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ABSTRACT 
Impacts of climate and land cover on water balance components in the central Appalachian 

Mountains, USA 
 

Brandi Gaertner 
 

The purpose of this research is to investigate the impact of climate and land cover on water 
balance components including evapotranspiration and runoff in the mountainous central 
Appalachian region of the United States. Forests play a critical role in provisioning freshwater 
resources to downstream regions, but climate change has affected growing season lengths and 
water balance fluxes including precipitation, evapotranspiration, and runoff, leading to large 
fluctuations in water yield. The effects of climate warming are especially important in headwater 
basins that contribute drinking water resources to downstream population centers. The central 
Appalachian region is one such region that provides fresh water to approximately 9% of the U.S. 
population including downstream metropolitan areas such as Washington D.C., Pittsburgh (PA), 
Cincinnati (OH), and the Mississippi River Basin. Therefore, understanding the impacts of 
climate change and land use change on water balance components in headwater basins in the 
central Appalachian Mountains is critical for developing policies and practices that enhance 
future water sustainability.  
 
In order to develop a comprehensive understanding of climate and land cover on water balance 
components within the central Appalachian region, the research was divided into three parts. The 
first study analyzed trends in climatologic, hydrologic, and growing season length variables, 
identified the important variables effecting growing season length changes, and evaluated the 
influence of a lengthened growing season on increasing evapotranspiration trends. Three 
growing season length variables were generated using remotely sensed GIMMS NDVI3g data, 
two variables from measured streamflow, and 13 climate parameters from gridded datasets. 
Various climate, hydrology, and phenology explanatory variables were included in two 
applications of Principle Components Analysis to reduce dimensionality, then the final variables 
were utilized in two Linear Mixed Effects models to evaluate the role of climate on growing 
season length and evapotranspiration. The results showed that growing season length has 
increased, on average, by ~22 days and evapotranspiration has increased ~12 mm. The results 
also suggest that a suite of climatic variables including temperature, vapor pressure deficit, wind, 
and humidity are important in growing season length change. The climatic variables work 
synergistically to produce greater evaporative demand and atmospheric humidity, which is 
theoretically consistent with the Clausius-Clapeyron relation, which states that humidity 
increases nonlinearly by 7%/K. Optimization of the evapotranspiration model was increased by 
the inclusion of growing season length, suggesting that growing season length is partially 
responsible for variations in evapotranspiration over time. The results of this research imply that 
a longer growing season has the potential to increase forest water cycling and evaporative loss in 
temperate forests, which may lead to decreased freshwater provisioning from forests to 
downstream population centers. Additionally, results from this study provide important 
information for runoff and evapotranspiration prediction modelling and forest water management 
under changing climate. 
 



The second study quantified long-term historical and future climate trends, evaluated water 
balance sensitivity to change, and quantified future runoff for catchments located throughout the 
central Appalachian Mountains regions of the eastern USA. Long-term historical precipitation 
(P), potential evapotranspiration (PET), and evapotranspiration (ET) were implemented in a 
Budyko-based sensitivity hydrologic model to determine watershed sensitivity to changing 
energy and water inputs. Long-term future streamflow was modeled based on derived sensitivity 
coefficients and future PET and P. The results showed that streamflow sensitivity increased with 
decreasing precipitation throughout the region. Future runoff is projected to increase between 9-
17% throughout the region, with runoff increasing with increasing precipitation quantity. The 
sensitivity was lowest in regions with highest precipitation, which generally followed the rain 
shadow pattern, with the lowest sensitivity along the Appalachian mountain spine and increasing 
sensitivity with increasing distance from the mountains. The sensitivity coefficients throughout 
the regions were also controlled by other climate and landscape characteristics including forest 
cover, precipitation inputs, and soil moisture holding capacity. Watershed sensitivity and future 
increasing P is expected to result in increasing runoff, which has important implications for 
infrastructure, energy, and ecosystem service supply. We discuss preventative forest 
management measures to minimize future water resource concerns and maintain stable drinking 
water supplies to downstream communities. 
 
 
The third study examined the regional and local spatial relationships between climate variables 
and evapotranspiration trends throughout the central Appalachian region. Regional and local 
(4km2) scale drivers of evapotranspiration including temperature, precipitation, dew point 
temperature, and vapor pressure deficit were determined using an ordinary least squares and 
geographically weighted regression model. Across the central Appalachian region, vapor 
pressure deficit, precipitation and temperature were found to have the most significant 
relationship with ET. At the 4 km2 scale, vapor pressure deficit was found to have the strongest 
relationship. The relationship between ET, precipitation, and temperature underscores the 
importance of evaporative atmospheric demand (temperature) and water input (precipitation) 
required for the evapotranspiration processes. ET at the local scale is largely driven by 
competing forces that are increasing ET such as a longer growing season and higher vapor 
pressure deficit, and biological processes that decrease ET such as water use efficiency and 
drought stress mechanisms. ET trends did not significantly change throughout the region, 
suggesting that there are even more complicated competing factors. Understanding the 
underlying biological and physical ET processes provides insight into future water resources. 
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1 Introduction 
 

Forested headwater catchments play a critical role in freshwater provisioning, but climate 

change has affected the landscape and water balance components responsible for this water yield 

(DeWalle et al. 2000, Post and Jones 2001, Creed et al. 2014).  Higher air temperatures have 

increased evapotranspiration rates (Huntington 2006) through higher atmospheric demand and 

longer growing season length (Schwartz et al. 2006), which has implications for the long-term 

water budget, overland runoff, and drinking water resources. Changing annual water yields have 

been observed in headwater basins throughout the United States (Campbell et al. 2011, Wang 

and Hejazi 2011, Jones et al. 2012), with humid regions tending to become wetter while arid 

regions have tended to become drier (Chou et al. 2009). The effects of climate warming on water 

yield from headwater basins have been of great concern given their importance in provisioning 

drinking water resources to downstream population centers (Viviroli and Weingartner 2004, 

Viviroli et al. 2007). One such headwater basin is the central Appalachian Mountains region in 

the eastern United States, which is responsible for providing approximately 30% of drinking 

water resources (Dudley and Stolton 2003) to downstream metropolitan areas  such as 

Washington D.C., Pittsburgh (PA), Cincinnati (OH), and the Mississippi River Basin. Despite 

the importance of the central Appalachian region for provisioning fresh water to approximately 

9% of the U.S. population, the impact of climate change on growing season length, 

evapotranspiration rates, and runoff sensitivity in the headwater basins of the central 

Appalachian region is largely unknown.  

Growing season length is important for partitioning rainfall into evaporation and runoff in 

forests and partially controls evapotranspiration (ET), which cycles up to 62% of terrestrial water 

to the atmosphere (Dingman 2015). Globally, leaf development (e.g. budburst) has arrived earlier 

over the last 30-40 years (Chmielewski and Rötzer 2001, Schwartz et al. 2006, Lebourgeois et al. 

2010), leading to a longer growing season in temperate forests (Richardson et al. 2006, Jeong et 

al. 2011, Creed et al. 2015). Increasing temperatures have long been identified as the primary 

driver of the growing season changes (Morin et al. 2010, Dragoni and Rahman 2012) but recent 

studies have found that temperature, alone, cannot explain phenological variation in temperate 

forests (Wolkovich et al. 2012, Marchin et al. 2015). The water cycle itself could potentially 

impact the growing season through increased humidity, which can signal spring onset and fall 
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senescence in forests (Hu et al. 2011, Laube et al. 2014). However, the processes responsible for 

longer growing season are not completely understood, nor is the impact of the longer growing 

season on evapotranspiration. Therefore, understanding the underlying processes could provide 

insight into future water resources and water management strategies.  

 Streamflow from forested catchments respond to longer growing season and climate 

change by altering how much precipitation is partitioned to streamflow and evaporation 

(Campbell et al. 2011, Caldwell et al. 2012). Individual watershed characteristics such as 

growing season length, forest cover, soil moisture holding capacity, rainfall, and slope affect the 

rate of streamflow partitioning (Sankarasubramanian et al. 2001, Jones et al. 2012, Padrón et al. 

2017). Watersheds that partition a large portion of rainfall to runoff are considered more 

sensitive to climate change than watersheds that are more able to buffer the long-term climate 

changes (Roderick and Farquhar 2011). Understanding watershed sensitivity is particularly 

important in headwater basins like the central Appalachian region that provide drinking water 

resources to downstream population centers. However, the watershed sensitivities of this the 

headwater catchment of the region are currently unknown. Understanding the watershed 

sensitivities also provide insight into future streamflow quantity, which is important for 

preparing infrastructure for a change in water resources availability. Therefore, in this project, I 

use the Budyko-based sensitivity hydrologic model to identify streamflow sensitivity and future 

streamflow quantity in the headwater basins of the Central Appalachian region, United States. 

ET is important for regulating the water budget, reducing streamflow and runoff fluxes, 

maintaining forest and soil health, and providing ecosystem productivity. Climate change has 

increased ET fluxes through intensification of the water cycle due to greater energy demand 

(Huntington 2006). However, the underlying processes driving ET changes are not completely 

understood, since a higher energy demand via climate change encompasses many climatic and 

biophysical factors (Gaertner, 2018). Models that have implemented climatic factors to 

understand the partitioning of ET into runoff have found that regional-level ET responses are 

limited by water (precipitation) or energy (potential ET) availability and demand (Budyko 1974). 

Other models have identified that, at the ecosystem level, biophysical factors including growing 

season length impact ET fluxes (Hwang et al. 2014, Kim et al. 2018).  ET trends are, therefore, a 

function of complex global drivers and multifaceted climatic processes, and the drivers differ at 

the regional and ecosystem level. Currently, despite the importance of ET in provisioning 
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downstream water supply to metropolitan areas around the Central Appalachian region, ET 

process are not completely understood. Therefore, understanding ET trends and processes are 

exceedingly important for future streamflow, runoff, and water cycling predictions, as well as 

watershed management in the central Appalachian Mountains. 

 The overall objective of this dissertation is to investigate impact of climate change on 

growing season length, ET rates, runoff, and runoff sensitivity in the headwater basins of the 

central Appalachian region. Three main questions are addressed: 

1. Which climate variables most strongly influence growing season length changes and how 

does growing season length affect ET throughout the central Appalachian region? 

2. What is the streamflow sensitivity to climate change and how will streamflow change in 

the future? 

3. What is the spatial relationship between local and regional climate and ET trends? 
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2 Climate, Forest Growing Season, and Evapotranspiration Changes in the central 

Appalachian Mountains, USA 

*published as Gaertner, B.A., N. Zegre, T. Warner, R. Fernandez, Y. He, and E.R. Merriam. 

2018. Climate, forest growing season, and evapotranspiration changes in the central Appalachian 

Mountains, USA. Science of the Total Environment. 

 

Abstract 
 
This study analyzed trends in climatologic, hydrologic, and growing season length variables, 

identified the important variables effecting growing season length changes, and evaluated the 

influence of a lengthened growing season on increasing evapotranspiration trends for the central 

Appalachian Mountains region of the United States. We generated three growing season length 

variables using remotely sensed GIMMS NDVI3g data, two variables from measured 

streamflow, and 13 climate parameters from gridded datasets. We included various climate, 

hydrology, and phenology explanatory variables in two applications of Principle Components 

Analysis to reduce dimensionality, then utilized the final variables in two Linear Mixed Effects 

models to evaluate the role of climate on growing season length and evapotranspiration. The 

results showed that growing season length has increased, on average, by ~22 days and 

evapotranspiration has increased up to ~12 mm throughout the region. The results also suggest 

that a suite of climatic variables including temperature, vapor pressure deficit, wind, and 

humidity are important in growing season length change. The climatic variables work 

synergistically to produce greater evaporative demand and atmospheric humidity, which is 

theoretically consistent with the Clausius-Clapeyron relation, which states that humidity 

increases nonlinearly by 7%/K. Optimization of the evapotranspiration model was increased by 

the inclusion of growing season length, suggesting that growing season length is partially 

responsible for variations in evapotranspiration over time. The results of this research imply that 

a longer growing season has the potential to increase forest water cycling and evaporative loss in 

temperate forests, which may lead to decreased freshwater provisioning from forests to 

downstream population centers. Additionally, results from this study provide important 

information for runoff and evapotranspiration prediction modelling and forest water management 

under changing climate. 
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2.1 Background 

Forests play a critical role in provisioning freshwater resources to downstream regions 

(Viviroli and Weingartner 2004) but climate change has affected growing season length 

(Schwartz et al. 2002), having implications for the terrestrial water cycle (Hwang et al. 2014, 

Creed et al. 2015). Therefore, it is critical to understand how forest growing season change alters 

rainfall partitioning into evaporation and runoff in deciduous forests, in order to sustainably 

manage forested headwater watersheds as a source of freshwater. Higher air temperatures have 

resulted in greater fluxes of precipitation (P) and evapotranspiration (ET) between the terrestrial 

and atmospheric systems, leading to water cycle intensification (Trenberth et al. 2007, 

Huntington 2010). Growing season length partially controls ET, which cycles up to 62% of 

terrestrial water to the atmosphere (Dingman 2015). P and atmospheric evaporative demand have 

increased due to warmer temperatures (Trenberth et al. 2007, Huntington 2010), leading to 

changing annual water yields (Campbell et al. 2011, Wang and Hejazi 2011, Jones et al. 2012), 

with humid regions tending to become wetter while arid regions have tended to become drier 

(Chou et al. 2009). A longer growing season has the potential to alter water cycle fluxes through 

increased plant water use and ET (Hwang et al. 2014) in deciduous forests, which can potentially 

alter forest freshwater partitioning into streamflow (Q) and ET (Creed et al. 2015). 

Understanding these interactions is vital for future Q and ET projections as well as for 

sustainably managing headwater forests.  

Intensification of the water cycle is theoretically consistent with the Clausius-Clapeyron 

relation (Held and Soden 2000), which states that warmer air holds more water (e.g. greater 

maximum specific humidity) and that consequently, atmospheric water vapor tends to increase 

non-linearly with increases in air temperature. A warmer climate can also increase growing 

season length and provide more energy for ET, potentially decreasing Q (Hwang et al. 2014). 

Studies have shown that over recent decades growing season has arrived earlier in general in 

temperate forests (Chmielewski and Rötzer 2001, Richardson et al. 2006, Schwartz et al. 2006, 

Lebourgeois et al. 2010, Jeong et al. 2011, Creed et al. 2015). Warmer air temperature has been 

identified as an important climate variable for growing season length changes (Morin et al. 2010, 

Dragoni and Rahman 2012) but recent studies have found that temperature (Wolkovich et al. 

2012, Marchin et al. 2015) and photoperiod (Bauerle et al. 2012) alone do not explain 

phenological variations in temperate forests. The water cycle itself could potentially impact the 
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growing season through increased rate of humidity, which have been shown to signal spring 

onset and fall senescence in forests (Hu et al. 2011, Laube et al. 2014).  

In the densely populated eastern USA, the heavily forested mountains of central 

Appalachian Mountains play a critical role in freshwater provisioning, providing approximately 

30% (Caldwell et al. 2014) of water used by downstream communities (Parker et al. 1907, 

Caldwell et al. 2016). The central Appalachian Mountains region encompasses West Virginia 

(WV), parts of Virginia (VA), North Carolina (NC), Maryland (MD), and Tennessee (TN) (ARC 

1970). This region is greater than 80% forested (Slayer 2014), has steep slopes, and geographic 

variability that includes high elevation and coastal areas. As a regional water source (Viviroli et 

al. 2007) for approximately 9% of the U.S. population (U.S.CensusBureau 2009), the central 

Appalachian Mountains region is representative of other temperate forests that provide 

freshwater services around the globe. Climate driven shifts in freshwater partitioning in forests 

could impact water supplies for major population centers downstream.  

The overall objective of this paper is therefore to quantify long-term changes in climate, 

water balance components, and growing season length across the region to provide insight into 

the interactions between climate change, growing season length, and ET. We hypothesize that 

humidity is an important climatic variable of growing season length changes and that a 

lengthened growing season is in part responsible changing evapotranspiration. In testing this 

hypothesis, the following questions are explored: 

1. How has historical climate, growing season length, and water balance components 

changed over time throughout the central Appalachian Mountains region?  

2. What are the climatic variables important to growing season length changes in the 

temperate forests of the region? 

3. How do changes in growing season length effect forest ET throughout the region? 

 

2.2 Methods 

2.2.1 Study Area 

Our study area consists of 31 watersheds located across five dominant river basins that 

collectively cover 125,000 km2 in the eastern USA (Figure 1). Of the five basins, 4 

(Monongahela, Upper Ohio, Kanawha, and Tennessee) drain west to the Mississippi River and 

Gulf of Mexico, while the Potomac River drains east to Washington D.C. and the Chesapeake 
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Bay. The 31 watersheds selected for this study are part the U.S. Geological Survey Hydro-

Climatic Data Network (HCDN) (Slack and Landwehr 1992). HCDN consists of streamflow 

station data for minimally impacted (<10% human influence such as reservoirs, diversion, land 

use change, or severe ground-water pumping) watersheds. A regional land cover analysis using 

data from the 2011 National Land Cover Database (NLCD) (Homer et al. 2015) was used to 

verify that watersheds met the HCDN definition (Figure 2). The HCDN watersheds selected for 

this research cover approximately 39% of the total area in the five river basins, with seven 

watersheds in the Kanawha basin, five watersheds in the Monongahela basin, two watersheds in 

the Ohio basin, thirteen watersheds in the Potomac Basin, and four watersheds in the Tennessee 

basin. The forests are mostly classified as mixed mesophytic, dominated by hardwood species 

(e.g. Quercus (oaks), Betula (birch), Fagus (birch), Acer (maple), Populus (poplar)) located on 

ridges and hillslopes, and coniferous (Pinus (pine), Tsuga (hemlock)) at higher elevations and 

along stream networks (Day et al. 1988, Slayer 2014).  

The region’s climate is characterized as humid marine in the eastern/Atlantic coastal area 

and humid continental on the western edge (Konrad and Fuhrmann 2013). Mean annual 

temperature ranges from 9.3°C in the mountains to 14.7°C near the ocean, and increases with 

decreasing latitude, with the northernmost Ohio River basin averaging 10.5°C, and the 

southernmost Tennessee River basin averaging 15°C. P is relatively evenly distributed 

throughout the year, dominated by small, low intensity storms with intermittent high intensity 

frontal thunderstorm events (Keim 1996, 1997, Konrad and Fuhrmann 2013). Annual P increases 

with elevation from 1034 mm in the Potomac River basin to 1870 mm in the Tennessee River 

basin. Average annual ET loss is ~75% of annual rainfall in all watersheds except the 

Monongahela, the most heavily forested basin, which averages ~51% of P (Miller and Weaver 

1971, Farnsworth and Thompson 1983, Harstine 1991, Ford et al. 2005, Adams et al. 2012).  

 

2.2.2 Data 

2.2.2.1. Vegetation phenology from satellite imagery 

For this study, we extracted long term phenological records from the Global Inventory 

Modeling and Mapping Studies (GIMMS) third generation Normalized Difference Vegetation 

Index (NDVI3g) to characterize the temporal trends in regional scale phenology (Hong and 

Zhang 2006, Prebyl 2012). NDVI3g is produced from data acquired by the Advanced Very High 
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Resolution Radiometer (AVHRR) on board the National Oceanic and Atmospheric 

Administration (NOAA) satellite series (Pinzon and Tucker 2014). NDVI data were extracted 

from October 1982 to September 2012 to quantify recent changes in growing season length 

throughout the region.  

Data were quality-controlled based on data reliability where pixels with weak or noisy 

time series (e.g. quality flag greater than 3), NDVI values that were negative, equal to zero, or 

greater than 1.0, high outlier values, or Julian day greater than 365, were removed for the 

analysis. The TIMESAT program (Jönsson and Eklundh 2004) was used to produce a smoothed 

NDVI time series dataset from 1982 to 2012. TIMESAT incorporates an automated median-

spike pre-processing technique to remove spikes and outliers (Vidal and Amigo 2012). The 

Asymmetric Gaussian function was used to fit a smooth continuous curve to extract phenological 

signals from the data (Figure 3). NDVI values between 0.8 and 1.0 that represent dense forested 

land-cover were selected for this analysis. Data output were in annual time series sets (e.g. 31 

years per derived phenological attribute per pixel). Start of season (SOS) and end of season 

(EOS) were estimated as the date where NDVI increased or decreased to 50% of the amplitude, 

representing canopy development and senescence respectively, and length of season (LOS) was 

calculated as end of season minus the SOS (Figure 3) (White et al. 1999, White et al. 2009).  

 

2.2.2.2 Hydrologic Variables 

Mean annual streamflow data for the 31 HCDN watersheds were obtained from the 

USGS historical water dataset (http://waterdata.usgs.gov) using R (RCore 2013, Hirsch and De 

Cicco 2015). Streamflow data were then normalized by area, and averaged annually to produce 

mean annual Q.  

