
Graduate Theses, Dissertations, and Problem Reports

2003

Implementing software engineering practices in small industry Implementing software engineering practices in small industry

with a focus on requirements elicitation with a focus on requirements elicitation

James Clifford Fleming
West Virginia University

Follow this and additional works at: https://researchrepository.wvu.edu/etd

Recommended Citation Recommended Citation
Fleming, James Clifford, "Implementing software engineering practices in small industry with a focus on
requirements elicitation" (2003). Graduate Theses, Dissertations, and Problem Reports. 1372.
https://researchrepository.wvu.edu/etd/1372

This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research
Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license
in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses,
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU.
For more information, please contact researchrepository@mail.wvu.edu.

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F1372&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/1372?utm_source=researchrepository.wvu.edu%2Fetd%2F1372&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu

 Implementing Software Engineering Practices in

 Small Industry with a Focus on Requirements Elicitation

 by

 James Clifford Fleming

 Thesis submitted to
 The College of Engineering and Mineral Resources
 at
 West Virginia University
 In partial fulfillment of the requirements
 for the degree of

 Masters of Science
 in
 Software Engineering

 Approved by:
 Dr. John Atkins, Committee Chairperson
 Dr. Franz X. Hiergeist
 Ms. Cynthia D. Tanner

 Lane Department of
 Computer Science and Electrical Engineering

 Morgantown, West Virginia
 2003

Keywords: Software Engineering, Project Management, Capability Maturity Model,
Configuration Management, Personal Software processes, Software requirements,
Data warehousing

 Copyright 2003 James Clifford Fleming

 Abstract

 Implementing Software Engineering Practices in

 Small Industry with a Focus on Requirements Elicitation

 James Clifford Fleming

I have been involved in small industry for 33 years and I have seen how the evolution
of computers and software has affected small companies striving to grow in their
market place by trying to take advantage of an evolving technology. Many times an
individual is assigned the task of developing software to fit the company’s needs and
begins the process without any formal training in the practices of Software
Engineering. My Thesis will discuss my evolving skills, gained through my Masters in
Software Engineering degree work, as a Software Engineer and how I have been
able to implement proper Software Engineering in my position in a small company.
This has been a worthwhile challenge and the results of my work and study could
benefit any person involved in the Software Engineering profession. The focus of this
paper will be the challenges of requirements elicitation in a small industry
environment.

 iii

 Acknowledgement

I would like to thank Dr. John Atkins and Ms. Cynthia Tanner for all of their work at

establishing the Masters of Software Engineering program at West Virginia

University. The program structure has given me the opportunity to pursue a Masters

degree that I otherwise would not have had. I want to thank Dr. John Atkins, Ms.

Cynthia Tanner, and Dr. Franz X. Hiergeist for their support as my thesis committee.

I would like to thank all of my instructors for their professionalism and assistance

during my involvement in the program.

Finally I would also like to thank my wife Amy, my children, and grandchildren for

patience with me while I have been busy with my studies.

 iv

 Table of Contents

 Abstract….……………………………………..………………………….………….……ii

 Acknowledgement……………………………..…………………………………………iii

 Table of Contents…………….………..………………………………………………….iv

List of Figures…….………………………………………………………………………viii

Acronyms Used………………….………………………………………………………...x

Introduction………………………………………………………………………..……….1

The need of a Formal Process………………………………………………….…….... 3

The Learning Curve…………………………….………………………………….….…. 5

New Knowledge……………………………………………………………..…………. 6

 PSP………..………………………………………………………………….………… 6

 Beginnings of PSP………………………………………………………………….7

 Figure 1 Coding Standard…………….……………………………………………8

 Personal Improvement Process….…..………………………………………….11

 Figure 2 Personal Process Improvement Proposal form…….………………..11

 Software Lifecycle and Capability Model…………………………………………...12

 Maturity Levels…………………………………………………………………….13

 Level 1 Initial………………………………………………………………13

 Level 2 Repeatable……………………………………………………….13

 Level 3 Defined……………………………………………………………13

 Level 4 Managed………………………………………………………….13

 Level 5 Optimized……………………………………………………...…13

The Beginnings of CMM……………………………………………………………...14

 v

 Gaining Process Control………………………………………………………….14

 Figure 3 Change Control Process……………………………………………….15

Figure 4 Request for Change Form…….……………………………………….17

Figure 5 Access and synchronization control………….……………………….18

 Figure 6 Version Control Tree……………………………………………………19

 Project Management……………………………………………………………….…21

Steps to a Software Development Process…………………………………….22

 Identify The Software Development Model……………………………………..23

 Figure 7 Code and Fix Model……………………………………………………24

Figure 8 Iterative Development Model………………………………….………25

 Identify The Activities…………………………………………..…………………26

Figure 9 Project Concept Document……….…………..…………………….…28

Figure 10 Use Case Template………….…………..…………………………..30

Figure 11 Test Report Template………….…………………………..…………31

 Software Analysis and Design……………………….………………………………32

 GUI Design…………………………………………………………………………33

 Figure 12 Pencil sketch of main GUI for the TimeCal Program………………34

Figure 13 User Interface Design Process……….……………..………………35

Figure 14 Re-Engineered Jtrack main consol GUI…………..……………….36

 Data Modeling…………………………………………………………………………37

 Figure 15 Entity Relationship Diagram………………………………………….37

Figure 16 State Transition Diagram…………………….……………………….39

 Object Oriented Design………………………………………………………………39

 Figure 17 Past Methodology Flow Chart……………………………………….41

Figure 18 MMS Class Relationship Diagram………………..…………………43

 Requirements……………………………………………………………………….…44

 vi

 Past Method…………….…………………………………………………………44

New Approach…………………………………………………………………….45

 Figure 19 Components of Software Requirements………...…………………46

Figure 20 Software Requirements Specification Template……...…………..48

 Use Cases……………………………………………….………………………..52

Figure 21 Use Case for MMS…….…………………….….…………………….52

Figure 22 Use Case Diagram for MMS Use Case # 2……………….……..…55

Figure 23 Class object table for use case 2 for MMS…………………………56

Figure 24 Analytical Class model for use case 2………….………….………..57

Figure 25 Class object Responsibility and Collaboration model……………..58

 Data Management…………………………………………………………………….59

 Implementing Data Management in the MMS Project………………………...59

 Current System Infrastructure……………………………………………………60

Figure 26 Current company network architecture Model……………………..61

 Implementing Data Warehouse Technologies…………….……………..…….62

The New Infrastructure……………………………………………………………62

Figure 27 Proposed Data Warehouse Architecture model……………………64

Data Warehouse Process Description……………….………………………….64

Phase 1 of the implement of the data warehouse……………………………..65

Figure 28 Data Mart Matrix……………………………………………………….66

Data Mart (1) Product definition Dimension Descriptions…………………….66

Data Mart (2) Machine Dimension Description ………………………………68

Data Mart (3) Production Time Dimension Description……………………….70

Data Mart (4) Production Time Dimension Description………………...……..71

 Figure 29 Production Definition Star Schema Model…..……………………72

 vii

Figure 30 Production Machines Star Schema Model….…………………….73

Figure 31 Production Time Star Schema Model……….…………………….74

Figure 32 Reports Star Schema Model………………….……………………75

 Data Sources….……………………………………………………………..……75

Figure 33 Legacy source Map…………………………………………………76

 Figure 34 MMS MAIN GUI……………………………………………………..77

 Validation & Verification……………………………………………………………..77

 Figure 35 CARA Score Matrix for MMS project………………………………79

 Figure 36 CARA analysis Summery……..………………..…………………..80

 Figure 37 MaCabe Cyclomatic Complexity model…………………………...81

 Conclusion……………………………………………………………………………....82

 List of Works Cited……………………………………………………………………..84

 Vitae……………………………………………………………………………………..85

 viii

 List of Figures

Figure 1 Coding Standard…………….……………………………………………8

Figure 2 Personal Process Improvement Proposal form…….………………..11

Figure 3 Change Control Process……………………………………………….15

Figure 4 Request for Change Form…….……………………………………….17

Figure 5 Access and synchronization control…………….…………………….18

Figure 6 Version Control Tree……………………………………………………19

Figure 7 Code and Fix Model………………………………………………….…24

Figure 8 Iterative Development Model………………………………….…….…25

Figure 9 Project Concept Document…….….…………..…………………….…28

Figure 10 Use Case Template…………..…………..………………….………..30

Figure 11 Test Report Template………….………………………………………31

Figure 12 Pencil sketch of main GUI for the TimeCal Program………………34

Figure 13 User Interface Design Process……….……………..……….………35

Figure 14 Re-Engineered Jtrack main consol GUI…………..……….……….36

 Figure 15 Entity Relationship Diagram………………………………………….37

Figure 16 State Transition Diagram…………………….……………………….39

Figure 17 Past Methodology Flow Chart……….……………………………….41

Figure 18 MMS Class Relationship Diagram………………..…………………43

Figure 19 Components of Software Requirements………...………….………46

Figure 20 Software Requirements Specification Template……...…….……..48

Figure 21 Use Case for MMS…….…………………….….…………………….52

Figure 22 Use Case Diagram for MMS Use Case # 2……………….……..…55

 ix

Figure 23 Class object table for use case 2 for MMS…………………………56

Figure 24 Analytical Class model for use case 2………….………….………..57

Figure 25 Class object Responsibility and Collaboration model……………..58

Figure 26 Current company network architecture Model……………………..61

Figure 27 Proposed Data Warehouse Architecture model……………………64

Figure 28 Data Mart Matrix……………………………………………………….66

Figure 29 Production Definition Star Schema Model…..……………………72

Figure 30 Production Machines Star Schema Model….…………………….73

Figure 31 Production Time Star Schema Model……….…………………….74

Figure 32 Reports Star Schema Model………………….……………………75

Figure 33 Legacy source Map…………………………………………………76

Figure 34 MMS MAIN GUI……………………………………………………..77

 Figure 35 CARA Score Matrix for MMS project…...…………………………79

 Figure 36 CARA analysis Summery……..………………..…………………..80

 Figure 37 MaCabe Cyclomatic Complexity model…………………………...81

 x

 Acronyms Used

CARA Criticality and Risk Assessment analysis

CAD Computer Aided Design

CM Configuration Management

CMM Capability and Maturity Model

GUI Graphical User Interface

IDE Integrated Development Environment

ISO International Organization for Standardization 9000-3

LAN Local Area Network

MSSE Masters of Software Engineering

CNC Computerized Numerically Controlled

COTS Commercial Off the Shelf

OOD Object Oriented Design

PSP Personal Software Process

MMS Manufacturing Management System

V&V Validation and Verification

 1

 Introduction

According to the Small Business Administration, small business accounted for three-

quarters of US net jobs between 1999 and 2000. It is estimated that in 2002 there

were 550,100 new businesses started but 584,500 businesses failed.1 In the year

2000 515,977 of the small businesses in the US had between 20 and 99

employees.2 Many small businesses are family owned and were started on

shoestring budgets around a unique idea.

I have spent most of my 33 year working career in a small (50 employees) firm

where I first started working with computers and computer software. Computers were

a new technology for small firms and this new technology held the promise of being

the next marvel that was going to save the business and make everything work

better. The shock to company owners was that these computers had to be

programmed in order to do anything. My first exposure to the computer was the

Radio Shack model 1 personal computer. My first exposure to programming was part

programming a numerically controlled, NC, milling machine. Interestingly, I later

developed a computer program that generated NC code demonstrating the potential

power of the computer.

