
Graduate Theses, Dissertations, and Problem Reports 

2006 

Regulation of polymeric immunoglobulin receptor by reovirus in Regulation of polymeric immunoglobulin receptor by reovirus in 

intestinal epithelial cells intestinal epithelial cells 

Kasturi Pal 
West Virginia University 

Follow this and additional works at: https://researchrepository.wvu.edu/etd 

Recommended Citation Recommended Citation 
Pal, Kasturi, "Regulation of polymeric immunoglobulin receptor by reovirus in intestinal epithelial cells" 
(2006). Graduate Theses, Dissertations, and Problem Reports. 2400. 
https://researchrepository.wvu.edu/etd/2400 

This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research 
Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is 
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain 
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license 
in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses, 
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. 
For more information, please contact researchrepository@mail.wvu.edu. 

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F2400&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/2400?utm_source=researchrepository.wvu.edu%2Fetd%2F2400&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu


   

 

REGULATION OF POLYMERIC IMMUNOGLOBULIN 

RECEPTOR BY REOVIRUS IN INTESTINAL EPITHELIAL CELLS 

 

Kasturi Pal 

 

DISSERTATION  

 

Submitted to the School of Medicine at West Virginia University in partial 

fulfillment of the requirements for the degree of 

Doctor of Philosophy 

In  

Immunology and Microbial Pathogenesis  

 

Christopher F. Cuff, Ph.D, Chair 
Daniel C. Flynn, Ph.D 

David N. Weissman, M.D 
Jia Luo, Ph.D 

Michael R. Miller, Ph.D 
 

Department of Microbiology, Immunology, and Cell Biology 

Morgantown, WV 

2006 

Keywords:  Mucosal Immunology, Polymeric Immunoglobulin receptor, Secretory 
IgA, Reovirus, Host defense, Nuclear Factor kappa B.  



ABSTRACT  

Regulation of Polymeric Immunoglobulin Receptor by Reovirus in 

Intestinal Epithelial Cells 

 

Kasturi Pal 

Most pathogens invade the human body through mucosal surfaces.  Enteric viruses are 
one such group of pathogens that are of great public health significance because they 
cause a number of serious diseases including gastroenteritis, hepatitis and poliomyelitis.  
Gastrointestinal disease is the second most common cause of morbidity worldwide, with 
diarrhea ranking first among infectious diseases in the categories of frequency and 
mortality in children.  The mucosal epithelium provides the first line of defense against 
invading pathogens by serving as the first sensors of microbial infection and launching an 
innate immune response that leads to the development of adaptive immunity.  An 
immunologic function of the mucosal epithelium is to mediate transcytosis of secretory   
immunoglobulin A (sIgA) from the lamina propria into the intestinal lumen.  
Transcytosis of IgA is dependent on the polymeric immunoglobulin receptor (pIgR) 
expressed by mucosal and glandular epithelial cells because one molecule of pIgR must 
be synthesized for each molecule of transported IgA. Thus, pIgR plays a role in mucosal 
host defense, and factors that influence expression of pIgR could affect mucosal 
immunity.  This dissertation describes efforts to understand the role of intestinal 
epithelial cells (IECs) as an active participant of mucosal immunity during enteric virus 
infection.  We used reovirus to demonstrate that a newly appreciated role of the IECs in 
responding to infection is upregulation of pIgR expression, which appears to serve as an 
innate host defense mechanism.  Our studies demonstrate that reovirus upregulates pIgR 
expression in the intestinal epithelial cell line HT-29 in a replication independent fashion, 
and that binding of virus to cellular receptors and partial disassembly of virus inside 
acidified endosomes are required steps for this innate immune response by IECs.  In 
addition, we demonstrate that activation of calpain and NFκB signaling and reovirus -
induced PIGR gene transcription in IECs upregulate pIgR expression during infection.  
Signaling induced by virus-host interaction might serve to augment pIgR-mediated 
transcytosis of IgA in vivo, thereby linking the innate and acquired immune responses to 
enteric viruses.  Our studies will contribute to improving human health by advancing 
understanding of IEC biology and function, viral pathogenesis, and induction of innate 
and adaptive immunity to viruses, particularly in the intestine.   
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CHAPTER 1:  GENERAL INTRODUCTION 

 

Most of the pathogens, particularly viruses, invade the human body by the mucosal 

epithelia.  The mucosal surface is one of the first important interfaces between pathogens 

and the host, and as such is critical in prevention of infectious disease.  The 

gastrointestinal mucosa comprised of a single layer of intestinal epithelial cells (IECs) 

form a barrier between the body and a luminal environment, which not only contains 

essential nutrients but also potentially harmful pathogens.  Thus the major challenge 

faced by IECs is to allow entry of nutrients from lumen for processing and absorption 

while rigorously excluding passage of toxins and pathogens.  In general, toxins and 

microorganism that breach the epithelial barrier have unimpeded access to the systemic 

circulation.  Maintainance of an intact epithelium throughout the length of the digestive 

system is essential for host defense and disruption of mucosal barrier leads to a number 

of gastrointestinal diseases.  

 

The gastrointestinal barrier has two specific components, (1) the intrinsic barrier and (2) 

the extrinsic barrier.  The intrinsic barrier comprises the epithelial cells lining the 

digestive tract while the extrinsic barrier consists of secretions including mucus, trefoil 

peptides and defensins, which modulate and maintain integrity of mucosal epithelial 

cells.   
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The IECs are an important component in mucosal host defense and act at the interface 

between the innate and acquired immune responses to pathogens in the gastrointestinal 

tract.  The innate immune arm of IECs and associated extrinsic barrier block the invading 

pathogens non-specifically, while the adaptive immune responses triggered by initial 

signaling through IECs provides pathogen specific immunity.  IECs function as first 

sensors of infection as direct contact with microbes or their metabolic products such as 

lipopolysaccharide (LPS) and double stranded RNA (dsRNA) initiate innate responses 

including production of antimicrobial substances that fight infection directly and 

secretion of chemokines and cytokines that promote acquired adaptive immune 

responses.  A hallmark feature of adaptive mucosal immune responses is the production 

and secretion of secretory immunoglobulin A (sIgA).  Dimeric IgA produced by plasma 

cells in lamina propria of the intestine is transported through adjacent secretory epithelia 

by polymeric immunoglobulin receptor (pIgR) expressed by glandular and IECs into 

intestinal secretions.  Secretory antibodies including sIgA and secretory IgM (sIgM) 

mediate immune exclusion at mucosal surfaces along with non-specific innate defenses to 

restrict colonization of mucosal surfaces by microorganisms and inhibit potentially 

dangerous soluble factors and antigens to breach the epithelial barrier.  Thus, pIgR 

synthesized by IECs and secretory antibodies are very important for maintaining the 

integrity of the gut and factors that influence regulation of pIgR expression could affect 

mucosal immunity.  So it is of great interest to investigate modulation of pIgR and hence 

secretory antibodies during pathogenic interactions.  
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This dissertation is comprised of a series of studies examining the regulation of pIgR 

expression in response to an enteric pathogen, reovirus in IECs.  These studies showed 

that reovirus induced expression of pIgR in IECs and characterized the various signaling 

pathways including calpains and nuclear factor kappa B (NFκB) involved in virus-

mediated upregulation of pIgR.  Signaling induced by microbes and their products that 

augment pIgR-mediated transcytosis of IgA, links the innate and acquired immune 

responses to viruses. 

 

THE GENERAL ORGANIZATION, DEVELOPMENT AND MATURATION OF 

GUT EPITHELIUM 

 

Embryology of Gastrointestinal Tract.  The human gastrointestinal tract (GI) can be 

recognized early during ontogeny in the fourth week of gestation.  During development 

the GI tract can be divided into foregut, midgut and hindgut.  The foregut develops into 

esophagus, stomach, duodenum up to ampulla of Vater and associated organs including 

liver and pancreas.  The midgut gives rise to the distal 2/3 portions of duodenum, 

jejunum, ileum and proximal transverse colon.  The hindgut accounts for distal transverse 

colon, remaining portion of large intestine up to the proximal anal canal (121).    

 

Development and Maturation of Small and Large Intestines.  In humans, the small 

intestine and the colon develops around fifth week of gestation, which is relatively early 

compared to other mammals including mice and rats.  Simple cuboidal epithelial cells 

initially line the small intestine and colon.  At 8 weeks of gestation, the epithelium is 
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undifferentiated and stratified and and heparin sulphate, type IV collagen, and laminin, 

produced by epithelial cells form a basement membrane before differentiation (25).  At 9 

week, the first important morphogenetic change is marked by development of the villi 

first in the proximal intestine and successively in the distal portions of the intestine.  At 

this stage the villi is lined with a functional epithelium so that a typical adult –like 

architechture is established in the small intestine.  The four different cell types that 

comprise the functional epithelium are absorptive columnar, goblet, enteroendocrine and 

Paneth cells.  In the following weeks of gestation the villi continues to develop in size 

and number.  At 14 – 16 weeks of gestation a second important morphogenetic event 

occurs that results in invagination of the intervillous epithelium in the adjacent 

mesenchyme to form crypts that harbors the majority of proliferative cells of the 

epithelium.  Thus, sequential morphogenesis leads to establishment of the crypt – villus 

axis that serves as a typical intestinal renewing unit in the small intestine.  The 

morphogenesis of colon is similar to that of small intestine but the onset of development 

is delayed by 2-3 weeks.  Interestingly, the villi structures in the developing colon 

eventually disappear after 30 weeks to form definitive adult –like glandular surface 

epithelium (SE) axis, where proliferative cells are restricted to the lower third of the 

glands (119,120,259).  

Although not in humans, but in mice, some functional maturational changes of the small 

intestine occur at the time of weaning, a process that begins in the third week after birth.  

For example, in rodents development of many absorptive and enzymatic activities 

coincide with weaning.  During weaning the infant GI tract is exposed to a special diet of 

‘maternal milk’ that is high in fat and low in carbohydrates.  Increases in small intestine 
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weight, size and DNA or protein content have been reported in pigs, rabbits, rodents and 

dogs when fed colostrums compared to conventional diet, suggests a role for maternal 

milk in impacting intestinal maturation {787, 788}.  

 

Basement Membrane of Intestine.   

The intestinal epithelium lies on thin and continuous sheet of specialized extracellular 

matrix (ECM) called the basement membrane, which separates the underying interstitial 

connective tissue or stroma containing various cells types including the mesenchymal 

cells from the epithelial cells (317).  The basement membrane is composed of 

glycoproteins and peptidoglycans including laminins, type IV collagens, nidogens and 

heparan sulphate proteoglycans (294,295,317). The intestinal basement membrane 

comprises of three layers and is considered a simple basement membrane (Fig.  1).  It has 

three distinct layers including the lamina densa (LD) adjacent to the intestinal epithelium, 

the lamina lara (LR) that separates the LD from underlying stroma and the lamina 

fibroreticularis (LFR), which connects the overlying basement membranes (LD and LR) 

to the underlying extracellular matrix of the connective tissue (317).  One of the primary 

functions of basement membrane is to provide structural support for the intestinal cells 

and offer compartmentalization.  However, it has become evident over the past decade 

that basement membrane composition dictates the necessary microenvironment and 

influences a number of functions of the surrounding epithelial cells including growth, 

migration, differentiation, tissue specific gene expression and apoptosis 

(317,375,376,377,378).  These cellular functions during development and maturation of 

GI tract are regulated by various components of the basement membranes including 
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fibronectins, tenascins and laminins and their interaction with cellular receptors such as 

members of the integrin superfamily (115,116,372).   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  Schematic Representation of Intestinal Basement Membrane.   
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Basement membrane is composed of three layers including a lamina rara (LR) adjacent to 

epithelium,  a lamina densa (LD) and a lamina fibroreticularis (LFR) that connects the 

basement membrane (BM) the the underlying connective tissue.  Diagram is adapted from 

Quondamatteo et al. (2002) (317).  
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Stem Cells of the Gastrointestinal Tract. 

The regenerative property of the gut epithelium depends on the multipotent intestinal 

stem cells that are stationary and anchored at specific locations along the entire length of 

gut epithelium. Despite the lack of specific biomarkers for the intestinal stem cells, they 

can be recognized morphologically by their undifferentiated, embryonic cell like features 

such as a high nucleus-to-cytoplasm ratio, diffused chromatin, large reticulated nucleoli 

and cytoplasm with few cellular organelles but abundant in free ribosomes.  In addition, 

intestinal stem cells are also distinct functionally as evident from their remarkable 

capacity to proliferate to maintain their own renewal and produce all lineage precursors 

of the gut epithelium (14,310,312).  In the small intestine, these stem cells are arranged in 

a ring like formation just above the Paneth cells in the crypt base, which marks the origin 

of migration of epithelial cells to repopulate the differentiated, functional mature cells of 

villi that are constantly shed in the intestinal lumen (14).  The number of stem cells per 

crypt is tightly regulated and each crypt comprised of approximately 250 epithelial cells 

harbors 4-6 functional stem cells.  Regulation of stem cell number is vital because one 

additional stem cell might lead to an excess of 60-120 cells per crypt.  Such regulation is 

enforced by apoptosis in small intestine that removes excess but otherwise healthy stem 

cells and / or stem cells with DNA damage and thereby checks replication errors despite 

the rapid proliferation rate (238).  Control of cell division in intestinal stem cell is an 

active area of research and it has been proposed that a specific type of mitosis occurs in 

the functional stem cell that is responsible for its self-renewal and maintainance. 

Typically, normal stem cells undergo mitosis asymmetrically resulting in one daughter 
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stem cell and one daughter cell that continue to divide, mature and differentiate.  

Alternatively, there is a 5% chance of symmetric mitosis in the stem cells producing 

either two stem cells or two maturing cells (223).  The small intestinal stem cells gives 

rise to three main precursors including pre-absorptive, pre-goblet and pre-Paneth cells 

that ultimately evolve into absorptive, goblet and Paneth cell lineages respectively (176).  

The entire gut epithelial cell types except the Paneth cells of small intestine migrate 

upward from the base of the crypts as they mature and differentiate.  It has been 

speculated that since the small intestinal stem cells lies adjacent to Paneth cells always 

localized at crypt base, the latter might contribute to control of stem cells (311)  

 

Cell Differentiation in Crypt – Villus unit of Small Intestine.   

The small intestine mucosa is composed of large finger-like projections called villi that 

project into the intestinal lumen and the surrounding crypts of Lieberkuhn that extends 

from base of villi and project away from the lumen (Fig. 2).  A single layer of columnar 

epithelial cell lines both the cypts and villi.  The intestinal epithelium is a very dynamic 

tissue and regenerates itself over a 3-5 day period in humans.  Within the crypts 

multipotent crypt stem cells divide through life, giving rise to the epithelial lineages.  The 

stem cells are localized at fixed positions in the middle to lower crypt cell region.  

Columnar epithelial cells differentiate as they migrate from the crypt base to the villus tip 

in 5 – 6 days in the proximal human small intestine and 3 days in the human ileum 

(145,402,403).  Migration continues until cells are lost from the tip of a villus and shed 

into the intestinal lumen.  The exceptions are the intestinal Paneth cells, which reside at 
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Stem cells lie in the base of the crypt above paneth cell cluster.  Transitory progenitor cells derived 

from stem cells migrate along the crypt-villus axis, rapidly dividing with an average cell –cycle time of 

12h.  Progenitor cells ultimately differentiate into goblet, enteroendocrine, and absorptive cells.  

Migration of cells in completed in 3-5 days and finally they are shed into the lumen.  Progenitors 

destined to give rise to Paneth cells migrate downward towards crypt base.  Diagram is adapted from 

Fujita et al. (2004) (107).    

the base of the crypts and turn over every 23.3 days being cleared from the crypt base by 

phagocytosis (32,33). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       Figure 2.  Anatomy of a crypt – villus unit of small intestine.   
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GUT EPITHELIUM AND INNATE DEFENSE FACTORS 

Physical  Barrier. The collective mechanisms by which the IECs controls the 

commensal microflora and and actively responds to invading pathogens is referred to as 

innate intestinal epithelial defense. The intestinal epithelium lining serves as a formidable 

physical barrier to foreign antigens and microbes in the gut lumen and thus contributes in 

host defense.  The intestinal epithelium maintains its integrity by tight junctions between 

IECs and thereby restricts uptake of noxious antigens while allowing passage of nutrients 

by pinocytosis (331,392).  The major function of the GI tract is digestion and absoption 

of nutrients.  To perform its primary function, the majority of the mucosal epithelium is 

composed of absorptive epithelial cells (enterocytes).  The apical surface of enterocytes 

in tightly packed with microvilli that are covered with glycocalyx. The carbohydrate rich 

glycocalyx coat contains various enzymes and nonenzymatic proteins including 

disaccharidases, peptidases, receptors and transport proteins that help in digestion and 

absorption of nutrients (106,112,151).  In addition, the gut epithelium is bathed in 

copious secretions of mucus that forms the outermost coat of the mucosal immune system 

and acts as a selective permeable barrier like the cell membrane of epithelial cells.  

Humans secrete a total of approximately 10 liters of mucus per day.  Mucus is a sticky 

slippery gel with viscoelastic properties and is composed of 1% mucin, 1% free protein, 

1% dialyzable salts and more than 95% water.  The viscoelastic property of mucus is 

provided by the secreted mucins, which are, long fibrous peptides coated with a complex 

and diverse array of oligosaccharides (237).  Mucus protects the IEC surfaces as a 

lubricant that protects against mechanical damage and serves as a shield by entrapping 
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harmful antigens and microorganisms before they can bind and interact with the cells 

(104,232).  Mucus prevents adherence of microorganisms including enteropathogenic 

Escherichia coli, Entamoeba histolytica and Yerssinia enterolytica by trapping the 

pathogens and covering their cellular binding sites with mucin and secretory IgA 

(61,236,328).  Recent studies have demonstrated that preformed mucus can be secreted 

from goblet cells in response to stimulation by luminal pathogens to provide an additional 

protective coat on the mucosal epithelial surface that restricts excessive uptake of 

antigens and pathogens (105,296,331).  However, mucus selects and support colonization 

of gut by friendly and protective commensals and thus plays a role in establishing local 

mucosal ecosystems that reduce or prevent colonization by pathogens (72,345).   

 

Innate Defense Factors.  The IECs are armed with an impressive set of constitutive 

innate immune defense mechanisms including defensins, trefoil peptides, lactoferrin and 

complement that protect the underlying biological compartments. 

(a) Defensins:  IECs express a class of antimicrobial peptides called defensins.  Defensins 

are the most abundant antimicrobial peptides released at the mucosal surfaces.  They are 

3 to 4 kDa cationic, arginine –rich β-sheet peptides with six cysteines that form three 

disulphide bridges (172,211,288).  Defensins are categorized as α –defensins and β -

defensins depending on their pattern of disulphide bonding (111).  In the intestine, the 

defensins were first identified in the mice Paneth cells located at the base of the crypts of 

Lieburkuhn and hence this family of mouse α-defensins is called cyrptidins (289).  

Secretion of defensins from Paneth cells might provide antimicrobial defense to the 

intestinal stem cells lodged in crypts and thus provide a protective barrier for the highly 
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proliferative compartment of intestine.  In newborn mice cryptidin mRNA expression is 

not discernable but its expression gradually increase and reach adult levels by the fourth 

postnatal week.  The mechanisms controling cryptidin gene expression is not fully 

understood (80,287,289,290).  Interestingly, levels of cryptidin mRNA expression were 

normal in nude and germ free mice suggesting that its expression is independent of both 

T-cell mediated signals or colonization of gut by intestinal microflora (80,288).  

Cryptidins exhibit antimicrobial activity by permeabilizing microbial cell membranes in a 

number of virulent bacteria including Staphylococcus aureus, Listeria monocytogenes, 

Salmonella typhimurium, Escherichia coli and fungi such as Candida albicans and 

Aspergillus fumigatus (92,210,211,212).  In humans, two intestinal α−defensins namely 

human defensin 5 (HD-5) and HD-6 have been identified in the Paneth cell granules 

(307). HD-5 and HD-6 mRNA expression can be detected by reverse transcriptase 

polymerase chain reaction (RT-PCR) by 13.5 weeks of gestation that parallels with the 

time when Paneth cells become morphologically distinguishable by electron microscopy 

(EM).  It has been demonstrated that recombinant HD-5 retained its antimicrobial activity 

even after exposure to concentrations of trypsin that are physiologically present in the 

intestinal lumen.  HD-5 was effective against L. monocytogenes, E. coli and S. 

typhimurium (307,308).  

 

The first β-defensin isolated from cow is called tracheal antimicrobial peptide (TAP) and 

its expression is restricted to the airway tissue (88,90).  Later, another homologous 

peptide was isolated from bovine tongue and named lingual antimicrobial peptide (LAP) 

(340).  Studies have shown that TAP and LAP mRNA expression is upregulated by LPS 
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and TNF-α suggesting that these bovine β-defensins provide an inducible mechanism of 

host innate defense (89,90,357). In humans, members of β-defensins namely hBD-1 and 

hBD-2 are more widely distributed within the GI tract.  However, they are not under the 

inducible control of cytokines such as TNF-α, IL-6 or IFN-γ (411).  Human BD-2 has 

been recently identified and not much is known about its regulation and induction by 

cytokines or microbial components.  Singh et al. reported that inflammatory cytokine IL-

1b induced hBD-2 in primary cultures of airway epithelial cells (350,351).  In addition, 

since hBD-2 was isolated exclusively from bronchoalveolar lavage (BAL) of cystic 

fibrosis patients, it suggest that this β-defensin is only induced under inflammatory 

conditions unlike hBD-1 which is present in BAL of all patients (17).  However, future 

studies will determine if the similar mechanisms of human β-defensin induction and 

regulation applies to the intestinal tissues.  

 

(b) Trefoil Peptides:  Trefoil peptides or trefoil factors are a family of extracellular small 

peptides that are synthesized and secreted by mucin secreting epithelial cells or goblet 

cells in the gastrointestinal tract.  The trefoil factor family (TFF) peptides are so named 

because they assume a trifoliate pattern of chain folding tightly held together by three 

pairs of disulphide bonds between cysteine residues (303,306).  The distinct cysteine-rich 

‘trefoil’ domains maintain stability of the molecule and render them resistant to 

proteolytic degradation by gut proteinases (306,332).  In humans, three trefoil factors 

namely TFF1, TFF2 and TFF3 have been identified (65,379).  All the three trefoil factors 

are highly expressed in gastrointestinal tract: TFF1 is mainly expressed in stomach and 

the antral mucosa; TFF2, in pancreas and stomach and TFF3 is expressed throughout the 
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small and large intestines (306,332).  The trefoil factors play an important role in 

maintaining integrity of the mucosal epithelium by coating the apical surface of the IECs 

and thereby protecting them from direct assault by pathogens and toxins (192,305).  

Recent studies have demonstrated that the trefoil factors act as motogens, which induces 

cell migration without promoting cell division.  The expressions of trefoil peptides are 

upregulated in chronic inflammatory bowel disease (IBD) and peptic ulcers, suggesting a 

role for these peptides in healing injured mucosal epithelium.  Trefoil peptides are a 

central player in the process of restitution, the initial phase of mucosal repair, which is 

accomplished by rapid migration of the surviving epithelial cells from wound edge to 

denuded areas ultimately re-establishing surface epithelial continuity and integrity.  

Studies in mice with targeted deletions in trefoil genes exhibit susceptibility to epithelial 

injury, impaired mucosal healing and death from extensive colitis, reinforcing the 

contribution of trefoil peptides in epithelial restitution and maintainance of the intestinal 

mucosa (100,240,371).   

 

(c) Pattern Recognition Receptors:  IECs are the first sensors of ‘non-self’ particles 

including pathogens and their microbial products initiating an innate immune response. 

