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Abstract 

Effects of Acid Mine Drainage and Acid Precipitation on Leaf Litter Breakdown Rates in 

Appalachian Headwater Streams 

 

Mary Fiona Stewart 

 

Acid precipitation and acid mine drainage have dramatically altered chemical conditions 
and biological assemblages in streams throughout the central Appalachians.  Effects of 
acidification on functional stream processes such as organic matter decomposition, however, 
remain poorly understood.  The objectives of this study were to: 1- quantify differences in 
organic matter decomposition among reference streams, streams impacted by acid 
precipitation, and streams impacted by acid mine drainage; and 2- determine if lowered 
decomposition rates are the result of reduced microbial activity or altered invertebrate shredder 
assemblages or both.  I quantified water chemistry, organic matter decomposition, microbial 
activity, and macroinvertebrate community structure in 15 headwater streams in the central 
Appalachian ecoregion (5 circumneutral reference, 5 acid mine drainage, and 5 acid 
precipitation).  Decomposition rates were quantified from leaf packs deployed for a period of 120 
days over three seasons. Water chemistry was sampled in conjunction with decomposition 
trials.  Benthic invertebrate communities were sampled in spring and fall.  Microbial activity was 
measured as total microbial community respiration and ergosterol content.  Acid mine drainage 
resulted in dramatically reduced shredder assemblages, reduced microbial activity and reduced 
overall organic matter decomposition.  Acid precipitation resulted in altered shredder 
assemblages, reduced microbial respiration and diminished organic matter decomposition, but 
not as severely as seen in acid mine drainage streams.  Overall, decomposition rates were 
more strongly correlated with microbial respiration and ergosterol concentration than shredder 
community composition.  However, shifts in shredder assemblages, including the loss of acid 
sensitive voracious shredders, such as Lepidosotoma, Limnephilidae, Petronarcys, Gammarus, 

and Decopoda, also is likely responsible for the reduction in organic matter processing ability in 
acid impacted streams.  Our results provide further evidence that restoration of acidic 
headwater Appalachian streams is needed in order to effectively manage conditions in larger 
aquatic ecosystems downstream. 
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Introduction 

 

  Ecological integrity of natural ecosystems can be subdivided into two components: 

structural and functional, with structure determining function and function in turn affecting 

structure (Gessener and Chauvet 2002).  However, structure and function describe different 

aspects of the same entity; consequently both must be considered if the integrity of an 

ecosystem as a whole is to be addressed (Gessener and Chauvet 2002).  There are three 

responses that an ecosystem can have to stressors.  The first is a structural change without 

modification to functional processes.  The second is a functional change without a modification 

to community structure.  The third is a change in both structure and function (Gessener and 

Chauvet 2002, Dangles et al. 2004).  

 Invertebrate metrics are the common method of assessing stream ecosystem integrity; 

however, they contribute little to an understanding of how an ecosystem functions and therefore 

should not be the sole consideration (Bunn et al. 1999, Dangles et al. 2004). Studies have found 

large variation in functional processes between streams that fall into the same category within 

an invertebrate metric (Bunn and Davies 2000), indicating that biological processes may provide 

a more integrative measure of ecosystem integrity (Gessener and Chauvet 2002).  However, it 

is essential to determine which ecosystem processes respond to anthropogenic stressors, and 

therefore which processes may be good indicators of functional degradation (Dangles et al. 

2004).  

 Leaf litter breakdown rate has proven to be sensitive to changes in the stream 

environment (Wallace et al. 1996, Pascoal et al. 2001).  Measuring leaf litter breakdown rate 

has several advantages as a functional indicator.  For example, organic matter processing 

reflects the total energetic processing of a stream ecosystem, giving information on the 
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abundance and activity of microbial communities, illustrating the structure and efficiency of 

macroinvertebrates in particular shredders, and providing information on physical and chemical 

features of the stream (Pascoal et al. 2003, Braioni et al. 2004, Dangles et al. 2004, and Simon 

et al. 2009). 

Detritus in the form of fallen leaves is a vital resource for most aquatic ecosystems 

(Hutchens and Wallace 2002), particularly woodland streams, since they receive more energy 

from outside inputs than are produced from within (Suberkropp and Chauvet 1995, Dangles and 

Guerold 2001).  Because riparian leaves dominate allochthonous inputs, they are the major 

source of energy for heterotrophic organisms (Webster et al. 1999).  In a functional stream, 

detritus upon entering should be retained and biophysically transformed through consumption 

and feeding processes (Wipfli et al. 2007).  The presence and quantity of detritovores will 

control the rate of both nutrients and dissolved organic matter released into the water column 

(Wallace et al. 1996). Therefore, leaf litter breakdown, where large particles are broken down to 

smaller particles that can be consumed by a second functional feeding group, plays a critical 

role in the stream food web (Gessener and Chauvet 2002, Schlief and Mutz 2006).  Due to their 

high retentive capacity (Webster et al. 1999), headwater streams are particularly crucial in the 

leaf litter breakdown process and the export of nutrients and dissolved organic matter to 

downstream systems (Wipfli et al. 2007).  Because the breakdown of leaves is an essential 

process of energy flux in the food webs of streams, any alteration to the process, especially in 

headwater streams, may have a large effect on the whole stream community, both locally and 

downstream (Simon et al. 2009).   

The breakdown of leaves is achieved in three phases: leaching, conditioning and 

fragmenting (Barnden and Harding 2005).  Chemical leaching of dissolved materials from 

leaves is the initial process and can account for up to a 30% of mass loss (Webster et al. 1999).  

However, leaching alone will not lead to physical leaf breakdown.  Physical breakdown occurs 
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only after detritus has been softened by microbial action (Webster et al. 1999).  In the second 

stage of leaf breakdown, leaves are colonized by microorganisms and conditioned through 

chemical changes brought about by enzymatic activity (Schliet 2004, Schlief and Mutz 2006), 

which begins the decomposition process and increases the palatability of leaves for 

detritivorous macroinvertebrates (Barnden and Harding 2005).  The third stage, fragmentation, 

is predominantly driven by the feeding activity of macroinvertebrates, which are capable of 

consuming leaf material only after microbial softening (Webster et al. 1999, Schlief and Mutz 

2006).  The capacity of each one of these stages can be influenced by abiotic factors such as 

stream temperature, discharge, water chemistry and presence of pollutants (Figure 1) (Pascoal 

et al. 2001, Simon et al. 2009).   

  Freshwater ecosystems can be stressed by a broad range of anthropogenic impacts 

(Pascoal et al 2001).  Biological systems in streams may be altered through modifications of 

physical habitat, hydrology, water chemistry, and food web structure (Karr 1999).  Any one of 

these stressors may influence the structure and function of benthic communities as well as 

processes such as leaf litter breakdown (Pascoal et al. 2001).  However, different components 

of an ecosystem are expected to respond to stressors to different degrees (Fisher et al. 1998).  

It is recognized that macroinvertebrate communities differ in sensitivity to various types of 

pollutants and have a graded response (Pascoal et al. 2001).  Shredder mediated leaf litter 

breakdown may be affected by stressors since food resource may be altered through changes 

in food palatability.  Shredder abundance may be reduced or shredder species composition may 

be shifted (Dangles and Guerold 2001).   Stress may also alter the role of microorganisms on 

leaf litter breakdown in polluted streams (Pascoal et al. 2001). 

  Acid deposition has degraded numerous freshwater ecosystems, and despite reductions 

in sulfate emissions, stream acidification persists as a common problem (McClurg et al. 2007, 

Simon et al. 2009).  Acidification related damage of freshwater systems includes reduced 
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diversity and altered assemblages of algae, amphibians, invertebrates and fishes (Hall et al. 

1980, Freda 1986, LeFevere and Sharpe 2002, McClurg et al. 2007), as well as a reduction in 

ecosystem processes (Gessener and Chauvet 2002).  Leaf litter break down was indicated to 

be hindered in acidic streams (Gessener and Chauvet 2002, Dangles et al. 2004, Simon et al. 

2009).  The reduction in leaf litter breakdown with increased acidity is usually linked with a 

reduction of invertebrates and/or microbes at low pH (Suberkropp and Chauvet 1995, Mckie et 

al. 2006, Simon et al. 2009). 

Acid mine drainage incorporates several individual stressors, any one of which can 

affect aquatic communities.  Stressors from acid mine drainage include acidity, high 

concentrations of dissolved metals and precipitated metal oxides (Niyogi et al. 2002, Merovich 

et al. 2007, Petty et al. 2010).  The combination of these stressors can reduce leaf litter 

breakdown through their effects on invertebrates and microbial activity (Niyogi et al. 2002, 

Schliet 2004, Barnden and Harding 2005).  The formation of metal oxide precipitates may limit 

fungal and bacterial activity as the plaque covers the leaves and fungal hyphae (Niyogi et al. 

2002, Schliet 2004, Schlief and Mutz 2006).   Shredder biomass is highly impacted by dissolved 

metals and precipitation of metal oxides (Niyogi et al. 2002).  It has been noted that microbial 

activity appears to have a higher threshold than invertebrate biomass to dissolved metals and 

depressed pH (Niyogi et al. 2002).  As such, the leaf litter breakdown process in acidic mine 

drainage streams is slow and primarily microbial mediated (Schliet 2004).   

The central Appalachian eco-region receives some of the highest rates of acid 

deposition in the United States (McClurg et al. 2007). Many areas within this region have 

geologies of little limestone leaving most streams with little to no buffering capacity.  In addition 

to acid precipitation, areas within this region have been intensively mined for high sulfur coal, 

adding an acid mine drainage influence to the streams of the region.  While much effort has 

been dedicated to the understanding of the how acid precipitation and acid mine drainage affect 
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fish and invertebrate communities (Petty et al. 2005, McClurg et al. 2007, Merovich and Petty 

2007, Merovich et al. 2007, Merovich and Petty 2010, Petty et al. 2010), the effect of acid 

stressors on ecosystem functions remains poorly understood.  Furthermore, the relative 

importance of invertebrate shredder and microbial communities in leaf litter breakdown in these 

two types of acid contaminated streams is largely unknown.  Consequently, the objectives of 

this study were to: 1) quantify the effect of acid precipitation and acid mine drainage on leaf litter 

decomposition rates; 2) determine the relative importance of invertebrate shredder and 

microbial communities  in determining leaf litter decomposition rates; and 3) compare leaf litter 

decomposition with  macroinvertebrate indices commonly used as measures of stream 

ecosystem health.   

Study Area 

 

  Our study was conducted in the Cheat River watershed located in the Central 

Appalachian Mountains, within the Appalachian plateau and Ridge and Valley physiographic 

province in north-central West Virginia, USA. The Cheat River, which drains approximately 3683 

km2, is a north-flowing tributary of the Monongahela River.  The majority of the watershed is 

forested with some low intensity agriculture (Merovich and Petty 2010).  The geology of the 

watershed is predominantly sandstone and shale with limited out-crops of Greenbrier limestone 

(Figure 2) (Freund and Petty 2007).  The lower portion of the Cheat River watershed possesses 

extensive coal deposits of the Upper and Lower Freeport, Upper and Lower Kittanning, 

Pittsburgh and Bakerstown seams, which are mostly considered to have a high pyrite 

concentration (Freund and Petty 2007, Petty et al. 2010). This area has undergone extensive 

mining, both surface and underground, much of which was carried out prior to passage of the 

federal law regulating the mining industry (Figure 3) (Petty et al. 2010).  There are 

approximately 60 regulated and 185 abandoned mines discharging AMD into the lower portion 



6 
 

of the Cheat River (Petty et al. 2010).  This area also receives one of the highest acid loading 

rates from acid precipitation in the eastern US (McClurg et al. 2007).  A combination of the 

spatial variation of AMD discharge and geologies with natural buffering capacity create unique 

water chemistry types within the lower portion of the Cheat River watershed (Merovich et al. 

2007).  

Site selection 

 

  I studied 15 streams within the lower portion of the Cheat River Watershed: 5 impacted 

by acid precipitation (AP), 5 impacted by acid mine drainage (AMD) and 5 naturally 

circumneutral (CN) (Figure 4).  Naturally circumneutral streams were selected within the study 

area to act as reference conditions against which any changes in decomposition in AP or AMD 

streams were judged.  Naturally circumneutral streams with little anthropogenic impairment 

represent the best available conditions in the region (McClurg et al. 2007) and provide the only 

reasonable reference condition against which to detect changes in decomposition.   AP streams 

were selected based on water chemistry characterized by low pH, zero alkalinity, calcium, and 

magnesium, and low conductivity and sulfate (Table 1).   AP streams typically drain un-mined 

watersheds with a geology dominated by sandstone (Merovich et al. 2007).  AMD streams were 

selected based on water chemistry characterized by extremely low pH, extremely high 

conductivity and high concentrations of dissolved metals and sulfate (Table 1).  AMD streams 

drain intensively mined watersheds containing high pyrite coal with little chemical treatment and 

no natural buffering capacity (Petty et al. 2010).  Study sites were selected to control for several 

of the factors that can influence leaf litter decomposition, including stream flow, water 

temperature, and channel gradient (Royer and Minshall, 2003). The study sites were first 

through third order streams (Table 2), and all streams possessed similar habitat characteristics 

(small, cold-water, cobble bed streams of moderate slope).     
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Methods 

Water chemistry, temperature, and flow 

 

  Water chemistry samples were taken at each site every 40 days over the course of a 

year starting June 15, 2009.  These water samples were taken with the placement and removal 

of leaf packs (Simon et al. 2009).  Two water samples were collected from each stream during 

each visit following procedures used by Freund and Petty (2007), McClurg et al. (2007), 

Merovich et al. (2007), and Petty et al. (2010).  A filtered sample was collected for analysis of 

dissolved metals. This sample was collected with a 60 mL syringe and filtered through a mixed 

cellulose ester membrane disc with a pore size of 0.45m.  The sample was then acidified with 

approximately 5 mL of concentrated hydrochloric acid to keep metals dissolved in solution.  

These samples were analyzed for aluminum, barium, calcium, cadmium, cobalt, chromium, 

copper, iron, magnesium, manganese, sodium, nickel, selenium, and zinc using inductively 

coupled plasma/atomic emission spectrometry (EPA 1991; method 200.7). Chloride was also 

analyzed from these samples using ion chromatography (EPA 1991; method 325.2).  

