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Abstract 

SPACE-TIME BLOCK CODING WITH IMPERFECT 
CHANNEL ESTIMATES  

by Dirk A. Baker 

Space-time block coding (STBC) is a method that combines diversity and coding without a 

corresponding increase in bandwidth and with little complexity in the receiver structures, 

thus making it an ideal candidate for improving wireless communication performance and 

increasing data rates in systems with bandwidth constraints. The performance of STBC 

using a Quadrature Phase Shift Keying (QPSK) signal constellation has been shown to 

provide approximately 10 dB of improvement over the case of uncoded (QPSK) 

transmission in Rayleigh fading at a bit error rate of 10-3. However, this performance was 

shown under the assumption that perfect channel state information (CSI) was available at 

the receiver.  In this thesis, the performance of space-time block codes is analyzed when 

the receiver must rely on noisy, or imperfect, estimates of the channel. The results 

generated are in the form of bit error rates with varying degrees of errors introduced into 

the magnitude and the phase of the channel estimates. It is shown that for a QPSK signal 

constellation the system is robust to errors introduced into the amplitude of the channel 

estimate, but exhibits extreme performance degradation with relatively minor errors in the 

phase of the estimate. In fact, as the error in the phase approaches 0.5 radians the 

performance breaks down completely for even large values of received signal-to-noise 

ratio. A pilot sequence estimation scheme will be shown through simulation to provide 

performance within 2 dB of the case of perfect CSI at half the data rate. 
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I n t r o d u c t i o n  

The field of wireless communications and networks has experienced explosive growth. The 

demand and purchase of cellular telephones is predicted to soon exceed the purchase and 

use of traditional wired telephones. The market for handheld devices that boast some form 

of wireless connectivity has skyrocketed and continued growth is predicted. Along with 

this rapid growth comes the consumer demand for more and better applications, improved 

performance, and increased data rates.  

     All these improvements must be accomplished under a considerable number of 

constraints. The wireless channel is by its nature random and unpredictable, and in general 

the performance of a device is poorer over a wireless channel than over a “wired” channel. 

The spectrum or bandwidth available to the service provider is often limited and the 

allotment of new spectrum by the federal government is often slow in coming. Also, the 

power requirements are that devices should use as little power as possible to conserve 

battery life and keep the products small. The designers for wireless systems face a two-part 

challenge, increase data rates and improve performance while incurring little or no increase 

in bandwidth or power.  

     Several different techniques have been discovered that can improve the performance of 

a wireless channel by providing multiple copies of a transmitted signal to the receiver. 

These multiple copies can be sent over different time slots, frequencies, or antennas. These 

techniques are known collectively as diversity.  

     Space-time block codes were devised as a means to provide antenna diversity by using 

multiple transmit and receive antennas. The space-time block codes were found to improve 

bit error rate performance dramatically without requiring an extensive increase in 

bandwidth or the design of overly complex receivers. In order to facilitate an understanding 

of the performance of space-time block codes it is useful to simulate the system to provide 

results to confirm the performance and validate the theoretical predictions.  

     It is the goal of this thesis to demonstrate the performance of space-time block codes. 

Initially, it will be assumed that the channel conditions are known exactly to the receiver 
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and the system simulated from this point of view. Finally the system will be tested under 

the assumption that some form of estimation technique was used to generate an imperfect 

estimate of the channel conditions.  

     The first two chapters of this thesis will introduce the background material necessary to 

be able to adequately describe space-time block coding. The first topic covered will be 

modulation theory. It is here that the concept of signal spaces is developed and the methods 

to calculate bit error rate performance of various modulation types in an Additive White 

Gaussian Noise (AWGN) channel. This is the channel model generally associated with a 

wired channel. The next topic will explain the nature of the wireless channel and the 

various methods that can be used to develop an accurate statistical model of the channel. 

The concept of diversity will be discussed in detail and the performance of certain 

modulation types in a Rayleigh fading channel will be presented.  

     The final two chapters will introduce space-time block codes and simulation results will 

be presented to show the bit error rate performance of a Quadrature Phase Shift Keying 

signal constellation used with space-time block coding. These results will be generated for 

the case of perfect channel state information at the receiver and the case of channel 

estimates used at the receiver.  
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C H A P T E R  1 :  M o d u l a t i o n  

Most communication systems in use today are digital communication systems. Whether 

they work directly with digital data coming out of some type of computing device or the 

inputs are analog waveforms that are sampled and quantized, the end product to be 

transmitted over some arbitrary channel is digital data. Most types of channels through 

which this data must travel, such as telephone wires, fiber optic cables, the atmosphere, 

etc., have certain characteristics and constraints that force the transmitted data to occupy a 

particular band of frequencies, or bandwidth. In order to convert the digital data available at 

the source into a signal that can be efficiently transmitted through the channel the data goes 

through a process called modulation.  

Modulation shifts the spectrum of the digital data, or baseband signal, in such a way as 

to create a bandpass signal. A bandpass signal is one in which the signal spectrum is non-

negligible only about some frequency fc, called the carrier frequency. For most systems, the 

carrier frequency is determined by a sinusoidal carrier waveform that is modulated by the 

baseband waveform to produce the transmitted signal. A common method for 

accomplishing this is to take a stream of digital information at baseband, filter the 

waveform, then mix it with a sinusoidal carrier. The sinusoidal carrier, generated by an 

oscillator, serves to shift the frequency of the baseband waveform into a spectrum suitable 

for transmission over the channel of interest. Figure 1.1 shows a simplified communication 

system with no source or channel coding. 
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bandpass waveform 
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Figure 1.1 General structure of an uncoded communication system 

 

 

 

1.1   Bandpass signal notation 

 

It is extremely important to be able to compare and contrast the advantages of different 

communication systems and techniques in order to be able to choose the best system for a 

given application. It would be convenient if we could compare two different systems that 

operate at different frequencies without having to account for the effects introduced by 

different carrier frequencies. This goal can be accomplished if we can represent bandpass 

signals as equivalent lowpass signals that retain all the necessary properties for evaluating 

the performance of the system. The following is a method for generating equivalent 

lowpass signals from bandpass signals based on the work in [Hay94].  

     The spectrum of a bandpass signal will be contained in a relatively narrow band of 

frequencies that are centered about the carrier frequency ± f c .  Figure 1.2 shows an 

example of the spectrum of an arbitrary signal s (t).  
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Figure 1.2 Magnitude of the Frequency Response of Bandpass Signal 

 

     First we take the positive frequency components in the signal S (f) and build the 

“analytic” signal 

                                                       S f u f S f+ =( ) ( ) ( )2                                                    (1.1) 

where u (f) is the unit step function and S (f) is the Fourier transform of s (t).  To get an 

expression in the time domain we can take the inverse Fourier transform and get 
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 then 

                                                       s t s t js t+ = +� � � � � ��                                                        (1.3) 

Since s+ (t) is still a bandpass signal we can translate it in frequency to get an equivalent 

lowpass signal s t
O
� �which can be described by the following equation 

                                                      
s t s t e j f tc

O
� � � �= +

− 2π

                                                        (1.4) 

     We can now describe s (t) three different ways. These are known as Complex Envelope, 

Quadrature, and Magnitude and Phase notation. In Complex Envelope notation 

                                                    s t s t e j f tc� � � �= −Re
O

2π                                                      (1.5) 

where s t
O
� � is a complex valued lowpass signal and Re ⋅  is the real part of the complex 

signal. 

 

 

     In Quadrature notation 

                                        s t x t f t y t f tc c� � � � � � � � � �= −cos sin2 2π π                                        (1.6) 

where x (t) and y (t) are real valued lowpass signals called the in-phase and quadrature 

components of s (t), respectively. 

     Finally, there is the Magnitude and Phase notation 

                                                 s t a t f t tc� � � � � �
 �= +cos 2π θ                                                (1.7) 

where a(t) and θ(t) are real valued lowpass signals known as the magnitude and phase of 

s(t). These three notations are related to each other and we can move from one 

representation to the other with the following equations 
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1.2 Signal Space Concepts 

 

In order to develop a general method for the generation, analysis, and reception of signals it 

is necessary to build a framework wherein signals of varying types can be represented in a 

similar manner. The idea behind signal spaces is to perform this very task. In order to 

understand signal spaces and their inherent usefulness we must first define several terms 

and conditions. A signal, which we will call x (t), is a function of time defined over the 

interval [a, b]. The inner product of two signals is expressed as x t x t1 2� � � �, , where 

                                        x t x t x t x t dt
a

b

1 2 1 2� � � � � � � �, = � ∗                                                     (1.9) 

Two signals are orthogonal if  

                                                x t x t1 2 0� � � �, =                                                                (1.10) 

The norm of a signal is expressed as x t� � , where 

                                          

x t x t x t

x t x t dt
a

b

� � � � � �

� � � �

=

= �
,

1

2

2
                                                          (1.11) 

 

 

The energy of a signal is described by the equation 
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Ε

Ε
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2

2
                                                         (1.12) 

 

A signal is considered to be normalized if it satisfies the following equations: 

                                                      
x t

x tx

� �
� � � �

=

= = =

1

1 1
2 2Ε

                                                (1.13) 

A signal may be expressed as  

                                                      x t w f ti
i

K

i� � � �=
=
∑

1

                                                         (1.14) 

where wi are constant weights or coefficients and fi (t) are basis functions from a complete 

and orthonormal set of basis functions. 