1 SBA Office of Advocacy latest census data
 http://www.sba.gov/advo/stats/sbfaq.html#q3

2 Statistics of small businesses
 http://www.census.gov/epcd/www/smallbus.html#EstabSize

http://www.sba.gov/
http://www.census.gov/epcd/www/smallbus.html

 2

I acquired the knowledge I needed to program computers by studying the

programming manuals that came with the equipment. When I wrote programs my

work generally had no plan or organization. At the time it all seemed like pure genus

sense no one else in the organization knew anything about programming nor wanted

to learn, but I was continually bogged down in exhausting programming projects that

never fully fulfilled the expectations of the company owners, whom I reported to

directly. The requirements were continually changing causing massive rewrites and

edits. If an edit was made, it almost always created problems elsewhere in the code.

This was a classic case of the ripple effect.

I continued to improve in my abilities to write usable programs as time passed and

often networked with other individuals like myself to get the latest hacking news. The

problem was that I was not improving in my planning and program design technique

since I had no formal consistent design or coding methods. I had not developed a

formal process.

I have practiced sound mechanical engineering in my machine design

responsibilities but failed to do the same thing in my software engineering work. The

problem stems from the fact that I never really viewed my software development as

an exercise in engineering. This is a common problem throughout small industry in

software development and leads to enormous frustration in developers and users. It

can also lead to substantial loss of valuable resources for small companies.

I became aware of software engineering in the mid-1980s but due to many

responsibilities of my work I was unable to pursue any formal software engineering

training so I continued to produce software that was functional and effective but

 3

looking back I realized my work was totally unacceptable as an engineered product.

I began producing programs for some of the Company’s customers and the

programs performed the required task so the customers appeared happy with the

product but the code was difficult to maintain and expand as requirements changed.

At some point I realized I must improve my skills so in 1990 I enrolled in a self-paced

programming course where I re-learned the Quick Basic programming language and

was introduced to Pascal and C++. During this period in time I started a part-time

business called DocuPrep. I started developing more sophisticated software and was

very quickly confronted with the same old problems brought on by not using any

formal process. When I learned of the MSSE. degree program at West Virginia

University, I returned to college, completed my Bachelors degree and then enrolled

in the Masters in Software Engineering degree program at WVU and immediately

improved my software engineering skills as well as other areas of my work.

This paper will examine some of my experiences as I have applied my evolving skills

in a real world small industry environment and how what I have learned, through my

masters class work, coupled with my work experience has impacted in a very

positive way, not only myself but also my fellow coworkers and the company.

 The need of a Formal Process

Learning and implementing a formal process is a complicated task but the most

difficult part of the implementation is practicing the process. Many software

developers in small industry fall into the trap of taking shortcuts to seemingly save

time. Many times the pressures to implement a project are so great that the

 4

developer will just start programming on the fly without any plan just to get something

working. There is no worse approach to the problem. What generally happens is the

scope and requirements are poorly defined and continually drift so the program does

not perform any required task well and is abandoned at some point due to lack of

user support thus leaving the developer’s reputation as a programmer tarnished.

Success or failure is often magnified in small industry since there are fewer people to

take the credit or the blame. Frederick P. Brooks Jr. spoke of the “Tar Pit”3 where

teams of programmers often struggle, as if stuck in a pit of tar, to no avail to develop

software but fail due to the lack of or not following a formal process. This is also true

for a small team or the individual developer. The reasons for not following a process

are many but the end results are usually the same. A formal process, that is

practiced, can help prevent this scenario.

I have worked on and managed projects using both no formal process and the formal

processes I have established from my masters degree work. The differences

between then and now are dramatic. What is astounding is that I felt that my earlier

work, at the time, was exceptional but I had nothing but my work to which a

comparison could be made. My previous projects did in fact work and I did have an

improvised way of doing things that was evolving, but I now believe that if I had

continued on that path eventually I would have experience problems that would be

difficult, if not impossible, for me to deal with. If computer technology was not

changing so rapidly, I may have gotten away with using my improvised processes

but now users expect more from the computers they use and this equates into

software project complexity.

3 Frederick P. Brooks, Jr., The Mythical Man-Month (Addison Wesley Longman, Inc. 1995) 4.

 5

In the following section I will discuss the improvements I have made as a direct result

of the MSSE program and highlight how each class had an impact on the way I think

and do my work, the projects I manage, and the people working on those projects.

This will set the stage for a study of a major software project I engineered and

developed using the skills I have developed as a result of my Masters degree work.

The project is development of a manufacturing management and cost evaluation

system. It is nearing completion and is a good example of the improvements made in

my software engineering practices. The project required extensive domain

knowledge and an extensive requirements elicitation process.

The Learning Curve

By definition Software Engineering is “an applied science devoted to improving and

optimizing the production of software”.4 My responsibilities as Director of Design and

Development at the company I work for include the practice of Conceptual

Engineering and Design Engineering of industrial water pumps. I have found that

concepts that I have learned for Software Engineering are completely applicable to

other engineering disciplines. I have improved my skills as an industrial pump

engineer by following the same methodologies I use in software engineering. My

many years of experience in the industrial pump engineering field made it easier for

me to grasp the principles of software engineering.

4 Bryan Pfaffenberger, Dictionary of Computer Terms Sixth Edition (Simon & Schuster, Inc. 1997)
478

 6

The first step to improvement is to realize that one really needs to examine existing

processes, be objective and make a critical evaluation of existing talents and not

become defensive of past work. My first reaction during the early weeks of my first

MSSE course, SENG 330 Validation and Verification, was none of this makes any

sense to me in my situation. I also heard this from some of my fellow classmates.

This new way of doing things was completely incompatible with my way of doing

things. After all, I have been doing it for years. What an awakening I was about to

receive. One of the biggest obstacles for the individual, who has worked in the field

for years and then returns to school, is to realize that one doesn’t know everything.

The next largest obstacle is changing the way one thinks and listens. After all, why

did I enroll in the MSSE program? Once you get beyond these obstacles a whole

new world opens up for you and your coworkers. Your value as a software developer

just went up with the realization that it is time to learn new concepts. The days of just

hacking it out are coming to an end.

New Knowledge

PSP

Knowledge by definition is a set of propositions about something that is capable of

generating additional propositions by means of deduction.5 When I look back and

contemplate all that I have learned in my MSSE class work and how what I have

learned has impacted how I perform as a software engineer, one class in particular

was at a more personal level. SENG 591A Personal Software Process was a class

targeted more to my personal processes and abilities rather than an overall software

5 Bryan Pfaffenberger, Dictionary of Computer Terms Sixth Edition (Simon & Schuster, Inc. 1997)
283

 7

engineering process. This course exposed all of my bad habits, lack of knowledge,

and process. There was no way to complete the course without close personal

evaluation. The class was disturbing at first and discouraging at times as the class

progressed, but there seemed to be a delayed reaction. After the fog of study and

assignments raised, it became evident to me that I had made some very valuable

discoveries about myself, my abilities, and my deficiencies. It is impossible to

properly manage projects if one cannot manage properly oneself. This course

created a discipline in me that made it very difficult to continue bad habits, the type of

habits that evolve unknowingly over time without a proper process. Even the

seemingly simple task of typing code can be enormously frustrating if you misspell

variable names or make incorrect variable entries into technically complicated

formulas. These types of problems can cost many extra hours of debugging and

testing time. This is especially important to the software engineer, such as myself, in

small industry who has many other responsibilities and moves from one project to

another trying to meet project schedules. Just the awareness that I am prone to

simple but costly mistakes when I try to rush my work makes me focus more on the

job at hand and make a conscious attempt to avoid those types of problems.

Beginnings of PSP

The development of a personal software process, PSP, that includes a coding

standard, that I have started to use faithfully, and a Personal Improvement Proposal

form, has helped me overcome many of my deficiencies in the coding process and

has helped me to continually focus on improving my skills. PSP is not a replacement

for a comprehensive software engineering process but will greatly enhance a small

industry software engineer’s ability to implement a company wide process. The PSP

 8

also focuses on the importance of acquiring domain knowledge before starting a

project. Time spent here will help prevent costly time delays later in the project.

Proper domain knowledge will also facilitate accurate requirements elicitation, a

unique challenge in small industry projects. PSP is an individual improvement

process that I will take with me anywhere I go. It has made me more efficient and

more structured in my thinking leading to more efficient and structured design. My

only regret is that I took SENG 591A towards the end of my class work instead of the

beginning. I believe it would have helped me in my other course work. The following

are the Coding standard, Figure 1, and the PIP form, Figure 2, I now use.

 Figure 1 Coding Standard

 CODING STANDARD Visual Basic 6.0
Program Headers Begin all programs with a descriptive

header.
Header Format ***

* Program Assignment: program name
* Program Date:
* Program Version:
* Program Description
* Program Author:

Listing Contents Reuse instructions:
Identifiers:
Program Comments:
Spacing:
Indentions:
Capitalization:

Reuse Instructions All reuse code must be edited to conform to
this Coding standard.
All reuse code must have origin source
identification.
All reuse code must show date of reuse.

Identifiers Data Type
Boolean
Byte
Collect Obj
Currency
Date(Time)

Prefix
bln
byt
col
cur
dtm

Example
blnFound
bytRasterData
colWidgets
curRevenue
dtmStart

 9

Double
Error
Integer
Long
Object
Single
String
User-
Defined-
Type
Variant

dbl
err
int
lng
obj
sng
str

udt
vnt

dblTolerance
errOrderNum
intQuanity
lngDistance
objCurrent
sngAverage
strFName

udtEmployee
vntCheckSum

Program Comments Add description at the beginning of all sub
routines explaining the function of the
subroutine.
Document the code so that the reader can
understand the operation.
Comments should explain both the purpose
and behavior of the code.
Comment variable declarations to indicate
their purpose.

Spacing Write programs with sufficient spacing so
that they do not appear crowded. Separate
every program construct with at least one
space.

Indentions The functional description statement should
be indented one space.
The highest level statements that follow the
functional description should be indented
one tab.
Each following nested block should be
indented one additional tab.

 Code Format

Sub LoadBatch()
‘**
‘ This sub-routine will load batch data onto form2 (Planning) after it is retrieved
‘ from the data base.
‘**

 Call FileNames(FileLocation1, FileLocation2) ‘ data base location

 ProductionBatchName = "BatchPd" ‘ data file name

 Close #1 ‘ Close buffer

 ‘ The following Opens a file for processing

 10

 Open FileLocation1 + ProductionBatchName For Random As 1 Len = 256

 Lock #1 ‘ Protect against file sharing collisions while processing

 For intPb = 1 To LOF(1) / 256 ‘ Loop through records

 Get 1, intPb, Production_Define ‘ get record intPb

 ‘ **** Search data for instance of data from Form2.text1.text ****

 If InStr(Production_Define.ProductionName, Form2.Text1.Text) Then

 ‘ Load Form with new data

 Form2.Text2.Text = Production_Define.ProductionPart
 Form2.Text3.Text = Production_Define.ProductionDescription
 Form2.Text4.Text = Production_Define.ProductionDrawing
 Form2.Text5.Text = Production_Define.ProductionBatchTotal
 Form2.Text6.Text = Production_Define.ProductionComment
 Form2.Text7.Text = Production_Define.ProductionMatCode
 Form2.Text8.Text = Production_Define.ProductionDrFile
 Form2.Text9.Text = Production_Define.ProductionBatchPassed
 Form2.Text10.Text = Production_Define.ProductionBatchScraped

 Unlock #1 ‘ Unlock file to permit file sharing

 Close

 Exit Sub

 End If

 Next intPb ‘ Next iteration of FOR NEXT LOOP

 Unlock #1 ‘ Unlock file to permit file sharing

 Close

End Sub

 11

Personal Improvement Process

Figure 2 Personal Process Improvement Proposal form

 Process Improvement Proposal

Date:
Program:
Version:
Author:

Problem
PIP #

Problem Description

Proposal
PIP #

Proposal Description

 Notes and Comments

I find it extremely beneficial for self-evaluation to use the Personal Process Proposal

form to record problems and solutions as I encounter them. I have found that many

times I can review past problem entries and uncover or discover solutions to current

problems. Sometimes when stress levels are high I record what I am having

 12

problems with and then at a later time, when I am more relaxed, I start working on

the solutions.