IECs are decorated with an impressive arsenal of efficient sensing and defence molecules 

called pattern recognition receptors (PRRs) that recognize pathogen-associated- 

molecular-patterns (PAMPS), such as LPS, a glycolipid derived from the outermost 

membrane of pathogenic gram –negative bacteria, peptidoglycan (PGN), bacterial DNA, 

dsRNA and single stranded RNA (ssRNA) (139,304).  
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PRRs can be categorized into secreted, intracellular and cell surface forms (253).  IECs 

secrete soluble CD14 and also express a membrane bound form of CD14 (mCD14) 

(56,110).  CD14 facilitates binding of LPS to IEC, which is enhanced in presence of LPS 

binding protein (LBP).  It has been reported that low dose of LBP first recognizes 

bacterial LPS and then transfers it to second receptor CD14, that directly transduces 

signal in IECs and uncontrolled stimulation of host cells might result in septic shock 

(207,208,341).  However, high dose of LBP serves to inhibit LPS-mediated host cell 

stimulation and subsequent cytokine release suggesting a protective effect against LPS-

mediated septic shock without imparing physiologic defense mechanism against infection 

(205,414). 

 

IECs express intracellular PRRs such as NOD (nucleotide-binding oligomerization 

domain) proteins and Toll like receptor 3 (TLR3) (156,252,298).  Members of the Nod 

family include Apaf-1, Ced-4, Nod1, Nod2, and the cytosolic products of plant disease 

resistance genes.  Nod proteins function as cytosolic sensors for the innate recognition of 

microorganisms, induction of apoptosis, and regulators of inflammatory responses 

(157,158).  The C-terminal domain of Nod proteins serve as the intracellular ligand 

sensing domain while the N-terminal domains interact with downstream effector 

molecules and subsequently activate various signaling pathways leading to various 

immune responses and apoptosis (156).  In IECs, Nod1 and Nod2 recognize intracellular 

bacterial LPS; interact with downstream effector molecule Rip-2 via caspase activating 

and recruitment domains (CARDs) and ultimately mediate activation of NFκB and JNK 

(117,298,299).  Nod proteins including mammalian Nod1 and Nod2 represent an 
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evolutionarily conserved system of intracellular surveillance PRRs for recognizing 

cytosolic LPS and pathogen components derived from invading bacteria.   

 

In addition to soluble PRRs and intracellular Nod proteins, IECs are equipped with an 

array of surface expressed and intracellular pathogen detection receptors called TLRs.  In 

insects and mammals, TLRs are type I transmembrane proteins that play a crucial role in 

the recognition of invading pathogens and the activation of subsequent immune responses 

against them.  TLRs recognize pathogens through the PAMPs, which are conserved 

structural moieties of pathogens essential for their viability and therefore serve as ideal 

targets for detection (23,252,337,365).  To date, 13 TLRs have been identified including 

TLRs 1-9 are common to mouse and humans, while TLR 10 and TLRs 11-13 is unique to 

human and mouse respectively (252,362,365).  All TLRs are structurally similar in that 

they are comprised of three major domains including an amino-terminal domain 

containing a series of leucine rich repeat (LRRs) motifs, followed by a single putative 

transmembrane domain and a carboxy-terminal toll/ IL-1 receptor (TIR) domain.  The 

LLR domain is important for pathogen recognition while the TIR domain interacts with 

the downstream adaptor proteins including TRIF and MyD88 to transduce signaling 

events leading to inflammatory and antimicrobial innate immune responses in host cells 

(28,159,257,277,407).  

 

TLRs are functionally expressed in a wide variety of cell types including macrophages, 

neutrophils, dendritic cells and epithelial cells (252,286).  Although, TLRs 1-9 is 

expressed in the IEC, the GI tract exhibits a restricted and differential expression of 



 
 
 

 17

TLRs.  Selective expression of TLRs allow the enterocytes to maintain a state of 

balanced responsiveness to microbes in normal healthy condition by mediating tolerance 

to commensals while sensitively recognizing danger signals of potentially harmful 

pathogens (55,286).  The level of TLR2 and TLR4 expression decreases from the base of 

intestinal crypt cells to the more mature IECs of the intestinal villus.  Higher expression 

of TLR2 and TLR4 in the crypt cells allows them to effectively sense and destroy 

bacteria, maintain a sterile environment at the base of crypt-villus unit and thereby 

protect the resident stem cells that are required for regeneration of epithelium (152,285).  

The apical surfaces of IECs express minimal levels of TLR2 and TLR4, which traffic to 

intracellular compartments upon activation by PGN and LPS respectively.  Redistribution 

of TLRs from apical surfaces to intracellular compartments allows IECs to detect 

pathogens while limiting the extent of TLR –mediated signaling and subsequent 

inflammation (53,152,153).  In addition, TLR5 is expressed exclusively on the 

basolateral surface of IECs, suggesting that signaling through TLR5 is triggered only in 

response to flagellete invasive bacteria such as that breach the mucosal epithelial barrier 

(114,135).  Some recent studies have suggested the existence of an apical population of 

TLR5 receptors but atleast in GI tract TLR5 is expressed basolaterally in IECs (184).  

 

In addition to TLRs that sense bacteria, IECs express TLR3, TLR7 and TLR8 that 

specialize in recognizing viral PAMPs (4,91,140).  Various viral proteins and nucleic 

acids either activate TLRs or inhibit their function and a complex interplay occurs in host 

cells that ultimately leads to clearance of virus by activation of innate immune system or 

leads to evasion of TLR surveillance by virus enabling it to replicate.  TLR-3 is 
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constitutively expressed in human intestinal epithelial cells (55), although the precise 

intracellular location of TLR-3 has not yet been identified.  In human dendritic cells 

TLR-3 is expressed intracellularly in vesicles and possibly at a low level in late 

endosomes (109,243,244).  An intracellular localization on TLR3 is consistent with its 

role of responding to viral nucleic acids likely available for interaction during partial viral 

disassembly and / or during replication inside host cells (27).  It has been implicated that 

TLR 7 and 8 recognize viral PAMPs specifically ssRNA in endosomal or lysosomal 

compartments.  This is consistent with the possible route of naked virus nucleic acid 

exposure to TLRs upon receptor-mediated uptake of virus particles inside endosomes 

(91,140).    

 

Stimulation of TLRs triggers activation of a common MyD88-dependent signaling 

pathway as well as a MyD88-independent pathway mediated by several TIR domain-

containing adaptors proteins such as MyD88, TIRAP, and TRIF.  Recruitment of 

common adaptor MyD88 to TLR activates IL-1 receptor associated kinases (IRAKs), 

which interact with TNF receptor associated factor 6 (TRAF6), ultimately leading to the 

activation of MAP kinases and the transcription factor NFκB resulting in 

proinflammatory cytokine production (404,407).  The MyD88 –independent signaling 

requires adaptor molecule TRIF for TLR3- and TLR4-mediated signaling pathways, 

leading to activation of transcription factors NFκB and interferon regulatory factor 3 

(IRF3) facilitating IFN-β production for mammalian antiviral host defense (404,405,406).   
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The TLR- microbial interaction and signaling results in the secretion of anti-bacterial 

peptides, defensins, and proinflammatory cytokines such as TNF-α and IL-6 which 

initiate an inflammatory response to clear the invading pathogen and is essential for 

initiation of the adaptive immune responses.  Proinflammatory cytokines subsequently 

recruit cells of adaptive immunity including neutrophils, macrophages and dendritic cells 

(DCs).  Neutrophils and macrophages play an active role in clearance of the pathogens 

and contribute to host survival, while DCs primarily function as antigen presenting cells 

(APCs) to both naïve and memory T cells and drive their differentiona into T helper (Th)-

effector cells (193,242,252,337).  TLR-mediated recognition and microbial –epitheial 

cross talk at mucosal surfaces bridges the immediate innate and subsequent adaptive 

immune responses to invading mucosal pathogens. 
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IMMUNOGLOBULIN A: SYNTHESIS, STRUCTURE AND FUNCTION 

IgA synthesis.  Immunoglobulin A (IgA) is the primary immunoglobulin induced at the 

mucosal sites and it provides the first line of specific defense at mucosal surfaces 

(46,201,202,204,246,248).  One of the key effector functions of gut associated lymphoid 

tissue (GALT) is the elaboration of B cells into an IgA producing plasma cell.  Multiple 

steps are involved in the priming and maturation of a naïve B cell to an IgA producing 

cell (182,183).  The major source of precursors of the IgA plasma cells in the intestine is 

the organized lymphoid follicles of the PPs, where naïve B cells with surface IgM are 

switched to IgA bearing cells with the help of T cells and cytokines (75,183).  Protein 

antigens including ovalbumin, bacterial proteins, and viruses are phagocytosed by APCs, 

digested into peptides and reexpressed coupled with Major Histocompatibility Complex 

(MHC) II molecules on surface of APCs.  CD4+ T cells are activated upon interaction 

between its T-cell receptor (TCR) and peptide/ MHC II on APCs.  Activated T cells then 

directly contact B cells via binding of specific cell surface molecules CD40 ligand on T 

cell and CD40 on B cell, and such cognate interactions results in T- dependent B cell 

activation (8,9,272).  However, B cells can also be activated via a T independent 

mechanism by T independent (TI) antigens including bacterial LPS, dextran sulphates 

and capsular polysaccharides of bacteria such as Streptococcus pneumoniae, Neisseria 

meningitidis (94).  Macpherson et al. (233) reported a T independent pathway of B cell 

differentiation to IgA producing plasma cells.  Although, the conventional pathway of B 

cell development requires membrane IgM or IgD heavy chain expression at an early stage 

in B cell ontogeny, recent studies have shown that it is not an absolute requirement for 

the generation of IgA+ B cells.  Some murine IgA can be produced T cell independently 
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by B1 cells originated from peritoneal cavity and likely represents an evolutionarily 

primitive system for recognition of commensal bacteria by polyreactive antibodies.  In 

contrast, the B2 cells in the germinal centers of MALT produces the bulk of IgA by a T 

cell dependent (TD) manner (233).  At the inductive sites, TGF-β  primarily drives class 

switching of B cells to generate IgA+ B cells (39,60).  These committed cells then migrate 

from Peyer’s patches to the draining mesenteric lymph nodes, where they continue to 

divide and differentiate.  Finally they exit the lymph nodes and pass via the thoracic duct 

into the blood and home to the lamina propria where they mature as IgA-secreting plasma 

cells (203,297), and some B cells differentiate into memory cells (368). 

 

Structure of IgA.  IgA exists in both monomeric and polymeric forms.  IgA present in 

human serum or external secretions displays characteristic structural differences, 

particularly in the relative proportions of monomeric and dimeric forms.  In adults over 

90% of the IgA in serum is monomeric, while in secretions IgA is primarily polymeric, 

most often dimeric, in the form of sIgA (43,48,130).  Monomeric IgA (mIgA) is 

composed of two α (53-kDa) and two κ or λ (22.5-kDa) chains. Human α chains are 

glycoproteins (6-10% carbohydrate) consisting of one variable and three constant 

domains.  Dimeric IgA consists of two monomers connected by disulphide bonds and 

linked to an additional polypeptide called J chain (15-kDa; 8% carbohydrate) (discussed 

in J chain).   A distinguishing feature of polymeric IgA (pIgA), as well as IgM (which is 

generally pentameric), is the presence of J chain, which is incorporated into pIgA and 

IgM just prior to their secretion from plasma cells and plays a regulatory though not 

indispensable role in the polymerization of these isotypes (45,130,254).  
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IgA is the most heterogeneous immunoglobulin isotype. In addition to existing in a 

variety of molecular forms, it exists in two distinct subclasses, IgA1 and IgA2.  A major 

difference between the two subclasses is found in the hinge region.  IgA2 molecules lack 

a 13 amino acid segment, which is present in the hinge region of IgA1 and consists 

exclusively of prolyl, seryl, and threonyl residues.  Four to five of the seryl and threonyl 

residues carry O-linked glycans.   Though the extended hinge region confer greater 

segmental flexibility on IgA1 molecules, the O-glycosylation sites renders this isotype 

susceptible to the activity of certain post-proline endopeptidases, called IgA1 proteases, 

produced by bacterial pathogens and commensals colonizing the mucosa including 

Neisseria meningitides, Streptococcus pneumoniae and Haemophilus influenzae type b 

(187,190,191).  The absence of hinge region in IgA2 molecules renders them resistant to 

cleavage by IgA1-specific proteases, which is advantageous by IgA2 antibody function at 

mucosal surfaces (186,189).  The human IgA2 subclass exists in two allotypic forms 

designated A2m (1) and A2m(2).  The A2m(1) allotype is unconventional in that the 

heavy (H) and light (L) chains are not covalently linked, and therefore can be separated 

by non-reducing dissociating agents (122,393).  Population studies of the IgA2 allotypes 

have revealed a characteristic racial and ethnic distribution, where A2m(1) allotype is 

highly predominant in caucasians and A2m(2) dominates in people of African origin 

(388,393).  The distribution of two IgA subclasses varies significantly in the different 

parts of the immune system (251).  In serum, 90% of the IgA is IgA1 which, is consistent 

with a similar predominance of IgA1-producing cells in the bone marrow, where most 

serum IgA is produced (86).  However, in secretions IgA is produced by plasma cells at 

effector sites.  IgA1 also predominates in the salivary, upper respiratory and upper 
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gastrointestinal tract secretions, while IgA2 is present in higher proportions in lower 

gastrointestinal tract. The distribution of IgA subclasses depends on the nature of the 

antigen such that proteins primarily induce IgA1 response, while immunization with 

carbohydrates favor generation of IgA2 producing cells (369).   

 

Role of J-chain.   The joining (J) chain is a small polypeptide, expressed by mucosal and 

glandular plasma cells, which regulates polymerization of IgA and IgM 

(63,155,195,261). Incorporation of J- chain provides pIgA and IgM with a number of 

unique advantageous features.  First, it increases the valency of antigen-binding sites, 

which make the antibodies suitable for agglutinating bacteria and viruses with little or no 

complement-activating potential allowing them to operate in a non-inflammatory fashion.  

Second and most importantly, only J-chain-containing polymers show high affinity for 

the pIgR, also known as transmembrane secretory component (SC) (165,166,194). This 

epithelial glycoprotein mediates active external transfer of pIgA and pentameric IgM to 

exocrine secretions.   Thus, secretory IgA (sIgA) and sIgM, as well as free SC (FSC), are 

generated by endoproteolytic cleavage of the pIgR extracellular domain.  IgA remains 

covalently linked to the secretory piece forming sIgA by a single disulfide bond between 

Cys 311 of one alpha-chain and Cys 467 of the secretory component (165,166).  The 

secretory antibodies form the first line of defense against inhaled, ingested and sexually 

transmitted pathogens at mucosal sites.   The J chain is critical for creating the binding 

site for pIgR / SC in the Ig polymers, not only by driving their polymerization but also by 

interacting directly with the receptor protein. Therefore, both the J chain and the pIgR / 
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SC are key proteins in secretory immunity and factors that affect them could modulate 

mucosal immunity. 

 

IgA in mucosal immunity.   

Polymeric Immunoglobulin Receptor (pIgR) and secretory IgA.   

After secretion from plasma cells, IgA is transported from the lamina propria to the 

intestinal across the adjacent mucosal epithelium by pIgR, which is a transmembrane 

glycoprotein expressed on the basolateral surface of mucosal epithelial cells 

(43,44,45,46,264)(discussed in details in pIgR section).  Dimeric IgA binds to pIgR and 

the whole complex is then endocytosed and transcytosed through vesicular compartments 

to the apical surface (7,264,280,281).  At the apical surface pIgR is cleaved between the 

cytoplasmic and transmembrane domains by a leupeptin sensitive endopeptidase 

releasing sIgA into the intestinal secretions (268). Polymeric IgA (pIgA) is covalently 

linked by disulfide bonds to the extracellular portion of the receptor called secretory 

component and this complex of pIgA and SC forms the molecular complex referred to as 

sIgA (273). 

 

Function of secretory IgA, pIgR and free secretory component.  

 SIgA is the first line of specific immunological defense at mucosal surfaces 

(46,179,200).  SIgA is an effective isotype at mucosa as it is very stable and resistant to 

degrading enzymes.  SIgA provides three tiers of immune protection at mucosal surfaces 

(Fig. 3).  First, sIgA blocks the interaction of bacterial or viral adhesins and their 

receptors on the apical surface of mucosal epithelial cells, inhibits motility, or facilitates 
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entrapment in mucus (169,248,267,273,367).  Second, during transcytosis, IgA can also 

neutralize intracellular microbial pathogens within epithelial cells 

(36,169,246,247,248,248).  Third, IgA can bind to soluble antigens in the mucosal lamina 

propria and promote transcytosis of immune complexes by pIgR into the intestinal lumen; 

thereby ridding the body of locally formed immune complexes (171,248).  The SC 

portion protects the binding site for Fc-α receptor in sIgA.  Several studies have shown 

that, receptor bound IgA and sIgA can trigger cellular functions including degranulation 

and respiratory burst by binding to Fc-receptor for IgA on phagocytic cells (262,263).    

Free secretory component protects sIgA from proteolytic degradation in vitro (221,318) 

and in vivo in the GI tract and oral cavity (66,76).  It also prevents binding of pathogens 

including Escherichia coli, Streptococcus pneumoniae, and bacterial toxins to the 

epithelium (79,81,118,133,134,169).  Free SC can limit infection by binding of its 

unusual N-glycans to bacterial components such as Clostridium difficile toxin A and 

fimbriae of enterotoxigenic Escherichia coli (79,82).     Using pIgR knockout mice, Uren 

et al. reinforced the importance of pIgR / sIgA for the protection of gastrointestinal 

surfaces against secreted bacterial toxins including cholera toxin.  However, pIgR / sIgA 

was found to be dispensable for protection against infection with Salmonella 

typhimurium or Citrobacter rodentium (231,386).  Thus, pIgR / sIgA provides protection 

against bacterial exotoxin but do not play a major role in controlling numbers of 

pathogenic and commensal bacteria in the gut.  Interestingly, pIgR knockout mice lack 

secretory Igs and have 100-fold more serum IgA that normal mice.  Also, pIgR knockout 

mice have approximately thrice as many IgA-secreting plasma cells in lamina propria 

compared to wild type mice, suggesting that pIgR might contribute to mucosal B-cell 
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homeostasis in addition to transcytosis of pIgA (386).  PIgR knockout mice also exhibit 

reduced protection against infection with influenza A and B viruses following intranasal 

immunization.  Lack of intracellular neutralization of viruses during pIgR-mediated IgA 

transcytosis and impaired immune exclusion in absence of pIgR likely contributes to 

defective protection against influenza virus in pIgR knockout mice (11,12).    Sun et al. 

demonstrated the critical role of pIgR / sIgA in protection against nasal colonization by S. 

pneumoniae in pIgR knockout mice (360).  In addition, to antigen-specific functions, 

sIgA and free SC contributes to regulation of innate, non-specific responses to pathogens.  

Overall, sIgA/ pIgR contribute to maintaining the integrity of the mucosal barrier, and 

regulation of receptor expression contributes to host defense.   

 

 

 

 

 

 

 

 

 

              

             Figure 3.  Three tiers of protection of mucosal epithelia by IgA.   
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First, sIgA blocks the interaction of bacterial or viral adhesins and their receptors on 

mucosal epithelial cells.  Second, sIgA neutralizes pathogens intracellularly.  Third, immune 

complexes are removed during pIgR-mediated IgA transcytosis.  Diagram is adapted from 

Mazanec et al. (1993) (248). 
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Function of serum IgA.  

 Serum IgA is mainly monomeric.  It is produced by B-lymphocytes in the bone marrow 

and in some lymphoid organs. Humans produce as much serum IgA as they do IgG.  

Serum IgA provides anti-inflammatory effects by inhibiting complement mediated IgG 

and IgM responses (123,188,327).  However, serum IgA may initiate complement 

activation by the alternative (147,162) or by the mannan-binding lectin pathway (321).  

In addition, IgA in the human amniotic fluid protects the fetus by binding to natural 

maternal IgG autoantibodies (316).   

 

IgG and other Ig at mucosa.   

All the five classes of immunoglobulins including IgA, IgG, IgM, IgE and IgD are found 

at mucosa.  IgG in mucosal secretions is generally considered to originate from serum 

either by diffusion or by hepatobiliary route specifically in humans (42,315).  However, 

IgG can be locally produced irrespective of the systemic immune system (30,41).  

Interestingly, like IgA and IgM, a bi-directional transcytosis route exists for 

transportation of IgG through mucosal epithelium.  In human and mouse lung epithelium, 

IgG can bind to a MHC class I-related Fc receptor, FcRn, which mediates transcytosis of 

this immunoglobulin across the mucosal barrier to the apical side (355).  In lungs, 

protection provided by IgG has been found to be more effective against viral infections 

than IgA (249,293).  Thus, IgG response to mucosal antigens can complement that of 

secretory IgA in the defense against some pathogens and suggests that both IgG and IgA 

are important for mucosal immunity. 
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Pentameric IgM is actively transported by pIgR through the mucosal epithelia into 

secretions in a similar fashion as IgA (47).  However, sIgM is not as resistant to 

proteolytic enzymes as sIgA because of its non-covalent binding to the secretory 

component portion of pIgR (41).   Nevertheless, it contributes to mucosal defense and in 

IgA deficient patients; higher concentrations of sIgM are produced to compensate for the 

IgA deficiency (42).  

Traces of IgE and IgD are found in mucosal secretions.  IgE is believed to contribute to 

protection against parasites and allergy, while IgD may play a role in maturation of 

mucosal immune system but specific functions of IgD in secretions is still debatable 

(269,270,342). 
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POLYMERIC IMMUNOGLOBULIN RECEPTOR 

Synthesis of pIgR 

In polarized epithelial cells pIgR is synthesized as a 90-100 kDa precursor protein in the 

rough endoplasmic reticulum and sent to the Golgi apparatus and then to the trans –Golgi 

network. In the Golgi apparatus the precursor protein is glycosylated and it matures into a 

100-120-kDa protein (43).  The pathway of passage of pIgR through the polarized 

epithelial cells has been extensively characterized (Fig. 4).   In the trans –Golgi network, 

newly synthesized pIgR is sorted into vesicles that deliver it to the basolateral surface of 

epithelial cells where it may bind to its ligand, pIgA produced by plasma cells, most 

commonly found in the lamina propria underlying the epithelium.  With or without bound 

pIgA, pIgR is endocytosed and targeted to basolateral early endosomes.  The complex 

then passage through a common endosomal compartment and are sorted into apical 

recycling endosomes (ARE) and transcytosed to the apical membrane, where proteolytic 

cleavage of the extracellular ligand-binding portion of pIgR results in the generation of 

either free SC or secretory IgA (266,268).  A fraction of pIgR at the apical surface may 

be re-internalized into apical early endosomes (AEE), then redelivered to the apical 

surface through the ARE (7,264,265,267).  Studies have shown that phosphorylation of 

Ser –664 in the cytoplasmic domain of the pIgR is a signal for transcytosis of the receptor 

(58,149). Binding of dimeric IgA (dIgA) also stimulates pIgR transcytosis, which is 

independent of the Ser –664 phosphorylation. It is speculated that dIgA binding may 

cause pIgR dimerization or some conformational change that may serve as a signal for 

transcytosis (354).  
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Figure 4.  Pathway of passage of pIgR through polarized epithelial cells. 

BEE, basolateral early endosome; CE, common endosome; ARE, apical recycling endosome; AEE, 

apical early endosome. 1. Expression of pIgR on basolateral surface of polarized epithelial cells. 2. 

Ligand binding to pIgR. 3. Transcytosis of IgA and intracellular neutralization of pathogens. 4. 

Proteolytic cleavage of pIgR to SC. 5. Immune function of free SC and sIgA (Kaetzel et al. 2005, 

with permission). 
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Structure of pIgR  

pIgR is a transmembrane glycoprotein that is expressed on secretory epithelial cells. The 

basic structure of pIgR comprises an extracellular domain, a transmembrane domain and 

a cytoplasmic domain (Fig. 5). The N-terminal extracellular region consists of 560 amino 

acids. The extracellular region of pIgR is the ligand-binding portion of the molecule and 

is cleaved at the apical surface.  It is comprised of five immunoglobulin-like domains and 

a sixth non-immunoglobulin-like domain connecting it to the membrane-spanning piece.  

