

data . a l l 2 <− rbind ( proppc , cumlat ivepc )

write . csv (data . a l l 2 , f i l e=”C: /Users/ J e f f e r y s /Desktop/Thes i s

↪→ J e f f e r y s /Al l PCA/FMJ/Data Al l Proport ion . csv ” )

###Scree p l o t f o r PCs

png ( f i l e = ”ScreePlotFMJ . png” , width = 1000 , he ight = 600)

plot (PC, type = ” l ” , yl im=c ( 0 , 4 ) , main=” Scree Plot f o r Fu l l Metal

↪→ Jacket Bu l l e t Data” )

dev . of f ( )

#Plot o f 1 and 2

g <− ggb ip l o t ( i r . pca 2 , c h o i c e s = c ( 1 , 2 ) , obs . scale = 1 , var . scale

↪→ = 1 ,

groups = i r . angle , e l l i p s e = TRUE,

c i r c l e = FALSE, e l l i p s e . prob = 0 . 95 )

g <− g + scale c o l o r d i s c r e t e (name = ’ ’ )

g <− g + theme ( legend . d i r e c t i o n = ’ h o r i z o n t a l ’ ,

legend . p o s i t i o n = ’ top ’ )

g <− g + g g t i t l e ( ” Bip lo t o f Fu l l Metal Jacket Bu l l e t Data (PC1 and

↪→ PC2) ” )

png ( f i l e = ”BiplotFMJ1 2 . png” , width = 1000 , he ight = 667)

print ( g )

dev . of f ( )

#Plot o f 1 and 3
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g <− ggb ip l o t ( i r . pca 2 , c h o i c e s = c ( 3 , 4 ) , obs . scale = 1 , var . scale

↪→ = 1 ,

groups = i r . angle , e l l i p s e = TRUE,

c i r c l e = FALSE, e l l i p s e . prob = 0 . 95 )

g <− g + scale c o l o r d i s c r e t e (name = ’ ’ )

g <− g + theme ( legend . d i r e c t i o n = ’ h o r i z o n t a l ’ ,

legend . p o s i t i o n = ’ top ’ )

g <− g + g g t i t l e ( ” Bip lo t o f Fu l l Metal Jacket Data (PC3 and PC4) ” )

png ( f i l e = ”BiplotFMJ3 4 . png” , width = 1000 , he ight = 632)

print ( g )

dev . of f ( )

######################################

ninety .mean <− apply ( f i l e r [ f i l e r $True Angle==”90” , 4 : 9 ] , 2 , mean)

n inety . cov <− cov ( f i l e r [ f i l e r $True Angle==”90” , 4 : 9 ] )

s e v e n t y f i v e .mean <− apply ( f i l e r [ f i l e r $True Angle==”75” , 4 : 9 ] , 2 ,

↪→ mean)

s e v e n t y f i v e . cov <− cov ( f i l e r [ f i l e r $True Angle==”75” , 4 : 9 ] )

s i x t y .mean <− apply ( f i l e r [ f i l e r $True Angle==”60” , 4 : 9 ] , 2 , mean)

s i x t y . cov <− cov ( f i l e r [ f i l e r $True Angle==”60” , 4 : 9 ] )

f i f t y .mean <− apply ( f i l e r [ f i l e r $True Angle==”50” , 4 : 9 ] , 2 , mean)

f i f t y . cov <− cov ( f i l e r [ f i l e r $True Angle==”50” , 4 : 9 ] )

f o u r t y f i v e .mean <− apply ( f i l e r [ f i l e r $True Angle==”45” , 4 : 9 ] , 2 ,

↪→ mean)

f o u r t y f i v e . cov <− cov ( f i l e r [ f i l e r $True Angle==”45” , 4 : 9 ] )

#Make new random data based on the c a l c u l a t e d biometry i n f o . each

↪→ s p e c i e s

#The MASS package a l l o w s f o r the c a l c u l a t i o n o f c o r r e l a t e d /

↪→ covary ing random

#numbers us ing t h i s in format ion .

require (MASS)
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set . seed (1 )

new. 90 <− c ( )

new. 75 <− c ( )

new. 60 <− c ( )

new. 50 <− c ( )

new. 45 <− c ( )

n <− 20000

new. 90 <− mvrnorm(n , n inety .mean, n inety . cov )

new. 75 <− mvrnorm(n , s e v e n t y f i v e .mean, s e v e n t y f i v e . cov )

new. 60 <− mvrnorm(n , s i x t y .mean, s i x t y . cov )

new. 50 <− mvrnorm(n , f i f t y .mean, f i f t y . cov )

new. 45 <− mvrnorm(n , f o u r t y f i v e .mean, f o u r t y f i v e . cov )

combine . data <− rbind (new . 9 0 ,new . 7 5 ,new . 6 0 ,new . 5 0 ,new . 4 5 )

# combine <− preProcess ( combine . data , method=c (”BoxCox ” , ” c e n t e r ” ,

↪→ ” s c a l e ”) )

# PC1 <− p r e d i c t ( combine , combine . data )

# i r . pca 2 <− prcomp (PC1, c e n t e r = FALSE)

# pred . combine <−p r e d i c t ( i r . pca 2 , combine . data )

###############

f i l e r $True Angle <− as . factor ( f i l e r $True Angle )

log . var2 <− combine . data [ , 1 : 6 ]

t rans <− preProces s ( log . var2 , method=c ( ”BoxCox” , ” c en te r ” , ” s c a l e ”

↪→ ) )

