
Graduate Theses, Dissertations, and Problem Reports 

2007 

Exploring the use of human metrology for biometric recognition Exploring the use of human metrology for biometric recognition 

Nikhil Mallikarjun Reddy Burri 
West Virginia University 

Follow this and additional works at: https://researchrepository.wvu.edu/etd 

Recommended Citation Recommended Citation 
Burri, Nikhil Mallikarjun Reddy, "Exploring the use of human metrology for biometric recognition" (2007). 
Graduate Theses, Dissertations, and Problem Reports. 1847. 
https://researchrepository.wvu.edu/etd/1847 

This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research 
Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is 
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain 
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license 
in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses, 
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. 
For more information, please contact researchrepository@mail.wvu.edu. 

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F1847&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/1847?utm_source=researchrepository.wvu.edu%2Fetd%2F1847&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu


Exploring the Use of Human Metrology for

Biometric Recognition

by

Nikhil Mallikarjun Reddy Burri

Thesis submitted to the
College of Engineering and Mineral Resources

at West Virginia University
in partial fulfillment of the requirements

for the degree of

Master of Science
in

Electrical Engineering

Arun A. Ross, Ph.D., Chair
Donald Adjeroh, Ph.D.

Xin Li, Ph.D.

Lane Department of Computer Science and Electrical Engineering

Morgantown, West Virginia
2007

Keywords: Biometrics, Anthropometry, Metrology, Hidden Markov Measure Field Models
(HMMF), Active Contours

Copyright 2007 Nikhil Mallikarjun Reddy Burri



Abstract

Exploring the Use of Human Metrology for Biometric Recognition

by

Nikhil Mallikarjun Reddy Burri
Master of Science in Electrical Engineering

West Virginia University

Arun A. Ross, Ph.D., Chair

This thesis explores the possibility of incorporating human body measurements in a biomet-
ric framework. While metrological features have been used for identifying persons in the late
19th century, there is limited work in automating this process for surveillance applications. We
first establish the relevance of using metrological features in biometric systems by studying two
anthropometric data-sets (NASA and NHANES). We then propose a technique to automatically
extract a subset of these measurements from a video sequence. A robust segmentation technique
(HMMF) to detect moving pixels corresponding to human objects is used in the first stage. Next,
we use Active Contours to obtain a precise contour of the human body. Finally, we design a
technique to extract the measurements of human body, viz., height, width of the head and the
torso, from the segmented image. We show that the measurements extracted in this manner
bear close resemblance to manual measurements in terms of their pixel count. To validate the
procedure outlined here, we extract these measurements from different videos containing human
objects and check for consistency across multiple stand-off distances between the subject and
the camera. Data pertaining to 9 different individuals (3 video sequences each) was used in this
research.
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Chapter 1

Introduction

1.1 Introduction

Biometric systems automatically recognize individuals based on their physical and/or be-

havioral characteristics like fingerprint, face, hand-geometry, iris, retina, palmprint, voice, gait,

signature, and keystroke dynamics [4]. For a physical or behavioral characteristic to be declared

as a biometric, it has to satisfy the following properties [4]: uniqueness, universality, permanence,

collectability, performance, acceptability and difficult to imitate. In addition to the traditional

biometric identifiers (such as fingerprint, face, hand-geometry), there can be other traits which

may not satisfy the properties mentioned above, but may still be used in a biometric system. The

ones falling under this category are generally referred to as “Soft Biometrics”. Soft biometrics,

as defined by Jain et al. [5], are “characteristics that provide some information about the individ-

ual, but lack the distinctiveness and permanence to sufficiently differentiate any two individuals”.

The ones falling under this category include height, weight, gender, eye color, etc. Metrology

is one such soft biometric, and is the science of measuring the geometry of human body parts.

Measurements such as the height and width of face, hands, arms, legs, etc. of an individual

may not be permanent across time, but may be useful in certain applications. For example, one

can use the information provided by metrology as an additional feature in conjunction with the

traditional biometrics. Wayman [6] proposed the use of soft biometric attributes to partition a

biometric database. Partitioning the database can greatly improve the search efficiency of the

biometric system; however partitioning errors can degrade recognition performance.

One other class of applications for metrological features would be surveillance in hostile envi-
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Height < 60cm

Database consisting of

human identity profiles
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90cm <Height

< 180cm
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180cm

Figure 1.1: Partitioning the database based on height as an example for indexing.

ronments (e.g., night time environments, from a distance) involving non-cooperative individuals

(e.g., masked), or battlefield environments (e.g., soldiers in full gear). In these scenarios, the

human ‘shape’ can play a pivotal role in characterizing subjects. But video metrology poses

its own set of challenges. Usually the surveillance videos have low resolution and high noise

levels which make it difficult to extract the human measurements. Changes in illumination and

pronounced shadows also make segmenting subjects of interest and extracting key measurements

difficult. The other key issue in real time implementation of video metrological systems is that of

computational complexity. Most processors, particularly the ones used in surveillance cameras,

have limited computational power, and hence, the algorithms used for video metrology should

have low complexity. Another challenge in video metrology is identifying the reference points for

measurements and tracking them through the video. These reference points, for example, can

be the tip of the head, shoulder joints, hip joints, etc. which can be handy in extracting the key

measurements. Automating the selection of such reference points from low resolution surveillance

videos presents a significant challenge. Segmentation of the subjects of interest, which is usually

needed to perform metrology, is also challenging especially in low resolution surveillance videos.

The goals of this thesis are:

1. To establish the utility of anthropometric features in biometric indexing or database par-

titioning.

2. To design a technique that automatically extracts some metrological features from a video

stream.
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3. To develop a model for representing extracted features.

4. To evaluate the proposed feature extraction and feature matching technique.

230 pixels, 5ft 10in

100 pixels

90 pixels

40 pixels

45 pixels

35 pixels

Figure 1.2: Examples of human body measurements in a video.

To accomplish goal (1), in this thesis a simple statistical analysis on the NASA [2], and

NHANES [1] anthropometric data was conducted, which revealed the significance of using the

measurements. The details of the NASA and the NHANES anthropometric data-sets and the

experiments conducted on them are presented later in the chapter. From an automation per-

spective, the solution to the problem of extracting measurements is twofold. Firstly, an exact

and complete contour of the human body has to be obtained with a fixed camera (this is related

to object segmentation in a video sequence). Secondly, measurements of the body have to be

extracted from the contour to accomplish goal (2).

1.2 Literature Review

Humans can be classified based on the shape information. Hand geometry and 3D face

systems have been studied and in some cases deployed for use as biometrics. The technique of

using human body measurements as biometric attributes is not new and dates back to the early
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1880’s. The French savant, Alphonse Bertillon was the first person (according to the literature [4])

to use different body measurements for identification. Significant developments have been made

in the field of person identification since then and much more in recent years.

Several approaches have been used in the computer vision literature for automatic person

identification using gait from video. In this thesis the problem addressed is closely related

to the gait recognition technique [7], [8], [9], [10], [11], [12]. To our knowledge much work

has not been done in the field of extracting human measurements from videos. Grother et

al. [13] demonstrates the effectiveness and efficiency of the shape-based biometrics from the

newly available CAESAR database [14]. The CAESAR database contains high resolution, three-

dimensional, shape information of the human body for a large population . The paper talks

about how an automated system would perform human identification by using a small amount

of non-dynamic anthropometric information. They use twelve different body measurements that

are pose-independent to demonstrate that they can be used for person identification.

A two-dimensional video sequences is used to demonstrate the use of metrology as a biometric.