Each of the five immunoglobulin-like extracellular domains contains an internal 

disulphide bond, characteristic of immunoglobulin homology units, that is conserved in 

all known species of pIgR.  A second internal disulphide bond exists in all species in 

domains 1 and 5, and in some species in domains 2, 3 and 4.  A third highly conserved 

disulphide bond in present in domain 5.   In human sIgA, this extra disulphide bond in 

domain 5 is rearranged to form a disulphide bond with the cysteine residues in one of the 

alpha heavy chains of sIgA (96).  Domain 1 of pIgR is critical and sufficient for binding 

polymeric IgA and IgM.  The crystal structure of domain 1 from human pIgR immensely 

contributed to the understanding of ligand binding properties of pIgR (132).  The overall 

structure of domain 1 was very similar to the immunoglobulin variable domains, 

including conservation of the five key residues that stabilize the β-pleated sheet structure 

of the ‘immunoglobulin fold’.  Though the domain 1 contained loop structures analogous 

to the complementarity-determining regions (CDRs) of antibodies, some marked 

differences existed.  The relatively long CDR1 loop in the pIgR domain 1 containing a 

single helical turn was crucial for pIgA binding, as mutations within the helix in CDR1 of 
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rabbit pIgR abolished the ligand binding surface (74).  The CDR2 loop comprised of only 

two amino acids, with a highly divergent amino acid at position 53 (Glu in human pIgR) 

followed by an invariant Gly at position 54.  CDR2 plays an important role in binding of 

human pIgR to pIgM.  The CDR3 loop in human pIgR tilts away from the CDR1 and 

CDR2 loops and this unique conformation increases the pIg-binding surface area (132).  

In addition, the C-terminal domains of human IgA (Cα3) and IgM (Cμ4) are required for 

J-chain binding, polymerization and association with pIgR (146).  The presence of J-

chain connecting the immunoglobulin subunits of pIgA and pIgM is essential for binding 

pIgR. J –chain deficient mice have reduced IgA levels in external secretions 

(143,144,165,230).  The transmembrane region consists of 23 amino acids and is highly 

conserved among different species (15,16).  The transmembrane domain contains a kink-

inducing proline (P) residue that is suggested to play a role in transmembrane signal 

transduction (43).  Proteolytic cleavage of pIgR in this domain releases IgA bound or 

unbound secretory component into mucosal secretions (268).  The C-terminal 

cytoplasmic region consists of 103 amino acids and contains highly conserved signals for 

basolateral targeting, intracellular sorting, endocytosis and transcytosis of pIgR 

(10,57,58).  
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Figure 5.  Schematic structure of human polymeric immunoglobulin receptor.  The pIgR is 

a type I transmembrane protein, with an extracellular ligand binding comprising five domains 

with homology to immunoglobulin variable regions. The three complementarity-determining 

regions (CDRs) in domain 1 form a non-covalent binding surface for dimeric IgA (dIgA). During 

transcytosis, a disulfide bridge is formed between domain 5 of pIgR and the Fcα region of 

dimeric IgA. Peptide motifs in domains 3 and 4 cooperate to form a binding surface for the SpsA 

protein of Streptococcus pneumoniae. A peptide of unknown structure links domain 5 to the 

membrane-spanning region and contains site(s) for proteolytic cleavage of pIgR to secretory 

component (SC). Seven N-glycan residues on domains 1, 2, 4, and 5 contribute to innate immune 

functions of SC and may facilitate transcytosis of pIgR. The cytoplasmic domain of pIgR 

contains highly conserved signals for intracellular sorting, endocytosis, and transcytosis.  

(Kaetzel et al. 2005, with permission).   
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Gene organization of pIgR 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Organization of the polymeric immunoglobulin receptor (PIGR) gene locus 

and regulatory elements.  (A) Eleven exons comprise the PIGR gene, encoding the 5'-

untranslated region (UTR) (blue box), the coding region (red boxes), and the 3'-UTR (blue 

box) of pIgR mRNA. The locations of potential binding sites for regulatory proteins are 

designated. (B) Working model for regulation of PIGR gene transcription by cytokines and 

microbial factors. AR, androgen receptor; AP, activator protein; αCP, cytoplasmic poly(C)-

binding protein α; IRF, interferon regulatory factor; HNF, hepatocyte nuclear factor; NF-κB, 

nuclear factor-κB; STAT, signal transducer and activator of transcription; USF, upstream 

stimulatory factor.  (Kaetzel et al. 2005, with permission).   
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Krajci et. al. determined the genomic organization of the human pIgR gene (24). 

Human PIGR gene consists of 11 exons and 10 introns spanning 17944 base pairs on 

chromosome 1 (Fig. 5) (169,196). The first exon is not translated while the open reading 

frame is encoded by exons 2 –11. The extracellular region of pIgR includes five 

immunoglobulin like domains.  Domains 1,4 and 5 encoded by single separate exons are 

always present in the pIgR mRNA but domains 2 and 3 encoded by the same exon are 

sometimes deleted by alternative mRNA splicing in rabbit pIgR (85).  The 5’ –flanking 

region, exon 1 and intron 1 of the PIGR gene contain the binding sites for constitutively 

expressed and induced transcription factors.  The DNA element inverted repeat sequence 

(IRS).  An ‘E-box’ motif at position –71 of the human PIGR gene and –74 of the mouse 

PIGR gene is essential for basal promoter activity (142,164,239,353). The E-box is the 

binding site for transcription factors involved in pIgR synthesis.  E-box motifs with the 

sequence ‘CACG/ ATG’ bind transcriptions factors of the basic helix-loop-helix/ leucine 

zipper family, including the Myc, upstream stimulatory factor (USF) family members 

(164,185,229,352).  Recently, Bruno et al. have demonstrated that USF-1 and USF-2 but 

not c-Myc bind to the PIGR E-box in vitro and in vivo and enhance promoter activity 

(52).  Hempen et al. have shown that activator protein 2 (AP2) binds to a site adjacent to 

USF site and cooperatively enhances PIGR promoter activity (142).  The human pIgR 

gene contains several regulatory DNA elements that serve as targets to cytokine 

induction. The pIgR gene contains 3 interferon  –stimulated response elements (ISREs), 

two upstream of transcription start (centered around position –133 and –100) and one in 

exon 1 (centered around position +13) that can be induced by proinflammatory cytokines 
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including IFN-γ and TNF-α, which are produced in response to bacterial and viral 

infections (302).  Analyses of regulatory regions in the human PIGR gene have identified 

an element in exon 1, that is perfectly conserved in the human, mouse, and rat, binds 

members of interferon regulatory factor (IRF) family of cytokine-inducible transcription 

factors (128,302).  

 

Regulators of pIgR expression.  A number of factors modulate expression of pIgR (169). 

(a) Cytokines:  A number of cytokines including IFN-γ, TNF-α, IL-1 and IL-4 has been 

shown to upregulate pIgR expression in epithelial cells.  Binding of IFN-γ to its cell 

surface receptor activates the receptor associated Janus kinases (JAKs). JAKs in turn 

phosphorylate the cytosolic proteins called signal transducers and activators of 

transcription (STATs). Phosphorylated STATs form dimers, which then translocate to the 

nucleus and increase transcription of IRF1 gene (34,170,301,302).  In contrast, binding of 

TNF and IL-1 to cell surface receptors induces activation of IRF1 gene by activating 

nuclear factor kappa B (NFκB), which translocates to nucleus and binds to an element 

adjacent to STAT1 site in the IRF-promoter (300).  On the other hand, weak activation of 

NFκB by IFN-γ could eventually increase PIGR gene transcription indirectly, by 

synergizing with STAT1 to activate IRF1 gene transcription (34).  Newly synthesized 

IRF-1 protein is again translocated back from the cytosol to the nucleus where it can bind 

to exon 1 of the pIgR promoter and enhance transcription (1,34).  Two NFκB-binding 

sites have been identified in the 5’ flanking region of human PIGR gene, mutation of 

which resulted in a modest decrease in TNF-induced PIGR promoter activity (366).  

Schjerven et al. have demonstrated that a novel NFκB site in intron 1 cooperates with the 
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IRF-1 site in exon 1 to mediate TNF-induced transcription of human PIGR gene (335). 

However, no cooperativity was found between the NFκB sites in intron 1 and 5’ flanking 

region of the PIGR gene.  TNF-induced PIGR gene transcription also requires de novo 

synthesis of the RelB subunit of NFκB, which is consistent with the delayed kinetics of 

transcriptional activation (336).  Proinflammatory cytokines such as TNF and IL-1 

typically activate the ‘classical’ NFκB pathway, characterized by rapid activation of 

RelA/ p50 dimers and early transcription of genes involved in innate immunity and 

inflammatory responses (38).  The TNF-induced activation of classical NFκB pathway in 

intestinal epithelial cells enhances transcription from RELB gene and indirectly increases 

PIGR transcription by increasing steady state levels of RelB protein.  Recently, Bruno et 

al. demonstrated that long-term exposure of transformed human intestinal epithelial cells 

HT-29 to TNF causes sustained upregulation of RelB and pIgR expression (51).    In 

addition, certain members of the TNF cytokine family but not TNF-α itself could activate 

NFκB by the fairly recently discovered ‘alternative pathway’ (38).  It is possible that 

TNF might induce synthesis of an as yet unidentified cytokine or signaling molecule that 

eventually activates newly synthesized RelB via the ‘alternative’ NFκB pathway.   

Induction of PIGR gene transcription through the alternative NFκB pathway that serve to 

augment pIgR-mediated IgA transcytosis might provide a bridge between innate and 

adaptive immune responses. 

 

Interestingly, the Th-1 type cytokine IFN-γ and the Th-2 type cytokine IL-4, which are 

usually antagonistic, regulate expression of pIgR in a cooperative fashion.  IL-4 alone or 

coupled with IFN-γ has been shown to upregulate pIgR mRNA and protein expression in 
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human intestinal and respiratory epithelial cell lines (1).  Studies by Schjerven et al. shed 

some light on the paradigm of coordinate regulation of pIgR by IL-4 and IFN-γ.  

Schjerven et al. discovered a novel IL-4 inducible STAT6 site in intron 1 of the human 

PIGR gene.  IL-4 activates PIGR transcription with delayed kinetics suggesting a 

requirement for de novo protein synthesis. But, STAT6 translocates to nucleus within 

minutes of IL-4 activation.   However, these contradictory observations was explained 

when Schjerven et al. postulated the existence of an unidentified IL-4 induced protein 

that cooperates with STAT6 to form an IL-4 responsive enhancer element (334).  

Alternatively, since the NFκB/ RelB and STAT6 site in intron 1 are very close, it is 

possible that de novo synthesized RelB might synergize with STAT6 to activate the IL-4 

dependent enhancer element (169). But this alternate hypothesis has not yet been tested 

and future studies with provide more insight into the mechanism of cooperative 

regulation of PIGR gene by IFN-γ and IL-4.    Overall, proinflammatory cytokines 

including IFN-γ, TNF-α, IL-1 and IL-4 increase pIgR expression in epithelial cells.   

 

(b) Hormones.  A number of polypeptide and steroid hormones including estrogen, 

progesterone, androgens, glucocorticoids and prolactin regulate expression of pIgR in a 

cell type specific manner.  The antagonistic effects of estrogen and progesterone 

modulate expression of pIgR during the estrous cycle (31,181).  However, the binding 

sites for estrogen and progesterone receptors on PIGR have not yet been identified and 

the mechanisms by which the regulate pIgR expression is still unknown.  Androgens 

upregulate pIgR expression in the reproductive tissues of males and females.  Two 

important androgen receptor binding sites have been identified on PIGR gene (67).  In 
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addition, pIgR mRNA and protein expression is upregulated in mammary epithelial cells 

in sheep in response to glucocorticoid treatment and this effect could be mediated 

through an IFN-γ-linked mechanism (319,320).  Also, prolactin likely plays a role in 

regulation of pIgR expression in lactating mammary glands through upregulation of IRF-

1 expression following activation of a JAK/ STAT pathway (62,409). 

 

(c) Microbial Factors.  Signaling induced by a variety of microbes and their products 

have been shown to regulate expression of pIgR.  Butyrate, a bacterial fermentation 

product and important energy source in colon upregulates pIgR expression (198,199).  

Bacteroides thetaiotaomicron, increased pIgR expression by 2-4 fold when the gut of 

germ free mice was colonized with this commensal bacterium (150).  Bruno et al. 

(unpublished communication) have found that pIgR mRNA levels were 8-10 fold higher 

in the colon than in the small intestine of mice.  In addition, antibiotic metronidazole 

treatment in mice that selectively ablates anaerobic bacteria including Bacteroides 

thetaiotaomicron, resulted in a 50% decrease in pIgR mRNA levels, suggesting a role for 

commensal bacteria in the maintenance of pIgR expression in gut. 

 

Signaling induced by microbes and their products may serve to augment pIgR-mediated 

transcytosis of polymeric immunoglobulins including IgA and IgM, linking the innate 

and acquired immune responses.  Host cells mediate innate immune responses to 

pathogen through TLR signaling (23,365).  Interestingly, intestinal epithelial cells 

express a variety of TLRs and inflammatory responses upregulate expression of these 

pattern recognition receptors (PRRs) (55,56).  Recently, Schneeman et al. have 
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discovered that a bacterial lipopolysaccharide LPS, a ligand for TLR4 and a chemical 

analog of viral dsRNA, poly I: C, a ligand for TLR3 upregulates pIgR expression in HT-

29 cells (338).  Both these ligands, induce de novo synthesis of RelB and activation of 

PIGR gene transcription depends on the NFκB element in intron 1.  In addition, poly I: C 

also activates IRF-1 and thereby mediates pIgR upregulation.  IRF-3, a related 

transcription factor that binds to the same consensus element as IRF-1 on PIGR gene is 

also activated through TLR3 and TLR4 signaling pathways (407).  It is likely that IRF-3 

might cooperatively interact with NFκB and upregulate pIgR expression, but such 

mechanism is yet to be established by future studies.  Recently, it has been demonstrated 

that during pIgR –mediated transport dIgA intracellularly neutralizes LPS within 

epithelial cells, suggesting that LPS induced upregulation of pIgR, which serve to 

augment IgA transcytosis might be an important mechanism in controlling intestinal 

inflammation induced by proinflammatory PRRs such as LPS (102).   

 

Function of pIgR 

A hallmark feature of adaptive mucosal immune responses is the production and 

generation of sIgA and free SC, which is entirely dependent upon the sacrificial receptor 

pIgR expressed by mucosal and glandular epithelial cells (Fig. 7).  PIgR is responsible for 

transport of polymeric immunoglobulins, primarily pIgA from lamina propria to the 

intestinal lumen, where the receptor is cleaved releasing sIgA or the free secretory 

component in the luminal secretions (43,380).   In average adults, approximately 3 grams 

of sIgA is transported daily into intestinal lumen. The magnitude of pIgR –mediated 

epithelial transcytosis of pIgA is impressive, since the daily production of IgA exceeds 
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the production of all other immunoglobulin classes combined (255,258).  Because one 

molecule of pIgR is required for every molecule of transported polymeric 

immunoglobulin, synthesis of pIgR by epithelial cells is a rate-limiting step for 

generation of secretory pIg (267,273,367).   Thus, pIgR plays a role in mucosal host 

defense, and factors that influence expression of pIgR could affect mucosal immunity.  

The respective roles of sIgA and free SC have been discussed previously under  ‘function 

of secretory IgA and free secretory component’.   
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Figure 7.  Transcytosis of empty receptor and dimeric IgA leading to generation of  free 

secretory component (FSC) and secretory IgA (sIgA) respectively.  1) The dIgA is 

produced by the plasma cells in lamina propria. 2) dIgA binds to pIgR via its J-chain. 3) The 

dIgA-pIgR complex traverses the epithelial cell through endocytic vesicles by transcytosis. 4) 

The complex reaches the apical epithelial surface. 5) PIgR is proteolytically cleaved between 

its extracellular and transmembrane domains. 6) SIgA and FSC is released in secretions.  

Diagram is adapted from Kantele (1992) (175).     
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REOVIRUS AS A MODEL PATHOGEN 

Mammalian Orthoreoviruses (reovirus) is a model pathogen for studying immune 

responses and pathogenesis to enteric virus infection.  Respiratory enteric orphan virus 

(reovirus) serves as an excellent probe to study different aspects of immunity against 

enteric virus infection because it is well characterized at molecular level, naturally infects 

a wide variety of mammalian species including mice and humans and is of low 

pathogenecity in immunocompetent hosts (214,323).  In experimental models of mice, 

reovirus has been shown to induce gastroenteritis, hepatitis, myocarditis, 

meningoencephalitis, biliary atresia and autoimmune syndromes 

(22,78,113,138,278,283,284,326,346,347,356,384).  Though, reovirus is ubiquitous in 

nature and infects a wide range of mammalian hosts, it is typically non-pathogenic in 

immunocompetent hosts.  Approximately 85% of human adults are seropositive for anti-

reovirus antibodies suggesting previous exposure to reovirus (343).   Although attempts 

to correlate reovirus infections in humans with disease have been inconclusive, prenatal 

and perinatal reovirus infections have been associated with a rare pediatric liver disease, 

extrahepatic biliary atresia (173,382).  In addition, reovirus can be pathogenic or lethal 

and might induce diseases including hydrocephalus, encephalitis, and lethal hepatitis in 

neonatal and severe combined immunodeficient (SCID) mice (113,129,391).  In adult 

mice an oral (OR) or intravenous (IV) dose of 1010 plaque forming units is lethal, killing 

the mice by 48 hrs post infection and autopsy revealed pneumonitis, inflammation and 

hemorrhagic areas of the intestines (325).  Reovirus (Fig. 8) is a lytic, non-enveloped, 

icosohedral, 10-segmented dsRNA genome containing virus.   The viral genome 
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comprises 10 unique segments, three large (L), three medium (M), and four small (S) 

fragments, each of which encodes a single protein, except the bicistronic S1 gene from 

which two proteins are synthesized (284,344).  Reoviruses were originally classified into 

3 serotypes designated T1, T2, and T3 based on expression of the viral haemagglutinin, 

which serves as the viral ligand for cellular receptors (383).  Of the 3 serotypes, T1 and 

T3 have been extensively used to investigate different aspects of viral pathogenesis and 

mucosal immunity, while T2 has been utilized to study immunological mechanisms of 

diabetes in neonatal mice (136,137,235,390).  Although both T1 and T3 infect hosts via 

the intestine, significant differences exist in the capacity of the serotypes to bind to 

intestinal epithelial cells and replicate in the intestine (396).  Differences among 

serotypes have been atttributed to the S1 gene, σ1 protein that is responsible for cellular 

tropism and diseases characteristic of the different serotypes (180,322,325,381,397).  

Neurovirulence studies utilizing viral reassortants demonstrated that the σ1 of type 1 

reovirus was responsible for the development of hydrocephalus and the destruction of the 

ependymal cells, whereas, the σ1 of type 3 caused necrotizing encephalitis in newborn 

mice (397).  Interestingly, the σ1 protein, which is a long trimeric fiber that extends 40 

nm from the viral capsid serves as the reovirus cell attachment protein in all three 

serotypes (37,209).       
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Figure 8.   Structure of reovirus virion and ISVP after proteolytic digestion of outer 

capsid proteins.  The virus has an intact outer capsid and σ1 protein in an un-extended 

conformation.  After proteolytic cleavage of the outer capsid the σ1 protein is fully extended 

and capable of binding cell surface receptors.  Core contains ten dsRNA segments: 3 Large 

(L), 3 Medium (M) and 3 Small (S) . 
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 Reovirus Infection.   

When reovirus enters a host through the oral route, proteases including pancreatic 

chymotrypsin in luminal secretions activate the virus by cleaving the outer capsid 

proteins of virions to form the intermediate subviral particles (ISVPs) (Fig. 8) resulting in 

a conformational change of the cell binding protein σ1 (45,46,47). The exposed σ1 of 

ISVPs bind Microfold (M) cells, which are a specific cell type in the intestinal epithelium 

overlying lymphoid follicles called Peyer’s patches (PPs) that endocytose a variety of 

protein and peptide antigens (5,24,35).  Wolf et al. demonstrated that both T1 and T3 

bind to M cells and this specific binding and uptake by PP exposes the virus to innate and 

adaptive immune cells in the intestine (271,399,400,401).  Although, both T1 and T3 

infect hosts through gastrointestinal tract and induce robust mucosal and systemic 

immune responses, significant differences exist in the capacity of the serotypes to bind 

IECs and replicate in intestine.  Reoviruses use the cell surface molecule, junctional 

adhesion molecule (JAM) expressed basolaterally on the epithelial cell to gain entry and 

for infecting and spreading to the adjacent epithelial cells (21,141).  In addition to JAM, 

T3 but not T1 binds to sialic acid residues on as yet unidentified cellular proteins (20).  

However, the long held notion the T1 does not bind sialic acid is debatable because 

Helander et al. demonstrated that T1 is capable of binding on sialic acid residues 

expressed on M cells (141).  Reovirus T3, but not T1, also binds to the apical surfaces of 

absorptive IECs and are endocytosed (180).  It is unclear whether this is a ‘dead-end’ 

path for T3 virus.   Endocytosed viruses appear to become trapped in lysosomes in IEC 

and basolateral transport has not been uniformly observed (180).  On the other hand, at 

least in young animals, T3 infection induces villus shortening and mild mononuclear 
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infiltration in the lamina propria.  Alterations in IEC from T3-infected neonates include 

reduction in lactase and enterokinase activities, and increased maltase and leucine 

aminopeptidase activities (50).  Together these results indicate that reovirus T3 can bind 

to and be taken up by IECs and affect IEC function, even though replication and viral 

shedding is limited.  Although T3 enters absorptive epithelial cells from the lumenal 

surface, replication of infectious T1 virus in the intestine appears to be more efficient 

than T3 because infectious virus is shed longer and at higher levels following T1 

infection than T3.    Reovirus T1 causes enteric disease primarily in the ileal crypts of 

Lieberkuhn.  During T1 infection, viral entry into IECs occurs through the basolateral 

surfaces (326); most likely as a result of T1 binding to cellular JAM.  Productive 

infection is limited to immature crypt enterocytes, likely due to a requirement for factors 

available only in replicating host cells to support replication of virus. One such critical 

host factor is an activated Ras signaling pathway that exhibits an active epidermal growth 

factor receptor-Ras/RalGEG/p38 pathway.  Either Ras or another downstream component 

of activated Ras pathway inhibits the activation of protein kinase R (PKR), a dsRNA-

activated eIF2α kinase (Fig. 10).  Reovirus replication proceeds unimpeded in the Ras-

positive crypt enterocytes in absence of anti-viral host protein synthesis through the PKR 

pathway (71,358).  In cells lacking an activated Ras signaling pathway, active 

(phosphorylated) PKR phosphorylates eIF2α, halting translation initiation, which inhibits 

blocks viral protein synthesis.  However, activated PKR does not prevent entry of 

reovirus and induction of early mRNA transcription (358).    
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Reovirus Replication.  