The dimensionality of a signal set,  

S s t s t s t s tM M= −1 2 1� � � � � � � �	 
, , , ,� , 

composed of basis functions from a complete orthonormal set of basis functions,  

F f t f t f t f tk k= −1 2 1� � � � � � � �	 
, , , ,� , 

is equal to K, the number of basis functions. 

     A set of basis functions F can be considered to be a complete orthonormal basis for a 

signal set S if it satisfies three conditions:  

1) Complete condition: All signals in the set S can be expressed as a linear 

combination of basis functions from the set F. 

2) Orthogonal condition: All pairs of basis functions are orthogonal so that 

f t f t i ji j i j� � � �, ,= ∀ ≠0       where  

3) Normal condition: All basis functions are normalized so that 

f ti � � = ∀1      i  

     The concept of using basis functions to represent any given signal in a set of signals 

leads to some simplifications that will make it convenient for analyzing systems.  
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     Now, any given signal can be represented as s t w f ti k k
k

K

� � � �=
=
∑

1

. For different signals in 

the set the values for wk will vary but the basis functions remain constant. This implies that 

the relevant information to distinguish one signal from another will be contained in the 

coefficients wk .  Therefore, we can represent the different signals in the set by a vector that 

contains the coefficients of the basis functions, so that si (t) is now equivalent to  

s = −w w w wK K1 2 1�  

Notice that the vector s above is shown in boldface type, this convention will be used 

throughout the rest of this thesis whenever we are dealing with vectors. 

     Having established the equivalence between a signal and its vector representation, a 

signal space can now be created from the vectors comprising a signal set. As a simple 

example we will develop the signal space representation for phase shift keying. In phase 

shift keying the general form for any signal is 

s t
T

g t
M

m f t
T

g t
M

m f tm
s

c
s

c� � � � � � � � � � � � � �= −�
��

�
�� − −�

��
�
��

2 2
1 2

2 2
1 2

Ε Ε
cos cos sin sin

π π π π
    (1.15) 

where g (t) is the signal pulse shape and 
2

1
π

M
m−� � , m = 1,2,…,M , is the phase. 

Let’s assume that the basis of this signal set consists of the following two functions 
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=

=
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sin

π

π                                                 (1.16) 

 

 

 

This means that each signal sm (t) will be represented as a two dimensional vector of the 

form 
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�
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s s

M
m

M
m

m m

s s

1 2

2
1
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1

 

  Ε Εcos sin
π π� � � �                       (1.17)  

where m = 1,2,…,M . 

In the case where M = 2 this system is called Binary Phase Shift Keying (BPSK) and when 

M = 4 it is called Quadrature Phase Shift Keying (QPSK), or 4-PSK. The signal space 

diagram for these two values of M can be seen in the figure 1.3 below.  

M = 2 M = 4 

 Es Es

Es

Es- - Es

Es- 

 

 

Figure 1.3 

 

 

The Euclidean distance between two signals, xi (t) and xj (t), is defined to be 

                                                 dij i j= − x x                                                      (1.18) 

where x xi j and  are the vector representations of the respective signals. 

Therefore, the Euclidean distance between two signals is nothing more than the distance 

between the points plotted on a signal space diagram.  
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In the case of M-PSK this can be shown to be 

                                        d
M

i j i jij s ij= − −�
��

�
��

�
��

�
�� ∀ ≠2 1

2Ε cos
π � �                                  (1.19) 

     The minimum Euclidean distance, denoted by dmin , is the smallest distance between 

pairs of signal points, or in the case of PSK it is the distance between adjacent signal points. 

To continue the above example for PSK 

                                               d
Msmin cos= − �

��
�
��

�
��

�
��2 1

2Ε π
                                           (1.19) 

 

 

 

1.3 Receiver Structures for Additive White Gaussian Noise Channels 

In order to determine the performance of a given type of modulation it is first necessary to 

determine the way in which the transmitted signal is to be received. A receiver can be 

separated into the front end, or demodulator, and the back end, or detector.  In this chapter 

we will examine two types of receiver front ends, one based on the use of correlators and 

the other on matched filters. We will also discuss two detectors, or decision rules, known as 

the Maximum a Posteriori and the Maximum Likelihood rule. 

 

demodulator detector 
output decision 

decision 
statistics 

received      
signal 

Figure 1.4 Generic diagram of a Receiver 
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     If we want to find an optimum implementation of a receiver we must first establish the 

representations of signals in the system and then figure out a method to decide which signal 

was sent given the signal available at the receiver. The receiver will be an implementation 

of the demodulation and decision rule. 

     Assume we will transmit a signal s (t) from the set  

 S s t s t s t s tM M= −1 2 1� � � � � � � �	 
, , , ,� , 

where s (t) is non-zero in the interval [0,T]. The transmitted signal is composed of weighted 

basis functions from the set  

F f t f t f t f tK K= −1 2 1� � � � � � � �	 
, , , ,� . 

Therefore, each transmitted signal is of the form 

        s t s f tm mk k
k

K

� � � �=
=
∑

1

                                (1.20) 

where 

s s t f t dtmk m

T

k= � � � � �
0

 

The signal available to the receiver will be the original signal corrupted by additive white 

Gaussian noise (AWGN). The received signal will be denoted as  

r t s t n t� � � � � �= +  

where n(t) is the AWGN process with two-sided noise spectral density 
No

2
 and s(t) is the 

transmitted signal. 

The noise can be represented as 

                                                         n t n t n f tk k
k

K

� � � � � �= ′ +
=
∑

1

                                           (1.21) 

where 

 n n t f t dtk

T

k= � � � � �
0
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and since ′n t� �  is orthogonal to all the possible transmitted signals s tm� � , it does not affect 

performance and can be dropped in further equations. The received signal can now be 

represented as 

                                                      

r t s f t n f t

r t s n f t

r t r f t

r s n

mk k
k

K

k k
k

K

mk k k
k

K

k k
k

K

k mk k

� � � � � �

� � � �

� � � �

= +

= +

=

= +

= =

=

=

∑ ∑

∑

∑

1 1

1

1

( )

 

where   

                                   (1.22) 

Now we can deal exclusively with the vectors 

                                                           

s

n

r

r s n

=

=

=
= +

s s s

n n n

r r r

K

K

K

1 2

1 2

1 2

�

�

�
                                                       (1.23) 

 

     What we need the demodulator to do in the receiver is to provide our detector with the 

vector r of sufficient statistics. To accomplish this we can correlate the received signal with 

each basis function used to generate the transmitted signals. Figure 1.5 is a diagram of this 

type of correlation demodulator. Figure 1.6 shows an equivalent method, the matched filter 

demodulator, which accomplishes the same task using a bank of filters that are each 

matched to a specific basis function. The impulse response of each matched filter is simply 

the basis function reversed in time and slid over by time T, i.e. 

h t f T tk k� � � �= −  

For the output of the matched filter to be identical to the output of the correlator, it must be 

sampled at time t =T. 
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 � �
0

T

dt�
f1 (t) 

 

� �
0

T

dt�
f2 (t) 

 � �
0

T

dt�
fK (t) 

received 
signal 
r (t) 

 

r1 

r2 

rK 

 

Figure 1.5 Demodulator using a bank of Correlators 
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r (t) 

sample at time 
       t = T 
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rK 

 
f1 (T-t) 

f2 (T-t) 

fK (T-t) 

 

Figure 1.6 Demodulator using a bank of Matched Filters 
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After the signal has been received and demodulated the remaining vector r can be used to 

calculate the estimate of the transmitted signal �s , and the probability that a given estimate 

is equal to the original signal s that was transmitted. If the probability of a symbol error is 

                                                                Ps = ≠Pr �s s                                                     (1.24) 

and the probability that a given signal si (t) will be transmitted is pi, i = 1,2,…,M,  then the 

goal of the optimal receiver is to choose an estimate that will minimize Ps . This can be 

accomplished by choosing as an estimate �s s= m , such that 

Pr Prs r s rm i i m
 � 
 �> ∀ ≠            

or using Bayes rule 

Pr
Pr Pr

Pr
s r

r s s

rm
m m
 � 
 � � �
� �=  

we can now express 

                                                   
Pr Pr Pr Pr

Pr Pr

r s s r s s

r s r s

m m i i

m m i ip p i m


 � � � 
 � � �

 � 
 �

>

> ∀ ≠

   

   
                                 (1.25) 

 The last equation above is the maximum a posteriori, or MAP, rule of detection. It 

requires that the receiver knows the conditional probability that r was received given that s 

was transmitted and the probability that s would be transmitted. If the individual signal 

transmission probabilities p p pM1 2, , ,�� � are unknown to the receiver or if they are equal 

for all pi  then the receiver minimizes Ps  by choosing �s s= m such that 

                                                      Pr Prr s r sm i i m
 � 
 �> ∀ ≠                                          (1.26) 

 The above equation is known as the maximum likelihood, or ML, decision rule. 

The MAP and the ML decision rule will make the same decision as to which was the most 

likely transmitted symbol as long as the a priori probabilities of the transmitted symbols, 

pi , are equal. 

