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ABSTRACT 

Exploratory Longitudinal, Spatial and Spatiotemporal 

Evaluation of the Raccoon Variant Rabies Virus in West 

Virginia, 2000-2015 

Kenneth B. Plants 

Background and Objectives: Rabies is an almost invariably fatal viral disease of mammals. In 

West Virginia, there are two variants of the rabies virus, bat and raccoon. Raccoon rabies (RRV) 

was introduced subsequent to a release by hunters, and has since spread throughout the 

Northeastern United States and into Canada. There has been a notable lack of westward 

movement, however. The objectives of these studies are to 1) examine the behavior of RRV 

temporally during the study period 2) determine whether there are spatial determinants that may 

be associated with RRV incidence and 3) examine whether the change of spatial determinants 

with time over the study period can be correlated with changes in RRV incidence. Secondary 

objectives included evaluation of the oral rabies vaccine program, determination of whether 

clustering of disease occurred in the state, and examination of whether there were changes in 

RRV behavior in varying animal hosts. 

Methods: County-level surveillance data were obtained from the West Virginia state health 

department and combined with geographic data from a number of publicly available databases. 

In the first study, RRV case numbers were examined to determine any trends over the study 

period, 2000 - 2015, and trends were compared for counties where oral rabies vaccination had 

occurred and those without vaccination program implementation, using negative binomial 

regression techniques and z-score comparisons. The second study evaluated several geospatial 

characteristics of the counties for association with disease incidence and clustering of disease, 

using Poisson spatial conditional autocorrelation regression within a Bayesian environment and 

local indicators of spatial autocorrelation. In the third study, integrated nested Laplace 

approximation (INLA) and negative binomial regression were utilized to allow simultaneous 

adjustment for the random effects of both time and space. In each study, analyses were 

performed for the data as a whole, in addition to analyses of various host subpopulations. 

Results: Study 1. Analyses found statistically significant (p < 0.05) reductions in case numbers 

over the study period and showed that incidence rates were declining at significantly higher rates 

in counties where oral rabies vaccination had been deployed. Incidence showed significant 

declines for all animals in the study and the raccoon only subpopulation, but similar declines 

could not be shown in non-raccoon wildlife or domestic animals. Study 2. Statistically 

significant clustering of RRV cases was demonstrated for all host types examined, with 

clustering tending to occur in the eastern portion of the state and overlapping for the various host 

types. Several geospatial variables were shown to be significantly associated (credible intervals 

did not include 0) with RRV incidence, with several of the variables recurring among the host 

types. Study 3. Regression analyses that compensated for spatial and temporal autocorrelation 

showed that many of the variables found to be associated in study 2 did not retain those 

associations in univariate analyses, while multivariate analyses indicated that none of the 

variables that had changed over the study period were associated with RRV incidence. 



Conclusions: Across the three studies, differences were noted between the host types with 

regard to RRV behavior. It appears that reductions in RRV incidence for raccoons do not extend 

to the other host types. This is of particular concern in the case of domestic animals, as they 

represent the most likely source of human exposure. The oral rabies vaccine project does appear 

to be having an impact on RRV incidence. Spatial clustering of disease is occurring in all host 

types. Although there was some variation in significant determinants between the different hosts, 

as well as between the analytic approaches, geographic location and proximity to the Virginia 

border were most consistently present. In the multivariate INLA analyses, those variables that 

cannot be changed over time were the only ones of significance. The INLA approach was a 

substantial improvement over the more traditional methods and tended to corroborate the 

previous findings. The findings of these studies highlight the importance of using statistical 

methodologies that can accommodate the spatial and temporal structures embedded within public 

health surveillance data. 
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INTRODUCTION 

 

Almost invariably lethal, rabies infection can occur in any mammalian host. The virus 

responsible for the disease is rabies lyssavirus, found in the Rhabdoviridae family. The virus is 

highly neurotropic, resulting in a fatal encephalomyelitis. The earliest known written record of the 

disease is from the 23rd century before the Christian era (BCE),1 and a description of the means of 

transmission and pathogenesis of the disease is found in the writings of Democritus from the 5th 

century BCE.2 The disease in the New World was primarily restricted to bats until the arrival of 

Europeans, after which genomic studies indicate canine rabies was introduced to an essentially 

immunologically naïve population of terrestrial mammals.3 In the interim, the disease has become 

enzootic throughout the Americas, with significant numbers of human deaths in Mexico, Central 

and South America.  

Over the past 100 years, rabies in the United States has changed dramatically because of 

extensive vaccination efforts in domestic animals, especially dogs and cats. This strategy seems to 

have been successful. More than 90% of all animal cases reported annually to the Centers for 

Disease Control and Prevention (CDC) now occur in wildlife; whereas before 1960, the majority 

were in domestic animals. The principal rabies hosts in the U.S. today are wild mesocarnivores 

and bats.4 Most human exposures are from carnivores, and carnivore species most likely to be at 

risk varies regionally. Rabies kills thousands of people each year worldwide, but human deaths 

have become relatively rare in the United States.5,6  

Affected wildlife animals, including raccoons, often lose their fear of humans and become 

active during daylight hours, drastically increasing their potential for increasing human and 
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domestic animal exposures. When an animal bite is reported in humans, a dog or cat is immediately 

quarantined for an established observation period unless clear evidence of current rabies 

vaccination is available. In the event that a wild animal caused the bite, or the animal in question 

is unavailable for quarantine, the person bitten must undergo a post exposure prophylactic (PEP) 

regimen that entails an injection of anti-rabies immunoglobulin in addition to four doses of rabies 

vaccine. 40,000 to 50,000 PEP treatments are given to people in the United States every year, 

suggesting rabies remains a significant problem.4 Definitive diagnosis of rabies in animals is 

impossible ante mortem, as brain tissue must be examined histopathologically for microscopic 

Negri bodies. In the event of a local epizootic, or when the disease becomes enzootic in a region, 

the number of PEP treatments administered increases in that region. While costs vary, a course of 

rabies immunoglobulin and four doses of vaccine typically exceeds $3,000.4  

Viral strains and vaccinations 

There are a number of strains of rabies virus, with each being highly adapted to a specific 

host species, although spillover into other hosts can and frequently does occur. In fact, the labelling 

of the strains by host species (raccoon, bat, fox, etc.) is only reflective of the species that acts as 

the primary reservoir for that strain of virus at that time. Either bat or carnivore origin rabies 

infection can be transmitted to any other mammalian host. It is almost always lethal in all species, 

including humans, once symptoms have developed, and no effective treatment is available. Only 

two cases of rabies survival in humans are documented.7 

In the United States, effective rabies vaccination protocols for domestic animals have 

resulted in near elimination of the disease in that population. However, viable prevention does not 

come without an economic burden. The cost of rabies prophylaxis, treatment and control programs 

is estimated to be between $250 and $500 million dollars annually.4 This includes prophylaxis in 
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both domestic and wild animals. Additionally, rabies infection in agricultural settings has 

significant cost burdens for animal producers.8 

In wildlife species, effective control and even elimination of rabies virus has been achieved 

in some species. One strategy employed to attain this goal has been oral rabies vaccination (ORV). 

The use of ORV has successfully eliminated rabies virus in red foxes (Vulpes vulpes) in several 

European countries.9 In North America, ORV programs resulted in the elimination of arctic fox 

(Vulpes lagopus) variant rabies in Ontario from red foxes, and in south Texas, a spillover of  a 

canine (Canis familiaris) variant of rabies from Mexico in coyotes (Canis latrans) was 

successfully contained.10 An ORV project involves distribution of baits containing a fishmeal 

attractant that encloses a sachet of orally active rabies vaccine. ORV baits are distributed from 

aircraft in rural areas, while hand distribution of baits occurs in urban settings.11 The goal of baiting 

is to achieve a bait density of approximately 75 baits/km2. The vaccine is a vectored vaccine using 

a nonvirulent Vaccinia poxvirus vector encoding rabies glycoprotein (VRG), although field testing 

of other vaccine types is currently underway. Another rabies vaccine, derived from human 

adenovirus, has been shown to be both safe and effective, and elicits a stronger antibody response 

than VRG in raccoons.12 The published field trial of this vaccine was unable to assess its efficacy 

in skunks (Mephitis mephitis).12 One drawback to VRG is that it has not been effective in 

producing immunity in skunks, which represent the predominant reservoir species for rabies in the 

Midwest region of the United States.10 It is desirable that a single type of oral vaccine be 

efficacious for both species, as their habitats tend to overlap.   

In West Virginia, the viral strains known to be present are bat and raccoon rabies virus 

variants. There are several bat strain rabies viruses enzootic in the state historically, with sporadic 

cases reported from all counties; even so, bat cases represent less than 5% of the animals found to 
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be positive for virus. Raccoon variant rabies virus (RRV) is currently enzootic in the Southeast 

United States, and expanded its range into the eastern part of West Virginia subsequent to the 

introduction of translocated rabid raccoons (Procyon lotor) along the West Virginia – Virginia 

border near Greenbrier County in the late 1970s.13 Since then, RRV was reported to expand at a 

rate estimated to be between 30 and 60 km/yr.14 Despite the success of immunization programs in 

domestic animals, rabies infection has increased in West Virginia’s wildlife, particularly in 

raccoons. Raccoons are of special concern due to their ability to coexist in close association with 

humans, commonly raiding refuse containers and pet food left outdoors, along with other food 

sources such as bird feeders.  

Prior to the introduction of RRV in West Virginia, there were few (5-10) rabies positive 

raccoons reported annually, all of which were infected with a bat strain virus.  Once the epizootic 

front moved through, numbers of RRV positive raccoons increased dramatically, peaking in 2002 

with 126 positive animals. Moreover, spillover species added 37 positive animals (23% of the total 

positives) in that year, including eight domestic animals (cats, horses and cows). RRV is especially 

associated with spillover into other species, and has been described as a “super spreader.”15  There 

has been some speculation that RRV has a propensity to undergo host shifts, where the virus adapts 

to a new host species and begins independent circulation within that species.15 This tendency could 

result in establishment of a viral reservoir in other species, and potentially even domestic species, 

if vaccination and control practices are not maintained. The importance of RRV in West Virginia 

is highlighted by the fact that over 95% of rabies positive animals identified from 2000-2015 were 

infected with RRV.16 

Cats represent roughly 5% of the RRV positives identified in peridomestic settings in West 

Virginia.16 This is of particular concern, as many remain unvaccinated for rabies, even though 
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rabies prophylaxis is mandatory in West Virginia.17 In addition, cats have a propensity to establish 

viable feral populations.18 These factors, and others, contribute to the current situation, where over 

2500 animal bites and other potential rabies exposures are reported annually in West Virginia.16 

Unfortunately, data are not available regarding how many of these are true exposures, nor is a 

species breakdown of the animals involved. 