The problem is difficult because we are not only supposed to detect and track the humans

but also are required to extract body measurements based on the entire video sequence. A

brief description of the techniques related to the problem are presented. Firstly, the techniques

that are related to moving object detection and tracking problem are presented. Optical Flow

techniques have been used in the literature for motion estimation (Horn and Schunck [15], Lucas

and Kanade [16], Uras et al. [17], Nagel et al. [18], Anandan et al. [19], Singh et al. [20], Heeger et

al. [21], Waxman et al. [22] etc). These techniques are computationally complex and all of them

cannot be employed directly to the problem as they output an approximate region corresponding

to motion as opposed to computing a precise contour of the moving object. For segmenting

human body regions, Level Sets have also been used [23].

Once the segmented region is obtained, it has to be tracked across different frames. A lot of

work has been done in the field of object tracking. The techniques employ either the intensity

information (color or gray scale) or the shape information to track objects (humans). In the case

of using shape information, descriptors such as area, perimeter, non-circularity, eccentricity, etc.

are used [24], [25], [26], [27], [28]. In the case of using intensity, a filter is applied to the selected

region of interest and features are extracted from the ensuing image. Based on these features, the

object of interest is tracked. Video object-tracking based on extended active shape models have
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been used; however most of them use the information of markers placed on the human body [29].

Some of the literature work in the field of extracting human body measurements are described

below. Criminsi et al. [30] have suggested a height measurement technique in which the persons

height is measured from a single image. This technique works on the assumption that the

person is standing still. The drawback of this technique is that it is not a reliable assumption

in a normal surveillance scenario where the subject is walking. The results of estimating the

height are obtained from projective geometry and computer vision. The accuracy of measuring

is demonstrated where the ground truth is known. Their paper also deals with uncertainty

of heights with humans in motion. Madden and Picardi [31] have suggested a session-based

biometric in which the height of an individual is estimated throughout a sequence of images. The

technique employed by them determines the location of the top of the head in the image and its

projected location on the ground plane to estimate the height of the individual. To estimate the

ground point directly below the head, they consider the position of the heels, where the position

of the heels is manually marked. These multiple estimates of heights are statistically analyzed

to determine the exact height. The cameras used for their study are fixed cameras which allow

for calibration. These measurements were conducted on five different video sequences and three

different individuals. The paper reports the average height and the standard deviation of the

height across different frames of the five video sequences of an individual. Godil and Ressler [32]

describe a framework for similarity based retrieval and clustering from a 3D human database.

The experiments were conducted on the CAESAR [33] anthropometric database. To effectively

represent the 3D points they have developed two different representation schemes based on the

human body shape. One of them uses the information of the human body measurements (mostly

distance between single large bones), and the other one is based on Fourier descriptors of features

that are obtained from three different silhouettes rendered by the human body from the front,

side and top. These representations are used for similarity retrieval. The paper concludes saying

that the body and head descriptors represent the CAESAR data with reasonable amount of

accuracy. They also show the results of using human body shape descriptors for clustering the

200 subjects considered in their study from the CAESAR database.
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1.3 Anthropometric Features

1.3.1 NASA Anthropometric Data set

A brief description of the NASA anthropometric data-set is presented here. The Anthropo-

metric Source Book [2] was basically designed to provide NASA, its contractors, various other

government agencies, and the civilian sector a comprehensive description of the anthropometric

data. Specifically, the data meets the needs of engineers engaged in the design of equipment

and clothing for the NASA Space Shuttle/Spacelab. The book contains tables of anthropometric

data, that defines the physical size of various body components, mass distribution properties, and

dynamic capabilities of U.S. and selected foreign populations. The material includes information

pertaining to both male and female of various age groups, socio-educational backgrounds, races,

and ethnic background. The anthropometric survey is of 61 military and civilian populations

of both sexes from the U.S., Europe and Asia. The data consists of 295 accurately measured

variables (not all measurements are available for all groups). The tables in the book also contain

the 1st, 5th, 10th, 25th, 50th, 75th, 90th, 95th, and 99th percentile of the given population.

1.3.2 NHANES Anthropometric Data set

A brief description of the NHANES [1] anthropometric data-set is presented here and the

primary reason why the data was collected. The information regarding nutrition is one of the

important criteria for health, and to solve many of the public health concerns requires survey

data. The major aim in conducting the survey by the NHANES is to provide information useful

for studying the relationship among diet, nutritional status, and health. To assess the nutritional

status a series of stature, weight and other anthropometric dimensions are required. The data

collected during the survey is basically used for assessing growth, body fat distribution, child

growth charts (i.e., generally to answer the questions related to health concern). There were

around 9000 individuals examined during the survey. And each individual is grouped based on

different races, age and gender. There were around 27 anthropometric measurements but some

of them were ignored as they were not related to the physical dimensions of the human body

(for example, the body weight or the mass index).
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1.3.3 Experiments on Data-sets

The details of the statistical analysis based on the NHANES anthropometric data-set is as

follows. The mean, standard error of the mean, and selected percentiles, by race-ethnicity and

age are presented in the tables. The classification of the data in the first stage is based on the

age for male and female sub-groups. From these sub-groups, the data is once again classified

based on race/ethnicity (non-hispanic white, non-hispanic black, mexican american and all other

races which do not fall in the first three categories). The data is also classified on the basis of

age (i.e. 20-29 years, 30-39 years etc.). The data-set had about 22 measurements, which we

narrowed down to 11 measurements. The eleven measurements are as follows: height, sitting

height, upper-arm length, upper-leg length, mid-upper arm circumference, thigh circumference,

waist circumference, wrist-breadth, biacromial breadth, biliac breadth and elbow breadth. Even

though some of these are three dimensional measurements and seem to be unrelated, they can

be deduced from the two dimensional measurements with some degree of uncertainty. A snap

shot of the data is shown in Figure 1.3.

Figure 1.3: Snap shot of the NHANES data-set [1].
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Figure 1.6: Box plots of female NHANES data, variability with respect to different measurements.
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Non-Hispanic White Non-Hispanic Black Mexican American All Other Races
Height 176.5, 10.31 176.1, 9.19 169.7, 9.02 175.6, 14.25

Sitting Height 92.6, 5.56 89.6, 4.07 89.6, 4.66 91.9, 7.84
Upper arm 38.0, 2.75 38.3, 3.12 36.5, 3.25 37.8, 4.32
Upper leg 42.4, 9.88 44.0, 6.20 40.6, 7.42 42.3, 6.88

Mid Upper arm 33.1, 6.18 33.6, 5.37 32.5, 5.60 33.0, 7.85
Thigh Circumference 51.7, 7.67 53.5, 7.07 50.8, 7.86 51.7, 10.30
Waist Circumference 96.3, 20.34 91.8, 19.96 93.5, 19.91 95.2, 25.82

Wrist breadth 5.9, 0.55 5.9, 0.44 5.8, 0.46 5.9, 0.86
Biacromial Breadth 41.1, 5.52 41.8, 4.46 41.0, 3.25 41.1, 4.32

Biliac breadth 30.0, 5.50 28.2, 4.89 29.1, 4.63 29.6, 6.03
Elbow breadth 7.4, 1.10 7.4, 0.89 7.1, 0.92 7.4, 0.86

Table 1.1: Mean and standard deviation of measurements across various ethnicity groups [1].