 In order to evaluate the conditional probabilities shown in equations 1.25 and 1.26 

we must first find the distributions of s and n. The vector s is composed of scalar 
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coefficients that are conditionally deterministic and therefore do not contribute to the 

random nature of the received vector. The noise vector n is composed of components that 

are Gaussian with a mean of zero and a variance 

                                                                   σ n
oN2

2
=                                                       (1.27) 

All the components of the noise vector n are identically distributed and are statistically 

independent from each other. Now we can find the conditional distribution p r s
 � . The 

mean of a random variable can be found by taking the expected value of the random 

variable. If we evaluate each element of the receive vector individually we find that 

                                                        

Ε Ε

Ε Ε

Ε

r s s n s

r s s n

r s s

k k k k k

k k k k

k k k

= +

= +

=

_                                              (1.28) 

where the variance of this conditional distribution is found to be 

σ σr s n
oN2 2

2
= =  

 

Since each noise element is a statistically independent gaussian random variable each 

component of the receive vector, rk conditioned on sk , is also a statistically independent 

gaussian random variable with a mean of sk  and a variance equal to 
No

2
. Therefore the 

probability density function, or pdf, of the vector r conditioned on sm can be broken down 

into the product of the pdf’s of the individual components of the two vectors as shown by 

                                                           p p r sm k mk
k

K

r s
 � 
 �=
=
∏

1

                                           (1.29) 

In order to evaluate this it is necessary to know the pdf of a gaussian random variable 

which is given in [Gar94] as 

                                                        p x
x m� � � �=
−�

��
��

�
��
��

1

2 2

2

2πσ σ
exp                                   (1.30) 

where  is the variance of  and  is the mean of σ 2 x m x. 
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Now we can evaluate the conditional pdf by using the pdf of equation 1.30 in equation 1.29 

to yield the following  

                                                

p
N

r s

N

p
N

r s

N

m

ok

K
k mk
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m

o

K
k mk

ok

K

r s

r s


 � � �


 �
� �

� �

= −
−�

��
��

�
��
��

= −
−�

��
��

�
��
��

=

=

∏

∑

1

1

1

2

2

2

1

π

π

exp

exp

                         (1.31) 

 

     The MAP decision rule can be implemented by designing a system to choose as its 

estimated symbol, �s , whichever vector s that maximizes the conditional pdf of the received 

vector. This can be expressed in an efficient mathematical form as 

                                                         
� args

s
r s=

∈
 max

m

m m

S
p p
 �� �

                                         (1.32) 

where �s  is the estimate of the transmitted signal vector and S  is the set of all possible 

transmitted signal vectors. The above ‘arg max’ operator means to set �s  equal to the 

possible transmitted signal vector that maximizes the function inside the brackets. If we 

substitute equation 1.31 into 1.32 and simplify we will get an equation we can use to design 

an optimal MAP receiver. 

 

� arg exps
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now take the natural logarithm of both sides 



 

 18 
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Note that the term  and the term  are common to all possible received signal

vectors and can therefore be discarded.

K
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This is the equation we will use to build the MAP receiver. In order to get the term zm , 

z s rm mk k
k

K

=
=
∑

1
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It is possible for the receiver to use M correlators to correlate the received signal against all 

possible transmitted signal vectors. However, for a more efficient implementation it is 

necessary to only correlate the received signal, r(t), with each possible basis function, f ti � � , 

and then do a vector-matrix multiply to get the inner product between the signal vectors 

and the received vector. The vector-matrix multiply will follow the equation 

z Sr=  

where r is the received vector and S is a matrix whose rows are the signal vectors of each 

possible transmitted signal as shown below 

S

s

s

s

1

2

M

=

�

�

����

�

�

�����
 

The new demodulator outputs will then be the statistics zm , m = 1,2,…M. At this point, it is 

necessary for the receiver to take into account the a priori probabilities of the transmitted 

signals and their respective energies, before choosing the largest of the generated metrics 

and setting �s  equal to the transmitted signal corresponding to the chosen metric. Figure 1.7 

is a diagram of the complete receiver implementing the MAP decision rule with a bank of  

K correlators. 
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Figure 1.7 Receiver implementing the MAP rule 

 

 

 

In the above receiver, if the probabilities that a signal was transmitted are equal or 

unknown, we can remove the terms that account for the a priori probabilities of the signa ls, 

N
po

m2
lnb g , and create a ML decision rule receiver. In the case that the energies of each 

transmitted signal are equal, e.g. M-PSK, then we can drop the Em terms from the receiver. 

So, for  M-PSK with equal pi the output decision is based solely on the metric zi.  

 

1.4  Performance of Modulation types in AWGN 

The primary function used in this thesis to analyze the performance of various systems is 

the Bit Error Rate (BER) or Symbol Error Rate (SER) of a given modulation type over a 

given channel. In this introductory chapter we are analyzing the performance of various 
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standard modulation types in the presence of AWGN. The SER of a given modulation type 

is dependent on the Euclidean distance between signal points on its respective signal space 

diagram. This means it is independent of the choice of basis functions. For many 

modulation types it is extremely difficult to obtain a closed form solution to the BER or 

SER of the system because such an expression requires integration over irregular shaped K-

dimensional regions. It becomes convenient to use a different technique that can provide an 

upper bound on the probability of error and is much easier to calculate. The predominant 

technique to simplify these calculations and provide an upper bound on error probability is 

known as the Union Bound. A brief explanation of the Union Bound is found in [Pro95], 

and its relationship to Euclidean distance will now be shown. 

 

     Earlier in this chapter it was shown that symbol error probability could be found using 

the relationship 

                                                          
P

P p

s

s i
S

i

i

= ≠

= ≠ =
∈
∑
Pr �

�

s s

s s s s
s

Pr                                         (1.34) 

The probability inside the summation in equation 1.34 is found by integrating the pdf of the 

received signal given that signal si was transmitted, which was found in equation 1.31, over 

all the regions in the signal space except that region corresponding to the ith signal. This 

relationship can be described by 

                                                                                        Pr  �s s s s r s≠ = = �i i

R

p dr
i


 �                                                      (1.35)                             

 

where Ri is all the decision regions in the signal space except the one corresponding to si . 

The union bound is used at this point to approximate the above integral, which is an 

integral over a large boundary with arbitrary shape, by using a series of smaller integrals 

over more easily defined regions. In the course of this approximation it is generally 

necessary to integrate over the same regions more than once, this is the reason this 

technique is only an upper bound on the error probability. Using this technique will involve 
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replacing the probability density function with a probability using metrics. The metric used, 

Zj, corresponds to the decision metrics used in the MAP or ML decision rules. 

 

So, the union bound yields 

P p dr Z Zs i
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if we consider the ML decision rule, then 
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inside the parentheses multiply by - 2 and add rk
2                           

                        Pr PrZ Z s s r r s s r rj i jk jk k k
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Pr PrZ Z s r s rj i jk k
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Notice that the terms inside the summation are squared Euclidean distances, therefore 

Pr Pr , ,Z Z d dj i j i≥ = ≤2 2r s r s�  � �  

we can simplify this to 

Pr Pr , ,Z Z d dj i j i≥ = ≤r s r s�  � �  

now substitute this expression back into the express for Ps 
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                                                (1.37) 

Equation 1.37 is the Union Bound for AWGN channels and provides a fairly tight bound 

for many modulation types for reasonably large values of Signal to Noise Ratio. In order to 

calculate bit error rates from the symbol error rate Ps, it is first necessary to know the way 

in which bits are mapped to the signals in the set. For Phase Shift Keying it is not 

uncommon to use a gray code to map bits to symbols. This means that adjacent symbols 

will differ in only one bit position. For example, in QPSK, signal one might map to data 

(10) and the adjacent signal two would map to data (11). Since it is most likely that a 

symbol error will occur between adjacent signals then a symbol error will result in only a 

single bit error. Therefore, the bit error rate for M-ary PSK using the Union Bound can be 

shown to be 

                                                                P
P

Mb
s≈

log2

                                                     (1.38) 

 Figure 1.8 plots the curves of estimated Bit Error Rate versus received SNR per bit for 

various types of M-ary Phase Shift Keying. These curves were generated using the Union 

Bound. As can be seen, the energy efficiency decreases with increasing M, although larger 

values of M correspond to better bandwidth efficiency. 
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Figure 1.7 Plots BER vs. SNR of M-PSK in AWGN channel 

 

    

1.5  Chapter Summary 

The purpose of this chapter was to introduce the concept of signal spaces and signal vectors 

and how they are used to design receivers and determine performance of different 

modulation types. M-ary Phase Shift Keying was defined and the Euclidean distance 

determined between points in these signal constellations. 

Using the concept of signal spaces we derived the optimal receiver for digital modulation 

over an AWGN channel. We used this receiver structure along with the Euclidean distances 

to determine the bit error rate performance of different modulation types. 

     The Union Bound was derived and the expression for the BER of arbitrary modulation 

types was shown. The Union Bound was then used to calculate the BER of M-ary PSK. 
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Chapter 2  The Wireless Channel and Diversity 

Communications in a wireless environment poses many more problems for the system 

designer than that posed by a wired system, where the main concern is to compensate for 

degradation due to additive white Gaussian noise.  In the wireless environment we must 

account for attenuation of the signal over distance, shadowing caused by obstructions 

between the transmitter and receiver, and fading due to the constructive and destructive 

interference of multiple reflected paths. Figure 2.1 depicts the effects of the wireless 

channel on propagating signals in its environment.  

There is a large loss in received power that is proportional to the square of the 

distance between the transmitter and receiver. This loss is normally known as free space 

loss.  

 

Figure 2.1  Effects on received signal power in a wireless or fading channel 
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There is also some gradual variation about the free space loss due to variable 

numbers of objects in the signal path at different locations and times. This large-scale 

variation will be modeled as Log-Normal shadowing.  

The final component of signal degradation is the rapid fluctuation in signal power 

primarily due to the relative motion between the receiver and transmitter. This is described 

as small-scale fading and can be modeled in several ways. Each of these three effects will 

be discussed in this chapter in order to understand and model the wireless channel.   

