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Abstract 
 

DNA Damage Response Activated by Anti-cancer Agent, Irofulven. 
 

Timothy D. Wiltshire 
Advisor: Weixin Wang, Ph.D. Assistant Professor, Department of Microbiology, 

Immunology and Cell Biology. 
 
 The DNA damage response is a complex network of signals that coordinate to 
protect cells from accumulating mutations that lead to the development of cancer. Upon 
the introduction of DNA damage from either environmental or endogenous sources, the 
DNA damage response coordinates the control of cell cycle with DNA repair 
mechanisms to ensure genomic integrity within the cell. Mutations in proteins in this 
pathway lead to genomic instability and early onset of cancer. BRCA1 is a protein that 
plays a critical role in response to DNA damage caused by ionizing radiation and is 
responsible for approximately 50% of inherited breast and ovarian cancers. A key 
element in the response to DNA damage is the exact type of lesion produced. Irofulven 
represents a novel DNA damaging agent that may provide insight into specific signals 
involved. It also remains to be determined if tumors that have mutations in BRCA1 may 
be more or less sensitive to treatment with irofulven. The exact method by which 
irofulven kills cells also remains to be determined. Many chemotherapeutics are potent 
inducers of apoptosis and irofulven has been shown to activate elements of the apoptotic 
pathway. Previous work in our lab has shown the ability of irofulven to activate ATM 
and CHK2. Based on the fact that BRCA1 lies directly downstream in this pathway, we 
hypothesized that it plays a key role in the irofulven induced DNA damage response. 

In our current study, we determined that BRCA1 plays a role in regulation of S 
and G2/M cell cycle checkpoints after irofulven exposure. We also demonstrated that 
DNA repair via homologous recombination plays a role in response to DNA damage 
induced by irofulven and that cells deficient in such repair are more sensitive to 
irofulven. Lastly, we demonstrated that the activation of apoptosis by irofulven is 
regulated by caspases 2 and 9, while caspase 8 seems to render cells resistant. Taken 
together, this study expanded our knowledge of signaling pathways activated by irofulven 
and provides a basis for targeted treatment in BRCA1 deficient breast and ovarian 
cancers. 
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 The DNA damage response is a broad signaling network with the ability to sense 

damage to DNA and respond via multiple cellular mechanisms to ensure genomic 

integrity and prevent harmful mutations. Coordination of the DNA damage response is a 

multi-faceted response involving damage sensors, cell cycle checkpoints, and DNA repair 

proteins (1). Cells are also programmed with the ability to induce apoptosis if DNA 

damage is not able to be repaired (2). While many proteins have been identified that 

participate in the DNA damage response, the coordination and exact mechanism of the 

response remains to be elucidated. It is however apparent that the response to DNA 

damage is crucial for safeguarding the genome and avoiding neoplasia (3, 4).  

 

Cell Cycle Control  

 

 Progression through the cell cycle contains a number of checkpoints that serve as 

quality control for accurate replication of DNA and synthesis of proteins required for cell 

division. This phenomenon was first described as a control mechanism enforcing 

dependency in the cell cycle (5). This definition has evolved over time as more functions 

of the cell cycle checkpoint have been elucidated. Now more commonly referred to as the 

DNA damage checkpoint, it serves as a control for DNA repair and replication through 

delay of the progression through the cell cycle. While the exact sensory mechanism 

remains a mystery, checkpoint activation can occur almost immediately after DNA is 

damaged (1).  

 The cell cycle represents the various stages by which a single cell is able to 

multiply into two daughter cells via the synthesis of the required proteins and complete 

 2 
 

 



replication of DNA. Newly divided cells begin with a resting or G0 phase, followed by 

G1, S, G2 and M. In the G1 phase cells are activating genes involved in the synthesis of 

deoxynucleotides and histone proteins as well as forming protein complexes at origins of 

replication to ensure proper initiation of replication. Much of G1 progress is in response 

to mitogenic stimuli. A checkpoint exists near the end of G1 before cells can progress 

into S phase. During S phase, cells replicate DNA in order to have 2 complete copies for 

subsequent cell division. Any damage incurred during this replication results in activation 

of the S phase checkpoint allowing time for the DNA repair pathway to deal with the 

lesion (6). The S phase checkpoint can be activated in a number of ways when the cell 

encounters difficulty with DNA replication. After passing through S phase, cells enter the 

G2 phase to ensure that DNA has been accurately replicated and that all the proteins 

required before segregation have been synthesized. Once the cell determines that all the 

correct components are in place, it will pass through the G2 checkpoint into M phase 

where the chromosomes segregate and the cell divides into two daughter cells. Any 

damage to chromosomes at this point activates the checkpoint and prevents the cell from 

undergoing mitosis while attempting to repair the damage. 

 Central to the control of cell cycle checkpoints are a set of molecules known as 

cell division cycle dual specificity phosphatases which includes Cdc25A, Cdc25B and 

Cdc25C. During the G1 phase, Cdc25A is an important signal mediator that serves as an 

inhibitor of the downstream signals that drive cell cycle progression thereby controlling 

early cell cycle progression (7-9). Later in the cell cycle, during G2 and M phases, 

Cdc25B and Cdc25C act as signal mediators of cell cycle progression by control of the 

effector molecules (10). This simplified model of Cdc25 regulation has recently been 
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brought into doubt. A number of recent studies have outlined roles for the Cdc25 proteins 

that are not cell cycle specific, suggesting that all three isoforms may coordinate to 

regulate cell cycle control (11-14). As this signaling pathway develops, it is clear that the 

Cdc25 family of phosphatases play a role in regulation of the effector molecules that 

control cell cycle progression.        

 This set of effector molecules known as cyclins and cyclin-dependent kinases 

(CDKs) function in response to upstream signals to drive cells from one stage of the cell 

cycle to the next when the correct conditions are met (15-17). An important upstream 

regulator in the control of cell cycle is the transcriptional repressor, Rb. The binding to 

the E2F transcription factor and recruitment of histone deacetylase repressors allows Rb 

to halt many of the genes required for synthesis of DNA (18, 19). Disruption of this 

interaction by phosphorylation of Rb by CDKs allows E2F to activate the numerous 

genes required for synthesis of DNA during S phase (20, 21).  

As our knowledge increased, it became more apparent that cyclins and CDKs 

were the machinery that controls the cell cycle checkpoints, but they did so in response to 

upstream signals that respond to conditions within the cell. Several of these proteins were 

discovered in response to DNA damage inflicted on the cell and they became part of a 

signaling pathway termed the DNA damage response. This was in contrast to the simple 

notion that a checkpoint was the main cellular response to DNA damage. It began to link 

both checkpoint control and DNA repair as part of the same process. Investigators began 

to see that the cell cycle checkpoint was only the brakes and the same proteins that 

activated the checkpoint were also able to activate DNA repair pathways (22-26).   
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DNA Repair 

 

There are several mechanisms both endogenous and exogenous by which DNA 

can be damaged in a cell and the repair pathway activated depends on the type of damage 

induced which is a direct result of the specific damaging agent. Ultraviolet (UV) light 

exposure leads mostly to pyrimidine dimers and other bulky adducts which are repaired 

by the nucleotide excision repair (NER) pathway (27). Oxygen radicals cause non-bulky 

base modifications repaired by the base excision repair (BER) pathway. 

Chemotherapeutic agents such as cisplatin or mitomycin C cause interstrand crosslinks 

(ICLs) repaired by recombinational repair, either NHEJ, HR or a combination of both as 

well as nucleotide excision repair (NER) (27). Ionizing radiation or stalled replication 

forks cause double strand breaks (DSBs) which can also be repaired by either NHEJ, HR 

or both in addition to NER (27, 28). This evidence brings to light the fact that multiple 

pathways respond to different types of DNA damage. Some of these differences can be 

attributed to the specific phase of cell cycle when the damage occurs. The rest is based 

largely on the type of damage that needs to be repaired.  

While non-homologous end joining and homologous recombination both repair 

DSBs, the similarities in mechanism are few. NHEJ is the dominant repair mechanism 

during the early stages of the cell cycle where the availability of an undamaged template 

does not exist. A repair process which has no template for repair is more prone to error 

and often results in the addition or deletion of a few nucleotides. NHEJ relies on small 

sequence similarities between two broken strands to join the broken ends facilitated by a 
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heterodimer complex of KU70 and KU80. After the ends are brought together they are 

ligated by DNA ligase 4 to complete the repair process (27).  

The DNA damage trigger and some of the signals involved may be the same, but 

homologous recombination utilizes a vastly different mechanism for the repair of DSBs. 

The HR repair process dominates the later stages of S phase as well as G2. This could be 

merely due to the coincidence of the availability of a sister chromatid to use as a template 

for repair. The first step in HR is the resection of the DNA ends by nucleases followed by 

coating of the single strand of DNA by Rad51 which acts as a mammalian  DNA 

recombinase similar to the bacterial protein RecA (29, 30). Rad51 facilitates the search 

for the undamaged template followed by the exchange of the single strand with the 

double strand forming a intermediate repair complex (30-32). The undamaged double 

strand is used as a template for DNA synthesis to repair both strands from the original 

lesion resulting in the formation of Holliday junctions which are quickly resolved into 

two double strands free of replication errors (33). Along with the proteins that have 

shown to be actively involved in the repair process, there are a number of other molecules 

that are recruited to the sites of DNA repair including, ATM/ATR, BRCA1, BRCA2 and 

H2AX. All have been shown to be recruited to the sites of DSBs and involved in the 

repair process even though their exact contribution is not yet well defined.  

One of the early proteins activated in response to DSBs is the histone protein 

H2AX. Rapid phosphorylation of H2AX occurs at sites of DSBs on serine 139 resulting 

in the formation of discrete nuclear foci (34, 35). The phosphorylated form of H2AX, 

termed γ-H2AX, represents the catalytically active form of the histone protein first 

identified by two-dimensional gel electrophoresis after exposure to ionizing radiation 
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(34). It was found that massive amounts of γ-H2AX was found in complex with large 

amounts of chromatin at sites of DSBs in what became known as nuclear foci (35). The 

phosphorylation of H2AX was also implicated in the response to DSBs in an ATM 

dependent manner which would provide an eventual link to the DNA damage response 

(36). Evidence later showed that the recruitment of several of these repair factors into 

nuclear foci is dependent on γ-H2AX as well as members of the PI-3 kinase-like family 

such as ATM and ATR (37). It has been noted in several recent reports that fluorescent 

staining for γ-H2AX serves as a sensitive method of detection for DSBs (34, 37-40). A 

number of other proteins involved in DNA repair and cell cycle control including 

BRCA1, MRE11, Rad50 and Rad51 were subsequently shown to be part of the nuclear 

foci at sites of DSBs and are involved in the various functions of the DNA damage 

response (41-44).   

 Generally regarded as the apical protein in the DNA damage signaling network, 

ATM was first identified as the gene product mutated in the genetic disorder ataxia 

telangiectasia (AT) (45). This is a rare genetic disorder characterized by defective 

response to specific types of DNA damage, hypersensitivity to IR and genomic 

instability. Characteristics of the disease point to a defect in response to agents that cause 

DSBs. It was subsequently shown that cells cultured from AT patients lack the ability to 

repair DSBs (46). Loss of ATM function is responsible for an increase risk of developing 

certain types of cancer (46, 47) Later, another protein was cloned that showed significant 

homology to ATM and was thus termed, ATR (ATM and Rad3 related) (48).  

ATM and ATR are PI3K like proteins that act as serine-threonine kinases early in 

the DNA damage response pathway playing a central role in transmitting signals to 
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downstream proteins via phosphorylation (46, 47, 49-51). They contain similar structure 

and domains as PI3K and have been shown to activate specific checkpoint control 

functions of BRCA1 (22, 52). Evidence suggests that ATM primarily responds to DSBs 

caused by IR, while ATR reacts to UV induced damage as well as several other types of 

lesions or bulky adducts (53). Evidence also exists that point to chromatin alterations as a 

mechanism for activation of ATM which suggests a possible role as a sensor of DNA 

damage (54). While both have been speculated to be damage sensors, they have 

definitively been shown to transduce the damage signal early on in the pathway to 

multiple downstream effector proteins including p53, CHK2, H2AX, NBS1, BRCA1 and 

FANCD2 (47, 51). This represents a major branch point in DNA damaging signaling 

based on the broad number of ATM substrates and the diverse cellular functions that they 

control. The involvement of ATM in activation of transcription has been noted by 

involvement in the activation of p53 and E2F1, both of which control numerous functions 

relating to cell cycle, apoptosis and DNA repair (55-58). Recent work using large scale 

proteomic analysis identified over 900 phosphorylation motifs in 700 proteins that were 

induced in response to IR highlighting the large network of proteins involved in the DNA 

damage response (59).   

The ATM protein contains three distinct domains; FAT, FATC and PI3K. The 

functional singinfcance of the FAT and FATC are not clearly defined while the PI3K 

domain contains the catalytic site for kinase activity. ATM activity in response to IR is 

regulated by auto-phosphorylation on serine 1981 which is located within the FAT 

domain (47). Inactive ATM is present as homodimers in the nucleus that are subsequently 

activated upon IR induced DSBs (56, 57). This auto-phosphorylation mechanism 
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facilitates dimer dissociation and causes a rapid increase in ATM activity that initiates its 

kinase activity for a number of substrates including BRCA1 (54, 60).           

 First identified as an inherited protein that contributes to increased risk of 

developing breast or ovarian cancer (61), BRCA1 has been heavily studied in the last 

decade and much has been determined about its specific functions. Acting as a tumor 

suppressor, BRCA1 is frequently mutated in familial breast and ovarian cancers (62, 63). 

Nearly 10% of women with breast or ovarian cancer and 50% of inherited breast and 

ovarian cancers can be attributed to a mutation in the BRCA1 gene (63, 64). BRCA1 

plays a key role in the radiation induced DNA damage response and is involved in 

multiple cellular processes including cell cycle checkpoint control, chromosome 

remodeling, transcriptional regulation, DNA repair and apoptosis (44, 63-65). Such a 

diverse list of cellular functions relating to DNA damage places BRCA1 as a central 

molecule in the DNA damage signaling network highlights its importance as a tumor 

suppressor (66) (Figure 1). Several studies have noted a modulation of sensitivity to DNA 

damaging agents based on BRCA1 status including IR and cisplatin (67-73). 
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Figure 1. Aspects of the DNA damage response dependent on BRCA1 
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 The structure and molecular interactions of BRCA1 reveal its ability to interact 

with a number of binding partners and control numerous processes. BRCA1 is a 1863 

amino acid protein and the N-terminus contains a RING finger domain, from amino acids 

8-96, often associated with E3 ubiquitin ligase activity which has been shown to occur in 

a BRCA1 dependent manner in conjunction with BARD1 (61, 74, 75). The N-terminal 

domain also contains a site for interaction with E2F1 (76). Adjacent to the RING domain, 

BRCA1 contains two nuclear localization signals between amino acids 200 and 300 

which also contains a binding site for Rb and c-Myc (77, 78). The central portion of the 

protein contains several serine residues that are important in regulation by 

phosphorylation as well as binding sites for Rad51, ATM and CHK2 (22, 79, 80). The 

phosphorylation sites are called the SQ cluster referring to the serine residue that is 

actually phosphorylated followed by a glutamine residue. Early evidence revealed a role 

for ATM and ATR in phosphorylation of distinct sites of BRCA1 after exposure to either 

UV or IR (52). Serine residues 1387 and 1423 of BRCA1 have been shown to be 

phosphorylated by ATM/ATR in response to DNA damage and subsequently control the 

S and G2/M checkpoints (22, 52). Exposure to UV or ionizing radiation leads to 

phosphorylation of Ser-1423 and Ser-1524 (22, 52). In contrast, only UV radiation is able 

to induce phosphorylation of Ser-1457 while IR specifically induces phosphorylation of 

Ser-1387 (52). Studies also revealed that BRCA1, in conjunction with ATM, participated 

in the control of both S and G2 checkpoints in response to IR (81, 82). This study 

highlighted the requirement for phosphorylation of Ser-1423 for control of the G2 

checkpoint (81). Follow up to this study linked S phase checkpoint control to specific 

phosphorylation of Ser-1387 after ionizing radiation (83). This evidence was later 
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developed into a model whereby differential phosphorylation of BRCA1 on either Ser 

1387 or Ser-1423 by ATM and/or ATR played a pivotal role in cell cycle control after 

DNA damage.    

