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ABSTRACT 

 

Cardiac and Mitochondrial Dysfunction during Diabetes Mellitus: Examination of 

Mitochondrial Import Mechanisms 

 

Danielle Lee Shepherd 

 

Approximately 9% of the United States population is diagnosed with diabetes mellitus 

(DM), which is comprised of 2 distinct pathologies: type 1 diabetes mellitus (T1DM) and type 2 

diabetes mellitus (T2DM). T1DM, which is caused by insufficient insulin production, affects 

approximately 5% of diabetic patients, while T2DM results from insulin resistance and affects 

95% of all diabetic patients. Within diabetic patients, cardiac complications, such as diabetic 

cardiomyopathy, are the leading cause of morbidity and mortality. The mitochondrion has been 

implicated as an underlying factor in the etiology and progression of the cardiac contractile deficits 

and cardiac failure that accompany DM. The study of cardiac mitochondria is further complicated 

by the presence of two distinct mitochondrial subpopulations residing within the cardiomyocyte. 

The pool of mitochondria existing beneath the sarcolemmal membrane are termed the 

subsarcolemmal mitochondria (SSM), while the group that exists between the myofibrils is called 

the interfibrillar mitochondria (IFM). Assessment of mitochondrial subpopulations has revealed 

differential impact to both physiological and pathological stimuli. Specifically, during DM, the 

IFM are most impacted during T1DM, with the SSM being most impacted under T2DM 

pathological insult. During DM, proteomic analyses by our laboratory and others reveal decreased 

abundance of nuclear-encoded mitochondrial proteins essential for processes such as oxidative 

phosphorylation, fatty acid oxidation and tricarboxylic acid cycle in the subpopulation 

predominantly impacted by the DM type. Further, our laboratory has previously shown import 

efficiency to be down in the T1DM IFM, which could play a role in the proteomic dysregulation. 

Approximately 99% of the mitochondrial proteome is composed of nuclear-encoded proteins 

imported into the mitochondrion via a complicated mechanism of translocation that coordinates 

both the outer and inner mitochondrial membranes, thus highlighting the importance of studying 

the nuclear-encoded mitochondrial protein import process during pathological states. To date, 

evaluation of the diabetic heart using a highly sensitive echocardiographic analysis software in 

order to assess subtle changes in left ventricular function prior to overt contractile dysfunction 

during DM has not been completed. Additionally, the differential proteomic alterations in 

mitochondrial subpopulations resulting from distinct DM pathologies and the evaluation of 

inefficient nuclear-encoded mitochondrial protein import due to decrements in a key import 

constituent in the mitochondrial subpopulation predominantly affected, mitochondrial heat shock 

protein 70 (mtHsp70), have not been completed. Further, the mechanisms involved in miRNA 

import into the mitochondrion during DM remains limited. Therefore, the goal of the following 

studies was to examine subpopulation-specific mitochondrial proteome disruption stemming from 

inefficient nuclear-encoded mitochondrial protein import and/or increased miRNA influx into the 

mitochondrion, thus leading to increased contractile dysfunction during DM. T1DM was induced 

in 6-week-old mice with multiple low-dose (50mg/kg) streptozotocin (STZ) injections for 5 

consecutive days. Hyperglycemia was confirmed and echocardiography performed at weeks 1, 3 

and 6 post-diabetic onset. Conventional analyses revealed cardiac contractile deficits relative to 

control at 6-weeks post-T1DM onset. In contrast, short- and long-axis analyses using the speckle-

tracking based strain analysis software demonstrated changes in the LV myocardium as early as 



1-week post-diabetic onset. These findings show that analysis of myocardial function using 

speckle-tracking based strain analyses could provide a more precise method for evaluating cardiac 

contractile dysfunction during the progression of different pathological states. Our laboratory has 

previously shown that proteomic alterations specific to the T2DM SSM and T1DM IFM occur, 

potentially due to a decrement in nuclear-encoded mitochondrial protein import. Because 

mtHsp70, an essential component in the import of nuclear-encoded proteins into the mitochondrion 

is consistently down during DM, we generated a novel transgenic line with a cardiac-specific 

overexpression of mtHsp70. We subjected this line to STZ to generate a T1DM mouse model with 

mtHsp70 overexpression. Further, we utilized the db/db mouse model for T2DM and with a novel 

ovarian transplantation procedure, we were able to generate an increased abundance of mtHsp70 

db/db and control animals, which were approximately 20-weeks-old before hearts were excised 

and mitochondrial subpopulations isolated. When assessing nuclear-encoded mitochondrial 

protein import efficiency in the mitochondrial subpopulations during both types of DM, we found 

decrements to this process in the SSM of T2DM mice and IFM of T1DM mice, which was 

subsequently restored with mtHsp70 overexpression.  Further, alterations to the most impacted 

mitochondrial subpopulations proteome were noted, with mtHsp70 affording protection. 

Additionally, we also found mtHsp70 protein content to be down in the T1DM and T2DM human 

heart. These findings support the rationale for the use of mtHsp70 as a mitochondrial-targeted 

therapeutic capable of protecting the mitochondrial subpopulation most impacted during the 

different types of DM. Interestingly, the mitochondrial proteome could also be affected by 

redistribution of microRNAs (miRNAs) during a pathological setting. MiRNAs are able to regulate 

protein expression via transcriptional and translational repression and are suggested to be located 

within the mitochondrion. Our laboratory has previously shown detrimental impact to the IFM due 

to redistribution of miR-141 and miR-378 during T1DM. This emphasizes the importance of 

studying how miRNA are able to translocate into the mitochondrion, a mechanism that currently 

remains unknown. Therefore, we assessed the involvement of polynucleotide phosphorylase 

(PNPase), a protein located in the mitochondrial intermembrane space, in the import of miRNA 

into the mitochondrion. We found PNPase to be associated with argonaute 2 (Ago2), a component 

of the RNA-induced silencing complex (RISC). PNPase was found to have an increased expression 

in the SSM during T2DM, along with an increased association with Ago2. PNPase protein 

expression is also significantly increased in mitochondria from T2DM human patients. Further, an 

increased presence of miR-378 within the mitochondrion was noted, which corresponded to a 

decrease in ATP6 protein content and ATP synthase function. Overexpression of PNPase in the 

HL-1 cardiomyocyte cell line revealed similar results. These findings show for the first time a 

potential component involved in the mechanism of miRNA import into the mitochondrion. 

Overall, the studies highlighted above indicate that speckle-tracking based strain analyses provide 

a mechanism to detect subtle changes in LV myocardial function during the progression of DM. 

Further, through manipulating mtHsp70, the driving force behind nuclear-encoded mitochondrial 

protein import, we highlight the novel therapeutic paradigm in which multiple dysfunctional 

processes are corrected through a single protein target capable of restoring mitochondrial and 

cardiac contractile function independent of DM type. We have shown for the first time a potential 

constituent involved in the complicated import process of miRNA into the mitochondrion. In 

conclusion, targeted therapeutics generated to correct disrupted mitochondrial mechanisms during 

DM, may provide cardiac benefit via reduced mitochondrial dysfunction and preservation of the 

mitochondrial proteome, ultimately leading to restored cardiac function and a better quality of life 

for diabetic patients.  
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SPECIFIC AIMS 

Approximately 9% of the United States population is diagnosed with diabetes mellitus 

(DM) and diabetic cardiomyopathy is the leading cause of heart failure in diabetic patients (1). 

Type 1 diabetes mellitus (T1DM), caused by insufficient insulin production, affects approximately 

5% of diabetic patients, while type 2 diabetes mellitus (T2DM) results from insulin resistance and 

affects 95% of all diabetic patients (2). The mitochondrion has been identified as a central 

contributor to contractile dysfunction during DM, with echocardiographic speckle-tracking based 

strain analyses allowing for an early detection of subtle myocardial changes (7, 8, 13). Examination 

of mitochondrial dysfunction during DM is further complicated by the presence of two distinct 

mitochondrial subpopulations residing within the cardiomyocyte (11). A pool of mitochondria 

exists beneath the sarcolemmal membrane, the subsarcolemmal mitochondria (SSM), while 

another group exists between the myofibrils, the interfibrillar mitochondria (IFM). Approximately 

99% of the mitochondrial proteome is composed of nuclear-encoded proteins, which are imported 

into the mitochondrion via a complicated mechanism coordinating both the outer and inner 

mitochondrial membranes (3, 12, 14). Proteomic analyses by our laboratory and others reveal 

decreased abundance of nuclear-encoded mitochondrial proteins, essential for processes such as 

oxidative phosphorylation, fatty acid oxidation (FAO) and tricarboxylic acid cycle (TCA), during 

DM (4, 5, 9, 15). Further, our laboratory has shown decreased nuclear-encoded mitochondrial 

protein import in the T1DM IFM (5). Prior to this dissertation, evaluation of the diabetic heart 

using speckle-tracking based strain analyses had not been studied to determine if subtle changes 

occur prior to overt cardiac dysfunction. Additionally, it was unknown if a key constituent in 

nuclear-encoded mitochondrial protein import would serve as a locus for reversal of the 

dysfunction seen during the pathology. Finally, this dissertation also provides insight into a 



 

xx 

 

potential constituent involved in the mechanism of import of microRNAs (miRNAs) into the 

mitochondria. 

Our long-term goal was to identify mechanisms to alleviate adverse cardiac and 

mitochondrial effects associated with DM with the intent of providing a mechanism for therapeutic 

interventions to be designed. The objectives of this dissertation were to determine if during DM: 

(1) echocardiographic speckle-tracking based strain imaging analyses would lead to a greater 

ability to detect earlier changes in myocardial dysfunction; (2) mitochondrial heat shock protein 

70 (mtHsp70) would provide mitochondrial and cardiac contractile protection through increased 

mitochondrial proteome stability and nuclear-encoded mitochondrial protein import efficiency; (3) 

increased polynucleotide phosphorylase (PNPase) expression led to an increase in miRNA import 

into the mitochondrion via an association with the RNA-induced silencing complex (RISC).   

The central hypothesis of this dissertation was that strain analyses would offer the 

capability to detect early decrements in left ventricular (LV) myocardial strain resulting from 

mitochondrial dysfunction associated with a disrupted mitochondrial proteome potentially due to 

inefficient mitochondrial protein import or increased miRNA within the mitochondrion. Further, 

we hypothesized that mtHsp70 would rectify inefficiencies in nuclear-encoded mitochondrial 

protein import, thus restoring the mitochondrial proteome and cardiac contractile function. 

Notably, these effects would be most pronounced in the IFM during a T1DM insult and the SSM 

during a T2DM insult. The central hypothesis was based upon preliminary data produced in our 

laboratory indicating that cardiac contractile dysfunction occurs during DM and that the 

mitochondrial proteome is disrupted due to inefficient nuclear-encoded mitochondrial protein 

import or miRNA redistribution during the pathological setting (5, 6, 9, 10). Our rationale for the 

proposed research was based upon the notion that a greater understanding of the mechanisms 
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involved in mitochondrial dysfunction during DM, along with a non-invasive mechanism to 

evaluate and detect early myocardial contractile deficiencies, could potentially allow for the 

identification of key contributors to alleviate mitochondrial dysfunction, aiding in the development 

of a therapeutic paradigm to help combat cardiac complications in diabetic patients. We tested our 

central hypothesis by pursuing the following Specific Aims:  

 

Specific Aim I: Determine the therapeutic advantage for using speckle-tracking based strain 

imaging analyses versus conventional echocardiographic measurements in a small animal 

model of T1DM.  

To address Specific Aim I, we utilized the streptozotocin (STZ) T1DM mouse model and 

performed a time-course study to evaluate our working hypothesis. Our working hypothesis was 

that subtle changes in myocardial strain could be detected earlier using the speckle-tracking based 

strain imaging analyses prior to the onset of cardiac contractile dysfunction delineated by 

conventional echocardiographic measurements.  

 

Specific Aim II: Assess the cardioprotective efficacy of mtHsp70 overexpression on nuclear-

encoded mitochondrial protein import and mitochondrial proteome stabilization to alleviate 

cardiac mitochondrial and contractile dysfunction in the diabetic heart.  

MtHsp70 is a vital component to the mitochondrial protein import machinery. Located 

within the mitochondrial matrix, mtHsp70 provides the active motor for import of proteins into 

the mitochondrial matrix (3). Previous work from our laboratory demonstrated that this essential 

component of the protein import machinery is reduced during DM, potentially causing decreased 

efficiency in nuclear-encoded mitochondrial protein import leading to a deranged mitochondrial 
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proteome (5, 9). Overexpression of mtHsp70 was employed to assess its effect on proteome 

restoration and nuclear-encoded protein import efficiency during DM. Our working hypothesis 

was that overexpression of a cardiac-specific mtHsp70 during DM would restore nuclear-encoded 

mitochondrial protein import deficiencies, reverse proteome instability and alleviate cardiac 

contractile dysfunction. Further, these effects would be shown to occur in the IFM during T1DM 

and the SSM during T2DM.  

 

Specific Aim III: Elucidate the role of PNPase in the mechanism of miRNA import into the 

mitochondrion via RNA-induced silencing complex (RISC) association in the diabetic heart.  

To address Specific Aim III, we used the db/db mouse model for T2DM and evaluated 

PNPase protein expression levels, along with miR-378 levels within the mitochondrion. Further, 

we overexpressed PNPase in the HL1 cardiomyocyte cell line to examine the impact on miR-378 

translocation into the mitochondrion. Our working hypothesis was that the increased association 

of PNPase with the RISC would allow for increased miRNA transport into the mitochondrion 

during T2DM. Further, increased expression of miRNA, such as miR-378, could affect the 

mitochondrial genome and processes such as ATP production via ATP synthase.  

The research generated from this dissertation was innovative because it uses advanced 

imaging analysis techniques to detect early changes in the myocardium, allowing for early 

intervention strategies to be employed for DM patients with cardiac contractile abnormalities. 

Further, this dissertation expanded upon previous work of the laboratory utilizing a novel cardiac-

specific transgenic mouse line, which alleviated dysfunctional processes during DM. At the 

completion of these studies, we were able to utilize a non-invasive approach to detect subtle 

myocardial changes during T1DM in a small animal model. This type of analyses will allow 
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researchers to approach treatment of adverse cardiac function in different pathological states in 

small animal models at the earliest onset of myocardial abnormalities and evaluate the protection 

afforded by different therapeutic paradigms. Further, by manipulating mtHsp70, the driving force 

behind nuclear-encoded mitochondrial protein import, we highlighted the novel therapeutic 

paradigm in which multiple dysfunctional processes are corrected through a single protein target 

capable of restoring mitochondrial function independent of diabetic type. Finally, the outcomes on 

our research for PNPase during T2DM, enhanced our understanding of a potential player in the 

mechanism of miRNA import into the mitochondrion. Altogether, this dissertation research led to 

the increased understanding of mitochondrial dysfunction during DM and provided insight into 

potential therapeutic interventions that could be applied to the treatment of DM patients in order 

to increase their quality of life.   
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BACKGROUND AND SIGNIFICANCE 

 

1.1 Diabetes Mellitus 

Diabetes mellitus (DM) is a complex pathological condition characterized into two general 

types. The predominant form of DM is type 2 diabetes mellitus (T2DM), which encompasses 

approximately 95% of diabetic patients, while type 1 diabetes mellitus (T1DM) accounts for 5% 

of diabetic cases (353). Chronic hyperglycemia is a characteristic hallmark of DM and oftentimes 

leads to damage and failure of organs including the heart, eyes, kidneys and blood vessels (2). 

When left untreated, complications resulting from DM can result in death. Other lesser-known 

types of DM exist, such as gestational diabetes, which occurs during pregnancy along with DM 

arising from genetic conditions, surgeries, medications and other pancreatic diseases. A diagnosis 

for DM is generally associated with a fasting blood glucose level above 126 mg/dL and for type 1 

diabetics, insulin levels under 0.50 ng/mL (389). 

 

1.1a. Type 1 diabetes mellitus 

Affecting approximately 5% of diabetic patients, T1DM is characterized by a lack of 

insulin production due to the autoimmune destruction of the pancreatic β-cells, leading to insulin 

deficiency within the body (185). The presence of autoantigens within pancreatic islet cells, such 

as islet cell antigen, insulin, pro insulin, glutamic acid decarboxylase and protein tyrosine 

phosphatase, can promote the destruction of the β-cells (284). Factors such as genetic 

predisposition can lead to T1DM, but environmental factors including viral infections, parental 

age, and low birth weight have also been associated with its development (6). T1DM is also 

referred to as juvenile-onset diabetes, with the majority of T1DM cases occurring in children, 
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adolescents and young adults (35). Treatment of T1DM includes monitoring the blood glucose 

levels of patients and injection with insulin prior to the consumption of food, which allows the 

body to properly transport cellular glucose and utilize it efficiently. During T1DM, severe insulin 

deficiency leads to increased ketone body production in the liver, which causes a lowering of the 

pH of the blood, ultimately resulting in diabetic ketoacidosis (72, 435). Multiple organ and systems 

are affected during T1DM, including complications with the eyes, liver, kidneys, nervous system, 

skeletal muscle and heart (2). Diseases and issues such as retinal detachment, diabetic nephropathy 

leading to renal failure, amputations of limbs, periodontal and heart disease are some of the 

ailments seen coinciding with uncontrolled T1DM (2). The hyperglycemic environment produced 

during T1DM produces these catastrophic ailments associated with the disease and no known 

prevention of T1DM exists to date.  

 

1.1b. Type 2 diabetes mellitus 

 T2DM is the more prevalent form of DM, affecting approximately 95% of diabetic patients. 

Nine out of 10 individuals with prediabetes, do not know that they are at risk of developing DM, 

and of that, 15-30% of people with prediabetes will develop T2DM within 5 years (4). T2DM is 

known as non-insulin dependent diabetes because it is characterized by insulin resistance, reduced 

insulin sensitivity and occasionally a defect in insulin secretion from the β-cells, ultimately 

producing the hallmark hyperglycemic environment of DM (353). Obesity oftentimes 

accompanies T2DM; however, it is not a prerequisite for the disease. With that being said, most 

T2DM patients display an increased body fat percentage in their abdominal region and unlike 

T1DM, T2DM patients do not suffer from ketoacidosis (12). Interestingly, T2DM patients may 

present with normal insulin levels; however, their insulin levels rarely compensate for the elevation 
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in blood glucose levels, resulting in a deficiency of insulin secretion. Dyslipidemia and an altered 

lipoprotein pattern including increased triglyceride levels, low levels of high-density lipoprotein 

cholesterol and small, dense low-density lipoprotein particles, are characteristic during the early 

stages of T2DM (368). Treatment of T2DM includes monitoring the blood glucose levels of 

patients and adherence to a strict regimen of diet and exercise in hopes of reducing the body weight 

of T2DM patients suffering from obesity and increasing the body’s ability to properly handle 

glucose (368, 424). Treatment with insulin or other medications, such as Metformin, which work 

to increase insulin sensitivity or reduce glucose production are also commonly used in T2DM 

patients (319).  

 

1.1c. Significance 

 The leading causes of morbidity and mortality among diabetic patients in the United States 

are cardiac failure and heart disease (142). DM is the seventh leading cause of death in the United 

States and the incidence of DM has doubled its rates over the past two decades (3, 4). Current 

reports suggest that DM affects a staggering 9% of the population worldwide, with 29 million 

adults in the United States being diagnosed with DM and another 86 million diagnosed with 

prediabetes (2-4, 12). Both T1DM and T2DM are characterized by hyperglycemia resulting either 

from deficits in insulin production or resistance, respectively. This chronic hyperglycemic 

environment can lead to the damage of many organ systems including the kidneys, eyes, nerves, 

blood vessels and the heart (2, 431).  Due to the increasing incidence of DM in the United States 

and the world, the disease is quickly becoming an epidemic and the evaluation of mechanisms that 

underlie the cardiac deficits seen during DM need to be studied in order to develop and implement 

therapeutic strategies to increase the quality of life in diabetic patients.  
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1.2 Diabetic Cardiomyopathy 

DM-associated cardiac dysfunction, termed diabetic cardiomyopathy, occurs 

independently of vascular dysfunction, such as atherosclerosis, coronary artery disease (CAD) and 

hypertension and serves as the leading cause of heart failure (HF) in diabetic patients (30, 52). 

Literature suggests that while CAD and hypertension often occur as comorbidities to diabetic heart 

disease, diabetic cardiomyopathy has also been shown to be independent of these pathologies in 

both the clinical and experimental settings (8, 38, 97, 159, 270, 326, 337). Rubler et al. first showed 

diabetic cardiomyopathy in congestive HF patients with DM; however, it was noted that these 

patients also lacked the presence of coronary atherosclerosis and hypertension (337). Following 

this study, Regan et al. showed that diabetic patients without CAD had alterations in left ventricular 

(LV) end diastolic pressure (EDP), LV compliance and ejection fraction (EF) (326). Experimental 

models of DM have revealed decreased contractile efficiency while also being resistant to 

atherosclerosis, indicating the presence of diabetic cardiomyopathy (187, 397). This evidence 

suggests that diabetic cardiomyopathy leads to LV dysfunction in the absence of vascular 

disturbance and further has been associated with decreased mitochondrial function and adenosine 

triphosphate (ATP) production (97, 130, 154, 236, 326, 353, 373, 390).   

 

1.2a. Cardiac contractile dysfunction 

 Cardiac contractile dysfunction is a common hallmark of DM, leading to HF in diabetic 

patients due to the effects of the chronic hyperglycemic environment. Diastolic dysfunction occurs 

during the beginning stages of DM and is characterized by deficits in LV relaxation time and 

compliance (30, 118, 249, 353, 441). By utilizing tissue Doppler analyses and assessing the flow 
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of blood across the mitral valve, patients with T1DM revealed decreases in early peak mitral 

velocity (E wave) and increased late peak mitral velocity (A wave) leading to a decreased E/A 

ratio, along with a prolonged deceleration time (56, 320, 321, 344). Patients with T2DM also show 

abnormal LV relaxation and restrictive filling deficiencies (43, 83, 136, 258, 293).  Diastolic 

dysfunction is also evident in experimental animal models of both T1DM and T2DM (43, 141, 

303, 352). Dabkowski et al. showed cardiac dysfunction in T1DM mice through decreased rates 

of contraction, relaxation and developed pressure via Langendorff perfusion (85). Prolonged 

relaxation time and slowing of relaxation velocity indicated the presence of diastolic deficits in the 

diabetic rat myocardium (45). Another study in perfused diabetic rat hearts confirmed diastolic 

dysfunction by an increased isovolumetric relaxation time along with increases in inflow velocity 

across the mitral valve and LV EDP during T2DM (192). Similar diastolic dysfunction was seen 

in animal models of T2DM with decreased rates of relaxation and increased LV wall stiffness (83, 

84, 258)  

 Dysfunction of the heart during systole is also present in diabetic patients and experimental 

T1DM and T2DM animal models. Patients with T2DM show decreased fractional shortening (FS) 

and changes in LV mass and geometry; however, these data are complicated by the presence of 

other comorbidities in the patient populations and the medications of these patients (109, 173, 

308). T1DM patients also show dimensional alterations to the myocardium (56, 190). While 

diastolic dysfunction is observed during DM, depending on the population studied, systolic 

dysfunction varies (133, 265, 320). Animal models of both types of DM show decreased heart rate, 

systolic blood pressure, EF, FS, along with dimensional and volumetric changes (22, 84, 91, 161, 

171, 192, 431).  
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1.2b. Fibrosis 

 Structural changes of the heart have been reported in both animal experimental models and 

humans with DM (181, 221, 282, 378, 384). Fibrosis accounts for the majority of changes in the 

structure of the heart, consisting of two types, interstitial and perivascular (92, 145, 294, 326, 402). 

Postmortem evaluation of diabetic patients showed enhanced collagen deposition in the 

perivascular loci and between myofibers (326). Further, Regan et al. also found enhanced 

triglyceride and cholesterol concentrations in the diabetic patients as compared to controls in the 

LV and septum (326). In a different study, myocardial biopsies revealed higher type III collagen, 

which is specific to cardiac tissue, while type I collagen is more predominant in the myocardium 

and was unchanged between diabetic and non-diabetic patients (357). During the evaluation of the 

right ventricle (RV), Nunoda et al. found that the average diameter of the RV myocardial cells was 

increased and the percentage of fibrosis was significantly higher in mild diabetic patients without 

hypertension or CAD as compared to controls (294). While fibrosis is present during DM, the 

mechanisms behind it are not well understood. Widyantoro et al. reported an increase in 

endothelin-1 (ET-1) in the plasma, which has been associated with increased fibroblast 

accumulation, providing a potential mechanism for the development of fibrosis (426). Other 

factors reported to play a role in the development of fibrosis are protein kinase C beta-1 and 

transforming growth factor beta-1 receptor II, which were enhanced in the diabetic myocardium 

of streptozotocin (STZ) diabetic mice (14, 420, 425). In the obese diabetic mice with leptin 

deficiency, the ob/ob mouse model of T2DM showed no LV myocardial fibrosis; however in the 

db/db model, cardiac fibrosis was evident (151, 208, 398).  It is important to gleam from the current 

research in both experimental animal models of DM and diabetic patients that fibrosis is a critical 

player in cardiac dysfunction in the diabetic heart (39).  
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1.2c. Oxidative stress 

 One of the major contributing factors in the development of diabetic cardiomyopathy is the 

hyperglycemic environment, leading to an increase in the formation of reactive oxygen species 

(ROS) and a decrease in antioxidant levels (332). Oxidative stress is classically defined as the 

imbalance between ROS generation and the antioxidant defense mechanisms. Common examples 

of ROS include oxygen-derived free radicals such as superoxide and hydroxyl radicals, as well as 

non-radical derivatives such as hydrogen peroxide (H2O2). Literature suggests that the 

overproduction of superoxide increases the activity of polyl pathway flux, advanced glycation end 

product formation, hexosamine pathway flux and activation of protein kinase C leading to 

oxidative stress (46, 99, 291). The mitochondria are the main source of ROS generation within the 

cardiomyocyte through the leakage of electrons from the electron transport chain (ETC) in the 

inner mitochondrial membrane (IMM). In the db/db mouse model, Boudina et al. found increased 

H2O2 production, along with increased oxidative damage to lipids (41). Our laboratory found 

increased ROS production from cardiac mitochondria in the STZ T1DM mouse model (85). 

Further, oxidative stress has been show to create alterations in myocyte morphology, function, 

protein content and ion action, ultimately leading to diabetic cardiomyopathy (46). With the 

overexpression of mitochondrial phospholipid hydroperoxide glutathione peroxidase (mPHGPx), 

an antioxidant capable of reducing lipid hydroperoxides to alcohols and free H2O2, our laboratory 

found that lipid peroxidation was decreased and mitochondrial function, along with proteome 

stabilization was maintained during T1DM and following ischemia/reperfusion (I/R) injury (22, 

85, 86, 253, 396).    
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1.3 Cardiac Function Using Echocardiography 

 Cardiac function is monitored routinely by the use of non-invasive, ultrasound imaging 

called echocardiography. There are three basic modes to image the heart: two-dimensional (2D) 

imaging, motion mode (M-mode) imaging, and Doppler imaging (11). Standard 2D 

echocardiography can be captured in both the long- and short-axes and allows for the viewing of 

motion in real time in a cross-section of the heart (11). The long-axis of the heart cuts the heart 

from top to bottom opening it up into left and right sides, while the short-axis cuts the heart into 

top and bottom halves. Doppler flow allows for the assessment of blood flow across valves within 

the heart. These measurements provide an efficient, cost-effective and highly accurate way to 

complete cardiac functional analyses in order to diagnose and manage patients suffering from heart 

disease. Assessment of cardiac function can also be performed in animal models and is oftentimes 

used as a measure to determine how a therapeutic treatment is affecting the heart.  In both patients 

and animal models, systolic and diastolic parameters can be assessed through echocardiography 

and involves the use of all three modes of echocardiography to acquire a thorough evaluation of 

decrements in cardiac contractile function.  

 

1.3a. Conventional echocardiography 

 M-mode is one of the earliest forms of cardiac ultrasound and is widely used in the clinical 

setting, allowing for the assessment of cardiac function via volumetric and diametric changes 

across multiple cardiac cycles. Using the parasternal short-axis view of the LV, a gate is placed 

through the 2D image and the motion of the ventricular walls can be measured across one-

dimension (1D), increasing the temporal and spatial resolutions (11). Measurements obtained from 
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LV M-mode images include end-systolic and end-diastolic volumes and diameters, EF, FS, stroke 

volume (SV) and cardiac output (CO). M-mode has been found to be a reliable assessment of overt 

cardiac dysfunction; however, some clinicians consider it to be obsolete because of the 

development of more sensitive indices of cardiac functional assessment, such a speckle-tracking 

base strain echocardiography (124).  

 

1.3b. Speckle-tracking based strain echocardiography 

 Another approach for imaging cardiac function is by using highly sensitive speckle-

tracking based strain echocardiography. During recent years, speckle-tracking based strain has 

gained popularity in the clinical setting to allow for the assessment of velocity, displacement and 

deformation of the myocardium over the course of multiple cardiac cycles. Speckle-tracking based 

strain echocardiography provides a more comprehensive and reliable echocardiographic 

assessment through its ability to detect subtle alterations in cardiac motion. 2D echocardiographic 

cine loops are used in both the parasternal long- and short-axes to fully evaluate the movement of 

the myocardium throughout the cardiac cycle. Speckle-tracking based strain analyses are 

completed offline and the algorithms use speckle artefacts in the echo image (33). These speckles 

are generated at random from refractions, reflections and the scattering of the echo beams and help 

to assess wall motion and deformation throughout the cardiac cycle (33, 146). Some of the 

advantages of using speckle-tracking based stain include that it is angle independent because the 

speckles move in the direction of the wall and not along the ultrasound beam, it does not require 

as high of frame rates as other techniques and allows for strain measurements in three different 

dimensions (33, 312).  
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 Speckle-tracking based strain and its relation to conventional echocardiography is not as 

straightforward as simple cardiac functional parameters. For instance, speckle-tracking based 

strain uses the parameters of wall motion velocity and displacement, along with the assessment of 

strain and strain rate from the deformation of the LV during the cardiac cycles (33, 81, 146, 322). 

Displacement is the distance that the speckle travels between two consecutive frames, while the 

velocity is the displacement of the speckle per unit time (322). Strain is a dimensionless quantity 

of myocardial deformation and measures the magnitude of myocardial fiber contraction and 

relaxation, otherwise known as the thickening and thinning of the myocardial wall in the radial 

dimension and elongation and shortening of the myocardium in the longitudinal and 

circumferential dimensions (33, 81, 146). For example, as the heart goes through the cardiac cycle 

and reaches systole, or contraction, the space inside of the heart gets smaller and the myocardial 

wall thickens. This allows for the assessment of the radial dimension, which can be evaluated in 

both the long- and short-axes. During systole, strain in the radial (R) dimension is represented as 

positive because of the thickening of the wall; however, in diastole, radial strain is a negative 

number because of the thinning of the wall (Figure 1.1). Longitudinal (L) shortening and 

circumferential (C) shortening occur during the contraction of the heart leading to negative values 

resented during systole, while lengthening happens during diastole and is represented by positive 

values (Figure 1.1).  

 

 

 

 

Figure 1.1 Speckle-Tracking Based Strain Echocardiographic Axes 



12 
 

Another important measurement obtained from speckle-tracking based strain analyses is 

strain rate. Strain rate is the time it takes to reach the peak of deformation or strain during the 

cardiac cycle (33, 322). Together, speckle-tracking based strain analyses provide adequate 

measurements for a more thorough evaluation of wall motion during the cardiac cycle.  

Strain and strain rate analyses have been performed in the clinical setting in patients 

suffering from CAD, myocardial infarction (MI), ischemic cardiomyopathy, diastolic HF, Chagas’ 

disease, DM and patients undergoing cardiac resynchronization therapy (13, 17, 34, 62, 96, 112, 

160, 243, 410). Speckle-tracking based strain analyses have also been employed in small animal 

models of disease. Using speckle-tracking based strain analyses, Bauer et al. found that these 

analyses are capable of detecting subtle changes in myocardial wall function providing high-

throughput and sensitive cardiac phenotyping (26). In their study, animals underwent a permanent 

left anterior descending coronary artery ligation and a portion of the animals received treatment 

with an angiotensin-converting enzyme inhibitor (ACEi) (26).  Bauer et al. found that speckle-

tracking based strain analyses were able to detect changes at an earlier time point following MI 

and the results also predicted the later development of adverse remodeling of the LV (26). Their 

results also revealed that speckle-tracking based strain analyses were capable of detecting subtle 

improvement in LV function when MI animals were treated with ACEi (26).  Additionally, in the 

db/db mouse model of T2DM, Li et al. found global radial and circumferential strain values were 

decreased as compared to controls (241). Speckle-tracking based strain analyses provide an 

approach to looking at subtle changes in cardiac function in both a clinical and experimental 

setting. 
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1.3b.i. Global and regional assessment 

When using speckle-tracking based strain analyses, measurements of both global and 

segmental analyses can be acquired. Global measurements refer to the overall or average data 

acquired in the LV over multiple cardiac cycles, while segmental analyses are the LV myocardium 

subdivided into 6 standard anatomic segments (57). For our studies, these measurements are 

acquired from curvilinear data obtained from the Visual Sonics Vevo2100 speckle-tracking based 

strain software (Figure 1.2). Using the Vevo2100 speckle-tracking based strain software, 

segmental analyses can be performed on short-axis images with the LV subdivisions of the 

following regions: anterior free (AF), lateral (L), posterior (P), inferior free (IF), posterior septum 

(PS) and anterior septum (AS) (Figure 1.2 Top Panel). The long-axis images subdivide the LV 

into the anterior base (AB), anterior mid (AM), anterior apex (AA), posterior apex (PA), posterior 

mid (PM) and posterior base (PB) (Figure 1.2 Bottom Panel).  

Figure 1.2 Speckle-Tracking Based Strain Global and Regional Assessment 



14 
 

Segmental analyses allow an investigator to find a particular locale within the LV where 

dysfunction may be occurring. It is imperative in a clinical setting for subtle changes in cardiac 

function to be detected to allow for intervention before a sudden onset of a cardiac insult. Further, 

to be able to pinpoint this location of dysfunction via segmental analyses is a powerful tool for 

therapeutic treatment. Clinical studies have currently shown that speckle-tracking based strain was 

able to detect subtle changes in LV function and were predictive of future development of 

cardiovascular disease (77, 112, 113, 117, 119, 239, 276, 283). While conventional measurements 

are easier to perform in a clinical setting, strain and strain rate imaging have been shown to increase 

the ability to detect cardiomyopathies in diabetic patients (42, 119, 280). Within the past 5 years, 

the ability to assess cardiac performance in small animal models was limited; however, speckle-

tracking based strain analyses have provided a platform to gain further insight on subtle changes 

in cardiac function in small animal models. Studies have shown that early global changes in LV 

function are detected by speckle-tracking based strain analysis prior to changes in conventional 

measurements in different animal models with cardiac pathologies (26, 27, 211, 432). Further, 

analyses of particular regions within the LV provide a more accurate picture to pinpoint where the 

cardiac dysfunction is occurring (26, 33, 167, 322). The ability to obtain a complete picture by 

using both a global and segmental functional analysis of the LV during a disease state provides the 

opportunity to evaluate and understand disease progression, as well as potentially develop a 

therapeutic paradigm to treat a particular locale within the heart. 

 

1.3c. Doppler flow echocardiography 

 Doppler flow echocardiography is capable of estimating blood flow velocity through the 

heart and can be measured by using the comparison of the frequency change between the sound 
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waves that are transmitted and the sound waves that are reflected back (11). The use of Doppler in 

cardiac ultrasound can be done in three distinct ways: continuous-wave Doppler, pulsed-wave 

Doppler, and color-flow mapping (11, 325). Continuous-wave Doppler, while sensitive and able 

to detect high velocities, comes with limitations because the velocity of blood flow is measured 

along the constant ultrasound beam and not at a specific depth (11). This means that the method is 

unable to localize the velocity measurements of blood flow (11, 325). Pulsed-wave Doppler was 

developed because of the limitations in continuous-wave Doppler and overcomes these restrictions 

by using short bursts of ultrasound with range gating (325). Localized velocity measurements of 

blood flow can be measured using pulsed-wave Doppler imaging because this technique measures 

blood flow velocity within a small area at a specific depth (11). Thus, pulsed-wave velocity 

measurements can be employed to measure blood flow through the valves in the heart; however, 

because of the intermittent ultrasound bursts, recording high-velocity signals is more difficult 

(325). Taken together, continuous-wave and pulsed-wave Doppler are complementary and can 

supply the needed information that is missing from the other mode. Finally, color-flow mapping 

allows for the superimposition of blood flow imaging on top of “real-time” 2D echocardiographic 

imaging of blood (11, 164). Color-flow mapping is a pulsed-wave Doppler technique and comes 

with both the advantages and disadvantages of pulsed-wave Doppler (325). Flow toward the 

transducer appears as red, while flow away is indicated by blue (11, 325). Shading of these colors 

also lends information on velocity while these images are being acquired (11). Altogether, Doppler 

flow echocardiography is a useful non-invasive tool to measure blood flow within the heart. 
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1.4 Mouse Models of Diabetes Mellitus 

 Studying both T1DM and T2DM and its associated cardiac abnormalities has been made 

easier by the development of rodent models, since the mechanisms behind DM and human diabetic 

cardiomyopathy are only partly understood (49). Using rodent models to study diabetic 

cardiomyopathy and the mechanisms behind its development is unique in that rodents do not 

develop atherosclerosis, allowing for the uninhibited study of the diabetic cardiomyopathy without 

interference from atherosclerotic mechanisms. Many rat and mouse models of T1DM and T2DM 

exist and specific advantages and disadvantages arise depending on which is used. Common 

models of T1DM include the STZ, OVE26, and Akita mouse models, while the T2DM models are 

the ob/ob and db/db mouse models and the Zucker diabetic fatty rat. 