 

 

2.1  Large-Scale Path Loss 

At a given separation between a transmitter and receiver there is a mean loss in signal 

strength that is due to the free space path loss. In addition to this there is some additional 

loss suffered by the signal if it encounters any obstructions before reaching the receiver. 

The physical phenomena that primarily degrade the signal are reflection, diffraction, and 

scattering. Reflections occur when the signal, which is an electromagnetic wave, is 

traveling in a given medium and impinges on another medium with different electrical 

and/or magnetic properties. When this occurs some portion of the signal will be transmitted 

and some will be reflected. Diffraction is the principle that allows a signal to reach a 

receiver that is hidden from the transmitter by some obstruction such as a building. The 

strength of the signal will decrease rapidly when this situation occurs but some portion of 

the signal can often still be received at a level that can be processed by the receiver. When 

the size of an object between a transmitter and receiver is smaller than a wavelength, or if it 

has a rough surface, the signal that strikes this surface will be scattered. 
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2.1.1 Mean or Exponential Path Loss Model 

To model the mean signal strength at a given distance between a transmitter and receiver 

there are two options. Measurements can be taken at the prescribed distance in various 

places to build up an experimental model to describe a particular system, or a free space 

model can be assumed to be an accurate representation of the mean.  

The free space model assumes that there are no obstructions in the signal path and 

that the signal travels in a single continuous medium. Under these conditions, 

electromagnetic theory can be used to derive an equation for the received signal power at a 

given distance from the transmitter. This equation is known as the Friis transmission 

formula [Che83]. 

 

                                                P d
PG G

d L
r

t t r( ) =
λ

π

2

24b g                                                   (2.1)    

Where P dr b g  is the received power, d is the distance in meters, Pt is the transmitted power, 

Gt and Gr are the transmit and receive antenna gains, λ is the wavelength in meters, and L 

is a factor that is related to losses in the receive system, such as transmission line 

attenuation, but not due to the propagation effects.                           

  

The second option is to use experimental data to model the mean path loss in a 

given system. The path loss of a system is the loss in signal strength from the transmitter to 

the receiver over a certain distance. This is represented in the equation 

                                      PL d
P

P d
t

r

b g b g=                                                              (2.2) 
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in decibels this is 

PL d
P

P d
t

r

b g b g[ ] logdB =
F
HG

I
KJ10 10  

The Friis free space equation can be used to help calculate the path loss but it is 

important to note that this equation is only valid in the far field of the antenna. It is 

convenient to measure the loss at a reference distance near to the transmitting antenna but 

still in the far field. This distance is referred to as d0 in the path loss equations. In order to 

calculate path loss at an arbitrary distance, a ratio between the actual distance and the 

reference distance is used, as shown in the following  

                                        P d P d
d
d

n

r rb g b g= F
HG

I
KJ0

0                                           (2.3) 

The equations for path loss in decibels at a distance d, can now be shown to be  

PL d PL d n
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10 log  
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                                         PL d
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I
KJJ

log
π
λ

                      (2.4) 

The path loss exponent, n, in the above equation is dependent on the type of 

environment in which the signal is propagating. If we assume that the medium is free space 

then the value of n is two. For practical purposes the value of n must be found for  each 

specific environment, but has been determined experimentally to generally conform to the 

relation 

2 4≤ ≤n  
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Table 2.1 below shows some measured values of n in different environments taken from 

[Rap96]. 

 

 

Table 2.1 Path Loss Exponents for Different Environments 

Environment Path Loss Exponent, n 

  Free Space 2 

Urban area cellular radio 2.7 to 3.5 

Shadowed urban area cellular radio 3 to 5 

In building line-of-sight 1.6 to 1.8 

Obstructed in building 4 to 6 

Obstructed in factories 2 to 3 
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2.1.2 Log-normal Shadowing 

It is important to note that equation 2.4 gives the average path loss of a signal at a distance 

d between the transmitter to the receiver. The problem with this equation is that it fails to 

take in to account the differences in terrain that can occur in different systems that operate 

over the same distance. This leads to differences in measured signal strength loss in various 

systems even when the separation between the transmitter and receiver are the same. In 

order to account for this variability, experimental results have shown that accurate path loss 

calculations can be made if equation 2.4 is modified to include a random variable Xσ .  

According to [Skl97], Xσ can be modeled as a Gaussian random variable (when 

measured in decibels) with a mean of zero and a standard deviation of σ (also measured in 

decibels). This yields the log-normal shadowing equation for path loss calculation 

PL d PL d n
d
d

Xb g b g[ ] logdB = +
F
HG

I
KJ +0 10

0

10 σ  

The values for Xσ are found through measurements made at the site of interest and can 

have standard deviations that are as high as ten decibels. 

 

2.2 Small-Scale Path Loss 

 
While large-scale path loss describes the loss experienced by a signal as it travels over long 

distances, there are still some very rapid fluctuations that occur over very short distances or 

during short time intervals. Small-scale fading is the name given to these rapid fluctuations 

in received signal power. The four main factors that influence small-scale fading are 

multipath propagation, relative motion between the receiver and transmitter, relative 
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motion of objects between the receiver and the transmitter, and the relationship between the 

signal bandwidth and the bandwidth of the channel [Rap96]. 

Multipath refers to the fact that a signal sent out from a transmitter will encounter 

many objects that will reflect and/or scatter the signal in various directions. This results in 

many copies of the original signal reaching the receiver. The different copies will arrive at 

the receiver at different times, with different signal strengths and phases. When the 

received signal is composed of many reflected signals and one line-of-sight signal, the 

envelope of the signal due to fading has a Rician probability density function. When the 

line-of-sight, or specular, component is not there then the pdf of the received envelope is 

Rayleigh distributed.  

In this thesis small-scale fading will always be assumed to be Rayleigh distributed. 

This is because the Rayleigh pdf is more mathematically tractable than the Rician pdf and 

also because Rayleigh fading represents the worst case fading for the purposes of system 

design. The distribution of the envelope of the Rayleigh faded signal is expressed as 

p r

r r
r� � = −

���
��� ≥

�
��
��
σ σ2

2

22
0

0

exp   for 

                        otherwise

 

where r is the amplitude of the envelope of the received signal, and 2 2σ is the pre-detection 

mean power of the multipath signal. The pdf of several Rayleigh random variables with 

various values of σ  is shown in figure 2.2. 
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Figure 2.2  Distribution of a Rayleigh random variable 

 

 

 

2.2.1 Impulse Response Model 

The wireless channel can be modeled as a filter with a time varying impulse response. This 

impulse response contains all the necessary information needed to account for the small-

scale propagation effects. This model can be broken down into two distinct channel 
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characteristics, the time-varying nature and the time-dispersive nature of the channel. The 

impulse response of a wireless channel can be shown to be 

h t a t j f t t ti c i i i
i

N

, expτ π τ φ δ τ τ� � � � � � � �
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 �= + −
=

−

∑ 2
0

1

 

if we express 

θ π τ φi c i it f t t� � � � � �
 �= +2  

and 

α θi i it a t j t� � � � � �	 
= exp  

then 

h t t ti i
i

N

,τ α δ τ τ� � � � � �
 �= −
=

−

∑
0

1

 

In the above equation a ti � �  represents the variation in the envelope of the signal 

and is a Rayleigh random variable, θ i t� �  is a uniform variable representing phase changes, 

and α i t� �  is a complex Gaussian random variable. 

 

2.2.2   Time Dispersive Nature of the Wireless Channel 

In order to examine the time-dispersive nature of the wireless channel we first assume that 

the impulse response is time-invariant. The impulse response is no longer a function of 

time and can be represented as 
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Since it is fairly difficult to measure the impulse response h τ� � , a more commonly used 

measure is the power delay profile, or h τ� � 2
. 
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The channel model is normalized so that the initial delay, τ 0 , is equal to zero. Any 

delay that occurs after the arrival of the first component is referred to as excess delay. The 

following parameters are used to describe the behavior of the time-dispersive channel: 

Maximum Excess Delay, Mean Excess Delay, and RMS Delay Spread. 

The Maximum Excess Delay corresponds to the delay associated with the last 

arriving signal component, or 

τ τN − −1 0  

Mean Excess Delay is equivalent to the normalized first moment of the power delay 

profile. In equation form this is 
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To calculate the rms delay spread, first take the normalized second moment of the 

power delay profile  

τ
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or  

Then use this value, τ 2 , along with the normalized first moment, τ , to find the rms delay 

spread 

σ τ ττ = −2 2� �  

All of the parameters dealt with thus far are in the time domain and determine 

whether or not the wireless channel is time-dispersive. In the frequency domain the channel 

is said to exhibit frequency-non-selective, also called flat, or frequency-selective fading. 

The term coherence bandwidth refers to the effective bandwidth of the channel that affects 

a signal in a similar fashion. In other words the fading is relatively constant over a certain 

band of frequencies. If the entire frequency content, or bandwidth, of the transmitted signal 

falls within the coherence bandwidth of the channel then all the frequency components of 

the signal are effected in the same fashion. This is referred to as flat fading. On the other 

hand, if the bandwidth of the transmitted signal is larger than the coherence bandwidth of 

the channel then different frequency components will experience various levels of fading. 

A channel that acts in this way is known as a frequency-selective channel.  