 The C-terminal end contains two BRCT (BRCA1 C-Terminal Domain) domains 

that interact with a number of proteins important for transcription, cell cycle control and 

DNA repair including p53, Rb, RNA Pol II, RNA Helicase A, Rad51 and BRCA2 (84-

90). These interactions were an important clue that provided evidence linking BRCA1 to 

DNA repair. The requirement of the BRCT domains for many of the functions of BRCA1 

became increasingly evident as more was revealed about the proteins that interact in this 

region as well as the revelation that is a phospho-protein binding site highly involved in 

the DNA damage response (91-93). The disruption of these interactions became a highly 

important tool and provided a molecular basis for development of a model system from a 

tumor cell line, designated HCC1937, that was established from a grade III infiltrating 

ductal primary breast tumor from a breast cancer patient with a germ-line BRCA1 

mutation (94). The loss of interaction with proteins in the BRCT domains rendered 

BRCA1 non-functional in these cells adversely affecting the DNA damage response (95). 

Stable expression of wild type BRCA1 in these cells is the mostly widely used model for 

assessment of BRCA1 functions in response to DNA damage (95).            

 Initial evidence indicating hyperphosphorylation and relocation of BRCA1 after 

DNA damage provided the first observational clue for a role for BRCA1 in DNA repair 

(44, 65). BRCA1 is active in the repair of damaged DNA by interaction with proteins in 

the transcription-coupled nucleotide excision repair (TC-NER), NHEJ and HR pathways 

(96-99). The precise role that BRCA1 plays in DNA repair remains unknown, but it has 
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been shown to interact specifically with repair proteins Rad50, Rad51, H2AX and 

BRCA2 (79, 89, 100). Not only have these repair proteins been shown to interact, but 

they also colocalize to discrete nuclear foci after treatment with DNA damaging agents 

(37, 44). One study highlighted a super complex of proteins assembled in response to 

DNA damage termed the BRCA1-associated genome surveillance complex (BASC) 

which included MSH2, MSH6, MLH1, ATM, BLM, and the RAD50-MRE11-NBS1 

protein complex (101). 

 A transcriptional role for BRCA1 creates another scenario by which BRCA1 

plays a central role in the DNA damage response. The first evidence of the transcriptional 

activity of BRCA1 came from the observation that the C-terminal region of BRCA1 

fused to a GAL4 binding domain activated transcription of several GAL4 dependent 

promoters and mutations in this region of BRCA1 abrogated this transcription (102, 103). 

This evidence was followed up by studies that showed that BRCA1 forms a complex with 

RNA polymerase II thus affecting transcription (90, 104). Even more evidence for the 

role of BRCA1 in transcription came from a report that showed the ability of BRCA1 to 

interact with p53 and stimulate transcription from the p21 promoter (86). Evidence also 

exists for an interaction with c-Myc oncogene with is a transactivator for the transcription 

of several genes (78).  

  CHK2 is a checkpoint control protein that is another known substrate of ATM 

and operates in response to DNA damage by regulating both the G1 and G2 checkpoints 

by activation of proteins such as p53, E2F1, CDC25A and BRCA1 (105-109). Induction 

of DNA damage leads to activation of ATM by IR as well as  subsequent 

phosphorylation of CHK2 on Threonine 68 (110). Regulation of the G2/M checkpoint 
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requires functional CHK2 as evidenced by defects in checkpoint regulation observed in 

CHK2 -/- embryonic stem cells (106). CHK2 is able to phosphorylate BRCA1 on serine 

988 and is also shown to interact with BRCA1 at discrete nuclear foci after IR exposure 

(107). These data indicate a signaling network that begins with initial activation of ATM 

followed by CHK2 and BRCA1 activation resulting in control of the G2/M checkpoint in 

response to DNA damage.   

 CHK2 has also been shown in conjunction with ATM/ATR to control the G1 

checkpoint by control of p53 and E2F1. Studies have suggested a role for CHK2 

dependent phosphorylation of p53 at Ser-20, a site critical for stabilization of p53 activity 

leading to activation of the G1 checkpoint (111-115). Phosphorylation of E2F1 by CHK2 

at Ser-364 has been shown in response to DNA damage leading to stabilization and 

transcriptional activation of the protein (109). This is in agreement with data that shows 

that E2F1 deficient thymocytes are resistant to etoposide induced apoptosis (55). 

 Three distinct domains make up the CHK2 protein, an SQ cluster domain, 

forkhead associated domain and a kinase domain (116). The SQ cluster domain contains 

a number of residues that are possible phosphorylation targets for ATM (117). Inactive 

CHK2 exists as a monomer before activation by DNA damage when it undergoes 

dimerization with another molecule of CHK2 (118-120). Dimerization is then followed 

by a number of intermolecular phosphorylation events in the auto-inhibitory portion of 

the molecule leading to activation (121-123). The signal is then relayed to the 

downstream cell division cycle dual specificity phosphatase family, which includes 

Cdc25A and Cdc25C. The Cdc25 family directly promotes cell cycle progression by 
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activation of the cyclin dependent kinases, the functional control molecules of the cell 

cycle (10, 105, 108, 124, 125).  

Apoptosis 

 

 One characteristic in the development of cancer is the loss of regulation of cell 

death (126). A balance exists where the rate of cell division and rate of cell death via 

apoptosis is able to regulate homeostasis within a tissue. Disruption of apoptosis alters 

the rate of cell death leading to the ability to increase cell numbers with little or no 

control (126). This is a contributing factor in tumor development (127). A common 

strategy to combat tumor growth is to circumvent the loss of apoptosis by stimulating the 

pathway via an alternate mechanism (128). The reality is that while this approach may 

work in some cases, tumors often may not respond to such treatments or may easily 

become resistant. For this reason, it is important to understand what signals these agents 

use to activate apoptosis in order to determine types of tumors that may respond more 

robustly to specific chemotherapeutics.  

 Caspase dependent apoptosis is a form of programmed cell death controlled by a 

pathway of cysteine proteases known as caspases. It is characterized by shrinkage in 

overall cellular size, condensation of chromatin and DNA fragmentation (129). The 

structure of caspase family members is similar in that most contain pro-domains as well 

as a small and large subunit to make the full length single chain protein (130). They are 

synthesized as inactive zymogens and enzymatic activation is achieved through cleavage 

at specific sites in the N-terminal, after an aspartic acid residue (130, 131). Active 

caspases are able to cleave numerous target proteins involved in cytoskeletal and nuclear 

 15 
 

 



structure effectively controlling the execution stage characterized by dismantling of the 

cell (132-135). Cleavage is often carried out by an upstream protease with or without 

dependence on co-factors and can also occur autocatalytically (129). This mechanism of 

action can serve as a feedback loop to quickly and exponentially increase the amount of 

active enzyme in a cell.  
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Figure 2. Simplified overview of caspase involvement in control of 

apoptosis in response to DNA damage. 
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 Both an intrinsic and extrinsic pathway of activation exists, merging with the 

activation of the effector caspases 3, 6 and 7. Initiator caspases 2, 8 and 9 respond to 

different stimuli and regulate the activity of downstream effectors. Caspase 2 responds 

predominantly to genotoxic stress via an unknown mechanism. Caspase 8 is mostly 

activated by extracellular death receptors, while caspase 9 responds to intracellular stress 

signaled through the mitochondria.  

 Caspase 2 is one of the earliest identified caspases in mammals and appears to be 

required for induction of apoptosis triggered by DNA damage (136). Recent evidence has 

linked PIDD (p53-induced protein with a death domain) in the formation of large 

multimeric protein complexes with caspase 2 called a PIDDosome that can lead to 

activation of caspase 2 and sensitize cells to genotoxic stress (137). Caspase 2 is unique 

in that the structure and sequence homology are closely related to that of the other 

initiator caspases while the cleavage specificity is more closely related to executioner 

caspases 3 and 7 (138). Several reports have shown caspase 2 to be activated upstream of 

caspase 9 and cytochrome c release (139-141), including a study revealing that caspase 2 

is able to cause mitochondrial dysfunction while still in the nucleus, resulting in 

cytochrome c release, possibly though the truncation of Bid (139). This data supports a 

role for caspase 2 upstream of the mitochondria and a requirement for caspase 9 (141), 

while other evidence implicates a role for caspase 2 unrelated to mitochondrial activity.  

One study reported the recruitment of procaspase 2 into a multimeric complex which is 

sufficient to activate it in a manner independent of mitochondrial activity or cofactors 

such as cytochrome c and Apaf-1 (142). This line of evidence supports a mechanism in 

which caspase 2 alone is able to induce apoptosis whereas subsequent downstream 
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cytochrome c release and caspase 9 activation may act as an independent amplification 

loop (142). Evidence also exists demonstrating the ability of caspase 8 to be activated 

downstream of caspase 2 during ceramide or etoposide induced apoptosis (143). While 

no definitive answer currently exists, it is clear that caspase 2 is important for signaling of 

apoptosis induced by DNA damage.  

 The death receptor mediated pathway responds to extracellular signals which are 

able to activate apoptosis. Tumor necrosis factor receptor (TNFR) and Fas are two 

examples of death receptors that are well characterized and have a distinct cytoplasmic 

domain known as the death domain (144). After receptor engagement, the cytoplasmic 

domain of the receptor is able to bind a number of FADD (Fas-associated death domain) 

adaptor molecules through homotypic interaction between the death domain (DD) of both 

Fas and FADD (145, 146). The N-terminal portion of FADD contains a death effector 

domain (DED) that acts to recruit caspase 8 to the complex and forms an interaction with 

the DED of procaspase 8 (145, 147). This interaction between Fas, FADD and procaspase 

8 results in formation of a large complex known as the death-inducing signaling complex 

(DISC) (148). Oligomerization of procaspase 8 with adaptor molecules at receptor sites 

leads to autoproteolytic cleavage of caspase 8 and subsequent activation of effector 

caspases (149, 150). A recent report has suggested the ability of caspase 2 to act as a 

priming mechanism for receptor induced apoptosis. In this model, caspase 2 is able to 

cleave procaspase 8 leaving it primed for recruitment to the DISC after receptor 

engagement where oligomerization can lead to full activation (151). Evidence also exists 

demonstrating the ability of caspase 8 to cleave Bid resulting in release of cytochrome c 

and activation of the mitochondrial mediated pathway (152). 
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 The mitochondrial mediated pathway activates apoptosis in response to cellular 

stress regulated by a number of pro and anti-apoptotic proteins. This extensive array of 

proteins modulates the membrane potential of the mitochondria, controlling release of 

cytochrome c into the cytoplasm which leads to the formation of the activated 

apoptosome complex of caspase 9 and Apaf-1 (153). Apaf-1 acts likes a scaffolding 

molecule and forms a complex with caspase 9 at a 1:1 ratio followed by oligomerization 

in a larger mutlimeric complex called the apoptosome which leads to autoproteolytic 

cleavage (154). Active caspase 9 is then able to cleave and activate the effector caspase 3 

(155). 

 Effector caspases activate a number of proteins involved in disassembly of the 

cell such as lamins, gelsolin, focal adhesion kinase (FAK) and PARP (132-135). Many 

are cytoskeletal proteins that are disrupted allowing for cellular disassembly. Nuclear 

lamina forms polymers that provide structure for chromatin. When lamins are cleaved 

during apoptosis, this structure is lost causing condensation of chromatin (132). 

Cytoskeletal rearrangement is also very pronounced in apoptosis, regulated by cleavage 

of cytoskeletal proteins such as gelsolin and FAK (133, 134). PARP is a very important 

substrate for the caspase cascade that is involved in DNA repair and contributes to 

genomic stability (156). Cleavage of PARP disrupts genomic stability leading to DNA 

fragmentation that is a hallmark of apoptosis.  

   

Nonapoptotic role of caspases 
 
 

Recent mounting evidence has linked several members of the caspase family to 

nonapoptotic cellular roles including embryonic development, macrophage 
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differentiation, T cell proliferation and cell motility (157-164). Several of these examples 

include diverse cellular functions and signals. The differentiation of monocytes into 

mature macrophages during the process of infection occurs in the presence of several 

active caspases while not exhibiting the morphological characteristics that are a hallmark 

of apoptosis (161). In this study, caspase activity seemed to drive differentiation while z-

VAD, a chemical inhibitor of apoptosis, was able to block this maturation process and re-

sensitize the cells to apoptosis (161). Other evidence also revealed a mechanism by which 

caspase 3 was able to drive platelet formation in the absence of detectable DNA 

fragmentation (165). Interestingly, caspase 3 showed a punctuate cytoplasmic staining 

during this process as opposed to the diffuse staining seen during the induction of 

apoptosis by staurosporine (165). The pan-caspase inhibitor z-VAD was able to block 

platelet formation as was more specific inhibitors for caspases 3 and 9 (165).       

Another interesting example of a nonapoptotic role for caspases is in cell motility 

in caspase 8 null mouse embryo fibroblasts. This set of experiments outlined a role for 

caspase 8 in increased cell motility under nonapoptotic conditions (158). This 

phenomenon was linked to caspase 8 dependent calpain activity and was corroborated by 

evidence using the viral crmA inhibitor of caspase 8 (158). There is no doubt that 

alternate roles for caspases are emerging in this rapidly expanding field.   

 

Irofulven     

 Irofulven (6-hydroxymethylacylfulvene, MGI 114, NSC#: 683863) is one of a 

new class of anticancer agents that are analogs of the mushroom derived illudin S toxins. 

Preclinical and clinical trials have shown that irofulven is effective against several solid 
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tumor types (166-172). The exact mechanism of action of irofulven remains mostly 

unknown. While previous studies have suggested that damage induced by irofulven is 

repaired exclusively via the transcription coupled nucleotide excision repair (TC-NER) 

pathway, these studies have ignored the NHEJ and HR pathways (173). Recent work in 

our lab has shown that irofulven activates ATM and its downstream targets: NBS1, 

FANCD2, SMC1, CHK2 and p53 (174-176).  

 Studies on the activation of apoptotic pathway by DNA damaging agents makes 

the case that these agents provide a strong mechanism for the induction of apoptosis 

(136). Although most data shows that irofulven is able to cause DNA damage, the precise 

mechanism of killing remains largely unknown. Previous studies have shown induction 

of apoptosis mediated by ERK and JNK kinases (177). It has also been shown that 

irofulven treatment induces the cleavage of caspases 8 and 9 (178). This data has been 

corroborated by other evidence that caspase induced apoptosis plays a role in cell death 

after irofulven treatment (179). 

 

Summary and Significance 

 

 There are several first line cancer therapeutics, as well as ionizing radiation, that 

rely on the ability to damage DNA to kill cells. Some of these DNA damaging agents 

have been shown to cause inter-strand cross links or double strand breaks while others 

cause stalled replication that results in cell death. Although the nature of the damage 

induced may be different, DNA damaging agents remain some of the most effective 

therapeutics available. Based on the damage inflicted, each agent activates a unique 
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response. The ability of cancers to evade these commonly used drugs makes it necessary 

to explore new therapies that target the cancer cells using different mechanisms as well as 

to treat tumors that develop resistance. Irofulven represents a novel DNA damaging agent 

that provides useful insight into the DNA damage response pathway. A unique pathway, 

activated by a novel damaging agent proves useful in elucidating more about how tumor 

cells respond and the proteins involved. 
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ABSTRACT 
 

Tumor suppressor gene BRCA1 is frequently mutated in familial breast and 

ovarian cancer. BRCA1 plays pivotal roles in maintaining genomic stability by 

interacting with numerous proteins in cell cycle control and DNA repair. Irofulven (6-

hydroxymethylacylfulvene, HMAF, MGI 114, NSC#: 683863) is one of a new class of 

anticancer agents that are analogs of mushroom-derived illudin toxins. Preclinical studies 

and clinical trials have demonstrated that irofulven is effective against several tumor cell 

types. The exact nature of irofulven-induced DNA damage is not completely understood. 

Previously, we have demonstrated that irofulven activates ATM and its targets, NBS1, 

SMC1, CHK2 and p53. In this study, we hypothesize that irofulven induces DNA double-

strand breaks and that BRCA1 may affect chemosensitivity by controlling cell cycle 

checkpoints, DNA repair and genomic stability in response to irofulven treatment. We 

observed that irofulven induces the formation of chromosome breaks and radials as well 

as the activation and foci formation of γ-H2AX, BRCA1 and RAD51. We also provided 

evidence that irofulven induces the generation of DNA double-strand breaks. By using 

BRCA1-deficient or proficient cells, we demonstrated that in response to irofulven, 

BRCA1 contributes to the control of S and G2/M cell cycle arrest, is critical for repairing 

DNA double-strand breaks and for RAD51-dependent homologous recombination. 