   An unfiltered 250 mL grab sample was collected at each site at each visit. These 

samples were collected while completely submerging the sample bottle taking care to remove 

any air bubbles thereby eliminating contact between the water sample and air.  These samples 

were analyzed for alkalinity and acidity using an automatic titrator (EPA 1991; methods 310.1 

and 305.2 respectively), sulfate using ion chromatography (EPA 1991; method 375.4), and total 

suspended solids.  Both samples were stored at 4C until they were analyzed. All chemical 

analysis was conducted at the WVU National Research Center for Coal and Energy.  Field 

measurements of pH, temperature (C), specific conductivity (S/cm, and total dissolved solids 

(g/L) were taken with a multiparameter YSI 650 (Yellow Springs Instruments, Yellow Springs, 

OH, USA).  Discharge was calculated during every sampling using the area-velocity technique 



8 
 

with velocity measured with a Marsh-McBirney Flow-Mate (Marsh-McBirney, Frederick, 

Maryland, USA).  

Leaf packs 

  

  Leaf packs were deployed to cover the summer growing season, the winter season 

when leaves would typically enter the stream system, and the spring season.  Each leaf pack 

consisted of 10 g of air dried whole Pin Oak (Quercus palustris) leaves, a native species.  These 

leaves were all simultaneously collected immediately after leaf fall in November 2007.  For each 

season 18 leaf packs were placed in a low flow zone of the stream (pools, back waters) (Fritz et 

al. 2010).  Leaf packs were placed June 15, 2009, October 11, 2009, and March 26, 2010.  Six 

of the 18 packs were removed at 40-day intervals over the 120-day deployment. Upon removal, 

the packs were placed in plastic bags, kept on ice, and returned to the lab.  In the lab leaves 

were rinsed to remove any sediment or metal oxide.  The leaves were then placed in paper 

bags to air dry for 14 days.  At this point the leaves were weighed to obtain their dry mass.   Ash 

free dry mass was then obtained by taking a 25 mg subsample of the dry mass and combusting 

it at 550C for 30 minutes (Benfield 1996).  The ash mass was then calculated for the entire 

sample and subtracted from the dry mass to obtain the ash free dry mass (AFDM).  Once the 

ash free dry mass was estimated for each of the 40 day interval samples leaf decomposition 

rate was calculated as remaining ash free dry weight versus time. To account for mass lost due 

to handling, an extra leaf pack was taken to each site during deployment and then returned to 

the lab where it was processed alongside the rest of the leaf packs.  An exponential model 

Lt=L0e-Kt was fitted to remaining leaf mass  where Lt is the AFDM at time t, Lo is the AFDM 

derived from the handling pack, and k is the estimated leaf litter decomposition rate (Simon et 

al. 2009). 
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Benthic macroinvertebrates  

 

  Benthic macroinvertebrates were sampled twice a year, once in May and once in 

November.  Macroinvertebrate sampling was modeled after EPA Rapid Bioassessment 

Protocols for wadeable streams (WVDEP, 1996, Barbour et al. 1999, WVDEP, 2003). 

Macroinvertebrates were collected from four separated riffles within each stream.  A kick net 

(50cm X 30cm) was used for collection with the area of the net being kicked for benthic 

macroinvertebrates.  Once collected, the samples from the four riffles were combined and 

preserved in 95% ethanol and returned to the lab. Upon return to the lab the samples were 

filtered through 2mm and then 250m sieves thereby separating the larger macroinvertebrates 

from the smaller ones.  All macroinvertebrates greater than 2mm were identified.  All material 

passing through the 2mm sieve was split to a 1/8th subsample using a Folsom phytoplankton 

splitter (Model number 1831-F10, Wildco Supply Company, Buffalo, NY) (Merovich et al. 2007, 

Merovich and Petty 2010, Petty et al. 2010).  All taxa of the class insecta were identified to 

Genus level and all other taxa were identified to order Using Merritt and Cummins (1996) and 

Peckarsky et al. (1990).  Macroinvertebrate assemblages were defined by macroinvertebrate 

density and diversity.  The macroinvertebrates were categorized into functional feeding groups 

and the shredder assemblage was determined based on functional feeding group classifications 

of Merritt and Cummins (1996).  Finally, the West Virginia stream condition index (WVSCI) 

score and a number of other macroinvertebrate metrics (number collected, percent EPT, EPT 

genus richness, percent tolerant, percent Ephemeroptera, modified hilsenhoff index, percent 

dominant, family richness, percent acid tolerant, and percent aluminum tolerant) were obtained 

for each stream (Tetra Tech 2000) to examine their ability to predict stream leaf litter breakdown 

function in regards to classified stream health.   
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Microbial Activity 

 

  Microbial activity was measured in two ways: ergosterol concentration of exposed leaves 

was calculated to estimate fungal activity (Simon et al. 2009, Fritz et al. 2010) and biological 

oxygen demand was determined to estimate total microbial activity of microbes that had 

colonized the leaf matter (Niyogi et al. 2001, Schlief 2004, Simon et al. 2009).  Additional leaf 

packs were placed alongside the leaf packs in the decomposition study.  These leaf packs 

contained pin oak leaves consistent with those used in the decomposition study.  Packs were 

constructed with 2 mm screen to exclude any macroinvertebrates and retain leaf matter.  These 

packs were collected in conjunction with the decomposition packs at 40, 80, and 120 days. Half 

of the leaf matter in these packs was used to measure ergosterol concentration and the other 

half was used to measure biological oxygen demand.    

Ergosterol  
 

  Ergosterol is a sterol with a rare UV sensitive double bond.  It is found in cell walls of 

fungi, but is absent from vascular plants and non-fungal microbes, which makes it particularly 

useful for estimating fungal abundance (Newell et al. 1988).   Fungal activity was estimated by 

extracting and quantifying ergosterol concentration from finely ground leaf litter (Newell et al. 

1988, Kuehn et al. 2000).  A modified form of the cold ethanol procedure described in 

Richardson and Logendra (1997) was used.  Leaf litter was lightly rinsed to remove sediment 

and metal oxides, then air dried and ground to a powder.  Leaf litter (0.2 g) and 1 mL of absolute 

ethanol was combined in 2-mL, screw-cap microcentrifuge tubes (Fisher Scientific, Pittsburgh, 

PA) in a FastPrep FP120 (Q-biogene, Irvine,CA) with agitation at 6.0 m/s for 30 s. Ergosterol 

was then extracted for 30 min by rotating, end-over-end at 15 rpm, on a Glas-Col (Terre Haute, 

IN) mini-rotator. Samples were centrifuged for 10 min at 10,000 rpm in a VSB-14 

microcentrifuge (Shelton Scientific, Shelton, CT) before the supernatant was removed and 
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filtered through a 0.22-μm nylon filter microcentrifuge tube (Costar, Corning, NY), by 

centrifugation for 2 min at 10,000 rpm (Gingerich, unpublished).  

Ergosterol concentration was determined by high-performance liquid chromatography 

(HPLC) on a 150 mm × 4.6 mm Phenomenex Prodigy 5-μm ODS3 reverse phase C18 column 

(Phenomenex, Torrance, CA).  As described in Panaccione & Coyle (2005), HPLC conditions 

consisted of a model 600 pump controller with an in-line degasser, a model 717plus 

autosampler, and a model 2487 absorbance detector (Waters Corp., Milford, MA).  Samples 

were eluted isocratically with 100% methanol at a flow rate of 1.0 mL per minute, and peaks 

were monitored at 280 nm wavellength.  Ergosterol was eluted at about 9 minutes (UV 

absorption in MeOH, λmax = 282 with shoulders at 269 and 293).  Ergosterol from samples was 

quantified by comparing sample peaks to peaks of pure compound ergosterol standard (MP 

Biomedicals, Solon, OH) at 2, 20, and 200µg/mL (Gingerich, unpublished).  Ergosterol is 

expressed as μg ergosterol per mL extraction solvent. 

Biologic oxygen demand  
 

Respiration rate of the entire microbial community that had colonized exposed leaves 

was estimated by measuring dissolved oxygen concentrations (Ward and Johnson 1996).   

Leaves were not rinsed.  Metal oxide precipitates might influence respiration rate.  We wanted 

to keep conditions close to those of the respective stream.  Five 4cm2 leaf pieces were cut from 

each leaf pack; area was used instead of weight as coatings of metal oxide could drastically 

skew leaf material used from one stream to another.   The five leaf pieces were submerged in 

300m of deionized water in darkened and stoppered biological oxygen demand bottles 

(Environmental Express, Mt. Pleasant, SC).  Dissolved oxygen concentration of the 300mL 

deionized water was measured prior to adding the leaf pieces with a Smart USB Dissolved 

Oxygen Sensor (Nexsens Technology, Yellow Springs, OH) and then again 24 hours after the 
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leaf pieces were added.  Respiration rate was determined by subtracting the 24 hour dissolved 

oxygen concentration from the initial dissolved oxygen concentration.  Respiration rate is 

expressed as mg of oxygen used per L per day.   

Statistical analyses  

 

 Leaf litter decomposition rate was calculated at each stream for each season.  Using the 

seasonal decomposition rates, an annualized average decomposition rate also was calculated 

for each stream.  The annual average decomposition rate was used in much of the analyses.  

Water chemistry variables were collected four times over the course of a decomposition trial, 

and averaged over the course of each trial for each stream.  The annual average of water 

chemistry variables was also found for each stream and used for much of the analyses.   The 

two seasonal macroinvertebrate community samples from each site were averaged together 

before being used in analysis.   

 Principal components analysis (PCA) was used to confirm stream classification into 

three types (CN, AP, and AMD).  PCA reduces the dimensionality of a large multivariate dataset 

to a few derived variables, which are ordered by the amount of variance they explain (Hair et al. 

1995).  Water chemistry values from each site for all three seasons were used to create the PC 

axes.  Some water chemistry variables were excluded from the PCA analysis because they 

were only detected in low concentrations and never differed between site types; these chemistry 

variables were Ba, Cr, Cu, Se, and total suspended solids.  The water chemistry variables 

conductivity, alkalinity, acidity, Al, Ca, Cl, Co, Fe, Mg, Mn, Na, and Ni were log transformed to 

homogenize variance and meet normality assumptions of parametric statistics (Merovich et al. 

2007).  PCs with eigenvalues greater than 1 were considered statistically significant and 

variables with factor loadings greater than |0.4| were considered to explain a statistical 

proportion of the variation in a PC (McCune and Grace 2002).  Sites were plotted on PC axes 
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based on the seasonal water chemistry for each of the three seasonal decomposition trials.  

Principal components analysis was conducted in the R Project for Statistical Computing Version 

2.8.0 (R Development Core Team 2008) using the package LabDSV (Roberts 2007). 

Nonmetric multidimensional scaling (NMDS) of macroinvertebrate communities was 

used to confirm our assumption that streams within a type would have similar macroinvertebrate 

communities.  NMDS creates a map of samples in two or more dimensions where the relative 

distance apart reflects the relative similarity in the species composition (Clarke 1993).   A two 

dimensional model was used with a stress of 7.36.  All collected taxa were included in this 

model.  NMDS was conducted in the R Project for Statistical Computing Version 2.8.0 (R 

Development Core Team 2008) using the package vegan (Oksanen et al. 2008). 

 For each season’s decomposition trial a repeated measures analysis of variance 

(ANOVA) (α=0.05) was used to test the effects of days of exposure and stream type on 

remaining leaf mass (Wider and Lang 1982).  Remaining leaf mass was tested for normality 

using Shapiro Wilks test of normality, normality was approximate for all three seasons and could 

not be improved by transformations.   Effect of stream type on decomposition rate was tested 

using an ANOVA (α=0.05) for each seasonal trial, followed by a Tukey HSD post hoc test to 

assess differences between specific stream type contrasts.   Influence of seasonality was 

addressed using a two-way ANOVA (α=0.05) where the effects of season (summer 2009, winter 

2009, spring 2010) and stream type on decomposition rates were tested. Trends in 

decomposition rate were found using the annual average decomposition rates for each stream.   

An ANOVA (α=0.05) was used to determine the effect of stream type on the annual average 

decomposition rate.  This was followed by a Tukey HSD post hoc test to determine where 

differences were.  ANOVAs and Tukey HSD post hoc tests were conducted in the R Project for 

Statistical Computing Version 2.8.0 (R Development Core Team 2008).     
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ANOVAs (α=0.05) were used to determine if there were differences in physical stream 

parameters (annual average water temperature, drainage area, slope and annual average 

discharge) among the site types.  The influence of physical parameters (drainage area, water 

temperature, discharge, slope) on decomposition rate were analyzed using an analysis of 

covariance (ANCOVA) (α=0.05) where annual average decomposition rate was analyzed by 

physical parameter and stream type.  Correlation analysis was used within each site type to 

examine relationships between temperature, drainage area, slope and discharge and 

decomposition rate.  ANOVAs, and ANCOVAs were conducted in the R Project for Statistical 

Computing Version 2.8.0 (R Development Core Team 2008). 

Macroinvertebrate community data collected from each site was used to generate 

information on the shredder functional feeding group.  Cluster analysis was performed on the 

shredder assemblages from each site, using Ward’s minimum variance method and Bray–Curtis 

distance measure to define clusters.  Analysis of similarity (ANOSIM) on Bray-Curtis distance 

coefficients was run on the shredder assemblages from each site to test whether shredder 

assemblages were significantly different among stream types (Clarke and Green 1988, Clarke 

1993, Merovich and Petty 2010). Statistical significance of R was assessed with 1000 

permutations. Post hoc pairwise tests were run to determine between which stream types 

shredder assemblages differed. Cluster analysis and ANOSIM were conducted in the R Project 

for Statistical Computing Version 2.8.0 (R Development Core Team 2008) using the package 

vegan (Oksanen et al. 2008).   

 Total shredder abundance, shredder richness, total number of voracious shredders 

(Wallace et al. 1996, Dangles and Guerold 2001, Schofield et al. 2001, Mckie et al. 2006, and 

Simon et al. 2009), total shredding Plecoptera, total shredding Trichoptera, total number of 

Nemouridae, and total number of Tipulidae (Appendix I) were calculated as potential factors 

influencing decomposition rate.  ANOVAs (α=0.05) were run to compare these shredder 
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abundances among the three site types.  ANCOVAs (α=0.05) were used to evaluate any effect 

these shredder abundances had on annual average decomposition rates in conjunction with 

stream type.  Shredder abundances were also correlated with decomposition rate for each site 

type.   Macroinvertebrate metrics (WVSCI, %EPT, EPT genus richness, % tolerant, % dominant, 

MHI and Family richness) were calculated from the macroinvertebrate community sampled.  