The coherence bandwidth can be calculated from the rms delay spread. Depending 

on the assumption of how correlated the fading should be, fifty percent or ninety percent 
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correlation, there are two equations for coherence bandwidth [Rap96]. The two equations 

are shown below. 

50%  correlated:   

90%  correlated:   

B

B

c

c

≈

≈

1

5

1

50

σ

σ

τ

τ

 

  If Bs  is the bandwidth of the transmitted signal and Bc  is the coherence bandwidth of the 

channel, then figure 2.3 shows the different cases of fading.  

Bc 

Bs 

Flat Fading frequency 

Bc 

Bs 

Frequency-selective Fading frequency 

 

Figure 2.3  Representation of Flat or Frequency-Selective Fading 
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2.2.3   Time Varying Nature of the Wireless Channel 

In the previous section the channel was assumed to be time-invariant in order to examine 

the time-dispersive nature of the channel. In this section we will assume that all the signal 

components arrive at the same moment rather than as a series multipath components. The 

impulse response is no longer a sum of components arriving with variable delays, rather it 

is a single function of time and can be represented as 

h t t,τ α δ τ� � � � � �=  

This is valid if we assume that 

στ = Ts  

where  is the transmitted symbol period and  is the RMS Delay Spread.Ts στ  

In order to understand the time varying parameters of the channel it is necessary to 

look at the Doppler shift and how it is calculated. Assume that a base station, located at 

some point z, is broadcasting a signal to a mobile station that is moving from point x to 

point y with a constant velocity v. This situation is depicted in figure 2.4 below.  

d 
x y 

velocity, v 

z 

θ 

L1 

L2 

 

Figure 2.4  Physical description of relative motion between a transmitter and receiver 
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The first step is to calculate the path length difference between L1 and L2. This difference is 

labeled ∆l . The Doppler frequency, fd , will now be found using the information in figure 

2.4 above. 

∆l L L= −1 2  

∆
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∆ ∆

l d
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Now calculate the angular frequency measured in radians per second using 
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Then, the Doppler frequency in hertz is 
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When the mobile channel exhibits a time varying nature the result is a widening of 

the spectral content of a transmitted signal. The amount of widening, or spreading, is 

dependent on the Doppler frequency. The Doppler spread, BD , is the parameter used to 

describe this broadening of frequency content and is described by 

B fD d= 2  

 

The maximum Doppler frequency occurs when cos θ� �  is equal to one and is shown to be 

f
v

d max = ± λ
 

 

Coherence time, Tc , is another parameters used to characterize the time varying 

nature of the channel. It is essentially a statistical measure of the time over which the 

impulse response of the channel does not vary. In essence, this means that if two signals are 

received within a time that is less than the coherence time then those signal amplitudes will 

be highly correlated. The coherence time is inversely proportional to the Doppler spread 

leading to the relationship 

                                                                T
fc

d

≈ 1

max

                                                           (2.5) 

If the coherence time is defined to be the interval over which the correlation of two signals 

in time is greater than 0.5 then  

                                                               T
fc

d

≈ 9

16π max

                                                     (2.6) 
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According to [Rap96], a commonly used method for determining coherence time is to take 

the geometric mean of equations 2.5 and 2.6 to arrive at 

T
f

T
f

c
d

c
d

=

=

9

16

0 423

2π max

max

.
 

 

 

2.3 Multiple input Multiple output (MIMO) Channels 

In the previous chapter and thus far in this chapter we have only considered channels with a 

single input and a single output. In order to analyze or discuss diversity techniques that 

involve the use of multiple antennas it is necessary to first understand the multiple input-

multiple output (MIMO) channel model. Figure 2.5 represents the basic layout of a MIMO 

channel model.  

The major difference between the single input-single output, or SISO channel, and 

the MIMO channel is the use of vector or matrix notation. In the MIMO channel we no 

longer have a single input, rather, we have a vector of N input signals. At the output there is 

a vector of M output signals. To take into account the fading coefficients between transmit 

and receive antenna pairs it is necessary to use a N M× matrix, where α n m,  is the complex 

fading gain between transmit antenna n and receive antenna m . The last component to 

consider is the noise process, which in this case is also a vector. The noise is represented as 

a vector of M components, each of which is a sample of AWGN.  
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Figure 2.5  Generic model for a MIMO channel 

 

The following shows the design of the input vector s , output vector r , noise vector n , and 

the fading coefficient matrix H . 

s = s s sN1 2 �
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n = n n nM1 2 �  

r = r r rM1 2 �  

The output is related to the input and the channel parameters by the following equation 

r sH n= +  
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2.4 Diversity 

Diversity is a class of techniques that seek to improve performance in fading channels by 

providing the receiver with multiple copies of the transmitted signal, including spatial, 

temporal, and frequency diversity. There are several different methods for generating 

multiple signal copies. The same signal can be sent to multiple receive antennas, in effect 

creating multiple channels. This first technique is a form of Spatial diversity. Time, or 

temporal, diversity is a process by which a signal is repeated any number of times over 

multiple time slots. Forward error correction (FEC) can be considered a type of temporal 

diversity. Frequency diversity is achieved by sending a signal simultaneously over multiple 

frequencies. 

In this thesis we are primarily concerned with the idea of spatial diversity, 

specifically with antenna diversity, and the combination of temporal and spatial diversity. 

In the wireless channel small-scale fading has been shown to produce highly varying levels 

of signal degradation over relatively small distances or over small time periods. This can be 

exploited in a relatively simple and straightforward manner. If two antennas are set a small 

distance apart it is highly probable that if one of the antennas is in a deep fade the other 

antenna will have a much stronger signal. If the outputs of these two antennas can be 

somehow combined in one receiver performance can be greatly improved.  

The way in which the multiple received signals are combined determines the 

performance of the different types of antenna diversity implementations. If the strongest 

signal is chosen and the weaker dropped completely, this is known as selection combining. 

If all the received signals are added together to produce a composite signal the technique is 

called Equal Gain combining. Equal Gain combining performs better than selection 

combining but the performance could be increased even more if the different receive 

signals were weighted in such a way that the total received signal to noise ratio was 

maximized. Maximal Ratio combining seeks to weight the individual received signals in 

order to generate a signal with the optimal SNR. 
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The performance of any L-branch diversity technique in a fading channel can be 

derived using a rather simple process. The first step in this process is to establish the 

instantaneous SNR on an arbitrary branch � . For Rayleigh fading channels, this 

instantaneous SNR, known as γ
"
, is a random variable with an exponential probability 

density function (pdf). 

f forγ γ γ γ
"

" "

� � = −���
���

≥1
0

Γ Γ
exp        

where 

Γ
" "
= E γ� � 

From the above pdf we can establish the cumulative distribution function, or CDF, by 

integrating the pdf. 

F z f d

F z
z

z

z

γ γ

γ

γ γ
" "

"

"

� � � �

� �

=

= − −���
���

≥

−∞�
1 0exp

Γ
   for 

 

The above CDF represents the probability that the received SNR on branch �  is below a 

certain threshold defined as z. In equation form this is 

F z zγ γ
" "� � = ≤Pr  

The next step is to determine the probability that the received SNR of the signals 

combined from all L branches falls below the previously established threshold z. The 

received SNR of all combined branches is referred to as γ c . In this thesis we are primarily 

concerned with the performance of Maximal Ratio Combining, or MRC. Therefore, for the 

calculation of all subsequent parameters in this example we will assume that MRC is the 
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diversity technique under consideration. The goal of MRC is to maximize the combined 

received SNR, therefore in this case 

γ γc

L

=
=
∑ "

" 1

 

The next step is to find the pdf and CDF of γ c . It is important to note that the pdf’s 

of each of the L branches are assumed to be independent. This fact allows us to calculate 

the pdf of γ c  as merely the convolution of the L individual pdf’s. 

f f f f
c Lγ γ γ γγ γ γ γ� � � � � � � �= ∗ ∗ ∗

1 2
�  

From the theory of probability is has been shown that the sum of L independent and 

identically distributed exponential random variables is an L-erlang random variable 

[Gar94]. Therefore if the L branches have an equal average SNR ,Γ Γ
"

�=  for all , then the 

pdf of γ c  is 

f
Lc

L

Lγ γ
γ γ

γ� � � �=

−���
���

−
≥

−1

1
0

exp

!
Γ

Γ
    for   

F z f d

F z
z

k
z

c c

c

z

k

γ γ

γ

γ γ� � � �

� � � �

=

= − −���
���

�
��

�
��
−

≥

−∞
−

�

∑1
1

0

1

exp
!Γ

Γ
z

    for 
k=1

L
 

In order to get to a BER for the diversity system it is first necessary to calculate the 

conditional BER dependent on γ and the type of modulation used.  

 



 

 45 

For this example we will use the BER of BPSK or QPSK, which is 

P Qb γ γ� � �  = 2  

This conditional BER can be averaged over all possible values of γ  to arrive at the 

average BER for the combined signals in the diversity system, thus providing the BER of 

the diversity system in a fading channel. In our case we are using BPSK or QPSK and 

MRC, therefore the average BER is 

P E Pb b= γ� �	 
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where 

µ =
+
Γ
Γ1

 

In the above example we made the assumption that the average SNR in each branch 

was equal for all branches. If this is not the case then the BER is found to be the following 

in [Sim00], 
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The performance of BPSK modulation in a Rayleigh fading channel can be seen in 

figure 2.6 below. Notice that with L=2 branch Maximal Ratio Combining the performance 
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improves by almost 11dB. Using more than two antennas improves performance even 

more, although the improvement obeys a “law of diminishing returns”, meaning the 

improvement is less with each additional antenna. 
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Figure 2.6 Performance of BPSK in Rayleigh fading 
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2.5 Chapter Summary 

In this chapter we described the factors that affect signal propagation in a wireless 

environment. The concepts of large-scale path loss, or shadowing, and small-scale fading 

were introduced and used to build a statistical model of the wireless channel that can be 

used to calculate the performance of different modulation types in fading channels. The 

type of fading that was of primary concern in this chapter was Rayleigh fading, which 

could be described as the envelope of a complex Gaussian random variable. The 

performance of certain modulation types in Rayleigh fading was shown to be much worse 

than in AWGN channels. 