Furthermore, we found that BRCA1 deficiency results in increased chromosome damage 

and chemosensitivity after irofulven treatment. 
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INTRODUCTION 

  

Tumor suppressor BRCA1 is frequently mutated in familial breast and ovarian 

cancer (1, 2). More than ten percent of women with breast or ovarian cancer carry 

BRCA1 mutations (2, 3). BRCA1 is involved in multiple cellular processes including cell 

cycle checkpoint control, chromosome remodeling, transcriptional regulation, DNA 

repair and apoptosis (1, 2, 4). It is required for both S and G2/M checkpoints in response 

to ionizing radiation (IR). Moreover, it plays important roles in multiple DNA repair 

pathways including homologous recombination (HR) and transcription-coupled 

nucleotide excision repair (TC-NER) (1, 2, 5). In response to DNA double-strand breaks 

(DSBs), proteins such as H2AX, RAD51, MRE11, RAD50, NBS1 and BRCA1 are 

rapidly phosphorylated by ATM and/or ATR kinases and form foci at the damaged sites. 

BRCA1 interacts with many of these DNA damage signaling and DNA repair proteins 

including γ-H2AX and RAD51 (1, 2, 4, 6). The γ-H2AX foci formation functions to 

recruit DNA repair factors to the damaged sites, enforcing HR repair of DNA DSBs and 

linking chromatin remodeling to DNA repair (7-10). RAD51 is a DNA recombinase and 

an essential protein in initiating the HR process by mediating DNA strand exchange 

during recombination. BRCA1 is required for RAD51 foci assembly in response to IR-

induced DNA DSBs (1, 2, 6).  

Irofulven (6-hydroxymethylacylfulvene, HMAF, MGI 114, NSC#: 683863) is one 

of a new class of anticancer agents that are analogs of mushroom-derived illudin toxins. 

Preclinical studies and clinical trials have demonstrated that irofulven is effective against 

several tumor cell types (11-19). Earlier studies have suggested that the DNA damage 
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caused by the illudin family of compounds might be repaired by the nucleotide excision 

repair (NER) pathway (20, 21). Recent studies suggested that TC-NER was the exclusive 

repair pathway in repairing illudin S and irofulven-elicited DNA lesions and that 

irofulven cytotoxicity was influenced by the expression of excision endonuclease XPG 

(22, 23). However, the HR pathway for DSB repair was not evaluated in these studies 

(20-23), even though it was suggested as a potential mechanism likely affecting 

sensitivity to irofulven (22). Nonetheless, the structure and nature of DNA damage 

caused by irofulven have not been characterized. Recent reports indicated that ATM and 

CHK2 were specifically activated by IR or drug (calicheamicin)-induced DSBs (24-28). 

Previously, we have demonstrated that irofulven activates ATM and its targets, NBS1, 

SMC1, CHK2 and p53 (29). Based on these findings, we hypothesize that irofulven 

induces DNA DSBs and, as a result, BRCA1 may confer chemoresistance to irofulven by 

controlling cell cycle checkpoints, DNA repair and genomic stability. Therefore, BRCA1 

deficiency might be a useful target and predictive marker for chemotherapy by irofulven. 

To further understand the mechanisms of action involved with irofulven, we 

investigated the role that BRCA1 might play in irofulven-induced DNA damage 

response. We have observed that irofulven induces the formation of chromosomal breaks 

and radials as well as the activation and foci formation of γ-H2AX, BRCA1 and RAD51. 

We have provided evidence that irofulven induces the generation of DSBs.  Furthermore, 

we have demonstrated that in response to irofulven, BRCA1 controls S and G2/M 

checkpoints and is critical for repairing DNA double-strand breaks through RAD51-

dependent homologous recombination, and BRCA1 deficiency results in increased 

chromosome damage and chemosensitivity.  
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MATERIALS AND METHODS  

 

Cell culture.  All cell lines were maintained in various media supplemented with 10% 

fetal bovine serum in a 37oC incubator with 5% CO2 atmosphere. Ovarian cancer cell 

lines A2780, CAOV3 and OVCAR3 were cultured in RPMI 1640; SKOV3 was cultured 

in McCoy’s 5A medium. The vector and BRCA1-transfected breast cancer cell line 

HCC1937 cells (generously provided by Professor Ralph Scully of Dana-Farber Cancer 

Institute, Harvard Medical School, Boston, MA) were cultured in ACL4 medium as 

described (30). The vector and short-hairpin BRCA1 (sh-BRCA1) stably transfected 

SKOV3 cells were cultured in McCoy’s 5A medium containing 200 μg/ml of G418 

(Invitrogen, Carlsbad, CA).   

 

Clonogenic survival assay. To determine chemosensitivity and 1xIC50 concentration, 

clonogenic survival assay was performed as described previously (29) on 60-mm cell 

culture dishes. Cells were treated with different concentrations of irofulven for one hour 

followed by drug-free incubations for about 10 days. Colonies were stained with crystal 

violet and colonies with 50 or more cells were counted. 

 

Metaphase spread. Cells were treated with irofulven. Colcemid (400 ng/ml) 

(Calbiochem, La Jolla, CA) was added to medium four hours before harvesting. After 

trypsinization, cells were washed once with PBS. Cell pellets were re-suspended in 75 

mM KCl and placed in a 37oC incubator for eight minutes. After centrifugation, cells 

were fixed for two hours at 4oC using 3:1 absolute methanol to glacial acetic acid and 
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then washed twice with fixative. Cells were re-suspended in fixative and dropped onto 

slides. Slides were air-dried at room temperature and stained with 5% Gurr's Giemsa 

stain (Biomedical Specialties, Santa Monica, CA) for seven minutes. Slides were rinsed 

twice with distilled water and air-dried. The images were recorded by an Olympus Provis 

AX70 light/fluorescence microscope (Olympus, Melville, NY) and Spot digital camera 

and software (Diagnostic Instruments, Sterling Height, MI). 

 

Western blotting.  Western blot was performed as described previously (29). Antibodies 

used were: monoclonal anti-actin (Sigma, St Louis, MO) and monoclonal anti-BRCA1 

(Calbiochem, La Jolla, CA).  

 

Immunofluorescent staining and confocal microscopy. Cells were plated on cover-

slips and treated with 1xIC50 concentration of irofulven for one hour followed by 12 

hours of drug-free incubation. Cells were then fixed and stained with polyclonal antibody 

against BRCA1 or RAD51 (Santa Cruz Biotechnology, Santa Cruz, CA) and monoclonal 

antibody against γ-H2AX (Upstate, Charlottesville, VA). After staining with Alexafluor 

488-conjugated goat anti-mouse or goat anti-rabbit; or Alexafluor 546-conjugated goat 

anti-rabbit secondary antibodies (Invitrogen, Carlsbad, CA), slides were mounted with 

Vectashield mounting medium (Vector Laboratories, Burlingame, CA) containing 5 

ng/ml of DAPI. Single color staining images were captured by an Olympus Provis AX70 

fluorescence microscope (Olympus, Melville, NY) and Spot digital camera and software 

(Diagnostic Instruments, Sterling Height, MI). Confocal staining images were captured 

by a Zeiss LSM510 confocal microscope (Zeiss, Thornwood, NY). 
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Radioresistant DNA synthesis (RDS) assay. The RDS assay was performed as 

described  (31). Briefly, cells in the logarithmic phase of growth were pre-labeled by 

culturing in medium containing 10 nCi of [14C]-thymidine (PerkinElmer, Boston, MA) 

for 24 hours. The medium was then replaced with normal medium, and cells were 

incubated for another 24 hours. Cells were treated with irofulven for one hour and 

incubated in drug-free medium for 12 hours. Cells were then pulse-labeled with 2.5 µCi 

of [3H]-thymidine (PerkinElmer, Boston, MA) for 15 minutes. Cells were harvested, 

washed twice with PBS, and fixed in 70% methanol for at least 30 minutes. Cells were 

then transferred to Whatman filters (Whatman, Clifton, NJ) and washed sequentially with 

70% and then 95% methanol. The filters were air-dried and the amount of radioactivity 

was quantified in Wallac 1410 liquid scintillation counter (PerkinElmer, Downers Grove, 

IL). The resulting ratio of 3H counts per minute to 14C counts per minute, corrected for 

those counts per minute that were the results of channel crossover, was a measure of 

DNA synthesis. 

 

Phosphorylated histone H3 staining and flow cytometry. The phospho-histone H3 

staining was performed as described (31). Briefly, the vector and BRCA1-transfected 

HCC1937 cells were treated with 1 μM of irofulven for one hour followed by one hour of 

drug-free incubation. Cells were harvested and fixed in 70% ethanol. The fixed cells were 

washed twice with PBS and made permeable with 0.25% Triton X-100 in PBS on ice for 

10 minutes. Cells were rinsed in 1% BSA/PBS and then stained with rabbit anti-phospho-

S10 histone H3 antibody (Upstate, Charlottesville, VA) for two hours at room 

 57 
 

 



temperature. Cells were rinsed in 1% BSA/PBS and stained with Alexafluor 488-

conjugated anti-rabbit secondary antibody for 30 minutes at room temperature. Cells 

were washed twice with PBS and suspended in PBS containing propidium iodide (0.25 

μg/ml) and RNase A (20 μg/ml). Flow cytometry was performed on FACSCalibur with 

CellquestPro software (Becton Dickinson, San Jose, CA). Thirty thousands events were 

recorded for each sample. The percentage of mitotic cells was determined as those cells 

that were Alexafluor-positive and contained 4N DNA content. 

 

Mitotic index. Cells were plated on cover-slips and treated with 1xIC50 concentration of 

irofulven for one hour followed by 24 hours of drug-free incubation. Cells were then 

fixed and stained with DAPI (5 ng/ml). Staining images were captured by an Olympus 

Provis AX70 fluorescence microscope (Olympus, Melville, NY) and Spot digital camera 

and software (Diagnostic Instruments, Sterling Height, MI). In each group, about 4,000 

cells were counted. Mitotic index was calculated as the percentage of cells in mitosis. 

 

Pulse-field gel electrophoresis (PFGE). The PFGE was conducted as follows. Cells 

were scraped from the dish and washed with ice-cold embedding buffer (15 mM Tris-

HCl, pH 7.4, 1mM EGTA, 2mM EDTA, 60mM KCl, 15mM NaCl, 0.5mM spermidine 

and 0.15 mM spermine). Cells were then re-suspended in embedding buffer, mixed well, 

and incubated for 30 seconds in a 30°C water bath before adding 1.6% low melting point 

agarose pre-warmed to 55°C. After thorough mixing, the cell suspension was aspirated 

into 2.3 mm inner diameter tubing using a syringe. The tube was immediately placed in 

ice-cold water for 5 minutes to allow the agarose to harden. The agarose core was 
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incubated in extraction buffer (10mM Tris-HCl, pH 9.5, 10mM NaCl, 25 mM EDTA, 

1.5% SDS and 0.1% mercaptoethanol) overnight at room temperature with gentle 

agitation. Extraction was performed three more times for two hours each followed by 

three washes of two hours in TE buffer. The agarose core was then cut into 6 mm-long 

plugs. A 1% agarose gel (PFGE-certified, Bio-Rad, Hercules, CA) in 0.5X TBE 

(Cambrex, Rockland, ME) was cast and plugs were inserted into gel wells. The 

concatenated chromosomes of lambda phage (48.5 kb) (Bio-Rad, Hercules, CA) were 

used as the standard for DNA size. The DNA was resolved by direct current of 100 V for 

20 minutes followed by 17 hours of pulse current using a programmable power inverter 

PPI-200 (MJ Research, Watertown, MA) and program number 6. DNA was visualized by 

staining with 0.5 μg/ml of ethidium bromide (Invitrogen, Carlsbad, CA) and pictures 

were captured using Eagle Eye II system and software (Stratagene, La Jolla, CA). 

 

Comet Assay. The comet assay (Trevigen Inc., Gaithersburg, MD) was performed 

according to manufacturer’s protocol by using neutral conditions to mainly detect double-

strand breaks. Briefly, cells were harvested, washed with ice cold PBS, and combined 

with molten LMAgarose, and 75 μl (500-1000 cells) was immediately added to Comet 

Slide. After hardening, slides were incubated for 30 minutes in lysis solution at 4°C, then 

rinsed with 1X TBE before electrophoresis for 60 minutes at 30V. Slides were rinsed 

with dH2O and placed in 70% ethanol for 10 minutes, then air-dried. To visualize DNA, 

50 μl of a 1:1000 dilution of SYBR Green (Invitrogen, Carlsbad, CA) in PBS was added 

to each slide. Slides were visually scored using Olympus Provis AX70 microscope 

(Olympus, Melville, NY) from 0-4 based on tail length and intensity, and a total score of 
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75 cells was used to determine relative amount of double-strand breaks for each time 

point. Images were captured using Spot digital camera and software (Diagnostic 

Instruments, Sterling Height, MI).  

 

Fluorescent in situ hybridization (FISH). Slides were rinsed at room temperature in 

2xSSC solution (0.3 M sodium chloride and 0.03 M sodium citrate, pH 7) for 30 minutes 

and then rinsed in PBS for 15 minutes. Slides were then fixed in 3.7% formaldehyde/PBS 

solution for 15 minutes, followed by a 5% pepsin/0.01 M HCl solution at 37oC for 15 

minutes. Slides were washed in PBS for 5 minutes at room temperature. Slides were put 

into 95% ethanol for 5 minutes and then air-dried. For FISH hybridization, the Whole 

Chromosome 1 Probe (Oncor, Gaithersburg, Maryland) was pre-warmed to 37oC for 5 

minutes. Aliquots of 3 μl of probe were applied to the slides, covered with 12 mm 

diameter round cover-slips and sealed. The slides were then co-denatured at 74oC for 6 

minutes and placed in a 37oC water bath overnight. Slides were washed according to 

manufacturer’s protocol and detected using the Rhodamine-labeled anti-Digoxigenin 

detection reagent (Insitus, Albuquerque, New Mexico). Slides were then counterstained 

with DAPI and evaluated using an AxioPlan II epi-fluorescence microscope (Zeiss, 

Thornwood, NY) and CytoVision software (Applied Imaging, San Jose, California). 

 

RNA interference. Three pairs of 65-nt short-hairpin BRCA1 (sh-BRCA1) oligos 

containing target sequences of AACCTGTCTCCACAAAGTGTG, 

AAAGTACGAGATTTAGTCAAC and AAGCAGCGGATACAACCTCAA were 

designed and synthesized. After annealing, these three 65-bp double-strand sh-BRCA1 
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fragments were inserted into pSilencer 2.1-U6-neo vector (Ambion, Austin, TX) and 

transfected into SKOV3 cells. The pSilencer 2.1-U6-neo vector containing the scrambled 

sequence was transfected as the non-specific control. Stable cell lines were established by 

selecting in medium containing G418. 
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RESULTS 

 

Irofulven induces chromosome aberrations and activates BRCA1. 

To characterize the DNA damage caused by irofulven and to examine whether 

DNA DSBs were generated after treatment, mitotic spread experiments were performed 

in breast cancer cell line HCC1937 and ovarian cancer cell line SKOV3. HCC1937 cell 

line is known to express a truncated BRCA1 protein (30, 32).  SKOV3 cell line is known 

to harbor a functional BRCA1 (33). Cell lines were treated with irofulven for one hour 

followed by 24 hours of drug-free incubation. The mitotic spread results clearly 

demonstrated the induction of chromosome breaks and radials in these cells (Fig. 1A). 

Similar chromosome breaks and radials were also observed in ovarian cancer cell lines 

A2780, CAOV3 and OVCAR3 after treatment (data not shown). These results 

demonstrate that irofulven indeed induces the generation of DNA DSBs. 

Upon the induction of DSBs, histone variant H2AX is rapidly phosphorylated (γ-

H2AX) and forms discrete nuclear foci co-localizing with many other DNA repair 

proteins such as RAD50, RAD51 and BRCA1 (34, 35). The γ-H2AX foci formation also 

allows a sensitive detection of DSBs (34-40). To further confirm that irofulven induces 

the generation of DSBs, SKOV3 cells were treated with irofulven and 

immunofluorescently stained utilizing antibodies that recognize γ-H2AX and BRCA1. 

Confocal microscopic images indicated that γ-H2AX and BRCA1 form co-localizing foci 

after treatment (Fig. 1B). Taken together, these findings demonstrate that irofulven 

induces the generation of DNA DSBs, which results in the activation and foci formation 

of γ-H2AX and BRCA1.  
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BRCA1 contributes to the control of S and G2/M checkpoints in response to 

irofulven-induced DNA damage. 