ANOVAs (α=0.05) were run on each of these macroinvertebrate metrics to determine any 

differences between stream type.  Correlations (α=0.05) were run on these macroinvertebrate 

metrics to determine how these metrics relate to annual average decomposition rate.    

ANOVAs (α=0.05) were used to compare ergosterol concentration and respiration rate 

between stream types.  ANCOVAs (α=0.05) were used on these microbial activity indicators in 

conjunction with stream type to determine if they had an impact on the annual average 

decomposition rate.  Microbial activity indicators were also correlated with annual average 

decomposition rate within each stream type and over all three stream types.  ANOVAs, 

ANCOVAs and correlations were conducted in the R Project for Statistical Computing Version 

2.8.0 (R Development Core Team 2008). 

Akaike’s information Criterion (AIC) was used to select a generalized linear model to 

predict decomposition rate based on several likely parameters collected (number voracious 

shredders, total number of shredders, shredder richness, ergosterol concentration, microbial 

respiration, water temperature, and discharge).  AIC selects the best model from the candidate 

models created from combinations of the likely parameters and ranks them from best to worst 

(Burnham and Anderson 2002) A step wise procedure within the R Project for Statistical 

Computing Version 2.8.0 was used to generate models (R Development Core Team 2008).   

AIC corrected (AICc) scores were used to account for small sample size as the sample size to 

model parameter ratio was always less than 40 (Burnham and Anderson 2002).   
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Results 

 

General characteristics of streams  

 

Drainage area, discharge, temperature and slope 
 

The drainage area of the study streams did not differ between the study sites, nor did the 

annual average discharge.  However, the annual average temperature was significantly higher 

in AMD streams than in both CN streams and AP stream and the slope of AMD streams was 

significantly lower than both CN and AP streams (Table 3).   

 

Water chemistry 

 

PCA 
 

PCA illustrates that water chemistry differs among the three site types for all three 

seasonal decomposition trials.  Two PCs were identified with the first explaining 72.7% of the 

variation and the addition of the second PC explaining 83.8% of the variation.  Factors most 

significantly loading on PC axis 1 were pH (r=-0.86), conductivity (r=0.94), alkalinity (r=-0.71), 

acidity (r=0.65), sulfate (r=0.94) and a number of dissolved elements; Al (r=0.97), Ca (r=0.83), 

Cl (r=0.68), Co (r=0.89), Fe (r=0.89), Mg (r=0.94), Mn (r=0.96), Na (r=0.57), Ni (r=0.87), and Zn 

(r=0.96).  Factors most significantly loading on PC axis 2 were alkalinity (r=-0.54), acidity 

(r=0.46), Ca (r=-0.45) and Na (r=-0.64) (Table 4).  For all three seasons AMD type streams were 

clearly distinguished from CN streams and AP streams along PC axis 1 (Figure 5a,b, and c), 

with AMD streams consistently plotting on the positive side of this axis and AP and CN streams 

consistently plotting on the negative side.  AP streams and CN streams were not separated 

from one another along PC axis 1.  For all three seasons AP streams and CN streams were 
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separated along PC axis 2, with CN streams consistently plotting more towards the positive end 

than AP streams.  For all three seasons stream were clustered by stream type and each type is 

distinct from the other two types.  

Differences in water chemistry among stream types 
 

Stream types differed in many of the water chemistry variables analyzed.  All three 

stream types CN, AP, and AMD had significantly different pH (p<0.001) for summer, winter, and 

spring decomposition trials (Tables 5, 6, and 7).   Water temperature differed between AMD 

streams and both CN and AP streams (p <0.01) during the summer, between AP stream and 

both CN and AMD streams (p <0.01) in the spring decomposition trial, but did not differ among 

stream types during the winter decomposition trial (Tables 5, 6, and 7). Conductivity and 

concentration of total dissolved solids differed between AMD streams and the other two stream 

types CN and AP in all three seasonal trials (p<0.001) (Tables 5, 6, and 7).  Discharge differed 

between AMD streams and AP streams (p<0.1) in the summer decomposition trial (Table 5), but 

did not differ in the other two seasons.  Concentration of alkalinity differed between CN streams 

and the other two stream types: AMD and AP in both the summer (p<0.001) and winter 

(p<0.001) decomposition trial (Tables 5 and 6), but only differed from AMD streams in the spring 

decomposition trial (p <0.001) (Table 7).  Concentration of acidity (p<0.001, p<0.001, p<0.1), a 

number of dissolved elements: Al (p<0.001 all trials), Ca (p<0.001 all trials),  Fe (p<0.01, 

p<0.01, p<0.001), Mg (p<0.001 all trials), Mn (p<0.001, p<0.001, p <0.01), Na (p<0.1, p<0.001, 

p <0.01), Ni (p<0.001, p<0.001, p<0.01), and Zn (p<0.001 all trials), and sulfate (p<0.001 all 

trials) differed between AMD streams and the other two types: CN and AP for summer, winter 

and spring decomposition trials (Tables 5,  6, and 7).   Concentration of Ba, Cl, Co, Cu did not 

consistently differ among stream types for the three seasonal trials (Table 5, 6, and 7).  

Concentrations of total suspended solids, Se, and Cr never differed among any of the stream 

types (Tables 5, 6, and 7). 
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Seasonal variation within site types 
 

There was seasonal variation in discharge independent of stream type and seasonal 

variation of stream temperature with some interaction with stream type (Table 8).  Moderate 

seasonal variations in stream chemistry parameters were seen.  Half of the chemistry 

parameters measured varied seasonally, including pH, specific conductivity, total dissolved 

solids, alkalinity, Al, Ba, Cu, Mg, Na, and Se. However, most of these seasonal variations 

interacted significantly with the stream type so no clear trends were observed.  A few trace 

elements, Ba, Cu, Na, and Se, had seasonal variations independent of stream type and tended 

to be elevated during the summer trial, with the exception of Ba which was elevated during the 

spring trial.  However, PCA of mean water chemistry for each site with standard error bars 

shows that sites varied little in their water chemistry between seasons and did not stray from 

their allotted stream type (Figure 6). 

Macroinvertebrates  

 

NMDS ordination showed that macroinvertebrate assemblage structure was strongly related 

to stream type (Figure 7A).  Assemblages from AMD streams were not tightly grouped but they 

were clearly separated from the AP and CN assemblages. Community assemblages from CN 

streams and AP streams were tightly clustered, and were separate from one another.  Many of 

the water chemistry variables measured were statistically correlated with this NMDS solution 

(Table 9).  Conductivity (r2=0.89), pH (r2= 0.91), Al (r2= 0.85), Ca (r2= 0.91), Mg (r2= 0.84), Ni 

(r2= 0.85) Zn (r2= 0.89) and SO4 (r2= 0.091) had the strongest linear relationship with the 

ordination.  pH was related to axis 1 with high pH associated with CN community assemblages.  

High conductivity, sulfate, Al, Mg, and Ca were inversely associated with high axis 1 scores and 

low axis 2 scores and were associated with many of the AMD community assemblages (Figure 

7B).  Several invertebrate metrics were associated with the placement of community 
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assemblages (Table 9).   WVSCI (r2=0.91), Family richness (r2= 0.95) and EPT genus richness 

(r2= 0.90) were related to axis 1 and were associated with CN community assemblages.  

Percent dominant taxa (r2= 0.85) and percent tolerant (r2= 0.81) were inversely related to axis 1 

and were associated with AMD community assemblages (Figure 7C).   

 Based on the results of ANOVAs all invertebrate metrics calculated varied between 

stream types (Table 10).  WVSCI scores, EPT genus richness, and family richness differed 

between all three site types with CN streams having the highest scores and AMD streams 

having the lowest scores.  Percent tolerant and percent dominant also differed between the 

three stream types with AMD streams having the highest scores and CN streams having the 

lowest scores.   AMD streams differed from both CN and AP streams types having lower total 

number of invertebrates collected and percent EPT, and having a higher MHI score.  CN 

streams had a higher percent Ephemeroptera than the other two stream types.  AP streams had 

a higher percent of acid tolerant species than both AMD and CN streams.   

 Cluster analysis resulted in near perfect groupings of shredder assemblages by stream 

type within two hierarchical levels (Figure 8).  At the first level the AMD assemblage cluster was 

differentiated from CN and AP assemblages.  At the second level, with the exception of one AP 

stream, CN assemblages were differentiated from AP assemblages.  The global ANOSIM also 

indicated that there was statistically greater dissimilarity in shredder assemblage among stream 

types than if assemblages were random.  Pairwise ANOSIMS between stream types indicated 

that all stream types had statistically different shredder assemblages (Table 11).    

 The number collected and several of the taxa comprising the shredder functional 

feeding group differed between stream types (Table 12).  Total number of shredders differed 

among the three stream types with AP streams having the most shredders and AMD streams 

having the fewest number of shredders.  Number of Nemouridae differed between AP streams 
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and the other two stream types with AP streams having the greatest number of Nemouridae.  

Shredder richness and the number of shredding Plecoptera differed between AMD streams and 

the other two stream types.  Number of voracious shredders, shredding Tipulidae and 

Trichoptera did not significantly differ among the three stream types.  

Shredder community assemblages were different between the three stream types.  AMD 

streams had few if any shredders.  Shredder taxa found in AMD streams included Asellidae, 

and a few Plecoptera taxa (Leuctra, Amphinemuera, and Taeniopteryx) (Figure 9a).  Shredder 

assemblages in AP streams were dominated by Plecoptera taxa (Leuctra (39%) and 

Nemouridae (46%)). The Isopod Asellida (4%), and Plecoptera taxa (Capniidae (4%), Peltoperla 

(1%) and Taeniopteryx (3%)) were also abundant (Figure 9b).  Shredder assemblages in CN 

streams contained a number of contributing taxa, including Amphipod (Gammarus) (37%), and 

Plecoptera taxa (Leuctra (28%) and Nemouridae (16%), however, their quantities were highly 

variable.  Other contributing taxa include, the Decopod Cambarus (1%), the Isopod Asellidae 

(3%), the Trichoptera taxa (Polycentropus (4%), and Lepidostoma(1%)), the Plecoptera taxa 

(Peltoperla (3%), Petronarcys (1%) and Taeniopteryx (3%)), and the Diptera Tipulidae (2%) 

(Figure 9c). 

Microbial activity  

 

Microbial activity differed statistically among stream types (Table 13).   Community 

respiration was significantly higher in CN streams than in AP and AMD streams.  Ergosterol 

concentration was significantly higher in CN streams than AMD streams but did not differ 

between CN streams and AP streams. Respiration and ergosterol did not differ significantly 

between AP and AMD streams (Table 13).     
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Decomposition 

 

Stream type and days of exposure significantly influenced remaining leaf mass during all 

three seasons of the study (Table 14, Figures 10a, b, and c).  Decomposition rates in study 

streams ranged from 0.001 (g/day) in an AMD stream to 0.034 (g/day) in a CN stream over the 

course of a year (Table 15).  Annual Average decomposition rates ranged from 0.002 (g/day) in 

an AMD stream to 0.025(g/day) in a CN stream (Table 15).  Statistical differences were 

observed in decomposition rates among the stream types during summer (p=0.03) and winter 

(p=0.01) seasons and when decomposition rates were averaged over the entire year (p=0.009) 

(Table16).  Decomposition rates were statistically higher in CN streams than AMD streams in 

summer and statistically higher in CN streams than AMD and AP streams in winter.  Statistical 

differences were not observed in decomposition rates among stream types during the spring 

trial (p=0.17). 

Results of a two-way ANOVA indicated a significant effect of stream type on 

decomposition rates but no effect of season.  A site by season interaction effect also was not 

significant (Table17, Figure11).  The annual average decomposition rate differed significantly 

between CN streams and both AP and AMD streams.  The general trend observed was CN 

streams had the highest decomposition rate, AMD type streams had the lowest decomposition 

rate and decomposition rates for AP type streams were intermediate (Figure 12). 

 

 

Abiotic Influences on Decomposition 

 

 Given the results of ANCOVAs on annual average decomposition rate of site types by 

catchment size and physical water characteristics drainage area, annual average stream 

temperature and annual average discharge were influential in determining annual average 
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decomposition rate (Table 18).  However, stream slope was not influential in determining annual 

average decomposition rate.  Drainage area was strongly correlated with annual average 

decomposition rate in CN streams (R2=0.69) and slightly correlated with AP streams (R2=0.21) 

but not correlated with AMD stream (Figure 13a).  There was no strong positive correlation 

between annual average stream temperature and annual average decomposition rate for any of 

the stream types (Figure 13b).  The annual average discharge was moderately correlated with 

annualized decomposition rate of AP streams (R2=0.48), slightly correlated with CN streams 

(R2=0.23), but was not correlated with AMD streams (Figure 13c).  Stream slope was not 

correlated with the annual average decomposition rate of CN or AP streams but was slightly 

correlated with AMD streams (R2=0.18) (Figure 13d).  

 

Biotic Influences on Decomposition 

 

 ANCOVAs relating total number of shredders, shredder richness, voracious shredders 

and abundance of a number of shredder taxa to annual average decomposition rate indicate 

that most shredder abundances were not influential on decomposition rate over all three stream 

types (Table 19).  The only shredder abundance that was associated with annual average 

decomposition rate over all three site types was number of shredding Trichoptera (F-value = 

4.41, p-value=0.07).  Total number of shredders was strongly correlated with annual average 

decomposition in AMD streams (R2=0.73), was very weakly correlated in AP streams (R2=0.12), 

and was negatively correlated in CN streams (Figure 14a). Shredder richness was strongly 

correlated with annual average decomposition rate in AP streams (R2=0.73), was weakly 

correlated in CN streams (R2=0.16), but was not correlated in AMD streams (Figure 14b).  

