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ABSTRACT 
 

MULTI-LAYER FEED FORWARD NEURAL NETWORKS 
FOR FOREIGN EXCHANGE TIME SERIES FORECASTING 

 
Bina R. Setyawati 

 
 

This dissertation examines the forecasting performance of multi-layer feed forward 
neural networks in modeling five weekly foreign exchange rates: Australian Dollars /U.S. 
Dollars (AUS/USD), Euro/U.S. Dollar (EUR/USD), Swiss Franc/U.S. Dollar 
(CHF/USD), British Pound sterling/U.S. Dollars (GBP/USD), and Japanese Yen/U.S. 
Dollars (JPY/USD).   There are five objectives to accomplish.  The first is to determine 
the key modeling factors that should be considered in topology determination.  The 
second is to compare the performances of Genetic Algorithm (GA) and Modified Tabu 
Search (TS) in choosing the topology for Neural Networks (NN) implementation.  The 
third is to investigate the suitable learning algorithm for NNs for time series forecasting 
by comparing Back Propagation (BP) with GAs and TS. The fourth is to conduct 
computational studies for multi-step ahead forecasting for GBP/USD and EUR/USD, as 
well as to study other accuracy forecasting issues.  The last is to study the implementation 
of multivariate time series forecasting using NNs.   
 
The results of the experiments performed indicate that one should examine the correct 
topology, especially the three most important factors (number of input nodes, hidden 
nodes, learning rate) prior to using NNs for time series forecasting. 
 
The comparison performance of topology suggested using GA, TS, and benchmark led to 
the conclusion that neither GA nor TS is guaranteed to provide better results, especially 
in terms of percentage of true directional changes (DIR).  However, if there is no prior 
knowledge of the problem, GA searches for topology determination are favored and 
provide reasonably good performances. GA is also preferred for NN training. Compared 
to BP, GA guarantees better performance in term of Mean of Absolute Percentage Error 
(MAPE) and, most of the time, performs better in terms of Mean of Square Error (MSE).   
 
Caution should be taken in adopting the results, since the study of time periods indicated 
that the best topology for forecasting a specific foreign exchange is “data specific”; hence 
the best for a certain period is not always the best to forecast other periods.  However, the 
chosen topology is reasonably useful for up to three steps ahead forecasting. 
   
The trivariate time series, which incorporate interest rates of the two countries involved, 
did improve the results.  Multivariate time series forecasts for monthly JPY/USD, as well 
as for monthly EUR/USD, produced a higher level of success than the one achieved in 
the previous experiment.   The NNs were programmed using MATLAB®. 
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Chapter 1 

Introduction and Research Objectives 

 
 
1.1    Introduction 

In recent years, forecasting has gained more and more attention because of its 

critical role in making timely decisions in the face of uncertainty about the future.   A 

good forecast needs to identify appropriate information and an appropriate forecasting 

method.   

Forecasting methods are categorized into two groups, as presented in Figure 1.1, 

the more popular being the quantitative method.  This method includes two different 

forecasting approaches: causal forecasting and time series forecasting.  Causal 

forecasting considers a number of variables that are related to the variable that is to be 

predicted.  Regression analysis is one type of causal forecasting.   Time series forecasting 

uses a sequence of numerical values reflecting the time evolution of a certain magnitude 

to study the patterns of the data and then reflect the future values based on those patterns.  

Time series forecasting will be investigated in this study.   

The procedures used to perform time series forecasting can be classified into 

linear and nonlinear methods.  The most common linear methods are (1) Smoothing 

methods, which include Moving Averages and Exponential Smoothing, (2) 

Decomposition, and (3) Autoregressive (Box and Jenkins Methods).     These methods 

work well for linear time series but fail to model complicated nonlinearity and trends in 

time series.  Unfortunately, nonlinear time series forecasting is not straightforward and 

the theory does not guide the model building process by suggesting a functional 
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relationship between relevant lags and the response variable.  Conventional nonlinear 

models such as threshold autoregressive models (Tong, 1990) and time-varying 

parameter models (Nicholls and Pagan, 1985) generally pre-specify a special nonlinear 

function to be used.  The difficulty in choosing the nonlinear function has made these 

models ineffective for modeling nonlinear time series.    

As the attention to forecasting processes grow, new techniques such as Neural 

Networks (NNs) are being developed.  This method is a potential alternative tool in 

overcoming the problem of pre-specifying the nonlinear function.   NNs are a good 

candidate for this task because of their universal approximation properties. They do not 

require inside knowledge about the process under investigation.   It also has been shown 

that NNs outperformed Autoregressive Integrated Moving Averages (ARIMA). 

Forecasting Methods 
 
 
Qualitative             Quantitative 
Delphi Technique 
Expert Opinion 
Sales Force Composite 
Consumer Market Survey 

 
 
Causal Forecasting            Time Series Forecasting 
Econometric Modeling 
Regression Methods   

                                             Linear Methods                         Nonlinear Methods 
 

• Smoothing Methods              Tacken’s Theorem 
                                                                                                     - Moving Average Methods                            Mackey-Glass Equation 
           - Exponential Smoothing Methods                 Treshold AR Model 

• Decomposition Methods                              Time-Varying Parameter 
- Additive Model 
- Multiplicative 
• Autoregressive Methods 

AR, ARMA, ARIMA                                                
 

Figure 1.1 Classification of Forecasting Methods 



 3

Quantitative forecasting methods include causal and time series.  Likewise, NNs 

can be implemented correspondingly based on these two categories and is a promising 

tool.  NNs are extremely useful for causal forecasting when one does not have any idea of 

the functional relationship between the dependent and independent variables.  NNs can 

replace the function of common statistical methods such as linear regression.  As 

explained by Warner and Misra (1996), generalized linear regression is equivalent to a 

single layer neural network.   Krishnaswamy et al. (2000) suggested that NNs for causal 

forecasting are best applied where: 

(1) one can specify particular influences on a phenomenon whose outcome is known 

with certainty  

(2) the relationship cannot be described 

(3) the relationship is not necessarily linear, and  

(4) there are no known models.   

Additionally, Denton (1995) has shown NNs outperformed linear regressions especially 

under less than ideal conditions (when there are outliers in the data, when two 

independent variables are highly correlated, or when the model is mis-specified).  

Furthermore, NNs avoided some of the pitfalls common to the regression approach. 

In regard to time series forecasting, Yao et al. (1996) stated that time series 

forecasting is the most exciting application of NNs.  NNs, which are generalized 

nonlinear forecasting models, are reliable for modeling nonlinear time series.  NNs are 

non-parametric data driven approaches and Linear Autoregressive is a special case of the 

model in which there are no hidden nodes.  From a statistician’s point of view, NNs are 

analogous to nonparametric, nonlinear regression models.  Some major advantages of 
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NNs are that they:  (1) are reliable for modeling nonlinear time series; (2) do not require 

any assumptions for underlying data to be forecast as opposed to normality assumptions 

commonly found in statistical methods; and (3) are able to learn even in the case of noise 

and or missing data; and  (4) have the ability to handle discontinuities  (Paik, 2000). 

There are some drawbacks for NNs for forecasting that require special attention.  

These drawbacks must be addressed to improve NN performance for time series 

forecasting.     

Since the time series forecasting cases are very broad, one must focus on a 

specific implementation.  It has been known that among different kinds of time series 

forecasting problems, foreign exchange (forex) forecasting is one of the most interesting 

problems in practice.   The forex market is the largest financial market in the world and 

trades enormous amounts of money, estimated at several trillion dollars daily.    

Several authors claimed that exchange rates are rather unpredictable and that a 

random walk model is often a better predictor than nonlinear models.  However, 

Medeiros et al. (2001) have shown that there are some supportive results in favor of 

linear and nonlinear models against the simple random walk concerning the predictability 

of exchange rates when mean absolute error is used as the performance measured.  

Similarly, Leung et al. (2000) concluded that neural networks have a higher degree of 

forecast accuracy than random walk for three monthly exchange rate studied. 

The forex forecasting problem is difficult because of two reasons: (1) the time 

series is noisy and non-stationary, and  (2) many factors leading to forex fluctuation 

cannot be captured precisely or are too numerous to be modeled.  Forex time series data 

are chaotic system problems.  They are inherently complex, thereby generating complex 
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error surfaces. These time series are most challenging in terms of the difficulty in 

obtaining good forecasts.  Based upon those arguments, this research will focus on 

optimization of NNs for foreign exchange time series forecasting. 

 

1.2       Needs for Research 

A few topics must be investigated to improve NN performance for time series 

analysis.  The first topic is NN topology.  As stated by Adya and Collopy (1996), the 

most important drawback of neural networks is that mixed results have been reported in 

the literature.  Extensive literature studies suggest that different NN structures and 

parameters lead to different results for the same problem.  Unfortunately there is a lack of 

systematic approaches to NN model building, and the effect of key modeling factors on 

performance has not been thoroughly examined.  The common method employed to 

determine NN topology is trial and error.  For that reason, one must obtain a tool to select 

the most appropriate NN topology  (i.e. number of input nodes and hidden nodes) and 

related information on system inputs (i.e. learning rate, momentum, activation function) 

in an attempt to produce the most accurate forecast.   Hence, optimization of network 

topology is needed.  Rather than using the trial and error approach, optimization methods 

should be applied to enhance the performance by making certain that the correct topology 

has been used.   

Considering the importance of the topology to NN performance, this research 

topic should be explored extensively.  This includes the determination of NN architecture 

and the parameter values to obtain the best results for each data set.  The choice of NN 



 6

architectures were decided based on experiments using Back Propagation (BP) as the 

learning algorithm. 

The second area of emphasis is that the most common learning algorithm used 

(BP) is based on the gradient descent method.  It is well known that this method is not the 

best non-linear optimization technique, but it was chosen for its suitability for network 

problems. The serious problem with BP is that it may reach a local rather than global 

minimum.  The modifications of BP will capture this property.    Global maximization 

methods are good alternates for NN learning.  Although some existing literature 

demonstrates the superiority of global search to BP, it provides limited information about 

the relative performance of global search algorithms for real time series data.  

Additionally, no study used more than one time series in its conclusions.  It is believed 

that there is insufficient data to make general conclusions of the comparative 

performances.   

In addition, regardless of the large number of publications of NN applications, 

there are only a few papers that have examined multivariate time series.   From all papers 

reviewed, none of them studied the performances of multivariate time series for forex 

forecasting. Considering the significance of this topic, research in NNs for multivariate 

time series is necessary.   

NN applications for either univariate time series or multivariate time series 

forecasting have concerned only single-step ahead forecasting.  No literature for NN 

performance for multi-step ahead time series forecasting performances was found.  

Experiments will be performed to gain the working knowledge of multivariate time series 
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application for foreign exchange forecasting, as well as to study the performances of 

multi step ahead forecasting for these particular applications. 

  

1.3       Research Objectives and Organization 

1.3.1 Research Objectives 

      The five major research objectives are: 

1. To study the effects of architecture and parameter values on NNs forecasting 

performance to (1) determine the key modeling factors that should be considered 

in topology optimization, and (2) provide the forecasting benchmark for each time 

series under investigation by constructing good NNs for this specific 

implementation.  

2. To compare the performances of two Meta heuristics (Genetic Algorithm (GA) 

and Tabu Search (TS)) in choosing the number of hidden nodes and time-delayed 

inputs of NNs for time series forecasting.  The implementation will be rated as 

good if the network topology suggested provides an equivalent or better result as 

the benchmark for the given problem.   

3. To investigate the suitable learning algorithm for NNs for time series forecasting 

by comparing BP with GA and TS.   

4. To conduct computational studies for multi-step ahead forecasting for GBP/USD 

and EUR/USD based on the neural network selected from the previous objectives. 

5. To implement multivariate time series forecasting using NNs.   
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1.3.2 Organization 

The scope of this research is to analyze a time series forecasting system in which 

the forecasts are accrued from an NN model.   The main focus is to minimize the forecast 

error by determining the appropriate topology and weight matrices using NNs, GAs, and 

TS. 

This dissertation is organized into nine Chapters.  Chapter 1 is the introduction, 

while Chapter 2 gives a systematic literature review of the topics related to the research.  

Chapter 3 describes the methodology used in this research.  Chapter 4 discusses the 

design of experiments conducted, the topology chosen, and the benchmarks selected for 

each case.   In Chapter 5 the results of trials to determine appropriate topology for NN 

forecaster are presented.  Chapter 6 describes the methods and related results to 

determine NN weight matrices. Chapter 7 shows computational accuracy issues using the 

results from Chapter 4 and 5 for certain foreign exchange forecasting problems, giving 

the numerical results of the comparison between the developed model and its 

benchmarks.  Furthermore, it discusses the results of multi-step ahead forecasting along 

with the forecasting accuracy issues.    Applications of the method for multivariate time 

series forecasting are explained in Chapter 8.  In Chapter 9, conclusions are drawn and 

recommendations for future research directions are outlined. 
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Chapter 2 

Background and Research Survey 

 

2.1 Time Series Forecasting Methods 

A time series is defined as any univariate or multivariate data collected over time 

and arranged in temporal order.  It can consist of either continuous or discontinuous 

values.  Both linear and non-linear models are available to model time series behavior. 

The application of time series forecasting method includes two basic steps: (1) Analyze 

the data series; and (2) Select the forecasting method that best fits the data series.  There 

are several methods available for time series forecasting, particularly for linear time 

series. Some important methods are grouped based on the Makridakis and Wheelwright 

(1989) classification.  

 

2.1.1 Smoothing Methods 

Smoothing methods consist of two subclasses: moving average methods and 

exponential smoothing methods.  Moving average methods conform to the conventional 

definition of an average – equal weighting of the number of values included in the 

average.  The larger the values included in the averages the higher the smoothing effect.  

The exponential smoothing methods apply an unequal set of weights to past data.  These 

weights decay in an exponential manner from the most recent observation to the most 

distant observation.  Other methods in this group include double exponential smoothing, 

higher order smoothing, Winters’ method, and double moving average.   
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The technique of one-step ahead forecasting with single moving averages can be 

represented as follows: 

F t+1 = St = (X t + X t-1 + ……………… + X t-N+1) / N                                       (2-1) 

F t+1 = St = Forecast for time t+1 

X i   = Actual value at time i 

i      =  Time period 

N    = Number of values included in average 

The general form used in computing a one-step ahead forecast using the single 

exponential smoothing method is as follow: 

F t+1 = α X t +  (1-α) F t      or                       (2-2)

 F t+1 =  F t +  α (X t - F t )    =  F t +  α et          (2-3) 

Where: 

α = smoothing parameter;  0 < α <1 

et = error of previous forecast 

The smaller the value of α, the smoother (less fluctuation) the forecasts. 

Single Exponential Smoothing does not work well in following the data when 

there is a trend. In that situation, one should use Exponential Smoothing which introduces 

a second equation with a second constant,  γ (0 < γ < 1).  The value of γ must be chosen 

in conjunction with α.  The two equations associated with Double Exponential Smoothing 

are:  

Ft = α X t +  (1-α) (F t-1 + b t-1)                                                                           (2-4) 

bt = γ (S t - S t-1) + (1-γ) b t-1                                                                               (2-5) 

Where: 
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γ = double exponential smoothing parameter;  0 < γ <1 

 

2.1.2 Decomposition Methods 

Decomposition methods identify three separate components of the basic 

underlying pattern that characterize the time series.  The decomposition assumes that data 

consist of pattern and error, and that the pattern is made up of trend, cycle, and 

seasonality.  Decomposition methods are among the oldest forecasting approaches 

(Makridakis and Wheelwright, 1989).   

The general mathematical representation of the decomposition approach is as 

follows:   Xt = f (St, Tt, Ct, Et)                                                                                        (2-6) 

Where: 

Xt = time series value at period t 

St = seasonal component at period t 

Tt = trend component at period t 

Ct = cyclical component at period t 

Et = error component at period t 

This approach includes two methods: (1) Additive Decomposition Method, and (2) 

Multiplicative Decomposition Method.  In the first method, the function is addition (Xt = 

St + Tt + Ct + Et), while in the second, the effects of seasonality are considered to be 

multiplicative, that is, growing (or decreasing) over time, i.e. Xt = St x Tt x Ct + Et. 
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2.1.3 Autoregressive Methods 

Autoregressive methods, unlike the smoothing methods and decomposition 

methods, can deal with any data pattern. The basic tool employed by this method is 

correlation.  Autocorrelation among successive values of a time series is a key tool in 

identifying the basic pattern and determining an appropriate model for the time series 

(Box and Jenkins, 1976).  The degree of the relationship is measured by the correlation 

coefficient.  The correlation coefficient of strong seasonal or cyclical character will be 

high.  Three general types of auto correlation are: Auto Regressive (AR), Moving 

Average (MA), and Mixed Auto Regressive / Moving Average (ARMA).  The auto 

regressive model is of the form: 

Yt =  f 1 Y t-1 + f 2 Y t-2 +f 3 Y t-3 + ……+  f p Y t-p + et                                                           (2-7) 

Where fp  is the autocorrelation coefficient between original time series data and the same 

time series with p lack periods, where p is the number of terms to be included and e is the 

residual term. 

Among the ARMA methods, the Auto Regressive - Integrated - Moving Average  

(ARIMA) methodology is one important group of linear statistical models that finds 

extensive use in industrial applications.  The wide acceptance of standard ARIMA 

models and their recent statistical refinements make them a good reference for 

performance comparison for NNs.   

A nonseasonal ARIMA model is classified as an "ARIMA (p,d,q)" model, where:  

p  =  the number of autoregressive terms,  

d  =  the number of nonseasonal differences, and  

q  =  the number of lagged forecast errors in the prediction equation. 
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ARMA is a special class of ARIMA in which d=0.  Often the pattern of the data 

may be described best by the mixed process of Auto Regressive and Moving Averages 

elements.  Wold described ARMA models in 1954.  In spite of such early work, the 

development and application were severely limited during the early phases.  Recently, 

ARMA development tools are widely available through commercial statistical software, 

which increase the utilization of the ARMA models.   

ARIMA models theoretically are the most general class of models for forecasting 

a time series, which can be stationarized by transformations such as differencing and 

logging.  The easiest way to think of ARIMA models is as a fine-tuned version of 

random-walk and random-trend models: the fine-tuning consists of adding lags of the 

different series and/or lags of the forecast errors to the prediction equation to remove any 

traces of autocorrelation from the forecast errors. The best short horizon forecasting 

techniques (Makridakis et al., 1982) are all special cases of ARIMA models. ARIMA 

development tools are widely available through most commercial statistical software, 

such as SAS and E-view. 

 

2.2  Neural Networks  

2.2.1    Basic Principles 

NNs, also referred to as neurocomputers, connectionist networks, or parallel-

distributed processors, are massively parallel-distributed processors that have a natural 

propensity for storing experiential knowledge and making it available for use. NNs are 

networks of artificial neurons grouped in sets of layers to form a network.  There are 

three types of layers: an input layer, a hidden layer, and an output layer. The input layer 
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receives the inputs and directs them to the hidden layers.  Neurons in the hidden layers 

perform the computations of the network and add degrees of freedom to the network, 

sending the results to the neurons in the output layer (Adya and Collopy, 1998). 

The three basic elements of the neuron model include (Haykin, 1994): 

1. A set of synapses or connecting links, each of which is characterized by a weight or   

      strength of its own. 

2. An adder for summing the input signals weighted by the respective synapses of the   

       neuron. 

3. An activation function for limiting the amplitude of the output of a neuron. 

The manner in which the neurons of an NN are structured is intimately linked 

with the learning algorithm used to train the network (Balkin, 2000).  In general there are 

four different classes of network architectures:  

(1) Single layer feed forward networks,  

(2) Multi-layer feed forward networks, 

(3) Recurrent networks, and  

(4) Lattice structures.   

Examples of NNs classified into each of those classes are shown in Figure 2.1.  

A network is classified as feed forward if it does not contain directed cycles, and 

is classified as recurrent if it does contain such directed cycles.  The most popular and 

widely used network paradigm is the multi-layer feed forward network (Dougherty and 

Cobbett, 1997).  The idea of a feed forward NN is that the inputs feed into the functions 

in the hidden layer, and there is no feedback. Also, the functions in the hidden layer do 

not feed sideways into each other. Instead, they feed onward to the output layer. And 
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there is no feedback, delayed or otherwise, from the output layer to the hidden layer. An 

NN is called a feed forward system because of the absence of feedback and the absence 

of interaction between hidden-layer functions.  Multi-Layer Perceptron (MLP) is used in 

a variety of problems in forecasting because of their inherent capability of arbitrary 

input/output mapping (Zhang et al., 1998).    

 

 

 

 

 

    Single layer feed forward network                          Multi-layer feed forward network  

            Recurrent network                                                    Lattice Structure 

Figure 2.1   Four Classes of Network Architectures 

 

In order to be useful, an NN must be trained before being applied. Training is an 

estimation of an NN model.   This process can be accomplished using either a supervised 

or unsupervised method.   The goal of the training process is to find the NN parameters, 

which are called connection strengths or network weights, that make the model errors 

small.  Because the model parameters are nonlinear, it is necessary to use a nonlinear 

search algorithm.   The most common search algorithm used is the back propagation (BP) 
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method.  It has been estimated that 70% of NN applications report the implementation of 

the BP method (Nguyen, 2000).  The disadvantage of this method is its learning speed 

(Balkin, 2000). 

There are two basic types of NN training methods: supervised and unsupervised.  

Supervised NNs are typically used when the desired output is known and input-output 

data are available.  Supervised NNs learn by forming an association between example 

inputs and associated correct outputs.  In other word, NNs are trained by humans to 

perform specific tasks.  During the training, the teacher evaluates whether the NN output 

is correct or not.  If the output is correct, the weightings that produced output are 

reinforced.  If not they are diminished.  This is often used for cognitive research and 

problem-solving applications.   MLP that employs BP is an example of a supervised NN.  

Conversely, unsupervised NNs don’t require output for training.  They learn in response 

to the arrangement of inputs, organize them into clusters during training, and then 

classify future inputs according to the cluster in which they occur.  A self-organizing NN 

(called a Kohonen – the name of its inventor) is an example of an unsupervised NN.  It is 

often used to analyze experimental data.  An unsupervised NN is exposed to a large 

amount of data and tends to discover patterns and relationships in that data.   

NNs are not programmed but trained.  They do not require any assumptions for 

underlying data to be forecast.  Also, they can develop models from incomplete or 

imperfect data (Abid et al., 2001). 
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2.2.2 Mathematical Description  

A three-layer feed forward NN with three inputs, two hidden nodes, and one 

output node in Figure 2.2 will be used to illustrate and describe the NN process in 

mathematical terms.  

 

 

 

 

 

 

Figure 2.2   A 3-2-1 Feed Forward Neural Network 

The generic weights are separated into two groups: the hidden node weights, aij, 

and the output node weights, bjk.  From Figure 2.2, consider a network with two inputs, x1 

and x2, and one hidden node numbered 1 that computes the response or hidden output, y1 

and one output node numbered 1 that generates the output of the network, z1 (as shown 

inside the dotted lines).  

The propagation rule adds the bias weights, a01, to the linear combination of input 

and weights generating u1. Then the activation function, g, the logistic, generates the 

sigmoid-shaped response, y1. That is:  

u1 = a01 + a11 x1 + a21 x2 

y1 = g(u1). 
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This output of hidden node 1, y1, is transmitted as input to the output node 1 in which the 

propagation role generates Nu1 and the logistic, g, computes the output of the network, z1 

= g(Nu1). In symbols:  

Nu1 = b01 + b11y1 

z1 = g(Nu1). 

If one generalizes to a network with I inputs, J hidden nodes, J hidden outputs yj, 

K output nodes, and k outputs zk, then the following relations can be written. The hidden 

outputs are:  

yj = g(uj); j = 1,..., J 

uj = a0j +Σi aij xi, 

where aij are the weights from input i to hidden node j and a0j are the bias weights for 

hidden node j.   The response of hidden node j, yj, is sigmoid-shaped of dimension I. 

These j responses are received by the k output nodes as input and compute k outputs, zk, 

as the logistic transformation of Nuk.  That is:  

Nuk = b0k + Σ j bjk yj, 

and 

zk = g(Nuk); k = 1,..., K, 

where bjk are the weights from hidden node j to output node k and b0k are the bias weights 

of output node k.  
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2.2.3 Back Propagation 

Back Propagation (BP) is a well-known learning method for multi-layer 

perceptron training.  The BP training algorithm is an iterative gradient algorithm 

designed to minimize the mean squared error between the actual output of the NN and the 

desired output.   

BP involves two steps, a forward propagating step and a backward propagating 

step.  In the forward propagating step, the training data set is presented to the input layer, 

which will propagate through the hidden layers until it reaches the output layer.  In the 

backward propagating step, the calculated error (the difference between the actual output 

and the desired output) is propagated back to change the assigned weights.  The 

magnitude or the error value indicates how large an adjustment must be made and the 

sign of the error provides the direction of the change.  The recursive formula is the key to 

BP learning.  It allows the error signal of a lower layer to be computed as a linear 

combination of the error signal of the upper layer. In this manner, the error signals are 

back propagated through all the layers from the top (output nodes) to the bottom (input 

nodes). 

Learning rate controls how fast the weights are updated along the computed error 

gradient. It should generally be less than 1.  The momentum parameter determines how 

much of the previous weight change will be retained in the present weight change 

computation. Thus, weight changes can build up momentum over time if they all head in 

the same direction, which can speed up learning. 
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2.2.4 Applications 

NNs have been used in a wide range of applications.  Some of the well-known 

applications have been in the areas of: 

(1) Signal Processing  

(2) Control  

(3) Pattern Recognition  

(4) Medicine  

(5) Speech Production  

(6) Business Applications 

(7) Estimating 

In time series study, NNs have been used to forecast a single variable as well as multiple 

variables.   

 

2.3 Metaheuristic Algorithms 

2.3.1 Genetic Algorithm 

2.3.1.1  Basic Idea 

Genetic Algorithms (GAs) are parallel, adaptive search algorithms inspired by the 

mechanisms of biological evolution.  There are 5 basic components in GA: a method for 

encoding of chromosomes, a fitness (or objective) function, an initial population, a set of 

operations to perform evolutions between two chromosome populations, and working 

parameters (Osmera, 1995).     
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  The main idea of GA is to start with a population of solutions to a problem and 

then attempt to produce new generations of solutions that are better than the previous 

ones.  It includes four stages (Dorsey and Mayer, 1994):  

(1) Initialization,  

(2) Selection,  

(3) Crossover, and  

(4) Mutation.   

  In the initialization stage, a population of genetic structures, which are randomly 

distributed in the solution space, is selected as the starting point of the search.  During the 

selection stage, each structure is evaluated using a set of user-defined criteria.  The best 

structures are then selected for reproduction.  These structures are combined using 

crossovers to allow existing structures to be tested further and also to introduce new 

structures into the population for evaluation.  The final stage, mutation, functions as a 

background operator with a very low probability of application.  It is used to alter one or 

more components of a selected structure, providing the means of introducing new 

information into the population  (Hua, 2000).  The GA is terminated when some criteria 

are satisfied, e.g. a certain number of generations, a mean deviation in the population, or 

when a particular point in the search space is encountered.  GAs do not guarantee to find 

the optimal solution.  However, the ability of GAs to find a near optimal solution is 

important 
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2.3.1.2   Encoding 

  Each generation of GA includes a certain number of individuals, commonly 

between 20-50 individuals.  These individuals are encoded as chromosomes, so that the 

genotypes (chromosome values) are uniquely mapped onto the decision variable 

(phenotype).  The search process operates on these encoding variables.  When the search 

is finished, the variables are decoded into their phenotype values that can be applied to 

the problem.  

  Choice of encoding (representation) has a major impact on the performance of the 

GA in terms of accuracy and computation time.  There are two common representation 

methods for numerical optimization problems: binary string and real number.  The 

accuracy of the former depends on the number of bits used to represent a parameter.  The 

latter uses a vector of real numbers, with each real number representing a single 

parameter.    

  Pham and Karaboga argued that binary string is the preferred method because it 

offers the maximum number of schemata per bit compared to other coding techniques.    

Furthermore, Yao (1999) stated that the binary representation is simple and 

straightforward to apply with classical crossover and mutation.  Various binary coding 

schemes can be found in the literature, including Uniform coding and Gray scale coding. 

On the other side, real values representation increases GA efficiency as there is no 

need to convert chromosomes to phenotypes before each function evaluation. Less 

memory is required as efficient floating-point internal computer representations can be 

used directly.   And there is no loss in precision by converting to binary or other values. 
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The usual way of expressing a decimal number in terms of a binary number is 

known as pure binary coding.  There are various binary codings available, two common 

ones, the standard binary code ( 8421 binary-coded decimal (BCD)) and gray binary code 

are discussed further.  In standard BCD code, each bit is weighted by 8, 4, 2 and 1 

respectively.  In other words, each decimal digit is converted to its 4-bit pure binary 

equivalent.  For example: 55 decimal = 0011 0111 BCD.  Gray code is a non-weighted 

reflected binary code.  Gray coding is an important code and is used for its speed. It is 

also relatively free from errors.  In pure binary coding or 8421 BCD, counting from 7 

(0111) to 8 (1000) requires 4 bits to be changed simultaneously.  If this does not happen, 

then various numbers could be momentarily generated during the transition, creating 

spurious numbers that could be read.  Gray coding avoids this since only one bit changes 

between subsequent numbers.  The first 16 standard binary coded numbers, as well as 

Gray coded numbers, are indicated in Figure 2.3. 

 

 

 

 

 

 

 

 

 

Figure 2.3   Binary Coding 

   STANDARD BINARY CODE  GRAY CODE
0 0 0 0 0=16 0 0 0 0

0 0 0 1 1 0 0 0 1

0 0 1 0 2 0 0 1 1

0 0 1 1 3 0 0 1 0

0 1 0 0 4 0 1 1 0

0 1 0 1 5 0 1 1 1

0 1 1 0 6 0 1 0 1

0 1 1 1 7 0 1 0 0

1 0 0 0 8 1 1 0 0

1 0 0 1 9 1 1 0 1

1 0 1 0 10 1 1 1 1

1 0 1 1 11 1 1 1 0

1 1 0 0 12 1 0 1 0

1 1 0 1 13 1 0 1 1

1 1 1 0 14 1 0 0 1

1 1 1 1 15 1 0 0 0
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2.3.1.3  Selection 

  In GAs there are two main selection procedures:  proportional selection (roulette 

wheel) and ranking-based selection.  In roulette wheel, fitness values of individuals 

represent the widths of slots on the wheel.  Using this method, individuals are mapped 

into a wheel in which the size of each individual interval corresponds to the fitness value 

of the associated individual. The basic roulette wheel selection method is Stochastic 

Sampling with Replacement (SSR), which means the segment size and selection 

probability remain the same throughout the selection phase.  SSR gives a zero bias but a 

potentially unlimited spread. Any individual with a segment size greater than zero could 

entirely fill the next population.   

  In the ranking-based selection, each individual is assigned a rank based on its 

fitness. The best individual in a population ranks first and the probability of selecting an 

individual is calculated as follows:  

Pi=(nmax-(nmax-nmin)(i-1)/(N-1))/N,  

where  N= number of individuals  

nmax + nmin=2 and   

nmax  >  nmin > 0. 

  Then a parent is selected by going through the following steps:  

a. Generate a random value r between 0 and 1. 
b. Set sum=0; 
c. for i=1 to N do 
    begin 
       sum=sum+Pi; 
       if (sum>=r) 
  return i; 
    end 
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2.3.1.4 Crossover 

  Crossover is the basic operator for producing new chromosomes in a genetic 

algorithm.  It is considered the step that makes the GA different from other algorithms.  It 

is used to create two new individuals (children) from two existing individuals (parents) 

picked from the current population by the selection procedure.  Crossover produces new 

individuals that inherit parts of both parents’ genetic material.   

  Genetic operators manipulate the characters (genes) of the chromosomes directly, 

using the assumption that certain individual’s gene codes, on average, produce fitter 

individuals. The recombination operator is used to exchange genetic information between 

pairs or larger groups of individuals. Some common crossover operations are one-point 

crossover, two-point crossover, uniform crossover, and intermediate recombination 

crossover.  The simplest form of crossover is single-point crossover. 

  The idea behind multi-point, and indeed many of the variations on the crossover 

operator, is that the parts of the chromosome representation that contribute the most to 

the performance of a particular individual may not necessarily be contained in adjacent 

sub-strings.  Further, the disruptive nature of multi-point crossover appears to encourage 

the exploration of the search space, rather than favoring the convergence to highly fit 

individuals early in the search, thus making the search more robust. 

  Given a real-valued encoding of the chromosome structure, intermediate 

recombination is a method of producing new phenotypes around and between the values 

of the parents’ phenotypes.   Offspring are produced according to the rule O1=P1+ α (P2-

P1), where α is a scaling factor chosen uniformly at random over some interval.  Line 
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recombination is similar to intermediate recombination, except that only one value of α is 

used in the recombination.  

 

2.3.1.5 Mutation 

  Unlike crossover, in mutation a child string is produced from a single parent 

string.  The purpose of the mutation is to randomly check the appropriateness of the path 

by applying occasional random alteration of a string associated with the current 

generation (Dorsey and Mayer, 1994).  The mutation operator forces the algorithm to 

search new areas and helps avoid premature convergence. 

 

2.3.2 Tabu Search 

Tabu Search is an iterative procedure designed for the solution of optimization 

problems. It was invented by Fred Glover and has been used to solve a wide range of 

hard optimization problems, such as job shop scheduling, graph coloring (related), the 

Traveling Salesman Problem (TSP) and the capacitated arc routing problem.  Most of the 

applications using this technique have been combinatorial problems, and only a few 

attempt have been made to use it for continuous problems (Glover and Laguna, 1997). 

