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Abstract

Three Essays on Data Contaminants, Outliers and Macroeconomic
Time Series

Joseph Michael Palardy

This thesis illustrates the effects of outliers on forecasting and on simulated gen-
eral equilibrium models. The first essay demonstrates that using robust-estimation
techniques may greatly improve long-run autoregressive forecasts if the model to be
estimated is generated from a heavy-tailed distribution. The second essay continues
with a similar theme. It shows that in the context of random contamination mod-
els, automatic autoregressive selection criteria may be severely inaccurate. If the
estimated model is misspecified, forecasting accuracy may be considerably reduced.
Once again, robust-estimation techniques limit the influence of the aberrant data
– in this case from the contaminating distribution. The third essay demonstrates
that calibrations, and thus simulation results, for International Real Business Cy-
cle models can change if aberrant data is accounted for by using robust-estimation
techniques. In the particular case examined in this essay, there is more evidence for
higher levels of persistence in technology than indicated by OLS.



In memory of my adivsor, Jon Vilasuso.
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Chapter 1

Introduction

Outliers are the bane of statisticians. It is not surprising that the body of research

on the effects of outliers and how to handle them is very large. Despite the size of

the literature there are still several avenues that need to be explored. One of those

avenues is forecasting economic time-series. The field of economics has yet to fully

embrace the outlier-robust techniques developed in theoretical statistics. For this

reason, many of the statements and inferences made about economic forecasts could

be incorrect or misleading if outliers have large effects on those forecasts. Another

possible avenue to explore is the effect of outliers on simulated general equilibrium

models. These types of models are sensitive to certain calibration parameters that

might be incorrectly estimated using traditional statistical techniques instead of

more modern outlier-robust techniques. The goal of this thesis is to illustrate the

effects of outliers on forecasting and on simulated general equilibrium models.

The second chapter provides a brief introduction to outliers in time-series. It
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discusses the definitions of outliers and related events such as contamination and

extreme values. Also, this chapter examines the difference between innovation and

additive contaminants. Finally, it discusses typical outlier generating models in-

cluding the widely-used mixture models.

The third chapter contains the first essay which uses heavy-tailed distributions to

generate innovation outliers in time-series data.1 It then evaluates the performance

of alternative estimation techniques in the context of forecasting. Ordinary least

squares (OLS) poorly estimates the constant term in the simulated models. This

is detrimental to long-run forecasting performance because the constant term is

equal to the unconditional mean, to which long-term autoregressive (AR) forecasts

converge. The robust estimation-techniques provide superior forecasts to OLS in all

but the short run.

The fourth chapter, or the second essay, also evaluates forecasting performance

of various estimation techniques. Specifically, it addresses automatic autoregressive

model selection techniques. In addition, this essay looks at both innovation type

contaminants and additive contaminants by using a random-contamination model

for the simulations. The MM-estimator that performed well in the first essay is

used to produce contaminant-robust versions of the automatic selection criteria.

This essay finds that the accuracy of automatic selection criteria is severely affected

by additive contaminants. Innovation contaminants, however, have little effect on

the accuracy of the selection criteria. In addition, this essay finds that the selection

1This essay was originally joint work with advisor, Jon Vilasuso.
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criteria based on the MM-estimator perform better than those based on OLS. The

poor accuracy of the OLS-based selection criteria affects forecasting accuracy. The

mistake of under-selecting the lag order, which occurs in the additive contaminant

case, greatly decreases forecasting accuracy.

The fifth chapter is the third essay. It takes a different approach to evaluating

the influence of outliers on time-series. This time, outliers are studied in the context

of an International Real Business Cycle Model (IRBC). The simulation results of

this type of model are highly dependent on the structure of technological innovations

that drive the theoretical economy. It is typical to model technology by way of a

vector autoregression (VAR) of the Solow residuals. Unfortunately, aberrant data

in the output or labor series that are used to generate the Solow residuals may

lead to incorrect VAR point estimates. This essay shows that a slightly modified

IRBC model with alternative VAR point estimates may generate moments that

are more in line with real economic data. More specifically, an IRBC model that

incorporates decisions-before-shocks and habit-persistence along with low levels of

persistence of technology generates results that are substantially better than those

of the benchmark IRBC. A model with high levels of persistence of technology and

a small elasticity of substitution between foreign and domestic goods also performs

well. Estimating the VAR model via an outlier-robust estimation technique increases

the estimated level of persistence of technological innovations.
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In conclusion, accounting for contaminants and outliers is important in macroe-

conomics. This importance is demonstrated for model selection, forecasting, and

simulated general equilibrium models. Failing to account for contaminants and out-

liers may lead to incorrect model specifications, less accurate forecasts, and incorrect

model calibrations.
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Chapter 2

An Introduction to Outliers,
Contaminants, and Extreme
Values

2.1 What are Outliers, Contaminants, and Ex-

treme Values

Barnett and Lewis (1994) give two basic definitions for outliers. An outlier is 1) an

observation that appears to be inconsistent with the remainder of that set of data;

2) an observation that is both surprising – does not appear to fit the data – and

meets the criteria of a statistical test for being discordant (i.e. being inconsistent

with the rest of the data). An example of the second definition would be labelling

any observation that lies outside of two and a half standard deviations from the

mean as an outlier. The second definition is an operational subset of the first: it is

plausible that an observation that appears to be inconsistent with the data may not

meet a statistical criterion to be called an outlier in the second definition. Unless

otherwise noted, the term outlier will refer to the second definition.1

1The exact criteria used will not necessarily be plus or minus two and a half standard deviations.
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The terms outlier, contaminant, and extreme value may appear to be synony-

mous; however, they are not. Important distinctions need to made between them

as indicated by Barnett and Lewis (1994).

A contaminant is an observation arising from some other distribution. Suppose

F and G are unique density functions. Let F be our ideal distribution from which

our data, x1, ..., xT , is drawn. However, suppose we observe x1, ...y1, ...xT where y1

is from G; then y1 would be a contaminant.

An extreme value is simply one that is near the maximum or minimum of the

sample. Suppose we observe x1, ..., xT and order them as x(1), ..., x(T ). The observa-

tions x(1) and x(T ) are considered extreme values. In practice we can choose some

percentage of the largest and smallest observations to be extreme.

Outliers do not have to be contaminants, nor do contaminants have to be outliers.

Likewise, extreme values do not have to be outliers, although all outliers are extreme

values. It is completely possible to draw numbers from a normal distribution and

have one that seems surprising and meets some test of discordancy test–even though

there is a low probability that this will happen. This aberrant number is labelled

as an outlier even though it is not a contaminant. This occurs more frequently

with heavy-tailed – though not necessarily contaminated – distributions. Also, it is

possible to have small contaminants that fail to meet a test of discordancy. Thus,

there are contaminants that are not outliers. Extreme values also may not meet a

discordancy test so they will not necessarily be labelled outliers. However, an outlier

6



will always be extreme.

When trying to identify outliers, we have to be careful about the assumptions

of the true distributions from which we observe the data. For instance, suppose we

assume our data are generated from a normal distribution when in fact they come

from a distribution with much heavier tails. We are very likely to to find outliers,

but the extreme observations would not be outliers if we assumed the correct dis-

tribution. So heavy-tailed distributions do not inherently generate outliers, but we

may observe outliers if we specify an incorrect underlying distribution, which is not

uncommon in practice. This makes distinguishing between outliers, contaminants,

and extreme values difficult.

2.2 Outliers in the Context of Models

The above definitions are acceptable for unstructured, univariate data, but they need

to be modified in order to describe outliers in the context of structured models. An

outlier is this context in an observation that is surprising and inconsistent with

model. Operationally, outliers in models will be found using the estimated residual

series.

It is also useful to make a distinction between outliers in the dependent variable

and outliers in the independent variable. Outliers in the dependent variable are still

referred to as outliers, but outliers in the independent variable are referred to as

leverage points.
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When glancing at the data, a surprising observation may be consistent with the

model, or a seemingly normal observation may be inconsistent with the model. So

we have to be careful about how we define surprising. In the context of a model we

need to look at how well the observation fits the structure we have assigned. If it

does surprisingly poorly at fitting the model, then we might have a candidate for

an outlier.

We typically measure how well an observation fits a given model by looking at the

estimated residual series. Consider the linear model yt = βxt + εt. If the estimated

εi is extremely large and xi is not a leverage point, then yi could be considered

an outlier. Notice that we did not state that the unobserved εi was the outlier; it

is the actual observation yi. An obvious question is whether the outlier is in the

observation or the unobserved error term. Because we do not observe the true error

terms, we cannot conclude if the true error terms are outliers or not.

Model specification is also important in determining what observations are out-

liers. Suppose we estimate a model that correctly incorporates a large deviation in

a particular observation, yi. This model most likely would not label yi as an outlier,

but a more naive model would.

2.3 Contaminants in Time Series

With time series models, there are correlations between nearby observations. The

observation at time period t is correlated to the observation at time period t + 1,

8



which is in turn correlated to the observation at time period t + 2, etc. Therefore,

it is possible that if there is an outlier at time period t this will follow through to

the observation at period t + 1 by way of the autocorrelation. If this does occur,

it will be referred to as an innovation outlier. (An oil price shock that does not

dissipate immediately could be an example of an innovation outlier.) However, this

does not have to happen. Recall that an outlier is simply an observation that is not

consistent with the rest of the data or model. So an observation that does not follow

the model’s autocorrelation structure can also be considered an outlier. If there is

a “blip” at time period t that does not affect nearby values this is referred to as an

additive outlier. (A short plant strike could be viewed as an additive outlier.)

So, which of these type of outliers is more common? The answer is debatable.

Barnett and Lewis (1994) reference a debate between various outlier statisticians.

Huber (1972) claims that innovation outliers are more common, but Kleiner, Martin,

and Thomson (1979) state that additive outliers are much more common. In the

context of macroeconomic data, Balke and Fomby (1994) finds combinations of both

types of outliers.

For clarity, I will show two alternative, but equivalent, definitions of time series

outliers in the context of autoregressive moving average (ARMA) models.

2.3.1 Standard specification

The following contaminant models are widely used in the literature. Yohai (1986),

and more recently Lucas (1995) both use the following models to illustrate differences

9



between innovation and additive contaminants.

Consider the following ARMA model

φ(L)yt = θ(L)ut (2.1)

where φ(L) and θ(L) are polynomials in L, the lag operator, and ut is white noise.

This is the no-contamination model.

In contrast, with an innovation contaminant wt, which will be zero for most

values of t, we have

φ(L)zt = θ(L)(ut + wt) (2.2)

where zt is the observed series. In terms of the state variable, yt which follows the

ARMA model in equation (2.1), we have

zt = yt +
θ(L)

φ(L)
wt. (2.3)

In further contrast, with an additive contaminant wt, again equalling zero for

most values of t, we have

φ(L)(zt − wt) = θ(L)ut (2.4)

where zt is again the observed series. In terms of the state variable, yt which again

follows the ARMA model in equation (2.1), we have

zt = yt + wt. (2.5)

Notice that according to our definitions in Section 2.1, not all the contaminating

observations will be outliers.

10



2.3.2 Tsay’s specification

For Tsay’s (1988) specification, let yt again follow model (2.1). Now assume that zt

follows the model

zt = f(t) + yt (2.6)

where f(t) is a parametric function representing the contaminating disturbances to

yt. f(t) will be assumed to be of the following form

f(t) = ω0
ω(L)

δ(L)
ξ

(d)
t (2.7)

where ξ
(d)
t = 1 if t = kd for positive integers k and = 0 otherwise. So d represents

the time of an occurrence of a contaminant. The structure of f(t) will demonstrate

what type of outlier we have.

If ω0 = ωI and ω(L)
δ(L)

= θ(L)
φ(L)

, then we have an innovative contaminant. This is

equivalent to equation (2.3).

If ω0 = ωA and ω(L)
δ(L)

= 1, then we have an additive contaminant. This is

equivalent to equation (2.5).

Similar to the standard specification, we see that Tsay also defines contaminants

rather than outliers. However, when he tests for outliers he has set critical values

for the size of the disturbance, ω. Therefore, he conforms to our second definition

of outliers.
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2.3.3 Generating Time Series Outliers

It is useful to describe different ways outliers are generated. These methods are

extremely useful when constructing simulations to evaluate the performance of dif-

ferent estimators subject to contamination or outliers. The following methods are

frequently used in the outlier literature. It should be noted that these are not the

only ways to generate outliers.

Deterministic

It is very easy to just pick a few points and set them equal to extremely large or

small values and thus make them outliers. This can be done for either the additive

or innovation case. This is one of the more common ways to generated outliers in

time series. The size and location of the discordant observations are known with

certainty. Unfortunately, the lack of randomness in the size and location of the

outliers may lead to incomplete results. Tsay (1988) and Yohai (1986) both use this

method to generate outliers for their experiments.

Heavy-Tailed Distributions

If we assume our error terms are from a normal distribution, but in reality our error

terms are from some distribution that exhibits excess kurtosis, such as a Student’s

t or Cauchy distribution, it will appear that we have error terms that are both

extreme and surprising. When heavy-tailed distributions are used to generate data

based on an ARMA model, this will produce innovation outliers.
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Though not specifically referring to outliers, many authors use heavy-tailed dis-

tributions to approximate random variables that exhibit excess kurtosis such as

stock prices or exchange rates.

Random contamination models

Random contamination models are a useful alternative to the deterministic and

heavy-tail methods to construct outliers. The implications of such models for the

study of outliers have been studied by Box and Tiao (1968) and Guttman (1973).

Add values from a separate distribution to the series of unobserved state variable

values at random times for additive contamination. Add values to the error terms at

random times to produce innovation contamination. In both cases, the percentage

of contaminants will be controlled by a parameter.

In the context of the standard model, let wt ∼ λG where G is the contaminating

distribution and λ is a binomial random variable (0,1) with probabilities π = P (λ =

1) = .05 and (1− π) = P (λ = 0) = .95.

In the case of innovation contaminants, this mixture type model is simply a

heavy-tailed distribution. This can be seen by examining the residual series, εt,

that is used to generate the contaminated ARMA model. Consider G = N(0, bσ2)

where b > 1 and εt = ut+wt and σ2 is the variance of ut. ut is the non-contaminated

residual and wt is the contaminant. Therefore

εt ∼ (1− λ)N(0, σ2) + λ[N(0, σ2) + N(0, bσ2)]. (2.8)
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The variance of εt is (1 + bπ)σ2 and the fourth moment of εt is 3[(1− π) ∗ 12 +

π(1+b)2]∗3σ4. Therefore the kurtosis – computed as the ratio of the fourth moment

and the square of the variance – of εt is equal to

3 ∗ 1 + 2bπ + b2π

(1 + bπ)2
(2.9)

which is greater than the kurtosis for a standard normal distribution, 3, because

π < 1.

We can use our knowledge of a normal distribution to get an estimate of how

many residual outliers we would expect in this random contamination model. This

will be done by estimating the residuals of the observed series, zt, using the true

model of the state variable, yt. Note that the actual number of contaminants remains

fixed at π%, but the whether or not the contaminant is an outlier will change between

models.

Consider the simple and conservative discordancy rule declaring any element εt

an outlier if it falls outside 3 standard deviations from the mean. Also, suppose we

know the true mean and variance of the non-contaminated distribution, µ and σ2

respectively. Also let λ be drawn from a binomial distribution with P (λ = 1) = .05

and let b = 9.

For innovation outliers, the estimated residuals are εt = ut +wt where ut and wt

are as defined above. We also know that εt ∼ (1−λ)N(0, σ2)+λ[N(0, σ2)+N(0, 9σ2)]

from equation (2.8). 95% of the residuals are not contaminated and .3% of those will

be outside of plus-or-minus 3σ from µ. 5% of the residuals will be contaminated and
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those points will have a variance of (1 + 9)σ2. Therefore 34.3% of the contaminated

points will be outside of plus-or-minus 3σ from µ. Combining the two sets of outliers

we have .95 ∗ .3% + .05 ∗ 34.3% = 2% of the residuals will be outliers.

Additive outliers are a little trickier. We must now take into account the model

parameters in determining what percentage of the contaminants are outliers. We

will find that higher levels of persistence in the autoregressive terms relative to

the moving average terms generates higher levels of additive outliers. Consider the

additive contamination model (2.4) using the same parameters as in the innovation

case. Rewriting the model, we get

φ(L)

θ(L)
zt = ut +

φ(L)

θ(L)
wt. (2.10)

If we know the parameters with certainty, our estimated residuals, ε, are simply

ε = ut + Ψ(L)wt (2.11)

where Ψ(L) = φ(L)
θ(L)

= 1−ψ1L−ψ2L
2−.... Once again we will use our simple decision

rule that if any element of εi falls outside three of the standard deviations, σ2, from

the mean then it is an outlier. The non-contaminated residuals have a variance of σ2,

while the contaminated residuals have a variance of [(1+ψ2
1 +ψ2

2 + ...)∗9σ2 +σ2]. As

is the case with the innovation outliers, the higher the variance of the contaminating

distribution, the higher the number of contaminants will be outliers. As the square

of the parameters (ψ1, ψ2, ...) increases, so will the variance of the contaminating

part thus increasing the percentage of the estimated residuals that will be termed

outliers. If we have an autoregressive model of order 1 with φ1 = .5 the variance
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of contaminated points increases to 12.25σ2 = (1 + 0.52) ∗ 9σ2 + σ2. In this case,

39% of the contaminated residuals fall outside of plus-or-minus 3σ from the mean.

Therefore, the number of outliers will jump to .95∗ .3%+ .05∗39% = 2.24% because

more of the contaminants create outliers.

Additive outliers also have the problem of becoming leverage points – outliers in

the independent variables – in subsequent periods. For instance if yt is an outlier, yt

also is a right-hand side variable in k periods where k is the AR length of the model.

Therefore, in an autoregressive (AR) model, AR(k), one outlier actually corrupts

infinitely many different data positions.

2.4 Conclusion

This chapter provided a brief introduction to the vast literature on outliers, in par-

ticular, time-series outliers. For a more in-depth description of time-series outliers,

refer to Martin (1979) or to Barnett and Lewis (1994).

The definitions and descriptions of outliers and outlier models presented in this

chapter will be used throughout this thesis. Any alternative definitions or descrip-

tions that are used will be discussed accordingly within each essay.
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Chapter 3

Forecasting Heavy-Tailed
Autoregressive Models

3.1 Introduction

The purpose of this essay is to evaluate the forecasting performance of autoregressive

models estimated by ordinary least squares (OLS) and robust estimation techniques

when the disturbance term is heavy-tailed.1 Autoregressive (AR) models represent

a simple and inexpensive way to forecast time series, and in many cases, the fore-

casting performance of AR models stacks up well against large-scale econometric

models. An AR model is routinely identified using the techniques outlined by Box

and Jenkins (1976), and forecasts are based on a linear model fit to sample data

where parameter estimates are obtained using ordinary OLS. In the case of a heavy-

tailed distribution of the disturbance term, however, OLS parameter estimates may

1In this context, robustness refers to qualitative robustness which is concerned with the behavior
of an estimator when the shape of the underlying distribution deviates from the ideal model (Huber
1977).
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be unduly influenced by unexpected observations, or outliers.2 Consequently, the ac-

curacy of forecasts can be seriously compromised. Robust estimation techniques, in

contrast, are less susceptible to outlying observations, and as a result, offer potential

gains in forecast accuracy.3

It is common in applied work to detect evidence of heavy tails in high-frequency

economic and financial time series such as stock returns (Fama 1965), futures prices

(Hall, Brorsen, and Irwin 1989), and exchange rates (Boothe and Glassman 1987).

In a recent study, Hamilton (1996) reports evidence of heavy tails for interest rates,

citing the existence of “spectacular outliers” in the federal funds rate series. A

histogram of weekly federal funds rate changes for the 1984-1998 period is shown in

Figure 3.1. A normal distribution with matching values for the mean and variance

is included for comparison. The typical characteristics of a heavy-tailed distribution

are evident: a relatively large number of observations are still concentrated around

the mean, but a substantial probability mass is associated with the tails. If we were

to assume that changes in the federal funds rate are normally distributed, then a

100-basis point change would be expected to occur once every 268 years or so. The

normal distribution, however, is a poor description of the data as a 100-basis point

change is not a rare event; over the 14 year sample period, a 100-basis point change

2Outliers from heavy-tailed distributions usually arise from assuming an incorrect distribution,
such as assuming a normal distribution when the data is really from a Cauchy distribution. Obser-
vations that would be expected from a Cauchy distribution appear to be unexpected if a Normal
distribution was assumed. This is in contrast to contamination that is from another distribution.

3Recent studies have explored the effects of outliers on testing for unit roots and cointegration
(Franses and Haldrup 1994; Lucas 1995), non-linearities (Van Dijk et. al. 1999a), and conditional
heteroskedasticity (Van Dijk et. al. 1999b).
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occurs seven times.

A number of heavy-tailed distributions and processes have been advanced in

the literature to account for observed excess kurtosis. Early work by Mandelbrot

(1963) and Fama (1965) stressed heavy-tailed, stable distributions that possess con-

venient statistical properties. These include domains of attraction according to the

generalized central limit theorem, and stability under addition. Alternatives to sta-

ble distributions such as a Students-t distribution with finite variance (Blattberg

and Gonedes 1974) and a mixture of normals (Kon 1984)4 have also been proposed

to capture the salient features of the data. Another heavy-tail model commonly

used in empirical studies is the class of autoregressive conditional heteroscedasticity

(ARCH) models popularized by Engle (1982) and Bollerslev (1987).

Robust estimation techniques are designed to limit the influence of outlying

observations. The class of M-estimators introduced by Huber (1964) selects param-

eter estimates based on minimizing an objective function other than the sum of

squares. That is, robust M-estimators are constructed using functions of the resid-

uals that attach less weight to outlying observations. The S-estimator developed

by Rousseeuw and Yohai (1984) – described in the next section – is even more re-

silient to extreme observations but lacks efficiency should the disturbances actually

follow a normal distribution. To remedy this, the MM-estimator (Yohai 1986) and

τ -estimator (Yohai and Zamar 1988) – both described in the next section – have

4Unlike the other distributions mentioned, the mixture of normals can be thought of as a
contaminated distribution as opposed to simply a heavy-tailed distribution
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more recently been introduced to be both highly efficient when the disturbances

have a normal distribution and highly robust to outlying observations. The influ-

ence of outlying observations for autoregressive moving average (ARMA) models is

studied by Denby and Martin (1979), Martin (1979), and Bustos and Yohai (1986).

In this essay we extend this work and consider robust estimators that do not sac-

rifice efficiency should the actual data follow a normal distribution. We also extent

their work by addressing specific forecasting applications of the robust estimators.

In this paper, we compare the properties of this set of robust estimators and OLS

in a series of Monte Carlo exercises.

The Monte Carlo simulations in this paper consider heavy-tailed distributions

and processes commonly used to model high-frequency time series. Overall, the

Monte Carlo results point to substantial gains associated with robust estimation

methods. In all cases, robust estimation yields more accurate AR parameter es-

timates than OLS. And in the majority of cases, the accuracy of the parameter

estimates is improved by more than 75%. In an effort to gauge whether large gains

are likely to be realized in practice, we evaluated out-of-sample forecasts for federal

funds rate changes. Forecast results suggest that the answer is indeed yes, especially

at long forecast horizons.

The remainder of the paper is organized as follows. The next section provides an

outline of robust estimation, examining both the sensitivity to outlying observations

and efficiency. In Section 3, we present Monte Carlo evidence on the performance of
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OLS and robust estimation for alternative heavy-tailed distributions and processes.

Section 4 applies robust estimation methods and OLS to short-term interest rate

data. The final section concludes and discusses avenues of future research.

3.2 Robust Estimation

Consider a time series xt for t = 1, ..., n generated by an AR process:

Φ(L)(xt − µ) = εt (3.1)

where εt is independently and identically distributed with symmetric density func-

tion f(•) and distribution function F (•), µ is the mean of xt, and Φ(L) is a poly-

nomial in the lag operator L given by Φ(L) = 1 − Φ1L − ... − ΦpL
p with all roots

lying outside the unit circle. Also, define the parameter vector λ = (Φ, µ)′ where

Φ = (Φ1, ...Φp). Our goal is to evaluate estimators of λ in terms of robustness and

efficiency when εt follows a heavy-tailed distribution.

The breakdown point is a convenient measure of robustness. Consider an esti-

mator defined by the functional T. Also, let Pε be an ε-neighborhood of the ideal

model distribution F ∗. The maximum bias of T is then given by

sup
F∈Pε

|T(F )− T(F ∗)| (3.2)

where F is the true underlying distribution. The breakdown point of T at F is

defined as the largest proportion of observations that can be arbitrarily replaced

such that (3.2) is finite (Huber 1977). Note that a high breakdown point – thus
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defined – does not necessarily mean that parameter bias is negligible. Intuitively,

a breakdown point can be thought of as the percentage of bad observations with

which an estimator can “cope.”

At this point it is convenient to specify the continuous real-valued function ρ

having the following properties:

Assumption 1. (i) ρ(0) = 0, (ii) ρ(−u) = ρ(u), (iii) 0 ≤ u ≤ v implies ρ(u) ≤
ρ(v), (iv) letting a = sup ρ(u) such that 0 < a < ∞, if ρ(u) < a and 0 ≤ u < v,
then ρ(u) < ρ(v).

Following the research of Huber (1964), an M-estimator minimizes the objective

function
T∑

t=1

ρ(εt, λ) (3.3)

or equivalently satisfies the (p + 1) system of equations

T∑
t=1

ϕ(εt, λ) = 0 (3.4)

where ϕ(εt, λ) = (∂/∂λ)ρ(εt, λ). Inspection of (3.3) reveals that OLS is an M-

estimator where ρ(u) = u2. When f(•) is Gaussian, the OLS estimate λ corresponds

to the maximum likelihood estimate and is efficient as its covariance matrix attains

the Cramer-Rao lower bound. Researchers have also shown that OLS is consistent if

f(•) is non-Gaussian with finite variance (Mann and Wald 1943) and even if f(•) is

a non-Gaussian stable distribution with infinite variance (Kanter and Steiger 1974).