 

1.4a. Streptozotocin mouse model of type 1 diabetes mellitus 

The STZ mouse is the most frequently used model of T1DM and is the model that we have 

chosen to employ in our studies. STZ, a glucosamine-nitrosourea antibiotic with a similar structure 

to glucose, was first used to destroy cancerous pancreatic β-cells, but now is successfully used to 

generate a T1DM rodent model (7, 49). Preferentially taken up by the glucose transporter 2 

(GLUT2) in the pancreatic β-cells, intraperitoneal injection of STZ results in toxicity and necrosis 

eventually leading to insulin deficiency (37, 348). Mechanistically, STZ is capable of causing 

DNA damage through alkylation and with this, activation of poly adenosine disphoasphate (ADP)-

ribosylation leads to the depletion of cellular NAD+ and ATP (348). STZ also causes the 

generation of superoxides and an increase in xanthine oxidase activity through the 

dephosphorylation of ATP (348). With the increase in ROS within the pancreas, necrosis of the β-

cells and decreased insulin production ensue (348).  Our laboratory uses the multiple low-dose 
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intraperitoneal injections (50mg/kg body weight) of STZ in FVB mice for five consecutive days, 

as suggested by the Animal Models of Diabetic Complications Consortium (AMDCC).  Generally, 

the mice develop hyperglycemia, which our laboratory characterizes as a blood glucose level 

greater than 250 mg/dL and low levels of insulin at approximately 0.5 ng/mL, within 7 to 14 days 

after the first STZ injection (49). Mice treated with STZ have been found to have increased serum 

fatty acid, along with increased triglyceride and cholesterol levels (49). Further, cardiac 

dysfunction has been found in mice treated with STZ (22, 85, 289, 376, 386, 391). Using a 

Langendorff setup, we found significantly decreased rates of relaxation and contraction, along with 

increased developed pressure in STZ-treated mice (85). Further, using the Vevo2100 ultrasound 

imaging system, we have reported decreased EF, FS, SV and CO in T1DM animals as compared 

to littermate controls (22, 386). It is important to note that STZ-induced diabetic cardiomyopathy 

can be reversed through regular treatment with insulin, lending evidence that insulin deficiency 

and glucose utilization are the cause of cardiac abnormalities in this model (409). Other models of 

T1DM are the OVE26 and Akita mouse; however, they differ from the STZ model because they 

are genetically engineered and are T1DM from birth (49). This leads to an important advantage of 

the STZ model in that DM can be induced at any age and transgenic animals can be made diabetic 

to evaluate different mechanisms involved in diabetic cardiomyopathy.   

 

1.4b. db/db mouse model of type 2 diabetes mellitus 

 The db/db mouse model is a model of T2DM, which develops because of a point mutation 

causing dysfunctional leptin receptors. The normal, long form of the leptin receptor gene is 

responsible for the action of leptin in the hypothalamus, which regulates appetite and body weight 

(73). The genetic manipulation by an insertion of a premature stop codon within the db transcript 
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leads to a short-form isoform of the leptin receptor. Therefore, without the functional form of this 

leptin receptor, obesity occurs (73). As early as 4 weeks of age, db/db mice begin to show signs of 

obesity and severe T2DM is developed by 8 weeks (47). Cardiac contractile abnormalities are 

present in the db/db model, along with hyperinsulinemia, enhanced fatty acid production and 

increased triglycerides (47). When assessed by echocardiography, db/db mice showed a 

development of cardiac hypertrophy, decreased FS and velocity of circumferential shortening 

(352). CO, LV-developed pressure and cardiac power were all decreased in isolated, working 

db/db hearts (49). Our laboratory and others revealed that in isolated perfused hearts, rates of 

contraction, relaxation, peak systolic pressure, rate pressure product and developed pressure were 

significantly decreased in the db/db animals versus controls (29, 84). Diastolic dysfunction also 

occurs in db/db mice and has been shown through both echocardiography and MRI analyses (375). 

Further, db/db mice have increased superoxide formation and oxidative damage by-products, 

which have been linked to cardiac mitochondrial dysfunction (41).  

Another model of T2DM is the ob/ob mouse model, which develops DM when the mouse 

is homozygous for the obese spontaneous mutation (Lepob), leading to a decrease in leptin and the 

inability to suppress appetite (134). These mice exhibit obesity, hyperphagia, and diabetes-like 

syndrome of hyperglycemia, glucose intolerance and elevated plasma insulin levels and are 

considered T2DM at 15 weeks of age (47). Interestingly, even after the development of T2DM, 

ob/ob mice develop cardiac hypertrophy, but do not have impaired systolic function (49). 

Therefore, our laboratory chose to use the db/db mouse model because of our vested interest in 

cardiac abnormalities and restoration of cardiac pump function during T2DM.  
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1.5 Mitochondrial Subpopulations  

 Advanced imaging techniques have allowed for insight into cellular and organellar 

structure within the cardiomyocyte, leading to the recognition of mitochondria residing within 

specific locales of the cardiomyocyte. Mitochondrial subpopulations have been found in a number 

of different mammalian species including mouse, rat, muskrat, guinea pig, hamster, rabbit, dog, 

pig, monkey, cow and human (86, 137, 166, 237, 267, 272, 356, 358, 370, 392). Two spatially and 

biochemically distinct mitochondrial subpopulations exist within the cardiomyocyte (306). With 

the pioneering development of mitochondrial isolation techniques by Palmer et al., distinct 

mitochondrial subpopulations can be isolated by utilizing both mechanical and enzymatic 

procedures (306). Evaluation of other non-cardiac cells, such as neurons, revealed that functional 

heterogeneity between the dendritic, somatic, axonal, and presynaptic segments result from 

variations in energy demands and calcium (Ca2+) signaling dynamics (199). These differences 

were associated with structural and biochemical attributes of the mitochondria depending upon 

their location and demands within a specific neuronal region, leading to particular responses during 

pathophysiological stress (199). Literature suggests that mitochondrial spatial locale within the 

myocyte may also be associated with particular responses to physiological and pathological stimuli 

(157, 193, 217, 266, 384). Within the cardiomyocyte, two spatially distinct mitochondrial 

subpopulations have been identified through ultrastructure analyses. Further, these mitochondrial 

subpopulations have also been found to have their own biochemical profile (306). The population 

of mitochondria that reside beneath the sarcolemmal membrane are termed subsarcolemmal 

mitochondria (SSM), while those located between the myofibrils are called interfibrillar 

mitochondria (IFM) (Figure 1.3) (176). Another population of mitochondria, which are isolated 

with the IFM, reside in the perinuclear region of the cell (176).  
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Figure 1.3 Cardiac Mitochondrial Subpopulation Schematic and Electron Micrograph 

 

1.5a. Structural differences 

 Mitochondria located in distinct subcellular locales have been shown to have different 

structural appearances. Scanning electron microscopy and transmission electron microscopy 

revealed distinct mitochondrial populations including perinuclear mitochondria, SSM and IFM in 

thin sections from the LV tissue of Japanese Monkeys (Macaca fuscata) (356). As their name 

describes, perinuclear mitochondria were clustered at the nuclear poles. These mitochondria 

maintained a mostly spherical shape, ranging in lengths from 0.8 to 1.4 µm, and contained well-

developed, curved cristae with minimal matrix area. Between the myofibrils were situated another 

pool of mitochondria termed the IFM. These mitochondria occupy the space between the Z-lines 

of the myofibrils and form longitudinal rows, which are bookended by the junctional sarcoplasmic 

reticulum (122, 254) (Figure 1.3). IFM typically exist as one mitochondrion per sarcomere, are 

elongated in shape, and range from 1.5-2.0 µm in length. The cristae structure of the IFM are more 

complex with curved configurations. Finally, the mitochondrial pool located beneath the 

sarcolemmal membrane are termed the SSM and are considerably more variable in length ranging 

from 0.4-3.0 µm. The cristae are typically tightly packed in the SSM. Generally, perinuclear 

mitochondria are smaller than IFM and possess a rounder shape, while the SSM vary in size and 
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shape with oval, spherical, polygonal, and horseshoe profiles (254, 356). Similar ultrastructural 

patterns have been reported in HL-1 cells, a cardiac muscle cell line, using confocal imaging to 

look at mitochondria clustered around the nucleus (220). Human papillary muscle subjected to en 

bloc staining revealed differential staining patterns between mitochondrial subpopulations leading 

to the thought that the SSM, IFM and perinuclear mitochondria may possess differences in 

chemical makeup and metabolic activities (90). Additionally, flow cytometry analyses using 

membrane-dependent dyes (MitoTracker Deep Red 633) coupled with size calibration 

microspheres to determine absolute mitochondrial size and internal complexity in SSM and IFM, 

indicated differences between mitochondrial subpopulations (80, 84-86, 287, 386, 428). 

Mitochondrial subcellular distribution has also been studied using probability density analyses via 

a 3D modeling approach utilized with MitoTracker Deep Red staining (32). This revealed that the 

IFM maintained a highly organized crystal-like pattern for cristae and were arranged in 

longitudinal rows between the myofibrils (32). Similar results were found using MitoTracker Deep 

Red 633 in adult mouse cardiomyocytes (176). Interestingly, cardiomyocytes from rainbow trout 

(Oncorhynchus mykiss) revealed no order of mitochondria when situated beneath the single 

cylinder-shaped layer of myofibrils underneath the sarcolemma (32). With this finding, it is 

important to note that differences in mitochondrial spatial patterns may be species specific.  

  Structural differences in cristae morphology were examined using high resolution 

scanning election microscopy in rat LV tissue (331). Lamelliform cristae, which are broad and flat, 

were the predominant pattern in the SSM, while the cristae morphology in the IFM was variable 

with some mitochondria possessing only tubular cristae or only lamelliform cristae and others 

possessing a mix of the two cristae forms (331). Riva et al. speculated from this data that individual 

cristae morphological patterns potentially contribute to functional differences in subpopulations of 
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mitochondria, including a reduction in the intracristal space of tubular cristae (331).  This reduction 

in intracristal space potentially leads to a higher proton concentration within the structure, 

enhancing ATP synthase activity, which is consistent with function findings in the IFM compared 

to SSM (331). Biochemical composition of the cristae morphologies may also be different in lipid 

or protein content, leading to differences in structural makeup of mitochondrial subpopulations 

(331). Indeed, Monette et al. found that sphingolipid pools in cardiac SSM and IFM had different 

ceramide contents, which was shown to be higher in the SSM (277). Altogether, differences in 

mitochondrial subpopulation structure could be due to their subcellular locale requiring a different 

biochemical makeup. 

 

1.5b. Communication between mitochondrial subpopulations 

It is interesting to note that subpopulations of mitochondria may interact in vivo; however, 

the mechanism by which this occurs is still unclear. Skulachev proposed that intermitochondrial 

junctions connect the SSM to each other and that the innermost layer of the SSM are connected to 

the IFM via mitochondrial filaments (363). Using electron microscopy, others have found that the 

SSM and IFM may be continues in mouse skeletal muscle and network modeling of cardiac 

mitochondria revealed a communication system across the cell (314). This hypothesis suggests 

that the interaction between the SSM and IFM allows for the consumption of oxygen by the SSM 

combined with active respiration to transmit protons by the mitochondrial filaments to the IFM, 

enabling ATP generation, which can ultimately be used by the contractile apparatus (363). If the 

proposed hypothesis were true, it would support the IFMs ability to generate ATP despite its locale 

within the core of the cell with a lower oxygen content (363). With the capability of the IFM to 

function in a lower oxygen content, ROS may be limited to the periphery of the cell allowing for 
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the preservation of the cell core from damage (363). With this hypothesis, the SSM may serve as 

a protective barrier to the cell (220, 363). It is interesting to note that cross talk between the SSM 

and IFM may occur, which provides a dynamic network across the cell for energy generation and 

transmission of intracellular signals. Additionally, this hypothesis supports the notion that ATP 

production from each cardiac mitochondrial subpopulation is likely critical for efficient cardiac 

contractile function, indicating that both may play a role in preserving cardiac function during 

pathological states. Further, this interconnected mitochondrial network through the mitochondrial 

reticulum could provide a pathway for this energy distribution within the cardiomyocyte (149, 

364), thus allowing for the restoration of cardiac contractile function if one subpopulation is 

detrimentally affected during a pathological state, while the other is unaltered such as what is 

observed in DM.  

 

1.5c. Functional differences 

 Distinct functional differences between mitochondrial subpopulations have been reported 

and could be due to their different subcellular locations. While this explanation of differences in 

function associated with location is not definitive, it aligns with the concept that spatial location 

reflects the processes in which the particular subpopulation of mitochondria supplies ATP.  

Perinuclear mitochondria are thought to generate ATP to drive mitochondrial metabolism close to 

the nucleus, while it is hypothesized that IFM provide the energy needed for contraction and the 

SSM provide ATP for the active transport of metabolites across the sarcolemmal membrane (279, 

306, 334, 356). Biochemical differences between mitochondrial subpopulations support the 

distinct metabolic roles of the subpopulation within its particular locale of the cell (306). The IFM 

typically have higher respiratory rates, succinate dehydrogenase and citrate synthase activities, and 
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higher complex oxidation rates in complexes I, II, III and V when compared to the SSM (24, 79, 

85, 305). Similarities between the mitochondrial subpopulations also exist, such as the levels of 

carnitine palmitoyltransferase and α-glycerophosphate (306). A potential mediator of 

mitochondrial metabolic and pathological processes is mitochondrial Ca2+, with the Ca2+ dynamics 

being a function of the mitochondria’s proximity to constituents of the Ca2+-handling apparatus 

(176). IFM are located near the junctional sarcoplasmic reticulum, the Ca2+ release sites, leading 

to their central involvement in the process of mitochondrial Ca2+ cycling (254).  SSM and IFM 

also possess differences in their ability to accumulate Ca2+ and withstand the damage caused by 

Ca2+ overload (307). Further, Kasumov et al. suggest a slower protein synthesis rate in the IFM as 

compared to the SSM, which potentially contributes to functional differences between the two 

subpopulations (201). Due to the functional differences within mitochondrial subpopulations 

based on their subcellular locale, it supports the literature suggesting that mitochondrial 

subpopulations differentially respond to pathological stimuli.  

Table 1.1 Mitochondrial Subpopulations Characteristics (176) 

Parameter SSM IFM 

Location Beneath Sarcolemma Between Myofibrils 

Organization Random Longitudinal Rows 

Shape Oval, spherical, polygonal, 

horse-shoe 

Elongated 

Length 0.4-3.0 µm 1.5-2.0 µm 

Cristae Structure Predominantly Lamelliform Predominantly Tubular 

ATP Generated For Active Sarcolemma Transport  Muscle Contraction 

SDH Activity  Higher 

CS Activity  Higher 

Oxidative Metabolism 

          Lipid Substrates 

          Non Lipid Substrates 

  

 Higher 

 Higher 

Oxidative Phosphorylation 

          ETC I-V 

          Posttranslational Modification 

  

 

Carbonylation 

Higher 

Nitration 

Resistance to Ca2+ Overload  Higher  
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1.6 Mitochondrial Protein Import  

 With approximately 1500 proteins residing in the human mitochondrion and only 13 of 

those being transcribed and translated within the organelle itself, nuclear-encoded mitochondrial 

protein import is critical to maintain a functioning and stable organelle (9, 21, 54, 313). 

Approximately 99% of proteins that reside within the mitochondrion are imported through a 

complex mechanism to traverse the two mitochondrial membranes (21, 58). Proteins destined to 

enter the mitochondria are termed preproteins and are equipped with targeting signals, typically 

N-terminal presequences that direct the protein to a specific compartment of the mitochondrion 

(21, 131, 301). For instance, if a protein is targeted to the matrix of the mitochondria, there is a 

direct interaction between the protein itself, the outer mitochondrial membrane (OMM), the inner 

mitochondrial membrane (IMM) and the presequence translocase-associated motor (PAM) (21, 

60). These interactions make up a “supercomplex” for mitochondrial protein import and provide a 

pathway for the protein to translocate from the cytosol of the cell, through the mitochondrial 

membranes and into the mitochondrial matrix (21, 60).  

 

1.6a. Outer membrane protein import 

 Cytosolic chaperones aid in the transport of preproteins to the OMM. Heat shock cognate 

70, heat shock protein 90 and mitochondrial import stimulation factor carry the nuclear-encoded 

preprotein to the translocase of the outer membrane (TOM) complex, which contains receptors for 

the recognition of the presequences (110, 440). The TOM complex serves as the gatekeeper to gain 

entrance into the mitochondrion and once the presequence is recognized, is able to guide the 

preprotein through the OMM. Tom20 serves as the main receptor and recognizer for the N-terminal 

presequences on proteins destined for the mitochondrion because of its binding groove that 
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attaches to the hydrophobic face of the polypeptide presequence, which subsequently allows the 

protein to bind the cytosolic face of the OMM (21, 434). Another protein, Tom22, possesses a 

negative charge, which is attracted to the positively charged presequence, and exerts its effects 

with Tom20 in order to maintain an unfolded state for the translocating protein (21, 434).  Finally, 

Tom40, a large β-barrel protein, along with 3 smaller subunits (Tom5, Tom6 and Tom7) forms the 

import pore (21, 168). Through this pore, proteins destined to enter the mitochondrion are 

translocated across the OMM and guided into the intermembrane space (IMS) (Figure 1.4). 

 

1.6b. Inner membrane protein import 

 After the preprotein successfully translocates across the OMM and into the IMS of the 

mitochondria, preproteins bind to the IMS domain of Tom22 and translocases of the inner 

membrane (TIM), Tim50 and Tim21 (59, 286). The binding of the preprotein to Tim50 and Tim21 

guides it to the TIM23 complex, which serves as the main mitochondrial import pore, allowing 

entrance into and through the IMM (59, 286). Tim23 plays a critical role in the translocation of a 

preprotein to the IMS, IMM and matrix of the mitochondria (59). Membrane potential (ΔΨm) is 

often required for preproteins to translocate through the TIM23 complex, as well as soliciting help 

from the PAM complex (21). Mitochondrial heat shock protein 70 (mtHsp70) is an essential 

protein subunit of the PAM complex and through its anchoring to Tim44 within the mitochondrial 

matrix, which allows it to still associate with the IMM, the protein is able to “trap” and “pull” a 

translocating preprotein through the IMM in an ATP-dependent manner (411). Matrix processing 

peptidases (MPP) then cleave the N-terminal presequence upon entrance of the preprotein into the 

mitochondrial matrix (218). Because the preprotein is translocated in an unfolded state in order to 

pass through the membranes, the protein has to be refolded into its native confirmation with the 
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help of co-chaperones hsp60 and hsp10 (156, 361). MtHsp70 is a critical player in the matrix-

target nuclear-encoded mitochondrial protein import because it confers unidirectional 

translocation of the protein and then assists in the refolding once the protein is translocated (261) 

(Figure 1.4). 

 

1.6c. Pre-sequence translocase-associated motor complex 

 The essential members of the PAM complex that regulate mtHsp70-driven protein import 

are Tim44, Pam16 (Tim14), Pam18 (Tim16), GrpE (Mge1) and the non-essential protein Tim17 

(21). Tim44 serves as the anchor for mtHsp70 through its attachment to the IMM on the matrix 

side and has been shown to have multiple functions such as recruitment and coordination of PAM 

complex constituents increasing the efficiency of protein translocation (347, 395). Interestingly, 

when Tim44 and mtHsp70 do not interact, protein translocation is decreased significantly. In one 

study, a mutation to the binding domain of Tim44 where mtHsp70 attaches reduced the 

mitochondrial translocation activity, while a mutation to the J-related segment of Tim44 in 

Saccharomyces cerevisiae decreased mitochondrial protein import viability (245, 268). Pam16 and 

Pam18 are a j-like protein and j-protein, respectively, which also regulate mtHsp70 and in turn 

regulate protein import activity (82, 132). Pam18 stimulates the ATPase activity of mtHsp70 

through its j-domain and Pam16 acts as a negative regulator of Pam18 by affecting the formation 

of the Tim44-mtHsp70 complex (82, 132). In a study that destabilized the Pam16-Pam18 complex, 

there was decreased mitochondrial protein import, along with decreased yeast cell viability (82, 

273). The interactions between Pam17 and other import constituents are influential to the protein 

import process. For instance, Pam17 and Tim44 interact in a complementary manner to assist in 

protein import and Pam17 is required for proper Pam16-Pam18 complexing (186, 346, 399). 
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Interestingly, import and PAM complex formation were only impaired, not abolished, in the 

absence of Pam17 (399). GrpE is a nucleotide exchange factor in the mitochondrial matrix that 

promotes the release of ADP from mtHsp70 (95). This is a critical step in the process of protein 

import because when the ADP is released, the preprotein is subsequently released and allows for 

ATP to bind to mtHsp70 driving further mitochondrial protein translocation (95). When the 

eukaryotic homolog to GrpE (Mge1) was mutated, binding efficiency of mtHsp70 to translocating 

preproteins was decreased, but binding of fully imported preproteins was increased lending insight 

into the importance of GrpE on the regulation of ADP-ATP binding to mtHsp70 (223). With a 

complicated network for translocation via mtHsp70 into the matrix of the mitochondria, many 

proteins are critical to the import process being carried out efficiently. (Figure 1.4). 

 

Figure 1.4 Nuclear-encoded Mitochondrial Protein Import Mechanism (21) 
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1.6d. Brownian ratchet versus power stroke model 

 While mtHsp70 is known to be critical in the translocation of proteins into the 

mitochondrial matrix, it remains unclear as to how it exerts its effect upon these proteins. MtHsp70 

serves as the ATP-dependent, primary motor subunit for the PAM complex, aiding in the 

unfolding, transport and refolding of proteins targeted to the mitochondrial matrix, but also playing 

a role in the import of proteins to the IMM and IMS (21). Examples of proteins using the mtHsp70 

import mechanism, but not residing in the matrix are oxidase assembly 1, which is imported into 

the matrix and then reinserted back into the IMM and cytochrome b2, which is partially pulled into 

the matrix, subsequently cleaved, leaving the functional portion of the protein located in the IMS 

(36, 144).   

 Two modes of thinking exist for how mtHsp70 exerts effects on translocating proteins: the 

Brownian ratchet model and the power stroke model (285). In the Brownian ratchet model, the 

ΔΨm serves as the initial pulling force for the preprotein to get into the matrix (251, 297). Upon 

entrance into the matrix, the preprotein binds to mtHsp70, ATP hydrolysis occurs causing the 

release of mtHsp70 from Tim44 and mtHsp70 traps the translocating protein to not allow 

retrograde movement back into the IMM (251, 297). The binding of additional mtHps70-Tim44 

complexes to incoming segments of the polypeptide helps to move the protein into the matrix, 

where GrpE catalyzes the release of ADP from mtHsp70 allowing for its dissociation from the 

translocated protein (251, 297).  

 While the power stroke model begins similarly, the key difference is that mtHsp70 does 

not dissociate from Tim44. In this model, instead of dissociation, mtHsp70 undergoes a 

conformational change, actively propelling the protein through the IMM and into the matrix (144). 

GrpE serves the same function as the nucleotide exchange factor in the matrix, facilitating the 
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release of mtHsp70 from the translocated protein (297). Because of how this model is set-up, it 

indicates that multiple molecules of mtHsp70 would be essential for the movement of the protein 

into the mitochondrial matrix (144). Figure 1.5 depicts the two models side by side in order to 

visually appreciate their distinct differences. 

 

Figure 1.5 Models of Mitochondrial Protein Import (21) 
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 Even though there are two proposed models for mtHsp70-dependent mitochondrial protein 

import, there may not be a singular method for import, but rather a combined mechanism where 

both are employed depending on the protein being imported (214). MtHsp70 likely serves as the 

driving force for the linearization of proteins, since unfolded proteins do not exist at the OMM 

(411). If the presequence happens to be long enough to span both the OMM and IMM, the 

unfolding of proteins happens more quickly and likely uses the power stroke model (263, 427). 

This might occur in the case of a tightly folded protein, which requires a lot of force in order to 

linearize the protein and maintain its linearization for translocation (263, 427). The contrary occurs 

with proteins that are not tightly folded and the Brownian ratchet model would be the most efficient 

mechanism for protein import in this instance (427). In summary, the mechanism by which a 

protein is transported into the mitochondrial matrix via the mtHsp70-dependent mechanism may 

depend upon the tightness in the folding of the domain for that particular protein.  

 

1.7 Mitochondrial Heat Shock Protein 70  

 MtHsp70 is known by many names such as mortalin, peptide binding protein 74 (PBP71) 

and glucose regulated protein 75 (Grp75). This protein serves as a member of the Hsp70 chaperone 

family and interestingly, mtHsp70 appears not to be inducible under conditions of heat stress like 

many members of this family (203).  The subcellular localization of mtHsp70 has been studied 

using microscopy, protein tagging with specific antibodies, cell fractionation and organelle-

specific markers revealing a number of locations for the protein including the endoplasmic 

reticulum (ER), cytoplasmic vesicles, cytosol and the mitochondrion (87, 362, 369); however, the 

mitochondrion serves as the principle locale of the protein. Because of its many locations within 

the cell, a multitude of cellular and mitochondrial functions are impacted by this protein. There 
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are three key regions on mtHsp70: the ATPase domain, the peptide binding domain and the 

carboxy-terminal segment (216). Each of these segments has been shown to be essential for proper 

nuclear-encoded mitochondrial protein import because a mutation to a segment has been shown to 

have detrimental effects on the import process (216).  

In response to cellular stress, mtHsp70 has been reported to be responsive during thyroid 

hormone treatment, glucose deprivation and myocardial I/R (158, 209, 252, 430). Williamson et 

al. showed that cardiomyocytes from neonatal rats infected with an adenoviral vector expressing 

mtHsp70 were protected from I/R injury (430). These cardiomyocytes had increased import of 

nuclear-encoded antioxidant defense proteins, such as manganese superoxide dismutase (MnSOD) 

(430). When the yeast equivalent to mtHsp70 (Ssc1) was inactivated by a temperature-sensitive 

mutation, it caused an arrest to the unfolding, translocation and refolding of imported proteins 

(139, 198). Further, deletion of Ssc1 caused death of the cell lending to the importance of this 

protein for the import of proteins into the mitochondria, but also for cellular viability (78). 

 

1.7a. Mitochondrial functions 

 Central to the vitality of the mitochondrion, mtHsp70 provides the active motor for protein 

import and upon the proteins translocation into the matrix, this protein plays an integral role in the 

refolding of imported proteins (158, 209, 252). MtHsp70 is fundamental to the mitochondrial 

protein import process, particularly for the import of matrix, IMS and IMM proteins as described 

above. During nuclear-encoded mitochondrial protein import, mtHsp70 serves an essential role as 

the main subunit and motor for the PAM complex. In the mitochondrial matrix, mtHsp70 anchors 

to Tim44 to trap and pull the preprotein through the IMM in an ATP-dependent manner (411). 

When mtHsp70 is altered, mitochondrial function is compromised with decrements in nuclear-
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encoded mitochondrial protein import, decreased antioxidant defenses, increased misfolding and 

degradation of proteins, along with increased cellular apoptosis (21). Additionally to protein 

import, mtHsp70 plays a critical role in protein folding and protein degradation within the 

mitochondrion. Once the protein is translocated into the mitochondrial matrix, it must be refolded 

into its active confirmation in order to perform its specific function. Kang et al. used dihydrofolate 

reductase and a temperature-sensitive mtHsp70 mutant in yeast (Ssc1) to display irreversible 

binding of mtHsp70 and the translocated preprotein, which resulted in improper protein folding 

and enhanced degradation mediated by proteinase K (198). MtHsp70 does not act alone in 

refolding of translocated preproteins, but acts in concert with hsp60, hsp10, GrpE and Mdj1 (259). 

The current speculation is that mtHsp70, GrpE and Mdj1 form a complex to keep the translocated 

preprotein in a loosely folded conformation (259). When GrpE-mediated ATP hydrolysis occurs 

releasing the preprotein from mtHsp70, the preprotein is then transferred to the hsp60-hsp10 

complex where it is folded into its native conformation (259).  Interestingly, mtHsp70 and Mdj1 

also have been shown play a role in mitochondrial protein degradation (342). MtHsp70 has been 

shown to allow for the stabilization of misfolded or damaged polypeptides into an unfolded 

conformation so that the protein will be degraded by mitochondrial proteases like m-AAA and 

PIM1p (343, 414). The process of degradation is critical in the mitochondria because it maintains 

genome integrity and allows for proper excision of introns in mitochondrially-encoded ETC 

proteins (400). While mtHsp70 predominantly resides within the mitochondrial matrix, the protein 

has also been shown to have other processes within the cell. 
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1.7b. Extra-mitochondrial functions 

 Though central to mitochondrial viability, mtHsp70 has also been shown to have extra-

mitochondrial functions in the cytosol, centrosomes, cellular membranes and the ER (21). 

MtHsp70 is capable of binding a multitude of proteins leading to a diverse functionality for this 

multifaceted protein. MtHsp70 has been shown to be important in cellular proliferation, calcium 

regulation, play a role in the apoptotic cascade pathway, participate in the process of aging,  and 

act as a constituent of the immune system (21). The tumor suppressor protein p53, plays a direct 

role in DNA repair, cell cycle arrest and cellular apoptotic initiation and mtHsp70 has been shown 

to bind to this protein in multiple locales such as the cytoplasm, centrosomes and the 

mitochondrion (224, 257, 260, 274, 275, 412). MtHsp70 binds to p53 and sequesters it from the 

nucleus to the cytoplasm of the cell, which is important because when bound, this decreases p53 

mediated apoptosis (275). MtHsp70 is also known to play a critical role in regulated cell cycle 

division through its interaction with the centrosomes in late G1, S and G2 phases of the cell cycle 

(257). Further, literature has revealed that mtHsp70 is able to bind with the receptor for hyaluronan 

mediated motility during interphase, potentially allowing the protein to play a role in the 

stabilization of microtubules (219). In addition to all of these capabilities, through its interaction 

with fibroblast growth factor-1 (FGF-1), mtHsp70 may be involved in the regulation of FGF-1 

binding to its receptor, regulating the growth factor’s function (269).  

 As it relates to cellular immunity, the membrane attack complex (MAC) is comprised of C 

subunits (C5b, C6, C7, C8 and C9) which assemble on the surface of the cell creating a pore, 

leading to the death of a targeted cell (316). Cancer cells show an increased resistance to 

complement-dependent cytotoxicity because of the inability for the MAC to form (316). MtHsp70 

has been shown to bind to subunits C8 and C9 of the MAC, which Pilzer et al. found to be released 
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from the cells in membrane vesicles, resulting in decreased MAC formation and increased cellular 

survival in a cancer cell line (315). Additionally, mtHsp70 has been shown to bind Interleukin-1 

(IL-1) receptor, which may play a role in the internalization of the receptor, leading to a regulatory 

function of mtHsp70 on IL-1 (338).  

 The ER and mitochondria form a dynamic network among which many processes are 

controlled such as metabolic flow, protein transport, intracellular Ca2+ signaling and cell death (44, 

127, 380, 381). MtHsp70 has been shown to link the voltage dependent anion channel (VDAC1) 

on the OMM of the mitochondrion to the ER Ca2+-release channel inositol 1, 4, 5-triphosphate 

receptor (IP(3)R) (380). In support of this, when mtHsp70 was knocked down, Ca2+ concentration 

within the mitochondria was shown to be decreased. Finally, the interaction of mtHsp70 with 

mevalonate pyrophosphate decarboxylase (MPD) indirectly controls proliferation through MPD 

simulated prenylation of Ras, which inhibits cell growth (413). Altogether, the literature suggests 

that mtHsp70 is a protein with diverse functional roles both within and outside of the 

mitochondrion.  

 

1.7c. Pathological influence 

 Due to the diverse nature of mtHsp70, the protein itself has been shown to be impacted in 

many different pathological settings leading to its role in both disease initiation and progression. 

When assessing proteomic alterations, mtHsp70 was affected in cancer, neurological diseases, 

cardiovascular diseases, aging and DM (21). In a neuroblastoma cell line, the authors found an 

upregulation of mtHsp70 subsequent to differentiation, which is associated with a high probability 

of regression, indicating that mtHsp70 is a good prognostic indicator for this disease (182). 

Conversely, mtHsp70 is thought to be detrimental during different types of cancer and correlated 
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with increased incidence, progression and poor outcomes for this pathological state. In chronic 

myeloid leukemia patients, mtHsp70 was increased as compared to controls, demonstrating that 

mtHsp70 may play a role in mediating the antiapoptotic effects of cancer cells (317). Further, 

studies of colorectal adenocarcinoma patients, hepatocellular carcinoma-associated hepatitis C 

virus and human osteosarcoma cell lines all showed increased mtHsp70, suggesting mtHsp70 may 

be a good predictor of cancer progression and prognosis (107, 290, 382).  

 In neurological disorders such as Parkinson’s disease and Alzheimer’s disease, mtHsp70 

expression is influenced. MtHsp70 content was found to be decreased in Parkinson’s patients as 

compared to controls in the substantia nigra pars compacta, which could potentially impact 

nuclear-encoded mitochondrial protein import in the neurons (191). In Alzheimer’s disease, Osorio 

et al. found post-translational modifications, such as phosphorylation and oxidation, of mtHsp70, 

which could potentially result in diminished binding efficiency and translocation properties for the 

protein (300). These studies indicate that alterations to mtHsp70 may play a role in the progression 

of neurological diseases and that this protein could serve as a predictor of neurological disease 

progression.  

 During cardiovascular disease, mtHsp70 has been shown to be adversely affected. In the 

aged heart, mtHsp70 is shown to be decreased through proteomic analyses (89). Additionally, 

neonatal rat cardiomyocytes treated with ET-1 to stimulate cardiac hypertrophy displayed a 

decrease in mtHsp70 content, suggesting that mitochondrial impairment may occur during the 

early development of hypertrophy (5). During MI, mtHsp70 content was shown to be decreased in 

tissue close to the infarcted area; however, after 5-7 days of recovery, the concentration was higher 

than other HSP70 family members and returned to normally expressed levels 14-21 days post-

infarction (209). Williamson et al. showed that overexpression of mtHsp70 in neonatal rat 
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cardiomyocytes after hypoxia/reoxygenation insult, preserved both cell viability and 

mitochondrial function (430). These studies suggest that a therapeutic approach to cardiovascular 

disease may be through the enhancement of mtHsp70 content. 

 MtHsp70 is also affected in the heart during both T1DM and T2DM. Interestingly, in rats 

subjected to STZ, Hamblin et al. studied the proteomic profile, which revealed an increase in 

mtHsp70, while Turko et al., showed significantly decreased mtHsp70 content, indicating that the 

protein is affected during T1DM, but literature is unclear as to how the protein is being altered 

during this pathological insult (158, 393). Our laboratory found that in mice treated with STZ, 

mtHsp70 is significantly decreased in the mitochondrial proteome of the IFM, potentially leading 

to the disruption in protein loss coming from nuclear-encoded sources in this particular 

subpopulation. Since greater than 99% of proteins residing within the mitochondrion are nuclear-

encoded and imported from the cytosol to a locale within the organelle, alterations to mtHsp70, a 

key player in nuclear-encoded mitochondrial protein import, could lead to a deranged 

mitochondrial proteomic profile for the IFM during T1DM (23). Interestingly, in the db/db mouse 

model for T2DM, Dabkowski et al. showed decreased mtHsp70 in the SSM subpopulation of 

mitochondria, with no alterations in the IFM (84). Interestingly, these studies provide evidence 

that mitochondrial proteomes are differentially affected during the distinct types of DM, leading 

to mitochondrial dysfunction of a specific mitochondrial subpopulation depending on the type of 

DM. Overall, these studies suggest that DM detrimentally impacts mtHsp70 in the diabetic heart. 

Further, studying the alterations to mtHsp70 during pathological settings could lead to the 

discovery of different therapeutic approaches and interventions within the clinical setting to 

increase the quality of life for diabetic patients.  
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1.8 Pathological Influence on Mitochondrial Subpopulations  

 Cardiovascular disease is associated with a plethora of effects on the mitochondrion, 

making research efforts regarding pathological influence on mitochondrial subpopulations critical 

for the treatment of the morbidity and mortality associated with particular disease states. As the 

mitochondrion continues to be elucidated as a key player in cardiovascular disease, a greater 

understanding of how to protect this critical organelle during pathology becomes imperative. 

Pathological insult to the mitochondrion differentially occurs based on its subcellular location 

(176). During ischemia, the SSM subpopulation is predominantly affected, with significant 

structural alterations and a decrease in membrane fluidity (358). Further, a study using rabbits 

subjected to global ischemia showed decreased OXPHOS, along with decreased contents of 

cytochrome c and cardiolipin in the IMM of the SSM (66, 237, 238).  Chen et al. showed increased 

H2O2 production from complexes I and III in the SSM, which was associated with ETC damage 

when global ischemia was induced in rat hearts (66). Oftentimes, an ischemic event is followed by 

reperfusion of the blood. Studies show that I/R injury influences both mitochondrial 

subpopulations. In rat hearts, I/R injury decreased OXPHOS rates and ADP/ATP translocase 

activity in both the SSM and IFM (101, 423). Our laboratory has shown that overexpressing 

mPHGPx during a global I/R insult affords protection to both mitochondrial subpopulations 

through preservation of ETC complexes (86). Ischemic preconditioning is a therapeutic approach 

to protect the heart against damage due to a subsequent ischemic insult (202). Treatments such as 

phosphatidylcholine, isoflurane, amobarbital and rotenone have shown improved function of the 

SSM during an ischemic event (63, 64, 67, 104, 229, 318).  Preconditioning studies indicate that 

the SSM is primarily affected, which may be a function of greater sensitivity to the overload of 

Ca2+ during the initial ischemic condition and suggests that this type of approach may be beneficial 
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in pathologies imparting deleterious effects on the SSM subpopulation. In contrast to 

preconditioning, cardiac postconditioning can also be used for cardioprotection. Paillard et al. 

suggest that postconditioning reduces oxidative stress and inhibits mitochondrial permeability 

transition pore (mPTP) opening (304). Further, studies have shown that postconditioning treatment 

may also be best considered for pathologies that predominantly affect the SSM (68, 69).  

