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ABSTRACT 

The major factor influencing the increase of natural gas use is the rise in its global 

demand. Due to the relentlessly increasing demand, there have been improvements in the 

techniques and technology used in recovering natural gas from shale gas reservoirs, 

including drilling a horizontal well and hydraulic fracturing. One of the significant 

challenges associated with gas shale production is that it is difficult to reliably predict 

ultimate recovery and estimate reserves, leading to great risk in exploitation of these 

resources. The purpose of this research is to evaluate the current decline curve analysis 

techniques and provide a more reliable method for production forecast and reserve 

estimate for hydraulically fractured horizontal wells producing from gas shale reservoirs. 

When production data of low permeability reservoirs are analyzed using Arp’s 

equation, the decline exponent b which is supposed to range between 0 and 1 is usually 

greater than 1. The actual decline exponent b value is not easy to come by in the transient 

period during the life of the well, however, having a decline exponent b value greater 

than 1 will overestimate the remaining reserves of the well. 

In this study, first, decline characteristics for shale gas wells are presented by 

simulating long-term production performance for a variety of well-reservoir systems, 

including Dimensionless fracture conductivity change, different fracture stages and 

fracture half- length; then different current decline analysis methods were evaluated in 

estimating reserves and predicting future performances. These methods are Conventional 

Decline Curve Analysis, the Backward Method and the Ilk Method. The evaluation task 

was done through quantitative comparison of production forecast results from current 

decline analysis with true simulated recovery.  

 
 



 
 

Finally, the Backward & Ilk method was proposed and evaluated. This research 

work indicates that the Backward & Ilk method can provide the most suitable and 

accurate results in estimating reserves and analyzing production data. 
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CHAPTER I 

INTRODUCTION 

1.1 Conventional & Unconventional Reservoirs 

Conventional hydrocarbon reservoirs have been a major supplier of natural gas in 

the United States for the past years, however, these reservoirs are running out of supply 

and are becoming extremely difficult to locate and exploit with the present technology 

and techniques available. Conventional reservoirs are formed when crude oil or natural 

gas are being pushed upwards by the earth’s forces through sips and rock fractures until it 

gets to a point where it encounters an impervious or impermeable rock (shale) that acts as 

a trap mechanism. This is then extracted with ease as it is usually accompanied with 

relatively good permeability by drilling a well. Presently, the continuous increase and 

persistent demand for crude oil and natural gas has drifted the oil and gas industry 

towards unconventional reservoirs. 

Shale gas reservoirs like coal bed methane and tight sands can be regarded as an 

unconventional reservoir. Shale gas reservoir possesses the characteristics such as ultra- 

low permeability, no trap mechanism and the gas is tightly absorbed to the rock particle 

which is the opposite of a conventional reservoir. The United States houses some of the 

largest shale gas reservoirs in the world which contribute majorly to the total domestic 

natural gas production in North America like the Barnett Shale of the Fort Worth Basin 

(1233 mmcf/d), the Lewis Shale of the San Juan Basin (55 mmcf/d), the Antrim Shale of 

the Michigan Basin (384 mmcf/d) and the Marcellus Shale of the Appalachian Basin  

(438 mmcf/d) (Sumi ). 28
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Figure 1 shows the rise in trends of unconventional natural gas production from 

early 1990’s and its predicted estimation through 2030. 

 

Figure 1: A graph depicting the Rise of Unconventional Natural Gas Production 

(geology.com ). 20

According to Terry Englander, a geoscience professor at Pennsylvania State 

University, and Gary Lash, a geology professor at the State University of New York at 

Fredonia, Marcellus shale of the Appalachian Basin was estimated to contain about 500 

trillion cubic feet of natural gas in place (geology.com ). This estimate included that the 

same technology being used at the Barnett shale of the Fort Worth Basin (horizontal 

drilling and hydraulic fracturing) are to be applied to this shale reservoir. The Marcellus 

10

2 
 



shale is thought to have 50 trillion cubic feet that is recoverable (assuming10% of gas in 

place can be recovered with present technology and technique) (geology.com 20 ). 

Exploratory drilling of the Marcellus shale is on the rise and companies like 

Chesapeake Energy, Exco resources, PetroEdge, Range resources etc. already own large 

acreage of land containing this shale gas and have started exploiting this type of gas 

reservoirs. Figure 2 shows the area where Marcellus shale activity is currently producing 

and commingled with other zones in the Appalachian Basin. 

 

 

Figure 2: A Map Showing Marcellus Shale Activity in the Appalachian Basin (Miller ). 23
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1.2 History of Marcellus Shale 

The Marcellus shale can be found in the Appalachian region of the United States 

of America. It is a Middle-Devonian age black shale that dates back to about 400 million 

years ago. It is organic rich as a result of plants and organisms that died and decayed 

millions of years ago. It has a low permeability and contains a low density rock. 

It spans a distance of approximately 600 miles, running from the southern tier of New 

York, across western and southern Pennsylvania, eastern Ohio, most of West Virginia, 

through western Maryland and Virginia. Marcellus shale has a true vertical depth of 

about 3000 ft – 9000 ft (as shown in Figure 3). The thickness of the Marcellus shale is 

variable depending on the locality. It ranges from about 20 ft to 350 ft, it gets thicker 

eastward and vice-versa westward. The northern part is said to be geopressured and 

contains less natural fractures compared to the southern part which is underpressured 

with more natural fractures (Sumi ). 28

 

Figure 3: A map showing the depth and location of the Marcellus shale in the 

Appalachian Basin (geology.com ). 20
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In Marcellus gas shale, the natural gas occurs in several ways including as free 

gas in natural fractures and within the pore spaces of the Marcellus shale and also as an 

absorbed gas on mineral grains and kerogen within the shale matrix. The grains in 

Marcellus shale are compacted together as a result, Marcellus shale possesses very tiny, 

poorly connecting and low permeability pores, and the movement of fluid is very 

restricted. Most of the gases that are recoverable in this shale are usually contained in the 

pore spaces. 

In order for natural gas in a Marcellus shale to be produced in economical 

(commercial) quantities, it must either have natural fractures, or hydrofraced (create 

hydraulic fractures). Identification and characterization of natural fractures is typically 

done at the surface through outcrop studies or in-situ through the use of geophysical logs 

or core. 

There are two major techniques that will be incorporated into getting economical 

amount of natural gas from Marcellus shale. They are horizontal drilling and hydraulic 

fracturing. These techniques are currently been used in the Fort Worth Basin in extracting 

crude oil and gas from the Barnett shale.  