 

Actual ET in mm/year was estimated using the annual water balance, assuming no 

change in storage 

𝐸𝑇 = 𝑃 − 𝑄 +	∆𝑆  

where P is P, Q is average Q, and ∆𝑆 is watershed storage (e.g. groundwater, soil moisture, 

vegetation/root) which approaches zero on an annual scale, all in mm/year.  
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2.2.2.3 Climate Variables 

Annual maximum and minimum vapor pressure deficit and dew pressure temperature 

data were extracted from PRISM (Parameter Elevation Regression on Independent Slopes) (Daly 

et al. 1997). PRISM uses 13,000 P and 10,000 surface temperature data stations over the 

conterminous US to spatially interpolate P and temperature using a Digital Elevation Model 

(DEM) to estimate orographic effects. PRISM is gridded at a 4km spatial resolution at the daily 

time scale, and covers the period from 1895 to the present (Daly et al. 2008). 

 Ten annual climate variables (maximum and minimum temperature, P, potential ET, 

maximum and minimum relative humidity, solar radiation, wind direction, wind speed, specific 

humidity) were extracted from the gridded (4 km spatial resolution) MetData meteorological 

dataset (Table 1) (Abatzoglou and Brown 2012). MetData was developed by combining the 

hourly and 1/8th degree resolution North America Land Data Assimilation System Phase 2 

(NLDAS-2) dataset with the monthly 4 km resolution PRISM dataset from 1979-2015 (see 

Abatzoglou and Brown (2012))). Potential ET was calculated using the Penman-Monteith 

equation (Penman 1948) forced with solar radiation, dew point temperature, wind speed, and 

evaporation. Wind direction was normalized to account for the 0-360-degree direction. Using 

wind speed and wind direction angle, we calculated the x and y components using trigonometric 

functions (Breckling 2012). All daily variables predicting growing season were aggregated to US 

annual water year (October 1 – September 31). However, all variables used to predict 

evapotranspiration were conducted using the vegetation year (May-April) (Troch et al. 2009) 

using R (RCore 2013). Vegetation year minimizes the delta storage term in estimating 

evapotranspiration from precipitation by accounting for soil moisture depletion from a longer 

growing season the current year and the subsequent altered stream discharge patterns the 

following dormant season. This is especially effective in estimating ET given the central 

Appalachian region does not have dominant snowpack  (Troch et al. 2009).  

 

2.2.3 Statistical methods 

2.2.3.1. Quantifying trends in climate and growing season length 

The rank-based, non-parametric Mann Kendall statistical test was used to detect trends in 

climate, hydrology, and growing season variables (Helsel and Hirsch 1992). Mann Kendall 

allows for non-normally distributed data (Andreadis and Lettenmaier 2006) and allows for 
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missing values (Hirsch and Slack 1984) and is commonly used for detecting trends in hydrology 

and hydro-meteorological studies (Yue et al. 2002). Trends were considered significant at the 

a=0.05 level. The direction and magnitude of the time series trends were estimated using the 

Kendall Thiel Sen slope, which identifies the median slope among all lines through a time series 

(Helsel and Hirsch 1992). Total change over the 31-year study period was estimated by 

multiplying slope by the number of years of data (i.e. 31 years) (Zegre et al. 2014).  

 

2.2.3.2 Identifying important components of growing season length change 

2.2.3.2.1. Principle Component Analysis 

 Given the large number of potential explanatory variables that drive growing season 

length, a principle components analysis (PCA) (Bibby et al. 1979) was used to reduce the 

dimensionality of the variables. The original dataset included 14 predictor variables: thirteen 

climate variables (P, specific humidity [sph], average annual minimum [rmin] and maximum 

relative humidity [rmax], solar radiation [srad], dew pressure temperature [dpt], average annual 

minimum [tmin] and maximum temperature [tmax], potential evapotranspiration [PET], wind 

direction [th], and wind speed [vs], maximum [vpdmax] and minimum vapor pressure deficit 

[vpdmin], and one hydrology variables (Q). The input data represented a three-dimensional 

matrix, comprising the climate/hydrology as the variables in one dimension, with time and space 

as the remaining two dimensions, yielding ~14,000 observations (31 years*31 sites) for each of 

the 15 variables. Standardized principle component analysis was implemented using R. Principle 

components with eigenvalues >1.0 were regarded as carrying important information, and factor 

loadings rounding to an absolute value ≥0.4 were considered important in determining a 

particular component (McCune et al. 2002).  

A correlation matrix between climate and hydrologic variables was developed to remove 

statistically redundant variables. A Pearson correlation matrix was developed using R (RCore 

2013). All correlation values greater than 0.7 were considered strongly related (e.g. r>±0.7) 

(Ratner 2009). 

 

2.2.3.2.2 Mixed Effects Model 

A linear mixed effects model (Zuur et al. 2009) was developed to identify the important 

climatic variables in growing season length using the explanatory variables identified by the 
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PCA. A linear mixed effects model is a statistical correlation model used to identify interactions 

between variables in a longitudinal study, with applicability in multiple disciplines including 

physical, biology, and social sciences. Linear mixed effects models contain fixed and random 

components (Zuur et al. 2009), which allows for spatial and temporal variability in site-specific 

topography, climate, geography, and time. We validated our model by randomly splitting data 

into training (80%, n=11,532) and test (20%, n=2884) data. The model was developed by 

iteratively dropping fixed and random parameters (Arnold 2010). All dropped parameters that 

increased the Akaike Information Criteria (AIC) value >2 were removed to develop the final 

model (Arnold 2010). Model performance was evaluated using the AIC values, root mean square 

error, marginal coefficient of determination, which is the variance explained by fixed effects, and 

conditional coefficient of determination, which is the variance explained by fixed and random 

effects together (collectively R2) using R (Bartoń 2013, RCore 2014).  

 

2.2.4. Interaction of growing season length and evapotranspiration change 

2.2.4.1 Principle Component Analysis 

To reduce the dimensionality of the potential explanatory variables important to ET, a 

PCA was conducted on 17 climatic variables. The PCA included three growing season variables 

(start of season [SOS], end of season [EOS], length of season [LOS]), thirteen climate variables 

(P, specific humidity [sph], average annual minimum [rmin] and maximum relative humidity 

[rmax], solar radiation [srad], dew pressure temperature [dpt], average annual minimum [tmin] 

and maximum temperature [tmax], potential evapotranspiration [PET], wind direction [th], and 

wind speed [vs], maximum [vpdmax] and minimum vapor pressure deficit [vpdmin], and one 

hydrology variable (Q). 

The input data represented a three-dimensional matrix, comprising the climate/phenology 

as the variables in one dimension, with time and space as the remaining two dimensions, yielding 

~18,000 observations (31 years*31 sites) for each of the 17 variables. A correlation matrix 

between growing season, climate, and hydrologic variables was developed to remove statistically 

redundant variables. 

To identify if growing season influences ET, a second mixed effects model was 

developed using the important variables identified by the PCA as fixed effects and site and year 

as random effects. The final model was similarly developed by iteratively dropping variables that 
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increased the AIC value >2. Model performance was evaluated using the AIC values, root mean 

square error, marginal coefficient of determination, and conditional coefficient of determination. 

The model was validated by randomly splitting data into training (80%, n=14,607) and test 

(20%, n=3651) data. 

 

2.3 Results 

2.3.1 Question 1: How has climate and growing season length changed? 

2.3.1.1 Climate 

Measured air temperatures generally increased across the watersheds over the 31 years 

studied. Maximum temperatures averaged 17.3°C across the watersheds, and although most 

individual watersheds indicated warming temperatures, trends were not significant at a=0.05 for 

any watersheds (Table 2). Minimum temperatures increased significantly in 14 individual 

watersheds, increasing on average, by 0.2°C. Solar radiation, which averaged 172.0 mW m-2 

across all watersheds increased significantly in 10 watersheds by an average of 5.7 mW m-2 on 

average (SI Table 3). Potential evapotranspiration, which averaged 1076.0 mm across all 

watersheds, increased significantly by 64.9 mm in only one watershed. Minimum vapor pressure 

deficit, which averaged 0.72 hPa across watersheds, significantly decreased by -0.008 hPA in 17 

watersheds (SI Table 3). Maximum vapor pressure deficit, which averaged 12.09 hPa across 

watersheds, significantly increased by 0.05 hPa at one watershed. Specific humidity, which 

averaged 0.7 g/kg across watersheds, significantly increased by 0.6 g/kg at one watershed (SI 

Table 3). Similarly, maximum relative humidity, which averaged 89%, significantly decreased 

by 2.2% on average, at eight watersheds (Table 2). 

Wind, which is an important component of ET, also has increased across watersheds. 

Over the 31-year period studied, the average wind direction, calculated as degrees from north, 

was 254°, and has shifted 16° counter-clockwise to 238° in all watersheds, suggesting an 

increased northwesterly component (Table 2). Wind speed, which averaged 1.2 m/s across all 

watersheds, significantly increased at 21 watersheds by an average of 0.15 m/s (Table 2).  

 

2.3.1.2 Hydrology 

Water balance variables, including P, ET, and Q, also provide some evidence of change 

over the 31 years studied. P, which averaged 1126 mm across watersheds, increased in all but 
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four watersheds by an average of 34 mm, although the change was not significant. Q averaged 

512.0 mm across watersheds, and similar to P, changes were not significant at any individual 

watershed (SI Table 3). Although P and Q changes were not significant, variability tends to be 

minimized in water balance calculations, and thus ET potentially provides a more reliable record 

(Koster and Suarez 1999, Sankarasubramanian and Vogel 2002). Hence, ET was used, instead of 

Q as a response variable because it eliminates monthly variability given its dependency on 

available energy rather than P events thereby providing a more stable water response variable 

(Coopersmith et al. 2012, Fernandez and Sayama 2015). ET, which averaged 613.0 mm across 

watersheds, increased in 28 watersheds, nine of which were significant. Across the entire region 

ET increased by 12.7 mm on average, for the statistically significant watersheds the increase was 

22 mm (Table 2).  

 

2.3.1.3 Growing Season Length 

The results of the Mann Kendall trend analysis for growing season length indicated that 

SOS and EOS have changed significantly (a=0.05) across the region. SOS has advanced (i.e. 

spring is earlier) significantly in 25 watersheds by an average of 16.3 days. EOS has retreated 

(i.e. senescence is later in the year) by an average of 10.7 days and was significant at all 

watersheds (SI Table 3). The LOS, which averaged 179 days, increased significantly in 30 of the 

31 sites, by an average of 22.2 days (Table 2).  

Growing season length increases, as shown in the map of growing season changes from 

1982-2012 (e.g. LOS 2012-LOS 1982) (Figure 1b) were greatest in the southern extent of the 

Ohio river basin, increasing by as much as 70 days in some areas. Watersheds in the Kanawha 

and northern Tennessee basins increased the least, with changes that ranged from 0-15 days in 

some areas (Figure 1b).  

 

2.3.2 Question 2: What are the predictors of growing season length? 

The first PCA analysis focused on the climate variables that potentially could be used in 

the mixed effect model for predicting growing season length, and the results were used to guide 

variable selection for the model. Four growing season length components were significant.  

Component 1, which explained 43% of the variance was characterized by an energy signature; 

component 2, which explained 25% of the variance, was characterized by a moisture availability 
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signature; component 3, which explained 8.5% of the variance, consisted of evaporative 

turbulence signature; and component 4, which explained 6.5% of the variance, consisted of an 

evaporative demand signature (SI Table 4). Maximum temperature was correlated with dew 

pressure temperature (R2=0.82), potential evapotranspiration (0.85), and minimum temperature 

(R2=0.87) therefore, potential evapotranspiration, dew pressure temperature, and minimum 

temperature were eliminated from the model since maximum temperature had a higher factor 

loading. 

The PCA analysis identified eight variables that were potentially important inputs for the 

mixed effect model: maximum temperature, specific humidity, relative humidity, wind direction, 

wind speed, precipitation, solar radiation, and minimum vapor pressure deficit as fixed effects. 

The optimal effect structure included random intercepts and slopes around year and site (SI 

Table 4).  

The final model of growing season length showed significant fixed effects at alpha=0.05 

for maximum temperature (p-value=0.008), minimum vapor pressure deficit (p-value=0.034), 

wind direction (p-value=0.024), and wind speed (p-value=0.02). Significant interactive effects 

included maximum relative humidity and specific humidity (p-value=0.024), maximum 

temperature and vapor pressure deficit (p-value=0.04), and vapor pressure deficit with wind 

speed (p-value: 0.017) (SI Table 5). Together, fixed and random effects explained 88.3% of total 

variance in growing season length with a conditional R2=0.88. Fixed effects explained 7.7% of 

the overall variation with a marginal R2=0.077. When predicting growing season changes with 

the evaluation dataset, the final model had an overall root mean square error and uncertainty 

value of ±3.4 days. 

 

2.3.3 Question 3: Does growing season length influence evapotranspiration?  

The second PCA analysis focused on the variables that could potentially be used to 

identify ET controls. Four significant principle components were identified for ET. Component 

1, which explained 35% of the variance, was characterized by an energy signature. Component 2 

(20%), was characterized by a moisture availability signature. Component 3 (11%), was 

characterized by a growing season signature. Component 4 (8%) was characterized by an 

evaporative demand signature (SI Table 6).  
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Thus, the variables included in the mixed effect model were maximum temperature, 

specific humidity, relative humidity, LOS, wind speed and wind direction, as well as the random 

effects of year and site. The list excluded potential evapotranspiration because it was 

significantly correlated with maximum temperature, and the latter had a higher loading in the 

PCA. Similarly, SOS and EOS were also eliminated from the model, since these variables were 

significantly correlated with LOS, which had the highest loading (0.59) of the three variables.  

The final mixed effects model identified relative humidity as a significant predictor of ET 

at alpha=0.1 (p-value= 0.059, respectively). LOS was not a significant individual variable but the 

interaction of LOS with maximum temperature, maximum relative humidity, specific humidity, 

wind speed, wind direction, and solar radiation resulted in a more optimal model (SI Table 7).  

Together, fixed and random effects explained 85% of the total variance in ET (conditional R2= 

0.846). Fixed effects explained 0.8% of the total variance (marginal R2=0.0081). The final model 

had an overall root mean square error of 87.2 mm when predicting ET with evaluation data. 

 

2.4 Discussion 

2.4.1 Question 1: How has climate and growing season length changed? 

Previous studies have shown that air temperatures in the mid- and south-Atlantic region 

of the US that includes the central Appalachian region have increased between 0.5 – 1.9°C, on 

average (Pitchford et al. 2011, Patterson et al. 2012). Higher air temperature increases the 

capacity of the atmosphere to hold water, theoretically leading to intensification of the 

hydrologic cycle in the form of accelerated rates of ET and P (Trenberth et al. 2007, Huntington 

2010). Greater rates of ET occur in response to increasing atmospheric and evaporative demand 

including vapor pressure deficit, wind turbulence, and rainfall inputs. These ideas are 

summarized by the Clausius-Clapeyron relation (Figure 4), which states that with increasing 

temperatures, atmospheric water vapor exponentially increases by between 3.4%/K (Allen and 

Ingram 2002) and 7%/K (Held and Soden 2000), although there is debate about whether the 

water vapor increases associated with climate warming follows the higher or lower rate (Allen 

and Ingram 2002). Our results are theoretically consistent with the Clausius-Clapeyron relation, 

albeit at the lower slope (4.095e0.03x), equivalent to 3.4%/K rather than 7%/K that has a slope of 

2.56e0.06x (Figure 4).  
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Increasing temperatures and water availability for tree growth over the study period from 

1982-2012 have resulted in a lengthened growing season by ~22 days on average throughout the 

central Appalachian Mountains region. Greater change was observed in the spring (16 days) than 

the change during the senescence in the fall (10 days). Regional and local trends documented in 

previous studies corroborate this. SOS in the northeastern United States has increased by 13 days 

from 1982-2012 (0.44 days/year) (Wolfe et al. 2005, Hayhoe et al. 2006), while EOS across the 

eastern United States has retreated by 12.4 day from 1982-2012 (0.4 days/year) (Dragoni and 

Rahman 2012). In an earlier study of spring onset in the eastern United States, spring date 

advanced by 10 days from 1965-1980 (Fitzjarrald et al. 2001) and it is likely to continue into the 

future (see Hayhoe et al. (2006)). Therefore, it is important to understand the exact mechanisms 

behind changes in growing season length to increase confidence in prediction and modelling to 

maintain freshwater sustainability in temperate forest watersheds. 

 

2.4.2 Question 2: What are the predictors of growing season length? 

Our results at the landscape level are supported by controlled greenhouse experiments 

that employed canopy warming methods, which found that air temperatures alone under-predicts 

observational growing season responses (Wolkovich et al. 2012) and do not explain variations in 

growing season length due to climate change (Marchin et al. 2015). In general, our results show 

that a suite of climatic variables that include air temperature, vapor pressure deficit, wind, and 

humidity explain the greatest amount of variation in growing season length changes in the 

region. These factors were also shown to be important for vegetation growth in the Qing-Tibetan 

plateau in China (Hu et al. 2011, Shen et al. 2014). Atmospheric principles can theoretically 

explain this relationship in which temperatures and changing winds result in higher vapor 

pressure deficit and evaporative demand (Williams and Baeza 2007, Will et al. 2013), which 

subsequently increases atmospheric humidity, a process we collectively refer to as atmospheric 

water. From these results, we postulate that growing season length responds to temperature and 

atmospheric water through that Clausius Clapeyron relation, rather than temperature alone. This 

is consistent with climate chamber experiments which have shown that atmospheric water 

influences growing season changes via earlier bud burst under constant temperatures (Laube et 

al. 2014). Furthermore, statistical models with the inclusion of atmospheric water variables 

explained 27% more of the variation than models with temperature alone (temperature alone = 
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60% (Liang et al. 2012)), suggesting that there is an interactive effect of temperature and 

atmospheric humidity on growing season length.  

We propose two possible explanations for growing season length responses to 

atmospheric water and other atmospheric properties: winter dehydration and carbohydrate 

storage cost/benefit. First, it has been suggested that in aboveground tissues (e.g. xylem), winter 

dehydration occurs in response to stable low air humidity during cold periods (Laube et al. 

2014). Consequently, long cold/dry spells lead to greater dehydration and require higher spring 

humidity to reach tissue moisture for spring onset (Laube et al. 2014). Trees may detect the onset 

of growing season through higher minimum temperatures and spring humidity, and the 

subsequent rehydration of aboveground tissue. Vegetation response to humidity may alleviate the 

frost damages associated with variable changes in springtime minimum temperatures.  

Second, we propose that plants respond to increased availability of resources including 

humidity, temperature, and solar radiation though a cost/benefit process. The greatest plant 

carbohydrate storage occurs during direct sunlight, high water content, and nutrient availability 

(Chapin et al. 1986a). Daily, short term, or seasonal fluctuations alter carbohydrate storage levels 

(Chapin et al. 1986b), with the lowest levels occurring during rapid growth and senescence 

(Chapin 1977). This is also the point when respiration and growth demands exceeds net carbon 

gains (Nelson and Dickson 1981). Since plants use carbohydrates acquired during photosynthesis 

before using stored reserves (Tromp 1969), senescence represents a point when the cost of using 

stores needed for spring growth outweighs limited carbon gains from photosynthesis (Estiarte 

and Peñuelas 2015). Plants therefore recycle available leaf nutrients back to storage organs (Titus 

and Kang 1982). However, a longer growing season with warmer temperatures, direct sunlight, 

and higher water availability increases the period of net carbon gains, therefore, allowing plants 

to uptake and store more nutrients for the following (earlier) spring growth period (Chapin III et 

al. 1990, Keenan and Richardson 2015, Manzoni et al. 2015). 

Current research suggests that leaf out timing is very sensitive to springtime night-length 

and minimum temperatures (Saxe et al. 2001, Sakai and Larcher 2012). Our model did not 

account for the interaction between atmospheric water and minimum temperatures, because our 

model was developed using annual variables and could not capture the interannual variability. 

Our study therefore suggests that temperature and humidity work synergistically in annual 

growing season length changes, although inter-annual variations are likely to be important but 
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beyond the scope of our study. Future research should explore the importance of atmospheric 

water vapor in identifying inter-annual nuances of green-up and senescence. Current annual 

prediction models such as the Spring Indices model (Schwartz 1997), use temperature-based 

indices and are frequently used throughout the eastern United States (Schwartz 1997). Hayhoe et 

al. (2006)) used this model to predict growing season length changes throughout the northeast 

US.  Future research should focus on developing a temperature and atmospheric water based 

index to use in growing season length prediction models (Richardson et al. 2012). Growing 

season prediction models provides data that allow managers and policy makers to prepare for 

future changes to watershed sustainability. Future temperature and specific humidity are 

projected to increase in coming decades (IPCC 2007), suggesting that single years with 

unusually high temperature and humidity conditions will potentially result in increasingly 

unpredictable growing season lengths (e.g. more variability), unreliable forest water 

cycling/water partitioning, greater long-term ET, and increased occurrences of drought.  