Hypoxia has been shown affect mitochondrial respiration in the cardiomyocyte, leading to 

cellular dysfunction (175). Heather et al. showed decreases in state 3 respiration rates using fatty 

acid and pyruvate as substrates in both the SSM and IFM when rats were subjected to chronic 

hypoxia of 11% oxygen exposure for 14 days (163). When an area of the heart loses the perfusion 

of blood, that region becomes ischemic, causing irreversible damage to the myocardium. A 

common model for this MI is coronary artery ligation, which allows for the creation of an ischemic 

myocardial region (202). Rats subjected to a coronary artery ligation displayed decreased 

respiration rates, ETC complex III protein contents and activities, decreased mitochondrial 

cytochrome c levels and an increase in H2O2 production in both SSM and IFM (162). Further, 

another study found that coronary artery ligation in rats, along with a high fat feeding protocol led 

to an increase in fatty acid availability, state 3 respiration rates and ETC complex II and IV 

activities in SSM and IFM, which improved overall mitochondrial and cardiac contractile function 

(327-329). During HF, mechanical dysfunction of the myocardium leads to insufficient 

oxygenated blood delivery to the body in order to meet its metabolic requirements (202, 335). 

Multiple studies have shown that mitochondrial biogenesis and ETC enzymes are impacted during 

HF (143, 196, 351). A rodent model of dilated cardiomyopathy that exhibits decreased 

mitochondrial oxidative capacity, but is responsive to nutritional and metabolic therapies, showed 

distinct effects to the IFM subpopulation including decreased mitochondrial yield and Ca2+-



40 
 

induced mPTP opening (137, 138). Hoppel et al. found that cardiomyopathic hamsters have 

defective OXPHOS in the IFM and suggests that the dysfunction may be due to alterations in IMM 

transport properties with the ATP synthase (180). Pressure overload using aortic banding revealed 

a reduced capacity for free radical scavenging in the SSM of mice deficient in apoptosis-inducing 

factor, while rats undergoing transverse aortic constriction displayed a decrease in state 3 and state 

4 respiration rates in the IFM (350, 401). Volume overload, as completed by aortocaval fistula, 

revealed diminished SSM function through decreased levels of ETC complexes I-V and decreased 

state 3 respiration rates (148, 394). It is thought that IFM dysfunction may not occur during volume 

overload due to its ability to lower state 4 respiration thus increasing mitochondrial efficiency and 

responding to the increased myocardial demand (264, 422). Overall, literature suggests that 

mitochondrial subpopulations are differentially impacted during HF dependent on the model used. 

The IFM appear to be predominantly affected during HF and pressure overload, with the exception 

of volume overload in which the SSM appear to be primarily affected. 

Due to its role in the generation of ROS, the mitochondrion has been considered a central 

player in the development of the aged heart (88). Fannin et al. demonstrated age-related alterations 

in mitochondrial function in the IFM subpopulation (120). Decreased OXPHOS rates, cytochrome 

oxidase enzyme activities, enhanced oxidant production, decrease complex IV enzyme activities, 

increased oxidative stress and antioxidant enzyme activities, along with decreased ETC complex 

III activities and increased propensity for mPTP opening were shown in the IFM of the aged heart 

in different species (120, 150, 194, 232, 271, 377). Further, structural changes, such as size and 

internal complexity, of the IFM were noted by Coleman et al. in an aged mouse model (74). 

Ultimately, mitochondrial dysfunction associated with aging predominantly affects the IFM. The 

aged heart is more susceptible to additional cardiac events including I/R and while the IFM are 
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predominantly affected in the aged heart, both cardiac mitochondrial subpopulation are affected 

when the aged heart undergoes injury from I/R (69, 231, 233-235).   

Exercise has been linked to the prevention of cardiovascular disease and increased 

mitochondrial biogenesis (169, 177, 311, 387). While exercise has been shown to increase 

mitochondrial enzyme proteins and activities, it is relatively unexplored what exercise training 

does to cardiac mitochondrial subpopulations (372, 379). Coleman et al. showed increased IFM 

hypertrophy and loss of structural internal complexity in aged C57BL/6J mice that underwent a 

training exercise protocol on the treadmill (74). In contrast, Fischer 344 rats undergoing long-term 

wheel running showed a reduction in H2O2 and lower MnSOD in both cardiac mitochondrial 

subpopulations (195). Kavazis et al. found that endurance exercise promoted biochemical 

alterations that helped to resist apoptotic stimuli in both mitochondrial subpopulations and in 

another study by the same group found that proteomic alterations occurred in both subpopulations 

as well (205, 206). Rats subjected to an I/R protocol showed increased H2O2 production in both 

subpopulations; however, this increase was prevented by exercise training solely in the SSM (227). 

This group also found that I/R-induced decrements in state 3 respiration rates were subsequently 

reversed in the SSM subpopulation when using complex I driven substrates, suggesting that 

exercise training followed by I/R injury allows for the protection of the SSM subpopulation (227).  

Another interesting topic is the effects of pharmacological drugs on cardiac mitochondrial 

subpopulations. A study using verapamil showed that rat cardiac mitochondrial subpopulations  

reversed OXPHOS depression in the SSM after the damage was caused by treatment with 

phosphate (103). Another group indicated that increased H2O2 and 8-isoprostane production, 

leading to increased propensity for mPTP opening in SSM caused by aldosterone/salt treatment, 

was prevented by cotreatment with Carvedilol and Nebivolol (61).  The majority of studies testing 
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the effects of drugs on cardiac mitochondrial subpopulations found that the SSM were primarily 

affected. This is potentially due to their location below the sarcolemmal membrane and their closer 

proximity to the drug, while the IFM is more protected within the cell. Ultimately, literature 

suggests that mitochondrial subpopulations can be differentially impacted by pathological stimuli, 

potentially due to their location and particular function within the cell. Table 1.2 provides an 

overview of the differences in SSM and IFM responses to different cardiac pathologies 

Table 1.2 Cardiac Mitochondrial Subpopulation Response to Pathological Stimuli (176) 

Stimuli/Factor Species Primary 

Subpopulation 

Affected 

References 

Ischemia Rat, Rabbit, 

Canine 

SSM (65, 66, 230, 237, 238, 

358, 374, 421) 

Hypoxia Rat SSM (102, 163) 

Myocardial Infarction Rat, Dog Both (162, 296, 327-329, 333, 

335) 

Ischemia Reperfusion 

(I/R) 

Mouse, Rat, 

Rabbit, 

Canine 

Both (86, 106, 230, 423) 

Preconditioning Rat, Rabbit SSM  (63, 64, 67, 104, 229, 318) 

Postconditioning Rat, Rabbit SSM (68-70, 304) 

Heart Failure Rat, 

Hamster 

SSM (137, 138, 180, 383, 385) 

      Pressure Overload Mouse, Rat IFM (264, 350, 370, 401) 

      Volume Overload Rat SSM (148, 264, 394, 422) 

Aging Rat, Canine IFM (10, 74, 120, 135, 150, 

170, 179, 194, 228, 232, 

271, 272, 331, 377) 

      Aging and I/R Rat IFM (69, 231, 233-235) 

Exercise Mouse, Rat Both (74, 195, 204, 206) 

      Exercise and I/R Rat Both (227) 

Pharmacological 

Interventions 

Rat, 

Hamster 

SSM (61, 103, 105, 178, 359, 

407, 408) 

Type I Diabetes Mellitus Mouse IFM (22-24, 79, 85, 116, 429) 

Type II Diabetes Mellitus Mouse SSM (84) 

Hypermetabolism Rat IFM (360) 
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1.8a. Type 1 diabetes mellitus 

 DM can be characterized by a lack of insulin production during T1DM or a resistance to 

insulin during T2DM. Cardiovascular complications, such as diabetic cardiomyopathy, are the 

leading cause of morbidity and mortality among diabetic patients (142). Mitochondrial dysfunction 

has been shown to be central to the etiology of cardiac dysfunction associated with DM and 

dependent upon the type of DM, cardiac mitochondrial subpopulations can differentially 

influenced.   

 Swiss-Webster mice that underwent multiple low-dose injections of STZ showed that the 

IFM subpopulation displayed a decrease in size, internal complexity and ETC complexes I and III 

function (85). Further, superoxide production and oxidative damage were increased in the T1DM 

IFM (85). In STZ treated mice, cardiolipin content was shown to be decreased, along with 

decrements in cardiolipin synthase in the IFM during T1DM (79). Our laboratory has also shown 

enhanced apoptotic propensity in the IFM during T1DM via increased caspase-3 and -9 activities, 

mPTP opening, Bax and cyclophilin D protein contents, along with decreases in mitochondrial 

cytochrome c content and Bcl-2 levels (428). The proteomic makeup of the IFM is also disturbed 

as seen by isobaric tags for relative and absolute quantitation (iTRAQ) and 2D differential in-gel 

electrophoresis (2D-DIGE) (23). These analyses revealed decreased abundance of fatty acid 

oxidation (FAO) and ETC proteins in the IFM during T1DM (23). Additionally, nuclear-encoded 

mitochondrial protein import is compromised in T1DM IFM, which could a mechanism by which 

proteomic dysregulation is occurring (23). Using a novel transgenic animal overexpressing 

mPHGPx, our laboratory found that the IFM had restored ETC complex function, as well as the 

attenuation of H2O2 production during T1DM. Furthermore, nuclear-encoded mitochondrial 

protein import was restored, lessening the proteomic dysregulation observed in the T1DM IFM 
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(22, 86). Solute carrier family 25 member 3 (Slc25a3), an IMM protein transporter involved in 

providing the mitochondrial matrix with inorganic phosphate, is decreased in the IFM during 

T1DM. Further, this decrease in Slc25a3 is associated with decreased ATP synthase activity and 

ATP production in the T1DM IFM (24). ATP-dependent potassium (K+) channels have a decrease 

in Kir6.1, a pore-forming subunit, in both cardiac mitochondrial subpopulations during T1DM; 

however, SUR1, a diazoxide-sensitive sulphonylurea receptor, was only found to be decreased in 

the IFM (116). Studies on cardiac mitochondrial subpopulations during T1DM indicate that the 

IFM is predominantly affected during this type of pathological insult. It is unclear as to why this 

phenomenon occurs, but it may result from differences in mitochondrial subpopulation function 

such as higher respiration rates, ΔΨm and protein import rates or the subcellular locale of the IFM 

subpopulation.  

 

1.8b. Type 2 diabetes mellitus 

 Interestingly, the evaluation of T2DM cardiac mitochondrial subpopulations reveals 

substantially different results than T1DM, with the SSM subpopulation being predominantly 

affected. Our laboratory found the SSM to be detrimentally impacted in the db/db mouse model 

with deficits in mitochondrial size and internal complexity, along with decreased state 3 respiration 

rates, ETC complex activities, ATP synthase function and ΔΨm (84). Further, there was also 

increased oxidative damage and a greater loss of SSM proteins shown by proteomic analyses as a 

result of T2DM (84). It is unclear as to why different cardiac mitochondrial subpopulations are 

affected during T1DM and T2DM; however, the deleterious effects on the mitochondrion are 

similar with the only difference being the subpopulation in which they are occurring. One 

explanation is that the milieu surrounding the distinct mitochondrial subpopulations are somewhat 
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different, potentially causing the IFM to be affected during T1DM and the SSM to be affected 

during T2DM. The milieu during T2DM has an enhanced free fatty acid content, which was shown 

in T2DM patients’ vastus lateralis muscles by a 3-fold increase in the lipid volume of the SSM 

locale without affecting the lipids in the IFM region (288). With the increased lipid content in the 

SSM region, Nielsen et al. suggests that the lipids may actually interfere with key processes 

involved in metabolic signaling in the SSM, while the IFM remain unaffected (288). Notably, these 

authors were working on skeletal muscle, not cardiac tissue in these patients.  

 

1.8c. Commonalities between T1DM and T2DM on the mitochondrion 

 While striking differences do exist between the impact of T1DM versus T2DM on cardiac 

mitochondrial subpopulations, with the IFM being predominantly affected during T1DM and the 

SSM being primarily affected by T2DM, commonalities also exist. For example, loss of proper 

mitochondrial function correlates with the dysregulation of the proteome, which is observed in the 

specific mitochondrial subpopulation impacted by that type of DM. Specifically, T1DM IFM show 

structural damage and functional deficits, which coincide with proteomic dysregulation (22-24, 

79, 386). The opposite occurs during T2DM, with the SSM revealing structural damage and 

decreases in mitochondrial function, which correlate with proteome dysregulation (80, 84). 

Disturbances to the IMM, which contains proteins involved in OXPHOS and protein import 

machinery, are shown to be impacted in the IFM during T1DM and the SSM during T2DM, 

suggestive of the IMM locale being prone to proteomic alterations due to the diabetic insult (174). 

Nuclear-encoded mitochondrial protein import and protein contents of essential constituents in the 

import process are impacted in the IFM of T1DM and the SSM of T2DM (22, 23). It is interesting 

to note that commonalities exist in the mirroring of dysfunction in key processes seen in a specific 
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subpopulation depending on the type of diabetic insult, allowing each pathology to provide 

complementary information in order to develop a therapeutic intervention to treat both diabetic 

phenotypes.  

 

1.9 Mitochondrial Dysfunction during DM 

 Mitochondria are crucial to the maintenance of homeostasis of many cell types because of 

their energy producing capacity, along with its oxidative and apoptotic potential. The literature 

provides evidence that mitochondrial dysfunction plays a role in the etiology of cardiac 

dysfunction during DM (152, 390, 436). Increased oxidative stress, alterations in mitochondrial 

Ca2+ handling and mitochondrial bioenergetics, inefficient nuclear-encoded mitochondrial protein 

import and proteomic remodeling all contribute to the mitochondrial dysfunction seen in the 

diabetic heart.  

 

1.9a. Oxidative stress 

 The development of cardiovascular disease has been linked to an increase in oxidative 

stress in cardiomyocytes. The mitochondrion is susceptible to oxidative stress because of the IMM, 

which serves as the primary source of ROS products via the leakage of electrons from the ETC, 

particularly from complexes I and III (48, 299). When ROS are generated in excess and the 

antioxidant defense systems cannot keep up, oxidative stress occurs. Forms of ROS include 

superoxide radicals, hydroxyl radicals, H2O2, nitric oxide and peroxynitrite (48, 431). ROS plays 

a detrimental role to the mitochondrion and other cellular components through oxidation of DNA 

and proteins, lipid peroxidations and protein nitrations (48, 416). During DM, cardiac 

mitochondria have been shown to be detrimentally impacted in animal models of both pathologies, 
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suggesting that the increased glucose and free fatty acid levels drives the formation of ROS (48, 

99, 100, 292, 355, 433). Our laboratory observed increased protein and lipid damage in T1DM 

IFM; however, overexpression of mPHGPx, an antioxidant located in the IMS of the 

mitochondrion, provided protection against oxidative damage (22, 85). Shen et al. showed that 

overexpression of MnSOD during T1DM also afforded protection to mitochondria, while Ye et al. 

showed catalase to have protective benefits (354, 436). Further, overexpression of metallothionein 

in STZ-treated mice produced a reduction in nitrosative damage and in OVE26 mice restored levels 

of oxidized glutathione (52, 437). In T2DM animal models, reduced cardiac efficiency was seen 

due to enhanced ROS generation and lipid peroxidation by-products, leading to increased oxygen 

consumption without a subsequent increase in ATP production (41). Yamagishi et al. found 

increased mitochondrial H2O2 production and ROS in conjunction with increased electron delivery 

from augmented FAO (433). Thus, the development of cardiovascular issues during different 

pathological states could result from an increased oxidative stress from the mitochondrion. 

 

1.9b. Calcium handling  

 Mitochondria are intricate sources of ATP for cardiomyocyte contraction, but the 

mitochondrion is also crucial in its interactions with Ca2+ in order to regulate the excitation-

contraction coupling and energy metabolism within the heart (188). When high levels of Ca2+ 

occur in the matrix, generation of ROS is increased, which causes the opening of the mPTP 

disrupting the function of the ETC in the IMM (155). With the opening of the mPTP, ionic 

homeostasis is disrupted and uncoupling of OXPHOS occurs, triggering an increase in cell death 

(345). In T1DM, Flarsheim et al. showed decreased mitochondrial Ca2+ uptake, while Lagadic-

Gossmann et al. showed decreased mitochondrial Ca2+ content (130, 222). Additionally, during 
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T1DM, mitochondria did not retain the Ca2+ because of an increased propensity for mPTP opening 

(298). Our laboratory corroborated these results in our findings of increased mPTP opening and 

decreased mitochondrial cytochrome c content in the IFM of T1DM mice (428). Abnormalities in 

Ca2+ homeostasis may also be a mechanism linking impaired mitochondrial oxidative function to 

insulin resistance (281, 309, 330). Altogether, these studies indicate an impairment in Ca2+ 

handling during DM, leading to decreased contractility and energy metabolism, while increasing 

cellular apoptosis via the mitochondria.  

 

1.9c. Mitochondrial energetics 

 Mitochondrial energetics play a distinct role in the cell and mitochondrial dysfunction has 

been linked to a wide range of pathological states including metabolic diseases, cancer and aging. 

Gross et al. showed decreased respiration in STZ-treated rats when assessed with substrates for 

complexes I and II in skeletal muscle mitochondria, which was corroborated in other rodent studies 

looking at mitochondrial respiration in the heart and brain (85, 125, 153, 278). In the Akita mouse 

model for T1DM, mitochondria from the heart displayed decreased state 3 respiration when fueled 

with complex I substrates along with decreased ATP synthase activity (50). Additionally, cardiac 

mitochondria and mitochondria isolated from the gastrocnemius of STZ-treated rats also showed 

a decreased state 3 respiration, ADP/O ratio and ATP synthesis rate (165). In a clinical setting, 

T1DM patients showed decreased ATP production in skeletal muscle mitochondria as a result of 

discontinued insulin treatment (200). Altogether, mitochondrial respiration and ATP production 

are impaired in the T1DM setting. Dysfunction in mitochondrial energetics has also been reported 

in animal models of T2DM. In the db/db mouse heart, respiration rates were decreased when fueled 

with glutamate/malate and palmitoyl-carnitine, along with decreased expression of the F1 α-
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subunit of ATP synthase and increased proton leak induced by fatty acids (41). In another study 

using the db/db model, Boudina et al. found impairments in OXPHOS and increased fatty acid-

induced mitochondrial uncoupling (40, 41). Further, in a high-fat feeding model of T2DM, 

decreases in tricarboxylic acid (TCA) cycle proteins were found in skeletal muscle along with an 

inability to switch substrate utilization from fat to glucose, suggestive of an incapability to deal 

with increased fatty acid substrates during T2DM (212). When assessing T2DM patients, 

decreased NADH oxidoreductase and reduced citrates synthase activity were seen in skeletal 

muscle mitochondria (207). Other studies have indicated increased lipid deposition, deficits in 

OXPHOS, decreased ATP synthase and creatine kinase B protein expression in T2DM patients 

(172, 288, 324).  Altogether, these studies indicate decrements in mitochondrial respiration and 

ATP production during T2DM. Independent of the type of DM, mitochondrial energetics are 

detrimentally altered. 

 

1.9d. Protein import 

 Proteomic analyses have revealed that the abundance of nuclear-encoded proteins residing 

within the mitochondria are decreased during DM, including proteins essential for the 

mitochondrial protein import process (23, 84, 393). Results from our laboratory revealed that 

nuclear-encoded mitochondrial protein import is decreased in the T1DM IFM, with no impact on 

the SSM subpopulation (23). Interestingly, it is thought that the decrease in import efficiency is 

due to a diminished protein content of mtHsp70 in the IFM as discussed above (23). The 

overexpression of mPHGPx was able to restore mitochondrial protein import efficiency in the IFM 

during T1DM (22). While protein content of mtHsp70 has been shown to be downregulated in 
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SSM during T2DM, to date, nuclear-encoded mitochondrial protein import has not been reported 

in a T2DM mouse model (84).  

 

1.9e. Proteomic remodeling 

 Attainment of a broad overview of what proteins are changing in the heart during DM has 

allowed for an increased understanding of how mitochondria are affected during the disease state. 

Recently, broad scale proteomics have become prevalent within different types of DM models (23, 

51, 84, 158, 355, 393). 2D polyacrylamide gel electrophoresis (2D-PAGE) along with matrix-

assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS) was 

performed on mitochondria isolated from STZ-induced T1DM rats (393). Alterations in FAO 

proteins, OXPHOS complex I subunits, and mitochondrial heat shock proteins were found in the 

T1DM animals (393). Another group using the same model found increases in FAO proteins and 

decreases in proteins involved with the antioxidant defense system (158). Using iTRAQ proteomic 

labeling coupled with multidimensional protein identification technology mass spectrometry 

(MudPIT MS/MS), cardiac mitochondria from STZ-treated rats were analyzed four months post-

diabetic onset (197). In this study, Jullig et al. found increases in long chain fatty acid proteins and 

decreases in catabolic short chain fatty acid enzymes, potentially providing an explanation for the 

lipotoxicity seen in the T1DM setting (197).  Further, results from another study found that the 

Akita mouse model of T1DM had increased FAO proteins, decreased TCA proteins and alterations 

in OXPHOS proteins in mitochondria isolated from the kidney, liver, brain and heart (51). 

Proteomic evaluations of mitochondrial subpopulations has been performed by our laboratory in 

the STZ-induced T1DM mouse model using two separate approaches: 2D-difference gel 

electrophoresis (DIGE) and iTRAQ coupled with MALDI-TOF-MS (23). While similar findings 
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were found as far as changes in proteomic evaluations, the two mitochondrial subpopulations were 

differentially affected during T1DM, with the IFM showing the predominant changes during this 

pathological insult (23). FAO, OXPHOS subunits, TCA cycle intermediates, mitochondrial 

structural proteins and mitochondrial protein import constituents were significantly decreased in 

the T1DM IFM (23). Further, MudPIT was used in order to assess the posttranslational 

modifications of the proteins, which revealed higher oxidation and deamidations to proteins in the 

T1DM IFM (23). Our laboratory also assessed proteomic alterations and posttranslational 

modifications in the mitochondrial subpopulations of the db/db T2DM mouse model (84). 

Dysregulation of proteins in the SSM was more prevalent than that in the IFM of db/db mice when 

compared to controls with changes in FAO, respiratory chain components, TCA cycle proteins, 

the antioxidant defense protein peroxiredoxin V and mitochondrial protein import constituents 

(84). Posttranslational modifications were found on proteins of the SSM and IFM during the 

T2DM pathology, with proteins of the ETC being affected with alterations such as acetylations, 

deamidations and oxidations (84). Interestingly, the majority of proteins that were altered were 

located in the IMM, suggesting that the pathogenesis of the mitochondrial dysfunction may result 

from alterations to this sub-compartment during T2DM (84). Altogether, this data reveals that the 

mitochondrial proteome is detrimentally impacted during DM. 

 

1.10 MicroRNA  

 With their original discovery in C. elegans, microRNAs (miRNAs) are regulators of gene 

expression that are abundant in many species (415).  These miRNAs work by targeting mRNAs 

of protein-coding genes for posttranscriptional regulation and translational repression. miRNAs 

play a regulatory role in cell physiology and development; however, they have also been 
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implicated in pathological disease states such as autoimmune diseases, viral infections, cancer and 

DM (24, 184, 189, 213, 302, 310, 438).  

 MiRNAs are transcribed by RNA Polymerase II, which produces a pri-miRNA transcript 

containing a hairpin loop, capped 5’ end and a polyadenylated (poly(A)) tail. Drosha, an RNase 

III enzyme located in the nucleus, serves to cut the pri-miRNA into an intermediate form known 

as the pre-miRNA (225, 226, 442). This pre-miRNA contains the hairpin loop, but its size is 

significantly smaller and once trimmed, the pre-miRNA is then actively transported to the 

cytoplasm from the nucleus by exportin-5 and ran-guanosine triphosphate (256, 439). Dicer, a 

cytoplasmic protein and RNase III enzyme, cuts the pre-miRNA resulting in the mature, double-

stranded miRNA, which now ranges in size from 20-25 base pairs (255). Finally, formation of the 

RNA-Induced Silencing Complex (RISC) occurs. First, dicer, along with assistance from cofactors 

transactivating response RNA binding protein and protein activator of interferon induced protein 

kinase, unravels the miRNA from its complementary sequence, leaving a single-stranded 

functional miRNA. Then, dicer helps to bring the miRNA to a member of the argonaute family 

(AGO1-4), completing the formation of the RISC (323). Importantly, AGO family proteins 

function in miRNA repression through the inhibition of protein synthesis when bound to the 

mRNA 3’ untranslated region (UTR) (129). miRNAs then target the RISC via AGO to a specific 

mRNA and the seeding region, a particular 2-7 base pair region of the miRNA, can bind directly 

to the target mRNA. Once bound, translational repression, deadenylation or endonucleolytic 

cleavage causing mRNA degradation to occur in the RISC (246) (Figure 1.6). 
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Figure 1.6 miRNA Biogenesis and Function (403) 

 

1.10a. In physiology 

 miRNAs have been shown to be involved in physiological developmental processes such 

as regulation of cellular functions including growth, proliferation, differentiation and apoptosis 

(20). Since miRNAs play a role in differentiation, the expression profiles for miRNA can be used 

to identify specific cell types, thus leading to the identification of certain tissues (443). Further, 

miRNAs have been investigated for their role in stem cells, specifically controlling the fate of the 
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stem cell through differentiation and behavior of the cell (55). When looking at embryonic cell 

differentiation regulation by miRNA-296 and miRNA-22, miRNA-296 promoted differentiation, 

while miRNA-22 inhibited differentiation (140). Additional studies revealed that osteogenic 

differentiation of stem cells is regulated by miR-26a and miRNA-138 through the targeting of 

transcription factor SMAD1 (114, 140). Interestingly, miRNA networks during development also 

interact in important processes for the fate of a cell, conferring robustness to certain biological 

processes and reinforcement of transcriptional programs (108). First, miRNAs oftentimes target a 

transcriptional regulator and second, with the combination of a feedforward and feedback loop, 

cells are able to distinguish between whether they should counteract a transient fluctuation or 

incorporate a permanent change (108, 123). Finally, specific cell type miRNA exist and reinforce 

the same cell fate decisions for all cells (108, 123). In a study by Cheung et al., the authors found 

that the miRNA pathway was essential in the maintenance of quiescence in satellite cells (71). 

Specifically, the authors showed that miR-489 regulates satellite cell quiescence through Dek and 

helps to promote the proliferation of myogenic progenitors (71). The vast majority of literature 

reveals that miRNA play an unprecedented role in proper and controlled physiological 

development. 

 

1.10b. In pathologies 

 Recently, an expanse of research has been performed to elucidate the roles of miRNAs in 

pathologies such as cancer, cardiovascular disease, DM and pathologies dealing with the immune 

system (76, 98, 121, 295). miR-15a/16-1 are implicated as tumor suppressors, which have been 

found to be deleted in chronic lymphocytic leukemia (53). This discovery by Calin et al. set the 

stage for the role of miRNA in cancer, where miRNAs have been shown to affect all 6 hallmarks 
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of malignant cells (98). Further, miRNAs have important roles in cardiovascular disease such as 

MI, hypertrophy and HF (121). In a study of ischemic pre- and post-conditioning, characterization 

of the miRNA expression levels showed alterations to 18 miRNAs (405). miR-423-5p was highly 

expressed in the blood of HF patients and elevated plasma levels of the same miRNA are linked 

with N-terminal prohormone brain natriuretic peptide levels in dilated cardiomyopathy (115, 388). 

miRNAs exist in all parts of the body and play a role in cellular processes dealing with both 

physiological and pathological development. It is suggested that miRNA can circulate in the blood 

during times of stress to target areas within the body, which allows for these circulating miRNAs 

to be used as clinical markers for disease states (147).  

 

1.10c. Within the heart 

 MiRNA are present throughout the body; however, within the heart, certain miRNA have 

been shown to be highly expressed and impact cardiomyocyte differentiation, cardiac development 

and ventricular hypertrophy (19, 25, 244). Nine miRNAs have been described previously as having 

important roles in cardiovascular disease and disease progression: miR-1, miR-133a-2, miR-133b, 

miR-208a, miR-208b, miR-214-3p, miR-146a-5p, miR-155-5p and miR-150-5p (126). miR-1 and 

miR-133a have been shown to be important in ventricular development, particularly in regulation 

of cardiomyocyte growth (250, 371). Interestingly, miR-133a, miR-133b, miR208a and miR-208b 

have been shown to be downregulated in chronic Chagas disease cardiomyopathy when compared 

to control (126). Further, these authors found that miR-133b, miR-208a and miR-208b were also 

reduced in diabetic cardiomyopathy samples when compared with controls (126). In physiological, 

exercise-induced LV hypertrophy, the global analysis of miRNAs revealed that miR-26b, miR-

27a and miR-143 were decreased after 7 days of exercise, while miR-150 was increased after 35 
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days of exercise, potentially alluding to these miRNAs playing a role in the regulation of 

hypertrophy (262). miR-29 and miR-34a have been suggested to have a role in the development 

of cardiac fibrosis, while miR-30d plays a role in diabetic cardiomyopathy (183, 242, 404). 

Literature suggests that miRNAs have been abundantly studied in the heart relating to both 

physiological and pathophysiological roles, along with their potential use as therapeutic targets 

and treatments for cardiac diseases.  

 

1.10d. Within the mitochondria 

 miRNAs exist throughout the body in many different locales, but recently, research has 

focused on determining the role of particular miRNAs within certain organelles. With the 

mitochondrion playing a critical role in providing energy for the cell and utilizing proteins 

generated from the mitochondrial and nuclear genome in order to properly function, it is critical 

for the role of miRNAs within this organelle be elucidated due to their influence on mRNA and 

protein expression. Particularly, the study of miRNAs in pathophysiological states is extremely 

important to determine their regulatory roles. Studies of liver mitochondria revealed the presence 

of miRNA within this organ and suggested that miRNAs have influenced cellular proliferation, 

apoptosis and cellular differentiation (31, 215). Further, literature suggests that specific miRNA 

subpopulations could potentially exist within the mitochondrion (240). The changing 

concentrations of miRNAs within the mitochondria have shown detrimental impacts on OXPHOS, 

ATP synthase and FAO during disease states. Interestingly, Bian et al. found that the most highly 

expressed miRNAs located in liver mitochondria did not show up in the liver fractions (31). Das 

et al. performed a study looking at miRNA-181c translocation into the mitochondria and its 

regulation of the mitochondrial genome through the targeting of cytochrome c oxidase subunit 1 
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mRNA (93). In the STZ-induced T1DM mouse model, increased levels of miR-494, miR-202-5p, 

miR155 and miR-134 were found, while miR-705 and miR122 were decreased in the liver 

mitochondria and are suggested to target specific mitochondrial genes (31). Looking at isolated 

cardiac mitochondrial subpopulations, our laboratory found that spatially distinct mitochondrial 

subpopulations are differentially affected during DM (189). During T1DM, the redistribution of 

miR-378 in the IFM led to a decrease in the F0 component of ATP6 in cardiac mitochondria (189). 

Another study performed in our laboratory showed an increase in miR-141 expression with a 

subsequent decrease in the IMM phosphate transporter, Slc25a3, in the IFM during T1DM (24). 

Further investigation of miRNAs within the mitochondria, particularly mitochondrial 

subpopulations, could lead to and understanding of how mitochondrial processes are dysfunctional 

during pathological settings.  

 

1.10e. Import into the mitochondria 

 Import of nuclear-encoded proteins into the mitochondrion is a well-studied mechanism, 

with the machinery for the process identified; however, the mechanisms behind the import of 

miRNAs into the mitochondrion and the constituents involved are unknown. Studies using 

different species indicate that nuclear-encoded RNA is likely imported into the mitochondrion via 

mechanisms that are ATP-dependent. Schneider showed the import of tRNAs into the 

mitochondrion through Tom20, Tom40 and VDAC; however, the mechanisms behind the import 

of non-coding RNAs still need to be elucidated (349). Interestingly, studies looking at 5S rRNA 

and tRNA targeted to the mitochondrion suggested that the mechanism behind protein import 

could potentially be the same machinery used for RNA import (15, 111, 210, 366, 367). In addition 

to the pores used by nuclear-encoded protein import, RNA could be imported into the 
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mitochondrion initially through porins, which are voltage-dependent anion channels located on the 

OMM (15, 75, 339).  

Argonaute 2 (Ago2) could also serve as a mediator in the localization of miRNAs to the 

mitochondria and potentially facilitate the miRNAs movement through and into the mitochondrial 

matrix, indicating that the RISC potentially plays a role in miRNA import (15).  Ago2 has been 

shown to associate with mitochondrial transcripts mt-CO3 and mt-CO1, along with miR-181c, 

indicating that Ago2 may play a key role in the association of miRNAs being imported into the 

mitochondrion (16, 28, 93). Ago2 and its associated miRNA could be delivered to the 

mitochondrion through a system of vesicles (15). While miRNAs have been shown to exist in 

microvesicles and exosomes, allowing for the transfer of the miRNA between cells, this process 

has not been shown to occur on a particular organelle, such as the mitochondrion (128).  

Another important protein postulated to be involved in the import of miRNA into the 

mitochondrion is polynucleotide phosphorylase (PNPase). Utilizing PNPase for RNA import into 

the mitochondrion requires the presence of a specific stem-loop secondary structure in the target 

RNA (247, 418). Barrey et al. found that pre-miR-302a and pre-let-7b are predicted to fold into 

these stem-loop configurations, leading to the assumption that PNPase could be critical for the 

import of these pre-miRNAs into the mitochondrion (18). While potential machinery and 

mechanisms of import for miRNA have been postulated, studies still need to be completed in order 

to confirm these speculations.  

 

1.10e.i. Polynucleotide Phosphorylase  

 PNPase is located in the IMS of the mitochondrion, potentially situated on the IMM (418, 

419). Functioning as a homotrimeric protein, PNPase aids in the import of RNA into the 
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mitochondrion, editing and degradation of RNA, along with controlling cellular senescence and 

cell cycle (15, 248, 340, 341, 365, 418). Interestingly, Vedrenne et al. found that a mutation to 

PNPT1, the gene encoding for PNPase, impairs RNA import into the mitochondrion and causes 

deficiencies in respiratory chain function (406). PNPase also has the capability to form homo-

multimers, providing the protein with a diverse array of interactions with RNA and other small 

molecules, but also complicating the study of the protein (417). PNPase has been shown to induce 

degradation of mature miRNA by selectively binding it; however, its role in the import of mature 

miRNA has been postulated, but not studied (94). PNPase has been established to play an 

important role in the import of nuclear RNA; however, its involvement in the import of miRNAs 

needs to be evaluated (336, 349, 418).  

 

1.11 Summary 

 DM continues to increase in prevalence across the United States and worldwide, with rates 

of DM doubling in the past two decades (4). The global prevalence of DM is 8.5%, with a 

staggering  9.3% of people within the United States suffering from the disease (1, 2). Annually, 

DM costs the United States roughly $245 billion in medical costs and lost productivity (4). Among 

the leading causes of morbidity and mortality among diabetic patients are cardiovascular 

complications, such as HF (142). We sought to determine if speckle-tracking based strain 

echocardiographic analyses were able to detect subtle changes in cardiac function during DM, 

prior to detection using conventional measurements, thus allowing for earlier detection and 

treatment of cardiac complications during the progression of the disease. Mitochondrial 

dysfunction has been suggested as central to the etiology of DM; therefore, it is critical for 

scientists to study and elucidate the mechanisms behind mitochondrial dysfunction during DM, 
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ultimately leading to better diagnostic and therapeutic treatment options. Alterations to the 

mitochondrial proteome during DM could be a leading cause of mitochondrial dysfunction. The 

goal of the studies presented was to elucidate whether mitochondrial proteome dysregulation 

resulted from dysfunctional nuclear-encoded mitochondrial protein import efficiency in the SSM 

during T2DM and the IFM during T1DM. Further, subsequent studies were performed to 

determine whether overexpression of mtHsp70, a critical subunit of the PAM complex and motor 

for nuclear-encoded mitochondrial protein import, preserves import efficiency, stabilizing the 

mitochondrial proteome and ultimately leading to restored mitochondrial and cardiac contractile 

function. We also assessed the importance of PNPase for the import of miRNA during T2DM in 

order to help elucidate how the miRNAs are translocating into the mitochondria and regulating the 

mitochondrial genome with the intent of providing potential targets for therapeutic strategies. 