A Tabu Search consists of several ingredients, including a number neighborhood 

searches, number of local searches, tabu list, and aspiration level, whose combination in 

adequate proportions will make it an efficient heuristic procedure.  A simple tabu search 

algorithm consists of three main strategies: forbidding strategy, freeing strategy, and 

short-term strategy (Glover, 1990).  Apart from these strategies, there also can be a 

learning strategy, such as intensification and diversification.  
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The forbidding strategy controls what enters the tabu list.   The main idea is to 

prevent the search from becoming stuck by making ‘backward’ moves tabu.   In other 

words, it is employed to avoid cycling problems by forbidding certain moves (classifying 

them as tabu).  This is usually achieved by constructing a tabu list with a specified length.  

The length of a tabu list is called the tabu list length (TL).  The appropriate value of TL is 

important.  A too small value will lead to high probability of cycling, while a too large 

value will drive away the search from good solution regions before these regions are 

completely explored. An additional feature, called an aspiration function, can be included 

in the model to cancel the tabu status of a certain solution, if it is desired.  This feature is 

important to improve the fact that too many solutions may be forbidden.  

The freeing strategy controls what exits the tabu list and when. The strategy 

deletes the tabu restrictions of the solutions so that they can be reconsidered in further 

steps of the search.  A tabu solution remains on the tabu list for a duration of TS 

iterations.   

The short-term strategy manages the interplay between the forbidding and freeing 

strategies to select trial solutions. 

Tabu Search requires tracking the best solution so far.  For each feasible solution, 

an appropriate neighborhood has to be defined.  A stopping criterion terminates the tabu 

search procedure.  The common stopping criterion is a lower bound.  If it is not available, 

the iterations can be stopped by setting the number of iterations that have been performed 

in total or the one that has been performed without improving the value of the best 

solution (De Werra and Hertz, 1989; Hertz and De Werra, 1990).  There is an ad hoc 
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element in choosing the various tabu rules.   The method is often faster at finding good 

solutions than simulated annealing. 

Sexton et al. (1998) claimed to apply Tabu Search for neural network training. In 

their work, the neighborhoods are defined as randomly drawn points from a uniform 

distribution while the local searches are random searches within the neighborhood.  The 

neighborhood was a region restricted to + 1 % for each weight in the initial neighborhood 

point.  Other parameters used are the size of Tabu List (TL) and Tabu Criterion (TC).   

An aspiration level condition was also included. 

 An explanation of their algorithm that is adapted for this research is as follows:  

An initial solution Xo (weights of NNs) is randomly drawn from a uniform distribution in 

the range of [-10 10].  The function value (MSE of the NNs) is then calculated.  Since Xo 

is the current minimum solution and f(Xo) is the minimum function value, both are used 

to set the best solution and function value parameters, Xbest and fbest as well as entered 

into separate Tabu Lists.     

The next solution is then randomly drawn from the neighborhood (Xo + 1%).  

Then, the function value is calculated and checked for acceptance by checking the 

aspiration level and tabu conditions.  The aspiration level is checked by directly checking 

the new function value with fbest.  If the new value is less than fbest then the point is 

automatically accepted and both Xbest and fbest are updated, as well as entering both in 

their respective TLs.  Otherwise the tabu conditions are tested for solution acceptance.   

The tabu conditions are twofold, with the first condition predetermining the need 

for the second condition.  If new function value (fnew) is within + 0.01 of any value in the 

function value TL, the second tabu condition would then be applied, otherwise, the point 
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is accepted and the respective TLs are updated.  However, if the new function value is 

within this tolerance, a check for specific solution weights of Xnew and the weights for the 

point which corresponds with the tabu list function value is performed.  If all of the 

weights in Xnew are within the tolerate from this tabu list point, the point is rejected, 

otherwise the point is accepted and Xnew and fnew are entered into TLs, dropping the oldest 

solution and function value from the list.  This local search continues for NS number of 

iterations, unless there is no improvement for 10 times (maximum number of iterations 

without any improvement).  This process is repeated for NH number of neighborhood 

searches. 

 

2.3.3 Simulated Annealing 

Simulated Annealing (SA) was introduced by Metropolis and is used to 

approximate the solution of very large combinatorial optimization problems (e.g. NP-

hard problems).  SA is a global optimization heuristic. The technique originates from the 

theory of statistical mechanics and is based upon the analogy between the annealing of 

solids and solving optimization problems. 

Simulated annealing is a Monte Carlo approach for minimizing multivariate 

functions. The term simulated annealing derives from the roughly analogous physical 

process of heating and then slowly cooling a substance to obtain a strong crystalline 

structure. In simulation, a minima of the cost function corresponds to this ground state of 

the substance. The simulated annealing process lowers the temperature by slow stages 

until the system “freezes” and no further changes occur. At each temperature the 

simulation must proceed long enough for the system to reach a steady state or 
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equilibrium. This is known as thermalization. The time required for thermalization is the 

decorrelation time and correlated microstates are eliminated. The sequence of 

temperatures and the number of iterations applied to thermalize the system at each 

temperature comprise an annealing schedule. To apply simulated annealing, the system is 

initialized with a particular configuration. A new configuration is constructed by 

imposing a random displacement. If the energy of this new state is lower than that of the 

previous one, the change is accepted unconditionally and the system is updated. If the 

energy is greater, the new configuration is accepted probabilistically. This is the 

Metropolis step, the fundamental procedure of simulated annealing. This procedure 

allows the system to move consistently toward lower energy states, yet still “jump” out of 

local minima due to the probabilistic acceptance of some upward moves. Because it 

consistently moves toward the minimum, if the temperature is decreased logarithmically, 

simulated annealing guarantees an optimal solution.  

This principle can be employed as an optimization technique in computer science. 

More specifically, in Artificial Intelligence, simulated annealing is used to help an NN 

avoid local minima in its energy function.  It is suggested that because of its highly 

iterative (thus computationally slow) nature, simulated annealing should be completely 

avoided, combined with the gradient descent algorithm, or only used when speed is not of 

the essence. Since simulated annealing can deal with highly dimensional minimization 

problems, or problems with many false minima, it should always be considered as an 

alternative when other methods fail. 
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2.4     Neural Network Applications 

2.4.1 Neural Network Applications for Forecasting 

Hill and O’Connor (1996) compared the performance of NNs to six statistical 

time series methods generated in major forecasting competition (Makridakis et al., 1982).  

The methods included deseasonalized single exponential smoothing, Box Jenkins, 

deseasonalized Holts Exponential smoothing, graphical forecasting approach, combine 

forecasting, and Carbone Longini filter method.  Beside those, Naïve method was 

employed.  Based on several different architectures examined, it is suggested that 3-2-1 

be used for annual data and 9-4-1 for monthly data.  The results showed that NN did 

significantly better than traditional methods.  Variance of the NN model forecast errors 

was almost always smaller than those of traditional models and of the reference average. 

White (1998) studied the usefulness of NN applications for economic time series 

for IBM daily stock returns.   A three-layer, fully connected NN with five input nodes 

and five hidden nodes was used.  The training data included the daily stock returns from 

the second quarter of 1974 to the first quarter of 1978.   The network considered failed in 

finding evidence against the simple efficient market hypothesis.  White suggested that the 

problem might arise from the training algorithm employed (BP) in this case study.  A 

global optimization method such as simulated annealing or the genetic algorithm would 

be preferable. 

Kolarik and Rudorfer (1994) showed the application of NNs for time series 

forecasting.  The data used were IBM common stock daily closing price for the period 

May 1961-November 1962 and monthly totals of international airline passengers from 

1949-1960.  A three-layer network with BP algorithm was used.  The learning rate and 
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momentum terms were varied from 0 to 1 with 0.1 steps.  The numbers of epochs used 

were varied between 60-138.  Based on the results, it was concluded that NNs with more 

than 50 hidden nodes were not suited for time series forecasting.  For the first data set, 

the best architecture found was 70 input nodes, 45 hidden nodes.  For second data set, the 

best architecture found was 80 input nodes and 30 hidden units.  For both data sets, the 

learning rate used was 0.1, and the momentum term was 0.9.  He also suggested two 

working architectures for time series forecasting: 8-8-1 and 6-6-1. 

Zhang et al. (2001) implemented NNs for eight nonlinear univariate time series 

data generated from regressive and moving average models that are replicated 30 times.  

It was concluded that NN models were more competent compared to Box Jenkins 

models.  Wikowska (1995) compared back propagation NNs with econometric models to 

predict the Polish stock exchange.  He used back propagation NNs with the following 

topology: 5-3-3, 3-2-1, 2-1-1, 5-3-1, and linear activation function in the output layer.  He 

concluded that NNs performed better.  By comparing NNs with 6 other techniques for 

predicting inflation, Aiken (1999) indicated that an NN may be able to forecast the 

inflation fairly accurately.  Moshiri and Cameron (2000) had the same opinions.  They 

found that back propagation NNs out performed traditional econometric approaches 

(ARIMA and VAR) in some cases based on the same variables used.   

Walczak (2001) explained that financial time series, particularly foreign exchange 

rate forecasts, are difficult to model.  He suggested general heuristics for NN design in 

financial domains: The more knowledge that is available to NN for forming its model, the 

better the ultimate performance of the NN, with a minimum of two years training data as 

a nominal starting point.  It has been shown that NNs provide better fit compared to 
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linear regression and random walk for this purpose (Balkin and Ord, 2000).  Mehta 

(1995) suggested the applicability of NNs to foreign exchange forecasts and concluded 

that NNs are currently the best problem-solving tool available for non linear time series.  

He cautions, however, that it takes quite a lot of understanding, experience, and plenty of 

experiments to achieve a stable set of networks (Khrisnaswamy et al., 2001). 

Setyawati (2004) studied the performance of GA learning for time series 

forecasting using NNs.  The case study was the foreign exchange rate predictions for 

JPY/USD.  In this comparison study, the two network architectures applied were: 3-2-1 

and 5-3-1.  When BP was used, back propagation plus momentum term was employed.  

The learning rate was set at 0.9, and the momentum term was set at 0.03.  The activation 

function was tanh.  The learning was stopped after 1000 iterations. The architectures and 

parameters used were based on the results of previous experiments (Setyawati et al., 

2003, Yao and Tan, 2000).  For the 5-3-1 model, the average correctness of gradient 

predictions from three replications for the BP and GA were 50.72% and 54.33% 

respectively. Besides the better average, GA results gave much lower standard deviation 

compared to BP results.  Yao and Tan (2000) reported an average correctness of 53.40 % 

using the same architecture but different set of weekly data, while that obtained using 

ARIMA was 44.32 %.   

A summary of some previous researchers of financial time series forecasting 

using NNs is given in Table 2.1.  NNs always performed better if a certain condition (i.e. 

correct parameters are employed) were satisfied.   Otherwise, the results usually are 

different.   
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Table 2.1 Research Studies on Time Series Forecasting of Forex 

Researchers: Yao and Tan, 2000 Yao, Li, and Tan Yao,Poh, and Jasic, 1996

Application: univariate time series for weekly exchange rate forecasts univariate time series for weekly exchange forecasts univariate time series for weekly exchange rate forecasts 

 for Yen, Mark, Pound, Franc,  AUS $ vs US $ for Franc vs US $  for Yen, Mark, Pound, Franc,  AUS $ vs US $

Data: Daily rates of each currency for period  Daily rates for period March 1, 1983 to Nov. 3, 1995 Daily rates of each currency for period  

18 May 1984 to 7 July 1995 Segmented into 13 different data sets, each with span of 18 May 1984 to 7 July 1995

(weekly forecasts over 7 daily data were adopted) 6.5 years with overlapping period of 0.5 years (weekly forecasts over 7 daily data were adopted)

Source of data: N/A Singapore Forex Market Singapore Foreign Market

Number of data: 1910 data 510 weekly data

Type of NNs: 3 layers feed forward NNs Singapore Forex Market 3 layers feed forward NNs

Learning algorithm: Back propagation Back propagation Back propagation

Architecture: 5-3-1,6-3-1 (for exp 1: time delay models) , 5-3-1, 6-4-1 The best architecture of each segment varies, 5-3-1,6-3-1 (for exp 1: time delay models) , 5-3-1, 6-4-1

(for exp 2: using indicators and hybrid), 6-2-1, 6-3-1, 6-4-1 that consist of 6-2-1, 6-3-1, and 6-4-1 (for exp 2: using indicators and hybrid), 6-2-1, 6-3-1, 6-4-1

(for exp 3: consistency test of different sets)

Activation function: hyperbolic tangent

Input: 1.  Time delay of Predictors Technical indicator : Moving averages 1.  Time delay of Predictors 

2. MA5, MA10, MA20, MA60, MA120, (One time delay) (MA5, MA10, MA20, MA60, MA120, One time delay) 2. MA5, MA10, MA20, MA60, MA120, (One time delay)

Input Pre-processing  - Normalized within [-1 1]

Size of training and test Six year training data and half year test data, totally 12 sets Six year for training and validation, half year test data 2/3 for training, 2/15 for validation, 3/15 for test set

Stopping criteria: - Treshold is 0.0005 with max. 10,000 epochs

Statistical performance NMSE, sign statistics, directional change  statistics NMSE, correctness of gradient NMSE, correctness of gradient predictions

measured:
Methods compared: ARIMA ARIMA

Results: Exp 1: NMSE average is .1499, gradient 54.03 % NMSE is [0.03  0.66]; gradient is [42.31  69.23] Exp 1: NMSE is [0.05-0.32], gradient is [51%  56%]

Exp 2: Hit rates 70%  of AU$& BPS, 60%  of CHF & DEM, Average paper profits of 11.36 % - 27.59% achieved Exp 2 (Except for Yen) NMSE is [0.03-0.06], gradient is 

 50% for JPY, ARIMA 55.86 % for different trading strategies over different time horizons [61% 75%]; For Yen the values are [1.2-2.0], 46%.  Gradient

for  ARIMA(1,0,1) is [39% 53%] ; (2,0,2) is [44% 56%]

Other important In respect of NMSEW, gradient or profit, NNs model Number of hidden layer used is approx. half of  inputs In respect of NMSEW, gradient or profit, NNs model 

information: using simple technical indicator (MA)  better than ARIMA Learning rate used is 0.9, momentum term 0.0003-0.02 using simple technical indicator (MA)  better than ARIMA
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Table 2.1 Research Studies on Time Series Forecasting of Forex  (continued) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Researchers: El Shazly et al., 1999 Walczak, 2001 Ankenbrand and Tomassini, 1995

Application: univariate time series for 3 month spot rate exchange univariate time series for daily exchange rate forecasts multivariate time series NNs for montly forecasting of SPI

for Pound, Mark, Yen, Franc vs. US $ for Yen, Mark, Pound vs US $
Data: - Daily rates of each currency for period SPI period January 1987-December 1994 (predictor)

1 March 1973 to 30 June 1995 1987-1994 data of S&P 500, DEM/USD exchange rate

average bond interest rate of CHF and US (indicators)

Source of data: N/A N/A N/A
Number of data: - vary from 1 year to 21.75 years data 96 for each series

Type of NNs: 3 layers feed forward NNs 3 layers feed forward NNs 3 layers feed forward NNs

Learning algorithm: - Back propagation Back propagation with changes in parameters

Architecture: 5-4-1 3-5-1 (Pound and Mark), 2-3-1 (Yen) 3 input, 2 hidden, and 1 output

Activation function
Input: original data 1,2,5 lags (Pound), 1,2,3 lags (Mark) monthly differences of S&P 500, DEM/USD exchange rate

1,2 lags (Yen) monthly differences of  interest rate  CHF

Input Pre-processing  - - Predictor scaled [.2 .8], indicators scaled [-1 1]

Size of training and test sets: - - 84 data for training and 10 data for test

Stopping criteria: - 50,000 epochs If the error of the validation  set increases

Statistical performance measured: total absolute errors, mean absolute errors, percentage of correct direction of change NMSE and  trend forecasting accuracy

% correct direction of change 
Methods compared: - - -
Results: hybrid NNs+GAs seem to be well suited for    a maximum of two years of training data produces 

the forecasting of financial data the best NNs forecasting performances: 62.4 % 
     (Pound), 61.6% (Mark), 59.2%(Yen)

Other important information: Previous research by Walczak suggested that single
hidden layer outperforms two hidden layers

Methodology to find the best lag combination obtained
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2.4.2 Choices of Neural Network Architecture Classes for Time Series  

Feed forward and recurrent multi-layer perceptron are popular NNs for complex 

time series tasks, such as forecasting financial time series.  Hallas and Dorffner (1998) 

conducted a comparative study on several linear and nonlinear feed forward and recurrent 

NNs trained on artificially created time series.  Several of the time series were generated 

by some of the NN models, in order to test whether they could learn to predict a time 

series that they could theoretically perfectly model.  All networks used BP as the training 

method.  The results showed that recurrent networks (Jordan and Elman types) did not 

adequately predict the sample time series.  These networks also resulted in significantly 

sub-optimal predictions whenever a time series was sufficiently described by a linear 

model.   

A simple feed forward network (a nonlinear autoregressive model) performs 

better than other models for most of the nonlinear time series.  Hallas and Dorffner 

(1998) concluded that for unknown underlying nonlinear characteristics of a time series, 

the feed forward Nonlinear Auto Regressive (NAR) model appears to be most likely to 

lead to satisfying results. NAR is a two-layer perceptron with an input window of size 20 

and 10 nonlinear hidden units with sigmoid activation functions. 

Koskela et al. (1994) compared time series prediction with multi-layer perceptron 

(MLP), Finite Impulse Response (FIR), and Elman NNs in four different time series 

prediction tasks.   All prediction tasks were one-step ahead forecasting.  The performance 

measured was Normalized Mean Squared Error (NMSE).   Simulations were done with 

an MLP network that had one hidden layer and one nonlinear output neuron, an Elman 

network that had one linear output neuron, and a FIR network that had one hidden layer 
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and one nonlinear output neuron. The comparisons were based on the best architecture of 

each network.  The results showed that the MLP network outperforms in 3 out of 4 time 

series studied.  In the other time series, MLP performed better in the training set and did 

nearly as good as the Elman network in the test set.  The FIR network provided the worst 

results for all cases.    In addition to the poor statistical performance, Elman and FIR 

training were slower than MLP.  The training of the Elman networks were three to ten 

times slower than for MLP, depending on the training data size and the number of 

network parameters, while training for the FIR network was five to twenty times slower 

than for the MLP network. 

 

2.5       Neural Network Building and its Performance  

The development of high-quality NN models is difficult.  Selecting the best NN 

architecture is crucial to the success of NN modeling (Hill and O’Connor, 1996).  Several 

design factors, include selection of input variables, architecture of the network, and 

quantity of training data significantly impact the accuracy of NN forecasts (Denton and 

Hung, 1996).   

 Choosing the correct NN topology for use in a particular domain (e.g. corporate 

bankruptcy) with optimum generalization performance is not a trivial problem. It 

involves the daunting task of constructing a large number of NN topologies with different 

structures and parameter values before arriving at an acceptable model (Chen et al., 

2001).  The main problem is that there is no fixed rule to determine the appropriate 

architecture or its parameter values.  Very few researchers have studied the effect of key 

factors in NN modeling.   Important factors to be considered in NN building are the 
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number of hidden layers and nodes, the number of input nodes, the activation function, 

the learning parameters, the size of the training set, data preparation, weight initialization, 

the cost function, the learning algorithm, and the stopping criterion. 

 

2.5.1 Number of Hidden Layers, Hidden Nodes, and Input Nodes 

It has been shown that one hidden layer is sufficient to approximate a continuous 

function and is appropriate for time series forecasting (Chan et al., 2000, Davey et al. 

2000, Zhang et al., 1998, Zhang et al., 2001).  The three-layer network is widely used in 

empirical work. 

Hidden nodes are abstract constructs whose function is to introduce and control 

the nonlinearity of the NNs.  The more hidden nodes, the more parameters and even more 

nonlinear equations resulted.  Therefore they can represent a wider variety of functions.  

It is necessary to include enough hidden units so that the network can detect at least 

simple nonlinear regularities.  If there are too few hidden nodes, the NN may not be able 

to generate a function that reflects the underlying problem.  Having more hidden nodes 

than necessary will result in over-fitting of the training set and decreasing the ability to 

generalize the out-of-sample data.  The magnitude of the weights is another quantity that 

affects the complexity of an NN, but to a much lesser degree.   

There are a number of techniques for determining the optimal number of hidden 

nodes, but a popular method is bootstrapping (Efron and Tibshirani, 1993). Examples of 

rules of thumb to determine the number of hidden nodes are:  (1) The number of hidden 

nodes should be 75 % of the number of input nodes (Salchenberger et al., 1992); (2) The 

number of hidden nodes is approximately the square root of the product of the number of 
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inputs and the number of outputs.  The use of these rules, however, does not guarantee 

the effectiveness of the architecture.  If there are very few inputs and outputs and the 

problem is complex, this method may underestimate the actual number required (Hansen 

et al., 1999).    A rule of thumb, based on statistical classification theory, suggests that the 

number of connections in NNs should be less than 10% of the sample size. 

Results from empirical works are varied.  Some of the important clues to 

determine the number of hidden nodes are as follows:  (1) One or two hidden nodes 

typically give the best forecasting performances in terms of MSE and MAPE (Zhang et 

al., 2001); (2) Two to five hidden nodes are recommended in terms of Bayesian 

Information Criterion (BIC)  (McMenamin, 1997); (3) Balkin and Ord (2000) suggested 

using the number of hidden nodes in the range of one to the total number of inputs nodes; 

and (4) NNs with more than 50 hidden nodes are not suited for the task of time series 

forecasting (Dougherty and Cobbett, 1997). 

One of two important issues for NNs in time series forecasting is the number of 

data points (Davey et al., 2000) that should be used in the forecast.  It is perhaps the most 

important issue since it corresponds to the number of lagged observations used to 

discover the underlying patterns and or autocorrelation structures of time series.   

Zhang et al. (2001) studied the effect of 3 main factors: input nodes (from one to 

five), hidden nodes (from one to 10), and training sample size (100, 200, 400).   In their 

work, they were primarily concerned with nonlinear univariate time series forecasting 

using one hidden layer fully connected feed forward NN, one output node, and employed 

BP as the training algorithm.   One-step ahead forecasts were performed, and MSE and 

MAPE of the results were measured.  The time series investigated were generated from 
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eight nonlinear equations.  The research was done using a simulated computer 

experiment based on a factorial experimental design.  They found that the number of 

input nodes was more important to the performance of NN than the number of hidden 

nodes, while a large training sample was helpful.  For most of the time series 

investigated, one or two hidden nodes typically gave the best forecasting performance.  It 

was suggested that NN models were more competent than ARIMA. 

 Based on the obtained results using a three layer NN and one to eight hidden 

nodes in the network, McMenamin (1997) suggested employing the number of hidden 

nodes between two and five for time series data.  He also showed that NN performances 

are better than regression models. 

Setyawati (2002) compared the performance of NN for time series forecasting 

with smoothing methods.  She showed that NNs outperformed moving average and single 

exponential methods for two data sets investigated (i.e. IBM common stock daily closing 

price and sales of new one-family houses).   Setyawati (2003) compared NNs with 

Random Walk and ARMA models for commodity price forecasting.   Results indicated 

that NN models generally outperformed those two models in predicting monthly zinc, 

copper, and tin prices.   

Hansen et al. (1999) designed a Genetic Algorithm (GA)-guided selection of NN 

architectures.   The results showed that impressive increases in forecasting accuracy 

could be achieved through applying NN techniques.  The application of GA to determine 

the architecture allowed NNs to outperform statistical models on the Box Jenkins data 

sets (i.e. ARIMA models).  Nasir et al. (2001) suggested the number of neurons for each 
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layer is related to the complexity of the input data and to the properties of the non-linear 

mapping from input to output.  

 

2.5.2    Activation Function 

Each neuron takes in the output from many other neurons.  Once inside the 

neuron, the weighted signals are summed to a net value.    The neuron calculates its 

output by finding the net value and then applying an activation function that produces an 

activation level inside the neuron.    The activation is passed through an output, or 

transfer function, which produces the actual output for that neuron for that time.  The 

activation function specifies what the neuron is to do with the signals after the weights 

have had their effect.   

There are three basic types of activation functions (Haykin, 1994):  (1) Threshold 

function, (2) Piecewise-linear function and (3) Sigmoid function.  In the threshold 

activation function, a unit fires if the weighted sum of the inputs reaches or exceeds the 

threshold value.  Paik (2000) stated that a nonlinear activation function does not 

guarantee that NN can represent any nonlinear function; for that, it is necessary to 

introduce hidden nodes into NN.  Commonly used nonlinear activation functions are the 

sigmoid function and the tangent function. 

 

2.5.3   Learning parameters 

A learning rate determines the magnitude of a correction term applied to adjust 

the weight of each node.  A large value causes the network to learn quickly, but it may 
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cause the training to be unstable or no learning occurs.  Momentum term is the 

percentage of previous errors applied to weight adjustment in each training case.   

 

 2.5.4   Size of Training Set 

It is necessary to divide the available data to develop an NN into two sets, one set 

for training purposes, and the other for test set.  The size of the training sample set is an 

important issue for NN applications.  Balkin and Ord (2000) concluded that a sufficiently 

long series is required to detect the nonlinearity and necessary for NNs to outperform 

simple methods.  Walczak (2001) studied the effects of different sizes of training sample 

sets on forecasting currency exchange rates. The selection of input variables, the NN 

training algorithm, and the design of the NN architecture were not discussed.  In his 

work, three foreign exchange rates were predicted, each using 11 different NN models.  

Results of the research showed that for most exchange rate predictions, a maximum of 

two years of training data produced the best NN forecasting model performance, which 

was 58% accurate for trading the pound sterling. This result contradicts the current 

financial NN development heuristics, which suggest using more data for training 

purposes (Zhang et al., 1998).   Walczak (2001) noted his previous conclusion based on 

the extension of his research.   His study on CHF/USD daily trading cautioned that a 

cutoff of two years of training data may not always be appropriate.   

 

2.5.5    Preprocessing Data 

Data preparation is crucial to the NN performance.  For time series forecasting 

using NNs, transformation of input points to interval [0 1] is recommended.  Beside the 
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transformation of input points to interval [0 1], it may be necessary to perform other 

kinds of data transformation.  Kolarik and Rudorfer (1997) e.g., have shown that the log 

time series performed better than the usual [0 1] interval transformation. 

Preprocessed-data may result in better forecasting performances.  Ankenbrand 

and Tomassini (1996) used monthly differences of the SPI (Swiss Performance Index), 

rather than the original value of the SPI as a predictor, since it detrends the predictor.  

The predictor was scaled in the range of [0.2, 0.8]. 

 

2.5.6   Weight Initialization  

The most widely used initialization method is the random initialization, either 

between [-0.5 0.5] or [-1 1].  Initialization influences the time required to converge, and 

whether the NN reach a global or local minima.  Another famous initialization is 

Nguyen-Widrow method.  This method is designed based on an analysis using the 

hyperbolic tangent activation function.  The procedure is as follow: 

(1) Initialize the weight between the input and the hidden layer as a random number 

[-0.5  0.5].  The initialization weight is called  wij(old). 

(2) For each hidden unit (j=1,2, …,p), compute ||wj(old)|| 

(3) Reinitialize weight wij= β wij(old)/|| wj(old)|| 

(4) Set bias woj using random values [-β β] 

where β = scale factor = 0.7 (p) 1/n, p = number of hidden nodes, n = number of input 

nodes. 

Chen (1992) suggested that randomization of initial weights is inappropriate.  He 

proposed the Forward Estimation Algorithm, with the basic idea to set the initial weight 
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space as close as possible to a global minimum before training to reduce the training 

time.  In this method, weights between the input layer and the hidden layer are still 

initialized randomly, but weights between the hidden layer and the output layer are 

obtained through several matrix multiplications.  Based on his findings for classification 

problems, he concluded that the proposed weight initialization algorithm improved the 

training speed.  Moreover, it was shown that the weight space could be easily computed 

if the number of hidden units is equal to or greater than the number of training patterns 

minus one. 

Chan et al. (2000) suggested a new weight initialization, which they believed 

resulted in better performance of BP.  In their method, weights between the input layer 

and the hidden layer were still initialized randomly, but weights between the hidden layer 

and the output layer were obtained by multiple linear regressions.  Koza and Rice (1991) 

illustrated how to find weights and architecture for an NN (including the number of 

layers and nodes in each layer) using a genetic algorithm for the one-bit adder.  

Unfortunately, neither the implementation program nor the detail algorithm was provided 

in his paper.  

Setyawati (2002) compared three initialization methods (random, forward 

initialization method, and multi regression method) suggested that there is significant 

difference of the NN performances.   The range test showed that the forward initialization 

method was worse compared to the random and multi regression methods.  There was 

little difference between the two other models, but random initialization performed better. 
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2.5.7   Cost function 

The BP cost function is the squared error, while the objective is minimizing the 

squared error value (MSE).  Other cost functions commonly used are Normalized Mean 

Squared Error (NMSE) and Root Mean Squared Error (RMSE). 

 

2.5.8 Learning Algorithm 

Training an NN is a search in the so-called weight-space; that is, the space 

spanned by all weights in the NN.  The goal of the search is to find a point in weight-

space that minimizes a certain error criterion.   Hence, it is  equivalent to performing a 

minimization procedure in weight-space with respect to the error criterion.  One of the 

most prominent and widely used algorithms is the BP method, which is based on the 

gradient descent minimization method, discovered independently by Werbos, Parker, and 

Rumelhart. 

BP is probably one of the most important NN paradigms because it is reasonably 

simple to implement and works well for a wide variety of applications.  BP is an iterative 

algorithm to minimize the mean squared error.  It requires the use of a continuous 

differentiable activation function.  It employs a nonlinear function, because a linear 

function achieves no advantage from the hidden units.   Basically, BP is a first-order 

stochastic gradient descent method.  This algorithm consists of two phases: the forward 

phase where the activations are propagated from the input to the output layer, and the 

backward phase, where the error between the observed actual and the requested nominal 

value in the output layer is propagated backwards in order to modify the weights and bias 

values. 
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 In spite of its popularity, BP has several limitations.  BP converges slowly and 

has difficulty in determining the network parameters (Chan et al., 2000, El Shazly et al., 

1999, Hansen et al., 1999).  Plus, it is sensitive to parameters such as learning rate and 

momentum rate and doesn’t guarantee global minima (Chan et al., 2000). 

A common approach to deal with BP drawbacks is to use second-order 

algorithms.  In regard to training speed, the conjugate gradient method is promising.  The 

conjugate gradient learning algorithm, which has a second order convergence property, is 

expected to reach convergence faster than the first order steepest descent approach (Chan 

et al., 2000).  Besides this method, many modifications of BP have been implemented in 

past NN literature to overcome the BP problems.   Sexton et al.  (1999) demonstrated that 

such modifications are unnecessary if a sufficiently complex initial architecture and an 

appropriate global search algorithm is used for network training. 

BP has unquestionably been a major factor for the success of NN applications.  

Nevertheless, some researchers concluded that its inconsistent and unpredicted 

performances in some applications were rooted from the use of BP as the learning 

method.  BP is often trapped to local optima.  Obtaining a global solution using this 

method is often dependent on the choice of starting values.  Many modifications have 

been implemented in past ANN literature to overcome this problem, but they have had 

limited success.  A more effective approach might be to replace the gradient base search 

technique with a global search technique, such as Genetic Algorithm (GA), Tabu Search 

(TS), or Simulated Annealing (SA).   
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2.6 Applications of Metaheuristic to Neural Network Design and Learning 

2.6.1   Application of Genetic Algorithms to Neural Networks  

  The application of genetic algorithms to NNs has followed two separate but 

related paths: (1) genetic algorithms to find the optimal network architectures for specific 

tasks, (2) genetic algorithms to optimize weights in NNs. 

Some previous studies have used the genetic search instead of gradient descent 

learning to establish the appropriate weight matrices in fixed architectures.  They suggest 

that genetic algorithms are a promising learning method for NNs.   Marti (1992) 

successfully employed genetic algorithm for training a recurrent network for a 

classification task.  In this study,  small fix-sized networks were treated with two genetic 

operations: mutation with probability of 0.03 and crossover with probability of 1.00 for 

400 generations.  El Shazly and El Shazly (1999) and Hung (2000) found that this 

algorithm resulted in better performance (in terms of total absolute forecast errors, mean 

absolute forecast errors, and the ability to correctly forecast the direction of the change in 

the exchange rate movement) and was suitable for networks.  Aiken and Bsat (1999) 

stated that GAs overcome the local minimum problem. The application of GAs for NNs 

appears to be well suited for the forecasting of financial data (El Shazly and El Shazly, 

1999, Hansen et al., 1999), as well as for forecasting construction demand (Hua, 2000).  

For the latter application, it has been shown that GAs outperform BP by reducing the 

average MAPE from about 6% to 1% for the case of the Singapore residential sector 

construction demand.  

Dorsey, Johnson, and Mayer (1994) examined the performance of the genetic 

algorithm for training three-layer feed forward NN with six hidden nodes on six 
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problems: the exclusive OR problem, parity 4, T&C (a recognition problem), binary 

addition, mapping a line to itself and the meshed region problem.  The inputs and the 

outputs were binary, while the weights were also represented as binary.  The genetic 

algorithm used a population of 20 with a probability of mutation of 0.02.  Weights values 

were drawn randomly from the interval [-1000 1000]. 

While applications of genetic algorithms to NN models have been used in some 

areas, only a few of them were applied for multi-layer feed forward NN.  Furthermore, 

most of those works dealt with classification problems or causal forecasting as indicated 

in Table 2.2.   The possibility of necessary modifications of the existing GA to enhance 

the multi-layer perceptron for time series forecasting has not been thoroughly examined.   