One of the benefits of a process is there is a defined way of dealing with issues when

they arise which helps everyone who is affected by my work. I also use the form to

record successful and failed strategies when working on the requirements phase of a

project. Requirements can be very elusive when you are interviewing non-

cooperative users or users who really don’t understand what they need the software

to do for them within their domain. It is important to record what techniques work the

best. Because I now work within the disciplines of PSP I can expect my coworkers to

become more disciplined in their work. All of this equates to a more structured

organization and the beginnings of a corporate wide formal process.

Software Lifecycle and Capability Maturity Model

The SENG 340 Software Lifecycle and Capability Maturity course introduced me to

the Capability Maturity Model, CMM. My taking this course has also had a major

impact on the company and my fellow co-workers. SENG 340 made me look at the

company processes in the same way SENG 591 A Personal Software Process made

me look at my personal process. Through the years I had developed a crude

configuration management policy, but it was not fully documented and not fully

indorsed or practiced by the company. I experienced much resistance when I started

implementing proper configuration management procedures. It was met with some

skepticism at all levels within the company.

 13

Maturity Levels

There are five maturity levels within the CMM.

1. Initial
2. Repeatable
3. Defined
4. Managed
5. Optimized

Level 1 - Initial Process - Organizations at the initial process level have
poorly defined procedures and controls. There is no consistent application of
software engineering management of processes and no modern tools or
technologies are used.

Level 2 - Repeatable Process - At maturity level 2 organizations will use
standard methods and practices for managing software development
processes. They will have methods for performing cost estimating,
scheduling, requirements change, code changes, and status reviews.

Level 3 – Defined Process - The organization that is at the Defined process
level will have the standard methods and practices of a level 2 organization
and will also have implemented organizational and methodological
improvements. It will have design and code reviews, programmer training
programs, review leaders, and increased focus on software engineering.
There will be an establishment of a software engineering process group that
will focus on software engineering and process implementation.

Level 4 – Managed Process – A maturity level 4 organization bases its
operating decisions on a quantitative data. It will conduct extensive analyses
of data collected during engineering reviews and testing. Tools are used to
control and manage design, data gathering, and analysis. The organization is
able to start projecting expected errors.

Level 5 – Optimized Process – The organization that has achieved the
optimized Process, will have all of the process controls of the lower levels
plus a major focus on improving and optimizing its operation. They will have
introduced sophisticated error and cost analyses data and conduct
comprehensive error cause and prevention studies.

 14

The beginnings of CMM

I knew that the organization was at Level one at best. I met with the owners and

made the point that there was a lot of work to do. We simply had no formal

processes in place and no one was really satisfied with where the company was

heading. The goal is to at least improve to a consistent level 2 organization within 18

months.

The capability Maturity Model can also be applied to other areas in a small company.

The organization as a whole benefits from the processes implemented. I recognized

that if I did not focus totally on the software engineering aspects, and applied the

same basic procedures of CMM to the mechanical side of the company I would see

greater success and acceptance at all levels of the company. Software is still a

mystery to many people but they sometimes understand organization and systems in

relation to mechanical design and manufacturing. This was the best way to get

owners and other managers to buy in to the concepts of CMM. The entire company

must progress as a whole, not just the software development side, otherwise

disorganization will erode the efforts to implement any level of CMM.

Gaining Process Control

The president of a small company is the role model but with my position as director

of design and my formal education in software engineering I have become the

champion, leader. It is my responsibility to move the organization forward in the

CMM implementation. My first goal was to implement a new change control process.

The following Figure 3 shows the change control process that I have implemented.

 15

Figure 3 Change Control Process6

6 Roger S. Pressman, Software Engineering: a Practitioner’s Approach (McGraw-Hill Series in
Computer Science) 235

 16

The change control process shown in figure 3 also works well on the mechanical

side of the company. I introduced configuration management for the many CAD,

Computer Aided Design, product part drawings the company has for production. The

CAD drawings are data files that need to be controlled and maintained. An

unauthorized change in a production drawing can have disastrous results leading to

enormous losses. Many small companies in industry do not practice configuration

management or have very crude and ineffective methods. Usually individual machine

operators will have their own collection of hard copy drawings of parts they produce

on their assigned machines and may not be aware of engineering changes and

continue to make obsolete parts. The problem hopefully is caught at inspection but

many times the customer reports the problem.

One of the first major changes I implemented was establishing a production read

only drawing database that houses only approved CAD files and eliminated all paper

drawings located at various work stations. All required hard copy drawings are

produced from the controlled production database. Many times there is no need for a

hard copy thus eliminating unauthorized changes to hard copy drawings. All CAD

files are now within configuration management controls. This process improvement

alone has saved thousands of dollars in revenue that otherwise could have been lost

due to using obsolete drawings to make parts. I also brought all of the CNC,

Computerized Numerical Controlled, program production under configuration control.

These are just some examples where the process techniques I have learned during

my Masters work have led to improvements in the corporate process, not just the

software engineering side of the company. It has given the whole CMM project

credibility.

 17

Figure 4 represents the Request for Change form I developed for use for both

software and mechanical changes. Since people in my organization, as well as other

small firms, have responsibilities throughout the organization, I found it an advantage

to utilize a common form. This also increases buy-in to the process by individuals

who otherwise might be resistive to the process.

Figure 4 Request for Change Form

 18

Figure 5 depicts the control procedure used once a change request is accepted and

given to engineering to implement the change. The process is intentionally

restrictive to prevent simultaneous changes being made to a change request item by

several developers or engineers. I control access to the database by utilizing the

security and permission levels for all users who require data access.

Figure 5 Access and synchronization control7

• The developer or engineer checks out (extracts) a copy of the
configuration object.

7 Roger S. Pressman, Software Engineering: a Practitioner’s Approach (McGraw-Hill Series in
Computer Science) 236

 19

• Security and access controls ensure the individual has the proper
access rights to change the item.

• Access control flags the configuration item read only locking out
unauthorized changes.

• Changes are implemented and audited creating a new base lined

object.

• Access controls allow the original version of the object to be replaced

by the new base lined object in the database.

The access control represents the type of disciplined controls that will be required as

the organization grows. It has been a very important improvement to the

organizational processes and the initial successes have made it easier for further

sound software engineering practices.

The next step in the CMM that I have implemented is a better version control system.

Figure 6 shows the procedure for version control that I have adopted.

Figure 6 Version Control Tree8

8 Roger S. Pressman, Software Engineering: a Practitioner’s Approach (McGraw-Hill Series in
Computer Science) 232

 20

Version control has not been a tremendous problem for me in the past as far as

computer software development is concerned. I had practiced version control on the

software that I produced, but when I started to implement CMM and focused on the

entire organization then version control became very important. One area that

became critical to control was all of the CNC programs developed for the CNC

machines used in the manufacturing process. The CNC programs contain axis

coordinates, feed and speed codes and machine control codes. CNC programs are

downloaded to each individual machine control as production orders require. These

programs are particularly vulnerable to problems associated with no formal process

controls. The machine operators frequently change CNC programs at the production

machines during production of parts creating unauthorized version of the programs.

This procedure destroys the base line process each time it happens. This has always

been accepted due to changes in materials qualities, stock size variance, and

continual tooling changes. This is not acceptable within the scope of CMM.

There was an extreme ownership problem with the CNC programs. All of the CNC

programs were housed on one desktop PC without adequate backup procedures.

The CNC programmer has been working in his own world disconnected from the rest

of the organization. This is a common practice in small companies that use this

technology. I began by explaining to the programmer what I was attempting to do by

implementing CMM and that it would benefit him in the long run. I wanted him to buy

into the process instead of becoming an obstacle to implementation. He finally

agreed to cooperate and the very first thing I did was to move all CNC programs into

the main corporate database so they could be placed under configuration

management controls. This database is backed up every day. I used this point in

 21

discussions with the company president at which time he confessed he was

completely unaware of how the CNC programs that are extremely valuable were

being managed.

I have started using the new version control process on all of the computer programs

that I have developed and those I am now working on. By bringing all software under

a common version control as part of the corporate wide CMM I have been able to

close many loopholes that, in the past, have led to many problems. As I have

previously mentioned, the software engineer in a small firm carries many

responsibilities. It is totally due to my initiative that CMM implementation has started.

Many people in the organization viewed this as an ego trip on my part so it has been

extremely important for me to show the positive impact this implementation has had.

CMM is a work in progress.

Project Management

Project management is the application of knowledge, skills, tools, and
techniques to project activities in order to meet or exceed stakeholders’
needs and expectations from a project.9

One major problem that can occur with managing a project is discipline of the staff. I

have encountered this problem many times in the past. Much of the discipline

problem was the cause of not practicing any kind of formal process and a lack of

communication. I would seldom get the project completed on time and it was always

an unstructured process with absolutely no guarantee of success. The system was

informal and at times chaotic. There were no adequate procedures in place to

properly track progress. It was a problem even on small projects. Many times people

9 PMI Standards committee, A Guide to Project Management Body of Knowledge (William R.
Duncan, Director of Standards 1996) 6

 22

would be off doing their own thing with no coordinated way of reaching a common

goal of finishing a project. It was also very difficult to report work progress with no

system. There was some documentation but because of the fragmented way it was

created it was basically useless as a managing tool.

SENG 510 Software Project Management introduced the formal procedures I needed

to regain discipline and control of the project management process. The practice of

proper management techniques has contributed credibility to my efforts to implement

software engineering practices.

Steps to a Software Development Process

There are eight steps to defining a Software Development Process as describe in

Managing Software Development Projects10.

1. Identify the software model.
2. Identify the activities.
3. Identify the relationships among activities.
4. Document other useful information on each activity.
5. Document how to tailor the process.
6. Document on how to improve the process.
7. Obtain buy-in of the process.
8. Continually use and improve the process.

Before my involvement in the MSSE program I did not consider any of the eight

steps in defining a process. There are some similarities with my old techniques

because the software development process is sort of a natural way of planning and

doing work. One always has something in mind and it usually is iterative until finished

10 Neal Whitten, Managing Software Development Projects Second Edition (John Wiley & Sons,
Inc. 1995) 18

 23

or discarded. There is some documentation, even if it is only the code. Someone is

going to buy-in or none of your projects would ever be used. This does not

necessarily mean that every project I did was a total disaster because there was no

defined process. The problem is I now realize how close to disaster I always was. I

have managed software projects for many years and have been successful only

because each project was relatively small. Many of the industrial pump design

projects I have managed were large and I succeeded because there were drawings,

plans, assembly and testing manuals, and procedures that were industry standards. I

believe the model is the most important of the steps defining a software development

process.