Efficient evaluation of cardiac contractile function via echocardiography and examination of 

nuclear-encoded mitochondrial protein import and import of miRNAs into the mitochondrion 

during DM could potentially allow for the discovery of therapeutic strategies aimed at helping to 

alleviate the mitochondrial dysfunction and cardiac contractile deficiencies seen in patients 

suffering from DM.  
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Abstract 

Enhanced sensitivity in echocardiographic analyses may allow for early detection of 

changes in cardiac function beyond the detection limits of conventional echocardiographic 

analyses, particularly in a small animal model. The goal of this study was to compare conventional 

echocardiographic measurements and speckle-tracking based strain imaging analyses in a small 

animal model of type 1 diabetes mellitus. Conventional analyses revealed differences in ejection 

fraction, fractional shortening, cardiac output, and stroke volume in diabetic animals relative to 

controls at 6-weeks post-diabetic onset. In contrast, when assessing short- and long-axis speckle-

tracking based strain analyses, diabetic mice showed changes in average systolic radial strain, 

radial strain rate, radial displacement, and radial velocity, as well as decreased circumferential and 

longitudinal strain rate, as early as 1-week post-diabetic onset and persisting throughout the 

diabetic study. Further, we performed regional analyses for the left ventricle and found that the 

free wall region was affected in both the short- and long-axis when assessing radial dimension 

parameters. These changes began 1-week post-diabetic onset and remained throughout the 

progression of the disease. These findings demonstrate the use of speckle-tracking based strain as 

an approach to elucidate cardiac dysfunction from a global perspective, identifying left ventricular 

cardiac regions affected during the progression of type 1 diabetes mellitus earlier than contractile 

changes detected by conventional echocardiographic measurements.  
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1.1 Introduction 

Cardiac complications, such as diabetic cardiomyopathy, are the leading cause of mortality 

among diabetic patients [1, 2]. Diabetic cardiomyopathy is characterized by contractile 

abnormalities in the absence of coronary disease [1, 2]. The ability to assess cardiac performance 

within a clinical setting has been established in patients with coronary artery disease, myocardial 

infarction, and ischemic cardiomyopathy by numerous studies providing strain analyses [3-5]. 

Importantly, however, while this type of imaging and analysis has been utilized in the clinical 

setting, it is somewhat limited when considering small animal models of cardiovascular diseases 

[6-9]. Multiple methods for imaging cardiac performance noninvasively are available, but highly 

sensitive in vivo imaging is imperative for the assessment of cardiovascular dysfunction within 

small animal models. Evaluation of potential therapeutic treatments for diseases in small animal 

models is difficult without a way to critically assess cardiac function. Some treatments may elicit 

subtle beneficial or detrimental changes in cardiac function, undetectable with conventional 

echocardiographic assessment such as ejection fraction, emphasizing the importance of methods 

capable of detecting minute changes. Sensitive imaging analyses would afford the ability to detect 

cardiotoxic side effects of potential therapeutic treatments given for systemic pathological 

diseases. It would also allow investigators to assess the ability of pharmacological treatments for 

cardiovascular pathological disease states to subtly enhance contractile function. Until recently, 

the speckle-tracking based strain approach has been unavailable in small animal models because 

of the lack of highly sensitive imaging probes and software limitations preventing rapid assessment 

of cardiac performance. Bauer et al. suggested echocardiographic speckle-tracking based strain 

analyses as a way to quickly and accurately cardiac phenotype using an experimentally-induced 

myocardial infarction model [6]. Compared with conventional echocardiography, these authors 
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found that speckle-tracking based strain analyses were capable of detecting subtle changes in 

myocardial deformation of the left ventricle (LV) [6]. Our current manuscript focuses on a type 1 

diabetic mouse model, previously established to exhibit global cardiac dysfunction, which we 

hypothesize will be detected earlier using speckle-tracking based strain analyses compared to 

conventional analyses [10, 11]. Moreover, we aim to elucidate whether distinct regions of the LV 

develop dysfunction throughout the progression of type 1 diabetes mellitus, as well as decrements 

in global LV cardiac strain measurements, prior to the overt LV changes detected by conventional 

measurements. We describe the utility of using speckle-tracking based strain analyses to evaluate 

the progression of cardiac dysfunction in the type 1 diabetic heart. Comparing speckle-tracking 

based strain to conventional echocardiographic analyses, we found that analysis of strain allowed 

us to detect subtle changes much earlier during the progression of type 1 diabetes mellitus.  
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1.2 Research Design and Methods 

1.2.1 Experimental Animals and Diabetes Induction 

Animal experiments performed in this study conformed to the National Institutes of Health 

Eighth Edition Guidelines for the Care and Use of Laboratory Animals and were approved by the 

West Virginia University Care and Use Committee. Male FVB mice were obtained from The 

Jackson Laboratory (Bar Harbor, Maine) at 4 weeks of age, placed on a standard diet, and received 

free access to water. Animals were housed in the West Virginia University Health Sciences Center 

animal facility on a 12-hour light/dark cycle in a temperature-controlled room. Type 1 diabetes 

mellitus was induced in 6-week-old mice using multiple low-dose streptozotocin (STZ) (Sigma, 

St. Louis, MO) injections. Briefly, mice were injected intraperitoneally after a 6-hour fasting 

period for 5 consecutive days with STZ at a dose of 50 mg/kg body weight dissolved in sodium 

citrate buffer (pH 4.5) [12, 13]. Hyperglycemia was confirmed one week post-injection by 

measuring blood glucose (Contour Blood Glucose test strips; Bayer, Mishawaka, IN), where >250 

mg/dL was considered diabetic. One STZ injected animal was removed from the study. Animals 

were imaged at baseline prior to STZ injection, as well as at weeks 1, 3, and 6 after confirmation 

of type 1 diabetes mellitus.  

 

1.2.2 Echocardiography 

For echocardiographic assessment, each mouse was anesthetized in an induction chamber 

with inhalant isofluorane at 2.5% in 100% oxygen. When fully anesthetized, the mouse was 

transferred to dorsal recumbency, placed on a heated imaging platform, and maintained at 1% 

isofluorane for the duration of the experiment [14]. Electrode gel was applied to the limb leads 

allowing for an electrocardiogram and the respiration rate to be recorded during ultrasound 
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imaging. A rectal probe was used to monitor the temperature of the mouse. Ultrasound images 

were acquired using a 32-55 MHz linear array transducer on the Vevo2100 Imaging System 

(Visual Sonics, Toronto, Canada). Placing the transducer to the left of the sternum allowed us to 

obtain images of the aortic outflow tract, the apex of the heart, and LV along its longest axis (i.e., 

long-axis B-mode images). Once all long-axis B-mode images were attained, the transducer was 

rotated 90 degrees to acquire short-axis B-mode images at the mid-papillary muscle level. 

Additionally, M-mode images were taken by placing a gate through the center of the short-axis B-

mode images to obtain M-mode recordings of internal parameters of the myocardium. All images 

were acquired using the highest possible frame rate (233-401 frames/second) depending on the 

imaging axis to get the best possible image resolution for speckle-tracking based strain analyses. 

One trained individual in the West Virginia University Animal Models and Imaging Facility 

acquired all images.  

 

1.2.3 Conventional Echocardiographic M-mode and Doppler Imaging 

Conventional echocardiographic assessment was completed on grayscale M-mode 

parasternal short-axis images at the mid-papillary level of the LV (Figure 2.1A). Measurements 

obtained from LV M-mode images included end-diastolic and end-systolic diameters and volumes, 

anterior and posterior wall thickness at both systole and diastole, fractional shortening, ejection 

fraction, stroke volume, and cardiac output. LV volumes were automatically calculated by the 

Vevo2100 system when using M-mode imaging (Visual Sonics, Toronto, Canada). LV volume in 

systole (Volume;systole) was calculated by the program using the equation (7.0 / (2.4 + LVID;s)) 

x LVID;s3), while LV volume in diastole (Volume;diastole) was calculated using the equation (7.0 

/ (2.4 + LVID;d)) x LVID;d3) (Visual Sonics, Toronto, Canada).  To calculate stroke volume for 
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M-mode images, systolic volume was subtracted from diastolic volume (Visual Sonics, Toronto, 

Canada). All M-mode image measurements were calculated over three consecutive cardiac cycles 

and then averaged. As a measure of diastolic function, LV filling was assessed using Doppler 

echocardiography and measuring the E/A ratio, deceleration time, and Isovolumetric Relaxation 

Time (IVRT) over three cardiac cycles. The E/A ratio is a ratio of ventricular filling velocities of 

the early (E) peak to the late (A) peak of transmitral blood flow. Deceleration time of the E peak 

refers to the deceleration of blood flow through the mitral valve, while IVRT is the time from the 

closure of the aortic valve to the onset of mitral flow. 

To assess reliability of the conventional measurements, each observer scored the 

parameter three times, and the average of the three observations was used for analysis on a 

subset of our study population (n=4). To determine intraobserver variability, the average 

coefficient of variance ((standard deviation/ mean) x 100) was calculated for the observer for 

each measurement. The average coefficient of variance values for ejection fraction and E/A ratio 

were 3.4% and 1.3%, respectively. To determine both interobserver and test-retest intraobserver 

reliability, intra-class correlation (ICC) coefficients were calculated using a two-way mixed 

model with absolute agreement and reported in Table S2.1. Intraobserver test-retest reliability 

was calculated using values obtained at two separate time-points by a single rater. All ICC values 

for conventional measurements were greater than 0.8, indicating a high degree of both 

interobserver and intraobserver test-retest reliability [15]. When performing interobserver 

reproducibility measurements, the second observer selected and used the most appropriate image 

and frames to complete the strain measurements.  All reported analyses in the manuscript used 

the Vevo2100 Imaging analysis software and included measurements from all animals for M-

mode analyses (Visual Sonics, Toronto, Canada).  
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1.2.4 Speckle-tracking-based Strain Imaging Analyses 

Based on concepts previously described, strain is defined as the change in the length of a 

segment divided by the original length of the segment and the strain rate as the rate at which this 

deformation occurs during a cardiac cycle [16-18]. Using the B-mode videos acquired from the 

parasternal short- and long-axes (Figure 2.1A), strain and strain rate were calculated for the radial, 

longitudinal, and circumferential dimensions with the Visual Sonics VevoStrain software 

(Toronto, Canada) using a speckle-tracking algorithm. Velocity and displacement were also 

calculated in both the long- and short-axes. Values generated by strain analyses were positive or 

negative depending on the assessed measurement. A positive value for strain indicates fiber 

lengthening or thickening, such as in the radial dimension, while a negative value illustrates fiber 

shortening, in the circumferential or longitudinal dimensions [16, 19]. Briefly, B-mode video loops 

were chosen based upon image quality and the ability to visualize both the endocardial and 

epicardial wall borders, with limited interference by artifacts such as the sternum or lungs. Borders 

of the endocardium and epicardium were traced and checked throughout three cardiac cycles to 

ensure tracking was sufficient. Both the endocardial and epicardial borders were tracked through 

the image in a frame-by-frame manner by the software for measurements of strain, strain rate, 

velocity, and displacement. Strain analyses were performed, giving curvilinear data as output for 

both global and segmental values. Average peak global strain values were obtained from six 

independent anatomical segments of the LV. Global dyssynchrony for radial velocity, strain and 

strain rate were measured by using the standard deviation of time to peak strain, corrected for the 

RR interval [20, 21]. Further, segmental analyses were performed on short-axis images with the 

LV being split into the following regions: anterior free (AF), lateral (L), posterior (P), inferior free 
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(IF), posterior septum (PS), and anterior septum (AS) (Figure 2.1B). Regional analyses were also 

performed on long-axis images with the LV divided into the following segments: anterior base 

(AB), anterior mid (AM), anterior apex (AA), posterior apex (PA), posterior mid (PM), and 

posterior base (PB) (Figure 2.1C). Because type 1 diabetes mellitus presents as a global 

dysfunction of LV parameters, segments were grouped into septal (AS and PS for short-axis; AA, 

AM, and AB for long-axis) and free wall (AF, L, P, and IF for short-axis; PA, PM, and PB for 

long-axis) regions for short- and long-axis in order to assess whether a particular section of the LV 

is affected during the progression of the disease. All individual regions were utilized during 

analyses and grouped as previously stated. 

High intraobserver reproducibility was demonstrated on a subset of animals (n = 4) using 

speckle-tracking based strain measurements with a coefficient of variance equal to 6.1%, 

respectively. To determine both interobserver and test-retest intraobserver reliability, ICC 

coefficients were calculated using a two-way mixed model with absolute agreement and reported 

in Table S2.1. Interobserver and test-retest ICC values for strain were greater than 0.8, indicating 

a high degree of both interobserver and test-retest intraobserver reliability [15]. When performing 

interobserver reproducibility measurements, the second observer selected and used the most 

appropriate image and frames to complete the strain measurements. All reported analyses in the 

manuscript used the Vevo2100 Imaging analysis software (Visual Sonics, Toronto, Canada). One 

control and diabetic short-axis, along with one control long-axis image were excluded from strain 

measurements. In the short-axis, only still image pictures were collected and no movie loops; 

therefore, strain analyses could not be performed. For the excluded long-axis image, landmarks, 

such as the left atria and outflow track were not present; therefore, the movie loop was not used 

for strain analysis.  
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1.2.5 Statistical Analysis 

All data are presented as mean ± standard error of the mean (SEM). Comparisons between 

control and diabetic animals were made within each given week to see whether changes were noted 

between the two groups using different types of echocardiographic analyses. Data were analyzed 

using a two-tailed Student’s t test to directly compare the type 1 diabetic animals to the controls at 

a given time. P < 0.05 was considered statistically significant. Statistical analyses were performed 

using GraphPad Prism version 5.00 (GraphPad Software, San Diego, California). 
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1.3 Results 

1.3.1 Conventional Echocardiographic Imaging and Analysis 

 To assess LV functional changes over time during type 1 diabetes, mice were imaged prior 

to diabetes induction (baseline) and at weeks 1, 3 and 6 after onset. Table 2.1 represents data 

collected from M-mode images at baseline and weeks 1, 3, and 6. M-mode images showed 

decreases in anterior and posterior wall thickness at diastole in diabetic animals as compared to 

controls 1-week post-diabetic onset (Table 2.1). At 3-weeks post-diabetic onset, decreased anterior 

and posterior wall thickness at diastole, as well as a decreased heart rate were noted in type 1 

diabetic animals (Table 2.1). Six weeks after diabetes induction, overt LV dysfunction was present 

in the type 1 diabetic animals. Global function, assessed by conventional measures of 

echocardiography using M-mode images, showed decreased LV function in the type 1 diabetic 

animals at 6-weeks as compared to controls. Type 1 diabetes induced decreases in stroke volume, 

cardiac output, ejection fraction, and fractional shortening (Table 2.1). Further, type 1 diabetes 

caused decreases in diastolic diameter and volume, along with decreases in anterior and posterior 

wall thickness, indicative of myocardial remodeling (Table 2.1). 

Representative Doppler images from control and type 1 diabetic animals illustrate a 

decreased E/A ratio in type 1 diabetic animals as compared to their controls at 6-weeks post-

diabetic onset, with no changes occurring before this time point (Figure 2.2A-B). The decreased 

E/A ratio is due to the significantly decreased E wave at 6-weeks post-diabetic onset in the type 1 

diabetic animals (Figure 2.2C). A decrease in the E wave, or early diastolic filling, could be a 

reflection of hemodynamic load, heart rate and/or cardiac output given the known dependence of 

the E/A ratio on these factors [22, 23]. The decreased E wave during type 1 diabetes is potentially 

due to a decreased ability for LV relaxation, while no changes were seen in the A wave (Figure 
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2.2D). E wave deceleration, a measure of how blood flow velocity declines during early diastole, 

was unchanged between control and type 1 diabetic animals throughout the course of our study 

(Figure 2.2E). IVRT, a measure of the time from the closure of the aortic valve to the onset of 

mitral flow, is increased in the type 1 diabetic animals 6-weeks post-diabetic onset (Figure 2.2F). 

Together, the echocardiography data indicate deficient systolic and diastolic LV function during 

type 1 diabetes mellitus predominantly being observed through conventional measures at 6-weeks 

post-diabetic onset.  

 

1.3.2 Measures of Global Myocardial Performance During a Type I Diabetic Insult 

 Using the VevoStrain software to complete functional analyses for the LV, the complex 

pattern of deformation can be examined in the longitudinal, radial, and circumferential dimensions 

in both systole and diastole. Speckle-tracking based strain analyses trace the endocardium and 

epicardium frame-to-frame during the cine loop, providing assessment of the deformation of the 

tissue by using measurements of strain and strain rate in each of these dimensions. Strain refers to 

the assessment of myocardial deformation, while strain rate measures the tissue velocity of 

deformation [16]. Global LV functional analyses, as well as the evaluation of six anatomic 

segments of the LV providing information on regional function, produce curvilinear data for strain 

analysis (Figure S2.1). Interestingly, speckle-tracking based strain analyses revealed differences 

as early as 1-week post-diabetic onset and persisting throughout the remainder of the study. 

Decreases in short-axis average systolic radial strain, strain rate, velocity, and displacement were 

noted in the type 1 diabetic animals at week 1 when compared to control animals, along with 

significantly decreased circumferential strain (Table 2.2). Three weeks post-diabetic onset, 

average systolic circumferential strain rate, radial strain, strain rate, velocity, and displacement 
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were all significantly decreased in the diabetic animals as compared to controls (Table 2.2).  

Finally, at 6-weeks post-diabetic onset, decrements in average systolic circumferential strain rate, 

radial strain, strain rate, and velocity were noted in the type 1 diabetic animals when compared to 

controls (Table 2.2). No changes were noted in circumferential rate or displacement (Table 2.2). 

When assessing global diastolic strain measurements in the short-axis, radial strain was 

significantly decreased in diabetic animals when compared to controls starting at week 1 and 

persisting throughout the study (Table 2.2). Further, radial strain rate was decreased at weeks 3 

and 6 post-diabetic onset (Table 2.2).  

In the long-axis images, diabetic animals had decreased average systolic radial strain, strain 

rate, and velocity at weeks 1, 3 and 6 as compared to control within a given week (Table 2.3). 

Radial displacement was decreased at 1-week post-diabetic onset; however, this change was not 

observed throughout the rest of the study (Table 2.3). Further, longitudinal strain rate was 

decreased at weeks 3 and 6 post-diabetic onset; however, other longitudinal parameters such as 

strain, velocity, and displacement were unaltered during the progression of type 1 diabetes (Table 

2.3). Average diastolic strain parameters were unchanged between control and diabetic animals in 

the long-axis (Table 2.3). 

Systolic radial velocity, strain, and strain rate parameters, which were globally changing 

due to type 1 diabetes mellitus, were also analyzed for dyssynchrony in both the short- and long-

axes. Type 1 diabetes mellitus was not associated with significant increases in global dyssynchrony 

for radial velocity, strain, and strain rate at any time point throughout the course of the study (Table 

S2.2).  

Notably, it was discerned that changes in the short-axis, as seen by average myocardial 

systolic radial strain, strain rate, velocity, and displacement, as well as changes in circumferential 
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strain rate occurred earlier than changes in LV function for conventional echocardiographic 

measurements. Further, radial strain and strain rate were also significantly decreased during 

diastole as early as 1-week post-diabetic onset. Similarly, decrements in average myocardial 

systolic radial measurements in the long-axis, along with longitudinal strain rate, were noted earlier 

during the progression of type 1 diabetes mellitus than measurements obtained by conventional 

echocardiography. This data provides evidence that global speckle-tracking-based strain analyses 

are capable of detecting early, subtle changes in LV function in the type 1 diabetic STZ mouse 

model in both systole and diastole.  

 

1.3.3 Measures of Segmental Myocardial Performance During Type I Diabetes 

Speckle-tracking based strain allows for the assessment of regional cardiac function by 

separating the LV into six distinct segments in both the short- and long-axes (Figure S2.1). 

Regional analyses were performed on short-axis images with the LV divided into the free wall 

(anterior free, lateral, posterior, and inferior free) and septal wall (posterior septum and anterior 

septum) regions (Figure 2.1B). Global strain analyses showed decreases in both short- and long-

axis radial dimensions by deficient radial velocity, radial strain, and radial strain rate in the type 1 

diabetic animals (Tables 2.2 and 2.3). When assessing these parameters using a regional approach 

in the short-axis, we found that radial velocity in the free wall and septal wall regions was 

decreased in the type 1 diabetic animals at weeks 1 and 3 (Figure 2.3A-B). Interestingly, only the 

free wall region of the LV was affected in the type 1 diabetic animals when looking at radial strain 

beginning at week 1 and remaining throughout the progression of type 1 diabetes, with no changes 

in the septal wall (Figure 2.3C-D). Finally, radial strain rate was also affected in both the free wall 

and septal wall regions of the LV (Figure 2.3E-F). Decreases in radial strain rate in the free wall 
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occurred at week 1 and persisted throughout the study, while the septal wall was affected at weeks 

3 and 6 post-diabetic onset (Figure 2.3E-F).  

We also performed regional assessment on radial velocity, radial strain, and radial strain 

rate in the long-axis by separating the LV into free wall (posterior apex, posterior mid, and 

posterior base) and septal wall (anterior apex, anterior mid, and anterior base) regions (Figure 

2.1C).  Type 1 diabetic animals showed a decreased radial velocity in the free wall region of LV 

beginning at week 1 and persisting throughout the study, with only week 3 being affected in the 

septal wall region (Figure 2.4A-B). Radial strain was decreased in the free wall region of the type 

1 diabetic animals at weeks 1, 3, and 6 post-diabetic onset, with no decrements in the septal wall 

region (Figure 2.4C-D). Finally, radial strain rate was decreased in the type 1 diabetic animals in 

the free wall region of the LV beginning 1-week post-diabetic onset and continuing throughout the 

progression of diabetes, while the septal wall region was only affected at week 3 (Figure 2.4E-F). 

Overall, regional assessment of the LV in the radial dimension showed that the free wall region in 

the short- and long-axis was predominantly affected during the progression of type 1 diabetes 

mellitus.  
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1.4 Discussion  

This is the first application of echocardiographic speckle-tracking based strain analyses for 

cardiac phenotyping during the progression of type 1 diabetes in a mouse model. Here we describe 

the utility of using noninvasive echocardiographic analyses, such as speckle-tracking based strain, 

for early detection of LV dysfunction during the progression of type 1 diabetes mellitus.  

The goal of this study was to provide a comparison between conventional 

echocardiographic measurements and speckle-tracking based strain analyses to see if changes in 

cardiac function would be detected earlier by means of more advanced methods. Further, we aimed 

to see if a particular region of the LV was predominantly affected during the progression of type 

1 diabetes mellitus. The principal finding of this study was that speckle-tracking based strain 

analyses provided a sensitive approach to detect early global changes in LV function, as compared 

to changes identified using conventional echocardiography during the development of diabetes 

mellitus in a type 1 diabetic mouse model. As early as 1-week post-diabetic onset, decreases in 

average systolic radial strain, radial strain rate, radial velocity, and radial displacement, along with 

circumferential and  longitudinal strain rate at week 3 post-diabetic onset, were observed in short- 

and long-axis speckle-tracking based strain analyses and persisted throughout the study. Strain and 

strain rate were both found to be decreased in the radial axis at 1-week post-diabetic onset, 

indicating that myocardial deformation and the velocity at which that tissue deforms is impaired 

in this axis during the early stages of type 1 diabetes mellitus. Decreases in these systolic radial 

measurements are indicative of LV dysfunction allowing for subtle detection of early dysfunction 

occurring during type 1 diabetes mellitus [24]. Further, we found that the free wall region was 

predominantly affected in the radial dimension in both the short- and long-axis during type 1 

diabetes mellitus. These findings highlight that the LV free wall could potentially be more affected 
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than the septal wall during the progression of type 1 diabetes mellitus. These outcomes confirm 

other findings indicating that early changes are detected by speckle-tracking-based strain analysis 

prior to changes in conventional measurements giving investigators an approach to evaluate 

cardiac function in a small animal model with a cardiac pathology [6-9]. Additionally, speckle-

tracking based strain analyses allow the ability to detect particular regions of the LV that may not 

be functioning properly. Finally, it provides investigators with the opportunity to assess the 

therapeutic benefit or detriment of treatment strategies on cardiac contractile function. 

It is imperative in a clinical setting to be able to detect subtle changes in LV function and 

global heart function in order to intervene before the onset of a cardiac insult. Currently, clinical 

studies have shown that early detection of subtle changes in strain measurements were associated 

with the future development of cardiovascular disease, while conventional measures of cardiac 

structure and function were unaltered [25-32]. Though ejection fraction is typically the most 

prominent clinical measure for systolic dysfunction in the diabetic patient, strain and strain rate 

imaging have been shown to increase subclinical diabetic cardiomyopathy detection in patients 

[31, 33, 34]. Consequently, it is imperative that researchers using small animal models are able to 

detect these subtle and early changes in cardiac function in order to assess different cardiac 

therapies used to prevent cardiac dysfunction in the disease state. While strain measures have been 

utilized in clinical studies, experimental studies on small animal models were more complicated 

to perform due to fast heart rates, imaging equipment, and analysis software. However, advances 

such as high frame rates allowing for angle-independent measurements have permitted the 

adoption of strain analyses into an experimental setting, advancing the assessment of cardiac 

abnormalities and therapeutic approaches in small animal models of cardiovascular disease [27, 

35, 36].  
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Because previous studies indicate that myocardial ischemia is associated with a 

dyssynchronous profile that undermines appropriate contractile function [9, 20, 21, 37], we 

assessed global dyssynchrony in a temporal fashion following type 1 diabetes mellitus induction. 

Our data indicated that the progression of the type 1 diabetic pathology through the initial six 

weeks was not associated with an increase in dyssynchrony. Our data are in contrast to others who 

have shown in models of myocardial infarction, impairments in longitudinal and radial strain and 

strain rate parameters along with a concomitant increase in dyssynchrony [9, 20, 21, 37]. It is not 

entirely clear why the differences in findings occurred, though it may be a function of the different 

pathological models being studied. Specifically, these previous studies examined a focal cardiac 

region of tissue damage resulting from infarct, whereas our study in the diabetic heart reflect global 

dysfunction at an earlier pathological time point which may not be sufficient to induce an increase 

in dyssynchrony. Regardless, our current data suggests that dyssynchrony does not play a 

prominent role in cardiac pump function deficits during the initial progression of type 1 diabetes 

mellitus.  

Speckle-tracking based strain allows for the separation of the LV into six distinct segments, 

permitting us to investigate regional cardiac dysfunction during the progression of type 1 diabetes 

mellitus. In this study, we found that the region predominantly affected in the radial dimension 

was the free wall in the short- and long-axis during the progression of type 1 diabetes mellitus. 

These findings highlight that the free wall of the LV could potentially be more affected than the 

septal wall during type 1 diabetes mellitus. This finding corroborates the potential use for regional 

assessment of the LV in myocardial function during type 1 diabetes, particularly via changes in 

the average systolic and diastolic radial measurements.  
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Our findings support the current literature stating that speckle-tracking based strain 

analysis possesses the potential for the sensitive evaluation of global and regional cardiac function 

[6, 16, 38, 39]. Studies of patients with acute heart failure and LV dysfunction concluded that 

strain powerfully predicted adverse cardiac events better than other conventional parameters, such 

as ejection fraction [40, 41]. In a swine model of heart failure with preserved ejection fraction, 

Hiemstra et al. showed decreases in systolic apical rotation rate, changes in strain measurements 

from longitudinal, radial, and circumferential axes, as well as strain rate changes all prior to the 

onset of increases in LV end diastolic pressure [39]. These results are in agreement with our 

findings, as this group found that speckle-tracking was capable of detecting early changes prior to 

the onset of overt LV impairment [39]. Bauer et al. found similar results in their assessment of a 

small animal model of myocardial infarction with the addition of ACE inhibitors [6]. Their 

principal findings concluded that speckle-tracking based strain was more sensitive than 

conventional echocardiographic measurements when assessing both the infarct region and the 

remote region, while subtle improvements were found in LV function in response to treatment 

with ACE inhibitors [6]. Additionally, in a recent study by the same group, they determined 

whether speckle-tracking based strain would provide insight regarding early changes in cardiac 

performance, prior to LV dysfunction seen by conventional echocardiography, during early stages 

of compensatory hypertrophic cardiac remodeling due to pressure overload [7]. These authors 

found regional myocardial dysfunction in a mouse model of pressure overload further illustrating 

the utility of using speckle-tracking based strain analyses, as well as regional assessment, in the 

characterization of early cardiac dysfunction that is not detectable by conventional 

echocardiographic measurements [7].  
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While standard echocardiographic techniques are useful in the evaluation of cardiac 

structure and function, they are often insensitive to subtle changes that occur early during the 

progression of cardiovascular disease preceding overt dysfunction. Previously, our laboratory has 

reported changes in stroke volume, ejection fraction, fractional shortening and cardiac output due 

to type 1 diabetes mellitus; however, this current study offers a unique approach into pointing out 

a particular locale of dysfunction within the LV of the type 1 diabetic heart by implementing 

speckle-tracking based strain analysis [10, 11]. This study expounds upon current 

echocardiographic research providing evidence for using speckle-tracking based strain as an 

echocardiographic analysis software in small animal models of cardiovascular diseases [6, 7, 42-

44]. It has been shown that speckle-tracking based strain analyses are highly sensitive compared 

to conventional measurements in small animal models, suggesting that these analyses could be 

used for the assessment of different therapeutic treatments for cardiovascular diseases or 

predisposing risk factors, including diabetes mellitus. 

It is widely accepted that conventional measures of echocardiography are used to assess 

both cardiac structure, as well as function. However, the limitation for these types of measurements 

lies in the lack of sensitivity, which is overcome by the use of speckle-tracking based strain 

analyses. Although, limitations to this study exist even when using speckle-tracking based strain 

analyses and should be taken into consideration. The use of isofluorane, or any other anesthetic, is 

common in performing echocardiography on animals; however, it should be noted that anesthetics 

have the potential to alter the measurements recorded, though multiple studies have shown that 

even under anesthesia, echocardiographic measurements are reliable, particularly using speckle-

tracking based strain analyses [45-47]. Although this is a concern because of the risk of causing a 

decrease in heart rate during image acquisition, heart rates recorded for the duration of this study 
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remained near a physiological level. Literature notes that speckle tracking is heavily dependent 

upon 2D image quality, high frame rates, and angle dependency [17, 48]. To prevent variation, a 

single trained imaging technician acquired all images at the highest possible frame rate and avoided 

artifacts including the lungs and sternum. Other limitations such as out of plane motion and 

unknown software algorithms, known as filtering algorithms which calculate strain and strain rate 

values, are also important to keep in mind [16]. During a cardiac cycle the heart will move, 

sometimes causing speckles to move out of frame, making it difficult to surmise how the accuracy 

of speckle-tracking based strain analyses are affected [16]. Further, it is difficult to compare 

filtering algorithms between different software vendors and between the analyses, inherently 

posing another limitation [16]. Variability in the assessment of strain has also been addressed 

within the literature [49, 50]. As in the study performed by Hiemstra et al., we observed variation 

between our time points, which could potentially be due to the methodology used, but also because 

of animal maturation and normal physiological growth over the duration of the study [39]. Indeed, 

we previously reported differences in heart weights, 6 weeks following STZ induction, which may 

be a function of animal growth and pathology development that may have occurred similarly in 

the current study [10, 51]. With that being said, it is important to note that the goal of the present 

study was to determine whether speckle-tracking based strain analyses could identify cardiac 

dysfunction at a given time point, earlier than conventional measures, as opposed to across time 

points, limiting concern for serial assessment. Further, it is crucial to do a longer period of study 

to see if parameters of stress/strain are transient and/or worsen during type 1 diabetes at a longer 

duration. As others have previously shown, strain is dependent on a number of factors, such as 

complexity of myocardial fiber orientation, which could potentially include the evaluation of 

different fiber layers at a diverse number of levels leading to variation in results [6, 39, 52]. 
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Because of this, we decided that the question of interest was to find out if certain echocardiographic 

parameters were capable of detecting changes in LV function earlier during the progression of type 

1 diabetes mellitus. Therefore, we chose to not include the serial change, but instead evaluate 

different echocardiographic parameters at each time point individually. 

One question raised by the current study regards what mechanisms contribute to the 

observed changes in cardiac strain parameters? Of note are our findings of decreased radial strain 

during diastole which in combination with reduced early diastolic filling (decreased E), decreased 

end diastolic volume, and increased IVRT, suggest that impaired filling may be involved in the 

decreased stroke volume observed and ultimately, reduced cardiac output following diabetic insult. 

Since reduced E and IVRT typically reflect early filling, impaired energetics leading to increased 

time to reuptake calcium or trouble breaking cross-bridges during early diastole may be 

mechanistic contributors to changes in strain parameters. Because these processes are ATP-

dependent, any bioenergetic compromise in the mitochondrion’s ability to provide an adequate 

supply of ATP could have an effect on strain dynamics. Indeed, we have previously reported 

compromised mitochondrial function and ATP-generating capacity during type 1 diabetes mellitus 

[10, 51, 53]. Taken together, mitochondrial dysfunction in the face of type 1 diabetes mellitus may 

provide a mechanistic link between altered bioenergetic function and changes cardiac strain 

dynamics.      

During normal LV function the heart deforms to show myocardial thickening and thinning 

via the radial axis, as well as shortening and lengthening in the longitudinal and circumferential 

axes, depending on whether the heart is in systole or diastole [16]. Alterations in the deformation 

of the myocardium, revealed by strain measurements, are the earliest noninvasive indicators for 

the development of cardiac dysfunction [54, 55]. We demonstrate the advantage of using speckle-
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tracking based strain analyses to detect changes in LV function earlier than conventional 

echocardiographic measurements. While the correlation between contractile complications and 

diabetic cardiomyopathy have been well established, the results presented in this study reveal how 

early detection via strain measurements has the potential to play a critical role in evaluating 

therapeutic treatments for contractile dysfunction in the diabetic heart.  
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Figure 2.1 
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Figure 2.1. Echocardiography and speckle-tracking-based strain. Representative M-mode and 

B-mode control mouse echocardiographic images from which conventional analyses and speckle-

tracking-based strain analyses were performed (A). A schematic of myocardial regions identified 

form the parasternal short-axis view (B) and long-axis view (C). SAX indicates short-axis; AF, 

anterior free; L, lateral; P, posterior; IF, inferior free (AF, L, P, and IF considered the free wall 

region); PS, posterior septum; AS, anterior septum (PS and AS considered the septal wall region). 

LAX indicates long-axis; AB, anterior base; AM, anterior mid; AA, anterior apex (AB, AM, and 

AA considered the septal wall region); PA, posterior apex; PM, posterior mid; PB, posterior base 

(PA, PM, and PB considered the free wall region). 
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Figure 2.2 
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Figure 2.2. Color Doppler Imaging for Diastolic Function. Comparative color Doppler images 

between control (left) and diabetic (right) mice 6-weeks post-diabetic onset (A). E/A ratio data 

during type 1 diabetes mellitus progression (B). E wave velocity over time during type 1 diabetes 

mellitus (C). A wave velocity over time during type 1 diabetes mellitus (D). Deceleration time (E) 

and Isovolumetric Relaxation Time (IVRT) during the progression of type 1 diabetes mellitus (F). 

Values are means ± SEM. *P < 0.05 as compared to control at a given time. Open bars = Control 

animals, n = 8; Closed bars = Diabetic animals, n = 8. 
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Figure 2.3 
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Figure 2.3. Regional assessment of systolic radial velocity, radial strain, and radial strain 

rate via speckle-tracking based strain analysis in the short-axis. Comparison of control and 

type 1 diabetic animals assessing systolic radial velocity, radial strain, and radial strain rate 

between free wall and septal wall segments of the LV within a given week (A-F). Values are means 

± SEM; *P < 0.05 as compared to control within a given week. Open bars = Control animals, n = 

8; Closed bars = Diabetic animals, n = 8. Free wall segments include the anterior free wall, lateral, 

posterior, and inferior free wall. Septal wall segments include the anterior septum and posterior 

septum.  
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Figure 2.4 
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Figure 2.4. Regional assessment of systolic radial velocity, radial strain, and radial strain 

rate via speckle-tracking-based strain analysis in the long-axis. Comparison of control and type 

1 diabetic animals assessing systolic radial velocity, radial strain, and radial strain rate between 

free wall and septal wall segments of the LV within a given week (A-F). Values are means ± SEM; 

*P < 0.05 as compared to control within a given week. Open bars = Control animals, n = 8; Closed 

bars = Diabetic animals, n = 8. Septal wall segments include the anterior base, anterior mid, and 

anterior apex. Free wall segments include the posterior base, posterior mid, and posterior apex.   
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Figure S2.1 
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Figure S2.1 Representative Short- and Long-Axis Speckle-Tracking Based Strain Analyses. 