      The topic of diversity was also covered and the performance of Maximal Ratio 

Combining (MRC) was derived. Using two antenna diversity and MRC the performance of 

BPSK in Rayleigh fading was shown. The improvement using two branch MRC over the 

case of BPSK with no diversity was shown to be almost 12dB at a bit error rate of 10-4.  
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C H A P T E R  3 :  S p a c e - T i m e  B l o c k  C o d e s  

One of the goals of modern wireless communication systems is to increase the data rates of 

users without excessive bandwidth expansion. Spectrum is sometimes limited while users 

continue to demand more data intensive applications, like wireless Internet access, 

videoconferencing, and streaming multimedia. In order to compensate for the extreme 

signal degradation that can occur in wireless channels some type of diversity is essential to 

the functioning of a wireless communication system. It is not uncommon for a wireless 

system to employ both diversity techniques and channel coding for error detection and/or 

correction. An effective diversity technique is the use of multiple antennas to provide an 

improvement in reception without drastically reducing the data rate or increasing the 

bandwidth. The initial implementations of antenna diversity consisted of using two or more 

receive antennas. This is a practical technique to use at the base station in a cellular system 

but not nearly as practical for use in the mobile handsets. If each mobile handset were 

equipped with multiple receive antennas then the size and cost of each unit would increase 

beyond what is acceptable to the consumer. If multiple receive antennas cannot be used in 

the mobiles then diversity gain can only be achieved at the base station. 

     Research was then being conducted into the feasibility of achieving a suitable diversity 

gain by using multiple transmitting antennas. A simple scheme for achieving diversity gain 

without bandwidth expansion using two transmit antennas and any number of receive 

antennas was devised by S. Alamouti in [Ala98]. Another promising method to provide 

high data rates, good error performance, and minimal bandwidth expansion is Space-Time 

Coding. Space-Time coding was introduced in [Tar98] by Tarokh et al. The original space-

time codes were trellis codes. The codes developed provided maximum diversity gain, 

dependent on the number of antennas used, and good coding gain, depending on the 

number of states in the trellis. The complexity of the trellis-based codes is fairly high and 

increases exponentially with the number of states in the trellis. The performance of trellis-

based space-time codes in the presence of channel estimation errors and fading was 

examined in [Tar99a].  
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     It would be desirable to come up with a method to achieve maximum diversity gain but 

with minimal decoding complexity. Space-time block codes, as introduced in [Tar99b], are 

one such method. Space-time block codes are an extension of the simple scheme developed 

in [Ala98] to use an arbitrary number of transmit and receive antennas. Space-time block 

codes utilize a block coding method, as opposed to a trellis-based method, to eliminate 

much of the processing needed at the receiver. Since the block coding requires only linear 

processing at the receiver, the decoding can be done efficiently and quickly. Space-time 

block codes can be constructed for any type of signal constellation and provide full 

diversity gain at half the maximum possible transmission rate allowed by the theory of 

space-time coding. For real signal constellations, such as Pulse Amplitude 

Modulation(PAM), space-time block codes provide the maximum possible transmission 

rate allowed by the theory of space-time coding. 

 

3.1   General Theory 

The transmission model for the space-time block code system is taken from [Tar99b] and 

the rest of this section will define that model. In a space-time block coding system there are 

n transmit antennas and m receive antennas. At a given time slot t, n signals st
i  i = 1,2,…n, 

are sent simultaneously from the n transmit antennas. A block diagram of the transmission 

side of the system can be seen in figure 3.1. 

     The signal received at antenna j during time t is  

                                               r s nt
j

i j
i

n

t
i

t
j= +

=
∑α ,

1

.                                              (3.1) 

Where α i j, is the path gain between transmit antenna i and receive antenna j, and nt
j is the 

noise at receive antenna j. The channel is assumed to undergo flat-fading and the fading is 

independent between different transmit antennas. The path gains are considered to be 

independent samples of a complex Gaussian distribution with a variance of 0.5 per real 

dimension. The noise at the receiver is independent from the path gains and in the form of 
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additive Gaussian noise with a mean of zero and a variance equal to n/(2*SNR), where n is 

the number of transmit antennas and SNR is a ratio, not in dB. 

 

Figure 3.1 Transmission side of Space-Time Block Code system. 

 

 

The average energy is normalized to be unity for each symbol leaving each of the n 

transmitting antennas. This gives the energy of the received signal as n and SNR is 

measured at the receiver. The decoding for this system is rather simple and consists of 

minimizing the following metric, 

                                    r st
j
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−
===
∑∑∑ α ,

111

2

                                                      (3.2) 

over all possible combinations of transmitted symbols. A block diagram of the receiving 

side of this system can be seen in figure 3.2.  

     The encoding process is done based on the data rate the system requires. There is some 

signal constellation, used for modulation, which maps binary data to real or complex 

symbols. If there are 2b symbols in the signal constellation, then k b× bits will be brought 
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in to the modulator at one time slot. These k b× bits will be used to select k symbols that 

will be sent out over n transmit antennas simultaneously. 

 

Figure 3.2 Receiving side of Space-Time Block Code system. 

   

The rate of transmission is  

                                                   R
k

p
= ,                                                             (3.3) 

where k is the number of symbols that will have to be decoded and p is the number of time 

slots it takes to transmit all the symbols. The notation denoting the process by which 

modulation symbols are mapped to different antennas is a simple p x n matrix. An example 

is the encoder matrix  

                                            





−

= *
1

*
21

2

2
ss

ss
G . 

The ith row determines the symbols transmitted in time slot i, and the jth column 

determines the symbols transmitted from antenna j over all time slots. Several other 

encoder matrices were developed in [Tar99b] for various numbers of transmit antennas. 

The rate one half matrix used for three antennas is  
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There are several others in [Tar99b] for three and four transmit antennas. The decoding of 

the Space-time block code is performed by minimizing the metric shown in equation (3.1) 

above. However, this can be broken down into a simpler form where the metrics can be 

separated into several equations, each dependent only on a single transmitted symbol. For 

the specific case of the code defined by G2, the metric can be decomposed into two simpler 

equations. Each one needs only to be evaluated over the possible values that a single 

symbol can take on, rather than over combinations of symbols. The two equations for this 

case can be derived as follows: 

There are two time slots over which signals will be received at each receive antenna 

generating two received signals  r rj j
1 1 and . These signals can be shown to be 
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This can be shown in matrix form to be 
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where, for convenience, we have conjugated the equation for r j
2  so that the signals s s1 2 and  

don’t need to be conjugated. 

If we take the two received signals as shown in equation (3.4) and substitute into equation 

(3.2) then we have the new decision metric 

                                   r s s r s s
j
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1 11 1 21 2

2

2 11 2 21 1
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Next we can use the identity  

                                                        ξ ξ ξ2 = × ∗                                                               (3.7) 

to further expand the previous metric into the following two metrics which can be 

evaluated separately in order to simplify the decoding structure. 
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The above two equations are not complex and can be readily implemented. This is the 

benefit of space-time block codes over the trellis- based space-time codes, they provide 

maximum diversity gain with little complexity at the receiver. 

 

 

3.2   Performance with Perfect CSI 

In this section the performance of Space-Time Block codes with perfect channel state 

information(CSI) will be examined.  Space-Time Block codes were tested by building a 

simulation in MATLAB. The simulations were performed using G2 for the encoding 

matrix. The modulation types used were Binary Phase Shift Keying (BPSK) and 

Quadrature Phase Shift Keying (QPSK). The frame size was one hundred bits. The path 

gains between a particular transmit and receive antenna were assumed to be constant over a 

frame, and independent between different antennas. What this means is that the path gains 

are Rayleigh random variables that are uncorrelated between different transmit-receive 

antenna pairs, and the value for a particular path gain does not change over the 

transmissions in a single frame. The assumption of constant fading over a frame, called 

quasi-static fading, is justified if the data rate is high and/or the channel fades relatively 

slowly. In order to justify the assumption that the fading gains between antennas are 
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uncorrelated requires that the different antennas be physically separated by approximately 

ten wavelengths at a base station and three wavelengths at a mobile unit [Ala98]. The path 

gains were generated by taking samples from two Gaussian random number generators, 

each with a variance of 0.5, and adding the two together as an in-phase and a quadrature 

component to yield a complex number. These were multiplied by the transmitted symbols 

and combined at each receive antenna. The noise term was generated from a Gaussian 

random number generator with a mean of zero and a variance of 

n/(2*SNR).   

     The simulations were tested with two transmit antennas and one receive antenna, and 

also with two transmit antennas and two receive antennas. The results generated by the 

simulations are in the form of graphs of Bit Error Rate (BER) versus received signal-to-

noise ratio (SNR). In order to produce results with a fairly high degree of accuracy each 

value of BER for a specific level of SNR was calculated only after at least forty frame 

errors had occurred.   

     The results for the first case, two TX and one RX antenna, can be seen in figures 3. 