 

1.3 Horizontal Drilling 

Drilling a horizontal well can be achieved when a vertical hole is deviated to a 

horizontal direction so that it penetrates a maximum number of vertical rock fractures and 

penetrate a maximum distance of gas-bearing rock. Figure 4 illustrates how a horizontal 

well penetrates a number of hydraulic fractures in a Marcellus zone. Horizontal wells are 

preferred to vertical wells when drilling in a Marcellus shale reservoir which is going to 
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be hydrofraced. This is because the natural fractures that exist in Marcellus shale are 

vertical and when a vertical well is drilled in this reservoir, very few vertical fractures are 

intersected; however, the horizontal well intersects many of the vertical fractures. 

Another major reason is that a hydraulically fractured horizontal well will most likely 

outperform a hydraulically fractured vertical well in a shale reservoir.  

 

  

Figure 4: Showing how the horizontal well intersects the Marcellus formation 
 

(geology.com ). 20

Although, horizontal wells are preferred to vertical wells for the Marcellus 

formation, it is important to know that they are more expensive than vertical wells. An 

average newly drilled horizontal well costs about 1.5 to 2.5 times more than a vertical 

well (Joshi15 ). On the other hand, the productivity of the horizontal well is 2 to 5 times 

larger than the vertical well (Joshi15 ). Thus, for the given economic gas rate limit, 
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horizontal wells could be produced with up to half to one-third reservoir pressure as 

compared to the reservoir pressure required for economic production from a vertical well 

(Joshi
15

). 

Below is a typical example of Devonian shale that was drilled both vertically and 

horizontally with the same well drainage area, thickness, gas content and total gas-in-

place. Despite the fact that both the vertical and horizontal wells are quite similar, the 

horizontal well outperforms the vertical well by more than double as seen in Table 1 and 

Figures 5 & 6. 

Table 1: Comparing Horizontal well versus vertical well (Miller 23 ). 
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 Figure 5: Gas production rate over time of a vertically fractured Devonian shale well 

(Miller 23 ). 

 

Figure 6: A graph showing the gas production rate over time of a horizontally fractured 

Devonian shale well (Miller ). 23
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1.4 Hydraulic Fracturing 

Nowadays, many petroleum companies conduct well stimulation for various reasons 

including: 

 Increase hydrocarbon production rate 

 Increase reserves 

 Increase well economical production life 

 Maximize the monetary value on their investment on well (Drilling & 

Completion) 

Well stimulation is a well intervention performed on a gas and oil well to increase 

production by improving the flow of hydrocarbon from reservoir to wellbore. There are 

mainly two well stimulation methods, namely Matrix Acidizing and Hydraulic 

Fracturing. Matrix Acidizing is a stimulation technique in which acid solution (HCL,  

mixture of HCL & HF) is injected into a formation to dissolve some minerals present. 

The process of hydraulic fracturing is very vital in unconventional reservoirs  

(For example, Marcellus shale) if it is to be commercially produced. Hydraulic fracturing 

is used to create a flow path in a gas reservoir that can facilitate the fluid flow of natural 

gas to a producing well. 

Marcellus shale has restricted pore volume and low connectivity that impedes the 

flow of natural gas through the reservoir. Therefore, it is usually fractured by injecting a 

fluid containing sand or other proppant under specified pressure to efficiently create 

fractures in the rock through which the natural gas can easily flow.  
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According to Schlumberger, slickwater ( a low viscosity water based fluid) and 

proppant can be used for deeper higher-pressured Marcellus shale with increased 

production, while nitrogen foamed fracturing fluid is better used for shallower low-

pressured shale. Caution is necessary to contain the fractures within the specified gas 

reservoir to avoid intersecting adjoining aquifers that would introduce excess water into 

the gas producing zone. In order to increase the success rate of the hydraulic fracture 

significantly and have an effective stimulation, a long and conductive fracture will have 

to be created. This is because the reservoir we are dealing with has an ultra low 

permeability. Figure 7 shows and explains the process of how hydraulic fracturing is 

implemented. 

 

Figure 7: The diagram above explains a Hydraulic Fracturing Process (Tschirhart ). 31
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There are two different types of hydraulic fractures that can be created in a 

reservoir. These fractures are mostly determined by the direction of the stress field 

(vertical or normal to the horizontal minimum stress) in the producing formation. If the 

horizontal well is drilled parallel to the minimum horizontal stress, it is expected that the 

fractures created will be perpendicular to the horizontal well, thereby, creating a 

transverse well while, the other limiting case can be generated if a horizontal well is 

drilled perpendicular to the minimum horizontal stress, creating a longitudinal fracture. 

Here, the fractures created usually are parallel to the horizontal well. 

 

Longitudinal fractured wells perform massively in high permeability reservoirs, 

however, for Marcellus shale reservoirs, transverse fractured horizontal well are very 

attractive as they are more productive than longitudinal fractured horizontal well when 

compared with one another in the same reservoir and conditions. Figures 8 & 9 show the 

comparison of the production rate and cumulative production between transverse and 

longitudinal fractures, respectively. 
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Figure 8: Comparison of Production rate between transverse and longitudinal fractures 
with the same total area (Soliman ). 27

 

Figure 9: Cumulative production between transverse and longitudinal fractures with same 
the total area (Soliman 27 ). 
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1.5 Objectives 

It is difficult to reliably predict ultimate recovery and estimate reserves for gas 

shales, leading to great risk in exploitation of these resources. The objectives of the 

research are to evaluate the current decline curve analysis methods and provide a more 

reliable method for production forecast and reserve estimate for hydraulically fractured 

horizontal wells producing from gas shale reservoirs. 

 

1.6 Research Tasks 

Literature review to determine reservoir parameters for a Marcellus formation such as: 

- Reservoir Permeability 

- Reservoir Porosity 

- Formation Depth and Thickness (Pay-zone) 

- Reservoir Temperature 

Using Schlumberger’s Eclipse Software simulate a Marcellus shale reservoir, 

considering: 

- Simulation of transverse fractures in a hydraulically fractured horizontal reservoir 

with multistage fractures 

- Use of dual porosity model (matrix and fracture systems).  

- Incorporation of desorption of adsorbed gas.  

- Generation of data for four different reservoir-well systems. 
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Using four different production decline analysis methods, the following steps are to be 

taken; 

- Perform forecast on the production data from eclipse 

- Quantify errors in reserve estimates from decline analysis 

- Characterize the decline behavior 

- Compare all four different approaches  

- Estimate reserves 
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CHAPTER II 

CHARACTERISTICS OF SHALE GAS RESERVOIRS 

 

2.1 Literature Review 

The placement of a horizontal well in the formation can impact the stimulation of 

the well significantly. In reality, lateral wells are not exactly horizontal. These horizontal 

wells slant about 75 to 85 degree angles using the upward or downward dips and assume 

the trend of the formation. Certain variables are very important when talking about 

producing from a hydraulically fractured horizontal well like reservoir permeability, 

reservoir pressure, wellbore length, well drainage area and fracture orientation (in-situ 

stress and fracture direction). 