In response to this outbreak, the United States Department of Agriculture, Animal and Plant 

Health Inspection Service, Wildlife Services (USDA/APHIS Wildlife Services) began the ORV 

project to vaccinate raccoons in West Virginia in 2001.11 The baits are scattered in a band that runs 

in a roughly north – south orientation through the center of the state. This is intended to act as a 

cordon sanitaire to prevent further westward encroachment by the virus. The ORV uses the 

concept of herd immunity within the baited zone to effect protection of the raccoons from RRV. 

There is evidence that the program has resulted in reduced numbers of RRV cases in the baited 

zone, as well as slowing the westward movement of the epizootic wave.19 That study examined 

the 1990-2007 time period, and there has been no published study of the program in the interim.  

Requirements for Effective Prevention 

Given the high costs of control and treatment, as well as the significant spillover of RRV 

into domestic species and the concomitant risk to humans, it seems imperative that improved 

knowledge of the behavior of RRV be investigated, to examine the temporal and spatial 

determinants of RRV infection. It should be noted that any rabies positive animal identified is 

necessarily associated with suspected human exposure warranting testing, and such exposure is 

increased to the extent that animal collection and handling requires human involvement. 
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The emergence and/or expansion of zoonotic infectious diseases has a direct effect on the 

health of human populations. Based on the principles and practices of disease prevention, control 

of environmental determinants of zoonotic diseases will result in improved human health.20 This 

project will examine the current dynamics of RRV in West Virginia and the potential implications 

for improved prevention of human exposures.  

Factors Associated with Spread of RRV 

 An examination of the current literature indicates that there have been several studies 

regarding rabies, with many specific to RRV. Rabies is frequently reported in the Eastern United 

States, where the primary reservoir for the virus is the raccoon. Raccoons represented 32% of the 

positive animals nationwide in 2012, 2013 and 2014, although there was a reduction in total 

numbers of positive raccoons detected of 1.4%, 2.8% and 4.0%, respectively.21-23 The disease has 

been used as a test case for determining the utility of using genomic and environmental data for 

modelling virus dispersal in emerging epidemics, indicating these data can be useful in testing 

hypotheses regarding mode and speed of such dispersal.24 An early study described the epizootic 

as moving through Virginia in an eastward direction over the period 1978 - 1982.25 Another study 

examined the relationship between RRV in skunks and raccoons, finding that the center of RRV 

in raccoons had migrated west roughly 360 km in the period from 1990 to 2000, starting in central 

Maryland and terminating just south of the Northern Panhandle of West Virginia. 26  There is a 

relative paucity of published studies regarding temporal analysis of RRV. This is unfortunate, since 

such information is useful for determining the optimum allocation of limited resources for rabies 

prevention and control. 

 Regarding spatial predictors of RRV, several studies are available, although none provides 

a comprehensive review of all factors and cases involved in the RRV epizootic in West Virginia. 
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Available research indicates that the virus is primarily found in a north – south gradient in the 

Eastern United States, associated with the original focus of RRV in southeastern states and another 

focus in the mid-Atlantic region subsequent to the translocation of rabid raccoons from that 

original focus to the West Virginia – Virginia border area in the 1970s.13 The resulting RRV 

outbreak in the mid-Atlantic moved rapidly to the north and east, and reached Canada in 1999.27 

The two foci have had different time courses with regard to their expansion. The southern focus 

has expanded slowly, while the mid-Atlantic outbreak spread rapidly, with greater numbers of 

rabid raccoons reported. This disparity is postulated to be due to the dense human population along 

the eastern seaboard, combined with raccoons in that region that were immunologically naïve to 

RRV.27  It is of interest that, while eastward and northern expansion occurred with relative ease 

and rapidity, there is a notable lack of commensurate westward expansion. It has been suggested 

that this is due to the high ridges to the west, known as the Allegheny Front, acting as a barrier to 

raccoon (and virus) movement.28,29 Studies that have examined this hypothesis are equivocal. A 

genetic analysis of raccoons in the valley and ridge topography of southwestern Pennsylvania 

found little evidence of genetic divergence among animals on either side of a ridge, suggesting 

that the ridge had minimal impact on the movement and genetic interchange between the native 

raccoons.30 Interestingly, the same investigators, using telemetry on individual raccoons in the 

same area, indicated that there was little evidence of animals crossing the ridge and suggested that 

the spur valleys that tended to run perpendicular to the ridge acted as corridors for raccoon 

movement.31 They addressed the seeming contradiction between the two studies by pointing out 

that they had effectively three populations in their study, one on the ridgetop and one in each of 

the adjacent valleys,  and while their study provided little evidence of contact between the valleys, 

there was contact by animals from each valley with the ridgetop population.31 As such, the ridgetop 
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animals acted as a conduit for exchange of genetic material between the valleys. It should be noted 

that the ridge in these studies had an elevation of 2866 ft. (874 m), which is comparable to, or 

exceeded substantially by, the mean elevation of several counties in eastern West Virginia. Thus, 

one might hypothesize that the mountainous topography in eastern West Virginia could have a 

similar effect on raccoon transmigrations. 

 Another potential barrier to rabies viral movement suggested is bodies of water, especially 

large rivers.32 One study found that there was a sevenfold reduction in the speed of epizootic spread 

across a river.33 Another noted that rivers were particularly effective as barriers when associated 

with heavy forest cover, with no movement across the river when associated with heavy 

forestation.34 Unfortunately, there are no rivers large enough to act as effective barriers in eastern 

West Virginia. That area is, however, heavily forested, which was noted to result in a threefold 

reduction in viral movement.34 Hence one might hypothesize that forest edges and peridomestic 

areas support higher raccoon numbers and/or more raccoon translocations, thereby furthering RRV 

spread. 

 Several investigators have examined other environmental and demographic factors. One 

such study found that human population density, surface water, residential land use, agriculture 

and industrial development were significantly positively associated with RRV outbreaks, while 

deciduous and mixed forests reduced the odds of epizootic RRV.35 Similarly, a more recent study 

found that human agricultural land use and rurality were significantly associated with increased 

risk of human exposure to a rabid raccoon.36 However, that study did not include non-raccoon 

animals that were positive for RRV, nor did it evaluate types of land use beyond agriculture and 

forestation, human population density or elevation.  
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Evaluation of the ORV project in West Virginia 

 The ORV project in West Virginia was last evaluated for effectiveness in 2010, using state 

rabies data for the period 1990-2007.19 At that time, the program demonstrated statistically 

significant effectiveness, based on reduced numbers of RRV cases in the areas baited, as well as a 

cessation of westward encroachment of the virus.19  That study did not examine non-raccoon 

species however, and there has been no subsequent evaluation of the ORV program. Given that 

the current data indicate that cases of RRV may be declining, it is of interest to examine whether 

the rates of decline differ in the baited zone when compared with the enzootic areas to the east. 

 The collection of projects encompassed by this dissertation had three primary goals. The 

first was to conduct a purely longitudinal analysis that examined the number of cases by county as 

collected annually to determine whether there were temporal trends in RRV incidence. A 

secondary goal of this analysis was an evaluation of the effectiveness of the ORV program. 

 The second primary goal involved analysis of spatial data to determine whether there were 

quantifiable spatial characteristics that were associated with RRV incidence, with an associated 

secondary goal of identifying any clustering of counties with high RRV case numbers. Once the 

spatial analysis had been conducted, the third study carried out a more complex analysis of the 

dependent and independent variables that could accommodate autocorrelation and considered 

changes in the variables over both time and space, in an effort to determine whether there were 

significant variables that were not apparent in the second study. 

 Taken as a whole, the three studies compared the newer INLA technique with analysis 

techniques used in older studies to determine it’s utility in identifying risk factors for the spread 

of RRV with greater specificity. The studies provided insight into the behavior of RRV within 
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West Virginia, as well as indicating areas in the state where allocation of constrained public health 

resources might result in the most benefit. 

  



11 
 

CHAPTER ONE 

 

Longitudinal Analysis of Raccoon Rabies Virus in West Virginia, 2000-2015: 

A Preliminary Investigation 

 

Abstract 

 Animal borne rabies virus is a source of infection in humans, and raccoons (Procyon lotor) 

are the primary terrestrial reservoir in West Virginia (WV). To assess the behavior and status of 

raccoon variant rabies virus (RRV) cases in WV, a longitudinal analysis of RRV case numbers for 

the period 2000-2015 was performed, using data provided by the state Bureau of Public Health. 

The analytic approach used was negative binomial regression, with exclusion of those counties 

that had not experienced RRV cases in the study period, with further examination of those counties 

where oral rabies vaccine (ORV) baits had been distributed as compared with non-ORV counties. 

These analyses indicated that there had been a reduction in numbers of RRV positive animals over 

the study period, predominantly due to a decrease in raccoon infections. Non-raccoon hosts did 

not appear to have a similar decline, however. The rates of decline for the ORV zone were found 

to be significantly greater as compared to the non-ORV area. The study was limited by the lack of 

data for season or point location of animal collection, and by lack of surveillance effort data. Even 

so, this study has implications for the preventive measures currently being implemented, including 

expanded vaccination effort in domestic animals. Spatial analyses of RRV and further examination 

of the virus in non-raccoon hosts are warranted. 
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Introduction 

In order to assess the public health risk of rabies virus to humans in WV and the current 

state of rabies virus prevention efforts and evaluate the temporal effects of the ORV program, the 

aim of this study is to determine whether there has been a significant change in the number of RRV 

cases over the period 2000-2015 in WV. This was accomplished by using counties where RRV 

was reported, and among these counties, comparing those where the ORV program has been active 

with those where RRV is enzootic but ORV has not been deployed. Hypotheses tested will be that 

there are significant reductions in RRV cases overall, and that there are significant differences 

between the rates of decline in the counties where ORV has been implemented as compared to the 

RRV enzootic counties, in all animal groups. The analytic approaches employed were used to 

evaluate the data while accounting for the uneven distribution of rabid animals, and while 

including all types of affected animal hosts in the analysis. 

 

Materials and Methods 

Data collection and database structure 

Data used here came from the WV State Bureau of Public Health and consisted of the 

annual state reported rabies virus case database for RRV. These data, as used here, represented 

county level data for the years 2000 to 2015 16. This is a complete dataset, including all cases of 

rabies virus hosts by species identified in the state during the study period, the county where they 

were collected and viral variant.  