Number of voracious shredders was slightly correlated with annual average decomposition in 

AP streams (R2=0.29), but not correlated in AMD or CN streams (Figure 14c).  Number of 
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shredding Trichoptera was correlated with annual average decomposition rate in CN streams 

(R2=0.54), weakly correlated in AP streams (R2=0.11), and not correlated in AMD streams 

(Figure 14d).  Number of shredding Plecoptera was correlated with annual average 

decomposition in AMD streams (R2= 0.58), weakly correlated in AP streams (R2=0.17), and 

negatively correlated in CN streams (Figure 14e).  Number of shredding Tipulidae was weakly 

correlated with annual average decomposition in AP streams (R2=0.23), not correlated in CN 

streams and negatively correlated in AMD streams (Figure 14f).  Number of Nemouridae was 

correlated with annual average decomposition rate in AMD streams (R2=0.59), weakly 

correlated in AP streams (R2=0.14), and not correlated in CN streams (Figure 14g). 

 Correlations of a number of macroinvertebrate metrics with annual average 

decomposition rate indicate that no metrics were strongly associated with decomposition rate 

(Table 20).  WVSCI score (R2=0.22), number of invertebrates (R2=0.35), EPT genus richness 

(R2=0.51), percent tolerant taxa (R2= 0.25), percent Ephemeroptera (R2=0.25), percent 

dominant (R2=0.27), family richness (R2=0.43), and percent Al tolerant (R2=0.22) were all 

weakly correlated.   

  ANCOVAs relating the covariates microbial respiration and ergosterol concentration to 

annual average decomposition rate show that both respiration rate (F-value= 12.37, p-value = 

0.006) and Ergosterol (F-value =14.46, p-value=0.004) are associated with decomposition rate 

(Table 21).   Microbial respiration rate was highly correlated to annual average decomposition 

rate in CN streams (R2=0.74), weakly correlated in AMD streams (R2=0.20) and negatively 

correlated in AP streams (R2=0.17) (Figure 15a).  Respiration rate was highly correlated to 

annual average decomposition rate over all site types (R2=0.64, p-value<0.001) (Figure 15b).  

Ergosterol concentration was highly correlated to annual average decomposition rate in CN 

streams (R2=0.89), but not correlated in AP streams and negatively correlated in AMD streams 
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(Figure 15c).  Ergosterol concentration was correlated with annual average decomposition rate 

over all site types (R2=0.59, p-value<0.001) (Figure 15d).    

  Of the models tested using the AIC approach, the model identified with the lowest AICc 

score contained only ergosterol concentration and microbial respiration (Equation1), it had an 

Akaike weight of 0.91 (Table 22) and an adjusted R2 of 0.70.  The model with the second lowest 

AICc score contained voracious shredders, shredder richness, microbial respiration, stream 

temperature and stream discharge (Equation 2), it had an Akaike weight of 0.09 (Table 22) and 

an adjusted R2 of 0.83.  

Discussion 

  

The annual average leaf litter breakdown rate was suppressed in both AP streams and 

AMD streams.  The average decomposition rate of AP streams was reduced by 53% compared 

to CN streams.  The average decomposition rate of AMD streams was reduced by 70% 

compared to CN streams.  The range of decomposition rates (0.002 - 0.025 g/day) found in our 

study agrees with those from another decomposition study examining an AMD gradient (Niyogi 

et al. 2001).  The reduction of leaf litter breakdown rate seen in our AMD streams were within 

the range of reductions reported in AMD streams by Gessner and Chauvet (2002).  However, 

the reduction in breakdown rates seen in our AP streams was considerably larger than those 

reported (30%) in AP streams by Gessner and Chauvet (2002).   

Young et al. (2008) set up a tentative frame work for assessing functional stream 

integrity from leaf litter breakdown rates, they considered break down rates between 0.01 - 0.03 

g/day to indicate streams of good health.   All but one of the breakdown rates from our CN 

streams fell within this range.  Young et al. (2008) and Gessner and Chauvet (2002) set a 

threshold of breakdown rates <50% of reference streams to indicate severe impairment.   All of 
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the breakdown rates from our AMD streams were well below this threshold.  Three of the five 

breakdown rates from our AP streams would be considered severely impaired. 

The water chemistries of our study sites fell neatly into previously established water 

quality types (Merovich et al. 2007).  Principal components analysis mapped study streams 

along two gradients. The first gradient separated AMD sites from CN and AP streams along a 

principal component with water chemistries variables indicative of acid mine drainage 

contamination including pH, alkalinity, acidity, conductivity, dissolved metals, and  sulfate 

(Freund and Petty 2007, Merovich et al. 2007).  AMD sites were mapped at high values along 

this principal component and had water chemistries that corresponded with streams classified 

as severe AMD by Merovich et al. (2007).  Given the water chemistries of these sites it is highly 

probable that these streams drain intensively mined watersheds with prolific acid producing 

minerals having little to no geologic buffering capacity or chemical treatment (Merovich et al. 

2007).     

The second gradient separated AP streams from CN streams along a principal 

component with water chemistries variables symptomatic of streams suffering from acid 

precipitation including alkalinity, acidity, Ca and Na (Freund and Petty 2007, Merovich et al. 

2007).  AP sites consistently mapped higher along this second gradient, and had water 

chemistries that resembled streams classified as soft by Merovich et al. (2007).  Given the water 

chemistries of these sites it is highly probable that these AP streams drained a watershed with 

no mining but received high acid precipitation and have little to no geological potential for acid 

neutralization (Merovich et al. 2007).  CN streams mapped low along both principal 

components, where pH and alkalinity were relatively high, and where acidity, conductivity, 

sulfate and dissolved metals were low.  The water chemistry of CN streams matched streams 

classified as reference by Merovich et al. (2007), leading to the conclusion that these streams 
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drained un-mined watersheds that contained geologic attributes capable of buffered any acid 

precipitation (Merovich et al. 2007). 

Through our study design we were able to control for discharge in our study streams.  All 

types contained streams with roughly equal drainage areas and discharge.  However, there was 

some variation in stream temperature between the stream types with AMD streams having a 

higher annual average temperature than CN and AP streams.  This variation in stream 

temperature was not factored out for analyses, because other studies (Simon et al. 2009, Fritz 

et al. 2010) of leaf litter breakdown in Appalachian streams concluded that stream temperature 

was not a relevant variable influencing leaf litter breakdown rate.  Simon et al. (2009) found that 

neither stream temperature nor discharge explained variation in leaf litter breakdown rates.  

Fritz et al. (2010) found that difference in thermal regime was not a primary driver of leaf litter 

breakdown rate.  Our results concur that stream temperature was not a contributing factor in 

differences in leaf litter breakdown rates, as there was no positive relationship between stream 

temperature and leaf litter breakdown rates for any of the stream types.    

As expected, stream macroinvertebrate communities were similar within stream types 

but differed between the types.  CN communities were associated with low concentrations of 

dissolved metals, sulfate and conductivity and relatively high pH.  AP communities were 

associated with low pH but with dissolved metals, sulfate and conductivities even lower than CN 

streams.  AMD communities were all associated with extremely low pH and the majority of 

assemblages were associated with high conductivity, sulfate and dissolved metals.   These 

groupings and associations agree with the notion that macroinvertebrate assemblages respond 

in a predictable fashion to variation in water chemistry (Freund and Petty 2007).  

 Macroinvertebrate assemblages in AMD streams were highly variable when compared 

to the assemblages of CN and AP streams.  All AMD assemblages had two things in common: 
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there were very few individuals found in these streams and Chironomidae almost completely 

dominated those macroinvertebrates found.  This explains why AMD assemblages were 

associated with a high percent dominant metric.  The variation in AMD communities comes from 

the few individuals from other taxa found in these streams.  CN community assemblages were 

associated with high WVSCI scores, family richness and EPT richness, AP streams had 

community assemblages with reduced WVSCI scores, family richness and EPT richness, and 

AMD assemblages had extremely low WVSCI scores, family richness and EPT richness.  We 

saw a progressive decline in WVSCI score and EPT richness as chemical stressors increased 

indicating that macroinvertebrate assemblages are reliable indicators of environmental integrity. 

Invertebrate communities may be altered by stream chemistries due to impaired 

osmoregulation, metal toxicity, reduced reproductive success and altered behaviors (Pond et al. 

2008).  Macroinvertebrates may suffer physiological stress to increased acidity through 

interruptions in their ion exchange mechanisms leading to a cellular acid base imbalance or 

failure in salt regulation (Hall et al. 1980).   Metal exposure also affects benthic 

macroinvertebrate composition and abundance (Cain et al. 2000, Niyogi et al. 2001).  For 

example iron precipitation and flocculation accumulating on surfaces in AMD streams can have 

direct effect on invertebrates through toxicity and indirect effects on stream invertebrates by 

inhibiting movement, respiration and feeding and by altering the benthic environment (Vuori 

1995, Fritz et al. 2010).   The effects of iron contamination are known to decrease the diversity 

and abundance of benthic invertebrates (Vuori 1995).  Acute toxicity levels for iron in 

invertebrates ranged from 3-400mg/L (Vuori 1995).  Iron concentrations in the AMD streams for 

this study were around 20mg/L but remained under 0.5mg/L in both AP and CN streams. 

Conductivities over 500µS/cm are also known to hinder macroinvertebrate communities 

(Hartman et al. 2005).  Conductivities in the AMD stream in this study were consistently well 
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above 500µS/cm.   Also, many dilute stressors can interact to produce biological impairment 

even if each stressor is below toxicity thresholds (Freund and Petty 2007) 

Shredder community assemblages varied between the three stream types. The 

stoneflies Nemouridae and Leuctridae, which dominated AP streams and were found in low 

quantities in AMD streams, are considered acid tolerant (Hall et al. 1980, Dangles and Guerold 

2001, McClurg et al. 2007).  The reduction in predators and competitors in acidic streams may 

have allowed these taxa tolerant to low pH to increase in abundance and become the dominant 

organisms (Hall et al. 1980).  Lepidostoma, which contributed to the shredder assemblage in 

CN streams, was considered acid sensitive by a number of previous studies (Raddum and 

Fjellheim 2003, McClurg et al. 2007, Simon et al. 2009).  However Lepidostoma were found in 

three of our AP streams.  Gammarus, which were found in all CN streams and completely 

dominated some of the shredder assemblages, are acid sensitive and were also found to 

dominate neutral streams by Dangles and Guerold (2001).  While Limnephilidae were found in 

acidic streams by Dangles and Guerold (2001), we only found Limnephilidae in CN streams in 

our study.  Although Tipulidae did not contribute largely to any shredder assemblage their 

numbers did not significantly vary between the streams types contrary to the findings of Hall et 

al. (1980) who documented a reduction in Tipulidae numbers after artificial acidification of a 

stream.    

Different species of the same functional group can vary in their relative importance to an 

ecological process, as they may differ in the way or rate in which they perform the process 

(Dangles and Guerold 2001).  For example, the consumption of leaf material by the same size 

and number of individual Nemouridae was significantly lower than Gammarus in a feeding 

experiment (Dangles and Guerold 2001).  Also, Nemouridae act as collectors rather than 

shredders in their younger stage (Dangles and Guerold 2001).   Limnephilidae have been 

documented to be more voracious leaf processors than stoneflies, and their abundance was 



29 
 

associated with shredder mediated leaf litter decomposition in a study by Mckie et al. (2006). 

Lepidostoma are also known to play an important role in leaf litter processing (Wallace et al. 

1996) and were highly related to decomposition in a study by Simon et al. (2009).  The 

exclusion of Decopoda in a study by Schofield et al. (2001) led to a reduction in leaf litter 

breakdown despite the presence of other highly productive shredders.  Pteronarcyidae 

presence has also been attributed to faster leaf litter breakdown rates (Schofield et al. 2001). 

Therefore, the reduction in shredder evenness and the eradication of the acid sensitive 

voracious shredder could be an important factor explaining the reduction of leaf litter breakdown 

even if they are replaced with acid tolerant stoneflies in greater numbers (Dangles and Guerold 

2001, Hieber and Gessner 2002, Dangles et al. 2004, Mckie et al. 2006)  

When present, shredders have an important effect on breakdown rates in both pristine 

and AMD impacted streams (Niyogi et al. 2001).  In this study we found that total shredder 

abundance was not related to decomposition rate.  Nor was the number of shredding 

Plecoptera, number of shredding Tipulidae, or number of shredding Nemouridae.  The lack of 

relationship between shredder abundance and breakdown rate was likely a result of 

Nemouridae stoneflies dominating the shredder assemblage in AP streams.  

 In this study shredder richness was not correlated with decomposition overall but there 

were trends between shredder richness and decomposition rate in AP and CN streams.  Other 

studies found that while an increase in shredder biomass may or may not be related to leaf litter 

breakdown, increasing taxonomic richness of shredders were positively related to litter 

breakdown (Huryn et al. 2002, Dangles et al. 2004, Fritz et al. 2010).  It is suspected by Huryn 

et al. (2002) that high shredder richness leads to higher leaf litter consumption efficiency as a 

result of different modes of feeding within the shredder functional feeding group (e.g., whole leaf 

consumption by some Tipulidae vs. leaf skeletonisation by many stoneflies).  However, as we 

did not see an overall relationship between shredder richness and decomposition, it suggests 
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that there may be a degree of redundancy among shredder taxa inhabiting headwater streams 

(Huryn et al. 2002).   

We found that the number of shredding Trichoptera was related to decomposition rate. It 

has been indicated that the loss of a particular group of sensitive taxa with high shredding 

capacity may be the primary cause of reduced leaf litter breakdown under acidic conditions 

(Dangles and Guerold 2001, Simon et al. 2009).  As there are a number of highly efficient 

shredding Trichoptera the relationship between reduction of shredding Trichoptera and 

decomposition suggests that there is limited redundancy in taxa that sustain high levels of leaf 

litter breakdown (Lake et al. 2007).  

CN streams with the highest rate of decomposition had most if not all of the high 

efficiency shredders present (Lepidostoma, Limnephilidae, Pteronarcys, Gammarus, and 

Decopoda).   AP streams with reduced decomposition had only one or two of these taxa present 

(Appendix I.).  This indicates that the specific sequence of taxa loss due to environmental 

stressors must be taken into account when assessing the consequences of taxa losses resulting 

from environmental change (Dangles et al. 2004).   