 

2.4.3 Question 3: Does growing season length influence evapotranspiration? 

 The central Appalachian region is over 80% forested  (Slayer 2014) and returns >40% of 

P back to the atmosphere as ET. In the southern Appalachia mountains in North Carolina, a one 

day increase in growing season increased ET by 4.3 mm (Hwang et al. 2014, Hwang et al. 2018, 

Kim et al. 2018), and in the eastern US, a one day increase in growing season increases ET by 

0.2%  (or approximately 1 mm/year) (White et al. 1999), as compared to a 0.5 mm increase in 

our study in central Appalachia. The smaller increase in ET in our study area could be due to 

reduced water use efficiency, ecosystem dynamics, and land use land cover (LULC) change. 

First, the effect of increased CO2 concentration on water use efficiency is outweighed by a longer 

growing season (Warren et al. 2011). Second, it is also likely that ecosystem dynamics in the 

semi-dry, energy limited ecosystems do not always represent higher evapotranspiration at all 

times. Vegetation in these ecosystems have evolved preventative drought stress stomatal 

dynamics that can decouple the link between increased growing season and evapotranspiration 

change. Third, forest cover in the study area averages between 60 and 65%, with forests in some 

areas covering less than 50% and in other areas almost 100% (Figure 2). ET increases in the 

heavily forested areas in sites with high forest cover was likely averaged out with calculating 

whole watershed scale ET. A one day growing season increase in watersheds that had greater 
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than 65% forest cover averaged around 0.78 mm/one day growing season increase (not shown), 

suggesting that the agricultural regions reduced ET cycling signals upwards of 0.28 mm/growing 

season day. Eight watersheds are more than 30% hay/pasture/agricultural, which is also likely to 

increase water yield given the occurrences of more intense rainstorms following hydrologic 

intensification (Huntington and Billmire 2014). Furthermore, any LULC changes, such as 

deforestation that has occurred from 1982-2012 could mitigate increasing ET signals due to 

reduced ET cycling in agricultural and urban centers. Therefore, while the lengthened growing 

season may at least partially influence evapotranspiration trends throughout the central 

Appalachian region, the intensity of the interaction between growing season and 

evapotranspiration may vary annually based on water supply conditions. Nevertheless, this 

analysis gives an indication of a range of potential ET rates (e.g. 0.5 to 4.3 mm) that can occur 

with a one-day growing season increase in temperate forests.  

ET will likely continue to increase in the future, as growing season length continues to 

increase, having important implications for forested ecosystems that provide clean and stable 

water to downstream communities. Higher ET has the potential to lead to reduced plant water 

content, reduced soil moisture, greater incidences of droughts, and decreased long-term water 

supply to downstream communities. Based on our results, we suggest that scientists implement 

humidity-based growing season properties such as SOS, EOS, and/or LOS into ET and Q 

prediction models. Although ET in many large-scale models implicitly react to the atmospheric 

conditions that drive growing season, an explicit representation of humidity based growing 

season properties could improve the models. The Lund–Potsdam–Jena managed Land (LPJmL) 

large scale hydrological model (Bondeau et al. 2007), for example, incorporates phenology and 

other vegetation characteristics allowing for a dynamic growing season representation (Bondeau 

et al. 2007). However, this may also bring an additional source of uncertainty to Q and ET 

predictions (Haddeland et al. 2011). Given this assumption, we suggest that models update 

processing to allow for optional inclusion of phenology and humidity indices, to provide a more 

accurate prediction of Q and ET for maintaining sustainable forests and freshwater resources.   

 

2.5. Conclusions and Future Directions 

To understand the role of forests in provisioning water under changing climate, this 

research determined historical changes in climate, growing season, and ET, investigated the 
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important atmospheric variables effecting growing season length changes, and identified the 

interaction growing season and evapotranspiration variables. Historical annual growing season 

length has increased by an average of 22 days while annual ET increased by 12.7 mm across the 

central Appalachian region of the United States.  

Current research suggests that temperature (Morin et al. 2010, Dragoni and Rahman 

2012) and photoperiod alone (Bauerle et al. 2012) are the primary indicators of spring. In 

general, our results show that multiple climatic variables including temperature, vapor pressure 

deficit, wind, and humidity are important factors effecting growing season length changes. We 

postulated that these variables interact synergistically to increase atmospheric water and growing 

season length through the Clausius-Clapeyron relation. Additionally, over 30 years, a 1.0 day 

increase in growing season length has generally increased ET by up to 0.5 mm, suggesting that 

longer growing season may partially influence evapotranspiration trends. 

Our research provides important insight into the atmospheric processes responsible for 

phenology trends and the interaction between climate change induced growing season length and 

forest ET in eastern US temperate forests. These results will provide important insights for 

modeling future growing season length and hydrology through the addition of an explicit 

humidity-based index in current models. The results of this research are likely applicable to 

temperate forests around the globe that provide potentially valuable information to water 

resource managers for maintaining watershed sustainability in water-stressed large global 

population centers reliant on headwater basins for drinking water and other ecosystem services.  
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TABLES 
Table 1: Summary table for all variables and acronyms 
Variable Acronym 
Precipitation P 
Evapotranspiration ET 
Specific humidity sph 
Average annual maximum temperature tmax 
Average annual minimum temperature tmin 
Average annual maximum humidity rmax 
Average annual minimum relative humidity rmin 
Solar radiation srad 
Dew pressure temperature DPT 
Potential evapotranspiration PET 
Wind direction th 
Wind speed vs 
Maximum vapor pressure deficit vpdmax 
Minimum vapor pressure deficit vpdmin 
Runoff Q 
Start of season SOS 
End of season EOS 
Length of season LOS 
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Table 2: Mann Kendal trend table and total change over 31 years for the 31 watersheds in the 
central Appalachian region. Watershed Identifiers represents each watershed within the five 
basins, shown in Figure 1. Station number and station name refer to USGS stream gauge 
identifiers. Bold represents significance at the 0.05 level and bold+italics represents significance 
at the 0.01 level.  

Watershed 
Identifier 

tmax 
(°C)  

sph 
(g/kg) 

rmax 
(%) 

srad 
(mW/m2) 

A. LOS 
(days) 

th (°clock-
wise from 
north) 

vs (m/s) ET 
(mm) 

vpdmin 
(hPa) 

1M 0.04 0.08 -2.37 1.41 24.31 6.72 0.078 7.66 -0.008 
2M 0.11 0.02 -2.55 1.61 23.17 8.84 0.097 27.60 0.002 
3M -0.02 0.17 0.34 1.83 28.18 6.51 0.101 32.52 -0.007 
4M 0.12 0.04 -2.47 1.48 28.18 7.90 0.099 2.02 -0.004 
5M 0.08 0.11 -1.33 1.78 31.14 7.53 0.085 19.88 -0.004 
1O 0.11 0.29 -1.65 4.45 22.58 12.64 0.098 -2.01 -0.011 
2O 0.16 0.25 -1.83 3.30 23.94 5.73 0.126 9.62 -0.009 
1K -0.12 0.08 -1.80 1.06 5.47 14.29 0.109 3.43 0.001 
2K -0.27 0.09 -1.91 0.71 16.74 14.36 0.112 31.20 0.000 
3K -0.31 -0.13 -2.30 1.03 25.36 17.98 0.156 6.21 0.001 
4K 0.24 0.29 -0.26 3.26 24.55 13.82 0.097 17.94 -0.007 
5K 0.29 0.16 -1.37 0.39 24.20 20.38 0.151 17.83 0.005 
6K 0.02 -0.03 -2.00 0.61 19.45 19.79 0.146 14.39 0.001 
7K 0.19 0.19 1.56 0.77 19.73 23.81 0.171 11.46 -0.002 
1T 0.05 0.57 1.75 4.55 17.28 14.46 0.099 15.27 -0.004 
2T 0.36 0.30 -1.21 7.36 11.67 13.94 0.052 18.33 0.011 
3T 0.42 0.30 -0.88 6.25 16.68 13.01 0.074 42.07 0.000 
4T 0.23 0.25 -1.52 3.96 13.56 37.47 0.043 -5.99 0.010 
1P 0.27 0.01 -2.46 2.91 24.80 17.71 0.147 30.32 -0.012 
2P 0.18 0.07 -1.85 3.95 23.67 15.96 0.149 15.22 -0.011 
3P 0.25 0.20 -0.95 4.84 25.83 20.76 0.170 8.00 -0.004 
4P 0.08 0.08 -1.95 2.18 28.22 10.84 0.098 12.36 -0.013 
5P 0.10 0.22 -0.74 6.91 17.27 19.97 0.169 5.88 -0.022 
6P 0.13 0.10 -1.41 4.04 26.57 17.69 0.133 5.83 -0.011 
7P 0.27 0.27 -0.44 4.78 24.58 19.80 0.146 -2.49 -0.007 
8P 0.40 0.28 -0.77 5.95 26.76 18.21 0.170 8.66 -0.002 
9P 0.06 0.07 -1.39 3.19 23.58 14.08 0.137 8.66 -0.014 
10P 0.36 0.21 -0.57 6.32 24.06 18.18 0.163 11.62 -0.012 
11P 0.17 0.20 -0.88 6.25 15.19 28.95 0.168 8.37 -0.016 
12P N/A 0.08 -0.64 3.24 17.17 12.05 0.056 3.21 -0.013 
13P 0.03 0.16 -1.79 4.03 18.53 14.06 0.040 9.48 -0.007 
average 0.1 0.2 -1.2 3.4 21.7 15.72 0.12 12.7 -0.005 
significant 
average NA 0.6 -2.18 5.7 22.2 15.72 0.15 22.0 -0.008 
A. Length of growing season (LOS) calculated as SOS-EOS, at 50% canopy.  
*Table only includes variables included in later analysis 
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Fig. 2.1 A. Location of the study region in the central Appalachian Mountains region of the 

eastern USA. B. Study Area depicting the conceptual change in growing season length 
from 1982 and 2012 (e.g. LOS in 2012 – LOS in 1982). Green regions represent minimal 
change between the two years (0-15 days) while red represents maximum change (60-70 
days). The dashed lines depict basin boundaries Potomac (P), Monongahela (M), Ohio 
(O), Kanawha (K), and Tennessee (T). The solid lines outline the 31 watersheds, and the 
identifiers label the basin followed by an HCDN (Slack and Landwehr 1992) watershed 
number from 1 to n. 
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Fig 2.2 Land Cover composition depicting proportion agriculture, developed, and forest for the 

31 watersheds based on 2011 NLCD land cover analysis throughout the central 
Appalachian region. Forests include deciduous, evergreen, and mixed forests, developed 
includes open space, barren land, low, medium, and high intensity development, and 
agriculture includes herbaceous, hay/pasture, and cultivated crops. 
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Fig 2.3 Figure depicting the process for extracting phenology variables from time series of NDVI 

data using the program TIMESAT. Gray lines represent NDVI data, the black line 
represents the smoothed timesat vegetation signal, the gray dots represent 50% canopy at 
start (SOS) and end of season (EOS), LOS represents the difference between EOS and 
SOS.  
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Fig 2.4 Exponential relationship between long-term (1982-2012) annual temperature and specific 

humidity for 31 watersheds located in the central Appalachian Mountains region. The 
relationship is exponential, following the theoretical Clausius-Clapeyron relationship 
(Held and Soden 2006). The relationship states that atmospheric water vapor will 
exponentially increase with air temperature by 3.4% to 7%/°K (or a slope of 2.45e0.06) 
(Held and Soden 2000), though the observed relationship has a slope (y=4.095e0.03) 
closer to the lower end of the rates proposed (3.4%/°K) (Allen and Ingram 2002) 
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SUPPLEMENTAL MATERIAL 
S 1: Table of the 31 HCDN watersheds used to study climate and growing season changes in the 
central Appalachian Region. Study watershed identifiers uniquely classify USGS gauging 
stations used in this study and corresponds to the Identifier in Figure 1. Station number and 
station name refer to USGS stream gauge identifiers, and area refers to area upstream of the 
USGS gauge. 

Watershed 
and Basin 
Identifier Basin 

Station 
Number Station Name 

Area 
(km2) 

1M Monongahela 3078000 Casselman River at Grantsville, MD 163 
2M Monongahela 3061000 West Fork River at Enterprise, WV 1966 
3M Monongahela 3075500 Youghiogheny River near Oakland, MD 347 
4M Monongahela 3080000 Laurel Hill Creek at Ursina, PA 313 
5M Monongahela 3069500 Cheat River near Parsons, WV 1860 
1O Ohio 3102500 Little Shenango River at Greenville, PA 269 
2O Ohio 3109500 Little Beaver Creek near East Liverpool, OH 1285 
7K Kanawha 3175500 Wolf Creek near Narrows, VA 578 
1K Kanawha 3180500 Greenbrier River at Durbin, WV 344 
2K Kanawha 3186500 Williams River at Dyer, WV 332 
3K Kanawha 3187500 Cranberry River near Richwood, WV 208 
4K Kanawha 3198500 Big Coal River at Ashford, WV 1013 
5K Kanawha 3179000 Bluestone River at Durbin, WV 1020 
6K Kanawha 3183500 Greenbrier River at Alderson, WV 3533 
1T Tennessee 348800 North Fork Holston River near Saltsville, VA 575 
2T Tennessee 3528000 Clinch River above Tazewell, TN 3818 
3T Tennessee 3497300 Little River above Townsend, TN 275 
4T Tennessee 3500000 Little Tennessee River near Pretniss, NC 363 
1P Potomac 1601500 Wills Creek near Cumberland, MD 640 
2P Potomac 1610000 Pototmac River near Great Cacapon, WV 8052 
3P Potomac 1611500 Cacapon River near Great Cacapon, WV 1753 
4P Potomac 1604500 Patterson Creek near Headsville, VA 567 
5P Potomac 1643500 Bennett Creek at Park Mills, MD 163 
6P Potomac 1608500 South Branch Potoamc River near Springfield, WV 3810 
7P Potomac 1614500 Conococheague Creek and Fairview, MD 1279 
8P Potomac 1617800 Marsh Run at Grimes, MD 49 
9P Potomac 1595000 North Branch Potomac River at Steyer, MD 189 
10P Potomac 1637500 Catoctin Creek near Middletown, MD 173 
11P Potomac 1644000 Goose Creek near Leesburg, VA 860 
12P Potomac 1632000 North Fork Shenandoah River at Cootes Store, VA 544 
13P Potomac 1634500 Cedar Creek near Winchester, VA 1989 
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S 2: Climate, hydrology, and phenological datasets used in this study. 

Variable Dataset 
Temporal 
Range 

Spatial 
Resolution Units References 

Normalized Difference 
Vegetation Index (NDVI) 

GIMMS 
NOAA 
AVHRR 1981-2000 ~8 km x 8 km days 

Tucker et al. 
(2005) 

NASA 
MODIS 2000-2012 250 m x 250 m days 

Huete et al. 
(2002) 

Maximum and minimum 
Temperature 
 

MetData 1979-2015 4-km by 4-km 
℃ 

Abatzoglou 
(2013) 

Precipitation MetData 1979-2015 4-km by 4-km mm 
 
Potential evapotranspiration MetData 1979-2015 4-km by 4-km mm 
 
Maximum and minimum 
relative humidity 

MetData 1979-2015 4-km by 4-km 
% 

 
Specific humidity MetData 1979-2015 4-km by 4-km g/kg  
 
Solar radiation MetData 1979-2015 4-km by 4-km Watts/m2 

Wind direction MetData 1979-2015 4-km by 4-km 
degrees 
clockwise 
from north 

Vapor pressure deficit PRISM 1979-2015 4-km by 4-km hPa Daly et al. 
(1997) Dew point temperature PRISM 1979-2016 4-km by 4-km ℃ 

Streamflow/Runoff USGS HCDN 1982-2012 N/A mm 
Slack et al. 
(1992) 

Actual evapotranspiration N/A 1982-2012 N/A mm N/A 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 38 

S 3: Mann Kendal trend table and total change over 31 years for the 31 watersheds in the central 
Appalachian region. Watershed Identifiers represents each watershed within the five basins, 
shown in Figure 1. Station number and station name refer to USGS stream gauge identifiers. 
Bold represents significance at the 0.05 level and bold+italics represents significance at the 0.01 
level. 
 

 
 

USGS 
gageID 

DPT 
(C)  

Tmin 
(C)  

Prec. 
(mm) 

Q (mm) Rhn_mi
n. (%) 

PET 
(mm) 

EOS 
(days) 

SOS 
(days) 

Vpdmin 
(hPA) 

3061000 0.38 0.21 63.27 -42.44 0.04 51.83 10.54 -7.69 0.00 
3069500 0.24 0.22 36.57 31.15 0.21 42.15 14.88 -12.68 0.00 
3075500 0.22 0.05 61.60 -17.28 1.16 12.40 10.23 -14.39 -0.01 
3078000 0.18 0.22 13.92 61.63 -0.17 48.47 11.47 -7.85 -0.01 
3080000 0.30 0.24 15.90 76.72 -0.01 49.11 12.09 -8.15 0.00 
3102500 0.39 0.41 57.93 121.39 1.60 33.55 12.4 -7.31 -0.01 
3109500 0.33 0.32 79.04 76.40 1.30 54.74 11.47 -7.94 -0.01 
3175500 0.18 0.07 26.92 1.12 0.60 31.45 8.06 -5.87 0.00 
3179000 0.13 0.17 66.06 7.80 0.20 39.07 11.78 -7.91 0.01 
3180500 0.43 0.21 -8.30 -37.24 0.97 8.30 0 -5.17 0.00 
3183500 0.38 0.13 4.95 -50.36 -0.53 40.84 9.92 -4.69 0.00 
3186500 0.37 0.25 88.21 -25.34 2.28 10.43 8.99 -5.68 0.00 
3187500 0.44 0.21 14.25 -9.79 0.00 42.00 10.23 -9.12 0.00 
3198500 0.39 0.24 112.61 25.33 2.13 29.96 12.09 -11.81 -0.01 
3488000 0.46 0.17 81.37 -5.43 2.62 6.39 8.68 -6.82 0.00 
3497300 0.29 0.21 54.63 -28.76 0.00 41.56 8.37 -6.33 0.00 
3500000 0.07 0.15 -168.48 -76.64 0.31 37.81 8.99 -4.65 0.01 
3528000 0.23 0.23 85.42 -1.00 0.65 57.55 7.44 -4.77 0.01 
1595000 0.41 0.14 11.74 5.60 -0.84 46.78 13.02 -5.50 -0.01 
1601500 0.46 0.25 53.09 -28.89 -0.94 64.92 13.95 -9.69 -0.01 
1604500 0.37 0.15 40.71 -8.22 -0.25 48.34 15.19 -10.03 -0.01 
1608500 0.46 0.20 19.22 -1.24 -0.39 49.07 13.95 -10.52 -0.01 
1610000 0.48 0.23 25.50 -18.24 -0.66 53.92 10.85 -8.88 -0.01 
1611500 0.42 0.26 44.94 11.50 0.03 52.54 15.5 -5.17 0.00 
1614500 0.53 0.22 32.44 101.04 0.04 49.31 15.5 -6.84 -0.01 
1617800 0.38 0.24 55.01 52.30 0.32 59.14 13.95 -7.53 0.00 
1632000 0.50 0.12 -7.74 6.99 -0.34 29.10 10.85 -4.04 -0.01 
1634500 0.68 0.24 -7.99 -68.47 0.10 38.69 11.78 -21.18 -0.01 
1637500 0.38 0.14 48.22 38.58 -0.09 60.82 13.64 -7.18 -0.01 
1643500 0.37 0.12 37.78 24.26 0.22 53.59 12.4 -3.95 -0.02 
1644000 0.56 0.21 8.20 -40.30 0.16 52.52 -6.46 - -0.02 

average 0.4 0.2 33.8 5.9 0.3 42.3 10.7 -16.3 0.0 
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S 4: Factor loadings for the Principle Component Analysis used to reduce dimensionality of 
growing season length variables. Growing season length related variables with Eigen vectors >1 
and factor loadings significantly contributing (i.e. factor loadings rounding to ³|0.4|) are shown.  

Loadings: Comp 1 Comp 2 Comp 3 Comp 4 
tmax -0.38    
sph  -0.45   
rmax  -0.37  -0.46 
P    0.48 
th   -0.57 0.4 
vs   -0.49  
srad   -0.44  

rmin     
vpdmin    0.4 
Q     
DPT  -0.373   
vpdmax     
tmin -0.35    
PET -0.36       
maximum temperature [tmax], specific humidity [sph], maximum relative humidity [rmax], 
precipitation [P], wind direction [th], wind speed [vs], solar radiation [srad], minimum relative 
humidity [rmin], minimum vapor pressure deficit [vpdmin], runoff [Q], dew pressure 
temperature [DPT], maximum vapor pressure deficit [vpdmax], annual minimum temperature 
[tmin], potential evapotranspiration [PET] 
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S 5: Best supported mixed effects model parameter estimates based on PCA for identifying 
important climatic variables effecting mean annual growing season change over the 31 
watersheds evaluated in this study. 