PC1 <− predict ( trans , log . var2 )

i r . pca 23 <− prcomp (PC1, c ent e r = FALSE)

pred . combine <−predict ( i r . pca 23)

pred .90 <− pred . combine [ 1 : 2 0 0 0 0 , 1 : 6 ]

pred .75 <− pred . combine [ 2 0 0 0 1 : 4 0 0 0 0 , 1 : 6 ]

pred .60 <− pred . combine [ 4 0 0 0 1 : 6 0 0 0 0 , 1 : 6 ]

pred .50 <− pred . combine [ 6 0 0 0 1 : 8 0 0 0 0 , 1 : 6 ]
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pred .45 <− pred . combine [ 8 0 0 0 1 : 1 0 0 0 0 0 , 1 : 6 ]

##########C o e f f i c i e n t s P lo t

require ( ggp lot2 )

#PC1 AND PC2

theta <− seq (0 ,2*pi , length . out = 100)

c i r c l e <− data . frame ( x = cos ( theta ) , y = sin ( theta ) )

p <− ggp lot ( c i r c l e , aes (x , y ) ) + geom path ( )

l o ad ing s <− data . frame ( i r . pca 2$ ro ta t i on ,

.names = row .names( i r . pca 2$ r o t a t i o n ) )

p <− p + g g t i t l e ( ” C o e f f i c i e n t s o f Var i ab l e s f o r Fu l l Metal Jacket

↪→ Bul l e t Data (PC1 and PC2) ” )

p <− p + geom text (data=load ings ,

mapping=aes ( x = PC1, y = PC2, l a b e l = .names , c o l ou r

↪→ = .names) ) +

coord f i x e d ( r a t i o =1) +

labs ( x = ”PC1” , y = ”PC2” )

png ( f i l e = ” Coef f ic ientFMJ1 2 . png” , width = 700 , he ight = 600)

par ( mai=c ( 1 . 2 , 0 . 5 , 1 . 2 , 0 . 5 ) )#bottom , l e f t , top , r i g h t

print (p)

dev . of f ( )

#PC1 AND PC3

theta <− seq (0 ,2*pi , length . out = 100)

c i r c l e <− data . frame ( x = cos ( theta ) , y = sin ( theta ) )

p <− ggp lot ( c i r c l e , aes (x , y ) ) + geom path ( )

l o ad ing s <− data . frame ( i r . pca 2$ ro ta t i on ,

.names = row .names( i r . pca 2$ r o t a t i o n ) )

p <− p + g g t i t l e ( ” C o e f f i c i e n t s o f Var i ab l e s f o r Fu l l Metal Jacket

↪→ Bul l e t Data (PC1 and PC3) ” )

p <− p + geom text (data=load ings ,

mapping=aes ( x = PC1, y = PC3, l a b e l = .names ,

↪→ co l ou r = .names) ) +

coord f i x e d ( r a t i o =1) +

labs ( x = ”PC1” , y = ”PC3” )
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png ( f i l e = ” Coef f ic ientFMJ1 3 . png” , width = 700 , he ight = 600)

par ( mai=c ( 1 . 2 , 0 . 5 , 1 . 2 , 0 . 5 ) )#bottom , l e f t , top , r i g h t

print (p)

dev . of f ( )

####Projec ted P l o t s

f i l e r $True Angle <−as . numeric ( f i l e r $True Angle )

SPP <− f i l e r $True Angle

COLOR <− c ( ” blue ” , ” darkorange4 ” , ” darkgreen ” , ” red ” , ” purple ” )

##PC1 AND PC2

pc <− c ( 1 , 2 )

#png ( f i l e = ” P r e d i c t e d o n O r i g i n a l . png ” , width = 1000 , h e i g h t = 600)

par ( mai=c ( 1 . 2 , 1 . 2 , 1 . 2 , 1 . 8 ) )#bottom , l e f t , top , r i g h t

plot ( pred . 4 5 [ , 1 ] , pred . 4 5 [ , 2 ] , col=” corn f l owe rb lue ” , pch=1, xlim=c

↪→ (−4 ,4) , yl im=c (−2 ,2) , ylab=”PC2 (15.3%) ” , xlab=”PC1 (63.2%) ” )

points ( pred . 9 0 [ , 1 ] , pred . 9 0 [ , 2 ] , col=”plum” , pch=1)

points ( pred . 7 5 [ , 1 ] , pred . 7 5 [ , 2 ] , col=”brown” , pch=1)

points ( pred . 6 0 [ , 1 ] , pred . 6 0 [ , 2 ] , col=” green ” , pch=1)

points ( pred . 5 0 [ , 1 ] , pred . 5 0 [ , 2 ] , col=” darkorange ” , pch=1)

points ( i r . pca 2$x [ , 1 ] , i r . pca 2$x [ , 2 ] , col=COLOR[SPP] , pch=16)

t i t l e ( main=” Pro jec ted Pred ic ted PCs ( Test Set = 20000) and

↪→ Or ig ina l Data ( Train ing Set = 10) us ing PC1 and PC2” )

legend ( ” t op r i gh t ” , i n s e t=c (−0.15 ,0) , col=c ( ” purple ” , ”plum” , ” red ” , ”

↪→ brown” , ” darkgreen ” , ” green ” , ” darkorange4 ” , ” darkorange ” , ” blue ”

↪→ , ” co rn f l owe rb lue ” ) , xpd = TRUE, legend=c ( ” Or i g i na l 90” , ”

↪→ Pred icted 90” , ” Or i g i na l 75” , ” Pred ic ted 75” , ” Or i g i na l 60” , ”

↪→ Pred icted 60” , ” Or i g i na l 50” , ” Pred ic ted 50” , ” Or i g i na l 45” , ”