Curvilinear data is generated for the global (average) strain of the heart, as is denoted by the black 

line. Strain curves are also generated for each of the 6 anatomical segments of the heart. Speckle-

tracking based strain analyses also give curvilinear data and phase circles to indicate the rate at 

which all segments of the heart are moving. Representative images depicting radial strain 

measurements in a control animal for the short- (A) and long-axes (B).   
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Table 2.1. Conventional Echocardiographic Characteristics  

 Baseline Week 1 Week 3 Week 6 

 M-mode  Control Diabetic Control Diabetic Control Diabetic Control Diabetic 

 Heart Rate (bpm) 418.4 ± 20.9 431.3 ± 14.8 484.0 ± 21.0 457.2 ± 11.9 503.2 ± 11.5 448.4 ± 17.5* 498.5 ± 12.1 494.5 ± 12.1 

 Stroke Volume (µL) 33.6 ± 2.5 33.0 ± 2.0 30.6 ± 2.4 29.6 ± 1.6 26.7 ± 1.2 25.8 ± 2.5 30.0 ± 1.9 21.0 ± 1.8* 

 Ejection Fraction (%) 75.3 ± 0.9 74.4 ± 1.4 72.3 ± 1.5 68.6 ± 1.5 71.2 ± 1.3 68.2 ± 3.0 70.9 ± 1.8 65.0 ± 1.7* 

 Fractional Shortening (%) 42.3 ± 1.0 42.3 ± 1.3 40.5 ± 1.3 37.5 ± 1.1 39.6 ± 1.2 37.4 ± 2.3 39.5 ± 1.7 34.4 ± 1.3* 

 Cardiac Output (mL/min) 14.0 ± 1.0 13.7 ± 1.3 14.9 ± 1.5 13.4 ± 0.7 13.2 ± 0.6 11.4 ± 1.1 14.9 ± 0.7 10.3 ± 1.0* 

 Diameter;systole (mm) 1.8 ± 0.1 1.7 ± 0.1 1.9 ± 0.1 2.1 ±0.1 1.8 ± 0.06 1.9 ± 0.2 2.0 ± 0.1 1.9 ± 0.1 

 Diameter;diastole (mm) 3.3 ± 0.1 3.2 ± 0.1 3.2 ± 0.1 3.3 ± 0.1 3.0 ± 0.05 3.1 ± 0.2 3.2 ± 0.1 2.9 ± 0.1* 

 Volume;systole (µL) 9.4 ± 0.1 10.6 ± 1.0 12.1 ± 1.2 15.3 ± 1.4 10.4 ± 0.8 13.7 ± 2.9 12.6 ± 1.5 11.5 ± 1.4 

 Volume;diastole (µL) 43.0 ± 3.4 40.4 ± 2.8 42.7 ± 3.3 44.9 ± 2.7 35.6 ± 1.4 39.5 ± 5.1 42.6 ± 3.2 32.5 ± 3.0* 

 Anterior Wall Thickness;systole 

(mm) 
1.7 ± 0.07 1.5 ± 0.09 1.4 ± 0.07 1.4 ± 0.03 1.5 ± 0.05 1.4 ± 0.04 1.5 ± 0.04 1.5 ± 0.03 

 Anterior Wall Thickness;diastole 

(mm) 
1.1 ± 0.05 1.1 ± 0.1 1.2 ± 0.04 1.0 ± 0.05* 1.2 ± 0.06 1.0 ± 0.06* 1.0 ± 0.03 0.9 ± 0.03* 

 Posterior Wall Thickness;systole 

(mm) 
1.1 ± 0.05 1.1 ± 0.08 1.1 ± 0.04 1.2 ± 0.05 1.3 ± 0.06 1.2 ± 0.05 1.4 ± 0.1 1.3 ± 0.05 

 Posterior Wall Thickness;diastole 

(mm) 
0.8 ± 0.03 0.9 ± .0.4 1.1 ± 0.06 0.8 ± 0.05* 1.0 ± 0.03 0.8 ± 0.05* 1.0 ± 0.04 0.8 ± 0.03* 

Values are shown as means±SEM. *P<0.05 Control versus Diabetic in a given week. 2-tailed Student’s t test. Control n=8, Diabetic n=8.  
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Table 2.1.  M-Mode Echocardiography Measurements. Values are shown as means±SEM. 

*P<0.05 Control versus Diabetic in a given week. 2-tailed Student’s t test. Control n=8, Diabetic 

n=8. 
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Table 2.2. Average Short-Axis (SAX) Systolic and Diastolic Strain Echocardiographic Characteristics 

 Baseline Week 1 Week 3 Week 6 

SAX Strain Measurements at Systole Control Diabetic Control Diabetic Control Diabetic Control Diabetic 

Circumferential Strain (%) -32.9 ± 1.4 -33.6 ± 1.8 -31.2 ± 1.1 -28.5 ± 0.5* -29.0 ± 0.9 -27.8 ± 1.4 -29.4 ± 1.5 -26.8 ± 1.8 

Circumferential SR (1/s) -13.7 ± 1.0  -13.8 ± 1.1 -12.8 ± 0.6 -11.6 ± 0.9 -13.3 ± 0.5 -10.9 ± 0.8* -12.1 ± 0.4 -11.6 ± 1.5* 

Circumferential Rotation Rate (deg/s) 340.3 ± 27.5 342.7 ± 34.6 280.4 ± 18.6 270.2 ± 15.7 320.2 ± 33.5 321.9 ± 24.2 318.9 ± 37.6 347.4 ± 31.0 

Circumferential Displacement (deg) 4.0 ± 0.5 3.6 ± 0.7 3.2 ± 0.4 3.3 ± 0.3 4.4 ± 0.8 4.7 ± 0.5 4.1 ± 0.6 4.5 ± 0.7 

Radial Strain (%) 35.8 ± 2.0 35.1 ± 2.9 37.4 ± 0.8 34.0 ± 1.3* 35.5 ± 0.9 30.5 ± 2.1* 33.7 ±  0.8 25.7 ± 1.8* 

Radial SR (1/s) 12.8 ± 0.5 12.8 ± 1.0 11.8 ± 0.6 10.1 ± 0.4* 11.8 ± 0.3 10.0 ± 0.4* 11.3 ± 0.6 9.8 ± 0.4* 

Radial Velocity (cm/s) 1.7 ± 0.07 1.8 ± 0.1 1.6 ± 0.06 1.5 ± 0.05* 1.6 ± 0.04 1.4 ± 0.07* 1.6 ± 0.08 1.4 ± 0.09* 

Radial Displacement (mm) 0.57 ± 0.01 0.61 ± 0.05 0.55 ± 0.02 0.48 ± 0.02* 0.53 ± 0.01 0.44 ± 0.01* 0.52 ± 0.02 0.48 ± 0.04 

         

SAX Strain Measurements at Diastole         

Circumferential Strain (%) 1.5 ± 0.8 2.0 ± 0.5 1.5 ± 0.2 1.4 ± 0.3 2.0 ± 0.4 2.1 ± 0.3 1.9 ± 0.4 2.2 ± 0.2 

Circumferential SR (1/s) 24.3 ± 1.6 22.9 ± 2.3 16.4 ± 0.6 17.5 ± 0.8 15.4 ± 0.4 16.2 ± 1.1 17.4 ± 1.2 17.3 ± 1.2 

Circumferential Rotation Rate (deg/s) -391.5 ± 32.0 -408.3 ± 43.8 -362.7 ± 20.0 -382.4 ± 24.7 -401.5 ± 26.3 -421.5 ± 32.6 361.0 ± 33.5 -395.5 ± 28.9 

Circumferential Displacement (deg)  -3.8 ± 0.7 -3.8 ± 0.5 -3.8 ± 0.7 -2.5 ± 0.3 -2.1 ± 0.5 -2.4 ± 0.4 -2.8 ± 0.6 -3.0 ± 0.4 

Radial Strain (%) -2.4 ± 0.4 -3.9 ± 0.9 -2.3 ± 0.2 -1.6 ± 0.3* -3.7 ± 0.5 -2.0 ± 0.4* -3.8 ± 0.7 -2.0 ± 0.5* 

Radial SR (1/s) -15.8 ± 0.9 -16.6 ± 2.1 -13.3 ± 0.9 -12.5 ± 0.5 -13.1 ± 0.3 -11.2 ± 0.5* -13.7 ± 0.7 -11.1 ± 0.9* 

Radial Velocity (cm/s) -2.7 ± 0.2 -2.4 ± 0.3 -1.9 ± 0.08 -1.9 ± 0.1 -1.8 ± 0.07 -1.7 ± 0.1 -2.0 ± 0.1 -1.7 ± 0.2 

Radial Displacement (mm) -0.007 ± 0.002 -0.008 ± 0.002 -0.01 ± 0.003 -0.02 ± 0.3 -0.02 ± 0.005 -0.02 ± 0.003 -0.02 ± 0.006 -0.02 ± 0.002 

Values are shown as means±SEM. SR=Strain Rate. *P<0.05 Control versus Diabetic in a given week. 2-tailed Student’s t test. Control n=8, Diabetic n=8. 
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Table 2.2. Global Short-axis Systolic and Diastolic Strain Measurements. Values are shown 

as means±SEM. SR=Strain Rate. *P<0.05 Control versus Diabetic in a given week. 2-tailed 

Student’s t test. Control n=8, Diabetic n=8. 
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Table 2.3. Average Long-Axis (LAX) Systolic and Diastolic Strain Echocardiographic Characteristics 

 Baseline Week 1 Week 3 Week 6 

LAX Strain Measurements in Systole Control Diabetic Control Diabetic Control Diabetic Control Diabetic 

Longitudinal Strain (%) -20.2 ± 0.9 -21.4 ± 2.6 -17.9 ± 0.6 -16.7 ± 0.9 -19.3 ± 1.0 -18.5 ± 0.3 -18.4 ± 1.2 -18.7 ± 1.0 

Longitudinal SR (1/s) -8.3 ± 0.6 -7.5 ± 0.3 -7.1 ± 0.3 -6.7 ± 0.2 -8.3 ± 0.3 -6.8 ± 0.1*  -8.5 ± 0.6 -6.8 ± 0.4* 

Longitudinal Velocity (cm/s) 0.9 ± 0.06 0.9 ± 0.08 0.8 ± 0.04 0.9 ± 0.03 1.0 ± 0.05 0.9 ± 0.01 0.9 ± 0.05 0.9 ± 0.05 

Longitudinal Displacement (mm) 0.2 ± 0.02 0.2 ± 0.03 0.2 ± 0.01 0.2 ± 0.01 0.2 ± 0.02 0.2 ± 0.01 0.2 ± 0.02 0.2 ± 0.03 

Radial Strain (%) 28.8 ± 2.4 26.9 ± 3.0 27.8 ± 1.2 22.0 ± 1.1* 30.1 ± 2.0 24.7 ± 1.0* 27.7 ± 2.0 22.0 ± 0.6* 

Radial SR (1/s) 8.6 ± 0.8 8.1 ± 0.4 8.1 ± 0.2 6.7 ± 0.2* 8.6 ± 0.4 6.9 ± 0.3* 7.6 ± 0.2 6.3 ± 0.3* 

Radial Velocity (cm/s) 1.5 ± 0.09 1.5 ± 0.1 1.3 ± 0.04 1.1 ± 0.04* 1.5 ± 0.08 1.2 ± 0.05* 1.4 ± 0.01 1.2 ± 0.05* 

Radial Displacement (mm) 0.5 ± 0.02 0.5 ± 0.04 0.5 ± 0.01 0.4 ± 0.01* 0.5 ± 0.02 0.5 ± 0.01 0.5 ± 0.01 0.4 ± 0.02 

         

Long-Axis Strain Measurements in Diastole 
        

Longitudinal Strain (%) 2.3 ± 0.4 2.4 ± 1.0 1.3 ± .02 1.3 ± 0.3 1.1 ± 0.2 1.6 ± 0.3 1.1 ± 0.2 0.9 ± 0.1 

Longitudinal SR (1/s) 11.4 ± 0.7 11.5 ± 1.0 7.3 ± 0.2 7.9 ± 0.6 8.9 ± 0.6 9.8 ± 0.6 8.8 ± 0.6 10.0 ± 1.0 

Longitudinal Velocity (cm/s) -1.0 ± 0.08 -1.1 ± 0.05 -0.9 ± 0.01 -1.0 ± 0.06 -1.0 ± 0.05 -0.9 ± 0.08 -0.9 ± 0.06 -1.0 ± 0.05 

Longitudinal Displacement (mm) -0.03 ± 0.01 -0.04 ± 0.008 -0.03 ± 0.004 -0.04 ± 0.008 -0.02 ± 0.005 -0.04 ± 0.005 -0.02 ± 0.006 -0.04 ± 0.008 

Radial Strain (%) -2.8 ± 0.4 -2.4 ± 0.5 -1.6 ± 0.1 -2.1 ± 0.3 -1.6 ± 0.3 -2.0 ± 0.3 -2.1 ± 0.6 -1.9 ± 0.4 

Radial SR (1/s) -10.9 ± 1.1 -10.5 ± 0.5 -9.9 ± 0.6 -9.1 ± 0.7 -10.2 ± 0.6 -10.2 ± 0.6 -10.0 ± 0.4 -10.3 ± 0.5 

Radial Velocity (cm/s) -2.0 ± 0.1 -2.0 ± 0.1 -1.5 ± 0.04 -1.4 ± 0.08 -1.6 ± 0.1 -1.6 ± 0.1 -1.6 ± 0.05 -1.6 ± 0.09 

Radial Displacement (mm) -0.01 ± 0.002 -0.008 ± 0.002 -0.01 ± 0.001 -0.01 ± 0.002 -0.02 ± 0.003 -0.01 ± 0.003 -0.02 ± 0.004 -0.02 ± 0.003 

Values are shown as means±SEM. SR=Strain Rate. *P<0.05 Control versus Diabetic in a given week. 2-tailed Student’s t test. Control n=8, Diabetic n=8. 
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Table 2.3. Global Long-Axis Systolic and Diastolic Strain Measurements. Values are shown 

as means±SEM. SR=Strain Rate. *P<0.05 Control versus Diabetic in a given week. 2-tailed 

Student’s t test. Control n=8, Diabetic n=8. 
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Table S2.1 

 
Strain 

 
EA Ratio 

 
Ejection Fraction 

 Interobserver Intraobserver 
Test-Retest 

Interobserver Intraobserver 
Test-Retest 

Interobserver Intraobserver 
Test-Retest 

ICC 0.88 0.82 0.89 0.99 0.87 0.85 

95%  
confidence 
interval 

(-0.19-0.99) (-0.11-0.99) (0.23-0.99) (0.97-1.0) (0.19-0.99) (0.19-0.99) 

P value .037 .038 0.14 .000 .026 .081 
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Table S2.1. Interobserver and Intraobserver Test-Retest Reliability. Reliability tests for 

Strain, EA Ratio and Ejection Fraction measurements. ICC = Intra-class Correlation Coefficient.  
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Table S2.2. Average Short-Axis (SAX) and Long-Axis (LAX) Systolic Dyssynchrony  

 Baseline Week 1 Week 3 Week 6 

LAX Dyssynchrony  Control Diabetic Control Diabetic Control Diabetic Control Diabetic 

Dyssynchrony (%) - Radial Velocity 0.3 ± 0.03 0.3 ± 0.03 0.4 ± 0.04 0.3 ± 0.02 0.4 ± 0.03 0.3 ± 0.03 0.4 ± 0.02 0.3 ± 0.03* 

Dyssynchrony (%) - Radial Strain 8.9 ± 1.1  7.6 ± 1.3 7.9 ± 0.8 9.0 ± 0.8 8.2 ± 0.9 7.4 ± 0.8 8.5 ± 1.3 8.6 ± 1.3 

Dyssynchrony (%) - Radial Strain Rate  1.6 ± 0.3 1.0 ± 0.1 2.0 ± 0.3 1.2 ± 0.1* 1.5 ± 0.2 1.2 ± 0.1 1.4 ± 0.1 1.5 ± 0.2 

         

SAX Dyssynchrony          

Dyssynchrony (%) - Radial Velocity 0.2 ± 0.02 0.2 ± 0.03 0.2 ± 0.02 0.2 ± 0.02 0.2 ± 0.01 0.1 ± 0.02 0.2 ± 0.03 0.2 ± 0.03 

Dyssynchrony (%) - Radial Strain  9.4 ± 1.3 12.3 ± 1.9 11.8 ± 2.4 8.7 ± 0.9 11.9 ± 1.2 12.1 ± 1.05 14.2 ± 2.4 10.9 ± 0.9 

Dyssynchrony (%) - Radial Strain Rate  2.0 ± 0.2 3.0 ± 0.6 2.8 ± 0.5 1.6 ± 0.2* 2.8 ± 0.2 2.3 ± 0.3 3.1 ± 0.5 2.6 ± 0.3 

Values are shown as means±SEM. *P<0.05 Control versus Diabetic in a given week. 2-tailed Student’s t test. Control n=8, Diabetic n=8. 

Table S2.2. Average Short-Axis (SAX) and Long-Axis (LAX) Systolic Dyssynchrony  

 Baseline Week 1 Week 3 Week 6 

LAX Dyssynchrony  Control Diabetic Control Diabetic Control Diabetic Control Diabetic 

Dyssynchrony (%) - Radial Velocity 0.3 ± 0.03 0.3 ± 0.03 0.4 ± 0.04 0.3 ± 0.02 0.4 ± 0.03 0.3 ± 0.03 0.4 ± 0.02 0.3 ± 0.03* 

Dyssynchrony (%) - Radial Strain 8.9 ± 1.1  7.6 ± 1.3 7.9 ± 0.8 9.0 ± 0.8 8.2 ± 0.9 7.4 ± 0.8 8.5 ± 1.3 8.6 ± 1.3 

Dyssynchrony (%) - Radial Strain Rate  1.6 ± 0.3 1.0 ± 0.1 2.0 ± 0.3 1.2 ± 0.1* 1.5 ± 0.2 1.2 ± 0.1 1.4 ± 0.1 1.5 ± 0.2 

         

SAX Dyssynchrony          

Dyssynchrony (%) - Radial Velocity 0.2 ± 0.02 0.2 ± 0.03 0.2 ± 0.02 0.2 ± 0.02 0.2 ± 0.01 0.1 ± 0.02 0.2 ± 0.03 0.2 ± 0.03 

Dyssynchrony (%) - Radial Strain  9.4 ± 1.3 12.3 ± 1.9 11.8 ± 2.4 8.7 ± 0.9 11.9 ± 1.2 12.1 ± 1.05 14.2 ± 2.4 10.9 ± 0.9 

Dyssynchrony (%) - Radial Strain Rate  2.0 ± 0.2 3.0 ± 0.6 2.8 ± 0.5 1.6 ± 0.2* 2.8 ± 0.2 2.3 ± 0.3 3.1 ± 0.5 2.6 ± 0.3 

Values are shown as means±SEM. *P<0.05 Control versus Diabetic in a given week. 2-tailed Student’s t test. Control n=8, Diabetic n=8. 
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Table S2.2. Global Short-Axis and Long-Axis Systolic Dyssynchrony. Values are shown as 

means±SEM. *P<0.05 Control versus Diabetic in a given week. 2-tailed Student’s t test. Control 

n=8, Diabetic n=8. 
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Abstract 

 Disruption of mitochondrial proteomic signature following diabetic insult is correlated 

with inefficiency in the import of nuclear-encoded mitochondrial proteins that constitute greater 

than 99% of the organelle’s proteome. This disruptive dynamic manifests in a spatially-dependent, 

subcellular manner such that subsarcolemmal mitochondria display greater dysfunction and 

proteome disruption during type 2 diabetes mellitus (T2DM), while interfibrillar mitochondria 

display greater dysfunction and proteome disruption during type 1 diabetes mellitus (T1DM). The 

goal of this study was to determine whether manipulation of the mitochondrial protein import 

process through targeted restoration of a central constituent of its active motor, mitochondrial heat 

shock protein 70 (mtHsp70), which displays loss in content that is correlated with the 

mitochondrial subpopulation most impacted by a given diabetic phenotype, could rectify proteome 

signature. Novel lines of cardiac-specific mtHsp70 transgenic mice were examined in T1DM and 

T2DM models. MtHsp70 overexpression restored cardiac function in both diabetic models. 

MtHsp70 overexpression restored deficiencies in nuclear-encoded mitochondrial protein import in 

a subpopulation-specific manner leading to beneficial impact on proteome signature. Our results 

suggest that restoration of a key import constituent of the active motor, mtHsp70, provides 

therapeutic benefit to mitochondrial proteome disruption in both T1DM and T2DM leading to 

attenuation of contractile dysfunction. 
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Introduction 

Cardiovascular complications are the leading cause of mortality among diabetic patients, 

with the mitochondrion having a central role in the etiology of the dysfunction seen in the diabetic 

heart (1-13). Proteomic evaluations have enabled an in-depth survey of potential contributors 

involved in mitochondrial dysfunction associated with diabetes mellitus (DM) (1; 2; 8; 14-17). 

Our laboratory has observed differential impacts on spatially-distinct mitochondrial 

subpopulations during DM with cardiac interfibrillar mitochondria (IFM) being most impacted 

during type 1 diabetes mellitus (T1DM) and subsarcolemmal mitochondria (SSM) being more 

impacted during type 2 diabetes mellitus (T2DM) (1-5; 9; 10; 18-20).  

Approximately 1500 proteins reside in the human mitochondrion, with 13 transcribed from 

the mitochondrial genome and the remaining proteins encoded by the nuclear genome, requiring 

significant contribution from extramitochondrial sources for the maintenance of a stable organelle 

(21-24). Nuclear-encoded mitochondrial proteins require input from a coordinated import process 

which includes mitochondrial heat shock protein 70 (mtHsp70) (21). Located in the mitochondrial 

matrix, mtHsp70 is a central subunit of the presequence translocase-associated motor (PAM) 

complex (21). Anchored to Tim44, mtHsp70 attaches to a translocating preprotein trapping and 

pulling it through the inner mitochondrial membrane (IMM) in an ATP-dependent manner (25). 

When mtHsp70 is altered, mitochondrial function is compromised with decrements noted in 

nuclear-encoded mitochondrial protein import, decreased antioxidant defenses, increased 

misfolding and degradation of proteins, along with increased cellular apoptosis (21). Neonatal rat 

cardiomyocytes infected with an adenoviral vector expressing mtHsp70 were protected from 

ischemia/reperfusion injury, potentially from an increase in nuclear-encoded antioxidant defense 

proteins (26). MtHsp70 is dysregulated in the diabetic heart, with proteomic analyses showing 

decreased mtHsp70 in the IFM during T1DM and the SSM during T2DM, suggesting that 
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proteome disruption may be the result of loss from nuclear-encoded sources (2; 4). These 

observations suggests that mtHsp70 loss may represent a central node of dysfunction precipitating 

mitochondrial proteome disruption and linking DM-induced mitochondrial dysfunction across 

both DM phenotypes. The goal of the current study was to determine whether mtHsp70 

overexpression could restore nuclear-encoded mitochondrial protein import efficiency, leading to 

preservation of the mitochondrial proteome in the T1DM IFM and T2DM SSM, and alleviate 

cardiac contractile dysfunction. 
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Research Design and Methods 

MtHsp70 Transgenic Mouse Development 

Animal experiments in this study conformed to the National Institutes of Health Eighth 

Edition Guidelines for the Care and Use of Laboratory Animals and were approved by the West 

Virginia University Care and Use committee. Cardiac-specific mtHsp70 transgenic mouse lines 

were generated using a chimeric transgene consisting of the human HSPA9 gene (mtHsp70) 

inserted into the plasmid pJG/Alpha MHC vector containing an alpha-myosin heavy-chain 

(αMHC) promoter (a kind gift from Dr. Jeffrey Robbins) (27) (Figure 3.2A). The HSPA9 gene 

consists of a 5’ mitochondrial targeting sequence (ATG) and the human mtHsp70 cDNA, which 

was inserted into the Sal1 cloning site of the pJG/Alpha MHC vector via sticky-end and blunt-end 

ligation of Xho1 and HindIII, as a fragment of approximately 3001 bp  (Figure 3.2A). The 

chimeric transgene was cut out of the plasmid by Not1 digestion, purified, and used to generate 

transgenic mice by the Mouse Transgenic and Gene Targeting Core at Emory University as 

described previously (1; 9; 19). All control and transgenic mice were generated using an FVB 

background, and experimental procedures were performed on animals of approximately 12-15-

weeks-old for T1DM and 20-22-weeks-old for T2DM.  

 

MtHsp70 Transgenic Mouse Screening 

To verify the chimeric transgene presence in the genome, DNA from 3-week-old mice was 

isolated from tail clips using Allele-In-One Mouse Tail Direct Lysis Buffer (Allele Biotechnology, 

San Diego, CA) per manufacturer’s instructions and screened as previously described (1; 9; 19). 

Four transgenic mouse lines were generated, with two high expressing transgenic lines (20-22 

cycle number) and two low expressing transgenic lines (26-28 cycle number). All experimentation 

was performed on line 1 (Figure 3.2B).  
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T1DM Induction 

Four groups were utilized for the type 1 studies: control, mtHsp70, T1DM, and mtHsp70 

T1DM. T1DM was induced in 6-week-old, mixed sex control and mtHsp70 mice using multiple 

low-dose streptozotocin (Sigma, St. Louis, MO) injections as previously described (1; 2; 5; 9; 18-

20; 28). Confirmation of hyperglycemia was performed by measuring blood glucose (Contour 

Blood Glucose test strips; Bayer, Mishawaka, IN) one week post-injection, with levels >250 

mg/dL considered diabetic. Animals were maintained for 6 weeks in a hyperglycemic state, 

echocardiography performed and then euthanized for experimentation.  

 

Ovarian Transplantation Procedure 

A db/db, mtHsp70 transgenic mouse line was generated using an ovarian transplantation 

procedure developed in our laboratory. Because homozygous db/db mice are unable to breed, 

generation of db/db, transgenic mice is cumbersome due to the need for extensive breeding with 

unfavorable Mendelian genetics. Briefly, a db/db donor mouse was euthanized by cervical 

dislocation, an incision made in the abdominal wall, followed by the exteriorization of the ovarian 

fat pad where the ovaries were removed for future implantation into recipient mice.  

The recipient mouse was maintained under a surgical plane of anesthesia, an incision made 

in the abdominal cavity and the ovarian fat pad exteriorized. The ovarian bursa was incised 

cranially at the junction of the bursa and the fat pad to enable access to the ovary. The donor ovary 

was placed on top of the ovarian blood vessels and the bursa retracted into its original position. 

The fat pad and ovary were returned into the abdominal cavity and the incision in the abdominal 

wall closed. Removal of the contralateral ovary was performed after a successful ovarian 

transplantation. 
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MtHsp70 db/db Transgenic Mouse Screening 

The developmental strategy for ovarian transplantation and breeding can be seen in Figure 

3.2E. Briefly, ovaries from a homozygous db/db female mouse were excised and then implanted 

into an immunohistocompatible recipient mouse. This recipient mouse was bred with a mouse 

heterozygous for both the db/db and mtHsp70 genotype, increasing the probability that the 

offspring would have the homozygous db/db mutation and the mtHsp70 transgene. MtHsp70 

genotyping was completed as described above (Figure 3.2E). To determine whether the offspring 

possessed the db/db mutation, DNA was amplified via PCR for the Leprdb locus followed by allelic 

discrimination analysis to identify Leprdb/db homozygous (db/db), Leprdb/- heterozygous (db/-) or 

control (-/-) offspring (Figure 3.2E). Fluorometric probes designed by our laboratory were used 

to detect the db/db point mutation via allelic discrimination. The sequence containing the mutation 

was tagged with FAM, while the normal sequence was tagged with HEX enabling assessment of 

whether the animals DNA contained 2 HEX tags (-/-), a HEX tag and a FAM tag (db/-), or 2 FAM 

tags (db/db) (Figure 3.2E). DNA from known db/db, db/-, and -/- mice obtained from and 

validated by Jackson Laboratory (Bar Harbor, ME) were included as internal controls. Once 

appropriate genotypes were obtained, animals were aged to 20-22-weeks-old, echocardiography 

performed and euthanized for experimentation. 

 

Echocardiography 

Echocardiography and speckle-tracking based strain imaging analyses were performed as 

previously described using the Vevo 2100 Imaging analysis software (Visual Sonics, Toronto, 

Canada) (1; 9; 28; 29).  
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Preparation of Individual Mitochondrial Subpopulations 

Cardiac mitochondrial subpopulations were isolated as previously described following the 

methods of Palmer et al. (30) with minor modifications by our laboratory (1; 2; 4; 5; 9; 18; 19; 29). 

Mitochondrial pellets were resuspended in the appropriate buffer depending upon assay. Protein 

concentrations were determined by the Bradford method with bovine serum albumin as a standard 

(31), while mitochondrial number was determined by flow cytometry.  

 

Determination of Mitochondrial Number by Flow Cytometry 

Mitochondrial number was determined using Sphero AccuCount Blank Particles, 2.0 µm 

(Spherotech Inc., Lake Forest, IL). An aliquot of mitochondria were diluted in sucrose buffer 

(1:2,500) and subsequently stained with Mitotracker Deep Red 633 (Invitrogen, Carlsbad, CA), 

resulting in event rates below 1,000 events/s using FACSDiva 8.0 software (BD Biosciences, San 

Jose CA) on an LSRFortessa equipped with a FSC PMT (BD Biosciences) in the WVU Flow 

Cytometry and Single Cell Core Facility. Events were determined as mitochondria by thresholding 

on Mitotracker Deep Red 633 and each sample was run for 1 minute at low speed. Fifty µL of 

Sphero AccuCount blank particles were added to 450 µL of sucrose and run on the flow cytometer 

for 1 minute to obtain the number of events. Mitochondrial number was calculated per 

manufacturer’s instructions.  

 

iTRAQ Labeling and Mass Spectrometry Analyses 

Pooled IFM (n = 8) from T1DM and mtHsp70 T1DM mice, as well as pooled SSM (n = 8) 

from T2DM and mtHsp70 T2DM mice were prepared as previously described (1; 2; 4). Samples 

were labeled with iTRAQ reagents following the manufacturer’s protocol (Applied Biosystems, 

Foster City, CA) and combined to create a 400 µg pooled protein digest with equal fractions of 



184 
 

labeled samples. The fractions were submitted for LC-MALDI TOF/TOF mass spectral analysis 

for protein identification, characterization, and differential expression analysis as previously 

described (2; 4) with slight modifications. Briefly, a Q Exactive MS (Thermo Scientific, San Jose, 

CA) was utilized with Xcalibur 3.0 software. The resulting spectra were analyzed using ABI 

ProteinPilot software 4.0 (Applied Biosystems, Foster City, CA). 

 

Ingenuity Pathway Analyses 

Proteomic data was integrated into the Ingenuity Pathway Analysis (IPA) software to 

establish associations between changing mitochondrial protein constituents and 

upstream/downstream effects on cellular pathways. The “Mitochondrial Dysfunction Metabolic 

Pathway” was generated through the use of QIAGEN’s IPA (www.qiagen.com/ingenuity) and 

used as the basic model for protein associations. Changes in protein expression are presented for 

two separate mitochondrial populations: 1) mtHsp70 T2DM SSM in relation to T2DM SSM and 

2) mtHsp70 T1DM IFM in relation to T1DM IFM. All changes are depicted as increasing, 

decreasing, or sustained proteomic expression in the mtHsp70 diabetic mice compared to DM.  

 

Mitochondrial Protein Import 

The fusion protein pAcGFP1-Mito (Clonetech Laboratories, Mountain View, CA) 

containing the precursor subunit VIII of human cytochrome c oxidase and the green fluorescent 

protein (GFP) from Aequorea coerulescens (AcGFP1) were cloned into pIVEX2.3d (Roche 

Applied Science, Indianapolis, IN) as previously described (1; 2). Using the S30 T7 protein 

expression system (Promega, Madison, WI) in vitro transcription/translation of mitoGFP1 was 

performed per manufacturer’s instructions (1; 2). The mitoGFP1 lysate was used to assess the 

protein import process and mitochondrial protein import performed as described (32) with 

http://www.qiagen.com/ingenuity
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modifications by our laboratory (1; 2). Briefly, mitochondria were counted by flow cytometry, 

MitoGFP1 lysate added to the samples and protein import performed and assessed at time intervals 

of 30 s, 1 and 2 mins at 25°C (1; 2).  

 

Human Patient Samples 

The West Virginia University Institutional Review Board and Institutional Biosafety 

Committee approved all protocols. Patient demographics have been described and characterized 

as non-diabetic, T1DM or T2DM based on a previous diagnosis of DM (3; 9).  

 

Western Blot Analyses  

SDS-PAGE was run on 4-12% gradient gels, as previously described (1; 2; 4; 9; 10; 29; 

33). For assessment of protein content overexpression and mitochondrial protein import, 100 

million intact mitochondria were loaded as determined by flow cytometry. For assessment of 

protein content in human samples and tissue homogenates, equal amounts of protein were loaded 

as determined above by the Bradford method (31). Further, assessment of protein loading control 

was done by utilizing a COXIV antibody and Ponceau S solution (Sigma, St. Louis, MO). Relative 

amounts of mtHsp70 and COXIV were assessed using the following primary antibodies: anti-

mtHsp70 (Stressgen, Ann Arbor, MI) and anti-COXIV (Cell Signaling Technology, Danvers, 

MA). The secondary antibodies used in the analyses were goat anti-mouse IgG horseradish 

peroxidase (HRP) conjugate (Pierce Biotechnology, Rockford, IL) for mtHsp70 and goat anti-

rabbit IgG HRP conjugate (Cayman Chemical, Ann Arbor, MI) for COXIV. Nuclear-encoded 

mitochondrial protein import blots were probed with the primary anti-GFP mouse monoclonal 

antibody (Clonetech Laboratories, Mountain View, CA) followed by the secondary antibody anti-
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mouse IgG horseradish peroxidase conjugate (Pierce Biotechnology, Rockford, IL). Densitometry 

analyses using Image J software, were performed as previously described (1; 2; 9; 19; 20; 29).  

 

Statistics 

All data are presented as mean±standard error of the mean (SEM). Data were analyzed 

using a One-Way Analysis of Variance (ANOVA) with the Bonferroni post-hoc test to determine 

significant differences between groups (GraphPad Prism 5 Software, La Jolla, CA). When 

differences in variability between groups was noted by Bartlett’s test for equal variances, a 

Kruskal-Wallis analysis was utilized with the Dunn’s multiple comparison tests to assess 

differences between groups. When appropriate, a Student’s t-test was used. In all instances, P≤0.05 

was considered significant. 
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Results 

Evaluation of Human Patient Samples 

MtHsp70 was assessed in isolated mitochondrial subpopulations from atrial appendage 

tissue from non-diabetic, T1DM and T2DM patients. Our data revealed decreased mtHsp70 

protein content in the IFM of T1DM patients as compared to the non-diabetic patients; however, 

it did not reach significance (P = 0.1) (Figure 3.1B). No changes in protein expression level were 

found in the SSM (Figure 3.1A). Conversely, the T2DM SSM showed decreased mtHsp70, with 

no changes noted in the IFM (Figure 3.1C-D). 

 

MtHsp70 Transgenic Mice Characterization 

Tissue homogenates were tested for mtHsp70 protein expression. MtHsp70 transgenic 

mice possessed higher levels of mtHsp70 protein solely in cardiac tissue, with no changes in any 

other tissue type (Figure 3.2C). To determine whether mtHsp70 expression was increased in the 

mitochondrion, we assessed mtHsp70 protein levels in cardiac mitochondrial subpopulations and 

observed a significant increase in its expression in both the SSM and IFM (Figure 3.2D). 

 

Impact of T1DM and T2DM on mtHsp70 

T1DM IFM displayed decreased expression of mtHsp70; however, overexpression of 

mtHsp70 restored the protein expression (Figure 3.3B). SSM were not altered as a result of T1DM 

(Figure 3.3A). In the T2DM heart, mtHsp70 protein levels were decreased in the SSM, and 

mtHsp70 overexpression was able to restore these levels, while the IFM were not impacted (Figure 

3.3C-D).  
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Cardiac Contractile Function 

 Ejection fraction (EF), fractional shortening (FS) and cardiac output were significantly 

decreased in T1DM mice as compared to controls, but mtHsp70 restored these decrements (Table 

3.1). Speckle-tracking based strain echocardiography provided an additional measure of left 

ventricular (LV) function, specifically longitudinal strain (LS) and longitudinal strain rate (LSR) 

(34; 35). In agreement with our previous study, we found no changes in LS in the T1DM mice as 

compared to the controls (Table 3.1) (28). Decrements in the T1DM LSR measurement was 

observed and subsequently restored with mtHsp70 overexpression (Table 3.1) (28). Further, in the 

LSR measure, we assessed the impact of T1DM on the six segments that make up the LV: Posterior 

Apex (PA), Posterior Mid (PM), Posterior Base (PB), Anterior Apex (AA), Anterior Mid (AM) 

and Anterior Base (AB). We found a significant decrease in the PA and AA regions of the T1DM 

animals as compared to controls, with the PA regional function showing a trending (P=0.06) 

restoration with mtHsp70 overexpression (Table 3.1).  

Heart rate, EF and FS were significantly decreased in db/db mice versus control; however, 

mtHsp70 restored these measures (Table 3.2). Further, diametric and volumetric changes in the 

LV during systole were increased during T2DM, which were attenuated with mtHsp70 

overexpression (Table 3.2). LS and LSR were significantly decreased in the db/db animals as 

compared to their controls and mtHsp70 overexpression led to the restoration of these 

measurements in the face of T2DM (Table 3.2). In the LS regional measurements, the PB, PA and 

AM regions were detrimentally impacted in the db/db animals, with mtHsp70 overexpression 

providing restoration to the PB and PA regions (Table 3.2). LSR regional analyses revealed 

decreased function in the PA, PB, AB, AM, and AA regions in the db/db animals, with mtHsp70 

overexpression preserving function in the PB, PA, and AM regions (Table 3.2).  
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Mitochondrial Protein Import 

Analyses of protein import efficiency in the T1DM SSM revealed no differences between 

any of the groups at 30s, 1 min and 2 min time points (Figure 3.4A). In contrast, T1DM IFM 

displayed a significant decrease in protein import efficiency at 2 mins, which was restored with 

mtHsp70 overexpression (Figure 3.4B). Conversely, in the T2DM SSM, protein import efficiency 

at 30s, 1 min and 2 min were decreased relative to control (Figure 3.4C). MtHsp70 overexpression 

restored protein import efficiency in the T2DM SSM back to that of control levels, while T2DM 

IFM displayed no import deficiencies (Figure 3.4C-D).  

 

MtHsp70 T1DM Proteomic Changes in IFM 

During T1DM, overexpression of mtHsp70 impacted protein expression of the ETC 

differentially. The majority of proteins were increased in complexes I, III, IV and the F0 component 

of complex V, while the F1 complex was decreased (Figure 3.5A). Proteins involved in fatty acid 

oxidation were decreased in mtHsp70 T1DM animals, while glucose oxidation components were 

increased. These data suggest that proteins involved in glucose oxidation may have been increased 

in response to the enhanced glycemic milieu present during T1DM, despite an inability to utilize 

glucose reliably in this model (Figure 3.5A). Assessment of the percentage of proteomic 

alterations within each subcompartment of the mitochondria during T1DM revealed alterations in 

IFM proteins residing within the IMM (46%) and the mitochondrial matrix (40%) (Figure 3.5B). 