Figure 3 shows the bit error rate versus SNR for uncoded BPSK, BPSK using G2, and 

QPSK using G2. The improvement of QPSK at 2 bit/s/Hz over the uncoded case is about 7 

dB at a bit error rate of 0 3− . The improvement of BPSK at 1 bit/s/Hz over the uncoded 

case is approximately 10 dB at a bit error rate of 0 3− . As the SNR increases the 

improvement of BPSK and QPSK over the uncoded case also increases.  

     The results of the second case can be seen in figure 3.4. This plot shows the bit error rate 

of the space-time block code using BPSK , two transmit and two receive antennas. The 

improvement of BPSK at 1 bit/s/Hz using two receiver antennas over the case of BPSK 

with just one receive antenna is approximately 11 dB at a BER of 10-5. 
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Figure 3.3  STBC over Rayleigh fading using two transmit and one receive antenna 
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Figure 3.4  STBC over Rayleigh fading using two transmit and two receive antennas
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3.3 Chapter Summary 

The purpose of this chapter was to introduce the concept of space-time block codes and 

demonstrate the performance gains obtainable under the assumption that the receiver has 

access to perfect channel state information. Initially, the basic transmitter and receiver 

models were explained and the decoding process described. The performance of this 

system was then shown by simulation. The results of these simulations show that space-

time block codes using BPSK and one receive antenna provide an improvement of more 

than 10dB over the uncoded case at a BER of 10-3.  The improvement of a STBC using 

BPSK and two receive antennas over a STBC using BPSK and one receive antenna, is 

nearly 11dB at a bit error rate of 10-5.  
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Chapter 4: STBC with Channel Estimation Errors 

 

In order to adequately demonstrate the performance of a system via simulation, it is 

necessary to develop an accurate model of the system as it would be physically 

implemented. The assumption that perfect channel state information would be available to 

the receiver is inappropriate when simulating a physical system, because in a real system 

the effects of the channel can never be known exactly. Rather, some form of estimation is 

performed to find an approximation to the channel. Under the assumption that perfect CSI 

is available to the decoder, the performance of space-time block codes has been shown in 

the previous chapter.  

     In this chapter, the performance of space-time block codes is analyzed under the 

constraint that the receiver must rely on imperfect estimates of the channel conditions. This 

is done in order to verify the performance that can be expected in an actual space-time 

block coded system. The sensitivity and robustness of space-time block codes to varying 

levels of error in the amplitude and phase of the estimates will be illustrated using a series 

of simulations.  This new information could be used to help design and verify the 

performance of a channel estimation scheme based on the insertion of pilot sequences into 

the data stream of each antenna.  The imperfect channel estimates will be created by taking 

the actual fading coefficients introduced into the channel and applying some degree of error 

into either the magnitude or the phase of those coefficients before decoding. This simulates 

the inability of an estimation scheme to predict the channel characteristics with perfect 

accuracy.  

     Initially the effects of errors in the estimate of the gain and the phase will be analyzed 

separately for two reasons. First, it would be difficult to represent the resulting changes in 

BER when compared against the degree of error introduced into both gain and phase 

simultaneously, especially when we have no clear understanding of what specific effects 

either type of error will have. Second, it is important to understand what effects each of the 

two components has on performance when its estimate is not exact. This way it is possible 

to determine if either gain or phase is more important to the decoding and estimating 
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process in terms of Bit error rate performance. Also, certain modulation formats may be 

more or less sensitive to gain or phase estimation errors. After the effects on the system due 

to the two different types of errors are known, simulations are run with the errors occurring 

in both the gain and the phase of the estimates simultaneously, to determine the effects the 

combined errors have on performance. 

 

4.1 System Model 

The system model that we will use to analyze the performance of space-time block codes  

with channel estimation errors can be seen in figure 1.  It will consist of two transmit 

antennas and one receive antenna operating in a Rayleigh fading environment.  Symbol 

mapping will be done using a QPSK or BPSK signal constellation and the generator matrix 

G2, developed in [Tar99b].  The fading coefficient between the ith transmit antenna and the 

receive antenna is given as 

c a ji i i= exp θ� � 

We ran simulations of the system with errors in both the amplitude and phase of the 

channel estimates.  A channel estimate with phase error will be of the form  

� expc a ji i i i= +θ φ� � 

where φi  is the error introduced into the phase. An estimate with errors in the amplitude 

will be of the form 

� expc K a ji i i i= θ� �  

where Ki  is the error introduced into the amplitude. The channel is assumed to undergo flat 

fading and the fading is independent between different transmit antennas.  It is also 

assumed that the fading over a channel is constant over a frame (i.e. quasi-static). The 

assumption of constant fading over a frame is justified if the data rate is high and/or the 

channel fades relatively slowly. In order to justify the assumption that the fading gains 

between antennas are uncorrelated requires that the different antennas be physically 

separated by approximately ten wavelengths [Ala98]. The path gains are considered to be 

independent samples of a complex Gaussian distribution. 
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The variance of the path gains is 0.5 per complex dimension. The noise at the receiver is an 

additive Gaussian noise produced from samples of another Gaussian random variable with 

a mean of zero and a variance equal to n/(2*SNR). Here, n is the number of transmit 

antennas and SNR is the signal to noise ratio at the receiver. The average energy is 

normalized to be one for each symbol leaving each of the n transmitting antennas. This 

gives the energy of the received signal as n and SNR is measured at the receiver. 

The received signal at time t is  

r c s nt i
i

n

i
t

t= +
=
∑

1

� �  

Since we are using generator matrix G2 , there will be two sets of transmissions for each set 

of two input symbols. Therefore in matrix notation we can show the received signal as  

r =
�
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r Sc n= +  

The decoding for this system is rather simple and consists of minimizing the following 

metric, 

r c st i
i

n

i
t

t

l

−
==
∑∑

11

2

� �   , 

over all possible combinations of transmitted symbols. 

For the simulations using channel estimates the metric is 

r c st i
i

n

i
t

t

l

−
==
∑∑ �

11

2

� �  

Transmitter 1 

Transmitter 2 

c1 

c2 

n 

Receiver 

Figure 1: Transmission system consisting of two transmit antennas and one receive antenna. 
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4.2 Simulation Results 

In this section we provide simulation results for the performance of space-time block 

codes with channel estimation errors as described in the previous sections. Figure 4.1 

shows the performance of uncoded QPSK and QPSK using G2, under the assumption that 

perfect CSI is available at the receiver. All further figures are using a QPSK signal 

constellation, the generator matrix G2, and two transmit and one receive antenna. Figures 

4.2, 4.3, and 4.4 show the bit error rates of our transmission scheme against the phase 

error in each channel for fixed levels of received SNR of 10, 20, and 25 dB, respectively. 

The phase errors are measured in radians, with a maximum phase error of π/4 radians. 

These figures show that as the SNR is increased the system can tolerate a larger degree of 

error and still retain reasonable performance. However, as the degree of error in the phase 

approaches π/4, the system performance breaks down regardless of SNR. This is to be 

expected as the decision regions for QPSK are defined by boundaries that are π/4 radians 

between different signals. Figure 4.5 shows the bit error rate of our system when the 

channel estimates contain amplitude, or gain, errors as high as 1.5.  
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Figure 4.1.  Performance of STBC in Rayleigh flat fading with QPSK modulation,  

perfect CSI, two transmit antennas, and one receive antenna. 
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Figure 4.2.  Performance of STBC in Rayleigh flat fading with QPSK modulation,  

two transmit antennas, one receive antenna, a fixed SNR of 10 dB, and  

a maximum phase error of  π/4 radians. 
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Figure 4.3.  Performance of STBC in Rayleigh flat fading with QPSK modulation,  

two transmit antennas, one receive antenna, a fixed SNR of 20 dB, and  

a maximum phase error of  π/4 radians. 
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If the gain errors are equal in each channel than there is little performance degradation. It is 

for this reason that further results concerning gain errors will only be concerned with what 

we call the normalized gain error. This is simply the ratio of the gain error in channel one 

to the gain error in channel two, or 
K

K
1

2

.  
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Figure 4.4.  Performance of STBC in Rayleigh flat fading with QPSK modulation,  

two transmit antennas, one receive antenna, a fixed SNR of 25 dB, and  

a maximum phase error of  π/4 radians. 
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Figure 4.5.  Performance of STBC in Rayleigh flat fading with QPSK modulation,  

two transmit antennas, one receive antenna, a fixed SNR of 10 dB, and  

a maximum gain error of  1.5. 

 

     Figures 4.6 and 4.7 show the bit error rates for the normalized gain error at fixed SNR of 

10 and 20 dB. The performance becomes extremely degraded only when the difference 

between the gain errors of each channel differ by an order of magnitude. This shows that a 

large degree of error can be tolerated in the estimate, especially if the degree of error is 

relatively equal in each channel.  

     The results of bit error rate performance with various levels of average phase error per 

channel are shown in figure 4.8. When the average phase error in both channels exceeds 

0.6 radians the performance is not acceptable even at large values of SNR. Figure 4.9 is a 

plot of BER versus received SNR for several values of average normalized gain error. 