Based on the percentile information, we plotted the Box plots. The box has lines at the lower

quartile, median, and upper quartile values. The whiskers are lines extending from each end of

the box to show the extent of the rest of the data. This gives us a clear indication about the

variance of the data across different persons in the same group as well as different groups. From

the plots, we can observe that, for example, one can distinguish Mexican Americans from the rest

of the category based on the height of the person. Using the information related to sitting height

of females from Figure 1.4, one can distinguish the Non-Hispanic Black and Mexican Americans

from the rest of the categories. Also from Table 1.1 we observe that the variance for height, waist

circumference is very large, making them an important distinguishable feature across different

groups as well as for individuals within the same group. To some extent all other measurements

like sitting height, upper arm, mid upper arm circumference, upper leg, biliac breadth (except

wrist breadth) can be used for distinguishing groups.

Even though some of the features are three dimensional measurements, they can de derived

from the two dimensional measurements with some degree of uncertainty. Consider the waist

circumference; if we can obtain the approximate width of the torso from the frontal and the side

view of the human with respect to a fixed camera we can estimate the circumference of the waist

within a certain confidence interval. The three dimensional measurements suggest that their

corresponding two dimensional measurements are also variant across different groups (though

this is not very intuitive). Later in the thesis, we extract four measurements (height, width of

the head and torso) and all these measurements correspond to the side view with respect to the
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ID Code Description
23 Acromial Height
39 Radiale Length
103 Biacromial Breadth
107 Biauricular Breadth
245 Chin prominence
389 Glabella to top of head
391 Glabella to wall
107 Biarcular breadth
142 Bitragion breadth
150 Bitragion Menton
289 Ectocanthus to Otobasion
291 Ectocanthus to wall
386 Functional Leg length
629 Nasal root height
698 Radial stylion length
758 Sitting height
798 Span Akimbo
805 Standing height (Stature)
931 Waist circumference

Table 1.2: Different human body measurements from the NASA data-set.

viewer (camera).

The second set of experiments were conducted on the NASA Human anthropometric database.

The database consists of 10,000 people in 90 categories from 20 different countries. There were

around 260 measurements all together that were collected, and based on the ease of automatic

detection, redundancy we pruned them initially to 19 measurements and further reduced to 14

measurements. A sample list of measurements are listed in tabular form in Table 1.2. Figure 1.7

shows the various measurements as established manually.

We studied the relative significance of the individual measurements based on their discrimi-

native ability, correlation with others and error resilience.

When looking at the NHANES and NASA data-sets, the measurements corresponding to

different body parts are same ensuring us the fact that these set of measurements are variable

across different individuals and groups (when one group is compared with another group).

This inspired us to work on extracting some of the measurements from a video sequence.

The reason for using video sequences, instead of still images, is that information (measurements)

can be extracted and accumulated across different frames. The videos considered in this work
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Figure 1.7: Different measurements of the human body [2].

consist of only a single person walking, with no other moving objects, obtained using a fixed

camera. From an automation perspective, the solution to the problem is twofold. Firstly, an

exact and complete contour of the human body has to be obtained with a fixed camera (this is

related to object segmentation in a video sequence). Secondly, measurements of the body have

to be extracted from the contour to accomplish goal 2.

Motion segmentation in a video sequence is the basic operation for retrieving information

about moving objects. It is important to precisely detect the boundaries and segment the video

into semantically homogeneous regions for video processing. To address the problem of segmen-

tation, we have employed Hidden Markov Measure Field Models and Active Contours.

Markov Random Field (MRF) models have been used in the literature for solving problems

related to image and video analysis; these include applications in different fields like image

restoration, texture modeling, object segmentation, object matching, etc [34]. The success of

these models can be attributed to the fact that they give rise to good, flexible, stochastic image

models [35]. One type of problem that has been approached using MRF models is motion

segmentation: this consists of partitioning a particular frame in a video sequence into regions

corresponding to motion and those that do not. Let us define a set of frames, {F1, F2, F3, ......, Fk}
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pertaining to a video sequence. The ith frame is tessellated into a set of m non-overlapping regions

{Ri
1, ......, R

i
M} such that the variation of some property like velocity between frames is either

constant or follows a simple model Φk (e.g., a linear function) within each region. This is a difficult

problem to solve because one has to find both the model parameters as well as the corresponding

regions across the frames (i.e., the region where the model holds) at the same time [36]. In this

thesis, we use the same class of probabilistic models used in [35] which characterizes the solution

for complex motion segmentation in terms of minimizing a differentiable energy function. The

chapters in this thesis are organized as follows: In Chapter 2, we present a brief description about

the classical Markov Random Field models, introduce the Hidden Markov Measure Field Model

technique (HMMF) and illustrate the results on a video sequence. We also present a technique to

track individual parts viz. head, torso, and legs over an entire video sequence. From the results

obtained using HMMF we observe that a more precise contour is required to extract human body

measurements. To address this, we employ an active contours based technique. We then present

a technique to extract the measurements of the different body components. In Chapter 3 we

present the 3D models that can be generated from the two dimensional measurements and also

the future work.

Input video
Segmentation of the

human object (initially

using HMMF)

Decomposing and
tracking the various

body parts like head,
torso etc.

Extracting a more

precise contour
of the human

using Active
Contours

Extracting

metrological
features of the

human from the
segmented

regions

Feature Matching

Figure 1.8: Flow chart depicts the salient components of the proposed system.

The primary reason why we chose to go with the HMMF model [35] rather than the traditional

block matching algorithm is the need to obtain an exact and complete contour of the human

form. Also, to our knowledge the traditional schemes do not output a precise contour but

rather specify a broad region (e.g., rectangle). A simple background subtraction proceeded by
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thresholding operation would also be sufficient for extracting the human form in cases where the

background is stationary. But this would output only one region, whereas the HMMF model

outputs regions with different velocities whose information can be later used for processing the

input data.

1.4 Data Collection

The videos were collected using a Sony camera with a resolution of 768 × 568 in the color

RGB space. The user is asked to walk across a hall way as shown in Figure 1.2 across three

stand off distances from the camera. The camera is situated approximately at the same level

of the human. In addition the user is requested to walk sideways. This simple scenario is not

the case in practical situations like in airports. More rigorous data collection schemes like the

camera situated at an altitude of say 20 meters and the individual walking in any direction have

to be acquired. This type of data would be more useful for testing the proposed scheme. But

due to time constraints, this type of data collection was not performed. Also the three stand off

distances were chosen randomly (12ft, 24ft, 36ft) and there is no particular reason in choosing

these specific ones. We would also like to acquire the data where the person is standing relatively

far enough from the camera. For example the camera being situated on top of a building close

to the parking lot and acquiring information corresponding to individuals. In the data collection

procedure the individual is asked to walk relatively slowly to acquire more information pertaining

to him/her, but in the proposed data collection scheme the individual can walk at his usual pace.
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(a) Precise contour of the objects (human)

(b) Region as a rectangle corresponding to the moving objects

Figure 1.9: Illustrating a typical output (a) using HMMF, Active Contours and (b) Block match-
ing techniques.
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Chapter 2

Human Contour Extraction

2.1 Hidden Markov Models For Motion Segmentation

2.1.1 Classical Markov Random Field Models

Markov Random Field image models represent knowledge in terms of “local” probability

distributions. Specifically, the kinds of probability distributions generated by MRFs have a

local neighborhood structure. Given the conditional probability distribution (in our case: given

two frames what is the probability of observing moving pixels in these frames) we need to

obtain a joint probability distribution (probability of the two frames and the moving pixels).