Hydraulic fracturing is often used in reservoirs with low permeability that is not 

capable of reaching economic production rates. This is very different in character to the 

naturally fractured reservoirs that are classified as having a dual porosity. Hydraulic 

fractures are generally characterized by four variables: fracture half-length (Xf), fracture 

width (w), proppant pack permeability (kf) and formation permeability (k). These four 

variables make up the dimensionless Dimensionless fracture conductivity. Dimensionless 

fracture conductivity along with fold of increase (FOI) in productivity are two very 

important factors to be considered when creating a hydraulic fracture. Dimensionless 

fracture conductivity less than 10 is considered poor, while that between 10-50 is 

considered good and anything beyond 50 is considered to have excellent Dimensionless 

fracture conductivity (Gidley10 ). 
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fD kx

wk
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       Eq 1   
 

Unlike natural fractures, hydraulic fractures are almost entirely vertical generally 

and they cut through the thickness of a reservoir, thereby, increasing the chances of 

hitting the pay zone.  

 

2.2 Dual Porosity 

Dual porosity model consists of two different media. These two media are 

fracture system and matrix system. The fracture system contains very little fluid (gas/oil) 

with low storage capacity but possesses a high conductive path for fluid compared to the 

matrix system. The other medium which is the matrix system has a high storage capacity 

but a poor fluid conductive path. Presently, there are many models that characterize 

natural fractures already existing in reservoir and artificial hydraulic fractures based on 

dual porosity. These somewhat different models are usually different in the way they 

connect the relationship between the fracture and matrix systems. They also, differ in the 

way their fracture and matrix systems are shaped.  

For example: Figures 10 -12 are matrix and fracture systems with three different 

shapes. Figure 10 shows a Cubed (Grid) like shaped matrix and fracture system. It is 

usually computed in three dimensions (x,y,z). Figure 11 shows a Match Stick like matrix 

and fracture system. It is usually computed in two dimensions (x,y). Figure 12 shows a 

Slab like matrix and fracture system. It is usually computed in one dimension (x or y 

direction). 

16 
 



 

 

Figure 10- Cubed Grid Dual Porosity System. 

 

 

Figure 11- Match-Stick Dual Porosity System.  

 

 

Figure 12- Slab-Like Dual Porosity System. 
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These models (slabs, match-sticks, and cubes) are that the results produced by 

these different models are usually similar as far as the flow regime between the media is a 

transient flow. The only difference between these media models occurs during 

transitional flow regime (www.fekete.com 9 ). 

When characterizing a dual porosity model into software, one has to assume what type of 

flow is to be created between the media (matrix and fracture systems). This flow type 

between the media could either be a transient flow or pseudo steady state flow.  

 

2.3 Flow regime 

There are four different flow regimes that can occur in a hydraulically fractured 

reservoir which are fracture linear flow, bilinear flow, reservoir linear flow and pseudo- 

radial flow (www.fekete.com ). Figure 13 shows different time periods that exist in the 

life of the shale gas reservoir. 

9

The flow regime starts out early with a fracture linear flow as shown in Figure 14, 

which lasts for a very short time before advancing to the bilinear flow during the mid-

time in the reservoir. During the bilinear flow regime, two linear flows occur 

simultaneously where one flow is a linear flow within the fracture and the other is a linear 

flow from the formation toward the fracture (www.fekete.com 9 ). The bilinear flow 

regime gives an estimate of Dimensionless fracture conductivity. Figure 15 illustrates the 

bilinear flow regime. The reservoir linear flow toward the fracture occurs when fracture 

has infinite conductivity. The pseudo- radial flow regime takes a long period of time to 

occur and only does if there is no boundary effect. The pseudo-radial analysis provides an 

estimation of formation permeability in the radial direction. 
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Finally, pseudo steady state flow appears when pressure transient reaches the 

outer boundaries and the outer boundaries are no flow boundaries.   

 

Legends: 

E.T: Early Time 

Middle Time 

Transition period 

Late Time: Pseudo steady state (P.S.S) or Steady State (S.S) 

 

 

Figure 13- A pressure versus time graph showing the existing time periods 

(www.fekete.com 9 ). 

 

WELL 

 

Figure 14: Fracture linear flow regime occurs during early time (www.fekete.com 9 ). 
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Figure 15: Bi-linear flow regime during middle time period (www.fekete.com 9 ). 

 

2.4 Desorption of adsorbed Gas 

Another factor that was taken into consideration in Marcellus shale was 

adsorption of gas into the shale. This character which is often associated with coal beds, 

also exists in Marcellus shale and the mechanism of desorption of sorbed gas can be 

considered in the simulator. 

The Langmuir isotherm was developed by Irving Langmuir in 1916 to describe 

the relationship that existed between the surface coverage of an adsorbed gas and the 

pressure of the gas above the surface at a fixed temperature. After Langmuir’s 

development, many other types of isotherm like Temkin isotherm and Freundlich 

isotherm surfaced. Whilst the Langmuir isotherm is one of the oldest and straight-forward 

isotherms, it still provides a useful insight into the pressure dependence of the extent of 

surface adsorption.  

Adsorption molecules of one substance become attached to the surface of another. 

Adsorption is different from absorption as it is a reversible process interconnected by 

weak attracting forces in this case, shale and natural gas. 
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Langmuir’s Equation: 

       Eq 2 

V (P) = Gas Content 

LV  = Langmuir Volume 

LP = Langmuir Pressure 

P = Pressure (psi) 

LV  is the maximum amount of gas that can be adsorbed on the shale at infinite pressure 

LP  affects the curvature of the isotherm and corresponds to the pressure at which half of the 

Langmuir volume is adsorbed. 

 

 

Figure 16: A Langmuir Isotherm Curve: Gas Content plotted against Pressure. 

(www.fekete.com 9 ). 
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Marcellus shale like other shale contains organic material which has the ability to 

adsorb natural gas. The process of adsorption is controlled by properties such as the 

amount of organic carbon present, the thermal maturity of the kerogen, reservoir 

temperature, reservoir pressure, in-situ moisture of the shale and gas composition  

(Hill 11 ). According to Hill, there is a linear proportionality between the Total Organic 

Carbon (TOC) and total gas content in shale gas, that is, as latter increases so does the 

other and vice-versa. Two correlations of gas content and TOC from two different types 

of shale were compared with one another, one from Antrim shale in the Michigan Basin 

and the other from the New Albany shale in the Illinois Basin (Hill11 ). 