OLS, however, may be highly inefficient in these cases. Let Φ̂LS and µ̂LS be the OLS

estimates of Φ and µ, respectively. Bustos and Yohai (1986) explain that if Φ̂LS is

non-Gaussian, then the covariance matrix of
√

T (Φ̂LS − Φ) is independent of f(•),
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but the variance of
√

T (µ̂LS −µ) can be significantly inflated if f(•) has heavy tails

because it depends on Ef (ε
2).

Because OLS is sensitive to outlying observations which can be reasonably ex-

pected to occur if f(•) is heavy-tailed, robust M-estimators have been advanced in

the literature. Unlike the case for OLS, however, a solution for (3.4) is not generally

invariant with respect to scale,5 sn, implying that εt must be standardized. Huber

(1964) proposed the minimax M-estimator:

ρH(ut) =





u2
t /2 |ut| < kH

kH |ut| − k2
H/2 |ut| ≥ kH

(3.5)

and

ϕH(ut) = min(kH ,max(ut,−kH)) (3.6)

where ut = εt/sn is the standardized residual and kH is a “tuning” constant where

0 < kH < ∞. Huber’s M-estimator corresponds to the maximum likelihood estima-

tor for the least favorable distribution in the minimax sense (Hampel et. al. 1986).

Note that if kH = ∞, then Huber’s estimator reduces to the OLS estimator. In

the empirical work to follow we set kH = 1.654 and use sn = 1.483 ∗median{|ut −

median(ut)|} which is a robust estimate of scale.6 Another popular M-estimator is

5The term scale refers to a general measure of variation in data.
6The tuning constants,kH and kB are chosen such that the M-estimator based on the least fa-

vorable distribution in the minimax sense is efficient. See Hampel et. al. 1986 for more information
on how to choose tuning constants.
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based on the bisquare function

ρB(ut) =





u2
t /2− u4

t /2 + u6
t /6 |ut| < kB

1/6 |ut| ≥ kB

(3.7)

and

ϕB(ut) =





ut(1− u2
t )

2 |ut| < kB

0 |ut| ≥ kB

. (3.8)

For this specification, we use kB = 4.685 and sn as defined above. One advantage

of the bisquare function is that it has higher efficiencies than Huber’s formulation

should f(•) be “extremely heavy-tailed” (Martin 1979).

Huber (1977) proves that estimates from an M-estimator are asymptotically

normally distributed with mean zero and variance

∫
IF (x; F, T)2dF (x) (3.9)

where IF is the influence function. The IF describes the effect of adding an addi-

tional observation x on T, given the distribution F . Denby and Martin (1979) show

in a Monte Carlo study that M-estimators perform well in terms of efficiency, but

estimates of λ can be seriously biased.

Our interest focuses on innovation outliers that satisfy the AR model given by

(3.1). Additive outliers, in contrast, do not follow the underlying model (see Chapter

2 for a comparison between innovation and additive outliers). While innovation out-

liers may not seriously compromise the performance of robust M-estimators, addi-

tive outliers may seriously compromise that performance. In fact, an M-estimator’s
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breakdown point is no better than 1/T in the case of additive outliers. In practice,

one may not be able to discern which type of outlier is in fact present, although

some guidance is offered by Martin (1979). Consequently, we take a conservative

approach and explore the use of high breakdown point estimators.

Rousseeuw and Yohai (1984) introduce the high breakdown point S-estimator

based on minimizing a scale estimate. The S-estimator is defined as the solution to

minimize s (ε1(λ), ..., εT (λ)) (3.10)

subject to

1

T

T∑
t=1

ρ(εt/s(•)) = K (3.11)

and ρ satisfies Assumption 1. The constant K is set equal to EΘ[ρ(u)] where Θ

denotes the standard normal distribution. The estimate sn(•) is just an M-estimator

of the scale parameter. The function ρ associated with the S-estimator is given

by (3.7), and Rousseeuw and Yohai (1984) show that the S-estimator has a 50%

breakdown point for ks = 1.547 and K = 0.1995.

S-estimators are asymptotically normal and have the usual convergence rate of

T− 1
2 . Rousseeuw and Yohai (1984) also compute the asymptotic efficiency for the

Gaussian model. For a 50% breakdown point, asymptotic efficiency is only 28.7%.

Efficiency can be improved by choosing a larger value of ks, but at the cost of

reducing the breakdown point.

The MM-estimator introduced by Yohai (1986) achieves both a high breakdown
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point and high efficiency if the errors conform to a normal distribution. The MM-

estimator is defined in three steps. In the first step, a high breakdown point esti-

mator is used to compute an initial estimate of λ. Yohai explains that in the first

step the estimator does not have to be efficient. In the second step, an M-estimate

of scale is computed from the residuals obtained in the first step. That is, for some

function ρ0 that fulfills Assumption 1, a scale estimate s (ε1(λ), ..., εT (λ)) is obtained

that satisfies

1

T

T∑
t=1

ρ0(εt/s(•)) = b (3.12)

where b = EΘ[ρ(u)]. In the final step, the MM-estimates are the solution to (3.3)

for some function ρ1 that satisfies Assumption 1 – essentially another M estimate

using the scale estimate from the first step.

Yohai (1986) suggests choosing ρ0 and ρ1 as described in (3.7) for tuning con-

stants k0 and k1, respectively. In the empirical work to follow, we set k0 = 1.56,

b = 0.0833 and k1 = 4.68 which corresponds to 95% efficiency for normally dis-

tributed errors.

The last robust estimator we consider is the τ -estimator developed by Yohai and

Zamar (1988). Like the MM-estimator, the τ -estimator has a high breakdown point

and is highly efficient in the case of Gaussian errors. For functions ρ0 and ρ1 that

satisfy Assumption 1 and where sn is an M-estimate of scale as shown in (3.12), the

τ scale is

τ 2(εt) = s2
n(εt)

1

T

T∑
t=1

ρ1

(
εt

sn(εt)

)
. (3.13)
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The τ -estimator of λ is then found from minλ τn[ε(λ)]. In the work to follow, ρ0 and

ρ1 are given by (3.7) and k0 = 1.56 (b = 0.203 in expression (3.12)) and k1 = 6.08,

which achieves 95% efficiency.

3.3 Monte Carlo Simulations

The performances of M, S, MM, τ , and OLS are examined via Monte Carlo simu-

lations. The simulations focus on an AR(1) Xt = Φ0 + Φ1Xt−1 + εt process where

Φ0 = µ(1 − Φ1) with four heavy-tailed7 descriptions of the disturbance term, εt

(as indicated in the introduction, each of these distributions have been advanced to

account for excess kurtosis):

i A Student’s-t distribution with three degrees of freedom

ii A mixture of normals where a draw is from N(0,1) with probability p = 0.85 or

is from N(0,8.5) with probability (1− p)8

iii An ARCH process such that εt = ut[1− 0.5εt−1]
1
2 and ut ∼ N(0, 1)

iv A mean-zero, symmetric, infinite variance sum-stable distribution with charac-

teristic exponent α = 1.24 (see McCulloch 1998).

Random draws are conducted using the methods outlined in McCulloch (1998).

Two parameterizations of the AR(1) model are considered: a moderate persis-

tence model that has Φ0 = 2.0 and Φ1 = 0.5, denoted model 1, and a high persistence

7The focus of this simulation in on innovation outliers rather than additive outliers.
8This distribution has a variance of 1.46 and and a kurtosis of 7.76 which are similar to those

of stock returns examined in Kon (1989).
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model that has Φ0 = 2.0 and Φ1 = 0.9, denoted model 2. The simulation exercises

use 1,000 replications for each of the sample sizes n = 250, 500.

The performance of the estimators is judged in terms of the absolute value of the

average percent bias for each simulation exercise. For example, suppose that Φ̂i is

the average estimated value of parameter Φi for the 1,000 simulations. The absolute

value of the average percent bias is then given by 100
∣∣∣ Φ̂i−Φi

Φi

∣∣∣. We also tabulate the

interquartile range in an effort to measure the dispersion of the estimated parameter.

Table 3.1 reports results for sample size n = 250. Beginning with Model 1

shown in the top panel, robust estimation yields a more accurate estimate of the

AR parameters compared to OLS. The sensitivity of OLS parameter estimates to

outlying observations is evident, and is most apparent for the infinite variance sum-

stable model as this model possesses the “thickest tails.” One notable finding shown

in Table 3.1 is that outlying observations exert more influence on the OLS estimate

of the intercept. This is consistent with the work of Bustos and Yohai (1986)

which suggests that outliers have more influence on µ than Φ1. Overall, substantial

improvement in the accuracy of AR parameter estimates can be achieved if a robust

estimator is used, and, in the majority of cases, the extent of parameter bias is

reduced by more than 75% compared to OLS.

Results for Model 2 are summarized in the bottom panel of Table 3.1. The dif-

ference in this case concerns the degree of persistence exhibited by the time series

(as measured by Φ1). Results suggest that persistence affects the performance of
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OLS parameter estimates, particularly the intercept term. In the sum-stable model,

for example, the percent parameter bias is at least 15 times greater for OLS com-

pared to robust estimation. In forecasting applications, the influence of persistence

is likely to be greater when the forecast horizon is longer, as forecasts tend towards

the unconditional mean (µ).

Estimates of the interquartile range, shown in parentheses, also point to the su-

periority of robust estimation. With the exception of a few cases, robust estimators

are associated with narrower interquartile ranges compared to OLS for both Φ0 and

Φ1. The exception is the S-estimator, that likely traces to the selection of the tun-

ing constant as it is set to place greater weight on the breakdown point than on

efficiency.

Results shown in Table 3.1 find that the robust estimators all perform well. This

is likely due to focusing exclusively on innovation outliers. In the case of additive

outliers, high breakdown point estimators that do not sacrifice efficiency should

outperform other robust estimators. Recent work by Lucas (1995) suggests that at

least in the case of the Nelson-Plosser data, outliers are more likely to be of the

innovation variety. In any event, a conservative estimation strategy is to use either

the MM-estimator or the τ -estimator as one may be unable to differentiate between

innovation and additive outliers in practice.

As the sample size increases to n = 500, the extent of parameter bias decreases

for the majority of cases as shown in Table 3.2. Overall, robust estimation results
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in more precise estimation of the parameters, and again a 75% reduction in bias

is achieved relative to OLS in the majority of cases. Consistent with the smaller

sample size results, robust estimators are also associated with narrower interquartile

range values. In sum, robust estimation appears to afford good protection against

innovation outliers.

3.3.1 Relation to Forecasts

To see why an unbiased estimate of the constant term9 is important for forecasting,

consider forecasting the following AR(1) model

xt+1 = Φ0 + Φ1xt + εt (3.14)

with

x̂t+1 = Φ̂0 + Φ̂1xt (3.15)

where Φ̂1 is unbiased, but Φ̂0 is biased such that |Φ̂0 − Φ0| = B.

The one-period-ahead mean squared forecasting error is

E[(xt+1 − x̂t+1)
2] = B2 + σ2 (3.16)

where σ2 is the variance of ε. Maintaining the same parameter estimates and iter-

ating forward in time, the k-period-ahead mean squared forecasting error is

E[(xt+k−x̂t+k)
2] = (1+Φ̂1+Φ̂2

1+...+Φ̂k−1
1 )2B2+(1+Φ̂2

1+Φ̂4
1+...+Φ̂

2(k−1
1 )). (3.17)

Notice that the bias in the constant term accumulates as the forecast horizon, k,

increases. The problem is more severe when Φ1 is large.

9Because OLS does well at estimating the slope terms, our focus will be on the constant term.
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3.4 Interest Rate Forecasts

In this section we evaluate out-of-sample forecasts of the weekly federal funds rate

using OLS and robust estimation. Data were obtained from the St. Louis Federal

Reserve data files. The sample runs from March 7, 1984 to December 30, 1998 (early

dates were not included to avoid a possible level shift with a Federal Reserve regime

change.) Autoregressive models are fit to the March 7, 1984 to December 26, 1996

period which leaves two years of data in which to evaluate forecasts.

There are numerous extreme movements in the daily federal funds rate over

this period. Hamilton (1996) argues that such outliers should not be discarded as

these observations contain useful information. Regressing the federal funds rate on

a constant and dummies for two extreme observations yields an R2 of .40.

In empirical work we model federal funds rate changes because, consistent with

numerous studies, we are unable to reject an I(1) null hypothesis for the federal

fund rate (see Tables 3.3 and 3.4). Also, an AR(3) model is selected based on

the Bayesian Information Criterion computed in the OLS framework.10 Parameter

estimates are shown in Table 3.5 along with standard errors in parentheses. OLS

parameter estimates find substantial persistence as the sum of the AR coefficients is

-0.65. This degree of persistence, however, is not shared by the robust estimators as

the sum of the coefficients ranges from -0.32 to -0.47. As is apparent in the Monte

10The work of Basci and Zaman (1998) as well as the results from chapter 4 indicate that the
BIC performs well in the event that there are only innovation outliers, which is the focus of this
paper.
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Carlo simulations, the robust methods offer very different estimates of the intercept

term compared to OLS.

Next, we compute out-of-sample interest rate forecasts. The first forecast is

based on estimating an AR(3) model up through date t0 (December 26, 1996) and

computing a dynamic forecast until date t0 + k where k is the forecast horizon

(k > 1). This forecast, generated using method i, is denoted X̂ i
t0+k, and the resultant

forecast error is given by ui
t0+k = X̂ i

t0+k − Xt0+k. The second forecast is based on

estimating the AR(3) up through date t0 + 1, and computing and computing a

dynamic forecast until date t0 + k +1. The process continues until date T − (t0 + k)

which yields a sequence of Nk = T − (t0 + k) + 1 forecasts and forecast errors.

Forecast accuracy is assessed using a mean square error (MSE) criterion. Because

we are primarily interested in determining how forecasts based on robust estimation

compare to OLS, we compute the ratio of the MSE associated with robust estimation

to the OLS MSE.11 If this ratio is less than one, then forecasts based on robust

estimation are more accurate. If this ratio is greater than one, then forecasts based

on robust estimation are less accurate.

We use the test developed by Diebold and Mariano (1995) to determine whether

the ratio of MSEs is statistically different from one. For each horizon k, the mean

11It is known that a linear projection of Yt+1 on Xt produces the smallest mean squared fore-
casting error for the class of linear forecasts. Under ideal conditions, OLS provides a consistent
estimate of the linear projection. However, under heavy-tailed distributions OLS gives an inaccu-
rate estimate of the true parameter values (as seen in Table 2), and thus is a inaccurate estimate of
the linear projection. Therefore robust estimation techniques that are more accurate may provide
superior estimates of the linear projection, and thus a lower mean squared forecasting error.
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forecast error difference is given by

d̄ = N−1
k

T∑

t=t0+k

[(ui
t)

2 − (uLS
t )2] (3.18)

for robust method i where uLS
t is the forecast error associated with OLS. The Diebold

and Mariano test statistic

DM =
d̄√

2φf̂d(0)
Nk

(3.19)

is asymptotically distributed as a standard normal under the null hypothesis that

there is no difference in forecast accuracy. The term f̂d(0) refers to the spectral

density function of the forecast error difference evaluated at the zero frequency.

One complication is that for k > 1, the forecast errors exhibit (k− 1)th order serial

correlation. As a result, we use the Newey and West (1987) covariance estimator

with the bandwidth parameter set k− 1 to construct a consistent estimate of fd(0).

The performance of out-of-sample forecasts is summarized in Table 3.6. Ta-

ble entries correspond to robust MSE values relative to OLS. The associated DM

statistic is shown in parentheses. For one-period ahead forecasts, there is no signifi-

cant difference in forecast accuracy. But as the forecast horizon increases, forecasts

based on robust estimation are superior to OLS forecasts. At a 16-week horizon,

improvements in MSE range from 31.8% (=1-0.682) for Huber’s minimax estimator

to 64.61% (=1-0.354) for the τ -estimator. Substantial improvements in forecast ac-

curacy are also apparent at the 26-week forecast horizon. The gains are most likely

due to superior estimates of the constant term. As shown in section 3.3, errors in

the constant term accumulate as the forecasting horizon increases. Overall, forecast
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accuracy using AR models can be improved by using robust estimation, particularly

for long forecast horizons.

3.5 Conclusion

This essay demonstrates that substantial gains in forecast accuracy can be achieved

by employing robust estimation when the regression error in an AR model follows

a heavy-tailed distribution. By limiting the influence of outlying observations on

the parameter estimates, robust estimation methods are able to offer more precise

parameter estimates compared to OLS.

A secondary message of this essay is that the problems resulting from the pres-

ence of outlying observations should not be ignored as many economic and financial

time series display excessive kurtosis compared to the normal distribution. It is

suggested that any temptation to simply remove an outlier from the sample and

proceed with OLS estimation should also be avoided. However, an exact compar-

ison of the two techniques is for future research. Outliers may contain important

information and consequently should not be discarded. This is primarily why robust

estimation techniques can be so useful. They limit the influence of outliers, but they

do not remove it entirely. Therefore, parameter estimates can be improved but not

by completely removing important information. This point is stressed by Hamilton

(1996) for the case of the federal funds rate.

The results of this essay can be applied or extended in a number of ways. For
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example, robust estimation may offer insight as to whether the forward exchange

rate predicts future spot rates or whether the term structure of interest rates predicts

future short-term rates, as evidence of heavy tails is typically reported. One possible

extension involves moving beyond linear models. For instance, Resnick (1998) argues

that linear models are in many cases unable to adequately capture the dependency

structure of heavy-tailed data, and nonlinear models such as the bilinear model

represent viable candidates.
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Figure 3.1: Histogram of Federal Fund Rate Changes, 1984-1998
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Figure 1. Histogram of federal funds rate changes, 1984-1998.
The bars in this graph are the Federal Fund Rate Changes. The line is a normal distribution with
mean and variance equal to that of the Federal Fund Rate Changes
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Table 3.1: Percent Bias of Estimated Autoregressive Parameters, n=250
Percent bias of Φ0 Percent bias of Φ1

DGP OLS Huber Ψ Bisquare Ψ S MM τ OLS Huber Ψ Bisquare Ψ S MM τ

Model 1: xt − 2− .5xt−1 = εt

Student-t 1.8 0.78 0.61 0.66 0.01 0.3 1.73 0.98 0.19 0.37 0.46 0.31
(0.31) (0.26) (0.22) (0.30) (0.23) (0.22) (0.07) (0.05) (0.05) (0.07) (0.05) (0.05)

Mixture 2.45 0.45 0.19 0.07 0.08 0.20 1.96 0.41 0.04 0.1 0.05 0.14
(0.40) (0.17) (0.15) (0.13) (0.14) (0.18) (0.07) (0.04) (0.04) (0.03) (0.03) (0.03)

ARCH 3.45 1.54 0.93 0.26 1.05 0.91 3.43 1.7 1.8 1.03 1.72 1.05
(0.47) (0.43) (0.47) (0.61) (0.43) (0.48) (0.11) (0.09) (0.11) (0.16) (0.09) (0.10)

S(=1.25) 6.53 0.35 0.27 0.18 0.46 0.81 1.57 0.24 0.2 0.13 0.21 0.09
(0.81) (0.18) (0.17) (0.34) (0.16) (0.16) (0.04) (0.02) (0.02) (0.02) (0.02) (0.02)

Model 2: xt − 2− .9xt−1 = εt

Student-t 10.27 1.86 4.64 1.94 1.15 1.35 1.24 0.06 0.47 0.22 0.2 0.21
(0.68) (0.41) (0.41) (0.59) (0.31) (0.35) (0.04) (0.02) (0.02) (0.03) (0.02) (0.02)

Mixture 12.1 1.21 1.32 0.4 0.36 1.59 1.45 0.12 0.14 0.28 0.1 0.12
(0.77) (0.29) (0.24) (0.34) (0.23) (0.26) (0.04) (0.02) (0.02) (0.02) (0.02) (0.02)

ARCH 12.67 1.5 1.33 0.44 1.23 0.82 1.44 0.23 1.03 0.2 0.33 0.15
(0.72) (0.58) (0.57) (0.91) (0.53) (-0.6) (0.04) (0.03) (0.03) (0.05) (0.03) (0.03)

S(=1.25) 14.77 0.56 0.75 0.36 0.2 0.88 1.31 0.1 0.63 0.04 0.07 0.43
(1.01) (0.24) (0.24) (0.49) (0.29) (0.22) (0.03) (0.02) (0.02) (0.03) (0.01) (0.01)

Notes: Table entries correspond to the absolute value of the percentage bias of estimated AR(1) coefficients and are based on 1,000 replications
of sample size n=250. Numbers in parentheses are interquartile ranges of the parameter estimates. DGP refers to the data generating process
of for Models 1 and 2. The column headings refer to the estimation method: OLS is ordinary least squares, Huber Ψ is Huber’s (1964)
M-estimator, Bisquare Ψ is an M-estimator that uses a bisquare function, S is the S-Estimator of Rousseeuw and Yohai (1984) , MM is
MM-Estimator of Yohai (1986), and τ is the τ -Estimator of Yohai and Zamar (1988).



Table 3.2: Percent Bias of Estimated Autoregressive Parameters, n=500

Percent bias of Φ0 Percent bias of Φ1

DGP OLS Huber Ψ Bisquare Ψ S MM τ OLS Huber Ψ Bisquare Ψ S MM τ

Model 1: xt − 2− .5xt−1 = εt

Student-t 1.1 0.13 0.65 0.39 0.39 0.03 1.12 0.25 0.10 0.08 0.53 0.29
(0.22) (0.20) (0.17) (0.20) (0.17) (0.17) (0.05) (0.03) (0.04) (0.03) (0.04) (0.04)

Mixture 1.2 0.42 0.02 0.02 0.20 0.24 1.06 0.45 0.06 0.27 0.07 0.11
(0.30) (0.13) (0.10) (0.14) (0.11) (0.09) (0.05) (0.02) (0.02) (0.02) (0.01) (0.02)

ARCH 1.40 0.82 0.55 0.43 0.50 1.39 1.22 0.99 0.80 0.97 0.79 1.87
(0.34) (0.31) (0.30) (0.56) (0.29) (0.32) (0.07) (0.07) (0.07) (0.14) (0.06) (0.08)

S(=1.25) 6.12 0.09 0.36 0.03 0.38 0.06 1.37 0.04 0.66 0.01 0.04 0.15
(0.69) (0.13) (0.13) (0.13) (0.12) (0.12) (0.03) (0.02) (0.02) (0.02) (0.01) (0.01)

Model 2: xt − 2− .9xt−1 = εt

Student-t 5.58 1.33 2.00 1.38 1.41 0.61 0.64 0.02 0.22 0.16 0.15 0.03
(0.48) (0.37) (0.34) (0.49) (0.33) (0.34) (0.03) (0.02) (0.02) (0.02) (0.02) (0.02)

Mixture 5.57 0.50 1.15 0.91 0.51 1.05 0.63 0.08 0.1 0.10 0.01 0.09
(0.55) (0.22) (0.19) (0.27) (0.20) (0.19) (0.03) (0.02) (0.02) (0.02) (0.01) (0.01)

ARCH 6.64 1.92 1.43 0.69 1.28 1.16 0.74 0.24 0.03 0.05 0.19 0.17
(0.55) (0.51) (0.46) (0.71) (0.44) (0.47) (0.03) (0.02) (0.02) (0.04) (0.02) (0.02)

S(=1.25) 11.72 0.47 0.40 0.78 0.28 0.5 0.76 0.08 0.02 0.04 0.03 0.01
(0.87) (0.17) (0.16) (0.15) (0.17) (0.16) (0.02) (0.01) (0.01) (0.01) (0.01) (0.01)

Notes: Table entries correspond to the absolute value of the percentage bias of estimated AR(1) coefficients and are based on 1,000 replications
of sample size n=500. Numbers in parentheses are interquartile ranges of the parameter estimates. DGP refers to the data generating process
of for Models 1 and 2. The column headings refer to the estimation method: OLS is ordinary least squares, Huber Ψ is Huber’s (1964)
M-estimator, Bisquare Ψ is an M-estimator that uses a bisquare function, S is the S-Estimator of Rousseeuw and Yohai (1984) , MM is
MM-Estimator of Yohai (1986), and τ is the τ -Estimator of Yohai and Zamar (1988).



Table 3.3: Federal Funds Rate Unit Root Test

Estimated autoregression using OLS

frt = 0.05161
(0.02993)

+ 0.9907
(0.004521)

frt−1

Dicky-Fuller Statistic t-test

(ρ̂− 1)/σ = (0.9907− 1)/0.004521 = −2.05

5% Critical Value for Dicky-Fuller t-test

−3.51

Therefore the null of a unit root cannot be rejected.

Notes: fr refers to level of the federal funds rate. Parameter estimates are based on the sample
March 1984 - December 1998.

Table 3.4: Robust Federal Funds Rate Unit Root Test

Estimated autoregression using MM-estimator

frt = 0.043645
(0.02000)

+ 0.9971
(0.003021)

frt−1

Dicky-Fuller Statistic t-test

(ρ̂− 1)/σ = (0.9971− 1)/0.003021 = −0.9732

5% Critical Value for Dicky-Fuller t-test

−3.51

Therefore the null of a unit root cannot be rejected.