It is the joint probability distribution that gives the complete motion representation and not

the conditional distribution. We model the a priori information using Gibbs distribution. The

reason for using Gibb’s distribution is explained in the Hammersley-Clifford theorem (Besag [37];

Geman and Geman [38]) which states, that any conditional distribution has a joint distribution

which is Gibbs (Kinderman and Snell [39]; Dubes and Jain [40]) if the following conditions

hold: Positivity, Locality and Homogeneity. The term Positivity refers to P(f ) > 0. The term

homogeneity refers to the probability of observing a pixel is independent of the positions in the

pixel lattice. The locality refers to the Markov assumption and the Markovianity property is

defined as P (fi|fS−i = P (fi|fNi
)), where S refers to the entire pixel lattice. The term ‘N’ refers to

a neighborhood system and is discussed later. ‘i’ denotes the current pixel in the neighborhood

system. And site ‘S’ refers to neighboring pixels defined by cliques.

To describe the motion segmentation technique, we introduce the following notation. Let L
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represent the pixel lattice where video frames are observed. The model assumes that there are

M regions, {R1, ......, RM}, such that L is the union of all the M regions (i.e., L =
⋃M

k=1 Rk), and

there are no overlapping regions (i.e., Ri ∩Rj = φ, i 6= j). Consider two video frames, I1 and I2,

in this pixel lattice. The observation at pixel r ∈ L can be written as:

I1(r) = I2(r + φ(r, θf(r))) + n(r). (2.1)

where φ is a function of the pixel location, the parameter θk defines the transformation of the

corresponding pixel between the two frames (i.e., the motion vector), f(r) is a labeling function

that indicates the region corresponding to r (i.e., f(r) maps pixel r to a region kε{1, 2, ..., M})
and n(r) is a white noise field with known distribution Pn. In the videos considered in this work,

the subjects typically moved in the horizontal direction. Thus, we assume θk to be 1-dimensional

(i.e., θk = xk) although a more complex transformation may be used. The goal is to estimate

f(r) (which can be thought of as a Markov Random Field) and θf(r). Since we use a piecewise

constant model, the equation (2.1) can be modified as

I1(r) = I2(r + θf(r)) + n(r), (2.2)

where n(r) is a white noise field with known distribution Pn (e.g., n(r), r ∈ L are 0-mean,

independent, identically distributed Gaussian random variables with standard deviation σ). In

this model, the a priori model f is assumed to be a sample from a MRF, obtained with a Gibbsian

distribution:

Pf (f) =
1

Zf

exp[−
∑

C

VC(f)], (2.3)

where Zf is a normalizing constant and the sum in the exponent ranges over the cliques of a given

neighborhood system on L, and VC(f) is the “potential function” corresponding to the clique C.

These potential functions, together with the neighborhood system that is selected, control the

appearance of the sample model f and, hence, the properties of the estimated motion region.

We use the neighborhood system defined in Figure 2.1(a) and the clique defined in Figure

2.2(b) due to their simplicity. However experimenting with other neighborhood systems and

cliques should be possible..

The motion segmentation problem involves not only determining the motion but, also the

region where the motion is present (i.e., to estimate the region and also the parameter vector

θ = (θ1, ........, θM), given the observations I1 and I2).
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Figure 2.1: Definition of a neighborhood system for an arbitrary pixel X.
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(d) (e)

Figure 2.2: Clique Definition.
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The following points indicate about solving the problem in a broader sense. A detailed

description of the mathematics is presented next.

1. All the pixels have the same probability associated with them in order to determine whether

they are moving or not. Only moving pixels have higher probability.

2. The parametric vector θ is deterministic; so the probability of observing the Motion given

the prior model f and the parameter vector P (Motion|f, θ) depends only on modeling the

noise parameter.

3. From P(f) and P (Motion|f, θ) we can compute P (f, θ|Motion). The a priori model f ∗ and

parameter vector θ∗ which maximize this distribution will be the solution to the problem.

Let I2 be the second frame (a displacement vector added to the first frame) and I1 be the

first frame. Then,

I1 = I2 + n,

where n is zero mean independent noise, n PN . For Gaussian noise, N(0, σ2), the probability

that the noise has a value a-b is:

P (I1(r) = a|I2(r) = b) =
1√

2πσ2
exp(

−(a− b)2

2σ2
). (2.4)

.

Since the noise is independently distributed,

P (I1|I2) =
∏
r∈L

Pn(I1(r)|I2(r)).

For the parametric model

I2 = I2(r + θf(r)).

The parametric model depends on the a priori model, f, and the parameter vector, θ, so

the likelihood term associated with the frames is P (Motion|f, θ). We compute the posterior

P (f, θ|Motion) by Bayes’s rule as:

P (f, θ|Motion) =
P (f, θ)P (Motion|f, θ)

P (Motion)
, (2.5)

where, P(Motion) is a normalizing constant, P (f, θ) = P (f)P (θ).
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We require the a priori model, f ∗, and parameter vector, θ∗, which maximize the poste-

rior distribution P (f, θ|Motion). The minimization of step 2.5 is generally called as Segmen-

tation/Model Estimation (SM) algorithm, and is usually a two step procedure (one particular

example is the Expectation Maximization (EM) algorithm). In the EM algorithm, given the

current estimate of parameter vector θ the best segmentation is found in step S, and given the

current estimate for the segmentation, the optimum or the best values for parameter θ is found

in step M. One can always resort to these techniques but the major problem is that it is not

always possible to find the exact optimal segmentaiton in step S, and so one is forced to resort to

approximations, the most common ones being stochastic, Markov Chain Monte Carlo [41], [38],

which are all computationally very expensive. Other techniques which are fast are known in the

literature [42] but they are highly sensitive to noise [35].

f ∗ and θ∗ are called the MAP (maximum a posteriori) estimators. Finding the global max-

imum of P (f, θ|Motion) can be difficult and slow. The hidden Markov measure field (HMMF)

model efficiently computes the MAP estimator.

2.1.2 Hidden Markov Measure Field Models

A Markov random vector field ‘p′ is first generated with distribution P (p) = 1
K

exp[−∑
C WC(p)]

(a Gibbsian prior), where K is a normalizing constant, C is the set of cliques of a given neigh-

borhood system in the lattice, and WC is the potential function; p(r) is a M -dimensional vector

such that 0 ≤ pk(r) ≤ 1, k = 1, 2, . . . M , and
∑M

k=1 pk(r) = 1. The simple quadratic potential,

Wrs(p(r), p(s)) = λ|p(r)− p(s)|2 = λ

M∑

k=1

(pk(r)− pk(s))
2,

is used as the potential function. Here, λ is a positive parameter controlling the smoothness of

the field and pixels < r, s > are in the same clique. The field f is then generated in such a way

that each f(r) is an independent sample from the distribution p(r). Thus,

P (f |p) =
∏
r∈L

p(r).

In this formulation, motion can be detected by observing the variables p(r) and θf(r). The

conditional distribution P (p(r), θf(r)|Motion(r)) can be obtained via Bayes rule as:

P (p(r), θf(r)|Motion(r)) =
1

P (Motion)
P (Motion(r)|p(r), θf(r))Pp(p)Pθ(θ),
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where P (Motion) is a normalizing constant. We can write the joint conditional probability

P (Motion(r), f(r)|p(r), θf(r)) = P (Motion(r)|f(r), p(r), θf(r))P (f(r)|p(r), θf(r)).

So, we can obtain P (Motion(r)|p(r), θf(r)) by marginalizing over all possible regions. Thus,

P (Motion(r)|p(r), θf(r)) =
M∑

k=1

P (Motion(r)|(f(r) = k), p(r), θf(r))P ((f(r) = k)|p(r), θ).