Identifying suspect animals for the analysis used here typically relied on one of the 

following situations:1) animals involved with biting or scratching humans, 2) animals involved 
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with biting or scratching domestic animals or livestock, 3) the opportunity to observe an animal 

exhibiting an atypical behavior, or 4) results of an occasional environmental "spot check" 37. Also 

included in the database are animals collected by the USDA/APHIS Wildlife Services subsequent 

to implementation of the ORV program. Unfortunately, data are not available regarding how many 

of these were human exposures (defined as a bite or a scratch). 

Generally, suspect animal brains were submitted by veterinarians or animal control 

personnel to the state diagnostic laboratory for direct fluorescent antibody screening 37. Also, 

animals that tested positive subsequent to trapping and testing by the USDA/APHIS Wildlife 

Services are included in the database. All positive samples from either source were submitted to 

the CDC for confirmatory testing and viral variant identification. Viral detection was performed 

at CDC, using direct fluorescent antibody testing, with subsequent variant typing performed using 

a validated RT-PCR method 38.   

There were 1569 animals found to be positive for any rabies virus during the study period. 

Only those cases specifically identified to have RRV infection (n=1464, 93.3%) were retained for 

evaluation, with cases showing unspecified viral variant (n=23, 1.5%) or bat variant (n=82, 5.2%) 

excluded. Unfortunately, the database does not provide numbers of uninfected animals tested, and 

it was not possible to assess data accuracy independently. 

Data regarding human population size by county were obtained from the US Census bureau 

using data from the 2000 and 2010 Censuses, in addition to the intercensal estimates for 

intervening years 39, and human population density was calculated using county areas, as provided 

by the U.S. Geologic Survey in the 2006 National Land Cover Database 40. All data were compiled 

in Microsoft Excel spreadsheets. 
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Data analyses 

The statistical programming platform R (version 3.4.2) was used to evaluate the data, 

employing the glmmADMB package (version 0.8.3.3) 41,42. This package was chosen due to its 

ability to handle a wide variety of modelling approaches, thereby maintaining consistency of 

analysis. Given that the data were count data, Poisson and negative binomial distributions were 

considered for possible use. During exploratory analysis, the overall mean annual number of cases 

was found to be 1.66, with a variance of 13.94. This indicated that the data were over-dispersed 

and that negative binomial modelling was most appropriate. However, negative binomial 

modelling requires an offset variable to denote the population at risk in each cluster during 

regression, and to reflect different weighting of the data clusters. Although the preferred offset 

would be total raccoon population in each county, these data are not readily available. Several 

potential candidate offsets were evaluated in exploratory analyses, including area (in km2) of 

counties, total county human population and county human population density.  It became evident 

that these potential offsets were essentially equivalent, both in coefficient value as well as p-value. 

Given the known behavior of raccoons and their propensity to inhabit areas in close proximity to 

human activity, human population density in each  county was selected as the offset, as it was 

believed to be most likely to be proportional to actual raccoon populations 43.  In addition, human 

population density is also relevant to exposure risk, insofar as the majority of animals submitted 

came through the public health surveillance system following human or domestic animal 

exposures. 

 Several counties in the western portion of WV had no positive samples for RRV throughout 

the study period, as a result of the failure of RRV to reach these western areas. It was decided to 

restrict the analysis to those counties that had at least one positive sample in the period 2000-2015 
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(Table 1.1). The state was divided into three zones. Zone 1 included all counties that experienced 

no RRV positives during the study period and thus were excluded from the analysis. Zone 2 

comprised those counties that reported a RRV positive animal and where ORV baits were 

distributed for the years 2005 – 2015 11,44, and Zone 3 was all remaining counties where RRV was 

reported but ORV was not deployed (see Table 1.1 and Figure 1.1). Analyses were run for all host 

species combined, as well as for raccoons, nondomestic non-raccoons (NDNR) and domestic 

animals separately. The NDNR grouping includes all non-raccoon wildlife. Additionally, the 

combined zones, as well as each zone separately, were analyzed for each of these animal groups.  

A z-score analysis was performed to detect whether there were significant differences 

between the two zones for each host animal group, as well as for the combination of all animal 

hosts. Z-scores, and associated p-values, were calculated using the standard errors and coefficient 

values derived from the negative binomial analyses. All models were run using α = 0.05 as the 

significance threshold. 

 

Results 

There were 1464 RRV positive animals during the study period, from 2000-2015. These 

were comprised of 962 raccoons, 391 NDNR and 111 domestic animals. A complete species 

breakdown of the positive samples in non-raccoons is provided in Table 1.2. Preliminary 

examination of the state RRV data from 2000-2015 seems to show an overall decreasing trend in 

the number of animal RRV cases over that timeframe, as shown in Figure 1.2. However, there does 

not appear to be a similar decline in cases for the NDNR and domestic animal hosts. 
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The negative binomial model was fit for zones 2 and 3 combined, using log human 

population density as the offset, yielding a regression coefficient of -0.06 with a p-value of <0.001 

as shown in Table 1.3. When analyzed separately, zone 2 had a regression coefficient of -0.09 with 

a p-value of <0.001, while zone 3 had a regression coefficient of -0.04 with a p-value of <0.001. 

In these models the coefficients can be interpreted as follows: the mean number of cases in log-

scale for zones 2 and 3 combined was reduced by 0.06 per year for 16 years, which is equivalent 

to a reduction of 1.062 cases per year for 16 years. The result for zone 2 was equivalent to a 

reduction of 1.094 cases per year, while the result for zone 3 translates to a reduction of 1.041 

cases per year. 

Negative binomial models were fit for each of the three animal types in this study, and the 

results are shown in Table 1.4. Raccoons were found to have regression coefficients of -0.083, -

0.102 and -0.061, all with p-values of <0.001 for the zones combined, Zone 2, and Zone 3 

respectively. All of these values are indicative of an increased rate of decline as compared to the 

results obtained for the total numbers of RRV positive animals. NDNR hosts in the zones 

combined had a regression coefficient of -0.02, with a p-value of 0.18, while zone 2 had a 

regression coefficient of -0.032, and a p-value of 0.21. Zone 3 yielded a regression coefficient of 

-0.015, and a p-value of 0.4 for NDNR. Finally, domestic animals had a regression coefficient of 

0.013 and a p-value of 0.62 for the zones combined. Zone 2 had a coefficient of -0.018 and a p-

value of 0.66 for domestic animals, while the same group in zone 3 had a coefficient of 0.037 and 

a p-value of 0.29. These results indicate that while there was a significant (p<0.001) reduction in 

raccoon infection, no such significant reduction was detected in non-raccoon hosts, whether 

nondomestic or domestic (p=0.18 and 0.62, respectively). The declines in RRV cases were 

statistically significant for all hosts combined, as well as raccoons, in all areas examined.  
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The results of the z-score analyses are presented in Table 1.5. When comparing the model 

results between Zones 2 and 3, all host species combined and raccoons were found to have 

significant differences (p-values of 0.01 and 0.047, respectively) in the rate of decline. No such 

significance was found for NDNR and domestic animals (p-values of 0.291 and 0.15, respectively). 

 

Discussion 

There have been several studies regarding rabies virus infection, with many specific to 

RRV. Rabies virus is frequently reported in the eastern United States, where the primary reservoir 

for the virus is the raccoon 15. Raccoons represented 32% of the positive animals nationwide in 

2012, 2013 and 2014, although there was a reduction in total numbers of positive raccoons detected 

for these years of 1.4%, 2.8% and 4.0%, respectively 21-23. Many prior studies regarding RRV have 

tended to focus on cases in raccoons and a limited number of other species (skunks, cats, rodents), 

without examining cases in other domestic and NDNR animals 26,45,46. One study that did examine 

all species infected with RRV was primarily focused on the economic costs of rabies prevention 

47. Similarly, there have been relatively few published studies regarding longitudinal analysis of 

RRV that have examined all infected hosts in a specific region and time period with the intent of 

comparing the incidence of RRV in those hosts 27,47,48.  

Since the inadvertent introduction of RRV into the Mid-Atlantic States, the disease has 

spread throughout the region and into New England and Canada 34,49,50. The primary finding of the 

current analysis is that there has been a significant decline in all RRV positive animals in zones 2 

and 3 during the study period, with the bulk of the decline in positives occurring in raccoons in all 

areas examined. The rate of decline in Zone 2 is significantly greater, indicating the impact of the 

ORV program on RRV in that area. Substantial resources have been used in WV to control rabies 
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virus in raccoons with apparent success 9,12,51,52. However, the decline in RRV cases does not 

extend to non-raccoon hosts. Regardless, control efforts do not appear to have significantly 

affected RRV infection in other hosts, as demonstrated by the results of the analysis (Table 1.4). 

Additionally, no difference between the zones was found with regard to non-raccoon hosts. The 

uncoupling of RRV exposure and vaccination efficacy from raccoons to other hosts suggests 

control efforts may enable the virus to become established in non-raccoon hosts, where it could 

begin to circulate independently from the raccoon reservoir. The most likely hosts that could serve 

as this potential reservoir would be skunks and red foxes, especially given that these hosts act as 

the primary host reservoir in other areas of North America. Skunks act as reservoir hosts in the 

central United States, while red foxes have been reservoirs historically in Canada 21-23. This would 

be plausible if RRV has the postulated ability to spillover into non-raccoon hosts and potentially 

establish itself in new reservoir host animals 15. However, our study did not show any evidence of 

their involvement as a reservoir at this time. 

Our results are consistent with the results reported by Wallace et al. When we calculated 

cross species transmission (CST) rates as described in their paper (# non-raccoon cases/#raccoon 

cases), we obtained overall rates, as well as skunk and fox rates (0.52, 0.30 and 0.07 respectively), 

that were comparable to those found by the Wallace team in 2011 (0.73, 0.35, and 0.18) 15. It may 

be encouraging that the CST rates found in our study were consistently lower than those found in 

2011 by Wallace. However, our optimism is tempered by the finding that when CST rates in WV 

for 2011 are calculated, the overall rates, and those for skunks (0.86 and 0.54, respectively), were 

substantially greater than those the Wallace group reported for 2011 previously, although the CST 

rate for red foxes (0.08) was less than half that found by Wallace.15  
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Interestingly, when CST in 2011 is examined for each of the zones, Zone 2 had markedly 

higher rates than Zone 3 for all CST, as well as skunk (0.84 and 0.67 vs. 0.63 and 0.33, 

respectively), while CST in red foxes was substantially lower for Zone 2 (0.03 vs.0.13). While 

these samples are too small to make statistical inference, they are of interest nonetheless. 