To explore the possible role that BRCA1 activation might play in regulating cell 

cycle progression after irofulven treatment, we first characterized the cell cycle arrest at S 

phase by the radioresistant DNA synthesis (RDS) assay. The vector and BRCA1-

transfected HCC1937 cells were treated with increasing concentrations of irofulven for 

one hour followed by 12 hours of drug-free incubation. The results of the RDS assay 

demonstrated that DNA synthesis was significantly inhibited in the BRCA1-transfected 

HCC1937 cells compared with the vector-transfected cells (Fig. 2A). This indicates that 

BRCA1 does contribute to the control of S phase cell cycle arrest in response to 

irofulven.  

It has been reported that there are two distinct G2/M checkpoints in response to 

IR-induced DSBs, which control the transient G2/M transition and prolonged G2/M 

accumulation, respectively. BRCA1 is involved in controlling both G2/M checkpoints 

(31). To study the role that BRCA1 plays in modulating the G2/M checkpoints, 

immunofluorescent staining for phospho-histone H3, a marker for mitosis, and FACS 

analysis were performed to assess the transient G2/M checkpoint. The vector and 

BRCA1-transfected HCC1937 cells were treated with irofulven for one hour followed by 

one hour of drug-free incubation. The FACS analysis results indicated that the phospho-

histone H3-positive population was increased from 1.14% to 1.63% in vector-transfected 

cells; while in BRCA1-transfected cells it was dramatically decreased from 1.25% to 
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0.55% (Fig. 2B). These results indicate that BRCA1 controls the G2/M checkpoint in 

response to irofulven treatment.  

The cumulative effect of BRCA1 on S and G2/M checkpoints was also reflected 

by assessing the mitotic index.  The vector and BRCA1-transfected HCC1937 cells were 

treated with irofulven for one hour followed by 24 hours of drug-free incubation. The 

mitotic index decreased only 19% (from 2.7% to 2.18%) in vector-transfected HCC1937 

cells; while it dropped 90% (from 1.56% to 0.15%) in BRCA1-transfected HCC1937 

cells after treatment (Fig. 2C). Taken together, these results demonstrate that BRCA1 

contributes to both S and G2/M checkpoints in response to irofulven-induced DNA 

damage. 

 

BRCA1 is critical for repairing irofulven-induced DSBs and for RAD51-mediated 

homologous recombination. 

 From the data described above, it was demonstrated that irofulven induces 

chromosome aberrations (breaks and radials) and the foci formation of γ-H2AX and 

BRCA1. These findings indicate that irofulven induces the generation of DSBs and 

activation of BRCA1. Therefore, we hypothesize that BRCA1 might play a critical role in 

regulating the repair of irofulven-induced DSBs. To examine this hypothesis, the 

BRCA1-proficient and deficient HCC1937 cell lines were again used to compare the 

DNA repair dynamics and to assess the foci formation of DNA repair factors. 

 We first compare the differences in the occurrence and repair of irofulven-

induced DSBs by pulse-field gel electrophoresis (PFGE). As shown in Fig. 3A, after one-

hour of treatment, the large genomic DNA fragments from 50 to >400 kb gradually 
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increased in vector-transfected HCC1937 cells over the period of 6-48 hours. In BRCA1-

transfected HCC1937 cells, these DSBs were significantly repaired under the same 

treatment conditions (Fig. 3A). 

To confirm these results, we performed the Comet assay under neutral 

electrophoresis conditions that will predominantly detect DSBs. The results again 

indicated that irofulven-induced DSBs were significantly repaired in BRCA1-transfected 

HCC1937 cells 48 or 72 hours after treatment (p<0.05) or p<0.01, respectively) (Fig. 3, B 

and C). 

To further examine the differences in repair dynamics of irofulven-induced DSBs, 

we stained cells for γ-H2AX foci formation over the time period of 72 hours after 

treatment. The immunofluorescent staining results indicated that the percentage of cells 

containing γ-H2AX foci started decreasing dramatically in BRCA1-transfected HCC1937 

cells 24 hours after treatment (Fig. 3D). Taken together, these results demonstrate that 

BRCA1 plays an important role in repairing irofulven-induced DSBs.  

RAD51 is a DNA recombinase and an essential protein for initiating the strand 

invasion process in the HR repair of DNA DSBs (1, 2). RAD51 forms foci in response to 

IR-induced DNA DSBs and BRCA1 is required for RAD51 foci formation (6, 41). We 

therefore examined the RAD51 foci formation in the vector and BRCA1-transfected 

HCC1937 cells. Immunofluorescent staining results demonstrated that, upon irofulven 

treatment, more RAD51 foci were assembled in BRCA1-transfected HCC1937 cells 

(from 4.7% to 40.3%) than in vector-transfected HCC1937 cells (from 2.8% to 13.2%) 

(Fig. 3, E and F).  When the γ-H2AX foci formation was evaluated under the same 

conditions, it was observed that γ-H2AX assembled foci to the similar extent in both cells 
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(Fig. 3, E and F).  These results demonstrate that a similar amount of DSBs were induced 

by irofulven and RAD51 foci formation is dependent on BRCA1. Taken together, these 

results demonstrate that BRCA1 plays an important role in repairing irofulven-induced 

DSBs, RAD51-dependent HR repair is involved and BRCA1 is critical for this process. 

 

BRCA1 contributes to maintaining chromosome integrity upon exposure to 

irofulven. 

Since BRCA1 controls S and G2/M cell cycle arrest and is important in repairing 

irofulven-induced DSBs, we hypothesize that BRCA1 contributes to maintaining 

chromosome integrity upon exposure to irofulven.  Mitotic spread experiments were 

again performed in the vector and BRCA1-transfected HCC1937 cells. A dramatic 

increase in chromosome breaks and radials were observed in vector-transfected cells 

compared with BRCA1-transfected cells (Fig. 4A).   

To further illustrate the chromosome aberrations induced by irofulven, FISH 

analysis was carried out in vector-transfected HCC1937 metaphase cells with the whole 

chromosome 1 FISH paint probe. Images again revealed that irofulven induces a 

significant amount of chromatid/chromosome breaks and radials involving chromosome 

1 (Fig. 4B). These results suggest that the repair of irofulven-induced DSBs is largely 

impaired in BRCA1-deficient cells, and BRCA1 plays a pivotal role in maintaining 

chromosome integrity in response to irofulven-induced DNA damage. 

To verify the role that BRCA1 plays in maintaining chromosome integrity, and 

especially in chemosensitivity in response to irofulven-elicited DNA damage, we 

employed the RNA interference approach to stably knock-down BRCA1 in SKOV3 cells. 
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The effectiveness of three sh-BRCA1 (short-hairpin BRCA1) constructs (sh-B1, sh-B2 

and sh-B3) in knocking-down the endogenous BRCA1 levels was determined by Western 

blot. As shown in Fig. 5A, the sh-B2 most effectively reduced BRCA1 protein level, 

therefore, was chosen for subsequent studies. 

  Chromosome aberrations were again evaluated in BRCA1-depleted mitotic 

SKOV3 cells.  As shown in Fig. 5B, chromosome breaks were increased in untreated sh-

BRCA1 (sh-B2)-transfected SKOV3 cells, which was further exacerbated after irofulven 

treatment (Fig. 5B). Strikingly, the majority of sh-B2-transfected SKOV3 cells displayed 

more severe chromosome damage after treatment. In these metaphase cells, chromosomes 

were damaged to the point where all of the chromosomes appeared to be broken or 

fragmented (Fig. 5C).  

FISH analysis was also performed in sh-B2-transfected SKOV3 metaphase cells 

with the whole chromosome 1 FISH paint probe. Similar to what was observed above, 

images displayed extensive fragmentation of chromosome 1 after irofulven treatment 

(Fig. 5D). Taken together, these results demonstrate that BRCA1 plays an important role 

in maintaining chromosome integrity in response to irofulven-induced DNA damage. 

 

BRCA1 confers chemoresistance to irofulven. 

To determine whether BRCA1 might affect chemosensitivity to irofulven, the 

clonogenic survival assay was carried out. The vector and BRCA1-transfected HCC1937 

cells were treated with different concentrations of irofulven for one hour followed by 

drug-free incubations. When IC50 concentrations were compared, the results 

demonstrated that the vector-transfected cells were two-fold more sensitive than the 
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BRCA1-transfected cells (Fig. 6A). We also conducted clonogenic assay with longer 

exposure time to verify that BRCA1-deficient cells are more sensitive. The results 

indicated that at 0.25 μM, a concentration that caused no difference in chemosensitivity 

between the vector and BRCA1-transfected HCC1937 cells in Fig. 6A, the BRCA1-

transfected HCC1937 cells are four-fold more resistant when treated for six hours, and 

19-fold more resistant when treated for 24 hours, than vector-transfected HCC1937 cells 

(Fig. 6B). These results demonstrate that BRCA1 deficiency renders cancer cells more 

sensitive to irofulven. 

 To corroborate these results, clonogenic survival assay was also performed in the 

vector and sh-BRCA1 transfected SKOV3 cells. Cells were treated with different 

concentrations of irofulven for one hour followed by drug-free incubations. The results 

demonstrated that knocking-down the endogenous BRCA1 levels resulted in more than 

two-fold increase in chemosensitivity to irofulven when IC50 concentrations were 

compared (Fig. 6C). Therefore, it can be concluded that BRCA1 confers chemoresistance 

to irofulven.
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DISCUSSION 

 

In this study, we have observed that irofulven induces the formation of 

chromosome breaks and radials as well as the formation of γ-H2AX, RAD51 and BRCA1 

foci. We have also provided evidence that irofulven induces the generation of DSBs. 

Furthermore, we have demonstrated that BRCA1 contributes to the control of S and 

G2/M cell cycle arrests, and is critical for RAD51-dependent HR repair of DSBs, 

chromosome integrity and chemosensitivity in response to irofulven.  

BRCA1 is frequently mutated in familial breast and ovarian cancer. Cancers that 

arise in mutation carriers have often lost the second allele through somatic alterations that 

must occur during tumor progression (1-4). It has previously been shown in several tumor 

cell lines that continuous exposure to irofulven resulted in a few to several hundred-fold 

difference in cytotoxicity based solely on increased exposure times (42-44). We found 

that BRCA1-deficient cells are more sensitive to irofulven treatment. We also found that 

when being treated for a longer period of time at lower concentration, greater sensitivity 

can be reached in BRCA1-deficient cells. This suggests that by maintaining a low level 

of drug through consecutive exposures to irofulven, BRCA1 deficiency might be 

exploited clinically to achieve preferential therapeutic outcomes.  

BRCA1 plays an important role in regulating cell cycle checkpoints after IR (1, 

2). However, a recent study demonstrated that BRCA1-deficient MEFs arrested at S and 

G2/M phases in response to mitomycin C treatment (45). In this study we have found that 

BRCA1 controls both S and G2/M checkpoints in response to irofulven-induced DNA 

damage. 
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To date, the structure and nature of irofulven-induced DNA damage have not 

been fully characterized. Earlier studies have suggested that the DNA damage caused by 

the illudin family of compounds might be repaired by the NER pathway (20, 21). Recent 

studies suggested that TC-NER was the exclusive repair pathway in repairing illudin S 

and irofulven-elicited DNA lesions and that irofulven cytotoxicity was influenced by the 

expression of excision endonuclease XPG (22, 23). However, the HR pathway for DSB 

repair was not evaluated in these studies. In this study, we have provided evidence that 

irofulven induces the generation of DSBs, and BRCA1 plays an important role in 

RAD51-dependent HR repair, chromosome integrity and chemosensitivity in response to 

irofulven-induced DSBs. These findings are consistent with our previous observations 

that irofulven induces the activation of ATM and its target genes NBS1, SMC1 and 

CHK2 (29). A distinct possibility exists that irofulven is able to produce multiple types of 

DNA lesions. Since BRCA1 plays important roles in multiple DNA repair pathways 

including HR and TC-NER (1, 2, 5), it remains to be determined whether BRCA1 might 

also be involved in TC-NER of irofulven-induced DNA lesions.  

Notably, we observed that there was some degree of RAD51 foci formation in 

vector-transfected-HCC1937 cells after irofulven treatment. HCC1937 cells lack the 

wild-type allele but retain the mutant allele (5382insC) of BRCA1. As a result, this cell 

line expresses a BRCA1 protein truncated at amino acid 1755 of the C-terminus, resulting 

in loss of the second BRCT domain (30, 32, 40, 46). Due to its known BRCA1 mutation 

status, this cell line is widely used for the study of BRCA1 functions (6, 30, 32, 40, 46, 

47). Earlier investigations have demonstrated that in response to DNA damage, BRCA1 

forms a large protein complex with a group of proteins including MSH2, MSH6, MLH1, 
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ATM, BLM, and the MRE11-RAD50-NBS1 (M/R/N) protein complex, indicating that 

BRCA1 may function as a coordinator of multiple activities required for the maintenance 

of genomic integrity and DNA repair (48-50). Recent studies indicate that in response to 

DSBs, BRCA1 complexes with multiple protein partners, 

BRCA1/BARD1/BACH1/TopBP1, BRCA1/BARD1/CtIP/M/R/N or 

BRCA1/BARD1/BRCA2/RAD51, integrating the activities of these partners in cell cycle 

checkpoints and HR repair of DSBs (6, 40). Recent studies also demonstrate that the 

tandem BRCT domains of BRCA1 function as phospho-serine- or phospho-threonine-

specific binding modules that recognize substrates phosphorylated by ATM. The two 

BRCT domains of BRCA1, but not the individual BRCT domains alone, displayed 

phospho-specific binding (46, 51). Therefore, the impaired RAD51 foci formation in 

HCC1937 cells in response to irofulven- or IR/laser-induced DSBs observed in this and 

other studies (40), could be due to the decrease in binding of partner proteins, such as 

BRCA2, which is critical for RAD51 foci formation (6, 40, 47, 52-56). It could also be 

due to the impaired interaction with the M/R/N complex at the DSB sites (48-50) or to 

the loss of interaction with the ATM-phosphorylated substrates, such as BACH1 (40, 46). 

In support of this, HCC1937 cells displayed barely detectable association of BRCA1-

associated proteins, BARD1, RAD51, BRCA2, and BACH1; and decreased association 

of truncated BRCA1 with TopBP1 (albeit not absent), compared with BRCA1-

transfected HCC1937 cells in response to DSBs (40). In addition, some degree of RAD51 

foci formation was also observed in mouse BRCA1-/- (deleted for exon 11) ES cells 

compared with BRCA1+/+ ES cells in response to IR-induced DSBs (45). 
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The chromosome breaks, tri-radials and quadri-radials formed after irofulven 

treatment are reminiscent of Fanconi anemia and BRCA2-deficient cells treated with IR 

or mitomycin C (1, 3, 5). Based on the roles that BRCA1 plays in RAD51-dependent HR, 

chromosome integrity and chemosensitivity in response to irofulven, it can be postulated 

that cells deficient in other important proteins involved in the HR pathway of DSB repair, 

such as FANCD2, BRCA2 or RAD51, might also show increased sensitivity. FANCD2 

and BRCA2 are found frequently mutated or repressed in many types of cancers (1, 3, 5, 

57).  

In summary, we have observed that irofulven induces the formation of 

chromosome breaks and radials as well as the formation of γ-H2AX, RAD51 and BRCA1 

foci. We have also provided evidence that irofulven induces the generation of DSBs. We 

have demonstrated that BRCA1 is critical for S and G2/M phase cell cycle checkpoints, 

RAD51-dependent HR, chromosome integrity and chemosensitivity in response to 

irofulven. These findings will enhance our understanding of the mechanisms of action 

involved with irofulven, and more specifically, the proteins and mechanisms that might 

affect irofulven-induced chemosensitivity. They will also provide insight for future 

studies of targeted therapy by irofulven in BRCA1-deficient familial breast and ovarian 

cancers.  
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FIGURE LEGENDS 

 

Fig. 1. Irofulven induces chromosome breaks, triradials and quadriradials and activates 

BRCA1. (A) HCC1937 and SKOV3 were treated with 1xIC50 concentrations of 

irofulven (1.0 and 2.3 μM, respectively) for one hour followed by 24 hours of drug-free 

incubation. Pictures showed the mitotic spread staining of cells treated with irofulven. 

Arrows indicate chromosome breaks, triradials and quadriradials. (B) Confocal 

microscopic images of immunofluorescent staining for BRCA1 and γ-H2AX. SKOV3 

cells were treated with 1xIC50 concentration of irofulven for one hour followed by 12 

hours of drug-free incubation.  