Notes: fr refers to level of the federal funds rate. Parameter estimates are based on the sample
March 1984 - December 1998. Standard errors are computed according to Yohai (1986). Under
assumption of no contamination, the critical values for the MM-based Dicky-Fuller test are nearly
identical to those of the OLS-based Dicky-Fuller test when the number of observations is greater
than 400 (Lucas 1995).
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Table 3.5: AR(3) Parameter Estimates for Federal Funds Rate Changes
Parameter OLS Huber Ψ Bisquare Ψ S MM τ

Φ0 -1.05 -0.77 -0.38 0.50 -0.41 -0.40
(0.96) (0.64) (0.61) (0.76) (0.61) (0.58)

Φ1 -0.33 -0.33 -0.30 -0.34 -0.3 -0.30
(0.04) (0.06) (0.05) (0.06) (0.05) (0.05)

Φ2 -0.12 -0.02 0.01 0.00 0.02 0.02
(0.04) (0.05) (0.00) (0.04) (0.03) (0.03)

Φ3 -0.20 -0.12 -0.09 -0.06 -0.09 -0.09
(0.04) (0.03) (0.02) (0.03) (0.03) (0.02)

sn 24.77 14.11 14.10 13.98 14.30 14.10
Notes: Parameter estimates are based on the sample March 1984 - December 1996. The column
headings refer to the estimation method: OLS is ordinary least squares, Huber Ψ is Huber’s (1964)
M-estimator, Bisquare Ψ is an M-estimator that uses a bisquare function, S is the S-Estimator of
Rousseeuw and Yohai (1984), MM is MM-Estimator of Yohai (1986), and τ is the τ -Estimator of
Yohai and Zamar (1988). Standard errors are in parentheses.
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Table 3.6: AR(3) Out-of-sample Federal Funds Rate Changes Forecast Summary
Forecast
Horizon Huber Ψ/LS BisquareΨ/LS S/LS MM/LS /LS

1 1.149 1.059 1.07 1.074 1.034
(1.67) (0.62) (0.62) (0.78) (0.37)

4 0.846 0.579* 0.401* 0.594* 0.565*
(1.81) (4.85) (4.29) (4.80) (4.86)

16 0.682* 0.358* 0.451* 0.364* 0.354*
(3.25) (8.41) (4.32) (8.42) (8.48)

26 0.668* 0.320* 0.493* 0.326* 0.316*
(4.04) (8.03) (4.36) (7.99) (8.09)

Notes: Table entries are the ratio of out-of-sample mean squared forecast errors of robust estimation
to ordinary least squares estimation (LS) for the forecasting period January 1997 - December
1998. Robust estimation methods are: Huber Ψ is Huber’s (1964) M-estimator, Bisquare Ψ is an
M-estimator that uses a bisquare Ψ function, S is S-Estimator of Rousseeuw and Yohai (1984) ,
MM is MM-Estimator of Yohai (1986), and τ is the τ -Estimator of Yohai and Zamar (1988). The
absolute value of the Diebold and Mariano (1995) statistic is in parentheses. These statistics use
a Bartlett kernel with a bandwidth parameter of (k − 1) to estimate the spectral density function
at the zero frequency. An asterisks indicates statistical significance at the 1-percent level.
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Chapter 4

Autoregressive Lag Selection
Criteria and Random
Contamination Models

4.1 Introduction

Autoregressive (AR) models provide a simple and inexpensive way to forecast time

series, and in many cases, the forecasting performance of AR models stacks up well

against that of large-scale econometric models. One caveat of using AR models is

the need to accurately identify their true lag order. A common approach is to use

automatic model selection criteria such as the Akaike Information Criterion (AIC)

or the Schwarz Bayesian Information Criterion (BIC). These criteria typically find

the minimum of a combination of a goodness-of-fit measure and a model complexity

measure. A higher-order lag structure naturally provides a better fit for the data,

but comes at the cost of increased complexity. Unfortunately, the goodness-of-fit

measure may be unduly influenced by aberrant data such as innovative or additive

outliers. Innovative outliers are simply aberrations in the error terms of the model;
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an AR model generated from a heavy-tailed distribution would display innovative

outliers. Additive outliers, on the other hand, are one-time aberrations that have no

inter-temporal effects1. A clerical error is the classic example of an additive outlier.

While there has been considerable work done examining different methods of

choosing AR length, there has been little work done on the effects of outliers on

those methods. Basci and Zaman (1998) establish that excess kurtosis, which can

be interpreted as non-contamination-based innovation outliers, affects various model

selection criteria but only marginally. Le, Raftery, and Martin (1996) argue that

additive outliers create downward bias in automatic selection criteria. For instance,

they find that under heavy contamination, the BIC selects an AR(0) model instead

of the true AR(1) model the majority of the time.

These articles do not include a sensitivity analysis to parameter size and AR

length of the true models. In addition, they do not address specific applications

to explain the importance of correct AR selection. The goal of this paper is to fill

these gaps in the literature by providing both a limited sensitivity analysis to AR

parameter size and AR lag length and an application for forecasting contaminated

time series. In addition, this essay will also investigate how outlier-robust parameter

and scale estimates can limit any bias in the selection criteria.

Through the use of Monte Carlo simulations, this essay shows that innovative

1Martin(1979) also classifies outliers that follow some autoregressive moving average ARMA
process other than the model’s to be additive outliers. Tsay (1988) more properly labels these
events as transitory or temporary level shifts rather than additive outliers. In the context of this
paper, additive outliers do not include these transitory or temporary level shifts.

43



contaminants2 have only a small effect on automatic selection criteria. The effects

of additive contaminants are more complex. Additive contaminants do bias the

selection criteria, but the degree and direction of that bias depends on the size

of the outliers and on the true AR coefficients. In general, those criteria that are

affected to a greater degree do worse in forecasting. Robust versions of the automatic

selection criteria based on the contaminant-robust MM-estimator (Yohai 1986) are

more accurate than their ordinary least squares (OLS) counterparts. However, they

still suffer some bias from additive contaminants.

The remainder of the essay will be presented in the following manner. Section 2

gives descriptions and models of additive and innovation type contaminants. Section

3 introduces the automatic selection criteria that will be used. The effects of con-

tamination on the selection criteria are examined in Section 4. Section 5 introduces

outlier-robust versions on the selection criteria from Section 3. The simulation setup

occurs in Section 6. The simulation results are contained in Section 7. In Section

8, an example using oil prices illustrates the main results of the essay. Section 9

includes conclusions and areas for future research.

4.2 Innovation vs. Additive Contaminants

The essential difference between innovation and additive contaminants is their be-

havior over time. For clarity, consider Lucas’s (1995) innovation and additive models

2The term contaminant is used here instead of outlier because the data generating process
used in the simulations produces contaminants that do not necessarily have to be outliers. The
distinction between the two will be discussed in Section 4.2
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for an AR process. First, consider the innovation case. Let

Φ(L)(xt − µ) = υt (4.1)

where υt = εt + wt. εt is independently and identically distributed with symmetric

density function f(•) and distribution function F (•), µ is the mean of xt, and Φ(L)

is a polynomial in the lag operator L given by Φ(L) = 1−Φ1L− ...−ΦpL
p with all

roots lying outside the unit circle. Finally, wt is the contaminating variable that is

0 for most values of t. Notice that the contaminant in this case is only applied to

the error term. Therefore, a contaminant, wt, at time t will still have some effect

on the series, xt at time t+1 and beyond depending on the AR parameters.

The additive case is as follows: let

Φ(L)(xt − µ− wt) = εt (4.2)

where εt is independently and identically distributed with symmetric density func-

tion f(•) and distribution function F (•), µ is the mean of xt, and Φ(L) is a poly-

nomial in the lag operator L given by Φ(L) = 1 − Φ1L − ... − ΦpL
p with all roots

lying outside the unit circle. Finally, wt is the contaminating variable that is 0 for

most values of t. With this model, the outlier wt is applied to the series itself only

at one specific time. So a contaminant at time t only affects the observed series at

time t.

If wt = 0 ∀t, then the two models are identical and equivalent to a standard

AR model. In the simulations that follow, wt will be drawn from a high-variance

normal distribution a small percentage of the time and will be zero everywhere else.
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Not all values of xt that have a concurrent contaminant, wt, have to be outliers.

They are only outliers if wt is large enough to force xt to fail some model discordancy

test.3 It would be simple to define any wt equal to a ridiculously large or small

number to guarantee discordancy for any associated xt. But in the context of

this paper, this is not done. There will exist contaminants that do not force their

associated observations to be outliers. Therefore, the model used in the following

simulations is more properly labelled as a random-contamination model as opposed

to an outlier model. Subsequently, I will use the terms innovation contamination

and additive contamination as opposed to innovation outliers and additive outliers

in the simulation section. However, the term outlier will still be used when referring

to previous literature.

The two outlier types have very different effects on time series statistics and it is

important to distinguish between them. Outliers of both types create inefficiencies,

but additive outliers also create parameter bias.

In the outlier literature, several methods have been proposed to distinguish ad-

ditive and innovative outliers. Martin and Zeh (1977) proposed a method that ex-

amines the differences between M and generalized M (GM) estimators. Tsay (1989)

and subsequent work by Chen and Liu (1993) and Balke (1993) have proposed the

use of an iterative framework in which they test which type of outlier model fits the

data better. Unfortunately, the majority of these identification techniques require

3A simple example of a model discordancy test is to reject the null hypothesis of the model
fitting the data if the estimated residual falls outside 2.5 standard deviations from the mean.
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a prior model specification. Naturally, if the selection criteria are themselves biased

under outliers, these techniques may yield inaccurate results.

4.3 Model Selection Criteria

This essay examines four commonly used automatic selection criteria: the AIC, the

BIC, the Hannan-Quinn Criterion HQC, and the sequential F test.

Consider the following time series AR(p) process:

Φ(L)(xt − µ) = εt (4.3)

with all variables as described in section 2. The goal of any of the selection criteria

is to determine p, the true degree of the polynomial Φ(L). They will do so by

searching over a space of possible lag-orders and finding the one that bests fits their

criterion.

A useful way to look at selection criteria is to see that selection criteria attempt

to

max
m

P (xt|AR(m)), (4.4)

which is the probability of getting the data given a specified AR model. In general

it is not feasible to search over all possible positive integers in order to determine

p, therefore it is conventional to determine a prior maximum order, M. The search

space for p will then be m=0,1,...,M.

The computation of P (xt|AR(m)) is not trivial. Several approximations to this

probability have been developed in the literature. Schwarz (1978) introduced the
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approximation

log p(xt|AR(m)) ≈ log P (xt|AR(m), [µ̂, Φ̂1, ...Φ̂m])− m

2
log T (4.5)

where log P (xt|AR(m), [µ̂, Φ̂1, ...Φ̂m]) is equal to the log likelihood function given

the model, AR(m) and its estimated parameters. In non-outlier-robust cases, OLS

will be used to estimate (µ, Φ). If we assume that the error terms are i.i.d normal

this is equivalent to

−T

2
log(2π)− 1

2

T∑
t=0

log(σ̂2)− 1

2

T∑
t=0

(
ε̂t

σ̂

)2

(4.6)

where the ε̂t are the estimated residuals and σ̂ is the estimated variance of the

residuals.

This reduces to

−T

2
log(2π)− T

2
log(σ̂2)− 1

2
. (4.7)

Dropping the constants and multiplying by − 2
T

the estimate of log P (xt|AR(m))

becomes

log(σ̂2) + m
log(T )

T
. (4.8)

This is the widely used Schwarz Bayesian Information Criterion (BIC).

The Akaike Information Criterion (Akaike 1973) is

log(σ̂2) +
2m

T
, (4.9)

which Akaike (1983) later shows is equivalent to the approximation

log P (xt|AR(m)) ≈ log P (xt|AR(m), [µ̂, Φ̂1, ...Φ̂m])−m. (4.10)
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A third, and closely related selection criterion, is the HQC (Hannan and Quinn

1979)

log(σ̂2) +
2m ln(ln(T ))

T
, (4.11)

which makes use of the approximation

log P (xt|AR(m)) ≈ log P (xt|AR(m), [µ̂, Φ̂1, ...Φ̂m])−m ln(ln(T )). (4.12)

Therefore, the automatic selection method based on the BIC, AIC, or HQC is

to minimize (4.8), (4.9), or (4.11) respectively in reference to m = 0, ..., M to get

m̂, which is the selected lag-order and approximation of p, the true lag-order.

Intuitively, the automatic selection criteria can be thought of as having two

parts, a goodness-of-fit measure and a penalty for using higher-order models. The

goodness-of-fit measure in the three mentioned criteria is the estimated variance σ̂2,

while the penalty is different for each of the criteria. For small values of T, the BIC

and HQC place less penalty on additional parameters than the AIC, but for large

T they actually place a higher penalty on additional parameters. This will have the

effect of the AIC tending to select higher lag-orders than the BIC and HQC. In fact,

the AIC is not consistent but is biased toward selecting higher lag-orders.

The sequential F test, SEQF, is different from the previous three tests in that it

does not use variance as a goodness of fit measure and does not have a specific cost

for higher order parameterizations. This automatic selection rule uses the standard

t statistics for the parameter estimates to test their significance. To perform this

test, start with the maximum possible lag-order M, estimate an AR(M) model, and
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compute the t statistic for the M-th parameter estimate. If it is insignificant, drop it,

estimate an AR(M-1) model, and check the M-1-th t-statistic. Continue this process

until the last parameter estimate is significant. In this study the significance level

is set at 5%.

4.4 Effects of Contamination on Selection Crite-

ria

A major source of bias in automatic selection criteria is parameter bias. If there is

downward bias in a particular parameter, Φi, then the associated lag is less likely

to be included. If, however, Φi is biased upward, then the associated lag is more

likely to be included. Including a lag with a small associated parameter value does

not account for much of the variance of the estimated residuals, the goodness-of-

fit measure. In this case, the penalty for higher order models tends to dominate.

Including a lag with a larger associated parameter value does account for some of

the variance of the estimated residuals. Here, the goodness-of-fit measure tends to

dominate.

Innovation outliers cause OLS AR parameter estimates to be inefficient but

not biased (Martin 1979). The estimate of the constant term, however, is biased

(Martin 1979), but this does not greatly affect AR lag-order selection. Therefore, the

automatic selection criteria should not be greatly influenced by innovation outliers.

The work of Basci and Zaman (1998) supports this claim. To see why there is

no bias, consider an AR(1) version of the innovation contamination model from
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equation (4.1) without a constant term

xt = Φ1xt−1 + εt + wt (4.13)

where εt has a mean of 0 and a variance of σ2 and wt has a mean of 0 and a variance

of σ2
w. The OLS estimate of Φ1 is Φ̂1 =

PT−1
i=1 xixi+1PT−1

i=1 xi
2

. The estimate, Φ̂1, converges

in probability to Φ̃1 = %1 where % is the first autocorrelation of x, E[xtxt−1]/E[x2
t ].

Substituting in the computed value of % from the innovation contamination model

results in

Φ̃1 = Φ1
σ2 + σ2

w

σ2 + σ2
w

= Φ1. (4.14)

Therefore Φ̂1 is a consistent estimate of Φ1
4.

Additive contamination is a completely different story. As Martin (1979) illus-

trates, additive contamination creates AR parameter bias. To see why there is bias

with additive contamination, the last experiment is repeated except with model (2).

Consider an AR(1) version of the additive contamination model from equation (4.2)

without a constant term

xt = Φ1xt−1 + εt + (1− Φ1)wt (4.15)

where εt has a mean of 0 and a variance of σ2 and wt has a mean of 0 and a variance

of σ2
w. Calculating % from E[xtxt−1]/E[x2

t ] for the additive contamination model

results in

Φ̃1 = Φ1
σ2

σ2 + (1− Φ2
1)σ

2
w

. (4.16)

4As with any OLS based estimate of an autoregressive parameter, this estimate is biased for
small samples
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It is easy to see that Φ̃1 has a downward bias for any level of contamination. As

σ2
w →∞ Φ̃1 → 0. If there is no contamination, then the estimate is consistent.

Given this example with an AR(1) it is easy to conclude that additive contami-

nation creates downward bias in the automatic selection criteria as do Le, Raftery,

and Martin(1996). However, that conclusion is premature and does not hold for all

values of Φ.

To demonstrate this consider estimating the AR(1) model in (4.13) with an

AR(2) model. The OLS estimates of Φ1 and Φ2 are




Φ̂1

Φ̂2


 =




∑
x2

t−1

∑
xt−1xt−2

∑
xt−1xt−2

∑
x2

t−2




−1 


∑
xt−1xt

∑
xt−2xt


 (4.17)

These estimates converge in probability to

Φ̃1 =
%1 − %1%2

1− %2
1

(4.18)

Φ̃2 =
%2 − %2

1

1− %2
1

(4.19)

where %1 is the first autocorrelation of x and %2 is the second autocorrelation of x.

Substituting in the values of %1 and %2 these equations reduce to

Φ̃1 =Φ1

[
σ2 + σ2

w

σ2 + σ2
w + σ2

w

σ2 [σ2 + (1− Φ2)σ2
w]

]
(4.20)

Φ̃2 =Φ2
1

[
σ2

w

σ2 + σ2
w + σ2

w

σ2 [σ2 + (1− Φ2)σ2
w]

]
. (4.21)

Even in this mis-specified case, Φ̃1 still displays negative bias. More importantly,

notice that for σ2
w > 0, Φ̃2 > 0. This upward bias in the second AR parameter may

lead to upward bias in automatic selection criteria.
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The degree of bias in both parameters, Φ̃1 and Φ̃2, depends on the true model

parameter Φ1, the contamination variance, σ2
w, and the true variance of the series,

σ2. Figure 4.1 displays the values of the hypothetical estimated parameters for

various true parameter values and contamination variances for σ2 = 1.

For any level of contamination, Φ̃1 is biased downward: the larger the contamina-

tion, the larger the bias. Also, Φ̃2 is positive for any positive level of contamination.

This bias becomes negligible as σ2 becomes very large, but the upward bias is more

prevalent for higher values of Φ1. For a large σ2
w relative to σ2 and Φ1 close to 1,

both Φ̃1 and Φ̃2 will be close to .5. For a large σ2
w relative to σ2 and Φ1 relatively

small, both Φ̃1 and Φ̃2 will be close to 0.

4.5 Robust Selection Criteria

There have been a few attempts to make automatic AR selection criteria robust

to outliers. Martin (1980) proposed using a bounded-influence likelihood approach

that limited the effects of outliers. More recently, Le, Raftery, and Martin (1996)

introduced an outlier-robust selection criterion based on a process called smooth

filtering (Martin 1981), an outlier-robust Kalman filter. They demonstrate that

this criterion performs well when additive outliers are present; they do not test this

criterion with innovation outliers.

A simple alternative way to provide some insulation from outliers or simply

contamination in the context of model selection is to use robust parameter and
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scale estimates instead of the OLS estimates for the above selection criteria. One

such robust estimator is the MM estimator introduced by Yohai (1986).5 This

estimator achieves both a high breakdown point, the percentage of contaminated

data the estimator can handle, and high efficiency should the errors conform to a

normal distribution. The MM-estimator is a three-part estimator.

In the first step, a high breakdown point estimator is used to compute an initial

estimate of the parameter values, Φ̃. Yohai explains that in the first step the esti-

mator does not have to be efficient. The S-estimator proposed by Rousseeouw and

Yohai (1984) and the Least Trimmed Squares estimator purposed by Rousseeouw

(1984) provide good initial estimates. However, because of the AR nature of this

problem, the residual autocovariance (RA) estimator by Bustos and Yohai (1986) is

used. It is faster than and as accurate as the S-estimator in this AR context.

In the second step, an M-estimate of scale, s, is computed from the residu-

als obtained in the first step. That is, for some function ρ0, a scale estimate

s(ε1(Φ̃), ..., εn(Φ̃)) is obtained that satisfies

1

n

n∑
t=1

ρ0(εt/s(•)) = b (4.22)

where b = EΘ[ρ(u)] for a distribution Θ and ut = εt/s.

In the final step, the MM-estimate ΦMM , is the solution to

min
Φ

n∑
t=1

ρ1(εt, Φ), (4.23)

5Pre-made versions of the MM estimator are available in SAS in PROC ROBUSTREG and in
S+. My study uses an author-constructed version of Yohai’s estimator in OX (Doornik 2001) (see
Appendix B).
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for some function ρ1.

Yohai (1986) suggests choosing ρ0 and ρ1 as

ρB(ut) =





u2
t /2− u4

t /2 + u6
t /6 |ut| < ki

1/6 |ut| ≥ ki

(4.24)

for tuning constants k0 and k1, respectively. In the empirical work to follow, k0 =

2.9366, b = 0.0833, and k1 = 3.44 which corresponds to 85% efficiency for normally

distributed errors. This is set to match the SAS default settings.

Yohai also provides an asymptotic distribution for Φ̂.

Φ̂ ∼ N

(
Φ, σ2

∫
Θ

Ψ2(ui)dΘ[
(
∫
Θ

Ψ′(ui)dΘ
]2 (X ′X)−1

)
(4.25)

where Ψ = ρ′1 and X is the T × p vector of right-hand side variables, in the AR case

Xt = [xt−1, xt−2, ...xt−p]. The variance-covariance matrix can be estimated by

s2

T

∑
i Ψ

2(ui)

[
∑

i Ψ
′(ui)]

2 (X ′X)−1. (4.26)

The robust selection criteria are created using the above estimator and scale

estimate. They are

BICMM = log(s2) + m
log(T )

T
(4.27)

AICMM = log(s2) +
2m

T
(4.28)

HQCMM = log(s2) +
2m ln(ln(T ))

T
. (4.29)

The robust sequential F test, SEQFMM, is as described in section 3, but it uses the

estimated variance-covariance matrix in equation (4.26).
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4.6 Simulations

This study consists of two simulations: 1) a simulation study to determine accuracy

of the automatic selection criteria when used with the innovation and additive con-

tamination models and 2) a simulation study to determine the forecasting cost of

mis-specifying the true lag order of models with innovation and additive contami-

nation.

For both parts of the simulation study four different model parameterizations

are used to formulate the innovation and additive contamination models: A low-

persistence AR(1), a high-persistence AR(1), a low-persistence AR(2), and a high-

persistence AR(2). Subsequently, each of these models will be matched with high

and low variance contamination. Contaminants, wt, will occur in the data only α%

of the time. When they do occur, they will be drawn from a distribution G(•), as

in Lucas (1995). This is done by drawing T numbers from a uniform distribution,

and only if the number falls below α, adding the contaminant. The variance of the

contamination is simply ασ2
G(•). Table 4.1 lists the different parameterizations that

are examined. σ2 = 1 for all the parameterizations. Each of these parameterizations

will be paired with four different contaminant types as indicated in Table 4.2.

For the first part of the simulation study, 500 random series of length 260 are

generated using the eight parameterizations. Each of the robust and non-robust

selection criteria is then used to estimate lag order6. All the criteria search over the

6The number 260 was selected because it corresponds to five years of weekly data.
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same space m = 0, 1, ...4. The distributions of the selected lag order generated from

the various selection criteria are reported in Tables 4.3 - 4.10.

In the second part of the simulation study, the same 500 random series of length

260 are used to create out-of-sample forecasts. The forecasts are computed as one-

period-ahead forecasts beginning at 234 (90% of the sample) and ending at 260.

Parameters are re-estimated with new data for every subsequent period. The results

are reported as mean squared forecasting error (MSE) and as relative mean squared

forecasting error as compared to the forecasting error of a correctly parameterized

model. The results are listed in Tables 4.11 - 4.15.

4.7 Simulation Results

The selection accuracy simulations in Tables 4.3 - 4.10 support the parameter bias

theories in Section 4.4. In general, additive outliers in the context of low-persistence

parameterizations cause the non-robust selection criteria to under-predict true lag

order in all but the smallest contamination case when the contaminating variance is

only 9 ∗ 0.05 = .45. The opposite is true for the high-persistence parameterizations.

The non-robust selection criteria tend to over-predict the true lag order in all but the

most extreme contamination case when the contamination is from a t distribution

with 3 degrees of freedom. Innovation outliers, however, have little effect on the

selection criteria. In fact, some selection criteria actually do better when there are
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innovation outliers. The robust selection criteria perform better than their non-

robust counterparts in the majority of the additive contamination cases.

More specifically, the BIC and HQC perform well in the no-contamination case

and with innovation outliers for all the different parameterizations with the excep-

tion of model 3. They predict the true lag-order between 92% and 99% of the time

for models 1, 2, and 4. Both criteria have a tendency to miss the small AR(2)

term in model 3. However, they are greatly affected by moderate and heavy ad-

ditive contamination. In the heavy-contaminated case with low-persistence models

1 and 3 they correctly assess the true lag order between .6% and 13% of the time

and exclusively select AR(0) models. The high-persistence parametrization is more

interesting. Both the BIC and HQC greatly over-predict lag-order in all cases. In

contrast, they do well in the small-contamination and low-persistence cases. The

downward bias of Φ̂1 is balancing out the upward bias in Φ̂2.

Their MM-based counterparts, the BICMM and HQCMM, actually perform

worse in the no-contamination case for all the models except model 3. For models

1,2, and 4 there is roughly a 15% loss in accuracy when moving to a robust statistic.

This is not surprising since the MM estimator was defined to have an efficiency of

85%. They also do slightly worse in all the innovation contamination cases with the

exception of model 3. Model 3’s second AR parameter is only 0.1 and most of the

test statistics have trouble picking it up. The robust techniques do better in finding

this parameter. In fact, for innovation contamination, robust techniques actually
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do better as the contamination variance gets larger. For example, the HQCMM

only selects the correct lag order 33% of the time when there is no contamination,

but it selects the correct lag order 69.2% of the time in the extreme-innovation

contamination case.

These outlier-robust criteria are superior to the HQC and BIC in the moderate-

contamination and heavy-contamination cases for both low-persistence and high-

persistence when there are additive outliers. They predict the correct lag order

close to 67.6% of the time as compared to only 13% for the HQC and 4.2 % for the

BIC in regards to model 1 with extreme-additive contamination. They also do well

in model 2 with extreme-additive contamination. In this case the BICMM predicts

the correct lag order 92.4% of the time and the HQCMM predicts the correct lag

order 88.2% of the time this is opposed to close to 0% of the time for the non-robust

versions. Model 4 is more interesting. The HQCMM and BICMM do better in

all the additive contamination cases, but they begin to under-select the correct lag

order when the contaminating variance becomes large.

The AIC and the sequential F perform poorly in terms of accuracy. They tend

to over-predict the true lag order in the innovation and no-contamination cases.

They also suffer from the same flaws as the BIC and HQC under the additive

contamination case. The over-prediction is actually beneficial in the additive case

for the low-persistence cases. For model 1, the AIC correctly selects the true lag

order 19.6% of the time as opposed to just 4.2% for the BIC. The AICMM and the
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MM based sequential F do better in additive cases. In fact, the MM based sequential

F is the best selection criterion in models 3 and 4 with additive contamination. In

terms of forecasting this over-prediction may also have benefits.

While one order-selection method may be more accurate in detecting the true

lag order, this does not necessarily imply that it will produce a superior forecast

when there are outliers, or even in cases without outliers. Under-specifying the

lag-order is ordinarily more detrimental because important time series information

is lost. Conversely, over-specification is not as costly. The AR parameters on the

unneeded lags are small and thus forecasting ability is only slightly decreased. In

the high-persistence models 2 and 4, over-selection is actually preferred when there

are additive outliers. In this case, parameters on higher-order lagged variables are

able to pick up some of the persistence lost from the downward bias in the first AR

parameter.