 

 

Figure 17: Comparison of Gas Content versus Total Organic Carbon in Two Gas Shale 

plays (Hill11 ). 
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CHAPTER III 

METHODOLOGY 

In this research, the following tasks were performed and described in more details below: 

• Model Design 

• Representative Reservoir data 

 

3.1 Model Design 

In this study, Schlumberger’s Eclipse software was the reservoir simulator used 

for modeling. This simulator was used to model a horizontal well which was 

hydraulically fractured in multi – stages. The multi – stage fractures created are 

transverse to the lateral well as they connect more with pay zone, thereby increasing the 

probability of having a good flow path for the natural gas. Afterwards,  production data 

were produced from the simulator. In simulated cases, dual porosity model was used and 

desorption of adsorbed gas were incorporated for more accurate results. Desorption of 

adsorbed gas was included in this simulation because Marcellus shale contains adsorbed 

gas and the typical properties of Marcellus shale reservoir were used in simulation 

models.  

The established simulation model represents a reservoir with characteristics of 

Marcellus shale. The simulated reservoir encompasses a well drainage area of 160 acres 

with a grid system of 26 x 25 x 6 and the dimensions of 138.5 ft by 77.5 ft by 20 ft for  
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each grid block. The horizontal well trajectory is located in the center of the reservoir as 

illustrated in Figure 18. Local Grid Refinement (LGR) is used to characterize the 

variation of permeability and conductivity of hydraulic fractures.  

 

Shale Gas 
Reservoir 

Multi-Stage 
Fracture 

Horizontal 
Well 

 

Figure 18: The position and location of the horizontal well in the shale gas reservoir. 

 

 

 

 

 

24 
 



 

3.2 Representative Reservoir Data 

The efficacy of any result(s) got from a simulator has a lot to do with the 

representative reservoir data as it contains the main intangibles based on what has been 

simulated. For this research, based on the representative reservoir data, multiple synthetic 

cases are generated including one base case as well as three other case studies to support 

the accuracy of the research results. The base synthetic case was based on a well with 8 

multi-stage hydraulic transverse fractures with a fracture spacing of 381ft, dimensionless 

Dimensionless fracture conductivity of 10, fracture half-length of 504 ft and a total 

wellbore length of about 3050 ft, producing natural gas for a period of 60 years. 
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3.3 Key Parameters of the Simulated Reservoir 

These parameters were used for all case studies including the base synthetic case. 

Well Drainage Area: 160 Acres 

Reservoir Pressure: 2880 psi 

Pressure Gradient: 0.433 psi/ft 

Matrix Permeability: 0.0005 md 

Matrix Porosity: 8% 

Net pay thickness: 120 ft 

Depth (TVD): 6600 ft 

Reservoir Temperature: 125 F 0

Langmuir Pressure: 473 psi 

Langmuir Volume: 74.4 scf/ton 

Bulk Density: 2.5 g/cc 

Gas in Place: 17.96 Bcf 

Free Gas: 14.13 Bcf 

Adsorbed Gas: 3.83 Bcf 
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3.4 Flowchart of the Entire Analyzing Process 

Fracture Half –Length 
Cfd=10 

Xf= 271ft 
Multi-stage frac= 8 

Synthetic Base Case 
Cfd=10 

Xf= 504ft 
Multi-stage frac= 8 

Number of Fractures 
Cfd=10 

Xf= 504ft 
Multi-stage frac= 12 

A Horizontal Well with Multi-
Stage Fractures 

Modeled Using ECLIPSE

Dimensionless fracture 
conductivity 

Cfd=50 
Xf= 504ft 

Multi-stage frac= 8 

Reservoir 
Properties of a  

Gas Shale  

 
ILK & BACKWARD 

METHOD 
 

 
CONVENTIONAL  
DECLINE CURVE 

ANALYSIS 

 
 

ILK METHOD 
 

 
BACKWARD 

METHOD 
 

ESTIMATED 
RESERVE 

& 
PERCENTAGE 

ERROR 

 

Figure 19: Flowchart of the entire analysis process. 

The flowchart in Figure 19 briefly explains how methodologically the whole process was 

carried out starting from the collecting of data for the shale gas until the end result  

(estimated reserves with error analysis). 
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3.5 Production Decline Analysis 

3.5.1 Conventional Decline Curve Analysis Method 

 Conventional Decline Curve Analysis (DCA) is a graphical examination of the 

production data given.  It consists of fitting a mathematically modeled curve with a plot 

of flow rate vs. time. Several equations may be used to model a decline curve, such as 

hyperbolic equation, exponential equation, and harmonic equation. This technique was 

developed by Arps in the 50’s. The purpose of DCA is to come up with a prediction of 

future production performance and forecast reserves of the life of a well. Arps decline 

curve equation was basically empirical and was proven to be related to fluid properties 

and production conditions in a well by Fetkovich (Fetkovich ). 7

Decline curves which are plots of a well’s producing rate versus production time 

can also be used to estimate ultimate recovery of the well. They are usually plotted on 

semi-log graphs and extrapolated to give an estimate of the production rate. This method 

of estimating reserves is one of the most commonly applied methods in the petroleum 

industry (Thompson ) and it generally yields good results when production data during 

pseudo-steady state flow are available. 

30

 

 

 

 

 

 

 

28 
 



 

Arps decline curve equation (Arps1 ) is 

q(t) = 
b
1

i

i

)tbD1(

q

+         Eq 3

 

Equation 3 is usually called the hyperbolic model, where b is the decline exponent 

and ranges between 0 and 1. q(t) is the production rate at time t,  is the initial 

production rate and  is the initial decline rate. 

iq

iD

When b is zero, equation 3 becomes exponential model 

q (t) =          Eq 4 Dt
ieq −

When b is unitary or 1 in equation 3, harmonic model is obtained 

 q (t) = 
)1( tD

q

i

i

+         Eq 5
 

Cumulative production for hyperbolic decline is 

Np = ][
)1(

11 bb
i

i

b
i qq

Db
q −− −
−        Eq 6   

Where Np is cumulative production. 

Cumulative production for exponent decline is 

Np = 
i

i

D
qq −

         Eq 7
 

Cumulative production for harmonic decline is 

Np = )/ln( qq
D
q

i
i

i

        Eq 8
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Relative error: 

% Error = 100
Prod.Cum. Actual 

Prod. Cum. Actual - Prod. Cum. Calculated
×

   Eq 9
 

 

 As stated above, when b approaches zero the model is exponential, when it 

approaches 1 the model is harmonic. The model is hyperbolic when b falls between 0 and 

1. A well is assumed to be multi-layered (comingled) or heterogeneous if the decline 

exponent b is higher than 0.5. The decline exponent (b) plays an important part in the 

forecast of long-term production of a well through Arp’s equation. An increase in b 

causes an increase in the life of a well and also the remaining reserves in the well. 

Decline curve analysis based on Arps equations has always been known to be 

effective for conventional oil and gas wells. However, estimating the reserves of 

comingled hydraulically fractured tight gas wells using conventional decline curve 

analysis has been problematic (Cheng ). This problem arises due to transient effects and 

changes in flow regimes in different layers. 