This can be rewritten as,

P (Motion(r)|p(r), θf(r)) =
M∑

k=1

vk(r)pk(r) = v(r).p(r), (2.6)

where

vk(r) =

√
γ

π
exp(−γ|I1(r)− I2(r + θf(r))|2)

is the additive Gaussian noise in region Rk and is assumed to be known. The term vk(r) is

obtained by replacing ‘a’ with I1(r) and ‘b’ with I2(r + θf(r)) in Equation 2.4.

The posterior distribution can be written as

P (p, θ|Motion) =
1

Z
exp[−U(p, θ)],

where U(p, θ) is the posterior energy:

U(p, θ) = −
∑
r∈L

log(p(r).v(r)) + ΣCWC(p)− log(P (θ)).

∂U(p, θ)

∂θk

= −
∑
r∈L

2γvk(r)pk(r)(I1(r)− I2(r + θk))(−I2(r + θk))∑M
k=1 vk(r)pk(r)

− 1

pk(θ)
(2.7)

∂U(p, θ)

∂pk(r)
= −

∑
r∈L

vk(r)∑M
k=1 vk(r)pk(r)

+
∑

C

λ

M∑

k=1

2(pk(r)− pk(s)) (2.8)

The MAP estimators p∗ and θ∗ for p, θ respectively are those which maximize posterior

distribution (or minimize the posterior energy). For the HMMF model, the posterior energy is

a differentiable function as can be seen from Equations 2.7, 2.8 which can be minimized using a

gradient descent method. To find the MAP estimators

1. Optimize w.r.t to θ using a modified gradient descent (dθ
dt
≈ −∇θU(p, θ))
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2. Optimize w.r.t to p using a modified gradient descent (dp
dt
≈ −∇pU(p, θ))

3. Modify p so that the following constraints are satisfied. The constraints are

(a) Sum across all the probability fields should be 1 (Σr∈Lp(r) = 1)

(b) Each probability field should lie in the range 0 and 1 (0 ≤ p(r) ≤ 1)

Below, we describe the modified gradient descent rule proposed by [35]. Consider the un-

knowns, x, to be the position of a particle of unit mass. Let the acceleration of the particle be

given by

ẍ = −5 U(x)− 2αẋ (2.9)

• First term : the particle is being forced down hill (direction of decreasing U )

• Second term : restrict the speed of decent (friction or damping)

From kinematics we know that

xt+h = xt + ẋth +
1

2
ẍth2 (2.10)

where x, ẋ, ẍ are the position, velocity and acceleration of the particle. Substituting the given

acceleration we have

xt+h = xt + ẋth +
1

2
(−5 U(x(t))− 2αẋ(t))h2 (2.11)

Rearranging all the terms the final evolution term when discretized is given by

xt+h =
2

αh + 1
x(t) +

αh− 1

αh + 1
x(t−h) − h2

αh + 1
(5U(x(t))) (2.12)

This idea is applied to θ and p for minimizing the energy function (replace x with θ and p).

θt+h =
2

αh + 1
θ(t) +

αh− 1

αh + 1
θ(t−h) − h2

αh + 1
(5U(θ(t))) (2.13)

pt+h =
2

αh + 1
p(t) +

αh− 1

αh + 1
p(t−h) − h2

αh + 1
(5U(p(t))) (2.14)

We observe that while updating the ‘p’ term the values may not be in the interval [0, 1]. To

account for this we normalize the probability fields making sure that they lie in the range [0 1].

pk(r) =
pk(r)∑M
k=1 pk(r)

(2.15)
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The results of this technique is discussed in the next paragraph and also these results illustrate

the performance of the method. For ease we have used only Gaussian noise models but any

other model (e.g. Rayleigh noise) can be incorporated by simply modifying the definition of the

likelihood term in Equation (2.4).

“A robust behavior, both with respect to noise and with respect to initialization, is ob-

tained with a reasonable computational cost. The enhanced performance is due to the nonlinear

data term −∑
r∈L log(p(r).v(r)) which is used as −∑

r∈L log(v(r)). This term along with the

quadratic potential function λ
∑M

k=1(pk(r)− pk(s))
2 permits the energy function to have a good

balance between two opposing tendencies. The data term pushes each distribution p(r) towards

a low entropy configuration and the potential term acts as a diffusion and hence tends to produce

high entropy configurations [35]. The balance between these two, allows the solution to evolve

from an initial state to a final low entropy configuration at an appropriate rate so that the model

parameters θ can escape from local minima at the beginning when the segmentation is induced

and be optimally adjusted at the end” [35].

In our implementation we divided each frame into 8 regions, and the kth region was assigned

the model parameter θk. The values of θk were randomly chosen initially and, as noted earlier,

the HMMF technique does not depend on the initial θ values. Figure 2.4 shows the initial set

of ‘p’ values. These set of ‘p’ values are generated randomly in the range [0, 1]. Two frames

are being considered for estimating the motion between them. Figure 2.5 shows these initial

two frames. The final probability distribution is shown in Figure 2.6. Once the final probability

distribution is obtained this output is binarized using a threshold value. The threshold value for

all the experiments we conducted is set to 0.1 (i.e. all the values of ‘p’ greater than 0.1 are set to

1 and all the values of ‘p’ less than 0.1 are set to 0). Once we binarize the final ‘p’ distribution

we use the canny edge detector to obtain the contour of the moving objects. The output of the

contour overlapped on the original set of frames is shown in Figure 2.7.

In the videos we collected, there were shadows around moving objects due to natural lighting.

Figures 2.8 shows where there were considerable shadows of the moving object (human). The

change in illumination is not properly handled in case of the HMMF technique i.e. when the

shadows are present in one frame and not present in the other one it treats the shadows as

moving objects, as illustrated in Figure 2.9. As can be seen from the output, even the shadow

of the moving object (human) is considered as a region of motion.
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Figure 2.3: Initial K classes.

Figure 2.4: Initial probability distribution, p(r), on a pixel lattice.
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(a) Frame 1

(b) Frame 2

Figure 2.5: The two frames considered for estimating motion using HMMF.
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Figure 2.6: Final probability distribution on the same lattice.

2.2 Tracking

Once the regions corresponding to the moving objects are obtained in the video sequence,

these objects are tracked across different frames. In our case, instead of tracking the entire

human we decompose the object into different components, viz., head, torso and legs and track

these individual parts. Let B1, B2, B3 be the three regions, each one corresponding to head,

torso, legs respectively. We want to determine blocks B′
1, B′

2, B′
3 in second frame. Based on

the segmented output of the HMMF procedure, we manually mark the three regions B1, B2, B3

in one of the frames (say test frame), usually it is the first frame of the video sequence. Once

these regions are marked manually, the histograms for these regions are obtained. We employ a

histogram matching technique to track these regions in the corresponding frames. Since we have

a prior knowledge of the direction of motion of the human in the video sequence (subject moving

horizontally) we crop the vertical portions that do not correspond to motion from the output of

the HMMF. In the retained portion, we calculate the histograms of intensities of the regions B1,

B2, B3 (the size of which is defined in the manual marking stage). Chi-square distance is used

as a metric to compare the similarity between these two histograms.
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Figure 2.7: Output of the HMMF technique with the contours of the moving objects (human)
on the original set of frames.



CHAPTER 2. HUMAN CONTOUR EXTRACTION 29

(a) Frame 1

(b) Frame 2

Figure 2.8: Shadows of the moving object (human) present in the video frames.



CHAPTER 2. HUMAN CONTOUR EXTRACTION 30

Figure 2.9: Output of the HMMF technique when there was significant amount of illumination
change.