In this study we found that microbial activity was greatest in CN streams.  We noted that 

ergosterol concentration was inhibited in AMD streams and total microbial respiration was 

depressed in both AP and AMD streams.  A study by Simon et al. (2009) found that microbial 

respiration was positively related with pH.   A study by Suberkropp and Chauvet (1995) found 

that alkalinity and pH had a major effect on fungal communities colonizing leaves.  Leaves 

collected in acidic streams by Hall et al. (1980) had fewer fungal spores.  Several studies of the 

impacts of mine drainage on streams found slower microbial activity with increasing levels of 

metal concentration and precipitates (Bermingham et al. 1996, Schliet et al. 2004, Barnden and 

Harding 2005, Fritz et al. 2010), with some streams of low pH exhibiting high microbial 
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respiration rates (Niyogi et al. 2001).  Hyphal cover of leaves was likely reduced in our AMD 

streams, as iron plaques probably hindered leaf accessibility to microbes (Bermingham et al. 

1996, Schliet et al. 2004).   

We found that ergosterol concentration and total microbial respiration were positively 

associated with decomposition rate.  Several other studies found that microbial activity was 

positively associated with leaf litter breakdown rates (Dangles et al. 2004, Mckie et al. 2006, 

Simon et al. 2009). However, not all studies have found a relationship between ergosterol and 

leaf litter breakdown (Fritz et al. 2010).  The reduction in leaf decomposition in AMD sites that 

was observed may be due to changes in metabolic activity of the fungal assemblage on leaves 

as suggested by Bermingham et al. (1996).  

We saw that differences in leaf litter break down was most strongly related to microbial 

activity, as was seen by other studies (Suberkropp and Chauvet 1995, Bermingham et al. 1996, 

Pascoal et al. 2001).  However, as seen in other studies (Dangles et al. 2004, Fritz et al. 2010) it 

is likely the combination of differences in shredder assemblage and microbial activity that drive 

the changes in leaf litter breakdown rates.  Reduction in leaf litter breakdown rate in AMD 

streams was likely a result of severe reduction or loss of the shredder assemblage, reduction in 

microbial activity, and mineral encapsulation of organic matter limiting access.  Reduction in leaf 

litter breakdown rates in AP streams was likely a result of the shift in shredder community to 

small facultative acid tolerant shredders from more voracious shredders, and a reduction in 

microbial activity.  This study supports that stressors caused by acid precipitation and acid mine 

drainage led to reductions in shredder function and microbial activity resulting in more 

unprocessed leaf litter accumulating in streams and a reduction in the release and export of fine 

particulate organic matter, dissolved organic matter and nutrients, as noted by Hall et al. (1980) 

and Wallace et al. (1996) 
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 Decomposition rate was not highly correlated with any of the macroinvertebrate metrics 

measured.  However, EPT richness and family richness were the most correlated with leaf litter 

breakdown rates. There is some evidence suggesting that for the shredding of coarse 

particulate organic matter the effectiveness of the functional group increases with the addition of 

further species (Lake et al. 2007).  However, all species are not equal in terms of ecosystem 

function; this is an important consideration in selecting indicator taxa, as those that provide 

important links in food web should be a crucial criterion (Bunn and Davies 2000).   

Standard bioassessment procedures offer evidence that changes in water quality affects 

the community structure of stream invertebrates; however, how changes in community structure 

translate into changes in stream ecosystem function is not indicated (Bunn et al. 1999, Huryn et 

al. 2002).  Leaf breakdown rates do not necessarily reflected biotic conditions as assessed by 

biotic indices (Pascoal et al. 2001). This would suggest that both data from structural and 

functional aspects of a stream are critical in assessing water quality.  There are several 

advantages of using leaf litter breakdown rate as an indicator of stream health.  One advantage 

is that measuring leaf litter breakdown rate is simple and requires inexpensive and readily 

available equipment.  Another is that many studies have examined factors controlling leaf litter 

breakdown, so it will respond to variation caused by stressors in a predictable way.  Additionally, 

leaf breakdown can be measured in any aquatic habitat (Young et al. 2008).  There are also a 

few disadvantages in using leaf litter breakdown as a measure of stream health.  One 

disadvantage is that leaf litter breakdown is influenced by a wide variety of factors so 

interpretation of results is sometimes difficult.  Another disadvantage is that leaf litter breakdown 

is only indicative of the conditions at a specific location within a stream rather than a whole 

reach.  An additional disadvantage is that the significance of leaf litter breakdown is not intuitive 

to the general public (Young et al. 2008).   Assessment of ecosystem function is important in 

making decisions on restoration potential (Ryder and miller 2005, Davies and Jackson 2006), as 
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many goals relating to management and protection of streams refer to ecosystem processes 

(Bunn and Davies 2000).  Breakdown reflects the total energetic functionality of stream 

ecosystems (Braioni et al. 2004) and this ecosystem measurement integrates factors at a large 

spatial scale which allows the health of a stream to be viewed in a catchment context (Bunn et 

al. 1999). 

   Acid stream restoration may produce ecological benefits by increasing localized 

processing of organic matter and the down-stream delivery of fine particulate organic matter and 

invertebrate biomass. There is also a potential for increased nutrient uptake if microbial activity 

is increased (Hamilton et al. 2001).  Acid remediation can provide other benefits such as 

increased fish and macroinvertebrate diversity and the reestablishment of trout fisheries 

(McClurg et al. 2007).  The reduction of acidity has the potential to partially restore organic 

matter processing by increasing shredder biomass (McClurg et al. 2007) and increasing the 

abundance of some acid sensitive key shredders (Simon et al. 2009).  However, liming of acidic 

streams has had varying success in restoring leaf litter decomposition.  A study by Merrix et al. 

(2006) found that liming restored decomposition rates to those of non-acidic streams, while a 

study by Mckie et al. (2006) found that liming increased leaf litter breakdown by microbes but 

reduced shredding invertebrates.   A study by McClurg et al. (2007) found that while shredder 

biomass was restored to levels comparable to neutral streams many of the key shredders were 

not restored.  It was suggested that the lack of response of the macroinvertebrate community to 

liming treatment was a result of highly variable water chemistry downstream of treatment sites 

due to a resulting mixing zone where metals precipitate out of solution and increased 

sedimentation may occur (McClurg et al. 2007).  Also, any remediation plan for AMD streams 

must decrease dissolved metal concentrations below the threshold for survival of shredding 

invertebrates, while at the same time preventing high rates of metal oxide deposition, which will 

limit both shredders and microbes (Niyogi et al. 2001).   
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Table 1: Classifications of some distinguishing water chemistry parameters  

 Extremely low Low Moderate High Extremely 
high 

pH 2-4.5 4.5-6.5 6.5-7.5 -- -- 
SpC (µS/cm) 0-20 20-60 60-500 500-1000 > 1000 
Alk (mg/L) 0-1 1-5 10-60 -- -- 
Ca (mg/L) 0-4 4-10 10-30 30-100 > 100 
Mg (mg/L) 0-1 1-5 5-10 10-50 > 50 
SO4 (mg/L) 0-10 10-50 50-100 100-500 > 500 
Fe (mg/l) 0-0.5 0.5-1 1-3 3-20 > 20 
Mn (mg/L) 0-0.5 0.5-1 1-3 3-10 > 10 
  

 



45 
 

 

 

Table 2: Location, acid contaminating type, and general characteristics of 15 study streams. 

CN = circumneutral, AP = acid precipitation, and AMD = acid mine drainage 

 

 

 

 

Site 
 

Stream name 
 

Latitude 
 

Longitude 
 

Stream type 
 

Drainage 
area (km2) 

Average stream 
temperature (oC) 

Average 
discharge (m3/s) 

 
Slope (%) 

CN 1 Darnell Hollow 39.686380 -79.792680 circumneutral 1.62 10.38 0.10 4.60 
CN 2 UNT of Muddy 39.569156 -79.528956 circumneutral 2.71 10.43 0.13 6.71 
CN 3 Roaring 39.526080 -79.556000 circumneutral 5.67 10.31 0.46 6.72 
CN 4 Daughtery 39.495700 -79.575380 circumneutral 4.79 10.43 0.23 7.38 
CN 5 Muddy 39.563361 -79.532803 circumneutral 9.46 10.39 0.28 7.09 
AP 1 Jumprock R 39.589990 -79.552390 acid precipitation 4.64 10.37 0.11 8.49 
AP 2 Lick of Roaring 39.543069 -79.587117 acid precipitation 6.79 10.37 0.36 6.72 
AP 3 Little Laurel Cr. 39.678892 -79.746828 acid precipitation 2.58 9.97 0.09 5.34 
AP 4 Little Laurel R 39.677383 -79.749736 acid precipitation 2.75 9.86 0.12 7.54 
AP 5 Sugarcomb 39.589422 -79.545417 acid precipitation 4.37 10.24 0.16 6.37 
AMD 1 Fickey 39.551020 -79.637440 acid mine drainage 4.29 11.73 0.12 3.43 
AMD 2 Glade  39.552360 -79.647710 acid mine drainage 9.88 11.21 0.44 5.33 
AMD 3 Martin 39.547364 -79.644430 acid mine drainage 14.11   11.15 0.53 6.87 
AMD 4 S. Fork Greens 39.483310 -79.675360 acid mine drainage 5.08 12.08 0.16 5.89 
AMD 5 UNT of Glade 39.569589 -79.654089 acid mine drainage 1.93 11.45 0.08 5.33 
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Table 3: Mean (±SE) drainage area, annual average discharge, slope, and annual average 
stream temperature for each stream type. F-values come from ANOVAs of each variable 
(d.f.=2)  

* p < 0.1 ** p < 0.01 *** p < 0.001  NS = not significant 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Stream type  
 Circumneutral Acid precipitation Acid mine drainage  
Physical parameters (n=5) (n=5) (n=5) F-value 

Drainage area (Km2) 4.85a (1.36) 4.23a (0.76) 7.06a (2.19) 0.92NS 

Discharge (m3/s) 0.31a (0.10) 0.17a (0.05) 0.26a (0.09) 0.75NS 

Slope (%) 7.26a (0.17) 6.91a (0.52) 4.99b (0.68) 5.84*  
Temperature oC 10.71ab (0.32) 10.17a (0.10) 11.53b (0.17) 9.65** 
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Table 4: Principle components analysis (PCA) results from average water chemistry over three 
seasons (summer, winter, and spring) of decomposition trials.  PCA was used to verify stream 
type grouping. 

 
 

 

 

 

 

 

 

 

 

 

 

 PC1 PC2 
Eigenvalue 10.91 1.67 
Total variance explained 72.70 83.83 
 
Factors loading 

  

pH -0.86 - 
Conductivity 0.94 - 
Alkalinity -0.71 -0.54 
Acidity 0.65 0.46 
Al 0.97 - 
Ca 0.83 -0.45 
Cl 0.68 - 
Co 0.89 - 
Fe 0.89 - 
Mg 0.94 - 
Mn 0.96 - 
Na 0.57 -0.64 
Ni 0.87 - 
Zn 0.96 - 
SO4 0.94 - 
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Table 5: Mean (±SE) water chemistry parameters by site type for the summer decomposition trial. F-values come from ANOVAs of 
each water chemistry parameter (d.f.= 2). 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Note: Parameters with the same lowercase superscript letter did not significantly differ among stream type (p<0.1)  
* p < 0.1 **p<0.01 ***p<0.001  NS, not significant.  
† SpC, specific conductivity; TSS, total suspended solids; PC, principal component  

 Stream type  

 Circumneutral Acid precipitation Acid mine drainage  
Chemical parameter † (n=5) (n=5) (n=5) F-value 

Discharge (m3/s) 0.05ab (0.01) 0.03b (0.01) 0.07a (0.02) 3.1* 
Temperature (˚C) 13.77a (0.57) 13.74a (0.48) 15.72b (0.42) 5.3** 
pH 7.14a (0.20) 5.60b (0.14) 3.42c (0.15) 129.3*** 
SpC (µS/cm) 98.45a (8.20) 29.30a (1.03) 1237.80b (126.57) 85.8*** 
Alkalinity (mg/L) 33.95a (3.54) 2.03b (0.25) 0.01b (0.01) 86.4*** 
Acidity (mg/L) 13.46a (9.86) 14.57a (1.67) 252.56b (47.83) 23.8*** 
Al (mg/L) 0.10a (0.02) 0.23a (0.04) 19.07b (2.57) 54.0*** 
Ba (mg/L) 0.04a (0.01) 0.04a (0.00) 0.02b (0.00) 6.45** 
Ca (mg/L) 16.17a (1.91) 2.05a (0.13) 113.01b (11.13) 85.7*** 
Cl (mg/L) 2.26a (0.21) 1.05a (0.07) 5.31b (1.18) 10.1*** 
Co (mg/L) 0.02a (0.00) 0.02a (0.00) 0.14b (0.02) 28.9*** 
Cu (mg/L) 0.02a (0.00) 0.02a (0.00) 0.02a (0.00) 2.0NS 

Fe (mg/L) 0.18a (0.03) 0.22a (0.03) 27.39b (11.05) 6.1** 
Mg (mg/L) 1.82a (0.13) 0.86a (0.04) 46.65b (6.16) 54.0*** 
Mn (mg/L) 0.09a (0.01) 0.15a (0.03) 5.96b (0.87) 45.0*** 
Na (mg/L) 6.19a (1.27) 5.21a (1.25) 11.71b (2.08) 4.9* 
Ni (mg/L) 0.02a (0.00) 0.03a (0.01) 0.19b (0.03) 25.1*** 
Se (mg/L) 0.05a (0.00) 0.05a (0.00) 0.05a (0.00) 0.2NS 

Zn (mg/L) 0.02a (0.00) 0.04a (0.02) 0.42b (0.07) 28.5*** 
SO4 (mg/L) 10.91a (0.51) 9.99a (0.54) 748.70b (92.76) 63.3*** 
TSS (mg/L) 20.20a (4.93) 26.60a (15.41) 32.45a (14.90) 0.23NS 

PC1 -2.81a (0.11) -2.48a (0.20) 5.17b (0.59) 153.33*** 
PC2 2.38a (0.31) -0.08a,b (0.29) 0.16b (0.19) 29.33*** 
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Table 6: Mean (±SE) water chemistry parameters by site type for the winter decomposition trial. F-value from ANOVAs of each 
chemical parameter (d.f. =2). 