A selection criterion that has a downward bias in its lag-order prediction but

is fairly accurate otherwise might perform worse, in forecasting terms, than a less

accurate but upwardly biased estimator. The AIC, for instance, has a tendency to

over-select lag order, but this actually aids in its forecasting ability when there are

additive outliers and there is low-persistence (small AR parameters). Surprisingly,

over-selection or even correct lag-order selection is not always preferable. When

there are extreme additive outliers, under-selection can decrease mean squared fore-

casting error. Models 1 and 3 show decreases in mean squared forecasting error.
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An AR(0) is selected over an AR(1) when there is extreme additive contamina-

tion for both MM and OLS. The MM forecasts are always better when selecting an

AR(0) over an AR(1) in the extreme contamination case. Then parameter estimates

become so poor that using a simple mean is preferred.

The forecasting costs of mis-specification differ greatly between the various con-

tamination size and type, and model parametrization. In general, parametrization

has little effect on the models with low-persistence; this is true for both OLS and

MM based forecasts. Mis-specifying a high-persistence model, however, is very

costly. In the high-persistence AR(1) case with moderate additive-contamination,

the MSE is 163.854% greater for an AR(0) as opposed to the MSE with the esti-

mated AR(1) when using OLS, and 147.110% greater when using MM. This large

cost does go down as the contaminating variance increases. In the extreme variance

case, under-selection is preferred.

This seems to imply that the most accurate selection criteria are not the best

for use in forecasting, especially when outliers are present. The upwardly biased

AIC should outperform the more accurate BIC and HQC in terms of forecasting

performance simply because it over-predicts more often. Robust selection criteria

are more accurate in terms of lag-order selection, but their forecasts are roughly

equivalent.7

7This is not surprising for these short horizon forecasts. As indicated in chapter 3, the only
benefit of using robust estimation is in long-run forecast.
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4.8 Example with Oil Prices

Oil prices are notorious for being volatile with occasionally large spikes. Therefore,

it is not unreasonable to believe that the oil price series exhibit innovation outliers,

additive outliers, or even both. Thus, oil prices provide an interesting platform in

which to test the implication that outliers affect model specification and therefore

forecasts.

This section examines out-of-sample forecasts of real oil price data. The series is

the changes in the “Freight on Board Import Price for the United States” from the

U.S. Energy Information Agency listed in cents per barrel, recorded monthly from

January 1974-June 2002 the prices were adjusted for inflation using the produce price

index (PPI). Changes are used here instead of levels because the null hypothesis of

a unit root cannot be rejected. See Tables 4.15 and 4.16 for the results of unit root

tests using OLS and MM respectively. The forecasts are constructed using the same

technique as in Section 6.

In addition, the forecast errors for the alternative models are compared using

a simple Morgan-Granger-Newbold test (MGN) (Granger and Newbold 1977). Let

xt = ej
t + ei

t and zt = ej
t − ei

t where j represents AR(0) forecasts using OLS and i

represents the alternative model. The test statistic is constructed as

ρ̂xz√
1−ρ̂xz

T−1

∼ t(0, T − 1)

where ρ̂xz = x′z√
(x′x)(x′z)

.
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Table 4.17 displays the lag-order selection of each of the automatic selection

criteria, the root mean squared forecasting error, and the MGN t-statistic based

on the chosen model using either OLS or MM-based forecasts. The OLS and MM

parameter estimates based on the selected models are reported in Table 4.18.

Notice that in Table 4.18 the MM estimator finds a lower AR(1) parameter but

a higher AR(2) parameter in comparison to OLS. Additionally, the OLS estimation

finds a significant AR(4) parameter that is not found in the MM estimation. There-

fore, it is not surprising that the majority of the OLS-based selection criteria choose

an AR(4) model while the MM-based selection criteria choose and AR(2) model.

The exception is the BIC that chooses an AR(1) when based on either OLS or MM.

This does not necessarily fit the profile of a regression that has additive contam-

ination. If that had been the case, the AR(1) parameter should have been larger

and the parameters on higher lags should have been smaller in the MM estimation.

This could indicate innovation contamination or some other data problems such as

transitory level shifts (see Martin 1979 for the affects of a transitory level shift on

the estimation of an AR(1) model.)

The forecasts for the lower lag-order models chosen by the robust selection cri-

teria are slightly better than those from those selected by the OLS-based selection

criteria when robust estimation is used to create the forecasts. The forecast based

on the AR(1) model selected by the BIC and BICMM is superior to the forecast

based on the AR(4) model selected by the other OLS criteria, but inferior to the MM
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estimated AR(2) model selected by the MM criteria. However, the MGN t-statistics

indicates no significant differences between the forecasts.

The amount of aberrant data in the changes in oil price series makes it difficult to

forecast using simple AR models. The out-of-sample forecasts based on lower order

AR models and robust estimation do better, but not significantly. Overall, the

robust estimation techniques do find some previously unnoticed correlation between

current oil price changes and two month lagged oil price changes. Additionally, they

indicate no relationship between current oil price changes and four month oil price

changes. Unfortunately, this added knowledge may not be very useful to forecasters

considering the highly variable nature of oil prices.

4.9 Conclusions and Directions for Future Work

The relationship between contamination and automatic selection criteria is com-

plex. The effects of contamination on selection criteria are dependent on the size,

frequency, and type of the contamination and the true nature of the model. Table

4.19 provides a summary of the performances of the selection criteria.

Innovation contamination does not greatly affect automatic AR model selection

criteria. However, innovation contamination masks some small AR parameters and

causes OLS-based criteria to be incorrect when there are small AR parameters.

MM-based criteria actually do better with innovation outliers than without them,

but still perform worse than OLS in most cases. The one exception is when there are
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small AR parameters, then the MM-based criteria are better than the OLS-based

criteria. In general, if innovation contamination is suspected, OLS-based techniques

should be acceptable unless small AR parameters are expected.

Over-lagging actually helps in the additive contamination cases when the true

model exhibits low levels of persistence. However, this same over-selection will be a

liability in cases when the true model exhibits high levels of persistence. Therefore,

techniques such as the AIC and sequential F will be better suited for low-persistence

models, and the HQC and BIC will be better for high-persistence models. Robust

estimation techniques offer some insulation from additive contamination; however,

they still are somewhat biased.

Selecting the correct lag order can be important in terms of forecasting. It is very

costly to select an AR(0) model, when in fact the true model has a higher lag order.

As one would suspect, it is more costly to under-select a highly-persistent model

than to under-select a lightly-persistent model. Under-selecting is unlikely to occur

when one accounts for the directional bias in the selection criteria. High-persistence

leads to over-selection, which is not that costly in terms of forecasting high-persistent

models. Low persistence leads to under-selection, which is very costly and should

be avoided. Fortunately, the cost of under-selecting with a lower-persistence model

is not that great.

A simple rule of thumb would be to try both a robust and non-robust technique.

If you get very different results, you might have an additive outlier problem and
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should probably go with the robust-selected model. The BICMM, for instance, does

well in most cases.

Forecasting is not the only case where there could be costs for mis-specifying

lag lengths in the presence of outliers. Lucas (1995) shows that unit-root testing

is affected by additive outliers. The first step of an Augmented Dicky-Fueller unit-

root test is usually to select lag order for the model. As shown in the context of

this essay, lag-order selection can be difficult if there are additive outliers. In high-

persistence cases – which would be the norm for unit-root testing – with additive

outliers, these two things generally happened. There was downward parameter bias

in the first AR parameter and upward bias in subsequent parameters. Then because

of this, automatic selection criteria generally over-selected the lag order. But does

the upward bias in the higher AR terms, make up for the downward bias in the first

AR term? This remains to be seen and is a good question for future research.
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Figure 4.1: Theoretical Parameter Estimates for Additive Contaminant Model
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Table 4.1: Parametrization of Innovation Contamination and Additive Contamina-
tion Models

Model µ Φ1 Φ2

1 2 0.5 -
2 2 0.9 -
3 2 0.3 0.1
4 2 0.5 0.35

Table 4.2: Contamination Types

Parametrization α G(•)
no contamination 0 -

small contamination 0.05 N(0,9)
moderate contamination 0.10 N(0,9)

heavy contamination 0.10 N(0,100)

68



Table 4.3: Distributions of Selection Criteria for Model 1: Xt−2− .5Xt−1 = εt with
Innovation Contamination

Criterion Contamination AR(0) AR(1) AR(2) AR(3) AR(4)

0% 0.000 0.986 0.014 0.000 0.000
BIC 5% N(0,9) 0.000 0.988 0.012 0.000 0.000

10% N(0,9) 0.000 0.986 0.012 0.002 0.000
10% N(0,100) 0.000 0.980 0.018 0.002 0.000

0% 0.000 0.878 0.092 0.018 0.012
AIC 5% N(0,9) 0.000 0.886 0.084 0.018 0.012

10% N(0,9) 0.000 0.898 0.074 0.018 0.010
10% N(0,100) 0.000 0.906 0.046 0.036 0.012

0% 0.000 0.960 0.034 0.006 0.000
HQC 5% N(0,9) 0.000 0.964 0.030 0.004 0.002

10% N(0,9) 0.000 0.946 0.050 0.002 0.002
10% N(0,100) 0.000 0.958 0.030 0.006 0.006

0% 0.000 0.858 0.038 0.056 0.048
SEQF 5% N(0,9) 0.000 0.840 0.052 0.058 0.050

10% N(0,9) 0.000 0.872 0.052 0.030 0.046
10% N(0,100) 0.000 0.872 0.042 0.034 0.052

0% 0.000 0.876 0.088 0.024 0.012
BICMM 5% N(0,9) 0.000 0.890 0.070 0.026 0.014

10% N(0,9) 0.000 0.904 0.064 0.020 0.012
10% N(0,100) 0.000 0.874 0.094 0.020 0.012

0% 0.000 0.582 0.176 0.118 0.124
AICMM 5% N(0,9) 0.000 0.592 0.164 0.112 0.132

10% N(0,9) 0.000 0.624 0.158 0.116 0.102
10% N(0,100) 0.000 0.718 0.178 0.064 0.040

0% 0.002 0.772 0.124 0.068 0.034
HQCMM 5% N(0,9) 0.000 0.736 0.132 0.082 0.050

10% N(0,9) 0.000 0.764 0.120 0.072 0.044
10% N(0,100) 0.000 0.790 0.140 0.050 0.020

0% 0.000 0.856 0.030 0.062 0.052
SEQFMM 5% N(0,9) 0.000 0.844 0.032 0.052 0.072

10% N(0,9) 0.000 0.828 0.056 0.050 0.066
10% N(0,100) 0.000 0.608 0.136 0.120 0.136

Notes: Table entries refer to the percentage of time each AR model was selected. Simulations
were based on 500 runs of sample size 260. The BIC, AIC, HQC, and SEQF are estimated using
ordinary least squares and the BICMM, AICMM, HQCMM, and SEQFMM are estimated using
MM.
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Table 4.4: Distributions of Selection Criteria for Model 1: Xt−2− .5Xt−1 = εt with
Additive Contamination

Criterion Contamination AR(0) AR(1) AR(2) AR(3) AR(4)

0% 0.000 0.992 0.006 0.002 0.000
BIC 5% N(0,9) 0.002 0.968 0.026 0.004 0.000

10% N(0,9) 0.018 0.902 0.078 0.002 0.000
10% N(0,100) 0.948 0.042 0.008 0.002 0.000

0% 0.000 0.880 0.068 0.032 0.020
AIC 5% N(0,9) 0.000 0.802 0.144 0.034 0.020

10% N(0,9) 0.006 0.722 0.220 0.042 0.010
10% N(0,100) 0.704 0.196 0.050 0.034 0.016

0% 0.000 0.950 0.042 0.006 0.002
HQC 5% N(0,9) 0.002 0.928 0.060 0.008 0.002

10% N(0,9) 0.004 0.856 0.126 0.010 0.004
10% N(0,100) 0.836 0.130 0.022 0.010 0.002

0% 0.000 0.860 0.050 0.048 0.042
SEQF 5% N(0,9) 0.000 0.804 0.098 0.040 0.058

10% N(0,9) 0.000 0.750 0.162 0.040 0.048
10% N(0,100) 0.704 0.162 0.056 0.032 0.046

0% 0.002 0.866 0.094 0.024 0.014
BICMM 5% N(0,9) 0.006 0.874 0.074 0.034 0.012

10% N(0,9) 0.028 0.802 0.130 0.024 0.016
10% N(0,100) 0.218 0.676 0.096 0.010 0.000

0% 0.004 0.552 0.166 0.142 0.136
AICMM 5% N(0,9) 0.002 0.568 0.186 0.130 0.114

10% N(0,9) 0.006 0.520 0.230 0.132 0.112
10% N(0,100) 0.180 0.634 0.108 0.052 0.026

0% 0.004 0.750 0.120 0.066 0.060
HQCMM 5% N(0,9) 0.002 0.742 0.132 0.092 0.032

10% N(0,9) 0.014 0.668 0.182 0.080 0.056
10% N(0,100) 0.188 0.676 0.090 0.030 0.016

0% 0.000 0.878 0.036 0.042 0.044
SEQFMM 5% N(0,9) 0.000 0.814 0.056 0.052 0.078

10% N(0,9) 0.000 0.752 0.106 0.070 0.072
10% N(0,100) 0.010 0.582 0.184 0.124 0.100

Notes: Table entries refer to the percentage of time each AR model was selected. Simulations
were based on 500 runs of sample size 260. The BIC, AIC, HQC, and SEQF are estimated using
ordinary least squares and the BICMM, AICMM, HQCMM, and SEQFMM are estimated using
MM.
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Table 4.5: Distributions of Selection Criteria for Model 2: Xt−2− .9Xt−1 = εt with
Innovation Contamination

Criterion Contamination AR(0) AR(1) AR(2) AR(3) AR(4)

0% 0.000 0.992 0.008 0.000 0.000
BIC 5% N(0,9) 0.000 0.992 0.008 0.000 0.000

10% N(0,9) 0.000 0.988 0.010 0.002 0.000
10% N(0,100) 0.000 0.976 0.022 0.002 0.000

0% 0.000 0.858 0.100 0.036 0.006
AIC 5% N(0,9) 0.000 0.874 0.090 0.022 0.014

10% N(0,9) 0.000 0.880 0.078 0.030 0.012
10% N(0,100) 0.000 0.914 0.042 0.034 0.010

0% 0.000 0.958 0.036 0.006 0.000
HQC 5% N(0,9) 0.000 0.964 0.028 0.004 0.004

10% N(0,9) 0.000 0.962 0.032 0.006 0.000
10% N(0,100) 0.000 0.928 0.054 0.008 0.010

0% 0.000 0.870 0.048 0.038 0.044
SEQF 5% N(0,9) 0.000 0.862 0.052 0.042 0.044

10% N(0,9) 0.000 0.866 0.040 0.042 0.052
10% N(0,100) 0.000 0.834 0.054 0.054 0.058

0% 0.000 0.874 0.084 0.022 0.020
BICMM 5% N(0,9) 0.000 0.892 0.068 0.030 0.010

10% N(0,9) 0.000 0.882 0.080 0.032 0.006
10% N(0,100) 0.000 0.912 0.072 0.014 0.002

0% 0.000 0.568 0.164 0.138 0.130
AICMM 5% N(0,9) 0.000 0.576 0.154 0.138 0.132

10% N(0,9) 0.000 0.620 0.138 0.122 0.120
10% N(0,100) 0.000 0.772 0.142 0.048 0.038

0% 0.000 0.726 0.168 0.068 0.038
HQCMM 5% N(0,9) 0.000 0.754 0.138 0.056 0.052

10% N(0,9) 0.000 0.768 0.152 0.050 0.030
10% N(0,100) 0.000 0.852 0.086 0.036 0.026

0% 0.000 0.832 0.042 0.052 0.074
SEQFMM 5% N(0,9) 0.000 0.840 0.046 0.048 0.066

10% N(0,9) 0.000 0.806 0.054 0.076 0.064
10% N(0,100) 0.000 0.632 0.104 0.132 0.132

Notes: Table entries refer to the percentage of time each AR model was selected. Simulations
were based on 500 runs of sample size 260. The BIC, AIC, HQC, and SEQF are estimated using
ordinary least squares and the BICMM, AICMM, HQCMM, and SEQFMM are estimated using
MM.
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Table 4.6: Distributions of Selection Criteria for Model 2: Xt−2− .9Xt−1 = εt with
Additive Contamination

Criterion Contamination AR(0) AR(1) AR(2) AR(3) AR(4)

0% 0.000 0.984 0.016 0.000 0.000
BIC 5% N(0,9) 0.000 0.298 0.652 0.048 0.002

10% N(0,9) 0.000 0.042 0.796 0.150 0.012
10% N(0,100) 0.000 0.002 0.156 0.562 0.280

0% 0.000 0.892 0.078 0.020 0.010
AIC 5% N(0,9) 0.000 0.118 0.736 0.112 0.034

10% N(0,9) 0.000 0.010 0.556 0.360 0.074
10% N(0,100) 0.000 0.000 0.010 0.270 0.720

0% 0.000 0.956 0.036 0.008 0.000
HQC 5% N(0,9) 0.000 0.184 0.690 0.110 0.016

10% N(0,9) 0.000 0.026 0.684 0.266 0.024
10% N(0,100) 0.000 0.004 0.042 0.402 0.552

0% 0.000 0.850 0.048 0.056 0.046
SEQF 5% N(0,9) 0.000 0.150 0.648 0.150 0.052

10% N(0,9) 0.000 0.010 0.602 0.304 0.084
10% N(0,100) 0.000 0.000 0.016 0.366 0.618

0% 0.000 0.878 0.082 0.026 0.014
BICMM 5% N(0,9) 0.000 0.828 0.126 0.036 0.010

10% N(0,9) 0.000 0.810 0.136 0.042 0.012
10% N(0,100) 0.000 0.924 0.046 0.026 0.004

0% 0.000 0.584 0.150 0.118 0.148
AICMM 5% N(0,9) 0.000 0.626 0.160 0.124 0.090

10% N(0,9) 0.000 0.630 0.168 0.104 0.098
10% N(0,100) 0.000 0.840 0.062 0.054 0.044

0% 0.000 0.774 0.124 0.052 0.050
HQCMM 5% N(0,9) 0.000 0.734 0.142 0.060 0.064

10% N(0,9) 0.000 0.710 0.176 0.068 0.046
10% N(0,100) 0.000 0.882 0.062 0.044 0.012

0% 0.000 0.834 0.036 0.058 0.072
SEQFMM 5% N(0,9) 0.000 0.704 0.134 0.076 0.086

10% N(0,9) 0.000 0.526 0.306 0.084 0.084
10% N(0,100) 0.000 0.516 0.240 0.146 0.098

Notes: Table entries refer to the percentage of time each AR model was selected. Simulations
were based on 500 runs of sample size 260. The BIC, AIC, HQC, and SEQF are estimated using
ordinary least squares and the BICMM, AICMM, HQCMM, and SEQFMM are estimated using
MM.
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Table 4.7: Distributions of Selection Criteria for Model 3: Xt−2−.3Xt−1−.1Xt−2 =
εt with Innovation Contamination

Criterion Contamination AR(0) AR(1) AR(2) AR(3) AR(4)

0% 0.006 0.796 0.194 0.004 0.000
BIC 5% N(0,9) 0.002 0.842 0.154 0.002 0.000

10% N(0,9) 0.000 0.856 0.142 0.002 0.000
10% N(0,100) 0.002 0.904 0.090 0.002 0.002

0% 0.002 0.494 0.432 0.060 0.012
AIC 5% N(0,9) 0.000 0.540 0.394 0.046 0.020

10% N(0,9) 0.000 0.524 0.412 0.042 0.022
10% N(0,100) 0.006 0.586 0.352 0.038 0.018

0% 0.002 0.622 0.352 0.022 0.002
HQC 5% N(0,9) 0.000 0.688 0.298 0.008 0.006

10% N(0,9) 0.002 0.704 0.282 0.008 0.004
10% N(0,100) 0.004 0.748 0.214 0.024 0.010

0% 0.000 0.574 0.312 0.072 0.042
SEQF 5% N(0,9) 0.004 0.560 0.318 0.054 0.064

10% N(0,9) 0.000 0.606 0.310 0.042 0.042
10% N(0,100) 0.000 0.606 0.310 0.046 0.038

0% 0.038 0.600 0.292 0.058 0.012
BICMM 5% N(0,9) 0.016 0.550 0.368 0.050 0.016

10% N(0,9) 0.004 0.526 0.392 0.056 0.022
10% N(0,100) 0.000 0.208 0.684 0.092 0.016

0% 0.020 0.314 0.380 0.162 0.124
AICMM 5% N(0,9) 0.006 0.336 0.392 0.152 0.114

10% N(0,9) 0.000 0.250 0.454 0.152 0.144
10% N(0,100) 0.000 0.130 0.606 0.176 0.088

0% 0.014 0.474 0.344 0.092 0.076
HQCMM 5% N(0,9) 0.010 0.412 0.436 0.094 0.048

10% N(0,9) 0.000 0.344 0.470 0.128 0.058
10% N(0,100) 0.000 0.124 0.692 0.130 0.054

0% 0.002 0.646 0.248 0.040 0.064
SEQFMM 5% N(0,9) 0.000 0.580 0.312 0.062 0.046

10% N(0,9) 0.000 0.492 0.378 0.056 0.074
10% N(0,100) 0.000 0.062 0.664 0.128 0.146

Notes: Table entries refer to the percentage of time each AR model was selected. Simulations
were based on 500 runs of sample size 260. The BIC, AIC, HQC, and SEQF are estimated using
ordinary least squares and the BICMM, AICMM, HQCMM, and SEQFMM are estimated using
MM.
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Table 4.8: Distributions of Selection Criteria for Model 3: Xt−2−.3Xt−1−.1Xt−2 =
εt with Additive Contamination

Criterion Contamination AR(0) AR(1) AR(2) AR(3) AR(4)

0% 0.006 0.796 0.194 0.004 0.000
BIC 5% N(0,9) 0.106 0.760 0.132 0.002 0.000

10% N(0,9) 0.302 0.596 0.100 0.002 0.000
10% N(0,100) 0.952 0.040 0.006 0.002 0.000

0% 0.002 0.560 0.392 0.034 0.012
AIC 5% N(0,9) 0.022 0.520 0.382 0.060 0.016

10% N(0,9) 0.098 0.566 0.284 0.032 0.020
10% N(0,100) 0.814 0.100 0.040 0.036 0.010

0% 0.000 0.696 0.284 0.016 0.004
HQC 5% N(0,9) 0.054 0.628 0.294 0.022 0.002

10% N(0,9) 0.156 0.624 0.204 0.014 0.002
10% N(0,100) 0.918 0.050 0.016 0.012 0.004

0% 0.000 0.584 0.320 0.038 0.058
SEQF 5% N(0,9) 0.032 0.580 0.278 0.058 0.052

10% N(0,9) 0.128 0.592 0.198 0.052 0.030
10% N(0,100) 0.764 0.096 0.062 0.048 0.030

0% 0.022 0.574 0.322 0.062 0.020
BICMM 5% N(0,9) 0.074 0.540 0.308 0.052 0.026

10% N(0,9) 0.144 0.510 0.262 0.054 0.030
10% N(0,100) 0.588 0.354 0.046 0.010 0.002

0% 0.008 0.322 0.376 0.142 0.152
AICMM 5% N(0,9) 0.046 0.306 0.370 0.130 0.148

10% N(0,9) 0.068 0.342 0.326 0.144 0.120
10% N(0,100) 0.480 0.330 0.096 0.054 0.040

0% 0.024 0.442 0.370 0.100 0.064
HQCMM 5% N(0,9) 0.024 0.464 0.328 0.116 0.068

10% N(0,9) 0.108 0.410 0.302 0.112 0.068
10% N(0,100) 0.562 0.338 0.058 0.024 0.018

0% 0.000 0.652 0.262 0.036 0.050
SEQFMM 5% N(0,9) 0.012 0.586 0.272 0.074 0.056

10% N(0,9) 0.034 0.554 0.258 0.086 0.068
10% N(0,100) 0.072 0.392 0.252 0.126 0.158

Notes: Table entries refer to the percentage of time each AR model was selected. Simulations
were based on 500 runs of sample size 260. The BIC, AIC, HQC, and SEQF are estimated using
ordinary least squares and the BICMM, AICMM, HQCMM, and SEQFMM are estimated using
MM.
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Table 4.9: Distributions of Selection Criteria for Model 4: Xt−2−.5Xt−1−.35Xt−2 =
εt with Innovation Contamination

Criterion Contamination AR(0) AR(1) AR(2) AR(3) AR(4)

0% 0.000 0.000 0.986 0.014 0.000
BIC 5% N(0,9) 0.000 0.000 0.994 0.006 0.000

10% N(0,9) 0.000 0.000 0.992 0.004 0.004
10% N(0,100) 0.000 0.002 0.982 0.016 0.000

0% 0.000 0.000 0.898 0.076 0.026
AIC 5% N(0,9) 0.000 0.000 0.902 0.070 0.028

10% N(0,9) 0.000 0.000 0.912 0.070 0.018
10% N(0,100) 0.000 0.000 0.908 0.066 0.026

0% 0.000 0.000 0.962 0.032 0.006
HQC 5% N(0,9) 0.000 0.000 0.960 0.034 0.006

10% N(0,9) 0.000 0.000 0.960 0.030 0.010
10% N(0,100) 0.000 0.002 0.960 0.028 0.010

0% 0.000 0.000 0.904 0.044 0.052
SEQF 5% N(0,9) 0.000 0.000 0.908 0.040 0.052

10% N(0,9) 0.000 0.000 0.922 0.044 0.034
10% N(0,100) 0.000 0.000 0.926 0.042 0.032

0% 0.000 0.022 0.882 0.072 0.024
BICMM 5% N(0,9) 0.000 0.022 0.876 0.072 0.030

10% N(0,9) 0.000 0.008 0.916 0.058 0.018
10% N(0,100) 0.000 0.000 0.872 0.108 0.020

0% 0.000 0.018 0.606 0.212 0.164
AICMM 5% N(0,9) 0.000 0.012 0.616 0.220 0.152

10% N(0,9) 0.000 0.002 0.628 0.210 0.160
10% N(0,100) 0.000 0.000 0.712 0.196 0.092

0% 0.000 0.032 0.734 0.134 0.100
HQCMM 5% N(0,9) 0.000 0.020 0.750 0.136 0.094

10% N(0,9) 0.000 0.002 0.748 0.148 0.102
10% N(0,100) 0.000 0.000 0.812 0.128 0.060

0% 0.000 0.000 0.882 0.060 0.058
SEQFMM 5% N(0,9) 0.000 0.000 0.856 0.076 0.068

10% N(0,9) 0.000 0.000 0.836 0.080 0.084
10% N(0,100) 0.000 0.000 0.746 0.104 0.150

Notes: Table entries refer to the percentage of time each AR model was selected. Simulations
were based on 500 runs of sample size 260. The BIC, AIC, HQC, and SEQF are estimated using
ordinary least squares and the BICMM, AICMM, HQCMM, and SEQFMM are estimated using
MM.
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Table 4.10: Distributions of Selection Criteria for Model 4: Xt − 2 − .5Xt−1 −
.35Xt−2 = εt with Additive Contamination