Dodd (1991) presented arguments that it is necessary to optimize NN structure for 

classification problems.  He used genetic algorithms by applying pure crossover for this 

purpose.  The genetic algorithm was chosen based on three reasons: (1) GA is insensitive 

to correlation between the network parameters, (2) It is desirable to explore several 

different regions of search in parallel; and (3) It is required to have an optimization 

technique that is tolerant of noise present on estimation fitness due to different starting 

weights.  Hansen et al. (1999) used a Genetic Algorithm to determine the number of 

hidden layers (1 or 2), the number of hidden nodes and the activation function in the 

hidden layers (choice of logistic and tanh), and the output layer (choice of linear and 

logistic).  They suggested that the application of GA to determine its architecture allow 

NNs to outperform statistical models on the Box Jenkins data sets. 



 49

Based upon the early results, El Shazly et al. (1999) believed that the application 

of hybrid systems (three-layer feed forward + GA) seems to be well suited for forecasting 

of financial data.  A hybrid NN 5-4-1 was employed to support this statement.   

Gupta and Sexton (1999) have shown that the use of a genetic algorithm can 

provide better results for training a feed forward NN than BP.  Their conclusion was 

based on a single application example, an artificial chaotic time series derived from the 

Mackey and Glass Equation.  The training data was normalized to the range of [-1 1].  

The initial five values of the time series were generated by drawing random values from a 

uniform distribution from the range [0 1].  In this comparison study, three network 

architectures were used, but the only difference was the number of hidden nodes (2,4, or 

6), while the number of inputs was fixed at 5.  The statistical performance used was Root 

Mean Squared Error.  The momentum value was manipulated from 0.0 to 0.9 in 0.1 

increments.   

Sexton et al. (1999a) compared BP with simulated annealing via an intensive 

Monte Carlo study on seven test-functions.  The SA algorithm implemented in this study 

was the one suggested by Goffe et al. (1994).  The networks were compared on the basis 

of the Root Mean Squared (RMS) forecast error and six hidden nodes were used.   It was 

shown that simulated annealing might indeed be a superior search alternative.   

Sexton et al. (1999b) compared the performance of two global search techniques, 

Simulated Annealing and Genetic Algorithm.  The three layer feed forward NNs with six 

hidden nodes were chosen.  Six experiment problems were examined.  The last problem 

was the Mackey-Glass equation.  For this problem, five lagged values of the dependent 

variable were used as the input variables.  They showed that GA, which was terminated
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Table 2.2 Genetic Algorithms for Multi-Layer Feed Forward Neural Network Training 

 

 

 

 

 

 

 

 

 

 

 

Source Method Model Applied Neural Network Topology Task Objective Parameter Settings
Type 

Sexton et al., 1999 GA Dorsey et al., 1994 Multilayer feedforward 6 hidden nodes Data sets generated SSE Population = 20
neural network from six different Weight values were drawn randomly

equations from the interval  [-600 600]
10 replications
Stopping criteria= 5,000 generations

Gupta and Sexton, GA Dorsey et al., 1994 Multilayer feedforward 2, 4, 6 hidden Data set drawn RMSE Population = 20
1999 neural network nodes from Mackey and Glass 10 replications

Equation Stopping criteria= 100,000 generations
Sarkar and Yegna- GA Multilayer feedforward 30 hidden nodes Classification Problems MSE Stopping criteria= 3,000 generations
narayana, 1997 neural network (4 classes of 400 data)
Osmera, 1995 GA Osmera, 1995 N/A N/A Travelling Salesman N/A N/A

Problem
Dorsey et al., 1994 GA Dorsey et al., 1994 Multilayer feedforward 6 hidden nodes Exclusive OR (parity2) SSE Population = 20

neural network Parity 4, T&C, Binary Probability of mutation = 0.02
Addition, Mapping a Probability of cross over = 1.0
line, meshed region Weight values were drawn randomly

from the interval [-1000, 1000]



 51

prematurely, provided solutions that typically dominated the SA results.  Furthermore, by 

examining four other architectures (varying in the number of hidden nodes:  2, 4, 8, and 

10), they have suggested that the best results were all obtained by the GA.  Besides those, 

Sexton et al. conducted a comparison of three learning methods (GA, SA, and BP) using 

a time series problem, i.e. daily S&P 500 index closing price.  Eight input nodes and six 

hidden nodes were used.  The momentum and learning parameters were set to 0.9 and 0.5 

respectively.  It was concluded that GA was superior to SA and BP, with average RMSE 

to be 0.0071.   SA failed on average to outperform.   

 

2.6.2 Applications of Tabu Search to Neural Networks  

Tabu Search has been applied to the network design problem and investigated as 

an alternative to the BP algorithm.  Cannas et al. (2000) attempted to obtain an optimally 

designed Locally Recurrent NN architecture by implementing a Tabu Search (TS) 

Algorithm.  In their work, the problem of choosing the number of hidden neurons and the 

number of taps and delays in the Finite Impulse Response (FIR) and Infinite Impulse 

Response (IIR) network synapses was formalized as an optimization problem whose cost 

function to be minimized was the network error calculated on a validation data set.  

Cannas et al. applied the proposed approach to a specific Continuous Stir Tank Reactor 

application.  The system had two inputs, two outputs, and one hidden layer.  By training 

the network for 3,000 epochs, it was demonstrated that the optimal NN found was able to 

make accurate predictions for data not used in the training phase. 

Battiti and Tecchiolli in 1993 have suggested the Reactive Tabu Search (RTS) 

approach for training multi-layer feed forward NN for classification tasks. De Werra and 
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Hertz (1989) proposed tabu search for associative memory problems, specifically the 

Hopfield network (Hertz and De Werra, 1990).  More recent papers examined these 

possible alternatives to the problematic BP approach for forecasting applications. 

Sexton et al. (1998) conducted comparison analysis between Tabu Search and BP 

for training three-layer feed forward NNs with 6 hidden nodes. Six problems were 

examined. Two Tabu Search algorithms were used, the preliminary and the extended 

Tabu Search. Different combinations of BP parameters were studied and included the 

alternate learning rate of 0.5 and 1, momentum of 0.3 and 0.9, and epoch size of 1 and 50.  

In all problems, the best epoch size for BP was one and momentum was 0.9.    The 

preliminary found superior solutions for four out of seven test problems.  It was not found 

superior to the last problem, the generated time series data. In regard to the extended 

algorithm, the results suggested that the Tabu Search solutions were significantly superior 

to those of BP solutions for all seven test functions. 
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Chapter 3 

Overview of Methodology 

 
 

The scope of this research is to analyze a time series forecasting system in which 

the forecasts, i.e. foreign exchange forecasts, are accrued from an NN model. The main 

focus is to minimize the forecast error through some attempts to determine the 

appropriate topology and weight matrices using various methods.  Problematic issues 

related to the development of the best possible NN model for given inputs, i.e. selection 

of the NN training algorithm and design of the NN structures, are emphasized.  Other 

problematic issues such as weight initialization, selection of input variables, and the 

amount of training data are not discussed.  Random weight initialization was chosen for 

this research.  All experiments based on pure time-delayed inputs. 

There are three main things studied in this research: (1) optimization of NN 

topology; (2) searching for the best learning algorithm for the NN time series forecaster;  

(3) implementing NNs for multi-step ahead time series forecasting.  Beside those, an 

attempt to implement an NN for multivariate time series forecasting is also incorporated.   

 

3.1       Foreign Exchange Forecasting using Back Propagation Method 

The NN model used in this research, depicted in Figure 3.1, is a three-layer feed 

forward NN with n inputs, p hidden nodes, and one output.  The underlying forecasting 

procedure is a two-stage procedure, in which the first stage is to identify the model 

parameters, while the second stage uses those parameters in the training process to 
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generate forecasts and determine the adequacy of the model parameters in the test 

process.  The flowcharts of the training process using BP learning is shown in Figure 3.2. 

 

 

 

 

 

 

 

 

 

Figure 3.1 Three-layer Feed Forward Neural Network 

The objective of this experiment is to study the effects of architecture and 

parameter values on its forecasting performance (i.e. Percentage of Correct Forecast 

Direction of Change (DIR), Mean Squared Error (MSE) and Mean of Absolute 

Percentage Error).  The effect of modeling factors in Three-Layer Feed Forward Neural 

Networks are studied thoroughly to accomplish two goals: (1) determine the key 

modeling factors that should be considered in topology optimization, and (2) provide the 

forecasting benchmark for each time series under investigation by constructing good NNs 

for this specific implementation.   To achieve these goals, a series of experiments was 

performed for an in-depth understanding of the various issues that have significant 

influence on the performance of NNs for time series prediction.    
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Figure 3.2   The Training Process 

The effects of the following variables were investigated: 

a) Size of input  

b) Number of hidden neurons   

c) Activation function of hidden nodes and output nodes  

d) Learning rate  

e) Momentum term 

The experiments were conducted in two steps, involving two and four variables 

respectively.  All experiments were applied for each data set in performing one-step 

ahead forecasting. To estimate the error term, three replications were used.  In the first 
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experiment, the effects of the two most important factors (number of input nodes and 

hidden nodes) were studied while others were kept constant, i.e. learning rate=0.9, 

momentum term=0.02, activation function= tanh (Based on the values used by Yao, Li, 

and Tan for forex forecasting).  Seven fixed levels of hidden nodes (3, 5, 6, 10, 12, 16, 

20) and ten fixed levels of input nodes (1, 2, 3, 4, 5, 6, 7, 8, 9, 10) were examined.   A 

total of 1050 data sets of one-step ahead forecasting were performed, each involving 

1000 iterations.   

The linear statistical model for this experiment is as follows: 

                                                yijk = µ + τi+ βj+ (τβ)ij + ε ijk                                                           (3-1) 

where µ is the overall mean, τi is ith number of input node effect, βj is jth number of 

hidden node effect, (τβ)ij is the interaction effect of ith number of input nodes  and  jth 

number of hidden nodes  and ε ijk is a random error. 

The best result found in the first experiment was the base for the second 

experiment, which was performed to study the effects of learning rate, momentum term, 

and activation function in hidden layer and output layer.  A fractional factorial with 16 

runs was employed for this purpose. The four factors were examined: (1) the activation 

function 1 (2 levels), (2) the activation function 2 (2 levels), (3) the learning rate (3 

levels) and the momentum terms (3 levels).   The array used is provided in Table 3.1. 

The experiments were conducted using univariate time series with pure time 

delayed inputs.  MATLAB® programming was used to facilitate the experiment.  

Basically, the MATLAB® program performs the following steps: 
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Table 3.1  The Experimental Array 

 

 

 

 

 

 

 

 

 

1. The program takes the values of parameters inputted by the user (i.e. number of 

input nodes, number of hidden nodes, learning parameter, momentum term, 

activation function). 

2. Input the chosen data using the ‘switch’ argument. 

3. Transform the input data into [0 1] interval. 

4. Map the input vector into the appropriate input data using sliding window 

techniques.  Figure 3.3 provides an illustration of the technique employed for this 

assignment. 

5. Initialize the weight based on the desired method: random, Nguyen Widrow. 

6. Perform BP training with the desired activation function.  The number of training 

patterns depends on the number of input nodes and type of forecast performed 

(one-step or multiple ahead forecasting), since here dynamic input data was used  

rather than static input data.    

runs act fn 1 act fn 2 l rate m term
1 T T 0.1 0.1
2 S T 0.1 0.3
3 T S 0.1 0.9
4 S S 0.1 0.3
5 T T 0.3 0.9
6 S T 0.3 0.3
7 T S 0.3 0.1
8 S S 0.3 0.3
9 T T 0.3 0.3
10 S T 0.3 0.9
11 T S 0.3 0.3
12 S S 0.3 0.1
13 T T 0.9 0.3
14 S T 0.9 0.1
15 T S 0.9 0.3
16 S S 0.9 0.9
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7. Transform back the values obtained; plot the values and obtained the statistical 

performance for the training and test sets. 

 

 

 

 

 

 

 

 

Figure 3.3  The Sliding Window Technique for Neural Network Time Series Forecaster 

 

Based upon the experiment results for one-step ahead forecasting and the analysis 

performed (Analysis of Variance (ANOVA)), conclusions were drawn.  The factors that 

gave significant difference were included in the topology optimization.  The best results 

for each case were compared with the findings from previous research results, and the 

best were used as benchmarks for all future comparison purposes. 

The accuracy of forecasting was used as the basis for selecting the appropriate 

method.    It is widely accepted that no single accuracy measure can capture all the 

differences among various methods.  Three performance measures were examined in this 

research: Mean Squared Error (MSE), Mean Absolute Percentage Error (MAPE), and 

The Percentage of true directional changes (DIR).    The last performance measure was 

used because the case study is foreign exchange forecasting.  The reason being that for 
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foreign exchange forecasting, measuring only the mean standard error of the NN may 

produce misleading evaluations of the NN capabilities, since even a very small error that 

incorrectly predicts the direction of change will result in a capital loss (Walczak, 2001).  

Instead or measuring the mean standard error of a forecast, many researchers argue that a 

better method for measuring the performance of NNs is to analyze the direction of 

change.  The percentage of correct direction of change forecasts is therefore equivalent to 

the percentage of profitable trades enabled by the NN system. 

 

3.2   Neural Networks Topology  

  Considering the importance of the topology to the NNs’ performances, this 

research topic was explored intensively.  This would include the optimization of NN 

architecture and the parameter values to obtain the best result for each data set.  The 

choice of NN architectures was made based on experiments using BP as the learning 

algorithm.   

The problem of choosing the number of hidden neurons and time-delay was 

formalized as an optimization problem in which the cost function was the network error 

calculated on a data set.  Two metaheuristic were compared for this purpose: Genetic 

Algorithm and Modified Tabu Search.   The topology identified in this stage along with 

the benchmarks, was used in the next stage to generate forecasts.  The implementation is 

rated as good if the network topology suggested provides a better or at least the same 

result as the benchmark for the given problem. 

The flowcharts of Genetic Algorithm and Modified Tabu Search for NN topology 

determination are given in Figure 3.4 and 3.5, respectively. 
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3.3      Neural Network Training 

This research addresses one of the main drawbacks of NNs for time series 

forecasting.  The goal is comparing the performance of a BP algorithm with a Genetic 

Algorithm and a Modified Tabu Search (TS) in an attempt to get an appropriate learning 

algorithm for a multi-layer feed forward NN for one-step ahead time series forecasting.  

In this experiment, GA and TS were employed to optimize the weight parameters of the 

three-layer feed forward NN so that the network mean squared error was minimized.   

A rigorous comparison among BP, TS, and GA was proposed.  Simulated 

Annealing was not examined, despite its superiority compared to BP.  The reason was 

that in nearly all cases where TS has been compared with SA, the superiority of TS was 

quite apparent (Hertz and de Werra, 1990).   BP has multiple user-determined parameters 

that may significantly impact the solution; thus, the exploration of the parameters was 

done before the comparisons took place. The various GA and TS models used in the 

literature were adapted and implemented to the chosen NNs architecture. 

Since the network consists of n number of inputs, p number of hidden nodes, and 

o output nodes and the neuron thresholds, the genetic algorithm requires chromosomes 

with [p*(n+o+1) + ot] genes and real encoding was applied.    The process of genetic  
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Figure 3.4 Genetic Algorithm for Topology Determination 
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Figure 3.5    Modified Tabu Search for Topology Determination 
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evolution works on the neuron connections by applying two procedures: mutation and 

crossover.  The GA for this purpose was constructed based on outlines provided by 

Dorsey et al. (1994) and Rooij et al. (1996).  The flowchart of a Genetic Algorithm is in 

Figure 3.6.  The Tabu Search Heuristic used is based on the one suggested by Sexton et 

al. (1998) and its flowchart is in Figure 3.7.   

 

3.4       Computational Studies for Multi-Step Ahead Forecasting 

In this phase, the best NN selected for two data sets (GBP/USD and EUR/USD) 

was used to conduct multi-step ahead forecasting.  Two- to five- step ahead forecasting 

were investigated.  The number of input nodes and the number of hidden nodes were 

specified the same as the ones chosen for one-step ahead forecasting.   The quality of the 

forecasts obtained for these time series data was discussed. 

 

3.5       Neural Networks for Multivariate Time Series Forecasting 

Based on the results, a similar approach was applied for multivariate time series 

forecasting.  The modifications were mainly on the inputs.   Rather than using one time 

series, the inputs came from multi time series.   Inputs initially considered in this study 

are the ones used by previous researchers to conduct multivariate time series models or 

the ones indicated in the literature, which include log of exchange rate index, three 

months 
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Figure 3.6  Genetic Algorithm for Neural Network Weights Training 
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Figure 3.7  Modified Tabu Search for Neural Network Weights Training  
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forward rate, current account balance, quarterly relative interest rate, log of quarterly 

relative price  (Hoque and Latif, 1993), inflation rate, flows of funds between two 

countries, export/import values of the two countries, and the exchange rate of other 

currencies. 

  Since the case studies are weekly closing data of foreign exchange rates, most of 

the above inputs were not applicable and or available except the log of exchange rate 

index and the exchange rate of other currencies.  The quality of the forecasts obtained for 

EUR/USD using this approach is presented in this section. 

 

3.6      The Data 

The following time series data were used in this experiment: 

(1).   Weekly and monthly time series data of Euro/US$ (EUR /USD) from period 2000 –   

         2004 

(2).   Weekly and monthly time series data of Japanese Yen/US$ (JPY /USD) from period  

        1991 – 2004 

(3).   Weekly time series data of Swiss Franc /US$ (CHF/USD) from period 1991 – 2004 

(4).   Weekly time series data of British Pound sterling /US$ (GBP/USD) from period   

        1991 – 2004 

(5).   Weekly time series data of Australian$ /US$ (AUS/USD) from period 1991 – 2004 

(6).  Weekly and monthly interest rate of Japan from period 1997-2004 

(7).  Weekly and monthly interest rate of Euro from period 2000-2004 

(8).  Weekly and monthly interest rate of US from period 1997-2004 
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Interest rate data were obtained from Economagic (economagic.com).  Historical 

exchange rates are available from some web sites in the form of daily time series data.  

The daily data for this research was obtained from the PACIFIC exchange rate services, 

which is maintained by Professor Werner Antweiler at The University of British 

Columbia, Vancouver BC, Canada.  The data was cleaned by conducting the required 

preprocessing.   The experiment used Friday closing prices as the inputs as well as the 

prediction target.  In the event of Friday being a holiday, the most recently available 

closing price for the currency was used.   The complete data are depicted in Appendix 1. 

For each time series, the training set is required to be larger than the testing set.  

As a default setting for the system, six years data are used as the training set and the next 

one-year data are used as the testing set.  Unless specified otherwise, the data employed 

were 1997-2003 data. 
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Chapter 4     

Forecasts Using Back Propagation  

 

4.1      The Back Propagation Model 

The NN model used in this research is a three-layer feed forward NN with n input 

nodes and p hidden nodes.  The model parameters, including the values of n and p, have 

to be identified prior to using the NN for time series forecasting.  Unless otherwise 

specified, five inputs nodes, three hidden nodes, and tanh activation functions were 

employed.  The learning rate was set at 0.9, while the momentum term was set at 0.02.  

Three years of training data (2000-2002) and one year of the test data (2003) were used 

for EUR/USD. Six years of training data (1997-2002) and one year of test data (2003) 

were used for other foreign exchange rates.  The data statistics of weekly foreign 

exchange rates employed (four years of data for EUR/USD and seven years of data for 

others) are given in Table 4.1.   The searches initialized using random weights, was 

stopped after 1,000 iterations.   

Table 4.1   Data Statistics of Weekly Foreign Exchange Rate 

 

 

 

 

4.2 Experiment I 

The objective of this experiment was to study the effects of the number of input 

and hidden nodes to the NN performances.  The number of input nodes and hidden nodes 

Variable Mean Median Max Min Std Dev
AUS$/US$ 1.6465 1.6207 2.0629 1.2525 0.2014
EURO/US$ 1.0384 1.0646 1.1929 0.8077 0.1016

FRANC/US$ 1.5265 1.4983 1.8091 1.2562 0.1322
POUND/US$ 0.6381 0.6241 0.7236 0.5657 0.0375

YEN/US$ 120.7242 120.8200 146.3500 102.1400 9.1149
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were set based on the corresponding unit experiment, and other parameters were kept 

constant.  For each currency, 70 unit experiments with 3 replications were performed.  

For the five currencies, 1050 data points were collected and analyzed. 

The Analysis of Variance (ANOVA) performed for JPY/USD is depicted in Table 

4.2 thru Table 4.4.  The ANOVA suggests that there is significant difference (based on α 

= 0.05) either for MSE, MAPE, or percentage true directional changes on the number of 

input nodes, the number of hidden nodes, and their interactions.   

Table 4.2  Analysis of Variance for MSE 

 

 

 

 

Table 4.3   Analysis of Variance for MAPE 

 

 

 

 

Table 4.4   Analysis of Variance for Percentage of True Directional Changes 

 

 

 

 

ANOVA
SV SS df MS F P-value F crit

Input Nodes 165418.2 6 27569.7 9.872754 4.53E-09 2.163929
H. Nodes 69391.72 9 7710.191 2.761032 0.00529 1.947349
Interaction 232764.2 54 4310.448 1.543578 0.022709 1.429385
Within 390950.5 140 2792.504

Total 858524.6 209

ANOVA
SV SS df MS F P-value F crit

Input Nodes 320.9708 6 53.49513 15.88311 7.18E-14 2.163929
H. Nodes 100.0885 9 11.12095 3.301894 0.001109 1.947349
Interaction 322.4482 54 5.971264 1.772914 0.004034 1.429385
Within 471.5271 140 3.36805

Total 1215.035 209

ANOVA
SV SS df MS F P-value F crit

Input Nodes 752.1187 6 125.3531 4.224177 0.000613 2.163929
H. Nodes 1068.505 9 118.7228 4.000748 0.000143 1.947349
Interaction 3222.053 54 59.66764 2.010693 0.000587 1.429385
Within 4154.522 140 29.67516

Total 9197.199 209



 70

The same analysis was performed for other currencies.  The results show that 

there are significant effects on the number of input nodes to the NN performances or the 

interaction between the number of input nodes and hidden nodes.   The complete analyses 

are given in Appendix 2.   

The significance of the number of input nodes are as expected.  As mentioned by 

Davey et al. (2000) and Zhang et al. (2001), the number of input nodes is the most 

important issue for NNs as time series forecasters, since it corresponds to the number of 

lagged observations used to discover the underlying patterns and / or autocorrelation 

structures of time series.  It has a much stronger effect than the number of hidden nodes.   

Besides that, there is an interaction between the number of hidden nodes and 

number of input nodes.     This suggests that the effect of the number of hidden nodes 

must be considered, since it will affect the result through the interaction effect with the 

number of input nodes. 

 

4.3       Experiment 2 

The objective of this experiment was to study the effects of activation function in 

hidden nodes, activation function in output nodes, learning rate and momentum term. For 

this experiment the number of input nodes and hidden nodes were pre-set (3-5, 8-3, 3-3, 

2-3, and 2-12 respectively for AUS/USD, EUR/USD, CHF/USD, GBP/USD, and 

JPY/USD), while the values of other parameters were set correspondingly to the unit 

experiment.    Two 2-level factors (activation function 1 and activation function 2) and 

two 3-level factors (learning rates, momentum term) were examined using fractional 

factorials with 16 run.   The design is given in Table 4.5 and the design generators used 

were E=ABC and F=BCD.  The defining relations were I=ABCE=BCDF=ADEF.  The 
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design is a resolution IV design.  In this design, every main effect was aliased by three 

factor and five factor interactions, whereas two factor interactions were aliased with each 

other and with higher order interactions. Hence, if three and higher factor interactions are 

negligible, this design gives a clear estimate of the main effects. Analysis of the effects, 

as well as the percent contribution of each factor, were analyzed using Design Expert® 

by StatEase. 

The linear combinations of the observations used to estimate the main effects of 

the four factors are as follows: 

lA= 1/8* (-r1 + r2 – r3 + r4 – r5 + r6 – r7 + r8 – r9 + r10 – r11 + r12 – r13 + r14 – r15 + r16) 

lB= 1/8* (-r1 - r2 + r3 + r4 – r5 - r6 + r7 + r8 – r9 - r10 + r11 + r12 – r13 - r14 + r15 + r16) 

lC= 1/8* (-r1 - r2 – r3 - r4 + r5 + r6 + r7 + r8 – r9 - r10 – r11 - r12 + r13 + r14 + r15 + r16) 

lD= 1/8* (-r1 - r2 – r3 - r4 – r5 - r6 – r7 - r8 + r9 + r10 + r11 + r12 + r13 + r14 + r15 + r16) 

llearning_rate = ½*( lC+ lD) 

lE= 1/8* (-r1 + r2 + r3 - r4 + r5 - r6 – r7 + r8 – r9 + r10 + r11 - r12 + r13 - r14 – r15 + r16) 

lF= 1/8* (-r1 - r2 + r3 + r4 + r5 + r6 – r7 - r8 + r9 + r10 – r11 - r12 – r13 - r14 + r15 + r16) 

lmomentum_term = ½*( lE+ lF) 

Table 4.5   The Experiment II Design 

 

 

 

 

 

 

 

 

 

=ABC =BCD
runs act fn 1 act fn 2 l rate m term A B C D E F

1 T T 0.1 0.1 - - - - - -
2 S T 0.1 0.3 + - - - + -
3 T S 0.1 0.9 - + - - + +
4 S S 0.1 0.3 + + - - - +
5 T T 0.3 0.9 - - + - + +
6 S T 0.3 0.3 + - + - - +
7 T S 0.3 0.1 - + + - - -
8 S S 0.3 0.3 + + + - + -
9 T T 0.3 0.3 - - - + - +

10 S T 0.3 0.9 + - - + + +
11 T S 0.3 0.3 - + - + + -
12 S S 0.3 0.1 + + - + - -
13 T T 0.9 0.3 - - + + + -
14 S T 0.9 0.1 + - + + - -
15 T S 0.9 0.3 - + + + - +
16 S S 0.9 0.9 + + + + + +
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The experiment results for JPY/USD are showed in Table 4.6.  The results for other 

currencies are available in Appendix 3. 

 

Table 4.6  Experiment II for JPY/USD 

 

 

 

 

 

 

 

 

 

 

 

 

The linear combinations (effects) as well as the percent contribution of each factor in this 

experiment are given as follows (Table 4.7). 

 

Table 4.7 Effects and Percent Contribution for JPY/USD  

 

 

 

 

 

 

Based on Partial ANOVA, only two factors are significantly different: activation 

function output node and learning rate.  While sigmoid and tanh activation functions 

Runs MSE MAPE Dir
1 15.94 2.75 43.58
2 1.80 0.95 48.71
3 7.79 2.06 41.02
4 22.92 3.97 48.71
5 22.21 3.85 51.28
6 1.97 0.99 53.84
7 6.00 1.82 48.71
8 2.18 1.03 43.58
9 21.69 3.85 53.84
10 2.28 1.09 56.41
11 6.36 1.88 51.28
12 2.15 1.02 46.10
13 14.00 2.91 53.80
14 19.20 3.63 64.10
15 20.60 3.74 51.20
16 19.60 3.64 51.20

Effect % Contribution
Activation Function 1 -5.31 -0.82 2.24 10.29 12.06 4.28
Activation Function 2 -1.44 -0.11 -5.47 0.75 0.21 25.47

Learning rate 3.12 0.52 4.79 3.55 4.96 20.88
Momentum term 1.08 0.18 -0.64 10.88 9.99 1.48

Statistical Performance MSE MAPE Dir MSE MAPE Dir



 73

worked well for this application, the hyperbolic tanh performed better.   The results also 

indicated that learning rate is more sensitive than the momentum term.  A higher learning 

rate is more appropriate for this problem.   

The complete results for all five foreign exchange rates proved that the above 

conclusions are problem dependent.  Percent contribution as well as partial ANOVA for 

GBP/USD, for example, demonstrated that the significant factor was the activation 

function hidden node.  In general, the hyperbolic activation function performed better.   

In all cases, three different momentum term values (0.1, 0.3 or 0.9) did not have a 

significant effect to the NN performance.   

Learning rate should not be excluded in the topology optimization in determining 

the correct parameters for different problems.   The hyperbolic tangent activation 

function seems more appropriate compared to sigmoid function.  It should be noted that 

learning rate and momentum term are only applicable for BP learning.  Hence, if one uses 

either Genetic Algorithm or Tabu Search as the learning method for NN for time series 

forecasting, only two out of the four parameters above must be included in the topology 

modeling.  

 

4.4 Obtaining the Benchmarks 

A set of parameters for NN forecasting for each currency was determined by 

comparing all the best results from the experiments using BP, as well as the ones given in 

the literature, and was used as a benchmark for further analysis.  Whenever available, the 

variances of the forecasting performance, i.e. the variance of MSE, MAPE, and DIR for a 

certain problem are provided to informatively describe the risk associated with the 

forecast parameters.   
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Considering the noise nature of BP evaluations, the forecasting performance, 

complete with the corresponding variance, is preferred.  The selected parameter values, 

which are used for the benchmark, are given in Table 4.8, while the complete 

comparisons are listed in Table 4.9.   

 

Table 4.8  Parameter Values For Comparing AUS, EUR, CHF, GBP, JPY with USD 
                                              
 
 
 
 
 
 
 

 
  
 
Note: Dir= directional change statistics; the performance values are given as [mean, variance] 

 
                                          GBP/USD                          JPY/USD 
 
 

 

 

 

 

 

 

 

2

12

0.9

0.02

tanh
MSE: [57.26, 11.79]
MAPE: [4.53, 1.05]
Dir: [61.90, 1.18]

Number of Input Nodes 2

Number of Hidden Nodes 3

Learning Rate 0.9

Momentum Term 0.02

Activation Functions tanh
MSE: [0.0005, 0.0003] 

Performances MAPE: [3.02, 0.88]
Dir: [62.58, 1.18]

AUS/USD EUR/USD CHF/USD
Number of Input Nodes 3 8 3

Number of Hidden Nodes 5 3 3

Learning Rate 0.9 0.9 0.9

Momentum Term 0.02 0.02 0.02

Activation Functions tanh tanh tanh
MSE: [0.0017, 0.0006] MSE: [0.0008, 0.0010] MSE: [0.0006, 0.0044]

Performances MAPE: [2.64, 0.42] MAPE: [3.15, 1.69] MAPE: [2.17, 0.46]
Dir: [64.00, 5.29] Dir: [58.13, 6.15] Dir: [58.33, 4.17]
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Table 4.9  Comparison of Research Studies on Forex Time Series Forecasting 
 
 
 

AUS/USD

input nodes hidden nodes l rate m term act function MSE MAPE Dir Data Freq Source:

        (average, standard deviation)

3 3 0.9 0.02 tanh [0.009, 0.0009] [3.51, 0.97] [63.00, 8.19] weekly Experiment I
3 5 0.9 0.02 tanh [0.0017, 0.0006] [2.64, 0.42] [64.00, 5.29] weekly Experiment I
3 5 0.1 0.3 sig/tanh [0.001] [1.99] [69.38] weekly Experiment II
5 3 0.9 - - - - [55.00] weekly Yao et al. 1996, Yao and Tan, 2000
5 ARIMA - - - - - [54.32] weekly Yao et al. 1996, Yao and Tan, 2000

EUR/USD

input nodes hidden nodes l rate m term act function MSE MAPE Dir Data Freq Source:

        (average, standard deviation)

4 3 0.9 0.02 tanh [0.0020,  0.0032] [4.48, 0.22] [57.43, 0.02] weekly Experiment I
8 3 0.9 0.02 tanh [0.0008, 0.0010] [3.15, 1.69] [58.13, 6.15] weekly Experiment I
8 3 0.3 0.3 tanh [0.001] [3.22] [58.13] weekly Experiment II

CHF/USD

input nodes hidden nodes l rate m term act function MSE MAPE Dir Data Freq Source:

        (average, standard deviation)

3 3 0.9 0.02 tanh [0.0006, 0.0004] [2.17, 0.46] [58.33, 4.17] weekly Experiment I
8 12 0.9 0.02 tanh [0.0060, 0.0044] [5.10, 2.06] [58.25, 4.48] weekly Experiment I
3 3 0.3 0.9 tanh [0.001] [2.30] [60.41] weekly Experiment II
3 6 - - - - - [57.60] Daily (4 yrs) Walczak, 2001
5 3 0.9 - - - - [56.00] weekly Yao et al. 1996, Yao and Tan, 2000
5 ARIMA - - - - - [55.86] weekly Yao et al. 1996, Yao and Tan, 2000
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Table 4.9  Comparison of Research Studies on Forex Time Series Forecasting (continued) 
                           

 
 
 

 

 

 

 

 
 
 

 

 

 

 

 

GBP/USD

input nodes hidden nodes l rate m term act function MSE MAPE Dir Data Freq Source:

       [average, standard deviation if available]

2 3 0.9 0.02 tanh [0.0005, 0.0003] [3.02, 0.88] [62.58, 1.18] weekly Experiment I
2 6 0.9 0.02 tanh [0.0005, 0.0003] [2.73, 0.97] [61.90, 2.36] weekly Experiment I
2 3 0.9 0.3 tanh [0.0001] [1.36] [61.22] weekly Experiment II
3 6 - - - - - [62.40] daily (2 yrs) Walczak, 2001
6 3 0.9 - - - - [54.74] weekly Yao et al. 1996, Yao and Tan, 2000
6 ARIMA - - - - - [53.41] weekly Yao et al. 1996, Yao and Tan, 2000

JPY/USD

input nodes hidden nodes l rate m term act function MSE MAPE Dir Data Freq Source:

       [average, standard deviation if available]

2 12 0.9 0.02 tanh [57.26, 11.79] [4.53, 1.05] [61.90, 1.18] weekly Experiment I
4 10 0.9 0.02 tanh [33.65, 3.74] [5.27, 1.29] [58.15, 2.46] weekly Experiment I
2 12 0.9 0.1 sig/tanh [19.2] [3.63] [64.1] weekly Experiment II
5 3 0.9 - - - - [53.4] weekly Yao et al. 1996, Yao and Tan, 2000
5 ARIMA - - - - - [44.32] weekly Yao et al. 1996, Yao and Tan, 2000
2 6 - - - - - [59.20] daily (2 yrs) Walczak, 2001
3 2 - - - - - [60.59] weekly Setyawati et al., 2003
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Chapter 5     

Neural Network Topology Determination 

 

 

The topology used has a very significant influence to the NNs performances.  The 

NN architecture and its parameter values should be set up appropriately to obtain a good 

forecast for each different problem.   