 

Fig. 2. BRCA1 controls S and G2/M checkpoints in response to irofulven-induced DNA 

damage. (A) DNA synthesis was determined by RDS assay. The vector and BRCA1-

transfected HCC1937 cells were treated with 1, 2 or 3 μM of irofulven for one hour 

followed by 12 hours of drug-free incubation. DNA synthesis rates were presented as the 

average and standard error of triplicate experiments. (B) The mitotic population of cells 

was determined by staining for phosphorylated histone H3 and flow cytometry. The 

vector and BRCA1-transfected HCC1937 cells were treated with 1 μM of irofulven for 

one hour followed by one hour of drug-free incubation. The percentage of phospho-

histone H3-positive population was presented as the mean and standard deviation of 

triplicate experiments. (C) The mitotic index of vector and BRCA1-transfected HCC1937 

cells. Cells were treated with 1 μM of irofulven for one hour followed by 24 hours of 

drug-free incubation. In each group, about 4,000 cells were counted. 
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Fig. 3. BRCA1 is critical for repairing irofulven-induced DSBs and for RAD51-

dependent HR. The vector and BRCA1-transfected HCC1937 cells were treated with 1 

μM of irofulven for one hour followed by different times of drug-free incubation. (A) 

Genomic DNA samples were extracted and separated by PFGE. (B and C) Comet assay 

was performed using neutral conditions to specifically detect double-strand breaks (B). 

The comet tail movement was quantified by visual scoring. The statistical significance 

was analyzed by Student’s t-test and marked as * (p<0.05) and ** (p<0.01) (C).  (D) The 

DNA repair dynamics was characterized by counting the γ-H2AX foci formation. (E and 

F) Cells were immunofluorescently stained for RAD51, γ-H2AX and DAPI (E). Cells 

with five or more foci were counted as positive for staining. The percentage of cells with 

RAD51 or γ-H2AX foci was exhibited as the mean and standard deviation of triplicate 

counts of 1,000 cells (F). 

 

Fig. 4. Chromosome aberrations induced by irofulven are related to BRCA1 status. The 

vector and BRCA1-transfected HCC1937 cells were treated with 1 μM of irofulven for 

one hour followed by 24 hours of drug-free incubation. (A) Mitotic spread staining was 

performed. The percentage of mitotic cells with four or more chromosome breaks or with 

radials was presented. In each group, 100 mitotic cells were counted. (B) FISH was 

performed to specifically characterize aberrations involving chromosome 1 in the vector-

transfected HCC1937 cells treated with irofulven. The images show the largest portion of 

chromosome 1 within the HCC1937 cells (a and b). The asterisk (*) indicates an inherent 
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translocation on chromosome 1. Arrows indicate the chromatid/chromosome breaks (c 

and d) and a quadri-radial (e and f) involving chromosome 1 after irofulven treatment.  

 

Fig. 5. Knocking-down BRCA1 protein levels by RNA interference results in increased 

chromosome aberrations. (A) SKOV3 cells were stably transfected with the vector (sh-V) 

or sh-BRCA1 (short-hairpin BRCA1) constructs (sh-B1, B2, B3), respectively. The 

efficacy of sh-BRCA1 constructs in knocking-down BRCA1 protein levels was 

determined by Western blot analysis with the anti-BRCA1 antibody. The blot for actin 

served as loading control. (B through D) Mitotic spread staining was performed. The sh-

V and sh-B2-transfected SKOV3 cells were treated with 1xIC50 concentration of 

irofulven for one hour followed by 24 hours of drug-free incubation. The percentage of 

mitotic cells with four or more chromosome breaks was presented. In each group, 100 

mitotic cells were counted (B). Representative picture of metaphase sh-B2-transfected 

SKOV3 showed widespread chromosome fragmentation after irofulven treatment (C). 

FISH was performed to specifically characterize the chromosome 1 damage in sh-B2-

transfected SKOV3 cells treated with irofulven.  The images show chromosome 1 within 

the sh-B2-transfected SKOV3 cells (a and b). Arrows indicate the highly altered 

chromosome 1 after irofulven treatment (c through f) (D). 

 

Fig. 6. BRCA1 confers chemoresistance to irofulven. Irofulven-induced chemosensitivity 

was determined by clonogenic survival assay in the vector and BRCA1-transfected 

HCC1937 cells or in the vector and sh-BRCA1-transfected SKOV3 cells.  (A through C) 
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Cells were treated with irofulven for one hour (A and C), or one, six or 24 hours (B). The 

mean and standard deviation of triplicate experiments were demonstrated.  
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Figure 1. Irofulven induces chromosome breaks, triradials and quadriradials 

and activates BRCA1. 
 

Figure 1A 

HCC1937 SKOV3 

Irofu
lven 

 

Figure 1B 

γ-H2AXBRCA1 Merge 

N
on

e  
Iro

fu
lv

en
 

 

 89 
 

 



Figure 2. BRCA1 controls S and G2/M checkpoints in response to 

irofulven-induced DNA damage. 
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Figure 3. BRCA1 is critical for repairing irofulven-induced DSBs and for 

RAD51-dependent HR. 
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Figure 3D 
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Figure 4. Chromosome aberrations induced by irofulven are related to 

BRCA1 status.  
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Figure 5. Knocking-down BRCA1 protein levels by RNA interference 

results in increased chromosome aberrations.  
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Figure 5D 
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Figure 6. BRCA1 confers chemoresistance to irofulven. 
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Abstract 

 

Induction of apoptosis is a desirable trait for chemotherapeutic agents. Irofulven 

(6-hydroxymethylacylfulvene, MGI 114, NSC#: 683863) is one of a new class of 

anticancer agents that are analogs of the mushroom derived illudin toxins. Preclinical 

studies and clinical trials have demonstrated that irofulven is effective against several 

tumor cell types. It has been shown that irofulven induces DNA damage, MAP kinase 

activation and apoptosis; and activates several proteins in the DNA damage response 

pathway, leading to cell cycle arrest and influencing chemosensitivity. In this study, we 

investigated the role of caspase-2 in initiating irofulven-induced apoptosis. We also 

examined the effect of irofulven-induced apoptosis on chemosensitivity. Using isogenic 

mouse embryonic fibroblasts proficient and deficient for caspase-2 and Apaf-1, we 

demonstrated that irofulven-induced cell death was mediated by the mitochondrial 

apoptotic pathway and that caspase-2 was involved in initiating irofulven-induced 

apoptosis through the mitochondrial apoptotic pathway. Furthermore, we showed that 

caspase-2 and the mitochondria-controlled apoptotic pathway enhanced chemosensitivity 

to irofulven. 
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1. Introduction 

 

Caspase-dependent apoptosis is a form of programmed cell death controlled by a 

group of cysteine proteases known as caspases. It is characterized by cellular body 

shrinkage, plasma membrane blebbing, chromatin condensation and DNA fragmentation 

[1-3]. Both an intrinsic and extrinsic pathway of activation exists. The extrinsic or death 

receptor pathway is triggered by the activation of members of the death receptor family, 

including FasL/Fas, TNF/TNFR, TRAIL/DR4, and TRAIL/DR5. This leads to the 

activation of caspase-8 and apoptosis. The intrinsic or mitochondria pathway is initiated 

by the change in mitochondrial membrane potential, which results in the release of 

cytochrome c, AIF, Smac/DIABLO and Omi/HtrA2 from the mitochondria [1-3]. 

Cytochrome c and Apaf-1 form a multimeric complex called the “apoptosome” in the 

presence of dATP/ATP, recruiting procaspase-9 and promoting its efficient activation [4-

6]. Activated caspase-9 in turn cleaves and activates downstream effectors caspase-3, -6 

and -7 resulting in apoptosis [1-3]. Caspase-2 responds predominantly to genotoxic stress 

via a poorly defined mechanism [1-3]. Some studies have reported the recruitment of 

procaspase-2 into a multimeric complex, which is sufficient to activate it in a manner 

independent of mitochondrial activity [7]; while other data reveals that caspase-2 is able 

to cause mitochondrial dysfunction leading to cytochrome c release, supporting a role for 

caspase-2 upstream of the mitochondria and a requirement for caspase-9 [8-16]. While no 

definitive answer currently exists, it is reported that caspase-2 is important for signaling 

of apoptosis induced by DNA damage agents, such as cisplatin, etoposide and UV [12-

16]. 
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Induction of apoptosis by chemotherapeutic agents remains a highly desirable and 

effective trait. There are several first line therapies, as well as ionizing radiation, that rely 

on their ability to damage DNA in order to kill cancerous cells. DNA damaging agents 

have been documented to be potent inducers of apoptosis [17]. While we know they are 

able to induce apoptosis, the exact mechanism of action of these anticancer agents 

remains poorly understood. Based on the damage inflicted, each agent activates a unique 

response. Therefore, it is important to understand what signals these agents use to 

activate apoptosis in order to determine which tumors may respond more robustly to 

specific chemotherapeutics. Irofulven (6-hydroxymethylacylfulvene, MGI 114, NSC#: 

683863) is one of a new class of anticancer agents that are analogs of mushroom-derived 

illudin toxins. Preclinical studies and clinical trials have shown that irofulven is effective 

against several tumor cell types [18-26].  While the exact mechanism of action of 

irofulven is not well understood, it has been shown that irofulven induces DNA damage, 

MAP kinase activation and apoptosis; and activates several proteins in the DNA damage 

response pathway, leading to cell cycle arrest and influencing chemosensitivity [27-35].  

To further understand the mechanism of action of irofulven, we hypothesized that 

caspase-2 may play an important role in initiating irofulven-induced apoptosis. By using 

isogenic mouse embryonic fibroblasts proficient and deficient for caspase-2 and Apaf-1, 

we investigated the role that caspase-2 might play in irofulven-induced apoptosis. We 

observed that irofulven-induced cell death is mediated by the mitochondrial apoptotic 

pathway and that caspase-2 is involved in initiating irofulven-induced apoptosis through 

the mitochondrial apoptotic pathway. Furthermore, we demonstrated that caspase-2 and 

the mitochondria-controlled apoptotic pathway enhanced chemosensitivity to irofulven. 
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2. Materials and Methods 

 

Cell Culture - Mouse embryonic fibroblasts (MEFs) knocking-out Apaf-1 (generously 

provided by Prof. Tak Mak of the University of Toronto, Toronto, Canada) [36] and 

MEFs knocking-out caspase-2 (generously provided by Dr. Andreas Strasser of the 

Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia) [37] were 

cultured in DMEM (Mediatech, Herndon, VA) supplemented with 10% fetal bovine 

serum and penicillin/streptomycin in a 37°C incubator with 5% CO2 atmosphere.   

 

Western blotting - Western blot was performed as described previously [35]. Whole cell 

lysates (100 μg) were separated by SDS-PAGE. Primary antibodies used were: rat anti-

mouse caspase-2 (1:1000) (Alexis Biochemicals, San Diego, CA), rabbit anti-Apaf-1 

(1:100; Santa Cruz Biotechnology, Santa Cruz, CA) and mouse anti-actin (1:5000; 

Sigma, St. Louis, MO). Secondary antibodies used were: sheep anti-mouse IgG-HRP, 

sheep anti-rabbit IgG-HRP (1:4,000; GE Healthcare, Piscataway, NJ) and goat anti-rat 

IgG-HRP (1:4000; Santa Cruz Biotechnology, Santa Cruz, CA). All dilutions were done 

as indicated in PBS containing 0.1% Tween-20 and 5% milk.  

 

Apoptosis ELISA - Apoptosis ELISA was performed using the Cell Death Detection 

ELISAPLUS kit (Roche, Indianapolis, IN) according to manufacturer’s instructions to 

detect cytoplasmic histone-associated DNA fragments (mono- and oligonucleosomes). 

Cells were plated in 6-well plates and allowed to attach overnight. Treatment with 

irofulven was done with various doses and exposure times as noted. After drug exposure, 
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both the floating and adherent cells were collected and washed with ice-cold PBS. Cell 

pellets were then lysed in provided lysis buffer for 30 min at room temperature followed 

by 10 min of centrifugation at 1500 g. The supernatant (20 μl) was added to each well 

along with 80 μl of immunoreagent consisting of anti-DNA and anti-POD antibodies. 

Microplate was covered and allowed to shake at 300 rpm for two hours at room 

temperature. Following incubation, the wells were washed three times with incubation 

buffer and 100 μl of ABTS solution was added. Microplate was allowed to shake at 250 

rpm for 5-10 minutes and then read at 405 nm on a spectrophotometer (Molecular 

Devices, Sunnyvale, CA). Results are reported as fold change from untreated cells minus 

background and represent three independent experiments. 

 

Propidium iodide staining and flow cytometry - Analysis of cells undergoing apoptosis 

was done using propidium iodide (PI) staining and flow cytometry. Cells were treated 

with irofulven and harvested by mechanical detachment. After washing in PBS, cell 

pellets were fixed in 70% ethanol in PBS overnight. Fixed cells were washed twice in 

PBS and suspended in a final solution of PBS containing propidium iodide (1 μg/ml) and 

RNase A (20 μg/ml). Samples were incubated for 30 min at 4°C in the dark followed by 

measurement of PI content (20,000 events each) using a FACSCalibur cytometer with 

CellquestPro software (BD Biosciences, San Jose, CA). The sub-G1 portion of the 

histogram was quantified as the relative percentage of apoptotic cells.  

 

Chromogenic caspase activity assay - The chromogenic caspase substrates Ac-VDVAD-

pNA, Ac-LEHD-pNA and Ac-DEVD-pNA (Anaspec, San Jose, CA) were used to 
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measure caspase-2, caspase-9 and caspase-3 activities, respectively. After irofulven 

treatment, cells were collected and washed twice with ice-cold PBS and lysed in cell lysis 

buffer (10 mM HEPES, 2 mM EDTA, 0.1% Igepal, 5 mM DTT, 1 mM PMSF, 10 μg/ml 

pepstatin A, 20 μg/ml leupeptin, 10 μg/ml aprotinin). Protein concentration of the 

supernatant was determined using the Bradford assay kit (BioRad, Hercules, CA). Protein 

extract (50-100 μg) of each sample was added and adjusted to 100 μl with cell lysis 

buffer. Substrate assay buffer (100 μl ) (100 mM HEPES, 20% glycerol, 1 mM EDTA, 

0.1% CHAPS and 10 mM DTT) containing specific caspase substrate (300 μM) was 

added to each reaction and incubated at 37°C for 12-15 hours. The generation of free 

pNA was measured by an UQuant spectrophotometer (Biotek, Winooski, VT) at 405 nm. 

Fold increase on caspase activity was determined by subtracting background control from 

each sample and dividing by the un-treated control. 

 

Clonogenic survival assay - To determine chemosensitivity, clonogenic survival assay 

was performed as previously described [35]. Cells were plated in 60-mm dishes overnight 

in complete medium and treated with different concentrations of irofulven for 24 hours 

followed by drug-free incubation for 7-10 days. Colonies were stained with PBS 

containing 0.04% crystal violet and 0.5% paraformaldehyde for 20 min. Staining liquid 

was aspirated and colonies counted. Results are reported as treated divided by un-treated 

control and represent three individual experiments. 
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3. Results 

 

Irofulven-induced cell death is mediated by the mitochondrial apoptotic pathway. 

Caspase-2 has been reported to initiate apoptosis induced by several stress stimuli, 

such as ceramide, cisplatin, etoposide, docetaxel or UV, through the mitochondria-

dependent or independent apoptotic pathways [7-16]. In this study, we attempted to 

determine whether caspase-2 is involved in initiating irofulven-induced apoptosis. We 

first examined the involvement of the mitochondrial apoptotic pathway in response to 

irofulven using mouse embryonic fibroblasts (MEFs) deficient or proficient for Apaf-1 

[36]. Apaf-1 -/- MEFs are impaired for apoptosome formation and caspase-9 activation, 

and thus mitochondria-mediated apoptosis [4-6]. Western blot analysis confirmed the 

status of Apaf-1 protein in the previously described Apaf-1 knockout cells [36] (Fig. 1A). 

We then used an ELISA-based method detecting DNA fragmentation to measure the 

induction of apoptosis. Compared to their knockout counterparts, wild-type Apaf-1 cells 

underwent significantly more apoptosis when exposed to 5 or 10 μM of irofulven for 24 

hours (p<0.001) (Fig. 1B).  