↪→ Pred icted 45” ) , pch=c ( 16 , 1 , 16 , 1 , 16 , 1 , 16 , 1 , 16 , 1 ) , t i t l e=”

↪→ Angles ” )

#dev . o f f ( )

#Recording the p r e d i c t i o n v a l u e s

PC val <−i r . pca 2$x [ , 1 ]

PC val2 <−i r . pca 2$x [ , 2 ]
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PC1 90 <− pred . 9 0 [ , 1 ]

PC2 90 <− pred . 9 0 [ , 2 ]

PC1 75 <− pred . 7 5 [ , 1 ]

PC2 75 <− pred . 7 5 [ , 2 ]

PC1 60 <− pred . 6 0 [ , 1 ]

PC2 60 <− pred . 6 0 [ , 2 ]

PC1 50 <− pred . 5 0 [ , 1 ]

PC2 50 <− pred . 5 0 [ , 2 ]

PC1 45 <− pred . 4 5 [ , 1 ]

PC2 45 <− pred . 4 5 [ , 2 ]

outer <−cbind (PC val ,PC val2 ,PC1 90 ,PC2 90 ,PC1 75 ,PC2 75 ,PC1 60 ,

↪→ PC2 60 ,PC1 50 ,PC2 50 ,PC1 45 ,PC2 45)

write . csv ( outer , f i l e=”C: /Users/ J e f f e r y s /Desktop/Thes i s J e f f e r y s /

↪→ Al l PCA/FMJ/Outer Data 1 2 . csv ” )

# #Code Hexbin=======================

# p l o t ( hexb in ( pred . 9 0 [ , 1 ] , pred . 9 0 [ , 2 ] , x b i n s = 50 , shape = 1 ,

# xbnds = range ( pred . 9 0 [ , 1 ] ) , ybnds = range ( pred . 9 0 [ , 2 ] ) ,

# x l a b = NULL, y l a b = NULL, IDs = FALSE) )

#

# p o i n t s ( pred . 9 0 [ , 1 ] , pred . 9 0 [ , 2 ] , c o l=”plum ” , pch=1)

#PC1 AND PC3

pc <− c ( 1 , 2 )

png ( f i l e = ” Pred i c t edonOr ig ina l 1 3 . png” , width = 1000 , he ight =

↪→ 600)

par ( mai=c ( 1 . 2 , 1 . 2 , 1 . 2 , 1 . 8 ) )#bottom , l e f t , top , r i g h t

plot ( pred . 4 5 [ , 1 ] , pred . 4 5 [ , 3 ] , col=” corn f l owe rb lue ” , pch=1, xlim=c

↪→ (−4 ,4) , yl im=c (−2 ,2) , ylab=”PC2 (15.3%) ” , xlab=”PC1 (63.2%) ” )

points ( pred . 9 0 [ , 1 ] , pred . 9 0 [ , 3 ] , col=”plum” , pch=1)
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points ( pred . 7 5 [ , 1 ] , pred . 7 5 [ , 3 ] , col=”brown” , pch=1)

points ( pred . 6 0 [ , 1 ] , pred . 6 0 [ , 3 ] , col=” green ” , pch=1)

points ( pred . 5 0 [ , 1 ] , pred . 5 0 [ , 3 ] , col=” darkorange ” , pch=1)

points ( i r . pca 2$x [ , 1 ] , i r . pca 2$x [ , 3 ] , col=COLOR[SPP] , pch=16)

t i t l e ( main=” Pro jec ted Pred ic ted PCs ( Test Set = 20000) and

↪→ Or ig ina l Data ( Train ing Set = 10) us ing PC1 and PC3” )

legend ( ” t op r i gh t ” , i n s e t=c (−0.15 ,0) , col=c ( ” purple ” , ”plum” , ” red ” , ”

↪→ brown” , ” darkgreen ” , ” green ” , ” darkorange4 ” , ” darkorange ” , ” blue ”

↪→ , ” co rn f l owe rb lue ” ) , xpd = TRUE, legend=c ( ” Or i g i na l 90” , ”

↪→ Pred icted 90” , ” Or i g i na l 75” , ” Pred ic ted 75” , ” Or i g i na l 60” , ”

↪→ Pred icted 60” , ” Or i g i na l 50” , ” Pred ic ted 50” , ” Or i g i na l 45” , ”

↪→ Pred icted 45” ) , pch=c ( 16 , 1 , 16 , 1 , 16 , 1 , 16 , 1 , 16 , 1 ) , t i t l e=”

↪→ Angles ” )

dev . of f ( )

#####################3D P l o t s

pc1 . ro t <− i r . pca 2$ r o t a t i o n [ , 1 ]

pc2 . ro t <− i r . pca 2$ r o t a t i o n [ , 2 ]

pc3 . ro t <− i r . pca 2$ r o t a t i o n [ , 3 ]

row .PC <− nrow(PC)

col .PC <− ncol (PC)

out .PC1 <− c ( )

out .PC2 <− c ( )

out .PC3 <− c ( )

inne r .PC1 <− 0

inner .PC2 <− 0

inner .PC3 <− 0

i <− 1

j <− 1

for ( i in 1 :row .PC){
for ( j in 1 : 6 ) {

i nne r .PC1 <− i nne r .PC1+PC[ i , j ] *pc1 . ro t [ j ]

i nne r .PC2 <− i nne r .PC2+PC[ i , j ] *pc2 . ro t [ j ]
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i nne r .PC3 <− i nne r .PC3+PC[ i , j ] *pc2 . ro t [ j ]