Identify The Software Development Model

All of my Masters courses discussed software development models to some degree

but SENG 510 placed the development model into the management perspective of

the software development process. My original informal development model

resembled the code and fix model. I would just take an idea and start coding. I would

then present my work to the effected users, get some feedback, make changes and

continue until I ended up with a working program. It worked well on small programs,

but was a horrible way to try to develop any substantial programs. Furthermore, I

produced very little documentation other than the code. Figure 7 represents the

code and fix model that I was using for all of my development prior to my software

Engineering courses.

 24

Figure 7 Code and Fix Model11

Figure 8 represents the Iterative model that I now use. This model is used when the

requirements and product definitions are not necessarily known, a major issue in a

small company, and may continue to be defined as the development process

continues. This is accomplished through continued iterations through the

development phases. This allows for early user involvement, an absolute must, in

helping to define requirements and develop early versions of the product to insure

the right product is being developed. The model diagram, Figure 8, shows separation

of testing into two phases, unit testing in the coding phase and then component

testing. A classic such as the Waterfall model discourages iteration and generally

requires each phase to be completed before the next begins with the final step being

delivery of the product with very little flexibility to add or change requirements. This

can become a serious problem if the user injects additional requirements towards the

end of the product development. The Iterative model addresses requirements creep

11 Neal Whitten, Managing Software Development Projects Second Edition (John Wiley & Sons,
Inc. 1995) 19

 25

by addressing new requirements and product definitions in the next Iteration through

the model phases. The main thing to be aware of is that the Iteration model allows

for continued iterations through the phases and therefore can introduce additional

complexity that can extend the development schedule, lead to gold plating, and

added cost.

Figure 8 Iterative Development Model12

12 Neal Whitten, Managing Software Development Projects Second Edition (John Wiley & Sons,
Inc. 1995) 22

 26

One major problem I have experienced over the years is requirement elicitation. With

most of the projects with which I have been involved, the users really had no idea

what they really needed the software to do. Even though they worked in a particular

domain they really had little understanding of their domain or simply could not

communicate their needs. Most times they understood the one area in which they

were working, but could not relate to other areas of the company processes.

Requirements elicitation is a problem in large industry as well as in small industry

and is not always the user or customers fault. The software engineer must gain

adequate domain knowledge and use sound software engineering processes so that

adequate requirements are gathered and the right product is produced. This simple

concept of getting information can be a very complex and frustrating process. Before

my MSSE classes I would make a simple list of some features of the basic idea and

then using the code and fix model, figure 7, I would hack away until I had something

that seemed to work. This approach can work on very small projects but will fail on

larger ones. I know now that this was a very poor approach. The Iterative model,

figure 8, is a good model to help find those elusive undefined requirements as the

project progresses. The introduction of a development model has also helped me

keep discipline within my staff since now there is a map to follow. It takes time for

everyone to buy into the process but if you follow the phases of the model then its

value becomes evident to all involved.

Identify the Activities

Once I selected the Iterative model as the model that works best for my organization,

I had to develop all the procedures to implement the model.

 27

The following is a list of activities that should occur as described in Managing

Software Development Projects13

• Requirements
• Objectives
• Specifications
• High-level design
• Publication content plans
• Test plans
• Low-level design
• Code
• Unit and function test
• Component test
• First-draft publications
• System test
• Second Draft publications
• Regression test
• Packaging
• Delivery

Implementing a software development model in a small firm is a difficult task. People

involved tend to look at the list of activities and believe they will be overwhelmed with

paperwork and procedure. This is a real concern for my coworkers and myself. I

have limited resources in time and personnel and have to be careful about how I

utilize these resources so I have to be conservative as to what I ask my staff to do.

I believe the requirements component of the above list is the most important step in

the process. If the requirements are not properly extracted and defined nothing that

follows will be complete. The iterative nature of the iterative model greatly facilitates

this process but the number of iterations is dependent on how well the requirements

are developed. It is important to keep iterations as low as possible to maintain

13 Neal Whitten, Managing Software Development Projects Second Edition (John Wiley & Sons,
Inc. 1995) 35

 28

control. Figure 9 shows the document I created that helps my staff with defining the

scope and requirements definition of projects.

Figure 9 Project Concept Document

 Project Concept Document

Investigate the type of business requesting
the software project.

Try to get some preliminary domain
knowledge. Take some time to learn
about the client and what the
client’s company does and what
processes are used. This will help in
asking the proper questions to the
users about their requirements.

Purpose of the software and the target
audience.

1. What is the fundamental

concept, purpose, and what
are the goals of the proposed
software?

2. Identify the users of the

software and what level their
usage will be. President,
Engineer, Managers, Clerical
ect.

3. Schedule meetings with a

representative user of each
class of user and discuss
what they expect from the
software to be developed.
Confirm that all users
understand the defined
purpose of the software.

4. Develop a list of required

features and their benefits for
the software, starting with the
most essential. Develop this
list based on information
gathered in the user meetings.

Develop a requirements list.

1. Create a requirements list
based on the user input from
the user meetings. Keep each
requirement description in as
simple terms as possible.

2. Insure that each requirement

fits within the software
concept scope. If a
requirement develops from
the analysis of the user

 29

meetings that creeps from the
concept scope then present it
to the effected user
representative to validate its
value to the software.

3. Prioritize the requirements
 list.

4. Separate the requirements

into Functional, Performance,
and system response timing
requirements.

Develop use cases.

1. Develop uses case for each
requirement on the
requirements list.

 2. Present the use cases to each

user class representative for
their review. This may lead to
iteration of the requirements
gathering process but will
help define additional
requirements missed in the
meetings. Insure that any new
requirements fit within the
concept scope of the
software.

Figure 10 represent the process template for developing use cases for the various

requirements. The use case is an excellent method to insure that requirements

collected are valid and fit within the scope of the project. Before my MSSE work I

never developed a use case. I would create flow charts showing program flow, make

drawings depicting the different GUIs, and write notes on what users said they

wanted their software to do, but I never developed a formal use case. I stated earlier

in this paper that the changes before and after my involvement in the MSSE program

are dramatic.

 30

Figure 11 is the Test Report Template I developed and now use for program testing.

This replaces an informal system of just running the program and fixing the problems

as they are encountered. This form adds consistency, repeatability, documentation

and discipline to our testing.

Figure 10 Use Case Template

 Use Case Template

Requirement #:
Project #:
Use Case #:

Developer: Date:

 CHARACTERISTIC INFORMATION
Goal in Context:

Scope:

Level:

Preconditions:

Successful End
Condition:

Failed End Condition:

Primary Actor:

 31

Trigger:

MAIN SUCCESS
SCENARIO:

EXCEPTIONS:

Figure 11 Test Report Template

 Test Report Template

Test ID:
Revision #:

Program: Test Conducted By: Date:

Test Setup:

Test Platform Description:

Constraints:

Test Objective:

Test Description:

Test Conditions:

Example:

Expected Results:

 32

Actual Results:

Software Analysis and Design

One of my biggest problems over the years with my software development was my

limited knowledge of proper software design. Every day was full of problems and

issues and even though I understood that there must be a better way of developing a

program, there was just no time at the end of the day to learn or try anything new.

The problem was a paradox in that I needed to improve my skills but yet I had no

time to enhance my skills and many of the problems I was having were generated by

my lack of proper software engineering knowledge.

One of my major design problems of the past was requirements development.

Without formal training it is all but impossible to extract adequate requirements. I

always felt that I could figure them out as I went and the requirements I did get from

the users were only marginally useful. This was the type of flawed thinking that was

brought on by working for a small firm where there was no real emphasis on

continued education or self-improvement. This is not intended to be a poor reflection

of a small company, it is merely reality in small industry.

Everyday is a challenge for small business owners to keep their companies in

business and software is just a small part of the problem, so they think. The problem

is that today software is an intricate part of almost every operation conducted within

 33

a company and people, such as I, continue to do their best at developing software

products that will never be the caliber and quality necessary in today’s business

world. The small businesses that survive and grow will most assuredly require better

software products, COTS or custom applications, in order to stay in business.

SENG 520 Software Analysis and Design, as with all of my MSSE class work helped

me break out of the paradoxical situation I found myself in. This class continued the

study of requirements elicitation and focused on the more intricate details of

requirements. I learned how to utilize use cases to help refine individual

requirements. The Use Case Template, figure 10, is a direct result of my SENG 520

class work.

GUI Design

The class also concentrated on proper program design. One area of design that I

found helpful was a study of the User interface design process. This created a formal

repeatable process for developing the various GUIs, Graphical User Interface,

required by most of the software projects I have worked on. Figure 12 is a sample of

the process I used for the software GUI design before the MSSE program.

My previous GUI design process was basically designing the GUIs on the fly and not

really getting any user input. It is another one of those areas that, without a formal

process, old habits just seem to linger on. I felt that I could interpret the GUI

requirements as I developed the program so I would not worry about GUI design until

I reached a point I had to implement them. There really was no process involved.

Figure 12 Pencil sketch of main GUI for the TimeCal

 34

TimeCal is a program that I developed several years before my involvement in the

MSSE program. It represents the extent of my GUI design prior to coding. There

were times when I did not do any GUI sketches but merely programmed the GUI.

I now use Visual Basic 6.014 for most of my software development and I use the form

tools for most of the GUI prototype designs. I will occasionally make a sketch during

a requirements interview to clarify GUI questions, but I always go back with a

prototype I designed using the VB tools. Figure 13 is the repeatable formal process I

now use.

14 Microsoft Press, Visual Basic 6.0 (Microsoft Corporation 1998)

 35

Figure 13 User Interface Design Process

 36

Figure14 Re-Engineered Jtrack main consol GUI

Figure 14 is the main consol GUI for a program I developed called Jtrack. I started

the Jtrack project before my MSSE class work but I went back and re-engineered

parts of the software as I gained more software engineering knowledge as my class

work progressed. The Jtrack main consol is an example of my design using the

formal User Interface Design model.

GUI design is one area of software design in which almost anyone can see

improvements made. All of the stakeholders within the company find the new GUI

designs more modern and intuitive that my old techniques. It also helps with

developer credibility and buy-in of the project and the new processes being

introduced since the users are so closely involved.

 37

Data Modeling

SENG 520 introduced me to proper data modeling techniques. I had used flow charts

to trace data flow, but had never modeled the data structure. Figure 15 represents a

Entity Relationship Diagram, ERD, of the data object Batch Data decomposed into it

various objects. Batch Data is a data object within my MMS project.

Figure 15 Entity Relationship Diagram

I use the ERD to help me model the relational database tables for the software I

design and develop. This method provides a higher-level design capability than I

have used in the past and is an effective tool for database discussions with co-

workers. My previous method was simply creating a list of the data variables and just

working from the list when I started setting up the tables. I never considered having

to discuss issues at the database design level with anyone in the organization. When

 38

I did so people seemed to have problems grasping what I was presenting. Using

entity relationship diagrams has greatly improved my database design and

presentation techniques and provides a formal repetitive database design tool. It

again, adds to the credibility of my implementation of software engineering

processes, so with each newly accepted method I introduce it becomes easier to

continue introducing new methods.

The state transition diagram, figure 16, is a method that I did not use in the past but

have found to be very useful in my work now. I use it to present the design to the

user or client. The advantage of this technique is that you can make a visual

presentation of a particular state of a program function or feature. The diagram aids

in the understanding of a program state rather than confusing the client with a

complicated text format presentation. Users get a better understanding of how their

software will work by looking at a diagram so they feel more involved. I always had a

problem explaining program transition to users because most times they were not

programmers and really did not understand what I was talking about. It also helps in

extracting additional requirements before the project enters the coding phase of the

model. This is very beneficial and can result in substantial cost savings. Figure 16 is

the state diagram for a card scanning procedure for logging onto the Manufacturing

Management system.