Criterion Contamination AR(0) AR(1) AR(2) AR(3) AR(4)

0% 0.000 0.000 0.982 0.018 0.000
BIC 5% N(0,9) 0.000 0.000 0.790 0.204 0.006

10% N(0,9) 0.000 0.000 0.500 0.436 0.064
10% N(0,100) 0.012 0.068 0.252 0.390 0.278

0% 0.000 0.000 0.872 0.100 0.028
AIC 5% N(0,9) 0.000 0.000 0.486 0.394 0.120

10% N(0,9) 0.000 0.000 0.194 0.530 0.276
10% N(0,100) 0.006 0.008 0.060 0.260 0.666

0% 0.000 0.000 0.966 0.034 0.000
HQC 5% N(0,9) 0.000 0.000 0.574 0.344 0.082

10% N(0,9) 0.000 0.000 0.306 0.530 0.164
10% N(0,100) 0.004 0.026 0.112 0.360 0.498

0% 0.000 0.000 0.892 0.062 0.046
SEQF 5% N(0,9) 0.000 0.000 0.508 0.368 0.124

10% N(0,9) 0.000 0.000 0.280 0.514 0.206
10% N(0,100) 0.000 0.008 0.082 0.338 0.572

0% 0.000 0.032 0.862 0.084 0.022
BICMM 5% N(0,9) 0.000 0.058 0.746 0.148 0.048

10% N(0,9) 0.000 0.070 0.622 0.228 0.080
10% N(0,100) 0.002 0.508 0.376 0.082 0.032

0% 0.000 0.014 0.606 0.202 0.178
AICMM 5% N(0,9) 0.000 0.042 0.584 0.214 0.160

10% N(0,9) 0.000 0.042 0.378 0.302 0.278
10% N(0,100) 0.002 0.448 0.314 0.142 0.094

0% 0.000 0.056 0.748 0.118 0.078
HQCMM 5% N(0,9) 0.000 0.038 0.628 0.194 0.140

10% N(0,9) 0.000 0.050 0.508 0.298 0.144
10% N(0,100) 0.002 0.452 0.348 0.130 0.068

0% 0.000 0.000 0.916 0.042 0.042
SEQFMM 5% N(0,9) 0.000 0.000 0.786 0.136 0.078

10% N(0,9) 0.000 0.000 0.570 0.294 0.136
10% N(0,100) 0.000 0.022 0.400 0.286 0.292

Notes: Table entries refer to the percentage of time each AR model was selected. Simulations
were based on 500 runs of sample size 260. The BIC, AIC, HQC, and SEQF are estimated using
ordinary least squares and the BICMM, AICMM, HQCMM, and SEQFMM are estimated using
MM.
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Table 4.11: Forecasting Costs of Misspecification for Model 1: Xt− 2− .5Xt−1 = εt

Under Various Contaminations
Contamination OLS MM

Type Size Selected
Model

MSE Quartile
Range

%Relative
Loss

MSE Quartile
Range

%Relative
Loss

AR(0) 1.349 0.272 33.992 1.329 0.333 31.946
AR(1) 1.007 0.203 0.000 1.016 0.197 0.933

None 0% AR(2) 1.012 0.200 0.506 1.025 0.199 1.827
AR(3) 1.017 0.194 1.033 1.036 0.191 2.860
AR(4) 1.022 0.191 1.460 1.043 0.196 3.605

AR(0) 1.85 0.407 29.544 1.955 0.452 36.880
AR(1) 1.428 0.267 0.000 1.449 0.291 1.456

5% N(0,9) AR(2) 1.432 0.276 0.280 1.454 0.291 1.757
AR(3) 1.438 0.287 0.672 1.465 0.299 2.576
AR(4) 1.444 0.278 1.085 1.476 0.295 3.332

AR(0) 2.524 0.582 33.107 2.496 0.658 32.978
AR(1) 1.896 0.467 0.000 1.877 0.473 0.000

IC 10% N(0,9) AR(2) 1.9 0.473 0.227 1.887 0.467 0.554
AR(3) 1.906 0.467 0.517 1.89 0.464 0.677
AR(4) 1.912 0.484 0.854 1.904 0.483 1.412

AR(0) 15.62 4.859 32.722 14.89 5.881 32.571
AR(1) 11.77 4.049 0.000 11.23 4.667 0.000

10% N(0,100) AR(2) 11.84 3.994 0.561 11.26 4.633 0.214
AR(3) 11.9 4.008 1.113 11.28 4.640 0.401
AR(4) 11.96 4.103 1.631 11.3 4.640 0.570

AR(0) 1.773 0.451 15.587 1.716 0.399 14.269
AR(1) 1.534 0.381 0.000 1.502 0.259 0.000

5% N(0,9) AR(2) 1.538 0.370 0.248 1.501 0.255 -0.033
AR(3) 1.542 0.364 0.495 1.511 0.253 0.613
AR(4) 1.548 0.388 0.939 1.52 0.266 1.179

AR(0) 2.254 0.496 9.175 2.258 0.594 6.540
AR(1) 2.064 0.428 0.000 2.119 0.566 0.000

AC 10% N(0,9) AR(2) 2.065 0.417 0.034 2.121 0.585 0.071
AR(3) 2.07 0.448 0.257 2.127 0.587 0.349
AR(4) 2.075 0.472 0.518 2.136 0.581 0.769

AR(0) 11.33 4.134 -0.115 11.02 3.632 -8.877
AR(1) 11.35 4.135 0.000 12.09 4.050 0.000

10% N(0,100) AR(2) 11.37 4.231 0.212 11.82 3.990 -2.258
AR(3) 11.4 4.226 0.458 11.82 3.987 -2.250
AR(4) 11.43 4.209 0.767 11.82 3.962 -2.192

Note: Simulations are based on 500 runs of sample size 260. Table entries refer to the
mean squared forecasting error. The forecasts are computed as one-period-ahead forecasts
beginning at 234 (90% of the sample) and ending at 260. IC and AC represent innovation
contamination and additive contamination.
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Table 4.12: Forecasting Costs of Misspecification for Model 2: Xt− 2− .9Xt−1 = εt

Under Various Contaminations
Contamination OLS MM

Type Size Selected
Model

MSE Quartile
Range

%Relative
Loss

MSE Quartile
Range

%Relative
Loss

AR(0) 5.468 1.845 449.187 5.708 1.613 473.324
AR(1) 0.996 0.203 0.000 1.01 0.195 1.468

None 0% AR(2) 1 0.209 0.484 1.017 0.202 2.162
AR(3) 1.004 0.216 0.826 1.023 0.200 2.764
AR(4) 1.007 0.216 1.177 1.032 0.207 3.638

AR(0) 8.179 2.396 457.550 8.252 2.112 462.513
AR(1) 1.467 0.278 0.000 1.471 0.290 0.307

5% N(0,9) AR(2) 1.474 0.277 0.484 1.478 0.289 0.736
AR(3) 1.478 0.285 0.750 1.488 0.295 1.418
AR(4) 1.485 0.300 1.227 1.497 0.310 2.079

AR(0) 10.81 3.333 464.736 10.14 3.419 422.862
AR(1) 1.915 0.509 0.000 1.94 0.429 0.000

IC 10% N(0,9) AR(2) 1.926 0.505 0.575 1.944 0.440 0.201
AR(3) 1.93 0.527 0.815 1.956 0.431 0.804
AR(4) 1.939 0.512 1.243 1.963 0.441 1.191

AR(0) 58.39 18.951 429.164 63.88 18.799 474.847
AR(1) 11.03 4.581 0.000 11.11 4.096 0.000

10% N(0,100) AR(2) 11.08 4.658 0.408 11.13 4.104 0.117
AR(3) 11.12 4.634 0.770 11.14 4.078 0.252
AR(4) 11.16 4.572 1.124 11.16 4.080 0.459

AR(0) 6.203 2.081 250.976 5.912 1.666 239.374
AR(1) 1.767 0.352 0.000 1.742 0.355 0.000

5% N(0,9) AR(2) 1.73 0.376 -2.111 1.731 0.352 -0.614
AR(3) 1.735 0.372 -1.845 1.738 0.354 -0.258
AR(4) 1.747 0.380 -1.149 1.743 0.358 0.069

AR(0) 6.566 1.856 163.854 6.216 1.825 147.110
AR(1) 2.489 0.625 0.000 2.516 0.711 0.000

AC 10% N(0,9) AR(2) 2.349 0.575 -5.614 2.433 0.677 -3.280
AR(3) 2.339 0.592 -6.024 2.425 0.686 -3.621
AR(4) 2.348 0.592 -5.662 2.428 0.699 -3.470

AR(0) 16.52 5.348 7.909 15.16 4.784 -18.281
AR(1) 15.31 5.655 0.000 18.56 6.921 0.000

10% N(0,100) AR(2) 14.4 5.136 -5.963 18.12 6.681 -2.344
AR(3) 14 5.017 -8.595 17.99 6.495 -3.029
AR(4) 13.89 4.973 -9.287 17.94 6.521 -3.293

Note: Simulations are based on 500 runs of sample size 260. Table entries refer to the
mean squared forecasting error. The forecasts are computed as one-period-ahead forecasts
beginning at 234 (90% of the sample) and ending at 260. IC and AC represent innovation
contamination and additive contamination.
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Table 4.13: Forecasting Costs of Misspecification for Model 3: Xt − 2 − .3Xt−1 −
.1Xt−2 = εt Under Various Contaminations

Contamination OLS MM

Type Size Selected
Model

MSE Quartile
Range

%Relative
Loss

MSE Quartile
Range

%Relative
Loss

None
AR(0) 1.158 0.237 14.194 1.134 0.249 11.896
AR(1) 1.021 0.223 0.690 1.015 0.214 0.158

0% AR(2) 1.014 0.207 0.000 1.011 0.204 -0.266
AR(3) 1.019 0.201 0.513 1.018 0.206 0.375
AR(4) 1.024 0.190 0.967 1.026 0.206 1.154

AR(0) 1.618 0.373 11.601 1.707 0.384 17.739
AR(1) 1.457 0.331 0.455 1.519 0.315 4.773

5% N(0,9) AR(2) 1.45 0.296 0.000 1.511 0.291 4.235
AR(3) 1.458 0.302 0.579 1.518 0.294 4.690
AR(4) 1.465 0.318 1.035 1.527 0.306 5.345

AR(0) 2.253 0.637 13.036 2.062 0.493 12.065
AR(1) 2.013 0.545 1.019 1.854 0.390 0.783

IC 10% N(0,9) AR(2) 1.993 0.549 0.000 1.84 0.373 0.000
AR(3) 2 0.521 0.361 1.844 0.376 0.196
AR(4) 2.009 0.526 0.798 1.849 0.386 0.511

AR(0) 12.46 4.177 12.588 13.22 5.175 14.218
AR(1) 11.14 3.813 0.642 11.71 4.540 1.183

10% N(0,100) AR(2) 11.07 3.754 0.000 11.58 4.482 0.000
AR(3) 11.12 3.737 0.461 11.59 4.549 0.147
AR(4) 11.14 3.751 0.669 11.62 4.486 0.389

AR(0) 1.614 0.398 6.381 1.622 0.347 5.909
AR(1) 1.519 0.354 0.105 1.547 0.294 1.005

5% N(0,9) AR(2) 1.517 0.335 0.000 1.532 0.296 0.000
AR(3) 1.524 0.347 0.461 1.538 0.318 0.437
AR(4) 1.532 0.332 1.009 1.549 0.311 1.123

AR(0) 2.035 0.428 3.163 1.945 0.494 2.471
AR(1) 1.98 0.460 0.345 1.903 0.478 0.300

AC 10% N(0,9) AR(2) 1.973 0.446 0.000 1.898 0.452 0.000
AR(3) 1.982 0.458 0.451 1.902 0.460 0.216
AR(4) 1.989 0.463 0.796 1.909 0.467 0.590

AR(0) 10.87 3.924 -0.749 10.87 3.624 -2.345
AR(1) 10.92 3.945 -0.283 11.22 3.913 0.845

10% N(0,100) AR(2) 10.95 3.919 0.000 11.13 3.758 0.000
AR(3) 10.99 3.906 0.320 11.09 3.850 -0.332
AR(4) 11.01 3.927 0.521 11.09 3.835 -0.323

Note: Simulations are based on 500 runs of sample size 260. Table entries refer to the
mean squared forecasting error. The forecasts are computed as one-period-ahead forecasts
beginning at 234 (90% of the sample) and ending at 260. IC and AC represent innovation
contamination and additive contamination.
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Table 4.14: Forecasting Costs of Misspecification for Model 4: Xt − 2 − .5Xt−1 −
.35Xt−2 = εt Under Various Contaminations

Contamination OLS MM

Type Size Selected
Model

MSE Quartile
Range

%Relative
Loss

MSE Quartile
Range

%Relative
Loss

AR(0) 3.067 0.853 200.000 2.88 0.681 181.700
AR(1) 1.168 0.245 14.212 1.153 0.253 12.813

None 0% AR(2) 1.022 0.209 0.000 1.011 0.209 -1.076
AR(3) 1.027 0.206 0.469 1.02 0.211 -0.264
AR(4) 1.032 0.206 0.890 1.025 0.194 0.245

AR(0) 4.2 1.106 176.764 4.165 1.074 174.445
AR(1) 1.729 0.325 13.911 1.693 0.374 11.591

5% N(0,9) AR(2) 1.518 0.273 0.000 1.474 0.252 -2.847
AR(3) 1.525 0.275 0.474 1.482 0.273 -2.320
AR(4) 1.534 0.276 1.100 1.488 0.268 -1.957

AR(0) 5.295 1.517 174.387 5.35 1.373 189.611
AR(1) 2.194 0.482 13.669 2.149 0.439 16.360

IC 10% N(0,9) AR(2) 1.93 0.441 0.000 1.847 0.421 0.000
AR(3) 1.936 0.439 0.290 1.854 0.434 0.363
AR(4) 1.945 0.437 0.762 1.863 0.438 0.855

AR(0) 31.98 10.653 171.676 30.78 10.458 183.688
AR(1) 13.32 4.988 13.151 12.69 4.672 16.920

10% N(0,100) AR(2) 11.77 4.478 0.000 10.85 4.157 0.000
AR(3) 11.81 4.473 0.331 10.87 4.135 0.212
AR(4) 11.86 4.470 0.739 10.87 4.056 0.157

AR(0) 3.513 1.001 114.020 1.622 0.347 5.909
AR(1) 1.894 0.399 15.428 1.547 0.294 1.005

5% N(0,9) AR(2) 1.641 0.328 0.000 1.532 0.296 0.000
AR(3) 1.632 0.333 -0.585 1.538 0.318 0.437
AR(4) 1.635 0.335 -0.384 1.549 0.311 1.123

AR(0) 4.019 1.186 78.306 3.709 1.083 68.389
AR(1) 2.587 0.698 14.782 2.575 0.582 16.879

AC 10% N(0,9) AR(2) 2.254 0.560 0.000 2.203 0.499 0.000
AR(3) 2.211 0.547 -1.912 2.174 0.479 -1.285
AR(4) 2.207 0.575 -2.072 2.171 0.494 -1.462

AR(0) 13.55 5.024 1.712 13.16 4.673 -17.046
AR(1) 13.57 5.258 1.922 18.23 6.844 14.890

10% N(0,100) AR(2) 13.32 5.175 0.000 15.86 6.093 0.000
AR(3) 13.13 4.946 -1.412 15.64 6.100 -1.406
AR(4) 13 4.942 -2.358 15.29 5.981 -3.631

Note: Simulations are based on 500 runs of sample size 260. Table entries refer to the
mean squared forecasting error. The forecasts are computed as one-period-ahead forecasts
beginning at 234 (90% of the sample) and ending at 260. IC and AC represent innovation
contamination and additive contamination.
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Table 4.15: Oil Price Unit Root Test

Estimated autoregression using OLS

opt = 0.17681
(0.15340)

+ 0.99039
(0.0075456)

opt−1

Dicky-Fuller Statistic t-test

(ρ̂− 1)/σ = (.99039− 1)/0.0075456 = −1.2736

5% Critical Value for Dicky-Fuller t-test

−3.51

Therefore, the null of a unit root cannot be rejected.

Notes: Real Oil Price refers to the “FOB Import Price for the U.S.” divided by the producer price
index (PPI) listed in cents per barrel from January 1974-June 2002.
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Table 4.16: Oil Price Unit Root Test

Estimated autoregression using MM

opt = 0.19227
(0.11066)

+ 0.98963
(0.0054435)

opt−1

Dicky-Fuller Statistic t-test

(ρ̂− 1)/σ = (.98963− 1)/0.0054435 = −1.905

5% Critical Value for Dicky-Fuller t-test

−3.52

Therefore, the null of a unit root cannot be rejected.

Notes: Real Oil Price refers to the “FOB Import Price for the U.S.” divided by the producer price
index (PPI) listed in cents per barrel from January 1974-June 2002. Standard errors are computed
according to Yohai (1986). Under assumption of no contamination, the critical values for the
MM-based DF test are nearly identical to those of the OLS-based DF test for a large number of
observations, T (Lucas 1995). This is due to the high efficiency of the MM estimator under normal
errors.
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Table 4.17: Forecasting Changes in Oil Prices with Alternative Selection Criteria

Root Mean Squared Forecasting Error

Criterion Selected
LagOrder

OLS MM

BIC 1 1.0012 0.99200
(-) (0.19652)

AIC 4 1.0323 1.0194
(-0.60078) (-0.32784)

HQC 4 1.0323 1.0194
(-0.60078) (-0.32784)

seqf 4 1.0323 1.0194
(-0.60078) (-0.32784)

BICMM 1 1.0012 0.99200
(-) (0.19652)

AICMM 2 1.0398 0.98831
(-0.75765) (0.75024)

HQCMM 2 1.0398 .98831
(-0.75765) (0.75024)

seqfMM 2 1.0398 .98831
(-0.75765) (0.75024)

Notes: Real Oil Price refers to the “FOB Import Price for the U.S.” divided by the producer price
index (PPI) listed in cents per barrel from January 1974-June 2002. Numbers is parentheses are
t-statistics for a MGN test for comparing forecast accuracy between the listed forecast and the
OLS AR(1) forecast.
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Table 4.18: Autoregressive Parameter Estimates for Changes in Real Oil Prices

Method AR
model

µ̂ Φ̂1 Φ̂2 Φ̂3 Φ̂4

1 -0.00704 0.52659 - - -
(0.0476) (0.0465)

OLS 2 -0.007508 0.57921 -0.0999 - -
(0.0474) (0.0545) (0.0544)

4 -0.01347 0.53836 -0.04040 0.00222 -0.16507
(0.04658) (0.05321) (0.06061) (0.06063) (0.05389)

1 -0.05171 0.40147 - - -
(0.03697) (0.03611)

MM 2 -0.06798 0.41074 -0.23774 - -
(0.03617) (0.04156) (0.04154)

4 -0.09008 0.31020 -0.22997 -0.032017 0.04549
(0.03660) (0.04181) (0.04763) (0.04764) (0.04234)

Notes: An asterisk indicates significant at the 5% level. Standard errors for the MM estimator are
as described in section 5. Real Oil Price refers to the “FOB Import Price for the U.S.” divided by
the producer price index (PPI) listed in cents per barrel from January 1974-June 2002.
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Table 4.19: Performance Summary of the Various Selection Criteria
BIC AIC HQC SEQF

Best criterion in NC Better than other OLS Similar to BIC in Worse than other OLS criteria
OLS cases except for model 3. criteria in models 1 and 3. NC and IC cases. in all cases.

Best criterion in IC cases Worse than other OLS Slightly better than BIC Performs poorly when
except for model 3. criteria in models 2 and 4. in heavy AC cases. there is AC.

Performs poorly when Performs poorly when Performs poorly when
there is AC. there is AC. there is AC.

Slightly less accurate than Best criterion in model 3 Best criterion in model 3 Best criteria in model 4
MM OLS BIC in most IC when there is AC. when there is IC. when there is AC.

and no contamination cases.
Performs poorly in Less accurate than BICMM Worse than other MM criteria

Performs much better than all other cases. in all other cases. in all other cases.
OLS BIC in model 3 with IC
and in all models with AC. Accuracy improves Accuracy improves

with higher IC. with higher IC.
Best MM criterion in all cases
except for model 3
and model 4 with AC.

Accuracy improves
with higher IC.

Notes: NC, IC, and AC refer to no contamination, innovation contamination, and additive contamination respectively. Model numbers refer
to those designated in Table 4.2. All comparisons are in terms of selection accuracy.



Chapter 5

International Real Business Cycle
Models and Decisions before
Shocks

5.1 Introduction

International Real Business Cycle (IRBC) models do reasonably well at matching

some of the moments of the international time-series data. They do well at matching

domestic volatility of and correlations among consumption, output, investment, and

labor. However, they perform more poorly at matching international correlations.

In particular, there are two areas in which these simple stochastic models consis-

tently fail: the “consumption/output anomaly” and the “terms of trade anomaly”.

The consumption/output anomaly involves the international correlation of output

and consumption. Typically, theoretical models predict a higher correlation of con-

sumption across countries than output across countries. The actual data shows that

the opposite is true; higher correlation between outputs than consumptions exists.

The terms of trade anomaly simply states that in the data there is excess variability
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in the terms of trade that cannot be explained by the theoretical models.

Much of the work in the IRBC literature involves adding complexity to the bench-

mark model in order to help account for the two anomalies. For instance, Stock-

man and Tesar (1995) add nontraded goods, Baxter and Crucini (1995) incorporate

incomplete capital markets, and more recently Ambler, Cardia and Zimmermann

(2002) add multiple sectors and intermediate goods. Most of these augmentations

help explain one or both of the anomalies, but at the cost of complexity. Often,

while fixing one thing another breaks down, as is the case with the dynamic general

equilibrium models. One of the goals of this paper is to provide a simple step to

help solve the consumption/output anomaly while keeping changes to the bench-

mark IRBC model to a minimum.

A potential improvement for IRBC models comes from a single country model

by Boldrin, Christiano, and Fisher (2001). Their paper on asset pricing, habit

persistence, and business cycles incorporates a simple decision-before-shock (DBS)

methodology in their closed multi-sector business cycle model. Capital goods and

employment are determined prior to the realization of a contemporaneous shock.

This introduces some additional friction in the model, in that aggregate employment

and capital investment become difficult to adjust quickly in response to a shock. In

this chapter, I apply the DBS framework to the benchmark IRBC model of Backus,

Kehoe, and Kydland (1994) (BKK), with dramatic results. The predicted cross-

country correlation of consumption drops drastically, putting it much more in line
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with the actual data. At the same time, the moments that already matched do

not change significantly. The model in this paper can be thought of as a single-

sector adaptation of Boldrin et al.’s model to an international framework focusing

on matching cross-country correlations rather than asset prices.

The basic story is one of risk-sharing. In standard IRBC models, if one country

experiences a negative productivity shock, agents in that country are able to shift

their investments to another country that has higher productivity and thus a higher

return. If decisions must be made before a shock is realized, there is less flexibility

to share risk across countries. It is not a lack of desire to share risk, but simply

the inability to do so fully. The only flaw the DBS approach generates is that it

greatly reduces first-order autocorrelation of consumption, contrary to the actual

data. Incorporating habit persistence, as in Boldrin et al. (2001), easily rectifies

this flaw.

Another potential problem for these simulated general-equilibrium models is

their sensitivity to calibration, particularly, the calibration of technology innova-

tions – productivity is typically calculated using Solow residuals. Kehoe and Perri

(2000), Baxter and Crucinni (1995), and Zimmerman (1994) all demonstrate that

changes in persistence levels and cross-country correlations of technology innovations

can alter the results of IRBC models. Because of this sensitivity, it is imperative

to correctly estimate the structure of these productivity movements. A potential

source of problems for properly estimating this structure is outliers. Balke and
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Fomby (1994) and Zaman, Rousseeuw, and Orhan (2001) all show that outliers are

present and influence macroeconomic data. Autoregressive estimates, such as the

vector autoregression (VAR) used to formulate the technology innovations over time

in IRBC models, are influenced by outliers (Martin 1979). To correct for the influ-

ence of potential outliers, I use an outlier-robust alternative to ordinary least squares

known as the MM-estimator (Yohai 1986) to estimate the structure of productivity

movements over time.

In total, this essay adds to the literature in two ways. First, it provides a simple

way to reduce the consumption/output anomaly. Second, it provides more accurate,

robust estimates of the structure of technology innovations over time and examines

how those robust estimates alter the simulation results of an IRBC model.

The layout of the essay is as follows. Section 2 reviews the previous literature on

IRBC models and the relevant closed Real Business Cycle (RBC) models. It also

provides a brief overview of outliers in macroeconomic data. Section 3 presents the

model, calibration, and solution methods used for analysis. Section 4 compares the

moments generated by this model and those generated by a benchmark IRBC model

to the data. Additional modifications to the model, including habit persistence, and

a sensitivity analysis are conducted in Section 5. Section 6 draws conclusions.
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5.2 Previous Literature

5.2.1 International Real Business Cycles

The story of the basic IRBC model goes like this. In a complete market and open

economy agents are able to smooth lifetime consumption by sharing exposure to

technology shocks. A positive technology shock in one country leads to increases in

consumption for partner countries and vice versa. If the countries only trade two

goods that are perfect substitutes, then we expect consumption correlations of one

in our models. If technology shocks are persistent, as they typically are in RBC

models, agents want to shift investment to the most productive location. Therefore,

we typically see theoretical cross-country output correlations that are close to zero

or negative.