Of the proteins that were increased because of mtHsp70 overexpression, we found approximately 

47% located in the IMM and 40% in the mitochondrial matrix (Figure 3.5C).  
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MtHsp70 T2DM Proteomic Changes in SSM 

During T2DM, proteins involved in the ETC were increased in complexes I, III, IV, and V 

(F0 and F1 complexes) with mtHsp70 overexpression (Figure 3.6A). Enzymes involved in the 

phosphorylation of glucose and initiation of glucose metabolism pathways were decreased, while 

proteins essential in fatty acid metabolism were increased in the SSM of mtHsp70 db/db animals 

suggesting utilization of the substrates available in abundance (fatty acids) (Figure 3.6A). 

Assessment of the percentage of proteomic alterations within each subcompartment of the 

mitochondria during T2DM revealed alterations in SSM proteins residing within the IMM (46%) 

and the mitochondrial matrix (45%). Of the proteins that were increased via mtHsp70 

overexpression, 53% were located in the IMM, while 47% were in the matrix (Figure 3.6C).   
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Discussion 

Mitochondrial dysfunction is central to the etiology of cardiovascular complications 

observed in diabetic patients (1-13). Our laboratory has reported that mitochondrial subpopulations 

are differentially affected based on the type of DM, with the SSM being more negatively impacted 

during T2DM and the IFM being more substantially impacted during T1DM (1-5; 9; 10; 18). The 

mitochondria are essential for a variety of cellular processes including energy metabolism, 

oxidative phosphorylation, and ATP synthesis, all of which depend on nuclear-encoded proteins. 

Thus, the process of nuclear-encoded mitochondrial protein import is critical to the overall 

function of the mitochondrion. Since the nucleus encodes for the vast majority of proteins in the 

mitochondrion (>99%), a complex mechanism of translocation through the mitochondrial 

membranes occurs in order for proteins to enter a particular mitochondrial subcompartment and 

perform their specific functions, ultimately allowing for a properly functioning mitochondrion 

(36). Previous studies from our laboratory revealed a decrease in nuclear-encoded mitochondrial 

protein import efficiency in the T1DM IFM (1; 2).  

We speculated that decrements in nuclear-encoded mitochondrial protein import was due 

to decreased mtHsp70 content, which was found during proteomic analyses (2; 4). As a result, the 

current study was designed to test the hypothesis that overexpression of mtHsp70 would increase 

the efficiency of nuclear-encoded mitochondrial protein import. MtHsp70 is an essential 

component of the PAM complex, anchored to Tim44 within the mitochondrial matrix and serves 

to “trap” and “pull” the translocating preprotein through the IMM in an ATP-dependent manner 

(25). Our results revealed decrements at the 2 min time point in the T1DM IFM, with no changes 

noted at 30s and 1 min; however, the T2DM SSM displayed changes at all time points. These 

differences may be a function of the distinct etiology and duration of the pathologies. The db/db 

animals become obese and show elevated plasma insulin at approximately 3-weeks-old, with 
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hyperglycemia occurring as early as 4-weeks-old (37), thus these animals endure the diabetic 

milieu throughout the course of the 16-week study, while T1DM is induced by pancreatic β-cell 

destruction and manifested in the animal for 6 weeks. While it has been shown that mitochondrial 

subpopulations are differentially impacted by these distinct pathologies, it is unknown how aging 

and exposure to the diabetic environment for differing times impacts mitochondrial 

subpopulations. In either case, we observed that overexpression of mtHsp70 allowed for the 

restoration of the mitochondrial import process in the T1DM IFM and T2DM SSM regardless of 

the differences in pathology etiology or disease duration.  

An important implication for nuclear-encoded mitochondrial protein import is its impact 

on the mitochondrial proteome. During DM, proteomic analyses have revealed alterations in 

mitochondrial functional processes such as oxidative phosphorylation and ATP synthesis, which 

could result from decrements in nuclear-encoded mitochondrial protein import (1; 2; 8; 14-16). 

Interestingly, during DM, mtHsp70 was affected with decreases in the T2DM SSM and T1DM 

IFM, which is consistent in both animal and human patient models (2-4). MtHsp70 overexpression 

increased proteins involved in ETC complexes, along with the transporter protein Slc25a3, 

independent of diabetic type and mitochondrial subpopulation. Proteomic analyses revealed a 

differential impact on β-oxidation with mtHsp70 overexpression during T1DM and T2DM, with 

fatty acid metabolism being decreased in the mtHsp70 T1DM IFM, while showing increases in 

the mtHsp70 T2DM SSM. These findings suggest that during T1DM and T2DM, mtHsp70 

overexpression preserves the import of proteins that are required for processing the substrates that 

are most abundant despite an inability to do so. Proteomic surveys suggest that approximately 67% 

of mitochondrial proteins reside in the mitochondrial matrix, followed by 21% located within the 

IMM, and 6% and 4% residing in the IMS and OMM, respectively (38; 39). Independent of 

diabetic type and mitochondrial subpopulation, the IMM and matrix were the most predominantly 
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affected mitochondrial subcompartments for proteomic alterations, with mtHsp70 overexpression 

revealing targeted restoration within the locations. This was particularly relevant for the IMM 

which displayed the largest benefit in terms of protein restoration from mtHsp70 overexpression, 

which may be a function of the greater number of proteins lost in this region during diabetic insult. 

Without properly functioning mitochondria and ample ATP production, cardiac contractile 

dysfunction can occur (1; 2; 4; 5; 37). In the current study, we observed decreases in LV pump 

function as reflected by changes in EF and FS, along with volume and diametric changes during 

systole in both the T1DM and T2DM hearts. Overexpression of mtHsp70 restored these measures 

back to that of control. Analyses using the speckle-tracking based strain software to evaluate global 

and regional LS and LSR were performed to provide a more complete picture for the deficits noted 

in the LV. Literature suggests that LS provides a good correlation to LVEF, a measure that is 

decreased during both T1DM and T2DM (4; 28; 35; 40). Decrements in LS and LSR during both 

T1DM and T2DM provide complementary evidence of LV systolic dysfunction with subsequent 

restoration via mtHsp70 overexpression. Evaluation of regional differences revealed 

commonalities between LSR in T1DM and T2DM with decrements in the apex regions, in which 

mtHsp70 overexpression was able to restore the PA region independent of DM type. Further, 

mtHsp70 overexpression provided more regional benefit during T2DM. This restoration 

potentially occurred due to a positive impact on mitochondrial functionality through increased 

efficiency of nuclear-encoded mitochondrial proteins, which would be critical for stabilization of 

the mitochondrial proteome in the face of pathological insult. It is interesting to note that ATP 

production from each subpopulation is likely critical for efficient cardiac contractile function, 

indicating that both may play a role in preserving cardiac function during pathological states. 

Further, an interconnected mitochondrial network through the mitochondrial reticulum could 

provide a pathway for energy distribution within the cardiomyocyte (41; 42), thus allowing for the 
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restoration of cardiac contractile function by mtHsp70, despite different mitochondrial 

subpopulations being affected.  

  In conclusion our data reveal for the first time, several key findings: 1) disruption of 

mitochondrial proteomic signature in the spatially-distinct subpopulation most impacted by a given 

diabetic phenotype is linked to an inability to efficiently import nuclear-encoded mitochondrial 

proteins; 2) overexpression of mtHsp70 levels provides restoration of protein import efficiency 

and ultimately proteomic signature in the spatially-distinct subpopulation most impacted by a 

given diabetic phenotype; 3) overexpression of mtHsp70 provides cardiac contractile benefit in 

both T1DM and T2DM. Taken together, these findings suggest that restoration of a key import 

constituent of the active protein import motor provides therapeutic benefit to mitochondrial 

proteome signature, highlighting the critical role of this mitochondrial process. 
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Figure 3.1. Mitochondrial heat shock protein 70 (mtHsp70) levels in human atrial 

appendage. (A) Representative Western blot analysis and quantification of SSM and (B) IFM in 

cardiac mitochondria isolated from human atrial appendage in ND and T1DM patients. CoxIV and 

Ponceau staining were used as loading controls. (C) Representative Western blot analysis and 

quantification of SSM and (D) IFM in cardiac mitochondria isolated from human atrial appendage 

in ND and T2DM patients. CoxIV and Ponceau staining were used as loading controls. Values are 

expressed as means ± SEM. *P ≤ 0.05 for ND vs DM. 
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Figure 3.2 
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Figure 3.2. MtHsp70 transgenic mouse construction. (A) Schematic of the generation of 

mtHsp70 transgenic mice. (B) Verification of transgene presence using real-time PCR. (C) 

Representative Western blot analysis of mtHsp70 protein expression in isolated tissues from 

control and mtHsp70 transgenic mice. CoxIV was used a loading control. (D) Representative 

Western blot analysis and quantification of cardiac mitochondrial subpopulations from control and 

mtHsp70 transgenic mice loaded per mitochondria. (E) Schematic representation of breeding 

strategy for mtHsp70 db/db mice, verification of transgene presence using real-time PCR and 

allelic discrimination screening. C = control; Tg = transgenic. Values are expressed as means ± 

SEM. *P ≤ 0.05 for control vs. transgenic. 
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Figure 3.3 
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Figure 3.3. MtHsp70 expression during DM. (A) Representative Western blot analysis and 

quantification of mtHsp70 protein expression in SSM of control, T1DM, and mtHsp70 T1DM 

mice loaded per mitochondria. (B) Representative Western blot analysis and quantification of 

mtHsp70 protein expression in IFM of wild-type, T1DM, and mtHsp70 T1DM mice loaded per 

mitochondria. (C) Representative Western blot analysis and quantification of mtHsp70 protein 

expression in SSM of wild-type, T2DM, and mtHsp70 T2DM mice loaded per mitochondria. (D) 

Representative Western blot analysis and quantification of mtHsp70 protein expression in IFM of 

wild-type, T2DM, and mtHsp70 T2DM mice loaded per mitochondria. Ctl = control; DM = 

diabetes mellitus; Tg = transgenic; T1DM = type 1 diabetes mellitus; T2DM = type 2 diabetes 

mellitus. Values are expressed as means ± SEM. *P ≤ 0.05 for T1DM vs other groups; †P ≤ 0.05 

for mtHsp70 T2DM vs other groups.  
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Figure 3.4 
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Figure 3.4. Mitochondrial protein import during DM. (A) Effect of T1DM and mtHsp70 

overexpression on MitoGFP1 import into the SSM and (B) IFM at 30 seconds, 1 minute and 2 

minutes. (C) Effect of T2DM and mtHsp70 overexpression on MitoGFP1 import into the SSM and 

(D) IFM at 30 seconds, 1 minute and 2 minutes. T1DM = type 1 diabetes mellitus; T2DM = type 

2 diabetes mellitus. Values are expressed as means ± SEM. *P ≤ 0.05 for control vs. diabetes 

mellitus. 
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Figure 3.5 
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Figure 3.5. Mitochondrial proteome changes during T1DM with mtHsp70 overexpression. 

(A) IFM from mtHsp70 T1DM mice and T1DM mice representative network connections 

constructed from the Ingenuity Pathway Analysis (IPA) software database. Arrow heads indicate 

proteins acting on/being acted upon within a specific pathway. Coloring is indicative of increasing 

or decreasing protein concentration in the mtHsp70 T1DM mouse model compared to the T1DM 

mice. Color key: light green = trending increase in expression, dark green = significant increase in 

expression, light red = trending decrease in expression, dark red = significant decrease in 

expression, gray = protein constituents not changing in the proteomic analysis. (B) Approximate 

percentages of protein contents altered and their locales between the T1DM IFM vs. mtHsp70 

T1DM IFM. (C) Approximate percentages of proteins restored and their locales with 

overexpression of mtHsp70 during T1DM. ETC = electron transport chain; OMM = outer 

mitochondrial membrane; IMS = intermembrane space; IMM = inner mitochondrial membrane.  
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Figure 3.6 
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Figure 3.6. Mitochondrial proteome changes during T2DM with mtHsp70 overexpression.  

(A) SSM from mtHsp70 db/db and db/db mice representative network connections constructed 

from the Ingenuity Pathway Analysis (IPA) software database. Arrow heads indicate proteins 

acting on/being acted upon within a specific pathway. Coloring is indicative of increasing or 

decreasing protein concentration in the mtHsp70 db/db mouse model compared to db/db mice. 

Color key: light green = trending increase in expression, dark green = significant increase in 

expression, light red = trending decrease in expression, dark red = significant decrease in 

expression, gray = protein constituents not changing in the proteomic analysis. (B) Approximate 

percentages of protein contents altered and their locales between the db/db SSM vs. mtHsp70 

db/db SSM. (C) Approximate percentages of proteins restored and their locales with 

overexpression of mtHsp70 during T2DM. TCA = tricarboxylic acid cycle; OMM = outer 

mitochondrial membrane; IMM = inner mitochondrial membrane.  
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Table 3.1. T1DM Echocardiographic Measurements 

Conventional Echocardiographic Assessment 

  Control T1DM mtHsp70  mtHsp70 T1DM 

 Heart Rate (bpm) 531.2 ± 39.5 465.2 ± 19.5 526.6 ± 18.7 430.6 ± 19.7
#
 

 Stroke Volume (µL) 34.3 ± 3.9 26.2 ± 1.3 33.4 ± 3.6 35.6 ± 1.8 

 Ejection Fraction (%) 76.6 ± 2.2 64.5 ± 1.9*
† ¥

 78.2 ± 2.2 76.0 ± 1.7 

 Fractional Shortening (%) 44.4 ± 1.9 34.4 ± 1.4*
† ¥

 46.5 ± 2.2 44.1 ± 1.7 

 Cardiac Output (mL/min) 28.6 ± 3.5 13.5 ± 1.0*
 ¥
 20.7 ± 2.9 26.3 ± 3.0 

 Diameter;systole (mm) 1.8 ± 0.2 2.1 ± 0.1
†
 1.7 ± 0.1 1.9 ± 0.1 

 Diameter;diastole (mm) 3.2 ± 0.2 3.2 ± 0.1 3.1 ± 0.2 3.4 ± 0.1 

 Volume;systole (µL) 11.0 ± 1.7 15.4 ± 1.5
†
 9.2 ± 1.4 12.0 ± 1.4 

 Volume;diastole (µL) 41.9 ± 3.7 42.5 ± 2.7 36.1 ± 3.0 48.2 ± 3.0
#
 

Speckle-tracking Based Strain Echocardiographic Assessment 

Longitudinal Strain (%) -16.4 ± 1.0 -15.43 ± 0.8
¥
 -18.26 ± 1.3 -18.24 ± 0.9 

Longitudinal Strain Rate (1/s) -6.0 ± 0.3 -5.12 ± 0.2*
†¥

 -6.98 ± 0.5 -6.50 ± 0.3 

        Posterior Base (1/s) -10.5 ± 1.3 -11.1 ± 0.7
¥
 -9.9 ± 1.4 -8.3 ± 1.0 

        Posterior Mid (1/s) -7.9 ± 1.0 -8.6 ± 0.7 -8.1 ± 0.6 -8.5 ± 0.7 

        Posterior Apex (1/s) -13.8 ± 0.9 -9.38 ± 0.7*
†
 -14.0 ± 1.1 -12.60 ± 1.3 

        Anterior Base (1/s) -9.1 ± 1.3 -9.4 ± 1.1 -11.5 ± 1.8 -10.0 ± 1.0 

        Anterior Mid (1/s) -10.3 ± 1.6 -9.2 ± 0.6 -8.7 ± 0.7 -8.5 ± 0.6 

        Anterior Apex (1/s) -13.3 ± 1.6 -8.8 ± 0.4*
†
 -11.6 ± 0.8 -9.5 ± 0.9 

Values are shown as means±SEM. *P<0.05 Control versus T1DM animals; 
†
P<0.05 T1DM versus mtHsp70 animals; 

#
P<0.05 

mtHsp70 T1DM versus mtHsp70 animals; 
¥
P<0.05 T1DM versus mtHsp70 T1DM animals. 1-way ANOVA with Bonferroni’s 

Multiple Comparison Post-hoc Test.  
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Table 3.1. Conventional and Speckle-Tracking Based Strain Echocardiographic 

Measurements During T1DM. Values are shown as means±SEM. *P<0.05 Control versus 

T1DM animals; 
†
P<0.05 T1DM versus mtHsp70 animals; 

#
P<0.05 mtHsp70 T1DM versus 

mtHsp70 animals; 
¥
P<0.05 T1DM versus mtHsp70 T1DM animals. 1-way ANOVA with 

Bonferroni’s Multiple Comparison Post-hoc Test.   
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Table 3.2. T2DM Echocardiographic Measurements 

Conventional Echocardiographic Assessment 

  Control T2DM mtHsp70 mtHsp70 T2DM 

 Heart Rate (bpm) 523.3 ± 16.5 430.3 ± 16.6* 500.3 ± 9.3 459.9 ± 38.8 

 Stroke Volume (µL) 27.3 ± 3.7 28.3 ± 2.8 27.9 ± 1.8 35.3 ± 4.7 

 Ejection Fraction (%) 77.6 ± 1.7 65.4 ± 1.7*
† ¥

 82.7 ± 1.5 82.9 ± 2.3 

 Fractional Shortening (%) 42.3 ± 1.6 35.0 ± 1.3*
† ¥

 50.4 ± 1.7 50.9 ± 2.4 

 Cardiac Output (mL/min) 13.7 ± 1.5 12.0 ± 1.2 13.9 ± 0.8 16.0 ± 2.0 

 Diameter;systole (mm) 1.6 ± 0.1 2.1 ± 0.1
†
 1.5 ± 0.1 1.6 ± 0.2 

 Diameter;diastole (mm) 3.0 ± 0.2 3.3 ± 0.2 2.9 ± 0.1 3.2 ± 0.2 

 Volume;systole (µL) 6.7 ± 1.5 15.7 ± 2.3*
†
 5.9 ± 0.7 8.0 ± 2.3 

 Volume;diastole (µL) 30.8 ± 5.4 44.0 ± 4.9 33.8 ± 2.3 43.3 ± 7.0 

Speckle-tracking Based Strain Echocardiographic Assessment 

Longitudinal Strain (%) -18.2 ± 0.8 -13.97 ± 1.0*
¥
 -17.69 ± 1.6 -17.68 ± 1.0 

        Posterior Base (%) -18.4 ± 2.4 -10.5 ± 1.8*
¥
 -14.4 ± 3.5 -19.5 ± 3.1 

        Posterior Mid (%) -13.8 ± 1.8 -19.0 ± 1.6 -20.0 ± 4.3 -15.8 ± 2.4 

        Posterior Apex (%) -33.3 ± 2.5 -22.6 ± 3.0*
¥
 -28.4 ± 3.4 -34.4 ± 2.2 

        Anterior Base (%) -20.0 ± 2.7 -18.2 ± 3.0 -19.0 ± 2.3 -20.5 ± 4.6 

        Anterior Mid (%) -16.6 ± 1.0 -12.3 ± 1.5*
†
 -17.9 ± 2.0 -15.6 ± 2.0 

        Anterior Apex (%) -23.0 ± 1.9 -20.1 ± 1.2 -24.8 ± 3.3 -17.8 ± 1.4 

Longitudinal Strain Rate (1/s) -7.2 ± 0.7 -4.77 ± 0.3*
†¥

 -6.43 ± 0.6 -6.79 ± 0.6 

        Posterior Base (1/s) -10.0 ± 1.2  -7.1 ± 0.6*
†¥

 -10.4 ± 1.5 -11.8 ± 1.1 

        Posterior Mid (1/s) -7.1 ± 0.7 -8.3 ± 0.7 -10.0 ± 1.7 -7.7 ± 0.5 

        Posterior Apex (1/s) -15.5 ± 2.1 -8.2 ± 0.7*
¥
 -12.1 ± 1.9 -14.0 ± 1.7 

        Anterior Base (1/s) -13.8 ± 1.9 -7.4 ± 1.0*
†
 -12.5 ± 1.6 -9.3 ± 0.7 

        Anterior Mid (1/s) -9.3 ± 0.6 -5.4 ± 0.6*
†¥

 -9.8 ± 0.9 -8.0 ± 0.7 

        Anterior Apex (1/s) -10.8 ± 1.0 -7.7 ± 0.7* -9.3 ± 1.3   -8.5 ± 0.4 

Values are shown as means±SEM. *P<0.05 Control versus T2DM animals; 
†
P<0.05 T2DM versus mtHsp70 animals; 

¥
P<0.05 

T2DM versus mtHsp70 T2DM animals. 1-way ANOVA with Bonferroni’s Multiple Comparison Post-hoc Test.  
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Table 3.2. Conventional and Speckle-Tracking Based Strain Echocardiographic 

Measurements During T2DM. Values are shown as means±SEM. *P<0.05 Control versus 

T2DM animals; 
†
P<0.05 T2DM versus mtHsp70 animals; 

¥
P<0.05 T2DM versus mtHsp70 

T2DM animals. 1-way ANOVA with Bonferroni’s Multiple Comparison Post-hoc Test.  
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Abstract 

Cardiac complications and heart failure are the leading cause of death in diabetic patients. 

The mitochondrion has been implicated in the etiology of the diabetic pathology. Two distinct 

mitochondrial subpopulations exist within the cardiomyocyte. The subsarcolemmal mitochondria 

(SSM) are located beneath the sarcolemmal membrane and the interfibrillar mitochondria (IFM) 

are located between the myofibrils. Proteomic, transcriptomic and epigenomic remodeling occurs 

during diabetes mellitus in the attempt to adapt to the pathological insult. MicroRNAs (miRNAs) 

play a vital role in the regulation of gene expression though degradation of target messenger RNAs 

(mRNAs) or translational repression and have been shown to be present within the mitochondrion; 

however, the mechanism by which miRNAs traverse the mitochondrial membranes remains 

unknown. The goal of this study was to elucidate whether polynucleotide phosphorylase (PNPase), 

an intermembrane space protein potentially anchored to the inner mitochondrial membrane, plays 

a role in the complicated mechanism of miRNA translocation during type 2 diabetes mellitus. We 

found an increase in PNPase protein expression in the SSM of the type 2 diabetic human atrial 

appendage and db/db mouse model. Further, we discovered the novel association of PNPase with 

Argonaute 2 (Ago2) in both cardiac mitochondrial subpopulations that was subsequently increased 

in the SSM during the type 2 diabetic insult. In the SSM of the db/db mice, we found an increased 

level of miR-378, which was associated with a corresponding decrease in ATP6 protein content. 

Finally, in the HL-1 cardiomyocyte cell line, overexpression of PNPase led to increased miR-378 

levels in the mitochondria and a decrease in ATP synthase activity. Altogether, PNPase may 

potentially be a constituent in the import mechanism of miRNAs via association with Ago2 into 

cardiac mitochondria.  
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Introduction 

Type 2 diabetes mellitus (T2DM) currently affects 29 million Americans, with an 

inordinate cost to society of $245 billion in medical bills and missed work (1, 33). Further, T2DM 

serves as a major risk factor for cardiovascular disease as the heart needs a constant nutrient supply 

in order to produce the proper amount of energy, which does not always occur in the diabetic 

pathology (33). During T2DM, when cardiac tissue becomes insulin resistant, a proteomic, 

transcriptomic and epigenomic remodeling occurs as an adaptive mechanism to the pathological 

insult (2, 34, 36). Our laboratory and others have shown that the assault to the transcript can occur 

in both the cytosol and mitochondria within the cardiomyocyte (34, 37). Cardiac mitochondrial 

subpopluations have been previously shown by our laboratory to be differentially affected during 

diabetic insult, with the interfibrillar mitochondria (IFM) being negatively influenced during type 

1 diabetes mellitus and the subsarcolemmal mitochondria (SSM) predominantly being affected 

during T2DM (7-9, 17-20, 37, 66). 

The mechanism of protein import into the mitochondria consists of the unfolded protein in 

the cytoplasm being threaded through the translocase of the outer membrane, TOM40, and the 

translocase of the inner membrane, TIM23, followed by the action of mitochondrial heat shock 

protein 70 (mtHsp70) “pulling” the polypeptide into the mitochondrial matrix via an ATP-

dependent manner (6, 27). Not only are proteins transported into the mitochondria, which is critical 

due to the vast majority of mitochondrial proteins being encoded by the nuclear genome, but 

ribosomal RNA (rRNA) and transfer RNA (tRNA) have also been shown to traverse the 

mitochondrial membranes (3). Polynucleotide phosphorylase (PNPase) situated in the inner 

mitochondrial membrane and extending into the intermembrane space, has been found to facilitate 

the transport of rRNA and tRNA based on their hairpin-loop structure (3, 69, 70). This protein also 
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functions to edit and degrade RNA, as well as plays a role in controlling cellular senescence and 

cell cycle (44, 56, 57, 60). Interestingly, a major determining factor between RNA degradation or 

transport by PNPase seems to be the length of the RNA species’ 3’ overhang. Wang et al. showed 

that an 8 nucleotide (nt) 3’ overhang of a messenger RNA (mRNA) species resulted in degradation, 

while a 0-2 nt 3’ overhang led to transport (43, 64). Various other studies suggested that the 

machinery facilitating protein import could contribute to RNA import as well (3, 28, 40, 55, 58, 

61, 62). 

Emerging research is likely to discover how the mitochondrial genome is being regulated 

to influence both disease initiation and progression. MicroRNAs (miRNAs) are a type of 

noncoding RNA that have been shown to play a vital role in the regulation of gene expression 

though degradation of target mRNAs or translational repression (45). MiRNAs exert their 

influence through binding to the 3’-untranslated region of the target mRNAs (45). The association 

of miRNA with the RNA-induced silencing complex (RISC) has been shown in the cytoplasm, 

with the argonaute (AGO) family proteins functioning to help in miRNA repression through the 

inhibition of protein synthesis when bound to the 3’-untranslated region of the mRNA (5, 30). The 

miRNA-mediated regulatory potential of the mitochondrial genome is especially precise as the 

genome itself is comprised of only 37 genes, 13 of which code for protein subunits involved in 

oxidative phosphorylation and the remaining genes coding for 22 tRNAs and 2 rRNAs (46).  

Data from a variety of groups, including our own, has elucidated the presence of miRNA 

in the mitochondria (3, 4, 11-13, 22, 23, 37, 41, 63-65, 67, 73). Even more exciting has been the 

validation of miRNA species targeting mRNA transcripts produced by the mitochondrial genome 

in the mitochondria to control mRNA stability and degradation (22, 23, 26). Since fatty acid 

oxidation, the citric acid cycle, the electron transport chain and ATP synthase are housed in the 
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mitochondrial matrix and inner mitochondrial membrane, the differential expression of miRNA in 

the mitochondria targeting any of these components is consequential to the overall functionality 

of the organelle. PNPase has been established to play an important role in the import of nuclear 

RNA; however, its involvement in the import of miRNAs into the mitochondrion needs to be 

evaluated (55, 58, 69). Our current manuscript focuses on a key player in the mechanism of 

miRNA import into the mitochondrion. We aim to elucidate whether PNPase in association with 

Ago2 plays a role in the complicated mechanism of miRNA translocation, influencing the function 

of SSM during the type 2 diabetic insult.   
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Research Design and Methods 

Human Tissues 

The West Virginia University Institutional Review Board and Institutional Biosafety 

Committee approved all protocols. Patients undergoing cardiac valve replacement or coronary 

artery bypass graft surgery at Ruby Memorial Hospital in Morgantown, West Virginia, allowed 

the release of the right atrial appendage tissue to the West Virginia University School of Medicine. 

Patients were characterized as non-diabetic or type 2 diabetic based on a previous diagnosis of 

diabetes mellitus by a medical doctor. Pericardial fat was trimmed from right atrial appendage 

samples and mitochondria isolated as previously described (7, 8, 17-21, 48, 49, 66, 72). 

 

Experimental Animals 

The animal experiments performed in this study conform with the National Institutes of 

Health Eighth Edition Guidelines for the Care and Use of Laboratory Animals and were approved 

by the West Virginia University Care and Use Committee. Mixed gender db/db mice (strain 

FVB.BKS(D)-Leprdb/ChuaJ) and wild-type (WT) littermate controls (Jackson Laboratories, Bar 

Harbor, ME) were housed and bred in the West Virginia University Health Sciences Centers 

animal facility. Microisolator cages were used to maintain animals with ad libitum access to food 

and water and housed on a 12 hour light/dark cycle in a temperature-controlled room. All mice 

were aged to approximately 20 weeks old and then euthanized for experimentation. 

 

Preparation of Individual Mitochondrial Subpopulations 

At approximately 20-22 weeks of age, db/db mice and littermate controls were euthanized, 

hearts excised and cardiac mitochondrial subpopulations were isolated for analyses as previously 
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described following the methods of Palmer et al. (49) with minor modifications by our laboratory 

(7, 8, 17, 19-21, 48, 66). Beneath the sarcolemmal membrane resides a pool of mitochondria 

termed subsarcolemmal mitochondria (SSM), while the mitochondria that exist between the 

myofibrils are called interfibrillar mitochondria (IFM). Our laboratory has previously reported 

SSM dysfunction during the type 2 diabetic pathology, with the IFM being relatively unaffected 

(19). After isolation of cardiac mitochondrial subpopulations was completed, SSM and IFM were 

further purified by percoll gradient (23%, 15%, 10% and 3% percoll solution) in the case of the 

db/db and littermate control animals. The samples were centrifuged in a Beckman Optima MAX-

XP Ultracentrifuge (Beckman Coulter, Fullerton, CA) at 32,000 x g for 8 minutes. Mitochondrial 

subpopulation pellets were resuspended in the appropriate buffer for each assay. Protein 

concentrations were determined by using the Bradford method with bovine serum albumin as a 

standard (14).  

 

Cell Culture 

For cell culture experiments, the mouse cardiomyocyte cell line (HL-1), which maintains 

a cardiac-specific phenotype following repeated passages was used as previously described (9, 16, 

37). The miR-378 HL-1 overexpressing cell line generated by our laboratory was also used as 

previously described (37). Cells were grown up in a humidified atmosphere of 5% CO2/95% air 

and maintained at 37°C in Claycomb media (Sigma Aldrich, St. Louis, MO) with 10% fetal bovine 

serum and other supplements as previously described (9).  
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Overexpression of PNPase 

Cells were seeded and transfected at 60% to 70% confluence. RNA importer, PNPase was 

transfected into the HL-1 cell line to determine if increased overexpression of PNPase leads to 

increased transport of miRNA into the mitochondrion. Briefly, FuGENE 6 Transfection Reagent 

(Promega, Madison, WI) was used per manufacturer’s instructions. Forty-eight hours post- 

transfection, cells were washed with PBS and harvested. Sample number was determined by the 

number of independent transfections performed, accounting for variation of plasmid uptake in 

cells. Mitochondria were isolated using a mitochondrial isolation kit (Biovision, Milpitas, CA) for 

protein, qPCR, and enzymatic analyses.  

 

qPCR Analyses 

First, total RNA was isolated from HL-1 and HL-1 378 overexpression cell lines and 

converted to cDNA using the miRNA First Strand cDNA synthesis kit (Origene, Rockville, MD) 

per the manufacturer’s protocol. The cDNA was used with SYBR Green components in a total 

sample volume of 25µL: 12.5µL 2X SYBER Green I qPCR Master Mix (Origene, Rockville, MD), 

9.5µL RNAse/Nuclease free H2O, 1µL of primer for the control (U6) or experimental group 

(MP300294 – miR-378, Origene, Rockville, MD), and 2µL of cDNA (~500ng/µL). Data is 

expressed as fold change relative to the difference in Ct expression of the miR-378 to U6 log 

expression. All samples were run in duplicate for both the miR-378 and U6 primers. Standard 

deviation values in either primer pair exceeding a Ct value of 0.5 were excluded from the study. 

7900HT Fast Real-Time PCR System (Applied Biosystems, Foster City, CA) was used for 

analysis, with reaction conditions optimized to Origene’s qSTAR miRNA qPCR Detection System 

instructions. 
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Immunoprecipitation Analyses 

Dynabeads® protein G (Life Technologies, Grand Island, NY) were used to determine 

protein associations between Ago2 and PNPase per the manufacturer’s instructions. Briefly, 50uL 

of Dynabeads® protein G were incubated with either anti-PNPT1 (PNPase; OriGene, Rockville, 

MD) or anti-Ago2 (Abcam, Cambridge, MA) primary antibody overnight. The beads were 

subsequently washed in NP-40 buffer and 150ug of mitochondrial protein, as determined by the 

Bradford method, was resuspended with beads and NP-40 wash/binding buffer and incubated 

overnight. Finally, beads were washed and loading dye added to the samples and Western blots 

performed on the eluted protein and subsequently probed with the protein of interest to examine 

the associations.   

 

Western Blot Analyses 

SDS-PAGE was run on 4-12% gradient gels, as previously described (7, 8, 19, 42, 48, 66, 

72) with modifications. For assessment of protein content, equal amounts of protein were loaded 

as determined by the Bradford method using bovine serum albumin as a standard as previously 

described (14). Further, assessment of protein loading control was done by utilizing the COXIV 

antibody and Ponceau S solution (Sigma, St. Louis, MO). Relative amounts of PNPase, Ago2, 

ATP6, GAPDH, and COXIV were assessed using the following primary antibodies: anti-PNPT1 

(PNPase; OriGene, Rockville, MD); anti-Ago2 (Abcam, Cambridge, MA); anti-ATP6 (Abcam, 

Cambridge, MA); anti-GAPDH (Abcam, Cambridge, MA); and anti-COXIV (Cell Signaling 

Technology, Danvers, MA). The secondary antibodies used in the analyses were goat anti-mouse 

IgG horseradish peroxidase (HRP) conjugate (Pierce Biotechnology, Rockford, IL) for Ago2 and 
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GAPDH and goat anti-rabbit IgG HRP conjugate (Cayman Chemical, Ann Arbor, MI) for the 

PNPase, ATP6 and CoxIV primary antibodies. Pierce Enhanced Chemiluminescence Western 

Blotting substrate (Pierce Biotechnology; Rockford, IL) was used to detect signal per 

manufacturer’s instructions. A G:Box Bioimaging system (Syngene, Frederick, MD) was used to 

detect signals and data were captured using GeneSnap/GeneTools software (Syngene, Frederick, 

MD). Densitometry was analyzed using Image J Software (National Institutes of Health, Bethesda, 

MD) and expressed as arbitrary optical density units.  

 

Complex Activities 

Electron transport chain complexes I, III, and IV were measured in mitochondria isolated 

from the cells spectrophotometrically as previously described (19-21, 68). Briefly, by measuring 

NADH oxidation at 340 nm, complex I activity was determined. Complex III activity was 

measured by assessing the reduction of cytochrome c at 550 nm in the presence of 50 µM of 

reduced decylubiquinone, while complex IV activity evaluated cytochrome c oxidation at 550 nm. 

Further, ATP synthase activity was measured as oligomycin-sensitive ATPase activity using an 

assay coupled with pyruvate kinase, which converts ADP to ATP and produces pyruvate from 

phosphoenolpyruvate as described previously (19, 29, 52, 53). Values for complex activities were 

expressed as nanomoles substrate converted/min/mg of protein.  

 

Statistics 

Means ± SEMs were calculated for all data sets. Data were analyzed with two-tailed 

Student’s t-test to compare differences between groups (GraphPad Software, La Jolla, CA) where 

a P ≤ 0.05 was considered significant.   
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Results 

PNPase and Ago2 in Cytosolic Fractions in Non-diabetic and Type 2 Diabetic Settings 

 PNPase and Ago2 protein expression were assessed in non-diabetic and type 2 diabetic 

patients. Cytosolic fractions were isolated from atrial appendage tissue and revealed a faint band 

for PNPase in the cytosolic fraction with no significant alterations in Ago2 in the type 2 diabetic 

patients (Figure 4.1A). A similar phenomenon was noted in the db/db animal model for type 2 

diabetes mellitus with no PNPase showing up in the cytosolic fraction and Ago2 remaining 

unchanged during the pathological setting (Figure 4.1B). As a result of our findings, we decided 

to assess the protein content of Ago2 and PNPase in mitochondrial subpopulations.  

 

Impact of Type 2 Diabetes Mellitus on PNPase and Ago2 in Cardiac Mitochondrial 

Subpopulations  

 When assessing the Ago2 protein content in human non-diabetic and type 2 diabetic 

patients, there was no change noted in either cardiac mitochondrial subpopulations (Figure 4.2A-

B). Further, in the db/db model, SSM and IFM showed no alterations in Ago2 protein expression 

levels (Figure 4.2C-D). Interestingly, in the type 2 diabetic SSM from atrial appendage tissue 

from patients, PNPase protein content was increased (Figure 4.3A); however, in the IFM, no 

changes were noted in PNPase protein expression levels (Figure 4.3B). A similar story was found 

in the db/db model, with significantly increased PNPase protein expression levels in the SSM 

(Figure 4.3C), with no changes noted in the IFM subpopulation (Figure 4.3D).  
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Ago2 and PNPase Associate within the Cardiac Mitochondria 

Due to our results of finding a conventional cytosolic RISC component in the 

mitochondrial fraction, we speculate that Ago2 may serve as facilitator for transport of miRNA 

from the cytosol into the mitochondria. We immunoprecipitated Ago2 from the mitochondrial 

pellet and found that PNPase was co-immunoprecipitated in both  the SSM and IFM 

subpopulations (Figure 4.4A-B). Interestingly, the SSM showed an increased association of 

immunoprecipitated Ago2 with PNPase (Figure 4.4A), while the IFM revealed no difference in 

the association of these proteins (Figure 4.4B). We then performed the reciprocal 

immunoprecipitation with PNPase, immunoprecipitating with PNPase and looking to see if Ago2 

coimmuniprecipitated with this protein. We again found the association between the 2 proteins 

(Figure 4.4C-D). Interestingly, we found a trending increase in association between PNPase and 

Ago2 in the SSM of the type 2 diabetic animals as compared to their controls (Figure 4.4C). 

Again, we found an association between PNPase and Ago2 in the IFM; however, no differences 

exist between the control and type 2 diabetic pathology (Figure 4.4D).  