 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note: Parameters with the same lowercase superscript letter did not significantly differ among stream type (p<0.1)  
* p < 0.1 **p<0.01 ***p<0.001  NS, not significant.  
† SpC, specific conductivity; TSS, total suspended solid; PC, principle component

 Stream type  

 Circumneutral Acid precipitation Acid mine drainage  

Chemical parameter † (n=5) (n=5) (n=5) F-value 

Discharge (m3/s) 0.32a (0.1) 0.23a (0.1) 0.31a (0.1) 0.2NS 

Temperature (°C) 7.27a (0.9) 6.97a (0.9) 7.66a (1.1) 0.1NS 

pH 6.44a (0.1) 5.21b (0.2) 4.09c (0.1) 89.4*** 
SpC (µS/cm) 74.59a (6.2) 30.06a (0.0) 1026.15b (113.0) 42.9*** 
Alkalinity (mg/L) 22.72a (3.0) 1.93b (0.5) 0.01b (0.0) 55.1*** 
Acidity (mg/L) 70.36a (19.0) 86.86a (19.6) 243.62b (35.3) 13.3*** 
Al (mg/L) 0.15a (0.1) 0.29a (0.1) 12.71b (2.1) 31.6*** 
Ba (mg/L) 0.03a (0.0) 0.05a (0.0) 0.02a (0.0) 2.35NS 

Ca (mg/L) 11.97a (1.7) 2.29a (0.3) 86.60b (12.6) 35.5*** 
Cl (mg/L) 2.27a (0.2) 1.01a (0.1) 6.83b (1.6) 9.9*** 
Co (mg/L) 0.02a (0.0) 0.02a (0.0) 0.10b (0.0) 17.9*** 
Cu (mg/L) 0.02a (0.0) 0.02a (0.0) 0.03b (0.0) 4.2* 
Fe (mg/L) 0.19a (0.0) 0.21a (0.1) 17.17b (6.4) 6.2** 
Mg (mg/L) 1.68a (0.2) 0.94a (0.1) 34.10b (5.4) 32.7*** 
Mn (mg/L) 0.11a (0.0) 0.13a (0.0) 3.90b (0.7) 29.5*** 
Na (mg/L) 1.55a (0.2) 0.95a (0.4) 6.90b (1.2) 18.5*** 
Ni (mg/L) 0.05a (0.0) 0.07a (0.0) 0.18b (0.0) 15.5*** 
Se (mg/L) 0.10a (0.0) 0.09a (0.0) 0.05a (0.0) 2.2NS 

Zn (mg/L) 0.02a (0.0) 0.03a (0.0) 0.32b (0.1) 25.4*** 
SO4 (mg/L) 12.85a (0.8) 11.21a (0.2) 529.70b (61.2) 64.1*** 
TSS (mg/L) 5.83a (1.9) 5.06a (1.3) 7.18a (2.2) 0.3NS 

PC1 -2.25a (0.31) -1.58a (0.27) 4.06b (0.44) 99.41*** 
PC2 0.26a (0.07) -1.76b (0.39) 0.24a (0.23) 19.26*** 
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Table 7: Mean (±SE) water chemistry parameters by site type for the spring decomposition trial. F-values come from ANOVAs of 
each water chemistry parameter (d.f.=2).   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Note: Parameters with the same lowercase superscript letter did not significantly differ among stream type (p<0.1)  
* p < 0.1 **p<0.01 ***p<0.001  NS, not significant.  
† SpC, specific conductivity; TSS, total suspended solids; PC, principal component  

 Stream type  

 

Circumneutral Acid precipitation Acid mine drainage  
Chemistry parameter † (n=5) (n=5) (n=5) F-value 

Discharge (m3) 0.5a (0.2) 0.3a (0.1) 0.4a (0.1) 1.07Ns 

Temperature (oC) 11.0a (0.4) 9.7b (0.1) 11.2a (0.2) 10.34** 
pH 6.8a (0.1) 5.4b (0.10) 4.4c (0.1) 131.43*** 
SpC(µS/cm) 87.7a (5.9) 55.1a (2.6) 1632.2b (128.7) 146.89*** 
Alkalinity (mg/L) 17.1a (2.7) 1.3a,b (0.2) 0.7b (0.0) 35.99*** 
Acidity (mg/L) 108.8a (5.6) 126.7a (3.1) 241.5b (52.0) 5.66* 
Al (mg/L) 0.1a (0.0) 0.3a (0.1) 9.5b (1.7) 29.12*** 
Ba (mg/L) 0.1a,b (0.0) 0.1a (0.0) 0.0b (0.0) 3.95* 
Ca (mg/L) 8.9a (1.6) 2.1a (0.3) 65.5b (14.2) 17.80*** 
Cl (mg/L) 2.2a (0.3) 1.2a (0.1) 6.7a (2.7) 3.32NS 

Co (mg/L) 0.0a (0.0) 0.1a (0.0) 0.1a (0.0) 2.74NS 

Cu (mg/L) 0.0a (0.0) 0.1a (0.0) 0.0a (0.0) 1.01NS 

Fe (mg/L) 0.5a (0.0) 0.5a (0.1) 20.3b (4.7) 17.46*** 
Mg (mg/L) 0.8a (0.1) 0.7a (0.1) 19.2b (4.4) 18.01*** 
Mn (mg/L) 0.1a (0.0) 0.2a (0.0) 3.7b (1.2) 8.56** 
Na (mg/L) 1.3a (0.2) 1.3a (0.5) 6.8b (1.9) 7.76** 
Ni (mg/L) 0.0a (0.0) 0.1a (0.0) 0.2b (0.0) 12.59** 
Se (mg/L) 0.1a (0.0) 0.1a (0.0) 0.1a (0.0) 1.68NS 

Zn (mg/L) 0.0a (0.0) 0.1a (0.0) 0.3b (0.1) 22.16*** 
SO4 (mg/L) 12.7a (1.0) 10.9a (0.2) 477.6b (78.5) 35.19*** 
TSS (mg/L) 8.8a (2.2) 7.6a (4.0) 9.9a (4.4) 0.09Ns 

PC1 -2.24a (0.08) -2.11a (0.11) 4.23b (0.40) 233.96*** 
PC2 0.52a (0.06) -1.74b (0.38) 0.03a (0.27) 19.32*** 
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Table 8: Annual average water chemistry parameters by stream type across three seasonal sampling periods, together with F values 
from repeated measures ANOVA designed to detect an effect of stream type and season on each water chemistry variable. 

Note: Parameters with the same lowercase superscript letter did not significantly differ among stream type (p<0.1)  
* p < 0.1 **p<0.01 ***p<0.001  NS, not significant 
† SpC, specific conductivity; TSS, total suspended solids; PC, principal component. 

 Stream type   Type X 
season 

F4 Chemical parameter † 
Circumneutral Acid precipitation Acid mine drainage Type 

F2 

Season 
F2 

Discharge (m3/s) 0.31a (0.08) 0.17a (0.04) 0.26a (0.07) 1.6NS 9.93*** 0.48NS 
Temperature (˚C) 10.71a (0.74) 10.17a (0.75) 11.53b (0.89) 13.73*** 366.01*** 3.06* 

pH 6.81a (0.12) 5.42b (0.10) 3.96c (0.13) 266.82*** 2.65* 7.325*** 
SpC (µS/cm) 87.64a (5.65) 38.07a (3.40) 1298.72b (108.04) 182.18*** 4.19* 3.56* 
Alkalinity (mg/L) 24.87a (3.09) 1.80b (0.26) 0.23b (0.08) 79.16*** 3.36* 3.36* 
Acidity (mg/L) 63.18a (11.50) 75.66a (12.50) 245.90b (36.83) 19.4*** 2.01Ns 0.71Ns 
Al (mg/L) 0.11a (0.02) 0.28a (0.04) 13.76b (1.86) 68.03*** 2.68* 2.95* 

Ba (mg/L) 0.04a,b (0.01) 0.06a (0.01) 0.02b (0.00) 7.37** 4.04* 1.66NS 
Ca (mg/L) 12.56a (1.63) 2.19a (0.18) 88.35b (10.04) 75.12*** 2.83NS 1.87NS 

Cl (mg/L) 2.24a (0.20) 1.08a (0.05) 6.27b (1.38) 9.93*** 0.1NS 0.1NS 

Co (mg/L) 0.02a (0.01) 0.03a (0.01) 0.11b (0.01) 41.26*** 1.02NS 2.81* 

Cu (mg/L) 0.02a (0.01) 0.03a (0.01) 0.02a (0.00) 0.52NS 2.79* 1.34NS 

Fe (mg/L) 0.30a (0.05) 0.32a (0.06) 21.62b (6.76) 8.76*** 0.17NS 0.17NS 

Mg (mg/L) 1.45a (0.15) 0.81a (0.05) 33.32b (4.77) 64.69*** 4.28* 3.75* 

Mn (mg/L) 0.09a (0.01) 0.15a (0.02) 4.52b (0.71) 38.47*** 1.04NS 1.04NS 
Na (mg/L) 3.01a (0.79) 2.51a (0.68) 8.47b (1.53) 11.69*** 7.4** 0.02NS 

Ni (mg/L) 0.04a (0.01) 0.05a (0.01) 0.19b (0.01) 65.95*** 1.44NS  0.68NS 

Se (mg/L) 0.10a (0.01) 0.09a (0.02) 0.06a (0.00) 3.66* 8.28** 1.059NS 

Zn (mg/L) 0.02a (0.00) 0.04a (0.01) 0.36b (0.03) 89.67*** 0.77NS 0.97NS 

SO4 (mg/L) 12.21a (0.56) 10.69a (0.16) 585.33b (66.28) 82.83*** 1.69NS 1.75NS 

TSS (mg/L) 11.67a (1.97) 13.15a (5.37) 16.50a (6.22) 0.29NS 5.89NS 0.17NS 

PC1 -2.43 (0.12) -2.05 (0.14) 4.49 (0.29) 455.47*** 0.03NS 2.75** 
PC2 1.05 (0.27) -1.19 (0.28) 0.14 (0.13) 2.9* 8.65*** 1.42NS 
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Table 9: Relationship of water chemistry variables and macroinvertebrate metrics to nonmetric 
multidimensional scaling (NMDS) ordination of macroinvertebrate genera in 2 dimensions by 
vector fitting.  Corresponding r2 and p-values are given. P-values are estimated from 1000 
randomizations of data.    

Variable Vector r2 p-value 
Water chemistry † 

 pH 0.91 <0.001 
SpC 0.89 <0.001 
Alkalinity 0.52 0.027 
Acidity 0.68 <0.001 
Al  0.85 <0.001 
Ba 0.21 0.249 
Ca 0.91 <0.001 
Cl 0.38 0.062 
Co  0.81 0.002 
Cr 0.05 0.77 
Cu 0.02 0.869 
Fe 0.54 0.011 
Mg 0.84 <0.001 
Mn 0.63 <0.001 
Na 0.56 0.012 
Ni 0.85 <0.001 
Se 0.2 0.251 
Zn 0.89 <0.001 
SO4 0.91 <0.001 
TSS 0.36 0.067 
Invertebrate metric †† 

 WVSCI 0.91 <0.001 
Num 0.63 0.002 
% EPT 0.81 <0.001 
EPT 0.90 <0.001 
 %Tol 0.81 <0.001 
% E 0.59 0.007 
MHI 0.74 <0.001 
% Dom 0.85 <0.001 
FRich 0.95 <0.001 
% Aci.Tol 0.31 0.11 
% Al.Tol 0.55 0.012 

† SpC, specific conductivity; TSS, total suspended solids. 
†† WVSCI, West Virginia stream condition index; Num, number of individual 
macroinvertebrates; % EPT, percent Ephemeroptera, Plecoptera and Trichoptera; EPT, Genus 
richness of Ephemeroptera, Plecoptera and Trichoptera; % Tol, percent tolerant; % E, percent 
Ephemeroptera; MHI, Modified hilsenhoff index; % Dom, percent dominant; FRich, family 
richness; % Aci.Tol, percent acid tolerant; % Al.Tol, percent Al tolerant  
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Table 10: Mean (±SE) invertebrate metrics for each stream type. F-values come from ANOVAs 
of each variable (d.f.=2).  
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note: Parameters with the same lowercase superscript letter did not significantly differ among 
stream type (p<0.1)  
* p < 0.1 **p<0.01 ***p<0.001  NS, not significant 
† WVSCI, West Virginia stream condition index; Num, number of individual macroinvertebrates; 
% EPT, percent Ephemeroptera, Plecoptera and Trichoptera; EPT, Genus  richness of 
Ephemeroptera, Plecoptera and Trichoptera; % Tol, percent tolerant; % E, percent 
Ephemeroptera; MHI, Modified hilsenhoff index; % Dom, percent dominant; FRich, family 
richness.  
 

 

 

 

 

 

 

 

 

 

 

 Stream type  

Metrics † 
Circumneutral 

(n=5) 
Acid precipitation 

(n=5) 
Acid mine drainage 

(n=5) 
 

F-value 
WVSCI 90.3a (3.6) 71.4b (3.9) 23.5c (2.1) 106.48*** 
Num 3078.5a (418.1) 2560.6a (650.8) 220.1b  (64.7) 11.54** 
% EPT 64.8a (6.8) 53.9a (7.1) 5.2b (1.7) 30.36*** 
EPT 29.8a (1.15) 18.6b (2.54) 6.4c (2.08) 33.79*** 
% Tol 13.1a (2.1) 36.7b (7.5) 85.8c (2.7) 60.60*** 
% E 44.1a (5.9) 1.3b (0.4) 0.2b (0.2) 54.19*** 
MHI 4.0a (0.2) 4.5a (0.3) 7.2b (0.3) 38.27*** 
% Dom 25.1a (2.8) 45.1b (1.2) 81.0c (2.9) 136.58*** 
FRich 29.2a (1.2) 20.6b (1.0) 4.9c (1.1) 122.77*** 
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Table 11: Results from an analysis of similarity (ANOSIM) including all pairwise comparisons of 
shredder assemblage among the stream types. CN = circumneutral, AP = acid precipitation, and 
AMD = acid mine drainage. p-values are estimated from 1000 randomizations of the data.  