 39

Object Oriented Design

The concept of Object Oriented Design15, which I studied in the class SENG 591

Object Oriented Design, is very similar to the Product Types of Pumps16 and sub-

type assemblies concepts used in industrial pump design and technology. The

process sub-divides a machine type into various sub-types of the machine and then

divides the sub-types into various sub-assemblies. The OOD Methodology used in

software engineering uses the same divide and conquer approach to software

engineering as machine design does. A design is decomposed into classes that are

composed of objects.

15 Cay S. Hortsmann, Practical Object-Oriented Development in C++ and Java (John Wiley &
Sons, Inc. 1997) 7
16 Hydraulic Institute, Hydraulic Institute Standards (Library of Congress Card No. A82-84047) 8

 40

Figure 18 represents a high-level class relationship diagram of the manufacturing

management module of the Manufacturing Management and cost evaluation system,

MMS, which will be studied further in this paper. Breaking the problem down,

decomposing it, into class relationships significantly reduces the complexity of

project discussions and requirements definition early in the projects design. Users

get a better understanding of the system and a better grasp of their needs when they

can see the overall picture and how they fit in. A program developed using the OOD

methodology will also be easier to maintain and expand as new functionality is added

and requirements change. A person who, as myself, has worked his way up to or is

assigned to the position of software engineer in a small firm and has never been

exposed to or had formal study of this technique, can find his work much more

difficult. In the past I have experienced many frustrations when I had to expand

functionality of a software project because I did not use the OOD methodology.

Many meetings are informal in the small company environment. I have had

impromptu meetings with a company president in a hall that could have led to the

canceling of a crucial module or an entire project. My task was to convince him to

continue the project. Now, most times, I am successful because I am able to present

a lot of information visually and quickly. That has not always been the case. In a

larger organization there would be scheduled formal meetings with department

managers to present project ideas or discuss a set of requirements. In my case I

have not had the luxury of a large staff to help me present my software ideas. This

does not mean that it is acceptable for me not to practice sound software

engineering; on the contrary, it becomes even more important to follow sound

industry proven methods since there may be less room for error in a small staff.

 41

I have experienced many frustrations in my career simply because I was not familiar

with the object oriented technique in software development. My method was strictly

procedural and many times just simply total chaos. The procedural technique is not

completely wrong. It is fairly efficient for very small projects but as project complexity

increases the OOD approach is better. The MMS system is a good example of a

system that I, as a single developer, could not have developed using the procedural

technique.

In the past I used flow charts, figure 17, and outlines that depicted the logic of the

code and some graphic semblance of the points I was trying to make. Generally,

however, I lost the interest of those whom I was presenting to and therefore

compromised my work and profitability for the company. The problem I had with this

method was I completely understood the charts and outlines I was presenting, but

could not understand why no one else understood. Sometimes programmers drift off

into their own world and lose touch with reality. The reality is most users don’t know

anything about computer program code and technically complicated diagrams.

Figure 17 Past Methodology Flow Chart

 42

The small company software engineer has an enormous responsibility in a small

firm. Many times bad decisions are made to purchase off the shelf, OTS, software

advertised to be the silver bullet17 that will do everything the company needs. There

is no silver bullet and it is the small company software engineer’s responsibility to

ensure that the software developed or purchased fulfills the requirements and not the

ego of high-powered salesman or a friend of the owners. You must be able to make

convincing arguments showing how developing a properly engineered custom piece

of software to efficiently perform a required task or purchasing a software product

that may or may not perform that task, is good or bad for the company. OOD has

helped me in my design, presentation, and implementation of software products and

updates. As I mentioned earlier, the position of software engineer in a small firm

carries a lot of responsibility.

17 Frederick P. Brooks, Jr., The Mythical Man-Month (Addison Wesley Longman, Inc. 1995) 179

 43

Figure 18 Manufacturing Management Class Relationship Diagram

My work, as a professional software engineer, should be understandable by any

professional software engineer. It is important to have processes in place should

anyone have to take my place. Small companies may have limited resources and

should not have to spend them on someone redoing work due to poor software

engineering methods.

 44

Requirements

Past Method Failure

What was not working with my past method for requirements gathering was the lack

of the detail of the requirements. My requirements document was typically a single

hand written page of notes and never a detailed analysis of the requirements. I was

not able to work properly with the users to uncover anything other than the most

obvious requirements and this always led to problems later in the project. As stated

previously, most requirement meetings I attended were one on one with users and

there wasn’t anyone else to review my work. This was an unavoidable situation that

perpetuated poor requirements elicitation.

In a small firm time is limited. When I need to have a requirements interview I will

usually ask when a person will have some time to talk to me about requirements on a

new project or a new feature on an existing project. Sometimes I will just watch and

listen to people doing their work. I can get a feel for the problems they encounter

when they are working on their every day jobs. Many of their procedures have

evolved over time but aren’t necessarily the best way of doing things and sometimes

they just don’t know what they want or need.

One observation I made once was a purchasing agent who was having problems

with a search utility in a program his company had purchased. He could not do

multiple searches without exiting the module he was working in and then reentering

the module and restarting his search queue. He became very frustrated and finally

got up from his desk to get away from the problem. He took 10 minutes to collect

himself and then returned to the same frustrating exercise. He looked at me and said

 45

he had a lot to do and maybe we could schedule a meeting later. He did not realize

how much he actually had already said. I discovered that everyone using that

software product experienced similar problems. When the company bought the

product there was no formal requirements meeting with all of the stakeholders to

discuss whether the product had all of the functionality they required. The result is a

substantial investment that is actually raising the cost of their operation.

At another office I noticed a young secretary reading a 2 1/2 inch thick manual trying

to use a program she needed for doing some task, but she could not understand the

procedure as it was written in the manual and she was afraid of making a mistake.

She said she had never had to do anything like that before and she really did not

understand computers anyway.

New Approach

Both of the above scenarios relate to a poor requirements process that failed to

uncover necessary requirements that would have, if implemented, prevented the

problems in the above examples from occurring. These sort of problems are brought

on by the fact that the software industry is still evolving and has not yet reached the

point, as traditional engineering disciplines have, where there is always a procedure,

plan or drawings, that works for all situations, to show how to elicit requirements. The

problem is that with poor requirements engineering, poor projects are produced.

Many times programs are accepted “as is” and people continually struggle to use

sub-standard software. Figure 19 is a diagram of an accepted requirements

development process that I have adopted and now use. The end result is a software

requirements specification that represents the product to be built. Following this

procedure will not always guarantee successful requirements elicitation but if no

 46

process is followed one can guarantee a correct product that fits the clients needs,

will never be produced.

Figure 19 Components of Software Requirements18

Use-Case Document

Software Requirements
 Specification

Vision and Scope Document

 Business
Requirements

 User
Requirements

 Quality
 Attributes

 Other
Nonfunctional
Requirements

 Constraints

 Functional
Requirements

 System
Requirements

18 Karl E. Wiegers, Software Requirements (Microsoft Press, 1999) 8

 47

The software requirement process, as shown in figure 19 gives the software

engineer the tools necessary for proper requirements engineering but it still remains

a very personal process. The software engineer becomes a requirements analyst

and must gain adequate domain knowledge in order to ask the right questions and

recognize key requirements. A software engineer working with a small industry client

must learn how users do their work and gain understanding into what their particular

individual requirements are. He must learn how to deal with users who will not

cooperate due to a fear of the new software affecting their jobs. People get used to

doing things a certain way and do not necessarily want to change.

Gaining domain knowledge is the key to requirements engineering. I have achieved

considerable domain knowledge at my company that has helped me develop the

MMS project. Because I have that knowledge, it has helped me uncover vague

requirements that I otherwise may have missed. I have an in-depth understanding of

the various department responsibilities within the company and I understand what

the software is intended to achieve. By using the requirements model I am able to

build a library of techniques that I can use with other projects.

Now when I am working on a project where I am not domain literate, I conduct

research into the type of industry or problem, to learn enough to start requirement

interviews. It is vital that I speak the business language of my clients since it is my

responsibility to communicate with them and not theirs with me. I really don’t have

anyone who can critique my interview results, so I must be confident that my

methods are sound. I strive to build a list of business requirements first and then

develop a vision and scope document that is reviewed by the client for approval. I do

not proceed further until I have an approval of the vision and scope document.

 48

In the past I would not have created the vision and scope document and I would not

have used any formal process to develop the business rules. I would have created a

list of requirements but it would not have been organized into requirements types. I

usually just took notes of an informal requirements meeting and worked from that list

by-passing many software engineering steps. As I have already mentioned I really

did not view software development as an engineering exercise. Many developers in

small industry fit into this category. Figure 19 is the system I have adopted for

requirements elicitation.

Figure 20 Software Requirements Specification Template19

 Software Requirements Specification Template

1. Introduction: Presents an overview of the Software Requirements
Specification to help readers understand the document.

1.1 Purpose (Identify the product.)

1.2 Document Conventions (Describe any standards or typographical

conventions.)

1.3 Intended Audience and Reading Suggestions (List the readers to whom

the SRS is directed.)

1.4 Product Vision and Scope (Provide a short description of the software
being specified and its purpose.)

1.5 References (List any documents or other resources to which this SRS
refers.)

2. Overall Description: Presents a high-level overview of the product being
specified.

19 Karl E. Wiegers, Software Requirements (Microsoft Press, 1999) 154

 49

2.1 Product Perspective (Describe whether this product is new or part of an
existing larger system.)

2.2 Product Functions (Summarize the major functions the software must
perform.)
2.2.1 User Classes and Characteristics (Describe the users who will be

using this software and their characteristics.)

2.3 Operating Environment (Describe the environment this software will be

used in including operating systems and hardware.)

2.4 Design and Implementation Constraints (List any constraints that will
impede developers in the development of this software.)

2.5 Assumptions and Dependencies (List any assumptions that may affect

the listed requirements of the SRS.)

3. External Interface Requirements: Specifies any requirements that ensure
the new product will connect properly to external components.

3.1 User Interfaces (List any components on the GUIs that will be required.)

Example: The following corporate users will access their user functions
through secure GUIs that cannot be accessed by the general public
users.

3.2 Hardware Interfaces (List any hardware interfaces that will be required

with this software.)
Example: A broadband or 56K modem internet connection will be
required.

3.3 Software Interfaces (Describe connections between this software and
other existing or planned software.)

3.4 Communication Interfaces (Describe the requirements that that will
require any communications. Network, Web, ect)
Example: The internet connection will require a broadband or 56 K
modem connection.

4. System Features: Shows the functional requirements organized by system
features and the major services provided by the product.
4.1 System Feature:

 4.1.1 Description and priority.
 4.1.2 Stimulus/Response Sequences.
 4.1.3 Functional Requirements.

5. Other Nonfunctional Requirements: List any nonfunctional requirements

 50

other than external interface requirements and constraints.

 5.1 Performance Requirements
 5.2 Safety Requirements
 5.3 Security Requirements
 5.4 Software Quality Attributes
 5.5 Business Rules
 5.6 Business requirements
 5.7 Functional Requirements

 6. Other Requirements: Define any other requirements not covered by this
SRS. (List any requirements that are not directly covered in the SRS.
Expansion, Ect)

 Appendix A: Glossary
 This section is for defining terms pertinent to the SRS document.

 Appendix B: Analysis Models
 This section will house any required analysis models and diagrams.

The following is the Purpose and Product Vision and Scope for the MMS system.