 Reovirus enters host cell by receptor –mediated endocytosis.  Inside the endosomes the 

outer shell of the virus particle is modified by removal of two proteins and cleavage of 

another by lysosomal enzymes.  This uncoating process activates the viral RNA-

dependent RNA Polymerase and hence initiates the virus replication.  Reoviruses contain 

within their virions all the enzymes required for replication and RNA synthesis including 

RNA-dependent RNA Polymerase, nucleotide phosphohydrolase and enzymes that 

participate in the capping of messenger RNA, RNA methyltransferase and guanyl 

transferase.  Replication of reovirus RNA occurs exclusively in the cytoplasm of the host 

(Fig. 9).  However, replication seems to proceed within an intracellular equivalent of the 

viral core, called the subviral particle, which remains intact in the cytoplasm.  Replication 

of reovirus genome occurs by a conservative and asychronous method.  First, one strand 

of parental RNA is used as a template, and then the single stranded product serves as a 

template to form the progeny double helix (213,339). The dsRNA is inactive as mRNA, 

and the first step in reovirus replication is transcription, using the minus strand as a 

template to make mRNA.  Replication of reovirus starts within the viral core with the 

RNA-dependent RNA polymerase (the product of the L1 gene), forming a capped plus-

strand mRNA, which is the exact size and a perfect complement of the parental minus 

strand dsRNA genome (2,213,329,339,394,395).  The completed capped plus-strand 

mRNAs are ejected from the viral core through the λ2 spike into the host cytoplasm 

where they are utilized as templates for translation of structural and nonstructural proteins 

using the host’s ribosomes (168,213).  After protein synthesis, the capped single-stranded 

plus RNA act as templates for the synthesis of the progeny minus-strand genomic RNAs, 
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Figure 9.  Illustration of Life Cycle of Reovirus.  Reovirus binds to the host cell surface receptors and 

undergoes receptor-mediated endocytosis.  Inside the host endosome, reovirus is partially uncoated by the 

action of endosomal proteases, which initiates viral replication.  The replication of the reovirus genome is 

conservative and occurs in an asynchronous manner forming progeny virions with dsRNA.  Newly 

synthesiszed viral proteins assemble to form core and outer capsids of progeny virus and finally virus is 

released from host cells by lysis.  

yielding progeny double stranded viral RNAs (213,330).  Interestingly, the fact that only 

the plus-strand mRNA is found free in the infected host cell during the course of reovirus 

infection has become an important factor for designing and development of reovirus RT-

PCR reactions.     
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Immune responses to enteric reovirus infection.  

Intestinal immune responses to reovirus include production and secretion of virus-

specific IgA (226), development of virus-specific precursor CD8+ cytotoxic T-cells in the 

PP, lamina propria and epithelium (77,225,226), and production of T-helper (Th) cell 

responses characterized by robust Th1 responses that produce IFN-γ (97,235).  Both 

innate and adaptive immune responses are induced following reovirus infection (113). 

 

Innate immunity.  

 In SCID mice, reovirus infection activates and increases the number of natural killer 

(NK) cells in liver, suggesting that the influx of NK cells into the liver helps to slow 

down the viral infection and subsequent death of the mice (370).  In immunocompetent 

mice, reovirus infection induces interleukin-15 (IL-15), an innate cytokine that activates a 

number of immune cells including NK cells, DCs and macrophages, mediating innate 

responses such as cytotoxic killing by NK cells, production of IL-12 and IFN-γ from DCs 

and macrophages and synthesis of nitric oxide (NO) from macrophages (101,245,279).  

In addition, proinflammatory cytokines including TNF-α and IL-1β are also induced 

following reovirus infections.  TNF-α and IL-1β are secreted by epithelial cells in a p38 

MAPK-dependent manner and by peritoneal macrophages following exposure to reovirus 

(99,256).  Thus, the innate immune arm comprises epithelial cells, NK cells, 

macrophages, and DCs all of which orchestrate and participate to provide protection 

following reovirus infection.  
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Adaptive immunity.   

Reovirus infection results in the stimulation of both humoral and cellular immune 

responses.  Reovirus infection induces humoral immune responses characterized by the 

production of antibodies of the IgG and IgA isotypes {521, 732, 733, 496,734,735, 498} 

and the development of T-cell responses including cytokine producing T-helper (Th) 1 

and Th2 cells (97,234,241,373).  Antibody responses following either oral or systemic 

infection are directed mainly against structural proteins (234).  IgA is important for 

protection of mice against reovirus infection.  Following oral infection reovirus clearance 

was delayed in the intestine in B cell-deficient mice (18).    Studies with IgA-deficient 

mice have demonstrated a crucial role for IgA in protection against reovirus entry into 

murine Peyer’s patches (349).  Hutchings et al. demonstrated that mice bearing IgA 

hybridomas specific for the σ1 outer capsid protein of reovirus, such that the monoclonal 

IgA is transported into intestinal secretions by pIgR-mediated transcytosis, were 

protected against infection (154).  In adult mice, reovirus σ1-specific IgA antibodies 

protect the PPs from being re-infected upon secondary oral reovirus infections suggesting 

that IgA neutralizes reovirus in the lumen of the intestines and prevents it from binding to 

the M-cells of the PPs (154,349).  In addition, mouse pups suckled on reovirus-immune 

dams acquire IgA-mediated passive immunity and thus protected against lethal reovirus 

infection (78).  In neonatal mice (10 days old), enteric reovirus infection leads to 

significant changes in the mucosal immune system, characterized by the induction of PP 

germinal centers and production and secretion of IgA.  Most of this IgA is not specific for 

reovirus, but appears to be directed against environmental antigens (197).   
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In addition, following exposure to reovirus by oral route, reovirus –specific IgG 

antibodies of the IgG2a and IgG2b subclasses, appear in the serum and mesenteric lymph 

nodes (MLNs) (234).  In response to systemic reovirus exposure, the majority of the 

antigen-specific spleen and lymph node B cells secrete IgG antibodies (226,234).  Like 

gut, reovirus infection of respiratory tract induces production of IgA and IgG antibodies 

(374,412).  Following oral reovirus infection, placental transfer of IgG can prevent 

neonatal pups from dying, with no evidence of meningoencephalitis (78).  However, the 

reovirus σ1-specific IgG did not prevent reovirus infection of the PPs as confirmed by 

detection of reovirus within the PPs and intestines (154,391).  In addition, in SCID mice 

transfer of reovirus-specific IgG (18) did not clear reovirus infection of PPs.  Taken 

together, it appears that IgA antibodies neutralize reovirus in the lumen of the intestines 

and prevent reovirus from infecting the mucosa, while IgG antibodies prevent the 

systemic spread of reovirus following oral infections.  

Th cells respond as a result of uptake and presentation of viral antigens by APCs (103).  

Although the contribution of various cells types as APCs in infection has not yet been 

defined, it is likely that dendritic cells are the most important antigen-presenting cell for 

priming reovirus-specific naïve T-cells in the intestine and periphery.   

In addition to humoral immune responses, reovirus induces potent effector CD8+ T-cells 

that mediate cytokine production and cellular cytotoxicity (108,225,226,413).  Virus-

specific cytotoxic T-lymphocytes (CTLs) are induced within the PP following intestinal 

infection (226).  CTLs migrate via efferent lymphatic vessels to the mesenteric lymph 

nodes, then through the thoracic duct lymph and the systemic circulation to the spleen 

(226) or to intestinal mucosal sites such as the intestinal epithelium where virus-specific 
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cells can be found among the intraepithelial lymphocytes (IELs) (64,77,224).  Parenteral 

infection with reovirus induces virus-specific CTLs in the draining peripheral lymph 

nodes and spleen  (215,390). 

 

Effects on Cell Signaling by Reovirus.   

Interaction of virus with host cells in vitro initiates a number of signaling cascades 

including increased activation of calpains (83,84), activation of c-Jun N-terminal kinase 

(JNK), and extracellular signal-related kinase (ERK) (70).  These signaling cascades 

result in up-regulation of NFκB activation (68,69,73) and phosphorylation of c-Jun (70), 

which increases transcription of regulated genes (275).  While these signaling pathways 

are involved in inducing apoptosis in infected cells, particularly during infection with T3 

(383), their roles in other reovirus-induced cellular changes have not been extensively 

characterized, although one report (131) has linked increased NFκB activation with 

production of chemokines and cytokines during virus exposure.  Significantly, most or all 

of these changes in cell signaling in vitro occur independently of viral replication.  

Rather, other steps during infection such as binding to specific receptors, endocytosis and 

uncoating, and cellular exposure to viral RNA appear to be sufficient to affect the host 

cell biology (19,131).   

 

Reovirus as potential anticancer therapeutic.   

Reovirus possesses the distinctive ablility to replicate in transformed cells and so reovirus 

infection in vivo is limited to cells with an activated Ras signaling pathway. In adults, 

reovirus infection is usually subclinical because most adults have reovirus specific 
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antibodies and normal untransformed cells are unable to support reovirus replication.  In 

normal cells, double stranded RNA structures in reovirus transcripts activate PKR, which 

subsequently phosphorylates eIF-2α ultimately inhibiting translational initiation of viral 

genes.  Studies with chemical analog of dsRNA, poly I:C have shown that PKR mediates 

activation of NFκB inducing kinase (NIK) and I kappa B kinase (IKK), leading to IκB 

degradation and subsequent NFκB activation (415).  However, in transformed cells with 

an activated Ras signaling pathway either Ras itself or another unidentified component 

downstream in the signaling pathway blocks PKR phosphorylation, which allows viral 

translation to proceed.  Ras pathways are activated in approximately 30% of all human 

cancers including adenocarcinomas of the pancreas, colon, and lung; in addition to 

thyroid tumors and in myeloid leukemia and mutations in other elements in the Ras 

pathway also contributes to cancer development (40).  So implications for the use of 

reovirus as an anticancer therapeutic agent are obvious as has been reported for reovirus-

mediated killing of oncogenic cell lines including breast, colon and ovarian cancers and 

in vivo murine cancer models (3,71,148,274).  Recently, Dr. Matthew C. Coffey has been 

instrumental in developing reovirus as a human cancer therapeutic named as 

REOLYSIN®, which is a proprietary formulation of the human reovirus of Oncolytics 

technologies and has been demonstrated to replicate specifically in tumour cells bearing 

an activated Ras pathway.  REOLYSIN® is a potential therapeutic for upto two thirds of 

all human cancers, including, but not limited to, malignant glioma, pancreatic, colon and 

some lung cancers and is undergoing Phase I and Phase II clinical trials in Canada and 

United States.  REOLYSIN® appears to be promising tool to combat cancer as it utilizes 

naturally occurring reovirus without genetic modification to cancer cells, while other 
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current anti-viral therapies have potentially harmful side effects, and must be genetically 

modified to remove those detrimental.  Therefore, reovirus appears to be a great tool to 

probe the mucosal immune system and holds promise as an anti-cancer therapeutic.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Usurpation of the Ras signaling pathway by reovirus.  In untransformed, reovirus-resistant 

cells such as mature iecs double-stranded RNA structures in reovirus transcripts activate PKR, which 

subsequently phosphorylates eIF-2 , inhibiting translation initiation of viral genes.  However, in cells with 

an activated Ras signaling pathway such as rapidly developing crypt cells of intestine, PKR 

phosphorylation in response to viral transcripts is inhibited either by Ras or an unidentified upstream 

element in the ras signaling pathway and viral translation proceeds unimpeded.  Diagram is adapted from 

Strong et al. (1998) (358). 
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OVERVIEW OF EXPERIMENTS 

The second chapter of the dissertation is dedicated to examining the regulation IgA- 

receptor namely pIgR in reovirus infection and demonstrates that a newly appreciated 

effect of reovirus on mucosal epithelial cells is upregulation of pIgR expression.  

Upregulation of pIgR expression directly contributes to host defense by enhancing 

transcytosis of IgA from mucosal lamina propria into intestinal secretions where 

secretory IgA and free SC neutralize pathogens and inhibit binding of invading mucosal 

pathogens including virus and bacteria and prevent them from breaching the mucosal 

barrier.  In chapter 2, a series of experiements have been reported that aimed to 

characterize the virus-host cell interactions that result in pIgR upregulation and the cell 

signaling pathways that are affected. 

 

The third chapter in this dissertation is dedicated to examining downstream signal 

transduction pathways triggered by reovirus that likely contributes to upregulation of 

pIgR expression in intestinal epithelial cells.  The main pathways examined include 

NFκB and IRF-1 and it has been demonstrated that activation of both these transcription 

factors contribute to upregulation of pIgR following reovirus infection, suggesting a co-

ordinate regulation of pIgR gene transcription in response to virus. 

 

Chapter four comprises of preliminary experiments that aimed to understand                  

contribution of virus components in upregulation of pIgR.  Preliminary experiments have 

been conducted to understand the importance of virus dsRNA in virus-mediated 
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upregulation of pIgR.  Though these studies have not fully answered the important of 

RNA genome of virus in upregulation pIgR expression, it also has not ruled out its 

contribution.  Continuation of these studies with either engineered virus lacking a RNA 

genome will provide valuable insights in future. 

 

Chapter five comprises of preliminary experiments that aimed to understand the 

biological relevance of virus-mediated pIgR upregulation in an in vivo model.  

Experiments have been conducted in conventional and germ free mice to determine levels 

of pIgR expression in mice following reovirus infection and to compare if levels of pIgR 

are modulated in response to virus.  In addition, the preliminary in vivo studies indicated 

an increase in pIgR expression following virus treatment, suggesting that 

immunologically competent but naïve intestinal epithelium can respond to enteric 

infection with virus.   
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SUMMARY 

Polymeric immunoglobulin receptor (pIgR) transcytoses dimeric IgA and IgA-coated 

immune complexes from the lamina propria across epithelia and into secretions.  The 

effect of reovirus infection on regulation of pIgR expression in the human intestinal 

epithelial cell line HT-29 is characterized in this report.  Both replication-competent and 

UV-inactivated reovirus at multiplicities of infection equivalent of 1-100 up-regulated 

pIgR mRNA by 24 hour post infection, and intracellular pIgR protein was increased at 48 

hour following exposure to UV-inactivated virus.  Binding of virus to HT-29 cells was 

required because pre-incubating virus with specific antiserum, but not non-immune 

serum, inhibited reovirus –mediated pIgR up-regulation.  Endosomal acidification 

leading to uncoating of virus is a required step for pIgR up-regulation because 

ammonium chloride or bafilomycin-A1 pre-treatment inhibited virus-induced pIgR up-

regulation.   Inhibition experiments using the calpain inhibitor N-acetyl-leucyl-leucyl-

norleucinal suggest that calpains are involved in reovirus –mediated pIgR up-regulation.  

Up-regulation of pIgR following virus infection appears to be an innate immune response 

against invading pathogens that could help the host effectively clear infection.  Signaling 

induced by microbes and their products may serve to augment pIgR-mediated 

transcytosis of IgA, linking the innate and acquired immune responses to viruses. 
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INTRODUCTION 

A hallmark feature of adaptive mucosal immune responses is the production and 

secretion of secretory immunoglobulin A (sIgA) (Lamm, 1997; Brandtzaeg et al., 1997; 

Kato et al., 2001).  In the intestine, polymeric IgA produced by plasma cells in the lamina 

propria is transported across the adjacent mucosal epithelium into the lumen by the 

polymeric immunoglobulin receptor (pIgR) expressed on the basolateral surface of 

intestinal epithelial cells (Brandtzaeg, 1978; Brandtzaeg, 1985; Brandtzaeg et al., 1997).  

At the apical surface, pIgR is cleaved by an endopeptidase, releasing sIgA into luminal 

secretions (Musil & Baenziger, 1987).  The rate of IgA transcytosis depends on the level 

of pIgR expression because one molecule of pIgR must be synthesized for each molecule 

of transported IgA (Mostov & Deitcher, 1986; Tamer et al., 1995; Song et al., 1995; 

Norderhaug et al., 1999).  Thus, pIgR plays a role in mucosal host defense, and factors 

that influence expression of pIgR could affect mucosal immunity.  A number of cytokines 

including gamma interferon (IFN-γ) (Denning, 1996; Ackermann et al., 1999; Schjerven 

et al., 2000), tumor necrosis factor alpha, interleukin 1b (Blanch et al., 1999), and 

interleukin 4 (Denning, 1996; Ackermann et al., 1999; Schjerven et al., 2000) increase 

pIgR expression in epithelial cells.  However, little is known about regulation of pIgR 

during enteric virus infection.  

 Mammalian orthoreovirus (reovirus) are classified into 3 serotypes designated T1, T2, 

and T3 based on expression of the viral haemagglutinin, which serves as the viral ligand 

for cellular receptors (Weiner & Fields, 1977).  Reovirus infects the gastrointestinal tract 

in a wide range of mammalian species including mice and humans (Organ & Rubin, 

1998).  Although both T1 and T3 infect hosts via the intestine, significant differences 
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exist in the capacity of the serotypes to bind to intestinal epithelial cells and replicate in 

the intestine.  Wolf et al. (Wolf et al., 1981; Wolf et al., 1983; Wolf et al., 1987) 

demonstrated that both T1 and T3 bind to microfold (M)-cells that overlie Peyer’s 

patches (PP) in the small intestine.  This specific binding and uptake by PP exposes the 

virus to innate and adaptive immune cells in the intestine (Weltzin et al., 1989).   

Reovirus T3, but not T1, also binds to the apical surfaces of absorptive intestinal 

epithelial cells (IECs) and are endocytosed (Kauffman et al., 1983).  It is unclear whether 

this is a ‘dead-end’ path for T3 virus.   Endocytosed viruses appear to become trapped in 

lysosomes in IEC and basolateral transport has not been uniformly observed (Kauffman 

et al., 1983).  On the other hand, at least in young animals, T3 infection induces villus 

shortening and mild mononuclear infiltration in the lamina propria (Branski et al., 1980).  

Alterations in IEC from T3-infected neonates include reduction in lactase and 

enterokinase activities, and increased maltase and leucine aminopeptidase activities 

(Branski et al., 1980).  Together these results indicate that reovirus T3 can bind to and be 

taken up by IECs and affect IEC function, even though replication and viral shedding is 

limited.   

Reoviruses induce robust mucosal and systemic mucosal immune responses (London et 

al., 1987; Cuff et al., 1993; Fan et al., 1998; Major et al., 1998).  The intestinal cellular 

immune response is dominated by T-helper (Th) type 1 responses resulting in local 

production of IFN-γ (Fan et al., 1998; Mathers & Cuff, 2004) and development of virus-

specific CTL responses in the intestine and periphery (London et al., 1987; London et al., 

1989; London et al., 1990; Fulton et al., 2004).      
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Rubin et al. (Rubin et al., 1985) reported that reovirus grows best in the rapidly 

developing cells of the crypts.  In this model, virus is released from cells deep in the 

intestinal crypts and interacts with adjacent epithelial cells or is shed in the feces.  

Productive infection is limited to immature crypt enterocytes, perhaps due to a 

requirement for an activated Ras signaling pathway (Coffey et al., 1998; Strong et al., 

1998).   

Virus infection induces a number of changes in host cell biology that could influence cell 

function.  Interaction of reovirus cell attachment protein σ1 with its respective cell 

surface receptors including sialic acid and Junctional Adhesion Molecule (JAM) triggers 

a number of signaling cascades including increased activation of calpains (Debiasi et al., 

1999; Debiasi et al., 2001), activation of c-Jun N-terminal kinase (JNK), and extracellular 

signal-related kinase (ERK) (Clarke et al., 2001).    These signaling cascades result in up-

regulation of NF-κB activation (Tyler et al., 1995; Connolly et al., 2000; Hamamdzic et 

al., 2001) and phosphorylation of c-Jun (Clarke et al., 2001).  While these signaling 

pathways are involved in inducing apoptosis in infected cells, particularly during 

infection with T3 (Tyler et al., 1995), their roles in other reovirus-induced cellular 

changes have not been characterized extensively, although one report (Hamamdzic et al., 

2001) has linked increased NF-κB activation with production of chemokines and 

cytokines during reovirus exposure.   Significantly, most or all of these changes in cell 

signaling in vitro occur independently of viral replication in as much as UV-inactivated 

virus mediates the observed effects (Tyler et al., 1995; Debiasi et al., 1999; Hamamdzic 

et al., 2001).  These studies indicate that at least in vitro, replication incompetent virus 

can have many effects on cellular processes.  
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Virus-host cell interactions and some of the possible cell signaling pathways involved in 

reovirus-mediated pIgR up-regulation are characterized in this report.  Reovirus up-

regulated pIgR expression in the transformed human intestinal epithelial cell line, HT-29, 

and this up-regulation is independent of virus replication.  Binding of the virus to its 

cellular receptors is required for reovirus-mediated pIgR up-regulation because treatment 

of virus with reovirus specific serum abolished the increase in pIgR expression.  

Endosomal acidification leading to uncoating of virus is necessary for virus-mediated 

pIgR up-regulation because ammonium chloride blocked the process.  Furthermore, 

treatment of HT-29 cells with a specific inhibitor of calpain abrogated reovirus –mediated 

pIgR up-regulation.   These observations support the hypothesis that IECs upregulate 

pIgR expression following exposure to enteric virus, possibly by altering cell-signaling 

pathways that control pIgR expression. 

 

METHODS 

Cells.   HT-29 (ATCC HTB38) cells were cultured in McCoy’s 5A Modified Medium 

(ATCC, Manassas, VA) supplemented with 10% fetal bovine serum (FBS) and 1 % 

penicillin-streptomycin.  Calu-3 (ATCC 55-HTB) cells were cultured in Eagle’s 

Minimum Essential Medium (ATCC) supplemented with 10 % FBS and 1 % penicillin-

streptomycin.  Cells were plated in T-25 flasks or 12-well plates and incubated at 37 °C 

for 24 hours to allow the formation adherent monolayers and then exposed to virus, UV-

inactivated virus, and/or inhibitors.   
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Virus and antibodies.  Third passage stocks of reovirus serotype 3, strain Dearing 

(T3/D, originally obtained from ATCC) were prepared in L929 cells and purified by 

1,1,2-trichloro-1, 2,2-trifluoroethane (freon) extraction and CsCl gradient centrifugation 

(Smith et al., 1969).  The concentration of virions in purified preparations was 

determined by spectrophotometry where 1 absorbance unit at 260 nm = 2.1×1012 particles 

ml-1 (Smith et al., 1969) and by plaque assays (Cuff et al., 1990).  T3/D was exposed to 

UV light at 100 μJ cm2 -1   for 2 minutes at a distance of 15 cm at room temperature.  

UV-inactivation reduced infectivity by approximately 1000-fold as determined by a 

single cycle infection assay.    Polyclonal anti-T3/D antiserum was obtained from mice 

infected with 3 × 107 p.f.u. of purified T3/D virions 1 month previously.  One ml of 

serum completely neutralized a minimum of 1 × 1010 p.f.u. of virus as assessed by in 

vitro neutralization (Cuff et al., 1990).  In some experiments, UV-irradiated, virus-free 

L929 cell lysates or wheat germ agglutinin (Biomeda Corporation, Foster City, CA) were 

used to treat HT-29 cells. 

 

 RNA extraction and quantitative RT-PCR for pIgR mRNA.   Total cellular RNA 

was extracted from HT-29 cells using RNeasy® mini kits (Qiagen, Valencia, CA) and 

RNA was reverse transcribed into cDNA using Superscript TM RNase H- Reverse 

Transcriptase (Invitrogen Life Technologies, Carlsbad, CA) according to manufacturers’ 

protocols.   Real-time PCR was performed using a Lightcycler (Roche Molecular 

Biochemicals, Indianapolis, IN).  Taqman® primers and probes for human pIgR (from 

Applied Biosystems, Foster City, CA) were produced using published sequences (Blanch 

et al., 1999) and human b-actin was obtained from Biosource International Inc. 
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(Camarillo, CA).  Reactions were carried out in a total volume of 20 ml, and 2.5 mg of 

bovine serum albumin (BSA) was added to each sample.  PCR conditions were optimized 

for human pIgR and human β-actin primer pair as follows: denaturation for 1 cycle at 95 

°C for 15 seconds; enzyme activation for 1 cycle at 50 °C for 2 minutes followed by 95 

°C for 10 minutes; amplification for 55 cycles at 94 °C for 30 s followed by 60 °C for 1 

minute; cool down for 1 cycle at 40 °C for 1 minute.  Data were analyzed by determining 

‘crossing points’ or the cycle number at which newly synthesized PCR product is first 

detected.  Samples were analyzed in duplicate.  PIgR expression was normalized with 

respect to b-actin expression by subtracting the β-actin crossing point from the pIgR 

crossing point for each sample.  Preliminary experiments demonstrated that mRNA could 

be quantitatively reverse transcribed to cDNA and amplified by PCR over at least a 64-

fold range of concentrations (See Supplementary Figure in JGV Online). The fold 

induction of pIgR in virus-treated cells compared to the control was determined using the 

equation:  Fold change = Kgene
ΔCp, where Kgene is the amplification coefficient for the 

pIgR gene and ΔCp is the difference in crossing point between the normalized non-

treated and virus-treated HT-29 cells (Schjerven et al., 2000).  The theoretical value of 

Kgene is 2, and preliminary experiments indicated that the Kgene value for this system 

ranged from 1.9 to 2.0 (See Supplementary Figure in JGV Online).  Therefore, the Kgene 

value of 2 was used for data analysis.   