The common method used to determine the NN topology is trial and error, but 

this method is unstructured in nature and tedious.   Design of the experiment is an 

alternate method for finding out the appropriate topology for time series forecasting using 

NNs.  However, there are two problems encountered when applying this method.  First, 

to be able to apply this method using a reasonable number of experimental units, one 

should have preliminary information about the possible working architectures for a 

certain application.  Secondly, this method is not a trivial one as knowledge of statistics is 

required.  It is not possible for someone with no prior knowledge of NNs for a certain 

application and no experimental design skill to apply this method.  Therefore, a simpler 

application method is necessary. 

In this research phase, the problem of choosing the number of hidden neurons and 

time-delayed was formalized as an optimization problem in which the cost function was 

the network error of the data set.  The choice of NN architectures was made based on 

experiments using back propagation as the learning algorithm.   

Two possible methods were examined, i.e. Genetic Algorithm (GA) and Modified 

Tabu Search (TS) Algorithm.  Having the GA and TS tools for a topology search allows 
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the user to determine the correct topology for time series forecasting using an NN without 

any difficulty.    

It should be noted that GA or TS global search procedures are usually 

computationally expensive.  It is, however, beneficial to introduce this method when 

there is little prior knowledge available, and the performance of the NNs is required to be 

high.  Trial and error is very ineffective in such circumstances.   

 
5.1 Genetic Algorithms for Neural Network Topology Determination 

The Genetic Algorithm used was written in the MATLAB® environment. Using 

this method, an initial population consisting of various network architectures was 

represented and was mapped directly into a bit-string genotype.  For each architecture, 

six variables were examined: the number of input nodes, the number of output nodes, 

activation function for hidden nodes, activation function for output nodes, learning rate, 

and momentum term.  The genotype and phenotype representations are illustrated in 

Figure 5.1.  Genetic operations were then used to act upon populations of these genotypes 

to produce a higher fitness level.    

Gray binary encoding was chosen for its speed.  As has been known, Gray coding 

uses one-bit changes between subsequent numbers, which is not the case in pure binary 

coding.  Changing for 7 (0111) to 8 (1000) using the pure binary coding, for example, 

requires 4 bits to be changed simultaneously.  

For each of the five foreign exchanges examined, a Genetic Algorithm with back 

propagation-based fitness evaluation was employed to obtain the NNs topology.  A BP-

based objective value evaluation was employed.  This objective value evaluation is a 

noisy fitness evaluation with weight initialization as the major source of noise.  To reduce 
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the noisy nature of BP, each architecture was trained two times using different random 

initial weights.  The average value was used for the decision-making.    

A ranking mechanism was used that ranks the chromosomes in order of fitness.  

For selection, the standard roulette selection mechanism was used.  In every generation 

all chromosomes were replaced, except for the best performing chromosome, which was 

retained and inserted into the next generation without change (elitism scheme).  The 

crossover operator employed was two points crossover as illustrated in Figure 5.2 with a 

crossover rate of 0.7, and the mutation rate was set at 0.01.   

The normal parameters, including the population size, were set so that the time 

required for the topology search was approximately the same as the time required to 

conduct experiment 1.   Hence, the two methods are comparable.  Three different 

configurations were tried involving combinations of numbers of generations and 

population sizes of   50, 20, 10 and 4, 10, 20, respectively.   The pseudo code of the GA 

is given in Appendix 4, while the results of the best configuration (based on population 

size of 10 and 20 generations) are depicted in Table 5.2.  The performances (MSE, 

MAPE, DIR) were based on an average of five replications. 

 

 

 

 

 

 

Figure 5.1 The Genotype and Phenotype Representations 
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Figure 5.2 Two Point Crossover 

 

Table 5.1    Topology Suggested by GA  

 

 

 

 

 

 

 

 

 

 

The above results indicated that the topologies suggested by Genetic Algorithm 

were not as good as expected.   They are indeed better in terms of MAPE for all cases, 

and generally perform better in terms of MSE, but failed to show superiority in terms of 

DIR.  However, except for JPY/USD, all DIR were above 60%.  These values are 

AUS/USD TOPOLOGY MSE MAPE DIR
GA_Topology 8-1-0.59,0.02,1,1 0.0009 1.6810 61.36

Benchmark 3-5-0.90,0.02,1,1 0.0017 2.6400 64.00

EUR/USD TOPOLOGY MSE MAPE DIR
GA_Topology 3-3-1,0.54,1,1 0.0008 2.7390 61.25

Benchmark 8-3-0.90,0.02,1,1 0.0008 3.1467 58.13

CHF/USD TOPOLOGY MSE MAPE DIR
GA_Topology 3-4-0.96,0.50,1,1 0.0007 2.0620 60.00

Benchmark 3-3-0.90,0.02,1,1 0.0006 2.1700 58.33

GBP/USD TOPOLOGY MSE MAPE DIR
GA_Topology 2-3-0.30, 0.25, 1,1 0.0001 1.3626 61.22

Benchmark 2-3-0.90,0.02,1,1 0.0005 3.0167 62.58

JPY/USD TOPOLOGY MSE MAPE DIR
GA_Topology 3-1-0.88,0.02,1,1 3.9820 1.4710 54.17

Benchmark 2-12-0.90,0.02,1,1 57.2633 4.5333 61.90

11 0 1001 0 1

Potential crossover points
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11 1 1001 0 1
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Parents (generation n)
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Parents (generation n)

Off Springs (generation n+1)
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acceptable in practice.  As is widely known, different criteria exist for academics and 

industry.  In industry, 60% accuracy is typically aimed for (Yao and Tan, 2000).     

It is apparent that there is a completely opposite choice suggested for JPY/USD.  

The benchmark provides good performance in DIR but very low performance in terms of 

MSE and MAPE.  The GA suggested a topology that guarantees a very good 

performance in terms of MSE and MAPE, but somewhat low performance in terms of 

DIR.   Undoubtedly, the JPY/USD exchange rate is the most difficult one to forecast.  

The 2003 data, for example, has 27 turning points, as opposed to 16-22 turning points for 

other data.  That implies that more than 50% turning points in one year should be 

predicted.   The difficulty of this exchange rate forecasting is also reported by Yao and 

Tan (2000).  Consequently; more rigorous effort should be devoted for this foreign 

exchange forecasting.   

 

5.2       Modified Tabu Search for Neural Network Topology Determination 

A Modified Tabu Search (TS) algorithm was applied for this purpose.  The 

pseudo code of the algorithm for NN topology search is given in Appendix 4.  The 

maximum number of iterations = 10, with no improvement over the best solution so far, 

was used to terminate the search process.  The number of neighborhood searches (NH) 

and the number of local searches (NS) were set to ensure the time to complete the search 

was comparable with that for Experiment 1.  From the three configurations tested, i.e. NH 

= 50, 20, 10 and NS = 4, 10, 10, respectively, the second configuration (NH = 20 and NS 

= 10) was chosen for further discussion.     The size of the Tabu List was set equal to 100.  

An aspiration level condition was included to allow for overriding the rejection of a new 
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solution that meets the Tabu Criterion if the new solution is better than the best solution 

so far.  The best configuration was used for comparison purposes. 

For each architecture, six variables were examined: the number of input nodes, 

the number of output nodes, activation function for hidden nodes and output nodes, 

learning rate, and momentum term.  As implemented for this problem, the neighborhoods 

were simply randomly drawn points, which include random integers for the number of 

input nodes and hidden nodes, random numbers from 0 to 1 for learning rate, and value of 

0 or 1 for activation functions.   The local searches were conducted as random searches 

within the neighborhood.  The neighborhood was formulated as follows: 

1. For the number of hidden nodes, the neighborhood is restricted within 2 

numbers from the original value. 

2.  For the learning rate and momentum term, the neighborhood is region- 

restricted within 0.1 from the original values.  

A BP-based objective value evaluation was employed.  Each architecture was 

trained two times using different random initial weights.  The average value was used for 

the decision making. The algorithm described above was implemented in the MATLAB® 

environment.  The pseudo code of the modified Tabu Search used for the NN topology 

search is given in Appendix 4.  The chosen topologies for each currency using this 

method are given in Table 5.2. 
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Table 5.2    Topology Suggested by Modified Tabu Search 

 

 

 

 

 

 

 

 

 

 

Again, the above table indicated that the topologies suggested by Modified Tabu 

Search were not as good as expected.   The results are worse than those for GA.  

Compared to benchmarks, they are only better in terms of MSE and MAPE for three 

cases.  TS is also failed to show superiority in terms of DIR.  However, except for 

JPY/USD, all DIR are above 60%.  As discussed earlier, these values are acceptable in 

practice.   

Similar to the problem encountered in topology determination using GA, a 

completely opposite choice was suggested for JPY/USD.  The benchmark provides good 

performance in DIR, but TS suggested a topology that guarantees a very good 

performance in terms of MSE and MAPE, with a somewhat lower performance in terms 

of DIR.  This phenomenon emphasizes the need for a more thorough experiment for 

JPY/USD. 

AUS/USD TOPOLOGY MSE MAPE DIR
TS 9-1-0.90,0.02,1,1 0.0011 1.8600 60.46

benchmark 3-5-0.9,0.02,1,1 0.0017 2.6400 64.00

EUR/USD TOPOLOGY MSE MAPE DIR
TS 9-4-0.90,0.25,1,1 0.0031 5.3006 60.47

benchmark 8-3-0.9,0.02,1,1 0.0008 3.1467 58.13

CHF/USD TOPOLOGY MSE MAPE DIR
TS 8-4-0.97,0.31,1,1 0.0029 3.3434 61.16

benchmark 3-3-0.9,0.02,1,1 0.0006 2.1700 58.33

GBP/USD TOPOLOGY MSE MAPE DIR
TS 3-3-0.29,0.32,1,1 0.0001 1.1194 60.41

benchmark 2-3-0.9-0.02,1,1 0.0005 3.0167 62.58

JPY/USD TOPOLOGY MSE MAPE DIR
TS 5-3-0.27,0.89,1,1 5.9705 1.6588 53.80

benchmark 2-12-0.9,0.02,1,1 57.2633 4.5333 61.90
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Table 5.3 Comparisons of MSE, MAPE, and DIR Performances 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The comparison performance of topology suggested using GA, TS, and 

benchmark is given in Table 5.3.  The results from GA or TS for topology determination 

show that neither GA nor TS guarantee better results than the benchmarks, especially in 

terms of DIR. Compared to benchmark, both GA and TS only provide better performance 

for two cases.   Furthermore, GA performs better than the benchmark for all three 

performances measured only for one case, i.e. EUR/USD, while TS provides none.   

GA-based topology did result in the lowest MAPE for four out of five cases, and 

the lowest MSE for three out of five cases.  The only benchmark to yield the lowest MSE 

was CHF/USD, while none of the benchmarks result in lowest MAPE. 

For that reason, if a range of possible input nodes and hidden nodes are known, 

design of the experiment is recommended.  However, if there is no prior knowledge of 

                   M S E 
Topology Determination AUS/USD EUR/USD CHF/USD GBP/USD JPY/USD

Benchmark 0.0017 0.0008 0.0006 0.0005 57.2633
GA 0.0009 0.0008 0.0007 0.0001 3.9820
TS 0.0011 0.0031 0.0029 0.0001 5.9705

               M A P E
Topology Determination AUS/USD EUR/USD CHF/USD GBP/USD JPY/USD

Benchmark 2.6400 3.1467 2.1700 3.0167 4.5333
GA 1.6810 2.7390 2.0620 1.3626 1.4710
TS 1.8600 5.3006 3.3434 1.1194 1.6588

                  D I R
Topology Determination AUS/USD EUR/USD CHF/USD GBP/USD JPY/USD

Benchmark 64.00 58.13 58.33 62.58 61.90
GA 61.36 61.25 60.00 61.22 54.17
TS 60.46 60.47 61.16 60.41 53.80
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the problem, or the user has no statistical background and would like to get relatively 

good topology automatically, a GA or TS search for topology determination is better.   

By comparing the performance of GA-based and TS-based topologies for the five 

foreign exchanges, it can be concluded that in general the GA-based topology performs 

better.  GA generally prevails over TS in terms of MSE, MAPE, and DIR.   Only once 

out of five cases GA-based topology is defeated by TS-based topology either in MSE, 

MAPE, or in terms of DIR.  For that reason, GA is recommended for topology 

determination. 
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 Chapter 6     

Neural Network Weight Determination 

 
 
6.1       Training with Back Propagation 

 The BP network is based on a multi-layer feed forward topology with supervised 

learning.  The network is fully connected with every node in the lower layer linked to 

every node in the next higher layer.  These linkages are attached with weight values.  The 

learning of BP network is actually an error minimization procedure.  A BP optimized NN 

learns by using the generalized delta rule.   A random initialization weight is a common 

approach to initialize the search.  The weights are changed according to an error function, 

which compares the NN outputs with the targets.  The direction to change the weights is 

determined based on the negative of the gradient with respect to the weights.  The 

objective (error) function must be differentiable.  The error function applied is the sum of 

squared errors.   

BP is a local search algorithm (Shang and Wah, 1996), and tends to become 

trapped in local optima.  If the initial weights are located on local grated, the algorithm 

will likely become trapped at a local optimum.    Since obtaining an optimal solution is 

the goal of NN training, a global search technique seems more suitable for this difficult 

nonlinear optimization problem (Shang and Wah, 1996). 

The BP with momentum term was used in this study.   The program was written 

in the Mat Lab® environment.  For each of five currencies, two NN architectures were 

used for comparison purposes.  The parameter settings are given in Table 6.1.  Each 

configuration was trained for 1000 iterations and random initialization was applied.  The 
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trained networks were then used to generate one-step ahead forecasts for the next one-

year period.  Each replication differed only in the random initialization of the network.   

It is important to note that the average time to perform GA or TS training using 

the same number of iterations is twice the one to perform BP training.  To guarantee the 

fair comparisons, the better of two subsequent BP trainings was used for performance 

evaluation.   

Table 6.1 Parameter Settings for Each Currency 

 

 

 

 

 

 

 

 

 

6.2  Training with Genetic Algorithms 
 

 The version of Genetic Algorithm used in this comparison was a modification of 

Dorsey et al. (1994) and Rooij et al. (1996).   The program was written in the Mat Lab® 

environment. Using this method and the pre-selected network architecture, initial 

population weight matrices were presented, which were mapped directly into genotype 

representations.  Genetic operations were then used to act upon populations of these 

genotypes to produce a higher fitness level.   Real valued encoding was used.  As an 

Code Topology

AUS1 3-5-1, tanh, tanh, 0.9, 0.02
AUS2 3-3-1, tanh, tanh, 0.9, 0.02
EURO1 8-3-1, tanh, tanh, 0.9, 0.02
EURO2 4-3-1, tanh, tanh, 0.9, 0.02
FRANC1 3-3-1, tanh, tanh, 0.9, 0.02
FRANC2 8-12-1, tanh, tanh, 0.9, 0.02
POUND1 2-3-1, tanh, tanh, 0.9, 0.02
POUND2 2-6-1, tanh, tanh, 0.9, 0.02
YEN1 2-12-1, tanh, tanh, 0.9, 0.02
YEN2 4-10-1, tanh, tanh, 0.9, 0.02
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example, the genotype and phenotype representations for a network with two input nodes 

and two hidden nodes are depicted in Figure 6.1.    

A GA requires no pre-selection of parameters other than the number of input 

nodes and the number of hidden nodes.   In training the five foreign exchanges using 

Genetic Algorithm, two NN architectures were used for comparison purposes.   Table 

6.1. illustrates the specific parameter settings for each currency.  Each configuration was 

trained with five replications, each for maximum 1000 generations.  Each replication 

differed only in the random initialization of the network.  Since the optimal solutions are 

not known apriori, the size of the search space was set between -10 and 10.    

The normal parameters, including the population size, were set in the common 

pattern of most researchers, making it easier to compare results with other reported 

research, if desired.  The population size was set to 20 points per generation.  A ranking 

mechanism was used that ranks the chromosomes in order of fitness.  For selection, the 

standard roulette selection mechanism was used.  In every generation all chromosomes 

were replaced, except for the best performing chromosome, which is retained and 

inserted into the next generation without change (elitism scheme). 

The crossover operator employed was linear with a crossover rate of 0.7.  The 

mutation type employed was Gaussian addition, i.e., adding a random number to the 

mutated value.  The standard deviation of this number is equal to 1 with a mean of 10.  

The mutation rate was 0.02. 
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Figure 6.1 The Genotype and Phenotype Representations 
 
 
 
 
 
 
 
 
  
 
 

Figure 6.2 Linear Recombination Crossover 
 
 

6.3 Training with Modified Tabu Search 
 

The Modified Tabu Search  (TS) used for comparison with either BP trained 

networks or genetic algorithm trained networks was the one suggested by Sexton et al. 

(1998).  In this study, the maximum number of iterations was used to terminate the 

process.   When the number of iterations has taken place 10 times without improvement 

over the best solution, the algorithm will terminate.  The number of neighborhood 

searches (NH), and the number of local searches (NS) were both set at 100.   

As implemented for this problem, the neighborhoods are simply randomly drawn 

points from uniform distribution, while the local searches were conducted as random 
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searches within the neighborhood.  The neighborhood was a region restricted to its 

original value + one percent for each parameter value in the initial neighborhood point.    

The size of the Tabu List was set equal to 100.   

Since the NN weights deal with real values, the likelihood of finding solutions 

that are identical is extremely small.  For that reason, a proximity criterion, i.e., Tabu 

Criterion (TC) was applied to relax the strict comparison of the new solution to the 

present solutions in the Tabu List.  The TC was set at level 0.01 %.   Besides those, an 

aspiration level condition was also included for allowing overriding the rejection of a 

new solution that meets the Tabu Criterion if the new solution is better than the best 

solution so far.   

 The Modified Tabu Search algorithm described above was implemented in Mat 

Lab® environment.  For each problem, the algorithm was run five times each with new 

random seed. 

 
6.4 Comparisons 
 

In this comparison, the parameter was set as to what BP did best in previous 

research.  This was done to generate confidence that the optimal values were used for BP.   

The comparison of the algorithms were based on true directional changes (DIR), mean 

squared error (MSE), and mean absolute percentage error (MAPE).   Tables 6.2-6.4 show 

the relative performances of GA and TS compared to BP for five foreign exchange rates, 

each with two different architectures.   
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Table 6.2 Mean Squared Error (MSE) Performances of BP, GA, and TS  

 

 

 

 

 

 

 

 

 

Table 6.3 Mean Absolute Percentage Error (MAPE) Performances of BP, GA, and TS 

 

 

 

 

 

 

 

 

 

 

 

 

MAPE
Mean Variance

BP GA TS BP GA TS
AUS1 2.6400 1.4840 1.9098 0.1764 0.0307 0.0877
AUS2 3.5100 1.6960 2.0824 0.9409 0.0655 0.1728

EURO1 3.1500 1.6680 2.0490 2.8561 0.0276 0.1171
EURO2 4.4800 1.3640 1.4424 0.0484 0.0152 0.0160
FRANC1 2.1700 1.5100 1.6584 0.2116 0.0210 0.0281
FRANC2 5.1000 1.7100 3.3406 4.2436 0.0245 0.8636
POUND1 3.0200 1.1680 1.1516 1.3924 0.0230 0.0177
POUND2 2.7300 1.0280 1.0762 0.9409 0.0069 0.0126

YEN1 4.5300 0.9000 1.1744 1.1025 0.0007 0.0561
YEN2 5.2700 1.1240 1.4756 1.6641 0.0154 0.0970

MSE
Mean Variance

BP GA TS BP GA TS
AUS1 0.0017 0.0008 0.0012 0.0000 0.0000 0.0000
AUS2 0.0091 0.0011 0.0015 0.0000 0.0000 0.0000

EURO1 0.0008 0.0003 0.0005 0.0000 0.0000 0.0000
EURO2 0.0020 0.0002 0.0003 0.0000 0.0000 0.0000
FRANC1 0.0006 0.0006 0.0007 0.0000 0.0000 0.0000
FRANC2 0.0060 0.0008 0.0028 0.0000 0.0000 0.0000
POUND1 0.0005 0.0002 0.0001 0.0000 0.0000 0.0000
POUND2 0.0005 0.0001 0.0002 0.0000 0.0000 0.0000

YEN1 57.2600 1.7862 2.8930 139.0041 0.0072 0.9852
YEN2 33.6500 2.7274 4.3766 13.9876 0.3773 2.2625
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Table 6.4 The True Directional Changes (DIR) of BP, GA, and TS 

 

 

 

 

 

 

 

 

 

Comparing BP and GA, the GA algorithm found better solutions for 10 out of 10 

problems in terms of MSE and MAPE. It is worth to note that GA solution variance was 

significantly lower for those two statistical performances.  However, GA is only better 

for four out of 10 problems in terms of DIR, while overpowering BP for five out of 10 

problems in terms of the variance. 

Comparing BP and TS, the TS algorithm found superior solutions for nine out of 

10 problems in terms of MSE and for 10 out of 10 problems in terms of MAPE.   It is 

also interesting to note that BP solution variance was significantly higher.  It showed that 

the TS algorithm was less likely to get stuck in bad local solutions.   In terms of DIR, the 

TS algorithm found superior solutions in four out of 10 test problems.  For five problems, 

the TS variance was lower compared to that of BP.   

DIR
Mean Variance

BP GA TS BP GA TS
AUS1 64.00 64.07 61.67 27.98 30.44 40.40
AUS2 63.00 61.22 63.75 67.08 62.46 18.67

EURO1 58.13 56.27 58.62 37.82 14.59 28.00
EURO2 57.02 53.18 52.61 29.48 18.11 3.30
FRANC1 58.33 58.71 53.61 17.39 15.98 14.48
FRANC2 58.25 53.02 50.47 20.07 36.24 35.17
POUND1 62.58 63.65 67.08 1.39 0.86 3.04
POUND2 61.90 63.26 62.08 5.57 12.50 3.04

YEN1 61.90 50.61 52.50 1.39 7.10 7.37
YEN2 58.15 46.81 53.47 6.05 18.12 20.29
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It is interesting to find out the relative performances of GA and TS.  In terms of 

MSE and MAPE, the GA seems to perform better than TS but shows indifferent 

performances in terms of DIR.   

Overall, BP found inferior solutions for all problems compared to either GA or TS 

in both means and variance of MSE and MAPE.    In terms of DIR, BP found superior 

solutions for four out of ten problems for means.  On the other hand, compared to BP, 

GA guarantees better performance in term of MAPE and most of the time performs better 

in term of MSE.  It should be noted, however, that there is no uncertainty in the relative 

performance of DIR.    

Due to the fact that the time to perform GA is almost twice as the one for BP (on 

average 1.79 times), and that BP was run two times in order to avoid being trapped in a 

poor local optimum, GA is quite competitive.   Furthermore, it is apparent that GA is 

much easier to use.  In contrast to BP, which required extensive search for topology 

determination, there was no need to search for optimal parameter configurations for the 

GA to outperform BP.  For that reason, further discussions will be based on GA training.   

Figure 6.3 - 6.7 are provided to graphically illustrate the difference in BP, GA, and TS for 

the test data forecasts for each currency.  From the graphs, one can easily learn that GA 

performed better compared to BP for all cases.  

The residuals plot of the training set for the above forecasting problems using GA 

training were shown in Figure 6.8 – 6.12.  It can be seen that for all cases, the residuals 

fall within a horizontal band centered on zero with constant variance.  They display no 

systematic tendencies to be either negative or positive, and therefore present desired 

patterns. 
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Figure 6.3   AUS/USD forecasts using three different training methods 
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      Figure 6.4 EUR/USD forecasts using three different training methods 
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            Figure 6.5 CHF/USD forecasts using three different training methods 
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Figure 6.6 GBP/USD forecasts using three different training methods 
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Figure 6.7 JPY/USD forecasts using three different training methods 
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Figure 6.8.   Plot of residuals for GA training (AUS/USD data) 

 

 

 

 

 

 

 

Figure 6.9.   Plot of residuals for GA training (EUR/USD data) 

 

 

 

 

 

 

Figure 6.10.   Plot of residuals for GA training (CHF/USD data) 
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Figure 6.11   Plot of residuals for GA training (GBP/USD data) 

 

 

 

 

 

 

 

Figure 6.12   Plot of residuals for training set (JPY/USD data) 
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Chapter 7 

Forecasting Accuracy Issues 

 

7.1 Influence of Time Period 

The influence of the time period was studied by performing six years rolling 

training groups for GBP/USD to be comparable with similar work done by Walczak 

(2001).   The data is segmented into seven different data sets, each with a span of seven 

years (six years for training data and one year for test data) with an overlapping period of 

one year.  

A series of NNs that use rolling training data sets for forecasting the GBP/USD 

exchange rates were built.  Six new NNs were constructed with the identical number of 

input nodes and hidden nodes (two input nodes and three hidden nodes) and identical 

activation functions (hyperbolic tangent) using six-year training periods to forecast the 

following year.  The data sets are given in Table 7.1, and time period seven was the 

default used in the previous chapters.  The newest data set, i.e., training period January 

1998-December 2003 and testing period January 2004-December 2004 were examined 

and labeled as time period eight.  Results for all data segments are displayed in Table 7.2.   

The predictions of the weekly GBP/USD for each data segment are depicted in Figure 7.1 

– Figure 7.7. 

Table 7.1 Statistics for Different Time Period (GBP/USD) 

 

 

 

 

Time Period Training Period Testing Period Mean Median Max Min Std Dev
1 Jan 1991-Dec 1996 Jan 1997 - Dec 1997 0.6220 0.6384 0.7052 0.5010 0.0468
2 Jan 1992-Dec 1997 Jan 1998 - Dec 1998 0.6291 0.6384 0.7052 0.5010 0.0391
3 Jan 1993-Dec 1998 Jan 1999 - Dec 1999 0.6345 0.6346 0.7052 0.5863 0.0266
4 Jan 1994-Dec 1999 Jan 2000 - Dec 2000 0.6265 0.6229 0.6826 0.5863 0.0220
5 Jan 1995-Dec 2000 Jan 2001 - Dec 2001 0.6279 0.6227 0.7144 0.5863 0.0255
6 Jan 1996-Dec 2001 Jan 2002 - Dec 2002 0.6380 0.6240 0.7236 0.5863 0.0359
7 Jan 1997-Dec 2002 Jan 2003 - Dec 2003 0.6381 0.6241 0.7236 0.5657 0.0375
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Table 7.2 One-Year Forecasting Performances of the GBP/USD 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1   Prediction of the Weekly GBP/USD for Time Period 1 

 

 

 

 

 

 

 

 

Figure 7.2   Prediction of the Weekly GBP/USD for Time Period 2 
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Time Period Training Period Testing Period MSE *) MAPE *) DIR *)

1 Jan 1991 - Dec 1996 Jan 1997 - Dec 1997 6.540E-05 1.0060 50.00

2 Jan 1992 - Dec 1997 Jan 1998 - Dec 1998 5.062E-05 0.8368 50.40

3 Jan 1993 - Dec 1998 Jan 1999 - Dec 1999 3.300E-05 0.7406 52.20

4 Jan 1994 - Dec 1999 Jan 2000 - Dec 2000 8.596E-05 1.0910 54.40

5 Jan 1995 - Dec 2000 Jan 2001 - Dec 2001 6.036E-05 0.8730 45.20

6 Jan 1996 - Dec 2001 Jan 2002 - Dec 2002 7.884E-05 1.1324 51.20

7 Jan 1997 - Dec 2002 Jan 2003 - Dec 2003 5.933E-05 1.0754 64.62
(Default)

8 Jan 1998 - Dec 2003 Jan 2004 - Dec 2004 6.130E-05 1.1660 46.66
*) average from five replications
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Figure 7.3   Prediction of the Weekly GBP/USD for Time Period 3 

 

 

 

 

 

 

 

 

 

Figure 7.4   Prediction of the Weekly GBP/USD for Time Period 4 

 

 

 

 

 

 

 

 

 

Figure 7.5   Prediction of the Weekly GBP/USD for Time Period 5 
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     Figure 7.6   Prediction of the Weekly GBP/USD for Time Period 6 

 

 

 

 

 

 

 

 

 

Figure 7.7   Prediction of the Weekly GBP/USD for Time Period 7 

 

 

 

 

 

 

 

 

 

Figure 7.8   Prediction of the Weekly GBP/USD for Time Period 8 
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The NNs that utilize six-year rolling training for forecasting the GBP/USD 

exchange rate did not achieve the performances as good as the one for time period seven 

(the data set examined in the previous chapters), especially in terms of directional 

changes.  It seems that there is correlation between the number of turning points in the 

test data set and the true directional change predictions, as depicted in Table 7.3.  The 

two worst performances, i.e., for periods five and eight, happen to be the periods with the 

highest number of turning points.  The best one, i.e. period seven is the one with the least 

number of turning points (16 out of 51).  On the contrary, it seems that there is no 

relationship between the DIR statistics and the number of big changes in each period.   

 

Table 7.3  Number of Turning Points 

 

 

 

 

 

 

 

 

 

 

   

 Nevertheless, the MSE and MAPE values for all periods are fairly good.  The 

above results clearly indicate that the best topology to forecast a specific foreign 

exchange for a certain period is not always the best one to forecast other periods.   Hence, 

caution should be used in determining the correct topology, because it is problem 

specific.  This is reasonable because each data set has a different data pattern.  As shown 

Period DIR Number of Number of Number of
Turning Points Change > 0.01 Change > 0.015

1 50.00 23 9 3

2 50.40 23 8 1

3 52.20 22 5 1

4 54.40 22 12 5

5 45.20 29 8 2

6 51.20 23 8 1

7 64.62 16 7 1

8 46.66 27 9 1
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in Figure 7.1 – 7.8, different data sets of the GBP/USD exchange rates exhibit different 

trends and fluctuations. 

Actually, a different time period is a perfect example for an unknown problem set.  

Hence, one should determine the appropriate topology before applying NNs for time 

series forecasting.  Both Genetic Algorithm for Topology Determination or Tabu Search 

Algorithm for Topology Determination can be employed to provide a relatively good 

topology.   For GBP/USD for time period six for example, Tabu Search for Topology 

Determination suggested using number of input = 3 and number of hidden nodes = 5.    A 

Genetic Algorithm for weight training using this topology results in the following 

forecasting performances: MSE=0.0000717, MAPE=1.012, DIR=55.10, which is better 

than that previously obtained. 

It can be concluded that topology optimization is “case specific”.  Hence, one 

should make certain the proper topology for the specific set of data is determined before 

proceeding to forecast the foreign exchange rates using NNs.    

 

7.2 Multi-Step Ahead Forecasting 

Having studied the one-step ahead forecasting performances using NNs with 

various training algorithms, a similar procedure was then applied to generate multi-step 

ahead forecasts for GBP/USD and EUR/USD.  The number of input nodes and number of 

hidden nodes were specified to be the same as the ones for one-step ahead forecasting, 

i.e., 2-3-1 for GBP/USD and 3-3-1 for EUR/USD, all with tanh activation functions.  

Since the training method applied was Genetic Algorithm, the training parameters, such 

as learning rate and momentum term, did not need to be specified.  The Genetic 
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Algorithm was chosen because of its superiority compared to other training methods as 

shown in Chapter 6. 

The graphical outputs for one-, two-, three-, four-, and five- step ahead forecasts 

for GBP/USD are presented in Figure 7.9.   The one for EUR/USD is presented in Figure 

7.10.  The results in Figure 7.11 indicate that, given a certain topology determined for 

one-step ahead forecasting, the MSE increases as the number of multiple ahead 

forecasting increases.  The same phenomena for MAPE are clearly shown.  Those trends 

are true for both GBP/USD and EUR/USD exchange rate forecasts.  Unfortunately, there 

is no clear pattern on the direction behavior.  A summary of the multi-step ahead 

forecasting for GBP/USD and EUR/USD is given in Table 7.4.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.9 Graphical Output for GBP/USD 
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Figure 7.10  Graphical Output for EUR/USD  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.11 Statistical Performances Behavior for GBP/USD and EUR/USD 
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Table 7.4   Summary of Multi-Step Ahead Forecasting for GBP/USD and EUR/USD 

 

 

 

 

 

 

 

 

 

It can be concluded for the two examples in Table 7.4 that one can extend the use of a 

chosen topology up to three-steps ahead forecasting.   

Moreover, comparison study on the GA-trained neural network as discussed 

previously vs. Double Exponential Smoothing (Holt’s method) were conducted to 

examine the quality of multi step ahead forecasts obtained using the first method.   Five 

different values in the range of 0.1 – 0.5 for each of the two smoothing contents in 

Double Exponential Smoothing (DES), e.g. α and γ, were investigated.  The one gave the 

smallest MSE for one step ahead forecasting (α = 0.5 and γ=0.3) were used.  As indicated 

in Table 7.5, GA-trained neural network provide better results compared to DES for both 

forex either for one-step ahead or three-step ahead forecasts.  Compared to DES, GA-

trained NNs improved the MSE, MAPE, and DIR for three-step ahead forecasts by 8.92 - 

53.29 %, 30.40 - 31.69 %, and 15.48 - 47.07 %, respectively. 

 

 

 

 

GBP/USD MSE MAPE DIR

mahead=2 0.0001 1.4180 61.57
mahead=3 0.0002 1.7540 61.27
mahead=4 0.0002 2.0660 49.73

mahead=5 0.0003 2.3940 55.11

EUR/USD MSE MAPE DIR

mahead=2 0.0004 1.8832 55.30
mahead=3 0.0006 2.2740 64.34
mahead=4 0.0008 2.7518 43.11
mahead=5 0.0010 3.0723 44.08
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Table 7.5   Statistical Performances of Multi-Step Ahead Forecasts 

 

 

 

 

 

 

 

7.3 Monitoring the Forecasting Process 

Essentially, the NN will work best if it is retrained whenever new data is obtained.  