2

The ultra low permeability known to exist in gas shale reservoirs makes it very 

difficult to accurately estimate its future production performance and forecast its reserves 

with conventional decline curve analysis because a very long time is required to attain a 

stabilized flow. Because of this factor, Arps’ decline exponent b which is supposed to 

have a range between 0 and 1 is usually surpassed. The decline exponent b is more often 

greater than 1 in shale signifying, that the future production performance and forecasted 

reserves have been over estimated. 
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3.5.2 Backward Method: 

 In order to deal with problems like transient flow, changed operation conditions 

and reliability of decline curve analysis, the backward method was developed. In this 

research work, two scenarios were considered. For the first scenario, the production data 

are available only for the first ten years, and then the most recent years of data were used 

for history matching and prediction, such as the most recent five years (10th-9th year, 10th-

8th year until 10th-5th year). For the second scenario, production data are available only for 

the first five years, and then regression was performed with the data for the last three 

years (5th-4th year, 5th-3rd year and 5th-2nd year). 

Using the parameters generated by doing regression for the most recent years of 

production data, future performances were predicted. For the first scenario, the future 

performance was predicted for the next 50 years using the most recent five years of 

production data (10th-9th year, 10th-8th year until 10th-5th year) while for the second 

scenario, the future performance was predicted for the next 55years using the most recent 

three years production data (5th-4th year, 5th-3rd year and 5th-2nd year) (Cheng ). 29

 

3.5.3 Ilk Method: 

The Ilk method is a method that was developed by Ilk from Texas A&M 

University, this approach focuses on using the “power law loss ratio” rate relation to 

match production rate functions much better than the hyperbolic rate decline relation for 

tight gas and shale gas applications (Ilk D. et al ), while the “Power law exponential 

decline” is derived from only tight gas and shale gas performances.  

14
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The power law loss ratio can be used to model transient, transitional and boundary 

flow regimes and many well cases even in a hydraulically fractured shale gas well  

(Ilk D. et al 14 ).  For the power law loss ratio, the  parameter is first set to zero and 

then later adjusted to give the best fit during the boundary flow regime as it only affects 

the late portion of the power law loss ratio equations. The  parameter dominates at 

very large times and provides a lower bound for the estimated reserves. 

∞D

∞D

The “power law loss ratio rate decline” equation was used just like the hyperbolic 

model to estimate reserves in this research. The parameter in this equation dominates 

the transient and transition flow regimes in both fractured and unfractured wells yielding 

good matches of the production data used (Ilk D. et al 14 ). 

nt

 

Rate loss ratio: 

D =  
dt
dq

q
×

1

         Eq 10
 

Power law loss ratio: 

D =         Eq 11 
)1(

1

n

tDD
−−

∞ +

Power law loss ratio rate decline: 

q =        Eq 12 ]exp[ n
ii tDtDq −− ∞

Where: 

iq  = Rate q(t = 0) [this parameter differs from initial rate] 

1D = Decline constant at 1 time unit D(t =1 day) 

∞D = Decline constant at “infinite time” D(t = infinite) 
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iD  = Decline constant where = /n iD 1D

n = Time exponent 

 

3.5.4 Backward & Ilk Method 

This is simply just the combination of two very good reserve estimation methods 

that could be very viable when used for shale gas reservoirs. This method encompasses 

the backward approach which deals with analyzing and doing regression with the most 

recent production data in a backwards fashion in combination with the Ilk method which 

uses the “power law loss ratio” rate decline in predicting future reserves. 
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CHAPTER IV 

RESULTS AND DISCUSSIONS 

 

The main objective of this research is to evaluate three current production decline 

analysis methods by quantitative comparison of errors in reserve estimate in different 

reservoir – well systems, and to propose a new method to provide more reliable 

production forecast and reserve estimate for gas shale reservoirs. 

These approaches will be compared based on error analysis of the remaining 

reserves using the estimated future performances and forecasted reserves. The four 

methods to be compared are the conventional decline curve analysis method, the 

backward method, the Ilk’s method and the proposed new method which is the 

combination of backward & Ilk method. 

Four synthetic cases are generated using a commercial reservoir simulator  

“Eclipse” for evaluation of the decline curve analysis methods. These four synthetic cases 

illustrated the decline behaviors of a hydraulically fractured horizontal well in different 

well- reservoir systems. 
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4.1 Synthetic Case 1 – Base Case 

 In this case, gas produced from a horizontal well hydraulically fractured in a 

single-layer shale gas reservoir. Basic reservoir, fracture and fluid properties are listed 

below: 

Reservoir and Fracture Properties 

Reservoir temperature = 125 F 0

Initial reservoir pressure = 2880 psi 

Net-pay thickness = 120 ft 

Matrix porosity = 8% 

Matrix permeability = 0.0005 md 

Fracture half-length = 504 ft 

Dimensionless fracture conductivity = 9.9 

Bottom-hole flowing pressure = 500 psi 

Well drainage area = 160 acre (3600ft x 1938ft) 

 

Fluid Properties 

Gas gravity = 0.65 

Initial gas viscosity = 0.0209 cp 

Initial gas compressibility = 3.11 x 10 psi  4− 1−

Initial gas production rate = 2646 Mscf/Day 
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 Production forecast was performed as illustrated in Figures 20 and 21. These 

figures show forecasts of gas production rate and cumulative production of the shale gas 

reservoir. The graph of gas production rate versus time starts at a peak point and then 

production declines drastically before gaining stabilization in the middle and late time of 

the life of the well. The life of the wells was simulated for a period of about 22000 days 

or 60 years. The cumulative production increases with time and reaches almost 6 Bcf 

after 60 year production. 

 

 

Figure 20: Gas Production Rate versus Time.  
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Figure 21: Cumulative Production versus Time. 

 

In this research, an assumption was made that the production data for the first five 

or ten years are readily available, these production data were used in conventional decline 

curve analysis to forecast the estimated reserves for the future production of the 

horizontal well. 

 We consider two scenarios. In the first scenario we assume that only the 

production data for the first ten years of the wells life are available for decline curve 

analysis. In the second scenario, only the production data for the first five years are 

available for analysis. Table 2 shows the corresponding q i , , b, cumulative production 

and relative error for the times used for reserve estimation. In scenario one, we need to 

forecast the performance for the remaining 50 years; while in scenario two we need to 

forecast the production performance for the remaining 55 years.  The cumulative 

iD
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production and relative error are used in this evaluation to determine the accurate method 

in estimating the remaining reserves and predicting the wells future performance.  

The true remaining cumulative production given by the simulator for the first ten 

years and first five years scenarios were given respectively to be 3844707 Mscf and 

4664879 Mscf which is clearly overestimated by the conventional decline curve analysis 

method to be 6018251 Mscf for (1-10 years) and 7660304 Mscf for (1-5 years). This 

overestimation occurs because the b value which is supposed to range between 0 and 1 is 

within a range of 3.85 -4.26. The overestimation can also be seen in Figure 22 where both 

(1-5 years) and (1-10 years) rise above the Field Gas Production Rate (FGPR) which is 

the simulated production rate. It is also because this is a shale gas reservoir which has 

ultra low permeability. History matching (HM) is done for the amount of years for which 

production data is available. This is used to predict future performances in different case 

studies. 