 

ELISA for cell –associated pIgR.   Concentrations of pIgR protein in cell lysates were 

determined by ELISA as described (Chintalacharuvu et al., 1991).  Briefly, 96-well 

EIA/RIA (Costar, Acton, MA) flat-bottom plates were coated with guinea pig anti-human 
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secretory component (SC).  Human SC purified from colostrum (Kobayashi, 1971) was 

used to generate standard curves.  Purified SC was diluted in cell lysis buffer (1X PBS, 1 

% Nonidet P-40, 0.5 % sodium deoxycholate, 0.1 % SDS and protease inhibitors 1mM 

phenylmethylsulfonyl fluoride (PMSF) and 5 mg ml-1 aprotinin).  Bound SC was 

detected with rabbit anti-human SC, followed by horseradish peroxidase-conjugated 

donkey anti-rabbit IgG (Jackson ImmunoResearch Laboratories Inc., West Grove, PA) 

and 100 ml of substrate, 2,2´ -azinobis-3-ethylbenzthiazoline-6-sulfonic acid substrate 

(ABTS) (Sigma, St. Louis, MO) (0.3 mg ml-1 in 0.1 M citric acid, pH 4.35) 

supplemented with 10 ml of 30 % H2O2 per 10 ml of ABTS.  Color development was 

assessed at 405 nm.  Total protein concentration in cell lysates was determined using the 

bicinchoninic acid protein assay reagent kit (Pierce Biotechnology, Rockford, IL) 

according to the manufacturer’s protocol.  Data were expressed as ng pIgR mg-1 total 

protein.   

 

Inhibition of endosomal acidification.  Ammonium chloride (Sigma) is an inhibitor of 

endosomal acidification that reduces intracellular digestion of reovirus outer capsid 

proteins and blocks reovirus induced apoptosis (Canning & Fields, 1983; Sturzenbecker 

et al., 1987; Connolly & Dermody, 2002).  Bafilomycin –A1 (Sigma) is a specific 

inhibitor of vacuolar proton ATPase (Bowman et al., 1988; Yoshimori et al., 1991; 

Hacker et al., 1998) and blocks reovirus replication (Martinez et al., 1996).  Adherent 

monolayers of HT-29 cells grown at 37 °C in 12 well plates were pre-treated for 1.5 

hours with various doses of ammonium chloride, or 1 hour with bafilomycin-A1 or 

DMSO (vehicle control).  Inhibitor-containing medium was then removed and the cells 
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were cultured in the presence or absence of UV-inactivated reovirus at a multiplicity of 

infection (MOI) equivalent of 50 pfu/cell for 1 hour.  The MOI equivalent was calculated 

based on the concentration of replication competent virus prior to UV-inactivation.   

Virus-exposed cells were then incubated in medium that contained inhibitor. mRNA was 

isolated 24 hours post exposure to virus.  Inhibitors used at the doses indicated were not 

visibly toxic to the cells. 

 

Inhibition of calpains.   Calpain inhibitor I (N-acetyl-leucyl-leucyl-norleucinal [aLLN]; 

Calbiochem, La Jolla, CA.) is a modified peptide that competes for the active site of 

calpain (Wang & Yuen, 1994) and it was prepared as a 25 mM stock in DMSO.  

Adherent monolayers of HT-29 cells were pre-treated with the indicated doses of aLLN 

or DMSO for 1 hour.  Inhibitor-containing medium was then removed and cells were 

exposed to UV-inactivated reovirus at an MOI-equivalent of 50.  After 1 hour incubation, 

inhibitors were added back to each culture (Debiasi et al., 1999) and mRNA was isolated 

at 24 hours after exposure to virus.  Intracellular pIgR protein was isolated at 48 hours 

post exposure to virus.  The inhibitor aLLN used at the doses indicated was not visibly 

toxic to the cells.    

 

Immunofluorescence Analysis.  HT-29 cells were grown on coverslips or T-25 flasks 

overnight and treated with 50 mM NH4Cl or 10 μM aLLN for 1 hour at 37°C.  Cells were 

pulsed with virus at a particle to cell ratio of approximately 105, or rendered non-adherent 

with trypsin-EDTA solution and then exposed to virus.  For virus binding assays, virus-

pulsed cells were incubated on ice for 30 minutes and kept cold during subsequent 
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staining.  Additionally, all stains and washes were performed in solutions containing 

0.04% (w/v) sodium azide to inhibit endocytosis.  Cells were analyzed using a Becton-

Dickinson FACScalibur and Cell Quest Pro software (BD Biosciences, San Jose, CA) 

For intracellular staining experiments, virus-infected cells were incubated for 1-2 hours at 

37°C.  Cells on coverslips were fixed for 15 minutes in PBS supplemented with 4% 

paraformaldehyde and 1% Triton X-100 and then stained for 30 minutes with a 1:500 

dilution of rabbit anti-reovirus antiserum diluted in PBS/1%Triton X-100.  The rabbit 

antiserum was previously raised in this laboratory.    Coverslips were then washed in 

PBS/1% Triton X-100 and stained for 15 minutes with a 1:100 dilution of Alexa 488-anti 

rabbit IgG (Molecular Probes, Eugene, OR) diluted in PBS /1% Triton X-100.  

Coverslips were dried, mounted and analyzed with a laser scanning confocal microscope 

(Zeiss LSM 510).   

 

Statistical analysis.  Data from multiple experiments were expressed as the mean ± 

SEM.  The statistical significance of differences between mean values was assessed by 

either two-way-analysis of variance (ANOVA) followed by Tukey’s test or one-way 

ANOVA followed by Orthogonal Contrast to test for both a trend in dose response and 

the threshold at which the effect appears. A P value of <0.05 was considered significant. 
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RESULTS 

Reovirus upregulates pIgR mRNA and protein in HT-29 cells.  To determine whether 

reovirus is capable of modulating pIgR expression in epithelial cells, infectious reovirus 

T3/D or UV-inactivated virus was adsorbed to confluent monolayers of HT-29 cells at an 

MOI or equivalent of 1, 10, and 100 and pIgR mRNA was measured 24 hours post virus 

exposure by RT-PCR.  No cytopathic effect was observed in cultures of cells exposed to 

replication competent or UV-inactivated virus for up to 48 hours of culture.  Cytopathic 

effect was observed at 72 hours post-infection with replicating virus; no CPE was 

observed with UV-irradiated virus.  Infectious virus increased pIgR mRNA 2-8 fold over 

several experiments.  However, UV-inactivated virus was substantially more effective in 

up-regulating pIgR mRNA expression at equivalent amounts of virus (Fig. 1).  No 

significant increase in pIgR mRNA was detected in cells treated with UV-irradiated L-

cell lysates (4 × 104 cells/ml), or wheat germ agglutinin (50 mg/ml) (Fig. 2); a ligand for 

sialic acid that serves as one of the cellular receptors for reovirus.    

To determine whether the increased mRNA levels resulted in increased pIgR protein 

production, HT-29 cells were cultured in the presence or absence of infectious virus or 

UV-inactivated virus at an MOI equivalent of 50, and intracellular pIgR protein was 

measured from cell lysates by ELISA (Fig. 3).   Increased levels of intracellular pIgR 

were detected by 48 hours of reovirus exposure.  Thus, the elevation in protein levels 

followed the increased mRNA levels by 24 hours.   As with the mRNA, UV-inactivated 

virus had a more pronounced effect than replicating virus.   Immunoblot analysis 

additionally demonstrated upregulation of pIgR protein by UV-treated reovirus or IFN-

γ (See Supplementary Fig. S2 in JGV Online ). 
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Virus-specific antiserum blocks the effect of reovirus on pIgR up-regulation.  To 

ascertain whether increased pIgR mRNA requires virus binding to the host cells, UV-

inactivated T3/D was pre-incubated with T3/D-immune or non-immune mouse serum 

prior to use on HT-29 cells.   T3/D-immune but not non-immune serum blocked the 

virus-induced up-regulation of pIgR, indicating that virus binding to HT-29 cells is 

required to upregulate pIgR (Fig. 4).   

 

Inhibition of endosomal acidification blocks reovirus mediated pIgR up-regulation. 

Reovirus is endocytosed following binding to its cellular ligands, sialic acid and JAM 

(Borsa et al., 1979; Borsa et al., 1981; Sturzenbecker et al., 1987; Rubin et al., 1992; 

Barton et al., 2001b; Prota et al., 2003; Forrest et al., 2003).  Acidification leads to partial 

uncoating of the virus inside endosomes, resulting in production of intermediate subviral 

particles that translocate to the cytoplasm and initiate transcription of viral genes (Borsa 

et al., 1979; Borsa et al., 1981; Sturzenbecker et al., 1987).  To examine whether 

endosomal acidification is required for reovirus –mediated pIgR up-regulation, HT-29 

cells were pre-treated for 90 minutes with various doses of ammonium chloride.  

Inhibitor-containing medium (or control) was then removed, and the cells were cultured 

in the presence or absence of UV-inactivated reovirus at an MOI equivalent of 50 for 1 

hour.  Ammonium chloride was then added back to each well and pIgR mRNA was 

measured 24 hours post exposure to virus.  Ammonium chloride blocked virus mediated 

pIgR mRNA up-regulation in a dose dependent manner (Fig. 5), suggesting that 

endosomal acidification leading to uncoating of virus plays a role in pIgR up-regulation.  
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Bafilomycin-A1, another inhibitor of endosomal acidification that acts through inhibition 

of vacuolar proton ATPase (Bowman et al., 1988; Yoshimori et al., 1991; Martinez et al., 

1996; Hacker et al., 1998), also blocked reovirus-induced pIgR upregulation (Fig. 6). 

 

Calpain inhibition abrogates reovirus –mediated pIgR up-regulation.   Calpains, 

calcium-dependent cysteine proteases, induce nuclear factor kappa B (NFκB) activation 

through the degradation of its cytosolic repressor inhibitory kappa B alpha (IκBa).  

Debiasi et al. demonstrated that calpain inhibitors reduced reovirus-mediated calpain 

acitivation in vitro (Debiasi et al., 1999) and in vivo (Debiasi et al., 2001).   To determine 

whether calpains play a role in reovirus-mediated up-regulation of pIgR, HT-29 cells 

were pre-treated for 1 hour with the calpain I inhibitor aLLN at doses of 0.001 to 10 μM, 

or vehicle control DMSO.  Medium containing inhibitor (or control) was then removed, 

and the cells were cultured in the presence or absence of UV-inactivated reovirus at an 

MOI equivalent of 50.  After 1hour incubation, inhibitors were added back to each well 

and pIgR mRNA was measured 24 hours after exposure to virus.  Virus-mediated up-

regulation of pIgR mRNA was inhibited by aLLN in a dose-dependent manner, 

suggesting that calpains play a role in virus-induced pIgR up-regulation (Fig. 7A).  Under 

similar culture conditions, UV-inactivated T3/D failed to upregulate intracellular pIgR 

protein in cells treated for 48 hours with 1-10 μM aLLN (Fig. 7B and supplemental data 

in JGV Online), suggesting a role for calpain activation in pIgR up-regulation.  

Neither NH4Cl nor aLLN affected binding of virus to cellular receptors as determined by 

flow cytometric analysis of cells pulsed with virus at 4°C in the presence of sodium 

azide.  Additionally, when inhibitor-treated, virus-infected cells were incubated at 37°C 
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to allow endocytosis, bright intracellular perinuclear staining of reovirus was observed 

(Fig. 8).   

 

DISCUSSION 

 

 pIgR contributes to host defense of mucosal surfaces by mediating efficient transport and 

secretion of IgA.  How mucosal pathogens affect pIgR expression to the advantage of 

either the host or the pathogen is not clear.  These studies are the first to show that 

reovirus increases pIgR mRNA and protein in mucosal epithelial cells.  The results 

indicate that virus binding to cellular ligands and uncoating in acidified endosomes are 

required steps for virus-mediated pIgR up-regulation through a calpain-mediated 

pathway.    UV-inactivated T3/D reovirus induced higher levels of pIgR expression than 

infectious virus, possibly because replicating virus usurps or inhibits normal host cell 

mRNA and protein synthesis to produce infectious virions (Kudo & Graham, 1966; 

Ensminger & Tamm, 1969; Zweerink & Joklik, 1970; Sharpe & Fields, 1981; Sharpe & 

Fields, 1982).   

Preliminary studies indicated that both replication competent and UV-inactivated T1 

(strain Lang) was less efficient than T3/D in inducing pIgR up-regulation (data not 

shown).  It has long been thought that during T1 infection, viral entry into IECs occurs 

through the basolateral surface (Rubin et al., 1985), most likely as a result of T1 binding 

to cellular JAM (Barton et al., 2001b; Prota et al., 2003; Forrest et al., 2003) and not 

through sialic acid (Wolf et al., 1981; Wolf et al., 1983; Wolf et al., 1987).  Together 

these observations imply that perhaps sialic acid –mediated binding and entry is critical 
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for pIgR upregulation.  However, it has been recently reported that T1 can also bind to 

glycoconjugates containing alpha 2-3-linked sialic acid on M-cell apical surfaces 

(Helander et al., 2003).  Therefore the role of sialic acid binding in mediating pIgR 

upregulation remains to be determined.  Approaches to assessing the role of sialic acid 

include using reoviruses deficient in the ability to bind sialic acid, and pre-treating HT-29 

cells with sialidase.  Replication of virus in host cells is not required for reovirus-

mediated pIgR up-regulation, implying that this innate immune response can occur in the 

absence of significant virus replication.  

Reovirus infection of the respiratory tract induces various types of pathology including 

acute pneumonia in juvenile mice (Morin et al., 1994; Morin et al., 1996).  Reovirus also 

up-regulated pIgR mRNA expression by 15-fold in the transformed human airway 

epithelium cell line Calu-3, while UV-inactivated virus up-regulated pIgR mRNA 

expression by as much as 25-fold under similar conditions (See Supplementary Figure in 

JGV Online) suggesting that pIgR up-regulation in epithelial cells from both the 

respiratory tract and the intestine could clear infection more effectively by increasing 

transport of pIgA in the mucosal secretions. 

Virus infection of host cells involves multiple steps including binding, uptake, and 

replication. The requirements of receptor engagement and uptake for virus-mediated 

pIgR up-regulation were also investigated.  T3/D-immune but not non-immune serum 

blocked the up-regulation of pIgR, indicating that specific virus binding to HT-29 cells is 

required to induce pIgR up-regulation.  Whether virus binding through JAM (Barton et 

al., 2001b; Prota et al., 2003; Forrest et al., 2003), sialic acid (Chappell et al., 1997; 

Chappell et al., 2000; Connolly et al., 2001; Barton et al., 2001a; Connolly & Dermody, 
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2002; Helander et al., 2003), or both, is required for pIgR up-regulation is under 

investigation.  After binding, the virus undergoes receptor-mediated endocytosis (Borsa 

et al., 1979; Borsa et al., 1981; Sturzenbecker et al., 1987; Rubin et al., 1992) and 

subsequent endosomal acidification leads to partial uncoating of virus inside the 

endosomes (Borsa et al., 1981; Sturzenbecker et al., 1987).  Ammonium chloride blocked 

virus-mediated pIgR up-regulation, indicating that endosomal acidification leading to 

viral disassembly is necessary for pIgR up-regulation.  Ammonium chloride-mediated 

inhibition of viral disassembly has been previously shown to block reovirus-induced 

apoptosis (Connolly & Dermody, 2002) without affecting binding or uptake of virus 

(Sturzenbecker et al., 1987), which was confirmed in this study.  Bafilomycin-A, an 

inhibitor of vacuolar proton ATPases, was previously shown to block reovirus replication 

in cells infected with whole virions but not in cells infected with intermediate subviral 

particles (Martinez et al., 1996).   Like NH4Cl, bafilomycin-A1 inhibited reovirus-

induced pIgR upregulation, further supporting the idea that viral uncoating is required for 

pIgR upregulation.  It is possible that following degradation in the endosomes, liberated 

viral dsRNA interacts with intracellular Toll like receptor –3 (TLR-3) to induce 

intracellular signals that lead to pIgR up-regulation.  TLR-3 is constitutively expressed in 

human intestinal epithelial cells (Cario & Podolsky, 2000), although the precise 

intracellular location of TLR-3 has not yet been identified.  In human dendritic cells 

TLR-3 is expressed intracellularly in vesicles and possibly at a low level in late 

endosomes (Matsumoto et al., 2003; Funami et al., 2004).  Thus, TLR-3 signaling in 

response to reovirus dsRNA might be initiated following fusion of endosomes containing 

reovirus dsRNA from degraded virions with cellular vesicles containing TLR-3.  
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However during virus replication it is possible that dsRNA synthesized inside newly 

formed capsids is shielded from intracellular TLR-3.  Therefore an alternative activation 

pathway such as through TLR-7 in mice or TLR-8 in human, which recognize viral 

ssRNA (Diebold et al., 2004; Heil et al., 2004) might be responsible for the observed 

effects.  

Alternatively, reovirus dsRNA may trigger cellular responses via a TLR –independent 

mechanism.  Double stranded RNA may bind to the cellular RNA helicase, retinoic acid-

inducible gene-1 (RIG-1) (Li et al., 2005; Sumpter, Jr. et al., 2005), or  melanoma 

differentiation-associated gene 5 (mda-5) (Kang et al., 2002; Andrejeva et al., 2004) and 

subsequently activate latent transcription factors including IFN regulatory factor 3 and 

NFκB.  Activation of NFκB results in transcription of the pIgR gene (Ackermann et al., 

1999; Schjerven et al., 2001; Ackermann & Denning, 2004) Because RIG-1 and mda-5 

activate NFκB, and reovirus upregulates NFκB activation, it is possible that one or both 

of these intracellular pathogen receptor/signaling molecules mediate the effect of reovirus 

on pIgR levels.  These hypotheses are currently being investigated.  UV inactivation of 

reovirus damages the dsRNA genome by bonding the pyrimidine molecules, which 

impairs replication and blocks transcription of early and late genes (Strong et al., 1998).  

However, it is not known whether there is residual transcription of viral mRNA in the 

UV-inactivated virus used in the experiments reported here. 

The calpain inhibitor aLLN abolished virus-mediated pIgR up-regulation, suggesting an 

essential role for calpain activation in this process.  Calpains are calcium dependent 

cysteine proteases widely distributed throughout the cytosol of many cell types (Murachi, 

1989).  Calpains exists in the cytosol as an inactive proenzyme bound to its endogenous 
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inhibitor calpastatin (Croall & DeMartino, 1991).  Upon activation, calpains degrade a 

variety of substrates including proto-oncogenes, steroid hormone receptors, protein 

kinases, and cytoskeletal elements (Croall & DeMartino, 1991).  Calpains also regulate a 

number of cellular transcription factors, including activation of NFκB, by mediating 

degradation of its inhibitor IκB (Liu et al., 1996; Chen et al., 1997).  It seems reasonable 

to speculate that reovirus-induced pIgR up-regulation is mediated through NFκB 

activation via a calpain-mediated pathway, and this hypothesis is also under 

investigation.  It has been speculated that aLLN can transiently affect endocytosis (Kamal 

et al., 1998), but no evidence was found to support that mechanism of action in the 

experiments reported here. 

Enteroinvasive bacteria including Salmonella dublin, enteroinvasive Escherichia coli and 

Yersinia enterocolitica can increase NFkB activity in human intestinal epithelial cell 

lines, HT-29, Caco-2 and T84.  NFkB activation leads to enhanced transcription of an 

array of downstream inflammatory genes including interleukin 8, tumor necrosis factor 

alpha, and monocyte chemoattractant protein-1 (Elewaut et al., 1999).  Thus, NFkB 

serves as a central regulator of the intestinal epithelial cell innate immune responses to 

infection with enteroinvasive bacteria, and perhaps enteric viruses as well.  

Although not yet demonstrated, it is reasonable to speculate that reovirus infection leads 

to pIgR up-regulation in vivo.  Reovirus replicates in the rapidly dividing cells of the 

intestinal crypts (Rubin et al., 1985), and viral replication appears to be restricted to host 

cells with an activated ras pathway (Strong et al., 1998).  If only replicating virus induced 

pIgR upregulation, then the effect in vivo would be limited to crypt cells.   However, 

reovirus replication is not necessary for up-regulating pIgR expression, so reovirus could 
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potentially modulate pIgR levels in differentiated IECs lacking an activated ras pathway.    

At least in vitro, reovirus infection results in the production of replication competent and 

replication incompetent virus (Smith et al., 1969).  This phenomenon likely occurs in 

vivo as well, and could result in production of particles that would efficiently induce 

pIgR expression in IECs independent of viral replication.  Although it could be 

questioned whether UV-inactivated virus is equivalent to normally occurring, replication 

incompetent virus, UV-inactivated virus has been used as a surrogate for replication 

incompetent virus in in vitro (Farone et al., 1993; Tyler et al., 1995; Debiasi et al., 1999; 

Hamamdzic et al., 2001; Labrada et al., 2002) and in vivo (Rubin et al., 1981) studies. 