 

miR-378 in Cardiac Mitochondria 

 To assess whether micro-RNAs within the mitochondria are affected in the type 2 diabetic 

setting, we used qPCR to determine whether miR-378 showed an alteration in expression levels 

during the diabetic pathology. We found an increase in miR-378 expression level in SSM isolated 

from db/db cardiac tissue (Figure 4.5A), with no changes noted in the IFM (Figure 4.5A). Since 

miR-378 is predicted to target ATP6 within the mitochondrion, we assessed ATP6 protein levels 

in the SSM and IFM from control and db/db mice (Figure 4.5B). Corroborating our miR-378 

increased expression levels in the type 2 diabetic SSM, we found decreased ATP6 protein 
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expression levels in the type 2 diabetic SSM (Figure 4.5B). Further, we found no changes in the 

IFM subpopulation for ATP6 expression levels (Figure 4.5B).  

 

Impact of PNPase Overexpression in HL-1 Cardiomyocte Cells 

Our laboratory has established and previously published on a HL-1 miR-378 stable 

overexpression cell line (37). We have elucidated that miR-378 is overexpressed in the 

mitochondria isolated from this cell line and found that both ATP6 mRNA and ATP6 protein 

expression levels were down with miR-378 overexpression (37). In the HL-1 cardiomyocyte cell 

line, we transfected the cells with a plasmid encoding for PNPase and found increased expression 

levels of PNPase in mitochondria isolated from these cells (Figure 4.6A). Further, to determine 

whether the overexpression of PNPase increased the presence of miR-378 in the mitochondria of 

Hl-1 cells, we conducted qPCR. We found that overexpression of PNPase significantly increased 

the miR-378 detected in mitochondria isolated from the HL-1 cells (Figure 4.6B). Further, we 

found that overexpression of miR-378 decreased the ATP synthase activity in isolated 

mitochondria (Figure 4.6C). Interestingly, overexpression of PNPase in the HL-1 cell line also 

revealed decreased ATP synthase activity. Taken together, these data provide complementary 

evidence that in a model with PNPase overexpression, miR-378 expression is enhanced within the 

mitochondria leading to decreased ATP synthase activity, potentially due to an increased 

mechanism for miRNA transport into the mitochondrion. 
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Discussion 

Mitochondrial dysfunction is central to the etiology of cardiovascular complications seen 

in diabetic patients (7, 8, 18-20, 31, 54, 59, 66, 72). Within the mitochondria, complex, functional 

processes occur, such as oxidative phosphorylation and ATP synthesis, which are critical in an 

appropriately functioning organelle. The mechanisms behind nuclear-encoded mitochondrial 

protein import and mechanisms of miRNA intercellular transport via exosomes and intracellular 

transport into the nucleus have been elucidated; however, the process of miRNA import into the 

mitochondria has proven elusive (6, 24, 27, 71). Nuclear translocation of miRNA involves the co-

localization of the Ago2/miRNA complex with Importin 8 on the nuclear membrane followed by 

transport of the complex into the nucleus (71). Here we have shown a similar co-localization of 

Ago2 with PNPase in the cardiac mitochondria and this association was increased in the T2DM 

pathological setting as compared to control mice. While this is not suggestive of an absolute 

mechanism of miRNA transport into the mitochondrion, with other constituents within the 

mitochondrion potentially playing a role in import, this work contributes to the validation of 

specific protein components (PNPase and AGO2) involved in the mechanism of miRNA transport. 

PNPase upregulation in human T2DM and db/db mice is further complicated by its influence on 

the transport or degradation of a multitude of RNA species, along with its regulation of other 

functions.  

The decreased activity of ATP synthase in HL-1 PNPase overexpressing cells compared to 

control HL-1 cells could be a result of a variety of changes downstream of the PNPase protein. 

One of these changes that may be occurring because of the increase in PNPase is the transport of 

many miRNA sequences into the mitochondrion, resulting in targeting and negatively regulating 

transcripts of the electron transport chain or ATP synthase subunits. Further, the decreased activity 

of ATP synthase in HL-1 miRNA-378 overexpressing cells compared to controls provides a more 
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causal picture, as miRNA-378 has been shown to directly target and repress the ATP6 subunit of 

ATP synthase. This corroborates our findings in the T2DM mouse model, where miRNA-378 is 

upregulated and ATP6 protein expression is downregulated. These changes coincide with an 

increase in PNPase protein levels within the db/db animals, as well as increased association of 

PNPase with Ago2. While we have shown that PNPase protein expression level is increased in the 

T2DM atrial appendages from patient samples as compared to non-diabetic patients, it would be 

of great interest to determine if the patients also have an association of PNPase and Ago2 within 

the mitochondrion and further, to see if this association is increased during the diabetic pathology.  

MiRNAs localized to the mitochondrion have been found to directly target essential 

processes such as energy metabolism and apoptosis (22, 23, 37, 41, 50). For example, Das et al. 

found an increase in miRNA-181c in cardiomyocyte mitochondria during heart failure, which 

targets and represses mtCOX1, an important component of the respiratory complex IV (22, 23, 

25). Further, the role of miR-378 in regulating metabolic processes in multiple organs in the body 

has been previously noted, with targets include Med13 and Cret in the liver and IGF-1 and ATP6 

in the heart (15, 37, 39). Our laboratory previously found an increase in miR-378 in cardiac 

mitochondria during the type 1 diabetic pathology, which resulted in decreased ATP6 protein 

content in the IFM and a decreased ATP synthase activity (37). In this study, we have shown an 

increase in miR-378 and a decrease in ATP6 protein in the SSM during a type 2 diabetic setting, 

demonstrating that mitochondrial subpopulations are differentially impacted depending on the type 

of diabetic insult. The systemic pathological environment and accompanying stimuli of the 

diabetic state undoubtedly provide the impetus for a multitude of proteomic, transcriptomic, and 

epigenomic adaptations or maladaptations. While this is indeed a complex and interconnected 

phenomenon of which we have only elucidated a potential component in the process, we present 
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that differential miRNA expression in the mitochondria of the diabetic heart, particularly miR-

378, leads to a decrease in ATP synthase complex activity and potentially contributes to the cardiac 

dysfunction implicated in T2DM.  

The recent characterization of miRNA localization to various organelles within the cell and 

changes in miRNA species and levels during pathological states suggests a role in miRNA-

mediated pathologic phenotypes (3, 32, 51). Further, the introduction of miRNA mimics to 

increase miRNA species levels that have been downregulated or supplementation with antimiRs 

to decrease miRNA species levels that have been upregulated, may have the potential to attenuate 

or reverse decrements due to the pathological state. This strategy is currently being used in the 

clinic to treat hepatitis C virus, with clinical trials of miRNA mimics and antimiRs underway (38). 

A variety of miRNA-based therapies to address T2DM and heart disease are in the preclinical trial 

stage, providing the need for comprehensive study on miRNA effects on different cellular 

organelles. One such biologic is antimiR-208a, which has been shown to increase systemic 

metabolism, display a lean phenotype when provided a high-fat diet, and improve overall cardiac 

function (10, 35, 47). It will be of interest to determine in subsequent studies whether inhibition of 

miRNA-378 using an antimiR during T2DM will provide benefits to cardiac mitochondrial 

function and cardiac contractile function.  Furthermore, the prospect of elucidating the complicated 

mechanism for miRNA import into the mitochondrion during T2DM and modulating PNPase 

expression/activity and its potential role in miRNA import, could lead to a therapeutic paradigm 

to alleviate mitochondrial and cardiac dysfunction during T2DM.  

 Our data reveal the following key findings: 1) PNPase protein expression is increased in 

the type 2 diabetic SSM in both human patient atrial appendage samples and the db/db mouse 

model; 2) PNPase is associated with Ago2 as shown via immunoprecipitation and this association 
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is increased in the SSM during T2DM; 3) db/db SSM have an increased level of miR-378, 

corresponding to a decrease in ATP6 protein content in the SSM; 4) overexpression of PNPase in 

the mouse cardiomyocyte HL-1 cell line significantly increases miR-378 levels, corresponding to 

a decrease in ATP synthase activity. These findings suggest that during T2DM, PNPase may be a 

potential constituent in the import mechanism of miRNAs into cardiac mitochondria.  
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Figure 4.1 
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Figure 4.1. Expression levels of PNPase and Ago2 in cytoplasm. (A) Representative Western 

blot analysis of PNPase and Ago2 protein expression levels in the cytoplasm of human atrial 

appendage from non-diabetic and type 2 diabetic patients. GAPDH was used as a loading control. 

(B) Representative Western blot analysis of PNPase and Ago2 protein expression levels in the 

cytoplasm of wild-type and db/db mice. GAPDH was used as a loading control. 

  



252 
 

Figure 4.2 
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Figure 4.2. Expression levels of Ago2 in cardiac mitochondrial subpopulations. (A) 

Representative Western blot analysis and quantification of Ago2 protein expression levels in the 

SSM of human atrial appendage from non-diabetic and type 2 diabetic patients. CoxIV and 

Ponceau staining were used as loading controls. (B) Representative Western blot analysis and 

quantification of Ago2 protein expression levels in the IFM of human atrial appendage from non-

diabetic and type 2 diabetic patients. CoxIV and Ponceau staining were used as loading controls. 

(C) Representative Western blot analysis and quantification of Ago2 protein expression levels in 

the SSM of wild-type and db/db mice. CoxIV was used as loading controls. (D) Representative 

Western blot analysis and quantification of Ago2 protein expression levels in the IFM of wild-type 

and db/db mice. CoxIV was used as loading controls. Values are expressed as means ± SEM. 
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Figure 4.3 
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Figure 4.3. Expression levels of PNPase in cardiac mitochondrial subpopulations. (A) 

Representative Western blot analysis and quantification of PNPase protein expression levels in the 

SSM of human atrial appendage from non-diabetic and type 2 diabetic patients. CoxIV and 

Ponceau staining were used as loading controls. (B) Representative Western blot analysis and 

quantification of PNPase protein expression levels in the IFM of human atrial appendage from 

non-diabetic and type 2 diabetic patients. CoxIV and Ponceau staining were used as loading 

controls. (C) Representative Western blot analysis and quantification of Ago2 protein expression 

levels in the SSM of wild-type and db/db mice. CoxIV was used as loading controls. (D) 

Representative Western blot analysis and quantification of Ago2 protein expression levels in the 

IFM of wild-type and db/db mice. CoxIV was used as loading controls. Values are expressed as 

means ± SEM. *P ≤ 0.05 for control vs. type 2 diabetic. 
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Figure 4.4 
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Figure 4.4. Association of Ago2 and PNPase. (A) Representative co-immunopreciptation and 

quantification with a pulldown of Ago2 and probed with PNPase in control and db/db SSM. (B) 

Representative co-immunopreciptation and quantification with a pulldown of Ago2 and probed 

with PNPase in control and db/db IFM. (C) Representative co-immunopreciptation and 

quantification with a pulldown of PNPase and probed with Ago2 in control and db/db SSM.  (D) 

Representative co-immunopreciptation and quantification with a pulldown of PNPase and probed 

with Ago2 in control and db/db IFM.  Values are expressed as means ± SEM. *P ≤ 0.05 for control 

vs. db/db. 
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Figure 4.5 
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Figure 4.5. MicroRNA-378 Concentration and ATP6 Expression levels. (A) qPCR of mir-378 

concentration in control line (n = 3) and db/db (n =3) mice for both the subsarcolemmal 

mitochondria (SSM) and interfibrillar mitochondria (IFM).. Replicates were determined as 

individual transfections. (B) Representative Western blot analysis and quantification of ATP6 

protein expression levels in the SSM (Left) and IFM (Right) of control and db/db mice. CoxIV 

was used as a loading control. Values are expressed as means ± SEM. *P ≤ 0.05 for control vs. 

db/db. 
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Figure 4.6 
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Figure 4.6. Overexpression of PNPase in HL-1 Cardiomyocyte Cells. (A) Representative 

Western blot analysis of PNPase overexpression in the HL-1 Cell line. (B) qPCR of mir-378 

concentration in HL-1 cells (n = 3) compared to HL-1 cells overexpressing PNPase (n =3). 

Replicates were determined as individual transfections. (C) ATP synthase activity in HL-1 control 

and HL-1 378 overexpression cell lines. (D) ATP synthase activity in HL-1 control and HL-1 

PNPase overexpression cell lines. Values are expressed as means ± SEM. *P ≤ 0.05 for control vs. 

overexpression cell line. 
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GENERAL DISCUSSION 

The overall objective of this dissertation was to evaluate a new imaging technique for 

myocardial function and to assess the mechanisms leading to mitochondrial proteome 

dysregulation and miRNA import into the mitochondrion. Specifically, we wanted to determine if 

during DM: (1) echocardiographic speckle-tracking based strain imaging analyses would lead to a 

greater ability to detect earlier changes in myocardial dysfunction; (2) mtHsp70 would provide 

mitochondrial and cardiac contractile protection via restored nuclear-encoded mitochondrial 

protein import and mitochondrial proteome stability; (3) increased PNPase expression would lead 

to an increase in miRNA import into the mitochondrion via an association with the RISC. Our 

long-term goal was to identify mechanisms to alleviate adverse cardiac and mitochondrial effects 

associated with DM with the intent of providing a mechanism for therapeutic interventions to be 

designed. The central hypothesis of this dissertation was that strain analyses would offer the 

capability to detect early decrements in myocardial strain resulting from mitochondrial proteome 

derangement associated with inefficient mitochondrial protein import and mitochondrial 

dysfunction, all rectified by manipulation of mtHsp70. Further, the increased expression of 

miRNAs inside of the mitochondrion could potentially be due to an increased association of 

PNPase with the RISC. Our rationale for the proposed research was based upon the notion that a 

greater understanding of the mechanisms involved in mitochondrial dysfunction during DM, along 

with a non-invasive mechanism to evaluate and detect early myocardial contractile deficiencies, 

could potentially allow for the identification of key contributors to alleviate mitochondrial 

dysfunction, aiding in the development of a therapeutic paradigm to help combat cardiac 

complications in diabetic patients. 

 Roughly 9.3% of the United States population is diagnosed with DM and the rate of 

incidence is increasing at an alarming frequency (1, 3). T1DM, caused by insufficient insulin 
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production, accounts for approximately 5% of diabetic patients, while T2DM results from insulin 

resistance and affects 95% of all diabetic patients (3). The cardiovascular complications resulting 

from DM are the leading cause of morbidity and mortality among diabetic patients (25). The 

mitochondria within the cardiomyocyte have been linked to the cardiac dysfunction seen during 

DM with abnormalities associated with altered substrate utilization, increased production of ROS, 

enhanced susceptibility for apoptosis, altered mitochondrial structure, increased adverse effects 

due to miRNA, decreased nuclear-encoded mitochondrial protein import efficiency and a 

dysregulated mitochondrial proteome (11-13, 19-22, 39, 56, 59, 65, 70-72, 81). Further 

complicating the study of cardiac mitochondria, is the presence of two spatially and biochemically 

distinct mitochondrial subpopulations within the cardiomyocyte, which respond differentially to 

physiological stimuli and pathological insults (4, 11-13, 19-22, 40, 41, 45-47, 51, 53-55, 58, 72, 

81, 82). A review published by our laboratory highlights the differential impact of distinct 

pathological insults on cardiac mitochondrial subpopulations including ischemia, hypoxia, 

myocardial infarction, I/R, preconditioning/postconditioning, HF, aging, exercise, DM and 

hypermetabolism (33). Previous research from our laboratory demonstrates that T1DM 

differentially influences mitochondrial subpopulations, with the IFM being predominantly 

disturbed during this pathological insult, while SSM are detrimentally affected during T2DM (2, 

11-13, 19-22, 72, 81). Increased ROS production and damage, along with decreased size and 

internal complexity were shown in the IFM of the T1DM heart (22). In 18-week-old db/db mice, 

our laboratory previously reported oxidative damage via lipid peroxidation byproducts and 

nitrotyrosine residues in the SSM isolated from cardiomyocytes (21). Further, db/db animals 

revealed decreased mitochondrial size, internal complexity, and ΔΨm in the SSM, with no changes 

in the IFM (21). A study in skeletal muscle from T2DM patients revealed decreased mitochondrial 
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size and SSM abundance (43). Interestingly, when fueled with glutamate and malate, decrements 

in mitochondrial state 3 respiration rates in the SSM subpopulation were observed; however, when 

fueled with palmitoylcarnitine, fatty acid-stimulated state 3 and state 4 respiration were 

significantly decreased in the SSM, with no alterations to the IFM (21). This is interesting due to 

the milieu created during the T2DM setting, with a gross overabundance of lipids present within 

the environment. Additionally, mitochondrial function was assessed via ETC complex activities, 

which revealed deficits in complexes I, III and IV, as well as the ATP synthase for the SSM 

subpopulations, without having an effect on the IFM (21). These studies reveal that cardiac 

mitochondrial subpopulations are differentially impacted depending on the type of DM.  

 It is interesting to note that T1DM and T2DM affect cardiac mitochondrial subpopulations 

differentially; however, it is unknown as to why this occurs. Our speculation to the differential 

impact on cardiac mitochondrial subpopulations during the distinct types of DM arises from the 

differences in the phenotypes elicited by the pathologies. While similar deleterious effects are 

noted in the cardiac mitochondrial subpopulations, the milieu resulting from the pathology are 

somewhat different. The T1DM condition creates a milieu of starvation and deprivation while the 

glucose remains in the bloodstream instead of being utilized by the cells, leading to the cells being 

starved of this energy source. Conversely, in the T2DM condition, the cells are still facing 

starvation; however, this is in the face of excess. In our particular DM models, the IFM could 

potentially be more susceptible to damage from the STZ during T1DM because of their innately 

higher respiratory rates and subsequent oxidative environment caused by the pathology. Our 

laboratory has previously shown in the db/db model of T2DM that lipid profiles are significantly 

increased compared to the T1DM condition (21, 22). Further, db/db mice have higher circulating 

fatty acids and triglycerides than STZ mice, which is likely due to the phenotype elicited by the 
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pathological insult of T2DM (21, 22). With a greater propensity for lipid accumulation and the 

proximity of the SSM to the sarcolemmal membrane, the SSM are likely subjected to an 

environment high in lipid content, which was found by Nielson et al. in T2DM skeletal muscle 

(52). As the circulating free fatty acids and lipid deposition to the subsarcolemmal region during 

T2DM increases, the SSM are likely at a larger susceptibility for damage as they are located at the 

cell periphery, than the IFM located between myofibrils (52). This leads to the speculation that as 

lipid accumulation occurs in the SSM region, processes involved in metabolic signaling including 

insulin signaling, may be more readily affected (52). While the two primary cardiac mitochondrial 

subpopulations are differentially impacted during DM, commonalities in the dysfunction exist. For 

instance, loss of function and proteomic dysregulation in a specific mitochondrial subpopulation 

during DM insult is noted depending on the subpopulation predominantly impacted (12, 21). Key 

processes such as nuclear-encoded mitochondrial protein import and ETC function, along with the 

loss of mtHsp70 protein expression results in dysfunctional IFM during T1DM and SSM during 

T2DM (12, 21), indicating that the most negatively impacted mitochondrial subpopulation incurs 

similar deleterious effects to key mitochondrial processes. In Chapter 3, overexpression of 

mtHsp70 allowed for restoration of these impacted mitochondrial processes in the mitochondrial 

subpopulation most impacted by the type of DM. Within our transgenic model, mtHsp70 

overexpression is not specific to a single mitochondrial subpopulation and should be expressed at 

equivalent levels within the cardiac mitochondrial subpopulations, thus imparting protection to the 

subpopulation detrimentally impacted by the disease state. It is important to note that 

overexpression of mtHsp70 in the subpopulation that appears to be unaltered during the type of 

DM does not preclude a positive benefit to the mitochondria within that locale and could 

potentially allow for the mitochondria to function more efficiently; however, our data indicate that 
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an elevated level of mtHsp70 in the unaffected mitochondrial subpopulation during DM does not 

necessarily provide an extra positive benefit (Chapter 3). As a result, both pathologies are capable 

of providing complementary information in order to delineate potential therapeutic interventions 

that could treat cardiac mitochondrial dysfunction in both diabetic phenotypes. 

Interestingly, in both the T1DM and T2DM diabetic pathologies, mtHsp70 was shown to 

be decreased in the subpopulation predominantly impacted by the disease, revealing the T2DM 

SSM and the T1DM IFM to have altered mtHsp70 (12, 21). Since greater than 99% of proteins 

within the mitochondria are imported to the organelle, alterations to mtHsp70, a key player in 

nuclear-encoded mitochondrial protein import, could lead to a deranged mitochondrial proteomic 

profile during DM (12). In addition to mtHsp70 being shown to have an essential role in matrix-

targeted mitochondrial protein import, mtHsp70 can also play a role in protein import into the 

IMM and IMS (10).  When mtHsp70 is altered, mitochondrial function is compromised with 

decrements noted in processes including nuclear-encoded mitochondrial protein import, decreased 

antioxidant defenses, increased misfolding and degradation of proteins, along with increased 

cellular apoptosis (10). In the aged heart, mtHsp70 is shown to be decreased through proteomic 

analyses (23). Additionally, neonatal rat cardiomyocytes treated with ET-1 to stimulate cardiac 

hypertrophy displayed a decrease in mtHsp70 content, suggesting that mitochondrial impairment 

may occur during the early development of hypertrophy (5). Williamson et al. showed that cardiac 

myocytes from neonatal rats infected with an adenoviral vector expressing mtHsp70 were 

protected from I/R injury (82). These cardiomyocytes had increased import of nuclear-encoded 

antioxidant defense proteins, such as MnSOD (82). In the current work, overexpression of 

mtHsp70 could lead to a greater efficiency of the nuclear-encoded mitochondrial protein import 

process.  
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With mtHsp70 being the key player in powering the mitochondrial import process, along 

with consistently being altered during both types of DM in our proteomic data, we sought to 

understand the role of mtHsp70 overexpression during both T1DM and T2DM in Chapter 3. As 

an integral member of the PAM complex, mtHsp70 is anchored to Tim44 within the mitochondrial 

matrix and serves as the protein that “traps” and “pulls” the translocating preprotein through the 

IMM in an ATP-dependent manner (77). Previously our laboratory has shown that during T1DM 

insult, import of mitochondrial matrix import protein (MitoGFP1) is decreased in the IFM 

subpopulation, with no changes in the SSM (12). Further, overexpression of  mPHGPx, provided 

protection to processes in the IMM and proteomic restoration likely due to its antioxidant defense 

system and its restoration of mtHsp70 (11). In the current work, we overexpressed mtHsp70 in 

order to evaluate its impact on nuclear-encoded mitochondrial protein import during DM. In 

agreeance with previous work, we saw decrements in MitoGFP1 protein import efficiency at 2 

minutes in the T1DM IFM and as early as 30 seconds in the T2DM SSM (Chapter 3). We found 

that overexpression of mtHsp70 allowed for the restoration of nuclear-encoded mitochondrial 

protein import in the IFM during T1DM and the SSM during T2DM (Chapter 3).  

While decrements in mtHsp70 is one mechanism for nuclear-encoded mitochondrial 

protein import deficiencies in the heart, other potential mechanisms may include alterations to 

ΔΨm or structural stability of the mitochondria during a pathological state. Interestingly, previous 

work from our laboratory shows that during T1DM and T2DM, IFM and SSM have a reduced 

ΔΨm, respectively, which could be involved in decrements to protein import processes, as this is 

a critical force required for proper protein translocation (12, 21, 35). The currently proposed 

methods for nuclear-encoded mitochondrial protein import through mtHsp70 both require an 

active ΔΨm, as it is essential for opening the Tim23 channel within the IMM and allowing the pre-
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protein to enter into the matrix (14, 73). The Brownian ratchet model for nuclear-encoded 

mitochondrial protein import relies on the ΔΨm electrophoretic force to move the protein across 

the IMM, with mtHsp70 trapping the protein and not allowing it to slide backward into the IMS 

(10). Further, ΔΨm can also help to promote unfolding of protein domains; however, this 

mechanism is still relatively unexplored (34).  

Secondly, alterations to other proteins involved in the import process could be occurring. 

While our lab has previously assessed major import constituents such as Tom20, Tom40, Tim23 

and Tim44 and found no changes during T1DM (12), these protein contents have not been assessed 

during T2DM. Differences in the pathological conditions, as well as subcellular locale of the 

mitochondrial subpopulations predominantly affected during the disease, could lead to a 

differential impact on other import constituents and should be evaluated. Further, while Tim44 

may not be decreased in expression level, as was previously shown by our laboratory in the T1DM 

IFM (12), if the dissociation of mtHsp70 from Tim44 is impaired in the power stroke model, this 

could potentially lead to an inefficient import process. In regards to structure, proteins involved in 

mitochondrial protein import, such as mtHsp70, were shown to be associated with mitofilin, an 

IMM structural protein known to maintain cristae morphology and structure (72). While this likely 

does not represent a direct association between mitofilin and mtHsp70, it will be important to 

further investigate the role of maintaining cristae morphology during DM and its effects on 

nuclear-encoded mitochondrial protein import efficiency.  

Mitofilin may also play a critical role in the import of miRNA into the mitochondrion, 

particularly during DM. While mitofilin has been shown to be directly related to mitochondrial 

proteins involved in the import of nuclear-encoded proteins, it would be interesting to see if 

mitofilin is also associated with PNPase, a potential player for the import of miRNA. PNPase is 



269 
 

located in the IMS of the mitochondrion; however, it is speculated to be situated on the IMM (79, 

80). If an interaction between PNPase and mitofilin existed, this could be one explanation for how 

PNPase is tethered to the IMM to allow for the import of miRNA. Our laboratory has previously 

reported that mitofilin is decreased in the IFM during T1DM, altering the morphology of the 

mitochondrion and disrupting the proteomic makeup (12, 72). Overexpression of mitofilin during 

DM could potentially allow for maintained associations between PNPase and unknown miRNA 

import constituents to the IMM. Preserving the structural stability of the mitochondrion during 

DM could sustain the functionality of the organelle; however, this might also allow the influx of 

miRNA into the mitochondrion through PNPase, which could serve a beneficial or detrimental 

role during DM. Our data revealed that PNPase is upregulated in the T2DM SSM, with an 

increased association between PNPase and Ago 2, an integral member of the RISC (Chapter 4). It 

is unknown whether the upregulation of PNPase is detrimental or a compensatory mechanism for 

miRNA import during a pathological insult. On the one hand, harmful miRNAs targeting important 

proteins involved in the ETC could be imported through the upregulated PNPase during DM, thus 

decreasing the ability for the mitochondrion to function properly. Conversely, PNPase expression 

could be increased in the diabetic setting to allow the entry of miRNAs targeting ROS, which are 

present due to the diabetic environment. The oxidative environment generated by the induction of 

the NADPH oxidase (NOX) protein family during different pathological states, could be due to 

the downregulation of miRNAs targeting these proteins (57). For example, the loss of NOX2 

prevents oxidative stress in a pressure overload model of HF, with miRNA-34 and miRNA-17 

showing capability of targeting this protein and miRNA-17 being downregulated during HF (27, 

36, 38, 48). It would be interesting to utilize the mPHGPx transgenic animal to decrease oxidative 

stress during DM and evaluate the impact this antioxidant overexpression could have on PNPase 
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protein expression levels and miRNA import into the mitochondrion. This could potentially allow 

for scavenging of ROS, thus increasing the functionality of the mitochondrion and decreasing 

PNPase expression levels during DM, thus in turn influencing miRNA influx into the 

mitochondrion. Further, while mtHsp70 overexpression has been shown to decrease the 

accumulation of intracellular ROS when overexpressed in cells subjected to glucose deprivation 

(49), we did not study ROS levels in our novel transgenic line to determine whether this could also 

play a role in the association with PNPase and miRNA import into the mitochondrion. MtHsp70 

overexpression could potentially serve as a mechanism to protect the mitochondrion from ROS 

damage during DM, thus allowing for better functionality of the organelle. Additionally, 

overexpression of mtHsp70 may also play a role in decreasing PNPase levels during DM and 

influencing the import of miRNA into the mitochondrion.  Further research needs to be done to 

elucidate the mechanism of and the constituents involved in miRNA import into the 

mitochondrion, particularly within the context of a pathological insult. Moreover, it will be 

important to determine whether the upregulation of PNPase is due and contributing to the 

detrimental impact of the pathological insult or is a compensatory mechanism to counteract this 

insult.  

 While the different diabetic pathologies reveal influences on mitochondrial processes, our 

laboratory previously analyzed the impact of DM on the mitochondrial proteome (11, 12, 21). 

Proteomic profile analyses revealed differential alterations between the mitochondrial 

subpopulations affected depending on type of DM, with the IFM proteome showing more changes 

as a result of T1DM, while the SSM proteome showed increased detriment during T2DM (12, 21). 

We have previously shown in the T1DM and T2DM pathological conditions, alterations to proteins 

of the mitochondrial respiratory chain, TCA cycle, FAO components, along with transport and 
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structural proteins (12, 21). Studies from our laboratory indicate that during T1DM, FAO proteins 

were significantly decreased in the IFM as compared to control (12). In contrast, proteomic 

analyses from other STZ models of T1DM, displayed increased FAO protein concentrations as 

compared to controls (31, 74). It is important to note that the protocols for STZ injections, duration 

of DM and animal backgrounds were different from our previous study, as well as the analysis on 

total mitochondria not individual mitochondrial subpopulations. Interestingly, overexpression of 

mtHsp70 during T1DM revealed further decrements in FAO proteins in the IFM when compared 

to the T1DM mice, whereas in the T2DM SSM, proteins involved in fatty acid metabolism were 

significantly increased (Chapter 3). During T1DM, the manifestation of the pathology does not 

possess a gross hyperlipidemia as seen during T2DM, yet our proteomic analyses for the mtHsp70 

T1DM mice revealed a down regulation of proteins involved in FAO, indicating that the alternate 

fuel source is not in use during T1DM. This is contrary to what would be expected because during 

T1DM while the heart does not utilize glucose efficiently, it would be assumed another fuel source, 

such as β-oxidation would be increased to allow for proper mitochondrial function. Further, the 

overexpression of mtHsp70 could be showing decreases in fatty acid metabolism due to the 

decrease in ETFB, an essential protein for the shuttling of protons to initiate the process (Chapter 

3). Our study also found GSTK1 to be significantly increased in the mtHsp70 T1DM IFM, which 

would allow for a greater insulin sensitivity through adiponectin in these animals, providing 

evidence that mtHsp70 is utilizing the fuel source most available during the pathological insult 

(Chapter 3). During T2DM insult, enzymes involved in the phosphorylation of glucose and 

initiation of glucose metabolism pathways, HK1 and HK2, were decreased in the T2DM SSM, 

while FAO proteins were increased, thus in line with the milieu that is present during this 

pathological condition (Chapter 3). Overall, our mitochondrial proteomic evaluation reveals that 
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in the T1DM IFM and T2DM SSM, mtHsp70 overexpression is responsive to the most abundant 

fuel source. 

Additionally, our laboratory has previously shown alterations to complexes I, IV and V in 

the IFM during a T1DM insult and the SSM during T2DM (12, 21). Overexpression of mtHsp70 

during T1DM led to an increase in proteins involved in complexes I, III, IV and the F0 complex of 

complex V as compared to the T1DM mice (Chapter 3). Interestingly, decrements in four subunits 

of the F1 complex of complex V were further decreased with the overexpression of mtHsp70 in 

the T1DM setting (Chapter 3). The F1 complex contains the extramembraneous core responsible 

for catalysis, while the F0 complex forms the membrane channel for protons to travel through (37). 

As complex V is situated in the IMM and uses the energy of the H+ electrochemical gradient, 

which is generated by the movement of electrons through the ETC, the movement of this proton 

from the IMS to the matrix is coupled with the generation of ATP (29). While it is puzzling as to 

why the F1 complex would show increasing decrements with mtHsp70 overexpression during 

T1DM, mtHsp70 utilizes ATP for the process of nuclear-encoded mitochondrial protein import 

potentially altering the ATP levels within the mitochondrion. Mechanisms that change the F1 

subunit protein expression levels, however, are difficult to elucidate. Previously, our laboratory 

has shown decrements in essential proteins in the mitochondrial respiratory chain during T2DM, 

particularly in the SSM (21). During T2DM, proteins from complexes III, IV and both the F0 and 

F1 of complex V, were increased in the SSM with mtHsp70 overexpression (Chapter 3). Thus, our 

proteomic data reveal that constituents in the ETC, as well as those involved with ATP production, 

were preserved with mtHsp70 overexpression in the SSM during T2DM (Chapter 3).  

The mitochondrial proteome could be altered via mechanisms of miRNA regulation, as 

miRNAs play a role in nuclear gene transcription and translation and proteins encoded by the 
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nuclear genome are key players in normal mitochondrial function. Gene silencing and regulation 

occurs via the 18-24 nucleotide miRNA binding to the target mRNA (9, 18, 24). Interestingly, 

miRNAs are capable of getting into the mitochondrion and regulating mitochondrial gene 

expression (6-8, 13, 16, 39, 44, 57, 68, 69); however, the mechanism of translocation is currently 

unknown. With literature suggesting a key role for miRNAs in pathological disease states, it is 

essential to understand their role in cardiovascular diseases, particularly the role within the 

mitochondrion. While the underlying mechanism for miRNA import into the mitochondria is 

unknown, evidence suggests that Ago2 plays a pivotal role in the transportation of miRNAs into 

and out of the mitochondrion (15, 24, 32, 50, 84). While the recent thinking of miRNA transport 

into the mitochondrion utilizes import constituents from the protein import process (TOM and 

TIM) (67), we suggest that PNPase may also contribute to this complex import mechanism for 

miRNA transport across the mitochondrial membranes (Chapter 4). Our research has shown a 

unique association between Ago2 and PNPase within the mitochondria, which was increased in 

the SSM during T2DM (Chapter 4). It is currently unknown whether other players in the protein 

import process play a role in miRNA import; however, it would be important to investigate if 

PNPase or Ago2 associate directly with TOM or TIM proteins. It would also be interesting to note 

that if TIM proteins, such as Tim44, played a role in miRNA import into the mitochondrion, 

whether mtHsp70 would also influence this import process. In addition, it has been postulated that 

different sequences within the miRNA are capable of targeting the miRNA into the nucleus (67), 

which could potentially be another mechanism that miRNA are translocating into the 

mitochondrion. Our laboratory revealed that of the mitomiRs identified in the mitoRISCome by 

next generation sequencing and microarray analyses, sequences enriched in the nucleotide motifs 
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AGG and UGG were present (39), potentially supporting the hypothesis that a sequence within the 

miRNA may target the miRNA to its particular location, such as the mitochondrion. 

Another complicating factor in miRNA translocation into the mitochondrion is the 

differential impact a pathological state can have on mitochondrial subpopulations. Our laboratory 

has previously shown alterations to miR-141 within the IFM during T1DM (13). MiR-141 

regulates IMM phosphate transporter, Slc25a3, which provides inorganic phosphate to the 

mitochondrial matrix, an essential component for ATP production (13). In addition to miR-141, 

our laboratory has found a redistribution of miR-378 in the IFM of the T1DM heart, which 

coincided with a decrease in ATP6 protein expression levels and ATP synthase function (39). 

Interestingly, alterations to the SSM were uncommon indicating that miRNA can translationally 

regulate mitochondrially encoded proteins in spatially distinct mitochondrial subpopulations 

during DM (13, 39). In the current work, we found that overexpression of PNPase in the HL-1 

cardiomyocyte cell line resulted in the accumulation of miR-378 within the mitochondrion 

(Chapter 4). This accumulation corresponded with the decrease in ATP6 protein expression levels 

and ATP synthase activity (Chapter 4). Further, in the T2DM db/db mouse model we found 

increased expression of PNPase in the SSM, the mitochondrial subpopulation predominantly 

affected by T2DM, along with an increase in the association of PNPase with Ago2, providing 

evidence that PNPase may play a role in the translocation of miRNAs into the mitochondria 

(Chapter 4). Further studies including PNPase knockdown or knockout would help to clarify our 

current results and support our claim of PNPases role in miRNA translocation. While we suggest 

that PNPase may be a player in mitochondrial miRNA import, other constituents playing a role in 

this translocation mechanism still need to be elucidated. 
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Within the mitochondrion, proteins are not evenly distributed to the different 

subcompartments: OMM, IMS, IMM and matrix. Proteomic surveys suggest that approximately 

67% of mitochondrial proteins reside in the mitochondrial matrix, followed by 21% located within 

the IMM, and 6% and 4% residing in the IMS and OMM, respectively (26, 63). Independent of 

diabetic type and mitochondrial subpopulation, our laboratory has previously shown the IMM and 

matrix as the most predominantly affected mitochondrial subcompartments for proteomic 

alterations (12, 21). Of the 21% of total proteins residing within the IMM, approximately 50% of 

them are altered in the respective subpopulation during DM insult (12, 21). Importantly, the IMM 

houses the complexes of the ETC, which are imperative for sufficient ATP production and properly 

functioning mitochondria; therefore, we aimed to restore the proper proteomic makeup for the 

IMM through overexpression of mtHsp70 during DM.  Interestingly, in Chapter 3 we note that 

both the T1DM IFM and T2DM SSM revealed proteomic alterations in the IMM and 

mitochondrial matrix, with mtHsp70 allowing for restoration in both subcompartments, thus 

suggesting that mtHsp70 overexpression allowed for targeted restoration particularly within these 

locales. MtHsp70 is known to play a role in matrix-targeted mitochondrial protein import, but 

mtHsp70 has also been demonstrated to play a role in  proteins targeted to the IMM and IMS (10). 

Work by Bohnert et al., revealed that oxidase assembly 1 (oxa1), an IMM translocase, is imported 

into the matrix via mtHsp70 and reinserted back into the IMM (17). This provides evidence for 

the assumption that overexpression of mtHsp70 could lead to an increase in nuclear-encoded 

mitochondrial protein import efficiency into the IMM and help provide stability to the 

mitochondrial proteome during DM. 