To verify this phenomenon, we used propidium iodide (PI) staining and flow 

cytometry as an alternate method to measure the induction of apoptosis. The same set of 

isogenic Apaf-1 MEFs was treated with irofulven. Cells were stained with PI and the sub-

G1 DNA content was measured by flow cytometry. Figure 1C depicts a set of 

representative histograms showing the cell cycle distribution before and after irofulven 

treatment. The relative amount of apoptosis was quantified as the M1 region which 

includes all cells with sub-G1 DNA content (Fig. 1C). Results indicated that wild-type 
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Apaf-1 cells underwent much more apoptosis than their knockout counterparts after 

irofulven treatment (Fig. 1D). From these data, we concluded that the mitochondrial 

apoptotic pathway plays an important role in the induction of apoptosis upon irofulven 

treatment.  

 

Caspase-2 is involved in initiating irofulven-induced apoptosis through the 

mitochondrial apoptosis pathway. 

 To determine the role that caspase-2 may play in response to irofulven treatment, 

we used isogenic caspase-2 -/- and +/+ MEFs. The status of caspase-2 expression in these 

cells was confirmed by western blot analysis (Fig. 2A). The apoptosis induction was 

measured by using DNA fragmentation ELISA. Results indicated that the caspase-2 +/+ 

cells underwent several-fold more apoptosis when compared to the caspase-2 -/- cells 

after 10 or 20 μM of irofulven treatment (p<0.001 or  p<0.01, respectively) (Fig. 2B).  

 To confirm this finding, PI staining and flow cytometry were performed in these 

cells. Many more cells containing sub-G1 DNA content were observed in caspase-2 +/+ 

cells (Fig. 2C) and the results of triplicate experiments were graphed in figure 2D. These 

results demonstrated that there was a dramatic increase in apoptosis in caspase-2 +/+ cells 

compared to caspase 2 -/- cells after irofulven treatment. This strongly indicates a role for 

caspase-2 in irofulven-induced apoptosis. 

 To further verify caspase activation and determine whether caspase-2 is involved 

in initiating apoptosis through the mitochondrial pathway, we determined caspase 

enzyme activities in Apaf-1 and caspase-2 MEFs by using caspase substrates conjugated 

to p-nitroanilide (pNA). These caspase substrates emit measurable chromogenic signals 
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upon the cleavage of pNA. When the caspase-9 substrate, Ac-LEHD-pNA, was incubated 

with whole cell lysates of Apaf-1 -/- and Apaf-1 +/+ cells after irofulven treatment, it was 

shown that caspase-9 was preferentially activated in wild-type Apaf-1 cells (p<0.001) 

(Fig. 3A). The overall level of apoptosis was also surveyed using the caspase-3 substrate, 

Ac-DEVD-pNA. The results indicated that, consistent with previous observations, more 

induction of apoptosis, as measured by caspase-3 activity, occurred in the Apaf-1 +/+ 

cells after irofulven treatment (p<0.001) (Fig. 3B).  

 Next, we performed this caspase activity assay in isogenic caspase-2 -/- and 

caspase-2 +/+ cells to determine the dependence of specific substrate cleavage on 

caspase-2 activity after irofulven treatment. As expected, when the caspase-2 substrate, 

Ac-VDVAD-pNA, was incubated with whole cell lysates of caspase-2 -/- and caspase-2 

+/+ cells, it was demonstrated that caspase-2 was preferentially activated in the caspase-2 

+/+ cells after irofulven treatment (p<0.001) (Fig. 4A). When the caspase-9 substrate, 

Ac-LEHD-pNA, was used in both cells, it was found that caspase-9 was preferentially 

activated in the caspase-2 +/+ cells (p<0.001) (Fig. 4B), indicating that caspase-9 

activation is dependent on caspase-2. In addition, caspase-3 activity was also measured in 

these cells with the caspase-3 substrate, Ac-DEVD-pNA.  It was shown that more 

apoptosis occurred in caspase-2 +/+ cells than in caspase-2 -/- cells (p<0.001) (Fig. 4C). 

Taken together, these results indicate that caspase-2 activation is involved in initiating 

irofulven-induced apoptosis through the mitochondria-mediated apoptotic pathway. 

 

Caspase-2 initiated mitochondrial apoptosis pathway enhances chemosensitivity to 

irofulven. 
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 Activation of proteins that make up the apoptotic pathway is one way of 

determining the rate of cell death after treatment with a chemotherapeutic agent. 

Clonogenic survival assay is a more reliable method to determine the consequence of cell 

death in drug treated cells and thus chemosensitivity [38, 39]. To assess whether caspase-

2 initiated mitochondrial apoptotic pathway renders cells more sensitive to irofulven, we 

performed clonogenic survival assay in isogenic Apaf-1 and caspase-2 MEFs. These cells 

were treated with 2 or 4 μM of irofulven and the results demonstrated that both caspase-2 

and Apaf-1 render cells more sensitive to irofulven (p<0.05 or p<0.005, respectively) 

(Fig. 5, A and B). These results indicated that caspase-2 initiated mitochondrial apoptotic 

pathway enhanced chemosensitivity to irofulven. 
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4. Discussion 

 

In this study, we showed that irofulven-induced cell death is initiated by caspase-

2 and is subsequently mediated through activation of the mitochondrial apoptotic 

pathway. We also demonstrated that caspase-2 and the mitochondria-controlled apoptotic 

pathway enhance chemosensitivity to irofulven. The mitochondrial pathway is a key 

component in inducing apoptosis in response to ionizing radiation and several 

chemotherapeutic agents [1-3, 36, 40, 41]. It is still unclear whether caspase-9 acts alone 

or in conjunction with other apoptotic pathways. Caspase-2 represents an initiator of 

apoptosis with a role that is not yet well-defined. Several reports have indicated that, in 

response to DNA damaging agents, caspase-2 initiates apoptosis upstream of 

mitochondrial cytochrome c release and caspase-9 activation leading to downstream 

effector caspase activation [8-16]. Another report has suggested that caspase-2 is able to 

form large complexes that are sufficient for activation of downstream effector caspases 

independent of cytochrome c and Apaf-1 [7]. This line of evidence supports a mechanism 

in which caspase-2 alone is able to induce apoptosis, whereas subsequent downstream 

cytochrome c release and caspase-9 activation act as an independent amplification loop 

[7]. In this study, the caspase activity assay with specific caspase substrates clearly 

indicates that caspase-2 is involved in initiating irofulven-induced apoptosis through the 

mitochondria-dependent mechanism. 

How caspase-2 is activated by various stress stimuli is still poorly understood. It 

has been reported that caspase-2 activation occurs by forming complex with PIDD (p53-

induced protein with a death domain) and the adapter protein RAIDD (RIP(ribosome-
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inactivating protein)-associated ICH-1/CED-homologous protein with death domain). 

Increased PIDD expression may result in caspase-2 activation as a means to regulate 

apoptosis [16, 42]. However, a recent study indicated that caspase-2 activation is 

independent of p53 in response to docetaxel-induced apoptosis [11]. We have observed 

that irofulven induces p53 accumulation and activation [31, 34]. However, we and others 

have conducted studies in tumor cell lines with wild-type, mutant or null p53; and 

demonstrated that the cytotoxicity induced by irofulven is independent of p53 status [34, 

43]. Therefore, caspase-2 initiated apoptosis induced by irofulven may not be regulated 

by p53. Additional work is required to identify the potential proteins triggering caspase-2 

activation in response to irofulven. 

The short term measurements of apoptosis may only determine a difference in the 

kinetics of cell death but not overall survival [38, 39]. It is also possible that, in the 

overall scheme of cell death, one pathway may be able to compensate for the loss of 

another. We performed clonogenic survival assay to address such a situation and verified 

that differences in activation of apoptosis were actually translated into differences in 

overall survival. Both Apaf-1 and caspase-2 wild-type cells showed an increase in 

chemosensitivity to irofulven. 

It should also be mentioned that caspase dependent apoptosis may not be the only 

mechanism by which irofulven is able to kill cells. Previous work has identified a role for 

caspase independent cell death in irofulven induced killing [44]. While the differences we 

report may seem minor, it must be noted that while we seek to determine the involvement 

of individual pathways, the other cell death pathways are still intact in these experiments. 

This would result in an overall decrease in the difference between the cell lines because 
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we are only measuring one aspect of the response that may only represent a fraction of 

the total response. One cell death pathway could easily compensate for the loss of another 

thereby masking the response and diminishing the effect of the loss of a single gene. 

There is also the fact that our MEFs contain intact cell cycle checkpoints and DNA repair 

proteins which would render the cells more resistant to irofulven induced cell death [31, 

33-35]. Also contributing to a minimal difference in chemosensitivity is the fact that 

caspase independent cell death may also contribute to overall killing and may further 

mask the response. Therefore, while the differences may seem minor, they are 

statistically significant and highly reproducible.      

Another important point to discuss is the measurement of caspase activity using 

the substrate assay. Substrates that we use in these experiments that we call specific are 

not exclusive to the specific caspases, but are most strongly activated both those 

caspases. Strong evidence indicates that while they are preferentially activated by specific 

caspases, most substrates are also weakly activated by other caspase as well [45]. Such is 

the case for many caspase substrates that have overlapping specificities. This concept 

explains why we see minimal activation of what we call specific substrates even when we 

use knockout cells for that particular substrate. The important point in evaluating these 

assays is the difference between the isogenic cell lines all of which were significant in 

our experiments.       

In summary, by using isogenic mouse embryonic fibroblasts proficient and 

deficient for caspase-2 and Apaf-1, we observed that irofulven-induced cell death is 

mediated by the mitochondrial apoptotic pathway and that caspase-2 is involved in 

initiating irofulven-induced apoptosis through the mitochondrial apoptotic pathway. We 

 116 
 

 



also demonstrated that caspase-2 and the mitochondria-controlled apoptosis enhance 

chemosensitivity to irofulven. These findings will enhance our understanding of the 

mechanisms of apoptosis induction by irofulven. They will also provide insight for future 

studies to elucidate proteins that cause caspase-2 activation and the link between DNA 

damage signaling and caspase-2 initiated apoptosis induced by irofulven. 
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8. Figure Legends 

 

Figure 1. Irofulven-induced cell death is mediated by the mitochondrial apoptosis 

pathway. A, western blot analysis was performed to verify the Apaf-1 expression status 

in Apaf-1 -/- and Apaf-1 +/+ MEFs. Actin was blotted as the loading control. B, 

induction of apoptosis was determined by apoptosis ELISA measuring DNA 

fragmentation. Apaf-1 -/- and Apaf-1 +/+ cells were treated with 1, 5 and 10 μM of 

irofulven for 24 hours. The relative apoptosis was calculated as fold change from 

untreated cells minus background. The mean and standard deviation of triplicate 

experiments are shown. The statistical significance was analyzed by Student’s t-test and 

marked as * (p<0.001). C, quantification of apoptosis by propidium iodide (PI) staining 

and flow cytometry. Apaf-1 -/- and Apaf-1 +/+ cells were treated with 10 and 20 μM of 

irofulven for 16 hours. A representative set of histograms from one experiment is shown. 

Apoptotic cells with sub-G1 DNA content is represented by the M1 region. D, graphical 

representation of the mean and standard deviation of triplicate experiments of PI staining 

and flow cytometry analysis.   

 

Figure 2. Caspase-2 is involved in initiating irofulven-induced apoptosis. A, caspase-2 

protein expression in caspase-2 -/- and caspase-2 +/+ cells was verified by western blot. 

Actin was blotted as the loading control. B, induction of apoptosis was measured by 

apoptosis ELISA. Caspase-2 -/- and caspase-2 +/+ cells were treated for 24 hours with 10 

and 20 μM of irofulven. The relative apoptosis was calculated as fold change from 

untreated cells minus background. The mean and standard deviation of triplicate 
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experiments are shown. The statistical significance was analyzed by Student’s t-test and 

marked as * (p<0.001) and ** (p<0.01). C, quantification of apoptosis by PI staining and 

flow cytometry. Caspase-2 -/- and caspase-2 +/+ cells were treated with 10 and 20 μM of 

irofulven for 16 hours. A representative set of histograms from one experiment is shown. 

Apoptotic cells with sub-G1 DNA content is represented by the M1 region. D, diagram 

showing the mean and standard deviation of sub-G1 cell population from triplicate 

experiments of PI staining and flow cytometry analysis.   

 

Figure 3. Irofulven activates caspase-9 of the mitochondrial apoptosis pathway. 

Chromogenic caspase activity assay was performed with whole cell lysates of Apaf-1 -/- 

and Apaf-1 +/+ cells treated with 10 and 20 μM of irofulven for 18 hours. The mean and 

standard deviation of triplicate experiments are shown. The statistical significance was 

analyzed by Student’s t-test and marked as * (p<0.001). A, caspase-9 activity was 

measured using Ac-LEHD-pNA as the substrate. B, the overall level of apoptosis was 

determined by measuring caspase-3 activity with Ac-DEVD-pNA as the substrate.  

 

Figure 4. Caspase-2 initiates irofulven-induced apoptosis through the mitochondrial 

apoptosis pathway. Chromogenic caspase activity assay was performed with whole cell 

lysates of caspase-2 -/- and caspase-2 +/+ cells treated with 10 and 20 μM of irofulven for 

18 hours. The mean and standard deviation of triplicate experiments are shown. The 

statistical significance was analyzed by Student’s t-test and marked as * (p<0.001). A, 

caspase-2 activity was measured using Ac-VDVAD-pNA as the substrate. B, caspase-9 

activity was measured using Ac-LEHD-pNA as the substrate. C, the overall level of 
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apoptosis was determined by measuring caspase-3 activity with Ac-DEVD-pNA as the 

substrate.  

 

Figure 5. Caspase-2 initiated mitochondrial apoptosis pathway enhances 

chemosensitivity to irofulven. A and B, clonogenic survival assay was performed in 

isogenic caspase-2 (A) and Apaf-1 (B) MEFs treated with 2 and 4 μM of irofulven for 24 

hours. The mean and standard deviation of triplicate experiments are presented. The 

statistical significance was analyzed by Student’s t-test and marked as * (p<0.05) and ** 

(p<0.005). 
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Figure 1. Irofulven-induced cell death is mediated by the mitochondrial 
apoptosis pathway. 
 

 
 
 
 
 

 

Actin 

Apaf-1 
-/-      +/+ 

Apaf-1 MEFFigure 1A 

Figure 1B 

0

1

2

3

4

5

6

5 10
Irofulven 

Apaf-1 -/-
Apaf-1 +/+

*

*

R
el

at
iv

e 
ap

op
to

si
s 

(μM)

 130 
 

 



Apaf-1 -/-

 
 
 
 

 

 Apaf-1 +/+ 

M1

M1

M1

2n 4n

2.33

3.89

1.29
M1

M1

M1

2n 4n 

4.79

14.17

33.18
  20 μM 

 10 μM 

None 

Figure 1C 

0

5

10

15

20

25

30

35

Apaf-1 -/- Apaf-1 +/+

None
10 μM
20 μM

%
 A

po
pt

os
is

 (S
ub

-

Figure 1D 

 131 
 

 



Figure 2. Caspase-2 is involved in initiating irofulven-induced apoptosis. 
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Figure 2C
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Figure 3. Irofulven activates caspase-9 of the mitochondrial apoptosis 

pathway. 
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Figure 3B
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Figure 4C
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Figure 5. Caspase-2 initiated mitochondrial apoptosis pathway enhances 

chemosensitivity to irofulven. 
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Abstract 
 

 Induction of apoptosis by chemotherapeutic agents remains a highly desirable and 

effective trait. The goal of many current therapies is to activate the apoptotic response in 

tumor cells that have lost this normal cellular function. Irofulven (6-

hydroxymethylacylfulvene, MGI 114, NSC#: 683863) is one of a new class of anticancer 

agents that are analogs of the mushroom derived illudin S toxins. Preclinical and clinical 

trials have shown that irofulven is effective against several solid tumor types. It has been 

shown to activate several proteins in the DNA damage response as well as MAP kinase 

signaling and apoptosis leading to cell cycle arrest and modulating chemosensitivity. In 

this study, we investigated the role of caspase 8 in irofulven induced apoptosis. We also 

examined the role that ERK may play in this response. Using both mouse embryo 

fibroblasts and neuroblastoma cells proficient and deficient for caspase 8, we 

demonstrated that cells lacking caspase 8 function were more sensitive to treatment with 

irofulven. We demonstrated an undefined survival effect whereby caspase 8 protects cells 

from irofulven induced apoptosis. We also determined that activation of ERK was 

serving as a pro-apoptotic mechanism with some dependence on caspase 8. Furthermore, 

we established that caspase 8 rendered cells more chemoresistant to irofulven.  
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Introduction 

 

 Caspase dependent apoptosis is a form of programmed cell death controlled by a 

pathway of cysteine proteases known as caspases. It is characterized by shrinkage in 

overall cellular size, condensation of chromatin and DNA fragmentation (1-3). The 

structure of caspase family members is similar in that most contain pro-domains as well 

as a small and large subunit to make the full length single chain protein (4). They are 

synthesized as inactive zymogens and enzymatic activation is achieved through cleavage 

at specific sites in the N-terminal, after an aspartic acid residue (4, 5). Both an intrinsic 

and extrinsic pathway of activation exists, merging with the activation of the effector 

caspases 3, 6 and 7. 