  Up-regulation of intestinal pIgR mRNA expression has been reported in formerly germ-

free mice colonized with   Bacteroides thetaiotaomicron   (Hooper et al., 2001).  In 

addition, pIgR mRNA and protein expression is upregulated in mammary epithelial cells 

in sheep in response to exogenous hormones and glucocorticoid treatment (Rincheval-

Arnold et al., 2002b), and this effect could be mediated through an IFN-γ-linked 

mechanism (Rincheval-Arnold et al., 2002a).   Lamina propria mononuclear cell-derived 

IFN-g has been shown to upregulate pIgR expression in HT-29 cells (Youngman et al., 

1994).   Thus, along with the direct effects of the virus, reovirus infection induced IFN-g 

expression in the intestine (Fan et al., 1998; Mathers & Cuff, 2004), so cytokine-

mediated up-regulation of pIgR might be operative in vivo.  Virus-induced up-regulation 

of pIgR that augments IgA transcytosis could be an innate host defense mechanism 

against mucosal pathogens.  
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Fig.  1.  Reovirus upregulates pIgR mRNA expression in HT-29 cells.  Confluent monolayers of HT-29 

cells were cultured at 37°C for 24 hours in the presence or absence of reovirus serotype 3, strain Dearing 

(T3/D), (closed bars) or UV inactivated T3/D, (open bars) at multiplicities of infection (MOI) equivalents 

of 1, 10 and 100.  Following incubation pIgR mRNA levels were quantified by real-time RT-PCR and 

normalized to β-actin mRNA.  Samples were analyzed in duplicate. Data are expressed as fold-increases in 

pIgR mRNA in response to reovirus (mean ± SEM).  Data are compiled from three independent 

experiments.  Asterisks indicate that the mean is significantly different from that of control cells (no virus) 

as determined by two-way ANOVA followed by Tukey’s test (p< 0.050). 
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Fig.  2. UV-irradiated L-cell lysates (4×104 cells/ml) or wheat germ agglutinin (WGA) (50 μg/ml) does 

not upregulate pIgR mRNA expression in HT-29 cells.  Confluent monolayers of HT-29 cells were 

cultured at 37°C for 24 h in the presence or absence of UV inactivated T3/D at MOI equivalents of 50 or 

UV-irradiated L-cell lysate or WGA.  Following incubation pIgR mRNA levels were quantified by real-

time RT-PCR and normalized to β-actin mRNA.  Samples were analyzed in duplicate. Data are expressed 

as fold-increases in pIgR mRNA in response to reovirus or lysate or WGA.  Data are from two separate 

independent experiments. 
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Fig.  3.  UV-inactivated reovirus increases pIgR protein levels in HT-29 cells.  Confluent monolayers of 

HT-29 cells were cultured at 37°C for 48 hours in the presence or absence of reovirus T3/D or UV-

inactivated T3/D at an MOI equivalent of 50.  Cells were collected at 24, 48 and 72 hours post –infection 

and lysed.   Intracellular pIgR protein in cell lysates was measured by ELISA.  Total protein concentration 

in lysates was determined by BCA protein assay.  The results are expressed as ng pIgR mg-1 total protein 

(mean ± SEM).  Data are representative of three independent experiments.  Asterisks indicate that the mean 

is significantly different from that of control cells (no virus) as determined by two-way ANOVA followed 

by Tukey’s test (p< 0.050). 
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Fig.  4.  Reovirus specific antibody abolishes up-regulation of pIgR mRNA in HT-29 cells.  HT-29 

cells were cultured in the presence or absence of UV- irradiated T3/D (MOI equivalent of 10) that had been 

pre-incubated for 30 minutes on ice with saline (no serum), mouse T3-immune serum (αT3) or mouse non-

immune serum (NI).   pIgR mRNA levels were quantified 24 hour post exposure.  Data are expressed as 

fold-increases in pIgR mRNA in response to reovirus (mean ± SEM).  Data are representative of three 

independent experiments.  Asterisks indicate that the mean is significantly different from that of only virus 

(no serum) treated cells as determined by two-way ANOVA followed by Tukey’s test (p< 0.050).
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Fig.  5.  Ammonium chloride blocks reovirus-mediated pIgR up-regulation in HT-29 cells.  HT-29 

cells were pre-treated for 90 minutes with indicated doses of ammonium chloride. Medium was then 

removed and cells were cultured in the presence or absence of UV-inactivated reovirus at an MOI 

equivalent of 50.  Inhibitors were added back to each well after 1-hour incubation.  pIgR mRNA levels 

were quantified 24 hour post exposure.  Data are expressed as fold-increases in pIgR mRNA in response to 

virus compared to cells receiving no virus at each dose of ammonium chloride (mean ± SEM).  Data are 

compiled from three independent experiments.  Asterisks indicate that the mean is significantly different 

from that of control cells (no pre-treatment with ammonium chloride) as determined by one-way ANOVA 

followed by Orthogonal Contrast (p< 0.050). 
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Fig.  6.  Bafilomycin -A1 blocks reovirus-mediated pIgR up-regulation in HT-29 cells.  HT-29 cells were pre-treated 

for 60 minutes with indicated doses of bafilomycin-A1.  Medium containing inhibitor or (control DMSO) was then 

removed and cells were cultured in the presence or absence of UV-inactivated reovirus at an MOI equivalent of 50.  

Inhibitors were added back to each well after 1-hour incubation.  Following incubation pIgR mRNA levels were 

quantified by real-time RT-PCR and normalized to β-actin mRNA.  Samples were analyzed in duplicate.  Data are 

expressed as fold- increases in pIgR mRNA in response to virus compared to cells receiving no virus at each dose of 

bafilomycin-A1.  Data are from two separate independent experiments. 
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Fig.  7.  Calpain inhibition abrogates reovirus-mediated pIgR up-regulation in HT-29 cells.  (A) HT-

29 cells were pre-treated for 60 minutes with indicated doses of calpain inhibitor aLLN.  Medium 

containing inhibitor (or control DMSO) was then removed, and the cells were cultured in the presence or 

absence of UV-inactivated reovirus at an MOI equivalent of 50.  After 1 hour incubation, inhibitors were 

added back to each well and pIgR mRNA was quantified at 24h post exposure.  Data are expressed as fold-

increases in pIgR mRNA in response to virus compared to cells receiving no virus at each dose of aLLN 

(mean ± SEM).  Data from Panel A are compiled from 3 independent experiments.  Asterisks indicate that 

the mean is significantly different from that of control cells (no pre-treatment with aLLN) as determined by 

one-way ANOVA followed by Orthogonal Contrast (p< 0.050).  (B) Under identical culture conditions, 

cells were lysed at 48 hours post exposure to virus and pIgR protein levels were determined by ELISA.  

Data are from a single experiment.  Data from an additional similar experiment can be found as a 

Supplementary Figure in JGV Online).    
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Fig. 8. Neither NH4Cl nor aLLN affect endocytosis of reovirus by HT-29 cells.  (A) HT-29 cells grown on cover 

slips were pre-incubated for 1 hour in the presence or absence of 50 mM NH4Cl or 10 μM ALLN at 37oC followed by 

exposure to reovirus for 30 minutes at a dose of 105 particles /cell.  Unbound virus was washed free and cells were 

incubated for an additional 90 minutes at 37oC.  Following incubation cells were fixed with 4% paraformaldehyde and 

stained with rabbit anti-reovirus followed by Alexa488-anti rabbit IgG.   Intracellular staining was visualized using laser 

scanning confocal microscopy through multiple z planes.  Images shown are taken through central planes on the cells 

and demonstrate perinuclear staining of virus.  Each panel is approximately 60 μm wide. (B) In a separate similar 

experiment, HT-29 cells were pre-treated with inhibitors in T-25 flasks, stripped from the flask with trypsin-EDTA, 

pulsed with reovirus and incubated at 37o C for 1 hour.  Cells were then fixed, permeabilized, stained for reovirus 

antigen and analyzed by flow cytometry.  Dashed lines indicate non-infected cells, solid line indicate reovirus-infected 

cells. 
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FIG S1. Linearity of RT-PCR reaction for pIgR using total mRNA and efficiency calculation of PCR 

reactions.  (A) Total mRNA from a reovirus-stimulated HT-29 cells that contained high levels of pIgR mRNA 

were serially diluted in mRNA from human Jurkat cells (pIgR mRNA negative).  Samples were reverse transcribed 

and resulting pIgR cDNA was amplified and quantitated using pIgR-specific primers.  PCR products were detected 

with a pIgR-specific fluorescent probe as described in Methods.  The cycle number that product is detected is 

graphed against the dilution of mRNA.  Linearity of the response over a 64-fold concentration demonstrates that 

the reaction is quantitative and linear over a broad range of pIgR mRNA concentrations.  (B) pIgR cDNA was 

serially diluted and amplified by PCR as described in Schjerven et al., 2000.  Cycle thresholds for each sample 

were used to determined PCR efficiency as described in Schjerven et al.,2000. 
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Fig S2. Immunoblot analysis of pIgR protein in stimulated cells.  Cells were cultured in 6-well plates 

and treated under the indicated conditions. Cells were treated with trypsin-EDTA, transferred to a 

microfuge tube, and pelleted by centrifuging at 1200 rpm for 5 min at 4ºC. The cells were incubated in cell 

lysis buffer (1X PBS, 1 % Nonidet P-40, 0.5 % sodium deoxycholate, 0.1 % SDS and protease inhibitors 

1mM phenylmethylsulfonyl fluoride (PMSF) and 5 µg ml-1 aprotinin) for 20 min on ice, centrifuged at 

12000 g for 15 min at 4°C, and the supernatant fraction was transferred to a new microfuge tube. Total 

protein concentration in cell lysates was determined using the bicinchoninic acid protein assay reagent kit 

(Pierce Biotechnology, IL) according to the manufacturer’s protocol. Equal amounts of protein (140 µg) 

were separated on 7·5% SDS polyacrylamide gels, transferred to nitrocellulose, and subjected to Western 

blot analysis using the indicated antibody. Briefly, non-specific binding was blocked by incubating the 

blots for 1 hr at room temperature with non-fat dry milk (NFDM), 5% NFDM in PBS with 0·05% Tween 

20. After each step the blots were washed four to five times for 10 min each with 1X PBS/ 0·05% Tween 

20. The blots were incubated overnight at 4°C with monoclonal anti-human secretory component (1: 2500, 

Sigma). Blots were then incubated for 1 hr at room temperature with horseradish peroxidase (HRP)-

conjugated sheep anti-mouse (1:5000, Amersham Biosciences). Antibody binding was visualized using the 

ECL western blotting detection reagents (Amersham Biosciences, Piscataway, NJ) and film was developed 

in All-Pro 100 Plus X-ray Film Developer (All Pro Imaging).  RT-PCR analysis from RNA samples 

collected 24 hours earlier indicated a 30-fold and 8-fold increase in pIgR message in IFN-γ and reovirus 

treated cells over control levels. 
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FIG.  S3.  Calpain inhibition ameliorates reovirus-mediated pIgR protein up-regulation in HT-29 

cells.  HT-29 cells were pre-treated for 60 minutes with indicated doses of calpain inhibitor aLLN.  

Medium containing inhibitor (or control) was then removed and the cells were cultured in the presence or 

absence of UV-inactivated reovirus at an MOI equivalent of 50.  After 1 hour incubation, inhibitors were 

added back to each flask.  Cells were lysed at 48 hours post exposure to virus and pIgR protein levels were 

determined by ELISA.   
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FIG.  S4.  Reovirus upregulates pIgR mRNA expression in Calu-3 cells.  Confluent monolayers of 

Calu-3 cells were cultured at 37 °C for 24 hours in the presence or absence of reovirus serotype 3, strain 

Dearing (T3), UV inactivated T3, or IFN-γ for 24 h.  Following incubation pIgR mRNA levels were 

quantified by real-time RT-PCR and normalized to β-actin mRNA.   
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SUMMARY 

 

The role of nuclear factor kappa B (NFκB) in reovirus -induced polymeric 

immunoglobulin receptor (pIgR) upregulation in HT-29 intestinal epithelial cells was 

examined.  Helenalin, a chemical inhibitor of NFκB activation, inhibited reovirus-

mediated pIgR mRNA and protein upregulation.  Expression of dominant negative 

IκBα blocked the ability of reovirus to upregulate pIgR mRNA.  Reovirus increased 

transcriptional activity by reporter plasmids that contained a functional NFκB and 

interferon regulatory factor-1 (IRF-1) binding site from intron 1 and exon 1 of the PIGR 

gene respectively, but not by plasmids containing either one or both mutations.  Together, 

these findings suggest that reovirus activates PIGR gene transcription by binding 

activated NFκB and IRF-1 to their respective cognate sites of the pIgR promoter. 
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Secretory immunoglobulin A (sIgA) is the first line of specific immunological defense at 

mucosal surfaces (Lamm, 1997; Brandtzaeg et al., 1997; Kato et al., 2001).  Dimeric IgA 

and larger polymers of IgA and IgM bind to polymeric immunoglobulin (pIg) receptor 

(pIgR) basolaterally on mucosal epithelial cells, and are transcytosed through the 

epithelium (Brandtzaeg, 1978; Brandtzaeg, 1985; Apodaca et al., 1994; Brandtzaeg et al., 

1997; Kaetzel, 2005).  At the apical surface, the pIgR –pIg complex or the empty receptor 

is proteolytically cleaved close to its transmembrane domain, releasing secretory IgA or 

the free secretory component into luminal secretions (Musil & Baenziger, 1987).  

Because one molecule of pIgR is required for every molecule of transported polymeric 

immunoglobulin, synthesis of pIgR by epithelial cells is a rate-limiting step for 

generation of secretory pIg.  In addition to transporting IgA, free secretory component 

protects sIgA from proteolytic degradation and can inhibit binding of pathogens 

including Escherichia coli, Streptococcus pneumoniae, and bacterial toxins to the 

epithelium (Giugliano et al., 1995; Hammerschmidt et al., 1997; Dallas & Rolfe, 1998; 

Hammerschmidt et al., 2000; de Araujo & Giugliano, 2001; Kaetzel, 2005).  Using pIgR 

knockout mice, Uren et al. reinforced the importance of pIgR / sIgA for the protection of 

gastrointestinal surfaces against secreted bacterial toxins including cholera toxin.  

However, pIgR / sIgA was found to be dispensable for protection against infection with 

Salmonella typhimurium or Citrobacter rodentium (Uren et al., 2005).  Sun et al. 

demonstrated the critical role of pIgR / sIgA in protection against nasal colonization by S. 

pneumoniae in pIgR knockout mice (Sun et al., 2004).   
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Expression of pIgR can be modulated by a variety of environmental stimuli including 

proinflammatory cytokines, hormones and commensal bacteria.  Cytokines including 

gamma interferon (IFN-γ), tumour necrosis factor-alpha (TNF-α), interleukin (IL)- 4, and 

IL-1 upregulate pIgR expression in epithelial cells (Schjerven et al., 2001; Ackermann & 

Denning, 2004; Schjerven et al., 2004).  Several hormones including estrogen, 

progesterone, androgens, glucocorticoids and prolactin also regulate pIgR expression 

(Bjercke & Brandtzaeg, 1993; Kaushic et al., 1995; Chapman et al., 2000; Claessens et 

al., 2001; Yu-Lee, 2001; Rincheval-Arnold et al., 2002a; Rincheval-Arnold et al., 

2002b).  PIgR expression was increased in germfree mice following colonization with 

commensal Bacteroides thetaiotaomicron (Hooper et al., 2001) and following weaning, a 

time in which normal bacterial flora is established in mice (Jenkins et al., 2003).   

Microbial products such as bacterial lipopolysaccharide (LPS) and poly I:C, a chemical 

analog of viral double stranded RNA, also induced pIgR upregulation in HT-29 cells 

(Schneeman et al., 2005).  In addition, chronic mucosal disorders including celiac 

disease, Helicobacter pylori gastritis, and Sjogren’s syndrome increase pIgR synthesis 

(Brandtzaeg et al., 1992).  Taken together, these studies suggest that pIgR contributes to 

maintaining the integrity of the mucosal barrier and regulation of receptor expression is a 

developmental response by epithelial cells that contributes to host defense.   

 

Mammalian orthoreovirus (reovirus) infects the mucosa in a wide variety of mammalian 

species including mice and humans.  Reovirus infection initiates a number of signaling 

cascades in host cells including increased activation of calpains (Debiasi et al., 1999; 

Debiasi et al., 2001), activation of c-Jun N-terminal kinase (JNK), and extracellular 
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signal-related kinase (ERK) (Clarke et al., 2001).   These signaling cascades result in 

upregulation of NFκB activation (Tyler et al., 1995; Connolly et al., 2000; Hamamdzic et 

al., 2001) and phosphorylation of c-Jun (Clarke et al., 2001).  Significantly, most or all of 

these changes in cell signaling in vitro occur independently of viral replication in as much 

as UV-inactivated virus mediates the observed effects (Rubin et al., 1981; Tyler et al., 

1995; Debiasi et al., 1999; Hamamdzic et al., 2001; Pal et al., 2005).  Other steps during 

infection such as binding to specific receptors, endocytosis and uncoating, and cellular 

exposure to viral RNA also appear to affect host cell biology (Barton et al., 2001; 

Hamamdzic et al., 2001; Pal et al., 2005).   

 

Reovirus upregulates pIgR mRNA and protein in transformed human intestinal epithelial 

HT-29 cells (Pal et al., 2005).  This report examines the role of NFκB in reovirus –

induced pIgR upregulation.  To determine whether NFκB activation is necessary for 

reovirus-mediated upregulation of pIgR, HT-29 cells were pre-treated for 1 hour with the 

NFκB inhibitor helenalin (Sigma, St. Louis, MO) at doses of 0.001 to 10 μM, or vehicle 

control DMSO.  Helenalin specifically alkylates the p65 subunit of NFκB, rendering it 

incapable of binding to DNA.  Inhibitor containing media was then removed and cells 

were cultured for 1 hour in the presence or absence of UV-inactivated reovirus serotype 

3, strain Dearing (T3/D).  Following incubation, inhibitors were added back to each well 

and pIgR mRNA was measured by real time reverse transcriptase (RT) PCR 24 hours 

after exposure to virus.  Virus-mediated upregulation of pIgR mRNA was inhibited by 

helenalin in a dose-dependent manner (Fig.  1A).  Under similar culture conditions, 1-10 

μM helenalin blocked virus-mediated increase in intracellular pIgR protein as determined 
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by ELISA (Fig.  1B).  To further test the hypothesis that NFκB is involved in virus-

mediated pIgR upregulation, HT-29 cells were infected with recombinant adenovirus that 

over-expresses a dominant negative form of IκBα ( IκBdn) that lacks two serine residues 

and cannot be phosphorylated.  As a control for transfection efficiency cells were infected 

with an adenovirus vector expressing β-galactosidase (AdLacZ) (University of Iowa 

Gene Therapy Vector Core Facility, Iowa).  24 h later, confluent monolayers of HT-29 

cells were cultured at 37°C for 24 h in the presence or absence of UV-inactivated T3/D. 

The dominant negative construct has been previously shown to block cytokine-induced 

upregulation of pIgR (Ackermann & Denning, 2004). The dominant negative mutant 

blocked the ability of UV-inactivated reovirus to upregulate pIgR mRNA when compared 

to cells transfected with a control adenovirus vector (AdLacZ), which also accounts for 

transfection efficiency (Fig.  2).  To further examine whether reovirus can upregulate 

PIGR gene expression through NFκB or interferon regulatory factor –1 (IRF-1) mediated 

transcriptional activation, HT-29 cells were transfected for 2 hours with 1μg of wild type 

(WT), mutant plasmids or promoter-less (control) as indicated.  24 hours post-

transfection, cells were cultured at 37°C in the presence or absence of UV-inactivated 

T3/D for another 24 hours.  In these plasmids, transcription of the firefly luciferase 

reporter gene is driven by an 8.6 kb fragment of the human PIGR gene, including 2684 

bp of 5’ –flanking sequence, exon 1 (132 bp), intron 1 (5751 bp), and the first 56 bp of 

exon 2, up to and including the translation start site (Schneeman et al., 2005). The ‘NFκB 

mutant’ plasmid contains a mutation that abolishes an NFκB –binding site in intron 1; the 

‘IRF-1 mutant’ plasmid contains a mutation that abolishes an IRF-1 binding site in exon 

1, and the ‘double mutant’ plasmid contains both mutation. These mutations have been 
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previously shown to inhibit TNF-α (Schjerven et al., 2001) and poly I: C (Schneeman et 

al., 2005)-induced activation of PIGR gene transcription.  As a control for transfection 

efficiency, cells were co-transfected with 5 ng of pRL-CMV (Promega, Madison, WI, 

USA), in which the CMV promoter drives transcription of the Renilla luciferase gene.  

Cell lysates were analyzed for firefly and Renilla activities using the ‘Dual- Luciferase 

Reporter Assay System’ according to the manufacturer’s protocol (Promega, Madison, 

WI, USA).  Reovirus increased transcriptional activity from WT plasmid, but not from 

the mutant NFκB, mutant IRF-1 and double mutant plasmids (Fig.  3).  Taken together, 

studies with the chemical inhibitor helenalin, the dominant negative mutant for IκBα, and 

reporter gene promoter analysis suggest that reovirus activates PIGR gene transcription 

by binding of activated NFκB to its cognate site in intron 1 of pIgR promoter.  Also, 

results using IRF-1 mutant and double negative mutant plasmids suggest that 

upregulation of PIGR gene transcription by reovirus involves co-operativity between 

IRF-1 and NFκB.   

 

Activation of NFκB in the cytoplasm involves the inducible phosphorylation of its 

repressor IκB in response to stimuli, which then undergoes ubiquitin-mediated 

proteolysis, releasing NFκB dimers to translocate to nucleus and bind target genes 

(DiDonato et al., 1995; Barnes & Karin, 1997; May & Ghosh, 1998).  Studies with 

enteroinvasive bacteria have shown that signal transduction through NFκB is a central 

regulator of innate immune responses triggered by the epithelium (Seydel et al., 1998; 

Elewaut et al., 1999).  Reovirus could activate NFκB either directly or by a calpain-

mediated pathway (Debiasi et al., 1999; Connolly et al., 2000; Hamamdzic et al., 2001), 
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and calpains have been shown to be critical for reovirus –mediated pIgR upregulation 

(Pal et al., 2005).  However, it is possible that NFκB can be activated by other signals 

during reovirus infection of host cells including virus dsRNA and/or interferon-β  (IFN-

β).  Future studies may reveal the role of IRF-3, dsRNA-Toll like receptor-3 (TLR3)-

dependent, or TLR3-independent pathways including RNA helicases retinoic acid-

inducible gene-1 (RIG-1) (Li et al., 2005; Sumpter, Jr. et al., 2005) or melanoma 

differentiation-associated gene 5 (mda-5)(Kang et al., 2002; Andrejeva et al., 2004) in 

virus-mediated pIgR upregulation.  The present study suggests a phenomenon of IRF-

NFκB synergy in reovirus-induced transcriptional activation.  It is reasonable to speculate 

that the two sites act cooperatively such that an NFκB family member interacts with an 

IRF family member, perhaps IRF-3, to activate transcription of the pIgR gene as has been 

reported for the activation of the beta interferon (IFN-β) gene (Maniatis et al., 1998).  

Hempen et al. have suggested a complex model for the basal transcriptional regulation of 

human PIGR gene that involves cooperative binding among multiple transcription 

factors, including upstream stimulatory factor (USF) and AP2 (Hempen et al., 2002).  

Interestingly, during immune or inflammatory responses, basal regulatory factors may 

interact with various other inducible factors including NFκB, IRF-1 and STAT-6 to 

upregulate PIGR gene transcription.  This study corroborates the importance of a central 

NFκB pathway in modulating immune responses by demonstrating its role in the 

upregulation of pIgR from epithelial cells against reovirus using three experimental 

approaches.  Other pathways may also be involved. 
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Fig.  1.  Helenalin inhibits reovirus-mediated pIgR up-regulation in HT-29 cells.  (A) HT-29 cells were 

pre-treated with indicated doses of NFκB inhibitor helenalin and then cultured in the presence or absence 

of UV-inactivated reovirus at a multiplicity of infection (MOI) equivalent of 50.  24 h post exposure, pIgR 

mRNA levels were quantified by real-time RT-PCR and normalized to β-actin mRNA.  Samples were 

analyzed in duplicate.  Data are combined from 3 independent experiments and expressed as fold-increase 

in pIgR mRNA in response to reovirus compared to cells receiving no virus at each dose of helenalin (mean 

± SEM). Asterisks indicate that the mean is significantly different from that of control cells (no pre-

treatment with helenalin) as determined by one-way ANOVA followed by Tukey’s test (p< 0.050).  (B) 

Under similar culture conditions, cells were lysed at 48 hours post exposure to virus and pIgR protein 

levels were determined by ELISA.  Data in panel B are from a single experiment. 
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Fig.  2.  Dominant negative mutant of IκBα blocks reovirus-mediated pIgR mRNA upregulation in 

HT-29 cells.  HT-29 cells were transfected with adenovirus vector expressing β-galactosidase (AdLacZ) or 

IκBα - serine mutant (IκBdn) and then cultured for 24 h in the presence or absence of UV-inactivated T3/D 

at an MOI equivalent of 50.  Data are compiled from three independent experiments and expressed as fold 

increase in pIgR mRNA in response to reovirus (mean ± SEM) compared to cells receiving no virus at each 

of indicated treatments.  Upregulation of pIgR mRNA in the non-transfected cells was approximately 18 

fold.  Asterisks indicate that the mean is significantly different from that of control cells (Ad-LacZ) as 

determined by one-way ANOVA followed by Tukey’s test (p< 0.050). 

Multiplicity of Infection
103

pI
gR

 m
R

N
A

,  
Fo

ld
 C

ha
ng

e 

10

15

20

25

30

35

Ad LacZ

Ad IκBdn

5

100

**

Multiplicity of Infection
103

pI
gR

 m
R

N
A

,  
Fo

ld
 C

ha
ng

e 

10

15

20

25

30

35

Ad LacZ

Ad IκBdn

Ad LacZ

Ad IκBdn

5

100

*
100

**



  

124 

  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.  Reovirus enhances transcription of wild-type PIGR gene reporter plasmids. HT-29 cells were 

co-transfected with promoterless control or indicated PIGR reporter plasmids and a Renilla luciferase 

plasmid and then cultured in the presence or absence of UV-inactivated T3/D at an MOI equivalent of 200.  