 
Parameters Variance SD Estimate SE t-value p-value 
Fixed Effects   

    
Intercept - - 179.4 1.7 104.6 <0.001 

tmax - - 3.7 0.9 4.0 0.008 
vpdmin - - -0.7 33.0 -2.0 0.034 
th - - -1.3 0.6 -2.200 0.024 
vs - - 2.5 0.9 2.3 0.020 
tmax:vpdmin - - -0.6 0.3 1.9 0.040 
rmax:sph - - -0.7 0.3 -2.2 0.024 
vpdmin:vs - - 0.8 0.3 2.4 0.017 

Random Effects       

year 66.1 8133.0 - - - - 
site 21.2 4.6 - - - - 
rmax|year 2.1 1.5 - - - - 
th|year 2.7 1.6 - - - - 
srad|year  3.2 1.8 - - - 
vs|year   1.5 1.2 - - - 

 
SD= standard deviation; SE= standard error; tmax= maximum temperature; vpdmin= minimum 
vapor pressure deficit; th= wind direction; vs=wind speed; sph= specific humidity; rmax= 
maximum relative humidity; srad=solar radiation;. The interactions between fixed effects are 
represented as a colon (e.g. :) and the interaction between a fixed effect and a random effect is 
represented as a vertical bar (e.g. |) 

Model: tmax + vpdmin + th + vs + 1|site + 1|year + rmax|year + th|year + srad|year + 
vs|year + tmax|vpdmin + rmax|sph + vpdmin|vs 
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S 6: Factor Loadings for the Principle Component Analysis used to reduce dimensionality of 
evapotranspiration variables. Evapotranspiration related variables with Eigen vectors >1 and 
factor loadings significantly contributing (i.e. factor loadings rounding to ³|0.4|) are shown.  

Loading Comp 1 Comp 2 Comp 3 Comp 4 
tmax -0.37    
sph  -0.39   
rmax  -0.35   
vpdmin    

 

th    -0.56 
srad    -0.35 
Q     
DPT     
vpdmax     
tmin     
PET -0.35    
P     
vs    -0.38 
rmin     
SOS   -0.35  
EOS   0.52  
LOS     -0.58   

 
maximum temperature [tmax], specific humidity [sph], maximum relative humidity [rmax], 
minimum vapor pressure deficit [vpdmin], wind direction [th], solar radiation [srad], runoff [Q], 
dew pressure temperature [DPT], maximum vapor pressure deficit [vpdmax], minimum 
temperature [tmin], potential evapotranspiration [PET], precipitation [P],wind speed [vs], 
minimum relative humidity [rmin], start of season [SOS], end of season [EOS], length of season 
[LOS] 
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S 7: Best supported mixed effects model parameter estimates based on PCA for identifying the 
interaction of growing season length and mean annual evapotranspiration over the 31 watersheds 
evaluated in this study. 

Parameters Variance std. 
deviation Estimate Std. Error t-value p-value 

Fixed Effects   
    

Intercept - - 604.16 37.09 16.29 <0.0001 
tmax - - 16.46 19.5 0.84 >0.1 
rmax - - 15.96 9.66 1.65 0.05 
sph - - -7.55 7.36 -1.03 >0.1 
vs - - 4.59 21.69 0.212 >0.1 
th - - 0.41 5.18 0.081 >0.1 
srad - - 6.46 10.69 0.604 >0.1 
tmax:LOS - - -2.63 7.69 -0.342 >0.1 
rmax:LOS - - 3.54 5.03 0.704 >0.1 
sph:LOS - - -6.97 6.49 -1.07 >0.1 
vs:LOS - - -6.01 5.911 -1.016 >0.1 
th:LOS - - -0.5 5.26 -0.096 >0.1 
srad:LOS - - -0.09 5.6 -0.016 >0.1 

Random Effects       

year 1194 95.55 - - - - 
site 38554 196.35 - - - - 
vs|site 2540 50.4 - - - - 
tmax|site 3958 62.91 - - - - 

 
SD=standard deviation; SE= standard error; tmax= maximum temperature; vpdmin=minimum 
vapor pressure deficit; sph=specific humidity; vs=wind speed; LOS= length of season;. The 
interactions between fixed effects are represented as a colon (e.g. :) and the interaction between a 
fixed effect and a random effect is represented as a vertical bar (e.g. |) 

Model =tmax + rmax + sph + vs + th + srad +1|site + 1|year + vs|sites + tmax|sites + 
LOS|tmax + rmax|LOS + sph|LOS + vs|LOS + th|LOS +srad|LOS 
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Gaertner, B. Zegre, N. Fernandez, R. 2018. Spatial variations in streamflow sensitivity to climate 

change: Implications for water resources management in the central Appalachian Mountains 

region, USA. Water. 

 

Abstract  

This study quantified long-term historical and future climate trends, evaluated water balance 

sensitivity to change, and quantified future runoff for catchments located throughout the central 

Appalachian Mountains regions of the eastern USA. Long-term historical precipitation (P), 

potential evapotranspiration (PET), and evapotranspiration (ET) were implemented in a Budyko-

based sensitivity hydrologic model to determine watershed sensitivity to changing energy and 

water inputs. Long-term future streamflow was modeled based on derived sensitivity coefficients 

and future PET and P. The results showed that streamflow sensitivity increased with decreasing 

precipitation throughout the region. Future runoff is projected to increase between 9-17% 

throughout the region, with runoff increasing with increasing P, which generally followed the 

rain shadow pattern of the prevail westerly winds, with the lowest sensitivity along the 

Appalachian mountain spine and increasing sensitivity with increasing distance from the 

mountains. The sensitivity coefficients throughout the regions were also controlled by other 

climate and landscape characteristics including forest cover, P inputs, and soil moisture holding 

capacity. Watershed sensitivity and future increasing P is expected to result in increasing runoff, 

which has important implications for infrastructure, energy, and ecosystem service supply. We 

discuss preventative forest management measures to minimize future water resource concerns 

and maintain stable drinking water supplies to downstream communities. 

3.1 INTRODUCTION 

Forested headwater catchments play a critical role in freshwater provisioning but climate 

change and human modifications of land cover affect water resources availability by altering the 

amount of precipitation (P) partitioned into runoff (Q), evapotranspiration (ET), and storage (S) 

(DeWalle et al. 2000, Post and Jones 2001, Jones and Post 2004, Creed et al. 2011, Creed et al. 

2014). Human activities that alter forest cover can complicate, mitigate, and potentially 

counteract climate change effects on streamflow (Jones 2011, Patterson et al. 2013, Creed et al. 

2014), leading to variations in water yield. Changing annual water yields have been observed in 



 44 

headwater temperate forest biomes throughout North America (Campbell et al. 2011, Wang and 

Hejazi 2011, Jones et al. 2012). The effects of climate warming on Q derived from headwater 

catchments is of great to resource managers and decisions-makers given their importance in 

provisioning fresh water supplies for downstream population centers (Viviroli and Weingartner 

2004, Viviroli et al. 2007). One such headwaters region is the central Appalachian Mountains 

region located in the eastern United States, an area which provides drinking water resources 

(Dudley and Stolton 2003) to downstream metropolitan areas such as Washington D.C., 

Pittsburgh (PA), and Cincinnati (OH). Despite the importance of the central Appalachian region 

for provisioning fresh water to approximately 9% of the U.S. population (U.S.CensusBureau 

2009), the sensitivity of streamflow (Q) to changes in climate is largely unknown. It is critical to 

understand the sensitivity of forested catchments to climate change in order to develop policies 

and practices that ensure future water availability and sustainability (Bates et al. 2008).  

Streamflow from forested catchments is sensitive to changes that alter the proportion of P 

partitioned into Q and ET such as land use/land cover change, changes in growing season length, 

and climate change (Campbell et al. 2011, Caldwell et al. 2012). Human activities such as forest 

harvesting and conversion of forests to agriculture can increase runoff by reducing canopy 

interception and ET (Eagleson 1978, Gardner 1983, Canadell et al. 1996, Jones and Post 2004). 

On the other hand, increases in forest growing season length due a warming climate can increase 

ET and subsequently decrease Q. In the central Appalachian region, for example, growing season 

length has increased on average by 22 days since 1980 (Gaertner et al. 2019), increasing ET by 

0.5-4.3 mm per year (Hwang et al. 2014, Hwang et al. 2018). Increased ET due to a longer 

growing season length has the potential to reduce streamflow (Jones et al. 2012, Patterson et al. 

2013, Kim et al. 2018). Globally, increasing air temperatures have resulted in a greater ET and P 

through intensification of the water cycle (Huntington 2010),  leading to humid regions 

becoming wetter and arid regions becoming drier (Chou et al. 2009). In some regions of the 

USA, increases in Q have followed increases in P (Lins and Slack 1999, Krakauer and Fung 

2008) while other regions throughout the nation have experienced greater occurrences of drought 

(Andreadis and Lettenmaier 2006). 

Approaches for analyzing the impacts of climate change and land use on Q generally fall 

into three categories: empirical statistics, climate elasticity models that include Budyko-based 

approaches, and hydrologic modeling. Empirical statistics establish a relationship between 
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climate variable(s) of interest, usually P and Q, thus requiring long term hydro-meteorological 

data to capture long-term variations (Wu et al. 2017). Approaches include regression, time 

series/trend analyses, or the double-mass curve method (Gao et al. 2011, Zhao et al. 2014). 

Empirical models often are the easiest to implement but do not necessary produce reliable 

streamflow estimates (Wu et al. 2017). Elasticity models have an intermediate model complexity 

and are frequently based on the Budyko framework (Budyko 1961, Schaake 1990, 

Sankarasubramanian and Vogel 2003). The Budyko framework uses physically based principles 

to quantify the relationship between P, ET, and PET to describe how catchments partition P into 

Q and E. Budyko approaches require long-term historical P, ET, and PET data and often include 

a parameter to account for landscape controls on ET (Fu 1981, Choudhury 1999, Padrón et al. 

2017). Hydrologic modelling uses complex hydrologic models often forced with climate, land 

cover, soils, and topography data to simulate the hydrologic cycle. Application of hydrologic 

modelling is most limiting given the large data requirements, calibration, and validation. 

Elasticity and hydrologic modelling methods generally produce similar estimates to observed 

streamflow (Roderick and Farquhar 2011, Wang 2014) 

Budyko-based approaches are simple, have few data requirements, and explicitly 

consider large-scale drivers of the water and energy balance. The Budyko framework (Budyko 

1974, Milly 1994, Sankarasubramanian et al. 2001) implies that the long-term average ratio of 

ET to mean annual P is primarily controlled by the long-term average ratio of maximum E 

(potential E) to mean annual P. Budyko (1974) showed that ET is limited by energy demand and 

water availability. The relationship is displayed on a theoretical curve in Budyko space as the 

ratio of long-term potential evapotranspiration to precipitation (PET/P, dryness index), versus the 

ratio of long-term actual evapotranspiration (ET/P, evaporative index) to precipitation. 

Catchments with PET/P>1 are categorized as being water limited, while basins with PET/P<1 

are classified as energy limited (Figure 2).  

Budyko-based hydrology models are frequently used to for elasticity studies that quantify 

the effects of non-climatic factors (Wang 2014). There are two predominant approaches to 

elasticity models. The first quantifies relative streamflow change in response to climate and 

human change by determining the relationship between long-term average  PET, P, ET, and Q 

(Sankarasubramanian et al. 2001, Tomer and Schilling 2009). The second quantifies streamflow 

response to changing climate and land use based on a step shift in climate and human activity 
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(Roderick and Farquhar 2011, Wang and Hejazi 2011, Zeng et al. 2014). The second technique 

has several applications. First, it has been used to quantify the proportion of streamflow change 

due to climate and human factors (Patterson et al. 2013). Second it has been used to quantify the 

sensitivity of streamflow based on a shift in long-term climate (P, PET) and the land use 

parameter, n (Ma et al. 2010, Roderick and Farquhar 2011). The sensitivity method can also be 

used to assess future streamflow based on climate projections (Roderick and Farquhar 2011). 

Here we use Roderick and Farquhar (2011) to (1) assess the sensitivity of Q from 

relatively undisturbed forested catchment in the central Appalachian region and (2) quantify 

future streamflow response to future changes in climate. Specifically, we quantified spatial and 

temporal sensitivity to historic and future changes in changing water and energy availability. 

Understanding the sensitivity of streamflow of the region to future climatic changes can provide 

valuable insight into forest and water resources management in order to protect the reliability of 

fresh water resources for downstream population centers. Our objectives for this study were to: 

1. Quantify long-term historic and future climate and water balance changes throughout the 

central Appalachian Mountains region. 

2. Assess historical streamflow sensitivity to changes in climate and catchment factors 

3. Quantify streamflow sensitivity to future changes in climate 

 

3.2 METHODOLOGY 

3.2.1. Data 

Mean daily streamflow data was extracted for 31 catchments located across 5 dominant 

river basins in the central Appalachian Mountains region (Figure 1): the Monongahela, Upper 

Ohio, Kanawha, and Tennessee River, which drain west to the Mississippi River and Gulf of 

Mexico, and the Potomac River, which drains east to Washington D.C. and the Chesapeake Bay. 

This approximately 125,000 km2 region is greater than 80% forested (Slayer 2014) and spans 5 

states: West Virginia (WV), parts of Virginia (VA), North Carolina (NC), Maryland (MD), and 

Tennessee (TN) (ARC 1970). The catchments examined in this study were selected based on 

their inclusion in the U.S. Geological Survey Hydro-Climatic Data Network (HCDN) (Slack and 

Landwehr 1992) which consists of Q station data for minimally impacted catchments (<10% 

human influence such as reservoirs, diversion, land use change, or severe ground-water 

pumping) catchments (J.R. Slack 2006). The 31 HCDN catchments cover approximately 39% of 
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the total area of the five river basins, with seven catchments in the Kanawha basin, five 

watersheds in the Monongahela basin, two watersheds in the Ohio basin, thirteen watersheds in 

the Potomac Basin, and four watersheds in the Tennessee basin (Figure 1). The original HCDN 

dataset covered the time period of 1974-1988 that was extended by extracting Q data from the 

USGS historical water dataset (http://waterdata.usgs.gov) from 1965-2005 using the R package 

Retrieval (RCore 2014). Regional land cover analysis using the most recent (2011) National 

Land Cover Database (NLCD) (Homer et al. 2015) dataset was used to confirm that the 

catchments continued to be minimally impacted during the extended analysis period beyond the 

original NLCD period. Q data were normalized by area, converted to millimeters per year, and 

averaged to annual values based on the USGS water-year (October 1 – September 31).  

Air temperature and P were extracted from the Multivariate Adaptive Constructed 

Analogs version 2 (MACAv2-METDATA) dataset (Abatzoglou and Brown 2012). MACA data 

are downscaled and bias corrected from Global Climate Models (GCMs) to a higher spatial 

resolution of 4 km2 using a non-parametric-quantile-mapping and constructed Analogs method 

(see Abatzoglou and Brown (2012) and Fernandez and Zegre (2019) (in review), for more 

information). In this study, 17 different GCM models included in the MACA dataset were used 

to create ensemble climate data for the historical (1965-2005) period and a future (2070-2099) 

period using RCP 4.5 and RCP 8.5 (Meinshausen et al. 2011). RCP 4.5 represents a lower 

greenhouse gas emission that peaks in 2040 then declines (Meinshausen et al. 2011), while in 

RCP 8.5, greenhouse gas emissions continue to rise throughout the 21st century. Historical and 

future potential evapotranspiration (PET) was calculated for the region by (Fernandez and Zegre 

2019) using Penman-Montieth (Penman 1948) forced with the regional MACA dataset. 

ET was estimated using the water year annual balance ET=P-Q+DS, where P is long-term 

precipitation, Q is long-term streamflow, and DS is watershed storage, which is assumed to 

approach zero over a long time period. The historical data period was split into two 20-year time 

periods with equal intervals; 1965-1985 and 1985-2005.  

3.2.2. Quantifying climate and water balance changes 

The Mann-Kendall statistical test, commonly used in hydrometeorological studies (Yue 

et al. 2002) was used to assess monotonic trends in historical annual climate (PET) and water 

balance components (P, ET,Q) using the R package trend (RCore 2014). The slope of trends 
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were calculated using the Sen slope (Sen 1968), which is calculated as the median of all possible 

pair wise slopes. Statistical significance was assessed at a=0.10. 

 

Quantifying streamflow sensitivity to climate change and catchment parameters  

Streamflow sensitivity to climate change and landscape characteristics was calculated 

following Choudhury (1999)’s realization of the Budyko equation: 

𝐸𝑇 = -.∗0-.
(0230-.2)5/2

     Equation 1 

 

where ET is long-term evapotranspiration, PET is long-term potential evapotranspiration, 

P is long-term precipitation (mm), and n is a dimensionless catchment-specific parameter that 

modifies the partitioning of P between Q and E (Figure 2). The n-parameter is based on unique 

watershed characteristics such as soil properties (Donohue et al. 2012), vegetation cover (Li et al. 

2013),  and slope (Xu et al. 2013, Padrón et al. 2017) (Figure 2). 

 

The formulation of equation 1 was used to quantify the change in E due to changes in climate 

(P, PET) and catchment properties (n) Roderick and Farquhar (2011). 

 

𝑑𝐸 = 8-
80
𝑑𝑃 + 8-

80-.
𝑑𝑃𝐸𝑇 + 8-

89
𝑑𝑛   Equation 2 

 

Where ∂E/∂P represents the theoretical sensitivity of streamflow to changes in precipitation, 

∂E/∂PET represents the sensitivity of streamflow to changes in energy (PET), and ∂E/∂n 

represents the change in Q following a change in watershed characteristics. An increase in ∂E/∂P 

will increase Q, while an increase in ∂E/∂PET and ∂E/∂n will decrease Q. For example, if ∂E/∂P 

is 2.6, then a 10% increase in P will yield a 26% increase in Q (Roderick and Farquhar 2011).  

The respective partial differentials are given by 3a-3c, which provide a basic understanding 

of how changes in climate (P,PET) and land cover (n) affect E.  

 
8-
80
= -

0
; 0-.2

0230-.2
<     Equation 3a 
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= -
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<    Equation 3b 
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= -
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  Equation 3c 

It is assumed that the water balance changes over time are from one steady state to another 

steady state (Roderick and Farquhar 2011), i.e. that transient changes in storage can be ignored 

(e.g. Li et al. (2007). Based on this assumption, dQ is calculated by  

dQ=dP-dE     Equation 4 

By combining Equations 2 and 4, dQ is given by: 

𝑑𝑄 = ;1 − 8-
80
< 𝑑𝑃 − 8-

80-.
𝑑𝑃𝐸𝑇 − 8-

89
𝑑𝑛  Equation 5 

Relative dQ is then solved by: 
@A
A
= B0

A
;1 − 8-

80
<C @0

0
− B0-.

A
8-
80-.

C @0-.
0-.

− B9
A
8-
89
C @9
9

  Equation 6 

The terms in square brackets are the sensitivity coefficients expressing the effect that 

changing P and PET have on relative Q.  

 

3.2.3. Modeling future streamflow sensitivity 

The sensitivity of future streamflow to future changes in climate was modeled using 

historical sensitivity coefficients (Eq. 3a, 3b, 3c) and future climate based on ensemble RCP 4.5 

and RCP 8.5 data. Future changes in P and PET were calculated relative to the historical period 

(H): 
@0
0
𝑅𝐶𝑃, 𝑥 = 	0HIJ,KL0M

0M
    Equation 7 

@0-.
0-.

𝑅𝐶𝑃, 𝑥 = 0-.HIJ,KL0-.M
0-.M

   Equation 8 

Substituting future values of P and PET into Equation 5 with the historical sensitivity 

coefficients for P and PET (Eq. 3a-3c), future dQ was calculated by: 

 

𝑑𝑄 = ;1 − 8-
80
< 𝑑𝑃NO0,P −

8-
80-.

𝑑𝑃𝐸𝑇NO0,P −
8-
89
𝑑𝑛   Equation 9 

where dQ represents future Q change based on watershed sensitivity and future P and PET under 

both RCP scenarios. Because our analysis focused on HCDN catchments, we assumed that 
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catchment properties (parameter n) does not change in the future, thereby setting the n sensitivity 

coefficient and dn to 0. We recognize that this assumption is likely an oversimplification of 

future landscape conditions, particularly in light of changes in forest structure, age, productivity, 

and growing season length (Roman et al. 2015, Caldwell et al. 2016, Hwang et al. 2018, Gaertner 

et al. 2019) in relatively undisturbed catchments throughout the region. Future analysis should 

consider dn to more thoroughly account for ecosystem changes important to the partitioning of P 

into E and Q. 