Essentially, a country has two investment options in this simple open economy

as opposed to one in a closed economy. It can invest in its own production or it can

indirectly invest in the other country’s production by way of trade.

To better see how trade channel works, consider the simple world budget con-

straints

yt =ct + it + nxt (5.1)

y∗t =c∗t + i∗t + nx∗t (5.2)

nxt =− nx∗t (5.3)

where y is output, c is consumption, i is investment, and nxt is net exports. An
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asterisk represents the foreign country.

Suppose that the home country experiences a positive technology shock, thus

increasing yt. Because shocks are persistent but not permanent, yt+1 also increases,

but to a lesser degree than yt. Agents in the home country realize this and increase

ct and it. Their combined increase is more than the increase in yt. Therefore, nxt

decreases and the home country has a trade deficit. The foreign country experiences

an increase in nx∗t , and cuts i∗t by more than it increases nx∗t , allowing it to increase

consumption. It has no problem lowering its own investment because it knows

the home country will still experience the positive shock next period. The foreign

country provides capital and consumption goods for the home country by lowering

its investment because it knows there will be a higher return if the home country

increases its own investment.

There have been two basic strategies to solve the consumption/output anomaly

through risk-sharing. The first is to limit the ability of agents to share risk. The

second is to limit the desire of agents to share risk.

Baxter and Crucini (1995) take the first approach. They argue that the typical

IRBC model does not adequately portray international financial markets. They in-

troduce a model that restricts asset trading to noncontingent real debt. They find

that restricting asset trading might be important in solving the IRBC anomalies

when the underling stochastic process is highly persistent, with little international
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spillover. Kehoe and Perri (2000) add the ability to default on loans as a fac-

tor limiting risk sharing. This reduces the cross-country consumption correlation,

but their model fails to generate a cross-county output correlation higher than the

consumption correlation.

Nadnednick (2000) finds that by incorporating durable goods, the IRBC model

can help explain the consumption/output anomaly. Stockman and Tesar find that

nontradable goods decrease the cross-country consumption correlation, but similar

to Kehoe and Perri, the cross-country consumption correlation is still larger than the

cross-country output correlation. Guo and Sturzenegger (1998) find that adding in-

creasing returns subjects the economy to sunspot shocks. Their belief-driven model

helps to account for the consumption/output anomaly.

The model in this paper resembles Baxter and Crucini’s (1995) by attempting

to limit the ability of agents to share risk. Unlike their model, however, this model

maintains complete asset markets. Agents still have all the tools necessary to share

risk, but it is their inability to respond quickly to a shock that limits their ability

to share risk.

5.2.2 Outliers in Macroeconomic Data

A modified outlier identification procedure from Tsay (1988), Balke and Fomby

(1994) finds evidence of outliers in post-World War II data for the United States.

They state that “Large shocks appear to be present in all the series we examined.”

In particular they find a few outliers in GNP growth, employment growth, and
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investment all of which are commonly used in the computation of Solow residuals,

the typical measure of productivity in IRBC models.

Zaman, Rousseeuw, and Orhan (2001) revisit De Long and Summer’s 1991 paper

studying the growth of 61 countries from 1960-1985, using robust estimation tech-

niques. They find evidence of outliers in the international data. In addition, when

using a robust estimation technique, they find that non-equipment investment has

a significant influence on GDP that was missed when using ordinary least squares.

This paper provides evidence that the presence of outliers in macroeconomic time

series is not simply found in U.S. data. Most other countries seem to have the same

presence of “large shocks” as the U.S.

Outliers are a widely studied phenomenon in statistics (see Barnett and Lewis

(1994) for a overview of outliers in statistics), and outliers are found to consistently

bias parameter estimates. This is particularly true for autoregressive time-series

models (Martin 1979). To combat this problem, many authors have developed

outlier-robust statistical techniques.

Huber (1964) introduced the class of M-estimators where parameter estimates are

based on minimizing an objective function other than the sum of squares that attach

less weight to outlying observations. The S-estimator developed by Rousseeuw and

Yohai (1984) is even more resilient to extreme observations but lacks efficiency if

the disturbances follow a normal distribution. The MM-estimator (Yohai 1986) has

more recently been introduced to be both highly efficient when the disturbances
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follow a normal distribution and highly robust to outlying observations. The MM-

estimator, because it is highly robust and highly efficient, will be used to estimate

the vector autoregression of the Solow residuals as part of a sensitivity analysis.

5.3 General Model

The model in this section is essentially the benchmark IRBC from BKK (1994),

but it incorporates decisions made before the shocks. Representative agents from

two countries, a home country and a foreign country, attempt to maximize the

present value of their lifetime utility, based on consumption and leisure. Production,

and thus income, is determined by combining capital and labor inputs with some

persistent technology shock. As is standard in the literature, the model assumes

that the countries are symmetrical. Variables for the foreign country are denoted

with an asterisk.

Consider the consumer maximization problem

maxE0

∞∑
t=0

βtU(ct, Lt) (5.4)

where preferences are represented by a power utility function U(c, L) = 1
1−ψ

(cσ
t L

1−σ
t )1−ψ.

Here ct > 0 represents consumption at time t and Lt > 0 denotes leisure at time t.

Each economy produces a unique good in quantity yt from a Cobb-Douglas

production function

yt = eztkα
t N1−α

t (5.5)
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where kt denotes capital stock at time t, Nt represents labor at time t, and zt are the

stochastic technology innovations.1 The domestic and foreign innovations, (zt,z
∗
t ),

follow the VAR 


zt

z∗t


 =




ρ1 ρ2

ρ2 ρ1







zt−1

z∗t−1


 +




εt

ε∗t


 . (5.6)

The diagonal term ρ1 accounts for the persistence of technology innovations. The

closer ρ1 is to one, the longer it takes the model economy to converge back to

a steady-state. The off-diagonal term ρ2 represents a spillover effect – the direct

transmission of a technology shock between countries. The shocks to technology,

(εt,ε
∗
t ), are serially uncorrelated and follow a multivariate-normal distribution with

variance-covariance matrix Ω. The off-diagonal terms of Ω are nonzero allowing for

correlation of contemporaneous shocks between countries.

Output can either be used domestically or exported:

yt = yht + ext. (5.7)

Exports at time t are represented by ext and yht represents domestic production

that remains in the home country.

Specialization in this economy is incorporated in the model through the use of an

Armington aggregator (1969) as in BKK (1994). Essentially each country produces

its own unique good, but this domestic good needs to be combined with the foreign

good to produce usable products for consumption or investment. Mathematically,

1The simulated moments are reported as percentages and therefore there is no need to calibrate
the size of the economy.
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this aggregator is represented by

H(yht, imt) = [(λ)y−µ
ht + (1− λ)im−µ

t ]
−1
µ . (5.8)

Here, imt denotes the amount of the foreign good imported into the domestic country

and Ht is the amount of the final good that can be used for domestic consumption

or investment. Note that Ht and not yht is final output of the multi-purpose good,

so the budget constraint is

H(yht, imt) = ct + it, (5.9)

where it is investment at time t.

The next period’s capital stock is the depreciated current capital stock plus any

new investment. Adjustment costs are implicit due to the decision-before-shock

approach discussed below and are thus not explicitly defined in this equation of

motion,

kt+1 = (1− δ)kt + it. (5.10)

Total hours available to agents are fixed and normalized to one. Agents can

choose between labor and leisure from their total hours available:

1 = Lt + Nt. (5.11)

Finally, there is an accounting identity indicating that whatever one country

exports, the other country imports. In other words, net world trade is zero:

im = ex∗. (5.12)

Additionally, there are foreign analogs to all these equations.
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5.3.1 Decision Before Shock

So far, the model is similar to the benchmark IRBC model from BKK (1994). To

incorporate the frictions in the model I assume that it, Nt, and ext must be chosen

prior to the realization of zt, similarly to Boldrin et al. (2001). Here imt is chosen

prior to realization of the shock, because the foreign country must set ex∗t which is

equal to imt in equation (5.12). This leaves agents with only one control variable,

ct, to absorb the contemporaneous shock – ct is automatically chosen because there

are no degrees of freedom.

We can think of the decision process as a two-stage problem. Initially, agents find

their controls based on the expected technology level. During the period, there is an

unanticipated shock to technology in the economy. Agents now must address this

shock, but investment, labor supply, and exports are difficult to adjust quickly. This

leaves agents with consumption as their only route to absorb the technology shock.

Technology is persistent and agents are able to adjust to the persistent component

of the shock in the next period, but it is too late to help them in the current period.

For example, suppose there is a small tribe of hunters with a fixed number of

members.2 Each hunter can do one of three things, he can hunt (supply consumption

goods), he can make weapons (invest), or he can go work for another tribe for the day

(export) (conversely the tribe could import workers for the day.) At the beginning

of the day the chief makes a decision about what the members of the tribe will do

2Note that this example is not perfectly analogous to the full-fledged model. It is simply
provided to give intuition for decisions-before-shocks.
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to maximize the tribe’s well-being over time. Hunters are out hunting, exported

workers are working at the other tribe, and weapons-makers are at home making

weapons, so it is not logistically feasible for members of the tribe to switch jobs easily.

Now suppose the hunters unexpectedly run into a large group of deer (a technology

shock). They are able to bring home much more food than expected. When they

come home there is nothing to do with the food but to eat it (consumption) – it is

assumed that consumption goods are not durable and cannot be transformed into

investment goods.

Had the chief known that there would be this many deer, he would have had

more people making weapons and sent out fewer hunters – fewer hunters can still

provide an increase in consumption. It is also likely that the tribe would have tried

to hire more workers from a neighboring tribe to help reap the rewards of the sudden

increase in deer. Altogether, this would have resulted in a higher capacity to hunt

in the future (which would be how the benchmark model works) rather than to have

one sudden influx of food. The chief does know that deer like to stay in one place

for awhile (technology is persistent) and the next day he makes decisions about

making weapons, hunting, and importing or exporting workers in order to maximize

his tribe’s life-time well-being.

This specification is not without support. A similar way to look at this model

is that it incorporates time to build, labor contracts, and time to ship constraints

but without any discounting.3 Time-to-build and time-to-ship augmentations to the

3If we were to specify a model with time to build, labor contracts, and time to ship constraints,
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benchmark model have already been incorporated by BKK (1994). By themselves

they do not significantly reduce the consumption/output problems as seen in BKK

(1994). They simply do not provide enough frictions. In addition, the low elasticity

of capital supply inherent in this type of model with constraints to investment also

fits the empirical evidence in Goolsbee(1998) as indicated by Boldrin et all (2001).

Frictions in labor movements are also very plausible. BKK (1992) incorporates

a distributed lag on leisure that in effect reduces labor supply. Phelan and Trejos

(2000) show that small search-and-matching costs may slow down labor movements.

5.3.2 Calibration and Solution Method

Table 5.1 lists all the parameter values used for the benchmark model and the base

DBS model. Where possible, the parameter values are those used by BKK (1994) .

With complete markets, the second welfare theorem holds so that the social planner’s

solution is the same as the competitive solution. Operationally, I solve the social

planner’s problem using linear quadratic programming, as in BKK (1994). All

non-linear constraints are substituted into the objective function. Then a second-

order Taylor approximation about the steady state is formed. Therefore we have

a quadratic objective function and linear constraints. Solution methods for linear-

quadratic problems are well known. I use a Bellman iteration scheme. Appendix A

describes the complete derivation and solution procedure. All simulations are based

then investment, imports, and labor would all be determined in the previous period and would be
subject to a discount factor, β. This is not the case with the specification in this paper. Investment,
imports, and labor are all determined during the present period and are not discounted.
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on 100 runs of 100 quarters.

Following BKK (1994) net exports and the terms of trade are derived. From

equation (5.9), c + i = H(yht, imt) where H is homogeneous of degree 1. So in

equilibrium c+ i = ∂H(yht,imt)
∂yht

yht +
∂H(yht,imt)

∂imt
imt. Therefore ∂H(yht,imt)

∂yht
is the price of

domestic goods and ∂H(yht,imt)
∂imt

is the price of imports. Thus the ratio of net exports

to output, nxt is defined as

nxt =
(ext − ptim

∗
t )

yt

. (5.13)

pt is the terms of trade and is defined as

pt =
∂H(yht, imt)/∂imt

∂H(yht, imt)/∂yht

=
1− λ

λ

(
yht

imt

)µ+1

. (5.14)

5.4 Results

Table 5.2 and Table 5.3 report the results. The U.S. data and the cross-country

average data are from Ambler et al. (2002). The data are quarterly from 1960:1

to 1991:2 and from the O.E.C.D with missing data filled in from national sources.

The U.S. cross-country correlations are between the U.S. and a European aggre-

gate composed of Austria, Finland, France, Germany, Italy, Sweden and the U.K.

The cross-country average is an average of 19 industrialized countries. The most

striking result of this simple augmentation is the decrease in the consumption cor-

relation across countries. In my DBS model, cross-county consumption correlation

is much more in line with that of the data. As opposed to finding a correlation of
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approximately 0.8, it is closer to 0.2. Any contemporaneous shock is now absorbed

by consumption rather than all the state variables. If there is a positive shock in

the home country, consumers there consume more, but foreign consumers do not

necessarily see an increase in their consumption. This, however, depends on the

spillover parameter. If there is a higher spillover, then foreign consumers would see

some increase in consumption.

Figures 5.1 - 5.4 display the responses of the countries to a 1% increase in

technology for the home country in the context of the benchmark and DBS models.

The difference between the two models can be seen in the first period. In the

DBS model for the home country, investment, employment, imports, and exports

all remain fixed for the first period while they respond quickly in the benchmark

case. Consumption increases greatly during the first period because it is the only

variable that can adjust quickly. After the shock has been realized, the impulse

response curves for both countries are virtually identical. The same is true for the

foreign country.

Consumption variance has also increased considerably in this model. This matches

the data better than the benchmark model for the aggregate of European countries,

but it is higher than what is found in the U.S. In the DBS model, agents lack the

flexibility to share risk and smooth consumption. Therefore, we see higher consump-

tion variance. This is an improvement over many of the other models that attempt

to explain the consumption/output problem. For instance, Guo and Sturzenegger
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(1998) correct for the consumption/output anomaly, but they have low consumption

variance.

Most of the other correlations and volatility measures remain similar to those

found in the benchmark model. Some of the problems inherent in the benchmark

model still persist. The terms of trade are much less volatile in theory than in

the data. We also see negative cross-country correlation of investment and labor

supply. Finally, cross-country output correlation is still close to zero, although now

it is slightly positive. So, we cannot yet state that the model solves the consump-

tion/output anomaly, only that it helps explain it. In the next section, we see that

small modifications to the structure of the technology innovations can eliminate

these final two problems.

The only problems that arise in this model as opposed to the benchmark model

involve persistence. Consumption is highly persistent in both the data and the

benchmark model, but not in the DBS model. Adjusting to new shocks each period

has the effect of eliminating the ability of agents to smooth consumption over time.

If we reconstruct the model such that agents strongly desire to smooth consumption

across time, we should be able to correct for this problem. One way to go about

this incorporates external habit persistence as discussed in the following.
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5.5 Modifications and Sensitivity

This section examines modifications to the standard DBS model that alleviate some

of its flaws. Sensitivity to various parameter choices are also investigated.

5.5.1 Habit Persistence Model

In an attempt to correct for the persistence problem found in the DBS model, I

incorporate habit persistence preferences as in Constantinides (1990) (habits are

across time and not across countries.) The model is identical to the base DBS

model with the exception of the utility function. Preferences are now defined as

U(c, L) = 1
1−ψ

((ct−bct−1)
σL1−σ

t )1−ψ, where ct−1 is the previous period’s consumption

level and b is the habit persistence parameter. As in Boldrin, Christiano, and

Fisher (2001), a more complex form of habit persistence was avoided. With this

specification, it is possible to have negative values for ct − bct−1. However, this did

not occur in my simulations.

The solution method is similar to the one used for the base case. The only differ-

ence is that now last period’s control variables must be included as state variables.

I set b = .7 in my simulations, as do Boldrin, Christiano, and Fisher (2001). An

alternative, and perhaps superior (as there is no other rational basis for selecting

b’s value,) method might determine the value of b that gives the model the correct

consumption persistence levels.

As predicted, the results in Table 5.3 show that consumption persistence is much
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higher in the habit formation model as compared to the DBS model. The other

moments are little changed with this addition to the model. One item to note,

however, is that the variance of consumption relative to output is actually higher in

the DBS model with habit persistence than without it.

Figures 5.5 and 5.6 display the responses of the countries to a 1% increase in

technology for the home country in the context of the DBS model with habit for-

mation. The most notable difference between these curves is the smoothness of the

consumption path. The consumption path is much smoother over time when habit

formation is incorporated in the model.4 Also, note the muted response of invest-

ment compared to the standard DBS model. Agents sacrifice some future gains in

consumption that they could realize if they invested, because they have a strong

desire to smooth their consumption path over time. In addition, the response of

imports is slightly higher than in the standard DBS model. The home country at-

tempts to import more to meet its habit. The foreign country also loses some future

consumption to meet its habit.

5.5.2 Solow Residual Sensitivity

In typical IRBC models, BKK’s VAR specification of technology is used. They

find that technological innovations are highly persistent with some international

spillover effects. Unlike more refined measurements of the residuals for the United

4Here smooth consumption refers to the smoothness of the consumption path over time. It
does not refer to the consumption having a small variance.
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States, they construct the international Solow residuals from output and employ-

ment statistics only. Capital is not included in their analysis because of the lack of

data. They argue that short-run capital should be orthogonal to output and should

not matter much. Furthermore, Baxter and Crucinni (1995) found that there might

be cointegrating relationships between certain countries’ Solow residuals and that

error-correction models should be used. The hypothesis that the residuals follow

a unit-root process with no spillovers cannot be rejected. All of this brings into

question the reliability of the point estimates. As seen in the simulations, even a

10% change in the point estimates can lead to rather dramatic results. I analyze

several cases of the structure of technology to test for robustness.

In particular, I examine three cases in addition to the standard BKK specifica-

tion. The first is a high-persistence, no-spillover parametrization. In terms of the

specification of technology innovations in (5.3), I let ρ1 = .99 and ρ2 = 0. The

second is a high-spillover parametrization of ρ1 = .85 and ρ2 = .15. Finally, there is

a low-persistence, moderate-spillover parametrization of ρ1 = .8 and ρ2 = .1.

The results are reported in Tables 5.2 and 5.3. We can see that the moments

are sensitive to the specification of the structure of the shocks. The cross-country

correlations of labor, investment, and output change considerably depending on the

technology specification. With a high-persistence technology, the results differ little

from the base case. A higher spillover increases the output correlations noticeably,

but investment and labor are still negatively related. The most surprising result is
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that of the low-persistence technology. Here, the cross-country output correlation

exceeds the cross-country consumption correlation and investment and labor are

positively correlated across countries. This is consistent with the data, unlike the

other specifications.

Recall that investment does not increase the capital stock until the next period.

For today’s shock to affect investment and thus future capital stocks, there has to be

motivation to move investment to a place that experienced a current productivity

shock. This motivation comes from the persistence of the shock. A positive shock

in the home country today entices the agent to invest in the home country, because

they know the shock is persistent. Much of that positive shock will still be present

next period to make the investment worthwhile. In the benchmark model with the

benchmark shock specification, this leads to investment being negatively correlated

between countries. Agents shift investment to whichever location is more produc-

tive. Reducing the persistence decreases the ability of agents to shift investment to

the more productive country. They simply do not know which place will be more

productive. This is compounded by the DBS shock specification.

Unfortunately, the data indicates that the Solow residuals – the measure of

technology innovations – are highly persistent. Therefore, the low-persistence spec-

ification may not be justifiable even though it provides the closest fit to the data.

However, it is troublesome that a decrease of roughly 10% in persistence can change

the results so dramatically. Measurement error alone could account for such a small
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change in persistence.

5.5.3 MM-based Technology Specification

As indicated, another potential problem with the VAR technology estimation is bias

from outliers. In this section, I address this problem using the MM-estimator (Yohai

1986).

The MM-estimator is a three-step estimator providing both high resistance to

outliers and high efficiency under Gaussian errors. In the first step, an initial highly

outlier-robust but not necessarily efficient estimator is computed. Next, a robust

M-estimate of scale, ŝ, is determined. (A scale estimate is analogous to a stan-

dard deviation of the residuals). This robust scale estimate is then used in the

determination of the MM-estimate, ΘMM , that is equal to

min
Θ

T∑
i=1

η

(
yi − x′iΘ

ŝ

)
(5.15)

where y is the dependent variable, x is the independent variable, T is the number

of observations, and η is a function that meets a certain set of assumptions as

described by Yohai (1986). For a more technical description, see Yohai (1986) or

see the description of the MM-estimator in Chapters 3 and 4.

The estimated VAR is



zt

z∗t


 =




ρ1 ρ2

ρ∗2 ρ∗1







zt−1

z∗t−1


 +




εt

ε∗t


 . (5.16)
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It is estimated with both OLS and MM for 18 countries. Data are from Christian

Zimmermann’s “Technology Innovations and the Volatility of Output: An Interna-

tional Perspective” (1994). The data are quarterly from 1960:1 to 1991:2 and are

from the O.E.C.D with missing data filled in from national sources. The results are

reported in Table 5.4.

With a few exceptions, the MM-estimator typically finds higher levels of persis-

tence and lower levels of spillover. The estimates that were unusually small with

OLS, such as those for Sweden and Switzerland, are now much more in line with

the estimates from the rest of the countries. Two major exceptions to this are the

United States and Germany lower levels of persistence are found.

There does not appear to be any general trend in the parameters for the rest

of the world. None of these parameters differ substantially between OLS and MM.

This is not surprising because outliers are not as influential in high-level aggregation.

Overall, the VAR estimates using the MM-estimator tend to lend more support to

the high-persistence, no-spillover parametrization examined in the previous section.

This is consistent with the results of Baxter and Crucini (1995) and further discredits

the use of the low-persistence technology, which would make the model fit the actual

data better.

5.5.4 Elasticity of Substitution

Some uncertainty exists about the value of the elasticity of substitution between

foreign and domestic goods, 1
1+µ

. Therefore it is typical to see some sensitivity
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analysis to this parameter in the IRBC literature. Following BKK (1994), two

alternative elasticities of substitution are examined: (1) a low elasticity, 1
1+µ

= .5

and (2) a high elasticity 1
1+µ

= 10. Each is matched with the standard DBS with

Habit model and the DBS with Habit model with highly persistent technology. The

results are reported in Tables 5.2 and 5.3.

The changes in the elasticity of substitution only marginally change the simu-

lation results in the standard case. As the elasticity rises, the standard deviations

of investment and net exports also rise. As the goods become closer substitutes, it

becomes easier for two countries to risk-share.

The low-elasticity and high-persistence case is more interesting. It matches the

cross-country correlations better than all the other models with the exception of the

low-persistence model. However, it does poorly at matching the domestic moments.

Altogether, altering the elasticity of substitution provides only marginal increases

in the ability of this IRBC model to replicate the actual data.

5.6 Conclusions

This paper has examined a DBS structure, habit persistence, and Solow residual

sensitivity in an IRBC framework. All of these modifications affect the ability of

109



the stochastic model to adequately replicate economic data. A DBS model with low-

persistence shock structure and habit persistence does remarkably well at match-

ing most of the moments of the data. This model resolves the classic consump-

tion/output anomaly. It also correctly shows positive correlations between foreign

and domestic labor and investment. Furthermore, it does not create any new prob-

lems in the simulated results.