However, the time and cost to update the forecast can be huge.  As a common practice, 

one should determine the maximum time an NN should be retrained to guarantee good 

forecasts.  Yao et al. suggested that weekly foreign exchange estimates need to be 

reforecast every half-year.  It is important to note that the conclusion was made based on 

visual interpretations (based on forecasting figures). No test was used to reach this 

conclusion.   However, it was observed that in general the MSE, MAPE, and DIR for 

half-year forecasts are indeed better than those for one-year forecasts.  For EUR/USD 3-

3-1 three-step ahead forecasting, for example, the difference on those values was verified 

to be significantly different with the corresponding p values being less than 0.01.    

A need to reforecast can be learned by monitoring the forecasts.  One way to 

monitor forecasts to ensure that they are performing well is to use a tracking signal.  A 

tracking signal is a measurement of how well the forecast is predicting actual values.  In 

this research, a tracking signal test was applied to the testing data set for that purpose.   A 

MSE MAPE DIR
One-Step Ahead Forecasts
GBP/USD NNs *) 0.00006 1.07540 64.62

DES **) 0.00006 1.08310 42.00
EUR/USD NNs ***) 0.00022 1.39460 57.05

DES **) 0.00025 1.53110 53.06
Three-Step Ahead Forecasts
GBP/USD NNs *) 1.75400 0.00015 61.27

DES **) 1.92570 0.00022 53.06
EUR/USD NNs ***) 0.00055 2.27398 64.34

DES **) 0.00119 3.26720 43.75
*) GA  trained 2-3-1  **) Holt's Method (0.5, 0.3)  ***) GA trained 3-3-1
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tracking signal test determines when a pattern or relationship has changed; hence, there is 

a need to retrain NNs with newer data. 

Tracking signals are expressed in the form of ratios.  The numerator is a sum of 

forecast errors, while the denominator is the mean absolute deviation.   The denominator, 

which measures the long-run average variability of forecast errors, was used to 

standardize the numerator.  The tracking signal is usually computed as the running sum 

of the forecast errors (RSFE) divided by the mean absolute deviation (MAD), as given in 

the following formula:   

Tracking signal= )
)(

(
MAD

FiAi
absolute i

MAD
RSFE

∑ −
=                                                              (7.1)    

The flowchart of a tracking signal test is given in Figure 7.12. 

If the forecast is in control, the sum of the numerator has an expected value of 

zero.  The higher the tracking signal, the greater the possibility that the pattern being 

monitored has changed.  The common control limit for a tracking signal is absolute (4.0) 

(Heizer and Render, 2003).  Accordingly, the NN needs to be retrained if the tracking 

signal is greater than absolute (4.0). 

This issue was studied for EUR/USD and GBP/USD, each for one-step ahead and 

three-step ahead forecasting obtained using GA weight training.  Table 7.6 shows the 

results.  The tracking signal values make obvious that three-step ahead forecasting not 

only produced larger errors, but also had to be reforecast more often than one-step ahead 

forecasting.  The time to reforecast is apparently different for each case.   
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Figure 7.12   Flowchart for Tracking Signal Test 

 

7.4       Building Prediction Intervals 

Forecast error is inherent in any forecasting procedure.  Therefore, stating the 

uncertainty associated with a forecast conveys useful information to the decision maker. 

Forecast accuracy can be quantitatively described by the variance of the forecast error.   

Further, the uncertainty associated with the forecasts can be described by prediction  

 

Set Control Limit T limit
t=1

Calculate Error Term e t

Retrain neural networks

Eliminate t oldest observations ;
Include t new observations to the training set

Obtain Tracking Signal Ratio Tt

Compute Cumulative Error , RSFE
Compute Cumulative MAD

t = t + 1|Tt | > Tl imit

Y

N
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Table 7.6 Tracking Signals for EUR/USD and GBP/USD 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

intervals.  To be able to get this information, the forecast error variance should be derived 

first.    To show how to build a prediction method for a forecasting application, the 

method was applied for GBP/USD and EUR/USD, each for one-step ahead and three-step 

ahead forecasting.   

One way to estimate the error variance is by applying the bootstrapping method.  

Before generating the bootstrapping residual pseudo replicates, residual analysis is a 

necessity for determining the empirical distribution.  The residual analysis in this 

    Tracking Signal
Week EUR/USD EUR/USD GBP/USD GBP/USD

1 step 3 steps 1 step 3 steps
1 1.00 1.00 1.00 1.00
2 0.27 -0.39 2.00 2.00
3 0.33 -1.46 3.00 1.27
4 0.38 -2.27 3.30 -0.90
5 -0.45 1.12 2.36 -2.14
6 -1.26 -0.27 0.70 -2.64
7 2.48 -2.94 -0.66 -3.27
8 -0.49 -4.31 -0.12 -4.19
9 -3.27 -5.45 -1.00 -5.35

10 -2.79 -5.70 -2.58 -6.39
11 -3.36 -4.09 -3.76 -7.24
12 -3.91 -2.11 -5.13 -8.05
13 -2.44 1.07 -6.10 -8.31
14 -0.54 4.19 -6.96 -7.95
15 1.43 6.22 -7.44 -7.44
16 4.04 8.16 -7.28 -6.14
17 4.99 9.35 -7.34 -4.51
18 6.36 10.03 -6.01 -2.94
19 6.81 10.73 -4.45 -1.45
20 6.04 9.81 -3.77 -0.35
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research was conducted using graphical method (Q-Q plot) and quantitative method 

(“Goodness of Fit Test”).  The Q-Q plots were obtained using SPSS® while the empirical 

distribution of training residuals were obtained using ARENA® input analyzer. 

Having known the empirical distribution of the errors, the parameter of the 

bootstrapping must be determined.  One important parameter in the bootstrapping method 

is the number of bootstrapping replications used.   Generally, the higher the number of 

bootstrapping replications, the smaller estimated error variance.  However Deng (2003) 

suggested using the number of bootstrapping replications of 20, which she argued is 

usually informative and gives a good estimate of the forecast error variance.  In view of 

that, the bootstrapping replication for this research was set equal to 20. 

To show the implementation of the method, GBP/USS and EUR/USD were used 

as examples for one-step ahead and three-step ahead forecasting.  The preliminary 

examination of training residuals using Q-Q plots for both EUR/USD and GBP/USD 

indicates normality.   The “Fits All Summary” obtained from ARENA for the residuals of 

both foreign exchanges forecasting indicates that the normal distribution fits the data 

well.  The summary statistics are given in Appendix 5.   They lead to the conclusion that 

the residuals follow normal distribution, as shown in Figure 7.13 - Figure 7.16. 

 

 
Figure 7.13   Distribution Fitting for GBP/USD One-Step Ahead Training Errors:  

                               Normal (-0.0001849, 0.00744) 
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Figure 7.14   Distribution Fitting for GBP/USD Three-Step Ahead Training Errors:  
                  Normal (0.0000939, 0.0115) 
 

 

 

 

 

 

 

Figure 7.15   Distribution Fitting for EUR/USD One-Step Ahead Training Errors:  
                   Normal (-0.00185, 0.0186) 
 

 

 

 

 

 

Figure 7.16   Distribution Fitting for EUR/USD Three-Step Ahead Training Errors:  
                  Normal (-0.000504, 0.0273) 
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The bootstrapping residual procedure for this application consists of four steps: 

1. Determine the empirical distribution of the training data using bootstrap replications 

procedure.  S-Plus® software was implemented for this purpose. 

2. Generate B samples size n (n=number of training data) from the empirical distribution 

obtained.  Again S-Plus software is used.   

3. For each bootstrap sample, the network is trained and the predicted values for the 

testing data set are obtained. 

4. Estimate the variance of the ith bootstrap predicted value, where i=1,2,…. number of 

data in testing set. 

The bootstrap replications of mean and variance for training errors for EUR/USD 

and GBP/USD obtained by setting the replications equal to 1,000 are graphically 

displayed in Figure 7.17 – Figure 7.20.  For all problems, the normal probability plot of 

the mean for each case, i.e., Q-Q plots, indicates a desirable normality feature.    The 

mean and standard error values of both the bootstrapped mean and the bootstrapped 

variance for each case are given in Table 7.7.  The complete procedure to obtain the  

prediction interval of forecast is explained using EUR/USD three-step ahead as an 

example. 

  

Figure 7.17a   Bootstrap Replications of Mean for EUR/USD Training Errors 
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Figure 7.17b    Bootstrap Replications of Variance for EUR/USD Training Errors 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.18a    Bootstrap Replications of Mean for EUR/USD Three-Step Ahead 
                    Training Errors 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 7.18b   Bootstrap Replications of Variance for EUR/USD Three-Step Ahead 
                            Training Errors 
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Figure 7.19a    Bootstrap replications of mean for GBP/USD training errors 

Figure 7.19b  Bootstrap Replications of Variance for GBP/USD Training Errors 

 

 

 
 
 
 
 
 
 
 
 
Figure 7.20a  Bootstrap Replications of Mean for GBP/USD Three-Step Ahead 

Training Errors 
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Figure 7.20b  Bootstrap Replications of Variance for GBP/USD Three-Step 
                     Ahead Training Errors 

 

Table 7.7 Bootstrap Replications for Empirical Distribution  

 

 

 

 

 

 Having known the empirical distribution for the training error, i.e., normal 

(mean= -0.0004867, variance= 0.000743), B bootstrap residual replicates of size n were 

generated.  As mentioned previously, B is set equal to 20.  S-Plus language was used for 

this purpose.  By defining m as the number of bootstrap replicates, n as the number of 

training data, sample.mean and sample.var as mean and variance of the empirical 

distribution and repl.i is the destination cells for replicate # i (i=1,2…. m), the data frame 

name to retrieve the original data and save the result were named test.df and result.df,  the 

code for this data set is as follows: 

 
m <- 20 
n <- 309 
sample.mean <- 0.0004867 
sample.var <- 0.000743  
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Param

        mean            var
mean observed mean observed

EUR/USD one step -0.0018580 -0.0018530 0.0003488 0.0003499
EUR/USD three steps -0.0004867 -0.0005040 0.0007430 0.0007496
GBP/USD one step -0.0001654 -0.0001849 0.0000552 0.0000556
GBP/USD three steps 0.0000920 0.0000939 0.0001332 0.0001334
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result.df <- test.df  
for (i in 1:m) {  
repl.i <- rnorm(n,mean=sample.mean,sd=sqrt(sample.var))  
# names(repl.i) < paste("repl",i,sep="")  
# names(repl.i)  
# print(repl.i)  
result.df <- data.frame(result.df, repl.i)  
}  
result.df  
names(result.df)  
Edit.data(result.df)  

 

Next, the bootstrap replicates for training data were obtained.   Figure 7.21 

displays similarity in trends between the original training data set and two examples of 

bootstrap replicates.   Each bootstrap replicate was then applied as the training data for 

EUR/USD three-step ahead to generate the predicted values of the testing data.  The 

bootstrap replicates and the predicted values obtained are given in Table 7.7 and Table 

7.8 respectively.   

 

 

 

 

 

 

 

 

 

 

 

Figure 7.21 Original Training Data and Two Bootstrap Replicates 
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Table 7.8  Bootstrap Replicates of Training Data 

 

 

 

 

 

 

 

 

 

 

 

Table 7.9  Predicted Values for The Corresponding Bootstrap Replicate 
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The forecast variance was estimated by Deng (2002) as:                        

     ∑ −+= 2^*122 )]();([ i
b

iB xySxyεσσ  

 

y (xi; S^*b)  = predicted value of observation i obtained using bootstrap replication  

                            b as training data 

     while the prediction interval was estimated as:   

 

where B     = number bootstrapping replications 

σ2               = forecast variance  

σε2                     = process variance 

Figure 7.22a and Figure 7.23b show the graph of the 95% and 90% prediction 

intervals, respectively, for the forecasts calculated from the above formulas under the 

assumption that the process variation is the same as the training stage, which is σε2 = 

0.0007453 for EUR/USD three-step ahead. 

The same procedure is implemented for GBP/USD one-step and three-step ahead 

forecasting to obtain the prediction intervals. The predicted values of the testing data for 

each replicate are depicted in Appendix 6.  Figure 7.23a shows the graph of the 95% 

prediction intervals for the GBP/USD one-step ahead forecasts calculated from the 

previously mentioned formulas under the assumption that the process variation is the 
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Figure 7.22a   95% Prediction Interval and The Actual Values of EUR/USD  
                                    for Three-Step Ahead Forecasting 

 

 

 

 

 

 

 

Figure 7.22b   90% Prediction Interval and The Actual Values of EUR/USD  
                       for Three-Step Ahead Forecasting 
 

 

 

 

 

 

 

Figure 7.23a   95% Prediction Interval and The Actual Values of GBP/USD 
                                    for One-Step Ahead Forecasting 
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same as the training stage; Figure 7.23b shows the graph of the 90% prediction intervals 

for the same data set. 

 

 

 

 

 

 

 

Figure 7.23b   90% Prediction Interval and The Actual Values of GBP/USD 
                         for One-Step Ahead Forecasting 
 

Figure 7.24a and Figure 7.24 b show the graph of the 95% and the 90% prediction 

intervals, respectively, for the GBP/USD three-step ahead forecasts calculated from the 

previously mentioned formulas under the assumption that the process variation is the 

same as the training stage. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.24a   95% Prediction Interval and The Actual Values of GBP/USD for   
                        Three-Step Ahead Forecasting 
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Figure 7.24b   90% Prediction Interval and The Actual Values of GBP/USD for  
                        Three-Step Ahead Forecasting 
 

As discussed previously, the error for multiple ahead forecasting is usually greater 
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90% confidence interval of GBP/USD for three-step ahead forecasting is not as tight as 

the one for one-step ahead forecasting.  The 95% confidence interval for GBP/USD for 

one- and three- step ahead forecasts demonstrate the same outcome. 
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Chapter 8    

Multivariate Time Series Forecasting 

 
 

Most of the studies in time series forecasting have been concerned with univariate 

time series.  It is important to note that the univariate approach can fail for several 

reasons, such as: (1) The market could be efficient and only driven from outside 

indicators; and  (2) The available time series are too short for a significant technical 

analysis with the chosen forecasting horizon.  On the other hand, multivariate time series 

forecasting integrates some fundamental forces that allow for forecasting financial 

markets under difficult circumstances (Ankembrand and Tomassini, 1996).  

Multivariate time series analysis is an important statistical tool to study the 

behavior of time dependent data and forecast future values depending on the history of 

variations in the data.  By studying many related variables together, a better 

understanding is often obtained.  A multivariate time series consists of sequences of 

values of several contemporaneous variables changing with time.   

Previous researchers (Yao and Tan, 2000) suggested that univariate time series do 

not provide good forecasts for the JPY/USD exchange rate, because of their poor 

forecasting performances.  This research showed a similar problem with EUR/USD.  

Therefore, multivariate time series forecasting was investigated for these two foreign 

exchanges.   It was expected that an appropriate NN multivariate time series forecasting 

model would perform better than a univariate time series model. 

At first, the effects of economic forces, such as the net difference between the 

value of merchandise being imported and exported into a particular country, the flow of 
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funds between countries to pay for stocks and bonds purchased, the relative inflation 

rates, and the relative interest rates that influence exchange rates were planned to be 

examined.  It’s unfortunate that many variables that may have effect on foreign exchange 

can not be used in this case study.  The main problem is the difference in the frequency of 

the data.    

None was available for weekly periods, which was the case study in this research.  

Most of them are available quarterly, and inflation rates are available monthly, while 

interest rates are available either daily or monthly.  Weekly interest rates, the average 

value of interest during one week, were adopted for this research. 

     

8.1      Case Study 1: JPY/USD 

As stated before, the only economic forces obtained to conduct a multivariate 

analysis were interest rates for Japan and the U.S.  For predicting weekly exchange rates 

of JPY/USD, besides this time series itself, there are four other time series investigated: 

EUR/USD, Japan interest rates, U.S. interest rates, and relative interest rates of Japan and 

the U.S.  All of those variables seemed not to have an effect on foreign exchange of 

JPY/USD.  Correlation tests showed that among all above variables, there was no 

significant correlation between the two variables as given in Table 8.1.  Correlations 

measure the relationship between two data sets that are scaled to be independent of the 

unit of measurement. The population correlation calculation returns the covariance of two 

data sets divided by the product of their standard deviations as given in Formula 8-1. 

yx
yx

yxCov
σσ

ρ
.

),(
, =                                                                                                             (8-1) 
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 These results indicate that multivariate time series forecasting may not be useful 

in this case.  A small experiment was conducted to illustrate the problem and the results 

are depicted in Table 8.2.  It is clear that there was no significant improvement achieved 

by involving other variables to predict the weekly exchange rate of JPY/USD.   The 

phenomenon was seen by many economists.  Up to date, economists do not possess 

reliable methods of forecasting exchange rates over short time horizons, such as days or 

weeks.   Economic forces usually take much longer, often several years, to have an effect 

on exchange rates.  In view of that, one should study not only the window inputs but also 

the lag periods to determine the appropriate inputs of the economic forces for 

multivariate time series forecasting. 

Table 8.1 Correlation Coefficients for Weekly JPY/USD 

 

 

 

 

Table 8.2 Performances of Trivariate Time Series Forecasting of Weekly JPY/USD 

 

 

 

 

  n1= input window for JPY/USD; n2= input window for US interest data; n3=input window for JP interest data 

 

It is difficult to do the multivariate analysis if one considers weekly exchange 

periods, hence monthly exchange rates were used to study this topic.   For predicting 

JPY/USD
JP/US int -0.288
US int -0.369
JP int -0.329
EUR/USD -0.169

 n1 n2 n3 h nodes l rate m term MSE MAPE DIR
5 1 1 3 0.27 0.89 10.223 2.445 52.17
5 0 0 3 0.27 0.89 5.971 1.659 53.80
3 1 1 1 0.88 0.02 23.598 3.964 52.08
3 0 0 1 0.88 0.02 3.982 1.471 54.17
3 1 3 7 0.90 0.02 21.074 3.187 52.78
2 0 0 12 0.9 0.02 57.263 4.533 61.90



 129

monthly exchange rates of JPY/USD, besides this time series itself, there are five other 

time series investigated: EUR/USD, Japan interest rates, US interest rates, and relative 

interest rates of Japan and the U.S., and U.S. inflation rates.  Among those, only two 

variables, i.e., the U.S. interest rate and Japan’s interest rate, seem to have effects on 

foreign exchange of JPY/USD.  As it has been tested, the correlation between the two 

variables exist, where the correlation coefficient between JPY/USD and Japan interest 

rate is -0.687, and the correlation coefficient between JPY/USD and the U.S. interest rate 

is –0.696, as given in Table 8.3.   In view of that, trivariate time series were analyzed for 

predicting JPY/USD, involving three variables:  JPY/USD, Japan’s Interest rate, and the 

U.S. interest rate. 

 

Table 8.3 Correlation Coefficients for Monthly EUR/USD and JPY/USD 

 

 

 

 

A trivariate time series was conducted using monthly time-delayed foreign 

exchange data and interest rates for the period 1997-2003.  Six-year data was used as the 

training set, while the remaining data was used as the testing set.    

Five topologies were studied.  The first involved three time series with the same 

periods as suggested by Setyawati et al. (2003) in which two time-delayed data from each 

time series were fed to the NN after normalization of the data.   The number of hidden 

nodes was set equal to two.  In the second topology, three time-delayed from JPY/USD, 

EUR/USD JPY/USD
EUR/US int 0.099 JP/US int -0.076
US int 0.367 US int -0.696
EUR int 0.847 JP int -0.687
JPY/USD 0.256 EUR/USD 0.256
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and one time-delayed data from each of the two other time series were fed to the NN with 

three hidden nodes. The third and fourth scenarios are the variants of the topology 

obtained using GA.  In these, two time-delayed from JPY/USD, and one time-delayed 

data from each of the two other time series were fed to the NN with one and two hidden 

nodes respectively.  The fifth topology was obtained using GA for Multivariate Topology 

Determination, where NH was set equal to 20 and NS = 10.  The pseudo code of this 

algorithm is provided in Appendix 7.  Each topology was trained for 1,000 iterations.   

Figure 8.2 illustrates how to apply the sliding window technique when three time 

series are used as the input data as opposed to a simpler method when only one time 

series data is involved (Figure 8.1).  Suppose there are three time series data: X, Y and Z 

as the input data, and one considers using a time window of three for the first time series 

and one for each of the remaining series.  Assuming the current time is t, and the data 

inputted to the NN for forecasting the next period are X, Xt-1, X t-2, Yt, Zt.  The pseudo 

code of this algorithm is given in Appendix 7, and the results are depicted in Table 8.4 in 

which the benchmark is given in the last row.    

 

 

 

 

 

 

 

Figure 8.1   Univariate Time Series Forecasting Using Three-Layer Feed Forward Neural          
                   Network with Five Inputs and Three Hidden Nodes 
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Figure 8.2     Trivariate Time Series Forecasting Using Three-Layer Feed Forward Neural          
          Network with 5 Inputs (3-1-1) and 3 Hidden Nodes 
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Figure 8.3     Trivariate Time Series Forecasts for Monthly JPY/USD 
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n1 n2 n3 h nodes l rate m term MSE MAPE DIR
2 2 2 2 0.30 0.30 16.577 2.937 50.00
3 1 1 3 0.30 0.30 20.570 3.246 57.77
2 1 1 2 0.30 0.30 15.611 2.812 56.00
2 1 1 1 0.88 0.02 10.265 2.332 60.00
1 1 3 2 0.90 0.02 9.235 2.129 57.78
2 2 2 2 0.30 0.30 N/A N/A 54.00
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The best result was obtained from the (2-1-1)-1-1 NN model.  The result is better 

than the benchmark that reported an average gradient of 54% for their model.  To be able 

to compare trivariate time series and univariate time series for the chosen model, the 

performance of the corresponding monthly JPY/USD time-delayed input were looked 

into.   The results suggested that the trivariate time series did perform better than monthly 

time-delayed inputs with the same number of input for the corresponding time series and 

the same number of hidden nodes in terms of directional changes, as illustrated in Table 

8.5.   It is indicated that the additional time series enables one to improve the directional 

change performances without significant changes on the performances of MSE and 

MAPE. 

Table 8.5  Comparison between Trivariate and Univariate Time Series Forecasting 

 

 

 

 

 

 

The algorithm from the previous study did not produce the same level of success 

as the one achieved in this experiment.   Setyawati et al. (2003) argued that in spite of the 

improved performances they achieved, the gradients from either monthly time-delayed 

data or trivariate time series are not sufficiently adequate to be accepted by the 

practitioners.  On the contrary, the (2-1-1)-1-1 model performed better than the 

n1 n2 n3 h nodes l rate m term MSE MAPE DIR Note
2 1 1 2 0.30 0.30 15.611 2.812 56.00 t
2 0 0 2 0.30 0.30 14.488 2.782 50.00 u
3 1 1 3 0.30 0.30 20.570 3.246 57.77 t
3 0 0 3 0.30 0.30 19.914 3.135 53.34 u
2 1 1 1 0.88 0.02 10.265 2.332 60.00 t
2 0 0 1 0.88 0.02 9.412 2.139 54.00 u
1 1 3 2 0.90 0.02 9.235 2.129 57.78 t
1 0 0 2 0.90 0.02 7.520 1.947 45.45 u

t =trivariate, u= univariate
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benchmark and reached the 60% mark with the MSE and MAPE values much lower than 

the benchmark model ((2-2-2)-2-1). 

 

8.2 Case Study 2: EUR/USD 

For predicting the monthly exchange rate of EUR/USD, besides this time series 

itself, there are five other time series investigated: the monthly exchange rate of 

JPY/USD, the Euro monthly interest rate, the U.S. monthly interest rate, and the relative 

interest rates of Euro and U.S.  The only variable that may have effect on foreign 

exchange of EUR/USD is the Euro’s interest rate.   The correlation between these two 

variables exists with the correlation coefficient of 0.847 as shown in Table 8.3.   

A trivariate time series was analyzed for predicting EUR/USD.  It was predicted 

that the third variable, i.e. US interest rate would have no role in improving monthly 

forecasts of EUR/USD.    

The following four unit experiments were performed in this study.  The first two 

are the scenarios used by Setyawati (2003) to conduct multivariate time series 

forecasting, while the last two were GA-based topology obtained from a Genetic 

Algorithm for Multivariate Topology Determination.  The pseudo code of this algorithm 

is given in Appendix 7.    The four scenarios are as follows:  (1) The foreign exchange 

value of EUR/USD for period t+1 was predicted using 2 preceding values (recorded at 

time points t1, and t-1 only) from the three series, i.e. xt, xt-1, yt, yt-1, zt, zt-1,   (2) The time 

window of three was used for EUR/USD time series data, and one was used for each of 

the other two time series data, (3) Two inputs were obtained from EUR/USD time series 

data, and one input was obtained from each of the other two time series data, (4) The time 
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window of two for EUR/USD time series data, along with three input data from each of 

the other two time series data, was used to conduct the multivariate time series 

forecasting for EUR/USD.  The results are depicted in Table 8.6. 

 

Table 8.6 Performances of Trivariate Time Series Forecasting of Monthly EUR/USD 
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Figure 8.4     Trivariate Time Series Forecasts for Monthly EUR/USD 
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setting the learning rate=0.90 and momentum term=0.2 for NH=20 and NS=10, i.e.,  (2-

3-3)-6-1 model performed better than others in DIR and reached beyond the 60% marked. 

However, the chosen topology is not as predicted.   The best topology suggested 

using GA employed 3 inputs from U.S. Interest time series data, despite the low 

correlation between this data and EUR/USD.  This may be happen because of the existing 

correlation between U.S. interest and EUR interest.  Moreover, in spite of the correlation 

coefficient, both U.S. interest data and EUR interest data possess positive correlations 

with EUR/USD foreign exchange rate data — that is, large values of EUR interest or 

larger values of U.S. interest are associated with large values of EUR/USD.  As a result, 

U.S. interest time series data did improve the quality of EUR/USD exchange rate 

forecasts. 
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Chapter 9    

Conclusions and Future Research Recommendations 

 
9.1 Summary of Research 

When applying an NN model to a real application, attention should be taken in 

every step, including the determination of the topology and the training algorithm 

employed.   Many researchers currently use BP algorithms that converge locally as NN 

training.  A possible solution to this local convergence dilemma is either the genetic 

algorithm or the tabu search algorithm.  This art, especially in terms of configuring the 

topology and training NNs, was simplified through the use of GAs and TS in this 

research.    Furthermore, the application of GA and TS for topology determination will 

eliminate the tedious trial and error procedures. 

The study showed that there are at least three parameters that should be included 

in the topology determination model: the number of input nodes, the number of hidden 

nodes, and the learning rate.    It was indicated that the number of input nodes is the most 

important issue.  Besides that, there was an interaction between the number of hidden 

nodes and the number of input nodes.  Moreover, the hyperbolic tangent activation 

function seems more appropriate compared to sigmoid function   

The comparison performance of topology obtained using GA, TS, and benchmark 

led to the conclusion that neither GA nor TS guarantees better results, especially in terms 

of DIR.  However, if there is no prior knowledge of the problem, GA searches for 

topology determination are favorable and provide reasonably good performance.   GA is 

preferred over TS for foreign exchange forecasting, since GA prevails over TS in terms 

of MSE, MAPE, and DIR in this case study.  The topology suggested by GA is indeed 
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better in terms of MAPE for all cases, and generally performed better in terms of MSE, 

but failed to show superiority in terms of DIR.   However, the DIR for AUS/USD, 

EUR/USD, CHF/USD and GBP/USD were all above 60%.   

Compared to BP and TS, GA is preferred for NN training.  The GA guarantees 

better performance than BP in terms of MAPE and most of the time performs better in 

terms of MSE.  It should be noted that there is no uncertainty in the relative performance 

of DIR.   Additionally, GA is quite competitive and much easier to use.   

The study on time period influences on NNs for Time Series Forecasting 

performances indicated that the best topology to forecast a certain foreign exchange is 

“data specific”; hence, the best approach for a certain period is not always the best to 

forecast other periods, especially in terms of directional changes.  Case studies for 

GBP/USD suggested there is a correlation between the number of turning points in the 

test data set and the true directional change predictions.  The two worst performances, 

i.e., for period five and eight, happen to be the periods with the highest number of turning 

points.  Therefore, caution must be used in determining the correct topology, because it is 

problem specific.   

Results on multi-step ahead forecasting for EUR/USD and GBP/USD indicated 

that given a certain topology chosen based on one-step ahead forecasting, the MSE and 

MAPE increased as the number of multi-step ahead forecasting increases.   There was no 

clear pattern on the DIR behavior as it seemed reasonably well for up to three-step ahead 

forecasts.   It also is apparent that the (1- α) confidence interval for three-step ahead 

forecasting is not as tight as the one for one-step ahead forecasting for both cases.  
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Multivariate Time Series forecasts for monthly JPY/USD, as well as for monthly 

EUR/USD, produced a higher level of success than that achieved previously (Setyawati 

et al., 2003).  The (2-1-1)-1-1 model for JPY/USD performed better than the benchmark 

and reach the 60% mark with the MSE and MAPE values much lower than the 

benchmark model ((2-2-2)-2-1).  The (2-3-3)-6-1 model for EUR/USD performed well 

and reached beyond the 60% mark. 

 
9.2 Contributions of Research 

  The contributions of this research are: 

(1) A thorough experiment about the effects of important factors in NNs for time 

series forecasting; 

(2) A comparison of global search techniques for NN topology optimization and 

training using real time series data; this is the first time comparison of BP, GA, 

and TS used real financial time series data; 

(3) An NN for foreign exchange multivariate time series forecasting was 

implemented; and 

(4) Multi-step ahead time series forecasting was incorporated in the model. 

 
9.3 Recommendations for Future Research 

In addition to using pure time series, the inputs to NNs can also include some 

technical indicators, such as moving average, one of the oldest and most useful technical 

indicators in existence.  The advantage of a moving average is that it tends to smooth out 

some of the irregularities that exist between market days (Yao et al., 1996).  However, 
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one must preset the technical indicator parameters first, prior to applying for forex 

forecasting. 

 In this research, the parameters for GA and TS were preset.  A more rigorous 

exploration of the parameters may produce better performance for both GA and TS 

methods.   