 

3.3. RESULTS 

3.3.1. Climate and water balance changes throughout the central Appalachian Mountains region 

3.3.1.1. [Historic Climate and Water Balance] Long-term average historical annual climate, 

water balance, and Budyko components from 1965-2015 are shown in Table 1. Long-term 

average annual P across catchments ranged from 1001-1700 mm, but no significant trends were 

detected at either alpha=0.05 or alpha=0.01 (Table 2). ET across catchments ranged from 114-

779 mm but, similar to P, no significant trends were detected. Long-term average annual PET 

ranged from 1189-1455 mm across catchments (Table 1; Figure 4), significantly increasing by 

between 2-3% (p-value=0.027). Q ranged from 379 – 1039 mm across catchments and, similar to 

P and ET, has not changed significantly (Table 2).   

 

3.3.1.2. [Historical Budyko] All of the study basins were energy-limited, i.e. PET/P<1. The 

dryness index was greatest in the Potomac (1.34) and lowest for the Monongahela (1.0), with the 

dryness index equal to 1.2 in other basins (Figure 3). Evaporative index ranged from 0.4 to 0.62, 

where the lower values were in the Monongahela, and the higher values in the Potomac. The 

evaporative index in the other basins ranged from 3.9 (Ohio) to 0.57 in the Kanawha and 

Tennessee, averaging 0.44 across the region. The n parameter was greatest for the Potomac (1.8), 

while the other basins averaged around ~0.9 (Table 1; Figure 5). 

 

3.3.1.3. [Future climate and Budyko components] Future climate (2015-2099) and trends are 

shown in Table 3 and 4. Future PET ranged from 1369 – 1628 mm under the RCP4.5 scenario, 

increasing by 11-16% over the historical period. For the RCP 8.5 scenario, PET ranged from 

1515-1780 mm, increasing by 20-28% also increasing over the historical period. Future P under 
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the 4.5 scenario ranged from 1018-1813 mm, increasing by 6 to 8% over historical period. P 

under the RCP 8.5 scenario ranged from 1039 to 1805 mm, increasing by 6-12% over the historic 

period (Table 4).  

 Catchments largely will remain energy-limited under future conditions, although 

increases in energy demand will push three catchments toward water limitation (Table 3), one in 

the Monongahela basin, the Kanawha basin, and the Tennessee basin. 

3.3.2. Streamflow sensitivity to changes in climate and catchment factors 

Streamflow sensitivity varied across catchments (Table 5). Q sensitivity to P was greatest in 

the Potomac, averaging 22% across the Potomac catchments and least in the Monongahela 

(13.6%). Q sensitivity to P in the other basins averaged 14.8-16.9%. Q sensitivity to PET was 

highest in the Potomac basin (12.2%) and lowest in the Monongahela (3.6%). The other 

watersheds ranged from 4.8% (Kanawha), 6.0% (Tennessee) to 6.9% (Ohio).  Q sensitivity to 

land use (n) was highest in the Potomac basin (8.9%) and lowest in the Monongahela (5.3%). 

The other basins ranged from 5.8% (Tennessee), 6.2% (Kanawha), and 7.4% (Ohio).  

3.3.3. Modelling future Q using the results of the sensitivity approach 

Our model predicts the dQ will increase between 9-17% across the study region (Table 6) 

based on the RCP 4.5 scenario by the late 21st century. Future runoff is expected to increase the 

greatest in the Potomac (17%, 70 mm) and least in the Monongahela watershed 9% (65 mm) 

under RCP 4.5. Q in the other basins exhibit an increase between 10-16% (68-70 mm) in order 

from Tennessee (10%, 69.6), Kanawha (10%70.3), Ohio (16%, 68.6).  

 Under the RCP 8.5 scenario, dQ is predicted to increase between 9-17% (62 and 70 mm), 

with an overall increase of 14% (66 mm). The Monongahela and Tennessee basins are predicted 

to increase the least under RCP 8.5 by 9% (66-69 mm) and the Potomac basin will increase the 

greatest under the RCP 8.5 scenario by 17% (63 mm). The other basins are expected to increase 

between 10-15% (66.8 to 69.9 mm) in order from Kanawha (10%; 68.7) and Ohio (15%; 67.18). 
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3.4. DISCUSSION 

3.4.1. How has climate changed in the central Appalachian Mountains? 

Precipitation is strongly influenced by topography, as greater P occurs on the western 

facing slopes of the Appalachian Mountains and the eastern slopes receives less P due to 

orographic effects and the rain shadow (Pitchford et al. 2011, Siler et al. 2013) (Figure 3a). 

Despite varying precipitation occurring throughout the region, all basins are energy-limited 

(Figure 3c) with a general surplus of water. P for the region has not changed significantly 

between 1965 and 2015 despite significant change in nearby regions. For example, the northeast 

United States, which has similar topography but generally cooler climate than the central 

Appalachian region, has experienced long-term increasing precipitation (1970-2000) (Hayhoe et 

al. 2006). The southeast United States has experienced variable precipitation patterns, with both 

excessive wet and dry years (Ford et al. 2011, Laseter et al. 2012, Patterson et al. 2012). Since 

our research only evaluated long-term annual trends (1965-2015), it is possible that inter-annual 

precipitation variations masked long-term monotonic changes. Notwithstanding, future 

precipitation for the region is expected to increase between 8-10% by 2100, which is similar to 

the 15% increases predicted for the larger eastern USA (Fernandez and Zegre 2019). Nearby 

regions of the northeast and southeast US are also expected to experience changes in future P, 

with P increasing by 3-6% by 2099 (Hayhoe et al. 2006, Hayhoe et al. 2008, Wu et al. 2012, 

Fernandez and Zegre 2019).   

Increases in PET were found across all catchments examined, indicating that atmospheric 

demand has increased, likely due to warming (Ford et al. 2011, Pitchford et al. 2011, Laseter et 

al. 2012, Patterson et al. 2012). PET patterns are mainly driven by energy availability, 

temperature, and wind movement (Penman 1948). Future PET is expected to continue to increase 

by 15-26% throughout the region by 2100. These trends are similar to the 25% increase in PET 

predicted for the larger eastern USA (Fernandez and Zegre 2019). 

Interestingly, ET in our study area has not changed significantly from 1965-2015, despite 

increasing trends in nearby regions in the northeast and southeast United States (Burns et al. 

2007, Cruise et al. 2010, Campbell et al. 2011, Feng et al. 2016). That ET did not change in our 

region could be due to several factors. First, intra-annual variation over our long-term analysis 

could have dampened monotonic trend analysis. Second, ET processes such as increasing 

growing season length, greater atmospheric CO2 concentration, and stomatal dynamics related to 
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drought stress could have mitigated or counteracted other factors (Idso and Brazel 1984, Roman 

et al. 2015, Kim et al. 2018). Growing season length has increased in the central Appalachian 

region by 22 days since 1982 (Gaertner et al. 2019) which results in higher ET (White et al. 

1999, Hwang et al. 2014, Hwang et al. 2018). However, higher CO2 concentration could have 

counteracted this trend by decreasing ET fluxes through increased water use efficiency (Keenan 

et al. 2013). Tree core and eddy covariance data have shown that higher CO2 concentration 

reduces the time required for stomatal opening and increases water use efficiency, thereby 

decreasing ET fluxes (Frank et al. 2015). Similarly, drought stress stomatal dynamics of the 

vegetation in the central Appalachian Mountains increases water use efficiency and reduces ET 

fluxes in low soil moisture conditions during peak summer months (Brzostek et al. 2014, Roman 

et al. 2015). Therefore, while a longer growing season could have increased ET, other variables 

likely have counteracted the effect and resulted in an insignificant net change in ET despite 

increasing trends in nearby regions.  

   

3.4.2. How sensitive are catchments in the central Appalachian Mountains region to climate 

change?  

The sensitivity approach has been applied in large basins throughout the United States. In 

water-limited regions of the southwest United States, Q has a higher sensitivity to changes in P 

and PET (Sankarasubramanian et al. 2001). Conversely, energy-limited regions such temperate 

forests of the eastern United States generally have a lower sensitivity to P and PET changes 

(Sankarasubramanian and Vogel 2003). Catchments with lower sensitivity to changing climate 

are generally controlled by climatic and landscape characteristics including higher temperate and 

coniferous forest cover (Creed et al. 2014), higher precipitation inputs, greater soil moisture 

holding capacity (Sankarasubramanian and Vogel 2003, Cooper et al. 2018), higher elasticity 

(Sankarasubramanian et al. 2001), and higher slope (Padrón et al. 2017), making these 

watersheds more capable of buffering changes in water supply.  

Streamflow sensitivity in the central Appalachian region averaged below 2.5, indicating 

energy limited catchments (Sankarasubramanian and Vogel 2003). The Potomac had the highest 

sensitivity, with a single catchment with sensitivity of 7.0. Precipitation appears to be the 

primary driver of catchment sensitivity, with higher precipitation resulting in lower sensitivity 

(Figure 4). The Monongahela has the greatest P in the region and the lowest sensitivity. 
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Similarly, the high sensitivity coefficient in the Potomac basin is consistent with relatively arid 

conditions and low precipitation. This precipitation pattern is attributed to the rain shadow effect, 

with the greatest precipitation along the Appalachian spine and slightly more arid conditions on 

the eastern (leeward) side of the mountain range (Siler et al. 2013).  However, the landscape 

characteristics of mountainous areas also contribute to lower catchment sensitivity. High slope 

(Figure 6) along the Appalachian spine in the Tennessee, Kanawha, and Monongahela basins 

contributes to greater water yield downstream. Catchment elasticity due to high temperate forest 

cover (Creed et al. 2014) and high subsurface storage contributes to greater catchment resilience 

and capacity to buffer climate warming. A longer growing season also has the capacity to 

increase evapotranspiration and stabilize streamflow (Kim et al. 2018).  

The watershed sensitivity combined with future changing climate is expected to increase 

future Q by between 9% and 17% across the region, with Q in several catchments in the Potomac 

expected to increase more than 20% over the historic period. Increasing future Q is likely 

occurring in response to increasing P (Table 4) due to large scale drivers (Fernandez and Zegre 

2019), more extreme and intense storms (Asadieh and Krakauer 2015), and hydrologic 

intensification occurring from warmer atmospheric air temperatures (Huntington 2006).  

 

3.4.3. Management Implications 

 P and Q increases across the region has potentially important implications for 

infrastructure inundation, less reliable energy sources and structures, and limited ecosystem 

service supply (Wright et al. 2012, Neumann et al. 2015). As precipitation and extreme storms 

increase in frequency and duration, communities downstream of the headwater basins will 

experience greater occurrences of flooding (Smith et al. 2011), which will lead to storm related 

damage to infrastructure including bridges, buildings, cities, industry, and water treatment 

facilities (Suarez et al. 2005, Delpla et al. 2009). Furthermore, current infrastructure age and 

disrepair make damage from extreme storms more likely and costly (Reidmiller et al. 2017). 

Given that all watersheds in the central Appalachian regions are expected to have higher future 

streamflow, storm and flooding related damage is of particular concern for large population 

centers such as Pittsburgh and Washington D.C. Specifically, protecting the headwater reaches 

of the Potomac watershed is important given its high future streamflow increases (17%) as well 
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as its importance in providing clean freshwater resources to the Washington D.C. population 

center. 

 High precipitation and extreme events can lead to unreliability and unpredictability of 

energy sources and systems (Panteli and Mancarella 2015). Extreme precipitation events could 

cause damage to energy infrastructure, more frequent and longer power outages, and lapses in 

power generation and fuel shortages, leading to energy related price spikes (Campbell 2012, 

Ward 2013, Reidmiller et al. 2017). Similarly, flooding could lead to inundation of energy 

infrastructure such as electric lines, railways, powerplants, and refineries, leading to longer 

lapses in energy generation and more investment in repair and maintenance (Wilbanks et al. 

2008, Burkett 2011). Therefore, greater investments will be needed to prevent or limit flooding 

damage through waterproofing measures, infrastructure reinforcement, increasing use of energy 

storage systems, and implementing measures to limit widespread power outages. 

 Climate change has had severe impacts on terrestrial and freshwater organisms including 

mismatched timing of biological events such as predation and migration, agricultural damage, 

and disruption to supply of clean water, which could impact ecosystem services including 

hunting, fishing, and drinking water resources (Rosenzweig et al. 2001, Saino et al. 2009). 

Earlier growing season causes by warming temperatures cue early development of insects, while 

the avian predators are migrating at the instinctual time (Saino et al. 2009, Clausen and Clausen 

2013), therefore leading to increased insect populations, reduced avian populations, reduced 

pollination, and reduced agricultural output. Earlier spring could further impact agricultural 

crops if the date of the last-freeze overlaps the date of spring development, causing large scale 

crop damage and agricultural loss (Rosenzweig et al. 2001, Reidmiller et al. 2017). More 

frequent and extreme precipitation events could also lead to water quality issues due to erosion 

and sedimentation migration and greater agricultural fertilizer and pesticide runoff (Whitehead et 

al. 2009), which could increase water treatment cost.  

To prevent or eliminate future water quality issues throughout the central Appalachian 

region, agriculture business should be rewarded for implementing proper erosion prevention 

methods and headwater catchments should be protected to maintain clean and stable freshwater 

resources to downstream communities (Harrison et al. 2016) and reduce water treatment costs 

(Abildtrup et al. 2013). Therefore, the results from this study should be applied to evaluate the 

effect that future precipitation, streamflow, flooding, and extreme events will have on bridges 
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and water treatment facilities that may be inundated and unable to handle a large volume of 

water (Gersonius et al. 2013). Thoughtful implementation of watershed protection plans could 

minimize water quality issues given future P and Q increases that contribute to greater erosion, 

sedimentation, and agricultural runoff (Nearing et al. 2005). Consideration for the Potomac 

watershed is particularly important given it’s expected high future streamflow increases (17%), 

which could have important downstream flow implications to the Washington D.C. population 

center (Parker et al. 1907).  

 Watershed protection requires a multi-faceted agreement between government, public, 

and private entities. In the Potomac basin, a large portion of the land is privately owned, 

therefore, several options are available for protecting the land including downstream 

beneficiaries and purchase of upstream land from willing sellers. In the first option, downstream 

beneficiaries (in Washington D.C.) could provide financial support as incentive or in recognition 

of good watershed management practices upstream. A second option is to purchase land from 

willing sellers to protect hydrologic ecosystem services upstream. This newly acquired land 

could be opened for recreational use for fishing, hunting, and hiking to offset the investment. 

Furthermore, acquired land could be converted to forests, which would help to regulate 

downstream water availability and reduce water treatment costs, especially in light of high 

climate sensitivity in the Potomac basin as well as an expected increase in future runoff.  

 Upstream water protection also increases downstream water quality. One method to 

increase downstream water quality is to provide incentive payments to encourage proper use of 

agriculturally owned land. Runoff from upstream agriculture land in the Potomac basin leads to 

harmful algal blooms in the Chesapeake Bay (Glibert et al. 2001), which disrupts fishery and 

commercial industries that economically rely on the estuary. Providing incentive-based payments 

for proper agricultural behavior, such as reduced fertilizer and pesticide use and reduced tillage, 

could improve downstream drinking water quality, enhance infiltration, and reduce runoff, 

resulting in reduced water treatment costs (Abildtrup et al. 2013), and maintenance of ecosystem 

services derived from the Chesapeake bay.  

 

3.5. CONCLUSION 

 This research quantified the sensitivity of streamflow to changing climate and land cover 

in 31 headwater catchments located in the central Appalachian Mountains of the eastern United 
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States. The sensitivity analysis quantified streamflow change based on a change in P, PET, and 

catchment parameters (n). The sensitivity coefficients were used to quantify future streamflow 

from 2070-2099. The results showed the more arid catchments had a greater sensitivity to 

climate (P and PET) and land use (n) than the humid catchments. Future Q increased in all 

catchments under both emissions scenarios (RCP 4.5 and 8.5). 

 The results suggest that mountainous, high P catchments with lower sensitivities to 

changing climate have a greater ability to buffer the effect of climatic changes, allowing them to 

better mitigate flow variations. Precipitation had the greatest control on Q sensitivity, but other 

factors including growing season length and slope may have ancillary effects on runoff 

sensitivity but were not addressed in this study. Land use sensitivity is also greatest in the 

Potomac and least in the Monongahela, and we attribute this to agricultural cover in the high 

sensitivity basins (Ohio and Potomac), suggesting that forested basins may have a lower 

sensitivity to changing climate and land use than agriculturally dominated basins.  

 We emphasize that this research can inform management decisions for protecting water 

resources in an area that is expected to have increasing future P by suggesting the application of 

several management techniques in the Potomac basin. The Potomac basin is the most urgent 

basin for enhanced management as it provides a large portion of water resources to the 

Washington D.C. population center. We propose that Washington D.C. implement protective 

areas in the upstream Potomac basin and provide incentive-based payment programs to upstream 

private land owners for good ecological behavior including reduced fertilizer and pesticide use. 

Given the high sensitivity of the Potomac to future changing climate, and expected increase in 

downstream runoff, and high agricultural cover in this basin, we believe in is imperative to 

protect headwater basins to regulate and maintain future downstream water resources. 
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TABLES/FIGURES 

Table 1: Long-term historic (1965-2015) average annual climate and water balance components 
in mm/year (potential evapotranspiration [PET], precipitation [P], streamflow [Q], 
evapotranspiration [AET], dryness index [PET/P], and evaporative index [ET/P]) for catchments 
located in the central Appalachian Mountains region. The n value is a catchment specific 
parameter that incorporates watershed characteristics and is calculated using the Budyko 
framework following the Choudhury (1999) framework.  