Regardless of the degree of error in any individual channel, if the normalized error is close 

to one, the performance is very close to that of having perfect channel estimates. Even 

when the error in one channel is nearly double that of the error in the other channel,  

acceptable performance can still be achieved. 
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Figure 4.6. Performance of STBC in Rayleigh flat fading with QPSK modulation,  

two transmit antennas, one receive antenna, a fixed SNR of 10 dB, and  

a range of gain error. 
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Figure 4.7.  Performance of STBC in Rayleigh flat fading with QPSK modulation,  

two transmit antennas, one receive antenna, a fixed SNR of 20 dB, and  

a range of gain error. 
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     The plot in figure 4.10 shows the bit error rate performance of the system when there are 

errors present in both the gain and the phase of the channel estimate. This is a plot of BER 

versus normalized gain error at several values of average phase error per channel. Once the 

average phase error exceeds approximately 0.5 radians the degree of gain error is 

irrelevant, because the performance is already too degraded. When there are relatively 

small phase errors the degree of gain error can be relatively high without a large  

performance penalty.

0 5 10 15 20 25
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

Received SNR

B
E

R

avg. phase error/channel = 0.2 radians
avg. phase error/channel = 0.4 radians
avg. phase error/channel = 0.6 radians
avg. phase error/channel = 0.8 radians

 

Figure 4.8.  Performance of STBC in Rayleigh flat fading with QPSK modulation,  

two transmit antennas, one receive antenna, and various levels of phase errors per channel. 
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Figure 4.9.  Performance of STBC in Rayleigh flat fading with QPSK modulation,  

two transmit antennas, one receive antenna, and  

various levels of gain errors per channel. 
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Figure 4.10.  BER versus normalized gain error for STBC in Rayleigh flat fading  

with QPSK modulation, two transmit antennas, one receive antenna,  

a fixed SNR of 20 dB and various levels of phase errors per channel. 
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     The last figure in this chapter, figure 4.11, shows the performance of STBC with QPSK 

signal constellation that used a running average pilot sequence estimation scheme. The 

running average pilot sequence estimation scheme uses two known symbols at the 

beginning of each block of four symbols. After the two known symbols have been 

transmitted they are used to calculate an estimate of the channel fading coefficients. Then 

this estimate is used in the decoding of the following two symbols. Since the fading is 

assumed to be quasi-static, the fading coefficients do not change over a frame of length 60 

bits. After an estimate has been generated for a four symbol block, it is averaged with the 

previous estimates of the frame. This is why it is called a running average estimation. 

These results show that this estimation scheme performs with only a 2dB loss when 

compared to the case of perfect CSI. However, this performance comes at the cost of 

reducing the data rate by half. 
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Figure 4.11  Rate ½ QPSK using channel estimates derived from known transmitted 

symbols and using static fades over frame of 60 bits 
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4.3 Chapter Summary 

 

In this chapter we have shown the performance of space-time block codes when decoded 

using imperfect estimates of the channel. For the case of a two transmit antenna system 

employing a QPSK constellation we have shown that errors in the amplitude of the channel 

estimate have a relatively minor effect on the bit error rate performance. If the amount of 

gain error in each channel is approximately the same there is almost no performance 

degradation. However, errors in the phase have the predominant effect, as would be 

expected when using Phase Shift Keying. The amount of error that can be tolerated in the 

phase of the channel estimate before the performance completely breaks down, is 

approximately 0.5 radians. Even when the level of error in the phase is 0.4 radians the 

performance has been greatly degraded. 

     A pilot sequence estimation scheme was used to generate the channel estimates in a 

simulation of STBC using QPSK. This scheme reduced the data rate by ½ but performed 

with only a 2dB loss when compared to the case where perfect CSI is available to the 

receiver. 
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CONCLUSION 

The first two chapters of this thesis were an attempt to provide a sufficient background to 

understand space-time block coding. The first chapter discussed modulation and introduced 

the concept of signal spaces and how the design of demodulators and detectors are 

dependent on the signal space representation of any modulation format. The second chapter 

was devoted to the introduction and explanation of the wireless channel, the effects of the 

channel on performance, methods to model the channel statistically, and methods such as 

diversity to improve performance. 

     The third chapter was an introduction to the concept of space-time block coding. Its 

purpose was to introduce the system model and clarify any assumptions that were made in 

the creation of a descriptive model. It was shown that space-time block codes provide the 

maximum diversity gain at high data rates and with little decoding complexity. However, 

all these results were shown based on the assumption that perfect CSI was available to the 

receiver.  

     The fourth chapter of the thesis first attempted to explain the necessity of analyzing 

space-time block codes with channel estimation errors. In order to have a reasonable 

predictor of a system, as it would be deployed, it is necessary to build a model that as 

closely resembles the actual conditions that would be present in the deployed environment. 

This “realistic” model requires that certain assumptions that were made to prove the theory 

behind STBC be cast aside. The predominant assumption that would be invalid in a 

physically realizable system is the presence of perfect channel state information (CSI) at 

the receiver. An actual implementation of a STBC system would rely on some form of 

channel estimation scheme to provide the receiver with imperfect estimates of the channel 

fading coefficients. In this chapter we created estimates of the channel that contained errors 

in the phase of the estimate, the gain of the estimate, or both, and used these incorrect, or 

noisy estimates to demodulate and detect the transmitted signals.  
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     The results of these simulations showed that the presence of errors in the phase of the 

channel estimate severely degraded the performance of the STBC using QPSK. 

Specifically, when the error in the phase of the estimate approached 0.5 radians the 

performance was degraded to the point where the detector produced the wrong output 

nearly half the time even at high signal to noise ratio. When the errors in the gain of the 

estimate were roughly equivalent for each channel, the performance was not really 

affected. At this point we defined the normalized gain error to be the gain error in the 

estimate of the first channel divided by the gain error in the estimate of the second channel. 

When the normalized gain error was unity the performance was similar to that shown for 

the case of perfect CSI. At a normalized gain error of 0.6, the error in channel two was 

nearly twice as large as the error in channel one, there was a performance loss of about 7dB 

at a bit error rate of 10-3. This work was published in a conference paper for the 2001 

Virginia Tech Symposium on Wireless Personal Communications [Bak01]. 

     The last results shown in chapter four were the performance of STBC using an 

estimation scheme based on the use of pilot sequences. The system used two known 

symbols at the beginning of each four-symbol block to gain an estimate of the channel. 

Since the channel was assumed to exhibit quasi-static fading, the fades for each channel are 

constant over a frame. For this reason the channel estimate for each block of symbols was 

averaged with the previous estimates to improve the estimate. The results show that this 

estimation scheme performs with only a 2dB loss when compared to the case of perfect 

CSI. However, this performance comes at the cost of reducing the data rate by half. 

 

     The following is a brief discussion of possible avenues for future research. In this thesis, 

the only signal constellation used to test the robustness of STBC against channel estimation 

errors was QPSK. M-ary Shift Keying using values of M other than four should be tested 

but will most likely confirm the results already generated to be fairly consistent for PSK 

with any value of M. It would be more beneficial to test the codes with several different 

types of modulation, such as Quadrature Amplitude Modulation (QAM), Frequency Shift 

Keying (FSK), or Minimum Shift Keying. This will show the different dependencies 
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different modulation types have on magnitude of phase errors. In the case of QPSK, 

analyzed in chapter four it was the phase of the estimate that had the largest impact on bit 

error rate performance. Therefore, it is likely that QAM would suffer increased 

performance degradation due to error in the amplitude of the estimates because in QAM 

information is in the magnitude and the phase of the transmitted signal. 

     In this thesis we ran a simulation using pilot sequences to perform what we called a 

running average estimation of the channel. In the future it would be beneficial to design an 

estimation scheme based on the performance of a particular modulation type with channel 

estimation errors. This would involve analyzing the performance of the modulation type 

against estimation errors similar to what was done for QPSK in chapter four and taking into 

account those results in the design of the estimation scheme. Research in this area could 

perhaps generate new types of estimation schemes that either entail greater performance or 

minimized complexity.  

     Since it was shown in this thesis that the performance loss was primarily due to errors in 

the phase of the channel estimate it would be prudent to build a space-time block code 

system with some form of Differential Phase Shift Keying (DPSK). In a DPSK system it is 

not necessary for the decoder to know the exact phase of a received signal only the 

difference in phase between the current and previous signals. This could serve to alleviate 

some of the loss in performance due to errors in the phase of the channel estimate. Work of 

this nature was presented in a recent paper by [Hug00]. 

     In chapter four the performance of space-time block codes with channel estimation 

errors was analyzed under the assumption that the channel fading conditions changed 

slowly enough that the fading coefficients were constant over a frame. It would be an 

interesting topic to vary the rate at which the channel fades and measure the impact on 

performance when there is a given level of error in the channel estimates. 

     In chapters three and four of this thesis it was assumed that the fading that occurred over 

each transmitter-receiver pair was independent. In a physical system it may not be possible 

to place the antennas at the minimum required distance apart, thus leading to correlated 

fading between the different antennas. For this reason, the performance of the system with 
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channel estimation errors should be shown under the condition that correlation exists 

between the different fading coefficients. 

     The pilot estimation sequence in this thesis that was used in chapter four reduced the 

data rate by half. It would be beneficial to conduct further simulations at data rates closer to 

one, to measure the amount of performance loss as less pilot symbols are used and the data 

rate increases.  

     Future research should also focus on iterative decoding and estimation [Val01]. This is a 

process where pilot symbols are used to estimate the channel, then decoding is done using 

the channel estimates. The decoded data is then fed back into the estimator and the data 

used as pilot symbols to refine the estimate of the channel. The refined estimate is then 

used to decode the data a second time. This process can be repeated for any number of 

iterations until the performance reaches a desirable level. This idea leads naturally to the 

concept of turbo space-time codes.  
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