Chi− square = χ2 =
M∑
i=1

h1(i)− h2(i)
2

h1(i) + h2(i)
(2.16)

M corresponds to the number of bins and in our case it is the range of gray scale intensity

values (0-255). h1 and h2 are the histograms of blocks across two different frames. The videos

considered for the experiments contain color information (RGB color space). We make use of

the information in all the three channels. The above procedure of calculating the histograms

of intensities of the three regions is performed in each of these channels separately (i.e. Red

channel, Green channel, Blue channel). We then calculate the χ2 values between test frame

and the consequent frames of the video sequence for each of the blocks B1, B2, B3. For each

block, there are three different χ2 values (across R, G, B channels). All these values are then

averaged out. The lowest χ2 value is then retained for each of the three regions and the block

that corresponds to the lowest value is output as the region of correspondence for each of the

regions in the consecutive frames (χ2(Bi, B
′
i) is minimum). For robustness we assume that the

torso portion is tracked properly, and depending on the relative position of the torso, we rely on

the tracked portion of the head and legs.

The results of the technique discussed above are as shown in figure 2.10.
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Figure 2.10: Moving objects tracked across frames along with their intensity histograms.
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2.3 Active Contours

As can be seen from the output of the HMMF model, a precise contour of the human has

not yet been obtained. For this reason, we further process the video by using the space “Active

Contours” [43] technique. Specifically, we use the technique proposed by Chan and Vese [44].

The idea in using the active contour models or snakes is to evolve a curve or surface (surface

in this thesis as we evolve in 3D space), in such a way that it is subject to image or video

constraints, in order to detect objects in the image or moving objects in a video sequence. For

instance, starting with a surface around the object (to be detected) in the video, the surface

evolves towards the objects interior normal and stops (not always) on the boundary of it.

2.3.1 Description of the Model

Let us define the evolving surface C in Ω, as the boundary ω of Ω (i.e. ω ⊂ Ω, and C = ∂ω).

inside(C) denotes the region ω, and outside(C) denotes the region Ω \ ω̄.

   F > 0
(inside C)

    F < 0
(outside C)

F = 0 (on C)

Figure 2.11: Evolving Surface C.

Assume that the video (set of frames) u0 is formed by two regions, both of which are approxi-

mately piecewise-constant intensities, of distinct values ui
0 and uo

0. In addition let us assume that

the object (object in our case refers to portions corresponding to moving objects) to be detected

is represented by the region with the value ui
0, and the boundary is denoted by C0. Consider the

following term

F1(C) + F2(C) =

∫

inside(C)

|u0(x, y, t)− c1|2dxdydt +

∫

outside(C)

|u0(x, y, t)− c2|2dxdydt
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where C is any variable surface, and the constants c1, c2, depending on C, are the averages

of u0 inside C and outside C, respectively. The boundary of the object is the minimizer to the

above equation. In [44], the authors in addition to minimizing the above equation add some

regularizing terms, like the length of the curve etc.. Therefore the above energy functional

F (c1, c2, C) is modified as

F (c1, c2, C) = µ.Length(C) +

λ1

∫

inside(C)

|u0(x, y, t)− c1|2dxdydt +

λ2

∫

outside(C)

|u0(x, y, t)− c2|2dxdydt

where µ ≥ 0, λ1, λ2 > 0 are fixed parameters.

The Mumford-Shah functional for segmentation is [45]

FMS(u,C) = µ.Length(C) +

λ

∫

Ω

|u0(x, y, t)− u(x, y, t)|2dxdydt +
∫

Ω\C
|∇(u(x, y, t))|2dxdydt

where µ and λ are positive parameters. The solution video u is obtained by minimizing this

functional. The minimum partition problem as it is called is a reduced form by simply restricting

the values of ci to averages as u0 on each side of the surface.

The Chan and Vese model is a particular case of the minimal partition problem, in which the

best approximation is obtained u of u0 as a function of only two values, namely

u =





average(u0) inside C

average(u0) outside C
(2.17)

and with one edge C, represented by the snake or the active contour, and this case of the

minimal partition problem can be formulated and solved using the level set method [46].

More details of the method related to level sets can be obtained from [46]. The next set

of equations is the formulation for solving the minimum partition problem. In the level set

method [46], C ⊂ Ω is represented by the zero level set of a Lipscitz function such that,



C = ∂ω = (x, y, t) ∈ Ω : φ(x, y, t) = 0

inside(C) = ω = (x, y, t) ∈ Ω : φ(x, y, t) > 0

outside(C) = ω \ ω̄ = (x, y, t) ∈ Ω : φ(x, y, t) < 0
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For the level set formulation of variational active contour model, the unknown variable C is

replaced by the embedding function φ (e.g. signed distance function).

Using the Heaviside function H, and the one-dimensional Dirac measure δ0, which are defined,

respectively, as

H(z) =





1, ifz ≥ 0,

0, ifz < 0,

δ0(z) =
d

dz
H(z), (2.18)

the terms in the energy are expressed in the following way:

Length{φ = 0} =

∫

Ω

|∇H(φ(x, y, t))|dxdydt

=

∫

Ω

δ0(φ(x, y))|∇φ(x, y)|dxdydt,

Area{φ ≥ 0} =

∫

Ω

H(φ(x, y))dxdydt

and

∫

φ>0

|u0(x, y, t)− c1|2dxdydt =

∫

Ω

|u0(x, y, t)− c1|2H(φ(x, y, t))dxdydt,

∫

φ<0

|u0(x, y, t)− c2|2dxdydt =

∫

Ω

|u0(x, y, t)− c2|2(1−H(φ(x, y, t)))dxdydt,

Then, the energy F (c1, c2, φ) can be written as

F (c1, c2, φ) = µ.

∫

Ω

δ(φ(x, y, t))|∇φ(x, y, t)|dxdydt +

λ1

∫

Ω

|u0(x, y, t)− c1|2H(φ(x, y, t))dxdydt +

λ2

∫

Ω

|u0(x, y, t)− c2|2(1−H(φ(x, y, t)))dxdydt (2.19)

u as defined in equation 2.17 is solution to the model as a particular case of the Mumford-Shah

minimal partition problem, and can be written using the level set formulation as
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u(x, y, t) = c1H(φ(x, y, t)) + c2(1−H(φ(x, y, t))), (x, y, t) ∈ Ω̄

Here the authors are minimizing the energy functional with respect to the two constant c1

and c2 keeping φ fixed, in which case the values of c1 and c2 are given by,





c1(φ) = average(u0) φ ≥ 0

c2(φ) = average(u0) φ < 0
(2.20)

The next set of equations indicate how the values of c1 and c2 as indicated in Equation 2.20

are defined by. The minimum minc

∑n
i=1(c − xi)

2 of what can be found by differentiating with

respect to ‘c’. This becomes

d

dc

n∑
i=1

(c− xi)
2 =

n∑
i=1

2(c− xi) = 0, = 2(nc−
n∑

i=1

xi) = 0

So, c = 1
n

∑
i=1 nxi which is nothing but the term given by Equation 2.20.

Once we obtain the values of ci’s for the piece-wise constant case, the minimum of the function

F with respect to φ can be obtained by keeping the values of ci’s constant, the associated Euler-

Lagrange equation for φ is obtained.

∂φ

∂‘iter′
= δε(φ)[µdiv(

∇φ

|∇φ|)− λ1(u0 − c1)
2 + λ2(u0 − c2)

2] (2.21)

The term −div( ∇φ
|∇φ|) is called the curvature term and is usually represented by κ. The

curvature term κ is discretized based on the up-wind finite differences.