The findings of a reduction in RRV cases in raccoons due to ORV are consistent with the 

available literature. For example, Ma et al noted a general reduction in numbers of RRV positive 

raccoons recovered in areas of WV where ORV occurred, subsequent to the commencement of the 

ORV program 19. Their study examined raccoons in a limited number of counties where ORV had 

been provided, however, and compared them to the eastern WV counties where RRV is enzootic. 

Here we extended their observations to include RRV induced disease in non-raccoon animals, both 

domestic and non-domestic, and all counties where ORV was deployed. Their data extended up 

through 2007 and captured 2002, the peak year of RRV positives in the state shown in Figure 1.2. 

The current study period continues through 2015 and includes additional peaks in 2009 and 2011. 

The peaks described by Ma et al, and those seen in the current study, are consistent with prior 

descriptions of epizootic and inter-epizootic RRV, where the first epizootic was largest, with 

subsequent, smaller epizootics 46,48.  

 There are several potential reasons for the overall reduction in RRV incidence over the 

study period. The ORV project is well established in the state, and our work and that of Ma et al 

clearly show it is having a significant effect on overall RRV numbers 19. Additionally, given the 

rapidly fatal progression of the disease in infected animals, it is possible that it is “burning itself 

out” and has reached, or is reaching, a self-limiting steady state. Fluctuations in state and local 

human populations may also be affecting raccoon numbers, and subsequently influencing contact 

rates with infected animals. 
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 The temporal pattern of RRV infection in non-raccoon animals may be cause for concern. 

Although prior studies have indicated that it may not be the case in cats 46, one would anticipate 

that as the numbers of RRV positive raccoons decline, numbers in non-raccoon hosts would 

experience a similar decline. This is not borne out by the data examined here. NDNR and domestic 

hosts had no significant changes in RRV positive animals. This would indicate that RRV is not 

experiencing a decline in these animal hosts, and could be conducive to the virus becoming 

independently established in other reservoir(s) (e.g. skunks and foxes) where baits are not 

effective. The fact that neither NDNR nor domestic hosts is declining tends to decrease the 

likelihood that this is simply a reflection of diminished domestic animal vaccination practices. The 

rates of vaccination are likely to be higher in dogs than in livestock or cats (especially feral cats), 

and this may be reflected in the higher numbers of positives found in cats and cattle.  The 

maintenance of steady RRV incidence is of particular concern in domestic animals, even though 

they are not a likely alternative host reservoir, as these are most likely to have close contact with 

humans. Additionally, there were a number of cases in livestock hosts (such as horses, cows, sheep 

and goats). Although less frequently encountered than in domestic carnivores, these cases may 

actually represent a greater risk to humans due to a lowered index of suspicion among farmers or 

veterinarians caring for these animals. Unrecognized exposures in turn could cause significant 

delay in proper diagnosis of these infections, potentially allowing owners and others to have 

greater risk of serious disease.  

Limitations: The data available constrained the current study. Given that the data provided are 

restricted to county and year of collection, it is impossible to examine seasonal patterns or perform 

more detailed geographic analysis. Additionally, it is difficult to assess whether the animals 

submitted for testing are truly representative of the disease as it exists in the larger natural 
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population of these hosts within the state. It seems likely that these animals represent a biased 

sample of the population as a whole. This bias could easily result in an underestimation of the true 

impact of RRV. Finally, the limited number of submissions of non-raccoon animals, both domestic 

and wild, may place constraints on accurate assessment of the longitudinal trend in these hosts. 

 Another significant limitation of the study is the lack of data regarding the species and total 

number of all animals tested. As a result, it is difficult to assess whether surveillance efforts 

remained consistent throughout the study period. However, it seems likely that surveillance efforts 

would have remained constant, or may have increased, due to the implementation of the ORV 

program, to determine its efficacy and to justify continued funding. This potential elevation of 

surveillance would be unlikely to extend to host species other than raccoons, nor would it likely 

extend beyond the counties where the ORV program was implemented and would be unlikely to 

have resulted in the reduction in RRV cases found in this study. 

Conclusion 

 This study demonstrates that numbers of RRV positive animals declined significantly over 

the study period in those areas of the state of WV where RRV is enzootic, particularly in the 

primary viral reservoir host, raccoons. There is no reason to assume that diagnostic or recovery 

methods have changed during this same period. The results of this study would indicate that public 

health efforts are needed to improve vaccination rates in all domestic animals, including livestock, 

especially in those counties where RRV is enzootic. Public information campaigns targeted at 

veterinarians and livestock owners could be instituted in those areas to increase awareness of the 

risk of rabies infection. Further examination of RRV in non-raccoon hosts seems warranted to 

explain why these diverse groups are not trending down along with the raccoons. Future directions 

for this work include a spatial analysis of those factors that may be associated with RRV and 
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raccoon populations, including land use, human population density and availability of surface 

water as well as ambient weather conditions. Additionally, cluster analysis of RRV positives would 

provide useful information to use as guidance for RRV control and other public health measures.   
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Table 1.1: Counties contained within each of the zones, West Virginia. 

Zone 1  

Counties that reported no RRV cases in the 

study period  

(n=22) 

Boone, Cabell, Calhoun, Clay, Doddridge, 

Gilmer, Jackson, Kanawha, Lincoln, Logan, 

Mason, McDowell, Mingo, Pleasants, 

Putnam, Ritchie, Roane, Tyler, Wayne, Wirt, 

Wood, Wyoming 

Zone 2  

Counties that reported at least 1 RRV case 

and had ORV baits distributed during the 

study period 

 (n=24) 

 

Barbour, Braxton, Brooke, Fayette, 

Greenbrier, Hancock, Harrison, Lewis, 

Marion, Marshall, Mercer, Monongalia, 

Monroe, Nicholas, Ohio, Pocahontas, Preston, 

Randolph, Summers, Raleigh, Taylor, 

Upshur, Webster, Wetzel,  

Zone 3  

Counties that reported at least 1 RRV case 

and did not have ORV baits distributed during 

the study period 

 (n=9) 

Berkeley, Grant, Hampshire, Hardy, 

Jefferson, Mineral, Morgan, Pendleton, 

Tucker 

 

Each county within West Virginia was assigned to a zone based on the presence/absence of RRV 

as well as whether ORV baits were distributed during the study period, 2000 - 2015 
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Figure 1.1: Map of the zones in West Virginia, as designated for this study 

 

A map of the three zones for the state of West Virginia as determined by raccoon variant 

rabies virus (RRV) presence and oral rabies vaccine (ORV) distribution (Zone 1 = No RRV 

during study period, Zone 2 = RRV present and ORV distributed, Zone 3 = RRV present, ORV 

not distributed).  
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Table 1.2: Species breakdown of all non-raccoon wildlife and domestic animals infected with 

raccoon variant rabies virus, West Virginia, 2000-2015. 

NDNR species Number of RRV positive samples 

Striped skunk (Mephitis mephitis) 290 

Red Fox (Vulpes vulpes) 70 

Bobcat (Lynx rufous) 14 

Groundhog (Marmota monax) 10 

Beaver (Castor canadensis) 4 

Opossum (Didelphis virginiana) 1 

River otter (Lontra canadensis) 1 

Bat (Species unknown) 1 

Total NDNR 391 

Domestic species  

Cat (Felis catus) 73 

Cow (Bos taurus) 15 

Dog (Canis lupus familiaris) 8 

Horse (Equus caballus) 8 

Goat (Capra aegagrus hircus) 4 

Sheep (Ovis aries) 3 

Total Domestic 111 

 

Species and case count for nondomestic, non-raccoon (NDNR) animals and domestic animals 

diagnosed with raccoon variant rabies virus (RRV), West Virginia, 2000-2015.  
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Figure 1.2: Numbers of raccoon variant rabies virus cases by animal type and year, West 

Virginia, 2000-2015. 

 

 

 

Graph showing trends in raccoon variant rabies virus cases for the varying animal types in this 

study, West Virginia, 2000-2015. Note that the overall declining trend in total cases and 

raccoons does not hold for NDNR and domestic animals. 

 

NDNR = Nondomestic, non-raccoons (all non-raccoon wildlife) 
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Table 1.3: Comparison of negative binomial models fit for RRV in all hosts, West Virginia, 

2000-2015. 

 

 

 

 

 

Negative binomial models were fit for RRV in all host species. All models show significant 

declines in RRV cases in each zone. 

  

Area Analyzed Coefficient (SE) p-value 

Zones 2 & 3 combined -0.06  (0.011) <0.001 

Zone 2 -0.09  (0.018) <0.001 

Zone 3 -0.04   (0.012) <0.001 
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Table 1.4: Comparison of negative binomial models fit for RRV in the different animal types 

and zones, West Virginia, 2000-2015. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Negative binomial models regression coefficients, p-values and AIC for the various animal types 

in this study. Note that while raccoons showed significant declines in all models, NDNR and 

domestic animals did not show similar significance. 

 
a NDNR = Nondomestic, non-raccoon (all non-raccoon wildlife) 

  

Animal type Regression 

coefficient (SE) 

p-value 

Raccoon   

Zones 2 & 3 

combined 

-0.083 (0.013) <0.001 

Zone 2 -0.102 (0.02) <0.001 

Zone 3 -0.061 (0.014) <0.001 

NDNRa   

Zones 2 & 3 

combined 

-0.02 (0.015) 0.18 

Zone 2 -0.032 (0.025) 0.21 

Zone 3 -0.015 (0.018) 0.40 

Domestic Animals   

Zones 2 & 3 

combined 

0.013 (0.026) 0.62 

Zone 2 -0.018 (0.04) 0.66 

Zone 3 0.037 (0.035) 0.29 
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Table 1.5: Results of z-score analyses comparing Zone 2 with Zone 3 for all hosts, West 

Virginia, 2000-2015 

 

 

Z-scores indicate there is a significant difference in RRV decline for Zone 2 as compared to 

Zone 3 for all hosts and raccoons, with Zone 2 having a greater decline. There was not a 

significant difference between the zones for NDNR and domestic hosts. 

 
a NDNR = Nondomestic, non-raccoons (all non-raccoon wildlife) 

  

Group z score p-value 

All host species -2.31 0.010 

Raccoons -1.67 0.047 

NDNRa -0.55 0.291 

Domestic animals -1.03 0.150 
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CHAPTER TWO 

 

Exploratory Spatial Analysis of Raccoon Variant Rabies Virus, West Virginia, 2000-2015 

 

Abstract 

 Raccoon variant rabies virus (RRV) has become a significant problem in large portions of 

the eastern United States, in part stemming from the translocation of rabid raccoons along the West 

Virginia – Virginia border. Given the rapid expansion of the virus to the east and north subsequent 

to this release, it is of interest that there has been relatively slow viral movement to the west into 

West Virginia, especially given the state’s geographic proximity to the release site. The objective 

of the current study is to identify clusters of RRV infection, and explain spatial variation in RRV 

infection among captured animals. Data were extracted from the database maintained by the West 

Virginia Bureau of Public Health, and combined with national data collected on geographic 

location, elevation and type of land use. Analyses consisted of Poisson regression within a 

Bayesian environment that included consideration of spatial autocorrelation. These analyses, 

combined with cluster analysis, were performed for several different animal host types. Although 

multivariable regression analyses failed to demonstrate associations, individual univariate 

regression and cluster analyses did identify geographic associations. For many of the variables 

examined, there was statistically significant clustering of RRV cases for all host types, and this 

analysis provides valuable information that can inform the allocation of prevention resources.  
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Introduction 

Several investigators have examined environmental and demographic factors that may be 

involved in rabies disease dynamics. One such study found that human population density, surface 

water, residential land use, agriculture and industrial development showed a significant positive 

association with RRV outbreaks, while deciduous and mixed forests reduced the odds of epizootic 

RRV.35 Similarly, a more recent study found that human agricultural land use and rurality were 

significantly associated with increased risk of human exposure to a rabid raccoon.36 However, that 

study did not evaluate types of land use beyond agriculture and forestation, nor did it examine 

human population density or elevation. Additionally, that study failed to consider the potential 

influence of RRV in adjacent counties on reported incidences levels a given county. 