}
out .PC1 [ i ] <− i nne r .PC1

out .PC2 [ i ] <− i nne r .PC2

out .PC3 [ i ] <− i nne r .PC3

inner .PC1 <− 0

inner .PC2 <− 0

inner .PC3 <− 0

}
#3D p l o t

png ( f i l e = ” Scatterplot3dFMJpca . png” , width = 1000 , he ight = 600)

par ( mai=c ( 1 . 2 , 1 . 2 , 2 , 1 . 8 ) )#bottom , l e f t , top , r i g h t

f i l e r $pco lo r [ f i l e r $True Angle==90] <− ”plum”

f i l e r $pco lo r [ f i l e r $True Angle==75] <− ”brown”

f i l e r $pco lo r [ f i l e r $True Angle==60] <− ” green ”

f i l e r $pco lo r [ f i l e r $True Angle==50] <− ” darkorange ”

f i l e r $pco lo r [ f i l e r $True Angle==45] <− ” co rn f l owe rb lue ”

with ( f i l e r , {
s c a t t e r p l o t 3 d ( out . PC1, out . PC2, out . PC3,

pch=16,

h i g h l i g h t . 3 d=FALSE,

type=”h” ,

main=”3D Sca t t e r Plot f o r Fu l l Metal Jacket

↪→ B u l l e t s (PC1, PC2, PC3) with V e r t i c a l L ines ”

↪→ , c o l o r=pcolor , x lab=”PC1 (63.2% var iance

↪→ exp la ined ) ” , z lab=”PC3 (12.0% var iance

↪→ exp la ined ) ” , ylab=”PC2 (15.3% var iance

↪→ exp la ined ) ” )

legend ( ” t o p l e f t ” , i n s e t=c ( .0025 ,−0.0050) , # l o c a t i o n and

↪→ i n s e t

bty=”n” , cex =1 , , # suppress l egend box ,

↪→ s h r i n k t e x t 50%

t i t l e=” Angles ” ,

c ( ”45” , ”50” , ”60” , ”75” , ”90” ) , f i l l =c ( ” co rn f l owe rb lue ” , ”

↪→ darkorange ” , ” green ” , ”brown” , ”plum” ) )

})
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dev . of f ( )

#end o f s c r i p t FMJ PCA

LRN bullets

#beg in PCA LRN s c r i p t

l ibrary ( dev too l s )

l ibrary ( ggb ip l o t )

l ibrary ( c a r e t )

l ibrary ( s c a t t e r p l o t 3 d )

setwd ( ”C: /Users/ J e f f e r y s /Desktop/Thes i s J e f f e r y s /Al l PCA/LRN” )

f i l e r <− read . csv ( ”C: /Users/ J e f f e r y s /Desktop/Thes i s J e f f e r y s /Al l

↪→ PCA/LRN/Complete Data LRN. csv ” )

f i l e r $True Angle <− as . factor ( f i l e r $True Angle )

log . var <− f i l e r [ , 4 : 9 ]

i r . ang le <− f i l e r [ , 2 ]

t rans <− preProces s ( log . var , method=c ( ”BoxCox” , ” c en te r ” , ” s c a l e ” )

↪→ )

PC <− predict ( trans , log . var )

i r . pca 2 <− prcomp (PC, cent e r = FALSE)

summary( i r . pca 2)

print ( i r . pca 2)

#Whole f i l e

a l l . dat <− cbind ( f i l e r ,PC)

write . csv ( a l l . dat , f i l e=”C: /Users/ J e f f e r y s /Desktop/Thes i s J e f f e r y s /

↪→ Al l PCA/LRN/Al l Data LRN. csv ” , row .names = FALSE)

#p r i n t s the s tandard d e v i a t i o n s and r o t a t i o n s

print ( i r . pca 2$sdev )

stdpc <− i r . pca 2$sdev

rotpc <− i r . pca 2$ r o t a t i o n
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data . a l l <− rbind ( stdpc , rotpc )

write . csv (data . al l , f i l e=”C: /Users/ J e f f e r y s /Desktop/Thes i s

↪→ J e f f e r y s /Al l PCA/LRN/Data Al l RotationsSD . csv ” )

###Proport ion o f Variance

s <− summary( i r . pca 2 , scale = TRUE)

proppc <− s$ importance [ 2 , ]

cumlat ivepc <− s$ importance [ 3 , ]

data . a l l 2 <− rbind ( proppc , cumlat ivepc )

write . csv (data . a l l 2 , f i l e=”C: /Users/ J e f f e r y s /Desktop/Thes i s

↪→ J e f f e r y s /Al l PCA/LRN/Data Al l Proport ion . csv ” )

###Scree p l o t f o r PCs

png ( f i l e = ”ScreePlotLRN . png” , width = 1000 , he ight = 600)

plot ( i r . pca 2 , type = ” l ” , ylim=c ( 0 , 2 . 5 ) , main=” Scree Plot f o r Lead

↪→ Round Nose Bu l l e t Data” , xlab=” Eigenvalue ” )

dev . of f ( )

#Plot o f 1 and 2

g <− ggb ip l o t ( i r . pca 2 , c h o i c e s = c ( 1 , 2 ) , obs . scale = 1 , var . scale

↪→ = 1 ,

groups = i r . angle , e l l i p s e = TRUE,

c i r c l e = FALSE, e l l i p s e . prob = 0 . 95 )

g <− g + scale c o l o r d i s c r e t e (name = ’ ’ )

g <− g + theme ( legend . d i r e c t i o n = ’ h o r i z o n t a l ’ ,

legend . p o s i t i o n = ’ top ’ )

g <− g + g g t i t l e ( ” Bip lo t o f Lead Round Nose Bu l l e t Data (PC1 and

↪→ PC2) ” )

png ( f i l e = ”BiplotLRN1 2 . png” , width = 1000 , he ight = 1000)

print ( g )

dev . of f ( )