The DBS method alone provides a simple way to decrease the consumption

correlation between countries by reducing their ability to share risk. Habit formation

only improves the results. Sensitivity to the Solow residuals is apparent in this

model. Small changes in its structural specification can dramatically change certain

cross-country correlations. Using the MM-estimator in the VAR specification for

technology gives more indication of high persistence and low spillovers.
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Figure 5.1: Response of the Home Country to a 1% Increase in the Home Country’s
Technology: Benchmark Model
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Figure 5.2: Response of the Foreign Country to a 1% Increase in the Home Country’s
Technology: Benchmark Model
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Figure 5.3: Response of the Home Country to a 1% Increase in the Home Country’s
Technology: DBS Model
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Figure 5.4: Response of the Foreign Country to a 1% Increase in the Home Country’s
Technology: DBS Model
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Figure 5.5: Response of the Home Country to a 1% Increase in the Home Country’s
Technology: DBS Model with Habit Formation
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Figure 5.6: Response of the Foreign Country to a 1% Increase in the Home Country’s
Technology: DBS Model with Habit Formation
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Table 5.1: Calibration Parameters

variable value description

β .99 Time discount rate
α .36 Capital’s share of output
δ .025 Capital’s quarterly depreciation rate

1/ψ .5 Intertemporal elasticity of substitution
σ .34 Leisure/Consumpution parameter
λ a Import share parameter

1/(1 + µ) 1.5 Elasticity of substitution between foreign
and domestic goods

ρ

(
.908 .088
.088 .908

)
Persistence and spillover

Ω 10−5 ∗
(

.726 .187

.187 .726

)
Variance-covariance matrix

a set so that the import share of output = .15
Parameters are those found in Backus, Kehoe, and Kydland (1994).
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Table 5.2: Output Variation and Correlations with Output

St. Dev. (%) St. Dev. Rel. to Output Corr. with Output

y c i n nx c i nx

U.S. dataa 1.92 0.75 3.27 0.61 0.27 0.82 0.94 -0.37
Cross-country averagea 1.62 0.30 2.97 0.71 0.65 0.69 0.80 -0.32
Benchmark model 1.45 0.42 3.76 0.42 0.22 0.87 0.94 -0.68

DBS model 1.30 0.83 3.51 0.40 0.21 0.70 0.78 -0.66
Habit 1.44 0.30 4.26 0.41 0.22 0.64 0.95 -0.67

Habit and DBS 1.32 0.98 2.52 0.44 0.24 0.92 0.76 -0.68

Habit and DBS Sensitivity Analysis

High Spillover 1.23 1.02 2.28 0.38 0.22 0.93 0.72 -0.65
High Persistence 1.31 0.91 2.58 0.40 0.14 0.79 0.76 -0.54
Low Persistence 1.36 0.96 2.56 0.54 0.21 0.88 0.78 -0.61

Low Elasticity 1
1+µ = .5 1.31 1.00 2.39 0.41 0.31 0.93 0.74 -0.67

High Elasticity 1
1+µ = 10 1.37 0.95 3.85 0.49 0.59 0.89 0.73 -0.52

Low Elast + High Persit 1.20 1.06 1.63 0.30 0.34 0.92 0.69 -0.58
High Elast + High Persit 1.36 0.96 2.56 0.54 0.21 0.88 0.78 -0.61

a From Ambler et al. (2002)
The U.S. data and the cross-country average data are from Ambler et al. (2002). The data are
quarterly from 1960:1 to 1991:2 and from the O.E.C.D with missing data filled in from national
sources. The U.S. cross-country correlations are between the U.S. and a European aggregate
composed of Austria, Finland, France, Germany, Italy, Sweden and the U.K. The cross-country
average is an average of 19 industrialized countries.
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Table 5.3: Cross-Country Correlations and Country-Specific Persistence Levels

Cross Correlations Persistence

y c i n y c
U.S. dataa 0.66 0.51 0.53 0.33 0.84b 0.87c

Cross-country averagea 0.24 0.14 0.16 0.21 0.73c 0.71c

Benchmark model -0.03 0.77 -0.57 -0.62 0.66 0.65

DBS model 0.06 0.21 -0.42 -0.47 0.74 0.20
Habit -0.04 0.64 -0.67 -0.41 0.67 0.86
Habit and DBS 0.06 0.19 -0.39 -0.48 0.74 0.51

Habit and DBS Sensitivity Analysis

High Spillover 0.14 0.18 -0.39 -0.46 0.71 0.52
High Persistence 0.01 0.25 -0.30 -0.20 0.75 0.48
Low Persistence 0.31 0.19 0.13 0.38 0.73 0.49

Low Elasticity 1
1+µ = .5 0.09 0.17 -0.43 -0.24 0.74 0.56

High Elasticity 1
1+µ = 10 -0.02 0.17 -0.80 -0.53 0.76 0.56

Low Elast + High Persit 0.25 0.18 0.43 0.92 0.72 0.54
High Elast + High Persit -0.32 0.30 -0.87 -0.71 0.80 0.56

a From Ambler et al. (2002)
b From Baxter and Crucini (1995)
c Author computed

The U.S. data and the cross-country average data are from Ambler et al. (2002). The data are
quarterly from 1960:1 to 1991:2 and from the O.E.C.D with missing data filled in from national
sources. The U.S. cross-country correlations are between the U.S. and a European aggregate
composed of Austria, Finland, France, Germany, Italy, Sweden and the U.K. The cross-country
average is an average of 19 industrialized countries.
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Table 5.4: Comparison of OLS and MM VAR estimates for Solow Residuals
OLS MM

Home Country Rest of World Home Country Rest of World

Country ρ1 ρ2 ρ∗1 ρ∗2 ρ1 ρ2 ρ∗1 ρ∗2

Australia 0.759 0.244 -0.019 1.011 0.767 0.241 0.000 0.993
Austria 0.850 0.172 -0.028 1.023 0.916 0.091 -0.004 0.995
Canada 0.912 0.087 0.004 0.987 0.980 0.013 -0.013 1.006

Denmark 0.477 0.353 0.056 0.956 0.577 0.287 -0.042 1.023

Finland 0.879 0.157 -0.004 0.997 0.914 0.107 0.006 0.982
France 0.845 0.164 -0.022 1.019 0.892 0.111 -0.019 1.011

Germany 0.832 0.185 -0.029 1.026 0.779 0.231 -0.011 1.003
Greece 0.872 0.145 -0.005 0.996 0.929 0.076 -0.009 1.002

Italy 0.876 0.151 -0.017 1.016 0.955 0.049 0.036 0.944
Japan 0.932 0.119 0.001 0.989 0.940 0.108 0.009 0.969

Netherlands 0.799 0.187 -0.027 1.021 0.866 0.120 -0.023 1.012
Norway 0.936 0.059 -0.004 0.996 0.925 0.054 -0.005 0.996

South Africa 0.825 0.105 -0.037 1.016 0.935 0.023 -0.003 0.991
Spain 0.991 0.005 0.024 0.943 1.030 -0.091 0.019 0.949

Sweden 0.747 0.181 -0.025 1.007 0.902 0.068 0.059 0.943
Switzerland 0.770 0.200 -0.052 1.037 0.977 0.018 -0.007 0.997

United Kingdom 0.823 0.151 0.026 0.968 0.888 0.101 0.021 0.973
United States 0.980 0.005 0.076 0.954 0.924 0.031 0.069 0.958

Note: An asterisk denotes foreign countries as discussed in the text. The data for the
Solow residuals are from Zimmermann (1994). The data are quarterly from 1960:1 to
1991:2 and are from the O.E.C.D with missing data filled in from national sources. The
results are reported in Table 5.4. The MM-estimator is from Yohai (1996).
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Appendix A

Technical Appendix for Chapter 5

Linear quadratic programming is used to generate an approximate solution of the

problem near a deterministic steady state. This method has been used by BKK

(1994) in the context of IRBC models. For a more general description of linear

quadratic programming see Dı́az-Giménez (1999) or Judd (2000).

A.1 The Model

Consider the IRBC model with habit persistence:

maxE0

∞∑
t=0

βt 1

1− ψ
((ct − bct−1)

σL1−σ
t )1−ψ (A.1)

subject to

yt = F (zt, kt, Nt) (A.2)

F (zt, kt, Nt) = eztkα
t N1−α

t (A.3)
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zt

z∗t


 =




ρ1 ρ2

ρ2 ρ1







zt−1

z∗t−1


 +




εt

ε∗t


 (A.4)

yt = yht + ext (A.5)

H(yht, imt) = [(λ)y−µ
ht + (1− λ)im−µ

t ]
−1
µ (A.6)

H(yht, imt) = ct + it (A.7)

kt+1 = (1− δ)kt + it (A.8)

1 = Lt + Nt (A.9)

ex = im∗. (A.10)

Note that benchmark model is just a special case of this model with b = 0.

A.2 Deterministic Steady State

The first stage in approximating a solution to the this model is to obtain the deter-

ministic steady state. To do this, set (zt, z
∗
t ) = (0, 0) and construct the Lagrangian
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L =maxE0

∞∑
t=0

βt[
1

1− ψ

(
(ct − bct−1)

σL1−σ
t

)1−ψ
(A.11)

+
1

1− ψ

(
(c∗t − bc∗t−1)

σL∗1−σ
t

)1−ψ

+ θt(F (kt, Nt)− yht − ext) + θ∗t (F (k∗t , N
∗
t )− yht − ex∗t )

+ τt(H(yht, ex
∗
t )− ct − it) + τ ∗t (H(y∗ht, ext)− c∗t − i∗t )

+ ωt(kt+1 − (1− δ)kt − it) + ω∗t (k
∗
t+1 − (1− δ)k∗t − i∗t )

+ πt (Lt − (1−Nt)) + π∗t (L∗t − (1−N∗
t ))].

Because the countries are symmetrical, we only need to compute the steady state

for one country. The steady state for the other country will be identical. The first

order conditions for the home country are as follows:
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ct : σ
(
(ct − bct−1)

σL1−σ
t

)−ψ
(

ct − bct−1

Lt

)σ−1

− βσb
(
(ct+1 − bct)

σL1−σ
t

)−ψ
(

ct+1 − bct

Lt+1

)σ−1

− τt = 0 (A.12)

it : − τt − ωt = 0 (A.13)

Nt : θtD2F + πt = 0 (A.14)

Lt : (1− σ)
(
(ct − bct−1)

σL1−σ
t

)−ψ
(

ct − bct−1

Lt

)σ

+ πt = 0 (A.15)

yht : τtD1H + θt = 0 (A.16)

ex : τ ∗t D2H − θt = 0 (A.17)

kt+1 : βθt+1D1F − βωt+1(1− δ) + ωt = 0 (A.18)

θt : F (kt, Nt) = yht + ext (A.19)

τt : H(yht, ex
∗
t ) = ct + it (A.20)

ωt : kt+1 = (1− δ)kt + it (A.21)

πt : 1 = Lt + Nt (A.22)

where Di represents a derivative with respect to element i. To find the steady state,

drop the time subscript and solve for (c, yh, L, k, N, i, ex).

Additional information is provided for the steady state relationship. The ratio

im
y

, import share of income, is set equal to .20 and relative prices are set equal to

one, D1H
D2H

= 1.

124



With im
y

= .20, D1H is uniquely determined as λ[λ + (1− λ).25−µ]
−1−µ

µ and

H = ΞF (A.23)

where Ξ = [λ.8−µ +(1−λ).2−µ]−
1
µ . So D1H is simply a constant and H is a function

of k and N .

Combine equations A.13, A.16, and A.18 to get k as a function of N

k =

(
r + δ

D1H

) 1
α−1

N (A.24)

where r = 1
β
− 1 which is simply the steady state interest rate.

Also combine equations A.12, A.14, A.15, A.16, and A.22 to get c as a function

of k and N

c =
D1HD2F ∗ (1−N)

ζ
(A.25)

where ζ =
(

1−σ
σ

) (
1−b
1−βb

)
.

From the constraint in equation A.21, i can be defined as a function of k:

i = δk. (A.26)

Substituting equations A.23 - A.26 into equation A.20 and solving for N gives

us the steady state relation for N ,

N̄ =
(1− α)D1H(r + δ)

Ξζ + D1H(r + δ)− αD1H(r + (ζ + 1)δ)
. (A.27)

Substituting this result back into equation A.24 determines k̄ that then is used in

equations A.25 and A.26 to find c̄ and ī. ȳ and thus ēx are also determined by k̄

and N̄ .
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A.3 Linear Quadratic Form

The second step in the solution problem is to express the problem in linear quadratic

form

max x′Rx + u′Qu + u′Hx

s.t. Ax + Bu + Cε,

where x are the state variables and u are the control variables.

A.3.1 Quadratic Approximation

To obtain this form, first substitute all the non-linear constraints into the objective

function, in this case c. Next take a second order Taylor approximation of the

objective function about the steady state, SS = (x̄, ū). In this particular problem

x =(1, zt, z
∗
t , zt−1, z

∗
t−1, kt, k

∗
t , kt−1, k

∗
t−1, (A.28)

it−1, i
∗
t−1, Nt−1, N

∗
t−1, ext−1, ex

∗
t−1, εt−1, ε

∗
t−1)

u =(it, i
∗
t , Nt, N

∗
t , ext, ex

∗
t ). (A.29)

Notice that that lagged-control variables must be included in the state vector be-

cause of habit formation. Also, notice that c is not listed as a control variable. This

is because c was substituted out of the problem. The import variables, (imt, im
∗
t ),

could be used in place of the export variables, (ext, ex
∗
t ), because of equation A.10.
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The approximation can be found using the Hessian and Jacobian matrices. Let

Φ =




Γ̄− SS + J + 1
2
SSHessSS ′ 1

2
(J −HessSS ′)′

1
2
(J −HessSS ′) 1

2
Hess


 (A.30)

where Γ̄ is the objective function evaluated at the steady state, J is the Jacobian

of the objective function evaluated at the steady state, and Hess is the Hessian of

the objective function evaluated at the steady state.

R is the submatrix of Φ associated with the state variables, H is the submatrix

of Φ associated with the cross terms of the state and control variables, and Q is the

submatrix of Φ associated with the control variables.

A.3.2 Equation of Motion

The next step is to determine the linear portion of the approximation, Ax+Bu+Cε.

In this problem, A is a 17x17 matrix, B is a 17x6 matrix, and C is a 17x3 matrix.

More precisely

A =




1 0 0 0 0 0 0 0
0 ρ11 ρ12 0 0 0 0 0
0 ρ21 ρ22 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 ...
0 0 0 0 0 1− δ 0 0
0 0 0 0 0 0 1− δ 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0

.

.

.




(A.31)
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B =




.

.

.
0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0




(A.32)

C =




0 0
1 0
0 1
0 0

.

.

.
0 0
1 0
0 1




(A.33)

A.4 Solution

The optimal value of our objective function, Γ, can be found by iterating on

Γi = R + βA′Γi−1A− (βA′Γi−1B + H ′)(Q + βB′Γi−1B)−1(βB′Γi−1A + H) (A.34)
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until the sequence Γi converges to Γ. Our optimal policy function, F , can then be

found as

F = (Q + βB′ΓB)−1(βB′ΓA + H). (A.35)

Therefore, our optimal control vector, ũt, at any time t is ũt = −Fxt. The equation

of motion becomes

xt+1 = (A−BF )xt + Cεt. (A.36)

This is the equation that drives the theoretic economy. It is essentially a VAR

model. To simulate an economy, all that is needed is to specify ε and then iterate

the VAR forward in time. The optimal controls, ũt, can be found from equation

A.38.

Decisions-before-shocks are implemented slightly differently. The optimal con-

trols, ũt, are determined prior to the realization of the shock, ε.

x̂t+1 =E[(A−BF )xt + Cεt] = (A−BF )xt (A.37)

ũt+1 =− Fxt+1 (A.38)

xt+1 =x̂t+1 + Cεt (A.39)

where x̂t+1 is the expected state of the economy at time period t + 1. The optimal

controls are thus determined without the realization of the shock to the economy.

Consumption is implicity determined from output, trade, and investment. Trade

and investment are fixed before the shock is realized. As output changes from the

shock, consumption must also change. After the shock realization, the agents have
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no degrees of freedom to adjust any of their explicit controls. Thus, the only way

to balance the equations and not have an excess or shortage of output is to allow

consumption to change.

The decision rule, F , is still optimal with respect to the state of the economy prior

to the shock, because of the certainty equivalence associated with linear quadratic

approximations. For this reason, notice that the value function iteration in (A.34)

does not and need not include the stochastic shocks.
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Appendix B

An Outlier Robust Estimation

Package for OX

This appendix will list and describe several robust estimation procedures for use

in the Ox programming language (Doornik 2001). All procedures are based on

algorithms from the estimator’s respective creator.

B.1 Program robest.ox

M-estimator (Huber 1964)based on Huber’s Ψ function (k=1.654)

HM(const y, const x, const beta, const scale)

y in: T x 1 vector

x in: T x k matrix

beta in: k x 1 matrix initial estimate usually OLS
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scale in: address of variable

out: estimate of scale

Returns a kx1 matrix of parameter estimates

—————————————————————————

M-estimator (Huber 1964) based on Tukey’s bisquare function (k=1.56)

TM(const y, const x, const beta, const scale)

y in: T x 1 vector

x in: T x k matrix

beta in: k x 1 matrix initial estimate usually OLS

scale in: address of variable

out: estimate of scale

Returns a kx1 matrix of parameter estimates

—————————————————————————

MM-estimator (Yohai 1986)(k0=1.56. k1=4.68) .5 breakdown 95% efficiency

myMM(const y, const x, const beta, const scale)

y in: T x 1 vector

x in: T x k matrix

beta in: k x 1 matrix initial robust estimate
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scale in: address of variable

out: estimate of scale

Returns a kx1 matrix of parameter estimates

—————————————————————————

S-estimator (Rousseeuw and Yohai 1984)(k=1.547)

myS(const y, const x, const beta, const scale)

y in: T x 1 vector

x in: T x k matrix

beta in: k x 1 matrix initial robust estimate

scale in: address of variable

out: estimate of scale

Returns a kx1 matrix of parameter estimates

—————————————————————————

τ-estimator (Yohai and Zamar 1988) k0=1.56. k1=6.08) .5 breakdown 95% effi-

ciency

mytau(const y, const x, const beta, const scale)

y in: T x 1 vector

x in: T x k matrix

beta in: k x 1 matrix initial robust estimate
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scale in: address of variable

out: estimate of scale

Returns a kx1 matrix of parameter estimates

—————————————————————————

Least Median of Squares (Rousseeuw 1984)

myLMS(const y, const x, const scale)

y in: T x 1 vector

x in: T x k matrix

scale in: address of variable

out: estimate of scale

Returns a kx1 matrix of parameter estimates

—————————————————————————

RA-estimator (Bustos and Yohai 1986)

myMM(const y, const p, const scale)

y in: T x 1 vector

p in: scalar number of lags to use

scale in: address of variable

out: estimate of scale

Returns a (p+1)x1 matrix of parameter estimates
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B.2 Program rscale.ox

Q-scale estimate (Rousseeuw and Croux 1993)

Qn(x)

x in: T x 1 vector

Return a scalar scale estimate

—————————————————————————

MAD-scale estimate

MAD(x)

x in: T x 1 vector

Return a scalar scale estimate

—————————————————————————

Robust Variance Covariance Matrix (Yohai 1986)

VC0(const y, const x, const beta, const scale)

y in: T x 1 vector

x in: T x k matrix

beta in: k x 1 matrix parameter estimate

scale in: address of variable

Returns a kxk matrix containing the robust variance covariance matrix
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—————————————————————————

Robust Autocovariance (Yanyuan and Genton 2000)

racov(const x, const h)

x in: Tx1 vector

h in: scalar lag number

Return a scalar containing the robust autocovariance of x at lag h
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B.3 robust.ox code

#include <oxstd.h>

#include <oxprob.h>

#include <arma.h>

pMedian(const py) {

decl t, res1, sortedr, medy,oddeven;

t = rows(py);

//compute the median of py

sortedr = sortc(py);

oddeven = imod(t,2);

if(oddeven==1)

{

medy = sortedr[(t+1)/2-1]; //index starts at 0

} //need to subtract 1

else

{ //interpolate if even #

medy = (sortedr[(t/2)-1]+sortedr[(t/2)+1-1])/2;

}

return medy;

} pMAD(const py) //mad(y)=mediani(yi-medjyj) {

decl t, res1, sortedr, medy,oddeven,madest;

t = rows(py);

//compute the median of py

medy=pMedian(py);

//compute the median of adjusted series

res1=((py-medy).^2).^.5;

sortedr = sortc(res1);

oddeven = imod(t,2);

if(oddeven==1)

{

madest = 1.4826*sortedr[(t+1)/2-1]; //index starts at 0

} //need to subtract 1

else

{

//interpolate if even #

madest = 1.4286*(sortedr[(t/2)-1]+sortedr[(t/2)+1-1])/2;

}
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return madest;

}

//This function computes a LMS estimate from a subsample

itLMS(const py, const px) {

decl n, t, subsamp, mB, mA, Theta, i;

//determine size of x and y

n = columns(px);

t = rows(px);

//randomly generate a subsample of x and y

subsamp = ransubsample(n, t);

mB = zeros(n, 1);

mA = zeros(n, n);

for(i=0; i < n; ++i)

{

mB[i] = py[subsamp[i]];

mA[i][] = px[subsamp[i]][];

}

//solve the system to obtain an estimate

// if (determinant(mA)!=0) //possibility of singular matrices

// {

Theta = invertgen(mA,0)*mB; //compute the estimate if possible

return Theta;

// }

}

//

//This function computes the med square error

mdserror(const py, const px, const ptheta) {

decl t, half, res1, ressq, sortedr, medsqer,oddeven;

t = rows(py);

res1 = py - px*ptheta;

ressq = res1.*res1;

sortedr = sortc(ressq);

medsqer=pMedian(sortedr);

return medsqer;

}

//

//This function computes the number of reps to do

numreps(const px) {
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decl P, T, poss, i;

//compute possible combinations

P = columns(px);

T = rows(px);

poss = T;

for (i = 1; i<(P); ++i)

{

poss = poss*(T-i)/(P-i+1);

}

//poss holds the # of possible choices for LMS

if (poss>10000)

{

poss = 10000;

}

return poss;

}

//This will compute the scale estimate for LMS

Scale(const py, const px, const BMS) {

decl

prelim, mredsq, weight, res1, test, P, T, wres, pho;

P = columns(px);

T = rows(px);

weight = zeros(T,1);

mredsq = mdserror(py, px, BMS);

//compute intial scale estimate

prelim = 1.4826*(1+(5/(T-P)))*sqrt(mredsq);

//determine the weights

res1 = (py - px*BMS);

test = res1/prelim;

test = (test.*test).^0.5;

weight = test.<=2.5 .?1 .: 0;

wres = weight.*res1;

//compute scale estimate

pho = sqrt((wres’*wres)/(weight’*weight - P));

return pho;

}
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//This function will use the exact algorithm

//to adjust the constant term

AdjConst(const py, const px, const BMS) {

decl T, i, nconst, newest, meder, wocon, woones, contemp, test;

test = 100000; //used for first case

T = rows(px);

if(columns(px>1))

{

//remove the constant estimate and row of ones

wocon = BMS[1:][];

woones = px[][1:];

//get the constants to be tried

contemp = py - woones*wocon;

// determine the constant with the smallest med squared error

for(i=0; i<T; ++i)

{

newest = contemp[i]|wocon;

meder = mdserror(py, px, newest);

if(meder<test)

{

nconst = contemp[i];

test = meder;

}

}

// add the new constant estimate back to the other param estimates

newest = nconst|wocon;

return newest;

}

else

{

return BMS;

}

}

//This procedure computes the LMS estimate

myLMS(const py, const px, const pscale) {

decl i, poss, mederr, Btemp, medtemp, BLMS;
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mederr = 100000;

poss = numreps(px);

// print("\n", "reps ", poss, "\n");

for(i=0; i < poss; ++i)

{

Btemp = itLMS(py, px);

medtemp = mdserror(py, px, Btemp);

if (medtemp < mederr)

{

mederr = medtemp;

BLMS = Btemp;

}

}

BLMS = AdjConst(py, px, BLMS);

pscale[0] = Scale(py, px, BLMS);

// print("Least Median of Squares\n ");

// print("%r", xname, BLMS,"\n");

// print("scale ", pscale, "\n");

return BLMS;

}

///////////////////////////////////////////////////

///end LMS estimate///////////////////////////////

///////////////////////////////////////////////////

////begin MM estimate//////////////////////////////

////.5 breakdown .95 efficiency

//// k0=1.56

//// k1=4.68

////////////

///// .25 breakdown .85 efficiency

//// k0=2.9366

//// k1=3.440

//This function will compute the pho function with k0 = 1.56

pho0(const phi) {

decl test, result, u;

// u = phi/1.56;

u=phi/2.9366;

test = (u.^2)/2 - (u.^4)/2 + (u.^6)/6;

result = ((u.^2).^(.5)).<=1 .?test .: 1/6;

return result;
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}

pho1(const phi) {

decl test, result, u;

// u = phi/4.68;

u = phi/3.44;

test = (u.^2)/2 - (u.^4)/2 + (u.^6)/6;

result = ((u.^2).^(.5)).<=1 .?test .: 1/6;

return result;

}

//This function will compute the bisquare psi-function

//with k1 = 4.68

gamma1(const phi) {

decl test, result, u;

// u = phi/4.68;

u=phi/3.44;

test = u.*(1-u.^2).^2;

result = ((u.^2).^(.5)).<=1 .?test .: 0;

return result;

}

//This function will compute the M-Scale for T0 with b = .0833

Mscale(const py, const px, const Bo, const sc0) //sc0 is the

initial scale estimate {

decl T, sntemp, test, b, res1, i, phosum, snsq, sn;

T = rows(py);

sn = sc0;

b = 0.0833;

res1 = (py - px*Bo);

test = 1;

i = 0;

while (test>.005 && i < 500)

{

phosum = sumc(pho0(res1/sn));

snsq = ((sn^2)/(T*b))*phosum;

sntemp = snsq^(.5);

test = ((sn - sntemp)^2)^(.5);

sn = sntemp;

++i;

}

// print("\n","Mscale", sn, "\n");
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// print("did the fixed point equation work\n");

// print("these numbers should be the same\n");

// print("pho\n", phosum/T, "b\n ", b, "\n");

return sn;

}

Sobject(const py, const px, const theta, const sn) {

decl resids, S;

resids = py - px*theta;

S = sumc(pho1(resids/sn));

return S;

}

//This procedure will generate 1 iteration for the MM-estimate

MMiter(const py, const px, const beta, const sn) {

decl weight, dwght, resids, g, M, est0, est1, dest, msc, T, n,

S0, S1;

n = 0;

est0 = beta;

T = rows(px);

dwght = zeros(T,T);

msc = sn;

resids = py - px*beta;

weight = gamma1(resids/msc)./(resids/msc);

weight = resids .== 0 .?1 .:weight;

g = ((1/msc)*sumc(gamma1(resids/msc).*px))’;

dwght = setdiagonal(dwght, weight);

M = px’*dwght*px;

M = (1/msc^2)*M;

dest = invert(M)*g;

S0 = Sobject(py, px, est0, msc);

S1 = S0 + 1;

while (S1>S0 && n<100)

{

est1 = est0 + dest/(2^n);

S1 = Sobject(py, px, est1, msc);

++n;

}

143



return est1;

}

myMM(const py,const px, const BLMS, const sc) {

decl LMSscale, Msn, BMM1, test, BMM0, n;

n = 0;

test = 1;

// BLMS = myLMS(py, yname, px, xname);

LMSscale = Scale(py, px, BLMS);

Msn = Mscale(py, px, BLMS, LMSscale);

sc[0] = Msn;

BMM0 = BLMS;

while (test>.005 && n <500)

{

BMM1 = MMiter(py, px, BMM0, Msn);

test = (BMM1 - BMM0)’(BMM1 - BMM0);

++n;

BMM0 = BMM1;

}

return BMM1;

}

/////////////end MM

///////////////////////////////////////////////

///////////////////////////////////////////////

//Tukey M

///////////////////////////////////////////////

///////////////////////////////////////////////

TMiter(const py, const px, const beta, const sn) {

decl weight, dwght, resids, g, M, est0, est1, dest, msc, T, n,

S0, S1;

n = 0;

est0 = beta;

T = rows(px);

dwght = zeros(T,T);

msc = sn;

resids = py - px*beta;
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weight = gamma1(resids/msc)./(resids/msc);

weight = resids .== 0 .?1 .:weight;

g = ((1/msc)*sumc(gamma1(resids/msc).*px))’;

dwght = setdiagonal(dwght, weight);

M = px’*dwght*px;

M = (1/msc^2)*M;

dest = invert(M)*g;

S0 = Sobject(py, px, est0, msc);

S1 = S0 + 1;

while (S1>S0 && n<1000)

{

est1 = est0 + dest/(2^n);

S1 = Sobject(py, px, est1, msc);

++n;

}

return est1;