BP is a noisy objective evaluation, due to its sensitivity. In view of this, the GA 

can be considered as an alternate objective value, and the replication in objective value 

evaluations would not be necessary.   
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Appendix 1.  Weekly Closing of Five Foreign Exchange Rates 

 
1.  AUS/USD Weekly Closing Data 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Week 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
1 1.2829 1.3201 1.4880 1.4568 1.3046 1.3364 1.2633 1.5347 1.5799 1.5258 1.7515 1.9252 1.7701
2 1.2937 1.3578 1.4830 1.4494 1.3203 1.3422 1.2791 1.5462 1.5749 1.5003 1.7977 1.9186 1.7174
3 1.2845 1.3450 1.4871 1.4230 1.3012 1.3584 1.2810 1.5081 1.5753 1.5086 1.7941 1.9413 1.6923
4 1.2881 1.3517 1.4717 1.4106 1.3117 1.3540 1.2942 1.5064 1.5877 1.5924 1.8412 1.9351 1.6878
5 1.2787 1.3290 1.4770 1.3989 1.3266 1.3240 1.3105 1.4607 1.5349 1.5821 1.8102 1.9675 1.7057
6 1.2822 1.3312 1.4760 1.3987 1.3419 1.3239 1.3119 1.4899 1.5469 1.5911 1.8628 1.9586 1.6933
7 1.2682 1.3254 1.4482 1.4006 1.3559 1.3230 1.3063 1.4834 1.5679 1.5885 1.8845 1.9334 1.6885
8 1.2748 1.3277 1.4367 1.3859 1.3563 1.3226 1.2861 1.4870 1.6103 1.6182 1.9160 1.9481 1.6740
9 1.2740 1.3262 1.4123 1.3996 1.3544 1.3132 1.2868 1.4719 1.5923 1.6424 1.8883 1.9308 1.6448

10 1.3008 1.3231 1.4062 1.4074 1.3428 1.3015 1.2677 1.4976 1.5711 1.6291 1.9671 1.9092 1.6291
11 1.2958 1.3246 1.3964 1.4034 1.3618 1.2920 1.2525 1.4787 1.5860 1.6481 2.0245 1.9021 1.6769
12 1.2932 1.3164 1.4085 1.4046 1.3720 1.2869 1.2723 1.5017 1.5755 1.6498 2.0147 1.8777 1.6920
13 1.2896 1.3054 1.4338 1.4159 1.3642 1.2788 1.2771 1.4843 1.5735 1.6485 2.0480 1.8738 1.6657
14 1.2717 1.3041 1.4105 1.3809 1.3477 1.2758 1.2882 1.5218 1.5872 1.6649 2.0159 1.8844 1.6635
15 1.2748 1.3088 1.3958 1.3822 1.3513 1.2659 1.2724 1.5262 1.5455 1.6741 1.9671 1.8733 1.6531
16 1.2933 1.3036 1.3999 1.3919 1.3670 1.2780 1.2927 1.5381 1.5342 1.6855 1.9295 1.8547 1.6262
17 1.2821 1.3246 1.4181 1.4007 1.3747 1.2639 1.2870 1.5358 1.5106 1.7123 1.9595 1.8419 1.6259
18 1.2870 1.3231 1.4115 1.3963 1.3476 1.2559 1.2775 1.5325 1.4908 1.6835 1.9271 1.8582 1.5869
19 1.2755 1.3254 1.4236 1.3841 1.3495 1.2456 1.2857 1.5719 1.5038 1.7219 1.9213 1.8366 1.5507
20 1.2773 1.3195 1.4384 1.3717 1.3982 1.2500 1.2906 1.5941 1.5156 1.7456 1.9039 1.8105 1.5377
21 1.3176 1.3201 1.4567 1.3643 1.3901 1.2626 1.3075 1.5815 1.5314 1.7482 1.9255 1.7991 1.5194

22 1.3166 1.3216 1.4821 1.3550 1.3951 1.2543 1.3124 1.5970 1.5249 1.7274 1.9659 1.7671 1.5338
23 1.3298 1.3106 1.4706 1.3620 1.3887 1.2627 1.3135 1.6655 1.5051 1.7051 1.9067 1.7508 1.5176
24 1.3241 1.3176 1.4784 1.3643 1.3727 1.2614 1.3303 1.6887 1.5306 1.6435 1.8995 1.7855 1.4982
25 1.3073 1.3290 1.4932 1.3724 1.3864 1.2641 1.3286 1.5946 1.5099 1.6761 1.9341 1.7406 1.4969
26 1.3029 1.3379 1.4948 1.3721 1.4069 1.2726 1.3408 1.6588 1.4926 1.6721 1.9606 1.7763 1.5024
27 1.3064 1.3422 1.4652 1.3718 1.3957 1.2554 1.3360 1.6170 1.5048 1.6950 1.9669 1.7952 1.4721
28 1.2978 1.3396 1.4727 1.3633 1.3690 1.2531 1.3498 1.6260 1.5140 1.7101 1.9702 1.7859 1.5120
29 1.2845 1.3433 1.4744 1.3519 1.3592 1.2643 1.3451 1.5955 1.5432 1.7065 1.9780 1.8000 1.5479
30 1.2886 1.3400 1.4541 1.3532 1.3576 1.2694 1.3548 1.6208 1.5328 1.7018 1.9745 1.8616 1.5054
31 1.2833 1.3432 1.4701 1.3486 1.3468 1.2933 1.3510 1.6441 1.5307 1.7140 1.9311 1.8552 1.5295
32 1.2759 1.3566 1.4748 1.3477 1.3487 1.2829 1.3609 1.6651 1.5337 1.7253 1.9476 1.8673 1.5310
33 1.2862 1.3870 1.4763 1.3540 1.3587 1.2753 1.3454 1.6827 1.5650 1.6935 1.8672 1.8374 1.5174
34 1.2727 1.3878 1.5016 1.3432 1.3446 1.2651 1.3356 1.7176 1.5810 1.7424 1.8834 1.8390 1.5355
35 1.2731 1.3938 1.5402 1.3482 1.3333 1.2646 1.3599 1.7718 1.5457 1.7345 1.8967 1.8194 1.5400
36 1.2709 1.3888 1.5385 1.3423 1.3298 1.2528 1.3622 1.7073 1.5340 1.7990 1.9228 1.8288 1.5465
37 1.2555 1.3780 1.5350 1.3433 1.3167 1.2605 1.3849 1.6656 1.5425 1.8341 1.9430 1.8164 1.5064
38 1.2531 1.3662 1.5280 1.3526 1.3415 1.2613 1.3899 1.7006 1.5326 1.8326 2.0629 1.8286 1.4860
39 1.2546 1.3837 1.5432 1.3509 1.3231 1.2642 1.3826 1.6910 1.5290 1.8459 2.0207 1.8371 1.4816
40 1.2599 1.3958 1.5199 1.3552 1.3132 1.2671 1.3729 1.6826 1.5279 1.8699 1.9742 1.8303 1.4677
41 1.2544 1.3931 1.5095 1.3599 1.3174 1.2658 1.3612 1.6207 1.5444 1.8862 1.9932 1.8231 1.4441
42 1.2523 1.3888 1.4947 1.3671 1.3333 1.2558 1.3637 1.5769 1.5374 1.8937 1.9675 1.8175 1.4456
43 1.2723 1.3918 1.5015 1.3461 1.3253 1.2627 1.4278 1.5989 1.5686 1.9097 1.9922 1.8025 1.4269
44 1.2794 1.4379 1.4837 1.3341 1.3190 1.2666 1.4205 1.5980 1.5661 1.9045 1.9679 1.7875 1.4122
45 1.2731 1.4266 1.5181 1.3252 1.3531 1.2694 1.4418 1.5759 1.5542 1.9149 1.9443 1.7669 1.4106
46 1.2735 1.4409 1.5105 1.3201 1.3495 1.2655 1.4351 1.5631 1.5646 1.9258 1.9205 1.7767 1.3931
47 1.2626 1.4609 1.5102 1.3168 1.3532 1.2307 1.4323 1.5525 1.5750 1.9163 1.9336 1.7731 1.3830
48 1.2742 1.4504 1.4946 1.3009 1.3560 1.2276 1.4627 1.5795 1.5780 1.8606 1.9208 1.7845 1.3810
49 1.2837 1.4447 1.4892 1.2909 1.3548 1.2553 1.4867 1.6181 1.5708 1.8360 1.9403 1.7843 1.3583
50 1.2980 1.4483 1.4718 1.2896 1.3487 1.2618 1.5088 1.6122 1.5564 1.8306 1.9286 1.7709 1.3464
51 1.3030 1.4459 1.4734 1.2865 1.3514 1.2584 1.5292 1.6104 1.5556 1.8019 1.9694 1.7795 1.3582
52 1.3112 1.4462 1.4727 1.2899 1.3450 1.2569 1.5227 1.6359 1.5221 1.7975 1.9556 1.7829 1.3464
53 1.4511 1.6318
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week AUS/USD week AUS/USD
1 1.3197 27 1.4034
2 1.2857 28 1.3836
3 1.3051 29 1.3670
4 1.2951 30 1.4082
5 1.3114 31 1.4213
6 1.3021 32 1.3988
7 1.2694 33 1.3949
8 1.2909 34 1.3808
9 1.2958 35 1.4207

10 1.3181 36 1.4488
11 1.3652 37 1.4352
12 1.3375 38 1.4341
13 1.3453 39 1.4017
14 1.3186 40 1.3823
15 1.3131 41 1.3592
16 1.3409 42 1.3655
17 1.3717 43 1.3523
18 1.3862 44 1.3389
19 1.4238 45 1.3116
20 1.4492 46 1.3006
21 1.4259 47 1.2727
22 1.4008 48 1.2656
23 1.4442 49 1.2868
24 1.4464 50 1.3342
25 1.4478 51 1.3147
26 1.4301 52 1.3008

53 1.2821
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2.  EUR/USD Weekly Closing Data 
 

Week 2000 2001 2002 2003
1 0.9715 1.0487 1.1173 0.9598
2 0.9870 1.0542 1.1226 0.9488
3 0.9902 1.0674 1.1308 0.9379
4 1.0245 1.0855 1.1551 0.9237
5 1.0243 1.0687 1.1607 0.9311
6 1.0156 1.0792 1.1462 0.9259
7 1.0153 1.0913 1.1453 0.9260
8 1.0245 1.0992 1.1420 0.9272
9 1.0397 1.0705 1.1555 0.9278

10 1.0351 1.0733 1.1428 0.9077
11 1.0312 1.1202 1.1332 0.9324
12 1.0283 1.1204 1.1374 0.9489
13 1.0449 1.1375 1.1480 0.9292
14 1.0426 1.1109 1.1356 0.9334
15 1.0454 1.1205 1.1372 0.9301
16 1.0666 1.1072 1.1244 0.9169
17 1.1000 1.1204 1.1133 0.9058
18 1.1168 1.1189 1.0952 0.8928
19 1.1014 1.1415 1.0971 0.8696
20 1.1177 1.1397 1.0861 0.8663
21 1.0742 1.1658 1.0845 0.8483
22 1.0603 1.1831 1.0708 0.8500
23 1.0496 1.1753 1.0585 0.8551
24 1.0364 1.1583 1.0585 0.8453
25 1.0684 1.1667 1.0302 0.8607
26 1.0474 1.1800 1.0144 0.8748
27 1.0543 1.1812 1.0282 0.8700
28 1.0668 1.1728 1.0096 0.8845
29 1.0700 1.1475 0.9845 0.8895
30 1.0814 1.1429 1.0121 0.8686
31 1.1019 1.1310 1.0118 0.8884
32 1.1057 1.1183 1.0293 0.8833
33 1.1027 1.0911 1.0166 0.8883
34 1.1081 1.0964 1.0281 0.9198
35 1.1118 1.1000 1.0194 0.9102
36 1.1540 1.1058 1.0156 0.9031
37 1.1664 1.0859 1.0263 0.8843
38 1.1371 1.0983 1.0163 0.8813
39 1.1310 1.0990 1.0234 0.8709
40 1.1513 1.0907 1.0179 0.8621
41 1.1672 1.1007 1.0146 0.8465
42 1.1897 1.1125 1.0299 0.8598
43 1.1893 1.1210 1.0238 0.8450
44 1.1603 1.1059 1.0028 0.8614
45 1.1596 1.1191 0.9863 0.8691
46 1.1741 1.1298 0.9918 0.8517
47 1.1929 1.1401 1.0034 0.8393
48 1.1405 1.1165 1.0068 0.8337
49 1.1309 1.1232 0.9921 0.8226
50 1.1133 1.1057 0.9778 0.8141
51 1.0833 1.1281 0.9738 0.8077
52 1.0646 1.1332 0.9605 0.8046
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2004 weekly closing data
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4 0.7930 30 0.8249
5 0.8029 31 0.8311
6 0.7880 32 0.8148
7 0.7842 33 0.8093
8 0.7958 34 0.8115
9 0.8038 35 0.8316

10 0.8064 36 0.8297
11 0.8202 37 0.8143
12 0.8151 38 0.8214
13 0.8270 39 0.8157
14 0.8257 40 0.8064
15 0.8272 41 0.8052
16 0.8314 42 0.8010
17 0.8473 43 0.7912
18 0.8348 44 0.7844
19 0.8412 45 0.7723
20 0.8419 46 0.7712
21 0.8326 47 0.7662
22 0.8190 48 0.7526
23 0.8157 49 0.7467
24 0.8323 50 0.7563
25 0.8252 51 0.7523
26 0.8233 52 0.7388

53 0.7388
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3.  CHF/USD Weekly Closing Data  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

Week 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
1 1.2755 1.3764 1.4934 1.4708 1.3110 1.1600 1.3595 1.4663 1.3970 1.5615 1.6028 1.6506 1.3970
2 1.2801 1.4080 1.4965 1.4800 1.2904 1.1606 1.3761 1.4763 1.3783 1.5940 1.6236 1.6599 1.3863
3 1.2610 1.4220 1.4589 1.4645 1.2711 1.1945 1.3958 1.4981 1.3830 1.5957 1.6338 1.6629 1.3678
4 1.2595 1.4075 1.4860 1.4615 1.2735 1.2071 1.4078 1.4437 1.4153 1.6505 1.6576 1.7022 1.3532
5 1.2514 1.4280 1.5266 1.4571 1.2915 1.2175 1.4214 1.4825 1.4179 1.6467 1.6429 1.7178 1.3680
6 1.2435 1.3896 1.5410 1.4776 1.2845 1.2087 1.4450 1.4542 1.4159 1.6300 1.6558 1.6900 1.3585
7 1.2675 1.4670 1.5064 1.4506 1.2591 1.1879 1.4618 1.4646 1.4463 1.6281 1.6761 1.6980 1.3613
8 1.2895 1.4936 1.5240 1.4285 1.2478 1.1725 1.4712 1.4700 1.4487 1.6474 1.6883 1.6892 1.3615
9 1.3316 1.4841 1.5459 1.4400 1.2145 1.2053 1.4744 1.4662 1.4689 1.6711 1.6471 1.7057 1.3557

10 1.3641 1.5170 1.5230 1.4175 1.1801 1.2061 1.4843 1.4948 1.4613 1.6667 1.6549 1.6809 1.3338
11 1.3875 1.5064 1.5080 1.4355 1.1500 1.1893 1.4559 1.4773 1.4628 1.6629 1.7158 1.6588 1.3691
12 1.4090 1.5246 1.5086 1.4161 1.1755 1.1940 1.4572 1.4974 1.4829 1.6331 1.7162 1.6621 1.3998
13 1.4450 1.4969 1.4911 1.4266 1.1325 1.1893 1.4501 1.4957 1.4815 1.6625 1.7365 1.6838 1.3718
14 1.4190 1.4899 1.4766 1.4430 1.1360 1.1970 1.4407 1.5289 1.4829 1.6380 1.7004 1.6629 1.3871
15 1.4281 1.5085 1.4761 1.4534 1.1521 1.2260 1.4647 1.5134 1.4990 1.6404 1.7054 1.6680 1.3930
16 1.4705 1.5450 1.4295 1.4380 1.1361 1.2230 1.4595 1.5010 1.5073 1.6772 1.6925 1.6505 1.3760
17 1.4779 1.5330 1.4346 1.4100 1.1455 1.2361 1.4691 1.4898 1.5256 1.7244 1.7231 1.6294 1.3611
18 1.4733 1.5004 1.4270 1.4140 1.1321 1.2425 1.4689 1.4881 1.4911 1.7325 1.7298 1.5915 1.3478
19 1.4574 1.5284 1.4505 1.4260 1.2050 1.2475 1.4222 1.4799 1.5060 1.7086 1.7514 1.5948 1.3116
20 1.4679 1.4880 1.4726 1.4050 1.2005 1.2547 1.4193 1.4882 1.5168 1.7337 1.7482 1.5811 1.3104
21 1.4550 1.4884 1.4180 1.4024 1.1375 1.2670 1.4051 1.4641 1.5267 1.6831 1.7796 1.5826 1.2925
22 1.4805 1.4574 1.4599 1.4165 1.1690 1.2523 1.4168 1.4819 1.5369 1.6676 1.7979 1.5691 1.3023
23 1.5175 1.4504 1.4495 1.4060 1.1584 1.2668 1.4531 1.4759 1.5186 1.6433 1.7924 1.5552 1.3233
24 1.5326 1.4269 1.5004 1.3590 1.1624 1.2533 1.4474 1.4963 1.5408 1.6169 1.7711 1.5623 1.3047
25 1.5464 1.4159 1.5129 1.3295 1.1470 1.2630 1.4400 1.4932 1.5309 1.6568 1.7728 1.5123 1.3288
26 1.5580 1.3834 1.5095 1.3355 1.1515 1.2500 1.4489 1.5266 1.5678 1.6315 1.7967 1.4914 1.3511
27 1.5755 1.3569 1.5304 1.3201 1.1575 1.2655 1.4704 1.5304 1.5775 1.6283 1.7939 1.5063 1.3478
28 1.5489 1.3560 1.5156 1.3130 1.1635 1.2583 1.4581 1.5387 1.5748 1.6535 1.7734 1.4829 1.3724
29 1.5130 1.3085 1.5186 1.3494 1.1560 1.2170 1.4719 1.5047 1.5291 1.6636 1.7260 1.4385 1.3674
30 1.5160 1.3284 1.5225 1.3439 1.1462 1.2114 1.5123 1.4940 1.4929 1.6742 1.7247 1.4676 1.3428
31 1.5079 1.3186 1.5006 1.3341 1.1502 1.2035 1.5242 1.4907 1.4860 1.7056 1.7053 1.4696 1.3666
32 1.5135 1.3134 1.5264 1.3089 1.1915 1.2040 1.5069 1.4977 1.5158 1.7180 1.6916 1.5032 1.3578
33 1.5415 1.3240 1.4774 1.2925 1.2205 1.2115 1.5057 1.5072 1.4984 1.7232 1.6583 1.4912 1.3720
34 1.5320 1.2766 1.4720 1.3230 1.2182 1.2003 1.4980 1.5016 1.5307 1.7088 1.6670 1.5127 1.4178
35 1.5280 1.2596 1.4296 1.3090 1.2010 1.2005 1.4885 1.4529 1.5069 1.7228 1.6687 1.5007 1.4002
36 1.5235 1.2516 1.3949 1.2820 1.2165 1.2159 1.4748 1.4253 1.5448 1.7857 1.6770 1.4816 1.3887
37 1.4760 1.2880 1.4005 1.2714 1.2080 1.2405 1.4658 1.3879 1.5435 1.7808 1.6232 1.5026 1.3764
38 1.4710 1.3051 1.4366 1.2835 1.1337 1.2395 1.4595 1.3885 1.5301 1.7301 1.5849 1.4878 1.3708
39 1.4584 1.2975 1.4244 1.2868 1.1559 1.2557 1.4529 1.3806 1.4866 1.7256 1.6187 1.5013 1.3438
40 1.4670 1.2349 1.4055 1.2809 1.1484 1.2563 1.4497 1.3545 1.4999 1.7511 1.6196 1.4887 1.3343
41 1.4831 1.3141 1.4266 1.2635 1.1572 1.2545 1.4564 1.3213 1.4585 1.7603 1.6326 1.4858 1.3112
42 1.4764 1.3190 1.4751 1.2474 1.1417 1.2711 1.4760 1.3145 1.4975 1.7889 1.6416 1.5138 1.3350
43 1.4885 1.3655 1.4810 1.2605 1.1331 1.2597 1.4626 1.3414 1.5250 1.8054 1.6539 1.5008 1.3065
44 1.4605 1.3770 1.4930 1.2710 1.1381 1.2697 1.4008 1.3554 1.5518 1.7668 1.6305 1.4669 1.3372
45 1.4509 1.4305 1.4970 1.2859 1.1357 1.2655 1.3965 1.3738 1.5576 1.7651 1.6398 1.4428 1.3638
46 1.4520 1.4125 1.5066 1.3185 1.1345 1.2780 1.4066 1.3907 1.5541 1.7907 1.6550 1.4538 1.3330
47 1.4115 1.4325 1.4976 1.3226 1.1422 1.2694 1.4167 1.3911 1.5802 1.8091 1.6682 1.4772 1.2979
48 1.4355 1.4386 1.4901 1.3304 1.1736 1.3031 1.4256 1.4125 1.5930 1.7273 1.6404 1.4858 1.2910
49 1.3889 1.4334 1.4564 1.3375 1.1678 1.3142 1.4398 1.3692 1.5743 1.7065 1.6592 1.4603 1.2757
50 1.3985 1.4065 1.4545 1.3309 1.1627 1.3166 1.4321 1.3293 1.5883 1.6799 1.6306 1.4418 1.2631
51 1.3620 1.4115 1.4380 1.3335 1.1585 1.3329 1.4276 1.3481 1.5855 1.6482 1.6535 1.4246 1.2562
52 1.3505 1.4480 1.4875 1.3095 1.1531 1.3495 1.4342 1.3754 1.5923 1.6204 1.6785 1.3953
53 1.4656 1.3735
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1 1.2385 27 1.2332
2 1.2187 28 1.2259
3 1.2659 29 1.2262
4 1.2420 30 1.2629
5 1.2590 31 1.2788
6 1.2342 32 1.2512
7 1.2372 33 1.2407
8 1.2572 34 1.2490
9 1.2676 35 1.2832
10 1.2727 36 1.2712
11 1.2858 37 1.2558
12 1.2709 38 1.2704
13 1.2876 39 1.2634
14 1.2931 40 1.2495
15 1.2829 41 1.2487
16 1.2911 42 1.2327
17 1.3198 43 1.2168
18 1.2981 44 1.1986
19 1.3019 45 1.1799
20 1.2958 46 1.1736
21 1.2791 47 1.1591
22 1.2536 48 1.1393
23 1.2435 49 1.1391
24 1.2594 50 1.1610
25 1.2438 51 1.1574
26 1.2501 52 1.1427

53 1.1412
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4. GBP/USD Weekly Closing Data 

 
 

Week 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
1 0.5172 0.5416 0.6489 0.6709 0.6445 0.6441 0.5915 0.6091 0.6094 0.6102 0.6673 0.6919 0.6233
2 0.5242 0.5571 0.6534 0.6705 0.6384 0.6455 0.5946 0.6187 0.6057 0.6112 0.6765 0.6921 0.6220
3 0.5149 0.5627 0.6525 0.6687 0.6299 0.6626 0.5986 0.6120 0.6041 0.6054 0.6810 0.6959 0.6181
4 0.5107 0.5539 0.6723 0.6666 0.6295 0.6652 0.6143 0.5990 0.6076 0.6170 0.6857 0.7093 0.6126
5 0.5060 0.5585 0.6909 0.6759 0.6389 0.6583 0.6241 0.6126 0.6108 0.6288 0.6802 0.7060 0.6079
6 0.5031 0.5438 0.7052 0.6826 0.6397 0.6527 0.6161 0.6076 0.6129 0.6280 0.6904 0.7054 0.6141
7 0.5075 0.5653 0.6883 0.6759 0.6343 0.6455 0.6169 0.6117 0.6150 0.6255 0.6894 0.6983 0.6206
8 0.5144 0.5719 0.7027 0.6725 0.6296 0.6490 0.6190 0.6108 0.6238 0.6283 0.6910 0.6990 0.6303
9 0.5270 0.5692 0.6916 0.6714 0.6164 0.6547 0.6138 0.6070 0.6220 0.6325 0.6790 0.7048 0.6354

10 0.5342 0.5819 0.6976 0.6662 0.6323 0.6559 0.6236 0.6119 0.6122 0.6328 0.6814 0.7028 0.6241
11 0.5461 0.5840 0.6714 0.6698 0.6319 0.6556 0.6240 0.6000 0.6134 0.6364 0.7009 0.7022 0.6320
12 0.5590 0.5860 0.6707 0.6675 0.6293 0.6523 0.6243 0.5999 0.6172 0.6285 0.6995 0.7010 0.6387
13 0.5719 0.5754 0.6607 0.6787 0.6172 0.6552 0.6129 0.5935 0.6224 0.6281 0.7050 0.7022 0.6379
14 0.5648 0.5736 0.6544 0.6773 0.6243 0.6541 0.6105 0.6031 0.6223 0.6317 0.6952 0.6968 0.6411
15 0.5626 0.5664 0.6551 0.6784 0.6242 0.6612 0.6156 0.5978 0.6204 0.6304 0.6945 0.6959 0.6364
16 0.5807 0.5730 0.6347 0.6721 0.6209 0.6592 0.6127 0.5936 0.6182 0.6330 0.6932 0.6908 0.6345
17 0.5931 0.5645 0.6374 0.6607 0.6213 0.6623 0.6158 0.5997 0.6216 0.6424 0.6959 0.6874 0.6283
18 0.5895 0.5602 0.6358 0.6693 0.6254 0.6649 0.6164 0.5995 0.6118 0.6542 0.6962 0.6818 0.6241
19 0.5814 0.5595 0.6500 0.6671 0.6366 0.6568 0.6168 0.6106 0.6183 0.6591 0.7050 0.6846 0.6232
20 0.5826 0.5496 0.6487 0.6625 0.6355 0.6601 0.6106 0.6146 0.6242 0.6731 0.6976 0.6849 0.6157
21 0.5777 0.5511 0.6406 0.6625 0.6232 0.6616 0.6124 0.6125 0.6241 0.6724 0.7039 0.6858 0.6106
22 0.5886 0.5464 0.6590 0.6640 0.6301 0.6453 0.6114 0.6120 0.6219 0.6631 0.7062 0.6837 0.6099
23 0.5979 0.5447 0.6555 0.6629 0.6272 0.6487 0.6140 0.6114 0.6213 0.6630 0.7236 0.6846 0.6018
24 0.6094 0.5400 0.6682 0.6536 0.6221 0.6510 0.6112 0.6132 0.6280 0.6593 0.7113 0.6788 0.5996
25 0.6131 0.5378 0.6773 0.6443 0.6232 0.6501 0.6044 0.5974 0.6290 0.6663 0.7070 0.6672 0.6008
26 0.6179 0.5284 0.6636 0.6498 0.6287 0.6437 0.6018 0.6021 0.6332 0.6609 0.7101 0.6559 0.6061
27 0.6188 0.5238 0.6752 0.6468 0.6270 0.6435 0.5931 0.6069 0.6443 0.6604 0.7088 0.6575 0.5993
28 0.6062 0.5206 0.6762 0.6417 0.6270 0.6439 0.5902 0.6125 0.6399 0.6670 0.7143 0.6451 0.6126
29 0.5912 0.5130 0.6680 0.6530 0.6274 0.6468 0.5958 0.6085 0.6333 0.6589 0.6998 0.6336 0.6301
30 0.5924 0.5263 0.6734 0.6485 0.6248 0.6431 0.6009 0.6022 0.6173 0.6655 0.7012 0.6396 0.6173
31 0.5900 0.5208 0.6680 0.6485 0.6221 0.6485 0.6116 0.6122 0.6192 0.6652 0.7006 0.6364 0.6230
32 0.5896 0.5184 0.6854 0.6470 0.6339 0.6454 0.6308 0.6137 0.6229 0.6647 0.7003 0.6563 0.6218
33 0.6019 0.5218 0.6618 0.6456 0.6480 0.6463 0.6215 0.6178 0.6195 0.6713 0.6913 0.6505 0.6264
34 0.5958 0.5133 0.6660 0.6513 0.6484 0.6439 0.6207 0.6108 0.6294 0.6784 0.6924 0.6572 0.6347
35 0.5949 0.5045 0.6551 0.6462 0.6436 0.6405 0.6169 0.5983 0.6235 0.6849 0.6887 0.6461 0.6339
36 0.5893 0.5010 0.6456 0.6447 0.6458 0.6405 0.6279 0.5979 0.6186 0.7041 0.6835 0.6411 0.6292
37 0.5772 0.5197 0.6517 0.6313 0.6445 0.6433 0.6211 0.5937 0.6163 0.7143 0.6810 0.6417 0.6224
38 0.5780 0.5745 0.6649 0.6321 0.6329 0.6429 0.6207 0.5935 0.6088 0.6860 0.6873 0.6426 0.6128
39 0.5755 0.5833 0.6642 0.6341 0.6329 0.6398 0.6212 0.5874 0.6043 0.6762 0.6803 0.6433 0.6025
40 0.5750 0.5794 0.6511 0.6305 0.6325 0.6396 0.6195 0.5868 0.6054 0.6924 0.6753 0.6373 0.6012
41 0.5816 0.5910 0.6612 0.6282 0.6357 0.6349 0.6168 0.5863 0.5993 0.6853 0.6886 0.6407 0.6003
42 0.5797 0.6041 0.6787 0.6150 0.6346 0.6288 0.6194 0.5869 0.6030 0.6919 0.6957 0.6467 0.5979
43 0.5845 0.6200 0.6725 0.6163 0.6329 0.6227 0.6117 0.5897 0.6086 0.6889 0.6969 0.6438 0.5890
44 0.5716 0.6396 0.6727 0.6209 0.6327 0.6111 0.5961 0.5975 0.6172 0.6904 0.6840 0.6394 0.5897
45 0.5655 0.6506 0.6745 0.6254 0.6346 0.6070 0.5915 0.6030 0.6196 0.6988 0.6861 0.6283 0.5985
46 0.5653 0.6454 0.6794 0.6380 0.6446 0.6006 0.5906 0.6012 0.6187 0.7026 0.7004 0.6332 0.5937
47 0.5563 0.6577 0.6757 0.6397 0.6413 0.5951 0.5917 0.6040 0.6230 0.7144 0.7094 0.6338 0.5872
48 0.5666 0.6621 0.6709 0.6408 0.6512 0.5944 0.5920 0.6057 0.6244 0.6957 0.7018 0.6428 0.5807
49 0.5525 0.6423 0.6689 0.6410 0.6522 0.6090 0.6033 0.6012 0.6163 0.6919 0.6987 0.6355 0.5790
50 0.5504 0.6419 0.6707 0.6398 0.6496 0.6022 0.6060 0.5947 0.6222 0.6772 0.6872 0.6290 0.5725
51 0.5376 0.6388 0.6651 0.6475 0.6481 0.5998 0.5992 0.5951 0.6191 0.6763 0.6950 0.6242 0.5657
52 0.5326 0.6564 0.6766 0.6388 0.6439 0.5912 0.5989 0.5979 0.6191 0.6688 0.6906 0.6241
53 0.6605 0.6014
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1 0.5583 27 0.5464
2 0.5413 28 0.5389
3 0.5557 29 0.5343
4 0.5491 30 0.5457
5 0.5491 31 0.5496
6 0.5417 32 0.5417
7 0.5310 33 0.5425
8 0.5357 34 0.5490
9 0.5382 35 0.5579

10 0.5426 36 0.5631
11 0.5572 37 0.5561
12 0.5477 38 0.5579
13 0.5522 39 0.5546
14 0.5465 40 0.5563
15 0.5455 41 0.5574
16 0.5555 42 0.5541
17 0.5657 43 0.5472
18 0.5637 44 0.5451
19 0.5604 45 0.5391
20 0.5685 46 0.5392
21 0.5591 47 0.5375
22 0.5456 48 0.5273
23 0.5444 49 0.5163
24 0.5499 50 0.5227
25 0.5444 51 0.5157
26 0.5489 52 0.5199

53 0.5219
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5.  JPY/USD Weekly Closing Data 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Week 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
1 135.150 124.850 125.299 111.868 101.318 105.110 116.320 132.440 111.530 105.190 116.200 131.010 131.010
2 134.140 127.145 126.076 111.247 98.781 105.120 116.090 131.590 114.140 105.790 117.750 132.140 132.140
3 132.640 127.403 124.830 111.213 99.338 105.410 117.090 129.160 114.640 104.920 117.210 132.630 132.630
4 132.250 123.404 124.764 109.430 99.298 106.560 119.020 126.020 115.950 107.120 117.130 134.460 134.460
5 131.450 125.593 124.368 109.093 99.687 106.640 121.270 126.970 113.140 107.550 115.600 133.750 133.750
6 127.800 125.146 120.807 107.682 98.858 107.110 124.580 124.110 114.340 108.950 117.560 134.790 134.790
7 130.450 127.896 119.129 104.156 97.482 105.310 124.060 125.370 120.970 110.920 115.460 132.790 132.790
8 132.190 128.701 118.008 104.670 97.069 104.720 123.280 127.720 118.600 110.970 116.120 133.880 133.880
9 134.510 129.197 117.679 105.626 94.364 105.810 120.820 126.090 122.520 107.780 119.020 133.340 133.340

10 136.190 131.747 117.737 105.068 91.179 105.940 121.930 128.230 119.050 106.220 119.650 128.210 128.210
11 137.150 133.556 115.977 106.140 89.163 105.870 123.480 128.150 117.010 106.060 122.900 129.080 129.080
12 137.140 134.005 116.299 104.883 89.091 106.820 122.880 130.330 120.210 107.240 122.570 132.890 132.890
13 140.610 133.101 114.222 103.751 86.787 106.920 123.620 130.060 120.160 102.650 125.590 132.610 132.610
14 136.860 133.247 113.202 105.072 84.333 107.670 124.170 134.940 121.030 105.310 124.010 131.750 131.750
15 136.250 132.849 112.593 103.590 83.340 108.610 126.020 130.140 117.890 105.080 123.510 132.100 132.100
16 138.350 134.007 110.622 103.632 82.865 107.100 125.950 131.990 119.260 105.410 122.490 130.470 130.470
17 138.150 134.545 111.209 102.031 83.978 105.550 126.040 130.960 119.380 108.030 123.730 128.170 128.170
18 138.510 132.695 110.322 102.695 84.047 104.850 126.540 132.990 120.820 108.520 121.050 127.200 127.200
19 138.760 133.356 110.862 104.894 86.973 105.510 119.760 132.790 122.700 108.700 122.460 127.870 127.870
20 138.500 130.199 110.322 103.966 86.746 106.540 115.510 134.430 123.900 106.880 123.630 126.000 126.000
21 138.410 129.397 107.232 104.248 82.799 107.870 115.630 135.730 120.850 107.120 120.720 124.720 124.720
22 138.390 127.699 107.723 105.315 84.925 108.070 116.430 138.510 121.970 108.120 119.130 124.130 124.130
23 140.300 126.751 106.070 103.736 84.402 109.160 115.320 139.690 118.160 106.750 120.620 124.460 124.460
24 140.550 126.648 109.237 102.731 84.642 108.850 114.870 144.390 120.510 106.240 122.930 124.360 124.360
25 138.940 126.897 106.095 100.471 84.462 109.040 114.620 133.980 121.430 104.610 124.200 121.240 121.240
26 137.960 125.797 108.725 98.507 84.725 109.470 114.720 142.930 121.130 106.120 124.710 119.850 119.850
27 138.350 124.705 109.622 98.164 86.694 110.850 113.850 139.350 122.350 107.790 125.810 120.180 120.180
28 136.800 125.400 108.148 98.078 87.854 110.700 113.920 141.040 121.010 107.860 124.740 116.690 116.690
29 136.450 124.602 106.756 98.556 88.568 108.260 115.390 139.620 116.500 109.080 122.800 115.720 115.720
30 137.800 127.606 104.995 100.015 88.170 108.310 116.770 140.920 114.630 109.590 123.260 118.780 118.780
31 136.740 127.347 104.410 100.412 91.252 107.000 118.400 144.600 114.620 108.510 123.480 119.040 119.040
32 136.790 127.493 102.231 100.261 93.761 108.150 114.910 146.350 115.630 108.620 122.040 120.150 120.150
33 137.240 126.252 104.972 98.517 96.871 108.000 117.720 146.310 111.420 108.410 120.370 117.550 117.550
34 137.100 126.048 103.915 100.426 96.613 108.530 117.010 144.910 111.680 107.120 120.110 119.520 119.520
35 136.850 123.254 105.023 99.158 97.460 108.690 120.740 142.670 110.180 105.780 118.780 118.750 118.750
36 136.150 123.146 106.273 99.151 99.673 109.350 120.930 133.950 109.000 106.000 120.040 118.500 118.500
37 133.900 124.193 104.435 98.707 103.486 110.420 121.050 131.090 106.970 107.320 117.440 121.530 121.530
38 134.490 124.651 105.959 97.620 98.471 109.780 122.040 132.640 104.140 107.910 116.770 123.170 123.170
39 133.340 120.388 106.017 99.025 99.027 110.840 120.740 135.170 105.090 107.870 119.220 122.870 122.870
40 129.950 119.362 105.531 100.387 100.772 111.640 121.910 135.560 107.330 108.770 120.340 123.060 123.060
41 129.750 121.861 107.034 98.378 100.830 111.690 119.930 116.810 105.410 107.630 120.920 124.030 124.030
42 129.760 119.750 108.193 97.347 100.185 112.520 120.200 115.410 105.760 109.080 121.170 125.510 125.510
43 131.400 121.996 108.407 97.325 101.632 113.340 121.960 117.900 104.240 108.700 123.040 124.120 124.120
44 130.290 123.261 108.126 97.577 103.798 113.230 120.340 116.590 106.320 107.510 121.660 122.150 122.150
45 130.310 123.146 106.071 97.945 100.949 111.620 124.180 118.720 105.310 107.850 120.230 119.700 119.700
46 130.110 123.873 108.287 98.437 102.015 111.260 126.910 122.700 106.120 108.810 122.680 120.380 120.380
47 129.500 124.189 108.715 98.759 101.477 111.420 125.820 120.220 102.170 111.370 124.430 122.850 122.850
48 130.050 124.385 108.376 100.344 101.170 113.820 127.620 123.130 102.570 111.180 123.220 122.720 122.720
49 128.050 124.918 109.177 100.188 100.933 112.880 130.160 119.280 102.380 111.300 125.630 123.670 123.670
50 128.810 123.812 110.091 100.230 102.178 113.790 130.460 116.770 103.330 112.580 127.360 120.730 120.730
51 127.550 123.226 110.894 100.129 102.582 114.160 129.000 115.690 102.960 112.770 129.470 120.520 120.520
52 125.500 123.890 111.635 99.560 103.268 116.060 129.880 116.190 102.140 114.340 131.300 119.920 119.920
53 124.739 112.950
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1 106.94 27 108.56
2 106.51 28 108.19
3 106.82 29 108.78
4 106.18 30 110.10
5 105.84 31 111.40
6 105.55 32 110.04
7 105.59 33 110.67
8 108.83 34 109.34
9 109.25 35 109.50