#Plot o f 1 and 3
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g <− ggb ip l o t ( i r . pca 2 , c h o i c e s = c ( 3 , 4 ) , obs . scale = 1 , var . scale

↪→ = 1 ,

groups = i r . angle , e l l i p s e = TRUE,

c i r c l e = FALSE)

g <− g + scale c o l o r d i s c r e t e (name = ’ ’ )

g <− g + theme ( legend . d i r e c t i o n = ’ h o r i z o n t a l ’ ,

legend . p o s i t i o n = ’ top ’ )

g <− g + g g t i t l e ( ” Bip lo t o f Lead Round Nose Bu l l e t Data (PC3 and

↪→ PC4) ” )

png ( f i l e = ”BiplotLRN3 4 . png” , width = 1000 , he ight = 705)

print ( g )

dev . of f ( )

#Plot o f 1 and 3

g <− ggb ip l o t ( i r . pca 2 , c h o i c e s = c ( 1 , 4 ) , obs . scale = 1 , var . scale

↪→ = 1 ,

groups = i r . angle , e l l i p s e = TRUE,

c i r c l e = FALSE)

g <− g + scale c o l o r d i s c r e t e (name = ’ ’ )

g <− g + theme ( legend . d i r e c t i o n = ’ h o r i z o n t a l ’ ,

legend . p o s i t i o n = ’ top ’ )

g <− g + g g t i t l e ( ” Bip lo t o f Lead Round Nose Bu l l e t Data (PC1 and

↪→ PC4) ” )

png ( f i l e = ”BiplotLRN1 4 . png” , width = 1000 , he ight = 471)

print ( g )

dev . of f ( )

#Plot o f 3 and 4

g <− ggb ip l o t ( i r . pca 2 , c h o i c e s = c ( 3 , 4 ) , obs . scale = 1 , var . scale

↪→ = 1 ,

groups = i r . angle , e l l i p s e = TRUE,

c i r c l e = FALSE)

g <− g + scale c o l o r d i s c r e t e (name = ’ ’ )

g <− g + theme ( legend . d i r e c t i o n = ’ h o r i z o n t a l ’ ,

legend . p o s i t i o n = ’ top ’ )
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g <− g + g g t i t l e ( ” Bip lo t o f Lead Round Nose Bu l l e t Data (PC3 and

↪→ PC4) ” )

png ( f i l e = ”BiplotLRN3 4 . png” , width = 1000 , he ight = 705)

print ( g )

dev . of f ( )

######################################

###Create new data s e t s f o r each o f the t h r e e s p e c i e s .

#Biometric v a l u e s are based on the d i s t r i b u t i o n s o f the o r i g i n a l

↪→ data means

#and the covar iances between t h e s e parameters .

ninety .mean <− apply ( f i l e r [ f i l e r $True Angle==”90” , 4 : 9 ] , 2 , mean)

n inety . cov <− cov ( f i l e r [ f i l e r $True Angle==”90” , 4 : 9 ] )

s e v e n t y f i v e .mean <− apply ( f i l e r [ f i l e r $True Angle==”75” , 4 : 9 ] , 2 ,

↪→ mean)

s e v e n t y f i v e . cov <− cov ( f i l e r [ f i l e r $True Angle==”75” , 4 : 9 ] )

s i x t y .mean <− apply ( f i l e r [ f i l e r $True Angle==”60” , 4 : 9 ] , 2 , mean)

s i x t y . cov <− cov ( f i l e r [ f i l e r $True Angle==”60” , 4 : 9 ] )

f i f t y .mean <− apply ( f i l e r [ f i l e r $True Angle==”50” , 4 : 9 ] , 2 , mean)

f i f t y . cov <− cov ( f i l e r [ f i l e r $True Angle==”50” , 4 : 9 ] )

f o u r t y f i v e .mean <− apply ( f i l e r [ f i l e r $True Angle==”45” , 4 : 9 ] , 2 ,

↪→ mean)

f o u r t y f i v e . cov <− cov ( f i l e r [ f i l e r $True Angle==”45” , 4 : 9 ] )

#Make new random data based on the c a l c u l a t e d biometry i n f o . each

↪→ s p e c i e s

#The MASS package a l l o w s f o r the c a l c u l a t i o n o f c o r r e l a t e d /

↪→ covary ing random

#numbers us ing t h i s in format ion .

require (MASS)

set . seed (1 )
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new. 90 <− c ( )

new. 75 <− c ( )

new. 60 <− c ( )

new. 50 <− c ( )

new. 45 <− c ( )

n <− 20000

new. 90 <− mvrnorm(n , n inety .mean, n inety . cov )

new. 75 <− mvrnorm(n , s e v e n t y f i v e .mean, s e v e n t y f i v e . cov )

new. 60 <− mvrnorm(n , s i x t y .mean, s i x t y . cov )

new. 50 <− mvrnorm(n , f i f t y .mean, f i f t y . cov )

new. 45 <− mvrnorm(n , f o u r t y f i v e .mean, f o u r t y f i v e . cov )

combine . data <− rbind (new . 9 0 ,new . 7 5 ,new . 6 0 ,new . 5 0 ,new . 4 5 )

# combine <− preProcess ( combine . data , method=c (”BoxCox ” , ” c e n t e r ” ,

↪→ ” s c a l e ”) )