Test R-value 
Global  0.458** 
CN-AP 0.608** 
CN-AMD 0.326* 
AP-AMD 0.412* 

* p<0.1  ** p<0.01 ***p<0.001 
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Table 12:  Mean (±SE) number of total shredders and number of shredders from different taxa 
for each stream type. F-values come from ANOVAs of each variable (d.f.=2).  

 
Note: Parameters with the same lowercase superscript letter did not significantly differ among 
stream type (p<0.1)  
* p < 0.1 **p<0.01 ***p<0.001  NS, not significant 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Stream type  

 
Circumneutral 

(n=5) 
Acid precipitation 

(n=5) 
Acid mine drainage 

(n=5) 
 

F-value 

# Shredders 288.5a (92.2) 1131.9b (240.8) 7.5a (2.6) 15.45*** 
Shredder richness 12.2a (0.9) 12.2a (1.2) 2.4b (0.5) 37.81*** 
# Voracious shredders 123.6a (93.7) 23.7a (9.3) 0a (0) 1.45NS 

# Shredding Trichoptera 18.0a (6.4) 17.3a (6.8) 0.1a (0.1) 3.56NS 

# Shredding Plecoptera 147.9a (30.3) 1051.8a (234.9) 6.3b (2.3) 17.19*** 
# Tipulidae 4.9a (2.0) 3.8a (1.4) 0.2a (0.1) 2.96NS 

#Nemouridae 47.6a (30.3) 517.9b (198.9) 1.9a (1.8) 6.05* 
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Table 13: Mean (±SE) measures of microbial activity by site type. F-values come from 
ANOVAsof each variable (d.f.=2).   

 
Note: Parameters with the same lowercase superscript letter did not significantly differ among 
stream type (p<0.1)  
* p < 0.1 **p<0.01 ***p<0.001  NS, not significant 
.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Stream type  
 Circumneutral Acid precipitation Acid mine drainage  
 (n=5) (n=5) (n=5) F-value 

Respiration 
 (mg O2/L*d)  1.47a  (0.30)  1.07 b (0.16)  1.17 b (0.24) 7.08** 
Ergosterol 
(µg/ml) 14.38a (1.57) 12.91a,b (0.98) 12.26a (2.20) 5.26* 
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Table 14: F-values from repeated measures ANOVA of the remaining leaf mass from each 
seasonal decomposition trial.  

 Stream type Days of exposure Day X type interaction 

Summer  13.77*** 194.06*** 9.41*** 

Winter 4.97* 181.7*** 1.94 

Spring 11.71*** 168.96*** 5.25** 

* p < 0.1 **p < 0.01 ***p < 0.001 
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Table 15:  Seasonal and annual mean (±SE) decomposition rates for each stream.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Decomposition Rate (g-d) 
type Summer 2009 Winter 2010 Spring 2010 Annual Average 
CN 1 0.008 0.019 0.007 0.011 (0.003) 
CN 2 0.011 0.015 0.006 0.011 (0.002) 
CN 3 0.025 0.02 0.008 0.018 (0.004) 
CN 4 0.008 0.006 0.008 0.007 (0.000) 
CN 5 0.011 0.031 0.034 0.025 (0.005) 
AP 1 0.009 0.004 0.004 0.006 (0.001) 
AP 2 0.007 0.013 0.007 0.009 (0.001) 
AP 3 0.007 0.003 0.006 0.005 (0.001) 
AP 4 0.005 0.012 0.007 0.008 (0.001) 
AP 5 0.008 0.003 0.004 0.005 (0.001) 
AMD 1 0.002 0.003 0.001 0.002 (0.000) 
AMD 2 0.006 0.006 0.004 0.005 (0.000) 
AMD 3 0.006 0.004 0.004 0.005 (0.000) 
AMD 4 0.004 0.01 0.008 0.007 (0.001) 
AMD 5 0.004 0.004 0.003 0.004 (0.000) 



59 
 

Table 16: Mean (±SE) decomposition rates for each stream type.  F-values are from ANOVAs 
between stream types (d.f.=2)   

Note: Parameters with the same lowercase superscript letter did not significantly differ among 
stream type (p<0.1)  
* p < 0.1 **p<0.01 ***p<0.001  NS, not significant 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Stream Type  

 

Circumneutral Acid mine drainage Acid precipitation  

Average Decomposition (g-d) F-value 

Summer 2009 0.0126a  (0.0031) 0.0044a,b  (0.0007) 0.0072b  (0.0006) 4.71* 

Winter 2010 0.0182a  (0.0040) 0.0054b  (0.0012) 0.0070b  (0.0023) 6.34* 

Spring 2010 0.0126a  (0.0054) 0.0040a  (0.0011) 0.0056a  (0.0007) 2.05 

Annual Average 0.0145a  (0.0018) 0.0046b  (0.0005) 0.0066b  (0.0005) 7.04** 
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Table 17: Results of a two way ANOVA between site type and season to determine if season 
had an influence on decomposition rate.  

Stream type Season Site type  X season 

d.f. F-value d.f. F-value d.f. F-value 

2 11.37*** 2 0.89 4 0.37 

* p < 0.1 **p<0.01 ***p<0.001 
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Table 18: Results of ANCOVAs to determine if physical stream parameters influenced 
decomposition rates.  

 Site type Physical parameter  Site type X parameter 

 d.f. F-value d.f. F-value d.f. F-value 

Drainage area (km2) 2 13.55** 1 5.12* 2 4.49* 

Discharge (m3/s) 2 19.98*** 1 15.67** 2 4.69* 

Slope (%) 2 5.37* 1 0.14 2 0.01 

Temperature oC 2 12.94** 1 10.25* 2 1.41 

* p < 0.1 ** p < 0.01 *** p < 0.001 
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Table 19: Results of ANCOVAs to determine if total number of shredders or number of 
shredders from different taxa influenced decomposition rates. 

 Site type Shredder variable Site type X shredder 
variable 

 d.f. F-value d.f. F-value d.f. F-value 

# Shredders 2 6.89* 1 0.07 2 1.34 

Shredder richness 2 6.45* 1 1.52 2 0.24 

# Voracious shredders 2 6.45 1 0.74 2 0.26 

# Shredding Trichoptera 2 9.68** 1 4.41* 2 1.55 

# Shredding Plecoptera 2 7.57* 1 0.01 2 1.95 

# Tipulidae 2 5.66* 1 0.01 2 0.32 

# Nemouridae 2 5.58* 1 0.09 2 0.21 

 * p < 0.1 ** p < 0.01  *** p < 0.001 
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Table 20: Correlation of family level macroinvertebrate metrics with annual average 
decomposition rate.  

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 * p < 0.1 ** p < 0.01 *** p < 0.001  
† WVSCI, West Virginia stream condition index; Num, number of individual macroinvertebrates; 
% EPT, percent Ephemeroptera, Plecoptera and Trichoptera; EPT, Genus richness of 
Ephemeroptera, Plecoptera and Trichoptera; % Tol, percent tolerant; % E, percent 
Ephemeroptera; MHI, Modified hilsenhoff index; % Dom, percent dominant; FRich, family 
richness; % Aci.Tol, percent acid tolerant; % Al.Tol, percent Al tolerant  
 

 

 

 

 

 

 

Invertebrate metrics † R2 p-value 

WVSCI 0.22 0.045* 

Num 0.35 0.011* 

% EPT 0.07 0.169 

EPT   0.51 0.002** 

% Tol 0.25 0.031* 

%E 0.25 0.036* 

MHI 0.13 0.104 

% Dom 0.27 0.025* 

FRich 0.43 0.005** 

% Aci. Tol -0.01 0.383 

% Al. Tol 0.22 0.041* 
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Table 21: Results of ANCOVA used to determine which microbial variables influenced annual 
average decomposition rates. 

 Site type Microbial variable Microbial variable X site type 
interaction 

 d.f. F-value d.f. F-value d.f. F-value 

Respiration 2 15.65** 1 12.37** 2 2.65 

Ergosterol 2 27.97*** 1 14.46** 2 12.14** 

  * p < 0.1 ** p < 0.01 ***p < 0.001 
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Table 22: Models created from likely shredder, microbial and physical parameters and ranked by Akaike Information Criterion. 
Sample sized used in model estimation was 15.  

Model † K AIC AICc 
Delta 
AICc 

model 
likelihood 
AICc 

Akaike 
weight 
AICc 

Respiration+ergosterol 4.00 -168.95 -164.95 0.00 1.00 0.91 
Voracious shredder+microbial resp+shredder rich+temp+Q 7.00 -176.23 -160.23 4.72 0.09 0.09 
Total shredders+voracious shredder+shredder rich 5.00 -159.29 -152.62 12.33 0.00 0.00 
Voracious shredder+respiration+ ergosterol+shredder rich+temp+Q 8.00 -175.07 -151.07 13.88 0.00 0.00 
Temp+Q 4.00 -154.90 -150.90 14.05 0.00 0.00 
Total shredders+voracious shredder+respiration+ ergosterol+shredder rich+temp+Q 9.00 -173.54 -137.54 27.41 0.00 0.00 

† respiration, microbial respiration; ergosterol, ergosterol concentration; shredder rich, shredder richness; temp,  
  water temperature; Q, stream discharge 
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Equation 1: Most likely model to predict leaf litter decomposition rate as ranked by Akaike Information Criterion.  

 

                (    )        (          ) 
  
 
k, leaf litter decomposition rate; resp, microbial respiration; ergosterol, ergosterol concentration 
 
 
 
 
 

Equation 2: Second most likely model to predict leaf litter decomposition rate as ranked by Akaike Information Criterion. 

 

                 (           )         (    )         (             )         (    )  (       ( ) 
 
 
k, leaf litter decomposition rate;  voracious, voracious shredders; resp, microbial respiration; shredder rich, shredder richness; temp, 
stream temperature; Q, stream discharge 
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Figure 1: Hierarchical framework of factors controlling rates of leaf processing in streams, showing the abiotic and biotic interactions 
influencing leaf processing according to their levels of influence (modified from Royer and Minshall 2003).  Bolded factors are the 
factors of interest in this study while greyed factors have been controlled for.  

Land Use Geology 

Microbial 
Activity 

Invertebrate  

Feeding 

Physical 
Fragmentation 

Leaf Litter 
Breakdown 

Water 
Chemist

ry 

Water 
Temperatur

e 

Water 
Velocity 

Discharge  Drainage Area 

Catchment 

Stream 

Process 

Function 

FPOM 

Export 
 Biomass 

Export 



68 
 

 

               

Figure 2: Bedrock geology of Muddy Creek and the Big Sandy Creek watersheds. 
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Figure 3: Surface mines and abandoned mines in the muddy Creek and Big Sandy Creek 
watersheds 
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Figure 4: Location of study sites 
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Figure 5:  Bivariate scatter plot of principle component (PC) 1 and 2 scores of averaged water 
chemistry samples for each seasonal decomposition trial for each stream; summer (A), winter 
(B), spring (C).  CN= circumneutral; AP= acid precipitation; and AMD= acid mine drainage 
streams. For factors loading on PC1 and 2 refer to Table 5
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Figure 6: Bivariate scatter plot of the annual mean (±SE) principal component (PC) 1 and 2 
scores of water chemistry samples for each stream.  CN= circumneutral; AP= acid precipitation; 
and AMD= acid mine drainage streams.  For factors loading on PC1 and 2 refer to Table
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Figure 7: Nonmetric multidimensional scaling (NMDS) ordination of macroinvertebrate 
communities collected at each stream (A), environmental fit of the associated water chemistry 
variables (B), and environmental fit of the associated macroinvertebrate metrics (C). 
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Figure 8: Cluster analysis of shredder community assemblages. CN = circumneutral, AP = acid 
precipitation and AMD = acid mine drainage
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Figure 9: Mean (±SE) number of individuals from a taxon contributing to the shredder functional feeding 
group for each stream type: acid mine drainage (A), acid precipitation (B), and circumneutral (C). 
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Figure 10:  Mean (±SE) remaining leaf mass for each stream types, circumneutral (CN), acid 
precipitation (AP), and acid mine drainage (AMD), for every decomposition trial; summer (A), 
winter (B), and spring (C).  
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Figure 11: Mean (+SE) decomposition rate of oak leaves in circumneutral (CN), acid 
precipitation (AP) and acid mine drainage (AMD) streams. Decomposition rates are from 
approximately 120 day seasonal decomposition trial for summer, winter, and spring. 
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Figure 12: Annual average decomposition rates of each study stream organized by stream type. 
CN = circumneutral, AP = acid precipitation, and AMD = acid mine drainage. 
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Figure 13: Relationship between the annual average decomposition rate and drainage area (A), annual average stream temperature 
(B), annual average stream discharge (C), and percent slope (D). Linear regressions within each stream type are shown with the 
corresponding R2 value, where CN = circumneutral, AP = acid precipitation and AMD = acid mine drainage.
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Figure 14: Relationship between annual average decomposition rates and total shredder abundance (A),shredder richness (B), 
voracious shredders (C), number of shredding Trichoptera (D), number of shredding Plecoptera (E), number of shredding Tipulidae 
(F), and number of Nemouridae (G).  Liner relationships within each stream type are shown with their corresponding R2 value, where 
CN = circumneutral, AP = acid precipitation, and AMD = acid mine drainage 
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Figure 15 continued: Relationship between annual average decomposition rates and total shredder abundance (A),shredder richness 
(B), voracious shredders (C), number of shredding Trichoptera (D), number of shredding Plecoptera (E), number of shredding 
Tipulidae (F), and number of Nemouridae (G).  Liner relationships within each stream type are shown with their corresponding R2 
value, where CN = circumneutral, AP = acid precipitation, and AMD = acid mine drainage 
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Figure 16: Relationships between annual average decomposition rate and microbial respiration rate (A and B) and ergosterol 
concentration (C and D).  Linear relationships between decomposition and respiration rate (A) and ergosterol concentration (C) are 
shown with their corresponding R2 value for each stream type, where CN = circumneutral, AP = acid precipitation, and AMD = acid 
mine drainage. Correlations between decomposition and all respiration rates (B) and ergosterol concentrations (D) with 
corresponding R2 values are also shown.
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Appendix I. Average number of individuals, percentage of assemblage and percentage of functional feeding group for each 

genus collected for each site type.  