 

 Table 2: Base synthetic case (Conventional DCA) 

 

HM, yr 

iq

iD

 

(Mscf/D)  b 

CUM_cal 

(Mscf) 

CUM_true 

(Mscf) 

Error 

(Fraction) 

1-10 2533 0.060492 3.849 6,018,251 3,844,707 0.56 

1-5 2562 0.083749 4.268 7,660,304 4,664,879 0.64 
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Figure 22: Semi-log showing the Conventional Decline Curve Analysis Method (base 

case). 

The  and b values for the first and second scenarios in Tables 3 & 4 are very 

close to one another and have a trend of descending slowly from the most recent years to 

the later years. One could make an assumption that the  and b values are close to that 

generated by the simulator due to the little change observed in the decline rate and 

decline exponent of the production time that was history matched. 

iD

iD

Tables 3 & 4 and Figures 23 & 24 also show that the more recent the production 

data, the lower the relative error both for the first (5 years) and the second (10 years) 

scenario. The predicted reserve estimation and future performance are also closer to the 

simulated one from the most recent years and backwards. The positive value in the error 

signifies that the estimated reserve is overestimated.  
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Table 3: Base synthetic case (Backwards 10 years) 

HM, yr 

iq

iD

 

(Mscf/D)  b 

CUM_cal 

(Mscf) 

CUM_true 

(Mscf) 

Error 

(Fraction) 

9-10 3200 0.012258 2.196 4,397,370 3,844,707 0.14 

8-10 3199 0.013312 2.246 4,444,872 3,844,707 0.15 

7-10 3198 0.015202 2.329 4,523,472 3,844,707 0.17 

6-10 3195 0.01738 2.412 4,602,743 3,844,707 0.19 

5-10 3190 0.020259 2.510 4,694,510 3,844,707 0.22 

 

 

 

Figure 23: Semi-log showing Backward Method (10 years) using base case. 
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The relative errors in Table 4 are very close to one another and can be seen to be matched 

up close together in Figure 24. 

 

Table 4: Base synthetic case (Backward 5years) 

 

Start 

HM, yr 

End 

HM, yr 

iq

iD

 

(Mscf/D)  b 

CUM_cal 

(Mscf) 

CUM_true 

(Mscf) 

Error 

(Fraction)

4 5 2865 0.02973 2.981 6,037,421 4,664,879 0.29

3 5 2863 0.034446 3.092 6,567,901 5,074,155 0.29

2 5 2861 0.038785 3.184 6,904,769 5,309,976 0.30
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Figure 24: Semi-log showing Backward Method (5 years) using base case. 
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Using the production data from the first five years and the first ten years, the 

estimated reserves of the horizontal well was predicted for the Ilk method. In Table 5, the 

negative sign in the error shows that the calculated cumulative production data was less 

than the simulated cumulative production data while, Figure 25 shows how the (1-5years) 

and (1-10years) are slightly below the Field Gas Production Rate (FGPR). 

 

Table 5: Base synthetic case (Ilk Method) 

Start 

HM, yr 

End 

HM, yr 

iq

i

 

(Mscf/D) D  n D infi 

CUM_cal 

(Mscf) 

CUM_true 

(Mscf) 

Error 

(Fraction) 

1 5 2882 0.269176 0.251 1E-08 3,972,017 4,664,879 -0.14 

1 10 2930 0.295931 0.236 6.69E-07 3,700,140 3,844,707 -0.03 

 

 

Figure 25: Semi-log showing Ilk Method using base case. 
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Looking at table 6 and Figure 26, this method is clearly the most accurate 

compared to the other three (backward, conventional DCA and Ilk method) discussed 

previously. This method generates a very good estimate of the future reserve with little 

error to account for when compared to the one generated by the simulator. 

 

Table 6: Base synthetic case (Backward & Ilk Method) 

Start 

HM, 

yr 

End 

HM, 

yr 

iq

i

 

(Mscf/D) D  n D infi 

CUM_cal 

(Mscf) 

CUM_true 

(Mscf) 

Error 

(Fraction) 

4 5 2871 0.403908 0.190 0.00001 5,125,802 4,664,879 0.09 

9 10 2924 0.342375 0.213 0.00001 3,956,864 3,844,707 0.02 

 

 

Figure 26: Semi-log showing Backward & Ilk Method using base case. 
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4.2  Synthetic Case Study 2 

The second case study has similar key parameters compared to the base case; 

however, there is only one key noticeable parameter which was altered in order to know 

how this change could affect the effective production of natural gas in this shale 

reservoir. This case study helps in validating if the results and conclusion in the base 

synthetic case can vary. 

All the main parameters of the shale reservoir remained constant other than the 

dimensionless fracture conductivity which is been altered from 10 to 50. Altering the 

dimensionless fracture conductivity from 10 to 50 increased the relative errors in all 

methods when compared to the base case study. Furthermore, contrary to my 

expectations, this case study showed that the accuracy of predicted estimated reserves is 

not necessarily improved with increased production history. This can be seen when the 

backward method is done using a duration of 5years. 

In comparison to the base case, the true cumulative production of this case study 

is overwhelmingly greater. This shows the dimensionless fracture conductivity plays an 

important role production from hydraulic fractured wells. While other methods were 

increasing in relative error, the Backward & Ilk method was an exception as it recorded 

relative errors of 0.06 and 0.01 as seen in Table 11 and Figure 31 for (4-5 years) and (9-

10 years) respectively.  
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Tables 7 through 10 shows a high relative error and this difference can also be seen in 

Figures 27 through 30 as there is a huge gap between the FGPR and years that were 

history matched when compared to the base synthetic case. 

 

Table 7: Dimensionless fracture conductivity (Conventional DCA) 

 

HM, yr 

iq
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(Mscf/D)  b 

CUM_cal 

(Mscf) 

CUM_true

(Mscf) 

Error 

(Fraction) 

1-10 8825 0.103208 2.712 8,352,152 4,337,061 0.92 

1-5 8887 0.123308 2.960 11,431,249 5,507,119 1.07 

 

 

 

Figure 27: Semi-log showing Conventional Method (Using a dimensionless fracture 

conductivity of 50). 
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Table 8: Dimensionless fracture conductivity (Backward 10 years) 

 

HM, yr 

iq
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(Mscf/D)  b 

CUM_cal 

(Mscf) 

CUM_true

(Mscf) 

Error 

(Fraction) 

9-10 11101 0.053153 1.970 5,712,576 4,385,345 0.30 

8-10 11092 0.053541 1.979 5,769,610 4,385,345 0.31 

7-10 11089 0.054134 1.986 5,797,749 4,385,345 0.32 

6-10 11055 0.054985 2.003 5,877,806 4,385,345 0.34 

5-10 11020 0.055393 2.017 5,903,571 4,385,345 0.35 

 

 

Figure 28: Semi-log showing Backward Method 10years (Using a dimensionless fracture 

conductivity of 50). 