Station Name 
PET 
(mm) 

P   
(mm) 

Q 
(mm) 

AET 
(mm) PET/P ET/P n 

Monongahela        
Casselman River at Grantsville, MD 1222 1169 669 500 1.05 0.43 0.90 
West Fork River at Enterprise, WV 1300 1169 519 651 1.11 0.56 1.27 
Youghiogheny River near Oakland, MD 1205 1272 811 461 0.95 0.36 0.78 
Laurel Hill Creek at Ursina, PA 1243 1249 898 351 1.00 0.28 0.58 
Cheat River near Parsons, WV 1220 1327 860 467 0.92 0.35 0.71 
Average 1238 1237 751 486 1.0 0.4 0.8 
Ohio        
Little Shenango River at Greenville, PA 1237 1009 493 516 1.23 0.51 0.95 
Little Beaver Creek near East Liverpool, OH 1299 1045 379 666 1.24 0.64 1.58 
Average 1268 1027 436 591 1.2 0.6 1.3 
Kanawha         
Wolf Creek near Narrows, VA 1189 1244 715 530 0.96 0.43 0.91 
Greenbrier River at Durbin, WV 1252 1153 1039 114 1.09 0.10 0.87 
Williams River at Dyer, WV 1252 1153 1039 114 1.09 0.10 0.35 
Cranberry River near Richwood, WV 1363 1194 488 705 1.14 0.59 1.37 
Big Coal River at Ashford, WV 1357 1016 426 591 1.33 0.58 1.22 
Bluestone River at Durbin, WV 1287 1079 522 556 1.19 0.52 1.06 
Greenbrier River at Alderson, WV 1386 1001 492 509 1.38 0.51 1.04 
Average 1298 1120 674 446 1.2 0.4 1.0 
Tennessee         
North Fork Holston River near Saltsville, VA 1424 1154 489 665 1.23 0.58 1.34 
Clinch River above Tazewell, TN 1421 1274 496 779 1.12 0.61 1.80 
Little River above Townsend, TN 1433 1191 937 254 1.20 0.21 0.48 
Little Tennessee River near Pretniss, NC 1455 1700 997 703 0.86 0.41 1.29 
Average 1433 1330 730 600 1.1 0.5 1.2 
Potomac         
Wills Creek near Cumberland, MD 1327 985 494 491 1.35 0.50 0.93 
Pototmac River near Great Cacapon, WV 1331 954 397 557 1.40 0.58 1.15 
Cacapon River near Great Cacapon, WV 1360 996 325 670 1.37 0.67 1.71 
Patterson Creek near Headsville, VS 1287 1068 282 785 1.21 0.74 2.27 
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Bennett Creek at Park Mills, MD 1409 1084 392 692 1.30 0.64 1.44 
South Branch Potoamc River near Springfield, WV 1337 971 340 631 1.38 0.65 1.38 
Conococheague Creek and Fairview, MD 1376 1002 458 544 1.37 0.54 1.11 
Marsh Run at Grimes, MD 1398 1011 234 778 1.38 0.77 2.39 
North Branch Potomac River at Steyer, MD 1315 940 835 105 1.40 0.11 0.30 
Catoctin Creek near Middletown, MD 1397 1060 419 641 1.32 0.60 1.31 
Goose Creek near Leesburg, VA 1414 1080 370 710 1.31 0.66 1.31 
North Fork Shenandoah River at Cootes Store, VA 1355 994 347 647 1.36 0.65 1.36 
Cedar Creek near Winchester, VA 1386 1038 49 989 1.33 0.95 7.31 
Average 1361 1014 380 634 1.3 0.6 1.8 

Overall Average 1330 1116 555 560 1.2 0.5 1.4 
 

 

Table 2: Mann-Kendall trend analysis for PET, P, and ET for the 31study watersheds from 1965-
2015 shown as total change over the study period based on the Sen slope value. All values are 
represented as in percentage change from the annual historic streamflow amount (Table 1). * 
represents significance at alpha=0.05 and ** represent significance at alpha<0.01. 
Station Name PET P (%) ET 

(%) 
Monongahela     

Casselman River at Grantsville, MD 2** 0 -16 
West Fork River at Enterprise, WV 2** -1 -12 
Youghiogheny River near Oakland, MD 2** -1 -14 
Laurel Hill Creek at Ursina, PA 2** -1 -7 
Cheat River near Parsons, WV 2** 0 -13 
Average 2 -1 -12 
Ohio  

  
Little Shenango River at Greenville, PA 2** 0 0 
Little Beaver Creek near East Liverpool, OH 2** 0 -2 
 Average 2 0 -1 
Kanawha   

  
Wolf Creek near Narrows, VA 2** -1 0 
Greenbrier River at Durbin, WV 2** -1 -3 
Williams River at Dyer, WV 2** -1 -4 
Cranberry River near Richwood, WV 2** -1 -4 
Big Coal River at Ashford, WV 2** -1 -1 
Bluestone River at Durbin, WV 2** -1 9 
Greenbrier River at Alderson, WV 2** -1 -11 
Average 2 1 -2 
Tennessee  
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North Fork Holston River near Saltsville, VA 2** -1 3 
Clinch River above Tazewell, TN 2** -2 -2 
Little River above Townsend, TN 2** -4 6 
Little Tennessee River near Pretniss, NC 2** -1 2 
Average 2 -2 2 
Potomac   

  
Wills Creek near Cumberland, MD 2** -1 -6 
Pototmac River near Great Cacapon, WV 2** -1 8 
Cacapon River near Great Cacapon, WV 2** 0 -11 
Patterson Creek near Headsville, VS 3** -1 2 
Bennett Creek at Park Mills, MD 2** -1 -12 
South Branch Potoamc River near Springfield, WV 2** -1 -3 
Conococheague Creek and Fairview, MD 3** -1 -14 
Marsh Run at Grimes, MD 2** -1 -19 
North Branch Potomac River at Steyer, MD 2** 0 4 
Catoctin Creek near Middletown, MD 2** 1 -10 
Goose Creek near Leesburg, VA 2** -1 -8 
North Fork Shenandoah River at Cootes Store, VS 2** -1 -14 
Cedar Creek near Winchester, VA 2** -1 -10 
Average 2 -1 -7 
Overall Average 2 -1 -5 

 

Table 3: Future PET, P, and dryness index (PET/P) for each catchment from 2015-2099 based on 
future ensemble climate data from the Multivariate Adaptive Constructed Analogs version 2 
(MACAv2-METDATA) dataset (Abatzoglou and Brown 2012). The Station name corresponds 
to the USGS HCDN watershed output station name. RCP4.5 refers to the 4.5 emission scenario 
for future climate projections, while RCP8.5 refers to the 8.5 emission scenario .(Meinshausen et 
al. 2011)  

Station Name 
PET4.5 
(mm) 

PET8.5 
(mm) 

P4.5 
(mm) 

P8.5 
(mm) PET/P4.5 PET/P8.5 

Monongahela        
Casselman River at Grantsville, MD 1413 1567 1265 1289 0.90 0.82 
West Fork River at Enterprise, WV 1494 1642 1259 1282 0.84 0.78 
Youghiogheny River near Oakland, MD 1382 1528 1373 1396 0.99 0.91 
Laurel Hill Creek at Ursina, PA 1428 1579 1346 1370 0.94 0.87 
Cheat River near Parsons, WV 1399 1549 1429 1449 1.02 0.94 
Average 1423 1573 1334 1357 0.94 0.86 
Ohio        
Little Shenango River at Greenville, PA 1439 1591 1085 1121 0.75 0.70 
Little Beaver Creek near East Liverpool, OH 1504 1656 1121 1152 0.75 0.70 
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Average 1472 1623 1103 1136 0.75 0.70 
Kanawha        
Wolf Creek near Narrows, VA 1369 1516 1346 1366 0.98 0.90 
Greenbrier River at Durbin, WV 1401 1543 1584 1601 1.13 1.04 
Williams River at Dyer, WV 1435 1568 1240 1254 0.86 0.80 
Cranberry River near Richwood, WV 1562 1708 1272 1282 0.81 0.75 
Big Coal River at Ashford, WV 1566 1713 1091 1102 0.70 0.64 
Bluestone River at Durbin, WV 1481 1619 1158 1172 0.78 0.72 
Greenbrier River at Alderson, WV 1595 1736 1075 1095 0.67 0.63 
Average 1487 1629 1252 1267 0.85 0.78 
Tennessee        
North Fork Holston River near Saltsville, VA 1624 1762 1230 1237 0.76 0.70 
Clinch River above Tazewell, TN 1608 1735 1348 1350 0.84 0.78 
Little River above Townsend, TN 1624 1750 1262 1262 0.78 0.72 
Little Tennessee River near Pretniss, NC 1623 1756 1813 1805 1.12 1.03 
Average 1620 1751 1413 1414 0.87 0.81 
Potomac        
Wills Creek near Cumberland, MD 1538 1688 1070 1094 0.70 0.65 
Pototmac River near Great Cacapon, WV 1544 1693 1038 1059 0.67 0.63 
Cacapon River near Great Cacapon, WV 1573 1721 1086 1111 0.69 0.65 
Patterson Creek near Headsville, VS 1489 1640 1156 1180 0.78 0.72 
Bennett Creek at Park Mills, MD 1623 1773 1182 1212 0.73 0.68 
South Branch Potoamc River near Springfield, WV 1552 1704 1057 1077 0.68 0.63 
Conococheague Creek and Fairview, MD 1590 1740 1093 1118 0.69 0.64 
Marsh Run at Grimes, MD 1615 1767 1105 1134 0.68 0.64 
North Branch Potomac River at Steyer, MD 1529 1680 1018 1039 0.67 0.62 
Catoctin Creek near Middletown, MD 1612 1764 1159 1188 0.72 0.67 
Goose Creek near Leesburg, VA 1628 1781 1177 1205 0.72 0.68 
North Fork Shenandoah River at Cootes Store, VS 1573 1727 1081 1101 0.69 0.64 
Cedar Creek near Winchester, VA 1599 1749 1132 1153 0.71 0.66 
Average 1574 1725 1104 1128 0.70 0.65 
Overall Average 1529 1676 1215 1234 0.80 0.74 
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Table 4: Relative change (%) in PET and P between historical (1965-2015) and future (2015-
2099) climate. RCP4.5 refers to the 4.5 emission scenario for future climate projections, while 
RCP8.5 refers to the 8.5 emission scenario.  

Station Name 

ΔPETRCP4.5 
(%) 

ΔPETRCP8.5 
(%) 

ΔPRCP4.5 
(%) 

ΔPRCP8.5 
(%) 

Monongahela      

Casselman River at Grantsville, MD 16 28 8 10 
West Fork River at Enterprise, WV 15 26 8 10 
Youghiogheny River near Oakland, MD 15 27 8 10 
Laurel Hill Creek at Ursina, PA 15 27 8 10 
Cheat River near Parsons, WV 15 27 8 9 
Average 15 27 8 10 

Ohio      
Little Shenango River at Greenville, PA 16 29 7 11 
Little Beaver Creek near East Liverpool, OH 16 28 7 10 
Average 16 28 7 11 

Kanawha      
Wolf Creek near Narrows, VA 15 28 8 10 
Greenbrier River at Durbin, WV 12 23 7 8 
Williams River at Dyer, WV 15 25 8 9 
Cranberry River near Richwood, WV 15 25 7 8 
Big Coal River at Ashford, WV 15 26 7 9 
Bluestone River at Durbin, WV 15 26 8 9 
Greenbrier River at Alderson, WV 15 25 8 10 
Average 15 25 7 9 

Tennessee      
North Fork Holston River near Saltsville, VA 14 24 7 7 
Clinch River above Tazewell, TN 13 22 6 6 
Little River above Townsend, TN 13 22 6 6 
Little Tennessee River near Pretniss, NC 12 21 7 7 
Average 13 22 7 7 

Potomac      
Wills Creek near Cumberland, MD 16 27 9 11 
Pototmac River near Great Cacapon, WV 16 27 9 11 
Cacapon River near Great Cacapon, WV 16 27 9 12 
Patterson Creek near Headsville, VS 16 27 8 11 
Bennett Creek at Park Mills, MD 15 26 9 12 
South Branch Potoamc River near Springfield, WV 16 27 9 11 
Conococheague Creek and Fairview, MD 16 26 9 12 
Marsh Run at Grimes, MD 16 26 9 12 
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North Branch Potomac River at Steyer, MD 16 28 9 11 
Catoctin Creek near Middletown, MD 15 26 9 12 
Goose Creek near Leesburg, VA 15 26 9 12 
North Fork Shenandoah River at Cootes Store, VS 16 27 9 11 

Cedar Creek near Winchester, VA 15 26 9 11 
Average 16 27 9 11 

Overall Average 15 26 8 10 
 

 

Table 5: Streamflow (Q) sensitivity to climate variability, where ∂Q/∂P  indicates the Q sensitivity 
to an increase in precipitation, ∂Q/∂PET indicates Q sensitivity to an increase in Potential 
Evapotranspiration, and ∂Q/∂n indicates Q sensitivity to a change in watershed characteristics 
(e.g. land use). An increase in P will increase streamflow, an increase in PET and n will decrease 
streamflow.  

Station Name 
∂Q/∂P 

(%) 
∂Q/∂PET 

(%) 
∂Q/∂n 

(%) 

Monongahela     
Casselman River at Grantsville, MD 13.9 3.9 5.6 
West Fork River at Enterprise, WV 16.5 6.5 6.7 
Youghiogheny River near Oakland, MD 13.0 3.0 4.9 
Laurel Hill Creek at Ursina, PA 12.0 2.0 4.4 
Cheat River near Parsons, WV 12.7 2.7 4.8 
Average 13.6 3.6 5.3 
Ohio     
Little Shenango River at Greenville, PA 14.6 4.6 6.8 
Little Beaver Creek near East Liverpool, OH 19.1 9.1 7.9 
Average 16.9 6.9 7.4 
Kanawha     
Wolf Creek near Narrows, VA 14.0 4.0 5.5 
Greenbrier River at Durbin, WV 13.3 3.3 4.5 
Williams River at Dyer, WV 10.8 0.8 2.9 
Cranberry River near Richwood, WV 17.5 7.5 7.4 
Big Coal River at Ashford, WV 16.9 6.9 8.3 
Bluestone River at Durbin, WV 15.3 5.3 6.9 
Greenbrier River at Alderson, WV 15.6 5.6 8.0 
Average 14.8 4.8 6.2 
Tennessee     
North Fork Holston River near Saltsville, VA 17.5 7.5 7.8 
Clinch River above Tazewell, TN 19.7 9.7 6.7 
Little River above Townsend, TN 11.5 1.5 4.3 
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Little Tennessee River near Pretniss, NC 15.5 5.5 4.5 
Average 16.0 6.0 5.8 
Potomac     
Wills Creek near Cumberland, MD 14.7 4.7 7.4 
Pototmac River near Great Cacapon, WV 16.5 6.5 8.4 
Cacapon River near Great Cacapon, WV 20.6 10.6 9.4 
Patterson Creek near Headsville, VS 23.8 13.8 8.2 
Bennett Creek at Park Mills, MD 18.3 8.3 8.3 
South Branch Potoamc River near Springfield, WV 18.3 8.3 9.1 
Conococheague Creek and Fairview, MD 16.1 6.1 8.1 
Marsh Run at Grimes, MD 26.3 16.3 10.9 
North Branch Potomac River at Steyer, MD 10.6 0.6 2.9 
Catoctin Creek near Middletown, MD 17.4 7.4 8.2 
Goose Creek near Leesburg, VA 17.4 7.4 8.2 
North Fork Shenandoah River at Cootes Store, VS 18.2 8.2 9.3 
Cedar Creek near Winchester, VA 70.1 60.1 16.8 
Average 22.2 12.2 8.9 

Overall Average 18.0 8.0 7.2 
 
 
Table 6: Future streamflow change relative to historical Q in mm from 2070-2099 calculated 
using the Q sensitivity to P and PET (Table 3). Future streamflow was calculated under a low 
emissions scenario (RCP 4.5) and a high emissions scenario (RCP 8.5) for each catchment and 
basin (in bold).  
 

Station Name 
ΔQ4.5 
(%) 

ΔQ8.5 
(%) 

Monongahela    
Casselman River at Grantsville, MD 10.6 10.4 
West Fork River at Enterprise, WV 13.4 13.0 
Youghiogheny River near Oakland, MD 8.8 8.7 
Laurel Hill Creek at Ursina, PA 8.0 8.0 
Cheat River near Parsons, WV 8.3 8.2 
Average 9.4 9.3 

Ohio    
Little Shenango River at Greenville, PA 14.1 14.0 
Little Beaver Creek near East Liverpool, OH 17.9 17.2 
Average 15.7 15.4 

Kanawha    
Wolf Creek near Narrows, VA 10.0 9.7 
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Greenbrier River at Durbin, WV 6.9 6.9 
Williams River at Dyer, WV 6.9 7.0 
Cranberry River near Richwood, WV 14.0 13.2 
Big Coal River at Ashford, WV 16.2 15.5 
Bluestone River at Durbin, WV 13.4 13.0 
Greenbrier River at Alderson, WV 14.2 14.0 
Average 10.4 10.2 
Tennessee    
North Fork Holston River near Saltsville, VA 14.1 13.4 
Clinch River above Tazewell, TN 13.7 12.8 
Little River above Townsend, TN 7.6 7.5 
Little Tennessee River near Pretniss, NC 7.1 6.8 
Average 9.5 9.2 

Potomac   
Wills Creek near Cumberland, MD 14.4 14.2 
Pototmac River near Great Cacapon, WV 17.8 17.3 
Cacapon River near Great Cacapon, WV 21.5 20.6 
Patterson Creek near Headsville, VS 23.9 21.9 
Bennett Creek at Park Mills, MD 18.0 17.5 
South Branch Potoamc River near Springfield, WV 20.6 19.6 
Conococheague Creek and Fairview, MD 15.6 15.3 
Marsh Run at Grimes, MD 29.4 27.3 
North Branch Potomac River at Steyer, MD 8.7 8.8 
Catoctin Creek near Middletown, MD 17.0 16.6 
Goose Creek near Leesburg, VA 19.0 18.3 
North Fork Shenandoah River at Cootes Store, VS 20.1 19.2 

Cedar Creek near Winchester, VA 11.9 7.2 
Average 17.2 16.5 

Overall Average 14.3 13.7 
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Figure 1: Location of the study area in the central Appalachian Mountains region of the eastern 

USA. The dashed lines depict basin boundaries of the five basins examined in this study: 
Potomac (P), Monongahela (M), Ohio (O), Kanawha (K), and Tennessee (T). The solid 
lines outline the 31 HCDN watersheds, and the identifiers label the basin followed by an 
HCDN (Slack and Landwehr 1992) watershed number from 1 to j. 
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Figure 2: Conceptual figure illustrating the Budyko framework for the central Appalachian 
region. The dryness index represents energy limited (PET/P<1) and water limited (PET/P>1) 
basins. An energy limited basin receives greater P than PET, while a water limited basins receive 
a higher ratio of P to PET. The evaporative index (E/P) provides watershed specific climatic 
factors, with a high E/P representing no runoff and low representing high runoff. n values curves 
implement catchment specific factors into the Budyko framework. High n factors translate to low 
runoff and low n factors generally have high runoff. 
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Figure 3: Climate and Budyko variables for the central Appalachian Mountain region from 1965-
2015 including (a.) annual precipitation (mm), (b.) average annual potential evapotranspiration, 
(c.) annual evaporative index, (d.) annual dryness index (P/PET). 
. 
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Figure 4: Average annual precipitation for the five basins located in the central Appalachian 
region showing a general increase in streamflow sensitivity to decreases in Precipitation. 
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Figure 5: Relationship between the evapotranspiration ratio and dryness index of each basin for 
the period 1965–2015. Each identifier number refers to the watersheds depicted in Figure 1. All 
catchments were considered to be energy limited and average n values were 1.37 and ranged 
from 0.3 to 7.31 (both in the Potomac basin).  
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Figure 6: Slope of the central Appalachian Mountains, with red representing steep slopes (close 
to vertical) and green representing low slope.  
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Supplementary Information: 

Identifier Basin 

Station 

Number Station Name Area (km2) 

1M Monongahela 3078000 Casselman River at Grantsville, MD 163 

2M Monongahela 3061000 West Fork River at Enterprise, WV 1966 

3M Monongahela 3075500 Youghiogheny River near Oakland, MD 347 

4M Monongahela 3080000 Laurel Hill Creek at Ursina, PA 313 

5M Monongahela 3069500 Cheat River near Parsons, WV 1860 

1O Ohio 3102500 Little Shenango River at Greenville, PA 269 

2O Ohio 3109500 Little Beaver Creek near East Liverpool, OH 1285 

7K Kanawha 3175500 Wolf Creek near Narrows, VA 578 

1K Kanawha 3180500 Greenbrier River at Durbin, WV 344 

2K Kanawha 3186500 Williams River at Dyer, WV 332 

3K Kanawha 3187500 Cranberry River near Richwood, WV 208 

4K Kanawha 3198500 Big Coal River at Ashford, WV 1013 

5K Kanawha 3179000 Bluestone River at Durbin, WV 1020 

6K Kanawha 3183500 Greenbrier River at Alderson, WV 3533 

1T Tennessee 348800 North Fork Holston River near Saltsville, VA 575 

2T Tennessee 3528000 Clinch River above Tazewell, TN 3818 

3T Tennessee 3497300 Little River above Townsend, TN 275 

4T Tennessee 3500000 Little Tennessee River near Pretniss, NC 363 

1P Potomac 1601500 Wills Creek near Cumberland, MD 640 

2P Potomac 1610000 Pototmac River near Great Cacapon, WV 8052 

3P Potomac 1611500 Cacapon River near Great Cacapon, WV 1753 

4P Potomac 1604500 Patterson Creek near Headsville, VS 567 

5P Potomac 1643500 Bennett Creek at Park Mills, MD 163 

6P Potomac 1608500 

South Branch Potoamc River near 

Springfield, WV 3810 

7P Potomac 1614500 Conococheague Creek and Fairview, MD 1279 

8P Potomac 1617800 Marsh Run at Grimes, MD 49 
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9P Potomac 1595000 North Branch Potomac River at Steyer, MD 189 

10P Potomac 1637500 Catoctin Creek near Middletown, MD 173 

11P Potomac 1644000 Goose Creek near Leesburg, VA 860 

12P Potomac 1632000 

North Fork Shenandoah River at Cootes 

Store, VS 544 

13P Potomac 1634500 Cedar Creek near Winchester, VA 1989 
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Gaertner, B.A. Zegre, N. 2019. Spatial variations, trends, and drivers in evapotranspiration 

changes across the central Appalachian Mountains, United States. Journal of American Water 

Resources.  

 
Abstract  
 
This study examined the regional and local spatial relationships between climate variables and 

evapotranspiration (ET) trends throughout the central Appalachian region. Regional and local 

(4km2) drivers of ET including temperature, precipitation, dew point temperature, and vapor 

pressure deficit were determined using an ordinary least squares and geographically weighted 

regression model. Throughout the central Appalachian region, precipitation, temperature, and 

vapor pressure deficit were found to have the most significant relationship with ET. At the 4 km2 

scale, vapor pressure deficit was found to have the strongest relationship. The relationship 

between ET, precipitation, and temperature underscores the importance of evaporative 

atmospheric demand (temperature) and water input (precipitation) required for the 

evapotranspiration processes. ET at the local scale is largely driven by competing forces that are 

increasing ET (such as a longer growing season and higher vapor pressure deficit,) and 

biological processes that decrease ET (such as water use efficiency and drought stress 

mechanisms.) ET trends did not significantly change throughout the region from 2000-2015, 

suggesting that there are even more complicated competing factors influencing ET. 