 The death receptor mediated pathway of apoptosis is a classical pathway by which 

cells are able to respond to extracellular signals and subsequently activate programmed 

cell death. A number of ligands, including Fas, TNF and TRAIL, have been identified 

that are able to activate transmembrane receptors which begins the signaling cascade that 

leads to apoptosis (6). After receptor engagement, the cytoplasmic domain of the receptor 

is able to bind a number of FADD (Fas-associated death domain) adaptor molecules 

through homotypic interaction between the death domain (DD) of both Fas and FADD (7, 

8). The N-terminal portion of FADD contains a death effector domain (DED) that acts to 

recruit caspase 8 to the complex and forms an interaction with the DED of procaspase 8 

(7, 9). This complex assembled with several molecules of Fas, FADD and procaspase 8 

forms a functional apoptotic complex called the death-inducing signaling complex 

(DISC) (10). Oligomerization of procaspase 8 with adaptor molecules at receptor sites 
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leads to autoproteolytic cleavage of caspase 8 and subsequent activation of effector 

caspases (11). Evidence also exists demonstrating the ability of caspase 8 to cleave Bid 

resulting in release of cytochrome c and activation of the mitochondrial mediated 

pathway (12).    

 Aside from a role in apoptosis, caspases have been shown to be involved in a 

number of other cellular processes including embryonic development, macrophage 

differentiation, T cell proliferation and cell motility (13-20). The differentiation of 

monocytes into mature macrophages during the process of infection occurs in the 

presence of several active caspases while not exhibiting the morphological characteristics 

that are a hallmark of apoptosis (17). Other evidence also revealed a mechanism by 

which caspase 3 is able to drive platelet formation in the absence of detectable DNA 

fragmentation (21). Recent evidence has defined a role for caspase 8 in cell motility in 

caspase 8 null mouse embryo fibroblasts under nonapoptotic conditions (14). It should 

also be noted that caspase 8 has recently been linked to an increased risk of breast cancer 

raising more questions as to what other functions caspase 8 may play in the cell (22).    

 Activation of the apoptotic pathway by chemotherapeutic agents is a highly 

desirable and effective trait. Several current therapies rely on the induction of apoptosis 

to kill cancerous cells. Many DNA damaging agents have been shown to be potent 

inducers of apoptosis (23). While studies have illustrated the induction of apoptosis by 

DNA damaging agents, several critical steps in the process remain unclear. The 

mitochondrial controlled pathway is a key component in the induction of apoptosis in 

response to ionizing radiation and several chemotherapeutics (1, 24-26). What remains 
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unclear is whether the mitochondrial pathway acts alone or in conjunction with the death 

receptor mediated pathway.  

 Irofulven (6-hydroxymethylacylfulvene, MGI 114, NSC#: 683863) is one of a 

new class of anticancer agents that are analogs of the mushroom derived illudin S toxins. 

Preclinical and clinical trials have shown that irofulven is effective against several solid 

tumor types (27-33). The exact mechanism of action of irofulven remains mostly 

unknown. While previous studies have suggested that damage induced by irofulven is 

repaired exclusively via the transcription coupled nucleotide excision repair (TC-NER) 

pathway, these studies have ignored the NHEJ and HR pathways (34). Recent work in 

our lab has shown that irofulven activates ATM and its downstream targets: BRCA1, 

NBS1, FANCD2, SMC1, CHK2 and p53 (35-37). Although most data shows that 

irofulven is able to cause DNA damage, the precise mechanism of killing remains largely 

unknown. Previous studies have shown induction of apoptosis mediated by ERK and 

JNK kinases (38). It has also been shown that irofulven treatment induces the cleavage of 

caspases 8 and 9 (39). This data has been corroborated by other evidence that caspase 

induced apoptosis plays a role in cell death after irofulven treatment (40).  

 Previous work in our lab, as reported in Chapter III of this dissertation, has 

demonstrated the ability of irofulven to activate apoptosis via caspase 2 and dependent on 

the mitochondrial pathway. In this study, we sought to determine the role of the death 

receptor mediated apoptotic pathway after irofulven treatment. We used isogenic mouse 

embryonic fibroblasts proficient and deficient for caspase 8 to demonstrate that cells 

lacking caspase 8 function actually activated apoptosis more strongly than caspase 8 

proficient cells. We verified this phenomenon using NB7 neuroblastoma cells, which lack 
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expression of the caspase 8 protein, paired with NB7 cells with reconstituted caspase 8 

function.    
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Materials and Methods 

 

Cell culture and Reagents 

Mouse embryonic fibroblasts (MEFs) knocking-out caspase-8  were cultured in DMEM 

(Mediatech, Herndon, VA) supplemented with 10% fetal bovine serum and 

penicillin/streptomycin in a 37°C incubator with 5% CO2 atmosphere. Previously 

described NB7 cells were cultured under the same conditions in RPMI (Mediatech, 

Herndon, VA) media supplemented with 10% fetal bovine serum and 

penicillin/streptomycin (41).  

 

Apoptosis ELISA 

 Apoptosis ELISA was performed using the Cell Death Detection ELISAPLUS kit 

(Roche, Indianapolis, IN) according to manufacturer’s instructions to detect cytoplasmic 

histone-associated DNA fragments (mono- and oligonucleosomes). Cells were plated in 

6-well plates and allowed to attach overnight. Treatment with irofulven was done with 

various doses and exposure times as noted. After drug exposure, both the floating and 

adherent cells were collected and washed with ice-cold PBS. Cell pellets were then lysed 

in provided lysis buffer for 30 min at room temperature followed by 10 min of  

centrifugation at 1500 g. The supernatant (20 μl) was added to each well along with 80 μl 

of immunoreagent consisting of anti-DNA and anti-POD antibodies. Microplate was 

covered and allowed to shake at 300 rpm for two hours at room temperature. Following 

incubation, the wells were washed three times with incubation buffer and 100 μl of ABTS 
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solution was added. Microplate was allowed to shake at 250 rpm for 5-10 minutes and 

then read at 405 nm on a spectrophotometer (Molecular Devices, Sunnyvale, CA). 

Results are reported as fold change from untreated cells minus background and represent 

three independent experiments. 

 

Western blotting 

 Western blot was performed as described previously (42). Whole cell lysates (100 

μg) were separated by SDS-PAGE. Primary antibodies used were: rat anti-mouse caspase 

2 (1:1000), rat anti-mouse caspase 8 (1:1000; Alexis Biochemicals, San Diego, CA) 

mouse anti-human caspase 8 (1:500; BD Biosciences, San Jose, CA), rabbit anti-Apaf-1 

(1:100; Santa Cruz Biotechnology, Santa Cruz, CA), mouse anti-pERK (E-4), goat anti-

ERK2 (C-14) (1:1000, Santa Cruz Biotechnology, Santa Cruz, CA) and mouse anti-actin 

(1:5000; Sigma, St. Louis, MO). Secondary antibodies used were: sheep anti-mouse IgG-

HRP, sheep anti-rabbit IgG-HRP (1:4,000; GE Healthcare, Piscataway, NJ) and goat anti-

rat IgG-HRP (1:4000; Santa Cruz Biotechnology, Santa Cruz, CA). All dilutions were 

done as indicated in 1X PBS, 0.1% Tween 20 and 5% milk.  

 

Clonogenic survival assay 

 To determine chemosensitivity, clonogenic survival assay was performed as 

previously described (42). Cells were plated in 60 mm dishes overnight in complete 

medium and were treated with different concentrations of irofulven for 24 h. Medium 

was then replaced with fresh drug-free medium and incubated for 7–10 days. Colonies 

were stained with PBS containing 0.04% crystal violet and 0.5% paraformaldehyde for 

 148 
 

 



about 10 min. Staining liquid was aspirated and colonies counted. Results are reported as 

treated divided by untreated control and represent 3 individual experiments. 

    

Annexin V Staining 

 Analysis of cells undergoing apoptosis was measured by Annexin V staining and 

flow cytometry using a commercial kit from Sigma (St. Louis, MO) and according to the 

manufacturer’s protocol. Cells were treated with irofulven for 18 hours and harvested by 

mechanical detachment. Cells were then washed with PBS and re-suspended in the 

supplied 1X binding buffer followed by the addition of 5 μL of annexin V-FITC and 10 

μL of propidium iodide. Samples were incubated for 10 min at room temperature in the 

dark followed by measurement of annexin V and PI content (20,000 events each) using a 

FACSCalibur cytometer with CellquestPro software (BD Biosciences, San Jose, CA). 

Cells that are in the early stages of or already undergoing apoptosis will stain positive for 

only the annexin V-FITC. Necrotic cells will stain positive for both annexin V-FITC and 

PI due the compromised integrity of the membrane. Live cells will show no staining by 

either annexin V-FITC or PI.  
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Results 

   

Irofulven induced apoptosis is independent of caspase 8 

 Although it’s role is somewhat controversial, activation of the death receptor 

mediated pathway of apoptosis has been shown to modulate chemosensitivity in several 

tumor types (43-49). In this study, we sought to define the role of caspase 8 in irofulven 

induced apoptosis. Our first model for activation of the death receptor pathway was 

caspase 8 -/- and +/+ MEFs. We first verified the status of caspase 8 in these cells with 

western blot analysis (Figure 1A). We then used a DNA fragmentation ELISA to 

determine the induction of apoptosis after irofulven treatment. Using TNFα as a positive 

control, we observed that caspase 8 proficient cells actually underwent less activation of 

apoptosis than their caspase 8 deficient counterpart at both 5 and 10 μM doses (Figure 

1B). To determine whether this phenomenon translated into increased survival, we 

performed clonogenic survival assay by treatment of the caspase 8 -/- and +/+ cells for 24 

hours followed by incubation for several days. Consistent with earlier results, we 

observed that caspase 8 +/+ cells realized increased survival after irofulven treatment.  

 Given the fact that our observations were unique and unexpected, we had to 

consider the possibility that this was a cell type specific response that was exclusive to 

the set of MEFs that we used in these experiments. To verify the results, we chose the 

NB7 neuroblastoma cell line that lacks caspase 8 function. When paired with a wild type 

reconstituted NB7 cell line, this made another good model system to study the role of 

caspase 8 in irofulven induced apoptosis. We first verified the status of the caspase 8 

protein in these cells (Figure 2A). When then used the DNA fragmentation ELISA to 
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determine induction of apoptosis. Using TNFα as our positive control, we once again 

observed that cells lacking caspase 8 activity induced apoptosis to a greater degree than 

caspase 8 proficient cells. At both 5 and 10μM doses, the NB7- cells showed increased 

DNA fragmentation after treatment with irofulven (Figure 2B). To verify these results, 

we also used annexin V and flow cytometry analysis to measure apoptosis in the NB7 set 

of cells. Consistent with our previous experiments, TNFα preferentially activated 

apoptosis in NB7+C8 cells while irofulven treatment resulted in increased levels of 

annexin V positive cells in NB7- cells. A representative histogram of the results is shown 

in figure 2C and a graphical illustration depicting the mean of triplicate experiments is 

shown in figure 2D. This set of experiments provided strong evidence for a protective 

role of caspase 8 in response to irofulven treatment. 

 

Role of ERK in irofulven induced apoptosis 

 We next set out to determine what could be modulating this unusual phenomenon 

of caspase 8 dependent protection from irofulven induced apoptosis. We decided to look 

at ERK as a possible regulator based on the fact that caspase 8 has been shown to 

promote cell motility along with the observation that caspase 8 is able to regulate ERK 

phosphorylation under nonapoptotic conditions (14) (Steve Frisch, personal 

communication). These data provide a plausible link from caspase 8 to MAP kinase 

signaling leading to increased tumor aggressiveness. We used a phospho-ERK specific 

antibody to probe irofulven treated NB7- and NB7+C8 cells. Our results did indicate a 

slight increase of pERK at the 4h timepoint with negligible differences at 18 and 24 hours 

(Figure 3A).  

 151 
 

 



 Based on these results, we did similar analysis of caspase 8 -/- and +/+ cells at 

early timepoints. We observed that pERK levels in the caspase 8 +/+ cells seemed to be 

increased over the caspase 8 -/- cells at 4 hours when treated with the 20μM dose (Figure 

3B). Using the 30 μM dose, we treated cells with irofulven and harvested at one hour 

intervals up to 4 hours to determine a timeline for pERK activity. Interestingly, we 

observed early induction of ERK phosphorylation in both cells at 1 hour followed by a 

drop in pERK levels at 2 hours (Figure 3C). After the initial phosphorylation then drop, 

the caspase 8 +/+ cells showed increased pERK levels at 3 and 4 hours, whereas the 

caspase 8 -/- cells only showed a slight increase again at 4 hours. This biphasic response 

was reproducible by western blot analysis with variable times for initial phosphorylation 

followed by a drop in pERK levels only to increase again within 3-4 hours. These results 

demonstrate a role for ERK activity in response to irofulven treatment that is not well 

defined. 

 To determine how modulation of ERK activity was affecting induction of 

apoptosis, we used the MEK inhibitor PD98059 in conjunction with apoptosis ELISA to 

measure how DNA fragmentation changed when irofulven treated cells were pretreated 

with the inhibitor. In our caspase 8 -/- and +/+ MEFs, we pretreated for 30 minutes with 

PD98059 before addition of irofulven. Measurement of apoptosis revealed that inhibition 

of ERK lead to a decrease in apoptosis with some dependence on caspase 8 (Figure 3D). 

Caspase 8 +/+ cells treated with PD nearly shut down apoptosis completely where as 

caspase 8 -/- cells showed only a slight decrease. The PI3 kinase inhibitor LY294002 was 

also used in this experiment to rule out activation of the PI3K pathway as a survival 

signal.  
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Discussion        

 

 In this study, we demonstrated that not only does caspase 8 not sensitize cells to 

irofulven induced apoptosis, but it leads to protection from it. We established that caspase 

8 -/- MEFs induced more apoptosis and were more chemosensitive than caspase 8 +/+ 

cells. Given this unique response to irofulven, we also corroborated this phenomenon in 

NB7- and NB7+C8 cells.  

 Although the mitochondrial pathway is thought to play a major role in response to 

many chemotherapeutics, a number of anticancer agents have been shown to induce 

apoptosis in tumors dependent on the activity of caspase 8 and the death receptor 

mediated pathway (44, 45, 50, 51). This led us to explore a role for caspase 8 in irofulven 

induced apoptosis. A protective role for caspase 8 was not expected but is not without 

merit. Recent mounting evidence has linked several members of the caspase family to 

nonapoptotic cellular roles including embryonic development, macrophage 

differentitation, T cell proliferation and cell motility (13-20). More specifically, in 

caspase 8 null mouse embryo fibroblasts, caspase 8 was shown to contribute to increased 

cell motility under nonapoptotic conditions (14). Our observation that caspase 8 leads to a 

protective effect after treatment with irofulven, adds to the notion that caspase 8 may 

have an as of yet undefined function relating to cell survival. We sought to determine the 

role of ERK activity in response to irofulven treatment based on data implicating caspase 

8 dependent phosphorylation of ERK under nonapoptotic conditions (Steve Frisch, 

personal communication). As our results indicate, ERK seems to be acting as 

proapoptotic signal as when we pretreat using the MEK inhibitor, PD98059, we severely 
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inhibit the induction of apoptosis. This led us to rule out the possibility that ERK was 

acting as a survival signal and opened up a multitude of other possible signals to explore.    

 In support of the notion that an undefined survival signal is being activated, 

during our experiments carried out with irofulven treatment in conjunction with 

PD98059, we actually saw an increase in cell proliferation in the irofulven and PD treated 

group as compared to the untreated control (unpublished observation). Whereas the 

untreated group were about 60% confluent in this experiment, the irofulven + PD group 

reached 100% confluency indicating the activation of an undefined survival signal. This 

also led us to the conclusion that ERK was acting as a strong proapoptotic signal in 

response to irofulven. This observation is substantiated by a number of studies that 

outline a proapoptotic function for ERK in response to drug treatment (52-54). It must 

also be noted that ERK has been reported to abrogate the Fas-mediated death signal by 

inhibition of Bid cleavage by caspase 8 while not affecting DISC assembly (55, 56). The 

opposite effect seen in various cells types could very well be a cell type specific 

mechanism much like caspase 8 mediated killing can be differentiated into type I and II 

cells. Much remains to be determined about interactions between caspase 8 and ERK 

including what role they play in modulating apoptosis.     