 The objective of the current study is to identify clusters of RRV infection and explain 

spatial variation in RRV infection among captured animals, through a combination of univariate 

and multivariate spatial regression analyses. Additionally, cluster analysis and Poisson regression 

were performed to determine whether there were covariates associated with RRV infections that 

could help explain the differences in reported RRV incidence. Analyses were conducted on all 

RRV hosts, as well as subpopulations that included raccoons, nondomestic non-raccoons (NDNR) 

and domestic animals. The NDNR subgroup included all non-raccoon wildlife, such as foxes and 

skunks, infected with RRV. 

Materials and Methods 

Data collection and database structure 

This study incorporated the same rabies data examined in the prior study. Longitude and 

latitude for the centroid of each county were obtained from the United States Geologic Survey’s 
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(USGS) Geographic Names Information System.53 A centroid is defined as the geographical center 

of a given county, representing the single point within the county furthest from all its borders. 

Using the centroid located each county geographically relative to each other. Data regarding the 

mean elevation of each county were obtained by accessing the 30m USGS National Elevation 

Dataset (NED) Digital Elevation Model (DEM) for West Virginia.54 Data for the human population 

of each county were extracted from the US Census Bureau’s datasets, including the intercensal 

datasets,39 with an intercensal dataset being the Census Bureau’s annual estimate of county 

population for the years intervening between official censuses. Land use data was obtained from 

the Multi-Resolution Land Characteristics Consortium National Land Cover Database (NLCD).40 

Several codes used in the original database were combined, resulting in six categories of land use 

(Developed, Forested, Water/wetland, Agricultural/Open, Barren, and Shrubland). Land use 

percentages reflected the amount of the total land area in a county devoted to each of the land use 

types. The NLCD also provides information on the total area of each county, which, combined 

with census data, permitted calculation of county human population densities. The U.S. 

Department of Agriculture’s urban influence codes (UIC)55 were used to classify counties as rural 

or urban. UICs divide counties into 12 groups based on population size. Rural/urban status was 

given a binary code, with counties in groups one and two considered urban (coded as 1), while all 

other counties were considered rural (coded as 0). Another binary variable was created for border 

status of counties, with counties bordering Virginia (VA) being coded as 1, while counties without 

this attribute were coded as 0,  

Analytic approaches 

Cluster identification was performed using the open source software tool GeoDa, which 

provides cluster maps and calculates univariate local Moran’s I.56 Moran’s I is a weighted 
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correlation coefficient used to detect departures from spatial randomness and indicates the 

existence of spatial clustering. It typically ranges from -1 to 1, with random spatial distributions 

having a value of zero. Departures from randomness indicate spatial patterns, with positive values 

indicating spatial autocorrelation or clustering.57,58 Univariate local Moran's I was calculated and 

subsequent local indicators of spatial autocorrelation (LISA) maps were produced. Queen’s 

contiguity weights matrices were utilized to maximize consideration of neighboring county values, 

and results were permuted 99,999 times to increase our ability to detect spatial outliers, while still 

reducing the probability of identifying spurious clusters. The cluster analyses used a pseudo p-

value threshold of 0.05, and was performed by pairing each of the outcome variables within a 

given county with its corresponding Federal Information Processing Standard (FIPS) number. 

FIPS is a system that gives each county in the country a unique identifier.  

Data were collected annually over the 2000-2015 study period. Demographic, land use and 

geographic data were combined to produce a spatial regression model. The statistical programming 

platform R (version 3.4.2) was used to evaluate the data, employing the CARBayes package 

(version 5.0). 41,59. This package was chosen due to its ability to perform spatial regression analysis 

using conditional autoregression (CAR) within a Bayesian statistical environment. CAR analysis 

assumes the probability of values estimated at any given location is conditioned on the levels of 

neighboring values. Bayesian analysis was deemed most appropriate, as that approach assumes 

that prior values influence subsequent data points. The approach incorporated in the CARBayes 

package uses Markov Chain Monte Carlo (MCMC) simulation and a simple random walk for 

updates to the random effects.60-62 A number of MCMC simulations (20,000) were used as a burn-

in to allow the model to converge, after which 100,000 simulations were run. These were then 

thinned by a factor of five to reduce the effect of autocorrelation, and convergence was checked 
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by visual examination of convergence plots. An alpha of 0.05 was used as the significance 

threshold for all analyses.  

Since count data were being examined, either Poisson or negative binomial regression 

techniques were appropriate. Poisson regression was selected as the statistical technique to be used 

with human population density as the offset, because the Poisson gamma distribution is commonly 

used for disease mapping.63-65 All outcome variables were aggregated for the entire study period 

(2000-2015), and mean values for the study period were calculated for all potential continuous 

covariates, which were then centered by subtracting those means from each data value. For 

meaningful interpretation of results, mean elevations and county sizes were divided by 100, and 

county populations were divided by 1000. Univariate and multivariate models were evaluated. 

Results 

 Examination of the data for each host type indicated that there was evidence of statistically 

significant spatial clustering as shown by Moran’s I values in excess of 0.35. The values for all 

hosts, raccoons, NDNR and domestic animals were 0.47, 0.40, 0.50 and 0.56 respectively. Cluster 

mapping demonstrated that while the counties involved in the clusters varied among host types, 

the clustering of cases occurred consistently among certain counties within WV. All of these 

counties are located along the state’s border with VA and/or in the Eastern Panhandle. The number 

of counties included within clusters ranged from five (raccoon hosts) to eight (domestic animal 

hosts). 

 Univariate regression analysis suggested that several variables were correlated with RRV 

incidence. These variables, along with their associated posterior medians and 95% credible 

intervals, are given in Table 2.1 for each of the host animal types. 
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When all hosts were evaluated, elevation, county size, percentage of shrubland land use 

and VA border proximity showed positive associations with numbers of RRV cases, with 

coefficients of 0.18, 0.12, 4.61 and 1.84 respectively. When raccoon hosts were examined 

separately, an identical pattern of positive associations emerged for univariate regression models 

incorporating all counties (coefficients of 0.18, 0.13, 4.64, and 1.60). However, in addition, 

developed land use was negatively associated with cases (-0.19). The NDNR data presented 

difficulties with regard to model convergence. In particular, the percentage of shrubland for all 

counties would not produce a convergent regression model. This may reflect the heterogeneity of 

host species within the NDNR grouping, although the majority (376, 96%) of hosts were 

mesocarnivores, with skunks accounting for the bulk of these (290, 77%). Among NDNR hosts, 

mean elevation was the sole variable that exhibited positive association (0.23) for the univariate 

models, with RRV cases increasing with elevation. The predictors for domestic animals closely 

mirrored those for raccoons, in that elevation, county size, and VA border status were each 

positively associated with case numbers, while cases decreased as the percentage of developed 

land increased (coefficients of 0.17, 1.85, 1.99 and -0.23 respectively). In addition, the percentage 

of shrubland, which was found to be positively associated in the raccoon models, did not maintain 

that association when the univariate regression models for domestic animals were examined.  

Multivariate analyses were performed, but did not add any new information to that obtained 

from the univariate analyses. A similar result was observed when an interaction term with any 

potential predictors. 

Discussion 

 The purpose of this exploratory study was to examine the distribution of RRV in WV, as 

well as determine the spatial and demographic variables that might serve as predictors for RRV 



36 
 

cases and/or outbreaks. While our earlier work indicated that the overall number of RRV cases in 

WV declined during the study period, there had not been a corresponding decline in non-raccoon 

wildlife or domestic animals.66 We examined spatial clustering of RRV cases, in addition to a 

number of potential predictor covariates, in the same spectrum of host types as our prior study.66 

Spatial clustering of RRV cases was present, as shown by Moran’s I and cluster mapping, with all 

clustered counties located along the eastern border with VA and/or in the Eastern Panhandle of 

WV.  

Our study indicates that mean county elevation, county size and border status are most 

consistently associated with elevated case counts for RRV. While none of these variables is 

modifiable, they do help define areas in the state that could be viable targets for public health 

interventions. Finding a positive association with elevation may be a confounder for border status, 

as many of the counties with higher elevations are found along the WV-VA border. A likely 

explanation for the consistent and substantial positive association of RRV cases with VA border 

status is that of a border, or edge, effect. This occurs when a border, that does not actually prevent 

movement across that border, defines the study area. In this case, the state line is a purely political 

boundary, which has no effect on the movement of animals across the line. As a result, any 

geographic distribution or spatial interaction may extend across the WV state border.67,68 

With regard to variables that are likely to vary over time, the percentage of county area that 

is developed was most consistently negatively associated with RRV infection, especially in the 

raccoon and domestic animal groupings. This finding may seem counterintuitive, given the known 

propensity of raccoons to prefer habitats in peridomestic settings,43,69,70 but could indicate that as 

development proceeds in a given county, case numbers should decline. The positive association 

with shrubland found for all hosts and raccoons may be spurious, because only seven of the 33 
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counties in the study had any shrubland at all, and in those counties, the range was 0.01% to 0.15%. 

These low numbers are probably due to improvements in satellite sensing technology that recently 

have permitted shrubland identification. 

Regarding spatial predictors of RRV, several studies are available, although none provides 

a comprehensive review of all factors and cases involved in the RRV epizootic in West Virginia. 