1.1 Purpose.

The analytical purpose of the Manufacturing Management System project is to
provide a system that corporate and production planners can use to perform
research utilizing the historical data acquired by the system. This research will
facilitate in-depth cost reduction studies of the manufacturing system and
processes to ultimately improve profitability. The warehoused data will also be
used to analyze production techniques that can be incorporated into new
products during design. This will help reduce proto-type analysis and testing
time for individual components and entire mechanical systems.

1.4 Product Vision and Scope.

The manufacturing company I work for needs a system to continually collect
manufacturing data on production items. The system will require a database
that will store all manufacturing data as production parts are produced. The
data will be used for analysis of trends in production times and processes at
various stages of production. The resulting analysis will be used to continually
improve all phases of the production process from tooling, materials used, and
product engineering. Manufacturing personnel will log onto a production job by
scanning a production card, at their workstation, for a specified production
part. Any relevant information about recommended improvements will be
entered into the database at each workstation. As the production item

 51

progresses to each required process the data for that process will be entered.
At completion the historical data will be incorporated with previous collected
data for future analysis. The goal is to incorporate data warehouse
technologies into the design of this system.

I never considered the Purpose or the Vision and Scope document as an important

part of development. I felt that it should be very obvious what the project was and

what it was going to include. I have had many meetings where the vision of a project

was discussed informally and the order given to proceed. This seems like the easy

way to begin but what usually will happen are problems later with misunderstandings

of what the project actually is. I have been there many times. I did take notes during

these meetings but never placed the context of my notes in a formal document for

approval. Using a formal process and getting approval will usually get the project off

to a good start. It is important to point out here that, at the time I was not intentionally

trying to save time by not collecting project information. I was just using the method I

had been using for years. This is one of those times during which a small industry

software engineer has to be self-critical and non-defensive about past work and

methodologies and move forward.

In the past while working on internal projects, many times it was assumed, by my

supervisors, that I knew what they wanted and they left all of the definitions in my

hands. This was a poor position in which to be placed, but I accepted the challenge

without a second thought. Now, after my MSSE class work, I would never begin

without the formal process. In retrospect, I can see times when I have actually

increased the cost of projects to the company because of my lack of proper software

engineering practices. I was not alone in this practice. I have met many people in

similar positions doing the same thing. It seemed fast and expeditious.

 52

I recently encountered a problem from not using a formal requirements process on

the Jtrack project I discussed earlier. I was asked to add territory functionality to the

order entry module. It seems simple enough but will actually require considerable

work on my part. Had I used proper software engineering procedures from the

beginning I would have identified the territory requirement as a business rule that

would have been describe in the vision and scope document. It would have been a

much simpler implementation had it been addressed in the beginning of the project

or at least in one of the first iterations of the development model. This work will be

added expense to the company. In my defense the Jtrack system has saved the

company a great deal of money. Nevertheless, the reality is it could have been much

better design.

Use cases

A very important requirements development tool is the use case. Each of the MSSE

classes discussed use cases but SENG 691K Software Requirements Engineering

expanded on the use of use cases and use case diagrams. Figure 21 is Use Case

#2 for the MMS project. It demonstrates my use of the standard Use Case Template

for an in-depth description of a requirement.

Figure 21 Use Case for MMS

 Use Case Template

Project # : MMS10
Requirement #: 2
Use Case #: 2

Developer:
Jim FLeming

Date:
08-15-2003

 CHARACTERISTIC INFORMATION

 53

Goal in Context: A method for machine operators (users) to log onto the
MMS system to start a production job using a bar coded
ID and job card or the keyboard.

Scope: Production log on module of MMS.

Level: User type is Machine Operator.

Preconditions: 1. Each workstation computer must be connected to the
company LAN.

2. Each workstation must have a bar code reader.
3. Each machine operator must have a valid employee

number.
4. Each machine operator must have a valid production

job card to scan.
5. Company database must have machine operator’s

employee number filed.
6. Company database must have the production job

filed.

Successful End
Condition:

Machine operator has valid employee number and
successfully logs onto the MMS system to start
production on scanned job.

Failed End Condition: Machine operator cannot log onto MMS system and
production is not started.

Primary Actor: Machine operator.

Trigger: Machine operator must logon to the MMS system to
start a production job.

MAIN SUCCESS
SCENARIO:

1. Production job issued.
2. Machine operator scans his employee card with

card scanner and awaits approval.
3. The MMS system displays to the user

acknowledgement of the scanning operation.
4. The MMS system verifies the employee number

in the database.
5. Machine operator is logged onto the MMS

system.
6. The machine operator now scans in the

production job.

 54

7. The MMS verifies the production job scanned.
8. Machine operator is successfully logged onto

system and production job.
9. The machine operator can now start production.

EXCEPTIONS:

 2a. The machine operator will be given (3) attempts
to log onto the system.

 2a1. After (3) failed attempts the system will

prompt for manual entry of the machine
operator’s employee number.

 2a2. If scanning and manual logon attempts fail
then the MMS system will send an alert to the
supervisor station and display a holding
security screen at the machine operator’s
workstation.

 6a. The machine operator will be given (3) attempts

to log onto a production job.
 6a1. If after (3) attempts the system will prompt

for manual entry of the production job.

Figure 22 is a use case diagram for the above use case. The use case diagram is a

good tool for presenting a use case scenario to a client for clarification of a

requirement or just plotting a solution for my own understanding. One of the

problems I have encountered in the past when working with users on a requirements

list is that I assumed that the user understood what I was talking about when I would

ask them about a particular requirement. They would acknowledge my question but

were not that cooperative. Consequently, I often felt that I did not get all the

information that I needed. I would set and pencil sketch crude flowcharts but produce

nothing of professional caliber that I could submit in a formal document.

Requirements engineering is a complicated task especially if you are working with

limited domain knowledge. I have found that the use case diagram depicting a formal

 55

use case scenario description has helped me to take an engineering approach to the

requirements elicitation process and to produce a more defined requirements

document. This is a formal process that I did not use in the past and is a direct result

of my MSSE work.

Figure 22 Use Case Diagram for MMS Use Case # 2

Often when I present a use case diagram to a user to insure that I got the

requirement correct they have additional facts about the requirement. This leads to

less development delays and allows me to proceed in a professional manner giving

me more credibility as I continue to improve all of the company’s processes.

 56

When I have to present a requirement in more technical detail for analysis I now use

an analytical class model. The following table, figure 23, breaks the use case down

into class objects that can then be placed into a model of the use case.

Figure 23 Class object table for use case 2 for MMS

 Studies of use case 2 suggest that the following will be part of the system.

Controller objects:

Production Timer.
The MMS system.

Boundary objects: Work station.
Bar code scanner.
Company database.
Menu GUI.

Entity objects: Employee ID bar code card.
Production job ID bar code card.

Breaking complicated use cases down to class object levels greatly enhances the

analysis of the use case and can uncover hidden details of a requirement that

otherwise may have been missed. I am still sometimes amazed at how poor my

original methods of requirements engineering were after all of the years I have

worked in software engineering. I do believe however, that all of my years of

experience allowed me to grasp these formal procedures easier than if I had never

worked in the profession of software engineering before. The only problem is that I

continually have to explain why I am changing my methods now. It was awkward at

times explaining that I really was not doing it right all of these years.

Figure 24 is the analytical class model of use case 2 for the MMS project.

 57

Figure 24 Analytical Class model for use case 2

Figure 25 shows the class object responsibility and collaboration model for use case

2 of the MMS. This technique is a good way to map out and understand how the

different objects interact with each other. It is a more technical model that I use to

help me with implementing a requirement. In the past I would use, at this point, only

flow charts at code level thus missing a complete engineering step that could have

help me with the requirements definition. This model is definitely an improvement

over my past method.

 58

Figure 25 Class object Responsibility and Collaboration model for use case 2 of the

MMS

All of the processes I have discussed so far have been an immense help to me in

several areas. My abilities to communicate at a more professional level with clients

has helped me project a more professional organizational image and I now have the

respect of my coworkers and the company owners. One can teach old dogs new

tricks. My software engineering abilities are now at a professional engineering level

as opposed to before my MSSE involvement when everything I did was improvised

and not completely effective. My software also works and serves the users better.

 59

My project management skills are also greatly improved. This has helped me on all

of the projects I manage, not just the software projects.

Data Management

Data is the life force of any company. Programs are stored and served, Reports are

generated, Payrolls are managed, Graphics are produced, Engineering drawings are

developed and distributed, and Documents are created, all using existing or newly

generated data files that must be maintained.

Implementing Data Management in the MMS Project

I am also in charge of the operation and maintenance of a 32 station Local Area

Network at the company where I work. The network is configured as a client server

100 MBPS Ethernet LAN. Some of the data is located on individual computer hard

drives and removable storage media but the bulk of the data is stored on two

network servers though it is not housed in a way that the data can be analyzed in

any real useful way.

The class SENG 691L Data Warehousing addressed data management and data

warehouse technologies. I had been working at consolidating all of the various data

sources into a common database but after completing SENG 961L I have decided to

take another approach that has led to the main concept of the MMS project.

The vision and scope document for the MMS project that I previously discussed

covers the business rules for creating a database using data warehouse

technologies. I am extremely interested in this technology as the analysis of

 60

manufacturing data has enormous cost saving potential for a small industrial

equipment manufacturer.

In the following section I will discuss the current infrastructure of the company’s LAN

and data storage. I will also discuss the future infrastructure that I am now working

towards.

Current System Infrastructure

 The existing infrastructure is fragmented in that data is collected from multiple

non-conformed sources and is never processed. There is no way to perform any

analysis unless special programs are developed to retrieve legacy data and

perform analysis only on that specific data. This has led to a scenario where data

is collected and stored but never used. Reports that are generated are often

inaccurate due to dirty data.

Hardware and system capabilities currently in place:

• There is a multiple processor Dell 2500 Power Edge server running
the Windows 2000 server operating system with 78-gigabyte storage
capacity and a multiple processor Dell Power Edge 2400 server
running the Windows NT operating system with 20-gigabyte storage
capacity. Both of these systems will be used in the data staging area
to capture and prepare the data to be used in the warehouse.

• There are 30 client Desktop PCs running the Windows Millennium or

XP professional operating system. All PCs are members of the
network.

• Internal data sources connect over a 100 MBPS Ethernet LAN using

the client server configuration.

• External data sources connect over a 56K phone line or removable

media.

• Sporadically place hubs with hard to trace cables.

Figure 26 shows the current architecture of the company LAN and computer

systems.

 61

Figure 26 Current company network architecture

The LAN in its original configuration has evolved over time and was not constructed

with any particular plan in mind. When more functionality was required it was just

added to the existing system. The result has been a system that has a very

fragmented database structure. Users store some data on their local hard drives that

other users may need. When the request comes to access these independent data

 62

stores I have to link the users so the data can be accessed. Because there is no

design or formal process, the practice has continued. The two servers in the LAN

house the inventory and accounting databases. The inventory and accounting data is

also fragmented in that there are duplicated data files that are not properly managed

or maintained.

Implementing Data Warehouse Technologies

When I was placed in charge of the LAN, the system was already established. My

first objective was to start setting up some security measures for the database.

Security was basically non-existent and the entire database system was at risk.

There were no formal backup procedures in place and much of the localized legacy

data was never backed up. I was in the process of centralizing some of the legacy

data structures so those who needed access could get it without me having to link

computers to perform data transfers when I became involved with the MSSE

program. One big problem I had trying to implement changes was that people had an

extreme ownership of the legacy data stored on their local drives and got really

nervous when I told them that I was going to move it to one of the servers.