κ = −ψxxψ
2
y − 2ψxψyψxy + ψyyψ

2
x + ψxxψ

2
z − 2ψxψzψxz + ψzzψ

2
x + ψzzψ

2
y − 2ψzψyψzy + ψyyψ

2
z

(ψ2
x + ψ2

y + ψ2
z)

3
2

(2.22)

where ψx is the gradient of the image in the x direction; ψy is the gradient in the y direction;

ψz is the gradient in the z direction ;ψxx is the 2nd order gradient in the x direction; ψyy is the 2nd

order gradient in the y direction; ψzz is the 2nd order gradient in the z direction; ψxy is the 2nd

order gradient, first in the x direction and then in the y direction; ψyz is the 2nd order gradient,

first in the y direction and then in the z direction; ψxz is the 2nd order gradient, first in the x

direction and then in the z direction. The first term ‘κ’ provides the smoothing constraints on
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the evolving surface by reducing the total curvature of the evolving surface. The second term

acts like a balloon force and it pushes the surface towards the object boundary. c1 and c2 are the

means of the values defined by the embedding function φ. u0 is the original image (set of frames

in our case) I(x, y, f). λ1 and λ2 are constants. The stopping criteria in our case is the number

of iterations, i.e., the evolution of the curve, will terminate after a certain number of predefined

iterations.

The terms λ1 and λ2 are both set to 1. The step length ‘iter’ is set to 0.01. The term µ is

set to 2. The values were fixed for all the experiments that were conducted. The results of the

algorithm discussed above are as shown in Figure 2.13.

The initial ψ function is a cylinder whose center coincides with the center of the block of the

individual components. The final evolution surface of the head, torso, legs is shown in Figure

2.14.

2.4 Measurements

As mentioned earlier, the next step is to extract the measurements of the human body from

the segmented results. For this, we fit ellipses to the segmented regions: one for the head and

one for the torso. The reason for choosing the ellipses is that we can get both the measurements

(i.e., the width and the height of the body components) simultaneously. For this we use the

technique proposed by Radim [47]. As said in the previous section a contour is obtained for each

of the body components. We get the coordinates (x, y) of the contour in the image plane, and

fit an ellipse to them. A brief description of the ellipse fitting technique is presented next.

An ellipse is a special case of a general conic which can be described by an implicit second

order polynomial

F (x, y) = ax2 + bxy + cy2 + dx + ey + f = 0

with an ellipse-specific constraint which is b2 − 4ac < 0 where a, b, c, d, e, f are coefficients of

the ellipse and (x, y) are coordinates of points lying on it. The polynomial F (x, y) is called the

algebraic distance of the point (x, y) to the given conic. By introducing vectors

a = [a, b, c, d, e, f ]T

x = [x2, xy, y2, x, y, 1]
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Figure 2.12: The contour of the human body obtained from using “Active Contours” overlapped
on a video sequence.
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Figure 2.13: Contour of the entire human body obtained by combining all the three techniques
on a video sequence.
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(a) head

(b) torso

(c) legs

Figure 2.14: The final evolution curve (a) head, (b) torso, (c) legs
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it can be rewritten to the vector form Fa(x) = x.a = 0. The fitting of a general conic to a set

of points (xi, yi), i = 1.....N may be approached by minimizing the sum of the squared algebraic

distances of the points to the conic which is represented by coefficients a:

min

N∑
i=1

F (xi, yi)
2 = min

N∑
i=1

Fa(xi)
2 = min

N∑
i=1

(xi.a)2

The equation can be directly solved by the standard least squares approach, but the result of

such fitting is a general conic and it need not be an ellipse. To ensure an ellipse-specificity of the

solution, the appropriate constraint b2−4ac < 0 has to be considered. In Fitzgibbon’s paper [48]

it was shown that such a system is hard to solve. Under a proper scaling, the inequality constraint

can be changed into an equality constraint 4ac − b2 = 1 and the ellipse-specific fitting problem

can be reformulated as

min||Da||2 subject to aTCa = 1

where the design matrix D of size N×6,

D =




x2
1 x1y1 y2

1 x1 y1 1

. . . . . .

. . . . . .

. . . . . .

x2
i xiyi y2

i xi yi 1

. . . . . .

. . . . . .

. . . . . .

x2
N xNyN y2

N xN yN 1




represents the least square minimization and the constraint matrix C of size 6×6,

C =




0 0 2 0 0 0

0 −1 0 0 0 0

2 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0




expresses the constraint 4ac− b2 = 1. The minimization problem is solved by a quadratically

constrained least square minimization. First, by applying the Lagrange multipliers we get the
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following conditions for the optimal solution a

Sa = λCa

aTCa = 1

where S is the scatter matrix of size 6×6,

S = DTD

=




Sx4 Sx3y Sx2y2 Sx3 Sx2y Sx2

Sx3y Sx2y2 Sxy3 Sx2y2 Sxy2 Sxy

Sx2y2 Sxy3 Sy4 Sxy2 Sy3 Sy2

Sx3 Sx2y Sxy2 Sx2 Sxy Sx

Sx2y Sxy2 Sy3 Sxy Sy2 Sy

Sx2 Sxy Sy2 Sx Sy 1




in which the operator S, denotes the sum

Sxayb =
N∑

i=1

xa
i y

b
i

The equation aTCa = 1 is solved by using generalized eigenvectors. There exist up-to six real

solutions (λj, aj), but because

||Da||2 = aTDTDa = aTSa = λaTCa = λ

we are looking for the eigenvector ak corresponding to the minimal positive eigenvalue λk. After

a proper scaling ensuring aT
k Cak = 1, we get a solution of the minimization problem which

represents the best-fit ellipse for the given set of points.

Since we decompose the human into three regions and there is no notion of width and height

for the legs (as we define the entire legs region as a whole) we all together have five measurements.

The four measurements are width and the height of the head, torso. Based on this algorithm we

measure the width and the height of the body parts. The results for one of the video sequences

are shown as bar graphs

The overlapped ellipse on the original frames is as shown in Figure 2.15:
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Figure 2.15: Overlapped ellipses on the video frames.
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Head Width
A(12ft) E(12ft) A(24ft) E(24ft) A(36ft) E(36ft)

1 51 54 22 23.06 17 16.45
2 47 51.2 20 19.13 16 15.47
3 48 53.28 18 19.91 15 15.79
4 40 42.17 20 20.14 10 10.23
5 40 40.92 21 20.41 11 11.67
6 43 46.74 20 18.19 12 11.92
7 40 42.34 20 21.19 12 14.72
8 35 37.96 19 20.63 11 11.92
9 38 40.12 19 21.78 12 13.97

Table 2.1: Comparison of actual (A) vs estimated (E) values in terms of pixels.

Head Height
A(12ft) E(12ft) A(24ft) E(24ft) A(36ft) E(36ft)

1 43 42.4 21 20.65 13 12.79
2 40 43.44 20 21.69 16 16.73
3 39 46.51 16 15.12 11 11.71
4 40 38.16 20 19.07 14 14.32
5 37 35.14 20 19.79 14 14.93
6 40 42.17 20 21.13 11 11.41
7 40 43.59 20 21.68 10 11.91
8 40 44.92 18 20.17 11 11.17
9 43 48.22 19 22.05 11 13.01

Table 2.2: Comparison of actual (A) vs estimated (E) values in terms of pixels.