Understanding the underlying biological and physical ET processes provides insight into future 

water resources. 

 
4.1 INTRODUCTION 

Forests play an important role in global water cycling (Ellison et al. 2017) but climate 

change has altered the partitioning of precipitation (P) into evaporation (ET) and runoff (Q) 

(Asadieh and Krakauer 2015) by changing energy and water fluxes through intensification of the 

water cycle (Huntington 2010). ET is important for regulating the water budget, reducing 

streamflow and runoff fluxes, maintaining forest and soil health, and providing ecosystem 

productivity (Rodriguez-Iturbe 2000). Climate change has increased ET fluxes worldwide 

through intensification of the water cycle due to greater energy demand (Huntington 2006) but 

the underlying processes that drive changes in ET at smaller spatial scales are not completely 
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understood. Numerous confounding factors such growing season length (Hwang et al. 2014, Kim 

et al. 2018, Gaertner et al. 2019), water availability, energy demand (Budyko 1974), and forest 

structure (e.g. species, age, productivity) (Caldwell et al. 2016) interact to influence net ET.  

Changes in ET are, therefore, a function of complex global drivers and multifaceted climatic 

processes (Fernandez and Zegre 2019), and understanding ET trends and processes is necessary 

for protecting and managing future water security (Ford et al. 2005). 

ET varies spatially and temporally but overall it has increased globally (Jung et al. 2010, 

Zeng et al. 2012) and continentally in the United States (Lawrimore and Peterson 2000, Szilagyi 

et al. 2001, Hobbins et al. 2004, Walter et al. 2004). Notwithstanding, regional trends are 

complex and more variable, owing to dependence on local landscape factors such as forest cover, 

climatic conditions including P availability and PET demand, and topographic drivers such as 

orographic lift (Fernandez and Zegre 2019). ET in the northeastern and southeastern United 

States has increased (Burns et al. 2007, Cruise et al. 2010, Feng et al. 2016) while ET in some 

areas of the mid-Atlantic (Pennsylvania, Ohio, West Virginia) has decreased (Vadeboncoeur et 

al. 2018). The Appalachian Mountains region, comprised largely of West Virginia and portions 

of surrounding states (e.g. PA, OH, KY, TN, NC), is situated between the NE and SE regions 

that have disparate direction and magnitude of changes. Given the importance of the 

Appalachian Mountain region in provisioning streamflow to cities in the Mississippi River and 

Atlantic basins, it is critical to quantify ET loss and identify the drivers of ET in this region. 

Growing season length influences ET processes and has been shown to partially control 

ET trends in the central Appalachian region. Studies have shown that over recent decades 

growing season has arrived earlier in general in temperate forests (Chmielewski and Rötzer 

2001, Richardson et al. 2006, Schwartz et al. 2006, Lebourgeois et al. 2010, Jeong et al. 2011, 

Creed et al. 2015, Gaertner et al. 2019). In the central Appalachian region, growing season length 

has increased by 22 days from 1982-2012 (Gaertner et al. 2019). Growing season control of ET 

trends varies geographically. In the eastern United States, a one day increase in growing season 

length increases ET by 1 mm/year (White et al. 1999), in the southeastern United States (North 

Carolina), a one day increase in growing season increased ET by 4.3 mm/year (Hwang et al. 

2014, Hwang et al. 2018, Kim et al. 2018), and in the central Appalachian region, ET increases 

0.5-0.7 mm per one day increase in growing season length (Gaertner et al. 2019). Therefore, 
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understanding the spatial relationship between climatic/biophysical and ET trends in the central 

Appalachian region will provide insight to relevant ET drivers.  

Greater rates of ET occur in response to increasing atmospheric and evaporative demand. 

A warming climate will increase energy demand via vapor pressure deficit (Donohue et al. 2010, 

Gaertner et al. 2019), which results in higher ET (Williams and Baeza 2007, Will et al. 2013). 

Intensification of the water cycle has increased evapotranspiration fluxes, which has increased 

the frequency and intensity of storm systems (Karl and Knight 1998). However, higher 

atmospheric CO2 concentration can counteract the increasing ET trends since stomata tend to 

close in response to increasing atmospheric CO2 concentration, which limits ET water loss 

(Kirschbaum 2004). Many of the climatic and hydrologic processes are regionally and locally 

controlled, which increases the complexity of the system.  

The overall objective of this paper is to understand how the climate and ET has changed 

across central Appalachian Mountains region, to provide insight to the spatial relationship 

between regional trends and the influence of drivers on ET trends. In exploring these issues, the 

following objectives are explored 

1. Quantify climate and ET components in recent history to understand the implications 

of change on water resource sustainability 

2. Determine climate drivers important to evapotranspiration drivers across the region 

3. Evaluate the primary drivers of local evapotranspiration processes 

 

4.2 METHODS 

4.2.1. Study Area 

Our study area consisted of 31 catchments within five river basins located in the eastern 

United States that collectively cover 125,000 km2 (Figure 1). Four river basins (Monongahela, 

Upper Ohio, Kanawha, and Tennessee) drain west to the Mississippi River and Gulf of Mexico, 

one basin (Potomac) drains east to Washington D.C. and the Chesapeake Bay. The 31catchments 

selected for this study are part the U.S. Geological Survey Hydro-Climatic Data Network 

(HCDN) (Slack and Landwehr 1992), which consists of streamflow station data for minimally 

impacted watersheds (<10% human influence such as reservoirs, diversions, land use change, or 

severe ground-water pumping). Regional land cover analysis using data from the 2011 National 

Land Cover Database (NLCD) (Homer et al. 2015) was used to verify that catchments met the 
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HCDN definition. The HCDN watersheds included seven catchments in the Kanawha basin, five 

catchments in the Monongahela basin, two catchments in the Upper Ohio basin, thirteen 

catchments in the Potomac Basin, and four catchments in the Tennessee basin (Table 1). 

Collectively, the HCDN catchments covered approximately 40% of the total area within the five 

river basins.  

The forests of the region are mostly classified as mixed mesophytic, dominated by 

various hardwood species (e.g. Quercus (oaks), Betula (birch), Fagus (birch), Acer (maple), 

Populus (poplar)) located on ridges and hillslopes, and coniferous species such as Pinus (pine) 

and Tsuga (hemlock) at higher elevations and along stream networks (Day et al. 1988, Slayer 

2014). The region’s climate is characterized as humid marine in the eastern/Atlantic coastal area 

and humid continental on the western edge (Konrad and Fuhrmann 2013). Mean annual 

temperature ranges from 9.3°C in the mountains to 14.7°C near the Atlantic coast, and increases 

with decreasing latitude. Long-term (1981-2010) air temperatures in the northernmost Ohio 

River basin average 10.5°C, and 15°C in the southernmost Tennessee River basin (Daly et al. 

1997). P is relatively evenly distributed throughout the year, dominated by small, low intensity 

storms with intermittent high intensity frontal thunderstorm events (Keim 1996, 1997, Konrad 

and Fuhrmann 2013). Annual P increases with elevation, ranging from 1034 mm in the Potomac 

River near the coast, to 1870 mm in the mountains of the Tennessee River basin. Average annual 

ET loss is ~75% of annual rainfall in all catchments except the Monongahela, where ET ~51% of 

P.  (Miller and Weaver 1971, Farnsworth and Thompson 1983, Harstine 1991, Ford et al. 2005, 

Adams et al. 2012).  

 

4.2.2. Datasets 

Annual evapotranspiration (2000-2013) was extracted for the study region from the 

dataset of Reitz et al. (2017) that provides gridded (800 m) ET, quick flow runoff, and recharge 

for the conterminous USA. Data provided by Reitz et al. (2017)) were developed from an 

empirical regression relationship of water balance data, land cover, precipitation, and 

temperature.  

Climate variables important to ET, such as monthly precipitation [P], maximum 

temperature [Tmax], minimum temperature [Tmin], mean temperature [Tmean], mean dew point 

temperature [DPT], minimum vapor pressure deficit, [VPDmin] and maximum vapor pressure 
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deficit [VPDmax] were extracted at a 4 km2 spatial scale from PRISM (Daly et al. 1997). ET was 

aggregated on an annual basis while all other variables were aggregated to growing season 

months from April-October following the analysis by Gaertner et al. (2019)), who found that 

growing season extended on average from April 17th to October 13th, throughout the central 

Appalachian Mountains region. Using the growing season time period is important for studying 

evapotranspiration the central Appalachian region, since the greatest ET fluxes occur during the 

leaf on period (Troch et al. 2009).  

 

4.2.3. Statistical Methods 

4.2.3.1. Trend Analysis 

The rank-based, non-parametric Mann Kendall statistical test was used to detect trends in 

climate and water balance variables (Helsel and Hirsch 1992). Mann Kendall allows for both 

non-normally distributed data (Andreadis and Lettenmaier 2006) and missing values (Hirsch and 

Slack 1984), and is commonly used for detecting trends in hydrology and hydro-meteorological 

studies (Yue et al. 2002). Trends were considered significant at the a=0.1 level. The direction 

and magnitude of trends was estimated using the Sen slope, calculated as the median slope 

among all lines through a time series (Helsel and Hirsch 1992).  

A LOESS (locally weighted scatter-plot smoother) curve was fitted to all 

evapotranspiration data from 2000-2013 using a 95% confidence boundary to identify 

interannual trends (Hirsch and Slack 1984). 

 

4.2.3.2. Regression Model 

A global regression equation that incorporated all data into the analysis was developed 

using the Ordinary Least Squares (OLS) tool in ArcGIS (Hamilton 1992, Mitchel 2005). The 

OLS global regression analysis was used to determine the relationship between climate and ET 

variables across the entire study area, which provided information on the effect large-sale 

climatic variation on ET changes. The ordinary least squares tool creates a single regression 

equation based on the relationship between predictor and response variables. In this study, we 

used the seven climate variables as predictors of ET. All variables were determined normally 

distributed and independent based on histograms. Six model components were evaluated for 

properly specified model structure. First, a Moran’s I test was conducted to confirm model 
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residuals were not clustered in location (Getis and Ord 2010). Second, Jarque-Bera test was 

confirmed insignificant (a>0.05) to verify that model residuals were not clustered in value 

(Jarque and Bera 1980). Third, The Variance Inflation Factor (VIF) was confirmed below 7.5 to 

account for multicollinearity of model variables (Marquaridt 1970). Fourth, the adjusted R2 

evaluated model fit, with values greater than 0.6 suggesting high model fit and performance 

(Helsel and Hirsch 1992). Fifth, the regression direction was determined based on the coefficient 

[a] sign, and evaluated based hypothesis expectations. Finally, model variables were considered 

significant at alpha=0.1.  

The model that passed the six criteria were evaluated in a Geographically Weighted 

Regression (GWR) in ArcMap (Fotheringham et al. 2003). The GWR output was evaluated to 

determine the relationship between climate and ET variables at a local 4km2 scale, which 

provided insight into the effect of ecosystem level climatic variations on ET change. GWR uses 

ordinary least squares regression in kernel-weighted regression. Using this computation, the 

GWR produced a global R2 for the model and local R2 values for every 4 km2 pixel value. R2 and 

AICc values were used to evaluate model fit, with an R2 of greater than 0.6 and low AICc values 

representing high model fit.  Following implementation of the GWR, the data were interpolated 

using an ordinary Kriging spatial interpolation method (Oliver and Webster 1990) to develop a 

continuous spatial regression map.    

 

4.3 Results 

4.3.1. Trend Analysis 

Growing season P ranged from 946 to 1376 mm and averaged 1030 mm across all 

catchments (Table 2; Figure 2). Trends in P were note significant in any of the catchments (Table 

3). Growing season ET ranged from 348 mm (Potomac) to 1043 mm (Tennessee), averaging 678 

mm, but similar to P, trends in ET were not significant. Maximum temperatures throughout the 

region ranged from 21 to 26°C and averaged 23.6°C across all catchments, but trends were not 

significant. Average temperatures ranged from 17 to 23°C and averaged 20.26°C, but trends 

were not significant. Minimum temperatures significantly increased in 10 of the catchments 

(Table 2), including one in Ohio, one in the Kanawha basin, and 8 in the Potomac basin. Dew 

point temperatures ranged from 9 to 13°C and averaged 10.6°C. DPT significantly increased in 

only one catchment by 0.09°C in the Kanawha basin. 
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Maximum vapor pressure deficit ranged from 12 to 19 hPa and averaged 15.95 hPa. VPD 

significantly increased in four catchments with three in the Kanawha and one in the Tennessee. 

Minimum vapor pressure deficit ranged from 0 to 1 hPa and averaged 0.74 hPa, increasing 

significantly in four catchments, two of which were in the Kanawha basin and two in the Ohio 

basin (Table 2). 

 

4.3.2. Regression Model 

 The global OLS model with the greatest model fit and performance identified three of the 

seven explanatory variables as significant for explaining ET across the region (Table 4); 

minimum vapor pressure deficit, minimum temperature, and precipitation. The model passed the 

all six model fit criteria except the morains I test. Figure 3 represents the spatial clustering of 

values based on the standard residuals of the model. Under prediction appeared to occur around 

the large population centers of Washington D.C. (Potomac basin) and Pittsburgh (Monongahela 

basin). Over prediction appeared to occur near water bodies including the Chesapeake Bay 

(Potomac basin) and the Tennessee river system (Tennessee basin). Much of the clustering does 

not occur in our HCDN watersheds and therefore, should not affect of the overall catchment 

results. 

 The geographically weighted regression identified the greatest local (4 km2) correlation 

between ET and minimum vapor pressure deficit (R2=0.68) (Figure 4). The relationship between 

VPDmin and ET was greatest in the Ohio and Monongahela basin. 

 

4.4 Discussion 

Changes in regional climate and water balance components 

Long term records (1890-2000) show that temperatures have increased throughout the 

Appalachian Mountains region by between 0.5-1.9°C (Ford et al. 2011, Pitchford et al. 2011, 

Laseter et al. 2012, Patterson et al. 2012). Long-term records show greater increases in minimum 

temperatures in some regions (Hayhoe et al. 2006, Burns et al. 2007) and greater change in 

maximum temperatures in other regions of the eastern US (Wu et al. 2012). In the central 

Appalachian region, minimum temperatures have increased more significantly than average or 

maximum temperatures. This pattern likely indicates that minimum temperatures are increasing 
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greatest during the growing season while maximum temperatures in nearby regions are 

increasing on a long-term annual basis.  

Long-term (1984-2012) precipitation records throughout the southeastern Appalachian 

region show that growing season (March-November) precipitation has increased by 3-7% (Crane 

and Hewitson 1998, Wu et al. 2014), which is similar to the P changes in the central Appalachian 

region, which averaged a 5.5% increase from 2000-2013 (Table 3). Though this trend is similar, 

the time period is shorter, more recent, and insignificant. One explanation for the lack of 

significant trends is an extreme (D3) drought that occurred throughout the central Appalachian 

region in 2008-2009 (drought.gov), which resulted in a sharp decline in rainfall (Figure 5) in 

2008. Although the rainfall pattern returned to normal after 2009, the precipitous drop influenced 

the overall trend.  

Long-term (1950-2005) evapotranspiration records throughout the northeastern United 

States has increased from 0.5-3.2 mm/yr (Hayhoe et al. 2006, Burns et al. 2007, Campbell et al. 

2009), while the southern Appalachian ET has increased by 5.7 mm per year from 1992-2011, 

(Kim et al. 2018). All of these trends were higher than those detected for the central Appalachian 

region, which averaged 0.5 mm/year. We believe there are several reasons for the lack of 

significant trends in the central Appalachian region when compared to nearby regions, including 

the competing climatic and landscape controls such as vapor pressure deficit, growing season 

length increases, atmospheric CO2 concentration, and vegetation species response changing 

climate. First, increasing vapor pressure deficit increases ET rates due to greater temperature and 

atmosphere energy demands (Dingman 2002). Second, average growing season has increased 22 

days from 1982-2012 in the region (Gaertner et al. 2019), which has increased 

evapotranspiration by 0.5-4.5 mm (White et al. 1999, Hwang et al. 2014, Kim et al. 2018). Third, 

CO2 concentration decreases ET rates due to increased plant water use efficiency (Warren et al. 

2011). Fourth, vegetation in temperate deciduous forests have developed preventative drought 

stress stomatal dynamics that can reduce evapotranspiration rates during periods of reduced 

rainfall (Roman et al. 2015). Lastly, the 2008 drought resulted in a sharp decline in 

evapotranspiration (Figure 5), which reduced the trend from 2000-2013. However, the lack of 

significant trends does not discount the importance of understanding climatic and biophysical 

drivers of ET variations.  
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4.4.1. Regional and local Evapotranspiration drivers 

Regionally, ET changes are most correlated with minimum temperature, precipitation, 

and minimum vapor pressure deficit, suggesting that water and energy availability are the 

primary drivers of ET fluxes during the growing season. The ET climate drivers in the central 

Appalachian region are similar to ET drivers globally and regionally (Del Grosso et al. 2008, 

Vicente-Serrano et al. 2010). For example, globally, precipitation and temperature were found to 

have a high correlation with net primary productivity, which is often used as a proxy of 

evapotranspiration (Del Grosso et al. 2008). Similarly, a correlation analysis between climate 

variables and ET conducted by Vadeboncoeur et al. (2018) in the Northeastern United States 

found that regional annual precipitation and local temperatures were the primary climatic drivers 

of ET variations from 1940-2012. Another model identified precipitation and temperature as the 

primary climatic factors necessary for drought index modelling, a proxy for evapotranspiration, 

indicating that evapotranspiration increases with higher atmospheric and water demand (Vicente-

Serrano et al. 2010).  Our OLS model, therefore, is consistent with global and regional 

evapotranspiration regression and multivariate models that suggest that water availability and 

atmospheric energy demand are important climate variables for understanding evapotranspiration 

trends at the regional scale.  

Regional evapotranspiration processes can be explained by precipitation input and solar 

radiation/temperature patterns. In the central Appalachian region, precipitation input patterns 

follow geographical features such as orographic lift and rain shadow effect of the prevailing 

westerly winds, as well as large scale drivers including cyclones and the polar jet stream. 

Orographic effects over the Appalachian Mountains result in higher precipitation on the western 

facing slopes of the Appalachian Mountains and generally decrease on the eastern facing slopes 

due to the rain shadow effect of the prevailing westerly winds (Pitchford et al. 2011, Siler et al. 

2013). Large scale cyclones in the Atlantic ocean are responsible for high intensity rainfall input 

in the lower central Appalachian catchments in Tennessee during the late growing season months 

(August and September) (Kam et al. 2013). Similarly, the polar jet stream is responsible for 

large-scale frontal systems from the mid-west and northern United States, which brings intense 

precipitation input in the northern portion of the region.  

While atmospheric water supply is responsible for the amount of water available for 

evapotranspiration at the land surface, atmospheric energy demand is responsible for 
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evapotranspiration losses. Solar radiation and temperature are largely dependent on elevation and 

latitude. Regional scale evapotranspiration rates are greatest at low latitudes, low elevation, and 

near the coast since these areas have higher air temperatures (Pitchford et al. 2011, Wu et al. 

2012), greater atmospheric energy demand, and greater water availability.  

At a local scale (4 km2), vapor pressure deficit is the most significant climatic predictor 

of evapotranspiration. VPD is the driving force that causes net movement of water from an 

evaporating surface such as a leaf surface to the atmosphere (Brooks et al. 2003), which 

increases with greater temperatures (Williams and Baeza 2007, Will et al. 2013). VPD was found 

to be highly correlated with ET in the southern portion of the Ohio and portions of the 

Monongahela basins which correspond to regions with increasing growing length as determined 

by Gaertner et al. (2019). Given that VPD exerts a dominant control on the transpiration 

component of ET in the forested basins (Jasechko et al. 2013) and growing season length 

changes have increased ET up to 0.5 mm in this region, these results suggest that local variations 

in ET in this region may be more complex than water and energy controls. 

 

4.4.2. Implications of climate change on evapotranspiration 

Higher temperatures have led to greater precipitation and evapotranspiration fluxes 

following intensification of the hydrologic cycle (Huntington 2010). Future temperatures are 

expected to continue to rise throughout the region by >1°C by 2099 (Powell and Keim 2015), 

which is expected to result in greater precipitation and evapotranspiration fluxes and streamflow 

throughout the region. Changes to large-scale drivers that influence precipitation under normal 

conditions such as coastal cyclones and the polar jet stream will result in greater precipitation 

extremes. Tropical cyclones in the Atlantic ocean are expected to increase in intensity but 

decrease in frequency, which is expected to bring more high intensity storms and less predictable 

rainfall during the growing season (Fernandez and Zegre 2019). Furthermore, the polar jet 

stream is expected to weaken and move to lower latitudes, which would block moisture from the 

Gulf of Mexico while increasing fronts from the northern US, potentially resulting in longer low 

intensity storms.  