Available research indicates that the virus is primarily found along a north – south gradient in the 

Eastern United States.27 The RRV outbreak subsequent to the release of rabid raccoons by hunters 

has spread rapidly in the mid-Atlantic, moving to the north and east, and reaching Canada in 

1999.27 This rapid spread is postulated to be due to the dense human population along the Eastern 

Seaboard, combined with raccoons in that region that were immunologically naïve to RRV.27 

Increased human population density was postulated to increase raccoon populations by providing 

a preferred habitat in peridomestic settings, which could tend to result in animals being found in 

greater concentrations than might otherwise be expected. In contrast, western movement in WV 

appears to be slower, which may be due to lower raccoon densities or less suitable habitat. One 

hypothesis is that this may be due to the high ridges to the west acting as a physical barrier to 

raccoon (and virus) movement,28,29 although studies examining this hypothesis have been 

equivocal.30,31  

To our knowledge, this is only the second ecological study to examine RRV in WV with 

an eye toward possible predictors, and clustering, of cases. The prior study indicated that rurality, 

as derived from the UIC, and percentage of agricultural land use were the only factors significantly 

predictive of RRV infection, with cases increasing as agricultural land use increased and as 

counties became less rural.36 That study did not account for spatial autocorrelation, however. That 

study also examined VA and North Carolina (NC), in addition to WV. This could explain the 
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positive association with agriculture found in that study since, while WV is a predominantly rural 

state, it is not particularly agricultural, unlike VA and NC. Among the counties included in this 

study, only 0.8% of the total area available was used for agriculture, as compared to 27% (NC) 

and 32% (VA).71,72 The low agricultural utilization in WV may have skewed our findings, as 

agricultural land use was not found to have an association with numbers of RRV cases.  

Another potential issue with the prior study is that both VA and NC extend from the 

Appalachians to the Atlantic coast. Since the inadvertent introduction of RRV into the Middle 

Atlantic states, the disease has undergone rapid expansion from the original locus in the 

Appalachian Mountains, at times moving as rapidly as 30-60 km per year.14 As a result, RRV has 

become well entrenched and enzootic throughout these states, and now extends into Canada.15 It 

is of note that while RRV has spread rapidly to the north and east from the original release site of 

the translocated animals, there has not been similar movement to the west.  This may indicate that 

there are different predictor variables at play in the less mountainous non-Appalachian areas when 

compared to counties in Appalachia. West Virginia is the only state in the nation that is entirely 

contained within Appalachia,73 and as such, could present a rather unique situation with regard to 

RRV. The history of RRV movement since disease introduction would seem to indicate that there 

might be factors in WV preventing westward RRV movement that have yet to be delineated. The 

dramatic expansion of RRV to the east stands in rather stark contrast with the lack of westward 

movement of the virus, especially when one considers that the original release occurred on the WV 

– VA border nearly 40 years ago.  

This study is limited by the available data as provided by the state Bureau of Public Health, 

insofar as cases were assigned to counties, rather than exact locations. This has a large impact on 

the elevation data points, because many of the study counties are at the westernmost edge of the 
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Appalachian valley and ridge topography. Elevation for cases located in the valleys may be as 

much as 1000 feet lower than the mean county elevation, and can be up to 2000 feet lower than 

the highest point in those counties. An additional constraint inherent in this dataset is the inability 

to assess whether the animals submitted for testing are truly representative of the disease as it exists 

in the larger natural population of these hosts within the state. If a bias exists, it could easily result 

in an underestimation of the true impact of RRV. Additionally, the dataset provided only year of 

collection, so we were unable to assess any potential seasonality regarding RRV infection.  

Conclusion 

 The clustering of RRV for each of the host types studied indicates that spatial factors are 

involved, and this tends to indicate that public health measures that target those counties included 

in the clusters are likely to have the greatest impact on reducing RRV cases. This study suggests 

that while there may be good support for believing that spatial factors have likely affected the 

westward movement of RRV in WV. However, based on limited available data, it is difficult to 

identify conclusively which factors are associated with RRV infection. Increased vaccination 

efforts by veterinarians and livestock owners in the counties within the clusters should directly 

reduce the pool of susceptible domestic animals. Likewise, elevated public awareness of the risk 

for RRV infection in both wildlife and domestic animals may be of value in reducing human 

exposure to the virus. Future directions for research efforts would include a spatiotemporal 

approach, which may elucidate the impact of spatial factors through time. Expansion of the study 

area to include those counties in states that share a border with WV would allow potential 

mitigation of the border effect. Another useful avenue for further investigation would evaluate the 

varying dynamics of RRV in disparate host types. 
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Figure 2.1: Total number of raccoon variant rabies virus (RRV) infected animal captures at the 

county level in West Virginia, 2000-2015. 
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Figure 2.2: Local indicators of spatial autocorrelation maps for each of the host types examined, produced to investigate local 

clustering of raccoon variant rabies virus (RRV) at the county level in West Virginia, 2000-2015 

 

For each of these maps, red indicates clustered counties that have significantly (α = 0.05) higher RRV case counts for the study 

period, while blue represents clustered counties with significantly lower case counts. 
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Table 2.1: Variables found by univariate Poisson regression (using a log link function) to be 

significantly (α = 0.05) associated with RRV infection by host type, West Virginia, 2000-2015. 

Values are reported as the median posterior (95% credible interval). 

 

 

Host type Mean elevation 

(in 100 ft 

increments) 

Area (km2) % Developed % Shrubland VA Border? 

All Hosts 
0.18 

(0.07, 0.27) 

0.12 

(0.01, 0.23) 
 

4.61 

(0.001, 10.19) 

1.84 

 (0.37, 3.20) 

Raccoons 0.18 

(0.08, 0.27) 

0.13 

( 0.04, 0.22) 

-0.19 

(-0.42, -0.02) 

4.64 

(0.28, 10.34) 

1.60 

(0.28, 3.00) 

NDNR1 0.23 

(0.03, 0.43) 
   

 

Domestic 

animals 

0.17 

(0.07, 0.29) 

0.17 

(0.07, 0.29) 

-0.23 

(-0.42, -0.01) 
 

1.99 
(0.69, 3.23) 

 

1NDNR = Non domestic, non-raccoon (all non-raccoon wildlife) 
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CHAPTER THREE 

 

Exploratory Spatiotemporal Analysis of Raccoon Variant Rabies Virus Infection,  

West Virginia, 2000-2015 

 

 

Abstract 

 Raccoon variant rabies (RRV) infection has become enzootic in the Eastern United States 

after an accidental translocation of rabid raccoons by raccoon hunters in the late 1970s.13 Given 

the rapid expansion of the virus to the east and north subsequent to this release, viral movement to 

the west into West Virginia has been surprisingly slow, especially considering the state’s 

geographic proximity to the initial release site. The current study evaluates several spatial 

covariates as they change with time in order to determine whether there is an association with 

concurrent changes in RRV incidence. Annual data obtained from the West Virginia Bureau of 

Public Health for the period 2000-2015 were combined with data regarding geographic location, 

demographics and land use for the same period. Analyses incorporated Integrated Nested Laplace 

Approximations (INLA), a recently developed Bayesian modelling approach that allows the 

simultaneous use of county and time as random effects. These analyses were done for several types 

of viral hosts. Univariate analyses indicated that several variables were associated with RRV 

infection for each host type, with county centroid longitude and proximity to the Virginia border 

exhibiting positive association for all host types. Multivariate analyses found that border proximity 

and time exhibited positive associations for the all hosts and raccoon host types, and border 

proximity maintained a positive association for domestic animals as well. Time was negatively 

associated for each host type. This study provides information that may aid in prediction of future 
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RRV infections and/or outbreaks, as well as providing guidance for the allocation of public health 

resources. 

 

Introduction 

Bayesian hierarchical models with random effects are one of the most widely used methods 

in public health and disease mapping. These models are traditionally fitted using Markov Chain 

Monte Carlo sampling (MCMC).63 Due to the nature of the hierarchical models and random 

effects, the convergence of MCMC can be very slow and unpredictable, with some individual 

analyses requiring hours or days to complete. Recently, Integrated Nested Laplace Approximation 

(INLA) was developed as an alternative method to fit Bayesian hierarchical models.74 INLA has 

been shown to be equivalent to MCMC for parameter estimation, with substantially reduced 

computational burdens and improved analytic time requirements.75 Our prior studies examined 

determinants for RRV infection, either spatially or temporally, but neither considered the effects 

of space and time simultaneously due to the difficulty of implementation of MCMC methods to 

consider two random effects. In each of those studies, cases were aggregated by either time or 

space separately. In particular, our first study examined the changes in RRV cases over time, by 

aggregating the number of cases in each year, but ignoring the correlation of the data from county 

to county.20 The second study examined the total events from 2000-2015, taking into account the 

differences in spatial structure from county to county. This approach attempted to determine 

whether associations existed with the number of RRV cases in each county over the entire study 

period, but not longitudinally.28 With the advent of INLA techniques, multiple random effects can 

be accommodated. The benefit of our models as implemented is threefold: (1) they include random 

effects, which allows them to handle more complicated data structures such as the correlation 
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associated with repeated measurements for both space (county) and time (year); (2) they have the 

flexibility to assess effects of year and geospatial variables as covariates over time in the regression 

analysis; and (3) they do not suffer from the convergence problem due to small number of events 

and sample size (which is the most common issue in the MCMC approach). 

The current study will use INLA methods to evaluate several possible geospatial 

determinants for RRV infection as both the determinants and case numbers change over time. It 

will examine whether temporal changes in those determinants are associated with changes in RRV 

infection incidence, and to identify which of these might act as predictors of RRV incidence, as 

well as assess whether temporal changes affect the utility of those predictor variables. Analyses 

were conducted for RRV infections in all hosts, as well as subpopulations of assorted viral hosts. 

These host subgroups are raccoons, nondomestic non-raccoons (NDNR) and domestic animals. 

The NDNR subgroup included all non-raccoon wildlife, such as foxes and skunks, which were 

found to be infected with RRV. 