 In summary, our current study has revealed a role for caspase 8 that protects 

MEFs and NB7 cells from irofulven induced apoptosis. We have also demonstrated that 

ERK activation leads to apoptosis as evidenced by increased survival when we block 

with the PD98059 MEK inhibitor. The interesting phenomenon that remains to be 

elucidated is what sort of signal could be activated in a caspase 8 dependent manner 

leading to increased survival of caspase 8 proficient cells in response to irofulven.  
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Figure Legends 

 

Figure 1. Caspase 8 protects mouse embryo fibroblast cells from irofulven induced 

apoptosis. A. Western blot analysis was performed to verify the protein expression status 

of the caspase 8 -/- and +/+ MEFs. Actin serves as loading control. B. Induction of 

apoptosis was determined by ELISA measuring fragmentation of DNA. Caspase 8-/- and 

+/+ cells were treated with 5 and 10 μM of irofulven for 24 hours. The relative apoptosis 

was calculated as fold change from untreated cells minus background. The mean and 

standard deviation of triplicate experiments are shown. TNFα serves as positive control 

for induction of the death receptor mediated apoptosis pathway. C. Clonogenic survival 

assay was performed in the caspase 8-/- and +/+ MEFs. Cells were treated with 1, 2 and 4 

μM of irofulven for 24 hours before incubation in drug free media. The mean and 

standard deviation of triplicate experiments are presented.  

 

Figure 2. Caspase 8 protects NB7 cells from irofulven induced apoptosis. A. Western 

blot analysis was performed to verify the protein expression status of the NB7- and 

NB7+C8 neuroblastoma cells. Actin serves as loading control. B. Induction of apoptosis 

was determined by ELISA measuring fragmentation of DNA. NB7- and NB7+C8 cells 

were treated with 5 and 10 μM of irofulven for 24 hours. The relative apoptosis was 

calculated as fold change from untreated cells minus background. The mean and standard 

deviation of triplicate experiments are shown. TNFα serves as positive control for 

induction of the death receptor mediated apoptosis pathway. C. Annexin V staining was 

performed to quantify induction of apoptosis. NB7- and NB7+C8 cells were treated with 
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20 and μM of irofulven for 18 hours followed by annexin V and PI staining. 

Representative histograms are shown for each sample. D. Graphical representation of the 

mean for triplicate experiments are shown. E. Clonogenic survival assay was performed 

in the NB7- and NB7+C8 neuroblastoma cells. Cells were treated with 3, 5 and 7 μM of 

irofulven for 24 hours before incubation in drug free media. The mean and standard 

deviation of triplicate experiments are presented.    

 

Figure 3. Erk is rapidly phosphorylated after treatment with irofulven and acts in a 

proapoptotic role. A. Western blot analysis was performed on whole cell lysates from 

NB7- and NB7+C8 cells using a pERK specific antibody. Cells were treated with 30 μM 

of irofulven for the indicated times. ERK2 serves as loading control. B. Western blot of 

caspase 8 -/- and +/+ MEFs was done after treatment with 20 and 30 μM irofulven for 2 

and 4 hours. ERK2 serves as loading control. C. Short time course western blot after 30 

μM treatment with irofulven in the caspase 8 -/- and +/+ MEFs reveals an early activation 

followed by a decrease in both cells before an increase in caspase 8 +/+ cells. ERK2 

serves as loading control. D. Induction of apoptosis was determined by ELISA measuring 

fragmentation of DNA. Caspase 8 -/- and +/+ MEFs were treated with 5 and 10 μM 

irofulven with and without PD98059 and LY290042. Mean of triplicate experiments is 

shown.  
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Figure 1. Caspase 8 protects mouse embryo fibroblast cells from irofulven induced 

apoptosis. 
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Figure 2. Caspase 8 protects NB7 cells from irofulven induced apoptosis. 
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Figure 2D 
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Figure 3. Erk is rapidly phosphorylated after treatment with irofulven and acts in a 

proapoptotic role. 
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Figure 3C 
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Figure 3D 
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 The broad aim of our study was to determine the DNA damage response induced 

by irofulven. Specifically, we were interested in determining the role that BRCA1 played 

in this response and whether it would modulate chemosensitivity. We also sought to 

characterize the type of DNA damage caused by drug treatment. Lastly, we wanted to 

determine the involvement of caspase dependent apoptosis in response to irofulven.    

 The DNA damage response is a broad signaling network with the ability to sense 

damage to DNA and respond via multiple cellular mechanisms to ensure genomic 

integrity and prevent harmful mutations. Coordination of the DNA damage response is a 

multi-faceted response involving damage sensors, cell cycle checkpoints, and DNA repair 

proteins (1). Cells are also programmed with the ability to induce apoptosis if DNA 

damage is not able to be repaired (2). While many proteins have been identified that 

participate in the DNA damage response, the coordination and exact mechanism of the 

response remains to be elucidated. It is however apparent that the response to DNA 

damage is crucial for safeguarding the genome and avoiding neoplasia (3, 4). It is also a 

crucial characteristic of inherited cancers that could be exploited for therapeutic benefit.  

 In this study, we examined the activation of the DNA damage response elicited by 

a novel anti-cancer agent, irofulven. We initiated this study based on a preliminary 

observation that irofulven was able to produce chromosome abberations, including breaks 

and multi-radial structures, in several ovarian cancer cell lines as well as a breast cancer 

cell line lacking BRCA1. The first natural step to characterize the response was to 

determine the activation of DNA damage checkpoints and their dependence on BRCA1. 

We were able to clearly demonstrate BRCA1 dependent activation of the S phase and 
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G2/M checkpoints in an isogenic breast cancer model with and without BRCA1. 

HCC1937 cells with reconstituted BRCA1 protein experienced a several fold decrease in 

DNA synthesis after treatment as compared to HCC1937 cells lacking BRCA1. We also 

showed that the G2/M checkpoint was activated in a BRCA1 dependent manner as 

measured by the number of cells entering mitosis. We used phospho-histone 3, a mitosis 

specific marker, to show the immediate activation of the G2/M checkpoint after treatment 

with irofulven. HCC1937 cells lacking BRCA1 failed to arrest at the G2 checkpoint 

while their BRCA1 proficient counterpart arrested before entering mitosis.          

 After demonstrating the activation of DNA damage checkpoints, we determined 

that treatment of breast cancer cells with irofulven resulted in the formation of DSBs and 

that cells lacking BRCA1 were several-fold more sensitive to treatment. This is an 

important piece of data which links the accumulation of DSBs to the lack of the HR 

repair pathway in BRCA1 deficient cells. Cells lacking BRCA1 failed to assemble Rad51 

containing nuclear foci which are essential for the HR repair process. We also used comet 

assay and pulse field gel electrophoresis to measure the accumulation of DSBs after drug 

treatment. We found that cells lacking BRCA1 function accumulated more DSBs over 

time as compared to the BRCA1 proficient cells. The data from these experiments 

solidified the concept that the lack of the HR repair process in BRCA1 deficient cells 

contributes to increased sensitivity. 

 To further determine what role BRCA1 may play in overall resistance to irofulven 

treatment, we performed clonogenic survival assay. This assay demonstrated that 

chemosensitivity was increased several fold when cells lacked functional BRCA1. This 

highlights the clinical relevance of the project in that women who harbor a BRCA1 

 179 
 

 



mutation may respond more robustly to treatment with irofulven while those with 

functional BRCA1 may be more resistant. Since BRCA1 plays an important role in 

response to DNA damage, an inherited loss or mutation could potentially be exploited for 

therapeutic gain (5, 6). Response to chemotherapeutics based on BRCA1 status raises an 

important question regarding clinical outcomes of patients who render BRCA1 

mutations. BRCA1 has been shown to modulate response to different types of anticancer 

agents by either increasing sensitivity or resistance. Specifically, BRCA1 has been shown 

to increase resistance several fold to agents that cause DNA damage such as DSBs, while 

it increases sensitivity several fold to spindle poisons (7). Several studies have noted a 

modulation of sensitivity to DNA damaging agents based on BRCA1 status including the 

standard therapies of IR and cisplatin (7-13). Many times, these studies are able to link 

chemosensitivity to a specific function of BRCA1 such as DNA repair or checkpoint 

control. This type of response highlights the contrasting pathways that chemotherapeutics 

activate and emphasizes the need for individualized therapy based on status of important 

markers that include BRCA1. These findings could easily translate into a clinical study in 

which patient response is determined based on status of BRCA1 mutations. Since 

BRCA1 mutations are prevalent in early onset breast cancer, it would be feasible to 

gather data from phase 2 clinical trials of irofulven and sort the data based on a number 

of known mutations.             

 This study represents the first data that demonstrates the ability of irofulven to 

produce double strand breaks. This is an important fact based on the knowledge that the 

type of DNA lesion induced has a strong impact on the responding pathways. 

Chemotherapeutic agents such as cisplatin or mitomycin C cause interstrand crosslinks 
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(ICLs) repaired by recombinational repair, either NHEJ, HR or a combination of both as 

well as NER (5). Patients with mutations in key repair proteins often display 

hypersensitivity to DNA damaging agents (14-16). This data also provides key 

mechanistic information and a rationale to explore whether other proteins involved in the 

repair of DSBs are able to modulate chemosensitivity to irofulven and other DNA 

damaging agents.  

 One such protein, FANCD2, belongs to the fanconi anemia family of proteins and 

is mutated in a rare genetic disorder leading to genomic instability and sensitivity to DNA 

cross-linking agents (17, 18). A large complex of fanconi anemia proteins is assembled at 

the sites of DSBs leading to activation of  FANCD2 which has been shown to interact 

with BRCA1, BRCA2 and Rad51 as key components in regulation of HR repair (17-21). 

Concurrently with this project, our lab also demonstrated that chemosensitivity to 

irofulven could also be modulated by FANCD2 (22). This supports the notion that other 

proteins involved in the HR repair process are important for response to irofulven and 

could be used to predict sensitivity. These studies will add to our ability to provide 

individualized therapy based on important markers linked to specific mechanisms of 

action and therapeutic response. It also provides a reasonable basis to further study 

proteins involved in the HR repair pathway as potential modulators of chemosensitivity 

to irofulven.   

 Another aspect of the DNA damage response that we investigated was the 

induction of apoptosis after irofulven treatment. Our last aim was to determine the 

specific caspase dependent response to irofulven. We started by investigating the role that 

caspase 2 played in cell death after irofulven treatment. We determined that irofulven 
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induced cell death was initiated by caspase 2 and was also mediated by the mitochondrial 

pathway. This is in line with much evidence that suggests the mitochondrial pathway as a 

key regulator of chemotherapy and ionizing radiation induced apoptosis (23-28). Caspase 

2 is unique in that the structure and sequence homology are closely related to that of the 

other initiator caspases while the cleavage specificity is more closely related to 

executioner caspases 3 and 7 (29). Several studies have demonstrated a role for caspase 2 

in initiating apoptosis upstream of the mitochondria and it appears to be required for 

induction of apoptosis triggered by DNA damage (30-35). Our results indicate an 

activation of apoptosis that is initiated by caspase 2 and subsequently mediated through 

the mitochondrial pathway. The mitochondrial controlled pathway is a key component in 

the induction of apoptosis in response to ionizing radiation and several 

chemotherapeutics (23, 26-28). Consistent with these studies, we found that the 

mitochondrial pathway played a role in apoptosis induced by irofulven. Importantly, we 

also noted that caspases 2 and 9 render cells more chemosensitive to irofulven. This is an 

important test that determines whether a specific protein could be used to predict 

therapeutic outcome.    

  How caspase 2 is activated by various stress stimuli is still poorly understood. It 

has been reported that caspase 2 activation occurs by forming complex with PIDD (p53-

induced protein with a death domain) and the adapter protein RAIDD (RIP(ribosome-

inactivating protein)-associated ICH-1/CED-homologous protein with death domain). 

Increased PIDD expression may result in caspase 2 activation as a means to regulate 

apoptosis (16, 41). However, a recent study indicated that caspase 2 activation is 

independent of p53 in response to docetaxel-induced apoptosis (11). We have observed 
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that irofulven induces p53 accumulation and activation (31, 34). However, we and others 

have conducted studies in tumor cell lines with wild-type, mutant or null p53; and 

demonstrated that the cytotoxicity induced by irofulven is independent of p53 status (34, 

42). Therefore, caspase 2 initiated apoptosis induced by irofulven may not be regulated 

by p53. Additional work is required to identify the potential proteins triggering caspase 2 

activation as well as the link between DNA damage signaling and caspase 2 in response 

to irofulven.           

 The next goal in our investigation of irofulven induced apoptosis was to 

determine the role of the death receptor pathway. In this study, we demonstrated that 

caspase 8 activity protected both MEFs and NB7 cells from irofulven induced apoptosis. 

We also determined that cells lacking caspase 8 are more sensitive to treatment than their 

wild type counterpart. Numerous studies have demonstrated a role for mitochondrial 

controlled apoptosis in response to DNA damaging agents and ionizing radiation, but 

there is also evidence for involvement of the death receptor mediated pathway (23, 26-28, 

36-39). This led us to explore a role for caspase 8 in irofulven induced apoptosis. 

Surprisingly, we found that caspase 8 seemed to offer protection from irofulven induced 

apoptosis. This represents a novel finding based on what we know about other DNA 

damaging agents.  

 We were also able to determine that the MAP kinase pathway, specifically ERK, 

was acting as a proapoptotic signal in both the MEF and NB7 sets of cells. We provided 

evidence that blocking the phosphorylation of ERK using the PD98059 MEK inhibitor 

we were able to significantly reduce induction of apoptosis. A question still remains as to 
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whether this would modulate an increased survival overall or was a short term effect that 

could be compensated for via alternate pathways.  

 One of the more interesting observations we made was the apparent survival 

response we saw in irofulven treated cells with wild type caspase 8 function. An 

empirical observation was made while carrying out the experiments involving the 

PD98059 inhibitor in conjunction with irofulven treatment. We noticed that cells 

pretreated with PD98059 followed by addition of irofulven actually increased cell 

proliferation versus the untreated control group. Cells were plated at approximately 30% 

confluence before they were subjected to any type of treatment. Within 12-18 hours after 

cells were treated the control group had grown to approximately 60% confluence while 

the irofulven + PD98059 group had reached nearly 100% confluence. This was compared 

to the irofulven only group which was still around 30% confluency with a number of 

cells floating in the media. This experiment serves as a preliminary experiment that raises 

a number of new questions about the mechanism of action of irofulven. It strongly 

suggests the activation of a survival or proliferation signal that is somehow dependent on 

activity of caspase 8. Elucidation of this signal represents the beginning of a new 

investigation which might help explain the protective effect we see when caspase 8 

proficient cells are treated with irofulven.  

 We briefly looked at the possibility that the PI3 kinase pathway might serve as the 

survival signal by using the LY290042 inhibitor in conjunction with irofulven. Our 

preliminary results indicated that PI3 kinase is not acting as the survival signal, but our 

data was not thorough enough to draw a reliable conclusion. This opens the door to a 
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number of experiments that could be carried out in order to determine if caspase 8 does 

indeed activate a survival response.                 

 Collectively, the work discussed here has elucidated several aspects of the DNA 

damage response activated by irofulven. We have demonstrated the activation of both S 

and G2/M cell cycle checkpoints in a BRCA1 dependent manner. We have illustrated that 

irofulven treatment results in the formation of double strand breaks and that BRCA1 

helps to maintain chromosome integrity in response to irofulven. We have shown that the 

DSBs formed by irofulven treatment are repaired via homologous recombination and that 

cells that are deficient in the repair of DSBs are more chemosensitive. Furthermore, we 

have demonstrated that cell death after irofulven treatment in initiated in a caspase 2 

dependent manner and also involves activation of the mitochondrial pathway. We have 

elucidated a mechanism whereby caspase 8 is able to protect from irofulven induced 

apoptosis and determined that ERK is involved as a proapoptotic signal. We have also 

noted the potential activation of a survival signal by irofulven that may serve as a 

mechanism for the increased chemoresistance we observed in caspase 8 proficient cells. 

Taken together, this work has provided insight into the mechanism of action of irofulven 

that can be used to individualize therapy as well as providing a foundation for further 

investigation into the signals activated by this novel DNA damaging agent.     
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