 

46 
 



 

Table 9: Dimensionless fracture conductivity (Backward 5 years) 

 

Start 

HM, yr 

End 

HM, yr 

iq

iD

 

(Mscf/D)  b 

CUM_cal 

(Mscf) 

CUM_true 

(Mscf) 

Error 

(Fraction)

4 5 10020 0.055559 2.123 7,507,928 5,578,171 0.34

3 5 10031 0.055753 2.123 8,149,580 6,234,332 0.31

2 5 10041 0.05451 2.110 8,511,877 6,643,666 0.28
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Figure 29: Semi-log showing Backward Method 5years (Using a dimensionless fracture 

conductivity of 50). 
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Table 10: Dimensionless fracture conductivity (Ilk Method) 

 

Start 

HM, yr 

End 

HM, yr 

iq
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(Mscf/D)  n Dinfi 

CUM_cal 

(Mscf) 

CUM_true

(Mscf) 

Error 

(Fraction) 

1 5 9935 0.268814 0.250 0.000001 2,654,483 5,507,119 -0.51

1 10 10057 0.315796 0.282 0.000001 2,461,755 4,337,061 -0.43

 

 

 

Figure 30: Semi-log showing Ilk Method (Using a dimensionless fracture conductivity of 

50). 
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Table 11: Dimensionless fracture conductivity (Backward & Ilk Method) 

 

Start 

HM, yr 

End 

HM, yr 

iq
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(Mscf/D)  n Dinfi 

CUM_cal 

(Mscf) 

CUM_true

(Mscf) 

Error 

(Fraction) 

4 5 6408 0.372433 0.228 1E-05 5,865,913 5,507,119 0.06

9 10 8819 0.459038 0.218 9.81E-06 4,384,878 4,337,061 0.01

 

 

 

Figure 31: Semi-log showing Backward & Ilk Method (Using a dimensionless fracture 

conductivity of 50). 
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4.3 Synthetic Case Study 3 

For the next case study, the variable changed was the number of multi-stage 

fractures from 8 to 12 while other variables were kept constant. The results from this 

study indicate that increasing the number of multi-stage fractures from 8 to 12 has 

tremendous up-side (high cumulative production) with a very low error difference. 

When comparing the backward method in this case study with that of all other 

cases, this case study has the lowest decline exponent (b) and decline rate ( ) values. 

This case study also has the best predicted future performances in regards to the others. 

iD

While all other methods thrived in this case study, the conventional DCA was an 

exception with high errors as shown in Table 12 and Figure 32. This study affirms that 

the conventional decline curve analysis method is not a good analysis for estimating 

reserves of shale gas reservoirs because the other methods (Backward method, Ilk 

method and Ilk & Backward method) show lower error as seen in Tables 13, 14,15 & 16 

and Figures 33, 34, 35 & 36 when compared to Table 12 and Figure 32. 
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Table 12: Multi - stage fractures (Conventional DCA) 

 

HM, yr 

iq
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(Mscf/D)  b 

CUM_cal 

(Mscf) 

CUM_true

(Mscf) 

Error 

(Fraction) 

1-10 3806 0.062758 3.684 8,269,637 4,151,237 0.99 

1-5 3856 0.092422 4.309 11,449,760 5,180,704 1.21 

 

 

 

Figure 32: Semi-log showing Conventional Method (Using 12 multi-stage fractures). 
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Table 13: Multi - stage fractures (Backward 10years) 

HM, yr 

iq
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(Mscf/D)  b 

CUM_cal 

(Mscf) 

CUM_true

(Mscf) 

Error 

(Fraction) 

9-10 3985 0.004604 1.574 4,556,191 4,151,237 0.09 

8-10 3986 0.004846 1.607 4,613,274 4,151,237 0.11 

7-10 3986 0.005194 1.653 4,693,608 4,151,237 0.13 

6-10 3989 0.005613 1.704 4,784,111 4,151,237 0.15 

5-10 4128 0.006611 1.773 4,903,549 4,151,237 0.18 

 

 

 

Figure 33: Semi-log showing Backward Method 10years (Using 12 multi-stage 

fractures). 
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Table 14: Multi - stage fractures (Backward 5years) 

 

Start 

HM, yr 

End 

HM, yr 

iq

iD

 

(Mscf/D)  b 

CUM_cal 

(Mscf) 

CUM_true 

(Mscf) 

Error 

(Fraction)

4 5 4057 0.010352 2.135 6,762,485 5,221,030 0.29

3 5 4061 0.011952 2.245 7,579,412 5,802,300 0.30

2 5 4062 0.014658 2.408 8,283,852 6,153,267 0.34
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Figure 34: Semi-log showing Backward Method 5years (Using 12 multi-stage fractures). 
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Table 15: Multi - stage fractures (Ilk Method) 

Start 

HM, yr 

End 

HM, yr 

iq

iD

 

(Mscf/D)  n Dinfi 

CUM_cal 

(Mscf) 

CUM_true

(Mscf) 

Error 

(Fraction) 

1 5 4268 0.248307 0.265 0.000001 5,168,023 5,221,030 -0.01

1 10 4283 0.253498 0.261 2.51E-06 4,312,140 4,151,237 0.03

 

 

 

Figure 35: Semi-log showing Ilk Method (Using 12 multi-stage fractures). 
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Table 16: Multi - stage fractures (Backward & Ilk Method) 

 

Start 

HM, yr 

End 

HM, yr 

iq

iD

 

(Mscf/D)  n Dinfi 

CUM_cal 

(Mscf) 

CUM_true

(Mscf) 

Error 

(Fraction) 

4 5 4075 0.245341 0.260 1E-05 5,378,472 5,221,030 0.03

9 10 3994 0.215477 0.275 1.01E-05 4,038,784 4,151,237 -0.02

 

 

 

Figure 36: Semi-log showing Backward & Ilk Method (Using 12 multi-stage fractures). 
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4.4  Synthetic Case Study 4 

For the final case study, the fracture half-length was reduced from 504 ft to 271 ft 

keeping all other parameters constant. A reduction in the fracture half-length resulted in a 

simultaneous reduction in the cumulative production but there was also a drop in relative 

error using the conventional DCA, backward method (5 & 10 years) and the backward 

and Ilk method when put side by side with the base case. The reduction in cumulative 

production occurred because for shale gas reservoirs, long and narrow fractures are 

needed for high production rate but when the long fracture was shortened to almost half 

of its initial size, production is thereby affected adversely. 