The New Infrastructure

The way in which the LAN was setup and being used was totally unacceptable. I

started to work on a new concept of restructuring the entire LAN and databases to

conform with the migration to data warehouse technology. Migrating to data

warehouse technology will take time and money. It will also take educating the users

to the advantages of data warehousing.

 63

It is not practical to try to implement a data warehouse all at once. Data warehouses

are a collection of data marts so my plan is to start with basic data marts and

gradually build the system into a data warehouse configuration. The following is a list

of additional resources that will be required to begin implementation of data

warehouse technologies.

Additional hardware and system capabilities required:

• One additional 2600 Dell Power Edge server with a minimum storage
capacity of 500 Gigabytes. This system will be used as the information
directory repository and application server. It will utilize the Windows 2000
server operating system.

• A Broadband Internet connection ported through a router and connected to

the LAN with firewall protection.

• All the hubs will be have to be relocated to a common area.

• All cabling must be upgraded to high-speed category 5 UTP certified.

• Warehouse design will keep the client server configuration.

• User access will be through the new 2600 Power Edge application server
where all meta-data and data marts will be housed.

Of all the changes I have made in the corporate processes that I have discussed in

this paper, the data warehouse project is the most aggressive and challenging.

This project requires a real commitment by the corporate executives and a total

acknowledgement of the viability of software engineering practices. The decision to

move forward is a milestone in my efforts to put into effect what I have learned in my

MSSE work. Figure 27 is the proposed architecture for the data warehouse project.

 64

Figure 27 Proposed Data Warehouse Architecture model

Data Warehouse Process Description

The following is a brief description of the processes of the proposed data warehouse.

• Data will be collected from the various legacy sources and placed into the
staging area of the warehouse. This data will be cleansed and placed into
SQL relational data tables.

• Processed tables will reside on a 2500 Dell Power Edge server where further

processing will occur before these tables are used to populate the data marts
located on the 2600 Dell Power Edge application server.

• Users will access the data through the (Meta Data) Information Directory

Repository housed on the 2600 Dell Power Edge application server. All user
access will be controlled through the Data Warehouse Management layer.

 65

Relational On-Line Analytical Process, ROLAP, tools will be used for all user
data queries.

• There will be (1) Aggregated data mart that will be used exclusively for

corporate reports. The data in this data mart will be replicated from pertinent
data housed in the (3) main data marts and then aggregated at the proper
grain for the necessary reports.

Phase 1 of the implement of the data warehouse

Phase 1 Scope Definition

Based on requirements gathered from the business, 4 data marts will be required to
fulfill the business requirements.

Data Mart (1) Production Definition, will house the product definition data.

• Product part number and name dimension.
• Product drawing file name and descriptions dimension.
• Material codes and requirements dimension.
• Unit of measures and preparations dimension.

Data Mart (2) Machine, will house the production machines data.

• Machine descriptions and ID codes dimension.
• Production sequence numbers dimension.
• Machine production charge dimension.
• Tool package dimension.
• Operator dimension.

Data Mart (3) Production Time, will house the historical and collected production
times data.

• Historical production run time including setup, sequence number, cycle, and

inspection times and dates dimension.
• Current production sequence dimension.
• Current production cycle time and date dimension.
• Current inspection time and date dimension.

Data Mart (4) Reports, will house aggregated data for executive reports

• Machine dimension.
• Employee Dimension.
• Product Dimension.

 66

The data mart matrix, Figure 28, shows the relationship between the data marts and

dimensions.

Figure 28 Data Mart Matrix

The following is a description of all the data mart star schemas.

Data Mart (1) Product definition Dimension Descriptions:

Schema Fact table:

• The Part_Number_Key joins the Product# and Name dimension.
• The Drawing_Key joins the Drawing Files dimension.
• The Material_Key joins the Material Codes dimension.
• The Unit_Measure_Key joins the Units of Measure dimension.

Schema Fact Table Facts:

• Product# fact captures the product part#.
• Product description captures the product name.
• Cad File captures the cad file data for the part drawing.
• Part Role captures the criticality of the part.

 67

• Material Code captures the unique code for the type of material used to
produce the part.

• Material Certs. captures the certification data for the materials used.
• Measure units captures the unit of measure for stock lengths or quantities.
• Preparations captures unique data about special material preparations prior

to manufacturing.

Schema Dimension (Product part number and name dimension).
Attributes:

• The product part number will be a 1 to 10 character alphanumeric code that
will be unique to each part. (example: 7304Brg)

• The name will be from 1 to 50 character length code representing the
physical name of the part. (example: Ball type 30 degree angular thrust
bearing)

• The part role is a criticality indicator as to the importance of the part in
relation to other manufactured items. (This product must be finished on
schedule).

• Bin Location is the physical storage area for the product. (example: BL1023)
• Last Batch Code represents the last production run of this product. This will

be for historical reference.

Schema Dimension (Product drawing file name and descriptions dimension.)
Attributes:

• The product drawing file name will be a 1 to 50 character file name
representing a unique drawing name.

• CAD file is a unique data file name for the engineering drawing representing
the part.

• Drawing approval date is the authorization date representing when the part
cad file was released for production.

• Drawing signature records who authorized the release of the cad file to
production.

• The CNC File name is the file name for the CNC program used to produce
the part on the CNC production machines.

• The CNC approval date is the date that the CNC program was released to
production.

• The CNC signature records who authorized the release of the CNC program
for production.

Schema Dimension (Unit of measures and preparations dimension).
Attributes:

• The Units of measure code will be 1 to 30 character alphanumeric code
representing the quantity of a material used to make a particular part.

• (example: cut length 10.500 inches)

 68

• The stock length code designates the length or quantity of stock, using the
Units of Measure code, is required for each part piece.

Schema Dimension (Material codes and requirements dimension).
Attributes:

• The material code will be a 1 to 10 character alphanumeric code representing
specific material type a part is made of. (example: M1023)

• Material description is textual description of the material.
• The Material Certs. will describe any special material inspections or

certifications to be confirmed before proceeding with manufacturing.
• The preparations field will contain any special material preparations that must

be performed before manufacturing the part.
• The Vendor code will identify the vendor who supplied the material.
• The Bin location represents the physical location the material is stored.

(example BRM102).

Data Mart (2) Machine Dimension Description:

 Schema Fact table:

• Machine_Key joins the Machine ID & description dimension.
• Sequence_Key joins the Production Sequence dimension.
• Operator_Key joins the Operator dimension.
• Tools_Key joins the tools package dimension.
• Charge_Key joins the Production charge dimension.

 Schema Fact Table Facts:

• Machine code captures the unique identifier for a particular production
machine.

• Machine description captures the textual description of a production machine.
• Manf. Sequence captures the position in the manufacturing process the

identified machine is used.
• Operator Identification captures the operators unique ID number.
• Tool Package ID captures the unique code identifying the tools used on the

CNC machine to produce the product.
• Tool Grade captures the unique tool insert grade used with the identified tool

package.
• Machine charge captures the charge rate of the CNC machine identified.
• Machine overhead captures unique additional charges for the identified CNC

machine tool.

 69

 Schema Dimension (Machine descriptions and ID codes dimension).
 Attributes:

• The ID code will be a unique 1 to 20 digit code representing a particular
machine. (example: Mach10)

• The Machine description is a unique text description of any machine that is
used in the manufacturing of a given part. This description will also contain
any special attachments required for the manufacturing of the part. (
example: 3040 Sheldon horizontal CNC milling machine with hyperdex
indexing head attachment installed.)

• The Control type code represents a particular type of machine control system
being used.

• Last Maintenance represents the last date that maintenance was performed
on a particular machine.

Schema Dimension (Production sequence numbers dimension).
Attributes:

• The Manufacturing sequence number field is a placement number in the
manufacturing sequence. (example: 5 , the Mach10 is the 5th machine in the
manufacturing process of a particular part.)

• The Production Code is a unique code identifying the type of process a for
which a machine is used.

Schema Dimension (Operator dimension).
Attributes:

• The Employee code field is a 1 to 5-digit code that represents an operator’s
unique employee code. (example: EMP52)

• Experience code represents the experience grade of an operator.
• The Evaluation field is a textual rendering of the operator’s last evaluation.

Schema Dimension (Tool package dimension).
Attributes:

• The Tool package field is a 1 to 10 character alphanumeric code that
represents a tool configuration package that describes the type of tool
holders. (example: TPK10, representing tool package configuration 10).

• Tools field indicates insert grade required for a specific manufacturing
sequence.

• Validated is the date the tools package was released to production.
• Special instructions represent any special instructions pertaining to the

selected tools package.
• Tool technician is an identification of the personnel who prepared the tools

package.

Schema Dimension (Machine production charge dimension).
Attributes:

 70

• The Setup rate field represents a unique charge for setup time.
• The Machine production charge is a value placed on a particular machine,

production rate, for a given process in the manufacturing of a part. (example:
$120.00PH for 120.00 per hourly charge rate.) This charge represents a cost
of overhead for a particular machine and is a constant attached to a machine
in all calculations of part manufacturing cost.

Data Mart (3) Production Time Dimension Description:

Schema Fact Table:

• Product_History_Key joins the Historical Production Cycle Data dimension.
• Production_Sequence_Key joins the Sequence Definition dimension.
• Inspection_Key joins the Inspection dimension.
• Step_Cycle_Key joins the Sequence Cycle Time dimension.

Schema Fact table Facts:

• Historical cycle time captures the last actual time to complete an identified
production cycle.

• Set-Up data captures pertinent set-up information for preparing for
production.

• Current cycle time capture the current cycle time of production.
• Production sequence captures the sequence number of different stages of

production.
• Step cycle time captures the time to complete the current production phase.

Schema Dimension (Historical production run time).
Attributes:

• The Part# field represents a unique number representing a part.
• The Part description field represents a textual description of a part.
• The Cad file filed is a unique file name for the cad data for the part drawing.
• The CNC file filed houses the file name of the CNC program used to produce

the part.
• The Last Operator code field represents the identification of the last person

who produced a part at a specified step cycle.

Schema Dimension (Sequence Definition).
Attributes:

• The Machine code field is a unique identifier for a particular machine.
• Production sequence captures the sequence number of different stages of

production.
• The Interplant Transport time filed represents the elapsed time between step

cycles.
• The Batch issue date field houses the date of Batch job creation.

 71

• The Batch Completion date field houses the date that a batch job was
completed.

Schema Dimension (Inspection).
Attributes:

• The Inspection code field represents the type of inspection that will be
performed on a manufactured item.

• The Inspection Cycle time field houses the last inspection step cycle time.
• The Inspection Interval field is the interval of inspection on a production item

during the manufacturing process. Is it inspected at each step or only at the
end of production.

• The Specifications field houses procedures for inspection.
• The Comments field stores any pertinent information from last inspection.

Schema Dimension (Sequence Cycle Time).
Attributes:

• The last setup time field is the total accumulated step setup time of the last
production of a particular part.

• The last cycle time field represents the last step cycle time for a production
item.

• The current setup time field represents the current step cycle setup time.
• The current cycle time field is the current accumulated time on the current

production item.

Data Mart (4) Reports Dimension Description

Schema Fact Table:

• Machine_Key joins the Machine dimension.
• Product_Key joins the Product dimension.
• Operator_Key joins the employee dimension.

Schema Fact Table Facts:

• Machine cost captures the overhead for a selected machine.
• Product cost captures the manufacturing cost of a production item.
• Operator cost captures the overhead in reference to a selected operator in

reference to a production run.

Schema Dimension (Machine).
Attributes:

• The Machine code field contains a unique code representing a particular
machine.