# PC1 <− p r e d i c t ( combine , combine . data )

# i r . pca 2 <− prcomp (PC1, c e n t e r = FALSE)

# pred . combine <−p r e d i c t ( i r . pca 2 , combine . data )

###############

f i l e r $True Angle <− as . factor ( f i l e r $True Angle )

log . var2 <− combine . data [ , 1 : 6 ]

t rans <− preProces s ( log . var2 , method=c ( ”BoxCox” , ” c en te r ” , ” s c a l e ”

↪→ ) )

PC1 <− predict ( trans , log . var2 )

i r . pca 23 <− prcomp (PC1, c ent e r = FALSE)

nup <− n*5

pred . combine <−predict ( i r . pca 23)

pred .90 <− pred . combine [ 1 : 2 0 0 0 0 , 1 : 6 ]

pred .75 <− pred . combine [ 2 0 0 0 1 : 4 0 0 0 0 , 1 : 6 ]

pred .60 <− pred . combine [ 4 0 0 0 1 : 6 0 0 0 0 , 1 : 6 ]

pred .50 <− pred . combine [ 6 0 0 0 1 : 8 0 0 0 0 , 1 : 6 ]
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pred .45 <− pred . combine [ 8 0 0 0 1 : 1 0 0 0 0 0 , 1 : 6 ]

#Recording the p r e d i c t i o n v a l u e s

PC val <−i r . pca 2$x [ , 1 ]

PC val2 <−i r . pca 2$x [ , 2 ]

PC1 90 <− pred . 9 0 [ , 1 ]

PC2 90 <− pred . 9 0 [ , 2 ]

PC1 75 <− pred . 7 5 [ , 1 ]

PC2 75 <− pred . 7 5 [ , 2 ]

PC1 60 <− pred . 6 0 [ , 1 ]

PC2 60 <− pred . 6 0 [ , 2 ]

PC1 50 <− pred . 5 0 [ , 1 ]

PC2 50 <− pred . 5 0 [ , 2 ]

PC1 45 <− pred . 4 5 [ , 1 ]

PC2 45 <− pred . 4 5 [ , 2 ]

outer <−cbind (PC val ,PC val2 ,PC1 90 ,PC2 90 ,PC1 75 ,PC2 75 ,PC1 60 ,

↪→ PC2 60 ,PC1 50 ,PC2 50 ,PC1 45 ,PC2 45)

write . csv ( outer , f i l e=”C: /Users/ J e f f e r y s /Desktop/Thes i s J e f f e r y s /

↪→ Al l PCA/LRN/Outer Data 1 2 . csv ” )

##########C o e f f i c i e n t s P lo t

require ( ggp lot2 )

#PC1 AND PC2

theta <− seq (0 ,2*pi , length . out = 100)

c i r c l e <− data . frame ( x = cos ( theta ) , y = sin ( theta ) )

p <− ggp lot ( c i r c l e , aes (x , y ) ) + geom path ( )

l o ad ing s <− data . frame ( i r . pca 2$ ro ta t i on ,

.names = row .names( i r . pca 2$ r o t a t i o n ) )
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p <− p + g g t i t l e ( ” C o e f f i c i e n t s o f Var i ab l e s f o r Lead Round Nose

↪→ Bul l e t Data (PC1 and PC2) ” )

p <− p + geom text (data=load ings ,

mapping=aes ( x = PC1, y = PC2, l a b e l = .names ,

↪→ co l ou r = .names) ) +

coord f i x e d ( r a t i o =1) +

labs ( x = ”PC1” , y = ”PC2” )

png ( f i l e = ” Coeff ic ientLRN1 2 . png” , width = 700 , he ight = 600)

par ( mai=c ( 1 . 2 , 0 . 5 , 1 . 2 , 0 . 5 ) )#bottom , l e f t , top , r i g h t

print (p)

dev . of f ( )

#PC1 AND PC3

theta <− seq (0 ,2*pi , length . out = 100)

c i r c l e <− data . frame ( x = cos ( theta ) , y = sin ( theta ) )

p <− ggp lot ( c i r c l e , aes (x , y ) ) + geom path ( )

l o ad ing s <− data . frame ( i r . pca 2$ ro ta t i on ,

.names = row .names( i r . pca 2$ r o t a t i o n ) )

p <− p + g g t i t l e ( ” C o e f f i c i e n t s o f Var i ab l e s f o r Lead Round Nose

↪→ Bul l e t Data (PC1 and PC3) ” )

p <− p + geom text (data=load ings ,

mapping=aes ( x = PC1, y = PC3, l a b e l = .names ,

↪→ co l ou r = .names) ) +

coord f i x e d ( r a t i o =1) +

labs ( x = ”PC1” , y = ”PC3” )

png ( f i l e = ” Coeff ic ientLRN1 3 . png” , width = 700 , he ight = 600)

par ( mai=c ( 1 . 2 , 0 . 5 , 1 . 2 , 0 . 5 ) )#bottom , l e f t , top , r i g h t

print (p)

dev . of f ( )

#PC1 AND PC4

theta <− seq (0 ,2*pi , length . out = 100)

c i r c l e <− data . frame ( x = cos ( theta ) , y = sin ( theta ) )

p <− ggp lot ( c i r c l e , aes (x , y ) ) + geom path ( )

l o ad ing s <− data . frame ( i r . pca 2$ ro ta t i on ,

.names = row .names( i r . pca 2$ r o t a t i o n ) )
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p <− p + g g t i t l e ( ” C o e f f i c i e n t s o f Var i ab l e s f o r Lead Round Nose