Materials and Methods 

Data collection and database structure 

 Data related to rabies cases were obtained from the WV State Bureau of Public 

Health and consisted of annually reported rabies virus cases for RRV. The dataset used here is 

identical to that analyzed in the purely spatial study, excludes counties with no RRV cases in the 

study period, and incorporates the binary variables as previously described.  
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Analytic methods 

The data were combined to generate spatiotemporal regression models using INLA. By 

using a combination of analytic approximation and numerical integration, INLA avoids the 

convergence issues that arise with MCMC methods. Using INLA methods also permitted the 

simultaneous use of region (county) and time (year) as random effects variables within a Bayesian 

environment. As a result, the correlation inherent in a repeated measures analysis for both time 

(year) and space (county) is accounted for with all covariates. The statistical programming 

platform R (version 3.5.1) was used to evaluate the data, employing the INLA package (version 

18.07.12).41,74   

Given the count data examined, either Poisson or negative binomial regression approaches 

would have been appropriate. Exploratory examination of the data indicated that negative binomial 

regression was most appropriate, due to over-dispersion shown by the large variances as compared 

to the mean for each of the varying host types. The natural logarithm of county area (in km2) was 

used as the offset, as an offset term is suggested for negative binomial regression.  

Both univariate and multivariate analyses were conducted, with the variables that exhibited 

associations in the univariate analyses used as a starting point for the multivariate models. To 

identify a final model, parsimonious models were created by removing variables whose credible 

interval included zero, with the variables having the least effect discarded first in a stepwise 

manner until only variables with credible intervals including zero remained.  Time was evaluated 

as a fixed effect in the multivariate models, regardless of whether the credible interval bracketed 

zero, in addition to being used as a random effect. Each of the variables that had shown an 

association in the univariate analyses were evaluated for interactions. Continuous data were 
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centered by subtracting the mean from each data value, and a 95% credible interval was used as 

the association threshold for all analyses. 

Results 

 There were a number of changes in the covariates over the study period, as shown in Table 

3.1. In the counties that experienced at least one RRV case during the study period, human 

population and human population density increased by 6.1 and 4.13 percent respectively. Among 

the land use variables, the percentages of developed land, barren land and shrubland all increased 

by 5.3%, 28.66% and 1240.74% respectively. The relative amounts of forested land, agricultural 

land, and wetland all declined by 0.68%, 1.03% and 0.45% respectively. There was a net increase 

of three urban counties in the area studied, with four counties gaining urban status (Barbour, 

Brooke, Fayette, and Raleigh), while Morgan County changed from urban to rural.  

A summary of the study’s univariate regression findings is given in Table 3.2.  For the 

evaluation of all hosts combined, human population, centroid longitude, percentage of county land 

devoted to agriculture and sharing a border with VA were all positively associated with RRV 

incidence (coefficients of 0.02, 0.68, 0.05, and 1.79 respectively) after the software package 

adjusted for the effects of spatial autocorrelation and temporal changes in both the outcome and 

predictors. For example, this may be interpreted as indicating that for every 1000 person increase 

in a county’s human population, one would anticipate that the number of RRV cases in all hosts 

would increase by approximately one (log 0.02). Similarly, a county on the VA border could be 

expected to have roughly six (log 1.79) more all hosts cases than a county not on that border. 

 Each of the varying host subtypes were examined as well. Raccoons exhibited similar 

associations for all the variables that were positively associated with the combined group 
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(coefficients of 0.02, 0.53, 0.05, and 1.44, respectively). In addition, percentage of shrubland 

showed a positive association with RRV case numbers, while percentage of forested land use 

demonstrated negative association (coefficients of 1.32 and -0.03 respectively). A rather different 

pattern developed when the NDNR (all non-raccoon wildlife) host type was considered. Longitude 

and border proximity continued to show positive association (1.04, 2.72) with RRV case counts. 

Centroid latitude, percentage developed land use, and percentage wetland each showed a negative 

association (coefficients of -0.94, -0.15 and -0.57 respectively), while elevation showed a positive 

association (0.09). Similar to the situation described for all host and raccoon host types, centroid 

longitude, proximity to VA, and percentage agricultural land use showed positive association for 

domestic animals (respective coefficients of 0.97, 1.84 and 0.06). Percentage of barren land 

demonstrated negative association with RRV numbers (-1.02).  

 Multivariate analyses found that bordering VA was positively associated for most of the 

host types studied. With regard to the all hosts and raccoon models, proximity to the VA border 

was found to have a positive association (coefficients of 1.78 and 1.44 respectively), while time 

was found to have a negative effect for both models (coefficient of -0.03 for each). This indicates 

that, for two hypothetical counties identical in all other aspects, one located on the VA border 

would be expected to have approximately 5.9 more cases of RRV for all hosts than one not located 

on the border. Examination of the NDNR wildlife multivariate regression model revealed that 

longitude and latitude each displayed association, with longitude being positively associated and 

latitude negatively (coefficients of 1.93 and -1.90, respectively). An increase in longitude indicates 

eastward movement, while latitude decreases as one moves south. The final multivariate model 

for domestic animals contained both border proximity and longitude, with both having a positive 

effect (coefficients of 1.14 and 0.49 respectively).  Time continued to have negative coefficients 
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in each of these latter models, although the credible intervals did not contain zero. No interactions 

were noted between any of the variables retained in the final models. 

Discussion 

 We undertook this study to determine whether geospatial and demographic variables might 

be associated with RRV cases as those variables and case numbers changed over time. Our earlier 

work indicated that there had been an overall decline in RRV numbers for the study period, but 

that decline did not extend to each of the host subtypes.66 Another of our studies demonstrated 

spatial clustering of RRV cases in WV, and identified several spatial covariates that exhibited 

significant associations with RRV incidence.76 The current study explores possible associations 

with RRV infections as case numbers and values for covariates varied over the study period. This 

was an exploratory analysis, and is intended to help generate hypotheses, as opposed to hypothesis 

testing. 

 There were changes over time in levels of the various covariates studied. The increase in 

developed land, along with decreases in forested and agricultural use, may be attributable to 

increases in human population and population density. This may also be the case for the reduction 

in wetlands. The dramatic increases in the barren, and especially shrubland, land use types may be 

more reflective of changes in satellite imaging technology rather than, or in addition to, true 

changes in land use. Several counties in the study area were reported with zero shrubland until the 

2011 NLCD dataset, after which point shrubland was identified. It seems unlikely that these 

counties would have suddenly developed shrubland in the five-year period since the 2006 NLCD. 

These technological changes would presumably have affected other land use types as well, but the 

reporting in the 2001 and 2006 datasets may have tended to buffer the effect of the changes. 
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 Any associations found may be interpreted as indicating the effect of a given factor after 

adjusting for the effects of space (spatial autocorrelation) and time (temporal autocorrelation). 

Positive associations with longitude and proximity to the VA border were found for each host type 

with univariate modelling. This suggests that case counts increase as one proceeds east, as well as 

in those counties with proximity to VA. In addition, human population and percentage of 

agricultural land use had a positive association in the all host type, as well as in raccoons. The 

positive association with both human population and agricultural land use is consistent with the 

published literature, which indicates that raccoon numbers tend to increase around human 

habitations, and that the animals’ preferred habitat is in forested areas adjacent to fields of 

agricultural crops.43,69,70 It seems reasonable to anticipate that an increase in the raccoon population 

could result in greater RRV case numbers, with an increase in risk of exposure for human 

populations. The finding that the covariates are similar for both the all host and raccoon groups is 

not surprising, since the bulk (66%) of the animals in this study were raccoons. In addition to those 

covariates, the percentage of forested land showed a negative association with RRV infection when 

considered for raccoon hosts. The positive effect of shrubland is best interpreted with caution, 

given the difficulties regarding shrubland classification already discussed. 

 The values for NDNR wildlife stand in rather dramatic contrast to the other host types. 

While longitude and border proximity remain associated for this host type, latitude was negatively 

associated with RRV cases as well, indicating that cases in this host type tended to decrease as one 

moved south and increase with eastward movement through the state. The negative association of 

developed land, and concurrent increased contact with humans, in this host type seems to be 

consistent with typical behavior noted in these animals. 
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 The findings for domestic animals closely emulate those for all hosts and raccoons. 

Longitude and the VA border continue to be positively associated with RRV. The positive 

association with agricultural land use could reflect the number of livestock in the population, as 

they comprise 27% of the domestic animals in the study. Barren land showed a negative 

association, perhaps due to barren land not being conducive to agriculture. 

 Proximity to the VA border and longitude were the strongest predictors of RRV infection 

for each host type in the univariate regressions, and border proximity was included in most of the 

multivariate final models as well. Several of the associated values from the univariate analyses 

were removed in the final models, and retained variables tended to be factors that do not change 

over time. Our failure to identify more labile covariates, while disappointing, indicates a need for 

further study to identify determinants that may help to explain the changes in RRV incidence seen 

in WV. 

 The lack of an association for the VA border in the non-raccoon wildlife hosts is of note. 

This may be indicative of movement of RRV away from the border in these hosts and could be a 

harbinger of similar movement in the other host types for the future. However, the increase in RRV 

incidence as one moves eastward (increasing longitude) and southward (decreasing latitude) 

through the state may be serving to confound an association with border proximity that might 

otherwise be present in that host type, insofar as movement in either of those directions also tends 

to be in the direction of the VA border as well.  Moreover, the small number of cases in the non-

raccoon wildlife host type may have resulted in insufficient statistical power to allow the detection 

of such an association. The pattern of significance for time corroborates our previous findings,66 

as RRV cases experienced a significant decline in the combined and raccoon only host types, but 
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did not do so for wildlife or domestic animals. These findings precisely mirror the pattern seen in 

our earlier work. 

To our knowledge, there had been only one ecological study of RRV in WV prior to our 

work. That study did not consider the effects of spatial autocorrelation however, nor any temporal 

effects on covariates and RRV case counts. The study did find that human agricultural land use 

and rurality each had a positive effect, resulting in increased risk of human exposure to a rabid 

raccoon.36 Other investigators have examined environmental and demographic factors postulated 

to affect raccoon numbers, and by extension RRV infections. One study found that human 

population density, surface water, residential land use, agriculture and industrial development each 

showed a significant positive association with RRV outbreaks, while both deciduous and mixed 

(deciduous and conifer) forestation reduced the odds of epizootic RRV.35 In the current study, 

however, none of these factors were shown to have an association with RRV case numbers once 

space and time were accounted for in the regression model simultaneously. The land use and 

demographic variables examined failed to show an association, with the immutable factor of 

border status having the strongest association with viral infections. 

The more robust analytic approach provided by the INLA technique allowed for a more 

realistic examination of the data as both dependent and independent variables changed with time. 