Data are compiled from two independent experiments, and are expressed as luciferase activity (normalized 

for co-transfected Renilla luciferase) of the same plasmid in response to reovirus treatment or mock 

treatment (mean ± SEM, n=6).  Asterisks indicate significant difference between experimental and controls 

(no virus) by one-way ANOVA followed by Tukey’s test (p< 0.050). 
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INTRODUCTION  

Studies reported in Chapter 2 of this dissertation demonstrated that UV-inactivated 

reovirus up-regulates pIgR mRNA and protein.  This observation suggests that specific 

virus-host interactions, and not viral replication, initiate signaling pathways that regulate 

pIgR expression.  Reovirus is a 10-segmented dsRNA-containing virus that infects a wide 

variety of mammalian species including mice and humans (12,14).  Reovirus enters host 

cells by receptor-mediated endocytosis, and inside the acidified endosomes it undergoes 

partial disassembly resulting in intermediate subviral particles (ISVPs) and / or liberation 

of viral dsRNA genome from degraded virions (3,4,15).  Viral dsRNA is a well-

characterized PAMP that is recognized by TLR3 (1,8,9,13).  TLR-3 is constitutively 

expressed in human intestinal epithelial cells (5), although the precise intracellular 

location of TLR-3 has not yet been identified.  However, in human dendritic cells TLR-3 

is expressed intracellularly in vesicles and possibly at a low level in late endosomes 

(7,9,10).  An intracellular localization on TLR3 is consistent with its role of responding 

to viral nucleic acids likely available for interaction during partial viral disassembly and / 

or during replication inside host cells (2).  Recently, Schneeman et al. reported that cell 

surface expression of TLR3 by transformed human intestinal epithelial cell line HT-29 is 

enhanced following prolonged stimulation with chemical analog of viral dsRNA, poly I:C 

(13).  Taken, together it appears that IECs including HT-29 cell line express TLR3 and a 

TLR-mediated recognition of viral dsRNA exists in them.   

The working hypothesis of this project is that viral dsRNA released during endosomal 

processing is sufficient to trigger signaling cascades resulting in pIgR up-regulation.  
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This is important globally because it demonstrates that viruses (and not only chemical 

analogs of dsRNA) can trigger innate immune responses in cells that do not support virus 

replication.  To examine if TLR3-mediated recognition of dsRNA leads to upregulation 

of pIgR in IECs, first the role of poly I: C in modulating pIgR expression in HT-29 cells 

was assessed.  Second, the ability of purified reovirus dsRNA to modulate pIgR 

expression in HT-29 cells was also examined. 

  

METHODS  

Cells.   HT-29 (ATCC HTB38) cells were cultured in McCoy’s 5A Modified Medium 

(ATCC, Manassas, VA) supplemented with 10% fetal bovine serum (FBS) and 1 % 

penicillin-streptomycin.  Cells were plated in 12-well plates and incubated at 37 °C for 24 

hours to allow the formation adherent monolayers and then exposed to UV-inactivated 

reovirus, poly I:C (Sigma, St. Louis, MO) and/or purified reovirus dsRNA.   

 

RNA extraction and quantitative RT-PCR for pIgR mRNA.   Total cellular RNA was 

extracted from HT-29 cells using RNeasy® mini kits (Qiagen, Valencia, CA) and RNA 

was reverse transcribed into cDNA using Superscript TM RNase H- Reverse 

Transcriptase (Invitrogen Life Technologies, Carlsbad, CA) according to manufacturers’ 

protocols.   Real-time PCR was performed using a Lightcycler (Roche Molecular 

Biochemicals, Indianapolis, IN) as described previously in Chapter 2.  
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Double Stranded reovirus RNA extraction.  L929 cells were grown in T-75 flask and 

then infected with reovirus T3/D at an MOI of 10.  Infected L-cell cultures were 

incubated at 37°C for about 36 hours until CPE was well advanced (>70%).  36 hours 

post infection, cells were trypsinized and centrifuged at 1200 rpm for 5 mins at 4°C.  

Supernatant was discarded and cells were resuspended in TRI reagent (Molecular 

Research Center) at a concentration of 5× 106 - 1×107 cells / ml, and dsRNA was 

extracted by the acid-phenol/guanidinium thiocyanate procedure, according to the 

manufacturer’s instructions.  The cell lysate was passed several times through pipette and 

then transferred to a new eppendorf tube and incubated for 5 mins at room temperature to 

allow complete dissociation of nucleoprotein complexes.  100 μl of BCP per 1ml of 

TRIreagent was added to lysates, and shaken vigorously for 15 secs.  The resulting 

mixture was incubated at room temperature for 10 mins and then centrifuged at 12000g 

for 15 mins at 4°C.  Following centrifugation, the mixture separates into a lower red 

phenol-chloroform phase, interphase and the colorless upper aqueous phase.  RNA 

remains exclusively in the aqueous phase whereas DNA and proteins are in the interphase 

and organic phase. The volume of the aqueous phase is about 60% of the volume of 

TRIreagent used for homogenization.  The aqueous phase was transferred to a new tube.  

500 μl of isopropanol (500 μl per 1ml of TRI reagent) was added to the aqueous phase.  

RNA was precipitated from the aqueous phase by mixing with an equal volume of 

isopropanol.   Lysate was stored at room temperature for 10 mins and centrifuged at 

12000g for 8 mins at 4°C.  RNA, which was often invisible before centrifugation, was 

precipitated at this step and appeared as a gel-like or white pellet on the side and bottom 

of the tube.  The supernatant was removed very carefully and the RNA pellet was washed 
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(by vortexing) with 1ml of 75% ethanol and then centrifuged at 7500g for 5mins at 4°C.  

The ethanol wash was removed and RNA pellet was briefly air -dried for 3-5min.  It is 

important not to completely dry the RNA pellet as this greatly decreases its solubility in 

water.  The RNA pellet was dissolved in 120 μl of RNAse free water.  This was followed 

by precipitation with 2M LiCl to remove single-stranded RNA as follows:  

(1) Add 8M LiCl (Sigma) to a final concentration of 2M LiCl, that is add 40ul of 

LiCl to 120μl total RNA. Leave in an ice-water slurry for 2 hours. Centrifuge at 

14000-16000 g for 30 mins. The dsRNA is purified from the supernatant using a 

column from a Gel Extraction Kit (Qiagen). 

(2) Transfer the supernatant to a new tube (note the precipate formed after addition of 

LiCl is ss RNA). To the supernatant (which is 120+40 =160μl), add 480μl (3 

volumes) of Buffer QG and 160μl (1 volume) of isopropanol and mix well. 

(3) Place a QIAquick spin column in a provided 2ml collection tube. Add the sample 

mixture to the QIAquick column and centrifuge for 1min. (Maximum volume of 

column is 800μl). 

(4) Discard flow-through and place the QIAquick column back in the same collection 

tube. 

(5) To wash add 750μl of Buffer PE to QIAquick column and centrifuge for 1min. 

(6) Discard flow-through and centrifuge the QIAquick column for an additional 1min 

at >10000g (~13000 rpm). 

(7) Place QIAquick column into a clean 1.5ml microcentrifuge tube. To elute DNA, 

add 50μl of Buffer EB or Nuclease free water to the center of the QIAquick 
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membrane and centrifuge the column for 1min at maximum speed. Store the DNA 

at –80°C. 

 

RESULTS 

TLR3 mediated signaling upregulates pIgR mRNA expression in HT-29 cells. 

To determine whether TLR3 signaling regulated pIgR expression in human IEC, HT29 

colon carcinoma cells were treated with indicated doses of chemical analog of viral 

dsRNA (poly I: C) or exposed to UV-inactivated reovirus at an MOI of 50 for 24 hours.  

The concentration of the virus was 148 ng/μl.  Preliminary experiments demonstrated that 

poly I: C upregulates pIgR mRNA expression in HT-29 cells in a dose-dependent 

manner, suggesting that TLR3 mediated signaling in IECs play a role in pIgR up-

regulation.  A dose of 100-µg/ml poly I: C was optimal and pIgR was induced by as much 

as 20 fold (Fig. 1).  

 

Extracellular reovirus dsRNA does not upregulate pIgR expression in HT-29 cells. 

Although poly I: C is an almost universally accepted analog for viral dsRNA, there are 

few studies that test the role of TLR3-mediated activation in response to actual viral 

dsRNA.  Confluent monolayers of HT-29 cells were incubated at 37°C in presence or 

absence of intact UV-inactivated reovirus at an MOI of 50 (764 ng of RNA) or equivalent 

amounts of purified dsRNA from reovirus or UV-irradiated purified reovirus dsRNA 

under cell culture conditions that ensured that the RNA was not degraded (Fig. 2).  24 

hours post exposure to intact virus or naked dsRNA, pIgR mRNA was measured by real 

time quantitative RT-PCR as described previously.  Although intact virus increased pIgR 
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mRNA expression by 20 fold, the purified reovirus dsRNA did not induce pIgR mRNA, 

suggesting that extracellular dsRNA does not trigger TLR3 signaling in IECs (Fig. 3).   

 

DISCUSSION 

The first line of specific defense against invading mucosal pathogens is provided by 

sIgA.  The pIgR-mediated transport of IgA by IECs is very impressive resulting in the 

daily delivery of 3 g of sIgA into the intestinal secretions of the average adult (11).  A 

number of factors including proinflammatory cytokines and microbial interaction 

including reovirus modulates pIgR expression and thereby impact mucosal immunity.  

This report describes efforts to understand the importance of dsRNA signature of reovirus 

to enhance pIgR expression in HT-29 cells.  

 

Several mechanisms could facilitate association of reovirus dsRNA with intracellular 

PRRs including TLR3.  Delivery of reovirus into acidified endosomes leads to viral 

uncoating and formation of intermediate sub-viral particles (ISVP), which are 

subsequently delivered to the cytoplasm. Although the dsRNA genome should be 

protected within ISVP, it is possible that some dsRNA might be released within the 

endosomal/lysosomal pathway.  If  TLR3 is present in endosomal vesicles, dsRNA 

binding and signal transduction could be initiated following endosome-lysosome fusion 

and acid activation (6).  The intracellular distribution of TLR3 has not been examined in 

detail, but immunofluorescence images of normal human IEC and dendritic cells suggest 

that TLR3 is present intracellularly in endosomes (5,6,9) as well as possibly on the cell 

surface (5,13).  Alternatively, “naked” dsRNA from partially disassembled virions might 
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be released from dying cells, providing an early warning system to adjacent uninfected 

cells.  The dsRNA can signal through TLR3 to activate IRF-3 and NFκB ultimately 

leading to pIgR upregulation. 

 

These studies were inconclusive for a role of viral dsRNA as an activator of pIgR 

expression during virus infection and might suggest alternative mechanisms of activation.  

Two apparently contradictory observations have been reported in this study.  Poly I:C 

induced pIgR mRNA expression in HT-29 cells suggesting a role for TLR3 mediated 

viral dsRNA recognition in pIgR upregulation.  However, purified reovirus dsRNA added 

extracellularly to HT-29 cells failed to induce pIgR mRNA expression.  Our data 

demonstrated that reovirus dsRNA when incubated with HT-29 cells was not degraded.  

Why extracellular reovirus dsRNA did not induce pIgR expression could be explained in 

the following ways.  First, extracellular reovirus dsRNA may not get access to cell 

surface TLR3.  Second, even if reovirus dsRNA binds to TLR3 on surface, we do not 

know if extracellular TLR is functional and capable of signaling.  Third, there are no cell 

surface-expressed TLR3 on HT-29 cells with which reovirus dsRNA can interact and 

tranduce signals.  Although prolonged stimulation with poly I:C leads to cell surface 

expression of TLR3 (13), it is possible that under our experimental conditions in the 

absence of pre-stimulation with poly I:C, HT-29 cells did not express extracellular TLR3 

.  Fourth, extracellular ‘naked’ reovirus dsRNA is not endocytosed by HT-29 cells in 

which case it may interact with intracellular TLR3.  It is likely that both poIy I:C and 

purified dsRNA exerts its effect in inducing pIgR expression via interaction with 

intracellular TLR3.  Although poly I:C is added extracellularly, it might diffuse non-
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specifically through cell membrane and thus excites intracellular TLR3 but extracellular 

‘naked’ dsRNA fails to enter cell.  Thus, the results with poly I:C support an important 

role for dsRNA-TLR3 signaling in virus-mediated pIgR upregulation and negative 

findings with extracellular reovirus dsRNA does not rule out the importance of viral 

genome in the process.  Future experiments will be required to test the hypothesis that 

reovirus mediated up-regulation of pIgR expression occurs through TLR3 signaling.  It is 

possible to transfect the dsRNA or modify it for endocytic uptake and assess pIgR 

upregulation in HT-29 cells.  In addition cells can be transfected with TIR-deleted TLR3 

or dominant negative TRIF or si RNA to TLR3 to examine the involvement of TLR3 and 

its downstream adaptor molecules in pIgR upregulation.   
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Fig. 1.  Poly I:C upregulates pIgR mRNA expression in HT-29 cells.  Confluent monolayers of HT-29 

cells were cultured at 37°C for 24 h in the presence or absence of UV inactivated T3/D or poly I:C. 24h 

post treatment pIgR mRNA levels were quantified by real-time RT-PCR and normalized to β-actin mRNA.  

Samples were analyzed in duplicate to minimize error.  Data are combined from 3 independent experiments 

and expressed as fold-increase in pIgR mRNA in response to reovirus or poly I:C compared to cells 

receiving no treatment (mean ± SEM). Asterisks indicate that the mean is significantly different from that 

of control cells (no treatment with virus or poly I:C) as determined by one-way ANOVA followed by 

Tukey’s test (p< 0.050).   
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Fig. 2.  The intact, segmented dsRNA genome from reovirus was purified using the 

methods of Potgieter et al.  
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Fig. 3.  Extracellular reovirus dsRNA does not upregulate pIgR mRNA expression in HT-29 cells.  

Confluent monolayers of HT-29 cells were cultured at 37°C for 24 h in the presence or absence of UV 

inactivated T3/D or reovirus dsRNA (148μg/ml) or UV-inactivated dsRNA (148μg/ml). Culture conditions 

were optimized so that dsRNA was not degraded after 1 hour of initial addition to media.  Following 

incubation pIgR mRNA levels were quantified by real-time RT-PCR and normalized to β-actin mRNA.  

Samples were analyzed in duplicate to minimize error. Data are expressed as fold increases in pIgR mRNA 

in response to reovirus.  Data are representative of two independent experiments. 

 

 

 

0

2

4

6

8

10

12

14

16

UV/T3D dsRNA UV-dsRNA

pI
gR

 m
R

N
A,

  F
ol

d 
C

ha
ng

e 

0

2

4

6

8

10

12

14

16

UV/T3D dsRNA UV-dsRNA
0

2

4

6

8

10

12

14

16

0

2

4

6

8

10

12

14

16

UV/T3D dsRNA UV-dsRNA

pI
gR

 m
R

N
A,

  F
ol

d 
C

ha
ng

e 



  

137 

 REFERENCES 

 

 1.  Alexopoulou, L., A. C. Holt, R. Medzhitov, and R. A. Flavell. 2001. Recognition 
of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. 
Nature 413:732-738. 

 2.  Bell, J. K., I. Botos, P. R. Hall, J. Askins, J. Shiloach, D. M. Segal, and D. R. 
Davies. 2005. The molecular structure of the Toll-like receptor 3 ligand-binding 
domain. Proc. Natl. Acad. Sci. U. S. A 102:10976-10980. 

 3.  Borsa, J., B. D. Morash, M. D. Sargent, T. P. Copps, P. A. Lievaart, and J. G. 
Szekely. 1979. Two modes of entry of reovirus particles into L cells. J Gen. Virol. 
45:161-170. 

 4.  Borsa, J., M. D. Sargent, P. A. Lievaart, and T. P. Copps. 1981. Reovirus: 
evidence for a second step in the intracellular uncoating and transcriptase activation 
process. Virology 111:191-200. 

 5.  Cario, E. and D. K. Podolsky. 2000. Differential alteration in intestinal epithelial 
cell expression of toll-like receptor 3 (TLR3) and TLR4 in inflammatory bowel 
disease. Infect. Immun. 68:7010-7017. 

 6.  de Bouteiller, O., E. Merck, U. A. Hasan, S. Hubac, B. Benguigui, G. 
Trinchieri, E. E. Bates, and C. Caux. 2005. Recognition of double-stranded RNA 
by human toll-like receptor 3 and downstream receptor signaling requires 
multimerization and an acidic pH. J Biol. Chem. 280:38133-38145. 

 7.  Funami, K., M. Matsumoto, H. Oshiumi, T. Akazawa, A. Yamamoto, and T. 
Seya. 2004. The cytoplasmic 'linker region' in Toll-like receptor 3 controls receptor 
localization and signaling. Int. Immunol 16:1143-1154. 

 8.  Matsumoto, M., K. Funami, H. Oshiumi, and T. Seya. 2004. Toll-like receptor 3: 
a link between toll-like receptor, interferon and viruses. Microbiol Immunol 
48:147-154. 



  

138 

 9.  Matsumoto, M., K. Funami, M. Tanabe, H. Oshiumi, M. Shingai, Y. Seto, A. 
Yamamoto, and T. Seya. 2003. Subcellular localization of Toll-like receptor 3 in 
human dendritic cells. J Immunol 171:3154-3162. 

 10.  Matsumoto, M., K. Funami, M. Tanabe, H. Oshiumi, M. Shingai, Y. Seto, A. 
Yamamoto, and T. Seya. 2003. Subcellular Localization of Toll-Like Receptor 3 
in Human Dendritic Cells. J Immunol 171:3154-3162. 

 11.  Mestecky, J., M. W. Russell, S. Jackson, and T. A. Brown. 1986. The human 
IgA system: a reassessment. Clin Immunol Immunopathol. 40:105-114. 

 12.  Organ, E. L. and D. H. Rubin. 1998. Pathogenesis of reovirus gastrointestinal and 
hepatobiliary disease. Curr. Top. Microbiol Immunol 233 Reovir.ii:67-83. 

 13.  Schneeman, T. A., M. E. Bruno, H. Schjerven, F. E. Johansen, L. Chady, and 
C. S. Kaetzel. 2005. Regulation of the polymeric Ig receptor by signaling through 
TLRs 3 and 4: linking innate and adaptive immune response. J Immunol 175:376-
384. 

 14.  Shatkin, A. J., J. D. Sipe, and P. Loh. 1968. Separation of ten reovirus genome 
segments by polyacrylamide gel electrophoresis. J Virol. 2:986-991. 

 15.  Sturzenbecker, L. J., M. Nibert, D. Furlong, and B. N. Fields. 1987. Intracellular 
digestion of reovirus particles requires a low pH and is an essential step in the viral 
infectious cycle. J Virol. 61:2351-2361. 

 
 
 

 

 

 

 

 

 

 

 



  

139 

 

 

 

CHAPTER 5:  ASSESS POLYMERIC IMMUNOGLOBULIN 

RECEPTOR (PIGR) EXPRESSION IN INTESTINAL EPITHELIAL 

CELLS DURING IN VIVO VIRUS INFECTION 

 

 

KASTURI PAL AND CHRISTOPHER F.  CUFF 

 

Department of Microbiology, Immunology, and Cell Biology,  

Robert C.  Byrd Health Sciences Center, West Virginia University,  

Morgantown, West Virginia 26506-9177. 

 

 

Unpublished data 

 

 

 

 



  

140 

 

INTRODUCTION 

 

In the previous studies we demonstrated that reovirus upregulates pIgR expression in 

transformed lung and intestinal epithelial cell lines and characterized a number of 

underlying signal transduction mechanisms involved in reovirus-mediated pIgR 

upregulation.  But the important biological question is whether reovirus upregulates pIgR 

in vivo because it leads to an understanding of how non-lymphoid cells mount innate 

immune responses that amplify or synergize with the adaptive response.  Hooper et al. (4) 

demonstrated that pIgR expression was increased in germfree mice following 

colonization with commensal bacteria.  Other studies demonstrated that pIgR expression 

is upregulated following weaning, and is under partial control of adaptive immunity (5).  

A number of cytokines including IFN-γ  (1,2), TNF-α, IL-1β (3) and IL-4 (1,2,7) have 

been shown to increase pIgR expression in epithelial cells but the contribution in vivo of 

specific cytokines versus the pathogen itself to pIgR expression is not known.  So it is 

reasonable to hypothesize that reovirus infection and the subsequent production of Th1 

cytokines such as IFN-γ and TNF-α upregulates pIgR in vivo, which can increase IgA 

production in secretions and contribute to host defense.  The first step to further these 

studies includes comparison of pIgR expression levels in intestine of naïve and reovirus 

infected mice as reported in Chapter 5. 
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METHODS 

  

Animals and infections.  Male Balb/c mice were purchased from Charles River 

Laboratories, Inc. (Wilmington, MA).  Mice were housed under specific-pathogen-free 

conditions in micro-isolater cages and used between the ages of 3 and 4 weeks.  Mice 

were treated in accordance with West Virginia University laboratory animal guidelines.  

Germ free mice were raised in special germ free facility in University of Pennsylvania, 

PA and infection of mice and subsequent collection of intestinal tissues were conducted 

in Late Dr. John Cebra’s laboratory at U. Penn.  Reovirus serotype 3, strain Dearing 

(T3/D) was purified according to previous protocols (6).  Mice were infected orally with 

reovirus T3/D at doses of 107-108 plaque forming units (pfu) diluted in 50 μl borate-

buffered gelatin, using 20-gauge feeding needles.   

 

Collection of mouse intestine.  Small intestines were removed from mice and intestine 

was cut longitudinally and then approximately 2 cm segments were cut from duodenum, 

jejunum and ileum.  Intestinal contents were removed by thoroughly washing in HBSS 

supplemented with 10 mM HEPES and 0.35 g/L NaHCO3.  Each intestinal segment was 

transferred to tubes containing 0.5 ml of RNALater™ (Ambion, Inc Austin, TX) to 

stabilize RNA in tissues and held on ice till RNA isolation or stored at –80 °C. 

 

RNA extraction and quantitative RT-PCR for mouse pIgR mRNA.  Approximately 

35 μg pieces of intestinal tissues in RNALater™ were homogenized sequentially by 
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mechanical disruption in Buffer RLT (Qiagen, Valencia, CA) followed by 

homogenization using Qiashredders™ (Qiagen).  Total RNA isolation was performed 

using RNeasy® mini /RNase-free DNase set (Qiagen) following manufactures protocols.  

RNA was quantified by spectrophotometry at 260/280 nm.  RNA was reverse transcribed 

into cDNA using Superscript TM RNase H- Reverse Transcriptase (Invitrogen Life 

Technologies, Carlsbad, CA) in a Genius thermocycler (Techne, Inc, Princeton, NJ) 

according to manufacturer’s protocols.   Real-time PCR was performed using a 

Lightcycler (Roche Molecular Biochemicals, Indianapolis, IN).  Taqman® primers and 

probes for mice pIgR (from Applied Biosystems, Foster City, CA) were produced using 

published sequences (Blanch et al., 1999) and mouse GAPDH was obtained from 

Biosource International Inc. (Camarillo, CA).  Reactions were carried out in a total 

volume of 20 μl.  PCR conditions were optimized for mouse pIgR primer pair as follows: 

enzyme activation for 1 cycle at 50 °C for 2 minutes followed by 95 °C for 10 minutes; 

amplification for 45 cycles at 94 °C for 45 s followed by 61 °C for 45 s and then 72°C for 

110 s; cool down for 1 cycle at 40 °C for 1 minute.  PCR conditions were optimized for 

mouse GAPDH primer pair as follows: enzyme activation for 1 cycle at 50 °C for 2 

minutes followed by 95 °C for 10 minutes; amplification for 45 cycles at 94 °C for 30 s 

followed by 60 °C for 1 minute; cool down for 1 cycle at 40 °C for 1 minute.  Data were 

analyzed by determining ‘crossing points’ or the cycle number at which newly 

synthesized PCR product is first detected.  Samples were analyzed in duplicate.  pIgR 

expression was normalized with respect to β-actin expression by subtracting the β-actin 

crossing point from the pIgR crossing point for each sample.  The fold induction of pIgR 

in virus-treated mice compared to the control was determined using the equation:  Fold 
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change = Kgene
ΔCp, where Kgene is the amplification coefficient for the pIgR gene and 

ΔCp is the difference in crossing point between the normalized non-treated and virus-

treated mice (Schjerven et al., 2000).  The theoretical value of Kgene = 2 was used for data 

analysis. 