Torso Width
A(12ft) E(12ft) A(24ft) E(24ft) A(36ft) E(36ft)

1 50 57.76 21 22.36 20 21.19
2 75 84.83 46 50.26 29 30.12
3 50 80.22 40 43.18 25 27.03
4 60 57.15 29 32.09 18 17.01
5 49 46.43 22 24.12 17 18.31
6 54 58.96 21 19.16 15 16.09
7 50 51.17 20 22.43 16 16.94
8 40 44.39 20 21.19 16 16.79
9 43 47.10 21 24.28 17 20.01

Table 2.3: Comparison of actual (A) vs estimated (E) values in terms of pixels.
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Torso Height
A(12ft) E(12ft) A(24ft) E(24ft) A(36ft) E(36ft)

1 84 76.09 47 49.92 31 30.25
2 105 115.09 60 66.94 40 28.25
3 110 123.85 60 56.19 35 43.69
4 110 121.19 60 64.85 40 37.17
5 105 110.96 50 54.07 33 42.69
6 103 110.19 50 52.93 32 34.09
7 95 100.05 45 49.59 40 36.39
8 100 103.27 43 47.69 36 39.19
9 102 109.27 45 50.12 38 42.19

Table 2.4: Comparison of actual (A) vs estimated (E) values in terms of pixels.

The dataset consists of 9 people and 3 video sequences of each person. The body measure-

ments are taken across different distances. The following table gives the details of the measure-

ments from the experiments and from manual (actual) measurements.

The measurements (height and width of the torso, head) in terms of pixels is within 10% of

the manual measurements. Even though 10% error is bit high we can potentially reduce this

error by finding techniques to extract measurements from the contour instead of using a simple

ellipse fitting procedure. For example we can use joints corresponding to the human but the

joints are not well defined in the human contour form. And this is one of the challenges in

extracting measurements. The measured values as can be seen from the table are consistent

across all frames and across various distances too. As the segmentation technique works well on

the side view, the measurements can be obtained only with respect to side view. The results of

the measurements at three distances (12ft, 24ft, 36ft) are as shown in Figure 2.17 :
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(a) Measurements at 12ft (b) Measurements at 24ft (c) Measurements at 36ft

Figure 2.16: Ellipses overlapped on the original frames for extracting measurements at various
distances.
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(a) Measurements at 12ft (b) Measurements at 24ft (c) Measurements at 36ft

Figure 2.17: Contours of the ellipses without any background at various distances.
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Chapter 3

Summary and Future work

3.1 Future Work

As we can see, we could extract only four measurements but in the future we can extract

more body measurements either by obtaining a more clear and precise contour of the human or

by developing a better tracking algorithm, in which we consider some key points in one of the

input frames and then track these key points based on some local or global information. If we

can track these key points with some degree of redundancy, then we can extract the human body

measurements. The purpose of the 3d model is to map the metrological features of a subject as

measured from a video sequence onto one of the generic 3D models, and then individualize the

model for each subject. With respect to this, we have started modeling a human. The template

was obtained from cyberware [49] web site. The model looks as shown in Figure 3.1.

Each 3D model is viewed as an agglomeration of multiple components viz., head, torso,

legs, arms, etc. as shown in Figure 3.3, similar to the case when we deal with obtaining the

human measurements. Based on the anthropometric data from the NASA [2] data-set, we define

the shape, structure, and size of the individual components for each generic model. We then

parameterize the individual components.

The representation of the components is based on polygon mesh modeling which is used

to represent each component. This enables the geometry of a mesh to be manipulated in a

general and powerful way. Euler operations can be used to modify vertices of the mesh. However

these could be cumbersome and awkward to use. Therefore, we define a set of primitive mesh

manipulation operators. The different types of operators can be listed as parallel, stretch, grow,
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Figure 3.1: 3D start model

Figure 3.2: A part of the 3D model is zoomed
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Figure 3.3: Agglomeration of the human body components
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Figure 3.4: Range by number of edges and by distance (circle) (taken from [3])

randomize, and smooth operators, and for each of these operators we define parameters such as

range of influence based on the number of edges or based on the range by distance (say circle)

(Figure 3.4), decay functions over range of influence like, Cone decay, Bell decay, Cusp decay

etc. (Figure 3.5), and by binding vertices. A decay function is one that is used to determine

the amount by which each vertex moves. Together, the range of influence and decay functions

offer a powerful set of mesh manipulation operators. However, they have the limitation that

only vertices lying in a connected sub-mesh can be moved. Often it is necessary to move some

vertices without affecting intervening ones. This type of operation is called the binding vertices

operation.

The generic 3D model obtained from [49] of a male has about 148,000 points and 290,000

edges. Each component is modified independently based on the type of mesh manipulation. We

use 3D transformation matrix to stitch the modified components into one single 3D entity once

the components are modified. The 3D point set registration work is obtained from Paul J. Besl

and Neil D. McKay [50].

Let P = pi be the data point set in one component that has to be aligned with the point

set X = xi on another component. The unit quaternion qR = [q0q1q2q3]
t where q0 ≥ 0 and

q2
0 + q2

1 + q2
2 + q2

3 = 1. The 3× 3 rotation matrix formed by the Unit quaternion is
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Figure 3.5: Decay Functions (a) No decay function, (b) Cone decay function, (c) Bell decay
function, (d) Cusp decay function, (e) random decay function, (f) Sine wave decay function
(taken from [3])
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R =




q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 − q0q3) 2(q1q3 + q0q2)

2(q1q2 + q0q3) q2
0 + q2

2 − q2
1 − q2

3 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) q2
0 + q2

3 − q2
1 − q2

2


 (3.1)

and the translation vector is represented by qT = [q4q5q6]
t. The mean square objective

function that has to be minimized to obtain the best registration of the 3D point set is given

by f(q) = 1
Np

∑Np

i=1 ||xi − R(qR)pi − qT ||2. µp andµx are the “center of mass” of point sets P =

pi and X = xi, respectively. µP = 1
Np

∑
i=1 Nppi, µx = 1

Nx

∑
i=1 Nxxi where N represents the

total number of points in each set. The unit eigen vector qR = [q0q1q2q3]
t corresponding to the

maximum eigenvalue of the following matrix

Q(
∑
px

) =

(
tr(

∑
px) ∆T

∆
∑

px +
∑T

px−tr(
∑

px I3)

)
(3.2)

is selected as the optimal rotation. The term ‘tr’ refers to Trace of a matrix and I3 refers

to an Identity matrix the subset denoting the order of the matrix. The optimal translation

vector is given by qT = µx − R(qR)µp. The results of the above technique are used to stitch the

decomposed 3D model. For example the arm part is modified in a way such that the new body

part (arm) is 1.1 times the original arm length and you are trying to stitch this modified body

part to the torso, the results of which are shown in Figure 3.6.

In this thesis, techniques to extract only a few set of human body measurements, namely

the height, width of the head and the torso, are discussed. Further more, the videos collected

have just one person walking in the scene and the subject is constrained to walk in a particular

direction. But in a typical surveillance system this is not the situation. The camera in our case

is stable (i.e., there is no motion of the camera). However, in a surveillance system the camera

might experience some motion. The technique designed in the thesis is not fully automated. For

example, during the tracking stage one has to manually mark the regions corresponding to the

head, torso and legs. Thus a fully automated technique is desired. The parameters used during

the implementation may not hold for all types of videos. In the future, one can use the same

techniques for detecting humans in the IR spectrum in night time environments. In cases where

there are multiple persons, we need to resort to new tracking techniques, since the histogram

based matching scheme is not a robust technique in such scenarios. The HMMF model can still

be used for motion detection, but the background has to be stable with the simple formulation
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Figure 3.6: Example for 3D point registration: (a) before stitching ; (b) after stitching
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that we considered. Otherwise, more complex φ functions can be used in the case where both

the camera and objects are moving.
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