Higher temperatures are expected to increase evapotranspiration (Campbell et al. 2009) 

due to greater vapor pressure deficit and longer growing season length. Approximately 80% of 

ET comes from the transpiration component in terrestrial forested ecosystems (Jasechko et al. 
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2013). This suggests that, in the central Appalachian region, greater temperatures may lead to 

greater ET in small scale forested ecosystems in the southern region (Tennessee basin), coastal 

regions (Potomac), and low elevation regions due to the high atmospheric energy and water 

availability. Furthermore, these regions have experienced a longer growing length by 22 days 

since 1982, and 30-70 days specifically in the forested basins. A longer growing season has the 

capability to increase evapotranspiration by 0.5-4.5 mm per 1 day increase in growing season 

length (Hwang et al. 2012, Hwang et al. 2014, Hwang et al. 2018, Gaertner et al. 2019), which 

can lead to reduced river discharge (Kim et al. 2018).  

Growing season increases have been shown to counteract or even outweigh the increased 

CO2 concentration effects on water use efficiency (Frank et al. 2015), leading to an overall 

decrease in river discharge in broadleaf and coniferous forests. Recent research using a process-

based model has indicated that future discharge is likely to increase in the central Appalachian 

given future climatic changes such as increased temperatures, precipitation, and potential 

evapotranspiration (Gaertner, 2019). Mechanistic models have identified that the south eastern 

United States will likely have increasing future discharge, given climatic, hydrologic, and land 

use changes (Wu et al. 2012). This suggests that, despite increasing water use efficiency, 

evapotranspiration responses to changing climate may lead greater discharge 

 

4.5 Conclusion 

Precipitation and temperature are important drivers of evapotranspiration fluxes at the 

global and regional scale. In the central Appalachian region, precipitation was most highly 

correlated with ET variables in the Potomac basin, which is the driest basin in the region, 

suggesting that this basin is more water limited than the other basins the region. Within the study 

area, the Potomac basin is the most limited by water availability and has the greatest sensitivity 

to climate change, suggesting a lower capacity to buffer climate variations. On the other hand, 

the wet, mountainous basins have a lower sensitivity to climate, suggesting a capability to absorb 

extreme fluctuations in climate such as drought and flooding through species and landscape level 

evapotranspiration physiological mechanisms. Therefore, ecosystems with a lower sensitivity to 

climate change will likely also experience lower evapotranspiration as physiological mechanisms 

adapt water use efficiency to the changes, suggesting a possible future reduction in streamflow. 
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Locally, vapor pressure deficit represents an important driver of evapotranspiration 

fluxes, especially in the forested basins, suggesting that vapor pressure deficit exhibits and 

important control on the transpiration component of ET, which leads to higher ET in the 

temperate forests. Research has also shown that vapor pressure deficit in combination with other 

atmospheric water variables is important for signaling an earlier growing season (Gaertner et al. 

2019), which has led to a growing season up to 70 days in parts of the Central Appalachian 

temperate forests. Longer growing season lengths can increase evapotranspiration and lead to an 

overall decrease in river flow.  

Therefore, atmospheric demand for water may not fully explain ET variations, as species 

level physiological mechanisms in response to as water balance components may alter ET fluxes. 

However, other research has identified that growing season length controls on ET may 

counteract or override climate controls, suggesting an overall future increase in river discharge.  
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Tables: 

Table 1: Table of the 31 HCDN watersheds used to study climate and growing season changes in 
the central Appalachian Region. Study watershed identifiers uniquely classify USGS 
gauging stations used in this study and corresponds to the Identifier in Figure 1. Station 
number and station name refer to USGS stream gauge identifiers, and area refers to area 
upstream of the USGS gauge. 

 

Identifier Basin 

Station 

Number Station Name Area (km2) 

1M Monongahela 3078000 Casselman River at Grantsville, MD 163 

2M Monongahela 3061000 West Fork River at Enterprise, WV 1966 

3M Monongahela 3075500 Youghiogheny River near Oakland, MD 347 

4M Monongahela 3080000 Laurel Hill Creek at Ursina, PA 313 

5M Monongahela 3069500 Cheat River near Parsons, WV 1860 

1O Ohio 3102500 Little Shenango River at Greenville, PA 269 

2O Ohio 3109500 Little Beaver Creek near East Liverpool, OH 1285 

7K Kanawha 3175500 Wolf Creek near Narrows, VA 578 

1K Kanawha 3180500 Greenbrier River at Durbin, WV 344 

2K Kanawha 3186500 Williams River at Dyer, WV 332 

3K Kanawha 3187500 Cranberry River near Richwood, WV 208 

4K Kanawha 3198500 Big Coal River at Ashford, WV 1013 

5K Kanawha 3179000 Bluestone River at Durbin, WV 1020 

6K Kanawha 3183500 Greenbrier River at Alderson, WV 3533 

1T Tennessee 348800 North Fork Holston River near Saltsville, VA 575 

2T Tennessee 3528000 Clinch River above Tazewell, TN 3818 

3T Tennessee 3497300 Little River above Townsend, TN 275 

4T Tennessee 3500000 Little Tennessee River near Pretniss, NC 363 

1P Potomac 1601500 Wills Creek near Cumberland, MD 640 

2P Potomac 1610000 Pototmac River near Great Cacapon, WV 8052 

3P Potomac 1611500 Cacapon River near Great Cacapon, WV 1753 

4P Potomac 1604500 Patterson Creek near Headsville, VS 567 

5P Potomac 1643500 Bennett Creek at Park Mills, MD 163 

6P Potomac 1608500 South Branch Potoamc River near Springfield, WV 3810 

7P Potomac 1614500 Conococheague Creek and Fairview, MD 1279 

8P Potomac 1617800 Marsh Run at Grimes, MD 49 

9P Potomac 1595000 North Branch Potomac River at Steyer, MD 189 

10P Potomac 1637500 Catoctin Creek near Middletown, MD 173 

11P Potomac 1644000 Goose Creek near Leesburg, VA 860 
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12P Potomac 1632000 North Fork Shenandoah River at Cootes Store, VS 544 

13P Potomac 1634500 Cedar Creek near Winchester, VA 1989 
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Table 2: Long-term historic (2000-2015) average climate and water balance components in the 
central Appalachian region averaged for the growing season (April to October) (Tmax; 
maximum temperature, Tmin [minimum temperature]; Tmean [average temperature]; P 
[Precpiation]; ET [Evapotranspiration]; DPT [Dew point temperature]; VPDmin [minimum 
vapor pressure deficit]; VPDmax [maximum vapor pressure deficit].  

 
Station Name Tmax Tmin tmean P ET DPT VPDmin VPDmax 

Casselman River at Grantsville, MD 21 9 17 1083 608 9 1 13 
West Fork River at Enterprise, WV 24 12 21 1170 692 11 1 16 
Youghiogheny River near Oakland, MD 21 9 17 1194 627 9 0 12 
Laurel Hill Creek at Ursina, PA 22 10 19 1221 648 10 1 14 
Cheat River near Parsons, WV 22 10 19 1276 670 10 1 14 
Average Monongahela 22 10 19 1189 649 10 1 14 
Little Shenango River at Greenville, PA 23 10 20 1023 614 10 1 16 
Little Beaver Creek near East Liverpool, OH 23 12 20 985 631 10 1 16 
Average Ohio 23 11 20 1004 622 10 1 16 
Wolf Creek near Narrows, VA 21 8 17 1061 607 9 0 13 
Greenbrier River at Durbin, WV 21 10 18 1376 665 9 1 13 
Williams River at Dyer, WV 21 9 18 1124 619 9 1 13 
Cranberry River near Richwood, WV 25 13 22 1067 740 12 1 17 
Big Coal River at Ashford, WV 23 12 20 1007 629 11 1 14 
Bluestone River at Durbin, WV 23 11 20 1005 662 11 1 15 
Greenbrier River at Alderson, WV 24 11 20 949 693 11 1 16 
Average Kanahwa 23 10 19 1084 659 10 1 14 

North Fork Holston River near Saltsville, VA 25 12 22 1029 750 12 1 17 
Clinch River above Tazewell, TN 26 13 23 1014 781 13 1 18 
Little River above Townsend, TN 26 14 23 975 781 13 1 19 
Little Tennessee River near Pretniss, NC 24 11 21 1196 773 12 1 15 
Average Tennessee 25 13 22 1053 771 13 1 17 
Wills Creek near Cumberland, MD 24 11 20 974 642 10 1 16 
Pototmac River near Great Cacapon, WV 24 11 21 959 675 10 1 18 
Cacapon River near Great Cacapon, WV 25 12 21 993 686 10 1 18 
Patterson Creek near Headsville, VS 22 10 19 1015 605 9 1 15 
Bennett Creek at Park Mills, MD 25 13 22 1047 696 12 1 18 
South Branch Potoamc River near Springfield, WV 24 11 20 974 679 10 1 17 
Conococheague Creek and Fairview, MD 24 12 21 987 690 11 1 17 
Marsh Run at Grimes, MD 25 12 22 988 698 11 1 18 
North Branch Potomac River at Steyer, MD 25 11 21 946 665 11 1 18 
Catoctin Creek near Middletown, MD 25 12 22 988 698 11 1 17 
Goose Creek near Leesburg, VA 25 13 22 1069 723 12 1 17 
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North Fork Shenandoah River at Cootes Store, VS 24 10 20 980 692 10 1 17 
Cedar Creek near Winchester, VA 25 12 21 967 701 12 1 17 

Avergae Potomac 24 12 21 991 681 11 1 17 
 
 
 
 
 

Table 3: Relative change (%) in climate and water balance for growing season climate variables 
based on a Mann Kendal test for the 31 watersheds in the central Appalachian region from 2000-
2013. 
 

Station Name 
ET 
(%) 

DPT 
(%) 

P 
(%) 

VPDmin 
(%) 

VPDmax 
(%) 

Tmax 
(%) 

Tmin 
(%) 

Tmean 
(%) 

Monongahela         
Casselman River at Grantsville, MD 0.9 0.1 3.3 -10.0 10.2 0.6 3.9 -0.5 
West Fork River at Enterprise, WV 4.5 -3.6 8.8 42.9 17.0 21.8 3.0 0.3 
Youghiogheny River near Oakland, MD 0.2 -1.2 3.2 -11.2 22.0 0.6 0.0 -1.5 
Laurel Hill Creek at Ursina, PA 2.0 -0.7 11.6 99.1 15.7 1.2 2.0 -0.6 
Cheat River near Parsons, WV 0.1 -1.1 3.5 20.1 16.7 0.7 3.3 -0.6 
Average  1.6 -1.4 6.1 35.9 16.3 5.3 2.5 -0.6 

Ohio         
Little Shenango River at Greenville, PA 4.3 -5.3 7.1 63.7 13.3 1.7 10.1 2.0 
Little Beaver Creek near East Liverpool, OH 1.7 -5.0 1.1 57.6 16.5 2.8 4.5 0.6 
Average  3.0 -5.1 4.2 60.1 14.9 2.2 7.1 1.3 
Kanahwa         
Wolf Creek near Narrows, VA -0.7 -3.0 0.9 3.7 15.5 1.2 0.3 -1.3 
Greenbrier River at Durbin, WV -0.9 -1.4 -6.0 14.9 18.3 1.2 1.2 -2.2 
Williams River at Dyer, WV 0.0 -1.4 -3.4 81.6 44.8 3.6 2.8 1.5 
Cranberry River near Richwood, WV 3.4 -2.2 0.5 51.6 9.8 2.1 2.1 -0.1 

Big Coal River at Ashford, WV 1.5 3.6 
-

20.6 25.7 23.8 2.9 4.4 1.3 

Bluestone River at Durbin, WV 2.0 0.9 
-

13.2 41.8 29.9 4.0 2.4 1.3 
Greenbrier River at Alderson, WV 1.3 10.8 -9.5 -19.6 9.1 2.8 9.4 2.6 
Average  1.0 1.2 -7.0 30.3 20.9 2.5 3.4 0.5 

 Tennessee         
North Fork Holston River near Saltsville, VA 0.3 4.3 9.0 -7.2 24.9 -10.4 2.1 -1.2 
Clinch River above Tazewell, TN 4.0 2.0 38.3 21.7 8.7 0.1 3.9 -1.1 
Little River above Townsend, TN 0.0 2.0 13.4 51.5 11.5 -2.9 3.8 -0.6 
Little Tennessee River near Pretniss, NC 0.4 0.1 14.2 35.0 18.7 -1.1 -0.2 -3.2 
Average 1.2 2.1 18.6 25.8 15.7 -3.6 2.5 -1.5 
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 Potomac         
Wills Creek near Cumberland, MD 1.9 -2.6 9.6 17.1 8.8 -0.6 7.2 0.4 
Pototmac River near Great Cacapon, WV 0.6 -1.3 0.0 18.1 7.4 -1.1 7.1 0.3 
Cacapon River near Great Cacapon, WV -2.2 -2.5 5.6 28.6 2.2 -0.5 6.8 0.1 
Patterson Creek near Headsville, VS 1.3 -4.2 9.8 33.8 16.0 0.5 5.1 0.1 
Bennett Creek at Park Mills, MD 1.1 -0.2 21.1 28.3 9.4 0.2 6.0 0.2 
South Branch Potoamc River near Springfield, WV -1.7 -2.5 7.1 31.3 4.6 -2.2 7.0 -0.6 
Conococheague Creek and Fairview, MD 0.5 -2.4 6.5 29.8 5.3 0.5 6.7 0.3 
Marsh Run at Grimes, MD 1.0 -1.2 8.4 35.2 10.8 1.0 8.4 1.2 
North Branch Potomac River at Steyer, MD -1.9 -4.9 8.0 43.9 10.8 -0.2 7.2 0.1 
Catoctin Creek near Middletown, MD 2.03 0.75 9.27 64.44 11.92 1.55 8.08 1.76 
Goose Creek near Leesburg, VA 1.18 -3.80 8.21 88.68 15.47 0.22 7.52 1.31 
North Fork Shenandoah River at Cootes Store, VS 0.30 -2.02 8.59 47.90 9.18 0.02 6.85 0.48 

Average 1.03 -0.81 5.78 33.37 13.09 1.03 4.63 0.08 

Overall Average 1.06 -0.91 5.49 34.73 14.83 1.14 4.65 0.06 
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Table 4: Global correlation analysis between three climate variables (predictor variables) and 
evapotranspiration (response variable) based on ordinary least squares regression across the 
central Appalachian region. Coefficient [a] represents the direction of the regression, VIF 
indicates model multicollinearity, Jarque-Bera represents value clustering, R2 indicates model 
performance, and Moran’s I indicates spatial clustering 
 
 

Variable 
Coefficient 
[a] 

p-
value 

Variance 
Inflation 
Factor (VIF) 

Jarque-
Bera 
Statistic 

Adjusted 
R2 Moran's I 

Overall Model - - - 143.36 0.63 12.31 
VPDmin -0.16 <0.001 1.46 - - - 
Tmin 0.04 <0.001 1.44 - - - 
P 0.001 <0.001 1.03 - - - 

 
 
 
 
 
 
 
 
Table 5: Local correlation between six climate variables and evapotranspiration across the 
central Appalachian region based on a Geographically Weighted Regression (GWR). 
 
Climate Variable Residuals AICc R2 
Vapor Pressure Deficit Max 10.07 -492.22 0.68 
Vapor Pressure Deficit Min 0.77 -1752.6 0.6 
Dew Point Temperature 0.85 -1708.37 0.56 
Minimum Temperature 0.86 -1703.66 0.56 
Precipitation 0.98 -1639.81 0.5 
Mean Temperature 1 -1633.16 0.49 

 
 
 
 
 
 
 
 
 
 
 



 111 

FIGURES: 

 
Figure 1. Location of the study basin and catchments in the central Appalachian Mountains 
region of the eastern USA. The dashed lines depict basin boundaries Potomac (P), Monongahela 
(M), Ohio (O), Kanawha (K), and Tennessee (T). The solid lines outline the 31 watersheds, and 
the identifiers label the basin followed by an HCDN (Slack and Landwehr 1992) watershed 
number from 1 to n. 
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Figure 2: Map of climate variables in the central Appalachian region. A. Maximum Temperature 
(°C), B. Precipitation (mm), C. Maximum Vapor Pressure Deficit (hPa), D. Evapotranspiration 
(mm) 
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Figure 3: Standard residuals between minimum temperature, minimum vapor pressure deficit, 
precipitation and evapotranspiration. Residuals show clustering in the Potomac and 
Monongahela basins. 
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Figure 4: Local (4km2) spatial regression between minimum vapor pressure deficit and 
evapotranspiration across the central Appalachian region using a Geographically Weighted 
Regression. 
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Figure 5: Smoothed time series of annual evapotranspiration from 2000-2013 using a LOESS 
(locally weighted scatter-plot smoother) curve. Blue line denotes the time series while the gray 
shaded area represents a 95% confidence boundary. The low value in 2008 represents an extreme 
(D3) drought.  
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5.1 Conclusions 
 
This dissertation addressed three knowledge gaps 1) The impact of a longer growing season on 
evapotranspiration in the central Appalachian region 2) sensitivity of watershed runoff to 
changing climate and streamflow projections 3) local and regional evapotranspiration drivers. To 
address the first knowledge gap, I determined growing season length trends using AVHRR 
NDVI phenological data. I implemented the phenology data and 13 climate variables into two 
different linear mixed effects models to identify the explanatory variables for growing season 
length increases and to understand the relationship between growing season length at ET. I found 
that atmospheric vapor processes are in part responsible for the 22 day increase in growing 
season length, which in turn is responsible for about a 0.5 mm increase in ET over 30 years. 
These results are important for modeling future growing season length and water balance 
variables through the addition of an explicit atmospheric vapor-based index into current models. 
 
To address the second knowledge gap, I implemented a Budyko-based hydrologic model to 
identify the sensitivity of streamflow to a 10% increase in P and PET throughout the central 
Appalachian region to changing climate. Sensitivity coefficients were used to estimate future 
streamflow for 2070-2099. The results showed that sensitivity increased with decreasing 
precipitation, which generally followed the rain shadow pattern of the central Appalachian 
region, in which sensitivity increased with increasing distance from the mountains. Future 
streamflow is expected to increase in all basins by between 9-17% across the region, which has 
important implications for infrastructure, energy supply and cost, and ecosystem services. In 
response to the changes, watershed management techniques could be implemented to maintain 
high water quality and supply standards to downstream communities.  
 
To address the third knowledge gap, I evaluated the relationship between 6 climate variables and 
ET using a spatial ordinary least squares regression and a geographically weighted regression in 
GIS. The OLS model evaluated the regional relationship between climate variables and ET and 
provided information on the effects of large-scale changes in climatic variables on ET change. 
The GWR identified the local (4 km2) relationship between climate variables and ET, thereby 
increasing understanding of the effects of ecosystem level changes of climate on ET change. The 
results showed that, at the regional level, evapotranspiration is primarily explained by 
temperature, precipitation, and vapor pressure deficit, which underscores the importance water 
input and atmospheric energy in explaining terrestrial water loss. At the ecosystem level, 
evapotranspiration is explained by vapor pressure deficit, indicating that evapotranspiration 
processes at smaller scales are much more complex. ET has many competing factors in the 
central Appalachian region such as a longer growing season, which increases ET and ecosystem 
level biological drought stress mechanisms which increase water use efficiency (decrease ET). 
This research is important for understanding future water resources supply and implementing 
preventative watershed management techniques. 
 
This dissertation ultimately provides insight into complex hydrologic processes occurring in 
headwater temperate forests. The central Appalachian region is an important headwater region 
that garners a large portion of drinking water supplies to downstream communities, though the 
research can be applied to any temperate headwater basins. Therefore, understanding the 
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complex water loss processes occurring in the region can be used to develop watershed 
management methods to maintain clean and stable future drinking water resources.  
 
 
5.2 Future Directions 
Future research building on these findings should focus on the following aims: 
 

1. Implement an explicit humidity-based growing season variable including length of season 
into ET and runoff models.  

2. Develop future runoff using a physically based hydrologic model and evaluate how well 
the sensitivity projections compare to more complex model outputs 
a. Using a physically based model such as the variable infiltration capacity model or 

the H08 model would provide a comprehensive historical and future modelled 
streamflow output for the region, which is currently lacking. Furthermore, comparing 
the streamflow output to the sensitivity projections would provide an evaluation of 
model error. 
 

3. Conduct elasticity/resiliency analysis to determine how ability of the central Appalachian 
watershed to absorb changing climate 
a. Conducting a resilience analysis would provide a more comprehensive understanding 

of how the watersheds respond to climate change 
 

4. Implement more climate variables into the ET models including wind speed, wind 
direction, relative humidity, and solar radiation to provide a comprehensive 
understanding of the explanatory variable of ET 
a. Implementing more climate variables including wind processes may provide more 
insight into large scale controls on ET 
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