 

RESULTS AND DISCUSSION 

To determine if reovirus modulates expression of pIgR in intestine following oral 

infection, mRNA levels for pIgR in different segments of intestine was assessed by 

quantitative RT-PCR.  In adult mice, no apparent difference in pIgR mRNA expression 

was detected 48 hours post infection (Table 1).  In germ free mice, no difference in pIgR 

levels was observed in any region of intestine including duodenum, jejunum and ileum 3-

day post infection.  Interestingly, pIgR mRNA was upregulated approximately 3-fold by 

7 days after infection in the ilea from infected mice compared to non-infected age 

matched mice while a 2 fold decrease was observed in the ilea 4 days post infection (Fig. 

1).  These preliminary data suggest that immunologically competent but naïve intestinal 

epithelium can respond to enteric infection with reovirus.   

 

The gut of conventional mice harbors a plethora of commensal microbes that are well 

tolerated by mucosal immune system.  It is reasonable to speculate that in response to the 

presence of microbes and their metabolic products, the IECs in conventional mice 

express high level of pIgR and so it becomes a challenge to measure any further increase 

in pIgR expression when another pathogen such as reovirus is introduced in these mice.  

However, if pIgR expression in IECs is modulated by microbial interactions, then it is 
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possible to measure such change in pIgR expression in germ free mice that have a naïve 

quiescent gut environment.  Hooper et al. reported a 2-4-fold increase in the pIgR mRNA 

expression when the gut of germ free mice is colonized with commensal bacterial 

Bacteroides thetaiotaomicron (4), which is consistent with the observation made in this 

study.  

 

Table 1:  Expression of pIgR and GAPDH mRNA in mouse intestine 48 hours post infection with 

reovirus. 

SAMPLES MOUSE PIGR C.P. GAPDH C.P. FOLD CHANGE 

 Control / D    24.8 * 21.8  

Control / J 27.1 21.8  

Control / I 24.5 22.1  

 Reovirus / D 24.6 21.1    -1.4 ** 

Reovirus / J 25.8 20.8 1.2 

Reovirus / I 24.2 20.6 -2.3 

 

 

 

 

 

 

 

 

*Data are represented as average of crossing points (C.P.) from 2 control mice and 3 infected mice.   

D= Duodenum, J= Jejunum, I= Ileum. 

** The fold induction of pIgR in virus-treated mice compared to the control was determined using the 

equation:  Fold change = Kgene
ΔCp, where Kgene is the amplification coefficient for the pIgR gene and 

ΔCp is the difference in crossing point between the normalized non-treated and virus-treated mice 

(Schjerven et al., 2000).   
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Fig. 1.  Expression of pIgR mRNA in germfree mice.  Germfree mice were mock infected or infected 

with reovirus T3/D and duodenum, jejunum, and ileum was analyzed for pIgR mRNA expression by real 

time quantitative RT-PCR.  Samples were analyzed in duplicate to minimize error. Data are expressed as 

fold change in pIgR mRNA in response to reovirus.  Data is from a single experiment.  
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CHAPTER 6:  GENERAL DISCUSSION 

 

Enteric viruses including rotavirus, calicivirus (including noroviruses and sapporovirus), 

astrovirus, and adenovirus are the major cause of gastrointestinal diseases in humans 

(260,282).  Gastrointestinal disease is the second most common cause of morbidity 

throughout the world after acute upper respiratory tract (URT) infections.  Diarrhea is not 

as dramatic an illness as Acquired Immunodeficiency Syndrome (AIDS) but it continues 

to be a major cause of morbidity and mortality worldwide resulting in an estimated 1000 

deaths among children each day (125,126).  An estimate of the number of diarrheal 

episodes in children below 5 years of age in Africa, Latin America and Asia for a 1 year 

period indicated more than 450 million cases of diarrhea occurred and that 1-4% were 

fatal, ranking diarrhea first among infectious diseases in the categories of both frequency 

and mortality in children (98,206,219).   

 

Human enteric viruses represent a diverse group.  However, most of them are non-

enveloped RNA viruses.  Rotavirus and Norovirus are the two common agents that cause 

acute gastroenteritis (389).  Rotaviruses are the most common cause of severe diarrhea 

worldwide (282).  In addition, Centers for Disease Control (CDC) estimates that 23 

million cases of acute gastroenteritis are due to norovirus infection, and at least 50% of 

all food borne outbreaks of gastroenteritis can be attributed to highly contagious 

noroviruses.  Symptoms range from gastroenteritis to more life threatening diseases such 

as myocarditis and aseptic meningitis (228).  The burden of diarrheal disease caused by 

these enteric viruses are of great economic importance, causing millions of lost working 
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days each year to mini-epidemics in families, hospital wards and rural villages in 

developing countries.  Enteric viruses contribute to massive mortality caused by infantile 

diarrhea in developing countries where infections may be exacerbated by malnutrition, 

unsanitary conditions and / or be favored by co-infection with other enteropathogens 

(124,127,218).  Transmission of these enteric viruses occurs primarily through the oral-

fecal route.  However, other routes including foodborne and waterborne transmission 

potentially via contaminated water exist.  The proportion that is directly food borne or 

waterborne is unclear, but it is likely to be substantial.  One well-documented source of 

food-borne infection is consumption of shellfish polluted by sewage (13).   

 

Relatively little is known about different aspects of enteric virus infection, in part because 

many enteric viruses are difficult to grow in cell culture and few animal models of 

infection exist for elucidating mechanisms of anti-viral host defense in the intestine.   

However it is transparent that these enteric human pathogens dramatically affect public 

health and significantly impact economy worldwide.  Thus, eliminating enteric infection 

in children is a desirable goal.  On the other hand, there have been dramatic increases in 

allergic diseases in children living in developed countries where there are reduced 

episodes of severe gastrointestinal infections by pathogens including viruses.   This 

association has contributed to the ‘Hygiene Hypothesis’, which suggests that the 

decreased incidences of mucosal infection early in life reduce the ability of the immune 

system to mature properly and increases the susceptibility to allergic responses (313,314).  

Therefore, there is a need for intensive research to understand virus-host interactions and 

the ensuing immune responses following infection with enteric viruses, particularly in 
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immunologically immature individuals.  Such work will contribute to better management 

of chronic diarrhea, which is a persistent threat in developing countries and of great 

economic significance in developed countries.  In addition, research in this area hold the 

promise of development of novel therapies including designing of efficacious vaccines 

for infantile diarrhea and utilizing reovirus to ‘mature’ the mucosal immune system to 

improve the efficacy of enteric virus targeted vaccines that are given early in life.   

 

Reovirus infection in mice is an excellent model to study host-pathogen interactions, in 

part because experimental reovirus infection induces a spectrum of pathologies 

resembling diseases caused by enteric viruses and thus serves as a probe to understand 

mucosal immunity.  Rotavirus belongs to the virus family Reoviridae, which also include 

Orthoreovirus (commonly called reovirus) that infect the human gastrointestinal and 

respiratory tracts.   

 

The intestinal immune system has evolved under the contradictory pressures of protecting 

the host epithelium from potential pathogenic threats and tolerating the co-existence of 

myriad commensal organisms in lumen.  The IECs are an integral component of the 

intestinal immune system and the power to recognize and discriminate between nefarious 

pathogens and friendly commensals hold the key to maintaining a state of controlled 

inflammation in the gut (139,333).  IECs act at the interface between the innate and 

acquired immune responses to microorganisms in the gastrointestinal tract.  IECs mount 

innate responses upon direct contact with microbes or their metabolic products resulting 

in production of antimicrobial substances that fight infection directly, and secretion of 
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chemokines and cytokines that enhance acquired, antigen-specific immune responses.  A 

hallmark feature of adaptive mucosal immune responses is production and secretion of 

sIgA.  During the response, pIgA antibodies or the empty receptor is transcytosed across 

secretory epithelia by the pIgR expressed on the basolateral surface of IECs producing 

sIgA and FSC in intestinal secretions.  The rate of IgA transcytosis depends on the level 

of pIgR expression because one molecule of pIgR must be synthesized for each molecule 

of transported IgA.  Thus, pIgR plays a role in mucosal host defense, and factors that 

influence expression of pIgR affect mucosal immunity.  Expression of the PIGR gene is a 

significant developmental response by epithelial cells that appears to be under the control 

of multiple environmental factors including infection.  Signaling induced by microbes 

and their products may serve to augment pIgR-mediated transcytosis of IgA, linking the 

innate and acquired immune responses to viruses and bacteria.  Both FSC and sIgA 

contribute to clearance of infection and thus maintain integrity of the mucosal barrier.  

Therefore it was very logical to conduct research to further the understanding of 

regulation of pIgR expression by IECs during enteric virus infection and evaluate how 

IECs respond to assault by reovirus.  The experiments reported in this dissertation 

confirm that a newly appreciated role of the IECs in sensing the mucosal pathogen 

reovirus is upregulation of pIgR expression by IECs, which serves as an innate host 

defense mechanism that subsequently affect the development of antigen-specific adaptive 

immune responses. 

 

The work reported in this dissertation demonstrated that reovirus upregulates pIgR 

mRNA and protein expression in IECs in a replication independent fashion and that 
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binding of virus to cellular receptors and partial disassembly of virus inside acidified 

endosomes are required steps for this innate immune response by IECs.   How the host 

cells respond to reovirus at a molecular level and upregulate expression of pIgR was a 

very intriguing question. So, we sought to delineate the possible signaling events that are 

triggered following interaction of reovirus with IECs that ultimately lead to upregulation 

of pIgR expression by the host cells.   

 

Reovirus infection triggers a number of signaling cascades including increased activation 

of calpains, JNKand ERK (70,73,83).    These signaling cascades result in activation of 

NFκB and phosphorylation of c-Jun (69,70,73,131,383).  In addition, extensive studies 

have demonstrated that NFκB is a central regulator of the IEC response to infection with 

enteric microbial pathogens and to proinflammatory cytokines including TNF-α and IL-

1.  Although enteric microbial pathogens utilize a number of different strategies to 

interact with or invade the IECs, they trigger signaling events in IECs that activate NFκB 

and upregulate the expression of an array of NFκB responsive genes and their products 

including proinflammatory cytokines, antimicrobial peptides and chemotactic cytokines 

(29,93,160,276).  We conducted a series of studies to investigate whether epithelial cell 

NFκB signaling mediate upregulation of pIgR expression during reovirus infection.  The 

major pathway leading to NFκB activation comprises inducible degradation of its 

cytosolic repressor IκB, which releases NFκB and allows it to shuttle to nucleus (87,177).  

The findings reported in this dissertation suggest that reovirus activates NFκB either 

directly or via a calpain-mediated pathway that ultimately degrades IκB.  In addition, 

promoter analysis studies suggested that reovirus enhances PIGR gene transcription by 
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binding activated NFκB and IRF-1 to their respective cognate sites of the pIgR promoter 

resulting in increased expression of pIgR by IECs.   

 

NFκB is known to regulate the transcription of genes that are proinflammatory and 

required for host innate immunity and defense and those that are anti-apoptotic 

(93,177,178,217).  The anti-apoptotic role of NFκB is evident from the ability of this 

transcription factor to prevent TNF-α induced apoptosis in several experimental models 

and IECs (26,222,250,309,387).  Cellular transcription factors are often targeted by viral 

pathogens to modulate host cell signaling events and influence cell fate.  Multiple family 

of viruses including human immunodeficiency virus type 1 (HIV-1) (324), human T-cell 

lymphotropic virus (361), hepatitis B virus, hepatitis C virus (363,364,408), rotavirus 

(59), and influenza virus (291,292) activate NFκB to promote viral replication and 

prevent virus-induced apoptosis.  However, NFκB activation also induces immune 

responses to infecting virus.  NFκB can also be activated by the chemical analog of viral 

dsRNA, poly I:C, suggesting that dsRNA viruses or viruses that generate dsRNA 

intermediates can exploit various aspects of NFκB biology.  Recently, it has been shown 

that dsRNA-activated serine threonine protein kinase, PKR is involved in dsRNA-

induced NFκB activation.  PKR is an important mediator of poly I:C induced NFκB 

signaling that involved sequential activation of NIK and IKK leading to degradation of 

IκB (415).  This dsRNA-PKR mediated activation of NFκB can be particularly important 

in reovirus-induced pIgR upregulation in IECs because PKR is activated in response to 

dsRNA signature in reovirus infected cells.  It makes perfect sense that reovirus 

replication in vivo is restricted to the immature Ras positive cells of intestinal crypts as 
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Ras or a downstream component of Ras signaling pathway blocks activation of PKR and 

thus permits viral replication and translation.  Now, we know that viruses by blocking 

PKR activation inhibit NFκB activation that could trigger inflammatory and immune 

responses including upregulation of pIgR expression by host against invading pathogens.   

 

Clarke et al. reported that reovirus infection induces two distinct phases of NFκB 

regulation, which are required to efficiently activate virus-induced apoptosis in host cells.   

In the first phase, 2-4 hours post infection; NFκB is activated followed by inhibition of 

NFκB activation at later times post infection (69).  This dual phase of NFκB regulation 

has serious consequences for the reovirus and host epithelial cells.  NFκB activation has 

an anti-apoptotic effect on host cells that provides reovirus enough time to establish 

infection.  In addition, the ability of reovirus to block NFκB activation at later times post 

infection promotes virus-induced apoptosis in host cells that might serve to increase virus 

spread.  Some viruses including Sindbis virus and Dengue virus are known to activate 

NFκB and utilize NFκB induced apoptosis of host cell to spread infection (161,220).  On 

the other hand, our studies have demonstrated that reovirus upregulates pIgR expression 

via an NFκB mediated pathway, suggesting that activation of this transcription factor 

promotes host immune responses to reovirus.  So the paradoxical question is whether 

NFκB activation is beneficial to the host or does it favor the virus?  It can be reasoned 

that the anti-apoptotic effects of NFκB activation is important for both the virus and the 

host because a delay in the onset of apoptosis by host cells allows the virus to adapt to 

cellular environment and establish infection while providing sufficient time for the 
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epithelial cells to generate signals leading to induction of immune responses including 

upregulation of pIgR, against the invading pathogen.  

 

Although, reovirus mediated upregulation of pIgR occurs primarily via NFκB activation, 

it is possible that other signaling pathways including TLRs and RNA helicases might be 

involved.  Since reovirus is a dsRNA-containing virus, analysis of additional signal 

transduction pathways in IECs that recognize dsRNA as pathogen-associated signatures 

might be relevant.  The finding that endocytosis of reovirus and subsequent acidification 

of endosomes in intestinal epithelial cell line HT-29 was a required step in pIgR 

upregulation suggests a role for viral disassembly in the process.  It is possible that 

following degradation in the endosomes, liberated viral dsRNA interacts with 

intracellular TLR-3 to induce intracellular signals that lead to pIgR up-regulation.  TLR-3 

is constitutively expressed in human IECs, although the precise intracellular location of 

TLR-3 has not yet been identified (54,55,56,338).  Thus, TLR-3 signaling in response to 

reovirus dsRNA might be initiated following fusion of endosomes containing reovirus 

dsRNA from degraded virions with cellular vesicles containing TLR-3.   

 

Experiments reported in Chapter 4 of this dissertation demonstrated upregulation of pIgR 

expression by poly I:C, chemical analog of viral dsRNA and not by extracellular dsRNA 

purified from reovirus.  These contradictory results could be explained by the fact that 

poly I:C diffuses non-specifically inside cells and exert its effect in upregulating pIgR 

expression by stimulating intracellular TLR3.  However, extracellular dsRNA incubated 

with cells under conditions where the RNA was intact still failed to elicit similar response 
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because of the inability of cells to endocytose ‘naked’ dsRNA or lack of interaction with 

surface expressed TLR3.  Overall these studies indicate responsiveness of IECs to poly 

I:C and imply that the viral dsRNA - TLR3 pathway might be involved in pIgR 

upregulation.  In addition, during virus replication it is possible that dsRNA synthesized 

inside newly formed capsids is shielded from intracellular TLR-3.  Therefore an 

alternative activation pathway such as through TLR-8, which recognizes viral ssRNA 

might be responsible for the observed effects (91,140).  Alternatively, reovirus dsRNA 

may trigger cellular responses via a TLR –independent mechanism.  Double stranded 

RNA may bind to the cellular RNA helicase, retinoic acid-inducible gene-1 (RIG-1) or 

melanoma differentiation-associated gene 5 (mda-5) and subsequently activate latent 

transcription factors including IRF 3 and NFκB (6,174,216,359).  However, further 

experimentation will be required to test these hypotheses and gain a full understanding of 

spectrum of pathways involved in modulation of pIgR expression by IECs in response to 

pathogenic interactions. 

 

Knowing that reovirus upregulates pIgR expression in transformed lung and intestinal 

epithelial cell lines, we addressed the important biological question and this is whether 

reovirus upregulates pIgR expression in vivo.  This is an important question because it 

leads to an understanding of how non –lymphoid cells initiate immune responses that 

amplify or synergize with the antigen-specific adaptive response.  Studies by Hooper et 

al. suggest that commensal bacteria can induce pIgR expression in vivo (150).  Other 

studies demonstrated that pIgR expression is upregulated during weaning, and is under 

partial control of adaptive immunity (163).  Although a number of cytokines have been 



  

156 

well documented to increase pIgR expression in vitro, the contribution of specific 

cytokines versus reovirus itself in pIgR upregulation in vivo is not known.  In addition, 

enteric reovirus infection in germfree and neonatal mice stimulate the development of 

germinal centers and induces virus –specific and ‘bystander’ IgA responses, suggesting 

that the pathogen stimulate immunologically competent but naïve mucosal tissues, which 

respond by initiating innate immune responses in IECs that shape the nature of 

subsequent adaptive immunity (197,398).   The preliminary in vivo experiments reported 

in Chapter 5 of this dissertation indicates that pIgR mRNA expression is upregulated in 

germfree but not conventionally reared adult mice following oral reovirus infection.  

Why a change in pIgR expression could be measured in germ free mice but not in 

conventional mice has been discussed in details in Chapter 5.  Overall, it seems that 

commensal and pathogenic microorganisms can upregulate pIgR expression by signaling 

through IECs, which serves to bridge the innate and adaptive immune responses at 

mucosal surfaces.  Future work on pIgR expression during virus infection in vivo will 

advance our understanding of the way that innate responses are regulated by adaptive 

responses in the intestine, and will provide much needed in vivo correlates to 

observations initially made in vitro using transformed intestinal epithelial cell lines.  

Future in vivo studies in germfree and neonatal mice should aim to understand the 

contribution of the virus itself or cytokines induced in mucosal virus infection to 

upregulate intestinal pIgR expression.   

 

Studies with the pIgR knockout mice model have demonstrated the specific requirement 

of sIgA in mucosal homeostasis and protection at mucosal surfaces (167,348).  Although 
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pIgR knockout mice lack mucosal Igs, they accumulate pIgA in circulation at levels of 

100-fold higher than wild type mice (385).  However, pIgR knockout mice demonstrated 

the importance of pIgR / sIgA for the protection of gastrointestinal surfaces against 

secreted bacterial toxins including cholera toxin (386).  Sun et al. demonstrated the 

critical role of pIgR / sIgA in protection against nasal colonization by S. pneumoniae in 

pIgR knockout mice (360).  In addition, chronic inflammatory mucosal disorders 

including celiac disease, Helicobacter pylori gastritis, and Sjogren’s syndrome increase 

pIgR synthesis likely under the influence of inflammatory mediators including TNF-

α and IFN-γ (49).  Murthy et al. demonstrated an important role for pIgR / sIgA in 

controlling colonic inflammation during dextran sulphate sodium (DSS) induced colitis in 

pIgR knockout mice.  PIgR knockout mice displayed greater mucosal ulceration, 

inflammation, edema and necrosis compared to wild type suggesting an 

immunoregulatory role for pIgR and / or FSC at mucosal surfaces in controlling 

inflammation and maintaining integrity of epithelial barrier (Murthy et al., Journal of 

Gastroenterology and Hepatology, 2006, In Press).   

 

Interestingly, pIgR can play a dual role in host defense as well as pathogen entry.  In vitro 

studies by Zhang et al. have confirmed that pIgR can translocate Streptococcus 

pneumoniae across human nasopharyngeal epithelial cells.  Human pIgR can bind to a 

major pneumococcal adhesin, choline binding protein A (CbpA) and the whole complex 

can then be endocytosed and transcytosed in a retrograde fashion, suggesting that 

mucosal pathogens like pneumococci may co-opt the pIgR transcytosis machinery to 

breach the epithelial barrier (410).  It has been demonstrated that human pIgR via 
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domains 3 and 4 bind to hexapeptide motif in the choline-binding protein SpsA of S. 

pneumoniae (95,227).  The SpsA-pIgR interaction mediates adherence and internalization 

of the human pathogen into epithelial cells (95,133,134,227).  Whether a similar 

mechanism of retrograde transcytosis of pIgR is utilized by reovirus to enter IECs from 

apical surface is an important question that can be addressed in future studies.  It will be 

very intriguing to determine if pIgR is the ‘defender of the fort’ or it may present itself as 

a ‘Trojan horse’ for reovirus to hitch a ride from intestinal lumen in the mucosal 

epithelium.  The fact that pIgR can also facilitate pathogen entry, raises the question of 

whether pIgR is a host virulence factor, rather than an innate defense molecule.  The 

apical-to-basolateral transcytosis of pIgR is rather inefficient and presence of FSC and 

sIgA in secretions should limit binding and retrograde transport of pathogens in IECs.  

However, an imbalance in any of these factors, or an overwhelming infection might favor 

pIgR-mediated retrograde transcytosis and invasion of IECs.  So, in reality, whether pIgR 

is exclusively a component of innate immunity or might function as a host virulence 

factor in reovirus infection of IECs is an open question.  Considering, the unconventional 

role of pIgR as a virulence factor, the findings of reovirus-mediated pIgR upregulation in 

IECs might rather promote viral pathogenesis than reinforcing host defense.  

 

Expression of PIGR gene is a significant developmental response by epithelial cells that 

appears to be under the control of multiple environmental factors including infection.  We 

have demonstrated that infection with an enteric pathogen, reovirus enhances PIGR gene 

transcription leading to upregulation of pIgR expression by IECs.  It can be speculated 

that manipulation of pIgR expression early in life could provide means to improve innate 
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resistance to mucosal infection, improve the efficacy of mucosal vaccines administered 

early in life, or improve the ability of the developing mucosal immune system to regulate 

itself properly.  In the long term, one could propose innovative therapies using reovirus, 

either active or inactive, which ‘mature’ the mucosal immune system, particularly in 

infants.  The outcomes of such therapy could result in improvement of the efficacy of 

mucosal vaccines or stimulate mucosal immune responses in infants.  A ‘mature’ immune 

system in infants helps to combat the development of immunologic abnormalities such as 

dysregulated responses that could lead to allergies and / or autoimmune diseases that 

result from a lack of antigenic exposure early in life.  Overall, this research will influence 

approaches to designing novel vaccines and therapeutics targeted against enteric virus-

mediated diseases including diarrhea that will greatly impact and improve public health, 

will deepen the understanding of IEC biology, host-virus interactions and ensuing innate 

and adaptive immune responses particularly in the intestinal tract.   
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