} TM(const py,const px, const BLMS, const sc) {

decl mad, BMM1, test, BMM0, n;

n = 0;

test = 1;

// BLMS = myLMS(py, yname, px, xname);

mad=pMAD(py);

sc[0] = mad;

BMM0 = BLMS;

while (test>.001 && n <1000)

{

BMM1 = TMiter(py, px, BMM0, mad);

test = (BMM1 - BMM0)’(BMM1 - BMM0);

++n;

BMM0 = BMM1;

}

return BMM1;

}

////////////////////////////////////////

////////////////////////////////////////

//Huber M

///////////////////////////////////////

///////////////////////////////////////
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phoH(const phi) {

decl good, bad, result, u,k;

k=1.654;

u = phi;

good = (u.^2)/2;

bad=k*fabs(u)-k^2/2;

result = fabs(u).<=k .?good .:bad ;

return result;

}

Hgamma(const phi) { decl maxi, mini,k,u;

k=1.654;

u=phi;

maxi=maxc((-k~u)’)’;

mini=minc((k~maxi)’)’;

return mini;

}

Hobject(const py, const px, const theta, const sn) {

decl resids, S;

resids = py - px*theta;

S = sumc(phoH(resids/sn));

return S;

}

HMiter(const py, const px, const beta, const sn) {

decl weight, dwght, resids, g, M, est0, est1, dest, msc, T, n,

S0, S1;

n = 0;

est0 = beta;

T = rows(px);

dwght = zeros(T,T);

msc = sn;

resids = py - px*beta;

weight = Hgamma(resids/msc)./(resids/msc);

weight = resids .== 0 .?1 .:weight;

g = ((1/msc)*sumc(Hgamma(resids/msc).*px))’;

dwght = setdiagonal(dwght, weight);
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M = px’*dwght*px;

M = (1/msc^2)*M;

dest = invert(M)*g;

S0 = Hobject(py, px, est0, msc);

S1 = S0 + 1;

while (S1>S0 && n<1000)

{

est1 = est0 + dest/(2^n);

S1 = Hobject(py, px, est1, msc);

++n;

}

return est1;

} HM(const py,const px, const BLMS, const sc) {

decl mad, BMM1, test, BMM0, n;

n = 0;

test = 1;

// BLMS = myLMS(py, yname, px, xname);

mad=pMAD(py);

sc[0] = mad;

BMM0 = BLMS;

while (test>.001 && n <1000)

{

BMM1 = HMiter(py, px, BMM0, mad);

test = (BMM1 - BMM0)’(BMM1 - BMM0);

++n;

BMM0 = BMM1;

}

return BMM1;

}

///////////////////////////////////////

////////////////////////////////////////

////////////begin tau

//compute p1 with c1 = 1.56

tpho1(const phi) {

decl test, result, u, c;

c = 1.56;

u = phi;

test = ((u.^2)/2).*(1 - (u.^2/c^2) + (u.^4/(3*c^4)));
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result = ((u.^2).^(.5)).<=c .?test .: c^2/6;

return result;

}

//This function will compute the bisquare psi-function

tgamma1(const phi) {

decl test, result, u, c;

c = 1.56;

u = phi;

test = u.*(1-(u.^2/c^2)).^2;

result = ((u.^2).^(.5)).<=c .?test .: 0;

return result;

} tpho2(const phi) {

decl test, result, u, c;

c = 6.08;

u = phi;

test = ((u.^2)/2).*(1 - (u/c).^2 + ((u/c).^4)/3);

result = ((u.^2).^(.5)).<=c .?test .: c^2/6;

return result;

}

//This function will compute the bisquare psi-function

tgamma2(const phi) {

decl test, result, u, c;

c = 6.08;

u = phi;

test = u.*(1-(u/c).^2).^2;

result = ((u.^2).^(.5)).<=c .?test .: 0;

return result;

}

//This function will compute the t-Scale for T0 with b = .203

tscale(const py, const px, const Bo, const sc0) //sc0 is the

initial scale estimate {

decl T, sntemp, test, b, res1, i, phosum, snsq, sn;

T = rows(py);

sn = sc0;

b = 0.203;

res1 = (py - px*Bo);

test = 1;
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i = 0;

while (test>.001 && i < 10000)

{

phosum = sumc(tpho1(res1/sn));

snsq = ((sn^2)/(T*b))*phosum;

sntemp = snsq^(.5);

test = ((sn - sntemp)^2)^(.5);

sn = sntemp;

++i;

}

return sn;

}

//This procedure will compute the tau scale estimate

tau(const py, const px, const theta, const sn) {

decl resids, S;

resids = py - px*theta;

S = (sn^2/(rows(px)))*sumc(tpho2(resids/sn));

S = S^(.5);

return S;

}

//This procedure will generate 1 iteration for the MM-estimate

tauiter(const py, const px, const beta, const sn) {

decl Wn, weight, dwght, resids, g, M, est0, est1, dest, msc, T, n,

S0, S1, tsc;

n = 0;

est0 = beta;

T = rows(px);

dwght = zeros(T,T);

msc = sn;

resids = py - px*beta;

Wn = sumc(2*tpho2(resids/msc)- tgamma2(resids/msc).*(resids/msc))/

(sumc(tgamma1(resids/msc).*(resids/msc)));

weight = (Wn*tgamma1(resids/msc)+tgamma2(resids/msc))/(resids/msc);

weight = resids .== 0 .?1 .:weight;

g = ((-2/T)*sumc(weight.*resids.*px))’;

dwght = setdiagonal(dwght, weight);

M = px’*dwght*px;

M = (2/T)*M;
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dest = -1*invert(M)*g;

S0 = tau(py, px, est0, msc);

S1 = S0 + 1;

while (S1>S0 && n<1000)

{

est1 = est0 + dest/(2^n);

tsc = tscale(py, px, est1, msc);

msc = tsc;

S1 = tau(py, px, est1, msc);

++n;

}

return est1;

}

mytau(const py,const px, const BLMS, const sc) {

decl LMSscale, ttemp, tsn, Btau1, test, Btau0, n;

n = 0;

test = 1;

LMSscale = Scale(py, px, BLMS);

tsn = tscale(py, px, BLMS, LMSscale);

Btau0 = BLMS;

test = 10000;

while (test > .0005 && n <1000) //conergence criteria

{

Btau1 = tauiter(py, px, Btau0, tsn);

ttemp = tscale(py, px, Btau1, tsn);

++n;

tsn = ttemp;

test = (Btau1 - Btau0)’(Btau1 - Btau0);

Btau0 = Btau1;

print(n, test, tsn);

}

sc[0] = tsn;

return Btau1;

}
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//////////////////////////////////////////////////

Scale0(const py, const px, const BMS) {

decl

prelim, mredsq, weight, res1, test, P, T, wres, pho;

P = columns(px);

T = rows(px);

weight = zeros(T,1);

mredsq = mdserror(py, px, BMS);

//compute intial scale estimate

prelim = 1.4826*(1+(5/(T-P)))*sqrt(mredsq);

//determine the weights

res1 = (py - px*BMS);

test = res1/prelim;

test = (test.*test).^0.5;

weight = test.<=2.5 .?1 .: 0;

wres = weight.*res1;

//compute scale estimate

pho = sqrt((wres’*wres)/(weight’*weight - P));

return pho;

} srho(const phi) {

decl test, result, u, c;

u = phi;

c = 1.547;

test = (u.^2)/2 - (u.^4)/(2*c^2) + (u.^6)/(6*c^4);

result = abs(u).<=c .?test .: c^2/6;

return result;

} sgam(const phi) {

decl test, result, u,c;

u = phi;

c = 1.547;

test = u.*(1-(u/c).^2).^2;

result = abs(u).<=c .?test .: 0;

return result;

}

//S- estimator

//This procedure will generate 1 iteration for the S-estimate

//sc0 is the initial scale estimate

Sscale(const py, const px, const Bo, const sc0)
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{

decl T, sntemp, test, b, res1, i, phosum, snsq, sn, check;

T = rows(py);

sn = sc0[0];

b = 0.2;

res1 = (py - px*Bo);

test = 1;

i = 0;

while (test>.0001 && i < 10000)

{

phosum = sumc(srho(res1/sn));

snsq = ((sn^2)/(T*b))*phosum;

sntemp = snsq^(.5);

test = abs(sn-sntemp);

sn = sntemp;

++i;

}

return sn;

}

Siter(const py, const px, const beta, const sn) {

decl Wn, weight, dwght, resids, g, M, est0, est1, dest, msc, T, n,

S0, S1;

n = 0;

est0 = beta;

T = rows(px);

dwght = zeros(T,T);

msc = sn;

resids = py - px*beta;

Wn = sumc(2*srho(resids/msc)- sgam(resids/msc).*(resids/msc))/

(sumc(sgam(resids/msc).*(resids/msc)));

weight = (Wn*sgam(resids/msc)+sgam(resids/msc))/(resids/msc);

weight = resids .== 0 .?1 .:weight;

g = ((-2/T)*sumc(weight.*resids.*px))’;

dwght = setdiagonal(dwght, weight);

M = px’*dwght*px;

M = (2/T)*M;

dest = -1*invert(M)*g;

S0 = Sscale(py, px, est0, msc);

S1 = S0 + 1;

152



while (S1>S0 && n<1000)

{

est1 = est0 + dest/(2^n);

S1 = Sscale(py, px, est1, msc);

++n;

}

return est1;

}

myS(const py,const px, const B0, const sc) {

decl B0scale, stemp, ssn, Bs1, test, Bs0, n;

n = 0;

test = 1;

B0scale = Scale(py, px, B0);

ssn = Sscale(py, px, B0, B0scale);

Bs0 = B0;

test = 10000;

while (test > .0001 && n <1000)

{

Bs1 = Siter(py, px, Bs0, ssn);

stemp = Sscale(py, px, Bs1, ssn);

++n;

ssn = stemp;

test = (Bs1 - Bs0)’(Bs1 - Bs0);

Bs0 = Bs1;

// print(n, test, ssn);

}

sc[0] = ssn;

return Bs1;

}

///////////////////////////////////////////////

gamma(const phi) {

decl test, result, u;

u = phi/4.65;
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test = u.*(1-(u.^2)).^2;

result = ((u.^2).^(.5)).<=1 .?test .: 0;

return result;

} gammaH(const phi) {

decl result,u, neg;

u=phi;

result=u.<=1.65 .?u .: 1.65;

result=u.>=-1.65 .?result .: -1.65;

// result=u.<=2.65 .?u .: 2.65;

// result=u.>=-2.65 .?result .: -2.65;

return result;

}

//This Procedure computes Yohai’s (1988) RA estimate

RA(const py, const p, const sc) {

decl scale, z, r, beta, beta2,X, n, resids, test, t, temp,i,con;

t=0;

test=10000;

n=rows(py);

X=zeros(n,p+1);

X[][0]=constant(1,n,1);

for (i=1; i<=p; ++i)

{

X[][i]=lag0(py,i);

}

// beta=myLMS(py,X,&scale);

// beta2=beta;

olsc(py,X,&beta);

// print(beta);

// scale=((py-X*beta)’(py-X*beta));

z=py;

while(test>.005 && t<20) {

temp=beta;

resids=z-X*beta;

// print(resids);

scale=pMAD(resids);

// scale=((py-X*beta)’(py-X*beta));

// print(gammaH(resids/scale));
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// print(scale);

r=gammaH(resids/scale)*scale;

// r=resids;

// print(scale, "\n");

// print(r);

con=constant(beta[0],n,1);

for(i=0; i<p; ++i)

{

con[i]=py[i];

}

if(p==0)

{

z=armagen(con,r,<>,0,0);

}

else

{

z=armagen(con, r, beta[1:]’, p, 0);

}

// print(beta’);

// print(py~X*beta~r~z);

for (i=1; i<=p; ++i)

{

X[][i]=lag0(z,i);

}

olsc(z,X,&beta);

test=(temp-beta)’(temp-beta);

// print(beta);

}

// sc[0]=scale;

sc[0]=resids’*resids/(n-i-1);

// if (beta[1]>=1)

// {beta= beta2; print("*");}

return beta;

}
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B.4 rscale.ox code

#include <oxstd.h> #include <oxprob.h>

himed(const py) {

decl t, res1, sortedr, medy,oddeven;

t = rows(py);

//compute the median of py

sortedr = sortc(py);

oddeven = imod(t,2);

if(oddeven==1)

{

medy = sortedr[(t+1)/2-1]; //index starts at 0

} //need to subtract 1

else

{

medy = sortedr[(t/2)+1-1];

}

return medy;

}

lomed(const py) {

decl t, res1, sortedr, medy,oddeven;

t = rows(py);

//compute the median of py

sortedr = sortc(py);

oddeven = imod(t,2);

if(oddeven==1)

{

medy = sortedr[(t+1)/2-1]; //index starts at 0

} //need to subtract 1

else

{

medy = sortedr[(t/2)-1]; //interpolate if even #

}

return medy;

}

whimed(const x, const weight, const length) {

decl iw, a, n, acand, iwcand, wtotal, wrest, wleft, wmid, wright,

nn, i, trial, pwhimed, flag, kcand;
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a=x[:length-1];

iw=weight[:length-1];

flag=0;

n=rows(a);

acand=zeros(n,1);

iwcand=zeros(n,1);

nn=n;

wtotal=0;

for(i=1; i<=nn; ++i)

{

wtotal = wtotal +iw[i-1];

} //end for

wrest=0;

//while statement?

while (flag==0)

{

trial = a[nn/2];

wleft=0;

wmid=0;

wright=0;

for(i=1; i<=nn; ++i)

{

if (a[i-1]<trial)

{

wleft=int(wleft+iw[i-1]);

}

else

{

if(a[i-1]>trial)

{

wright=int(wright+iw[i-1]);

}

else

{

wmid=int(wmid+iw[i-1]);

}//end if

}//end if

}

if((2*wrest+2*wleft)>wtotal)

{
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kcand=0;

for(i=1; i<=nn; ++i)

{

if(a[i-1]<trial)

{

kcand=kcand+1;

acand[kcand-1]=a[i-1];

iwcand[kcand-1]=iw[i-1];

}//end if

}//end for

nn=kcand;

}

else

{

if((2*wrest+2*wleft+2*wmid)>wtotal)

{

pwhimed=trial;

flag=1;

}

else

{

flag=0;

kcand=0;

for(i=1; i<=nn; ++i)

{

if(a[i-1]>trial)

{

kcand=kcand+1;

acand[kcand-1]=a[i-1];

iwcand[kcand-1]=iw[i-1];

}//end if

}//end for

nn=kcand;

wrest=wrest+wleft+wmid;

}//end if

}//end if

if (flag==0)

{

for(i=1; i<=nn; ++i)

{

a[i-1]=acand[i-1];

iw[i-1]=iwcand[i-1];
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}//end for

}//end if

}//end while

return pwhimed;

} //end proc

Sn(const x) {

decl n, medA, medB, rightA, rightB, tryA, tryB, diff,

Amin, Amax, even, half, y, a2, length, i, nB, nA, leftA,

cn, leftB, sn, sa2;

n=rows(x);

a2=zeros(n,1);

y=zeros(n,1);

y = sortc(x);

a2[0]= y[n/2]-y[0];

for(i=2; i<=int((n+1)/2); ++i)

{

// print("loop1 i ", i, "\n");

nA=i-1;

nB=n-i;

diff=nB-nA;

leftA=1;

leftB=1;

rightA=nB;

rightB=nB;

Amin=int(diff/2+1);

Amax=int(diff/2+nA);

while(leftA<rightA)

{

// print("leftA ", leftA, "rightA ", rightA, "\n");

length=rightA-leftA+1;

even = 1-imod(length,2);

half=int((length-1)/2);

tryA=leftA+half;

tryB=leftB+half;

if(tryA<Amin)

{
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rightB=tryB;

leftA=tryA+even;

}

else

{

if(tryA>Amax)

{

rightA=tryA;

leftB=tryB+even;

}

else

{

medA=y[i-1]-y[i-tryA+Amin-2];

medB=y[tryB+i-1]-y[i-1];

if(medA>=medB)

{

rightA=tryA;

leftB=tryB+even;

}

else

{

rightB=tryB;

leftA=tryA+even;

}

}

}

if(leftA>Amax)

{

a2[i-1]=y[leftB+i-1]-y[i-1];

}

else

{

medA=y[i-1]-y[i-leftA+Amin-2];

medB=y[leftB+i-1]-y[i-1];

a2[i-1]=min(medA,medB);

}

}//end while loop

}//end first do loop

//second part

for(i=int((n+1)/2+1); i<=n-1; ++i)
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{

// print("loop2 i ", i, "\n");

nA=n-i;

nB=i-1;

diff=nB-nA;

leftA=1;

leftB=1;

rightA=nB;

rightB=nB;

Amin=int(diff/2+1);

Amax=int(diff/2+nA);

while(leftA<rightA)

{

length=rightA-leftA+1;

even = 1-imod(length,2);

half=int((length-1)/2);

tryA=leftA+half;

tryB=leftB+half;

if(tryA<Amin)

{

rightB=tryB;

leftA=tryA+even;

}

else

{

if(tryA>Amax)

{

rightA=tryA;

leftB=tryB+even;

}

else

{

medA=y[i+tryA-Amin]-y[i-1];

medB=y[i-1]-y[i-tryB-1];

if(medA>=medB)

{

rightA=tryA;

leftB=tryB+even;

}

else
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{

rightB=tryB;

leftA=tryA+even;

}

}

}

if(leftA>Amax)

{

a2[i-1]=y[i-1]-y[i-leftB-1];

}

else

{

medA=y[i+leftA-Amin]-y[i-1];

medB=y[i-1]-y[i-leftB-1];

a2[i-1]=min(medA,medB);

}

}//end while loop

}//end 2nd do loop

a2[n-1]=y[n-1]-y[(n+1)/2-1];

cn=1;

if(n<9)

{

if(n==2){cn=.743;}

if(n==3){cn=1.851;}

if(n==4){cn=.954;}

if(n==5){cn=1.351;}

if(n==6){cn=.993;}

if(n==7){cn=1.198;}

if(n==8){cn=1.005;}

if(n==9){cn=1.131;}

}

else

{

if(imod(n,2)==1)

{

cn=n/(n-0.9);

}

}

sn=cn*1.1926*lomed(a2);

return sn;

}//end procedure
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naiveS(const py) {

decl n, i, j, a2, a1, s, cn;

n=rows(py);

a1=zeros(n,1);

a2=zeros(n,1);

for(i=1;i<=n; ++i)

{

for(j=1; j<=n; ++j)

{

a1[j-1]=((py[i-1]-py[j-1])^2)^.5;

}

a2[i-1]=himed(a1);

}

if(n<=9)

{

if(n==2){cn=.743;}

if(n==3){cn=1.851;}

if(n==4){cn=.954;}

if(n==5){cn=1.351;}

if(n==6){cn=.993;}

if(n==7){cn=1.198;}

if(n==8){cn=1.005;}

if(n==9){cn=1.131;}

}

else

{

if(imod(n,2)==1)

{

cn=n/(n-0.9);

}

}

s=cn*1.1926*lomed(a2);

return s;

}

Qn(const px) {

decl pQn, i, n, x, y, work, left, right, weight, Q, P,

h, k, knew, jhelp, nL, nR, sumQ, sumP, found, j,

jj, trial, dn, twork;
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x=px;

n=rows(px);

y=zeros(n,1);

work=zeros(n,1);

left=zeros(n,1);

right=zeros(n,1);

weight=zeros(n,1);

Q=zeros(n,1);

P=zeros(n,1);

found=0;

y=sortc(x);

h=int(n/2+1);

k=int(h*(h-1)/2);

for(i=1; i<=n; ++i)

{

left[i-1]=n-i+2;

right[i-1]=n;

}//end for

jhelp=int(n*(n+1)/2);

knew=k+jhelp;

nL=jhelp;

nR=n*n;

found=0;

//while statement

while(((nR-nL)>n)&&(found!=1))

{

j=1;

for (i=2; i<=n; ++i)

{

if(left[i-1]<=right[i-1])

{

weight[j-1]=right[i-1]-left[i-1]+1;

jhelp=left[i-1]+int(weight[j-1]/2);

work[j-1]=y[i-1]-y[n-jhelp];

j=j+1;

}//end if

}//end for

trial=whimed(work, weight, j-1);

j=0;

for(i=n; i>=1; --i)
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{

while((j<n)&&((y[i-1]-y[n-j-1])<trial))

{

j=j+1;

} //end while

P[i-1]=j;

}//end for

j=n+1;

for(i=1;i<=n;++i)

{

while(((y[i-1]-y[n-j+1])>trial)&&(j>=0))

{

j=j-1;

}//end while

Q[i-1]=j;

}//end for

sumP=sumc(P);

sumQ=sumc(Q)-n;

if(knew<=sumP)

{

for(i=1; i<=n; ++i)

{

right[i-1]=P[i-1];

}//end for

nR=sumP;

}//end if

else

{

if(knew>sumQ)

{

for(i=1; i<=n; ++i)

{

left[i-1]=Q[i-1];

}//end for

nL=sumQ;

}

else

{

pQn=trial;

found=1;

}//end else

}//end else
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}//end while

if(found==0)

{

j=1;

for(i=2; i<=n; ++i)

{

if((left[i-1]<=right[i-1]))

{

for(jj=int(left[i-1]); jj<=int(right[i-1]);++jj)

{

if(j<=n){ work[j-1]=y[i-1]-y[n-jj];}

j=j+1;

}//end for

}//end if

}//end for

twork=work[:j-2];

twork=sortc(twork);

pQn=twork[knew-nL-1];

}//end if

if(n<=9)

{

if(n==2){dn=.399;}

if(n==3){dn=.994;}

if(n==4){dn=.512;}

if(n==5){dn=.844;}

if(n==6){dn=.611;}

if(n==7){dn=.857;}

if(n==8){dn=.669;}

if(n==9){dn=.872;}

}

else

{

if(imod(n,2)==1)

{

dn=n/(n+1.4);

}

else

{

dn=n/(n+3.8);

}//end else

}//end else
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pQn=dn*2.2219*pQn;

return pQn;

}//end proc

//robust autocovariance function

racov(const x, const h)

{

decl u, v, n, gamma;

n=rows(x);

u=x[:n-h-1];

v=x[h:];

gamma=1/4*(Qn(u+v)^2-Qn(u-v)^2);

return gamma;

}

Median(const py) {

decl t, res1, sortedr, medy,oddeven;

t = rows(py);

//compute the median of py

sortedr = sortc(py);

oddeven = imod(t,2);

if(oddeven==1)

{

medy = sortedr[(t+1)/2-1]; //index starts at 0

} //need to subtract 1

else

{ //interpolate if even #

medy = (sortedr[(t/2)-1]+sortedr[(t/2)+1-1])/2;

}

return medy;

}

MAD(const py) //mad(y)=mediani(yi-medjyj) {

decl t, res1, sortedr, medy,oddeven,madest;

t = rows(py);

//compute the median of py

medy=whimed(py,constant(1,t,1),t);

//medy=Median(py);

//compute the median of adjusted series

res1=((py-medy).^2).^.5;

sortedr = sortc(res1);
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oddeven = imod(t,2);

if(oddeven==1)

{

madest = 1.4826*sortedr[(t+1)/2-1]; //index starts at 0

} //need to subtract 1

else

{//interpolate if even #

madest = 1.4286*(sortedr[(t/2)-1]+sortedr[(t/2)+1-1])/2;

}

return madest;

}

rho(const phi) {

decl test, result, u,k;

u = phi;

k=4.68;

test = 3*(phi/k).^2-3*(phi/k).^4+(phi/k).^6;

result = ((u.^2).^(.5)).<=k .?test .: 1;

return result;

}

gam(const phi) {

decl test, result, u, n,k;

n = rows(phi);

u = phi;

k=4.68;

test = 6/k*(phi/k-2*(phi/k).^3+(phi/k).^5);

result = ((u.^2).^(.5)).<=k .?test .: 0;

return result;

}

//This function will compute the bisquare psi-function derivative

//with k1 = 4.68

gamprime(const phi) {

decl test, result, u, n,k;

n = rows(phi);

u = phi;

k=4.68;
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test = 6/k^2*(1-6*(phi/k).^2+5*(phi/k).^4);

result = ((u.^2).^(.5)).<=4.68 .?test .: 0;

// result = (sumc(result)/n)^2;

return result;

}

VC0(const y, const x, const bmm,const sc) { decl

K,p,n,phi,phiprime,res,varphip,Ephip,V;

p=columns(x);

n=rows(x);

res=(y-x*bmm);

V=sc^2*(invert((x)’*(x))*meanc(gam(res/sc).^2)

/(meanc(gamprime(res/sc))).^2);

return V;

}

VC1(const y, const x, const bmm,const sc) { decl

K,p,n,phi,phiprime,res,varphip,Ephip,V;

p=columns(x);

n=rows(x);

res=(y-x*bmm)/sc;

phiprime=gamprime(res);

phi=gam(res);

varphip=varc(phiprime);

Ephip=meanc(phiprime);

K=1+p/n*(varphip/Ephip^2);

V=sc^2*(K^2*(1/(n-p))*sumsqrc(phi)/Ephip^2*invert(x’x));

return V;

}

VC2(const y, const x, const bmm,const sc) { decl

K,p,n,phi,phiprime,res,varphip,Ephip,V,W;

p=columns(x);

n=rows(x);

res=(y-x*bmm)/sc;

phiprime=gamprime(res);

phi=gam(res);

varphip=varc(phiprime);

Ephip=meanc(phiprime);
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W=x’*diag(phiprime)*x;

K=1+p/n*(varphip/Ephip^2);

V=sc^2*(K*(1/(n-p))*sumsqrc(phi)/Ephip*invert(W));

return V;

}

VC3(const y, const x, const bmm,const sc) { decl

K,p,n,phi,phiprime,res,varphip,Ephip,V,W;

p=columns(x);

n=rows(x);

res=(y-bmm*x)/sc;

phiprime=gamprime(res);

phi=gam(res);

varphip=varc(phiprime);

Ephip=meanc(phiprime);

W=x’*diag(phiprime)*x;

K=1+p/n*(varphip/Ephip^2);

V=sc^2*(K^(-1)*(1/(n-p))*sumsqrc(phi)*invert(W)*(x’x)*invert(W));

return V;

}

170



Bibliography

Akaike, H. (1973), Information theory and an extension of the maximum likelihood
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