10 111.43 36 110.46
11 110.75 37 109.35
12 106.99 38 109.94
13 105.88 39 110.71
14 104.51 40 110.42
15 106.08 41 109.44
16 107.70 42 109.10
17 109.39 43 107.45
18 110.37 44 106.04
19 112.29 45 105.59
20 114.26 46 105.53
21 112.07 47 102.81
22 110.17 48 102.53
23 111.23 49 102.50
24 110.08 50 105.52
25 108.64 51 104.27
26 107.80 52 103.61

53 102.71
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Appendix 2.  Experiment I Results 
 
1.  AUS/USD Forecasting 

 
a.  Analysis of Variance for MSE 
 
 
 
 
 
 
 
 
 
b.  Analysis of Variance for MAPE 
 
 
 
 
 
 
 
 
 
c.  Analysis of Variance for Percentage of True Directional Changes 
 
 
 
 
 
 
 
 
 
 

 

2.  EUR/USD Forecasting 

a.  Analysis of Variance for MSE 
 
 
 
 
 
 
 

ANOVA
SV SS df MS F P-value F crit

Input Nodes 0.000899 6 0.00015 6.051318 1.18E-05 2.163929
H. Nodes 9.41E-05 9 1.05E-05 0.421909 0.921658 1.947349
Interaction 0.001218 54 2.26E-05 0.910507 0.646628 1.429385
Within 0.003468 140 2.48E-05

Total 0.00568 209

ANOVA
SV SS df MS F P-value F crit

Input Nodes 5712.117 6 952.0194 10.78606 7.62E-10 2.163929
H. Nodes 1556.513 9 172.9459 1.959418 0.048437 1.947349
Interaction 8814.057 54 163.2233 1.849264 0.002199 1.429385
Within 12356.95 140 88.26391

Total 28439.63 209

ANOVA
SV SS df MS F P-value F crit

Input Nodes 1013.332 6 168.8887 9.131233 2.72E-08 2.171308
H. Nodes 195.5425 8 24.44282 1.321539 0.238671 2.012655
Interaction 789.1833 48 16.44132 0.888925 0.673284 1.45825
Within 2330.461 126 18.49572

Total 4328.519 188

ANOVA
SV SS df MS F P-value F crit

Input Nodes 0.038018 6 0.006336 4.510715 0.000329 2.163929
H. Nodes 0.011363 9 0.001263 0.898786 0.528268 1.947349
Interaction 0.065961 54 0.001221 0.869548 0.717438 1.429385
Within 0.196664 140 0.001405

Total 0.312006 209
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b.  Analysis of Variance for MAPE 
 
 
 
 
 
 
 
 
 
 
c.  Analysis of Variance for Percentage of True Directional Changes 
 
 
 
 
 
 
 
 
 
 
 
3.  CHF/USD Forecasting 

 
a.  Analysis of Variance for MSE 
 
 
 
 
 
 
 
 
 
 
b.  Analysis of Variance for MAPE 
 
 
 
 
 
 
 
 

ANOVA 5% 10%
SV SS df MS F P-value F crit F crit

Input Nodes 267.3359 6 44.55598 10.29503 1.98E-09 2.163929 1.816638
H. Nodes 27.46637 9 3.051818 0.705148 0.703387 1.947349 1.676653
Interaction 326.3288 54 6.043126 1.396314 0.06214 1.429385 1.320619
Within 605.9079 140 4.327913

Total 1227.039 209

ANOVA 5% 10%
SV SS df MS F P-value F crit F crit

Input Nodes 0.00193 6 0.000322 5.252956 6.57E-05 2.163929 1.816638
H. Nodes 0.000339 9 3.77E-05 0.615436 0.782382 1.947349 1.676653
Interaction 0.003679 54 6.81E-05 1.112295 0.306573 1.429385 1.320619
Within 0.008574 140 6.12E-05

Total 0.014522 209

ANOVA
SV SS df MS F P-value F crit

Input Nodes 357.4503 6 59.57505 2.21917 0.044671 2.163929
H. Nodes 428.3081 9 47.58978 1.772719 0.078544 1.947349
Interaction 2103.524 54 38.95414 1.451042 0.043241 1.429385
Within 3758.389 140 26.84564

Total 6647.672 209

ANOVA
SV SS df MS F P-value F crit

Input Nodes 559.737 6 93.28949 11.4103 2.3E-10 2.163929
H. Nodes 39.76754 9 4.418616 0.540444 0.842951 1.947349
Interaction 428.7783 54 7.940338 0.971188 0.53779 1.429385
Within 1144.626 140 8.175902

Total 2172.909 209
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c.  Analysis of Variance for Percentage of True Directional Changes 
 
 
 
 
 
 
 
 

 

 

4.  GBP/USD Forecasting 

 
a. Analysis of Variance for MSE 
 
 
 
 
 
 
 
 
 
 
b.  Analysis of Variance for MAPE 
 
 
 
 
 
 
 
 
 
 
c.  Analysis of Variance for Percentage of True Directional Changes 
 
 

 

 

Appendix 3.  Experiment II Results and Analysis 

ANOVA
SV SS df MS F P-value F crit

Input Nodes 260.0613 6 43.34356 1.363211 0.233615 2.16392948
Hidden N. 490.8704 9 54.54115 1.71539 0.09078 1.947348949
Interaction 2650.51 54 49.08351 1.543741 0.022683 1.429384611
Within 4451.326 140 31.79518

Total 7852.767 209

ANOVA
SV SS df MS F P-value F crit

Input Nodes 6194 6 1032 22.04 4E-18 2.164
H. Nodes 959.7 9 106.6 2.277 0.0206 1.947
Interaction 7884 54 146 3.118 4E-08 1.429
Within 6556 140 46.83

Total 21594 209

ANOVA
SV SS df MS F P-value F crit

Input Nodes 0.00011 6 2E-05 5.5363 4E-05 2.1639
H. Nodes 2.7E-05 9 3E-06 0.9366 0.4956 1.9473
Interaction 0.00014 54 3E-06 0.771 0.8618 1.4294
Within 0.00046 140 3E-06

Total 0.00073 209

ANOVA
SV SS df MS F P-value F crit

Input Nodes 373 6 62.09 3.966 0.0011 2.164
H. Nodes 109 9 12.14 0.775 0.6394 1.947
Interaction 832 54 15.4 0.984 0.5149 1.429
Within 2192 140 15.65

Total 3505 209
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1.  Experiment II for AUS/USD and the corresponding effects and percent contribution  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.  Experiment II for EUR/USD and the corresponding effects and percent contribution  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Effect % Contribution
Activation Function 1 0.00 -1.28 -1.27 10.94 13.02 0.97
Activation Function 2 0.00 -0.52 2.81 2.93 2.14 4.73

Learning rate 0.00 0.48 -4.60 2.93 1.82 12.7
Momentum term 0.00 0.42 -1.02 6.93 7.00 7.23

Statistical Performance MSE MAPE Dir MSE MAPE Dir

Runs MSE MAPE Dir
1 0.001 1.96 67.34
2 0.001 1.99 69.38
3 0.008 5.15 65.30
4 0.001 1.82 67.34
5 0.001 2.07 65.30
6 0.001 1.98 59.18
7 0.001 2.40 65.30
8 0.001 1.84 57.14
9 0.001 2.07 67.34

10 0.001 2.16 53.06
11 0.001 1.79 63.26
12 0.001 1.87 61.22
13 0.023 8.78 42.85
14 0.001 1.98 61.22
15 0.001 1.81 65.30
16 0.001 2.16 63.26

Runs MSE MAPE Dir
1 0.0010 3.16 53.48
2 0.0010 3.76 46.51
3 0.0004 1.71 44.18
4 0.0010 3.57 55.81
5 0.0010 3.89 53.48
6 0.0004 1.79 46.51
7 0.0002 1.50 51.16
8 0.0003 1.57 48.83
9 0.0010 3.22 58.13
10 0.0004 1.86 41.86
11 0.0003 1.58 48.83
12 0.0006 2.42 48.83
13 0.0030 5.78 58.13
14 0.0020 4.90 51.16
15 0.0005 2.01 41.86
16 0.0010 3.31 39.53



 162

 
 
 
 
 
 
 
 
 
 
3.  Experiment II for CHF/USD and the corresponding effects and percent contribution  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.  Experiment II for GBP/USD and the corresponding effects and percent contribution  

Effect % Contribution
Activation Function 1 0.00 0.04 -1.27 0.39 0.03 0.97
Activation Function 2 -0.01 -1.34 2.81 23.98 28.55 4.72

Learning rate 0.00 0.47 -4.60 7.75 3.64 12.7
Momentum term 0.00 -0.15 -1.02 3.09 1.47 7.235

Statistical Performance MSE MAPE Dir MSE MAPE Dir

Effect % Contribution
Activation Function 1 0.00 -0.27 -4.69 13.17 10.17 23.6
Activation Function 2 0.00 -0.22 -0.52 5.33 6.74 0.29

Learning rate 0.00 0.25 -1.04 7.40 10.98 3.785
Momentum term 0.00 0.12 1.04 2.02 2.44 1.455

Statistical Performance MSE MAPE Dir MSE MAPE Dir

Runs MSE MAPE Dir
1 0.0006 1.43 52.08
2 0.0005 1.37 52.08
3 0.0005 1.28 50.00
4 0.0008 1.67 56.25
5 0.001 2.3 60.41
6 0.0005 1.44 43.75
7 0.0005 1.28 52.08
8 0.0005 1.43 45.83
9 0.0005 1.34 50.00

10 0.0006 1.52 43.75
11 0.0005 1.33 47.91
12 0.0005 1.42 47.92
13 0.002 2.84 58.33
14 0.0005 1.45 43.75
15 0.001 2.09 50.00
16 0.0005 1.44 50.00
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Effect % Contribution
Activation Function 1 1.53 0.02 3.32 7.14 2.75 41.52
Activation Function 2 2.13 -0.22 1.28 13.84 5.66 6.14

Learning rate -1.39 0.27 -1.02 5.87 8.27 4.18
Momentum term 1.57 -0.31 -1.02 7.51 10.67 4.18

Statistical Performance MSE MAPE Dir MSE MAPE Dir

Runs MSE MAPE Dir
1 0.000 1.48 59.18
2 5.631 1.02 65.30
3 5.408 0.99 61.22
4 7.616 1.20 65.30
5 7.450 1.11 57.14
6 5.381 1.01 65.30
7 6.439 1.07 61.22
8 5.552 1.16 65.30
9 5.670 1.00 61.22
10 5.549 1.00 59.18
11 7.114 1.12 61.22
12 7.008 1.16 65.30
13 0.000 1.36 61.22
14 0.001 2.99 61.22
15 0.000 1.33 59.18
16 7.578 1.16 61.22
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Appendix 4.  Pseudo Codes 
 
1.  Pseudo Code of Modified Tabu Search for NNs Learning   

 
%Input necessary data 
n=number of input nodes 
p=number of hidden nodes 
mahead=m multiple ahead forecast 
data set being forecasted 
maxitt=maximum number of iteration without improvement 
MAXGEN=number of neighborhoods searched 
MAXLOC=number of local search 
TL= tabu length 
TC= tabu criterion 
 
%Determine the number of variables in the model 
NVAR = n*p+2*p+1 
    
%Neighborhood Search Looping 
NH=1; %NH is counter for number of neighborhood searched 
 
while NH <= MAXGEN 
  
 % Initialize population 
 X=randn(NVAR,1) 
  
 % Evaluate initial population  
 NN= OBJTABU(X) 
 
 % Track best individual  
 NNBEST=NN; 
 XBEST=X'; 
  
%Record Tabu List 
 TABUNN(1)=NN; 
 TABUX(1,:)=X'; 
  
Numitt=1; %Counter for number of iterations that give the same results 
 
%Local Search Looping  
NS=1; %Counter for number of local search     
 
 while NS <= MAXLOC  
    X=X0+randn(NVAR,1)/100.*X0;  
    NN=ObjTABU(X); 
            if NN < NNBEST 
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            NNBEST=NN; 
            XBEST=X'; 
            Move TABUNN one step forward 
            Move TABUX 
            Numitt=1 
                else if NN~= TABUNN*(1+TC/100))  and  X ~= TABUX*(1+TC/100))  
                        Move TABUNN one step forward 
                        Move TABUX one step forward 
                        Numitt=Numitt+1 
                   end; 
            end; 
    NS=NS+1; %Increment Counter for number of local search 
    end; 
 
if Numitt > maxitt, STOP 
 
    
NH = NH+1;%Increment Counter for number of neigborhood 
 
% Update display and record current best individual 
end; 
 
%display the chosen weight matrices 
v=reshape(XCHOSEN(1:1:n*p),n,p) 
bv=reshape(XCHOSEN((n*p+1):1:(n*p+p)),1,p) 
w=reshape(XCHOSEN((n*p+p+1):1:(n*p+2*p)),p,1) 
bw=XCHOSEN(n*p+2*p+1) 
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2.  Pseudo Code of Genetic Algorithm for NNs Learning   
 
%Input necessary data 
n=number of input nodes 
p=number of hidden nodes 
mahead=m multiple ahead forecast 
Nind=number of individuals in each generation 
data set being forecasted 
maxitt=maximum number of iteration without improvement 
MAXGEN=maximum number of generations 
XOVR=crossover rate 
MUTR=mutation rate 
 
%Determine the number of variables in the model 
Nvar=n*p+2*p+1; 
 
%Initialize Population 
Chrom=randn(Nind, Nvar);  
 
%Evaluate initial population  
ObjVal=objku(Chrom); 
 
% Reset counters 
Best = NaN*ones(MAXGEN,1); % best in current population 
 
gen=1;  
 
% Track best individual  
[Best(gen),xi] = min(ObjVal); 
 
% Matrix for storing best individuals 
IndAll = []; 
IndAll = [IndAll; Chrom(xi,:)]; 
 
%Generational loop 
numitt=0; 
 
while gen < MAXGEN 
     
%Assign fitness values to entire population 
FitnV=ranking(ObjVal);  
 
%Determine the best individual in this generation 
new=Chrom(xi,:); 
 
%Select individuals for breeding using roulette wheel selection 
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%Apply Crossover (linear crossover) and Mutation 
 
%Apply elitsm scheme  
SelCh=[SelCh; new]; 
 
% Evaluate offspring, call objective function 
ObjVSel = objku(SelCh);  
 
%Insert best offspring in population replacing worst parents 
[Chrom ObjVal]=reins(Chrom,SelCh ,ObjVal,ObjVSel); 
 
%Update record current best individual and record all best invididual for each  
%generation; 
[Best(gen+1),xi] = min(ObjVal) 
IndAll = [IndAll; Chrom(xi,:)]; 
 
%Calculate the number of iteration without improvement 
if Best(gen+1)== Best(gen) 
    numitt=numitt+1; 
else 
    numitt=0; 
end; 
 
%Stop if the number of iteration without improvement = maxitt 
if numitt > maxitt 
    genstop=gen 
    gen=(MAXGEN-1); 
     
end; 
 
%Increment counter 
gen=gen+1; 
 
end; 
 
%Translate selected individual  into appropriate weight matrices 
v=reshape(chosen(1:1:n*p),n,p); 
bv=reshape(chosen((n*p+1):1:(n*p+p)),1,p); 
w=reshape(chosen((n*p+p+1):1:(n*p+2*p)),p,1);  
bw=chosen(n*p+2*p+1); 
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3.  Pseudo Code of Modified Tabu Search for NNs Topology Determination  
 
 
%Input necessary variables 
MAXGEN= number of neighborhoods search 
MAXLOC= number of local search 
TL= tabu length 
TC= tabu criterion 
The selected data 
 
%Initialize Necessary Matrices 
TABUNN=Tabu list of the objective function 
TABUT=Tabu list of the topology 
 
%Determine number of variables for Topology Determination 
NVAR = 6 
 
%Neighborhood Search looping 
NH=1; %Counter for Number of Neighborhood 
 
while NH <= MAXGEN 
  
 % Initialize population T0 using random number 
 
 % Evaluate initial population using BP training 
 NN= OBJTOPSPLIT(T0); 
 
 % Track best individual  
NNBEST=NN; 
TBEST=T0'; 
TABUNN(1)=NN; 
TABUT(1,:)=T0'; 
 
NS=1; %Counter for number of local search  
X0=T0(2:end);  
    
%Local Search Looping 
 while NS <= MAXLOC %local search 
    X(1)=X0(1)+randint(1,1,[-2 2]);  
    X(2)=randint(1,1,[0 1]); 
    X(3)=randint(1,1,[0 1]); 
    X(4)=X0(4)+randn*0.1; 
    X(5)=X0(5)+randn*0.1; 
     
    T=[T0(1:1);X] 
    NN=ObjTOPSPLIT(T) 
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            if NN < NNBEST 
            NNBEST=NN; 
            TBEST=T'; 
            Move TABUNN one step forward 
            Move TABUX 
            Numitt=1; 
                else if repmat(NN,[TL,1]) ~= TABUNN  ;   
                    if repmat(T',[TL,1]) ~= TABUT ; 
                        Move TABUNN one step forward 
                        Move TABUX one step forward 
                        Numitt=Numitt+1; 
                    end; 
                end; 
            end; 
 
    NS=NS+1 ;%Increment Counter for number of local search 
     
end; 
     
if Numitt > Maxitt , STOP 
 
 
NH = NH+1%Increment Counter for number of neighborhood 
 
% Update display and record current best individual 
 
end; 
 
%Display the chosen individual 
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4.  Pseudo Code of Genetic Algorithm  for NNs Topology Determination  
 
%Input necessary data 
mahead=m multiple ahead forecast 
Nind=number of individuals in each generation 
data set being forecasted 
maxitt=maximum number of iteration without improvement 
MAXGEN=maximum number of generations 
XOVR=crossover rate 
MUTR=mutation rate 
 
%Determine the variables in the model and its precision 
Nvar=number of variables  (example: 6) 
PRECI1=precision of variables 1   
PRECI2=precision of variables 2   
PRECI3=precision of variables 3  
PRECI4=precision of variables 4  
PRECI5=precision of variables 5  
PRECI6=precision of variables 6  
 
%Calculate the number of bits (length) of each individual 
LIND=PRECI1+PRECI2+PRECI3+ PRECI4+PRECI5+PRECI6 
 
% Build field descriptor 
FieldD=Range of values of each variable  
 
% Initialize population using gray coding 
%Chrom=chromosomes in one generation 
 
%Evaluate initial population 
ObjV = GATOPObj(Chrom) 
 
% Track best individual  
[Best(gen),xi] = min(ObjVal); 
 
% Matrix for storing best individuals 
IndAll = []; 
IndAll = [IndAll; Chrom(xi,:)]; 
 
%Generational loop 
numitt=0; 
 
while gen < MAXGEN 
     
%Assign fitness values to entire population 
FitnV=ranking(ObjVal);  
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% Select individuals for breeding using roulette wheel selection method 
SelCh = select('rws', Chrom) 
 
 
% Recombine individuals (crossover) using double point crossover 
SelCh = recombin('xovdp',SelCh,xovr) 
 
 
% Apply mutation 
SelCh = mut(SelCh); 
 
 
% Evaluate offspring, call objective function 
ObjVSel = GATOPObj(SelCh); 
 
 
% Reinsert offspring into population 
[Chrom ObjV]=reins(Chrom,SelCh,ObjV,ObjVSel); 
 
%Update record current best individual and record all best individual for each generation 
[Best(gen+1),xi] = min(ObjV); 
IndAll = [IndAll; Chrom(xi,:)]; 
 
%Increment counter 
gen=gen+1; 
 
end; 
 
%Determine the best topology 
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Appendix 5.  Summary Statistics for Residual Distribution Fittings 
 
 
1.  EUR/USD One Step Ahead Forecasting 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. EUR/USD Three Step Ahead Forecasting 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
 

Fit All Summary
Function Sq Error
Normal    0.00647
Weibull     0.00673
Beta        0.00873
Erlang       0.01900
Gamma        0.01990
Triangular   0.02040
Lognormal    0.03010
Uniform      0.07650
Exponential 0.11000

Fit All Summary
Function Sq Error
Normal      0.00348
Weibull    0.00449
Beta      0.00459
Gamma       0.00892
Erlang     0.00911
Triangular   0.01350
Lognormal    0.01570
Uniform      0.06780
Exponential  0.10100

Distribution Summary
Distribution: Normal
Expression: NORM(-0.00185,0.0186)
Square Error: 0.006466

Chi Square Test
Number of intervals 6
Degrees of freedom 3
Test Statistic 4.92
Corresponding p-value 0.193

Kolmogorov-Smirnov Test
Test Statistic 0.0579
Corresponding p-value > 0.15

Distribution Summary
Distribution: Normal
Expression: NORM(-0.000504, 0.0273)
Square Error: 0.003476

Chi Square Test
Number of intervals 6
Degrees of freedom 3
Test Statistic 4.58
Corresponding p-value 0.217

Kolmogorov-Smirnov Test
Test Statistic 0.0582
Corresponding p-value > 0.15
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3.  GBP/USD One Step Ahead Forecasting  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.  GBP/USD Three Step Ahead Forecasting  
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fit All Summary
Function Sq Error
Normal       0.00249
Weibull      0.00313
Beta         0.00381
Gamma        0.00775
Erlang       0.00780
Lognormal    0.01260
Triangular   0.01670
Uniform      0.06160
Exponential  0.08780

Fit All Summary
Function Sq Error
Beta         0.00524
Normal       0.00556
Weibull      0.00749
Erlang       0.00777
Gamma        0.00821
Lognormal    0.01230
Triangular   0.03250
Uniform      0.08480
Exponential  0.11100

Distribution Summary
Distribution: Normal
Expression: NORM(-0.000185, 0.00744)
Square Error: 0.005558

Chi Square Test
Number of intervals 9
Degrees of freedom 6
Test Statistic 15.5
Corresponding p-value 0.0182

Kolmogorov-Smirnov Test
Test Statistic 0.0550
Corresponding p-value > 0.15

Distribution Summary
Distribution: Normal
Expression: NORM(0.0000939, 0.0115)
Square Error: 0.002494

Chi Square Test
Number of intervals 9
Degrees of freedom 6
Test Statistic 10.70
Corresponding p-value 0.0988

Kolmogorov-Smirnov Test
Test Statistic 0.0348
Corresponding p-value > 0.15
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Appendix 6.  The Predicted Values of The Replicates 
 
3.  GBP/USD One Step Ahead Forecasting 
 
 
 

Predict 1 2 3 4 5 6 7 8 9 10
1 0.6233 0.6223 0.6238 0.6235 0.6232 0.6238 0.6217 0.6206 0.6230 0.6235 0.6202
2 0.6212 0.6206 0.6225 0.6216 0.6211 0.6205 0.6203 0.6188 0.6206 0.6218 0.6190
3 0.6170 0.6174 0.6194 0.6179 0.6170 0.6151 0.6176 0.6158 0.6163 0.6182 0.6166
4 0.6119 0.6135 0.6150 0.6132 0.6124 0.6098 0.6141 0.6125 0.6114 0.6135 0.6134
5 0.6146 0.6153 0.6138 0.6148 0.6155 0.6168 0.6165 0.6157 0.6158 0.6139 0.6143
6 0.6204 0.6198 0.6193 0.6202 0.6208 0.6229 0.6202 0.6193 0.6213 0.6196 0.6180
7 0.6258 0.6243 0.6242 0.6253 0.6252 0.6293 0.6233 0.6232 0.6267 0.6247 0.6214
8 0.6281 0.6267 0.6279 0.6285 0.6276 0.6316 0.6245 0.6252 0.6288 0.6281 0.6235
9 0.6261 0.6248 0.6277 0.6265 0.6251 0.6253 0.6232 0.6221 0.6251 0.6273 0.6224
10 0.6267 0.6252 0.6257 0.6266 0.6262 0.6301 0.6238 0.6239 0.6274 0.6261 0.6222
11 0.6287 0.6275 0.6287 0.6293 0.6279 0.6327 0.6249 0.6260 0.6296 0.6286 0.6241
12 0.6288 0.6279 0.6299 0.6300 0.6287 0.6324 0.6250 0.6262 0.6296 0.6298 0.6247
13 0.6291 0.6283 0.6300 0.6304 0.6287 0.6334 0.6252 0.6269 0.6302 0.6298 0.6249
14 0.6288 0.6279 0.6302 0.6300 0.6287 0.6318 0.6250 0.6260 0.6293 0.6300 0.6247
15 0.6284 0.6272 0.6292 0.6292 0.6282 0.6311 0.6247 0.6253 0.6287 0.6291 0.6240
16 0.6271 0.6257 0.6281 0.6275 0.6266 0.6280 0.6238 0.6235 0.6267 0.6279 0.6230
17 0.6250 0.6238 0.6259 0.6253 0.6247 0.6254 0.6226 0.6217 0.6246 0.6256 0.6214
18 0.6239 0.6228 0.6243 0.6241 0.6238 0.6247 0.6220 0.6211 0.6237 0.6241 0.6206
19 0.6203 0.6200 0.6225 0.6209 0.6198 0.6182 0.6197 0.6178 0.6192 0.6214 0.6186
20 0.6149 0.6158 0.6176 0.6160 0.6151 0.6129 0.6163 0.6145 0.6143 0.6163 0.6153
21 0.6126 0.6140 0.6143 0.6135 0.6135 0.6121 0.6148 0.6136 0.6127 0.6133 0.6136
22 0.6061 0.6089 0.6111 0.6081 0.6062 0.6026 0.6093 0.6078 0.6048 0.6089 0.6099
23 0.6010 0.6045 0.6039 0.6022 0.6021 0.5997 0.6050 0.6051 0.6007 0.6026 0.6055
24 0.6011 0.6044 0.6025 0.6019 0.6024 0.6010 0.6052 0.6057 0.6014 0.6017 0.6052
25 0.6059 0.6084 0.6055 0.6064 0.6072 0.6077 0.6099 0.6099 0.6072 0.6055 0.6084
26 0.6024 0.6058 0.6072 0.6044 0.6029 0.5995 0.6061 0.6053 0.6013 0.6052 0.6072
27 0.6105 0.6118 0.6067 0.6105 0.6114 0.6154 0.6138 0.6139 0.6130 0.6082 0.6109
28 0.6243 0.6227 0.6206 0.6231 0.6235 0.6293 0.6225 0.6225 0.6260 0.6218 0.6200
29 0.6227 0.6219 0.6253 0.6232 0.6213 0.6197 0.6211 0.6190 0.6211 0.6242 0.6203
30 0.6224 0.6214 0.6214 0.6222 0.6225 0.6247 0.6213 0.6205 0.6230 0.6217 0.6193
31 0.6231 0.6222 0.6236 0.6233 0.6231 0.6237 0.6216 0.6205 0.6229 0.6234 0.6201
32 0.6247 0.6234 0.6240 0.6246 0.6246 0.6271 0.6226 0.6221 0.6251 0.6242 0.6209
33 0.6276 0.6261 0.6268 0.6276 0.6269 0.6313 0.6243 0.6248 0.6284 0.6271 0.6230
34 0.6282 0.6269 0.6287 0.6288 0.6279 0.6309 0.6245 0.6251 0.6285 0.6288 0.6238
35 0.6272 0.6259 0.6280 0.6277 0.6269 0.6285 0.6239 0.6237 0.6270 0.6280 0.6230
36 0.6246 0.6235 0.6259 0.6249 0.6240 0.6241 0.6223 0.6211 0.6238 0.6254 0.6212
37 0.6184 0.6186 0.6216 0.6194 0.6176 0.6153 0.6184 0.6162 0.6171 0.6201 0.6176
38 0.6078 0.6103 0.6134 0.6098 0.6074 0.6035 0.6106 0.6086 0.6061 0.6109 0.6112
39 0.6026 0.6059 0.6051 0.6038 0.6038 0.6017 0.6066 0.6065 0.6026 0.6039 0.6067
40 0.6014 0.6048 0.6037 0.6025 0.6026 0.6006 0.6054 0.6056 0.6013 0.6026 0.6057
41 0.5990 0.6027 0.6019 0.6002 0.6001 0.5977 0.6030 0.6034 0.5985 0.6006 0.6039
42 0.5910 0.5946 0.5958 0.5927 0.5911 0.5888 0.5936 0.5938 0.5889 0.5943 0.5973
43 0.5886 0.5915 0.5887 0.5880 0.5894 0.5882 0.5907 0.5932 0.5878 0.5886 0.5926
44 0.5956 0.5988 0.5930 0.5957 0.5962 0.5982 0.5995 0.6024 0.5967 0.5939 0.5989
45 0.5949 0.5987 0.5985 0.5961 0.5957 0.5930 0.5984 0.5991 0.5937 0.5971 0.6006
46 0.5882 0.5913 0.5913 0.5889 0.5887 0.5868 0.5903 0.5910 0.5864 0.5904 0.5937
47 0.5821 0.5832 0.5834 0.5821 0.5827 0.5821 0.5832 0.5814 0.5810 0.5831 0.5853
48 0.5794 0.5795 0.5794 0.5788 0.5804 0.5801 0.5803 0.5779 0.5798 0.5791 0.5801
49 0.5757 0.5740 0.5767 0.5768 0.5770 0.5788 0.5791 0.5680 0.5781 0.5760 0.5751
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11 12 13 14 15 16 17 18 19 20
0.6204 0.6218 0.6232 0.6216 0.6238 0.6239 0.6187 0.6222 0.6224 0.6228
0.6197 0.6201 0.6212 0.6206 0.6220 0.6238 0.6171 0.6202 0.6200 0.6206
0.6177 0.6169 0.6175 0.6182 0.6181 0.6226 0.6143 0.6166 0.6157 0.6164
0.6146 0.6131 0.6133 0.6146 0.6129 0.6193 0.6113 0.6128 0.6113 0.6115
0.6130 0.6184 0.6173 0.6154 0.6140 0.6100 0.6139 0.6158 0.6157 0.6140
0.6169 0.6215 0.6217 0.6192 0.6201 0.6163 0.6174 0.6202 0.6207 0.6199
0.6202 0.6239 0.6257 0.6220 0.6255 0.6199 0.6211 0.6242 0.6263 0.6256
0.6229 0.6246 0.6276 0.6239 0.6285 0.6250 0.6230 0.6268 0.6289 0.6272
0.6233 0.6221 0.6242 0.6234 0.6272 0.6271 0.6203 0.6243 0.6246 0.6253
0.6214 0.6242 0.6264 0.6228 0.6267 0.6224 0.6218 0.6252 0.6272 0.6264
0.6234 0.6248 0.6282 0.6242 0.6292 0.6252 0.6238 0.6272 0.6300 0.6273
0.6243 0.6248 0.6285 0.6246 0.6298 0.6269 0.6240 0.6284 0.6301 0.6267
0.6243 0.6250 0.6289 0.6247 0.6301 0.6266 0.6246 0.6284 0.6309 0.6267
0.6244 0.6246 0.6282 0.6246 0.6299 0.6273 0.6239 0.6285 0.6298 0.6264
0.6239 0.6245 0.6277 0.6244 0.6291 0.6267 0.6232 0.6276 0.6289 0.6268
0.6233 0.6233 0.6260 0.6238 0.6279 0.6267 0.6215 0.6258 0.6265 0.6261
0.6219 0.6224 0.6243 0.6227 0.6257 0.6256 0.6198 0.6237 0.6240 0.6245
0.6207 0.6222 0.6238 0.6219 0.6244 0.6241 0.6192 0.6228 0.6232 0.6235
0.6198 0.6187 0.6198 0.6203 0.6215 0.6247 0.6162 0.6191 0.6185 0.6197
0.6164 0.6154 0.6158 0.6168 0.6160 0.6213 0.6131 0.6151 0.6139 0.6143
0.6138 0.6151 0.6148 0.6148 0.6130 0.6163 0.6121 0.6137 0.6127 0.6122
0.6121 0.6056 0.6069 0.6099 0.6075 0.6183 0.6072 0.6082 0.6054 0.6064
0.6061 0.6030 0.6035 0.6045 0.6011 0.6068 0.6044 0.6043 0.6022 0.6022
0.6046 0.6048 0.6042 0.6042 0.6006 0.6017 0.6049 0.6045 0.6030 0.6023
0.6068 0.6116 0.6096 0.6084 0.6049 0.6008 0.6086 0.6089 0.6081 0.6063
0.6092 0.6021 0.6037 0.6064 0.6034 0.6144 0.6048 0.6055 0.6024 0.6034
0.6071 0.6173 0.6141 0.6109 0.6083 0.5942 0.6121 0.6130 0.6134 0.6102
0.6173 0.6236 0.6242 0.6199 0.6232 0.6086 0.6204 0.6219 0.6256 0.6241
0.6219 0.6192 0.6206 0.6217 0.6243 0.6265 0.6174 0.6207 0.6203 0.6221
0.6185 0.6223 0.6231 0.6204 0.6222 0.6191 0.6185 0.6217 0.6224 0.6219
0.6203 0.6218 0.6231 0.6215 0.6236 0.6237 0.6186 0.6221 0.6223 0.6227
0.6203 0.6232 0.6248 0.6219 0.6247 0.6221 0.6201 0.6236 0.6247 0.6244
0.6221 0.6245 0.6271 0.6233 0.6277 0.6233 0.6226 0.6259 0.6284 0.6270
0.6236 0.6244 0.6275 0.6242 0.6288 0.6264 0.6229 0.6273 0.6286 0.6269
0.6233 0.6236 0.6263 0.6238 0.6280 0.6266 0.6217 0.6260 0.6268 0.6263
0.6220 0.6217 0.6236 0.6226 0.6255 0.6260 0.6193 0.6230 0.6232 0.6241
0.6193 0.6167 0.6177 0.6193 0.6200 0.6248 0.6148 0.6174 0.6164 0.6178
0.6139 0.6062 0.6078 0.6115 0.6096 0.6209 0.6080 0.6095 0.6064 0.6078
0.6070 0.6054 0.6054 0.6061 0.6026 0.6072 0.6057 0.6057 0.6039 0.6035
0.6059 0.6041 0.6041 0.6048 0.6013 0.6053 0.6049 0.6047 0.6028 0.6025
0.6045 0.6004 0.6012 0.6023 0.5991 0.6049 0.6029 0.6026 0.6003 0.6005
0.5998 0.5863 0.5902 0.5939 0.5918 0.6044 0.5948 0.5956 0.5909 0.5936
0.5905 0.5876 0.5887 0.5887 0.5880 0.5870 0.5936 0.5918 0.5904 0.5910
0.5945 0.6013 0.5982 0.5961 0.5937 0.5875 0.6014 0.5995 0.5994 0.5974
0.6018 0.5935 0.5959 0.5978 0.5952 0.6033 0.5992 0.5990 0.5958 0.5971
0.5948 0.5843 0.5874 0.5903 0.5887 0.5960 0.5921 0.5924 0.5884 0.5909
0.5844 0.5806 0.5803 0.5846 0.5825 0.5840 0.5836 0.5845 0.5811 0.5839
0.5774 0.5803 0.5784 0.5807 0.5795 0.5780 0.5800 0.5794 0.5789 0.5800
0.5753 0.5845 0.5770 0.5831 0.5765 0.5708 0.5714 0.5742 0.5730 0.5743
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4. GBP/USD Three Step Ahead Forecasting 
 