↪→ Bul l e t Data (PC1 and PC4) ” )

p <− p + geom text (data=load ings ,

mapping=aes ( x = PC1, y = PC4, l a b e l = .names ,

↪→ co l ou r = .names) ) +

coord f i x e d ( r a t i o =1) +

labs ( x = ”PC1” , y = ”PC4” )

png ( f i l e = ” Coeff ic ientLRN1 4 . png” , width = 700 , he ight = 600)

par ( mai=c ( 1 . 2 , 0 . 5 , 1 . 2 , 0 . 5 ) )#bottom , l e f t , top , r i g h t

print (p)

dev . of f ( )

####Projec ted P l o t s

f i l e r $True Angle <−as . numeric ( f i l e r $True Angle )

SPP <− f i l e r $True Angle

COLOR <− c ( ” blue ” , ” darkorange4 ” , ” darkgreen ” , ” red ” , ” purple ” )

#PC1 AND PC2

pc <− c ( 1 , 2 )

png ( f i l e = ” Pred i c t edonOr ig ina l LRN. png” , width = 1000 , he ight =

↪→ 600)

par ( mai=c ( 1 . 2 , 1 . 2 , 1 . 2 , 1 . 8 ) )#bottom , l e f t , top , r i g h t

plot ( pred . 4 5 [ , 1 ] , pred . 4 5 [ , 2 ] , col=” corn f l owe rb lue ” , pch=1, xlim=c

↪→ (−4 ,4) , yl im=c (−2 ,2) , ylab=”PC2 (25.5%) ” , xlab=”PC1 (35.3%) ” )

points ( pred . 9 0 [ , 1 ] , pred . 9 0 [ , 2 ] , col=”plum” , pch=1)

points ( pred . 7 5 [ , 1 ] , pred . 7 5 [ , 2 ] , col=”brown” , pch=1)

points ( pred . 6 0 [ , 1 ] , pred . 6 0 [ , 2 ] , col=” green ” , pch=1)

points ( pred . 5 0 [ , 1 ] , pred . 5 0 [ , 2 ] , col=” darkorange ” , pch=1)

points ( i r . pca 2$x [ , 1 ] , i r . pca 2$x [ , 2 ] , col=COLOR[SPP] , pch=16)

t i t l e ( main=” Pro jec ted Pred ic ted PCs ( Test Set = 20000) and

↪→ Or ig ina l Data ( Train ing Set = 10) us ing PC1 and PC2” )

legend ( ” t op r i gh t ” , i n s e t=c (−0.15 ,0) , col=c ( ” purple ” , ”plum” , ” red ” , ”

↪→ brown” , ” darkgreen ” , ” green ” , ” darkorange4 ” , ” darkorange ” , ” blue ”

↪→ , ” co rn f l owe rb lue ” ) , xpd = TRUE, legend=c ( ” Or i g i na l 90” , ”

↪→ Pred icted 90” , ” Or i g i na l 75” , ” Pred ic ted 75” , ” Or i g i na l 60” , ”
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↪→ Pred icted 60” , ” Or i g i na l 50” , ” Pred ic ted 50” , ” Or i g i na l 45” , ”

↪→ Pred icted 45” ) , pch=c ( 16 , 1 , 16 , 1 , 16 , 1 , 16 , 1 , 16 , 1 ) , t i t l e=”

↪→ Angles ” )

dev . of f ( )

#PC1 AND PC3

pc <− c ( 1 , 2 )

png ( f i l e = ” Pred i c t edonOr ig ina l 1 3 . png” , width = 1000 , he ight =

↪→ 600)

par ( mai=c ( 1 . 2 , 1 . 2 , 1 . 2 , 1 . 8 ) )#bottom , l e f t , top , r i g h t

plot ( pred . 4 5 [ , 1 ] , pred . 4 5 [ , 3 ] , col=” corn f l owe rb lue ” , pch=1, xlim=c

↪→ (−4 ,4) , yl im=c (−2 ,2) , ylab=”PC3 (20.7%) ” , xlab=”PC1 (35.3%) ” )

points ( pred . 9 0 [ , 1 ] , pred . 9 0 [ , 3 ] , col=”plum” , pch=1)

points ( pred . 7 5 [ , 1 ] , pred . 7 5 [ , 3 ] , col=”brown” , pch=1)

points ( pred . 6 0 [ , 1 ] , pred . 6 0 [ , 3 ] , col=” green ” , pch=1)

points ( pred . 5 0 [ , 1 ] , pred . 5 0 [ , 3 ] , col=” darkorange ” , pch=1)

points ( i r . pca 2$x [ , 1 ] , i r . pca 2$x [ , 3 ] , col=COLOR[SPP] , pch=16)

t i t l e ( main=” Pro jec ted Pred ic ted PCs ( Test Set = 20000) and

↪→ Or ig ina l Data ( Train ing Set = 10) us ing PC1 and PC3” )

legend ( ” t op r i gh t ” , i n s e t=c (−0.15 ,0) , col=c ( ” purple ” , ”plum” , ” red ” , ”

↪→ brown” , ” darkgreen ” , ” green ” , ” darkorange4 ” , ” darkorange ” , ” blue ”

↪→ , ” co rn f l owe rb lue ” ) , xpd = TRUE, legend=c ( ” Or i g i na l 90” , ”

↪→ Pred icted 90” , ” Or i g i na l 75” , ” Pred ic ted 75” , ” Or i g i na l 60” , ”

↪→ Pred icted 60” , ” Or i g i na l 50” , ” Pred ic ted 50” , ” Or i g i na l 45” , ”

↪→ Pred icted 45” ) , pch=c ( 16 , 1 , 16 , 1 , 16 , 1 , 16 , 1 , 16 , 1 ) , t i t l e=”

↪→ Angles ” )

dev . of f ( )