• The Machine rate is the cost per minute for a particular machine.

 72

Schema Dimension (Product).
Attributes:

• The Product# field is a unique part identifier.
• The Description filed houses a textual description of the part.
• The Average cost field holds a pre-calculated average cost of a part.

Schema Dimension (Employee).
Attributes:

• The employee code field is a unique employee identifier.
• The Experience code field represents the selected employees experience in

relation to their involvement in a particular production run.
• The evaluation field is the latest employee evaluation in regards to the current

production run.

Figures 29, 30, 31, and 32 are the Star Schema Models for the described data marts.

Figure 29 Production Definition Star Schema Model

 73

Figure 30 Production Machines Star Schema Model

 74

Figure 31 Production Time Star Schema Model

 75

Figure 32 Reports Star Schema Model

Data Sources

Internal Legacy sources include:

• Data collected during the manufacturing process at various data entry
stations. This data is in the form of flat files.

• Product name and descriptions will be retrieved from a proprietary database
via downloaded text files that will be translated.

• Engineering CAD data, drawing numbers ect., from existing fragmented data
housed on various engineering workstations.

• Production data, tooling, NC program code, existing cycle time data, housed
on various production planning stations. Some data is resident in Excel
spread sheets and flat files.

External Legacy sources include:

• Research data from various engineering and design web pages.

 76

Figure 33 is the Legacy Source Map that maps the legacy data to a corresponding
data mart. The map also shows the data activity, rapid or slow changing.

Figure 33 Legacy source Map

The data warehouse project has revolutionized the way my coworkers and I work

with the company data. The MMS project has opened up new ways of managing

production, and the data warehouse part of the project has made an enormous

impact on controlling production cost. Figure 34 is a image of the main GUI for the

MMS system.

 77

FIGURE 34 MMS MAIN GUI

Validation & Verification

I would like to briefly touch on SENG 330 Validation and Verification. SENG 330 was

my first Masters class. Most of the other classes covered V&V to some degree but

one of the most important lessons I learned in SENG 330 was the type of discipline

that is required for proper software engineering. The class covered development

models and different verification and validation techniques. The class prepared me

for the study habits and work dedication that is required to complete the Masters

Degree in Software Engineering.

 78

One of the most interesting topics covered was CARA, Criticality and Risk

Assessment analysis20. I have not extensively utilized the method but I am

presenting a CARA study on the MMS project to demonstrate the magnitude of

change in my software development processes. I had never encountered a CARA

study before but I believe it will be one of the tools that I will use in the future.

The following figures 35 and 36 are the Criticality and Risk Assessment analysis for

the MMS system to determine the degree of testing that will be required for the listed

functions. The knowledge I have gained in my Masters program techniques such as

the CARA, have helped me make decisions about the amount of testing that can

reasonably be done on larger systems.

20 Robert O. Lewis, Independent Verification and Validation (John Wiley & Sons, Inc., 1992) 265

 79

Figure 35 CARA Score Matrix for MMS project

 80

Figure 36 CARA analysis Summery

CARA
Score Activity

Functions List
1 User Interface 4.666667 Minor Review

1.1 Screen layout and appearance consistent with exiting business system 3.266667 Minor Review
1.2 Use multiple windows on screens when required 1.6 No Review

2 Data Security 11.2 Comprehensive Review
 2.1 Data base location. 8 Focused Review
 2.2 Data file password protection 5.6 Limited Review

3 Data Access 7.333333 Focused Review
 3.1 File structure and type 10.4 Comprehensive Review

4 Data Attributes 5.333333 Limited Review
5 Program Scaleability 3.266667 Minor Review
6 Network Compatibility 6.666667 Focused Review
7 Error Handling 4.8 Minor Review

The final technique that I will mention is the MaCabe Cyclomatic Complexity21. The

MaCabe Cyclomatic Complexity is another technique that I learned in SENG 330 that

I have not started to use extensively. It again represents a quantum leap over my old

processes. Figure 36 represents the Cyclomatic Complexity of the FindRecord sub-

routine of the MMS project. It is a method for determining the complexity of code. It is

most useful for the study of loops and nested loops to determine if the code is

becoming overly complex and may need to revision.

21 Steven R. Rakitin, Software Verification and Validation (ARTECH HOUSE, INC., 1997) 102

 81

Figure 37 MaCabe Cyclomatic Complexity model

 82

 Conclusion

My involvement in the MSSE program over the last three years has made a profound

difference in me professionally and personally. On a professional level my MSSE

experience brought about dramatic changes in the way my company performs

everyday business. I believe that my work at implementing Software Engineering

practices, at this point in time, may have very well prevented enormous losses in

revenue for the company that may have put the company at risk. Even though there

must be investment made to introduce the changes I am making, the fact that the

methodologies can span across the different engineering disciplines used within the

organization brings a rapid return on their investment.

The work I am doing implementing data warehouse technologies is adding enormous

value to the company resources. The new ability to get almost real time cost analysis

on production items has brought about a new way of production planning and

engineering. We now have hard factual data about production methods that work

and those that don’t. We don’t re-invent the wheel each time we produce parts. The

analysis group now can use the new data to make tooling and setup changes that

can have an extreme effect on cost. This type of information has not been available

to the corporate owners and managers in this magnitude before.

The processes I have introduced, and those yet to come, have changed the

company culture. One of my goals is for my company to move up to ISO 9000 quality

standards for their manufacturing. The introduction of CMM will lead to a corporate

wide discipline required by these quality standards. The introduction of process also

 83

empowers others in the organization to improve and buy-in to the changes being

made. This will have a very positive effect on all future projects.

On a personal level the MSSE has given me the credibility on the software side of

the organization that I have on the mechanical design side. Although I have held a

management position for many years, I have not always been taken seriously by my

supervisors. Without credentials it is sometimes difficult to gain credibility. You get

into a position in a small firm and you tend to remain there. It takes confidence to

bring about changes that are not always within the scope of your position. The MSSE

program has given me the confidence and the professional credentials required to

implement corporate wide process changes.

Being involved in the MSSE program where my classmates were all professional

people gave me insight into how these processes work in different types of

organizations. It was interesting to hear many of the same types of problems that I

have experienced and how they went about resolving those problems. Work related

discussions were always welcomed and I believe it added to classes. The Instructors

respected everyone as professional rather than just students and I believe that

greatly enhanced the learning experience.

 84

 List of Works Cited

Bryan Pfaffenberger, Dictionary of Computer Terms Sixth Edition (Simon &
Schuster, Inc. 1997)

Cay S. Hortsmann, Practical Object-Oriented Development in C++ and Java
(John Wiley & Sons, Inc. 1997)

Frederick P. Brooks, Jr., The Mythical Man-Month (Addison Wesley Longman, Inc.
1995)

Hydraulic Institute, Hydraulic Institute Standards (Library of Congress Card No. A82-
84047)

Karl E. Wiegers, Software Requirements (Microsoft Press, 1999)

Microsoft Press, Visual Basic 6.0 (Microsoft Corporation 1998)

Neal Whitten, Managing Software Development Projects Second Edition (John
Wiley & Sons, Inc. 1995)

PMI Standards committee, A Guide to Project Management Body of Knowledge
(William R. Duncan, Director of Standards 1996)

Robert O. Lewis, Independent Verification and Validation (John Wiley & Sons,
Inc., 1992) 265

Roger S. Pressman, Software Engineering: a Practitioner’s Approach (McGraw-
Hill Series in Computer Science)

SBA Office of Advocacy latest census data
http://www.sba.gov/advo/stats/sbfaq.html#q3

Statistics of small businesses
http://www.census.gov/epcd/www/smallbus.html#EstabSize

Steven R. Rakitin, Software Verification and Validation (ARTECH HOUSE, INC.,
1997)

http://www.sba.gov/
http://www.census.gov/epcd/www/smallbus.html

 85

 Vitae

James Clifford Fleming

SOFTWARE INTEGRATION EXPERIENCE

I am responsible for all software engineering and development at the company I work
for. I program primarily in Visual Basic 6.0. I have also developed control software
utilizing programmable logic control systems for industrial equipment. My latest
project is the engineering and development of a manufacturing management system.
This system will give production managers the ability to do analytical production
studies to improve overall product production efficiency. The database
implementation will be based on data warehouse technologies utilizing the current
relational database and other legacy data structures. I have engineered, developed,
and implemented inventory management systems, engineering software, and
personal process software. I am proficient in the use of Auto Cad Mechanical,
Microsoft Word, Excel, Corel Draw, and Microsoft Power Point.

I have been maintaining a 32 station Local Area Network and all the computers on
the network for the company for the last five years. I am responsible for maintaining
the efficiency and security of the network and installing all of the software that I
develop and all of the off the shelve software that is purchased by the company. The
network has a Dell Power Edge 2400 dual processor domain controller server
utilizing the Microsoft Small Business Server operating system running on the NT
platform and a Dell Power Edge 2500 backup domain controller server utilizing the
Microsoft Windows 2000 Server operating system. The PCs on the network utilize
Windows 98, Millennium, and Windows XP professional operating systems. The
network is linked to the Internet through a router using Win Route firewall software. I
completely setup, including installation of the Windows 2000 server operating
system, the Dell Power Edge 2500 dual processor server. The network is based on
the client server network model. I am responsible for all trouble shooting and training
on the use of the network and its resources.

PRODUCT DEVELOPMENT

The company I work for manufactures industrial water pumps. My current position as
Director of Design and Development also requires me to supervise the engineering
department and develop conceptual designs for future industrial pump products. My
latest design achievement is a line of Ultra Pure high pressure water pumps for the
Reverse Osmosis Industry. My pump designs are in use around the world in water
purification systems.

MANAGERIAL EXPERIENCE

 86

Director of Design and Development: Current position

My current position of Director of Design and Development requires me to engineer
and develop all software and industrial pump design projects. I manage all of the
projects from conception to final proto-type testing. This requires me to supervise the
engineering and production staffs during the development of these types of projects.
I also become involved with customers when technical issues arise that require
product expertise. I am continually teaching the engineers and technicians that I
supervise when issues occur that require my personal involvement.

Plant Superintendent:

The position of Plant Superintendent required me to supervise all factory employees
and production activities. I was responsible for all production scheduling and the
efficient operation of the manufacturing facilities. This position also required
extensive interaction with company customers and vendors. I became an effective
liaison between the customer and the company.

INSTRUCTIONAL SEMINARS

My position as Director of Design and Development has required me to give
industrial pump technology seminars to some of our largest customers engineering
staffs. The scope of the seminars is generally a technical introduction to various
types of pumping technologies. I have given these seminars to US Filter, Culigan
International, Glegg Water and Pentair water to name a few.

EDUCATION

Currently pursuing a Master of Science in Software Engineering Degree, West
Virginia University.

Received Certificate of Software Engineering, WVU December 2002

Received Regents B.A. Degree Focused on Industrial Technology, Fairmont State
College December 2000

Enrolled in The American College of Computer & Information Sciences. June 1998
Course completed:
CS 100 Intro to computers and Information Processes
CS Computer Programming Using Pascal

References on Request

	Implementing software engineering practices in small industry with a focus on requirements elicitation
	Recommended Citation

	Table of Contents
	Current System Infrastructure
	Data Sources
	SOFTWARE INTEGRATION EXPERIENCE
	PRODUCT DEVELOPMENT
	Director of Design and Development: Current position
	Plant Superintendent:

		www.wvu.edu/~thesis
	2003-11-10T11:41:56-0500
	West Virginia University Libraries
	John H. Hagen
	I am approving this document