Adjustment for both spatial and temporal autocorrelation permitted consideration of the various 

covariates without the statistical “noise” that would otherwise tend to muddy our results. It is of 

interest that INLA suggested covariates as significant that were found in each of our previous 

studies.66,76 

Data constraints limited the study as conducted. The lack of precise locations of animal 

collection in the data provided by the state Bureau of Public Health prevented assignment of the 
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exact existing conditions to each case. This forced us to use overall county level data as a proxy 

for more precise values. The necessary subdivision of the case counts by county and year for the 

analyses undoubtedly resulted in very small case counts in some instances, which would tend to 

affect the statistical power of the analyses negatively. It is impossible to assess whether the animals 

submitted for testing truly represent the disease as it exists in the larger natural population of the 

various hosts within the state. This is of particular concern with regard to the raccoon and NDNR 

hosts, as they would be more likely to have occult infections, in which the cases might easily die 

without being detected. Detection in domestic animals is more likely prior to their death, although 

that is certainly not the case universally. It seems nearly certain that the animals collected represent 

a biased sample of the population as a whole, resulting in an underestimation of the true impact of 

RRV. Finally, given that the dataset provided only county and year of collection, we were unable 

to assess any potential seasonality with regard to RRV infection dynamics. 

Conclusion 

 With regard to the findings of this study, the strong association of border proximity with 

RRV incidence is of particular interest. Affected counties would be promising sites for the 

application of prevention measures. While prior studies have demonstrated that the oral rabies 

vaccine project of the USDA/APHIS Wildlife Services is effective,19,66 additional prevention and 

education efforts concentrated in border counties would seem warranted. Campaigns promoting 

rabies vaccination for domestic animals, including livestock, will presumably reduce the number 

of potentially susceptible animals in that population, as well as increasing public awareness 

regarding the risk of exposure from wildlife. The finding that case numbers are declining overall, 

as well as in raccoons, is encouraging. This is especially true for raccoons as they are the primary 

reservoir for RRV. Our inability to demonstrate an association for covariates that might pertain to 
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habitat types, and selection, is of concern. Further investigation of the determinants for RRV 

infection in the varying host types would be of benefit in continuing to expand the knowledge base 

regarding this public health concern, as would evaluating additional covariates that might be 

associated with habitat. This is particularly important since we have been unable to demonstrate 

the commensurate decline in wildlife and domestic animal cases that one would anticipate with 

the decline in raccoon cases. Improved information regarding RRV incidence would be invaluable 

to guide planning for public health interventions, allocation of prevention resources and targeting 

of prevention efforts.   
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Figure 3.1: Map of West Virginia showing those counties with at least one RRV case during the study 

period 
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Table 3.1: Changes in value, among the WV counties with at least one RRV case, for the various 

covariates over the study period, 2000-2015. 

 

Variable Percent change over study period 

Human Population 6.1 

 Human Population Density 4.13 

% Developed 5.3 

% Forested -0.68 

% Agriculture -1.03 

% Wetland -0.45 

% Barren 28.66 

% Shrubland 1240.74 
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Table 3.2: Variables examined by univariate INLA negative binomial regression (using a log link function) for association with RRV 

infection by host type, West Virginia, 2000-2015. Values are reported as the mean posterior (95% credible interval). Apart from time, 

only variables whose 95% credible interval does not include zero are reported. 

 

Variable Host Type 

All Hosts Raccoons Non-raccoon Wildlife Domestic Animals 

Human Population  0.02 (0.002, 0.04)  9.83 (9.12, 10.55) 

Latitude   -0.94 (-1.83, -0.09)  

Longitude 0.68 (0.21, 1.16) 0.54 (0.09, 1.00) 1.04 (0.40, 1.76) 0.97 (0.57, 1.45) 

% Developed   -0.16 (-0.31, -0.02)  

% Forested  -0.03 (-0.07, -0.001)   

% Wetland   -0.57 (-1.10, -0.07)  

% Ag 0.05 (0.01, 0.10) 0.05 (0.01, 0.09)  0.08 (0.02, 0.42) 

% Barren     -0.98 (-2.02, -0.02) 

% Shrubland  1.32 (0.13, 2.50)   

VA Border? 1.75 (0.99, 2.53) 1.41 (0.64, 2.21) 2.72 (1.78, 3.78) 1.85 (1.07, 2.77) 

Time (years) -0.03 (-0.05, -0.01) -0.03 (-0.05, -0.002) -0.02 (-0.05, 0.01) 0.005 (-0.05, 0.06) 
 

 



58 
 

 

 

Table 3.3: Final models from results of multivariate INLA analyses performed using negative 

binomial regression (using a log link function) for association with RRV infection by host type, 

West Virginia, 2000-2015. Values are reported as the mean posterior (95% credible 

interval(CI)).  

 

Covariates Host Type 

All hosts Raccoons NDNR Domestic 

 

VA Border Proximity 

 

1.78 

(1.00, 2.56) 

1.44 

(0.65, 2.25)  

 1.14  

(0.64, 1.64) 

 

Longitude 

 

  1.93  

(1.20, 2.67) 

0.49  

(0.27, 0.73) 

 

Latitude 

 

  -1.90 

(-2.63, -1.22) 

 

Time (Years) -0.03 

(-0.06, -0.01) 

-0.03 

(-0.05, -0.002) 

-0.02 

(-0.05, 0.01) 

0.003 

(-0.05, 0.05) 
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PROJECT CONCLUSIONS 

 

 Rabies infections, and particularly those caused by the raccoon variant of the virus, have 

become a serious public health concern subsequent to the unintended release of rabid raccoons by 

hunters along the West Virginia – Virginia border in the late 1970s.13 Over the course of the four 

decades since that event, the disease has expanded dramatically. It currently extends eastward to 

the Atlantic coast and north into Canada.52 Curiously, there has not been similar westward viral 

movement. In fact, the furthest west the disease has extended in West Virginia is only 

approximately 100 miles west of that original release site. This project was designed to explore 

whether there are spatial factors that can help explain this notable lack of westward encroachment 

by the virus.  

There have been relatively few studies published that have examined spatial characteristics 

for association with raccoon variant rabies virus (RRV) infections in West Virginia,36,77 and none 

that have considered the autocorrelation inherent in spatial analyses. Together, results from the 

three studies presented here address gaps in knowledge regarding RRV behavior across time and 

space, as well as providing the initial description of the use of various autocorrelative approaches 

in Bayesian regression analyses. They illustrate the importance and utility of these approaches 

when evaluating the behavior of infectious diseases at the area level. Longitudinal evaluation by 

itself did not give a complete picture of the current state of the virus, and while a purely spatial 

analysis indicated that several determinants could have an association with RRV incidence, it 

could not address the effect of time within the model. Several of those determinants were 

eliminated from consideration when the random effects of both space and time were accounted 

for.   
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 The first study examined the longitudinal behavior of RRV, incorporating area (county) as 

a random effect. A significant reduction in case counts over time was found for all hosts as well 

as raccoons. These reductions were not present for non-raccoon wildlife or domestic animals, 

however. The initial study was complemented by our second study, which examined the impact of 

a number of spatial characteristics, including potential geographic and demographic determinants, 

on RRV incidence. Mean county elevation and a county’s inclusion in the border with Virginia 

were found to be most consistently associated, with each having a positive effect on case numbers. 

Additionally, there were some indications that land use type might have an effect. The second 

study also identified clustering of high RRV incidence counties, with the majority of counties in 

those clusters being located on the Virginia border. These results from the second study show that 

while the disease continues to affect counties along the eastern border of the state, it continues to 

show no predilection for westward movement. Aggressive public health efforts in those counties 

have real potential for substantial impact on the virus. 

 The final study found that being a component of the Virginia border, as well as a relatively 

eastern location, served as the best predictors for RRV infection for most of the host types, and 

that there was a significant effect of time as a covariate for the all host and raccoon host types. 

This serves to corroborate the findings of the second study, as well as replicating those of the first.  

It would appear that the INLA approach produces comparable results to those of the more 

traditional statistical techniques, while providing a more realistic model that accounts for multiple 

random effects yet is less computationally intensive. Additionally, a comparison of the three 

techniques shows that, in general, the coefficient values from the INLA approach tend to parallel 

those derived from the standard methods but are usually closer to zero relative to those prior 
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techniques. (Figure 4.1) This makes sense, as it seems reasonable that incorporating two random 

effects would tend to buffer any of the effects found when considering those effects singly.  

While it is somewhat disappointing that these studies failed to identify any significant 

factors associated with RRV incidence that are amenable to modification, when taken as a whole 

there is a strong indication that, while RRV case numbers are declining for all hosts combined as 

well as raccoon hosts, the effect is limited to those host types regardless of the analytic technique 

employed. The decline noted is at least partially due the ORV program, and could also indicate 

that that the disease is beginning to “burn itself out.” Another finding that may be of use is the 

counties with higher incidence numbers cluster in the east of the state along the Virginia border.  

Armed with these results, a strong argument can be made that preferential allocation of 

prevention efforts and resources to those heavily affected counties is warranted. Resource 

allocation to the counties along the VA border could include an aggressive campaign to increase 

rabies vaccination rates in all domestic animals, as well as a program to develop and increase 

public awareness of this potentially fatal threat. While the oral rabies vaccination program was 

shown to have a beneficial effect, it by itself cannot adequately explain the failure of the virus to 

move west through the state, since there had not been such movement in the nearly twenty-year 

period before the program began. Nonetheless, given the success of the program, eastward 

expansion of the vaccine distribution zone would likely have a favorable result. Increased vaccine 

availability, along with expanded oral vaccine distribution, could be the steps necessary to begin 

to shift RRV eastward.  

Future directions to be considered should include further work to identify other spatial 

variables that might impact RRV incidence. Another approach that could be useful would be to 

expand the study area beyond West Virginia while restricting it to Appalachia. This would increase 
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sample size, thereby improving statistical power. It would also avoid the potential confounding 

effect  of aggregating counties that do not share similar characteristics, as found in a previous 

study.36 
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Figure 4.1: This chart allows comparison of the modelling techniques used in this project. Note that, in general, the INLA approach 

resulted in coefficients that were closer to zero than either the spatial or longitudinal models. The longitudinal model aggregated RRV 

incidence data without regard to spatial autocorrelation, while the spatial models aggregated the data without regard to temporal 

correlation. The INLA model adjusted for the correlation of both time and space simultaneously. Please note that while the data 

presented here apply to the all hosts model, similar results were obtained for the various host types. Because this figure is presented 

for use in comparing the techniques, data are provided without regard to whether the 95% credible interval included zero. 

Human
Pop

Mean
Elevation

Longitude Latitude % Dev % Forest % Wet % Ag % Barren % Shrub
Rural/Urb

an
VA border

Time
(year)

Spat/Long -0.01 0.18 1.49 -1.81 -0.19 0.05 -0.22 -0.02 -0.05 4.61 0.15 1.84 -0.06

INLA 0.01 0.04 0.68 -0.15 -0.003 -0.03 -0.02 0.05 -0.49 0.06 0.18 1.75 -0.03
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