In addition to mtHsp70 helping to restore the mitochondrial proteome via increased 

efficiency in nuclear-encoded mitochondrial protein import, mtHsp70 has been shown to play a 
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critical role in mitochondrial stability via protein degradation (60). During environmental stress, 

such as a pathological insult, proteins are at an increased susceptibility for inactivation through 

misfolding or aggregation (28). Literature suggests that mtHsp70 is capable of stabilizing 

misfolded or damaged proteins in their unfolded state in order to make them more susceptible to 

proteolytic degradation from m-AAA and PIM1, which was decreased when mtHsp70 was inactive 

(60, 61, 78). During DM, mtHsp70 expression levels are decreased, thus leading to the assumption 

that proteolytic degradation of proteins could be impaired during this pathological insult. With 

impaired PIM1 proteolysis activity, mitochondrial genomic integrity and proper intron excision of 

mitochondrially-encoded ETC proteins could be disturbed (75, 76), which may be the case during 

DM. Further investigation into mtHsp70s role in protein degradation during a pathological 

influence is warranted due to the effects this could have on the mitochondrial proteome. 

Cardiac complications are the leading cause of morbidity and mortality among diabetic 

patients (42, 83). It is imperative for physicians to be able to detect changes in cardiac function 

through either conventional measures or using the highly sensitive speckle-tracking based strain 

analysis software. In Chapter 2, we discussed the efficiency of using speckle-tracking based strain 

analyses in detecting subtle changes of LV function prior to conventional changes during the 

progression of T1DM. Conventional measures revealed changes at 6-weeks in the T1DM heart 

(Chapter 2). In Chapter 3, we highlight that LV pump function is decreased in the type 1 and type 

2 diabetic animals as seen by conventional measures, such as EF and FS. We found that 

overexpression of mtHsp70 restored conventional measurements back to that of control level, 

likely due to the restored functionality of the mitochondria through increased efficiency of nuclear-

encoded mitochondrial protein import, leading to a stabilized mitochondrial proteome despite the 

pathological influence of DM (Chapter 3). Further, analyses using the speckle-tracking based 



277 
 

strain software to evaluate global and regional strain were performed to provide a more complete 

picture for the deficits noted in the LV. When using speckle-tracking based strain analyses, we 

found changes as early as 1-week post-T1DM onset, mainly in the radial dimension (Chapter 2). 

Further, assessment of regional changes within the LV were performed during T1DM, with the 

detriments predominantly in the free wall region (Chapter 2). This brings into question, why the 

free wall region was affected by T1DM, but few decrements were seen in the septal wall region. 

We speculate that the IFM, which are predominantly affected during T1DM, are dysfunctional 

particularly within the free wall region of the LV. The LV myocardial wall becomes activated in 

the septal and anterior free wall regions through the Purkinje system, with this activation traveling 

from the apex to the base of the LV (62, 64). Interestingly, the LV activation sequence through 

this system is relatively similar between the septal and free wall regions (62, 64), thus it would be 

interesting to evaluate each region of the LV and determine if mitochondrial function is decreased 

within the particular locale coinciding with the strain and strain rate dysfunction during T1DM. 

Further, it would also be interesting to evaluate subpopulations within each LV region to determine 

if deficits during T1DM is due to decreased IFM function. Without properly functioning 

mitochondria and ample production of ATP, cardiac contractile dysfunction is oftentimes 

disrupted (11, 12, 21, 22). In Chapter 3, our studies using speckle-tracking based strain analyses 

provide evidence that this technique is capable of detecting subtle changes in myocardial 

performance during both types of DM; however, these mice already demonstrated decreased LV 

function through conventional measures. Decrements in longitudinal strain and longitudinal strain 

rate during both T1DM and T2DM provide complementary evidence of LV systolic dysfunction 

with subsequent restoration via mtHsp70 overexpression (Chapter 3). Evaluation of regional 

differences revealed commonalities between longitudinal strain rate in T1DM and T2DM with 
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decrements in the apex regions, in which mtHsp70 overexpression was able to restore the posterior 

apex region independent of DM type. Interestingly, mtHsp70 overexpression appeared to provide 

more regional benefit during T2DM than T1DM. It is noteworthy to evaluate why mtHsp70 

overexpression appears to provide protection to certain regions and not others of the LV when the 

αMHC promotor should allow for even expression throughout the heart. It would be interesting to 

evaluate the expression levels of mtHsp70 in each LV region and determine if mtHsp70 

overexpression restored mitochondrial function within these particular sub-locales. If mtHsp70 did 

not restore contractile function within a particular LV region, it would be interesting to evaluate 

the nuclear-encoded mitochondrial protein import mechanism and the activity of mtHsp70. We 

speculate that the restoration of cardiac contractile function in Chapter 3 is due to mtHsp70’s 

positive impact on mitochondrial functionality through increased efficiency of nuclear-encoded 

mitochondrial proteins, which would be critical for stabilization of the mitochondrial proteome in 

the face of DM. While the type of DM has differential influences on mitochondrial subpopulations, 

it is interesting to note that ATP production from each subpopulation is likely critical for efficient 

cardiac contractile function. This indicates that both the SSM and IFM may play a role in 

preserving cardiac function during pathological insults. Literature suggests that an interconnected 

mitochondrial network through the mitochondrial reticulum could provide a pathway for energy 

distribution within the cardiomyocyte (30, 66), thus allowing for the restoration of cardiac 

contractile function by mtHsp70, despite different mitochondrial subpopulations being affected. 

Further, Glancy et al. suggest that the contiguous matrix and its elements between the different 

mitochondrial subpopulations could be a conductive element through this network to allow for the 

electrical conduction (30).  This type of energy distribution could be disrupted during DM and 

potentially restored with the overexpression of mtHsp70; however, this would need to be assessed.   
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 In summary, the data presented suggest that deficits in the mitochondrial proteome leads 

to inefficient mitochondrial function, presumably due to deficient nuclear-encoded mitochondrial 

protein import. In particular, mtHsp70 serves as a central node for restoration of nuclear-encoded 

mitochondrial protein import, which is essential for maintenance of proper nuclear-encoded 

protein content within the mitochondrion, particularly in the mitochondrial subpopulation most 

impacted during the different types of DM. Further, the import of miRNA species into the 

mitochondria potentially through a complex mechanism of interaction between the RISC and 

PNPase, could contribute to posttranscriptional regulation and translational repression of proteins 

encoded by the mitochondrial genome during DM. In conclusion, therapeutic interventions 

targeted to maintain the mitochondrial proteome through efficient nuclear-encoded mitochondrial 

protein import and regulation of miRNA import into the mitochondrion during DM may provide 

protection against cardiac contractile dysfunction in the diabetic heart independent of type of DM. 
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Danielle L. Shepherd 
 

OFFICE ADDRESS      
 
Division of Exercise Physiology and    
Center for Cardiovascular and      
Respiratory Sciences      
West Virginia School of Medicine      
1 Medical Center Drive      
P.O. Box 9227 
Morgantown, WV 26506 
Tel:  (304) 293-7311 
Fax: (304) 293-7105 
Email: dshepherd@mix.wvu.edu 
Personal Email: Danielle.L.Shepherd@gmail.com 
 

EDUCATION 
 
December 2016  Doctor of Philosophy, Exercise Physiology                                                              
    Biomedical Sciences, Division of Exercise Physiology 
    Laboratory of Dr. John Hollander 

West Virginia University School of Medicine 
Morgantown, West Virginia 
Thesis topic: Cardiac and Mitochondrial Dysfunction during 
Diabetes Mellitus: Examination of Mitochondrial Import 
Mechanisms 
 

May 2010                   Bachelor of Arts, Psychology 
    Department of Psychology and Neuroscience 
    Minors: Biology and Chemistry 
    Graduated Summa Cum Laude 

Baylor University 
Waco, Texas 

 

TEACHING EXPERIENCE/MENTORING 
 
2016 Exercise Science 420-01. Research Design in Exercise Science. 

Adjunct Professor West Virginia Wesleyan College.  
 
2016 Incoming Biomedical Sciences Graduate Students. Facilitated 

laboratory skills for new laboratory member, helped to develop 
projects and protocols: Seth Stine and Quincy Hathaway. 

 
2014 Exercise Physiology 787: Cardiopulmonary Physiology. West 

Virginia University. Echocardiography and Speckle-Tracking 
Based Strain Analyses. 

 

mailto:dshepherd@mix.wvu.edu
mailto:Danielle.L.Shepherd@gmail.com
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2013 Physiology 441: Mechanism of Body Function. West Virginia 
University. The Digestive System Lecture Series. 

 
2013 Biomedical Sciences 706: Cellular Methods. West Virginia 

University. 
 
2012-2016 Facilitated laboratory skills and developed projects for 

Undergraduate and Masters Students: Breanna Nolan, Dave 
Schnell, Mark Pinti, Kristen Hughes, Kolbi Tonkovich.  

 
2012-2016 West Virginia IDeA Network of Biomedical Research Excellence 

(WV-INBRE) Undergraduate Summer Research Program. 
Designed research projects and helped them gain experience in 
a research laboratory. Mentored Gabrielle LaFata (2012); Danielle 
Stankus (2013); Danielle Nehilla (2014); Shruthi Skreekumar 
(2015); Shruthi Skreekumar (2016). 

 
2011-2015 Incoming Biomedical Sciences Graduate Students. Facilitated 

laboratory skills for rotation students: Blake Moses, Ahmad Hanif, 
Kyle Mandler, and Erriene Olesh (2011); Ashley Petrone (2012); 
Tanya Dilan and Dylan Boehm (2014); Seth Stine (2015). 

 
2008-2010 Lab Assistant. Introductory Biology Lab (BIO1105 and BIO1106). 

Baylor University. 

 
SCIENTIFIC OUTREACH  
 
2016 Children’s Discovery Museum of West Virginia. STEM board 

games. April 23, 2016. 
 
2015 Children’s Discovery Museum of West Virginia. Participation in 

Science Day. What are Germs? October 17, 2015. 
 
2015 Health Sciences and Technology Academy Guest Speaker. 

University High School, Morgantown, West Virginia. October 5, 
2015. 

 
2015 Eastwood Elementary Science Fair 3rd, 4th and 5th Grade Poster 

Judge and Judge for Excellence in Physiology Research from the 
American Physiological Society. Eastwood Elementary, 
Morgantown, West Virginia. June 4, 2015. 

 
2015 Intel International Science and Engineering Fair Grand Award 

Judge. David L. Lawrence Convention Center, Pittsburgh, 
Pennsylvania. May 12-13, 2015. 

 
2015 Expanding Your Horizons Conference. Potomac State College, 

Keyser, West Virginia. April 18, 2015.  



295 

 

 
2015 How you make slime and making observations. Boys and Girls 

Club, Brookhaven Elementary School, Morgantown, West 
Virginia. April 17, 2015.  

 
2015 Dominion West Virginia State Science and Engineering Fair 

Judge. Fairmont State University, Fairmont, West Virginia. March 
28, 2015. 

 
2015, 2016 West Virginia Regional Science Bowl Volunteer. West Virginia 

University, Morgantown, West Virginia. February 6, 2015; 
February 5, 2016. 

 
2014 Cheat Lake Elementary Science Fair 2nd and 3rd Grade Poster 

Judge and Science Activity Coordinator. Cheat Lake Elementary, 
Morgantown, West Virginia. November 5, 2014. 

 
2014 North Elementary School 3rd Grade Brain Day. Brain Awareness 

Week. North Elementary School, Morgantown, West Virginia. 
November 5, 2014. 

 
2014 Watson Elementary School Science Day. 9-weeks Positive 

Behavior Program. Watson Elementary School, Fairmont, West 
Virginia. October 24, 2014. 

 
2014 Numbers and Neuroscience Night. Mountainview Elementary 

School, Morgantown, West Virginia. March 5, 2014. 

 
 
LEADERSHIP/SERVICE POSITIONS 
 
2016 Appalachian Regional Cell Conference (ARCC) Co-

organizer/Consultant. October 1, 2016. 
 
2015 Appalachian Regional Cell Conference (ARCC) Co-

organizer/Consultant. November 21, 2015. 
 
2014 Appalachian Regional Cell Conference (ARCC)-sponsored by the 

American Society for Cell Biology – Invited Poster Judge. 
November 8, 2014. 

 
2014 West Virginia University Research Induction Ceremony Invited 

Member of Stage Party for Ethical Oath Recitation and Coating 
Ceremony. October 24, 2014. 

 
2014 – 2015 Health Sciences Center Graduate Student Organization 

President.  
West Virginia University School of Medicine. 
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2014 Van Liere Selection Committee and Oral Presentation Judge, 

West Virginia University. 
 
2013 Appalachian Regional Cell Conference (ARCC)-sponsored by the 

American Society for Cell Biology – Invited Poster Judge and Co-
organizer/Consultant. October 26, 2013. 

 
2013 West Virginia University Research Induction Ceremony Invited 

Member of Stage Party for Ethical Oath Recitation and Coating 
Ceremony. October 25, 2013. 

 
2013 - Present Biomedical Sciences Graduate Program Review Committee. 

West Virginia University School of Medicine. 
 
2013 - 2014 Incoming Student Mentorship Program Coordinator (Recruitment 

periods in Spring 2013 and 2014). West Virginia University School 
of Medicine.  

 
2013 - 2014 Health Sciences Center Graduate Student Organization Vice 

President. West Virginia University School of Medicine. 
 
2012 Co-PI for Appalachian Regional Cell Conference (ARCC)-

sponsored by the American Society for Cell Biology – Lead 
Organizer. 

 
2012 Invited/Scheduled Dr. Ronglih Liao to speak for Cell Biology 

Training Program, West Virginia University. 
 
2011 - 2013 Graduate Student Organization Leader. Social Committee Chair. 

West Virginia University School of Medicine. 
 
2011 Search Committee Member for Assistant Director of Graduate 

Education for West Virginia University Health Sciences Center. 
 
2011 - 2014 Ph.D. Student Recruitment Ambassador/Coordinator. West 

Virginia University School of Medicine. 
 
2010 - Present Class Representative for Biomedical Sciences Incoming 2010 

class, West Virginia University. 

 
HONORS/AWARDS 

 
2016 Induction into the E.J. Van Liere Research Society. West Virginia 

University, Morgantown, West Virginia. July 21, 2016.  
 
2016 Peer Science Award for Favorite Poster Presentation. Mitochondrial 

Biology Symposium: Novel Roles of Mitochondria in Health and 
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Disease. National Institutes of Health, Bethesda, Maryland. May 
19-20, 2016. 

 
2016 2nd Place 3 Minute Thesis Competition for West Virginia University. 

West Virginia University, Morgantown, West Virginia. April 7, 2016. 
 
2016 1st Place 3 Minute Thesis Competition Finalist for Health Sciences 

Center. West Virginia University, Morgantown, West Virginia. March 
8, 2016. 

 
2015 3rd Place Video Competition. Share Your Science Video Contest, 

American Society for Cell Biology. 
 
2015 1st Place Poster Presentation, Appalachian Regional Cell 

Conference, Huntington, West Virginia. Title of work: Import of 
microRNA378 into Cardiac Mitochondria: How do they get in?
  

 
2015 1st Place Poster Presentation, West Virginia Clinical and 

Translational Science Institute Annual Meeting, Charleston, West 
Virginia. Title of work: A New Clinical Predictor of Disease 
Development in the Type 2 Diabetic Patient? 

 
2015 2014-2015 Kenneth D. Gray Student Leadership Award, West 

Virginia University. 
 
2015 3 Minute Thesis Competition Finalist. How the heart works during 

diabetes. West Virginia University. Morgantown, West Virginia. April 
9, 2015. 

 
2014 2014 APS Endocrinology and Metabolism Section Campbell Award 

Poster Competition. Federation of American Societies for 
Experimental Biology (FASEB). Title of work: The Type 2 Diabetic 
Patient and Cardiac Mitochondrial Dysfunction: A new perspective. 

 
2013-2015 Scholarship Winner for the American Association for the 

Advancement of Science/Science Program for Excellence in 
Science. 

 
2013 Science, Technology, Engineering, and Mathematics 

Entrepreneurship Essentials Workshop Scholarship. College of 
Business and Economics, Center for Executive Education. West 
Virginia University. Morgantown, West Virginia.  

 
2013 2013 Mead Johnson Research Award in Endocrinology and 

Metabolism. The American Physiological Society. Federation of 
American Societies for Experimental Biology (FASEB). Title of 
work: Heat Shock Protein 27 (hsp27) Translocation to the 
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Mitochondria is Associated with Protection Against Diabetic 
Cardiomyopathy. 

 
2013 1st Place Oral Presentation, Van Liere Convocation, West Virginia 

University. Title of Podia Presentation: Mitochondrial 
Translocation and Phosphorylation: What’s the Hsp27 
connection? 

 
2012 American Society for Cell Biology Grant for One Day Local 

Meeting- Appalachian Regional Cell Conference. 
 
2012 Invited/Scheduled Dr. Ronglih Liao to speak for Cell Biology 

Training Program, West Virginia University. 
 
2012 1st Place Poster Presentation, Van Liere Convocation, West 

Virginia University. Title of work: Conventional echocardiography 
and speckle-tracking based strain imaging of the type I diabetic 
heart. 

     
2012 West Virginia University School of Medicine Biomedical Sciences 

Travel Award. Travel award used to attend FASEB 
conference. Title of work: Longitudinal assessment of type I 
diabetes mellitus using conventional echocardiography and 
speckle-tracking based strain imaging. 
 

2010    Inducted into Phi Beta Kappa at Baylor University. 
 
2006-2010   Dean’s List at Baylor University. 
 

SPECIALIZED TRAINING 
 
2011 Workshop on Surgical Techniques in the Laboratory Mouse. The 

Jackson Laboratory. Bar Harbor, Maine.   
 

PROFESSIONAL SOCIETIES/ORGANIZATIONS 
      
2013-2015   American Women in Science 
 
2013-2015   American Association for the Advancement of Science 
 
2012-2016   American Heart Association 
 
2012-2014   American Physiological Society 
 
2012-2013, 2015-2017 American Society for Cell Biology 
 
2011-Present  Center for Cardiovascular and Respiratory Sciences, 
    West Virginia University. 
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2010-Present Cell Biology Training Program, West Virginia University. 
 

GRANTS RECEIVED 
 
American Heart Association One Year Predoctoral Fellowship 
American Heart Association (14PRE19890020) 
Role: Principal Investigator 
Funded: July 1, 2014 – June 30, 2015 
 
West Virginia University Student Government Association Grant 
Role: President of the Health Sciences Center Graduate Student Organization 
Funded: October 2014 – May 2015 
 
ASCB Grant for one day local meeting – Appalachian Regional Cell Conference 
Role: Student Organizer/Consultant 
Funded: July 1, 2014 – December 31, 2014 
 
ASCB Grant for one day local meeting – Appalachian Regional Cell Conference 
Role: Student Organizer/Consultant 
Funded: July 1, 2013 – December 31, 2013    
 
NIH Predoctoral Training Grant in Cardiovascular and Pulmonary Diseases (T32) 
National Institute of Health (5T32HL090610-03) 
Role: Predoctoral Trainee   
Funded:  July 1, 2012 – July 1, 2014 
 
ASCB Grant for one day local meeting – Appalachian Regional Cell Conference 
Role: Principal Investigator 
Funded: July 1, 2012 – December 31, 2012 
 

VOLUNTEER WORK 
2015 – 2016    Relay for Life Monongalia County, West Virginia. 
 
2015 – 2016   Girls on the Run. Monongalia County, West Virginia.  
 
2015 Walt Disney World Marathon Weekend Volunteer. January 8, 

2015. 
 
2014 – 2016  Operation Christmas Child. Volunteer throughout the year 

organizing and preparing for Christmas.  
 
2010 – 2014    Labor of Love Ministries. Morgantown, West Virginia. 
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PRESENTATIONS 

Invited Podia Presentations 
 
MicroRNAs in the Mitochondrion. Mitochondria and Metabolism Working Group, West 
Virginia University, Morgantown, West Virginia. September 12, 2016. 
 
How I Got Here, What I do, and How to Make a Difference in STEM. Health Sciences and 
Technology Academy, University High School, Morgantown, West Virginia. October 5, 2015. 
 
How Can We Help Diabetic Patients? One Beat of the Heart at a Time. 3 Minute Thesis 
Competition. West Virginia University, Morgantown, West Virginia. April 9, 2015. 
 
Examination of Novel Echocardiographic Analyses and Mitochondrial Dysfunction in 
the Diabetic Heart. Davis and Elkins Biology and Environmental Sciences Forum, Davis and 
Elkins College, Elkins, West Virginia. March 12, 2015. 
 
Distinct Myocardial Strain Profiles in Type 1 versus Type 2 Diabetes: Differences in 
how they pump. Van Liere Convocation, West Virginia University. February 26, 2015. 
 
Hyperglycemia and Hemoglobin A1c: Clinical predictors of mitochondrial dysfunction 
in diabetic patients. Appalachian Regional Cell Conference, Marshall University. November 
8, 2014. 
 
Mitochondrial Translocation and Phosphorylation: What’s the Hsp27 connection? Van 
Liere Convocation, West Virginia University. February 28, 2013. 
 

Poster Presentations 
 
Shepherd D.L., Baseler W.A., Dabkowski E.R., Nichols C.E., Thapa D., Croston T.L., Hollander 
J.M. Mitochondrial Proteomic Alterations in the Diabetic Heart: A Central Role for Protein Import. 
NHLBI/NIDDK 2016 Mitochondrial Biology Symposium: Novel Roles in Health and Disease. May 
19, 2016.  
 
Shepherd D.L., Sreekumar S., Nichols C.E., Hollander J.M. Import of microRNA378 into 
Cardiac Mitochondria: How do they get in? Appalachian Regional Cell Conference. November 
21, 2015. 
 
Shepherd D.L., Croston T.L., Holden A.A., Tveter K.J., Thapa D., Nichols C.E., Long D.M., 
Olfert I.M., Hollander J.M. Mitochondrial Dysfunction: A New Clinical Predictor of Disease 
Development in the Type 2 Diabetic Patient? West Virginia Clinical and Translational Science 
Institute Annual Meeting. October 2015. 
 
Shepherd D.L., Nichols C.E., Thapa D., Hollander J.M. Distinct Myocardial Strain Profiles in 
Type 1 versus Type 2 Diabetes: Differences in how they pump. Van Liere Convocation, West 
Virginia University. February 2015. 
 
Shepherd D.L., Croston T.L., Holden A.A., Tveter K.J., Thapa D., Nichols C.E., Long D.M., 
Olfert I.M., Hollander J.M.  Hyperglycemia and Hemoglobin A1c: Can They Serve as Clinical 
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Predictors of Cardiac Mitochondrial Dysfunction in the Type 2 Diabetic Patient? Appalachian 
Regional Cell Conference, Marshall University. November 2014. 
 
Shepherd D.L., Croston T.L., Holden A.A., Tveter K.J., Thapa D., Nichols C.E., Long D.M., 
Olfert I.M., Hollander J.M. Mitochondrial Dysfunction in the Type II Diabetic Patient: A different 
viewpoint. American Association of Pharmaceutical Scientists, West Virginia University. May 
2014. 
 
Shepherd D.L., Croston T.L., Holden A.A., Tveter K.J., Thapa D., Nichols C.E., Long D.M., 
Olfert I.M., Hollander J.M. The Type 2 Diabetic Patient and Cardiac Mitochondrial Dysfunction: 
A new perspective. FASEB J. 2014 28:688.10 
 
Shepherd D.L., Croston T.L., Holden A.A., Tveter K.J., Thapa D., Nichols C.E., Long D.M., 
Olfert I.M., Hollander J.M. Cardiac Mitochondrial Dysfunction in the Type 2 Diabetic Patient: A 
new perspective. Van Liere Convocation, West Virginia University. February 2014. 
 
Shepherd D.L., Croston T.L., Holden A.A., Tveter K.J., Thapa D., Nichols C.E., Hollander J.M. 
Human and Mouse Type 2 Diabetes Mellitus and the Mitochondrial Proteome: The beginning 
to therapeutic possibilities. American Association of Pharmaceutical Scientists, Duquesne 
University. November 2013. 
 
Shepherd D.L., Croston T.L., Holden A.A., Tveter K.J., Thapa D., Nichols C.E., Hollander J.M. 
Human and Mouse Cardiac Dysfunction during Type 2 Diabetes Mellitus: Effects on the 
mitochondrial proteome. Appalachian Regional Cell Conference, West Virginia University in 
Charleston, WV. October 2013. 
 
Shepherd D.L., Croston T.L., Lewis S.E., Nichols C.E., Thapa D., Jagannathan R., Hollander 
J.M. Hsp27 Phosphorylation and Mitochondrial Translocation: What’s the type 1 diabetic story? 
American Association of Pharmaceutical Scientists, West Virginia University. May 2013. 
 
Shepherd D.L., Croston T.L., Lewis S.E., Nichols C.E., Thapa D., Jagannathan R., Hollander 
J.M. Mitochondrial Translocation and Phosphorylation: What’s the Hsp27 connection? Van 
Liere Convocation, West Virginia University. 2013. 
 
Shepherd D.L., Croston T.L., Lewis S.E.,  Nichols C.E., Thapa D., Jagannathan R., Hollander 
J.M. Heat Shock Protein 27 (hsp27) Translocation to the Mitochondria is Associated with 
Protection Against Diabetic Cardiomyopathy. FASEB J. 2013 27:1209.3 
 
Shepherd D.L., Croston T.L., Lewis S.E., Nichols C.E., Thapa D., Jagannathan R., Hollander 
J.M. Mitochondrial Translocation of Heat Shock Protein 27 (hsp27) Protects Against Diabetic 
Cardiomyopathy. Appalachian Regional Cell Conference, West Virginia University in 
Charleston, WV. October 2012. 
 
Shepherd D.L., Croston T.L., McLaughlin S.L. Baseler W.A., Nichols C.E., Thapa D., Lewis 
S.E., Hollander J.M. Longitudinal assessment of type I diabetes mellitus using conventional 
echocardiography and speckle-tracking based strain imaging. FASEB J. 2012 26:1054.11 
 



302 

 

Shepherd D.L., Croston T.L., Nichols C.E., Baseler W.A., Thapa D., Hollander J.M. 
Conventional echocardiography and speckle-tracking based strain imaging of the type I diabetic 
heart. Van Liere Convocation, West Virginia University. 2012. 

 
PUBLICATIONS 
Manuscripts 
 
Shepherd, D.L., Hathaway, Q.A., Nichols, C.E., Hughes, K.M., Pinti, M.V., Stine, S.M., 
Hollander, J.M. Mitochondrial Proteome Disruption in the Diabetic Heart: A Central Role for 
Mitochondrial Heat Shock Protein 70 (mtHsp70) in Proteome Restoration. Submitted/Under 
Review Diabetes, 2016. 
 
Hathaway, Q.A., Nichols, C.E., Shepherd, D.L., Stapleton, P.A., McLaughlin S.L., Stricker, 
J.C., Rellick, S.L., Pinti, M.V., Abukabda, A.B., McBride, C.R., Yi, J., Stine, S.M., Nurkiewicz, 
T.R., Hollander, J.M. Maternal Engineered Nanomaterial Exposure Disrupts Progeny Cardiac 
Function and Bioenergetics. Submitted/Under Review AJP Heart and Circulatory Physiology, 
2016. 
 
Corbin, D.R., Rehg, J.E., Shepherd, D.L., Zhang, Y.M., Rock C.O., Hollander, J.M., 
Jackowski, S., Leonardi, R. Excess Coenzyme A Reduces Skeletal Muscle Performance and 
Strength in Mice Overexpressing Human PANK2. Submitted/Under Review Mol Genet Metab, 
2016. 
 
Nichols, C.E., Shepherd, D.L., Thapa, D., Yi, J., Dabkowski, E.R., Nurkiewicz, T.R., Hollander, 
J.M. Reactive Oxygen Species Damage Drives Cardiac and Mitochondrial Dysfunction 
Following Acute Nano-Titanium Dioxide Inhalation Exposure. In Preparation, 2016. 
 
Shepherd D.L., Croston T.L., Nichols C.E., McLaughlin S.L., Lewis S.E., Thapa D., Dick G.M., 
Hollander J.M. Early Cardiac Dysfunction in the Type 1 Diabetic Heart Using Speckle-
Tracking-Based Strain Imaging. J Mol Cell Cardiol 2015 Dec 3;90:74-84. 
 
Nichols C.E., Shepherd D.L., Knuckles T.L., Thapa D., Stricker J.C., Stapleton P.A., Minarchick 
V.C., Erdely A., Zeidler-Erdley P.C., Alway S.A., Nurkiewicz T.R., Hollander J.M. Cardiac and 
Mitochondrial Dysfunction Following Acute Pulmonary Exposure to Mountaintop Removal 
Mining Particulate Matter. Am J Physiol Heart Circ Physiol. 2015 Dec 15;309(12):H2017-30. 
 
Jagannathan R., Thapa D., Baseler W., Shepherd D.,  Croston T., Nichols C., Lewis S., 
Hollander J. Translational Regulation of the Mitochondrial Genome Following Redistribution of 
Mitochondrial MicroRNA (MitomiR) in the Diabetic Heart. Circ Cardiovasc Genet. 2015 
Dec;8(6):785-802.  
 
Thapa D., Nichols C.E., Lewis S.E., Shepherd D.L., Jagannathan R., Croston T.L., Tveter 
K.J., Holden A.A., Baseler W.A., Hollander J.M. Transgenic overexpression of mitofilin 
attenuates diabetes mellitus-associated cardiac and mitochondria dysfunction. J Mol Cell 
Cardiol. 2015 Feb;79:212-23.  
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Stapleton P.A., Nichols C.E., Yi J., McBride C.R., Minarchick V.C., Shepherd D.L., Hollander 
J.M., Nurkiewicz T.R. Microvascular and Mitochondrial Dysfunction in the Female F1 
Generation after Gestational TiO2 Nanoparticle Exposure. Nanotoxicology. 2015:9(8):941-51. 
 
Hollander J.M., Thapa D., Shepherd D.L. Physiological and Structural Differences in Spatially 
Distinct Subpopulations of Cardiac Mitochondria: Influence of Pathologies. Am J Physiol Heart 
Circ Physiol 2014 Jul 1;307(1):H1-14. *Highlighted as a Featured Article on the American 
Journal of Physiology Heart and Circulatory Physiology Home Page, September 2014. 
 
Croston T.L., Holden A.A., Tveter K.J., Thapa D., Lewis S.E., Shepherd D.L., Nichols C.E., 
Long D.M., Olfert I.M., Jagannathan R., Hollander J.M. Functional Deficiencies of 
Subsarcolemmal Mitochondria in the Type 2 Diabetic Human Heart. Am J Physiol Heart Circ 
Physiol 2014 Jul 1;307(1):H54-65. 
 
Croston T.L., Shepherd D.L., Jagannathan R., Thapa D., Nichols C.E., Dabkowski E.R., Lewis 
S.E., Hollander J.M. Evaluation of the cardiolipin biosynthetic pathway and its interactions in 
the diabetic heart. Life Sci 2013 Sep;93(8):313-22. 
 
Baseler W.A., Dabkowski E.R., Jagannathan R., Thapa D., Nichols C.E., Shepherd D.L., 
Croston T.L., Powell M., Razunguzwa T.T., Lewis S.E., Schnell D.M., Hollander J.H. Reversal 
of Mitochondrial Proteomic Loss in Type 1 Diabetic Heart with Overexpression of Phospholipid 
Hydroperoxide Glutathione Peroxidase. Am J Physiol Regul Integr Comp Physiol 2013 
Apr;304(7):R553-65. 

 
Book Chapters 
 
Shepherd D.L. Paying It Forward: Engaging the Next Generation of Professional Students In C. 
McMaster and C. Murphy (Eds.), Graduate Study in the USA: Surviving and Succeeding (Pages 
71-77). New York: Peter Lang. 2016. 

 
Abstracts 
 
Sreekumar S., Shepherd D.L., Hathaway Q.A., Stine S.M., Hollander, J.M. Import of miR378 
into Diabetic Cardiac Mitochondria: The importance of PNPase and RISC association. West 
Virginia IDeA Network of Biomedical Research Excellence, West Virginia University. August 
2016. 
 
Shepherd D.L., Baseler W.A., Dabkowski E.R., Nichols C.E., Thapa D., Croston T.L., Hollander 
J.M. Mitochondrial Proteomic Alterations in the Diabetic Heart: A Central Role for Protein Import. 
NHLBI/NIDDK 2016 Mitochondrial Biology Symposium: Novel Roles in Health and Disease. May 
19, 2016.  
 
Shepherd D.L., Nichols C.E., Sreekumar S., Hollander J.M. Import of microRNAs into Cardiac 
Mitochondria: How Do They Get In? Van Liere Convocation, West Virginia University. March, 
2016. 
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Nichols C.E., Hollander J.M., Engels K., McBride C.R., Yi J., Shepherd D.L., Abukabda A.B., 
Stapleton P.A., Nurkiewicz T.R. Maternal Engineered Nanomaterial Inhalation During 
Gestation Alters the Fetal Transcriptome. Society of Toxicology March 2016. 
 
Shepherd D.L., Sreekumar S., Nichols C.E., Hollander J.M. Import of microRNA378 into 
Cardiac Mitochondria: How do they get in? Appalachian Regional Cell Conference. November 
21, 2015. 
 
Shepherd D.L., Croston T.L., Holden A.A., Tveter K.J., Thapa D., Nichols C.E., Long D.M., 
Olfert I.M., Hollander J.M. Mitochondrial Dysfunction: A New Clinical Predictor of Disease 
Development in the Type 2 Diabetic Patient? West Virginia Clinical and Translational Science 
Institute Annual Meeting. October 2015. 
 
Sreekumar S., Nichols C.E., Shepherd D.L., Hollander, J.M. Import Mechanism of miR378 into 
Cardiac Mitochondria. West Virginia IDeA Network of Biomedical Research Excellence, West 
Virginia University. August 2015. **Taken to Undergraduate Research Day at the Capitol, West 
Virginia, February 25, 2016. 
 
Nichols C.E., Thapa D., Shepherd D.L., Knuckles T.L., Erdely A., Zeidler-Erdely P.C., 
Nurkiewicz T.R., Hollander J.M. Mitochondrial microRNA Dysregulation Contributes to Acute 
Cardiac Dysfunction following Pulmonary Mountaintop Mining Particulate Matter Exposure. 
Society of Toxicology. March 2015.  
 
Shepherd D.L., Nichols C.E., Thapa D., Hollander J.M. Distinct Myocardial Strain Profiles in 
Type 1 versus Type 2 Diabetes: Differences in how they pump. Van Liere Convocation, West 
Virginia University. February 2015. 
 
Nichols C.E., Thapa D., Shepherd D.L., Knuckles T.L., Erdely A., Zeidler-Erdely P.C., 
Nurkiewicz T.R., Hollander J.M. MicroRNA Dysregulation and Cardiac Dysfunction following 
Mountaintop Mining Particulate Exposure. Van Liere Convocation, West Virginia University. 
February 2015. 
 
Shepherd D.L., Croston T.L., Holden A.A., Tveter K.J., Thapa D., Nichols C.E., Long D.M., 
Olfert I.M., Hollander J.M.  Hyperglycemia and Hemoglobin A1c: Can They Serve as Clinical 
Predictors of Cardiac Mitochondrial Dysfunction in the Type 2 Diabetic Patient? Appalachian 
Regional Cell Conference, Marshall University. November 2014. 
 
Shepherd D.L., Croston T.L., Holden A.A., Tveter K.J., Thapa D., Nichols C.E., Long D.M., 
Olfert I.M., Hollander J.M. Mitochondrial Dysfunction in the Type II Diabetic Patient: A different 
viewpoint. American Association of Pharmaceutical Scientists, West Virginia University. May 
2014. 
 
Nichols C.E., Erdely A., Shepherd D.L., Thapa D., Salmen R., McLoughlin C., Sager T., 
Roberts J.R., Hollander J.M. Pulmonary Exposure to Carbon-Based Nanomaterials induces 
Spatially-distinct Cardiac Mitochondrial Dysfunction. AESOT. May 2014. 
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Shepherd D.L., Croston T.L., Holden A.A., Tveter K.J., Thapa D., Nichols C.E., Long D.M., 
Olfert I.M., Hollander J.M. The Type 2 Diabetic Patient and Cardiac Mitochondrial Dysfunction: 
A new perspective. FASEB J. 2014 28:688.10. 
 
Nichols C.E., Erdely A., Shepherd D.L., Thapa D., Salmen R., McLoughlin C., Sager T., 
Roberts J.R., Hollander J.M. Spatially-distinct cardiac mitochondrial dysfunction following 
pulmonary exposure to various carbon-based nanomaterials. Toxicologist 2014 138(1):127. 
 
Shepherd D.L., Croston T.L., Holden A.A., Tveter K.J., Thapa D., Nichols C.E., Long D.M., 
Olfert I.M., Hollander J.M. Cardiac Mitochondrial Dysfunction in the Type 2 Diabetic Patient: A 
new perspective. Van Liere Convocation, West Virginia University. February 2014. 
 
Thapa D., Nichols C.E., Shepherd D.L., Hollander J.M. Overexpression of mitofilin restores 
cardiac contractile function during a type 1 diabetic insult. Van Liere Convocation, West Virginia 
University. February 2014. 
 
Nichols C.E., Erdely A., Shepherd D.L., Thapa D., Salmen R., McLoughlin C., Sager T., 
Roberts J.R., Hollander J.M. Carbon-based nanomaterials impact cardiac mitochondrial 
function following pulmonary exposure. Van Liere Convocation, West Virginia University. 
February 2014. 
 
Shepherd D.L., Croston T.L., Holden A.A., Tveter K.J., Thapa D., Nichols C.E., Hollander J.M. 
Human and Mouse Type 2 Diabetes Mellitus and the Mitochondrial Proteome: The beginning 
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