#PC1 AND PC4

pc <− c ( 1 , 2 )

png ( f i l e = ” Pred i c t edonOr ig ina l 1 4 . png” , width = 1000 , he ight =

↪→ 600)

par ( mai=c ( 1 . 2 , 1 . 2 , 1 . 2 , 1 . 8 ) )#bottom , l e f t , top , r i g h t

plot ( pred . 4 5 [ , 1 ] , pred . 4 5 [ , 4 ] , col=” corn f l owe rb lue ” , pch=1, xlim=c

↪→ (−4 ,4) , yl im=c (−2 ,2) , ylab=”PC4 (11.3%) ” , xlab=”PC1 (35.3%) ” )

points ( pred . 9 0 [ , 1 ] , pred . 9 0 [ , 4 ] , col=”plum” , pch=1)
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points ( pred . 7 5 [ , 1 ] , pred . 7 5 [ , 4 ] , col=”brown” , pch=1)

points ( pred . 6 0 [ , 1 ] , pred . 6 0 [ , 4 ] , col=” green ” , pch=1)

points ( pred . 5 0 [ , 1 ] , pred . 5 0 [ , 4 ] , col=” darkorange ” , pch=1)

points ( i r . pca 2$x [ , 1 ] , i r . pca 2$x [ , 4 ] , col=COLOR[SPP] , pch=16)

t i t l e ( main=” Pro jec ted Pred ic ted PCs ( Test Set = 20000) and

↪→ Or ig ina l Data ( Train ing Set = 10) us ing PC1 and PC4” )

legend ( ” t op r i gh t ” , i n s e t=c (−0.15 ,0) , col=c ( ” purple ” , ”plum” , ” red ” , ”

↪→ brown” , ” darkgreen ” , ” green ” , ” darkorange4 ” , ” darkorange ” , ” blue ”

↪→ , ” co rn f l owe rb lue ” ) , xpd = TRUE, legend=c ( ” Or i g i na l 90” , ”

↪→ Pred icted 90” , ” Or i g i na l 75” , ” Pred ic ted 75” , ” Or i g i na l 60” , ”

↪→ Pred icted 60” , ” Or i g i na l 50” , ” Pred ic ted 50” , ” Or i g i na l 45” , ”

↪→ Pred icted 45” ) , pch=c ( 16 , 1 , 16 , 1 , 16 , 1 , 16 , 1 , 16 , 1 ) , t i t l e=”

↪→ Angles ” )

dev . of f ( )

#####################3D P l o t s

pc1 . ro t <− i r . pca 2$ r o t a t i o n [ , 1 ]

pc2 . ro t <− i r . pca 2$ r o t a t i o n [ , 2 ]

pc3 . ro t <− i r . pca 2$ r o t a t i o n [ , 3 ]

row .PC <− nrow(PC)

col .PC <− ncol (PC)

out .PC1 <− c ( )

out .PC2 <− c ( )

out .PC3 <− c ( )

inne r .PC1 <− 0

inner .PC2 <− 0

inner .PC3 <− 0

i <− 1

j <− 1

for ( i in 1 :row .PC){
for ( j in 1 : 6 ) {

i nne r .PC1 <− i nne r .PC1+PC[ i , j ] *pc1 . ro t [ j ]

i nne r .PC2 <− i nne r .PC2+PC[ i , j ] *pc2 . ro t [ j ]
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i nne r .PC3 <− i nne r .PC3+PC[ i , j ] *pc2 . ro t [ j ]

}
out .PC1 [ i ] <− i nne r .PC1

out .PC2 [ i ] <− i nne r .PC2

out .PC3 [ i ] <− i nne r .PC3

inner .PC1 <− 0

inner .PC2 <− 0

inner .PC3 <− 0

}
png ( f i l e = ” Scatterplot3dLRNpca . png” , width = 1000 , he ight = 600)

par ( mai=c ( 1 . 2 , 1 . 2 , 2 , 1 . 8 ) )#bottom , l e f t , top , r i g h t

f i l e r $pco lo r [ f i l e r $True Angle==90] <− ”plum”

f i l e r $pco lo r [ f i l e r $True Angle==75] <− ”brown”

f i l e r $pco lo r [ f i l e r $True Angle==60] <− ” green ”

f i l e r $pco lo r [ f i l e r $True Angle==50] <− ” darkorange ”

f i l e r $pco lo r [ f i l e r $True Angle==45] <− ” co rn f l owe rb lue ”

with ( f i l e r , {
s c a t t e r p l o t 3 d ( out . PC1, out . PC2, out . PC3,

pch=16,

h i g h l i g h t . 3 d=FALSE,

type=”h” ,

main=”3D Sca t t e r Plot f o r Lead Round Nose B u l l e t s

↪→ (PC1, PC2, PC3) with V e r t i c a l L ines ” , c o l o r=

↪→ pco lor , xlab=”PC1 (35.3% var iance exp la ined ) ”

↪→ , z l ab=”PC3 (20.7% var iance exp la ined ) ” , ylab=

↪→ ”PC2 (25.5% var iance exp la ined ) ” )

legend ( ” t o p l e f t ” , i n s e t=c ( .0025 ,−0.0050) , # l o c a t i o n and

↪→ i n s e t

bty=”n” , cex =1 , , # suppress l egend box ,

↪→ s h r i n k t e x t 50%

t i t l e=” Angles ” ,

c ( ”45” , ”50” , ”60” , ”75” , ”90” ) , f i l l =c ( ” co rn f l owe rb lue ” , ”

↪→ darkorange ” , ” green ” , ”brown” , ”plum” ) )

})

dev . of f ( )

#end PCA LRN s c r i p t
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