For case study 4, all three methods other than the Ilk method are close to that of 

the base case. This is another case where the Ilk method shows its inconsistency in 

reserve estimation. The first is in case study 2 when the Dimensionless fracture 

conductivity was increased to 50. In this study, the Ilk method gives a high relative error 

of -0.27 and -0.37 as shown in Table 20 and the space between the history matched curve 

and the can be seen in Figure 40.  Although, the Ilk method was still lower in relative 

error compared to the conventional DCA method as seen in Table 17 & Figure 37, it is 

not a good reserve estimator for short fracture half- length and very high Dimensionless 

fracture conductivity. Tables 18, 19 & 21 with their respective Figures which are 38, 39 

& 41 show similar trends when compared to the first three scenarios. It is necessary to 

address that Ilk & Backward method is a much better method. 
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Table 17: Fracture half - length (Conventional DCA) 

 

HM, yr 

iq

iD

 

(Mscf/D)  b 

CUM_cal 

(Mscf) 

CUM_true

(Mscf) 

Error 

(Fraction) 

1-10 2534 0.059818 3.288 4,478,335 2,970,796 0.50 

1-5 2552 0.073148 3.600 5,843,072 3,604,367 0.62 

 

 

 

Figure 37: Semi-log showing Conventional Method (Using fracture half-length of 271ft). 
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Table 18: Fracture half - length (Backward 10years) 

 

HM, yr 

iq

iD

 

(Mscf/D)  b 

CUM_cal 

(Mscf) 

CUM_true

(Mscf) 

Error 

(Fraction) 

9-10 3002 0.015974 2.087 3,255,604 2,970,796 0.09 

8-10 3155 0.018994 2.123 3,284,208 2,970,796 0.10 

7-10 3199 0.020453 2.147 3,302,266 2,970,796 0.11 

6-10 3216 0.023285 2.210 3,353,862 2,970,796 0.12 

5-10 3220 0.026605 2.280 3,411,170 2,970,796 0.14 

 

 

Figure 38: Semi-log showing Backward Method 10years (Using fracture half-length of 

271ft). 
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Table 19: Fracture half - length (Backwards 5years) 

 

Start 

HM, yr 

End 

HM, yr 

iq

iD

 

(Mscf/D)  b 

CUM_cal 

(Mscf) 

CUM_true 

(Mscf) 

Error 

(Fraction)

4 5 2868 0.033228 2.586 4,346,842 3,604,367 0.20

3 5 2866 0.03565 2.632 4,717,691 3,930,626 0.20

2 5 2864 0.035054 2.622 4,896,867 4,125,484 0.18
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Figure 39: Semi-log showing Backward Method 5years (Using fracture half-length of 

271ft). 
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Table 20: Fracture half - length (Ilk Method) 

 

Start 

HM, yr 

End 

HM, yr 

iq

iD

 

(Mscf/D)  n Dinfi 

CUM_cal 

(Mscf) 

CUM_true

(Mscf) 

Error 

(Fraction)

1 5 2833 0.241108 0.285 0.000001 2,237,964 3,604,367 -0.37

1 10 2871 0.261982 0.269 0.000001 2,144,366 2,970,796 -0.27

 

 

 

Figure 40: Semi-log showing Ilk Method (Using fracture half-length of 271ft). 

 

 

 

60 
 



 

 

Table 21: Fracture half - length (Backward & Ilk Method) 

 

Start 

HM, yr 

End 

HM, yr 

iq

iD

 

(Mscf/D)  n Dinfi 

CUM_cal 

(Mscf) 

CUM_true

(Mscf) 

Error 

(Fraction)

4 5 2874 0.462159 0.191 0.00001 3,696,732 3,604,367 0.02

9 10 2924 0.419129 0.204 0.00001 2,896,691 2,970,796 -0.02

 

 

 

Figure 41: Semi-log showing Conventional Method (Using fracture half-length of 271ft). 
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SUMMARY AND CONCLUSIONS 

This research work has shown that production decline analysis can still be used to 

estimate ultimate reserves (EUR) of shale gas reservoirs using several methods like 

conventional decline curve analysis, backward method, Ilk method and Backward & Ilk 

method, however, the conventional decline curve analysis method in shale gas reservoir 

is very problematical in forecasting long-term performance and is quite inaccurate in 

estimating reserves. 

  The Backward method from Cheng and Ilk method from Ilk D. et al 14  were both 

reaffirmed in this work to be more accurate and a better estimator of reserves and 

predictor of future well performances in comparison to the traditional decline curve 

analysis method in shale gas reservoirs. Although, Ilk method is a good estimator of shale 

gas reserves, the backward method showed more consistency than the Ilk method 

throughout the different scenarios considered.  

4

 In the four scenarios considered, the maximum fractional error recorded were 

1.21 (Conventional decline curve analysis method), 0.30 (Backward method10 years),  

0.34 (Backward method 5 years), 0.51 (Ilk method) and 0.09 (Backward & Ilk method), 

while the minimum fractional error recorded were 0.50 (Conventional decline curve 

analysis method), 0.09 (Backward method10 years), 0.18 (Backward method 5 years),  

0.01 (Ilk method) and 0.01 (Backward & Ilk method). Conventional decline curve 

analysis method had the maximum fractional error in all cases studied. 

Furthermore, the new approach that was proposed, that is, the combination of the 

Backward & Ilk method yielded superior results compared to all other production decline 

analysis methods used in this work. This method was validated using synthetic case 

62 
 



studies for single-layer hydraulically fractured horizontal wells in different well-reservoir 

systems. From the different scenarios considered in this research work, accurate reserves 

and performance forecasts were obtained using the combination of the Backward & Ilk 

method. 

In addition, the proposed method provides a useful tool to estimate reserves and 

forecast future performance from production decline data in shale gas reservoirs. 
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RECOMMENDATION 
 

I would recommend that the combination of the Ilk & Backward method be tried 

with most recent production data as it becomes more accurate in its reserve estimation 

prediction of future performances. 
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NOMENCLATURE 
 
b = the decline exponent 

fDC = Dimensionless fracture conductivity 

DCA = Decline Curve Analysis 

Di = the initial decline rate 

1D = Decline constant at 1 time unit D(t =1 day) 

∞D = Decline constant at “infinite time” D(t = infinite) 

iD  = Decline constant where = /n iD 1D

FGPR = Field Gas Production Rate 
 
GPR = Gas Production Rate 
 
GPT = Gas Production Total or Cumulative Production 
 
kf = proppant pack permeability  
 
k = formation permeability  
 
n = Time exponent 

Np = cumulative production 
 
P = Gas Pressure 

qi = the initial production rate 

iq  = Rate q(t = 0) [this parameter differs from initial rate] 

q(t) = production rate at time t 

w = fracture width  
 
xf = fracture half-length 
 
θ  = Percentage Coverage of the Surface 

λ = Langmuir constant 
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