Predict 1 2 3 4 5 6 7 8 9 10
1 0.6228 0.6216 0.6183 0.6145 0.6186 0.6214 0.6217 0.6226 0.6204 0.6211 0.6219
2 0.6190 0.6202 0.6170 0.6137 0.6173 0.6195 0.6198 0.6203 0.6182 0.6193 0.6200
3 0.6126 0.6172 0.6144 0.6119 0.6148 0.6158 0.6159 0.6158 0.6146 0.6160 0.6168
4 0.6070 0.6131 0.6111 0.6095 0.6116 0.6114 0.6110 0.6104 0.6106 0.6118 0.6124
5 0.6172 0.6140 0.6114 0.6101 0.6119 0.6137 0.6115 0.6135 0.6137 0.6123 0.6118
6 0.6227 0.6189 0.6154 0.6128 0.6157 0.6188 0.6174 0.6197 0.6184 0.6178 0.6185
7 0.6284 0.6228 0.6194 0.6150 0.6194 0.6237 0.6232 0.6257 0.6237 0.6233 0.6250
8 0.6298 0.6248 0.6226 0.6164 0.6224 0.6263 0.6272 0.6287 0.6264 0.6266 0.6278
9 0.6235 0.6238 0.6213 0.6160 0.6216 0.6241 0.6262 0.6256 0.6228 0.6237 0.6225

10 0.6289 0.6236 0.6206 0.6156 0.6205 0.6247 0.6248 0.6268 0.6247 0.6246 0.6262
11 0.6304 0.6252 0.6234 0.6166 0.6231 0.6270 0.6281 0.6297 0.6276 0.6277 0.6291
12 0.6301 0.6257 0.6244 0.6170 0.6242 0.6275 0.6294 0.6301 0.6279 0.6280 0.6278
13 0.6306 0.6257 0.6248 0.6169 0.6244 0.6278 0.6296 0.6307 0.6287 0.6288 0.6294
14 0.6297 0.6258 0.6246 0.6171 0.6245 0.6274 0.6296 0.6300 0.6276 0.6278 0.6266
15 0.6293 0.6254 0.6235 0.6168 0.6234 0.6267 0.6285 0.6291 0.6267 0.6270 0.6268
16 0.6266 0.6245 0.6221 0.6164 0.6222 0.6251 0.6269 0.6270 0.6244 0.6249 0.6244
17 0.6242 0.6230 0.6200 0.6154 0.6202 0.6230 0.6241 0.6245 0.6220 0.6228 0.6231
18 0.6238 0.6221 0.6188 0.6148 0.6190 0.6220 0.6224 0.6234 0.6210 0.6217 0.6225
19 0.6158 0.6197 0.6167 0.6134 0.6171 0.6187 0.6194 0.6192 0.6171 0.6187 0.6194
20 0.6103 0.6156 0.6130 0.6110 0.6135 0.6140 0.6138 0.6136 0.6129 0.6143 0.6150
21 0.6107 0.6132 0.6111 0.6096 0.6116 0.6120 0.6109 0.6112 0.6115 0.6117 0.6119
22 0.5977 0.6085 0.6078 0.6069 0.6084 0.6064 0.6063 0.6043 0.6057 0.6078 0.6085
23 0.5982 0.6024 0.6036 0.6035 0.6041 0.6018 0.6008 0.5988 0.6023 0.6018 0.6009
24 0.6013 0.6018 0.6031 0.6032 0.6036 0.6019 0.6003 0.5988 0.6027 0.6009 0.5992
25 0.6090 0.6059 0.6057 0.6056 0.6063 0.6062 0.6036 0.6041 0.6069 0.6043 0.6022
26 0.5952 0.6048 0.6052 0.6048 0.6059 0.6031 0.6029 0.6005 0.6030 0.6044 0.6046
27 0.6182 0.6088 0.6073 0.6070 0.6079 0.6101 0.6061 0.6092 0.6112 0.6067 0.6038
28 0.6287 0.6206 0.6170 0.6136 0.6170 0.6221 0.6201 0.6239 0.6226 0.6207 0.6225
29 0.6168 0.6215 0.6187 0.6146 0.6191 0.6208 0.6226 0.6216 0.6190 0.6206 0.6204
30 0.6243 0.6205 0.6169 0.6137 0.6172 0.6205 0.6197 0.6218 0.6200 0.6198 0.6208
31 0.6227 0.6215 0.6182 0.6144 0.6184 0.6212 0.6215 0.6225 0.6203 0.6209 0.6217
32 0.6263 0.6224 0.6190 0.6149 0.6191 0.6227 0.6226 0.6244 0.6222 0.6223 0.6235
33 0.6297 0.6243 0.6216 0.6160 0.6214 0.6257 0.6261 0.6280 0.6258 0.6258 0.6276
34 0.6292 0.6252 0.6231 0.6167 0.6230 0.6264 0.6280 0.6288 0.6263 0.6267 0.6268
35 0.6272 0.6245 0.6221 0.6164 0.6222 0.6253 0.6269 0.6273 0.6246 0.6252 0.6249
36 0.6226 0.6227 0.6198 0.6153 0.6200 0.6226 0.6239 0.6239 0.6214 0.6223 0.6224
37 0.6119 0.6185 0.6156 0.6127 0.6161 0.6171 0.6179 0.6171 0.6154 0.6174 0.6181
38 0.5975 0.6104 0.6091 0.6078 0.6098 0.6079 0.6082 0.6061 0.6068 0.6095 0.6106
39 0.6006 0.6039 0.6046 0.6044 0.6051 0.6033 0.6020 0.6005 0.6037 0.6030 0.6021
40 0.5997 0.6025 0.6036 0.6036 0.6042 0.6021 0.6009 0.5991 0.6027 0.6018 0.6006
41 0.5962 0.6004 0.6022 0.6023 0.6027 0.6000 0.5991 0.5967 0.6006 0.6000 0.5990
42 0.5830 0.5933 0.5966 0.5970 0.5970 0.5922 0.5931 0.5895 0.5930 0.5939 0.5946
43 0.5894 0.5892 0.5922 0.5931 0.5924 0.5904 0.5897 0.5866 0.5912 0.5886 0.5874
44 0.6030 0.5945 0.5968 0.5979 0.5975 0.5975 0.5941 0.5932 0.5986 0.5940 0.5897
45 0.5903 0.5965 0.5993 0.5997 0.5998 0.5961 0.5959 0.5926 0.5969 0.5966 0.5962
46 0.5827 0.5900 0.5935 0.5941 0.5937 0.5894 0.5904 0.5869 0.5904 0.5900 0.5906
47 0.5774 0.5851 0.5861 0.5867 0.5857 0.5831 0.5852 0.5838 0.5835 0.5829 0.5853
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11 12 13 14 15 16 17 18 19 20
0.6223 0.6200 0.6179 0.6205 0.6216 0.6206 0.6241 0.6206 0.6199 0.6220
0.6202 0.6187 0.6171 0.6185 0.6191 0.6191 0.6203 0.6188 0.6185 0.6201
0.6159 0.6159 0.6153 0.6148 0.6147 0.6161 0.6135 0.6152 0.6155 0.6165
0.6107 0.6120 0.6125 0.6105 0.6100 0.6122 0.6084 0.6109 0.6114 0.6120
0.6128 0.6123 0.6130 0.6132 0.6120 0.6125 0.6100 0.6131 0.6122 0.6155
0.6189 0.6169 0.6162 0.6182 0.6182 0.6172 0.6151 0.6181 0.6170 0.6200
0.6249 0.6211 0.6185 0.6231 0.6252 0.6218 0.6252 0.6231 0.6213 0.6244
0.6281 0.6237 0.6197 0.6255 0.6294 0.6251 0.6263 0.6258 0.6238 0.6269
0.6259 0.6229 0.6190 0.6231 0.6250 0.6240 0.6240 0.6232 0.6225 0.6244
0.6261 0.6221 0.6190 0.6240 0.6268 0.6231 0.6285 0.6241 0.6223 0.6253
0.6291 0.6243 0.6199 0.6262 0.6308 0.6259 0.6245 0.6267 0.6244 0.6277
0.6297 0.6249 0.6201 0.6265 0.6314 0.6268 0.6220 0.6270 0.6248 0.6282
0.6302 0.6251 0.6202 0.6269 0.6324 0.6271 0.6221 0.6276 0.6251 0.6287
0.6297 0.6250 0.6201 0.6264 0.6312 0.6269 0.6216 0.6269 0.6248 0.6281
0.6288 0.6244 0.6199 0.6258 0.6299 0.6260 0.6227 0.6261 0.6242 0.6273
0.6270 0.6234 0.6194 0.6242 0.6270 0.6246 0.6243 0.6243 0.6231 0.6255
0.6244 0.6216 0.6187 0.6221 0.6239 0.6224 0.6281 0.6222 0.6214 0.6235
0.6230 0.6205 0.6182 0.6211 0.6225 0.6211 0.6255 0.6212 0.6204 0.6226
0.6194 0.6184 0.6168 0.6176 0.6179 0.6188 0.6200 0.6179 0.6181 0.6192
0.6138 0.6143 0.6142 0.6131 0.6127 0.6145 0.6111 0.6135 0.6139 0.6147
0.6112 0.6119 0.6127 0.6113 0.6104 0.6121 0.6089 0.6115 0.6115 0.6131
0.6050 0.6083 0.6088 0.6054 0.6053 0.6084 0.6038 0.6059 0.6071 0.6053
0.5997 0.6029 0.6038 0.6011 0.6005 0.6034 0.6002 0.6012 0.6017 0.6006
0.5996 0.6022 0.6032 0.6013 0.6000 0.6029 0.6004 0.6012 0.6012 0.6013
0.6041 0.6053 0.6067 0.6057 0.6037 0.6059 0.6038 0.6055 0.6048 0.6075
0.6013 0.6051 0.6058 0.6022 0.6023 0.6054 0.6011 0.6026 0.6038 0.6014
0.6082 0.6074 0.6084 0.6099 0.6078 0.6078 0.6063 0.6092 0.6076 0.6127
0.6228 0.6188 0.6169 0.6219 0.6233 0.6192 0.6172 0.6216 0.6193 0.6233
0.6222 0.6207 0.6177 0.6197 0.6203 0.6212 0.6269 0.6200 0.6202 0.6210
0.6210 0.6185 0.6172 0.6198 0.6205 0.6189 0.6183 0.6198 0.6187 0.6215
0.6222 0.6199 0.6179 0.6204 0.6215 0.6204 0.6236 0.6205 0.6198 0.6219
0.6237 0.6206 0.6183 0.6220 0.6236 0.6212 0.6247 0.6220 0.6207 0.6234
0.6273 0.6230 0.6194 0.6249 0.6284 0.6241 0.6287 0.6251 0.6231 0.6263
0.6284 0.6241 0.6198 0.6255 0.6295 0.6256 0.6236 0.6258 0.6240 0.6270
0.6271 0.6234 0.6195 0.6244 0.6273 0.6247 0.6246 0.6245 0.6232 0.6257
0.6240 0.6215 0.6185 0.6216 0.6231 0.6223 0.6279 0.6218 0.6212 0.6230
0.6176 0.6174 0.6160 0.6159 0.6160 0.6176 0.6172 0.6164 0.6169 0.6174
0.6069 0.6100 0.6101 0.6068 0.6067 0.6100 0.6050 0.6074 0.6089 0.6068
0.6012 0.6040 0.6052 0.6026 0.6017 0.6046 0.6015 0.6027 0.6030 0.6027
0.6000 0.6029 0.6039 0.6015 0.6006 0.6035 0.6005 0.6015 0.6018 0.6013
0.5978 0.6012 0.6018 0.5993 0.5989 0.6018 0.5987 0.5993 0.5999 0.5981
0.5903 0.5955 0.5939 0.5914 0.5938 0.5956 0.5913 0.5915 0.5933 0.5886
0.5887 0.5903 0.5876 0.5888 0.5891 0.5911 0.5905 0.5891 0.5893 0.5863
0.5945 0.5949 0.5949 0.5961 0.5940 0.5962 0.5962 0.5957 0.5945 0.5957
0.5939 0.5981 0.5977 0.5953 0.5960 0.5986 0.5952 0.5954 0.5964 0.5927
0.5880 0.5921 0.5895 0.5886 0.5910 0.5922 0.5892 0.5887 0.5902 0.5865
0.5839 0.5857 0.5817 0.5836 0.5857 0.5845 0.5840 0.5827 0.5850 0.5836
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3.  EUR/USD Three Step Ahead Forecasting 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Predict 1 2 3 4 5 6 7 8 9 10
1 0.9210 0.9021 0.9220 0.9092 0.9190 0.9073 0.9183 0.9134 0.9229 0.9125 0.9236
2 0.9161 0.9026 0.9183 0.9089 0.9177 0.9103 0.9192 0.9133 0.9207 0.9117 0.9191
3 0.9223 0.9052 0.9166 0.9087 0.9197 0.9127 0.9182 0.9131 0.9212 0.9115 0.9203
4 0.9195 0.9030 0.9173 0.9088 0.9186 0.9122 0.9173 0.9129 0.9202 0.9130 0.9148
5 0.9199 0.9043 0.9163 0.9087 0.9188 0.9124 0.9178 0.9131 0.9199 0.9118 0.9172
6 0.9207 0.9040 0.9165 0.9087 0.9188 0.9126 0.9174 0.9128 0.9201 0.9123 0.9163
7 0.9208 0.9039 0.9168 0.9087 0.9190 0.9126 0.9175 0.9128 0.9203 0.9125 0.9164
8 0.9088 0.9016 0.9125 0.9083 0.9143 0.9095 0.9154 0.9100 0.9151 0.9103 0.9105
9 0.9248 0.9053 0.9136 0.9082 0.9191 0.9140 0.9171 0.9122 0.9187 0.9100 0.9194
10 0.9279 0.8995 0.9202 0.9090 0.9196 0.9136 0.9169 0.9032 0.9250 0.9158 0.9175
11 0.9183 0.9005 0.9211 0.9091 0.9202 0.9100 0.9187 0.9132 0.9213 0.9142 0.9151
12 0.9223 0.9048 0.9180 0.9089 0.9195 0.9115 0.9186 0.9134 0.9225 0.9114 0.9227
13 0.9210 0.9035 0.9184 0.9089 0.9198 0.9121 0.9180 0.9128 0.9215 0.9132 0.9170
14 0.9141 0.9029 0.9154 0.9086 0.9169 0.9111 0.9175 0.9123 0.9181 0.9113 0.9146
15 0.9079 0.9020 0.9094 0.9078 0.9133 0.9089 0.9149 0.9084 0.9122 0.9078 0.9118
16 0.8990 0.8991 0.9013 0.9061 0.9071 0.9018 0.9080 0.9023 0.9032 0.9027 0.9047
17 0.8781 0.8898 0.8831 0.9010 0.8937 0.8862 0.8935 0.8876 0.8867 0.8894 0.8929
18 0.8708 0.8820 0.8736 0.8897 0.8835 0.8778 0.8835 0.8809 0.8721 0.8777 0.8868
19 0.8547 0.8698 0.8625 0.8588 0.8640 0.8670 0.8618 0.8623 0.8598 0.8630 0.8682
20 0.8485 0.8622 0.8567 0.8370 0.8614 0.8653 0.8583 0.8565 0.8520 0.8587 0.8674
21 0.8563 0.8625 0.8633 0.8552 0.8599 0.8653 0.8536 0.8590 0.8538 0.8586 0.8609
22 0.8486 0.8600 0.8604 0.8528 0.8561 0.8630 0.8490 0.8533 0.8516 0.8547 0.8564
23 0.8591 0.8648 0.8637 0.8482 0.8634 0.8674 0.8596 0.8612 0.8553 0.8619 0.8677
24 0.8846 0.8741 0.8782 0.8752 0.8688 0.8732 0.8669 0.8783 0.8684 0.8731 0.8699
25 0.8804 0.8811 0.8800 0.8723 0.8736 0.8754 0.8729 0.8773 0.8738 0.8780 0.8751
26 0.8922 0.8876 0.8866 0.8893 0.8853 0.8836 0.8866 0.8900 0.8802 0.8856 0.8879
27 0.9003 0.8904 0.8936 0.8943 0.8881 0.8880 0.8894 0.8945 0.8891 0.8932 0.8882
28 0.8784 0.8880 0.8828 0.8973 0.8848 0.8812 0.8843 0.8846 0.8826 0.8860 0.8848
29 0.8936 0.8901 0.8883 0.8959 0.8926 0.8878 0.8939 0.8950 0.8828 0.8882 0.8948
30 0.8952 0.8891 0.8915 0.8929 0.8854 0.8854 0.8860 0.8910 0.8878 0.8917 0.8849
31 0.8965 0.8937 0.8928 0.9004 0.8945 0.8905 0.8953 0.8971 0.8894 0.8932 0.8946
32 0.9210 0.8971 0.9066 0.9050 0.9039 0.9058 0.9069 0.9063 0.9061 0.9058 0.9048
33 0.9137 0.8965 0.9108 0.9075 0.9070 0.9069 0.9077 0.9090 0.9123 0.9110 0.9012
34 0.9071 0.9015 0.9068 0.9072 0.9112 0.9067 0.9120 0.9076 0.9088 0.9063 0.9088
35 0.8920 0.8966 0.8961 0.9050 0.9024 0.8964 0.9028 0.8976 0.8982 0.8993 0.8997
36 0.8880 0.8927 0.8888 0.9007 0.8967 0.8898 0.8971 0.8937 0.8876 0.8913 0.8968
37 0.8792 0.8873 0.8816 0.8947 0.8844 0.8806 0.8843 0.8847 0.8795 0.8837 0.8856
38 0.8680 0.8801 0.8720 0.8842 0.8768 0.8744 0.8763 0.8760 0.8696 0.8744 0.8803
39 0.8518 0.8672 0.8593 0.8540 0.8629 0.8660 0.8605 0.8604 0.8570 0.8608 0.8677
40 0.8575 0.8663 0.8629 0.8427 0.8648 0.8679 0.8624 0.8617 0.8558 0.8629 0.8705
41 0.8507 0.8608 0.8630 0.8591 0.8557 0.8630 0.8480 0.8551 0.8532 0.8552 0.8544
42 0.8589 0.8659 0.8636 0.8438 0.8648 0.8680 0.8621 0.8621 0.8559 0.8631 0.8704
43 0.8784 0.8722 0.8754 0.8735 0.8664 0.8710 0.8632 0.8741 0.8656 0.8699 0.8667
44 0.8592 0.8714 0.8672 0.8586 0.8634 0.8675 0.8607 0.8626 0.8621 0.8648 0.8661
45 0.8429 0.8575 0.8506 0.8337 0.8574 0.8627 0.8532 0.8523 0.8489 0.8542 0.8630
46 0.8324 0.8458 0.8478 0.8334 0.8512 0.8591 0.8394 0.8401 0.8404 0.8475 0.8513
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11 12 13 14 15 16 17 18 19 20
0.9280 0.9188 0.9234 0.9175 0.9251 0.9205 0.8797 0.9229 0.9184 0.9159
0.9235 0.9175 0.9206 0.9157 0.9215 0.9174 0.8967 0.9204 0.9153 0.9138
0.9228 0.9161 0.9201 0.9156 0.9205 0.9157 0.9067 0.9187 0.9172 0.9131
0.9221 0.9155 0.9185 0.9158 0.9201 0.9152 0.9054 0.9177 0.9176 0.9114
0.9217 0.9156 0.9188 0.9155 0.9196 0.9151 0.9068 0.9179 0.9168 0.9121
0.9217 0.9153 0.9185 0.9157 0.9197 0.9149 0.9073 0.9175 0.9175 0.9117
0.9220 0.9154 0.9188 0.9159 0.9200 0.9151 0.9067 0.9177 0.9177 0.9118
0.9171 0.9147 0.9141 0.9124 0.9160 0.9118 0.9073 0.9153 0.9122 0.9097
0.9199 0.9139 0.9181 0.9143 0.9177 0.9122 0.9128 0.9161 0.9169 0.9117
0.9249 0.9154 0.9213 0.9177 0.9235 0.9170 0.9050 0.9189 0.9200 0.9096
0.9259 0.9174 0.9208 0.9169 0.9232 0.9179 0.8912 0.9208 0.9189 0.9130
0.9244 0.9172 0.9217 0.9158 0.9220 0.9173 0.9013 0.9203 0.9169 0.9143
0.9237 0.9163 0.9199 0.9165 0.9214 0.9164 0.9029 0.9190 0.9184 0.9125
0.9203 0.9158 0.9174 0.9144 0.9186 0.9144 0.9053 0.9176 0.9146 0.9116
0.9142 0.9136 0.9126 0.9106 0.9133 0.9103 0.9095 0.9139 0.9097 0.9090
0.9061 0.9096 0.9042 0.9050 0.9056 0.9038 0.9066 0.9072 0.9047 0.9041
0.8897 0.9017 0.8883 0.8893 0.8900 0.8918 0.8932 0.8945 0.8923 0.8940
0.8768 0.8855 0.8778 0.8778 0.8749 0.8813 0.8792 0.8830 0.8856 0.8853
0.8604 0.8734 0.8623 0.8600 0.8601 0.8681 0.8623 0.8645 0.8645 0.8695
0.8517 0.8548 0.8577 0.8539 0.8520 0.8606 0.8616 0.8587 0.8612 0.8643
0.8552 0.8590 0.8573 0.8584 0.8534 0.8610 0.8590 0.8549 0.8513 0.8591
0.8510 0.8591 0.8551 0.8527 0.8511 0.8589 0.8544 0.8535 0.8461 0.8567
0.8571 0.8574 0.8599 0.8619 0.8547 0.8624 0.8636 0.8583 0.8593 0.8640
0.8718 0.8758 0.8690 0.8782 0.8691 0.8741 0.8676 0.8653 0.8645 0.8693
0.8774 0.8857 0.8735 0.8800 0.8761 0.8795 0.8717 0.8733 0.8724 0.8771
0.8855 0.8896 0.8836 0.8917 0.8831 0.8859 0.8821 0.8843 0.8897 0.8876
0.8922 0.8960 0.8885 0.8968 0.8923 0.8916 0.8867 0.8882 0.8899 0.8893
0.8859 0.8971 0.8820 0.8859 0.8857 0.8869 0.8845 0.8859 0.8881 0.8881
0.8891 0.8918 0.8888 0.8934 0.8859 0.8884 0.8881 0.8908 0.8964 0.8928
0.8905 0.8960 0.8858 0.8930 0.8910 0.8899 0.8850 0.8859 0.8861 0.8872
0.8943 0.8988 0.8918 0.8979 0.8929 0.8935 0.8916 0.8938 0.8982 0.8948
0.9068 0.9040 0.9058 0.9108 0.9071 0.9026 0.9034 0.9036 0.9083 0.9010
0.9122 0.9099 0.9082 0.9092 0.9131 0.9069 0.9077 0.9076 0.9076 0.9018
0.9113 0.9116 0.9093 0.9092 0.9104 0.9076 0.9091 0.9108 0.9091 0.9069
0.9012 0.9075 0.8988 0.9007 0.9011 0.8999 0.9028 0.9028 0.9012 0.9007
0.8927 0.8999 0.8918 0.8941 0.8914 0.8934 0.8935 0.8960 0.8966 0.8959
0.8838 0.8937 0.8811 0.8857 0.8827 0.8858 0.8820 0.8847 0.8882 0.8874
0.8735 0.8840 0.8730 0.8747 0.8718 0.8782 0.8737 0.8768 0.8806 0.8808
0.8569 0.8683 0.8605 0.8567 0.8571 0.8659 0.8613 0.8630 0.8637 0.8680
0.8577 0.8581 0.8611 0.8619 0.8554 0.8636 0.8651 0.8609 0.8644 0.8669
0.8530 0.8634 0.8559 0.8538 0.8526 0.8600 0.8530 0.8538 0.8453 0.8557
0.8579 0.8574 0.8611 0.8627 0.8553 0.8632 0.8652 0.8603 0.8635 0.8663
0.8689 0.8742 0.8662 0.8734 0.8662 0.8718 0.8647 0.8628 0.8612 0.8666
0.8635 0.8764 0.8631 0.8632 0.8625 0.8693 0.8617 0.8637 0.8608 0.8683
0.8452 0.8529 0.8544 0.8465 0.8488 0.8575 0.8570 0.8563 0.8560 0.8612
0.8331 0.8382 0.8476 0.8399 0.8425 0.8461 0.8492 0.8463 0.8361 0.8487
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Appendix 7.  Pseudo Code of Multivariate Neural Network  

 
 
1.  Pseudo Code of Trivariate Neural Network for Time Series Forecasting  
 
% Define input windows for each time series under consideration 
n1=str2num(get(handles.n1,'string'));  
n2=str2num(get(handles.n2,'string')); 
n3=str2num(get(handles.n3,'string')); 
 
%Calculate the number of input nodes  
n=n1+n2+n3; 
 
%Input number of hidden nodes 
p=str2num(get(handles.hnodes,'string')); 
 
%Input the values of learning rate, momentum term, and number of iterations 
alpha=learning rate 
mu=momentum term 
 
%Input the training data using switch argument 
DATA1=the first time series data 
DATA2= the second time series data 
DATA3=the third time series data   
 
%Transform input data to data in the range of  [ 0 1]  
INPUTDATA1=transformed first time series data 
INPUTDATA2=transformed second time series data 
INPUTDATA3=transformed third time series data 
 
%Initialize weight using random initialization 
w=randn(p,1)*0.5;   
v=randn(n,p)*0.5; 
bv=randn(1,p)*0.5; 
bw=randn(1,1)*0.5; 
 
%BP training main loop 
 
% Set the iteration 
iter=1; 
 
%Determine the number of pairs for each iteration 
nmax=max(n1,n2,n3) 
[aa bb]=size of INPUTDATA1 
nn=aa-nmax 
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While iter < maxit 
%Set pair number=1 
 
While training pair (tp) < nn 
 
%input the data 
X(tp,:)=[INPUTDATA1((tp+nmax-1):-1:(nmax-n1+tp));INPUTDATA2((tp+nmax-1):-

1:(nmax-n2+tp)); INPUTDATA3((tp+nmax-1):-1:(nmax-n3+tp)) ]'; 
 
%input the target data 
TAR=INPUTDATA1(nmax+mahead+tp-1); 
 
%For each training pair, do BP training 
 
%Increase the number of training pair by 1 
tp=tp+1; 
 
%End of training for all pairs 
 
%Increase the number of  iteration by 1 
iter=iter+1; 
 
%End of BP training 
 
%Retransform the actual values and the predicted values to the original range  
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2.   Pseudo Code of Genetic Algorithm for Multivariate Topology Determination  
 
% Input the necessary data  
MAXGEN=maximum number of generation 
NIND=number of individuals in each generation 
DATA1=the first time series (data being forecasted)  
DATA2=the second time series 
DATA3=the third time series 
XOVR=crossover rate 
MUTR=mutation rate 
 
%Determine the variables in the model and its precision 
NVAR = number of variables (example:  4, input windows for each time series and h 
nodes, learning rate and momentum are preset) 
 
PRECI1=precision of variable 1 
PRECI2=precision of variable 2 
PRECI3=precision of variable 3 
PRECI4=precision of variable 4 
 
%Calculate the number of bits (length) of each individual 
LIND=PRECI1+PRECI2+PRECI3+PRECI4 
 
% Build field descriptor 
FieldD=Range of values of each variable 
 
% Initialize population using gray coding 
%Chrom=chromosomes in one generation 
Chrom = crtbp(NIND, LIND); 
 
% Evaluate initial population 
ObjV = OBJTOPMUL(Chrom) 
 
% Generational loop 
 
% Track best individual  
[Best(gen+1),xi] = min(ObjV); 
 
% Matrix for storing best individuals  
IndAll = []; 
IndAll = [IndAll; Chrom(xi,:)]; 
 
%Generational loop 
while gen < MAXGEN, 
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% Assign fitness values to entire population 
FitnV = ranking(ObjV) 
 
% Select individuals for breeding using roulette wheel selection method 
SelCh = select('rws', Chrom) 
 
% Recombine individuals (crossover) using double point crossover 
SelCh = recombin('xovdp',SelCh,xovr); 
 
% Apply mutation 
SelCh = mut(SelCh); 
 
% Evaluate offspring, call objective function 
ObjVSel = objTopMUL(bs2rv(SelCh,FieldD)); 
 
% Reinsert offspring into population 
[Chrom ObjV]=reins(Chrom,SelCh,ObjV,ObjVSel); 
 
% Update record current best individual and record all best individual for each generation 
 Best(gen) = min(ObjV) 
IndAll=[IndAll; Chrom(xi,:)] 
 
% Increment counter 
gen = gen+1 
 
end; 
 
%Determine the chosen topology 
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3.  The Objective Function for Genetic Algorithm for Multivariate NNs Topology   
     Determination 
 
function ObjVal = OBJTOPMUL(Chrom); 
 
% Compute population parameters 
[Nind,Nvar] = size(Chrom); 
 
%Determine the data series 
DATA1=The first time series data (the data being forecasted) 
DATA2=The second time series data 
DATA3=The third time series data 
 
%Evaluation of The Objective Values for each individual 
for irun=1:Nind 
 
%Translate individual to the corresponding topology 
n1=Chrom(irun,1) 
n2=Chrom(irun,2) 
n3=Chrom(irun,3) 
p=Chrom(irun,4) 
 
%Pre set other parameters 
lrate=0.9, mterm=0.02, activation function is tanh (=1) 
 
%Calculate the number of input nodes 
n=n1+n2+n3; 
 
%Initialize weight matrices 
v=randn(n,p);  
bv=randn(1,p); 
w=randn(p,1); 
bw=randn(1,1); 
 
%determine the number of training pair 
nmax=max(n1,n2,n3) 
[aa bb]=size(DATA1) 
tp=aa-nmax 
 
for epochs=1:MAXGEN 
tp=1; 
 
for tp=1:nn 
 
%input the data 
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X(tp,:)=[DATA1((tp+nmax-1):-1:(nmax-n1+tp));DATA2((tp+nmax-1):-1:(nmax-
n2+tp)); DATA3((tp+nmax-1):-1:(nmax-n3+tp)) ]'; 
 
%input the target data 
TAR=DATA1(nmax+mahead+tp-1); 
 
%Do the BP training for each pair 
 
 
    
% end for one pair of training set    
 
%Increment counter 
tp=tp+1; 
 
end; 
 
%Increment counter 
epochs=epochs+1; 
 
end; 
 
%Determine the MSE for each individual 
ObjVal(irun)=mse 
 
end; 
 
%Obtain the MSE values for each individual 
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