   

Circumneutral Acid precipitation Acid mine drainage 

Shredders           

   

Average # % total % shredders Average # % total % shredders Average # % total % shredders 

Decapoda* 
 

2.70 0.1% 0.9% 2.30 0.1% 0.2% 0.00 0.0% 0.0% 

Amphipoda* 
 

105.70 4.9% 36.6% 1.60 0.1% 0.1% 0.00 0.0% 0.0% 

Isopoda 
 

7.50 0.3% 2.6% 55.10 3.0% 4.9% 0.80 0.8% 10.7% 

Trichoptera 
          

 
Polycentropodidae Polycentropus 11.50 0.3% 4.0% 10.70 0.4% 0.9% 0.10 0.0% 1.3% 

 
Lepidostomatidae* Lepidostoma 3.50 0.1% 1.2% 3.20 0.1% 0.3% 0.00 0.0% 0.0% 

 
Limnephilidae* Hydatophylax 0.00 0.0% 0.0% 0.10 0.0% 0.0% 0.00 0.0% 0.0% 

  
unknown   0.60 0.0% 0.2% 0.00 0.0% 0.0% 0.00 0.0% 0.0% 

 
Leptoceridae unknown 0.00 0.0% 0.0% 1.80 0.0% 0.2% 0.00 0.0% 0.0% 

 
Odontoceridae Palaeagapetus 0.00 0.0% 0.0% 0.10 0.0% 0.0% 0.00 0.0% 0.0% 

 
unknown   

 

2.40 0.1% 0.8% 1.40 0.0% 0.1% 0.00 0.0% 0.0% 
Plecoptera 

          
 

Capniidae unknown 0.00 0.0% 0.0% 49.10 1.8% 4.3% 0.00 0.0% 0.0% 

 
Leuctridae Leuctra 81.60 3.1% 28.3% 439.10 23.3% 38.8% 2.60 0.7% 34.7% 

 
Pteronarcyidae* Pteronarcys 2.20 0.1% 0.8% 0.40 0.0% 0.0% 0.00 0.0% 0.0% 

 
Peltoperlidae* Peltoperla 8.90 0.3% 3.1% 14.40 0.4% 1.3% 0.00 0.0% 0.0% 

 
Nemouridae Amphinemuera 18.30 0.7% 6.3% 180.30 8.5% 15.9% 1.80 1.9% 24.0% 

  
Paranemoura 0.10 0.0% 0.0% 0.10 0.0% 0.0% 0.00 0.0% 0.0% 

  
unknown 29.20 1.0% 10.1% 337.50 9.4% 29.8% 0.10 0.0% 1.3% 

 
Taeniopterygidae Taeniopteryx 7.60 0.2% 2.6% 30.90 1.5% 2.7% 0.80 0.2% 10.7% 

 
unknown   

 

0.00 0.0% 0.0% 0.00 0.0% 0.0% 1.00 0.4% 13.3% 
Lepidoptera 

          
 

Pyralidae unknown 1.80 0.1% 0.6% 0.00 0.0% 0.0% 0.10 0.2% 1.3% 
Diptera 

          
 

Tipulidae Tipula 1.80 0.1% 0.6% 1.50 0.1% 0.1% 0.20 0.3% 2.7% 

  
Molophilus 0.10 0.0% 0.0% 0.20 0.0% 0.0% 0.00 0.0% 0.0% 

  
Limnophila 2.20 0.1% 0.8% 1.80 0.2% 0.2% 0.00 0.0% 0.0% 

  
Pseudolimnophila 0.00 0.0% 0.0% 0.10 0.0% 0.0% 0.00 0.0% 0.0% 

 * Voracious shredders          
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Appendix I. Continued 

   
Circumneutral Acid precipitation Acid mine drainage 

Scrappers            

   
Average # % total % scraper Average  # % total % scrapers Average # % total % scraper 

Ephemeroptera 
          

 
Heptageniidae Epeorus 411.30 14.5% 37.9% 3.30 0.2% 2.7% 0.00 0.0% 0.0% 

  
Stenonema 28.10 0.9% 2.6% 2.00 0.2% 1.6% 0.00 0.0% 0.0% 

  
Cinygmula 16.80 0.5% 1.5% 0.00 0.0% 0.0% 0.10 0.0% 8.3% 

  
unknown 7.10 0.2% 0.7% 0.10 0.0% 0.1% 0.00 0.0% 0.0% 

 
Ephemerellidae Drunella 45.00 1.5% 4.1% 0.80 0.1% 0.7% 0.00 0.0% 0.0% 

Trichoptera 
          

 
Limnephilidae Goera 0.30 0.0% 0.0% 0.00 0.0% 0.0% 0.00 0.0% 0.0% 

 
Hydroptilidae Hydroptila 0.10 0.0% 0.0% 0.00 0.0% 0.0% 0.00 0.0% 0.0% 

 
Glossosomatidae Agapetus 27.20 1.0% 2.5% 1.70 0.0% 1.4% 0.00 0.0% 0.0% 

  
Glossosoma 0.30 0.0% 0.0% 0.00 0.0% 0.0% 0.00 0.0% 0.0% 

 
Uenoidae Neophylax 52.00 1.8% 4.8% 16.10 0.7% 13.1% 0.10 0.0% 8.3% 

Coleoptera 
          

 
Elmidae Optioservus 300.20 8.6% 27.7% 62.20 2.1% 50.8% 1.00 0.3% 83.3% 

  
Promoresia 59.20 1.3% 5.5% 0.00 0.0% 0.0% 0.00 0.0% 0.0% 

  
Oulimnius 95.30 3.0% 8.8% 36.30 1.8% 29.6% 0.00 0.0% 0.0% 

  
Stenelmis 1.60 0.0% 0.1% 0.00 0.0% 0.0% 0.00 0.0% 0.0% 

 
Psephenidae Ectopria 11.20 0.3% 1.0% 0.00 0.0% 0.0% 0.00 0.0% 0.0% 

  
 

Psephenus 0.20 0.0% 0.0% 0.00 0.0% 0.0% 0.00 0.0% 0.0% 

Diptera 
          

 
Blephariceridae Blepharicera 28.50 0.9% 2.6% 0.00 0.0% 0.0% 0.00 0.0% 0.0% 
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Appendix I. Continued 

   
Circumneutral Acid precipitation Acid mine drainage 

Predators           

   
Average # % total % predators Average # % total % predators Average # % total % predators 

Trichoptera 
          

 
Rhyacophilidae Rhyacophilla 33.80 1.2% 11.8% 77.80 3.3% 39.7% 1.10 0.4% 5.3% 

Plecoptera 
          

 
Chloroperlidae Utaperla 56.40 1.7% 19.8% 5.30 0.1% 2.7% 0.00 0.0% 0.0% 

  
Sweltsa 22.50 0.9% 7.9% 0.00 0.0% 0.0% 0.00 0.0% 0.0% 

  
Alloperla 0.00 0.0% 0.0% 1.60 0.1% 0.8% 0.00 0.0% 0.0% 

  
unknown 0.40 0.0% 0.1% 0.80 0.0% 0.4% 0.30 0.1% 1.4% 

 
Perlidae Acroneuria 14.60 0.5% 5.1% 1.10 0.0% 0.6% 0.00 0.0% 0.0% 

  
Eccoptura 0.50 0.0% 0.2% 0.10 0.0% 0.1% 0.00 0.0% 0.0% 

  
Beloneuria 0.80 0.0% 0.3% 0.00 0.0% 0.0% 0.00 0.0% 0.0% 

  
unknown 6.40 0.2% 2.2% 0.90 0.0% 0.5% 0.00 0.0% 0.0% 

 
Perlodidae Isoperla 2.80 0.1% 1.0% 1.60 0.1% 0.8% 0.00 0.0% 0.0% 

  
Diura 0.50 0.0% 0.2% 0.00 0.0% 0.0% 0.00 0.0% 0.0% 

  
Cultus 20.50 0.7% 7.2% 0.20 0.0% 0.1% 0.00 0.0% 0.0% 

  
Remenus 25.10 0.7% 8.8% 0.00 0.0% 0.0% 0.00 0.0% 0.0% 

  
Yugus 2.70 0.1% 0.9% 0.00 0.0% 0.0% 0.00 0.0% 0.0% 

  
Diploperla 1.30 0.0% 0.5% 2.30 0.4% 1.2% 0.80 0.2% 3.8% 

  
unknown 10.10 0.3% 3.5% 7.60 0.4% 3.9% 0.00 0.0% 0.0% 

Odonata 
          

 
Gomphidae Lanthus 4.30 0.2% 1.5% 0.00 0.0% 0.0% 0.00 0.0% 0.0% 

Coleoptera 
          

 
Hydrophilidae unknown 0.00 0.0% 0.0% 0.00 0.0% 0.0% 0.80 0.3% 3.8% 
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Appendix I. Continued 

   
Circumneutral Acid precipitation Acid mine drainage 

Predators Continued          

   
Average # % total % predators Average # % total % predators Average # % total % predators 

Megaloptera 
          

 
Corydalidae Nigronia 2.50 0.1% 0.9% 2.40 0.2% 1.2% 0.60 0.2% 2.9% 

  
Corydalus 0.00 0.0% 0.0% 0.50 0.0% 0.3% 0.00 0.0% 0.0% 

 
Sialidae Sialis 0.10 0.0% 0.0% 0.10 0.0% 0.1% 1.40 0.4% 6.7% 

Diptera 
          

 
Tipulidae Hexatoma 17.00 0.5% 6.0% 0.40 0.0% 0.2% 0.00 0.0% 0.0% 

  
Dicranota 4.90 0.1% 1.7% 3.90 0.2% 2.0% 0.00 0.0% 0.0% 

 
Dolichopodidae unknown 0.10 0.0% 0.0% 0.00 0.0% 0.0% 0.00 0.0% 0.0% 

 
Athericidae Atherix 1.80 0.1% 0.6% 0.00 0.0% 0.0% 0.00 0.0% 0.0% 

 
Empididae Chelifera 36.70 1.2% 12.9% 30.20 1.2% 15.4% 6.60 2.1% 31.7% 

  
Hemerodromia 0.00 0.0% 0.0% 0.20 0.0% 0.1% 0.00 0.0% 0.0% 

 
Ceratapagonidae Bezzia 12.90 0.4% 4.5% 23.40 1.1% 11.9% 6.70 2.6% 32.2% 

 
chironimidae Tanypodinae 6.60 0.2% 2.3% 35.80 1.3% 18.2% 2.50 3.1% 12.0% 
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Appendix I. Continued 

   
Circumneutral Acid precipitation Acid mine drainage 

Collectors           

   
Average # % total % collectors Average # % total % collectors Average # % total % collectors 

Oligochaeta 
 

24.40 0.8% 1.7% 74.70 3.4% 6.7% 0.00 0.0% 0.0% 
Clams 

 

0.30 0.0% 0.0% 0.00 0.0% 0.0% 0.00 0.0% 0.0% 
Ephemeroptera 

   
0.0% 

  
0.0% 

   
 

Baetidae Accentrella 126.10 3.7% 9.0% 0.00 0.0% 0.0% 0.00 0.0% 0.0% 

  
Baetis 88.40 3.1% 6.3% 0.00 0.0% 0.0% 0.00 0.0% 0.0% 

 
Leptophlebiidae Paraleptophlebia 208.00 7.2% 14.9% 0.80 0.0% 0.1% 0.00 0.0% 0.0% 

 
Ephemerellidae Ephemerella 364.90 11.6% 26.1% 0.70 0.0% 0.1% 0.10 0.0% 0.1% 

  
unknown 0.00 0.0% 0.0% 2.40 0.1% 0.2% 0.00 0.0% 0.0% 

 
Ameletidae Ameletus 15.70 0.5% 1.1% 19.00 0.7% 1.7% 0.00 0.0% 0.0% 

 
Tricorythidae Tricorythodes 0.00 0.0% 0.0% 0.10 0.0% 0.0% 0.00 0.0% 0.0% 

 
Ephemeridae Ephemera 2.40 0.1% 0.2% 0.00 0.0% 0.0% 0.00 0.0% 0.0% 

 
unknown 

 

0.00 0.0% 0.0% 0.00 0.0% 0.0% 0.80 0.2% 0.4% 
Trichoptera 

          
 

Hydropsychidae Parapsyche 0.10 0.0% 0.0% 0.00 0.0% 0.0% 0.00 0.0% 0.0% 

  
Hydropsyche 56.60 1.5% 4.0% 0.80 0.0% 0.1% 1.00 0.4% 0.5% 

  
Diplectrona 105.00 3.5% 7.5% 41.40 2.3% 3.7% 0.10 0.0% 0.1% 

  
Cheumatopsyche 2.10 0.0% 0.2% 3.20 0.5% 0.3% 0.10 0.0% 0.1% 

  
unknown 0.10 0.0% 0.0% 0.20 0.0% 0.0% 0.00 0.0% 0.0% 

 
Philopotamidae Dolophilodes 4.40 0.1% 0.3% 10.70 0.3% 1.0% 0.00 0.0% 0.0% 
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Appendix I. Continued 

   
Circumneutral Acid precipitation Acid mine Drainage 

Collectors Continued          

   
Average # % total % collectors Average # % total % collectors Average # % total % collectors 

Diptera 
          

 
Tipulidae Antocha 17.30 0.6% 1.2% 3.40 0.1% 0.3% 0.00 0.0% 0.0% 

 
Simuliidae Simulium 92.80 3.4% 6.6% 599.50 16.6% 54.1% 0.00 0.0% 0.0% 

 
Chironomidae Non-Tanypodinae 289.30 7.9% 20.7% 346.70 12.8% 31.3% 181.80 75.8% 95.9% 

 
Culicidae unknown 0.00 0.0% 0.0% 0.00 0.0% 0.0% 2.40 2.4% 1.3% 

Isotomidae 
          

 
Poduridae Podura 0.80 0.0% 0.1% 0.00 0.0% 0.0% 0.00 0.0% 0.0% 

 
unknown 

 

0.80 0.0% 0.1% 4.00 0.4% 0.4% 3.20 5.9% 1.7% 
 


	Effects of Acid Mine Drainage and Acid Precipitation on Leaf Litter Breakdown Rates in Appalachian Headwater Streams
	Recommended Citation

	Effects of Acid Mine Drainage and Acid Precipitation on Leaf Litter Breakdown Rates in Appalachian Headwater Streams

		2010-12-07T10:36:08-0500
	John H. Hagen




